From 873790f48e7802f7fe00a87e5b10f06cd4ba6aac Mon Sep 17 00:00:00 2001 From: SimonCan Date: Fri, 27 Oct 2023 12:46:38 +0100 Subject: [PATCH] Tried further 3d convergence tests using more complex manufactured solutions. --- .../elixir_mhd_diffusive_alfven_wave.jl | 136 ++++++++++-------- 1 file changed, 74 insertions(+), 62 deletions(-) diff --git a/examples/tree_3d_dgsem/elixir_mhd_diffusive_alfven_wave.jl b/examples/tree_3d_dgsem/elixir_mhd_diffusive_alfven_wave.jl index 307d48ad638..dd46c8a7a32 100644 --- a/examples/tree_3d_dgsem/elixir_mhd_diffusive_alfven_wave.jl +++ b/examples/tree_3d_dgsem/elixir_mhd_diffusive_alfven_wave.jl @@ -6,8 +6,8 @@ using Trixi # semidiscretization of the visco-resistive compressible MHD equations prandtl_number() = 0.72 -mu() = 1e-2 -eta() = 1e-2 +mu() = 0e-2 +eta() = 0e-2 mu_const = mu() eta_const = eta() @@ -30,55 +30,63 @@ mesh = TreeMesh(coordinates_min, coordinates_max, initial_refinement_level = 2, n_cells_max = 100_000) # set maximum capacity of tree data structure -function initial_condition_constant_alfven(x, t, equations) -# # Alfvén wave in three space dimensions -# # Altmann thesis http://dx.doi.org/10.18419/opus-3895 -# # domain must be set to [-1, 1]^3, γ = 5/3 -# p = 1 -# omega = 2 * pi # may be multiplied by frequency -# # r: length-variable = length of computational domain -# r = 2 -# # e: epsilon = 0.02 -# e = 0.02 -# nx = 1 / sqrt(r^2 + 1) -# ny = r / sqrt(r^2 + 1) -# sqr = 1 -# Va = omega / (ny * sqr) -# phi_alv = omega / ny * (nx * (x[1] - 0.5 * r) + ny * (x[2] - 0.5 * r)) - Va * t -# nu = 1e-2 -# eta = 1e-2 -# k = 1/sqrt(2)*2*pi +#function initial_condition_constant_alfven(x, t, equations) +# # Homogeneous background magnetic field in the diagonl direction that is perturbed +# # by a small change in the orthogonal direction (e.g. Biskamp 2003, section 2.5.1). +# # This particular set-up is a modification of Rembiasz et al. (2018) +# # DOI: doi.org/10.3847/1538-4365/aa6254, but with p = 1. +# # For a derivation of Alfven waves see e.g.: +# # Alfven H., 150, p. 450, Nature (1942), DOI: 10.1038/150405d0 +# # Chandrasekhar, Hydrodynamic and hydromagnetic stability (1961) +# # Biskamp, Magnetohydrodynamic Turbulence (2003) +# +# epsilon = 0.02 +# k = 2*pi*1 +# p = 2e-3 # # rho = 1.0 -# v1 = -e * ny * cos(phi_alv) / rho -# v2 = e * nx * cos(phi_alv) / rho -# v3 = e * sin(phi_alv) / rho -# B1 = nx - rho * v1 * sqr -# B2 = ny - rho * v2 * sqr -# B3 = -rho * v3 * sqr +# rho_v1 = 0 +# rho_v2 = -epsilon*sin(k*x[1])/sqrt(rho) +# rho_v3 = 0 +# B1 = 1 +# B2 = epsilon*sin(k*x[1]) +# B3 = 0 +# rho_e = 1 # psi = 0 # -# return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3, psi), equations) - # Homogeneous background magnetic field in the x-direction that is perturbed - # by a small change in the y-direction (e.g. Biskamp 2003, section 2.5.1). - # This particular set-up is in line with Rembiasz et al. (2018) - # DOI: doi.org/10.3847/1538-4365/aa6254, but with p = 1. - # For a derivation of Alfven waves see e.g.: - # Alfven H., 150, p. 450, Nature (1942), DOI: 10.1038/150405d0 - # Chandrasekhar, Hydrodynamic and hydromagnetic stability (1961) - # Biskamp, Magnetohydrodynamic Turbulence (2003) - - epsilon = 0.02 - k = 2*pi*1 - p = 2e-3 - - rho = 1.0 - rho_v1 = 0 - rho_v2 = -epsilon*sin(k*x[1])/sqrt(rho) - rho_v3 = 0 - B1 = 1 - B2 = epsilon*sin(k*x[1]) - B3 = 0 +# return SVector(rho, rho_v1, rho_v2, rho_v3, rho_e, B1, B2, B3, psi) +#end +# +#@inline function