From 715be52eef85ab0868c6ba1b7326cec3f8b2de91 Mon Sep 17 00:00:00 2001 From: mleprovost <38221506+mleprovost@users.noreply.github.com> Date: Thu, 16 May 2024 00:10:15 -0400 Subject: [PATCH] Added Shu-Osher initialization for 1D compressible Euler with Gauss nodes (#1943) * Added 1D Shu-Osher initialization for compressible Euler 1D * Fix: Addresses comments from PR 1943 * Added test for Euler 1D Shu Osher with Gauss nodes * Remove useless comment in test * Formate files with JuliaFormatter 1.0.45 * Fixed error in test for Shu Osher Gauss node problem * Fix issue in initial condition for Shu Osher --------- Co-authored-by: Hendrik Ranocha --- ...r_euler_shu_osher_gauss_shock_capturing.jl | 93 +++++++++++++++++++ test/test_dgmulti_1d.jl | 24 +++++ 2 files changed, 117 insertions(+) create mode 100644 examples/dgmulti_1d/elixir_euler_shu_osher_gauss_shock_capturing.jl diff --git a/examples/dgmulti_1d/elixir_euler_shu_osher_gauss_shock_capturing.jl b/examples/dgmulti_1d/elixir_euler_shu_osher_gauss_shock_capturing.jl new file mode 100644 index 00000000000..79c92656176 --- /dev/null +++ b/examples/dgmulti_1d/elixir_euler_shu_osher_gauss_shock_capturing.jl @@ -0,0 +1,93 @@ +using Trixi +using OrdinaryDiffEq + +gamma_gas = 1.4 +equations = CompressibleEulerEquations1D(gamma_gas) + +############################################################################### +# setup the GSBP DG discretization that uses the Gauss operators from +# Chan, Del Rey Fernandez, Carpenter (2019). +# [https://doi.org/10.1137/18M1209234](https://doi.org/10.1137/18M1209234) + +# Shu-Osher initial condition for 1D compressible Euler equations +# Example 8 from Shu, Osher (1989). +# [https://doi.org/10.1016/0021-9991(89)90222-2](https://doi.org/10.1016/0021-9991(89)90222-2) +function initial_condition_shu_osher(x, t, equations::CompressibleEulerEquations1D) + x0 = -4 + + rho_left = 27 / 7 + v_left = 4 * sqrt(35) / 9 + p_left = 31 / 3 + + # Replaced v_right = 0 to v_right = 0.1 to avoid positivity issues. + v_right = 0.1 + p_right = 1.0 + + rho = ifelse(x[1] > x0, 1 + 1 / 5 * sin(5 * x[1]), rho_left) + v = ifelse(x[1] > x0, v_right, v_left) + p = ifelse(x[1] > x0, p_right, p_left) + + return prim2cons(SVector(rho, v, p), + equations) +end + +initial_condition = initial_condition_shu_osher + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha + +polydeg = 3 +basis = DGMultiBasis(Line(), polydeg, approximation_type = GaussSBP()) + +indicator_sc = IndicatorHennemannGassner(equations, basis, + alpha_max = 0.5, + alpha_min = 0.001, + alpha_smooth = true, + variable = density_pressure) +volume_integral = VolumeIntegralShockCapturingHG(indicator_sc; + volume_flux_dg = volume_flux, + volume_flux_fv = surface_flux) + +dg = DGMulti(basis, + surface_integral = SurfaceIntegralWeakForm(surface_flux), + volume_integral = volume_integral) + +boundary_condition = BoundaryConditionDirichlet(initial_condition) +boundary_conditions = (; :entire_boundary => boundary_condition) + +############################################################################### +# setup the 1D mesh + +cells_per_dimension = (64,) +mesh = DGMultiMesh(dg, cells_per_dimension, + coordinates_min = (-5.0,), coordinates_max = (5.0,), + periodicity = false) + +############################################################################### +# setup the semidiscretization and ODE problem + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, + dg, boundary_conditions = boundary_conditions) + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +############################################################################### +# setup the callbacks + +# prints a summary of the simulation setup and resets the timers +summary_callback = SummaryCallback() + +# analyse the solution in regular intervals and prints the results +analysis_callback = AnalysisCallback(semi, interval = 100, uEltype = real(dg)) + +# handles the re-calculation of the maximum Δt after each time step +stepsize_callback = StepsizeCallback(cfl = 0.1) + +# collect all callbacks such that they can be passed to the ODE solver +callbacks = CallbackSet(summary_callback, analysis_callback, stepsize_callback) + +# ############################################################################### +# # run the simulation + +sol = solve(ode, SSPRK43(), adaptive = true, callback = callbacks, save_everystep = false) diff --git a/test/test_dgmulti_1d.jl b/test/test_dgmulti_1d.jl index 0d083cf9a72..7ac3c735642 100644 --- a/test/test_dgmulti_1d.jl +++ b/test/test_dgmulti_1d.jl @@ -69,6 +69,30 @@ end end end +@trixi_testset "elixir_euler_shu_osher_gauss_shock_capturing.jl " begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_euler_shu_osher_gauss_shock_capturing.jl"), + cells_per_dimension=(64,), tspan=(0.0, 1.0), + l2=[ + 1.673813320412685, + 5.980737909458242, + 21.587822949251173, + ], + linf=[ + 3.1388039126918064, + 10.630952212105246, + 37.682826521024865, + ]) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end + @trixi_testset "elixir_euler_flux_diff.jl (convergence)" begin mean_convergence = convergence_test(@__MODULE__, joinpath(EXAMPLES_DIR,