diff --git a/src/equations/compressible_navier_stokes_2d.jl b/src/equations/compressible_navier_stokes_2d.jl index 5df7c01ca5c..31d3e33ca34 100644 --- a/src/equations/compressible_navier_stokes_2d.jl +++ b/src/equations/compressible_navier_stokes_2d.jl @@ -117,22 +117,151 @@ function CompressibleNavierStokesDiffusion2D(equations::CompressibleEulerEquatio gradient_variables) end +@doc raw""" + CompressibleNavierStokesVarMuDiffusion2D(equations; mu_0, Pr, + T_0, S, omega = 1.5, + gradient_variables=GradientVariablesPrimitive()) + +Contains the diffusion (i.e. parabolic) terms applied +to mass, momenta, and total energy together with the advective terms from +the [`CompressibleEulerEquations2D`](@ref). + +- `equations`: instance of the [`CompressibleEulerEquations2D`](@ref) +- `mu_0`: reference dynamic viscosity at `T_Ref` used in Sutherland's law for computation of temperature-dependent viscosity +- `Pr`: Prandtl number, +- `T_0`: reference temperature at which `mu_Ref` is specified, reqiured for temperature-dependent viscosity via Sutherland's law +- `S`: Sutherland's temperature/constant +- `omega`: viscosity exponent in Sutherlands law +- `gradient_variables`: which variables the gradients are taken with respect to. + Defaults to `GradientVariablesPrimitive()`. + +Fluid properties such as the dynamic viscosity ``\mu`` can be provided in any consistent unit system, e.g., +[``\mu``] = kg m⁻¹ s⁻¹. + +The particular form of the compressible Navier-Stokes implemented is +```math +\frac{\partial}{\partial t} +\begin{pmatrix} +\rho \\ \rho \mathbf{v} \\ \rho e +\end{pmatrix} ++ +\nabla \cdot +\begin{pmatrix} + \rho \mathbf{v} \\ \rho \mathbf{v}\mathbf{v}^T + p \underline{I} \\ (\rho e + p) \mathbf{v} +\end{pmatrix} += +\nabla \cdot +\begin{pmatrix} +0 \\ \underline{\tau} \\ \underline{\tau}\mathbf{v} - \mathbf{q} +\end{pmatrix} +``` +where the system is closed with the ideal gas assumption giving +```math +p = (\gamma - 1) \left( \rho e - \frac{1}{2} \rho (v_1^2+v_2^2) \right) +``` +as the pressure. The value of the adiabatic constant `gamma` is taken from the [`CompressibleEulerEquations2D`](@ref). +The terms on the right hand side of the system above +are built from the viscous stress tensor +```math +\underline{\tau} = \mu \left(\nabla\mathbf{v} + \left(\nabla\mathbf{v}\right)^T\right) - \frac{2}{3} \mu \left(\nabla\cdot\mathbf{v}\right)\underline{I} +``` +where ``\underline{I}`` is the ``2\times 2`` identity matrix and the heat flux is +```math +\mathbf{q} = -\kappa\nabla\left(T\right),\quad T = \frac{p}{R\rho} +``` +where ``T`` is the temperature and ``\kappa`` is the thermal conductivity for Fick's law. +The dynamic, temperature-dependent viscosity ``\mu(T)`` is computed via Sutherland's law +```math +\mu(T) = \mu_0 \left(\frac{T}{T_0}\right)^\omega \left(1 + \frac{T_0 + S}{T + S}\right) +``` +where ``\mu_0`` is the reference dynamic viscosity at ``T_0``, ``\omega`` is the viscosity exponent, +and ``S`` is Sutherland's temperature/constant. +Under the assumption that the gas has a constant Prandtl number, +the thermal conductivity is +```math +\kappa = \frac{\gamma \mu R}{(\gamma - 1)\textrm{Pr}}. +``` +From this combination of temperature ``T`` and thermal conductivity ``\kappa`` we see +that the gas constant `R` cancels and the heat flux becomes +```math +\mathbf{q} = -\kappa\nabla\left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}}\nabla\left(\frac{p}{\rho}\right) +``` +which is the form implemented below in the [`flux`](@ref) function. + +In two spatial dimensions we require gradients for three quantities, e.g., +primitive quantities +```math +\nabla v_1,\, \nabla v_2,\, \nabla T +``` +or the entropy variables +```math +\nabla w_2,\, \nabla w_3,\, \nabla w_4 +``` +where +```math +w_2 = \frac{\rho v_1}{p},\, w_3 = \frac{\rho v_2}{p},\, w_4 = -\frac{\rho}{p} +``` +""" +struct CompressibleNavierStokesVarMuDiffusion2D{GradientVariables, RealT <: Real, + E <: + AbstractCompressibleEulerEquations{2}} <: + AbstractCompressibleNavierStokesDiffusion{2, 4, GradientVariables} + # TODO: parabolic + # 1) For now save gamma and inv(gamma-1) again, but could potentially reuse them from the Euler equations + # 2) Add NGRADS as a type parameter here and in AbstractEquationsParabolic, add `ngradients(...)` accessor function + gamma::RealT # ratio of specific heats + inv_gamma_minus_one::RealT # = inv(gamma - 1); can be used to write slow divisions as fast multiplications + + mu_0::RealT # viscosity at Tref + Pr::RealT # Prandtl number + kappa::RealT # thermal diffusivity for Fick's law + T_0::RealT # Tref + inv_T_0::RealT # 1.0/Tref + S::RealT # Sutherland's temperature/constant + omega::RealT # viscosity exponent (mu=mu0*(T/Tref)^omega) + + equations_hyperbolic::E # CompressibleEulerEquations2D + gradient_variables::GradientVariables # GradientVariablesPrimitive or GradientVariablesEntropy +end + +# default to primitive gradient variables +function CompressibleNavierStokesVarMuDiffusion2D(equations::CompressibleEulerEquations2D; + mu_0, Prandtl, T_0, S, omega = 1.5, + gradient_variables = GradientVariablesPrimitive()) + gamma = equations.gamma + inv_gamma_minus_one = equations.inv_gamma_minus_one + kappa = gamma * inv_gamma_minus_one / Pr + + mu_0, T_0, S, omega = promote(mu_0, T_0, S, omega) + + CompressibleNavierStokesVarMuDiffusion2D{typeof(gradient_variables), typeof(gamma), + typeof(equations)}(gamma, + inv_gamma_minus_one, + μ0, Pr, kappa, T_0, + inv(T_0), S, omega, + equations, + gradient_variables) +end + # TODO: parabolic # This is the flexibility a user should have to select the different gradient variable types # varnames(::typeof(cons2prim) , ::CompressibleNavierStokesDiffusion2D) = ("v1", "v2", "T") # varnames(::typeof(cons2entropy), ::CompressibleNavierStokesDiffusion2D) = ("w2", "w3", "w4") function varnames(variable_mapping, - equations_parabolic::CompressibleNavierStokesDiffusion2D) + equations_parabolic::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) varnames(variable_mapping, equations_parabolic.equations_hyperbolic) end # we specialize this function to compute gradients of primitive variables instead of # conservative variables. -function gradient_variable_transformation(::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) +function gradient_variable_transformation(::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesVarMuDiffusion2D{GradientVariablesPrimitive}}) cons2prim end -function gradient_variable_transformation(::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) +function gradient_variable_transformation(::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesVarMuDiffusion2D{GradientVariablesEntropy}}) cons2entropy end @@ -193,8 +322,66 @@ function flux(u, gradients, orientation::Integer, end end +# Explicit formulas for the diffusive Navier-Stokes fluxes are available, e.g., in Section 2 +# of the paper by Rueda-Ramírez, Hennemann, Hindenlang, Winters, and Gassner +# "An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive +# MHD Equations. Part II: Subcell Finite Volume Shock Capturing" +# where one sets the magnetic field components equal to 0. +function flux(u, gradients, orientation::Integer, + equations::CompressibleNavierStokesVarMuDiffusion2D) + # Here, `u` is assumed to be the "transformed" variables specified by `gradient_variable_transformation`. + rho, v1, v2, T = convert_transformed_to_primitive(u, equations) + # Here `gradients` is assumed to contain the gradients of the primitive variables (rho, v1, v2, T) + # either computed directly or reverse engineered from the gradient of the entropy variables + # by way of the `convert_gradient_variables` function. + _, dv1dx, dv2dx, dTdx = convert_derivative_to_primitive(u, gradients[1], equations) + _, dv1dy, dv2dy, dTdy = convert_derivative_to_primitive(u, gradients[2], equations) + + # Components of viscous stress tensor + + # (4/3 * (v1)_x - 2/3 * (v2)_y) + tau_11 = 4.0 / 3.0 * dv1dx - 2.0 / 3.0 * dv2dy + # ((v1)_y + (v2)_x) + # stress tensor is symmetric + tau_12 = dv1dy + dv2dx # = tau_21 + # (4/3 * (v2)_y - 2/3 * (v1)_x) + tau_22 = 4.0 / 3.0 * dv2dy - 2.0 / 3.0 * dv1dx + + # Fick's law q = -kappa * grad(T) = -kappa * grad(p / (R rho)) + # with thermal diffusivity constant kappa = gamma μ R / ((gamma-1) Pr) + # Note, the gas constant cancels under this formulation, so it is not present + # in the implementation + q1 = equations.kappa * dTdx + q2 = equations.kappa * dTdy + + # Temperature dependent dynamic viscosity via Sutherland's law. + mu = equations.mu_0 * (T * equations.inv_T_0)^equations.omega * + (equations.T_0 + equations.S) / (T + equations.S) + + if orientation == 1 + # viscous flux components in the x-direction + f1 = zero(rho) + f2 = tau_11 * mu + f3 = tau_12 * mu + f4 = (v1 * tau_11 + v2 * tau_12 + q1) * mu + + return SVector(f1, f2, f3, f4) + else # if orientation == 2 + # viscous flux components in the y-direction + # Note, symmetry is exploited for tau_12 = tau_21 + g1 = zero(rho) + g2 = tau_12 * mu # tau_21 * mu + g3 = tau_22 * mu + g4 = (v1 * tau_12 + v2 * tau_22 + q2) * mu + + return SVector(g1, g2, g3, g4) + end +end + # Convert conservative variables to primitive -@inline function cons2prim(u, equations::CompressibleNavierStokesDiffusion2D) +@inline function cons2prim(u, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) rho, rho_v1, rho_v2, _ = u v1 = rho_v1 / rho @@ -208,10 +395,14 @@ end # TODO: parabolic. We can improve efficiency by not computing w_1, which involves logarithms # This can be done by specializing `cons2entropy` and `entropy2cons` to `CompressibleNavierStokesDiffusion2D`, # but this may be confusing to new users. -function cons2entropy(u, equations::CompressibleNavierStokesDiffusion2D) +function cons2entropy(u, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) cons2entropy(u, equations.equations_hyperbolic) end -function entropy2cons(w, equations::CompressibleNavierStokesDiffusion2D) +function entropy2cons(w, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) entropy2cons(w, equations.equations_hyperbolic) end @@ -219,13 +410,15 @@ end # For CNS, it is simplest to formulate the viscous terms in primitive variables, so we transform the transformed # variables into primitive variables. @inline function convert_transformed_to_primitive(u_transformed, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesVarMuDiffusion2D{GradientVariablesPrimitive}}) return u_transformed end # TODO: parabolic. Make this more efficient! @inline function convert_transformed_to_primitive(u_transformed, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesVaMuDiffusion2D{GradientVariablesEntropy}}) # note: this uses CompressibleNavierStokesDiffusion2D versions of cons2prim and entropy2cons return cons2prim(entropy2cons(u_transformed, equations), equations) end @@ -236,13 +429,15 @@ end # Note, the first component of `gradient_entropy_vars` contains gradient(rho) which is unused. # TODO: parabolic; entropy stable viscous terms @inline function convert_derivative_to_primitive(u, gradient, - ::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + ::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesVarMuDiffusion2D{GradientVariablesPrimitive}}) return gradient end # the first argument is always the "transformed" variables. @inline function convert_derivative_to_primitive(w, gradient_entropy_vars, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesVarMuDiffusion2D{GradientVariablesEntropy}}) # TODO: parabolic. This is inefficient to pass in transformed variables but then transform them back. # We can fix this if we directly compute v1, v2, T from the entropy variables @@ -263,11 +458,15 @@ end # is called with `equations::CompressibleEulerEquations2D`. This means it is inconsistent # with `cons2prim(..., ::CompressibleNavierStokesDiffusion2D)` as defined above. # TODO: parabolic. Is there a way to clean this up? -@inline function prim2cons(u, equations::CompressibleNavierStokesDiffusion2D) +@inline function prim2cons(u, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) prim2cons(u, equations.equations_hyperbolic) end -@inline function temperature(u, equations::CompressibleNavierStokesDiffusion2D) +@inline function temperature(u, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) rho, rho_v1, rho_v2, rho_e = u p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1^2 + rho_v2^2) / rho) @@ -275,14 +474,18 @@ end return T end -@inline function enstrophy(u, gradients, equations::CompressibleNavierStokesDiffusion2D) +@inline function enstrophy(u, gradients, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) # Enstrophy is 0.5 rho ω⋅ω where ω = ∇ × v omega = vorticity(u, gradients, equations) return 0.5 * u[1] * omega^2 end -@inline function vorticity(u, gradients, equations::CompressibleNavierStokesDiffusion2D) +@inline function vorticity(u, gradients, + equations::Union{CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesVarMuDiffusion2D}) # Ensure that we have velocity `gradients` by way of the `convert_gradient_variables` function. _, dv1dx, dv2dx, _ = convert_derivative_to_primitive(u, gradients[1], equations) _, dv1dy, dv2dy, _ = convert_derivative_to_primitive(u, gradients[2], equations) @@ -297,7 +500,8 @@ end x, t, operator_type::Gradient, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) v1, v2 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, equations) @@ -311,7 +515,8 @@ end x, t, operator_type::Divergence, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) # rho, v1, v2, _ = u_inner normal_heat_flux = boundary_condition.boundary_condition_heat_flux.boundary_value_normal_flux_function(x, t, @@ -331,7 +536,8 @@ end x, t, operator_type::Gradient, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) v1, v2 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, equations) @@ -347,7 +553,8 @@ end x, t, operator_type::Divergence, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) return flux_inner end @@ -366,7 +573,8 @@ end x, t, operator_type::Gradient, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesEntropy}}) v1, v2 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, equations) @@ -383,7 +591,8 @@ end x, t, operator_type::Divergence, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesEntropy}}) normal_heat_flux = boundary_condition.boundary_condition_heat_flux.boundary_value_normal_flux_function(x, t, equations) @@ -402,7 +611,8 @@ end x, t, operator_type::Gradient, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesEntropy}}) v1, v2 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, equations) @@ -421,7 +631,8 @@ end x, t, operator_type::Divergence, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesEntropy}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesEntropy}}) return SVector(flux_inner[1], flux_inner[2], flux_inner[3], flux_inner[4]) end @@ -432,7 +643,8 @@ end normal::AbstractVector, x, t, operator_type::Gradient, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) # BCs are usually specified as conservative variables so we convert them to primitive variables # because the gradients are assumed to be with respect to the primitive variables u_boundary = boundary_condition.boundary_value_function(x, t, equations) @@ -445,7 +657,8 @@ end normal::AbstractVector, x, t, operator_type::Divergence, - equations::CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}) + equations::Union{CompressibleNavierStokesDiffusion2D{GradientVariablesPrimitive}, + CompressibleNavierStokesDiffusionVarMu2D{GradientVariablesPrimitive}}) # for Dirichlet boundary conditions, we do not impose any conditions on the viscous fluxes return flux_inner end