source_terms_mhd_convergence_test(u, x, t, equations) +# r_1 = 0 +# r_2 = -0.000266666666666667*pi*sin(2*pi*x[1])*cos(2*pi*x[1]) +# r_3 = -0.08*pi^2*mu_const*sin(2*pi*x[1]) - 0.04*pi*cos(2*pi*x[1]) +# r_4 = 0 +# r_5 = 0.0016*pi^2*eta_const*sin(2*pi*x[1])^2 + +# -0.0016*pi^2*eta_const*cos(2*pi*x[1])^2 + +# -mu_const*(-0.0016*pi^2*sin(2*pi*x[1])^2 + 0.0016*pi^2*cos(2*pi*x[1])^2) + +# 0.0016*pi*sin(2*pi*x[1])*cos(2*pi*x[1]) +# r_6 = 0 +# r_7 = 0.08*pi^2*eta_const*sin(2*pi*x[1]) + 0.04*pi*cos(2*pi*x[1]) +# r_8 = 0 +# r_9 = 0 +# +# return SVector(r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9) +#end + +function initial_condition_convergence_test(x, t, equations) + # Initial condition for the convergence test. + # This form has been conjured up by guess work just for this test. + + l = x[1]^2 + 2*x[2]^2 + 3*x[3]^2 + + rho = exp(-l/10) + rho_v1 = rho*x[2] + rho_v2 = rho*x[1] + rho_v3 = 1/10 + B1 = x[2]/10 + x[1]/100 + B2 = x[3]/10 + B3 = x[1]/10 rho_e = 1 psi = 0 @@ -86,23 +94,27 @@ function initial_condition_constant_alfven(x, t, equations) end @inline function source_terms_mhd_convergence_test(u, x, t, equations) - r_1 = 0 - r_2 = -0.000266666666666667*pi*sin(2*pi*x[1])*cos(2*pi*x[1]) - r_3 = -0.08*pi^2*mu_const*sin(2*pi*x[1]) - 0.04*pi*cos(2*pi*x[1]) - r_4 = 0 - r_5 = 0.0016*pi^2*eta_const*sin(2*pi*x[1])^2 + - -0.0016*pi^2*eta_const*cos(2*pi*x[1])^2 + - -mu_const*(-0.0016*pi^2*sin(2*pi*x[1])^2 + 0.0016*pi^2*cos(2*pi*x[1])^2) + - 0.0016*pi*sin(2*pi*x[1])*cos(2*pi*x[1]) - r_6 = 0 - r_7 = 0.08*pi^2*eta_const*sin(2*pi*x[1]) + 0.04*pi*cos(2*pi*x[1]) - r_8 = 0 - r_9 = 0 - - return SVector(r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9) + l = x[1]^2 + 2*x[2]^2 + 3*x[3]^2 +# z = x[3] +# y = x[2] +# x = x[1] + + r_1 = -(3*x[1]*x[2] + 0.3*x[3])*exp(-x[1]^2/10 - x[2]^2/5 - 3*x[3]^2/10)/5 +# r_2 = (0.0666666666666667*x^3 - 0.533333333333333*x*y^2 + 0.00316666666666667*x*exp(x^2/10 + y^2/5 + 3*z^2/10) + 0.334*x - 0.06*y*z - 0.00166666666666667*y*exp(x^2/10 + y^2/5 + 3*z^2/10) - 0.01*z*exp(x^2/10 + y^2/5 + 3*z^2/10))*exp(-x^2/10 - y^2/5 - 3*z^2/10) +# r_3 = (-0.466666666666667*x^2*y - 0.06*x*z - 0.00966666666666667*x*exp(x^2/10 + y^2/5 + 3*z^2/10) + 0.133333333333333*y^3 + 0.00333333333333333*y*exp(x^2/10 + y^2/5 + 3*z^2/10) + 0.334666666666667*y - 0.001*z*exp(x^2/10 + y^2/5 + 3*z^2/10))*exp(-x^2/10 - y^2/5 - 3*z^2/10) +# r_4 = -0.06*x*y*exp(-x^2/10 - y^2/5 - 3*z^2/10) - x/500 - y/100 + 3*z*(0.333333333333333*x^2 + 0.333333333333333*y^2 + 0.00333333333333333)*exp(-x^2/10 - y^2/5 - 3*z^2/10)/5 - 0.006*z*exp(-x^2/10 - y^2/5 - 3*z^2/10) + 0.00333333333333333*z +# r_5 = -0.03*eta_const - 4.0*mu_const + 0.2*x^3*y*exp(-x^2/10 - y^2/5 - 3*z^2/10) + 0.02*x^2*z*exp(-x^2/10 - y^2/5 - 3*z^2/10) - 0.00966666666666667*x^2 + 0.2*x*y^3*exp(-x^2/10 - y^2/5 - 3*z^2/10) - 1.33133333333333*x*y*exp(-x^2/10 - y^2/5 - 3*z^2/10) + 0.0065*x*y - 0.003*x*z - 0.0002*x + 0.02*y^2*z*exp(-x^2/10 - y^2/5 - 3*z^2/10) - 0.00166666666666667*y^2 - 0.03*y*z - 0.001*y + 0.0002*z*exp(-x^2/10 - y^2/5 - 3*z^2/10) + 0.000333333333333333*z +# r_6 = x/10 - z/10 +# r_7 = -x/50 - y/10 + 0.01 +# r_8 = y/10 - 0.001 +# r_9 = equations.c_h/100 + +# return SVector(r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9) + return SVector(r_1, 0, 0, 0, 0, 0, 0, 0, 0) end -initial_condition = initial_condition_constant_alfven +#initial_condition = initial_condition_constant_alfven +initial_condition = initial_condition_convergence_test semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver,