diff --git a/.github/dependabot.yml b/.github/dependabot.yml index 700707ced32..d60f0707fc2 100644 --- a/.github/dependabot.yml +++ b/.github/dependabot.yml @@ -4,4 +4,4 @@ updates: - package-ecosystem: "github-actions" directory: "/" # Location of package manifests schedule: - interval: "weekly" + interval: "monthly" diff --git a/.github/review-checklist.md b/.github/review-checklist.md new file mode 100644 index 00000000000..2d8a24f1971 --- /dev/null +++ b/.github/review-checklist.md @@ -0,0 +1,38 @@ +### Review checklist + +This checklist is meant to assist creators of PRs (to let them know what reviewers will typically look for) and reviewers (to guide them in a structured review process). Items do not need to be checked explicitly for a PR to be eligible for merging. + +#### Purpose and scope +- [ ] The PR has a single goal that is clear from the PR title and/or description. +- [ ] All code changes represent a single set of modifications that logically belong together. +- [ ] No more than 500 lines of code are changed or there is no obvious way to split the PR into multiple PRs. + +#### Code quality +- [ ] The code can be understood easily. +- [ ] Newly introduced names for variables etc. are self-descriptive and consistent with existing naming conventions. +- [ ] There are no redundancies that can be removed by simple modularization/refactoring. +- [ ] There are no leftover debug statements or commented code sections. +- [ ] The code adheres to our [conventions](https://trixi-framework.github.io/Trixi.jl/stable/conventions/) and [style guide](https://trixi-framework.github.io/Trixi.jl/stable/styleguide/), and to the [Julia guidelines](https://docs.julialang.org/en/v1/manual/style-guide/). + +#### Documentation +- [ ] New functions and types are documented with a docstring or top-level comment. +- [ ] Relevant publications are referenced in docstrings (see [example](https://github.com/trixi-framework/Trixi.jl/blob/7f83a1a938eecd9b841efe215a6e482e67cfdcc1/src/equations/compressible_euler_2d.jl#L601-L615) for formatting). +- [ ] Inline comments are used to document longer or unusual code sections. +- [ ] Comments describe intent ("why?") and not just functionality ("what?"). +- [ ] If the PR introduces a significant change or new feature, it is documented in `NEWS.md`. + +#### Testing +- [ ] The PR passes all tests. +- [ ] New or modified lines of code are covered by tests. +- [ ] New or modified tests run in less then 10 seconds. + +#### Performance +- [ ] There are no type instabilities or memory allocations in performance-critical parts. +- [ ] If the PR intent is to improve performance, before/after [time measurements](https://trixi-framework.github.io/Trixi.jl/stable/performance/#Manual-benchmarking) are posted in the PR. + +#### Verification +- [ ] The correctness of the code was verified using appropriate tests. +- [ ] If new equations/methods are added, a convergence test has been run and the results + are posted in the PR. + +*Created with :heart: by the Trixi.jl community.* \ No newline at end of file diff --git a/.github/workflows/ReviewChecklist.yml b/.github/workflows/ReviewChecklist.yml new file mode 100644 index 00000000000..959a04752d7 --- /dev/null +++ b/.github/workflows/ReviewChecklist.yml @@ -0,0 +1,20 @@ +name: Add review checklist + +on: + pull_request_target: + types: [opened] + +permissions: + pull-requests: write + +jobs: + add-review-checklist: + runs-on: ubuntu-latest + steps: + - name: Check out repository + uses: actions/checkout@v3 + - name: Add review checklist + uses: trixi-framework/add-pr-review-checklist@v1 + with: + file: '.github/review-checklist.md' + no-checklist-keyword: '[no checklist]' \ No newline at end of file diff --git a/.github/workflows/SpellCheck.yml b/.github/workflows/SpellCheck.yml index f72c3b0947b..a06121e7ca1 100644 --- a/.github/workflows/SpellCheck.yml +++ b/.github/workflows/SpellCheck.yml @@ -10,4 +10,4 @@ jobs: - name: Checkout Actions Repository uses: actions/checkout@v3 - name: Check spelling - uses: crate-ci/typos@v1.16.1 + uses: crate-ci/typos@v1.16.9 diff --git a/.zenodo.json b/.zenodo.json index 95879af1e90..905c0170ab9 100644 --- a/.zenodo.json +++ b/.zenodo.json @@ -15,7 +15,7 @@ "orcid": "0000-0002-1752-1158" }, { - "affiliation": "Applied Mathematics, University of Hamburg, Germany", + "affiliation": "Numerical Mathematics, Johannes Gutenberg University Mainz, Germany", "name": "Ranocha, Hendrik", "orcid": "0000-0002-3456-2277" }, diff --git a/AUTHORS.md b/AUTHORS.md index abaa3e7e037..f1debf8ba76 100644 --- a/AUTHORS.md +++ b/AUTHORS.md @@ -12,7 +12,7 @@ provided substantial additions or modifications. Together, these two groups form * [Gregor Gassner](https://www.mi.uni-koeln.de/NumSim/gregor-gassner), University of Cologne, Germany * [Hendrik Ranocha](https://ranocha.de), - University of Hamburg, Germany + Johannes Gutenberg University Mainz, Germany * [Andrew Winters](https://liu.se/en/employee/andwi94), Linköping University, Sweden * [Jesse Chan](https://jlchan.github.io), @@ -28,6 +28,7 @@ are listed in alphabetical order: * Jesse Chan * Lars Christmann * Christof Czernik +* Daniel Doehring * Patrick Ersing * Erik Faulhaber * Gregor Gassner diff --git a/NEWS.md b/NEWS.md index 8e374d9ce99..4b96e1e2834 100644 --- a/NEWS.md +++ b/NEWS.md @@ -9,8 +9,10 @@ for human readability. #### Added - Experimental support for 3D parabolic diffusion terms has been added. +- Non-uniform `TreeMesh` available for hyperbolic-parabolic equations. - Capability to set truly discontinuous initial conditions in 1D. - Wetting and drying feature and examples for 1D and 2D shallow water equations +- Subcell positivity limiting support for conservative variables in 2D for `TreeMesh` #### Changed diff --git a/Project.toml b/Project.toml index db410317851..d134a8e548b 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "Trixi" uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb" authors = ["Michael Schlottke-Lakemper ", "Gregor Gassner ", "Hendrik Ranocha ", "Andrew R. Winters ", "Jesse Chan "] -version = "0.5.37-pre" +version = "0.5.44-pre" [deps] CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2" @@ -56,12 +56,12 @@ DiffEqCallbacks = "2.25" EllipsisNotation = "1.0" FillArrays = "0.13.2, 1" ForwardDiff = "0.10.18" -HDF5 = "0.14, 0.15, 0.16" +HDF5 = "0.14, 0.15, 0.16, 0.17" IfElse = "0.1" LinearMaps = "2.7, 3.0" LoopVectorization = "0.12.118" -Makie = "0.19" MPI = "0.20" +Makie = "0.19" MuladdMacro = "0.2.2" Octavian = "0.3.5" OffsetArrays = "1.3" diff --git a/README.md b/README.md index 7eaee8750dd..c177ad2347f 100644 --- a/README.md +++ b/README.md @@ -17,16 +17,6 @@

-*** -**Trixi.jl at JuliaCon 2023**
-At this year's JuliaCon, we will be present with an online contribution that involves Trixi.jl: - -* [Scaling Trixi.jl to more than 10,000 cores using MPI](https://pretalx.com/juliacon2023/talk/PC8PZ8/), - 27th July 2023, 10:30–11:30 (US/Eastern), 32-G449 (Kiva) - -We are looking forward to seeing you there ♥️ -*** - **Trixi.jl** is a numerical simulation framework for hyperbolic conservation laws written in [Julia](https://julialang.org). A key objective for the framework is to be useful to both scientists and students. Therefore, next to @@ -247,7 +237,7 @@ Schlottke-Lakemper](https://lakemper.eu) (RWTH Aachen University/High-Performance Computing Center Stuttgart (HLRS), Germany) and [Gregor Gassner](https://www.mi.uni-koeln.de/NumSim/gregor-gassner) (University of Cologne, Germany). Together with [Hendrik Ranocha](https://ranocha.de) -(University of Hamburg, Germany), [Andrew Winters](https://liu.se/en/employee/andwi94) +(Johannes Gutenberg University Mainz, Germany), [Andrew Winters](https://liu.se/en/employee/andwi94) (Linköping University, Sweden), and [Jesse Chan](https://jlchan.github.io) (Rice University, US), they are the principal developers of Trixi.jl. The full list of contributors can be found in [AUTHORS.md](AUTHORS.md). diff --git a/docs/Project.toml b/docs/Project.toml index 9fc974d6f38..ffa86e0b9f7 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -13,7 +13,7 @@ Trixi2Vtk = "bc1476a1-1ca6-4cc3-950b-c312b255ff95" [compat] CairoMakie = "0.6, 0.7, 0.8, 0.9, 0.10" -Documenter = "0.27" +Documenter = "1" ForwardDiff = "0.10" HOHQMesh = "0.1, 0.2" LaTeXStrings = "1.2" diff --git a/docs/literate/make.jl b/docs/literate/make.jl index b620f85c975..a04d8a0b333 100644 --- a/docs/literate/make.jl +++ b/docs/literate/make.jl @@ -51,12 +51,25 @@ function create_tutorials(files) # Run tests on all tutorial files @testset "TrixiTutorials" begin for (i, (title, filename)) in enumerate(files) + # Evaluate each tutorial in its own module to avoid leaking of + # function/variable names, polluting the namespace of later tutorials + # by stuff defined in earlier tutorials. if filename isa Vector # Several files of one topic for j in eachindex(filename) - @testset "$(filename[j][2][2])" begin include(joinpath(repo_src, filename[j][2][1], filename[j][2][2])) end + mod = gensym(filename[j][2][2]) + @testset "$(filename[j][2][2])" begin + @eval module $mod + include(joinpath($repo_src, $(filename[j][2][1]), $(filename[j][2][2]))) + end + end end else # Single files - @testset "$title" begin include(joinpath(repo_src, filename)) end + mod = gensym(title) + @testset "$title" begin + @eval module $mod + include(joinpath($repo_src, $filename)) + end + end end end end diff --git a/docs/literate/src/files/DGMulti_1.jl b/docs/literate/src/files/DGMulti_1.jl index 0d78e79907c..5ef577e8eeb 100644 --- a/docs/literate/src/files/DGMulti_1.jl +++ b/docs/literate/src/files/DGMulti_1.jl @@ -194,3 +194,15 @@ plot(pd["rho"]) plot!(getmesh(pd)) # For more information, please have a look in the [StartUpDG.jl documentation](https://jlchan.github.io/StartUpDG.jl/stable/). + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "StartUpDG", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/DGMulti_2.jl b/docs/literate/src/files/DGMulti_2.jl index 92dce43cdab..06248562343 100644 --- a/docs/literate/src/files/DGMulti_2.jl +++ b/docs/literate/src/files/DGMulti_2.jl @@ -38,3 +38,15 @@ D = couple_continuously(legendre_derivative_operator(xmin=0.0, xmax=1.0, N=4), # For more information and other SBP operators, see the documentations of [StartUpDG.jl](https://jlchan.github.io/StartUpDG.jl/dev/) # and [SummationByPartsOperators.jl](https://ranocha.de/SummationByPartsOperators.jl/stable/). + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "StartUpDG", "SummationByPartsOperators"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/DGSEM_FluxDiff.jl b/docs/literate/src/files/DGSEM_FluxDiff.jl index cf3b0a1dbd4..a5769900269 100644 --- a/docs/literate/src/files/DGSEM_FluxDiff.jl +++ b/docs/literate/src/files/DGSEM_FluxDiff.jl @@ -96,13 +96,13 @@ # \begin{align*} # J \underline{\dot{u}}(t) &= - M^{-1} B (\underline{f}^* - \underline{f}) - 2D \underline{f}_{vol}(u^-, u^+)\\[5pt] # &= - M^{-1} B (\underline{f}^* - \underline{f}_{vol}(\underline{u}, \underline{u})) - 2D \underline{f}_{vol}(u^-, u^+)\\[5pt] -# &= - M^{-1} B \underline{f}_{sur}^* - (2D - M^{-1} B) \underline{f}_{vol}\\[5pt] -# &= - M^{-1} B \underline{f}_{sur}^* - D_{split} \underline{f}_{vol} +# &= - M^{-1} B \underline{f}_{surface}^* - (2D - M^{-1} B) \underline{f}_{vol}\\[5pt] +# &= - M^{-1} B \underline{f}_{surface}^* - D_{split} \underline{f}_{vol} # \end{align*} # ``` # This formulation is in a weak form type formulation and can be implemented by using the derivative # split matrix $D_{split}=(2D-M^{-1}B)$ and two different fluxes. We divide between the surface -# flux $f=f_{sur}$ used for the numerical flux $f_{sur}^*$ and the already mentioned volume +# flux $f=f_{surface}$ used for the numerical flux $f_{surface}^*$ and the already mentioned volume # flux $f_{vol}$ especially for this formulation. @@ -236,3 +236,15 @@ plot(sol) # [`flux_chandrashekar`](@ref), [`flux_kennedy_gruber`](@ref). # As surface flux you can use all volume fluxes and additionally for instance [`flux_lax_friedrichs`](@ref), # [`flux_hll`](@ref), [`flux_hllc`](@ref). + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/adaptive_mesh_refinement.jl b/docs/literate/src/files/adaptive_mesh_refinement.jl index d6150e887a8..46af8f79523 100644 --- a/docs/literate/src/files/adaptive_mesh_refinement.jl +++ b/docs/literate/src/files/adaptive_mesh_refinement.jl @@ -202,3 +202,15 @@ plot!(getmesh(pd)) # Source: Trixi.jl's YouTube channel [`Trixi Framework`](https://www.youtube.com/channel/UCpd92vU2HjjTPup-AIN0pkg) # For more information, please have a look at the respective links. + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/adding_new_parabolic_terms.jl b/docs/literate/src/files/adding_new_parabolic_terms.jl index 882f73f66ff..f5c2b815f33 100644 --- a/docs/literate/src/files/adding_new_parabolic_terms.jl +++ b/docs/literate/src/files/adding_new_parabolic_terms.jl @@ -158,3 +158,15 @@ sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, using Plots plot(sol) + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) + diff --git a/docs/literate/src/files/adding_new_scalar_equations.jl b/docs/literate/src/files/adding_new_scalar_equations.jl index fec7bcf667a..a65b4de7f1a 100644 --- a/docs/literate/src/files/adding_new_scalar_equations.jl +++ b/docs/literate/src/files/adding_new_scalar_equations.jl @@ -211,3 +211,15 @@ semi = remake(semi, solver=DGSEM(3, flux_godunov, VolumeIntegralFluxDifferencing ode = semidiscretize(semi, (0.0, 0.5)) sol = solve(ode, SSPRK43(); ode_default_options()...) plot(sol) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/adding_nonconservative_equation.jl b/docs/literate/src/files/adding_nonconservative_equation.jl index 110fa486070..b40e21fb11a 100644 --- a/docs/literate/src/files/adding_nonconservative_equation.jl +++ b/docs/literate/src/files/adding_nonconservative_equation.jl @@ -288,3 +288,15 @@ sol = solve(ode, Tsit5(), abstol=1.0e-6, reltol=1.0e-6, ## Plot the numerical solution at the final time using Plots: plot plot(sol); + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/custom_semidiscretization.jl b/docs/literate/src/files/custom_semidiscretization.jl new file mode 100644 index 00000000000..fd432fb0826 --- /dev/null +++ b/docs/literate/src/files/custom_semidiscretization.jl @@ -0,0 +1,324 @@ +#src # Custom semidiscretizations + +# As described in the [overview section](@ref overview-semidiscretizations), +# semidiscretizations are high-level descriptions of spatial discretizations +# in Trixi.jl. Trixi.jl's main focus is on hyperbolic conservation +# laws represented in a [`SemidiscretizationHyperbolic`](@ref). +# Hyperbolic-parabolic problems based on the advection-diffusion equation or +# the compressible Navier-Stokes equations can be represented in a +# [`SemidiscretizationHyperbolicParabolic`](@ref). This is described in the +# [basic tutorial on parabolic terms](@ref parabolic_terms) and its extension to +# [custom parabolic terms](@ref adding_new_parabolic_terms). +# In this tutorial, we will describe how these semidiscretizations work and how +# they can be used to create custom semidiscretizations involving also other tasks. + + +# ## Overview of the right-hand side evaluation + +# The semidiscretizations provided by Trixi.jl are set up to create `ODEProblem`s from the +# [SciML ecosystem for ordinary differential equations](https://diffeq.sciml.ai/latest/). +# In particular, a spatial semidiscretization can be wrapped in an ODE problem +# using [`semidiscretize`](@ref), which returns an `ODEProblem`. This `ODEProblem` +# bundles an initial condition, a right-hand side (RHS) function, the time span, +# and possible parameters. The `ODEProblem`s created by Trixi.jl use the semidiscretization +# passed to [`semidiscretize`](@ref) as a parameter. +# For a [`SemidiscretizationHyperbolic`](@ref), the `ODEProblem` wraps +# `Trixi.rhs!` as ODE RHS. +# For a [`SemidiscretizationHyperbolicParabolic`](@ref), Trixi.jl +# uses a `SplitODEProblem` combining `Trixi.rhs_parabolic!` for the +# (potentially) stiff part and `Trixi.rhs!` for the other part. + + +# ## Standard Trixi.jl setup + +# In this tutorial, we will consider the linear advection equation +# with source term +# ```math +# \partial_t u(t,x) + \partial_x u(t,x) = -\exp(-t) \sin\bigl(\pi (x - t) \bigr) +# ``` +# with periodic boundary conditions in the domain `[-1, 1]` as a +# model problem. +# The initial condition is +# ```math +# u(0,x) = \sin(\pi x). +# ``` +# The source term results in some damping and the analytical solution +# ```math +# u(t,x) = \exp(-t) \sin\bigl(\pi (x - t) \bigr). +# ``` +# First, we discretize this equation using the standard functionality +# of Trixi.jl. + +using Trixi, OrdinaryDiffEq, Plots + +# The linear scalar advection equation is already implemented in +# Trixi.jl as [`LinearScalarAdvectionEquation1D`](@ref). We construct +# it with an advection velocity `1.0`. + +equations = LinearScalarAdvectionEquation1D(1.0) + +# Next, we use a standard [`DGSEM`](@ref) solver. + +solver = DGSEM(polydeg = 3) + +# We create a simple [`TreeMesh`](@ref) in 1D. + +coordinates_min = (-1.0,) +coordinates_max = (+1.0,) +mesh = TreeMesh(coordinates_min, coordinates_max; + initial_refinement_level = 4, + n_cells_max = 10^4, + periodicity = true) + +# We wrap everything in in a semidiscretization and pass the source +# terms as a standard Julia function. Please note that Trixi.jl uses +# `SVector`s from +# [StaticArrays.jl](https://github.com/JuliaArrays/StaticArrays.jl) +# to store the conserved variables `u`. Thus, the return value of the +# source terms must be wrapped in an `SVector` - even if we consider +# just a scalar problem. + +function initial_condition(x, t, equations) + return SVector(exp(-t) * sinpi(x[1] - t)) +end + +function source_terms_standard(u, x, t, equations) + return -initial_condition(x, t, equations) +end + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, + solver; + source_terms = source_terms_standard) + +# Now, we can create the `ODEProblem`, solve the resulting ODE +# using a time integration method from +# [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl), +# and visualize the numerical solution at the final time using +# [Plots.jl](https://github.com/JuliaPlots/Plots.jl). + +tspan = (0.0, 3.0) +ode = semidiscretize(semi, tspan) + +sol = solve(ode, RDPK3SpFSAL49(); ode_default_options()...) + +plot(sol; label = "numerical sol.", legend = :topright) + +# We can also plot the analytical solution for comparison. +# Since Trixi.jl uses `SVector`s for the variables, we take their `first` +# (and only) component to get the scalar value for manual plotting. + +let + x = range(-1.0, 1.0; length = 200) + plot!(x, first.(initial_condition.(x, sol.t[end], equations)), + label = "analytical sol.", linestyle = :dash, legend = :topright) +end + +# We can also add the initial condition to the plot. + +plot!(sol.u[1], semi, label = "u0", linestyle = :dot, legend = :topleft) + +# You can of course also use some +# [callbacks](https://trixi-framework.github.io/Trixi.jl/stable/callbacks/) +# provided by Trixi.jl as usual. + +summary_callback = SummaryCallback() +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi; interval = analysis_interval) +alive_callback = AliveCallback(; analysis_interval) +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +sol = solve(ode, RDPK3SpFSAL49(); + ode_default_options()..., callback = callbacks) +summary_callback() + + +# ## Using a custom ODE right-hand side function + +# Next, we will solve the same problem but use our own ODE RHS function. +# To demonstrate this, we will artificially create a global variable +# containing the current time of the simulation. + +const GLOBAL_TIME = Ref(0.0) + +function source_terms_custom(u, x, t, equations) + t = GLOBAL_TIME[] + return -initial_condition(x, t, equations) +end + +# Next, we create our own RHS function to update the global time of +# the simulation before calling the RHS function from Trixi.jl. + +function rhs_source_custom!(du_ode, u_ode, semi, t) + GLOBAL_TIME[] = t + Trixi.rhs!(du_ode, u_ode, semi, t) +end + +# Next, we create an `ODEProblem` manually copying over the data from +# the one we got from [`semidiscretize`](@ref) earlier. + +ode_source_custom = ODEProblem(rhs_source_custom!, + ode.u0, + ode.tspan, + ode.p #= semi =#) +sol_source_custom = solve(ode_source_custom, RDPK3SpFSAL49(); + ode_default_options()...) + +plot(sol_source_custom; label = "numerical sol.") +let + x = range(-1.0, 1.0; length = 200) + plot!(x, first.(initial_condition.(x, sol_source_custom.t[end], equations)), + label = "analytical sol.", linestyle = :dash, legend = :topleft) +end +plot!(sol_source_custom.u[1], semi, label = "u0", linestyle = :dot, legend = :topleft) + +# This also works with callbacks as usual. + +summary_callback = SummaryCallback() +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi; interval = analysis_interval) +alive_callback = AliveCallback(; analysis_interval) +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +sol = solve(ode_source_custom, RDPK3SpFSAL49(); + ode_default_options()..., callback = callbacks) +summary_callback() + + +# ## Setting up a custom semidiscretization + +# Using a global constant is of course not really nice from a software +# engineering point of view. Thus, it can often be useful to collect +# additional data in the parameters of the `ODEProblem`. Thus, it is +# time to create our own semidiscretization. Here, we create a small +# wrapper of a standard semidiscretization of Trixi.jl and the current +# global time of the simulation. + +struct CustomSemidiscretization{Semi, T} <: Trixi.AbstractSemidiscretization + semi::Semi + t::T +end + +semi_custom = CustomSemidiscretization(semi, Ref(0.0)) + +# To get pretty printing in the REPL, you can consider specializing +# +# - `Base.show(io::IO, parameters::CustomSemidiscretization)` +# - `Base.show(io::IO, ::MIME"text/plain", parameters::CustomSemidiscretization)` +# +# for your custom semidiscretiation. + +# Next, we create our own source terms that use the global time stored +# in the custom semidiscretiation. + +source_terms_custom_semi = let semi_custom = semi_custom + function source_terms_custom_semi(u, x, t, equations) + t = semi_custom.t[] + return -initial_condition(x, t, equations) + end +end + +# We also create a custom ODE RHS to update the current global time +# stored in the custom semidiscretization. We unpack the standard +# semidiscretization created by Trixi.jl and pass it to `Trixi.rhs!`. + +function rhs_semi_custom!(du_ode, u_ode, semi_custom, t) + semi_custom.t[] = t + Trixi.rhs!(du_ode, u_ode, semi_custom.semi, t) +end + +# Finally, we set up an `ODEProblem` and solve it numerically. + +ode_semi_custom = ODEProblem(rhs_semi_custom!, + ode.u0, + ode.tspan, + semi_custom) +sol_semi_custom = solve(ode_semi_custom, RDPK3SpFSAL49(); + ode_default_options()...) + +# If we want to make use of additional functionality provided by +# Trixi.jl, e.g., for plotting, we need to implement a few additional +# specializations. In this case, we forward everything to the standard +# semidiscretization provided by Trixi.jl wrapped in our custom +# semidiscretization. + +Base.ndims(semi::CustomSemidiscretization) = ndims(semi.semi) +function Trixi.mesh_equations_solver_cache(semi::CustomSemidiscretization) + Trixi.mesh_equations_solver_cache(semi.semi) +end + +# Now, we can plot the numerical solution as usual. + +plot(sol_semi_custom; label = "numerical sol.") +let + x = range(-1.0, 1.0; length = 200) + plot!(x, first.(initial_condition.(x, sol_semi_custom.t[end], equations)), + label = "analytical sol.", linestyle = :dash, legend = :topleft) +end +plot!(sol_semi_custom.u[1], semi, label = "u0", linestyle = :dot, legend = :topleft) + +# This also works with many callbacks as usual. However, the +# [`AnalysisCallback`](@ref) requires some special handling since it +# makes use of a performance counter contained in the standard +# semidiscretizations of Trixi.jl to report some +# [performance metrics](@ref performance-metrics). +# Here, we forward all accesses to the performance counter to the +# wrapped semidiscretization. + +function Base.getproperty(semi::CustomSemidiscretization, s::Symbol) + if s === :performance_counter + wrapped_semi = getfield(semi, :semi) + wrapped_semi.performance_counter + else + getfield(semi, s) + end +end + +# Moreover, the [`AnalysisCallback`](@ref) also performs some error +# calculations. We also need to forward them to the wrapped +# semidiscretization. + +function Trixi.calc_error_norms(func, u, t, analyzer, + semi::CustomSemidiscretization, + cache_analysis) + Trixi.calc_error_norms(func, u, t, analyzer, + semi.semi, + cache_analysis) +end + +# Now, we can work with the callbacks used before as usual. + +summary_callback = SummaryCallback() +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi_custom; + interval = analysis_interval) +alive_callback = AliveCallback(; analysis_interval) +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +sol = solve(ode_semi_custom, RDPK3SpFSAL49(); + ode_default_options()..., callback = callbacks) +summary_callback() + +# For even more advanced usage of custom semidiscretizations, you +# may look at the source code of the ones contained in Trixi.jl, e.g., +# - [`SemidiscretizationHyperbolicParabolic`](@ref) +# - [`SemidiscretizationEulerGravity`](@ref) +# - [`SemidiscretizationEulerAcoustics`](@ref) +# - [`SemidiscretizationCoupled`](@ref) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/differentiable_programming.jl b/docs/literate/src/files/differentiable_programming.jl index ecc09d05dcf..33427803afc 100644 --- a/docs/literate/src/files/differentiable_programming.jl +++ b/docs/literate/src/files/differentiable_programming.jl @@ -128,7 +128,7 @@ condition_number = cond(V) # you can compute the gradient of an entropy-dissipative semidiscretization with respect to the # ideal gas constant of the compressible Euler equations as described in the following. This example # is also available as the elixir -# [examples/special\_elixirs/elixir\_euler\_ad.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/special_elixirs/elixir_euler_ad.jl) +# [`examples/special_elixirs/elixir_euler_ad.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/special_elixirs/elixir_euler_ad.jl) # First, we create a semidiscretization of the compressible Euler equations. @@ -446,3 +446,15 @@ scatter(real.(λ), imag.(λ)) λ = eigvals(Matrix(A)) relative_maximum = maximum(real, λ) / maximum(abs, λ) @test relative_maximum < 1.0e-15 #src + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots", "ForwardDiff"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/hohqmesh_tutorial.jl b/docs/literate/src/files/hohqmesh_tutorial.jl index 87076108d91..b19d363c4bf 100644 --- a/docs/literate/src/files/hohqmesh_tutorial.jl +++ b/docs/literate/src/files/hohqmesh_tutorial.jl @@ -566,3 +566,15 @@ mesh = UnstructuredMesh2D(mesh_file); # for details. # ![simulation_straight_sides_p4est_amr](https://user-images.githubusercontent.com/74359358/168049930-8abce6ac-cd47-4d04-b40b-0fa459bbd98d.png) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots", "Trixi2Vtk", "HOHQMesh"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/index.jl b/docs/literate/src/files/index.jl index 5b669881502..d42695611f6 100644 --- a/docs/literate/src/files/index.jl +++ b/docs/literate/src/files/index.jl @@ -76,21 +76,30 @@ # In this part, another physics model is implemented, the nonconservative linear advection equation. # We run two different simulations with different levels of refinement and compare the resulting errors. -# ### [10 Adaptive mesh refinement](@ref adaptive_mesh_refinement) +# ### [10 Parabolic terms](@ref parabolic_terms) +#- +# This tutorial describes how parabolic terms are implemented in Trixi.jl, e.g., +# to solve the advection-diffusion equation. + +# ### [11 Adding new parabolic terms](@ref adding_new_parabolic_terms) +#- +# This tutorial describes how new parabolic terms can be implemented using Trixi.jl. + +# ### [12 Adaptive mesh refinement](@ref adaptive_mesh_refinement) #- # Adaptive mesh refinement (AMR) helps to increase the accuracy in sensitive or turbolent regions while # not wasting resources for less interesting parts of the domain. This leads to much more efficient # simulations. This tutorial presents the implementation strategy of AMR in Trixi.jl, including the use of # different indicators and controllers. -# ### [11 Structured mesh with curvilinear mapping](@ref structured_mesh_mapping) +# ### [13 Structured mesh with curvilinear mapping](@ref structured_mesh_mapping) #- # In this tutorial, the use of Trixi.jl's structured curved mesh type [`StructuredMesh`](@ref) is explained. # We present the two basic option to initialize such a mesh. First, the curved domain boundaries # of a circular cylinder are set by explicit boundary functions. Then, a fully curved mesh is # defined by passing the transformation mapping. -# ### [12 Unstructured meshes with HOHQMesh.jl](@ref hohqmesh_tutorial) +# ### [14 Unstructured meshes with HOHQMesh.jl](@ref hohqmesh_tutorial) #- # The purpose of this tutorial is to demonstrate how to use the [`UnstructuredMesh2D`](@ref) # functionality of Trixi.jl. This begins by running and visualizing an available unstructured @@ -99,24 +108,29 @@ # software in the Trixi.jl ecosystem, and then run a simulation using Trixi.jl on said mesh. # In the end, the tutorial briefly explains how to simulate an example using AMR via `P4estMesh`. -# ### [13 Explicit time stepping](@ref time_stepping) +# ### [15 Explicit time stepping](@ref time_stepping) #- # This tutorial is about time integration using [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl). # It explains how to use their algorithms and presents two types of time step choices - with error-based # and CFL-based adaptive step size control. -# ### [14 Differentiable programming](@ref differentiable_programming) +# ### [16 Differentiable programming](@ref differentiable_programming) #- # This part deals with some basic differentiable programming topics. For example, a Jacobian, its # eigenvalues and a curve of total energy (through the simulation) are calculated and plotted for # a few semidiscretizations. Moreover, we calculate an example for propagating errors with Measurement.jl # at the end. +# ### [17 Custom semidiscretization](@ref custom_semidiscretization) +#- +# This tutorial describes the [semidiscretiations](@ref overview-semidiscretizations) of Trixi.jl +# and explains how to extend them for custom tasks. + # ## Examples in Trixi.jl # Trixi.jl already contains several more coding examples, the so-called `elixirs`. You can find them -# in the folder [`examples`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/). +# in the folder [`examples/`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/). # They are structured by the underlying mesh type and the respective number of spatial dimensions. # The name of an elixir is composed of the underlying system of conservation equations (for instance # `advection` or `euler`) and other special characteristics like the initial condition diff --git a/docs/literate/src/files/non_periodic_boundaries.jl b/docs/literate/src/files/non_periodic_boundaries.jl index 54da88a64aa..7ed6324ff99 100644 --- a/docs/literate/src/files/non_periodic_boundaries.jl +++ b/docs/literate/src/files/non_periodic_boundaries.jl @@ -155,3 +155,15 @@ end #
# ``` # Source: [`Video`](https://www.youtube.com/watch?v=w0A9X38cSe4) on Trixi.jl's YouTube channel [`Trixi Framework`](https://www.youtube.com/watch?v=WElqqdMhY4A) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/parabolic_terms.jl b/docs/literate/src/files/parabolic_terms.jl index bac0098f8e9..d0a355bbc19 100644 --- a/docs/literate/src/files/parabolic_terms.jl +++ b/docs/literate/src/files/parabolic_terms.jl @@ -86,3 +86,14 @@ sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, using Plots plot(sol) + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/scalar_linear_advection_1d.jl b/docs/literate/src/files/scalar_linear_advection_1d.jl index 42c831c98ba..77ba7b087cc 100644 --- a/docs/literate/src/files/scalar_linear_advection_1d.jl +++ b/docs/literate/src/files/scalar_linear_advection_1d.jl @@ -511,3 +511,15 @@ sol_trixi = solve(ode_trixi, RDPK3SpFSAL49(); abstol=1.0e-6, reltol=1.0e-6, ode plot!(sol_trixi, label="solution at t=$(tspan[2]) with Trixi.jl", legend=:topleft, linestyle=:dash, lw=2) @test maximum(abs.(vec(u0) - sol_trixi.u[end])) ≈ maximum(abs.(u0 - sol.u[end])) #src + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/shock_capturing.jl b/docs/literate/src/files/shock_capturing.jl index afa34cbf06a..dd6698c2a86 100644 --- a/docs/literate/src/files/shock_capturing.jl +++ b/docs/literate/src/files/shock_capturing.jl @@ -224,3 +224,15 @@ sol = solve(ode, CarpenterKennedy2N54(stage_limiter!, williamson_condition=false using Plots plot(sol) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/structured_mesh_mapping.jl b/docs/literate/src/files/structured_mesh_mapping.jl index 0ae9cf723f8..c8da30bc2bf 100644 --- a/docs/literate/src/files/structured_mesh_mapping.jl +++ b/docs/literate/src/files/structured_mesh_mapping.jl @@ -201,3 +201,15 @@ plot!(getmesh(pd)) # unstructured mesh type [`UnstructuredMesh2D`] and its use of the # [High-Order Hex-Quad Mesh (HOHQMesh) generator](https://github.com/trixi-framework/HOHQMesh), # created and developed by David Kopriva. + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/time_stepping.jl b/docs/literate/src/files/time_stepping.jl index d400c4a94be..de7a2a83a41 100644 --- a/docs/literate/src/files/time_stepping.jl +++ b/docs/literate/src/files/time_stepping.jl @@ -49,7 +49,7 @@ # ```math # \Delta t_n = \text{CFL} * \min_i \frac{\Delta x_i}{\lambda_{\max}(u_i^n)} # ``` -# We compute $\Delta x_i$ by scaling the element size by a factor of $1/(N+1)$, cf. +# We compute $\Delta x_i$ by scaling the element size by a factor of $1/(N+1)$, cf. # [Gassner and Kopriva (2011)](https://doi.org/10.1137/100807211), Section 5. # Trixi.jl provides such a CFL-based step size control. It is implemented as the callback @@ -73,3 +73,15 @@ # You can find simple examples with a CFL-based step size control for instance in the elixirs # [`elixir_advection_basic.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_basic.jl) # or [`elixir_euler_source_terms.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_source_terms.jl). + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq"], + mode=PKGMODE_MANIFEST) diff --git a/docs/literate/src/files/upwind_fdsbp.jl b/docs/literate/src/files/upwind_fdsbp.jl index 36ca1b57404..6d3379fa30d 100644 --- a/docs/literate/src/files/upwind_fdsbp.jl +++ b/docs/literate/src/files/upwind_fdsbp.jl @@ -62,3 +62,15 @@ Matrix(D_upw.plus) # flux vector splitting, e.g., # - [`elixir_euler_vortex.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_fdsbp/elixir_euler_vortex.jl) # - [`elixir_euler_taylor_green_vortex.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_3d_fdsbp/elixir_euler_taylor_green_vortex.jl) + + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "SummationByPartsOperators"], + mode=PKGMODE_MANIFEST) diff --git a/docs/make.jl b/docs/make.jl index 57629577ddb..df8ac04be12 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -68,6 +68,7 @@ files = [ # Topic: other stuff "Explicit time stepping" => "time_stepping.jl", "Differentiable programming" => "differentiable_programming.jl", + "Custom semidiscretizations" => "custom_semidiscretization.jl" ] tutorials = create_tutorials(files) @@ -76,7 +77,7 @@ makedocs( # Specify modules for which docstrings should be shown modules = [Trixi, Trixi2Vtk], # Set sitename to Trixi.jl - sitename="Trixi.jl", + sitename = "Trixi.jl", # Provide additional formatting options format = Documenter.HTML( # Disable pretty URLs during manual testing @@ -84,7 +85,8 @@ makedocs( # Explicitly add favicon as asset assets = ["assets/favicon.ico"], # Set canonical URL to GitHub pages URL - canonical = "https://trixi-framework.github.io/Trixi.jl/stable" + canonical = "https://trixi-framework.github.io/Trixi.jl/stable", + size_threshold_ignore = ["reference-trixi.md"] ), # Explicitly specify documentation structure pages = [ @@ -123,9 +125,8 @@ makedocs( "Authors" => "authors.md", "Contributing" => "contributing.md", "Code of Conduct" => "code_of_conduct.md", - "License" => "license.md" - ], - strict = true # to make the GitHub action fail when doctests fail, see https://github.com/neuropsychology/Psycho.jl/issues/34 + "License" => "license.md", + ] ) deploydocs( diff --git a/docs/src/callbacks.md b/docs/src/callbacks.md index a85f8e8191b..7f44dfd5925 100644 --- a/docs/src/callbacks.md +++ b/docs/src/callbacks.md @@ -15,7 +15,7 @@ control, adaptive mesh refinement, I/O, and more. ### CFL-based time step control Time step control can be performed with a [`StepsizeCallback`](@ref). An example making use -of this can be found at [examples/tree_2d_dgsem/elixir\_advection\_basic.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_basic.jl) +of this can be found at [`examples/tree_2d_dgsem/elixir_advection_basic.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_basic.jl) ### Adaptive mesh refinement Trixi.jl uses a hierarchical Cartesian mesh which can be locally refined in a solution-adaptive way. @@ -24,13 +24,13 @@ passing an [`AMRCallback`](@ref) to the ODE solver. The `AMRCallback` requires a [`ControllerThreeLevel`](@ref) or [`ControllerThreeLevelCombined`](@ref) to tell the AMR algorithm which cells to refine/coarsen. -An example elixir using AMR can be found at [examples/tree_2d_dgsem/elixir\_advection\_amr.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_amr.jl). +An example elixir using AMR can be found at [`examples/tree_2d_dgsem/elixir_advection_amr.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_amr.jl). ### Analyzing the numerical solution The [`AnalysisCallback`](@ref) can be used to analyze the numerical solution, e.g. calculate errors or user-specified integrals, and print the results to the screen. The results can also be -saved in a file. An example can be found at [examples/tree_2d_dgsem/elixir\_euler\_vortex.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_vortex.jl). -In [Performance metrics of the `AnalysisCallback`](@ref) you can find a detailed +saved in a file. An example can be found at [`examples/tree_2d_dgsem/elixir_euler_vortex.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_vortex.jl). +In [Performance metrics of the `AnalysisCallback`](@ref performance-metrics) you can find a detailed description of the different performance metrics the `AnalysisCallback` computes. ### I/O @@ -38,15 +38,15 @@ description of the different performance metrics the `AnalysisCallback` computes #### Solution and restart files To save the solution in regular intervals you can use a [`SaveSolutionCallback`](@ref). It is also possible to create restart files using the [`SaveRestartCallback`](@ref). An example making use -of these can be found at [examples/tree_2d_dgsem/elixir\_advection\_extended.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_extended.jl). +of these can be found at [`examples/tree_2d_dgsem/elixir_advection_extended.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_extended.jl). An example showing how to restart a simulation from a restart file can be found at -[examples/tree_2d_dgsem/elixir\_advection\_restart.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_restart.jl). +[`examples/tree_2d_dgsem/elixir_advection_restart.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_restart.jl). #### Time series Sometimes it is useful to record the evaluations of state variables over time at a given set of points. This can be achieved by the [`TimeSeriesCallback`](@ref), which is used, e.g., in -[examples/tree_2d_dgsem/elixir\_acoustics\_gaussian\_source.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_acoustics_gaussian_source.jl). +[`examples/tree_2d_dgsem/elixir_acoustics_gaussian_source.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_acoustics_gaussian_source.jl). The `TimeSeriesCallback` constructor expects a semidiscretization and a list of points at which the solution should be recorded in regular time step intervals. After the last time step, the entire record is stored in an HDF5 file. @@ -106,19 +106,19 @@ will yield the following plot: the automated performance measurements, including an output of the recorded timers after a simulation. * The [`VisualizationCallback`](@ref) can be used for in-situ visualization. See [Visualizing results during a simulation](@ref). -* The [`TrivialCallback`](@ref) does nothing and can be used to to easily disable some callbacks +* The [`TrivialCallback`](@ref) does nothing and can be used to easily disable some callbacks via [`trixi_include`](@ref). ### Equation-specific callbacks Some callbacks provided by Trixi.jl implement specific features for certain equations: * The [`LBMCollisionCallback`](@ref) implements the Lattice-Boltzmann method (LBM) collision operator and should only be used when solving the Lattice-Boltzmann equations. See e.g. - [examples/tree_2d_dgsem/elixir\_lbm\_constant.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_lbm_constant.jl) + [`examples/tree_2d_dgsem/elixir_lbm_constant.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_lbm_constant.jl) * The [`SteadyStateCallback`](@ref) terminates the time integration when the residual steady state falls below a certain threshold. This checks the convergence of the potential ``\phi`` for - hyperbolic diffusion. See e.g. [examples/tree_2d_dgsem/elixir\_hypdiff\_nonperiodic.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_hypdiff_nonperiodic.jl). + hyperbolic diffusion. See e.g. [`examples/tree_2d_dgsem/elixir_hypdiff_nonperiodic.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_hypdiff_nonperiodic.jl). * The [`GlmSpeedCallback`](@ref) updates the divergence cleaning wave speed `c_h` for the ideal - GLM-MHD equations. See e.g. [examples/tree_2d_dgsem/elixir\_mhd\_alfven\_wave.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_mhd_alfven_wave.jl). + GLM-MHD equations. See e.g. [`examples/tree_2d_dgsem/elixir_mhd_alfven_wave.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_mhd_alfven_wave.jl). ## Usage of step callbacks Step callbacks are passed to the `solve` method from the ODE solver via the keyword argument @@ -152,7 +152,7 @@ more callbacks, you need to turn them into a `CallbackSet` first by calling ## Stage callbacks [`PositivityPreservingLimiterZhangShu`](@ref) is a positivity-preserving limiter, used to enforce physical constraints. An example elixir using this feature can be found at -[examples/tree_2d_dgsem/elixir\_euler\_positivity.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_positivity.jl). +[`examples/tree_2d_dgsem/elixir_euler_positivity.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_positivity.jl). ## Implementing new callbacks Since Trixi.jl is compatible with [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl), @@ -162,4 +162,4 @@ Step callbacks are just called [callbacks](https://diffeq.sciml.ai/latest/featur Stage callbacks are called [`stage_limiter!`](https://diffeq.sciml.ai/latest/solvers/ode_solve/#Explicit-Strong-Stability-Preserving-Runge-Kutta-Methods-for-Hyperbolic-PDEs-(Conservation-Laws)). An example elixir showing how to implement a new simple stage callback and a new simple step -callback can be found at [examples/tree_2d_dgsem/elixir\_advection\_callbacks.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_callbacks.jl). +callback can be found at [`examples/tree_2d_dgsem/elixir_advection_callbacks.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_callbacks.jl). diff --git a/docs/src/index.md b/docs/src/index.md index 3af785bc681..bb2afd1019f 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -324,7 +324,7 @@ Schlottke-Lakemper](https://lakemper.eu) (RWTH Aachen University/High-Performance Computing Center Stuttgart (HLRS), Germany) and [Gregor Gassner](https://www.mi.uni-koeln.de/NumSim/gregor-gassner) (University of Cologne, Germany). Together with [Hendrik Ranocha](https://ranocha.de) -(University of Hamburg, Germany) and [Andrew Winters](https://liu.se/en/employee/andwi94) +(Johannes Gutenberg University Mainz, Germany) and [Andrew Winters](https://liu.se/en/employee/andwi94) (Linköping University, Sweden), and [Jesse Chan](https://jlchan.github.io) (Rice University, US), they are the principal developers of Trixi.jl. The full list of contributors can be found under [Authors](@ref). diff --git a/docs/src/meshes/dgmulti_mesh.md b/docs/src/meshes/dgmulti_mesh.md index e07ba70a80a..fc086bba146 100644 --- a/docs/src/meshes/dgmulti_mesh.md +++ b/docs/src/meshes/dgmulti_mesh.md @@ -81,16 +81,20 @@ type, but will be more efficient at high orders of approximation. ## Trixi.jl elixirs on simplicial and tensor product element meshes Example elixirs with triangular, quadrilateral, and tetrahedral meshes can be found in -the `examples/dgmulti_2d` and `examples/dgmulti_3d` folders. Some key elixirs to look at: +the [`examples/dgmulti_2d/`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/dgmulti_2d/) +and [`examples/dgmulti_3d/`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/dgmulti_3d/) +folders. Some key elixirs to look at: -* `examples/dgmulti_2d/elixir_euler_weakform.jl`: basic weak form DG discretization on a uniform triangular mesh. +* [`examples/dgmulti_2d/elixir_euler_weakform.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/dgmulti_2d/elixir_euler_weakform.jl): + basic weak form DG discretization on a uniform triangular mesh. Changing `element_type = Quad()` or `approximation_type = SBP()` will switch to a quadrilateral mesh or an SBP-type discretization. Changing `surface_integral = SurfaceIntegralWeakForm(flux_ec)` and `volume_integral = VolumeIntegralFluxDifferencing(flux_ec)` for some entropy conservative flux (e.g., [`flux_chandrashekar`](@ref) or [`flux_ranocha`](@ref)) will switch to an entropy conservative formulation. -* `examples/dgmulti_2d/elixir_euler_triangulate_pkg_mesh.jl`: uses an unstructured mesh generated by - [Triangulate.jl](https://github.com/JuliaGeometry/Triangulate.jl). -* `examples/dgmulti_3d/elixir_euler_weakform.jl`: basic weak form DG discretization on a uniform tetrahedral mesh. +* [`examples/dgmulti_2d/elixir_euler_triangulate_pkg_mesh.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/dgmulti_2d/elixir_euler_triangulate_pkg_mesh.jl): + uses an unstructured mesh generated by [Triangulate.jl](https://github.com/JuliaGeometry/Triangulate.jl). +* [`examples/dgmulti_3d/elixir_euler_weakform.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/dgmulti_3d/elixir_euler_weakform.jl): + ´basic weak form DG discretization on a uniform tetrahedral mesh. Changing `element_type = Hex()` will switch to a hexahedral mesh. Changing `surface_integral = SurfaceIntegralWeakForm(flux_ec)` and `volume_integral = VolumeIntegralFluxDifferencing(flux_ec)` for some entropy conservative flux diff --git a/docs/src/overview.md b/docs/src/overview.md index 519ec2ca424..51a6272ae8e 100644 --- a/docs/src/overview.md +++ b/docs/src/overview.md @@ -5,7 +5,7 @@ conservation laws. Thus, it is not a monolithic PDE solver that is configured at via parameter files, as it is often found in classical numerical simulation codes. Instead, each simulation is configured by pure Julia code. Many examples of such simulation setups, called *elixirs* in Trixi.jl, are provided in the -[examples](https://github.com/trixi-framework/Trixi.jl/blob/main/examples) +[`examples/`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples) folder. Trixi.jl uses the method of lines, i.e., the full space-time discretization is separated into two steps; @@ -16,7 +16,7 @@ to solve a PDE numerically are the spatial semidiscretization and the time integration scheme. -## Semidiscretizations +## [Semidiscretizations](@id overview-semidiscretizations) Semidiscretizations are high-level descriptions of spatial discretizations specialized for certain PDEs. Trixi.jl's main focus is on hyperbolic conservation @@ -77,7 +77,7 @@ Further information can be found in the ## Next steps We explicitly encourage people interested in Trixi.jl to have a look at the -[examples](https://github.com/trixi-framework/Trixi.jl/blob/main/examples) +[`examples/`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples) bundled with Trixi.jl to get an impression of what is possible and the general look and feel of Trixi.jl. Before doing that, it is usually good to get an idea of diff --git a/docs/src/parallelization.md b/docs/src/parallelization.md index 08470fd064a..e55471bb256 100644 --- a/docs/src/parallelization.md +++ b/docs/src/parallelization.md @@ -22,7 +22,7 @@ julia --threads=4 If both the environment variable and the command line argument are specified at the same time, the latter takes precedence. -If you use time integration methods from +If you use time integration methods from [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) and want to use multiple threads therein, you need to set the keyword argument `thread=OrdinaryDiffEq.True()` of the algorithms, as described in the @@ -53,16 +53,24 @@ a system-provided MPI installation with Trixi.jl can be found in the following s ### [Using a system-provided MPI installation](@id parallel_system_MPI) -When using Trixi.jl with a system-provided MPI backend the underlying [`p4est`](https://github.com/cburstedde/p4est) -library needs to be compiled with the same MPI installation. Therefore, you also need to use -a system-provided `p4est` installation (for notes on how to install `p4est` see e.g. -[here](https://github.com/cburstedde/p4est/blob/master/README), use the configure option -`--enable-mpi`). In addition, [P4est.jl](https://github.com/trixi-framework/P4est.jl) needs to -be configured to use the custom `p4est` installation. Follow the steps described -[here](https://github.com/trixi-framework/P4est.jl/blob/main/README.md) for the configuration. +When using Trixi.jl with a system-provided MPI backend the underlying +[`p4est`](https://github.com/cburstedde/p4est) and [`t8code`](https://github.com/DLR-AMR/t8code) +libraries need to be compiled with the same MPI installation. Therefore, you also need to +use system-provided `p4est` and `t8code` installations (for notes on how to install `p4est` +and `t8code` see e.g. [here](https://github.com/cburstedde/p4est/blob/master/README) and +[here](https://github.com/DLR-AMR/t8code/wiki/Installation), use the configure option +`--enable-mpi`). Note that `t8code` already comes with a `p4est` installation, so it suffices +to install `t8code`. In addition, [P4est.jl](https://github.com/trixi-framework/P4est.jl) and +[T8code.jl](https://github.com/DLR-AMR/T8code.jl) need to be configured to use the custom +installations. Follow the steps described +[here](https://github.com/DLR-AMR/T8code.jl/blob/main/README.md#installation) and +[here](https://github.com/trixi-framework/P4est.jl/blob/main/README.md#installation) for the +configuration. The paths that point to `libp4est.so` (and potentially to `libsc.so`) need to be +the same for P4est.jl and T8code.jl. This could e.g. be `libp4est.so` that usually can be found +in `lib/` or `local/lib/` in the installation directory of `t8code`. In total, in your active Julia project you should have a LocalPreferences.toml file with sections -`[MPIPreferences]` and `[P4est]` as well as an entry `MPIPreferences` in your Project.toml to -use a custom MPI installation. +`[MPIPreferences]`, `[T8code]` and `[P4est]` as well as an entry `MPIPreferences` in your +Project.toml to use a custom MPI installation. ### [Usage](@id parallel_usage) @@ -135,7 +143,7 @@ To start Trixi.jl in parallel with MPI, there are three options: Switching between panes can be done by `Ctrl+b` followed by `o`. As of March 2022, newer versions of tmpi also support mpich, which is the default backend of MPI.jl (via MPICH_Jll.jl). To use this setup, you need to install - `mpiexecjl` as described in the + `mpiexecjl` as described in the [documentation of MPI.jl](https://juliaparallel.org/MPI.jl/v0.20/usage/#Julia-wrapper-for-mpiexec) and make it available as `mpirun`, e.g., via a symlink of the form ```bash @@ -153,22 +161,41 @@ To start Trixi.jl in parallel with MPI, there are three options: ### [Performance](@id parallel_performance) For information on how to evaluate the parallel performance of Trixi.jl, please -have a look at the [Performance metrics of the `AnalysisCallback`](@ref) +have a look at the [Performance metrics of the `AnalysisCallback`](@ref performance-metrics) section, specifically at the descriptions of the performance index (PID). ### Using error-based step size control with MPI -If you use error-based step size control (see also the section on [error-based adaptive step sizes](@ref adaptive_step_sizes)) -together with MPI you need to pass `internalnorm=ode_norm` and you should pass -`unstable_check=ode_unstable_check` to OrdinaryDiffEq's [`solve`](https://docs.sciml.ai/DiffEqDocs/latest/basics/common_solver_opts/), +If you use error-based step size control (see also the section on +[error-based adaptive step sizes](@ref adaptive_step_sizes)) together with MPI you need to pass +`internalnorm=ode_norm` and you should pass `unstable_check=ode_unstable_check` to +OrdinaryDiffEq's [`solve`](https://docs.sciml.ai/DiffEqDocs/latest/basics/common_solver_opts/), which are both included in [`ode_default_options`](@ref). ### Using parallel input and output -Trixi.jl allows parallel I/O using MPI by leveraging parallel HDF5.jl. To enable this, you first need -to use a system-provided MPI library, see also [here](@ref parallel_system_MPI) and you need to tell -[HDF5.jl](https://github.com/JuliaIO/HDF5.jl) to use this library. -To do so, set the environment variable `JULIA_HDF5_PATH` to the local path -that contains the `libhdf5.so` shared object file and build HDF5.jl by executing `using Pkg; Pkg.build("HDF5")`. -For more information see also the [documentation of HDF5.jl](https://juliaio.github.io/HDF5.jl/stable/mpi/). - -If you do not perform these steps to use parallel HDF5 or if the HDF5 is not MPI-enabled, Trixi.jl will fall back on a less efficient I/O mechanism. In that case, all disk I/O is performed only on rank zero and data is distributed to/gathered from the other ranks using regular MPI communication. +Trixi.jl allows parallel I/O using MPI by leveraging parallel HDF5.jl. On most systems, this is +enabled by default. Additionally, you can also use a local installation of the HDF5 library +(with MPI support). For this, you first need to use a system-provided MPI library, see also +[here](@ref parallel_system_MPI) and you need to tell [HDF5.jl](https://github.com/JuliaIO/HDF5.jl) +to use this library. To do so with HDF5.jl v0.17 and newer, set the preferences `libhdf5` and +`libhdf5_hl` to the local paths of the libraries `libhdf5` and `libhdf5_hl`, which can be done by +```julia +julia> using Preferences, UUIDs +julia> set_preferences!( + UUID("f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"), # UUID of HDF5.jl + "libhdf5" => "/path/to/your/libhdf5.so", + "libhdf5_hl" => "/path/to/your/libhdf5_hl.so", force = true) +``` +For more information see also the +[documentation of HDF5.jl](https://juliaio.github.io/HDF5.jl/stable/mpi/). In total, you should +have a file called LocalPreferences.toml in the project directory that contains a section +`[MPIPreferences]`, a section `[HDF5]` with entries `libhdf5` and `libhdf5_hl`, a section `[P4est]` +with the entry `libp4est` as well as a section `[T8code]` with the entries `libt8`, `libp4est` +and `libsc`. +If you use HDF5.jl v0.16 or older, instead of setting the preferences for HDF5.jl, you need to set +the environment variable `JULIA_HDF5_PATH` to the path, where the HDF5 binaries are located and +then call `]build HDF5` from Julia. + +If HDF5 is not MPI-enabled, Trixi.jl will fall back on a less efficient I/O mechanism. In that +case, all disk I/O is performed only on rank zero and data is distributed to/gathered from the +other ranks using regular MPI communication. diff --git a/docs/src/performance.md b/docs/src/performance.md index 428672ec75f..bbe3a3390b7 100644 --- a/docs/src/performance.md +++ b/docs/src/performance.md @@ -170,7 +170,7 @@ As a rule of thumb: - Consider using `@nospecialize` for methods like custom implementations of `Base.show`. -## Performance metrics of the `AnalysisCallback` +## [Performance metrics of the `AnalysisCallback`](@id performance-metrics) The [`AnalysisCallback`](@ref) computes two performance indicators that you can use to evaluate the serial and parallel performance of Trixi.jl. They represent measured run times that are normalized by the number of `rhs!` evaluations and diff --git a/docs/src/restart.md b/docs/src/restart.md index d24d93cb297..c7cbcd11852 100644 --- a/docs/src/restart.md +++ b/docs/src/restart.md @@ -18,7 +18,7 @@ save_restart = SaveRestartCallback(interval=100, Make this part of your `CallbackSet`. An example is -[```examples/examples/structured_2d_dgsem/elixir_advection_extended.jl```](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_advection_extended.jl). +[`examples/examples/structured_2d_dgsem/elixir_advection_extended.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_advection_extended.jl). ## [Perform the simulation restart](@id restart_perform) @@ -26,7 +26,7 @@ Since all of the information about the simulation can be obtained from the last snapshot, the restart can be done with relatively few lines in an extra elixir file. However, some might prefer to keep everything in one elixir and -conditionals like ```if restart``` with a boolean variable ```restart``` that is user defined. +conditionals like `if restart` with a boolean variable `restart` that is user defined. First we need to define from which file we want to restart, e.g. ```julia @@ -50,7 +50,7 @@ time the one form the snapshot: tspan = (load_time(restart_filename), 2.0) ``` -We now also take the last ```dt```, so that our solver does not need to first find +We now also take the last `dt`, so that our solver does not need to first find one to fulfill the CFL condition: ```julia dt = load_dt(restart_filename) @@ -63,7 +63,7 @@ ode = semidiscretize(semi, tspan, restart_filename) You should now define a [`SaveSolutionCallback`](@ref) similar to the [original simulation](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_advection_extended.jl), -but with ```save_initial_solution=false```, otherwise our initial snapshot will be overwritten. +but with `save_initial_solution=false`, otherwise our initial snapshot will be overwritten. If you are using one file for the original simulation and the restart you can reuse your [`SaveSolutionCallback`](@ref), but need to set ```julia @@ -77,8 +77,7 @@ and its time step number, e.g.: ```julia integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), dt=dt, save_everystep=false, callback=callbacks); -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ``` Now we can compute the solution: @@ -86,4 +85,4 @@ Now we can compute the solution: sol = solve!(integrator) ``` -An example is in `[``examples/structured_2d_dgsem/elixir_advection_restart.jl```](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_advection_restart.jl). +An example is in [`examples/structured_2d_dgsem/elixir_advection_restart.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/structured_2d_dgsem/elixir_advection_restart.jl). diff --git a/docs/src/visualization.md b/docs/src/visualization.md index 8f72bb4b1c6..36a7e8f5ac8 100644 --- a/docs/src/visualization.md +++ b/docs/src/visualization.md @@ -375,7 +375,7 @@ During the simulation, the visualization callback creates and displays visualizations of the current solution in regular intervals. This can be useful to, e.g., monitor the validity of a long-running simulation or for illustrative purposes. An example for how to create a `VisualizationCallback` can be found in -[examples/tree_2d_dgsem/elixir\_advection\_amr\_visualization.jl](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_amr_visualization.jl): +[`examples/tree_2d_dgsem/elixir_advection_amr_visualization.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_amr_visualization.jl): ```julia [...] diff --git a/examples/p4est_2d_dgsem/elixir_advection_restart.jl b/examples/p4est_2d_dgsem/elixir_advection_restart.jl index 79a35199b83..52917616a6a 100644 --- a/examples/p4est_2d_dgsem/elixir_advection_restart.jl +++ b/examples/p4est_2d_dgsem/elixir_advection_restart.jl @@ -35,8 +35,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### diff --git a/examples/p4est_2d_dgsem/elixir_navierstokes_convergence.jl b/examples/p4est_2d_dgsem/elixir_navierstokes_convergence.jl index 8111df8251a..b0c6086ad63 100644 --- a/examples/p4est_2d_dgsem/elixir_navierstokes_convergence.jl +++ b/examples/p4est_2d_dgsem/elixir_navierstokes_convergence.jl @@ -170,7 +170,10 @@ end initial_condition = initial_condition_navier_stokes_convergence_test # BC types -velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:3]) +velocity_bc_top_bottom = NoSlip() do x, t, equations + u = initial_condition_navier_stokes_convergence_test(x, t, equations) + return SVector(u[2], u[3]) +end heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0) boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom) diff --git a/examples/p4est_3d_dgsem/elixir_advection_restart.jl b/examples/p4est_3d_dgsem/elixir_advection_restart.jl index b27eaab62e2..26d10cf8826 100644 --- a/examples/p4est_3d_dgsem/elixir_advection_restart.jl +++ b/examples/p4est_3d_dgsem/elixir_advection_restart.jl @@ -32,8 +32,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### diff --git a/examples/p4est_3d_dgsem/elixir_navierstokes_convergence.jl b/examples/p4est_3d_dgsem/elixir_navierstokes_convergence.jl index c426fe95f5b..0109e58dfb3 100644 --- a/examples/p4est_3d_dgsem/elixir_navierstokes_convergence.jl +++ b/examples/p4est_3d_dgsem/elixir_navierstokes_convergence.jl @@ -220,7 +220,10 @@ end initial_condition = initial_condition_navier_stokes_convergence_test # BC types -velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:4]) +velocity_bc_top_bottom = NoSlip() do x, t, equations + u = initial_condition_navier_stokes_convergence_test(x, t, equations) + return SVector(u[2], u[3], u[4]) +end heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0) boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom) diff --git a/examples/structured_2d_dgsem/elixir_advection_restart.jl b/examples/structured_2d_dgsem/elixir_advection_restart.jl index 98c44fac71a..82eaa21333a 100644 --- a/examples/structured_2d_dgsem/elixir_advection_restart.jl +++ b/examples/structured_2d_dgsem/elixir_advection_restart.jl @@ -34,8 +34,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### # run the simulation diff --git a/examples/structured_3d_dgsem/elixir_advection_restart.jl b/examples/structured_3d_dgsem/elixir_advection_restart.jl index 39d28848c77..921c5310340 100644 --- a/examples/structured_3d_dgsem/elixir_advection_restart.jl +++ b/examples/structured_3d_dgsem/elixir_advection_restart.jl @@ -32,8 +32,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### diff --git a/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl new file mode 100644 index 00000000000..3f72d319b0b --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_periodic.jl @@ -0,0 +1,136 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Navier-Stokes equations + +# TODO: parabolic; unify names of these accessor functions +prandtl_number() = 0.72 +mu() = 6.25e-4 # equivalent to Re = 1600 + +equations = CompressibleEulerEquations1D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), + Prandtl=prandtl_number()) + +# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) +# (Simplified version of the 2D) +function initial_condition_navier_stokes_convergence_test(x, t, equations) + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x[1] + pi_t = pi * t + + rho = c + A * sin(pi_x) * cos(pi_t) + v1 = sin(pi_x) * cos(pi_t) + p = rho^2 + + return prim2cons(SVector(rho, v1, p), equations) +end +initial_condition = initial_condition_navier_stokes_convergence_test + +@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) + # we currently need to hardcode these parameters until we fix the "combined equation" issue + # see also https://github.com/trixi-framework/Trixi.jl/pull/1160 + inv_gamma_minus_one = inv(equations.gamma - 1) + Pr = prandtl_number() + mu_ = mu() + + # Same settings as in `initial_condition` + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x[1] + pi_t = pi * t + + # compute the manufactured solution and all necessary derivatives + rho = c + A * sin(pi_x) * cos(pi_t) + rho_t = -pi * A * sin(pi_x) * sin(pi_t) + rho_x = pi * A * cos(pi_x) * cos(pi_t) + rho_xx = -pi * pi * A * sin(pi_x) * cos(pi_t) + + v1 = sin(pi_x) * cos(pi_t) + v1_t = -pi * sin(pi_x) * sin(pi_t) + v1_x = pi * cos(pi_x) * cos(pi_t) + v1_xx = -pi * pi * sin(pi_x) * cos(pi_t) + + p = rho * rho + p_t = 2.0 * rho * rho_t + p_x = 2.0 * rho * rho_x + p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x + + E = p * inv_gamma_minus_one + 0.5 * rho * v1^2 + E_t = p_t * inv_gamma_minus_one + 0.5 * rho_t * v1^2 + rho * v1 * v1_t + E_x = p_x * inv_gamma_minus_one + 0.5 * rho_x * v1^2 + rho * v1 * v1_x + + # Some convenience constants + T_const = equations.gamma * inv_gamma_minus_one / Pr + inv_rho_cubed = 1.0 / (rho^3) + + # compute the source terms + # density equation + du1 = rho_t + rho_x * v1 + rho * v1_x + + # x-momentum equation + du2 = ( rho_t * v1 + rho * v1_t + + p_x + rho_x * v1^2 + 2.0 * rho * v1 * v1_x + # stress tensor from x-direction + - v1_xx * mu_) + + # total energy equation + du3 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) + # stress tensor and temperature gradient terms from x-direction + - v1_xx * v1 * mu_ + - v1_x * v1_x * mu_ + - T_const * inv_rho_cubed * ( p_xx * rho * rho + - 2.0 * p_x * rho * rho_x + + 2.0 * p * rho_x * rho_x + - p * rho * rho_xx ) * mu_) + + return SVector(du1, du2, du3) +end + +volume_flux = flux_ranocha +solver = DGSEM(polydeg=3, surface_flux=flux_hllc, + volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) + +coordinates_min = -1.0 +coordinates_max = 1.0 +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=4, + n_cells_max=100_000) + + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), + initial_condition, solver, + source_terms = source_terms_navier_stokes_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 10.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval,) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-9 +sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, + ode_default_options()..., callback=callbacks) +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls.jl b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls.jl new file mode 100644 index 00000000000..181a2cb209f --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls.jl @@ -0,0 +1,160 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the ideal compressible Navier-Stokes equations + +prandtl_number() = 0.72 +mu() = 0.01 + +equations = CompressibleEulerEquations1D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), Prandtl=prandtl_number(), + gradient_variables=GradientVariablesPrimitive()) + +# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux +solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs, + volume_integral=VolumeIntegralWeakForm()) + +coordinates_min = -1.0 +coordinates_max = 1.0 + +# Create a uniformly refined mesh with periodic boundaries +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=3, + periodicity=false, + n_cells_max=30_000) # set maximum capacity of tree data structure + +# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion1D` +# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion1D`) +# and by the initial condition (which passes in `CompressibleEulerEquations1D`). +# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) +function initial_condition_navier_stokes_convergence_test(x, t, equations) + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x[1] + pi_t = pi * t + + rho = c + A * cos(pi_x) * cos(pi_t) + v1 = log(x[1] + 2.0) * (1.0 - exp(-A * (x[1] - 1.0)) ) * cos(pi_t) + p = rho^2 + + return prim2cons(SVector(rho, v1, p), equations) +end + +@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) + x = x[1] + + # TODO: parabolic + # we currently need to hardcode these parameters until we fix the "combined equation" issue + # see also https://github.com/trixi-framework/Trixi.jl/pull/1160 + inv_gamma_minus_one = inv(equations.gamma - 1) + Pr = prandtl_number() + mu_ = mu() + + # Same settings as in `initial_condition` + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x + pi_t = pi * t + + # compute the manufactured solution and all necessary derivatives + rho = c + A * cos(pi_x) * cos(pi_t) + rho_t = -pi * A * cos(pi_x) * sin(pi_t) + rho_x = -pi * A * sin(pi_x) * cos(pi_t) + rho_xx = -pi * pi * A * cos(pi_x) * cos(pi_t) + + v1 = log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * cos(pi_t) + v1_t = -pi * log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * sin(pi_t) + v1_x = (A * log(x + 2.0) * exp(-A * (x - 1.0)) + (1.0 - exp(-A * (x - 1.0))) / (x + 2.0)) * cos(pi_t) + v1_xx = (( 2.0 * A * exp(-A * (x - 1.0)) / (x + 2.0) + - A * A * log(x + 2.0) * exp(-A * (x - 1.0)) + - (1.0 - exp(-A * (x - 1.0))) / ((x + 2.0) * (x + 2.0))) * cos(pi_t)) + + p = rho * rho + p_t = 2.0 * rho * rho_t + p_x = 2.0 * rho * rho_x + p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x + + # Note this simplifies slightly because the ansatz assumes that v1 = v2 + E = p * inv_gamma_minus_one + 0.5 * rho * v1^2 + E_t = p_t * inv_gamma_minus_one + 0.5 * rho_t * v1^2 + rho * v1 * v1_t + E_x = p_x * inv_gamma_minus_one + 0.5 * rho_x * v1^2 + rho * v1 * v1_x + + # Some convenience constants + T_const = equations.gamma * inv_gamma_minus_one / Pr + inv_rho_cubed = 1.0 / (rho^3) + + # compute the source terms + # density equation + du1 = rho_t + rho_x * v1 + rho * v1_x + + # y-momentum equation + du2 = ( rho_t * v1 + rho * v1_t + + p_x + rho_x * v1^2 + 2.0 * rho * v1 * v1_x + # stress tensor from y-direction + - v1_xx * mu_) + + # total energy equation + du3 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) + # stress tensor and temperature gradient terms from x-direction + - v1_xx * v1 * mu_ + - v1_x * v1_x * mu_ + - T_const * inv_rho_cubed * ( p_xx * rho * rho + - 2.0 * p_x * rho * rho_x + + 2.0 * p * rho_x * rho_x + - p * rho * rho_xx ) * mu_ ) + + return SVector(du1, du2, du3) +end + +initial_condition = initial_condition_navier_stokes_convergence_test + +# BC types +velocity_bc_left_right = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2]) + +heat_bc_left = Isothermal((x, t, equations) -> + Trixi.temperature(initial_condition_navier_stokes_convergence_test(x, t, equations), + equations_parabolic)) +heat_bc_right = Adiabatic((x, t, equations) -> 0.0) + +boundary_condition_left = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_left) +boundary_condition_right = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_right) + +# define inviscid boundary conditions +boundary_conditions = (; x_neg = boundary_condition_slip_wall, + x_pos = boundary_condition_slip_wall) + +# define viscous boundary conditions +boundary_conditions_parabolic = (; x_neg = boundary_condition_left, + x_pos = boundary_condition_right) + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; + boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), + source_terms=source_terms_navier_stokes_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +# Create ODE problem with time span `tspan` +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() +alive_callback = AliveCallback(alive_interval=10) +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) +callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-8 +sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, + ode_default_options()..., callback=callbacks) +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls_amr.jl b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls_amr.jl new file mode 100644 index 00000000000..1daeab04a71 --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_navierstokes_convergence_walls_amr.jl @@ -0,0 +1,172 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the ideal compressible Navier-Stokes equations + +prandtl_number() = 0.72 +mu() = 0.01 + +equations = CompressibleEulerEquations1D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), Prandtl=prandtl_number(), + gradient_variables=GradientVariablesEntropy()) + +# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux +solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs, + volume_integral=VolumeIntegralWeakForm()) + +coordinates_min = -1.0 +coordinates_max = 1.0 + +# Create a uniformly refined mesh with periodic boundaries +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=3, + periodicity=false, + n_cells_max=30_000) # set maximum capacity of tree data structure + +# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion1D` +# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion1D`) +# and by the initial condition (which passes in `CompressibleEulerEquations1D`). +# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000) +function initial_condition_navier_stokes_convergence_test(x, t, equations) + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x[1] + pi_t = pi * t + + rho = c + A * cos(pi_x) * cos(pi_t) + v1 = log(x[1] + 2.0) * (1.0 - exp(-A * (x[1] - 1.0)) ) * cos(pi_t) + p = rho^2 + + return prim2cons(SVector(rho, v1, p), equations) +end + +@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations) + x = x[1] + + # TODO: parabolic + # we currently need to hardcode these parameters until we fix the "combined equation" issue + # see also https://github.com/trixi-framework/Trixi.jl/pull/1160 + inv_gamma_minus_one = inv(equations.gamma - 1) + Pr = prandtl_number() + mu_ = mu() + + # Same settings as in `initial_condition` + # Amplitude and shift + A = 0.5 + c = 2.0 + + # convenience values for trig. functions + pi_x = pi * x + pi_t = pi * t + + # compute the manufactured solution and all necessary derivatives + rho = c + A * cos(pi_x) * cos(pi_t) + rho_t = -pi * A * cos(pi_x) * sin(pi_t) + rho_x = -pi * A * sin(pi_x) * cos(pi_t) + rho_xx = -pi * pi * A * cos(pi_x) * cos(pi_t) + + v1 = log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * cos(pi_t) + v1_t = -pi * log(x + 2.0) * (1.0 - exp(-A * (x - 1.0))) * sin(pi_t) + v1_x = (A * log(x + 2.0) * exp(-A * (x - 1.0)) + (1.0 - exp(-A * (x - 1.0))) / (x + 2.0)) * cos(pi_t) + v1_xx = (( 2.0 * A * exp(-A * (x - 1.0)) / (x + 2.0) + - A * A * log(x + 2.0) * exp(-A * (x - 1.0)) + - (1.0 - exp(-A * (x - 1.0))) / ((x + 2.0) * (x + 2.0))) * cos(pi_t)) + + p = rho * rho + p_t = 2.0 * rho * rho_t + p_x = 2.0 * rho * rho_x + p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x + + # Note this simplifies slightly because the ansatz assumes that v1 = v2 + E = p * inv_gamma_minus_one + 0.5 * rho * v1^2 + E_t = p_t * inv_gamma_minus_one + 0.5 * rho_t * v1^2 + rho * v1 * v1_t + E_x = p_x * inv_gamma_minus_one + 0.5 * rho_x * v1^2 + rho * v1 * v1_x + + # Some convenience constants + T_const = equations.gamma * inv_gamma_minus_one / Pr + inv_rho_cubed = 1.0 / (rho^3) + + # compute the source terms + # density equation + du1 = rho_t + rho_x * v1 + rho * v1_x + + # y-momentum equation + du2 = ( rho_t * v1 + rho * v1_t + + p_x + rho_x * v1^2 + 2.0 * rho * v1 * v1_x + # stress tensor from y-direction + - v1_xx * mu_) + + # total energy equation + du3 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x) + # stress tensor and temperature gradient terms from x-direction + - v1_xx * v1 * mu_ + - v1_x * v1_x * mu_ + - T_const * inv_rho_cubed * ( p_xx * rho * rho + - 2.0 * p_x * rho * rho_x + + 2.0 * p * rho_x * rho_x + - p * rho * rho_xx ) * mu_ ) + + return SVector(du1, du2, du3) +end + +initial_condition = initial_condition_navier_stokes_convergence_test + +# BC types +velocity_bc_left_right = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2]) + +heat_bc_left = Isothermal((x, t, equations) -> + Trixi.temperature(initial_condition_navier_stokes_convergence_test(x, t, equations), + equations_parabolic)) +heat_bc_right = Adiabatic((x, t, equations) -> 0.0) + +boundary_condition_left = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_left) +boundary_condition_right = BoundaryConditionNavierStokesWall(velocity_bc_left_right, heat_bc_right) + +# define inviscid boundary conditions +boundary_conditions = (; x_neg = boundary_condition_slip_wall, + x_pos = boundary_condition_slip_wall) + +# define viscous boundary conditions +boundary_conditions_parabolic = (; x_neg = boundary_condition_left, + x_pos = boundary_condition_right) + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; + boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), + source_terms=source_terms_navier_stokes_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +# Create ODE problem with time span `tspan` +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() +alive_callback = AliveCallback(alive_interval=10) +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +amr_controller = ControllerThreeLevel(semi, + IndicatorLöhner(semi, variable=Trixi.density), + base_level=3, + med_level=4, med_threshold=0.005, + max_level=5, max_threshold=0.01) + +amr_callback = AMRCallback(semi, amr_controller, + interval=5, + adapt_initial_condition=true) + +# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver +callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, amr_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-8 +sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, + ode_default_options()..., callback=callbacks) +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_1d_dgsem/elixir_shallow_water_quasi_1d_source_terms.jl b/examples/tree_1d_dgsem/elixir_shallow_water_quasi_1d_source_terms.jl new file mode 100644 index 00000000000..72747c669e2 --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_shallow_water_quasi_1d_source_terms.jl @@ -0,0 +1,60 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# Semidiscretization of the quasi 1d shallow water equations +# See Chan et al. https://doi.org/10.48550/arXiv.2307.12089 for details + +equations = ShallowWaterEquationsQuasi1D(gravity_constant = 9.81) + +initial_condition = initial_condition_convergence_test + +############################################################################### +# Get the DG approximation space + +volume_flux = (flux_chan_etal, flux_nonconservative_chan_etal) +surface_flux = (FluxPlusDissipation(flux_chan_etal, DissipationLocalLaxFriedrichs()), + flux_nonconservative_chan_etal) +solver = DGSEM(polydeg = 3, surface_flux = surface_flux, + volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) + +############################################################################### +# Get the TreeMesh and setup a periodic mesh + +coordinates_min = 0.0 +coordinates_max = sqrt(2.0) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 3, + n_cells_max = 10_000, + periodicity = true) + +# create the semi discretization object +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + source_terms = source_terms_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 500 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +save_solution = SaveSolutionCallback(interval = 200, + save_initial_solution = true, + save_final_solution = true) + +callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) + +############################################################################### +# run the simulation + +# use a Runge-Kutta method with automatic (error based) time step size control +sol = solve(ode, RDPK3SpFSAL49(); abstol = 1.0e-8, reltol = 1.0e-8, + ode_default_options()..., callback = callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_1d_dgsem/elixir_shallowwater_quasi_1d_well_balanced.jl b/examples/tree_1d_dgsem/elixir_shallowwater_quasi_1d_well_balanced.jl new file mode 100644 index 00000000000..d9f1a52b500 --- /dev/null +++ b/examples/tree_1d_dgsem/elixir_shallowwater_quasi_1d_well_balanced.jl @@ -0,0 +1,84 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the shallow water equations with a discontinuous +# bottom topography function and channel width function + +equations = ShallowWaterEquationsQuasi1D(gravity_constant = 9.81, H0 = 2.0) + +# Setup a truly discontinuous bottom topography function and channel width for +# this academic testcase of well-balancedness. The errors from the analysis +# callback are not important but the error for this lake-at-rest test case +# `∑|H0-(h+b)|` should be around machine roundoff. +# Works as intended for TreeMesh1D with `initial_refinement_level=3`. If the mesh +# refinement level is changed the initial condition below may need changed as well to +# ensure that the discontinuities lie on an element interface. +function initial_condition_discontinuous_well_balancedness(x, t, + equations::ShallowWaterEquationsQuasi1D) + H = equations.H0 + v = 0.0 + + # for a periodic domain, this choice of `b` and `a` mimic + # discontinuity across the periodic boundary. + b = 0.5 * (x[1] + 1) + a = 2 + x[1] + + return prim2cons(SVector(H, v, b, a), equations) +end + +initial_condition = initial_condition_discontinuous_well_balancedness + +############################################################################### +# Get the DG approximation space + +volume_flux = (flux_chan_etal, flux_nonconservative_chan_etal) +surface_flux = volume_flux +solver = DGSEM(polydeg = 4, surface_flux = surface_flux, + volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) + +############################################################################### +# Get the TreeMesh and setup a periodic mesh + +coordinates_min = -1.0 +coordinates_max = 1.0 +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level = 3, + n_cells_max = 10_000) + +# Create the semi discretization object +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) + +############################################################################### +# ODE solver + +tspan = (0.0, 100.0) +ode = semidiscretize(semi, tspan) + +############################################################################### +# Callbacks + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval, + extra_analysis_integrals = (lake_at_rest_error,)) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +save_solution = SaveSolutionCallback(interval = 1000, + save_initial_solution = true, + save_final_solution = true) + +stepsize_callback = StepsizeCallback(cfl = 3.0) + +callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, + stepsize_callback) + +############################################################################### +# run the simulation + +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_2d_dgsem/elixir_advection_extended.jl b/examples/tree_2d_dgsem/elixir_advection_extended.jl index 8c837957ffd..278dc85386d 100644 --- a/examples/tree_2d_dgsem/elixir_advection_extended.jl +++ b/examples/tree_2d_dgsem/elixir_advection_extended.jl @@ -54,7 +54,7 @@ analysis_callback = AnalysisCallback(semi, interval=analysis_interval, alive_callback = AliveCallback(analysis_interval=analysis_interval) # The SaveRestartCallback allows to save a file from which a Trixi.jl simulation can be restarted -save_restart = SaveRestartCallback(interval=100, +save_restart = SaveRestartCallback(interval=40, save_final_restart=true) # The SaveSolutionCallback allows to save the solution to a file in regular intervals @@ -77,9 +77,10 @@ callbacks = CallbackSet(summary_callback, # run the simulation # OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks -sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false), +alg = CarpenterKennedy2N54(williamson_condition=false) +sol = solve(ode, alg, dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback - save_everystep=false, callback=callbacks); + save_everystep=false, callback=callbacks; ode_default_options()...); # Print the timer summary summary_callback() diff --git a/examples/tree_2d_dgsem/elixir_advection_restart.jl b/examples/tree_2d_dgsem/elixir_advection_restart.jl index 72efb7d0c84..b63a8d1f7bc 100644 --- a/examples/tree_2d_dgsem/elixir_advection_restart.jl +++ b/examples/tree_2d_dgsem/elixir_advection_restart.jl @@ -3,9 +3,10 @@ using OrdinaryDiffEq using Trixi ############################################################################### -# create a restart file - -trixi_include(@__MODULE__, joinpath(@__DIR__, "elixir_advection_extended.jl")) +# Define time integration algorithm +alg = CarpenterKennedy2N54(williamson_condition=false) +# Create a restart file +trixi_include(@__MODULE__, joinpath(@__DIR__, "elixir_advection_extended.jl"), alg = alg, tspan = (0.0, 10.0)) ############################################################################### @@ -14,26 +15,29 @@ trixi_include(@__MODULE__, joinpath(@__DIR__, "elixir_advection_extended.jl")) # Note: If you get a restart file from somewhere else, you need to provide # appropriate setups in the elixir loading a restart file -restart_filename = joinpath("out", "restart_000018.h5") +restart_filename = joinpath("out", "restart_000040.h5") mesh = load_mesh(restart_filename) semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) -tspan = (load_time(restart_filename), 2.0) +tspan = (load_time(restart_filename), 10.0) dt = load_dt(restart_filename) ode = semidiscretize(semi, tspan, restart_filename); # Do not overwrite the initial snapshot written by elixir_advection_extended.jl. save_solution.condition.save_initial_solution = false -alg = CarpenterKennedy2N54(williamson_condition=false) integrator = init(ode, alg, dt=dt, # solve needs some value here but it will be overwritten by the stepsize_callback - save_everystep=false, callback=callbacks) + save_everystep=false, callback=callbacks; ode_default_options()...) + +# Load saved context for adaptive time integrator +if integrator.opts.adaptive + load_adaptive_time_integrator!(integrator, restart_filename) +end # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### # run the simulation diff --git a/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl b/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl new file mode 100644 index 00000000000..6b69e4db563 --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_euler_shockcapturing_subcell.jl @@ -0,0 +1,92 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +""" + initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) + +A medium blast wave (modified to lower density and higher pressure) taken from +- Sebastian Hennemann, Gregor J. Gassner (2020) + A provably entropy stable subcell shock capturing approach for high order split form DG + [arXiv: 2008.12044](https://arxiv.org/abs/2008.12044) +""" +function initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) + # Modified From Hennemann & Gassner JCP paper 2020 (Sec. 6.3) -> modified to lower density, higher pressure + # Set up polar coordinates + inicenter = SVector(0.0, 0.0) + x_norm = x[1] - inicenter[1] + y_norm = x[2] - inicenter[2] + r = sqrt(x_norm^2 + y_norm^2) + phi = atan(y_norm, x_norm) + sin_phi, cos_phi = sincos(phi) + + # Calculate primitive variables "normal" medium blast wave + rho = r > 0.5 ? 0.1 : 0.2691 # rho = r > 0.5 ? 1 : 1.1691 + v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi + v2 = r > 0.5 ? 0.0 : 0.1882 * sin_phi + p = r > 0.5 ? 1.0E-1 : 1.245 # p = r > 0.5 ? 1.0E-3 : 1.245 + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_blast_wave + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha +basis = LobattoLegendreBasis(3) +limiter_idp = SubcellLimiterIDP(equations, basis; + positivity_variables_cons=[1], + positivity_correction_factor=0.5) +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; + volume_flux_dg=volume_flux, + volume_flux_fv=surface_flux) +solver = DGSEM(basis, surface_flux, volume_integral) + +coordinates_min = (-2.0, -2.0) +coordinates_max = ( 2.0, 2.0) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=5, + n_cells_max=100_000) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) + + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=100, + save_initial_solution=true, + save_final_solution=true, + solution_variables=cons2prim) + +stepsize_callback = StepsizeCallback(cfl=0.6) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + save_solution, + stepsize_callback) + + +############################################################################### +# run the simulation + +stage_callbacks = (SubcellLimiterIDPCorrection(),) + +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks=stage_callbacks); + dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep=false, callback=callbacks); +summary_callback() # print the timer summary diff --git a/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl new file mode 100644 index 00000000000..a67eaeb5b2b --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl @@ -0,0 +1,140 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler multicomponent equations + +# 1) Dry Air 2) Helium + 28% Air +equations = CompressibleEulerMulticomponentEquations2D(gammas = (1.4, 1.648), + gas_constants = (0.287, 1.578)) + +""" + initial_condition_shock_bubble(x, t, equations::CompressibleEulerMulticomponentEquations2D{5, 2}) + +A shock-bubble testcase for multicomponent Euler equations +- Ayoub Gouasmi, Karthik Duraisamy, Scott Murman + Formulation of Entropy-Stable schemes for the multicomponent compressible Euler equations + [arXiv: 1904.00972](https://arxiv.org/abs/1904.00972) +""" +function initial_condition_shock_bubble(x, t, equations::CompressibleEulerMulticomponentEquations2D{5, 2}) + # bubble test case, see Gouasmi et al. https://arxiv.org/pdf/1904.00972 + # other reference: https://www.researchgate.net/profile/Pep_Mulet/publication/222675930_A_flux-split_algorithm_applied_to_conservative_models_for_multicomponent_compressible_flows/links/568da54508aeaa1481ae7af0.pdf + # typical domain is rectangular, we change it to a square, as Trixi can only do squares + @unpack gas_constants = equations + + # Positivity Preserving Parameter, can be set to zero if scheme is positivity preserving + delta = 0.03 + + # Region I + rho1_1 = delta + rho2_1 = 1.225 * gas_constants[1]/gas_constants[2] - delta + v1_1 = zero(delta) + v2_1 = zero(delta) + p_1 = 101325 + + # Region II + rho1_2 = 1.225-delta + rho2_2 = delta + v1_2 = zero(delta) + v2_2 = zero(delta) + p_2 = 101325 + + # Region III + rho1_3 = 1.6861 - delta + rho2_3 = delta + v1_3 = -113.5243 + v2_3 = zero(delta) + p_3 = 159060 + + # Set up Region I & II: + inicenter = SVector(zero(delta), zero(delta)) + x_norm = x[1] - inicenter[1] + y_norm = x[2] - inicenter[2] + r = sqrt(x_norm^2 + y_norm^2) + + if (x[1] > 0.50) + # Set up Region III + rho1 = rho1_3 + rho2 = rho2_3 + v1 = v1_3 + v2 = v2_3 + p = p_3 + elseif (r < 0.25) + # Set up Region I + rho1 = rho1_1 + rho2 = rho2_1 + v1 = v1_1 + v2 = v2_1 + p = p_1 + else + # Set up Region II + rho1 = rho1_2 + rho2 = rho2_2 + v1 = v1_2 + v2 = v2_2 + p = p_2 + end + + return prim2cons(SVector(v1, v2, p, rho1, rho2), equations) +end +initial_condition = initial_condition_shock_bubble + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha +basis = LobattoLegendreBasis(3) + +limiter_idp = SubcellLimiterIDP(equations, basis; + positivity_variables_cons=[(i+3 for i in eachcomponent(equations))...]) + +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; + volume_flux_dg=volume_flux, + volume_flux_fv=surface_flux) + +solver = DGSEM(basis, surface_flux, volume_integral) + +coordinates_min = (-2.25, -2.225) +coordinates_max = ( 2.20, 2.225) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=3, + n_cells_max=1_000_000) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) + + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 0.01) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 300 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval, + extra_analysis_integrals=(Trixi.density,)) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=300, + save_initial_solution=true, + save_final_solution=true, + solution_variables=cons2prim) + +stepsize_callback = StepsizeCallback(cfl=0.9) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback, + save_solution, + stepsize_callback) + + +############################################################################### +# run the simulation + +stage_callbacks = (SubcellLimiterIDPCorrection(),) + +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks=stage_callbacks); + dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep=false, callback=callbacks); +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_convergence.jl b/examples/tree_2d_dgsem/elixir_navierstokes_convergence.jl index 36a9f52e39d..b68e9e6c97e 100644 --- a/examples/tree_2d_dgsem/elixir_navierstokes_convergence.jl +++ b/examples/tree_2d_dgsem/elixir_navierstokes_convergence.jl @@ -170,7 +170,10 @@ end initial_condition = initial_condition_navier_stokes_convergence_test # BC types -velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:3]) +velocity_bc_top_bottom = NoSlip() do x, t, equations + u = initial_condition_navier_stokes_convergence_test(x, t, equations) + return SVector(u[2], u[3]) +end heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0) boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom) diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_shear_layer.jl b/examples/tree_2d_dgsem/elixir_navierstokes_shear_layer.jl new file mode 100644 index 00000000000..dd26fd8097b --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_navierstokes_shear_layer.jl @@ -0,0 +1,73 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Navier-Stokes equations + +# TODO: parabolic; unify names of these accessor functions +prandtl_number() = 0.72 +mu() = 1.0/3.0 * 10^(-3) # equivalent to Re = 3000 + +equations = CompressibleEulerEquations2D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(), + Prandtl=prandtl_number()) + +function initial_condition_shear_layer(x, t, equations::CompressibleEulerEquations2D) + # Shear layer parameters + k = 80 + delta = 0.05 + u0 = 1.0 + + Ms = 0.1 # maximum Mach number + + rho = 1.0 + v1 = x[2] <= 0.5 ? u0 * tanh(k*(x[2]*0.5 - 0.25)) : u0 * tanh(k*(0.75 -x[2]*0.5)) + v2 = u0 * delta * sin(2*pi*(x[1]*0.5 + 0.25)) + p = (u0 / Ms)^2 * rho / equations.gamma # scaling to get Ms + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_shear_layer + +volume_flux = flux_ranocha +solver = DGSEM(polydeg=3, surface_flux=flux_hllc, + volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) + +coordinates_min = (0.0, 0.0) +coordinates_max = (1.0, 1.0) +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=4, + n_cells_max=100_000) + + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), + initial_condition, solver) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 2.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 50 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval, save_analysis=true, + extra_analysis_integrals=(energy_kinetic, + energy_internal, + enstrophy)) + +alive_callback = AliveCallback(analysis_interval=analysis_interval,) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-8 +sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, + ode_default_options()..., callback=callbacks) +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl new file mode 100644 index 00000000000..c3cbc858f7b --- /dev/null +++ b/examples/tree_2d_dgsem/elixir_navierstokes_taylor_green_vortex.jl @@ -0,0 +1,78 @@ + +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Navier-Stokes equations + +# TODO: parabolic; unify names of these accessor functions +prandtl_number() = 0.72 +mu() = 6.25e-4 # equivalent to Re = 1600 + +equations = CompressibleEulerEquations2D(1.4) +equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(), + Prandtl=prandtl_number()) + +""" + initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations2D) + +The classical viscous Taylor-Green vortex in 2D. +This forms the basis behind the 3D case found for instance in + - Jonathan R. Bull and Antony Jameson + Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes + [DOI: 10.2514/6.2014-3210](https://doi.org/10.2514/6.2014-3210) +""" +function initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations2D) + A = 1.0 # magnitude of speed + Ms = 0.1 # maximum Mach number + + rho = 1.0 + v1 = A * sin(x[1]) * cos(x[2]) + v2 = -A * cos(x[1]) * sin(x[2]) + p = (A / Ms)^2 * rho / equations.gamma # scaling to get Ms + p = p + 1.0/4.0 * A^2 * rho * (cos(2*x[1]) + cos(2*x[2])) + + return prim2cons(SVector(rho, v1, v2, p), equations) +end +initial_condition = initial_condition_taylor_green_vortex + +volume_flux = flux_ranocha +solver = DGSEM(polydeg=3, surface_flux=flux_hllc, + volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) + +coordinates_min = (-1.0, -1.0) .* pi +coordinates_max = ( 1.0, 1.0) .* pi +mesh = TreeMesh(coordinates_min, coordinates_max, + initial_refinement_level=4, + n_cells_max=100_000) + + +semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), + initial_condition, solver) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 20.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval, save_analysis=true, + extra_analysis_integrals=(energy_kinetic, + energy_internal)) + +alive_callback = AliveCallback(analysis_interval=analysis_interval,) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + alive_callback) + +############################################################################### +# run the simulation + +time_int_tol = 1e-9 +sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, + ode_default_options()..., callback=callbacks) +summary_callback() # print the timer summary \ No newline at end of file diff --git a/examples/tree_3d_dgsem/elixir_advection_restart.jl b/examples/tree_3d_dgsem/elixir_advection_restart.jl index 3061f165874..b7835ed061f 100644 --- a/examples/tree_3d_dgsem/elixir_advection_restart.jl +++ b/examples/tree_3d_dgsem/elixir_advection_restart.jl @@ -31,8 +31,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### diff --git a/examples/tree_3d_dgsem/elixir_navierstokes_convergence.jl b/examples/tree_3d_dgsem/elixir_navierstokes_convergence.jl index b32355c48df..ebb0137a1bb 100644 --- a/examples/tree_3d_dgsem/elixir_navierstokes_convergence.jl +++ b/examples/tree_3d_dgsem/elixir_navierstokes_convergence.jl @@ -220,7 +220,10 @@ end initial_condition = initial_condition_navier_stokes_convergence_test # BC types -velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:4]) +velocity_bc_top_bottom = NoSlip() do x, t, equations + u = initial_condition_navier_stokes_convergence_test(x, t, equations) + return SVector(u[2], u[3], u[4]) +end heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0) boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom) diff --git a/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl b/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl index 9cb73a462b7..5556831a59d 100644 --- a/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl +++ b/examples/tree_3d_dgsem/elixir_navierstokes_taylor_green_vortex.jl @@ -16,7 +16,11 @@ equations_parabolic = CompressibleNavierStokesDiffusion3D(equations, mu=mu(), """ initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations3D) -The classical inviscid Taylor-Green vortex. +The classical viscous Taylor-Green vortex, as found for instance in + +- Jonathan R. Bull and Antony Jameson + Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes + [DOI: 10.2514/6.2014-3210](https://doi.org/10.2514/6.2014-3210) """ function initial_condition_taylor_green_vortex(x, t, equations::CompressibleEulerEquations3D) A = 1.0 # magnitude of speed diff --git a/examples/unstructured_2d_dgsem/elixir_euler_restart.jl b/examples/unstructured_2d_dgsem/elixir_euler_restart.jl index b85cc2c6d70..6653f8662d9 100644 --- a/examples/unstructured_2d_dgsem/elixir_euler_restart.jl +++ b/examples/unstructured_2d_dgsem/elixir_euler_restart.jl @@ -33,8 +33,7 @@ integrator = init(ode, CarpenterKennedy2N54(williamson_condition=false), save_everystep=false, callback=callbacks); # Get the last time index and work with that. -integrator.iter = load_timestep(restart_filename) -integrator.stats.naccept = integrator.iter +load_timestep!(integrator, restart_filename) ############################################################################### diff --git a/src/Trixi.jl b/src/Trixi.jl index 902eef2146f..8d05073d9d8 100644 --- a/src/Trixi.jl +++ b/src/Trixi.jl @@ -121,10 +121,10 @@ include("semidiscretization/semidiscretization_hyperbolic.jl") include("semidiscretization/semidiscretization_hyperbolic_parabolic.jl") include("semidiscretization/semidiscretization_euler_acoustics.jl") include("semidiscretization/semidiscretization_coupled.jl") +include("time_integration/time_integration.jl") include("callbacks_step/callbacks_step.jl") include("callbacks_stage/callbacks_stage.jl") include("semidiscretization/semidiscretization_euler_gravity.jl") -include("time_integration/time_integration.jl") # `trixi_include` and special elixirs such as `convergence_test` include("auxiliary/special_elixirs.jl") @@ -150,10 +150,12 @@ export AcousticPerturbationEquations2D, LatticeBoltzmannEquations2D, LatticeBoltzmannEquations3D, ShallowWaterEquations1D, ShallowWaterEquations2D, ShallowWaterTwoLayerEquations1D, ShallowWaterTwoLayerEquations2D, + ShallowWaterEquationsQuasi1D, LinearizedEulerEquations2D export LaplaceDiffusion1D, LaplaceDiffusion2D, - CompressibleNavierStokesDiffusion2D, CompressibleNavierStokesDiffusion3D + CompressibleNavierStokesDiffusion1D, CompressibleNavierStokesDiffusion2D, + CompressibleNavierStokesDiffusion3D export GradientVariablesPrimitive, GradientVariablesEntropy @@ -164,6 +166,7 @@ export flux, flux_central, flux_lax_friedrichs, flux_hll, flux_hllc, flux_hlle, flux_kennedy_gruber, flux_shima_etal, flux_ec, flux_fjordholm_etal, flux_nonconservative_fjordholm_etal, flux_es_fjordholm_etal, flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal, + flux_chan_etal, flux_nonconservative_chan_etal, hydrostatic_reconstruction_audusse_etal, flux_nonconservative_audusse_etal, # TODO: TrixiShallowWater: move anything with "chen_noelle" to new file hydrostatic_reconstruction_chen_noelle, flux_nonconservative_chen_noelle, @@ -229,6 +232,9 @@ export DG, SurfaceIntegralUpwind, MortarL2 +export VolumeIntegralSubcellLimiting, + SubcellLimiterIDP, SubcellLimiterIDPCorrection + export nelements, nnodes, nvariables, eachelement, eachnode, eachvariable @@ -250,7 +256,8 @@ export SummaryCallback, SteadyStateCallback, AnalysisCallback, AliveCallback, GlmSpeedCallback, LBMCollisionCallback, EulerAcousticsCouplingCallback, TrivialCallback, AnalysisCallbackCoupled -export load_mesh, load_time, load_timestep, load_dt +export load_mesh, load_time, load_timestep, load_timestep!, load_dt, + load_adaptive_time_integrator! export ControllerThreeLevel, ControllerThreeLevelCombined, IndicatorLöhner, IndicatorLoehner, IndicatorMax, diff --git a/src/callbacks_stage/callbacks_stage.jl b/src/callbacks_stage/callbacks_stage.jl index ab0f34efb78..976af327e6f 100644 --- a/src/callbacks_stage/callbacks_stage.jl +++ b/src/callbacks_stage/callbacks_stage.jl @@ -6,6 +6,7 @@ #! format: noindent include("positivity_zhang_shu.jl") +include("subcell_limiter_idp_correction.jl") # TODO: TrixiShallowWater: move specific limiter file include("positivity_shallow_water.jl") end # @muladd diff --git a/src/callbacks_stage/subcell_limiter_idp_correction.jl b/src/callbacks_stage/subcell_limiter_idp_correction.jl new file mode 100644 index 00000000000..69125ebecd9 --- /dev/null +++ b/src/callbacks_stage/subcell_limiter_idp_correction.jl @@ -0,0 +1,69 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +""" + SubcellLimiterIDPCorrection() + +Perform antidiffusive correction stage for the a posteriori IDP limiter [`SubcellLimiterIDP`](@ref) +called with [`VolumeIntegralSubcellLimiting`](@ref). + +!!! note + This callback and the actual limiter [`SubcellLimiterIDP`](@ref) only work together. + This is not a replacement but a necessary addition. + +## References + +- Rueda-Ramírez, Pazner, Gassner (2022) + Subcell Limiting Strategies for Discontinuous Galerkin Spectral Element Methods + [DOI: 10.1016/j.compfluid.2022.105627](https://doi.org/10.1016/j.compfluid.2022.105627) +- Pazner (2020) + Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting + [DOI: 10.1016/j.cma.2021.113876](https://doi.org/10.1016/j.cma.2021.113876) + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +struct SubcellLimiterIDPCorrection end + +function (limiter!::SubcellLimiterIDPCorrection)(u_ode, + integrator::Trixi.SimpleIntegratorSSP, + stage) + semi = integrator.p + limiter!(u_ode, semi, integrator.t, integrator.dt, + semi.solver.volume_integral) +end + +function (limiter!::SubcellLimiterIDPCorrection)(u_ode, semi, t, dt, + volume_integral::VolumeIntegralSubcellLimiting) + @trixi_timeit timer() "a posteriori limiter" limiter!(u_ode, semi, t, dt, + volume_integral.limiter) +end + +function (limiter!::SubcellLimiterIDPCorrection)(u_ode, semi, t, dt, + limiter::SubcellLimiterIDP) + mesh, equations, solver, cache = mesh_equations_solver_cache(semi) + + u = wrap_array(u_ode, mesh, equations, solver, cache) + + # Calculate blending factor alpha in [0,1] + # f_ij = alpha_ij * f^(FV)_ij + (1 - alpha_ij) * f^(DG)_ij + # = f^(FV)_ij + (1 - alpha_ij) * f^(antidiffusive)_ij + @trixi_timeit timer() "blending factors" solver.volume_integral.limiter(u, semi, + solver, t, + dt) + + perform_idp_correction!(u, dt, mesh, equations, solver, cache) + + return nothing +end + +init_callback(limiter!::SubcellLimiterIDPCorrection, semi) = nothing + +finalize_callback(limiter!::SubcellLimiterIDPCorrection, semi) = nothing + +include("subcell_limiter_idp_correction_2d.jl") +end # @muladd diff --git a/src/callbacks_stage/subcell_limiter_idp_correction_2d.jl b/src/callbacks_stage/subcell_limiter_idp_correction_2d.jl new file mode 100644 index 00000000000..f6b91444578 --- /dev/null +++ b/src/callbacks_stage/subcell_limiter_idp_correction_2d.jl @@ -0,0 +1,44 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +function perform_idp_correction!(u, dt, mesh::TreeMesh2D, equations, dg, cache) + @unpack inverse_weights = dg.basis + @unpack antidiffusive_flux1, antidiffusive_flux2 = cache.antidiffusive_fluxes + @unpack alpha1, alpha2 = dg.volume_integral.limiter.cache.subcell_limiter_coefficients + + @threaded for element in eachelement(dg, cache) + # Sign switch as in apply_jacobian! + inverse_jacobian = -cache.elements.inverse_jacobian[element] + + for j in eachnode(dg), i in eachnode(dg) + # Note: antidiffusive_flux1[v, i, xi, element] = antidiffusive_flux2[v, xi, i, element] = 0 for all i in 1:nnodes and xi in {1, nnodes+1} + alpha_flux1 = (1 - alpha1[i, j, element]) * + get_node_vars(antidiffusive_flux1, equations, dg, i, j, + element) + alpha_flux1_ip1 = (1 - alpha1[i + 1, j, element]) * + get_node_vars(antidiffusive_flux1, equations, dg, i + 1, + j, element) + alpha_flux2 = (1 - alpha2[i, j, element]) * + get_node_vars(antidiffusive_flux2, equations, dg, i, j, + element) + alpha_flux2_jp1 = (1 - alpha2[i, j + 1, element]) * + get_node_vars(antidiffusive_flux2, equations, dg, i, + j + 1, element) + + for v in eachvariable(equations) + u[v, i, j, element] += dt * inverse_jacobian * + (inverse_weights[i] * + (alpha_flux1_ip1[v] - alpha_flux1[v]) + + inverse_weights[j] * + (alpha_flux2_jp1[v] - alpha_flux2[v])) + end + end + end + + return nothing +end +end # @muladd diff --git a/src/callbacks_step/amr.jl b/src/callbacks_step/amr.jl index 4d80e6e1139..ba840ff9675 100644 --- a/src/callbacks_step/amr.jl +++ b/src/callbacks_step/amr.jl @@ -192,6 +192,16 @@ end amr_callback(u_ode, mesh_equations_solver_cache(semi)..., semi, t, iter; kwargs...) end +@inline function (amr_callback::AMRCallback)(u_ode::AbstractVector, + semi::SemidiscretizationHyperbolicParabolic, + t, iter; + kwargs...) + # Note that we don't `wrap_array` the vector `u_ode` to be able to `resize!` + # it when doing AMR while still dispatching on the `mesh` etc. + amr_callback(u_ode, mesh_equations_solver_cache(semi)..., semi.cache_parabolic, + semi, t, iter; kwargs...) +end + # `passive_args` is currently used for Euler with self-gravity to adapt the gravity solver # passively without querying its indicator, based on the assumption that both solvers use # the same mesh. That's a hack and should be improved in the future once we have more examples @@ -346,6 +356,154 @@ function (amr_callback::AMRCallback)(u_ode::AbstractVector, mesh::TreeMesh, return has_changed end +function (amr_callback::AMRCallback)(u_ode::AbstractVector, mesh::TreeMesh, + equations, dg::DG, + cache, cache_parabolic, + semi::SemidiscretizationHyperbolicParabolic, + t, iter; + only_refine = false, only_coarsen = false) + @unpack controller, adaptor = amr_callback + + u = wrap_array(u_ode, mesh, equations, dg, cache) + # Indicator kept based on hyperbolic variables + lambda = @trixi_timeit timer() "indicator" controller(u, mesh, equations, dg, cache, + t = t, iter = iter) + + if mpi_isparallel() + error("MPI has not been verified yet for parabolic AMR") + + # Collect lambda for all elements + lambda_global = Vector{eltype(lambda)}(undef, nelementsglobal(dg, cache)) + # Use parent because n_elements_by_rank is an OffsetArray + recvbuf = MPI.VBuffer(lambda_global, parent(cache.mpi_cache.n_elements_by_rank)) + MPI.Allgatherv!(lambda, recvbuf, mpi_comm()) + lambda = lambda_global + end + + leaf_cell_ids = leaf_cells(mesh.tree) + @boundscheck begin + @assert axes(lambda)==axes(leaf_cell_ids) ("Indicator (axes = $(axes(lambda))) and leaf cell (axes = $(axes(leaf_cell_ids))) arrays have different axes") + end + + @unpack to_refine, to_coarsen = amr_callback.amr_cache + empty!(to_refine) + empty!(to_coarsen) + for element in 1:length(lambda) + controller_value = lambda[element] + if controller_value > 0 + push!(to_refine, leaf_cell_ids[element]) + elseif controller_value < 0 + push!(to_coarsen, leaf_cell_ids[element]) + end + end + + @trixi_timeit timer() "refine" if !only_coarsen && !isempty(to_refine) + # refine mesh + refined_original_cells = @trixi_timeit timer() "mesh" refine!(mesh.tree, + to_refine) + + # Find all indices of elements whose cell ids are in refined_original_cells + # Note: This assumes same indices for hyperbolic and parabolic part. + elements_to_refine = findall(in(refined_original_cells), + cache.elements.cell_ids) + + # refine solver + @trixi_timeit timer() "solver" refine!(u_ode, adaptor, mesh, equations, dg, + cache, cache_parabolic, + elements_to_refine) + else + # If there is nothing to refine, create empty array for later use + refined_original_cells = Int[] + end + + @trixi_timeit timer() "coarsen" if !only_refine && !isempty(to_coarsen) + # Since the cells may have been shifted due to refinement, first we need to + # translate the old cell ids to the new cell ids + if !isempty(to_coarsen) + to_coarsen = original2refined(to_coarsen, refined_original_cells, mesh) + end + + # Next, determine the parent cells from which the fine cells are to be + # removed, since these are needed for the coarsen! function. However, since + # we only want to coarsen if *all* child cells are marked for coarsening, + # we count the coarsening indicators for each parent cell and only coarsen + # if all children are marked as such (i.e., where the count is 2^ndims). At + # the same time, check if a cell is marked for coarsening even though it is + # *not* a leaf cell -> this can only happen if it was refined due to 2:1 + # smoothing during the preceding refinement operation. + parents_to_coarsen = zeros(Int, length(mesh.tree)) + for cell_id in to_coarsen + # If cell has no parent, it cannot be coarsened + if !has_parent(mesh.tree, cell_id) + continue + end + + # If cell is not leaf (anymore), it cannot be coarsened + if !is_leaf(mesh.tree, cell_id) + continue + end + + # Increase count for parent cell + parent_id = mesh.tree.parent_ids[cell_id] + parents_to_coarsen[parent_id] += 1 + end + + # Extract only those parent cells for which all children should be coarsened + to_coarsen = collect(1:length(parents_to_coarsen))[parents_to_coarsen .== 2^ndims(mesh)] + + # Finally, coarsen mesh + coarsened_original_cells = @trixi_timeit timer() "mesh" coarsen!(mesh.tree, + to_coarsen) + + # Convert coarsened parent cell ids to the list of child cell ids that have + # been removed, since this is the information that is expected by the solver + removed_child_cells = zeros(Int, + n_children_per_cell(mesh.tree) * + length(coarsened_original_cells)) + for (index, coarse_cell_id) in enumerate(coarsened_original_cells) + for child in 1:n_children_per_cell(mesh.tree) + removed_child_cells[n_children_per_cell(mesh.tree) * (index - 1) + child] = coarse_cell_id + + child + end + end + + # Find all indices of elements whose cell ids are in removed_child_cells + # Note: This assumes same indices for hyperbolic and parabolic part. + elements_to_remove = findall(in(removed_child_cells), cache.elements.cell_ids) + + # coarsen solver + @trixi_timeit timer() "solver" coarsen!(u_ode, adaptor, mesh, equations, dg, + cache, cache_parabolic, + elements_to_remove) + else + # If there is nothing to coarsen, create empty array for later use + coarsened_original_cells = Int[] + end + + # Store whether there were any cells coarsened or refined + has_changed = !isempty(refined_original_cells) || !isempty(coarsened_original_cells) + if has_changed # TODO: Taal decide, where shall we set this? + # don't set it to has_changed since there can be changes from earlier calls + mesh.unsaved_changes = true + end + + # Dynamically balance computational load by first repartitioning the mesh and then redistributing the cells/elements + if has_changed && mpi_isparallel() && amr_callback.dynamic_load_balancing + error("MPI has not been verified yet for parabolic AMR") + + @trixi_timeit timer() "dynamic load balancing" begin + old_mpi_ranks_per_cell = copy(mesh.tree.mpi_ranks) + + partition!(mesh) + + rebalance_solver!(u_ode, mesh, equations, dg, cache, old_mpi_ranks_per_cell) + end + end + + # Return true if there were any cells coarsened or refined, otherwise false + return has_changed +end + # Copy controller values to quad user data storage, will be called below function copy_to_quad_iter_volume(info, user_data) info_pw = PointerWrapper(info) diff --git a/src/callbacks_step/amr_dg1d.jl b/src/callbacks_step/amr_dg1d.jl index e31a74730ea..e721ccc61cb 100644 --- a/src/callbacks_step/amr_dg1d.jl +++ b/src/callbacks_step/amr_dg1d.jl @@ -76,6 +76,44 @@ function refine!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1}, return nothing end +function refine!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1}, + equations, dg::DGSEM, cache, cache_parabolic, + elements_to_refine) + # Call `refine!` for the hyperbolic part, which does the heavy lifting of + # actually transferring the solution to the refined cells + refine!(u_ode, adaptor, mesh, equations, dg, cache, elements_to_refine) + + # The remaining function only handles the necessary adaptation of the data structures + # for the parabolic part of the semidiscretization + + # Get new list of leaf cells + leaf_cell_ids = local_leaf_cells(mesh.tree) + + @unpack elements, viscous_container = cache_parabolic + resize!(elements, length(leaf_cell_ids)) + init_elements!(elements, leaf_cell_ids, mesh, dg.basis) + + # Resize parabolic helper variables + resize!(viscous_container, equations, dg, cache) + + # re-initialize interfaces container + @unpack interfaces = cache_parabolic + resize!(interfaces, count_required_interfaces(mesh, leaf_cell_ids)) + init_interfaces!(interfaces, elements, mesh) + + # re-initialize boundaries container + @unpack boundaries = cache_parabolic + resize!(boundaries, count_required_boundaries(mesh, leaf_cell_ids)) + init_boundaries!(boundaries, elements, mesh) + + # Sanity check + if isperiodic(mesh.tree) + @assert ninterfaces(interfaces)==1 * nelements(dg, cache_parabolic) ("For 1D and periodic domains, the number of interfaces must be the same as the number of elements") + end + + return nothing +end + # TODO: Taal compare performance of different implementations # Refine solution data u for an element, using L2 projection (interpolation) function refine_element!(u::AbstractArray{<:Any, 3}, element_id, @@ -201,6 +239,41 @@ function coarsen!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1}, return nothing end +function coarsen!(u_ode::AbstractVector, adaptor, mesh::TreeMesh{1}, + equations, dg::DGSEM, cache, cache_parabolic, + elements_to_remove) + # Call `coarsen!` for the hyperbolic part, which does the heavy lifting of + # actually transferring the solution to the coarsened cells + coarsen!(u_ode, adaptor, mesh, equations, dg, cache, elements_to_remove) + + # Get new list of leaf cells + leaf_cell_ids = local_leaf_cells(mesh.tree) + + @unpack elements, viscous_container = cache_parabolic + resize!(elements, length(leaf_cell_ids)) + init_elements!(elements, leaf_cell_ids, mesh, dg.basis) + + # Resize parabolic helper variables + resize!(viscous_container, equations, dg, cache) + + # re-initialize interfaces container + @unpack interfaces = cache_parabolic + resize!(interfaces, count_required_interfaces(mesh, leaf_cell_ids)) + init_interfaces!(interfaces, elements, mesh) + + # re-initialize boundaries container + @unpack boundaries = cache_parabolic + resize!(boundaries, count_required_boundaries(mesh, leaf_cell_ids)) + init_boundaries!(boundaries, elements, mesh) + + # Sanity check + if isperiodic(mesh.tree) + @assert ninterfaces(interfaces)==1 * nelements(dg, cache_parabolic) ("For 1D and periodic domains, the number of interfaces must be the same as the number of elements") + end + + return nothing +end + # TODO: Taal compare performance of different implementations # Coarsen solution data u for two elements, using L2 projection function coarsen_elements!(u::AbstractArray{<:Any, 3}, element_id, diff --git a/src/callbacks_step/analysis_dg2d.jl b/src/callbacks_step/analysis_dg2d.jl index 4e456f79872..aecabf0e4b7 100644 --- a/src/callbacks_step/analysis_dg2d.jl +++ b/src/callbacks_step/analysis_dg2d.jl @@ -213,6 +213,24 @@ function integrate(func::Func, u, end end +function integrate(func::Func, u, + mesh::Union{TreeMesh{2}, P4estMesh{2}}, + equations, equations_parabolic, + dg::DGSEM, + cache, cache_parabolic; normalize = true) where {Func} + gradients_x, gradients_y = cache_parabolic.gradients + integrate_via_indices(u, mesh, equations, dg, cache; + normalize = normalize) do u, i, j, element, equations, dg + u_local = get_node_vars(u, equations, dg, i, j, element) + gradients_1_local = get_node_vars(gradients_x, equations_parabolic, dg, i, j, + element) + gradients_2_local = get_node_vars(gradients_y, equations_parabolic, dg, i, j, + element) + return func(u_local, (gradients_1_local, gradients_2_local), + equations_parabolic) + end +end + function analyze(::typeof(entropy_timederivative), du, u, t, mesh::Union{TreeMesh{2}, StructuredMesh{2}, UnstructuredMesh2D, P4estMesh{2}, T8codeMesh{2}}, diff --git a/src/callbacks_step/save_restart.jl b/src/callbacks_step/save_restart.jl index f567a5c7fda..0d174d85805 100644 --- a/src/callbacks_step/save_restart.jl +++ b/src/callbacks_step/save_restart.jl @@ -105,6 +105,11 @@ function (restart_callback::SaveRestartCallback)(integrator) end save_restart_file(u_ode, t, dt, iter, semi, restart_callback) + # If using an adaptive time stepping scheme, store controller values for restart + if integrator.opts.adaptive + save_adaptive_time_integrator(integrator, integrator.opts.controller, + restart_callback) + end end # avoid re-evaluating possible FSAL stages @@ -141,6 +146,18 @@ function load_timestep(restart_file::AbstractString) end end +""" + load_timestep!(integrator, restart_file::AbstractString) + +Load the time step number saved in a `restart_file` and assign it to both the time step +number and and the number of accepted steps +(`iter` and `stats.naccept` in OrdinaryDiffEq.jl, respectively) in `integrator`. +""" +function load_timestep!(integrator, restart_file::AbstractString) + integrator.iter = load_timestep(restart_file) + integrator.stats.naccept = integrator.iter +end + """ load_dt(restart_file::AbstractString) @@ -156,5 +173,36 @@ function load_restart_file(semi::AbstractSemidiscretization, restart_file) load_restart_file(mesh_equations_solver_cache(semi)..., restart_file) end +""" + load_adaptive_time_integrator!(integrator, restart_file::AbstractString) + +Load the context information for time integrators with error-based step size control +saved in a `restart_file`. +""" +function load_adaptive_time_integrator!(integrator, restart_file::AbstractString) + controller = integrator.opts.controller + # Read context information for controller + h5open(restart_file, "r") do file + # Ensure that the necessary information was saved + if !("time_integrator_qold" in keys(attributes(file))) || + !("time_integrator_dtpropose" in keys(attributes(file))) || + (hasproperty(controller, :err) && + !("time_integrator_controller_err" in keys(attributes(file)))) + error("Missing data in restart file: check the consistency of adaptive time controller with initial setup!") + end + # Load data that is required both for PIController and PIDController + integrator.qold = read(attributes(file)["time_integrator_qold"]) + integrator.dtpropose = read(attributes(file)["time_integrator_dtpropose"]) + # Accept step to use dtpropose already in the first step + integrator.accept_step = true + # Reevaluate integrator.fsal_first on the first step + integrator.reeval_fsal = true + # Load additional parameters for PIDController + if hasproperty(controller, :err) # Distinguish PIDController from PIController + controller.err[:] = read(attributes(file)["time_integrator_controller_err"]) + end + end +end + include("save_restart_dg.jl") end # @muladd diff --git a/src/callbacks_step/save_restart_dg.jl b/src/callbacks_step/save_restart_dg.jl index 8db6db2d2b8..cddeef77bb2 100644 --- a/src/callbacks_step/save_restart_dg.jl +++ b/src/callbacks_step/save_restart_dg.jl @@ -327,4 +327,28 @@ function load_restart_file_on_root(mesh::Union{ParallelTreeMesh, ParallelP4estMe return u_ode end + +# Store controller values for an adaptive time stepping scheme +function save_adaptive_time_integrator(integrator, + controller, restart_callback) + # Save only on root + if mpi_isroot() + @unpack output_directory = restart_callback + timestep = integrator.stats.naccept + + # Filename based on current time step + filename = joinpath(output_directory, @sprintf("restart_%06d.h5", timestep)) + + # Open file (preserve existing content) + h5open(filename, "r+") do file + # Add context information as attributes both for PIController and PIDController + attributes(file)["time_integrator_qold"] = integrator.qold + attributes(file)["time_integrator_dtpropose"] = integrator.dtpropose + # For PIDController is necessary to save additional parameters + if hasproperty(controller, :err) # Distinguish PIDController from PIController + attributes(file)["time_integrator_controller_err"] = controller.err + end + end + end +end end # @muladd diff --git a/src/equations/compressible_euler_1d.jl b/src/equations/compressible_euler_1d.jl index e4fd0997eae..9204989e8be 100644 --- a/src/equations/compressible_euler_1d.jl +++ b/src/equations/compressible_euler_1d.jl @@ -198,6 +198,57 @@ function initial_condition_eoc_test_coupled_euler_gravity(x, t, return prim2cons(SVector(rho, v1, p), equations) end +""" + boundary_condition_slip_wall(u_inner, orientation, direction, x, t, + surface_flux_function, equations::CompressibleEulerEquations1D) +Determine the boundary numerical surface flux for a slip wall condition. +Imposes a zero normal velocity at the wall. +Density is taken from the internal solution state and pressure is computed as an +exact solution of a 1D Riemann problem. Further details about this boundary state +are available in the paper: +- J. J. W. van der Vegt and H. van der Ven (2002) + Slip flow boundary conditions in discontinuous Galerkin discretizations of + the Euler equations of gas dynamics + [PDF](https://reports.nlr.nl/bitstream/handle/10921/692/TP-2002-300.pdf?sequence=1) + + Should be used together with [`TreeMesh`](@ref). +""" +@inline function boundary_condition_slip_wall(u_inner, orientation, + direction, x, t, + surface_flux_function, + equations::CompressibleEulerEquations1D) + # compute the primitive variables + rho_local, v_normal, p_local = cons2prim(u_inner, equations) + + if isodd(direction) # flip sign of normal to make it outward pointing + v_normal *= -1 + end + + # Get the solution of the pressure Riemann problem + # See Section 6.3.3 of + # Eleuterio F. Toro (2009) + # Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction + # [DOI: 10.1007/b79761](https://doi.org/10.1007/b79761) + if v_normal <= 0.0 + sound_speed = sqrt(equations.gamma * p_local / rho_local) # local sound speed + p_star = p_local * + (1 + 0.5 * (equations.gamma - 1) * v_normal / sound_speed)^(2 * + equations.gamma * + equations.inv_gamma_minus_one) + else # v_normal > 0.0 + A = 2 / ((equations.gamma + 1) * rho_local) + B = p_local * (equations.gamma - 1) / (equations.gamma + 1) + p_star = p_local + + 0.5 * v_normal / A * + (v_normal + sqrt(v_normal^2 + 4 * A * (p_local + B))) + end + + # For the slip wall we directly set the flux as the normal velocity is zero + return SVector(zero(eltype(u_inner)), + p_star, + zero(eltype(u_inner))) +end + # Calculate 1D flux for a single point @inline function flux(u, orientation::Integer, equations::CompressibleEulerEquations1D) rho, rho_v1, rho_e = u diff --git a/src/equations/compressible_navier_stokes.jl b/src/equations/compressible_navier_stokes.jl new file mode 100644 index 00000000000..af7897d4586 --- /dev/null +++ b/src/equations/compressible_navier_stokes.jl @@ -0,0 +1,70 @@ +# TODO: can we generalize this to MHD? +""" + struct BoundaryConditionNavierStokesWall + +Creates a wall-type boundary conditions for the compressible Navier-Stokes equations. +The fields `boundary_condition_velocity` and `boundary_condition_heat_flux` are intended +to be boundary condition types such as the `NoSlip` velocity boundary condition and the +`Adiabatic` or `Isothermal` heat boundary condition. + +!!! warning "Experimental feature" + This is an experimental feature and may change in future releases. +""" +struct BoundaryConditionNavierStokesWall{V, H} + boundary_condition_velocity::V + boundary_condition_heat_flux::H +end + +""" + struct NoSlip + +Use to create a no-slip boundary condition with `BoundaryConditionNavierStokesWall`. The field `boundary_value_function` +should be a function with signature `boundary_value_function(x, t, equations)` +and should return a `SVector{NDIMS}` whose entries are the velocity vector at a +point `x` and time `t`. +""" +struct NoSlip{F} + boundary_value_function::F # value of the velocity vector on the boundary +end + +""" + struct Isothermal + +Used to create a no-slip boundary condition with [`BoundaryConditionNavierStokesWall`](@ref). +The field `boundary_value_function` should be a function with signature +`boundary_value_function(x, t, equations)` and return a scalar value for the +temperature at point `x` and time `t`. +""" +struct Isothermal{F} + boundary_value_function::F # value of the temperature on the boundary +end + +""" + struct Adiabatic + +Used to create a no-slip boundary condition with [`BoundaryConditionNavierStokesWall`](@ref). +The field `boundary_value_normal_flux_function` should be a function with signature +`boundary_value_normal_flux_function(x, t, equations)` and return a scalar value for the +normal heat flux at point `x` and time `t`. +""" +struct Adiabatic{F} + boundary_value_normal_flux_function::F # scaled heat flux 1/T * kappa * dT/dn +end + +""" +!!! warning "Experimental code" + This code is experimental and may be changed or removed in any future release. + +`GradientVariablesPrimitive` and `GradientVariablesEntropy` are gradient variable type parameters +for `CompressibleNavierStokesDiffusion1D`. By default, the gradient variables are set to be +`GradientVariablesPrimitive`. Specifying `GradientVariablesEntropy` instead uses the entropy variable +formulation from +- Hughes, Mallet, Franca (1986) + A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the + compressible Euler and Navier-Stokes equations and the second law of thermodynamics. + [https://doi.org/10.1016/0045-7825(86)90127-1](https://doi.org/10.1016/0045-7825(86)90127-1) + +Under `GradientVariablesEntropy`, the Navier-Stokes discretization is provably entropy stable. +""" +struct GradientVariablesPrimitive end +struct GradientVariablesEntropy end diff --git a/src/equations/compressible_navier_stokes_1d.jl b/src/equations/compressible_navier_stokes_1d.jl new file mode 100644 index 00000000000..dca846cac1e --- /dev/null +++ b/src/equations/compressible_navier_stokes_1d.jl @@ -0,0 +1,403 @@ +@doc raw""" + CompressibleNavierStokesDiffusion1D(equations; mu, Pr, + gradient_variables=GradientVariablesPrimitive()) + +Contains the diffusion (i.e. parabolic) terms applied +to mass, momenta, and total energy together with the advective terms from +the [`CompressibleEulerEquations1D`](@ref). + +- `equations`: instance of the [`CompressibleEulerEquations1D`](@ref) +- `mu`: dynamic viscosity, +- `Pr`: Prandtl number, +- `gradient_variables`: which variables the gradients are taken with respect to. + Defaults to `GradientVariablesPrimitive()`. + +Fluid properties such as the dynamic viscosity ``\mu`` can be provided in any consistent unit system, e.g., +[``\mu``] = kg m⁻¹ s⁻¹. + +The particular form of the compressible Navier-Stokes implemented is +```math +\frac{\partial}{\partial t} +\begin{pmatrix} +\rho \\ \rho v \\ \rho e +\end{pmatrix} ++ +\frac{\partial}{\partial x} +\begin{pmatrix} + \rho v \\ \rho v^2 + p \\ (\rho e + p) v +\end{pmatrix} += +\frac{\partial}{\partial x} +\begin{pmatrix} +0 \\ \tau \\ \tau v - q +\end{pmatrix} +``` +where the system is closed with the ideal gas assumption giving +```math +p = (\gamma - 1) \left( \rho e - \frac{1}{2} \rho v^2 \right) +``` +as the pressure. The value of the adiabatic constant `gamma` is taken from the [`CompressibleEulerEquations1D`](@ref). +The terms on the right hand side of the system above +are built from the viscous stress +```math +\tau = \mu \frac{\partial}{\partial x} v +``` +where the heat flux is +```math +q = -\kappa \frac{\partial}{\partial x} \left(T\right),\quad T = \frac{p}{R\rho} +``` +where ``T`` is the temperature and ``\kappa`` is the thermal conductivity for Fick's law. +Under the assumption that the gas has a constant Prandtl number, +the thermal conductivity is +```math +\kappa = \frac{\gamma \mu R}{(\gamma - 1)\textrm{Pr}}. +``` +From this combination of temperature ``T`` and thermal conductivity ``\kappa`` we see +that the gas constant `R` cancels and the heat flux becomes +```math +q = -\kappa \frac{\partial}{\partial x} \left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}} \frac{\partial}{\partial x} \left(\frac{p}{\rho}\right) +``` +which is the form implemented below in the [`flux`](@ref) function. + +In one spatial dimensions we require gradients for two quantities, e.g., +primitive quantities +```math +\frac{\partial}{\partial x} v,\, \frac{\partial}{\partial x} T +``` +or the entropy variables +```math +\frac{\partial}{\partial x} w_2,\, \frac{\partial}{\partial x} w_3 +``` +where +```math +w_2 = \frac{\rho v1}{p},\, w_3 = -\frac{\rho}{p} +``` + +!!! warning "Experimental code" + This code is experimental and may be changed or removed in any future release. +""" +struct CompressibleNavierStokesDiffusion1D{GradientVariables, RealT <: Real, + E <: AbstractCompressibleEulerEquations{1}} <: + AbstractCompressibleNavierStokesDiffusion{1, 3} + # TODO: parabolic + # 1) For now save gamma and inv(gamma-1) again, but could potentially reuse them from the Euler equations + # 2) Add NGRADS as a type parameter here and in AbstractEquationsParabolic, add `ngradients(...)` accessor function + gamma::RealT # ratio of specific heats + inv_gamma_minus_one::RealT # = inv(gamma - 1); can be used to write slow divisions as fast multiplications + + mu::RealT # viscosity + Pr::RealT # Prandtl number + kappa::RealT # thermal diffusivity for Fick's law + + equations_hyperbolic::E # CompressibleEulerEquations1D + gradient_variables::GradientVariables # GradientVariablesPrimitive or GradientVariablesEntropy +end + +# default to primitive gradient variables +function CompressibleNavierStokesDiffusion1D(equations::CompressibleEulerEquations1D; + mu, Prandtl, + gradient_variables = GradientVariablesPrimitive()) + gamma = equations.gamma + inv_gamma_minus_one = equations.inv_gamma_minus_one + μ, Pr = promote(mu, Prandtl) + + # Under the assumption of constant Prandtl number the thermal conductivity + # constant is kappa = gamma μ / ((gamma-1) Pr). + # Important note! Factor of μ is accounted for later in `flux`. + kappa = gamma * inv_gamma_minus_one / Pr + + CompressibleNavierStokesDiffusion1D{typeof(gradient_variables), typeof(gamma), + typeof(equations)}(gamma, inv_gamma_minus_one, + μ, Pr, kappa, + equations, gradient_variables) +end + +# TODO: parabolic +# This is the flexibility a user should have to select the different gradient variable types +# varnames(::typeof(cons2prim) , ::CompressibleNavierStokesDiffusion1D) = ("v1", "v2", "T") +# varnames(::typeof(cons2entropy), ::CompressibleNavierStokesDiffusion1D) = ("w2", "w3", "w4") + +function varnames(variable_mapping, + equations_parabolic::CompressibleNavierStokesDiffusion1D) + varnames(variable_mapping, equations_parabolic.equations_hyperbolic) +end + +# we specialize this function to compute gradients of primitive variables instead of +# conservative variables. +function gradient_variable_transformation(::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + cons2prim +end +function gradient_variable_transformation(::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + cons2entropy +end + +# Explicit formulas for the diffusive Navier-Stokes fluxes are available, e.g., in Section 2 +# of the paper by Rueda-Ramírez, Hennemann, Hindenlang, Winters, and Gassner +# "An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive +# MHD Equations. Part II: Subcell Finite Volume Shock Capturing" +# where one sets the magnetic field components equal to 0. +function flux(u, gradients, orientation::Integer, + equations::CompressibleNavierStokesDiffusion1D) + # Here, `u` is assumed to be the "transformed" variables specified by `gradient_variable_transformation`. + rho, v1, _ = convert_transformed_to_primitive(u, equations) + # Here `gradients` is assumed to contain the gradients of the primitive variables (rho, v1, v2, T) + # either computed directly or reverse engineered from the gradient of the entropy variables + # by way of the `convert_gradient_variables` function. + _, dv1dx, dTdx = convert_derivative_to_primitive(u, gradients, equations) + + # Viscous stress (tensor) + tau_11 = dv1dx + + # Fick's law q = -kappa * grad(T) = -kappa * grad(p / (R rho)) + # with thermal diffusivity constant kappa = gamma μ R / ((gamma-1) Pr) + # Note, the gas constant cancels under this formulation, so it is not present + # in the implementation + q1 = equations.kappa * dTdx + + # Constant dynamic viscosity is copied to a variable for readability. + # Offers flexibility for dynamic viscosity via Sutherland's law where it depends + # on temperature and reference values, Ts and Tref such that mu(T) + mu = equations.mu + + # viscous flux components in the x-direction + f1 = zero(rho) + f2 = tau_11 * mu + f3 = (v1 * tau_11 + q1) * mu + + return SVector(f1, f2, f3) +end + +# Convert conservative variables to primitive +@inline function cons2prim(u, equations::CompressibleNavierStokesDiffusion1D) + rho, rho_v1, _ = u + + v1 = rho_v1 / rho + T = temperature(u, equations) + + return SVector(rho, v1, T) +end + +# Convert conservative variables to entropy +# TODO: parabolic. We can improve efficiency by not computing w_1, which involves logarithms +# This can be done by specializing `cons2entropy` and `entropy2cons` to `CompressibleNavierStokesDiffusion1D`, +# but this may be confusing to new users. +function cons2entropy(u, equations::CompressibleNavierStokesDiffusion1D) + cons2entropy(u, equations.equations_hyperbolic) +end +function entropy2cons(w, equations::CompressibleNavierStokesDiffusion1D) + entropy2cons(w, equations.equations_hyperbolic) +end + +# the `flux` function takes in transformed variables `u` which depend on the type of the gradient variables. +# For CNS, it is simplest to formulate the viscous terms in primitive variables, so we transform the transformed +# variables into primitive variables. +@inline function convert_transformed_to_primitive(u_transformed, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + return u_transformed +end + +# TODO: parabolic. Make this more efficient! +@inline function convert_transformed_to_primitive(u_transformed, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + # note: this uses CompressibleNavierStokesDiffusion1D versions of cons2prim and entropy2cons + return cons2prim(entropy2cons(u_transformed, equations), equations) +end + +# Takes the solution values `u` and gradient of the entropy variables (w_2, w_3, w_4) and +# reverse engineers the gradients to be terms of the primitive variables (v1, v2, T). +# Helpful because then the diffusive fluxes have the same form as on paper. +# Note, the first component of `gradient_entropy_vars` contains gradient(rho) which is unused. +# TODO: parabolic; entropy stable viscous terms +@inline function convert_derivative_to_primitive(u, gradient, + ::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + return gradient +end + +# the first argument is always the "transformed" variables. +@inline function convert_derivative_to_primitive(w, gradient_entropy_vars, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + + # TODO: parabolic. This is inefficient to pass in transformed variables but then transform them back. + # We can fix this if we directly compute v1, v2, T from the entropy variables + u = entropy2cons(w, equations) # calls a "modified" entropy2cons defined for CompressibleNavierStokesDiffusion1D + rho, rho_v1, _ = u + + v1 = rho_v1 / rho + T = temperature(u, equations) + + return SVector(gradient_entropy_vars[1], + T * (gradient_entropy_vars[2] + v1 * gradient_entropy_vars[3]), # grad(u) = T*(grad(w_2)+v1*grad(w_3)) + T * T * gradient_entropy_vars[3]) +end + +# This routine is required because `prim2cons` is called in `initial_condition`, which +# is called with `equations::CompressibleEulerEquations1D`. This means it is inconsistent +# with `cons2prim(..., ::CompressibleNavierStokesDiffusion1D)` as defined above. +# TODO: parabolic. Is there a way to clean this up? +@inline function prim2cons(u, equations::CompressibleNavierStokesDiffusion1D) + prim2cons(u, equations.equations_hyperbolic) +end + +@inline function temperature(u, equations::CompressibleNavierStokesDiffusion1D) + rho, rho_v1, rho_e = u + + p = (equations.gamma - 1) * (rho_e - 0.5 * rho_v1^2 / rho) + T = p / rho + return T +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Adiabatic})(flux_inner, + u_inner, + orientation::Integer, + direction, + x, t, + operator_type::Gradient, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + return SVector(u_inner[1], v1, u_inner[3]) +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Adiabatic})(flux_inner, + u_inner, + orientation::Integer, + direction, + x, t, + operator_type::Divergence, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + # rho, v1, v2, _ = u_inner + normal_heat_flux = boundary_condition.boundary_condition_heat_flux.boundary_value_normal_flux_function(x, + t, + equations) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + _, tau_1n, _ = flux_inner # extract fluxes for 2nd equation + normal_energy_flux = v1 * tau_1n + normal_heat_flux + return SVector(flux_inner[1], flux_inner[2], normal_energy_flux) +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Isothermal})(flux_inner, + u_inner, + orientation::Integer, + direction, + x, t, + operator_type::Gradient, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + T = boundary_condition.boundary_condition_heat_flux.boundary_value_function(x, t, + equations) + return SVector(u_inner[1], v1, T) +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Isothermal})(flux_inner, + u_inner, + orientation::Integer, + direction, + x, t, + operator_type::Divergence, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesPrimitive + }) + return flux_inner +end + +# specialized BC impositions for GradientVariablesEntropy. + +# This should return a SVector containing the boundary values of entropy variables. +# Here, `w_inner` are the transformed variables (e.g., entropy variables). +# +# Taken from "Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions +# for the compressible Navier-Stokes equations" by Chan, Lin, Warburton 2022. +# DOI: 10.1016/j.jcp.2021.110723 +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Adiabatic})(flux_inner, + w_inner, + orientation::Integer, + direction, + x, t, + operator_type::Gradient, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + negative_rho_inv_p = w_inner[3] # w_3 = -rho / p + return SVector(w_inner[1], -v1 * negative_rho_inv_p, negative_rho_inv_p) +end + +# this is actually identical to the specialization for GradientVariablesPrimitive, but included for completeness. +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Adiabatic})(flux_inner, + w_inner, + orientation::Integer, + direction, + x, t, + operator_type::Divergence, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + normal_heat_flux = boundary_condition.boundary_condition_heat_flux.boundary_value_normal_flux_function(x, + t, + equations) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + _, tau_1n, _ = flux_inner # extract fluxes for 2nd equation + normal_energy_flux = v1 * tau_1n + normal_heat_flux + return SVector(flux_inner[1], flux_inner[2], normal_energy_flux) +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Isothermal})(flux_inner, + w_inner, + orientation::Integer, + direction, + x, t, + operator_type::Gradient, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + v1 = boundary_condition.boundary_condition_velocity.boundary_value_function(x, t, + equations) + T = boundary_condition.boundary_condition_heat_flux.boundary_value_function(x, t, + equations) + + # the entropy variables w2 = rho * v1 / p = v1 / T = -v1 * w3. + w3 = -1 / T + return SVector(w_inner[1], -v1 * w3, w3) +end + +@inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, + <:Isothermal})(flux_inner, + w_inner, + orientation::Integer, + direction, + x, t, + operator_type::Divergence, + equations::CompressibleNavierStokesDiffusion1D{ + GradientVariablesEntropy + }) + return SVector(flux_inner[1], flux_inner[2], flux_inner[3]) +end diff --git a/src/equations/compressible_navier_stokes_2d.jl b/src/equations/compressible_navier_stokes_2d.jl index 5bd10e59b92..b10ffa3b9d3 100644 --- a/src/equations/compressible_navier_stokes_2d.jl +++ b/src/equations/compressible_navier_stokes_2d.jl @@ -36,7 +36,7 @@ The particular form of the compressible Navier-Stokes implemented is = \nabla \cdot \begin{pmatrix} -0 \\ \underline{\tau} \\ \underline{\tau}\mathbf{v} - \nabla q +0 \\ \underline{\tau} \\ \underline{\tau}\mathbf{v} - \mathbf{q} \end{pmatrix} ``` where the system is closed with the ideal gas assumption giving @@ -51,7 +51,7 @@ are built from the viscous stress tensor ``` where ``\underline{I}`` is the ``2\times 2`` identity matrix and the heat flux is ```math -\nabla q = -\kappa\nabla\left(T\right),\quad T = \frac{p}{R\rho} +\mathbf{q} = -\kappa\nabla\left(T\right),\quad T = \frac{p}{R\rho} ``` where ``T`` is the temperature and ``\kappa`` is the thermal conductivity for Fick's law. Under the assumption that the gas has a constant Prandtl number, @@ -62,7 +62,7 @@ the thermal conductivity is From this combination of temperature ``T`` and thermal conductivity ``\kappa`` we see that the gas constant `R` cancels and the heat flux becomes ```math -\nabla q = -\kappa\nabla\left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}}\nabla\left(\frac{p}{\rho}\right) +\mathbf{q} = -\kappa\nabla\left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}}\nabla\left(\frac{p}{\rho}\right) ``` which is the form implemented below in the [`flux`](@ref) function. @@ -101,24 +101,6 @@ struct CompressibleNavierStokesDiffusion2D{GradientVariables, RealT <: Real, gradient_variables::GradientVariables # GradientVariablesPrimitive or GradientVariablesEntropy end -""" -!!! warning "Experimental code" - This code is experimental and may be changed or removed in any future release. - -`GradientVariablesPrimitive` and `GradientVariablesEntropy` are gradient variable type parameters -for `CompressibleNavierStokesDiffusion2D`. By default, the gradient variables are set to be -`GradientVariablesPrimitive`. Specifying `GradientVariablesEntropy` instead uses the entropy variable -formulation from -- Hughes, Mallet, Franca (1986) - A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the - compressible Euler and Navier-Stokes equations and the second law of thermodynamics. - [https://doi.org/10.1016/0045-7825(86)90127-1](https://doi.org/10.1016/0045-7825(86)90127-1) - -Under `GradientVariablesEntropy`, the Navier-Stokes discretization is provably entropy stable. -""" -struct GradientVariablesPrimitive end -struct GradientVariablesEntropy end - # default to primitive gradient variables function CompressibleNavierStokesDiffusion2D(equations::CompressibleEulerEquations2D; mu, Prandtl, @@ -309,57 +291,19 @@ end return T end -# TODO: can we generalize this to MHD? -""" - struct BoundaryConditionNavierStokesWall - -Creates a wall-type boundary conditions for the compressible Navier-Stokes equations. -The fields `boundary_condition_velocity` and `boundary_condition_heat_flux` are intended -to be boundary condition types such as the `NoSlip` velocity boundary condition and the -`Adiabatic` or `Isothermal` heat boundary condition. - -!!! warning "Experimental feature" - This is an experimental feature and may change in future releases. -""" -struct BoundaryConditionNavierStokesWall{V, H} - boundary_condition_velocity::V - boundary_condition_heat_flux::H -end - -""" - struct NoSlip +@inline function enstrophy(u, gradients, equations::CompressibleNavierStokesDiffusion2D) + # Enstrophy is 0.5 rho ω⋅ω where ω = ∇ × v -Use to create a no-slip boundary condition with `BoundaryConditionNavierStokesWall`. The field `boundary_value_function` -should be a function with signature `boundary_value_function(x, t, equations)` -and should return a `SVector{NDIMS}` whose entries are the velocity vector at a -point `x` and time `t`. -""" -struct NoSlip{F} - boundary_value_function::F # value of the velocity vector on the boundary + omega = vorticity(u, gradients, equations) + return 0.5 * u[1] * omega^2 end -""" - struct Isothermal +@inline function vorticity(u, gradients, equations::CompressibleNavierStokesDiffusion2D) + # Ensure that we have velocity `gradients` by way of the `convert_gradient_variables` function. + _, dv1dx, dv2dx, _ = convert_derivative_to_primitive(u, gradients[1], equations) + _, dv1dy, dv2dy, _ = convert_derivative_to_primitive(u, gradients[2], equations) -Used to create a no-slip boundary condition with [`BoundaryConditionNavierStokesWall`](@ref). -The field `boundary_value_function` should be a function with signature -`boundary_value_function(x, t, equations)` and return a scalar value for the -temperature at point `x` and time `t`. -""" -struct Isothermal{F} - boundary_value_function::F # value of the temperature on the boundary -end - -""" - struct Adiabatic - -Used to create a no-slip boundary condition with [`BoundaryConditionNavierStokesWall`](@ref). -The field `boundary_value_normal_flux_function` should be a function with signature -`boundary_value_normal_flux_function(x, t, equations)` and return a scalar value for the -normal heat flux at point `x` and time `t`. -""" -struct Adiabatic{F} - boundary_value_normal_flux_function::F # scaled heat flux 1/T * kappa * dT/dn + return dv2dx - dv1dy end @inline function (boundary_condition::BoundaryConditionNavierStokesWall{<:NoSlip, diff --git a/src/equations/compressible_navier_stokes_3d.jl b/src/equations/compressible_navier_stokes_3d.jl index c1885644bd5..de2cad99ea8 100644 --- a/src/equations/compressible_navier_stokes_3d.jl +++ b/src/equations/compressible_navier_stokes_3d.jl @@ -36,7 +36,7 @@ The particular form of the compressible Navier-Stokes implemented is = \nabla \cdot \begin{pmatrix} -0 \\ \underline{\tau} \\ \underline{\tau}\mathbf{v} - \nabla q +0 \\ \underline{\tau} \\ \underline{\tau}\mathbf{v} - \mathbf{q} \end{pmatrix} ``` where the system is closed with the ideal gas assumption giving @@ -51,7 +51,7 @@ are built from the viscous stress tensor ``` where ``\underline{I}`` is the ``3\times 3`` identity matrix and the heat flux is ```math -\nabla q = -\kappa\nabla\left(T\right),\quad T = \frac{p}{R\rho} +\mathbf{q} = -\kappa\nabla\left(T\right),\quad T = \frac{p}{R\rho} ``` where ``T`` is the temperature and ``\kappa`` is the thermal conductivity for Fick's law. Under the assumption that the gas has a constant Prandtl number, @@ -62,7 +62,7 @@ the thermal conductivity is From this combination of temperature ``T`` and thermal conductivity ``\kappa`` we see that the gas constant `R` cancels and the heat flux becomes ```math -\nabla q = -\kappa\nabla\left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}}\nabla\left(\frac{p}{\rho}\right) +\mathbf{q} = -\kappa\nabla\left(T\right) = -\frac{\gamma \mu}{(\gamma - 1)\textrm{Pr}}\nabla\left(\frac{p}{\rho}\right) ``` which is the form implemented below in the [`flux`](@ref) function. diff --git a/src/equations/equations.jl b/src/equations/equations.jl index 90b2cd62191..9bae563d85f 100644 --- a/src/equations/equations.jl +++ b/src/equations/equations.jl @@ -75,8 +75,14 @@ end @inline Base.ndims(::AbstractEquations{NDIMS}) where {NDIMS} = NDIMS -# equations act like scalars in broadcasting -Base.broadcastable(equations::AbstractEquations) = Ref(equations) +# Equations act like scalars in broadcasting. +# Using `Ref(equations)` would be more convenient in some circumstances. +# However, this does not work with Julia v1.9.3 correctly due to a (performance) +# bug in Julia, see +# - https://github.com/trixi-framework/Trixi.jl/pull/1618 +# - https://github.com/JuliaLang/julia/issues/51118 +# Thus, we use the workaround below. +Base.broadcastable(equations::AbstractEquations) = (equations,) """ flux(u, orientation_or_normal, equations) @@ -350,6 +356,7 @@ include("shallow_water_1d.jl") include("shallow_water_2d.jl") include("shallow_water_two_layer_1d.jl") include("shallow_water_two_layer_2d.jl") +include("shallow_water_quasi_1d.jl") # CompressibleEulerEquations abstract type AbstractCompressibleEulerEquations{NDIMS, NVARS} <: diff --git a/src/equations/equations_parabolic.jl b/src/equations/equations_parabolic.jl index 5a885e67194..1e64c3f7e25 100644 --- a/src/equations/equations_parabolic.jl +++ b/src/equations/equations_parabolic.jl @@ -11,6 +11,8 @@ include("laplace_diffusion_2d.jl") # Compressible Navier-Stokes equations abstract type AbstractCompressibleNavierStokesDiffusion{NDIMS, NVARS} <: AbstractEquationsParabolic{NDIMS, NVARS} end +include("compressible_navier_stokes.jl") +include("compressible_navier_stokes_1d.jl") include("compressible_navier_stokes_2d.jl") include("compressible_navier_stokes_3d.jl") diff --git a/src/equations/shallow_water_1d.jl b/src/equations/shallow_water_1d.jl index 57bcb1212e1..32782d5478c 100644 --- a/src/equations/shallow_water_1d.jl +++ b/src/equations/shallow_water_1d.jl @@ -653,7 +653,7 @@ end c_rr = sqrt(equations.gravity * h_rr) λ_min = min(v_ll - c_ll, v_rr - c_rr) - λ_max = max(v_rr + c_rr, v_rr + c_rr) + λ_max = max(v_ll + c_ll, v_rr + c_rr) return λ_min, λ_max end diff --git a/src/equations/shallow_water_quasi_1d.jl b/src/equations/shallow_water_quasi_1d.jl new file mode 100644 index 00000000000..217a764e173 --- /dev/null +++ b/src/equations/shallow_water_quasi_1d.jl @@ -0,0 +1,323 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +@doc raw""" + ShallowWaterEquationsQuasi1D(; gravity, H0 = 0, threshold_limiter = nothing threshold_wet = nothing) + +The quasi-1D shallow water equations (SWE). The equations are given by +```math +\begin{aligned} + \frac{\partial}{\partial t}(a h) + \frac{\partial}{\partial x}(a h v) &= 0 \\ + \frac{\partial}{\partial t}(a h v) + \frac{\partial}{\partial x}(a h v^2) + + g a h \frac{\partial}{\partial x}(h + b) &= 0 +\end{aligned} +``` +The unknown quantities of the Quasi-1D SWE are the water height ``h`` and the scaled velocity ``v``. +The gravitational constant is denoted by `g`, the (possibly) variable bottom topography function ``b(x)``, and (possibly) variable channel width ``a(x)``. The water height ``h`` is measured from the bottom topography ``b``, therefore one also defines the total water height as ``H = h + b``. + +The additional quantity ``H_0`` is also available to store a reference value for the total water height that +is useful to set initial conditions or test the "lake-at-rest" well-balancedness. + +Also, there are two thresholds which prevent numerical problems as well as instabilities. Both of them do not +have to be passed, as default values are defined within the struct. The first one, `threshold_limiter`, is +used in [`PositivityPreservingLimiterShallowWater`](@ref) on the water height, as a (small) shift on the initial +condition and cutoff before the next time step. The second one, `threshold_wet`, is applied on the water height to +define when the flow is "wet" before calculating the numerical flux. + +The bottom topography function ``b(x)`` and channel width ``a(x)`` are set inside the initial condition routine +for a particular problem setup. To test the conservative form of the SWE one can set the bottom topography +variable `b` to zero and ``a`` to one. + +In addition to the unknowns, Trixi.jl currently stores the bottom topography and channel width values at the approximation points +despite being fixed in time. This is done for convenience of computing the bottom topography gradients +on the fly during the approximation as well as computing auxiliary quantities like the total water height ``H`` +or the entropy variables. +This affects the implementation and use of these equations in various ways: +* The flux values corresponding to the bottom topography and channel width must be zero. +* The bottom topography and channel width values must be included when defining initial conditions, boundary conditions or + source terms. +* [`AnalysisCallback`](@ref) analyzes this variable. +* Trixi.jl's visualization tools will visualize the bottom topography and channel width by default. +""" +struct ShallowWaterEquationsQuasi1D{RealT <: Real} <: + AbstractShallowWaterEquations{1, 4} + gravity::RealT # gravitational constant + H0::RealT # constant "lake-at-rest" total water height + # `threshold_limiter` used in `PositivityPreservingLimiterShallowWater` on water height, + # as a (small) shift on the initial condition and cutoff before the next time step. + # Default is 500*eps() which in double precision is ≈1e-13. + threshold_limiter::RealT + # `threshold_wet` applied on water height to define when the flow is "wet" + # before calculating the numerical flux. + # Default is 5*eps() which in double precision is ≈1e-15. + threshold_wet::RealT +end + +# Allow for flexibility to set the gravitational constant within an elixir depending on the +# application where `gravity_constant=1.0` or `gravity_constant=9.81` are common values. +# The reference total water height H0 defaults to 0.0 but is used for the "lake-at-rest" +# well-balancedness test cases. +# Strict default values for thresholds that performed well in many numerical experiments +function ShallowWaterEquationsQuasi1D(; gravity_constant, H0 = zero(gravity_constant), + threshold_limiter = nothing, + threshold_wet = nothing) + T = promote_type(typeof(gravity_constant), typeof(H0)) + if threshold_limiter === nothing + threshold_limiter = 500 * eps(T) + end + if threshold_wet === nothing + threshold_wet = 5 * eps(T) + end + ShallowWaterEquationsQuasi1D(gravity_constant, H0, threshold_limiter, threshold_wet) +end + +have_nonconservative_terms(::ShallowWaterEquationsQuasi1D) = True() +function varnames(::typeof(cons2cons), ::ShallowWaterEquationsQuasi1D) + ("a_h", "a_h_v", "b", "a") +end +# Note, we use the total water height, H = h + b, as the first primitive variable for easier +# visualization and setting initial conditions +varnames(::typeof(cons2prim), ::ShallowWaterEquationsQuasi1D) = ("H", "v", "b", "a") + +# Set initial conditions at physical location `x` for time `t` +""" + initial_condition_convergence_test(x, t, equations::ShallowWaterEquationsQuasi1D) + +A smooth initial condition used for convergence tests in combination with +[`source_terms_convergence_test`](@ref) +(and [`BoundaryConditionDirichlet(initial_condition_convergence_test)`](@ref) in non-periodic domains). +""" +function initial_condition_convergence_test(x, t, + equations::ShallowWaterEquationsQuasi1D) + # generates a manufactured solution. + # some constants are chosen such that the function is periodic on the domain [0,sqrt(2)] + Omega = sqrt(2) * pi + H = 2.0 + 0.5 * sin(Omega * x[1] - t) + v = 0.25 + b = 0.2 - 0.05 * sin(Omega * x[1]) + a = 1 + 0.1 * cos(Omega * x[1]) + return prim2cons(SVector(H, v, b, a), equations) +end + +""" + source_terms_convergence_test(u, x, t, equations::ShallowWaterEquationsQuasi1D) + +Source terms used for convergence tests in combination with +[`initial_condition_convergence_test`](@ref) +(and [`BoundaryConditionDirichlet(initial_condition_convergence_test)`](@ref) in non-periodic domains). + +This manufactured solution source term is specifically designed for the bottom topography function +`b(x) = 0.2 - 0.05 * sin(sqrt(2) * pi *x[1])` and channel width 'a(x)= 1 + 0.1 * cos(sqrt(2) * pi * x[1])' +as defined in [`initial_condition_convergence_test`](@ref). +""" +@inline function source_terms_convergence_test(u, x, t, + equations::ShallowWaterEquationsQuasi1D) + # Same settings as in `initial_condition_convergence_test`. Some derivative simplify because + # this manufactured solution velocity is taken to be constant + Omega = sqrt(2) * pi + H = 2.0 + 0.5 * sin(Omega * x[1] - t) + H_x = 0.5 * cos(Omega * x[1] - t) * Omega + H_t = -0.5 * cos(Omega * x[1] - t) + + v = 0.25 + + b = 0.2 - 0.05 * sin(Omega * x[1]) + b_x = -0.05 * cos(Omega * x[1]) * Omega + + a = 1 + 0.1 * cos(Omega * x[1]) + a_x = -0.1 * sin(Omega * x[1]) * Omega + + du1 = a * H_t + v * (a_x * (H - b) + a * (H_x - b_x)) + du2 = v * du1 + a * (equations.gravity * (H - b) * H_x) + + return SVector(du1, du2, 0.0, 0.0) +end + +# Calculate 1D flux for a single point +# Note, the bottom topography and channel width have no flux +@inline function flux(u, orientation::Integer, equations::ShallowWaterEquationsQuasi1D) + a_h, a_h_v, _, a = u + h = waterheight(u, equations) + v = velocity(u, equations) + + p = 0.5 * a * equations.gravity * h^2 + + f1 = a_h_v + f2 = a_h_v * v + p + + return SVector(f1, f2, zero(eltype(u)), zero(eltype(u))) +end + +""" + flux_nonconservative_chan_etal(u_ll, u_rr, orientation::Integer, + equations::ShallowWaterEquationsQuasi1D) + +Non-symmetric two-point volume flux discretizing the nonconservative (source) term +that contains the gradient of the bottom topography [`ShallowWaterEquationsQuasi1D`](@ref) +and the channel width. + +Further details are available in the paper: +- Jesse Chan, Khemraj Shukla, Xinhui Wu, Ruofeng Liu, Prani Nalluri (2023) + High order entropy stable schemes for the quasi-one-dimensional + shallow water and compressible Euler equations + [DOI: 10.48550/arXiv.2307.12089](https://doi.org/10.48550/arXiv.2307.12089) +""" +@inline function flux_nonconservative_chan_etal(u_ll, u_rr, orientation::Integer, + equations::ShallowWaterEquationsQuasi1D) + a_h_ll, _, b_ll, a_ll = u_ll + a_h_rr, _, b_rr, a_rr = u_rr + + h_ll = waterheight(u_ll, equations) + h_rr = waterheight(u_rr, equations) + + z = zero(eltype(u_ll)) + + return SVector(z, equations.gravity * a_ll * h_ll * (h_rr + b_rr), z, z) +end + +""" + flux_chan_etal(u_ll, u_rr, orientation, + equations::ShallowWaterEquationsQuasi1D) + +Total energy conservative (mathematical entropy for quasi 1D shallow water equations) split form. +When the bottom topography is nonzero this scheme will be well-balanced when used as a `volume_flux`. +The `surface_flux` should still use, e.g., [`FluxPlusDissipation(flux_chan_etal, DissipationLocalLaxFriedrichs())`](@ref). + +Further details are available in the paper: +- Jesse Chan, Khemraj Shukla, Xinhui Wu, Ruofeng Liu, Prani Nalluri (2023) + High order entropy stable schemes for the quasi-one-dimensional + shallow water and compressible Euler equations + [DOI: 10.48550/arXiv.2307.12089](https://doi.org/10.48550/arXiv.2307.12089) +""" +@inline function flux_chan_etal(u_ll, u_rr, orientation::Integer, + equations::ShallowWaterEquationsQuasi1D) + a_h_ll, a_h_v_ll, _, _ = u_ll + a_h_rr, a_h_v_rr, _, _ = u_rr + + v_ll = velocity(u_ll, equations) + v_rr = velocity(u_rr, equations) + + f1 = 0.5 * (a_h_v_ll + a_h_v_rr) + f2 = f1 * 0.5 * (v_ll + v_rr) + + return SVector(f1, f2, zero(eltype(u_ll)), zero(eltype(u_ll))) +end + +# Calculate maximum wave speed for local Lax-Friedrichs-type dissipation as the +# maximum velocity magnitude plus the maximum speed of sound +@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer, + equations::ShallowWaterEquationsQuasi1D) + # Get the velocity quantities + v_ll = velocity(u_ll, equations) + v_rr = velocity(u_rr, equations) + + # Calculate the wave celerity on the left and right + h_ll = waterheight(u_ll, equations) + h_rr = waterheight(u_rr, equations) + c_ll = sqrt(equations.gravity * h_ll) + c_rr = sqrt(equations.gravity * h_rr) + + return max(abs(v_ll), abs(v_rr)) + max(c_ll, c_rr) +end + +# Specialized `DissipationLocalLaxFriedrichs` to avoid spurious dissipation in the bottom topography +# and channel width +@inline function (dissipation::DissipationLocalLaxFriedrichs)(u_ll, u_rr, + orientation_or_normal_direction, + equations::ShallowWaterEquationsQuasi1D) + λ = dissipation.max_abs_speed(u_ll, u_rr, orientation_or_normal_direction, + equations) + diss = -0.5 * λ * (u_rr - u_ll) + return SVector(diss[1], diss[2], zero(eltype(u_ll)), zero(eltype(u_ll))) +end + +@inline function max_abs_speeds(u, equations::ShallowWaterEquationsQuasi1D) + h = waterheight(u, equations) + v = velocity(u, equations) + + c = equations.gravity * sqrt(h) + return (abs(v) + c,) +end + +# Helper function to extract the velocity vector from the conservative variables +@inline function velocity(u, equations::ShallowWaterEquationsQuasi1D) + a_h, a_h_v, _, _ = u + + v = a_h_v / a_h + + return v +end + +# Convert conservative variables to primitive +@inline function cons2prim(u, equations::ShallowWaterEquationsQuasi1D) + a_h, _, b, a = u + h = a_h / a + H = h + b + v = velocity(u, equations) + return SVector(H, v, b, a) +end + +# Convert conservative variables to entropy variables +# Note, only the first two are the entropy variables, the third and fourth entries still +# just carry the bottom topography and channel width values for convenience +@inline function cons2entropy(u, equations::ShallowWaterEquationsQuasi1D) + a_h, a_h_v, b, a = u + h = waterheight(u, equations) + v = velocity(u, equations) + #entropy variables are the same as ones in standard shallow water equations + w1 = equations.gravity * (h + b) - 0.5 * v^2 + w2 = v + + return SVector(w1, w2, b, a) +end + +# Convert primitive to conservative variables +@inline function prim2cons(prim, equations::ShallowWaterEquationsQuasi1D) + H, v, b, a = prim + + a_h = a * (H - b) + a_h_v = a_h * v + return SVector(a_h, a_h_v, b, a) +end + +@inline function waterheight(u, equations::ShallowWaterEquationsQuasi1D) + return u[1] / u[4] +end + +# Entropy function for the shallow water equations is the total energy +@inline function entropy(cons, equations::ShallowWaterEquationsQuasi1D) + a = cons[4] + return a * energy_total(cons, equations) +end + +# Calculate total energy for a conservative state `cons` +@inline function energy_total(cons, equations::ShallowWaterEquationsQuasi1D) + a_h, a_h_v, b, a = cons + e = (a_h_v^2) / (2 * a * a_h) + 0.5 * equations.gravity * (a_h^2 / a) + + equations.gravity * a_h * b + return e +end + +# Calculate the error for the "lake-at-rest" test case where H = h+b should +# be a constant value over time. Note, assumes there is a single reference +# water height `H0` with which to compare. +# +# TODO: TrixiShallowWater: where should `threshold_limiter` live? May need +# to modify or have different versions of the `lake_at_rest_error` function +@inline function lake_at_rest_error(u, equations::ShallowWaterEquationsQuasi1D) + _, _, b, _ = u + h = waterheight(u, equations) + + # For well-balancedness testing with possible wet/dry regions the reference + # water height `H0` accounts for the possibility that the bottom topography + # can emerge out of the water as well as for the threshold offset to avoid + # division by a "hard" zero water heights as well. + H0_wet_dry = max(equations.H0, b + equations.threshold_limiter) + + return abs(H0_wet_dry - (h + b)) +end +end # @muladd diff --git a/src/semidiscretization/semidiscretization.jl b/src/semidiscretization/semidiscretization.jl index fbdcd73e2a8..c784f716426 100644 --- a/src/semidiscretization/semidiscretization.jl +++ b/src/semidiscretization/semidiscretization.jl @@ -363,7 +363,7 @@ end # # In some sense, having plain multidimensional `Array`s not support `resize!` # isn't necessarily a bug (although it would be nice to add this possibility to -# base Julia) but can turn out to be a feature for us, because it will aloow us +# base Julia) but can turn out to be a feature for us, because it will allow us # more specializations. # Since we can use multiple dispatch, these kinds of specializations can be # tailored specifically to each combinations of mesh/solver etc. diff --git a/src/semidiscretization/semidiscretization_hyperbolic_parabolic.jl b/src/semidiscretization/semidiscretization_hyperbolic_parabolic.jl index 8f1e38c891b..b12ecadb58b 100644 --- a/src/semidiscretization/semidiscretization_hyperbolic_parabolic.jl +++ b/src/semidiscretization/semidiscretization_hyperbolic_parabolic.jl @@ -330,4 +330,19 @@ function rhs_parabolic!(du_ode, u_ode, semi::SemidiscretizationHyperbolicParabol return nothing end + +function _jacobian_ad_forward(semi::SemidiscretizationHyperbolicParabolic, t0, u0_ode, + du_ode, config) + new_semi = remake(semi, uEltype = eltype(config)) + + du_ode_hyp = Vector{eltype(config)}(undef, length(du_ode)) + J = ForwardDiff.jacobian(du_ode, u0_ode, config) do du_ode, u_ode + # Implementation of split ODE problem in OrdinaryDiffEq + rhs!(du_ode_hyp, u_ode, new_semi, t0) + rhs_parabolic!(du_ode, u_ode, new_semi, t0) + du_ode .+= du_ode_hyp + end + + return J +end end # @muladd diff --git a/src/solvers/dg.jl b/src/solvers/dg.jl index 495e0ffc4a4..36bbc6de361 100644 --- a/src/solvers/dg.jl +++ b/src/solvers/dg.jl @@ -174,6 +174,46 @@ function Base.show(io::IO, ::MIME"text/plain", end end +""" + VolumeIntegralSubcellLimiting(limiter; + volume_flux_dg, volume_flux_fv) + +A subcell limiting volume integral type for DG methods based on subcell blending approaches +with a low-order FV method. Used with limiter [`SubcellLimiterIDP`](@ref). + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +struct VolumeIntegralSubcellLimiting{VolumeFluxDG, VolumeFluxFV, Limiter} <: + AbstractVolumeIntegral + volume_flux_dg::VolumeFluxDG + volume_flux_fv::VolumeFluxFV + limiter::Limiter +end + +function VolumeIntegralSubcellLimiting(limiter; volume_flux_dg, + volume_flux_fv) + VolumeIntegralSubcellLimiting{typeof(volume_flux_dg), typeof(volume_flux_fv), + typeof(limiter)}(volume_flux_dg, volume_flux_fv, + limiter) +end + +function Base.show(io::IO, mime::MIME"text/plain", + integral::VolumeIntegralSubcellLimiting) + @nospecialize integral # reduce precompilation time + + if get(io, :compact, false) + show(io, integral) + else + summary_header(io, "VolumeIntegralSubcellLimiting") + summary_line(io, "volume flux DG", integral.volume_flux_dg) + summary_line(io, "volume flux FV", integral.volume_flux_fv) + summary_line(io, "limiter", integral.limiter |> typeof |> nameof) + show(increment_indent(io), mime, integral.limiter) + summary_footer(io) + end +end + # TODO: FD. Should this definition live in a different file because it is # not strictly a DG method? """ diff --git a/src/solvers/dgmulti/dg_parabolic.jl b/src/solvers/dgmulti/dg_parabolic.jl index 72dbe2c4256..7dfe4430244 100644 --- a/src/solvers/dgmulti/dg_parabolic.jl +++ b/src/solvers/dgmulti/dg_parabolic.jl @@ -62,9 +62,10 @@ end function transform_variables!(u_transformed, u, mesh, equations_parabolic::AbstractEquationsParabolic, dg::DGMulti, parabolic_scheme, cache, cache_parabolic) + transformation = gradient_variable_transformation(equations_parabolic) + @threaded for i in eachindex(u) - u_transformed[i] = gradient_variable_transformation(equations_parabolic)(u[i], - equations_parabolic) + u_transformed[i] = transformation(u[i], equations_parabolic) end end diff --git a/src/solvers/dgsem_p4est/dg_2d.jl b/src/solvers/dgsem_p4est/dg_2d.jl index 97b931fa325..a665aa4b19d 100644 --- a/src/solvers/dgsem_p4est/dg_2d.jl +++ b/src/solvers/dgsem_p4est/dg_2d.jl @@ -275,9 +275,9 @@ function prolong2boundaries!(cache, u, return nothing end -function calc_boundary_flux!(cache, t, boundary_condition, boundary_indexing, +function calc_boundary_flux!(cache, t, boundary_condition::BC, boundary_indexing, mesh::Union{P4estMesh{2}, T8codeMesh{2}}, - equations, surface_integral, dg::DG) + equations, surface_integral, dg::DG) where {BC} @unpack boundaries = cache @unpack surface_flux_values = cache.elements index_range = eachnode(dg) diff --git a/src/solvers/dgsem_p4est/dg_2d_parabolic.jl b/src/solvers/dgsem_p4est/dg_2d_parabolic.jl index 7e90a83a9ca..a04523d2fb4 100644 --- a/src/solvers/dgsem_p4est/dg_2d_parabolic.jl +++ b/src/solvers/dgsem_p4est/dg_2d_parabolic.jl @@ -22,6 +22,97 @@ function create_cache_parabolic(mesh::P4estMesh{2}, equations_hyperbolic::Abstra return cache end +# TODO: Remove in favor of the implementation for the TreeMesh +# once the P4estMesh can handle mortars as well +function rhs_parabolic!(du, u, t, mesh::P4estMesh{2}, + equations_parabolic::AbstractEquationsParabolic, + initial_condition, boundary_conditions_parabolic, source_terms, + dg::DG, parabolic_scheme, cache, cache_parabolic) + (; u_transformed, gradients, flux_viscous) = cache_parabolic + + # Convert conservative variables to a form more suitable for viscous flux calculations + @trixi_timeit timer() "transform variables" begin + transform_variables!(u_transformed, u, mesh, equations_parabolic, + dg, parabolic_scheme, cache, cache_parabolic) + end + + # Compute the gradients of the transformed variables + @trixi_timeit timer() "calculate gradient" begin + calc_gradient!(gradients, u_transformed, t, mesh, equations_parabolic, + boundary_conditions_parabolic, dg, cache, cache_parabolic) + end + + # Compute and store the viscous fluxes + @trixi_timeit timer() "calculate viscous fluxes" begin + calc_viscous_fluxes!(flux_viscous, gradients, u_transformed, mesh, + equations_parabolic, dg, cache, cache_parabolic) + end + + # The remainder of this function is essentially a regular rhs! for parabolic + # equations (i.e., it computes the divergence of the viscous fluxes) + # + # OBS! In `calc_viscous_fluxes!`, the viscous flux values at the volume nodes of each element have + # been computed and stored in `fluxes_viscous`. In the following, we *reuse* (abuse) the + # `interfaces` and `boundaries` containers in `cache_parabolic` to interpolate and store the + # *fluxes* at the element surfaces, as opposed to interpolating and storing the *solution* (as it + # is done in the hyperbolic operator). That is, `interfaces.u`/`boundaries.u` store *viscous flux values* + # and *not the solution*. The advantage is that a) we do not need to allocate more storage, b) we + # do not need to recreate the existing data structure only with a different name, and c) we do not + # need to interpolate solutions *and* gradients to the surfaces. + + # TODO: parabolic; reconsider current data structure reuse strategy + + # Reset du + @trixi_timeit timer() "reset ∂u/∂t" reset_du!(du, dg, cache) + + # Calculate volume integral + @trixi_timeit timer() "volume integral" begin + calc_volume_integral!(du, flux_viscous, mesh, equations_parabolic, dg, cache) + end + + # Prolong solution to interfaces + @trixi_timeit timer() "prolong2interfaces" begin + prolong2interfaces!(cache_parabolic, flux_viscous, mesh, equations_parabolic, + dg.surface_integral, dg, cache) + end + + # Calculate interface fluxes + @trixi_timeit timer() "interface flux" begin + calc_interface_flux!(cache_parabolic.elements.surface_flux_values, mesh, + equations_parabolic, dg, cache_parabolic) + end + + # Prolong solution to boundaries + @trixi_timeit timer() "prolong2boundaries" begin + prolong2boundaries!(cache_parabolic, flux_viscous, mesh, equations_parabolic, + dg.surface_integral, dg, cache) + end + + # Calculate boundary fluxes + @trixi_timeit timer() "boundary flux" begin + calc_boundary_flux_divergence!(cache_parabolic, t, + boundary_conditions_parabolic, mesh, + equations_parabolic, + dg.surface_integral, dg) + end + + # TODO: parabolic; extend to mortars + @assert nmortars(dg, cache) == 0 + + # Calculate surface integrals + @trixi_timeit timer() "surface integral" begin + calc_surface_integral!(du, u, mesh, equations_parabolic, + dg.surface_integral, dg, cache_parabolic) + end + + # Apply Jacobian from mapping to reference element + @trixi_timeit timer() "Jacobian" begin + apply_jacobian_parabolic!(du, mesh, equations_parabolic, dg, cache_parabolic) + end + + return nothing +end + function calc_gradient!(gradients, u_transformed, t, mesh::P4estMesh{2}, equations_parabolic, boundary_conditions_parabolic, dg::DG, diff --git a/src/solvers/dgsem_p4est/dg_3d_parabolic.jl b/src/solvers/dgsem_p4est/dg_3d_parabolic.jl index 5370c927e05..2d26c1aff50 100644 --- a/src/solvers/dgsem_p4est/dg_3d_parabolic.jl +++ b/src/solvers/dgsem_p4est/dg_3d_parabolic.jl @@ -22,6 +22,105 @@ function create_cache_parabolic(mesh::P4estMesh{3}, equations_hyperbolic::Abstra return cache end +# This file collects all methods that have been updated to work with parabolic systems of equations +# +# assumptions: parabolic terms are of the form div(f(u, grad(u))) and +# will be discretized first order form as follows: +# 1. compute grad(u) +# 2. compute f(u, grad(u)) +# 3. compute div(f(u, grad(u))) (i.e., the "regular" rhs! call) +# boundary conditions will be applied to both grad(u) and div(f(u, grad(u))). +# TODO: Remove in favor of the implementation for the TreeMesh +# once the P4estMesh can handle mortars as well +function rhs_parabolic!(du, u, t, mesh::P4estMesh{3}, + equations_parabolic::AbstractEquationsParabolic, + initial_condition, boundary_conditions_parabolic, source_terms, + dg::DG, parabolic_scheme, cache, cache_parabolic) + @unpack u_transformed, gradients, flux_viscous = cache_parabolic + + # Convert conservative variables to a form more suitable for viscous flux calculations + @trixi_timeit timer() "transform variables" begin + transform_variables!(u_transformed, u, mesh, equations_parabolic, + dg, parabolic_scheme, cache, cache_parabolic) + end + + # Compute the gradients of the transformed variables + @trixi_timeit timer() "calculate gradient" begin + calc_gradient!(gradients, u_transformed, t, mesh, equations_parabolic, + boundary_conditions_parabolic, dg, cache, cache_parabolic) + end + + # Compute and store the viscous fluxes + @trixi_timeit timer() "calculate viscous fluxes" begin + calc_viscous_fluxes!(flux_viscous, gradients, u_transformed, mesh, + equations_parabolic, dg, cache, cache_parabolic) + end + + # The remainder of this function is essentially a regular rhs! for parabolic + # equations (i.e., it computes the divergence of the viscous fluxes) + # + # OBS! In `calc_viscous_fluxes!`, the viscous flux values at the volume nodes of each element have + # been computed and stored in `fluxes_viscous`. In the following, we *reuse* (abuse) the + # `interfaces` and `boundaries` containers in `cache_parabolic` to interpolate and store the + # *fluxes* at the element surfaces, as opposed to interpolating and storing the *solution* (as it + # is done in the hyperbolic operator). That is, `interfaces.u`/`boundaries.u` store *viscous flux values* + # and *not the solution*. The advantage is that a) we do not need to allocate more storage, b) we + # do not need to recreate the existing data structure only with a different name, and c) we do not + # need to interpolate solutions *and* gradients to the surfaces. + + # TODO: parabolic; reconsider current data structure reuse strategy + + # Reset du + @trixi_timeit timer() "reset ∂u/∂t" reset_du!(du, dg, cache) + + # Calculate volume integral + @trixi_timeit timer() "volume integral" begin + calc_volume_integral!(du, flux_viscous, mesh, equations_parabolic, dg, cache) + end + + # Prolong solution to interfaces + @trixi_timeit timer() "prolong2interfaces" begin + prolong2interfaces!(cache_parabolic, flux_viscous, mesh, equations_parabolic, + dg.surface_integral, dg, cache) + end + + # Calculate interface fluxes + @trixi_timeit timer() "interface flux" begin + calc_interface_flux!(cache_parabolic.elements.surface_flux_values, mesh, + equations_parabolic, dg, cache_parabolic) + end + + # Prolong solution to boundaries + @trixi_timeit timer() "prolong2boundaries" begin + prolong2boundaries!(cache_parabolic, flux_viscous, mesh, equations_parabolic, + dg.surface_integral, dg, cache) + end + + # Calculate boundary fluxes + @trixi_timeit timer() "boundary flux" begin + calc_boundary_flux_divergence!(cache_parabolic, t, + boundary_conditions_parabolic, + mesh, equations_parabolic, + dg.surface_integral, dg) + end + + # TODO: parabolic; extend to mortars + @assert nmortars(dg, cache) == 0 + + # Calculate surface integrals + @trixi_timeit timer() "surface integral" begin + calc_surface_integral!(du, u, mesh, equations_parabolic, + dg.surface_integral, dg, cache_parabolic) + end + + # Apply Jacobian from mapping to reference element + @trixi_timeit timer() "Jacobian" begin + apply_jacobian_parabolic!(du, mesh, equations_parabolic, dg, cache_parabolic) + end + + return nothing +end + function calc_gradient!(gradients, u_transformed, t, mesh::P4estMesh{3}, equations_parabolic, boundary_conditions_parabolic, dg::DG, @@ -563,60 +662,6 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, return nothing end -# # Function barrier for type stability -# !!! TODO: Figure out why this cannot removed eventhough it exists in the dg_2d_parabolic.jl file -function calc_boundary_flux_gradients!(cache, t, boundary_conditions, mesh::P4estMesh, - equations, surface_integral, dg::DG) - (; boundary_condition_types, boundary_indices) = boundary_conditions - - calc_boundary_flux_by_type!(cache, t, boundary_condition_types, boundary_indices, - Gradient(), mesh, equations, surface_integral, dg) - return nothing -end - -function calc_boundary_flux_divergence!(cache, t, boundary_conditions, mesh::P4estMesh, - equations, surface_integral, dg::DG) - (; boundary_condition_types, boundary_indices) = boundary_conditions - - calc_boundary_flux_by_type!(cache, t, boundary_condition_types, boundary_indices, - Divergence(), mesh, equations, surface_integral, dg) - return nothing -end - -# Iterate over tuples of boundary condition types and associated indices -# in a type-stable way using "lispy tuple programming". -function calc_boundary_flux_by_type!(cache, t, BCs::NTuple{N, Any}, - BC_indices::NTuple{N, Vector{Int}}, - operator_type, - mesh::P4estMesh, - equations, surface_integral, dg::DG) where {N} - # Extract the boundary condition type and index vector - boundary_condition = first(BCs) - boundary_condition_indices = first(BC_indices) - # Extract the remaining types and indices to be processed later - remaining_boundary_conditions = Base.tail(BCs) - remaining_boundary_condition_indices = Base.tail(BC_indices) - - # process the first boundary condition type - calc_boundary_flux!(cache, t, boundary_condition, boundary_condition_indices, - operator_type, mesh, equations, surface_integral, dg) - - # recursively call this method with the unprocessed boundary types - calc_boundary_flux_by_type!(cache, t, remaining_boundary_conditions, - remaining_boundary_condition_indices, - operator_type, - mesh, equations, surface_integral, dg) - - return nothing -end - -# terminate the type-stable iteration over tuples -function calc_boundary_flux_by_type!(cache, t, BCs::Tuple{}, BC_indices::Tuple{}, - operator_type, mesh::P4estMesh, equations, - surface_integral, dg::DG) - nothing -end - function calc_boundary_flux!(cache, t, boundary_condition_parabolic, # works with Dict types boundary_condition_indices, diff --git a/src/solvers/dgsem_tree/container_viscous_1d.jl b/src/solvers/dgsem_tree/container_viscous_1d.jl new file mode 100644 index 00000000000..a4919f75396 --- /dev/null +++ b/src/solvers/dgsem_tree/container_viscous_1d.jl @@ -0,0 +1,58 @@ +mutable struct ViscousContainer1D{uEltype <: Real} + u_transformed::Array{uEltype, 3} + gradients::Array{uEltype, 3} + flux_viscous::Array{uEltype, 3} + + # internal `resize!`able storage + _u_transformed::Vector{uEltype} + _gradients::Vector{uEltype} + _flux_viscous::Vector{uEltype} + + function ViscousContainer1D{uEltype}(n_vars::Integer, n_nodes::Integer, + n_elements::Integer) where {uEltype <: Real} + new(Array{uEltype, 3}(undef, n_vars, n_nodes, n_elements), + Array{uEltype, 3}(undef, n_vars, n_nodes, n_elements), + Array{uEltype, 3}(undef, n_vars, n_nodes, n_elements), + Vector{uEltype}(undef, n_vars * n_nodes * n_elements), + Vector{uEltype}(undef, n_vars * n_nodes * n_elements), + Vector{uEltype}(undef, n_vars * n_nodes * n_elements)) + end +end + +function init_viscous_container(n_vars::Integer, n_nodes::Integer, + n_elements::Integer, + ::Type{uEltype}) where {uEltype <: Real} + return ViscousContainer1D{uEltype}(n_vars, n_nodes, n_elements) +end + +# Only one-dimensional `Array`s are `resize!`able in Julia. +# Hence, we use `Vector`s as internal storage and `resize!` +# them whenever needed. Then, we reuse the same memory by +# `unsafe_wrap`ping multi-dimensional `Array`s around the +# internal storage. +function Base.resize!(viscous_container::ViscousContainer1D, equations, dg, cache) + capacity = nvariables(equations) * nnodes(dg) * nelements(dg, cache) + resize!(viscous_container._u_transformed, capacity) + resize!(viscous_container._gradients, capacity) + resize!(viscous_container._flux_viscous, capacity) + + viscous_container.u_transformed = unsafe_wrap(Array, + pointer(viscous_container._u_transformed), + (nvariables(equations), + nnodes(dg), + nelements(dg, cache))) + + viscous_container.gradients = unsafe_wrap(Array, + pointer(viscous_container._gradients), + (nvariables(equations), + nnodes(dg), + nelements(dg, cache))) + + viscous_container.flux_viscous = unsafe_wrap(Array, + pointer(viscous_container._flux_viscous), + (nvariables(equations), + nnodes(dg), + nelements(dg, cache))) + + return nothing +end diff --git a/src/solvers/dgsem_tree/containers_2d.jl b/src/solvers/dgsem_tree/containers_2d.jl index 5cf256d3499..9148b936312 100644 --- a/src/solvers/dgsem_tree/containers_2d.jl +++ b/src/solvers/dgsem_tree/containers_2d.jl @@ -77,7 +77,7 @@ end eachelement(elements::ElementContainer2D) Return an iterator over the indices that specify the location in relevant data structures -for the elements in `elements`. +for the elements in `elements`. In particular, not the elements themselves are returned. """ @inline eachelement(elements::ElementContainer2D) = Base.OneTo(nelements(elements)) @@ -764,10 +764,10 @@ end # Container data structure (structure-of-arrays style) for DG MPI interfaces mutable struct MPIInterfaceContainer2D{uEltype <: Real} <: AbstractContainer - u::Array{uEltype, 4} # [leftright, variables, i, interfaces] + u::Array{uEltype, 4} # [leftright, variables, i, interfaces] local_neighbor_ids::Vector{Int} # [interfaces] - orientations::Vector{Int} # [interfaces] - remote_sides::Vector{Int} # [interfaces] + orientations::Vector{Int} # [interfaces] + remote_sides::Vector{Int} # [interfaces] # internal `resize!`able storage _u::Vector{uEltype} end @@ -1254,4 +1254,138 @@ function init_mpi_mortars!(mpi_mortars, elements, mesh::TreeMesh2D) return nothing end + +# Container data structure (structure-of-arrays style) for FCT-type antidiffusive fluxes +# (i, j+1) +# | +# flux2(i, j+1) +# | +# (i-1, j) ---flux1(i, j)--- (i, j) ---flux1(i+1, j)--- (i+1, j) +# | +# flux2(i, j) +# | +# (i, j-1) +mutable struct ContainerAntidiffusiveFlux2D{uEltype <: Real} + antidiffusive_flux1::Array{uEltype, 4} # [variables, i, j, elements] + antidiffusive_flux2::Array{uEltype, 4} # [variables, i, j, elements] + # internal `resize!`able storage + _antidiffusive_flux1::Vector{uEltype} + _antidiffusive_flux2::Vector{uEltype} +end + +function ContainerAntidiffusiveFlux2D{uEltype}(capacity::Integer, n_variables, + n_nodes) where {uEltype <: Real} + nan_uEltype = convert(uEltype, NaN) + + # Initialize fields with defaults + _antidiffusive_flux1 = fill(nan_uEltype, + n_variables * (n_nodes + 1) * n_nodes * capacity) + antidiffusive_flux1 = unsafe_wrap(Array, pointer(_antidiffusive_flux1), + (n_variables, n_nodes + 1, n_nodes, capacity)) + + _antidiffusive_flux2 = fill(nan_uEltype, + n_variables * n_nodes * (n_nodes + 1) * capacity) + antidiffusive_flux2 = unsafe_wrap(Array, pointer(_antidiffusive_flux2), + (n_variables, n_nodes, n_nodes + 1, capacity)) + + return ContainerAntidiffusiveFlux2D{uEltype}(antidiffusive_flux1, + antidiffusive_flux2, + _antidiffusive_flux1, + _antidiffusive_flux2) +end + +nvariables(fluxes::ContainerAntidiffusiveFlux2D) = size(fluxes.antidiffusive_flux1, 1) +nnodes(fluxes::ContainerAntidiffusiveFlux2D) = size(fluxes.antidiffusive_flux1, 3) + +# Only one-dimensional `Array`s are `resize!`able in Julia. +# Hence, we use `Vector`s as internal storage and `resize!` +# them whenever needed. Then, we reuse the same memory by +# `unsafe_wrap`ping multi-dimensional `Array`s around the +# internal storage. +function Base.resize!(fluxes::ContainerAntidiffusiveFlux2D, capacity) + n_nodes = nnodes(fluxes) + n_variables = nvariables(fluxes) + + @unpack _antidiffusive_flux1, _antidiffusive_flux2 = fluxes + + resize!(_antidiffusive_flux1, n_variables * (n_nodes + 1) * n_nodes * capacity) + fluxes.antidiffusive_flux1 = unsafe_wrap(Array, pointer(_antidiffusive_flux1), + (n_variables, n_nodes + 1, n_nodes, + capacity)) + resize!(_antidiffusive_flux2, n_variables * n_nodes * (n_nodes + 1) * capacity) + fluxes.antidiffusive_flux2 = unsafe_wrap(Array, pointer(_antidiffusive_flux2), + (n_variables, n_nodes, n_nodes + 1, + capacity)) + + return nothing +end + +# Container data structure (structure-of-arrays style) for variables used for IDP limiting +mutable struct ContainerSubcellLimiterIDP2D{uEltype <: Real} + alpha::Array{uEltype, 3} # [i, j, element] + alpha1::Array{uEltype, 3} + alpha2::Array{uEltype, 3} + variable_bounds::Vector{Array{uEltype, 3}} + # internal `resize!`able storage + _alpha::Vector{uEltype} + _alpha1::Vector{uEltype} + _alpha2::Vector{uEltype} + _variable_bounds::Vector{Vector{uEltype}} +end + +function ContainerSubcellLimiterIDP2D{uEltype}(capacity::Integer, n_nodes, + length) where {uEltype <: Real} + nan_uEltype = convert(uEltype, NaN) + + # Initialize fields with defaults + _alpha = fill(nan_uEltype, n_nodes * n_nodes * capacity) + alpha = unsafe_wrap(Array, pointer(_alpha), (n_nodes, n_nodes, capacity)) + _alpha1 = fill(nan_uEltype, (n_nodes + 1) * n_nodes * capacity) + alpha1 = unsafe_wrap(Array, pointer(_alpha1), (n_nodes + 1, n_nodes, capacity)) + _alpha2 = fill(nan_uEltype, n_nodes * (n_nodes + 1) * capacity) + alpha2 = unsafe_wrap(Array, pointer(_alpha2), (n_nodes, n_nodes + 1, capacity)) + + _variable_bounds = Vector{Vector{uEltype}}(undef, length) + variable_bounds = Vector{Array{uEltype, 3}}(undef, length) + for i in 1:length + _variable_bounds[i] = fill(nan_uEltype, n_nodes * n_nodes * capacity) + variable_bounds[i] = unsafe_wrap(Array, pointer(_variable_bounds[i]), + (n_nodes, n_nodes, capacity)) + end + + return ContainerSubcellLimiterIDP2D{uEltype}(alpha, alpha1, alpha2, + variable_bounds, + _alpha, _alpha1, _alpha2, + _variable_bounds) +end + +nnodes(container::ContainerSubcellLimiterIDP2D) = size(container.alpha, 1) + +# Only one-dimensional `Array`s are `resize!`able in Julia. +# Hence, we use `Vector`s as internal storage and `resize!` +# them whenever needed. Then, we reuse the same memory by +# `unsafe_wrap`ping multi-dimensional `Array`s around the +# internal storage. +function Base.resize!(container::ContainerSubcellLimiterIDP2D, capacity) + n_nodes = nnodes(container) + + @unpack _alpha, _alpha1, _alpha2 = container + resize!(_alpha, n_nodes * n_nodes * capacity) + container.alpha = unsafe_wrap(Array, pointer(_alpha), (n_nodes, n_nodes, capacity)) + resize!(_alpha1, (n_nodes + 1) * n_nodes * capacity) + container.alpha1 = unsafe_wrap(Array, pointer(_alpha1), + (n_nodes + 1, n_nodes, capacity)) + resize!(_alpha2, n_nodes * (n_nodes + 1) * capacity) + container.alpha2 = unsafe_wrap(Array, pointer(_alpha2), + (n_nodes, n_nodes + 1, capacity)) + + @unpack _variable_bounds = container + for i in 1:length(_variable_bounds) + resize!(_variable_bounds[i], n_nodes * n_nodes * capacity) + container.variable_bounds[i] = unsafe_wrap(Array, pointer(_variable_bounds[i]), + (n_nodes, n_nodes, capacity)) + end + + return nothing +end end # @muladd diff --git a/src/solvers/dgsem_tree/containers_3d.jl b/src/solvers/dgsem_tree/containers_3d.jl index 0318946e34d..5fc027ad001 100644 --- a/src/solvers/dgsem_tree/containers_3d.jl +++ b/src/solvers/dgsem_tree/containers_3d.jl @@ -520,14 +520,14 @@ end # Left and right are used *both* for the numbering of the mortar faces *and* for the position of the # elements with respect to the axis orthogonal to the mortar. mutable struct L2MortarContainer3D{uEltype <: Real} <: AbstractContainer - u_upper_left::Array{uEltype, 5} # [leftright, variables, i, j, mortars] + u_upper_left::Array{uEltype, 5} # [leftright, variables, i, j, mortars] u_upper_right::Array{uEltype, 5} # [leftright, variables, i, j, mortars] - u_lower_left::Array{uEltype, 5} # [leftright, variables, i, j, mortars] + u_lower_left::Array{uEltype, 5} # [leftright, variables, i, j, mortars] u_lower_right::Array{uEltype, 5} # [leftright, variables, i, j, mortars] - neighbor_ids::Array{Int, 2} # [position, mortars] + neighbor_ids::Array{Int, 2} # [position, mortars] # Large sides: left -> 1, right -> 2 large_sides::Vector{Int} # [mortars] - orientations::Vector{Int} # [mortars] + orientations::Vector{Int} # [mortars] # internal `resize!`able storage _u_upper_left::Vector{uEltype} _u_upper_right::Vector{uEltype} diff --git a/src/solvers/dgsem_tree/dg.jl b/src/solvers/dgsem_tree/dg.jl index cb28dad968c..ff37bad3b3a 100644 --- a/src/solvers/dgsem_tree/dg.jl +++ b/src/solvers/dgsem_tree/dg.jl @@ -54,6 +54,9 @@ include("containers.jl") # Dimension-agnostic parallel setup include("dg_parallel.jl") +# Helper struct for parabolic AMR +include("container_viscous_1d.jl") + # 1D DG implementation include("dg_1d.jl") include("dg_1d_parabolic.jl") @@ -71,4 +74,9 @@ include("dg_3d_parabolic.jl") # as well as specialized implementations used to improve performance include("dg_2d_compressible_euler.jl") include("dg_3d_compressible_euler.jl") + +# Subcell limiters +include("subcell_limiters.jl") +include("subcell_limiters_2d.jl") +include("dg_2d_subcell_limiters.jl") end # @muladd diff --git a/src/solvers/dgsem_tree/dg_1d_parabolic.jl b/src/solvers/dgsem_tree/dg_1d_parabolic.jl index c2aa75388c8..97e31e0e22b 100644 --- a/src/solvers/dgsem_tree/dg_1d_parabolic.jl +++ b/src/solvers/dgsem_tree/dg_1d_parabolic.jl @@ -17,7 +17,8 @@ function rhs_parabolic!(du, u, t, mesh::TreeMesh{1}, equations_parabolic::AbstractEquationsParabolic, initial_condition, boundary_conditions_parabolic, source_terms, dg::DG, parabolic_scheme, cache, cache_parabolic) - @unpack u_transformed, gradients, flux_viscous = cache_parabolic + @unpack viscous_container = cache_parabolic + @unpack u_transformed, gradients, flux_viscous = viscous_container # Convert conservative variables to a form more suitable for viscous flux calculations @trixi_timeit timer() "transform variables" begin @@ -105,12 +106,13 @@ end function transform_variables!(u_transformed, u, mesh::TreeMesh{1}, equations_parabolic::AbstractEquationsParabolic, dg::DG, parabolic_scheme, cache, cache_parabolic) + transformation = gradient_variable_transformation(equations_parabolic) + @threaded for element in eachelement(dg, cache) # Calculate volume terms in one element for i in eachnode(dg) u_node = get_node_vars(u, equations_parabolic, dg, i, element) - u_transformed_node = gradient_variable_transformation(equations_parabolic)(u_node, - equations_parabolic) + u_transformed_node = transformation(u_node, equations_parabolic) set_node_vars!(u_transformed, u_transformed_node, equations_parabolic, dg, i, element) end @@ -147,16 +149,18 @@ function prolong2interfaces!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack interfaces = cache_parabolic + @unpack neighbor_ids = interfaces + interfaces_u = interfaces.u @threaded for interface in eachinterface(dg, cache) - left_element = interfaces.neighbor_ids[1, interface] - right_element = interfaces.neighbor_ids[2, interface] + left_element = neighbor_ids[1, interface] + right_element = neighbor_ids[2, interface] # interface in x-direction for v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, interface] = flux_viscous[v, nnodes(dg), left_element] - interfaces.u[2, v, interface] = flux_viscous[v, 1, right_element] + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, interface] = flux_viscous[v, nnodes(dg), left_element] + interfaces_u[2, v, interface] = flux_viscous[v, 1, right_element] end end @@ -204,21 +208,22 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack boundaries = cache_parabolic - @unpack neighbor_sides = boundaries + @unpack neighbor_sides, neighbor_ids = boundaries + boundaries_u = boundaries.u @threaded for boundary in eachboundary(dg, cache_parabolic) - element = boundaries.neighbor_ids[boundary] + element = neighbor_ids[boundary] if neighbor_sides[boundary] == 1 # element in -x direction of boundary for v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, boundary] = flux_viscous[v, nnodes(dg), element] + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, boundary] = flux_viscous[v, nnodes(dg), element] end else # Element in +x direction of boundary for v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, boundary] = flux_viscous[v, 1, element] + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, boundary] = flux_viscous[v, 1, element] end end end @@ -530,18 +535,15 @@ function create_cache_parabolic(mesh::TreeMesh{1}, elements = init_elements(leaf_cell_ids, mesh, equations_hyperbolic, dg.basis, RealT, uEltype) - n_vars = nvariables(equations_hyperbolic) - n_nodes = nnodes(elements) - n_elements = nelements(elements) - u_transformed = Array{uEltype}(undef, n_vars, n_nodes, n_elements) - gradients = similar(u_transformed) - flux_viscous = similar(u_transformed) + viscous_container = init_viscous_container(nvariables(equations_hyperbolic), + nnodes(elements), nelements(elements), + uEltype) interfaces = init_interfaces(leaf_cell_ids, mesh, elements) boundaries = init_boundaries(leaf_cell_ids, mesh, elements) - cache = (; elements, interfaces, boundaries, gradients, flux_viscous, u_transformed) + cache = (; elements, interfaces, boundaries, viscous_container) return cache end @@ -552,8 +554,10 @@ end # where f(u) is the inviscid flux and g(u) is the viscous flux. function apply_jacobian_parabolic!(du, mesh::TreeMesh{1}, equations::AbstractEquationsParabolic, dg::DG, cache) + @unpack inverse_jacobian = cache.elements + @threaded for element in eachelement(dg, cache) - factor = cache.elements.inverse_jacobian[element] + factor = inverse_jacobian[element] for i in eachnode(dg) for v in eachvariable(equations) diff --git a/src/solvers/dgsem_tree/dg_2d_parabolic.jl b/src/solvers/dgsem_tree/dg_2d_parabolic.jl index c5862579992..3dbc55412ad 100644 --- a/src/solvers/dgsem_tree/dg_2d_parabolic.jl +++ b/src/solvers/dgsem_tree/dg_2d_parabolic.jl @@ -13,7 +13,7 @@ # 2. compute f(u, grad(u)) # 3. compute div(f(u, grad(u))) (i.e., the "regular" rhs! call) # boundary conditions will be applied to both grad(u) and div(f(u, grad(u))). -function rhs_parabolic!(du, u, t, mesh::Union{TreeMesh{2}, P4estMesh{2}}, +function rhs_parabolic!(du, u, t, mesh::TreeMesh{2}, equations_parabolic::AbstractEquationsParabolic, initial_condition, boundary_conditions_parabolic, source_terms, dg::DG, parabolic_scheme, cache, cache_parabolic) @@ -85,8 +85,18 @@ function rhs_parabolic!(du, u, t, mesh::Union{TreeMesh{2}, P4estMesh{2}}, dg.surface_integral, dg) end - # TODO: parabolic; extend to mortars - @assert nmortars(dg, cache) == 0 + # Prolong solution to mortars + @trixi_timeit timer() "prolong2mortars" begin + prolong2mortars!(cache, flux_viscous, mesh, equations_parabolic, + dg.mortar, dg.surface_integral, dg) + end + + # Calculate mortar fluxes + @trixi_timeit timer() "mortar flux" begin + calc_mortar_flux!(cache_parabolic.elements.surface_flux_values, mesh, + equations_parabolic, + dg.mortar, dg.surface_integral, dg, cache) + end # Calculate surface integrals @trixi_timeit timer() "surface integral" begin @@ -108,12 +118,13 @@ end function transform_variables!(u_transformed, u, mesh::Union{TreeMesh{2}, P4estMesh{2}}, equations_parabolic::AbstractEquationsParabolic, dg::DG, parabolic_scheme, cache, cache_parabolic) + transformation = gradient_variable_transformation(equations_parabolic) + @threaded for element in eachelement(dg, cache) # Calculate volume terms in one element for j in eachnode(dg), i in eachnode(dg) u_node = get_node_vars(u, equations_parabolic, dg, i, j, element) - u_transformed_node = gradient_variable_transformation(equations_parabolic)(u_node, - equations_parabolic) + u_transformed_node = transformation(u_node, equations_parabolic) set_node_vars!(u_transformed, u_transformed_node, equations_parabolic, dg, i, j, element) end @@ -158,30 +169,31 @@ function prolong2interfaces!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack interfaces = cache_parabolic - @unpack orientations = interfaces + @unpack orientations, neighbor_ids = interfaces + interfaces_u = interfaces.u flux_viscous_x, flux_viscous_y = flux_viscous @threaded for interface in eachinterface(dg, cache) - left_element = interfaces.neighbor_ids[1, interface] - right_element = interfaces.neighbor_ids[2, interface] + left_element = neighbor_ids[1, interface] + right_element = neighbor_ids[2, interface] if orientations[interface] == 1 # interface in x-direction for j in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, j, interface] = flux_viscous_x[v, nnodes(dg), j, + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, j, interface] = flux_viscous_x[v, nnodes(dg), j, left_element] - interfaces.u[2, v, j, interface] = flux_viscous_x[v, 1, j, + interfaces_u[2, v, j, interface] = flux_viscous_x[v, 1, j, right_element] end else # if orientations[interface] == 2 # interface in y-direction for i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, i, interface] = flux_viscous_y[v, i, nnodes(dg), + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, i, interface] = flux_viscous_y[v, i, nnodes(dg), left_element] - interfaces.u[2, v, i, interface] = flux_viscous_y[v, i, 1, + interfaces_u[2, v, i, interface] = flux_viscous_y[v, i, 1, right_element] end end @@ -234,25 +246,26 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack boundaries = cache_parabolic - @unpack orientations, neighbor_sides = boundaries + @unpack orientations, neighbor_sides, neighbor_ids = boundaries + boundaries_u = boundaries.u flux_viscous_x, flux_viscous_y = flux_viscous @threaded for boundary in eachboundary(dg, cache_parabolic) - element = boundaries.neighbor_ids[boundary] + element = neighbor_ids[boundary] if orientations[boundary] == 1 # boundary in x-direction if neighbor_sides[boundary] == 1 # element in -x direction of boundary for l in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, l, boundary] = flux_viscous_x[v, nnodes(dg), l, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, l, boundary] = flux_viscous_x[v, nnodes(dg), l, element] end else # Element in +x direction of boundary for l in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, l, boundary] = flux_viscous_x[v, 1, l, element] + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, l, boundary] = flux_viscous_x[v, 1, l, element] end end else # if orientations[boundary] == 2 @@ -260,15 +273,15 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, if neighbor_sides[boundary] == 1 # element in -y direction of boundary for l in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, l, boundary] = flux_viscous_y[v, l, nnodes(dg), + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, l, boundary] = flux_viscous_y[v, l, nnodes(dg), element] end else # element in +y direction of boundary for l in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, l, boundary] = flux_viscous_y[v, l, 1, element] + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, l, boundary] = flux_viscous_y[v, l, 1, element] end end end @@ -500,6 +513,227 @@ function calc_boundary_flux_by_direction_divergence!(surface_flux_values::Abstra return nothing end +function prolong2mortars!(cache, flux_viscous::Tuple{AbstractArray, AbstractArray}, + mesh::TreeMesh{2}, + equations_parabolic::AbstractEquationsParabolic, + mortar_l2::LobattoLegendreMortarL2, surface_integral, + dg::DGSEM) + flux_viscous_x, flux_viscous_y = flux_viscous + @threaded for mortar in eachmortar(dg, cache) + large_element = cache.mortars.neighbor_ids[3, mortar] + upper_element = cache.mortars.neighbor_ids[2, mortar] + lower_element = cache.mortars.neighbor_ids[1, mortar] + + # Copy solution small to small + if cache.mortars.large_sides[mortar] == 1 # -> small elements on right side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + for l in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper[2, v, l, mortar] = flux_viscous_x[v, 1, l, + upper_element] + cache.mortars.u_lower[2, v, l, mortar] = flux_viscous_x[v, 1, l, + lower_element] + end + end + else + # L2 mortars in y-direction + for l in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper[2, v, l, mortar] = flux_viscous_y[v, l, 1, + upper_element] + cache.mortars.u_lower[2, v, l, mortar] = flux_viscous_y[v, l, 1, + lower_element] + end + end + end + else # large_sides[mortar] == 2 -> small elements on left side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + for l in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper[1, v, l, mortar] = flux_viscous_x[v, + nnodes(dg), + l, + upper_element] + cache.mortars.u_lower[1, v, l, mortar] = flux_viscous_x[v, + nnodes(dg), + l, + lower_element] + end + end + else + # L2 mortars in y-direction + for l in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper[1, v, l, mortar] = flux_viscous_y[v, l, + nnodes(dg), + upper_element] + cache.mortars.u_lower[1, v, l, mortar] = flux_viscous_y[v, l, + nnodes(dg), + lower_element] + end + end + end + end + + # Interpolate large element face data to small interface locations + if cache.mortars.large_sides[mortar] == 1 # -> large element on left side + leftright = 1 + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + u_large = view(flux_viscous_x, :, nnodes(dg), :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large) + else + # L2 mortars in y-direction + u_large = view(flux_viscous_y, :, :, nnodes(dg), large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large) + end + else # large_sides[mortar] == 2 -> large element on right side + leftright = 2 + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + u_large = view(flux_viscous_x, :, 1, :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large) + else + # L2 mortars in y-direction + u_large = view(flux_viscous_y, :, :, 1, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large) + end + end + end + + return nothing +end + +# NOTE: Use analogy to "calc_mortar_flux!" for hyperbolic eqs with no nonconservative terms. +# Reasoning: "calc_interface_flux!" for parabolic part is implemented as the version for +# hyperbolic terms with conserved terms only, i.e., no nonconservative terms. +function calc_mortar_flux!(surface_flux_values, + mesh::TreeMesh{2}, + equations_parabolic::AbstractEquationsParabolic, + mortar_l2::LobattoLegendreMortarL2, + surface_integral, dg::DG, cache) + @unpack surface_flux = surface_integral + @unpack u_lower, u_upper, orientations = cache.mortars + @unpack fstar_upper_threaded, fstar_lower_threaded = cache + + @threaded for mortar in eachmortar(dg, cache) + # Choose thread-specific pre-allocated container + fstar_upper = fstar_upper_threaded[Threads.threadid()] + fstar_lower = fstar_lower_threaded[Threads.threadid()] + + # Calculate fluxes + orientation = orientations[mortar] + calc_fstar!(fstar_upper, equations_parabolic, surface_flux, dg, u_upper, mortar, + orientation) + calc_fstar!(fstar_lower, equations_parabolic, surface_flux, dg, u_lower, mortar, + orientation) + + mortar_fluxes_to_elements!(surface_flux_values, + mesh, equations_parabolic, mortar_l2, dg, cache, + mortar, fstar_upper, fstar_lower) + end + + return nothing +end + +@inline function calc_fstar!(destination::AbstractArray{<:Any, 2}, + equations_parabolic::AbstractEquationsParabolic, + surface_flux, dg::DGSEM, + u_interfaces, interface, orientation) + for i in eachnode(dg) + # Call pointwise two-point numerical flux function + u_ll, u_rr = get_surface_node_vars(u_interfaces, equations_parabolic, dg, i, + interface) + # TODO: parabolic; only BR1 at the moment + flux = 0.5 * (u_ll + u_rr) + + # Copy flux to left and right element storage + set_node_vars!(destination, flux, equations_parabolic, dg, i) + end + + return nothing +end + +@inline function mortar_fluxes_to_elements!(surface_flux_values, + mesh::TreeMesh{2}, + equations_parabolic::AbstractEquationsParabolic, + mortar_l2::LobattoLegendreMortarL2, + dg::DGSEM, cache, + mortar, fstar_upper, fstar_lower) + large_element = cache.mortars.neighbor_ids[3, mortar] + upper_element = cache.mortars.neighbor_ids[2, mortar] + lower_element = cache.mortars.neighbor_ids[1, mortar] + + # Copy flux small to small + if cache.mortars.large_sides[mortar] == 1 # -> small elements on right side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + direction = 1 + else + # L2 mortars in y-direction + direction = 3 + end + else # large_sides[mortar] == 2 -> small elements on left side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + direction = 2 + else + # L2 mortars in y-direction + direction = 4 + end + end + surface_flux_values[:, :, direction, upper_element] .= fstar_upper + surface_flux_values[:, :, direction, lower_element] .= fstar_lower + + # Project small fluxes to large element + if cache.mortars.large_sides[mortar] == 1 # -> large element on left side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + direction = 2 + else + # L2 mortars in y-direction + direction = 4 + end + else # large_sides[mortar] == 2 -> large element on right side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + direction = 1 + else + # L2 mortars in y-direction + direction = 3 + end + end + + # TODO: Taal performance + # for v in eachvariable(equations) + # # The code below is semantically equivalent to + # # surface_flux_values[v, :, direction, large_element] .= + # # (mortar_l2.reverse_upper * fstar_upper[v, :] + mortar_l2.reverse_lower * fstar_lower[v, :]) + # # but faster and does not allocate. + # # Note that `true * some_float == some_float` in Julia, i.e. `true` acts as + # # a universal `one`. Hence, the second `mul!` means "add the matrix-vector + # # product to the current value of the destination". + # @views mul!(surface_flux_values[v, :, direction, large_element], + # mortar_l2.reverse_upper, fstar_upper[v, :]) + # @views mul!(surface_flux_values[v, :, direction, large_element], + # mortar_l2.reverse_lower, fstar_lower[v, :], true, true) + # end + # The code above could be replaced by the following code. However, the relative efficiency + # depends on the types of fstar_upper/fstar_lower and dg.l2mortar_reverse_upper. + # Using StaticArrays for both makes the code above faster for common test cases. + multiply_dimensionwise!(view(surface_flux_values, :, :, direction, large_element), + mortar_l2.reverse_upper, fstar_upper, + mortar_l2.reverse_lower, fstar_lower) + + return nothing +end + # Calculate the gradient of the transformed variables function calc_gradient!(gradients, u_transformed, t, mesh::TreeMesh{2}, equations_parabolic, @@ -589,7 +823,20 @@ function calc_gradient!(gradients, u_transformed, t, dg.surface_integral, dg) end - # TODO: parabolic; mortars + # Prolong solution to mortars + # NOTE: This re-uses the implementation for hyperbolic terms in "dg_2d.jl" + @trixi_timeit timer() "prolong2mortars" begin + prolong2mortars!(cache, u_transformed, mesh, equations_parabolic, + dg.mortar, dg.surface_integral, dg) + end + + # Calculate mortar fluxes + @trixi_timeit timer() "mortar flux" begin + calc_mortar_flux!(surface_flux_values, + mesh, + equations_parabolic, + dg.mortar, dg.surface_integral, dg, cache) + end # Calculate surface integrals @trixi_timeit timer() "surface integral" begin @@ -690,8 +937,10 @@ end # where f(u) is the inviscid flux and g(u) is the viscous flux. function apply_jacobian_parabolic!(du, mesh::Union{TreeMesh{2}, P4estMesh{2}}, equations::AbstractEquationsParabolic, dg::DG, cache) + @unpack inverse_jacobian = cache.elements + @threaded for element in eachelement(dg, cache) - factor = cache.elements.inverse_jacobian[element] + factor = inverse_jacobian[element] for j in eachnode(dg), i in eachnode(dg) for v in eachvariable(equations) diff --git a/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl b/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl new file mode 100644 index 00000000000..70ff346740d --- /dev/null +++ b/src/solvers/dgsem_tree/dg_2d_subcell_limiters.jl @@ -0,0 +1,193 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +function create_cache(mesh::TreeMesh{2}, equations, + volume_integral::VolumeIntegralSubcellLimiting, dg::DG, uEltype) + cache = create_cache(mesh, equations, + VolumeIntegralPureLGLFiniteVolume(volume_integral.volume_flux_fv), + dg, uEltype) + + A3dp1_x = Array{uEltype, 3} + A3dp1_y = Array{uEltype, 3} + A3d = Array{uEltype, 3} + + fhat1_threaded = A3dp1_x[A3dp1_x(undef, nvariables(equations), nnodes(dg) + 1, + nnodes(dg)) for _ in 1:Threads.nthreads()] + fhat2_threaded = A3dp1_y[A3dp1_y(undef, nvariables(equations), nnodes(dg), + nnodes(dg) + 1) for _ in 1:Threads.nthreads()] + flux_temp_threaded = A3d[A3d(undef, nvariables(equations), nnodes(dg), nnodes(dg)) + for _ in 1:Threads.nthreads()] + + antidiffusive_fluxes = Trixi.ContainerAntidiffusiveFlux2D{uEltype}(0, + nvariables(equations), + nnodes(dg)) + + return (; cache..., antidiffusive_fluxes, fhat1_threaded, fhat2_threaded, + flux_temp_threaded) +end + +function calc_volume_integral!(du, u, + mesh::TreeMesh{2}, + nonconservative_terms, equations, + volume_integral::VolumeIntegralSubcellLimiting, + dg::DGSEM, cache) + @unpack limiter = volume_integral + + @threaded for element in eachelement(dg, cache) + subcell_limiting_kernel!(du, u, element, mesh, + nonconservative_terms, equations, + volume_integral, limiter, + dg, cache) + end +end + +@inline function subcell_limiting_kernel!(du, u, + element, mesh::TreeMesh{2}, + nonconservative_terms::False, equations, + volume_integral, limiter::SubcellLimiterIDP, + dg::DGSEM, cache) + @unpack inverse_weights = dg.basis + @unpack volume_flux_dg, volume_flux_fv = volume_integral + + # high-order DG fluxes + @unpack fhat1_threaded, fhat2_threaded = cache + + fhat1 = fhat1_threaded[Threads.threadid()] + fhat2 = fhat2_threaded[Threads.threadid()] + calcflux_fhat!(fhat1, fhat2, u, mesh, + nonconservative_terms, equations, volume_flux_dg, dg, element, cache) + + # low-order FV fluxes + @unpack fstar1_L_threaded, fstar1_R_threaded, fstar2_L_threaded, fstar2_R_threaded = cache + + fstar1_L = fstar1_L_threaded[Threads.threadid()] + fstar2_L = fstar2_L_threaded[Threads.threadid()] + fstar1_R = fstar1_R_threaded[Threads.threadid()] + fstar2_R = fstar2_R_threaded[Threads.threadid()] + calcflux_fv!(fstar1_L, fstar1_R, fstar2_L, fstar2_R, u, mesh, + nonconservative_terms, equations, volume_flux_fv, dg, element, cache) + + # antidiffusive flux + calcflux_antidiffusive!(fhat1, fhat2, fstar1_L, fstar2_L, u, mesh, + nonconservative_terms, equations, limiter, dg, element, + cache) + + # Calculate volume integral contribution of low-order FV flux + for j in eachnode(dg), i in eachnode(dg) + for v in eachvariable(equations) + du[v, i, j, element] += inverse_weights[i] * + (fstar1_L[v, i + 1, j] - fstar1_R[v, i, j]) + + inverse_weights[j] * + (fstar2_L[v, i, j + 1] - fstar2_R[v, i, j]) + end + end + + return nothing +end + +# Calculate the DG staggered volume fluxes `fhat` in subcell FV-form inside the element +# (**without non-conservative terms**). +# +# See also `flux_differencing_kernel!`. +@inline function calcflux_fhat!(fhat1, fhat2, u, + mesh::TreeMesh{2}, nonconservative_terms::False, + equations, + volume_flux, dg::DGSEM, element, cache) + @unpack weights, derivative_split = dg.basis + @unpack flux_temp_threaded = cache + + flux_temp = flux_temp_threaded[Threads.threadid()] + + # The FV-form fluxes are calculated in a recursive manner, i.e.: + # fhat_(0,1) = w_0 * FVol_0, + # fhat_(j,j+1) = fhat_(j-1,j) + w_j * FVol_j, for j=1,...,N-1, + # with the split form volume fluxes FVol_j = -2 * sum_i=0^N D_ji f*_(j,i). + + # To use the symmetry of the `volume_flux`, the split form volume flux is precalculated + # like in `calc_volume_integral!` for the `VolumeIntegralFluxDifferencing` + # and saved in in `flux_temp`. + + # Split form volume flux in orientation 1: x direction + flux_temp .= zero(eltype(flux_temp)) + + for j in eachnode(dg), i in eachnode(dg) + u_node = get_node_vars(u, equations, dg, i, j, element) + + # All diagonal entries of `derivative_split` are zero. Thus, we can skip + # the computation of the diagonal terms. In addition, we use the symmetry + # of the `volume_flux` to save half of the possible two-point flux + # computations. + for ii in (i + 1):nnodes(dg) + u_node_ii = get_node_vars(u, equations, dg, ii, j, element) + flux1 = volume_flux(u_node, u_node_ii, 1, equations) + multiply_add_to_node_vars!(flux_temp, derivative_split[i, ii], flux1, + equations, dg, i, j) + multiply_add_to_node_vars!(flux_temp, derivative_split[ii, i], flux1, + equations, dg, ii, j) + end + end + + # FV-form flux `fhat` in x direction + fhat1[:, 1, :] .= zero(eltype(fhat1)) + fhat1[:, nnodes(dg) + 1, :] .= zero(eltype(fhat1)) + + for j in eachnode(dg), i in 1:(nnodes(dg) - 1), v in eachvariable(equations) + fhat1[v, i + 1, j] = fhat1[v, i, j] + weights[i] * flux_temp[v, i, j] + end + + # Split form volume flux in orientation 2: y direction + flux_temp .= zero(eltype(flux_temp)) + + for j in eachnode(dg), i in eachnode(dg) + u_node = get_node_vars(u, equations, dg, i, j, element) + for jj in (j + 1):nnodes(dg) + u_node_jj = get_node_vars(u, equations, dg, i, jj, element) + flux2 = volume_flux(u_node, u_node_jj, 2, equations) + multiply_add_to_node_vars!(flux_temp, derivative_split[j, jj], flux2, + equations, dg, i, j) + multiply_add_to_node_vars!(flux_temp, derivative_split[jj, j], flux2, + equations, dg, i, jj) + end + end + + # FV-form flux `fhat` in y direction + fhat2[:, :, 1] .= zero(eltype(fhat2)) + fhat2[:, :, nnodes(dg) + 1] .= zero(eltype(fhat2)) + + for j in 1:(nnodes(dg) - 1), i in eachnode(dg), v in eachvariable(equations) + fhat2[v, i, j + 1] = fhat2[v, i, j] + weights[j] * flux_temp[v, i, j] + end + + return nothing +end + +# Calculate the antidiffusive flux `antidiffusive_flux` as the subtraction between `fhat` and `fstar`. +@inline function calcflux_antidiffusive!(fhat1, fhat2, fstar1, fstar2, u, mesh, + nonconservative_terms, equations, + limiter::SubcellLimiterIDP, dg, element, cache) + @unpack antidiffusive_flux1, antidiffusive_flux2 = cache.antidiffusive_fluxes + + for j in eachnode(dg), i in 2:nnodes(dg) + for v in eachvariable(equations) + antidiffusive_flux1[v, i, j, element] = fhat1[v, i, j] - fstar1[v, i, j] + end + end + for j in 2:nnodes(dg), i in eachnode(dg) + for v in eachvariable(equations) + antidiffusive_flux2[v, i, j, element] = fhat2[v, i, j] - fstar2[v, i, j] + end + end + + antidiffusive_flux1[:, 1, :, element] .= zero(eltype(antidiffusive_flux1)) + antidiffusive_flux1[:, nnodes(dg) + 1, :, element] .= zero(eltype(antidiffusive_flux1)) + + antidiffusive_flux2[:, :, 1, element] .= zero(eltype(antidiffusive_flux2)) + antidiffusive_flux2[:, :, nnodes(dg) + 1, element] .= zero(eltype(antidiffusive_flux2)) + + return nothing +end +end # @muladd diff --git a/src/solvers/dgsem_tree/dg_3d_parabolic.jl b/src/solvers/dgsem_tree/dg_3d_parabolic.jl index 5b63b971cd8..9817e0e5f0e 100644 --- a/src/solvers/dgsem_tree/dg_3d_parabolic.jl +++ b/src/solvers/dgsem_tree/dg_3d_parabolic.jl @@ -13,7 +13,7 @@ # 2. compute f(u, grad(u)) # 3. compute div(f(u, grad(u))) (i.e., the "regular" rhs! call) # boundary conditions will be applied to both grad(u) and div(f(u, grad(u))). -function rhs_parabolic!(du, u, t, mesh::Union{TreeMesh{3}, P4estMesh{3}}, +function rhs_parabolic!(du, u, t, mesh::TreeMesh{3}, equations_parabolic::AbstractEquationsParabolic, initial_condition, boundary_conditions_parabolic, source_terms, dg::DG, parabolic_scheme, cache, cache_parabolic) @@ -85,8 +85,18 @@ function rhs_parabolic!(du, u, t, mesh::Union{TreeMesh{3}, P4estMesh{3}}, dg.surface_integral, dg) end - # TODO: parabolic; extend to mortars - @assert nmortars(dg, cache) == 0 + # Prolong solution to mortars + @trixi_timeit timer() "prolong2mortars" begin + prolong2mortars!(cache, flux_viscous, mesh, equations_parabolic, + dg.mortar, dg.surface_integral, dg) + end + + # Calculate mortar fluxes + @trixi_timeit timer() "mortar flux" begin + calc_mortar_flux!(cache_parabolic.elements.surface_flux_values, mesh, + equations_parabolic, + dg.mortar, dg.surface_integral, dg, cache) + end # Calculate surface integrals @trixi_timeit timer() "surface integral" begin @@ -108,12 +118,13 @@ end function transform_variables!(u_transformed, u, mesh::Union{TreeMesh{3}, P4estMesh{3}}, equations_parabolic::AbstractEquationsParabolic, dg::DG, parabolic_scheme, cache, cache_parabolic) + transformation = gradient_variable_transformation(equations_parabolic) + @threaded for element in eachelement(dg, cache) # Calculate volume terms in one element for k in eachnode(dg), j in eachnode(dg), i in eachnode(dg) u_node = get_node_vars(u, equations_parabolic, dg, i, j, k, element) - u_transformed_node = gradient_variable_transformation(equations_parabolic)(u_node, - equations_parabolic) + u_transformed_node = transformation(u_node, equations_parabolic) set_node_vars!(u_transformed, u_transformed_node, equations_parabolic, dg, i, j, k, element) end @@ -165,43 +176,44 @@ function prolong2interfaces!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack interfaces = cache_parabolic - @unpack orientations = interfaces + @unpack orientations, neighbor_ids = interfaces + interfaces_u = interfaces.u flux_viscous_x, flux_viscous_y, flux_viscous_z = flux_viscous @threaded for interface in eachinterface(dg, cache) - left_element = interfaces.neighbor_ids[1, interface] - right_element = interfaces.neighbor_ids[2, interface] + left_element = neighbor_ids[1, interface] + right_element = neighbor_ids[2, interface] if orientations[interface] == 1 # interface in x-direction for k in eachnode(dg), j in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, j, k, interface] = flux_viscous_x[v, nnodes(dg), j, + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, j, k, interface] = flux_viscous_x[v, nnodes(dg), j, k, left_element] - interfaces.u[2, v, j, k, interface] = flux_viscous_x[v, 1, j, k, + interfaces_u[2, v, j, k, interface] = flux_viscous_x[v, 1, j, k, right_element] end elseif orientations[interface] == 2 # interface in y-direction for k in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, i, k, interface] = flux_viscous_y[v, i, nnodes(dg), + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, i, k, interface] = flux_viscous_y[v, i, nnodes(dg), k, left_element] - interfaces.u[2, v, i, k, interface] = flux_viscous_y[v, i, 1, k, + interfaces_u[2, v, i, k, interface] = flux_viscous_y[v, i, 1, k, right_element] end else # if orientations[interface] == 3 # interface in z-direction for j in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! - interfaces.u[1, v, i, j, interface] = flux_viscous_z[v, i, j, + # OBS! `interfaces_u` stores the interpolated *fluxes* and *not the solution*! + interfaces_u[1, v, i, j, interface] = flux_viscous_z[v, i, j, nnodes(dg), left_element] - interfaces.u[2, v, i, j, interface] = flux_viscous_z[v, i, j, 1, + interfaces_u[2, v, i, j, interface] = flux_viscous_z[v, i, j, 1, right_element] end end @@ -255,11 +267,12 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, equations_parabolic::AbstractEquationsParabolic, surface_integral, dg::DG, cache) @unpack boundaries = cache_parabolic - @unpack orientations, neighbor_sides = boundaries + @unpack orientations, neighbor_sides, neighbor_ids = boundaries + boundaries_u = boundaries.u flux_viscous_x, flux_viscous_y, flux_viscous_z = flux_viscous @threaded for boundary in eachboundary(dg, cache_parabolic) - element = boundaries.neighbor_ids[boundary] + element = neighbor_ids[boundary] if orientations[boundary] == 1 # boundary in x-direction @@ -267,15 +280,15 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, # element in -x direction of boundary for k in eachnode(dg), j in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, j, k, boundary] = flux_viscous_x[v, nnodes(dg), + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, j, k, boundary] = flux_viscous_x[v, nnodes(dg), j, k, element] end else # Element in +x direction of boundary for k in eachnode(dg), j in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, j, k, boundary] = flux_viscous_x[v, 1, j, k, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, j, k, boundary] = flux_viscous_x[v, 1, j, k, element] end end @@ -285,8 +298,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, # element in -y direction of boundary for k in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, i, k, boundary] = flux_viscous_y[v, i, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, i, k, boundary] = flux_viscous_y[v, i, nnodes(dg), k, element] end @@ -294,8 +307,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, # element in +y direction of boundary for k in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, i, k, boundary] = flux_viscous_y[v, i, 1, k, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, i, k, boundary] = flux_viscous_y[v, i, 1, k, element] end end @@ -305,8 +318,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, # element in -z direction of boundary for j in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[1, v, i, j, boundary] = flux_viscous_z[v, i, j, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[1, v, i, j, boundary] = flux_viscous_z[v, i, j, nnodes(dg), element] end @@ -314,8 +327,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, # element in +z direction of boundary for j in eachnode(dg), i in eachnode(dg), v in eachvariable(equations_parabolic) - # OBS! `boundaries.u` stores the interpolated *fluxes* and *not the solution*! - boundaries.u[2, v, i, j, boundary] = flux_viscous_z[v, i, j, 1, + # OBS! `boundaries_u` stores the interpolated *fluxes* and *not the solution*! + boundaries_u[2, v, i, j, boundary] = flux_viscous_z[v, i, j, 1, element] end end @@ -583,6 +596,298 @@ function calc_boundary_flux_by_direction_divergence!(surface_flux_values::Abstra return nothing end +function prolong2mortars!(cache, + flux_viscous::Tuple{AbstractArray, AbstractArray, + AbstractArray}, + mesh::TreeMesh{3}, + equations_parabolic::AbstractEquationsParabolic, + mortar_l2::LobattoLegendreMortarL2, + surface_integral, dg::DGSEM) + # temporary buffer for projections + @unpack fstar_tmp1_threaded = cache + + flux_viscous_x, flux_viscous_y, flux_viscous_z = flux_viscous + @threaded for mortar in eachmortar(dg, cache) + fstar_tmp1 = fstar_tmp1_threaded[Threads.threadid()] + + lower_left_element = cache.mortars.neighbor_ids[1, mortar] + lower_right_element = cache.mortars.neighbor_ids[2, mortar] + upper_left_element = cache.mortars.neighbor_ids[3, mortar] + upper_right_element = cache.mortars.neighbor_ids[4, mortar] + large_element = cache.mortars.neighbor_ids[5, mortar] + + # Copy solution small to small + if cache.mortars.large_sides[mortar] == 1 # -> small elements on right side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + for k in eachnode(dg), j in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[2, v, j, k, mortar] = flux_viscous_x[v, + 1, + j, + k, + upper_left_element] + cache.mortars.u_upper_right[2, v, j, k, mortar] = flux_viscous_x[v, + 1, + j, + k, + upper_right_element] + cache.mortars.u_lower_left[2, v, j, k, mortar] = flux_viscous_x[v, + 1, + j, + k, + lower_left_element] + cache.mortars.u_lower_right[2, v, j, k, mortar] = flux_viscous_x[v, + 1, + j, + k, + lower_right_element] + end + end + elseif cache.mortars.orientations[mortar] == 2 + # L2 mortars in y-direction + for k in eachnode(dg), i in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[2, v, i, k, mortar] = flux_viscous_y[v, + i, + 1, + k, + upper_left_element] + cache.mortars.u_upper_right[2, v, i, k, mortar] = flux_viscous_y[v, + i, + 1, + k, + upper_right_element] + cache.mortars.u_lower_left[2, v, i, k, mortar] = flux_viscous_y[v, + i, + 1, + k, + lower_left_element] + cache.mortars.u_lower_right[2, v, i, k, mortar] = flux_viscous_y[v, + i, + 1, + k, + lower_right_element] + end + end + else # orientations[mortar] == 3 + # L2 mortars in z-direction + for j in eachnode(dg), i in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[2, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + 1, + upper_left_element] + cache.mortars.u_upper_right[2, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + 1, + upper_right_element] + cache.mortars.u_lower_left[2, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + 1, + lower_left_element] + cache.mortars.u_lower_right[2, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + 1, + lower_right_element] + end + end + end + else # large_sides[mortar] == 2 -> small elements on left side + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + for k in eachnode(dg), j in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[1, v, j, k, mortar] = flux_viscous_x[v, + nnodes(dg), + j, + k, + upper_left_element] + cache.mortars.u_upper_right[1, v, j, k, mortar] = flux_viscous_x[v, + nnodes(dg), + j, + k, + upper_right_element] + cache.mortars.u_lower_left[1, v, j, k, mortar] = flux_viscous_x[v, + nnodes(dg), + j, + k, + lower_left_element] + cache.mortars.u_lower_right[1, v, j, k, mortar] = flux_viscous_x[v, + nnodes(dg), + j, + k, + lower_right_element] + end + end + elseif cache.mortars.orientations[mortar] == 2 + # L2 mortars in y-direction + for k in eachnode(dg), i in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[1, v, i, k, mortar] = flux_viscous_y[v, + i, + nnodes(dg), + k, + upper_left_element] + cache.mortars.u_upper_right[1, v, i, k, mortar] = flux_viscous_y[v, + i, + nnodes(dg), + k, + upper_right_element] + cache.mortars.u_lower_left[1, v, i, k, mortar] = flux_viscous_y[v, + i, + nnodes(dg), + k, + lower_left_element] + cache.mortars.u_lower_right[1, v, i, k, mortar] = flux_viscous_y[v, + i, + nnodes(dg), + k, + lower_right_element] + end + end + else # if cache.mortars.orientations[mortar] == 3 + # L2 mortars in z-direction + for j in eachnode(dg), i in eachnode(dg) + for v in eachvariable(equations_parabolic) + cache.mortars.u_upper_left[1, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + nnodes(dg), + upper_left_element] + cache.mortars.u_upper_right[1, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + nnodes(dg), + upper_right_element] + cache.mortars.u_lower_left[1, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + nnodes(dg), + lower_left_element] + cache.mortars.u_lower_right[1, v, i, j, mortar] = flux_viscous_z[v, + i, + j, + nnodes(dg), + lower_right_element] + end + end + end + end + + # Interpolate large element face data to small interface locations + if cache.mortars.large_sides[mortar] == 1 # -> large element on left side + leftright = 1 + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + u_large = view(flux_viscous_x, :, nnodes(dg), :, :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + elseif cache.mortars.orientations[mortar] == 2 + # L2 mortars in y-direction + u_large = view(flux_viscous_y, :, :, nnodes(dg), :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + else # cache.mortars.orientations[mortar] == 3 + # L2 mortars in z-direction + u_large = view(flux_viscous_z, :, :, :, nnodes(dg), large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + end + else # large_sides[mortar] == 2 -> large element on right side + leftright = 2 + if cache.mortars.orientations[mortar] == 1 + # L2 mortars in x-direction + u_large = view(flux_viscous_x, :, 1, :, :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + elseif cache.mortars.orientations[mortar] == 2 + # L2 mortars in y-direction + u_large = view(flux_viscous_y, :, :, 1, :, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + else # cache.mortars.orientations[mortar] == 3 + # L2 mortars in z-direction + u_large = view(flux_viscous_z, :, :, :, 1, large_element) + element_solutions_to_mortars!(cache.mortars, mortar_l2, leftright, + mortar, u_large, fstar_tmp1) + end + end + end + + return nothing +end + +# NOTE: Use analogy to "calc_mortar_flux!" for hyperbolic eqs with no nonconservative terms. +# Reasoning: "calc_interface_flux!" for parabolic part is implemented as the version for +# hyperbolic terms with conserved terms only, i.e., no nonconservative terms. +function calc_mortar_flux!(surface_flux_values, + mesh::TreeMesh{3}, + equations_parabolic::AbstractEquationsParabolic, + mortar_l2::LobattoLegendreMortarL2, + surface_integral, dg::DG, cache) + @unpack surface_flux = surface_integral + @unpack u_lower_left, u_lower_right, u_upper_left, u_upper_right, orientations = cache.mortars + @unpack (fstar_upper_left_threaded, fstar_upper_right_threaded, + fstar_lower_left_threaded, fstar_lower_right_threaded, + fstar_tmp1_threaded) = cache + + @threaded for mortar in eachmortar(dg, cache) + # Choose thread-specific pre-allocated container + fstar_upper_left = fstar_upper_left_threaded[Threads.threadid()] + fstar_upper_right = fstar_upper_right_threaded[Threads.threadid()] + fstar_lower_left = fstar_lower_left_threaded[Threads.threadid()] + fstar_lower_right = fstar_lower_right_threaded[Threads.threadid()] + fstar_tmp1 = fstar_tmp1_threaded[Threads.threadid()] + + # Calculate fluxes + orientation = orientations[mortar] + calc_fstar!(fstar_upper_left, equations_parabolic, surface_flux, dg, + u_upper_left, mortar, + orientation) + calc_fstar!(fstar_upper_right, equations_parabolic, surface_flux, dg, + u_upper_right, + mortar, orientation) + calc_fstar!(fstar_lower_left, equations_parabolic, surface_flux, dg, + u_lower_left, mortar, + orientation) + calc_fstar!(fstar_lower_right, equations_parabolic, surface_flux, dg, + u_lower_right, + mortar, orientation) + + mortar_fluxes_to_elements!(surface_flux_values, + mesh, equations_parabolic, mortar_l2, dg, cache, + mortar, + fstar_upper_left, fstar_upper_right, + fstar_lower_left, fstar_lower_right, + fstar_tmp1) + end + + return nothing +end + +@inline function calc_fstar!(destination::AbstractArray{<:Any, 3}, + equations_parabolic::AbstractEquationsParabolic, + surface_flux, dg::DGSEM, + u_interfaces, interface, orientation) + for j in eachnode(dg), i in eachnode(dg) + # Call pointwise two-point numerical flux function + u_ll, u_rr = get_surface_node_vars(u_interfaces, equations_parabolic, dg, i, j, + interface) + # TODO: parabolic; only BR1 at the moment + flux = 0.5 * (u_ll + u_rr) + + # Copy flux to left and right element storage + set_node_vars!(destination, flux, equations_parabolic, dg, i, j) + end + + return nothing +end + # Calculate the gradient of the transformed variables function calc_gradient!(gradients, u_transformed, t, mesh::TreeMesh{3}, equations_parabolic, @@ -679,7 +984,20 @@ function calc_gradient!(gradients, u_transformed, t, dg.surface_integral, dg) end - # TODO: parabolic; mortars + # Prolong solution to mortars + # NOTE: This re-uses the implementation for hyperbolic terms in "dg_3d.jl" + @trixi_timeit timer() "prolong2mortars" begin + prolong2mortars!(cache, u_transformed, mesh, equations_parabolic, + dg.mortar, dg.surface_integral, dg) + end + + # Calculate mortar fluxes + @trixi_timeit timer() "mortar flux" begin + calc_mortar_flux!(surface_flux_values, + mesh, + equations_parabolic, + dg.mortar, dg.surface_integral, dg, cache) + end # Calculate surface integrals @trixi_timeit timer() "surface integral" begin @@ -809,8 +1127,10 @@ end # where f(u) is the inviscid flux and g(u) is the viscous flux. function apply_jacobian_parabolic!(du, mesh::Union{TreeMesh{3}, P4estMesh{3}}, equations::AbstractEquationsParabolic, dg::DG, cache) + @unpack inverse_jacobian = cache.elements + @threaded for element in eachelement(dg, cache) - factor = cache.elements.inverse_jacobian[element] + factor = inverse_jacobian[element] for k in eachnode(dg), j in eachnode(dg), i in eachnode(dg) for v in eachvariable(equations) diff --git a/src/solvers/dgsem_tree/subcell_limiters.jl b/src/solvers/dgsem_tree/subcell_limiters.jl new file mode 100644 index 00000000000..3a707de3bc7 --- /dev/null +++ b/src/solvers/dgsem_tree/subcell_limiters.jl @@ -0,0 +1,103 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +abstract type AbstractSubcellLimiter end + +function create_cache(typ::Type{LimiterType}, + semi) where {LimiterType <: AbstractSubcellLimiter} + create_cache(typ, mesh_equations_solver_cache(semi)...) +end + +""" + SubcellLimiterIDP(equations::AbstractEquations, basis; + positivity_variables_cons = [], + positivity_correction_factor = 0.1) + +Subcell invariant domain preserving (IDP) limiting used with [`VolumeIntegralSubcellLimiting`](@ref) +including: +- positivity limiting for conservative variables (`positivity_variables_cons`) + +The bounds are calculated using the low-order FV solution. The positivity limiter uses +`positivity_correction_factor` such that `u^new >= positivity_correction_factor * u^FV`. + +!!! note + This limiter and the correction callback [`SubcellLimiterIDPCorrection`](@ref) only work together. + Without the callback, no limiting takes place, leading to a standard flux-differencing DGSEM scheme. + +## References + +- Rueda-Ramírez, Pazner, Gassner (2022) + Subcell Limiting Strategies for Discontinuous Galerkin Spectral Element Methods + [DOI: 10.1016/j.compfluid.2022.105627](https://doi.org/10.1016/j.compfluid.2022.105627) +- Pazner (2020) + Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting + [DOI: 10.1016/j.cma.2021.113876](https://doi.org/10.1016/j.cma.2021.113876) + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +struct SubcellLimiterIDP{RealT <: Real, Cache} <: AbstractSubcellLimiter + positivity::Bool + positivity_variables_cons::Vector{Int} # Positivity for conservative variables + positivity_correction_factor::RealT + cache::Cache +end + +# this method is used when the indicator is constructed as for shock-capturing volume integrals +function SubcellLimiterIDP(equations::AbstractEquations, basis; + positivity_variables_cons = [], + positivity_correction_factor = 0.1) + positivity = (length(positivity_variables_cons) > 0) + number_bounds = length(positivity_variables_cons) + + cache = create_cache(SubcellLimiterIDP, equations, basis, number_bounds) + + SubcellLimiterIDP{typeof(positivity_correction_factor), typeof(cache)}(positivity, + positivity_variables_cons, + positivity_correction_factor, + cache) +end + +function Base.show(io::IO, limiter::SubcellLimiterIDP) + @nospecialize limiter # reduce precompilation time + @unpack positivity = limiter + + print(io, "SubcellLimiterIDP(") + if !(positivity) + print(io, "No limiter selected => pure DG method") + else + print(io, "limiter=(") + positivity && print(io, "positivity") + print(io, "), ") + end + print(io, ")") +end + +function Base.show(io::IO, ::MIME"text/plain", limiter::SubcellLimiterIDP) + @nospecialize limiter # reduce precompilation time + @unpack positivity = limiter + + if get(io, :compact, false) + show(io, limiter) + else + if !(positivity) + setup = ["limiter" => "No limiter selected => pure DG method"] + else + setup = ["limiter" => ""] + if positivity + string = "positivity with conservative variables $(limiter.positivity_variables_cons)" + setup = [setup..., "" => string] + setup = [ + setup..., + "" => " positivity correction factor = $(limiter.positivity_correction_factor)", + ] + end + end + summary_box(io, "SubcellLimiterIDP", setup) + end +end +end # @muladd diff --git a/src/solvers/dgsem_tree/subcell_limiters_2d.jl b/src/solvers/dgsem_tree/subcell_limiters_2d.jl new file mode 100644 index 00000000000..09ab84ed11a --- /dev/null +++ b/src/solvers/dgsem_tree/subcell_limiters_2d.jl @@ -0,0 +1,114 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +# this method is used when the limiter is constructed as for shock-capturing volume integrals +function create_cache(indicator::Type{SubcellLimiterIDP}, + equations::AbstractEquations{2}, + basis::LobattoLegendreBasis, number_bounds) + subcell_limiter_coefficients = Trixi.ContainerSubcellLimiterIDP2D{real(basis) + }(0, + nnodes(basis), + number_bounds) + + cache = (; subcell_limiter_coefficients) + + return cache +end + +function (limiter::SubcellLimiterIDP)(u::AbstractArray{<:Any, 4}, semi, dg::DGSEM, t, + dt; + kwargs...) + @unpack alpha = limiter.cache.subcell_limiter_coefficients + alpha .= zero(eltype(alpha)) + + if limiter.positivity + @trixi_timeit timer() "positivity" idp_positivity!(alpha, limiter, u, dt, + semi) + end + + # Calculate alpha1 and alpha2 + @unpack alpha1, alpha2 = limiter.cache.subcell_limiter_coefficients + @threaded for element in eachelement(dg, semi.cache) + for j in eachnode(dg), i in 2:nnodes(dg) + alpha1[i, j, element] = max(alpha[i - 1, j, element], alpha[i, j, element]) + end + for j in 2:nnodes(dg), i in eachnode(dg) + alpha2[i, j, element] = max(alpha[i, j - 1, element], alpha[i, j, element]) + end + alpha1[1, :, element] .= zero(eltype(alpha1)) + alpha1[nnodes(dg) + 1, :, element] .= zero(eltype(alpha1)) + alpha2[:, 1, element] .= zero(eltype(alpha2)) + alpha2[:, nnodes(dg) + 1, element] .= zero(eltype(alpha2)) + end + + return nothing +end + +@inline function idp_positivity!(alpha, limiter, u, dt, semi) + # Conservative variables + for (index, variable) in enumerate(limiter.positivity_variables_cons) + idp_positivity!(alpha, limiter, u, dt, semi, variable, index) + end + + return nothing +end + +@inline function idp_positivity!(alpha, limiter, u, dt, semi, variable, index) + mesh, equations, dg, cache = mesh_equations_solver_cache(semi) + @unpack antidiffusive_flux1, antidiffusive_flux2 = cache.antidiffusive_fluxes + @unpack inverse_weights = dg.basis + @unpack positivity_correction_factor = limiter + + @unpack variable_bounds = limiter.cache.subcell_limiter_coefficients + + var_min = variable_bounds[index] + + @threaded for element in eachelement(dg, semi.cache) + inverse_jacobian = cache.elements.inverse_jacobian[element] + for j in eachnode(dg), i in eachnode(dg) + var = u[variable, i, j, element] + if var < 0 + error("Safe $variable is not safe. element=$element, node: $i $j, value=$var") + end + + # Compute bound + var_min[i, j, element] = positivity_correction_factor * var + + # Real one-sided Zalesak-type limiter + # * Zalesak (1979). "Fully multidimensional flux-corrected transport algorithms for fluids" + # * Kuzmin et al. (2010). "Failsafe flux limiting and constrained data projections for equations of gas dynamics" + # Note: The Zalesak limiter has to be computed, even if the state is valid, because the correction is + # for each interface, not each node + Qm = min(0, (var_min[i, j, element] - var) / dt) + + # Calculate Pm + # Note: Boundaries of antidiffusive_flux1/2 are constant 0, so they make no difference here. + val_flux1_local = inverse_weights[i] * + antidiffusive_flux1[variable, i, j, element] + val_flux1_local_ip1 = -inverse_weights[i] * + antidiffusive_flux1[variable, i + 1, j, element] + val_flux2_local = inverse_weights[j] * + antidiffusive_flux2[variable, i, j, element] + val_flux2_local_jp1 = -inverse_weights[j] * + antidiffusive_flux2[variable, i, j + 1, element] + + Pm = min(0, val_flux1_local) + min(0, val_flux1_local_ip1) + + min(0, val_flux2_local) + min(0, val_flux2_local_jp1) + Pm = inverse_jacobian * Pm + + # Compute blending coefficient avoiding division by zero + # (as in paper of [Guermond, Nazarov, Popov, Thomas] (4.8)) + Qm = abs(Qm) / (abs(Pm) + eps(typeof(Qm)) * 100) + + # Calculate alpha + alpha[i, j, element] = max(alpha[i, j, element], 1 - Qm) + end + end + + return nothing +end +end # @muladd diff --git a/src/time_integration/methods_SSP.jl b/src/time_integration/methods_SSP.jl new file mode 100644 index 00000000000..a0ed889968a --- /dev/null +++ b/src/time_integration/methods_SSP.jl @@ -0,0 +1,246 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + +# Abstract base type for time integration schemes of explicit strong stability-preserving (SSP) +# Runge-Kutta (RK) methods. They are high-order time discretizations that guarantee the TVD property. +abstract type SimpleAlgorithmSSP end + +""" + SimpleSSPRK33(; stage_callbacks=()) + +The third-order SSP Runge-Kutta method of Shu and Osher. + +## References + +- Shu, Osher (1988) + "Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes" (Eq. 2.18) + [DOI: 10.1016/0021-9991(88)90177-5](https://doi.org/10.1016/0021-9991(88)90177-5) + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +struct SimpleSSPRK33{StageCallbacks} <: SimpleAlgorithmSSP + numerator_a::SVector{3, Float64} + numerator_b::SVector{3, Float64} + denominator::SVector{3, Float64} + c::SVector{3, Float64} + stage_callbacks::StageCallbacks + + function SimpleSSPRK33(; stage_callbacks = ()) + numerator_a = SVector(0.0, 3.0, 1.0) # a = numerator_a / denominator + numerator_b = SVector(1.0, 1.0, 2.0) # b = numerator_b / denominator + denominator = SVector(1.0, 4.0, 3.0) + c = SVector(0.0, 1.0, 1 / 2) + + # Butcher tableau + # c | a + # 0 | + # 1 | 1 + # 1/2 | 1/4 1/4 + # -------------------- + # b | 1/6 1/6 2/3 + + new{typeof(stage_callbacks)}(numerator_a, numerator_b, denominator, c, + stage_callbacks) + end +end + +# This struct is needed to fake https://github.com/SciML/OrdinaryDiffEq.jl/blob/0c2048a502101647ac35faabd80da8a5645beac7/src/integrators/type.jl#L1 +mutable struct SimpleIntegratorSSPOptions{Callback} + callback::Callback # callbacks; used in Trixi + adaptive::Bool # whether the algorithm is adaptive; ignored + dtmax::Float64 # ignored + maxiters::Int # maximal number of time steps + tstops::Vector{Float64} # tstops from https://diffeq.sciml.ai/v6.8/basics/common_solver_opts/#Output-Control-1; ignored +end + +function SimpleIntegratorSSPOptions(callback, tspan; maxiters = typemax(Int), kwargs...) + SimpleIntegratorSSPOptions{typeof(callback)}(callback, false, Inf, maxiters, + [last(tspan)]) +end + +# This struct is needed to fake https://github.com/SciML/OrdinaryDiffEq.jl/blob/0c2048a502101647ac35faabd80da8a5645beac7/src/integrators/type.jl#L77 +# This implements the interface components described at +# https://diffeq.sciml.ai/v6.8/basics/integrator/#Handing-Integrators-1 +# which are used in Trixi. +mutable struct SimpleIntegratorSSP{RealT <: Real, uType, Params, Sol, F, Alg, + SimpleIntegratorSSPOptions} + u::uType + du::uType + r0::uType + t::RealT + dt::RealT # current time step + dtcache::RealT # ignored + iter::Int # current number of time steps (iteration) + p::Params # will be the semidiscretization from Trixi + sol::Sol # faked + f::F + alg::Alg + opts::SimpleIntegratorSSPOptions + finalstep::Bool # added for convenience +end + +# Forward integrator.stats.naccept to integrator.iter (see GitHub PR#771) +function Base.getproperty(integrator::SimpleIntegratorSSP, field::Symbol) + if field === :stats + return (naccept = getfield(integrator, :iter),) + end + # general fallback + return getfield(integrator, field) +end + +""" + solve(ode, alg; dt, callbacks, kwargs...) + +The following structures and methods provide the infrastructure for SSP Runge-Kutta methods +of type `SimpleAlgorithmSSP`. + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +function solve(ode::ODEProblem, alg = SimpleSSPRK33()::SimpleAlgorithmSSP; + dt, callback = nothing, kwargs...) + u = copy(ode.u0) + du = similar(u) + r0 = similar(u) + t = first(ode.tspan) + iter = 0 + integrator = SimpleIntegratorSSP(u, du, r0, t, dt, zero(dt), iter, ode.p, + (prob = ode,), ode.f, alg, + SimpleIntegratorSSPOptions(callback, ode.tspan; + kwargs...), false) + + # resize container + resize!(integrator.p, nelements(integrator.p.solver, integrator.p.cache)) + + # initialize callbacks + if callback isa CallbackSet + for cb in callback.continuous_callbacks + error("unsupported") + end + for cb in callback.discrete_callbacks + cb.initialize(cb, integrator.u, integrator.t, integrator) + end + elseif !isnothing(callback) + error("unsupported") + end + + for stage_callback in alg.stage_callbacks + init_callback(stage_callback, integrator.p) + end + + solve!(integrator) +end + +function solve!(integrator::SimpleIntegratorSSP) + @unpack prob = integrator.sol + @unpack alg = integrator + t_end = last(prob.tspan) + callbacks = integrator.opts.callback + + integrator.finalstep = false + while !integrator.finalstep + if isnan(integrator.dt) + error("time step size `dt` is NaN") + end + + # if the next iteration would push the simulation beyond the end time, set dt accordingly + if integrator.t + integrator.dt > t_end || + isapprox(integrator.t + integrator.dt, t_end) + integrator.dt = t_end - integrator.t + terminate!(integrator) + end + + @. integrator.r0 = integrator.u + for stage in eachindex(alg.c) + t_stage = integrator.t + integrator.dt * alg.c[stage] + # compute du + integrator.f(integrator.du, integrator.u, integrator.p, t_stage) + + # perform forward Euler step + @. integrator.u = integrator.u + integrator.dt * integrator.du + + for stage_callback in alg.stage_callbacks + stage_callback(integrator.u, integrator, stage) + end + + # perform convex combination + @. integrator.u = (alg.numerator_a[stage] * integrator.r0 + + alg.numerator_b[stage] * integrator.u) / + alg.denominator[stage] + end + + integrator.iter += 1 + integrator.t += integrator.dt + + # handle callbacks + if callbacks isa CallbackSet + for cb in callbacks.discrete_callbacks + if cb.condition(integrator.u, integrator.t, integrator) + cb.affect!(integrator) + end + end + end + + # respect maximum number of iterations + if integrator.iter >= integrator.opts.maxiters && !integrator.finalstep + @warn "Interrupted. Larger maxiters is needed." + terminate!(integrator) + end + end + + for stage_callback in alg.stage_callbacks + finalize_callback(stage_callback, integrator.p) + end + + return TimeIntegratorSolution((first(prob.tspan), integrator.t), + (prob.u0, integrator.u), prob) +end + +# get a cache where the RHS can be stored +get_du(integrator::SimpleIntegratorSSP) = integrator.du +get_tmp_cache(integrator::SimpleIntegratorSSP) = (integrator.r0,) + +# some algorithms from DiffEq like FSAL-ones need to be informed when a callback has modified u +u_modified!(integrator::SimpleIntegratorSSP, ::Bool) = false + +# used by adaptive timestepping algorithms in DiffEq +function set_proposed_dt!(integrator::SimpleIntegratorSSP, dt) + integrator.dt = dt +end + +# stop the time integration +function terminate!(integrator::SimpleIntegratorSSP) + integrator.finalstep = true + empty!(integrator.opts.tstops) +end + +# used for AMR +function Base.resize!(integrator::SimpleIntegratorSSP, new_size) + resize!(integrator.u, new_size) + resize!(integrator.du, new_size) + resize!(integrator.r0, new_size) + + # Resize container + resize!(integrator.p, new_size) +end + +function Base.resize!(semi::AbstractSemidiscretization, new_size) + resize!(semi, semi.solver.volume_integral, new_size) +end + +Base.resize!(semi, volume_integral::AbstractVolumeIntegral, new_size) = nothing + +function Base.resize!(semi, volume_integral::VolumeIntegralSubcellLimiting, new_size) + # Resize container antidiffusive_fluxes + resize!(semi.cache.antidiffusive_fluxes, new_size) + + # Resize container subcell_limiter_coefficients + @unpack limiter = volume_integral + resize!(limiter.cache.subcell_limiter_coefficients, new_size) +end +end # @muladd diff --git a/src/time_integration/time_integration.jl b/src/time_integration/time_integration.jl index 539e00ff700..c1e53527121 100644 --- a/src/time_integration/time_integration.jl +++ b/src/time_integration/time_integration.jl @@ -15,4 +15,5 @@ end include("methods_2N.jl") include("methods_3Sstar.jl") +include("methods_SSP.jl") end # @muladd diff --git a/test/runtests.jl b/test/runtests.jl index 1d7eefe1fcb..f1adbaaf1df 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,8 +1,11 @@ using Test using MPI: mpiexec -# run tests on Travis CI in parallel -const TRIXI_TEST = get(ENV, "TRIXI_TEST", "all") +# We run tests in parallel with CI jobs setting the `TRIXI_TEST` environment +# variable to determine the subset of tests to execute. +# By default, we just run the threaded tests since they are relatively cheap +# and test a good amount of different functionality. +const TRIXI_TEST = get(ENV, "TRIXI_TEST", "threaded") const TRIXI_MPI_NPROCS = clamp(Sys.CPU_THREADS, 2, 3) const TRIXI_NTHREADS = clamp(Sys.CPU_THREADS, 2, 3) @@ -25,10 +28,10 @@ const TRIXI_NTHREADS = clamp(Sys.CPU_THREADS, 2, 3) cmd = string(Base.julia_cmd()) coverage = occursin("--code-coverage", cmd) && !occursin("--code-coverage=none", cmd) - if !(coverage && Sys.iswindows()) && !(coverage && Sys.islinux()) + if !(coverage && Sys.iswindows()) && !(coverage && Sys.isapple()) # We provide a `--heap-size-hint` to avoid/reduce out-of-memory errors during CI testing mpiexec() do cmd - run(`$cmd -n $TRIXI_MPI_NPROCS $(Base.julia_cmd()) --threads=1 --check-bounds=yes --heap-size-hint=1G $(abspath("test_mpi.jl"))`) + run(`$cmd -n $TRIXI_MPI_NPROCS $(Base.julia_cmd()) --threads=1 --check-bounds=yes --heap-size-hint=0.5G $(abspath("test_mpi.jl"))`) end end end diff --git a/test/test_mpi_tree.jl b/test/test_mpi_tree.jl index 8403fcf1b04..8f08a9d72e7 100644 --- a/test/test_mpi_tree.jl +++ b/test/test_mpi_tree.jl @@ -23,10 +23,22 @@ CI_ON_WINDOWS = (get(ENV, "GITHUB_ACTIONS", false) == "true") && Sys.iswindows() end @trixi_testset "elixir_advection_restart.jl" begin - @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl"), - # Expected errors are exactly the same as in the serial test! - l2 = [7.81674284320524e-6], - linf = [6.314906965243505e-5]) + using OrdinaryDiffEq: RDPK3SpFSAL49 + Trixi.mpi_isroot() && println("═"^100) + Trixi.mpi_isroot() && println(joinpath(EXAMPLES_DIR, "elixir_advection_extended.jl")) + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "elixir_advection_extended.jl"), + alg = RDPK3SpFSAL49(), tspan = (0.0, 10.0)) + l2_expected, linf_expected = analysis_callback(sol) + + Trixi.mpi_isroot() && println("═"^100) + Trixi.mpi_isroot() && println(joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl")) + # Errors are exactly the same as in the elixir_advection_extended.jl + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl"), + alg = RDPK3SpFSAL49()) + l2_actual, linf_actual = analysis_callback(sol) + + Trixi.mpi_isroot() && @test l2_actual == l2_expected + Trixi.mpi_isroot() && @test linf_actual == linf_expected end @trixi_testset "elixir_advection_mortar.jl" begin diff --git a/test/test_p4est_2d.jl b/test/test_p4est_2d.jl index c4ce2619e15..31dfe1d35a5 100644 --- a/test/test_p4est_2d.jl +++ b/test/test_p4est_2d.jl @@ -24,7 +24,7 @@ isdir(outdir) && rm(outdir, recursive=true) l2 = [3.198940059144588e-5], linf = [0.00030636069494005547]) - # Ensure that we do not have excessive memory allocations + # Ensure that we do not have excessive memory allocations # (e.g., from type instabilities) let t = sol.t[end] @@ -102,6 +102,15 @@ isdir(outdir) && rm(outdir, recursive=true) l2 = [0.020291447969983396, 0.017479614254319948, 0.011387644425613437, 0.0514420126021293], linf = [0.3582779022370579, 0.32073537890751663, 0.221818049107692, 0.9209559420400415], tspan = (0.0, 0.15)) + + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end end @trixi_testset "elixir_euler_forward_step_amr.jl" begin diff --git a/test/test_parabolic_1d.jl b/test/test_parabolic_1d.jl index 1aaf23d576a..3c2b8855ce8 100644 --- a/test/test_parabolic_1d.jl +++ b/test/test_parabolic_1d.jl @@ -19,7 +19,81 @@ isdir(outdir) && rm(outdir, recursive=true) linf = [2.847421658558336e-05] ) end - + + @trixi_testset "TreeMesh1D: elixir_advection_diffusion.jl (AMR)" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_advection_diffusion.jl"), + tspan=(0.0, 0.0), initial_refinement_level = 5) + tspan=(0.0, 1.0) + ode = semidiscretize(semi, tspan) + amr_controller = ControllerThreeLevel(semi, IndicatorMax(semi, variable=first), + base_level=4, + med_level=5, med_threshold=0.1, + max_level=6, max_threshold=0.6) + amr_callback = AMRCallback(semi, amr_controller, + interval=5, + adapt_initial_condition=true) + + # Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver + callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, amr_callback) + sol = solve(ode, KenCarp4(autodiff=false), abstol=time_abs_tol, reltol=time_int_tol, + save_everystep=false, callback=callbacks) + l2_error, linf_error = analysis_callback(sol) + @test l2_error ≈ [6.4878111416468355e-6] + @test linf_error ≈ [3.258075790424364e-5] + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_periodic.jl" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_periodic.jl"), + l2 = [0.0001133835907077494, 6.226282245610444e-5, 0.0002820171699999139], + linf = [0.0006255102377159538, 0.00036195501456059986, 0.0016147729485886941] + ) + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_periodic.jl: GradientVariablesEntropy" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_periodic.jl"), + equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), + Prandtl=prandtl_number(), + gradient_variables = GradientVariablesEntropy()), + l2 = [0.00011310615871043463, 6.216495207074201e-5, 0.00028195843110817814], + linf = [0.0006240837363233886, 0.0003616694320713876, 0.0016147339542413874] + ) + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_walls.jl" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_walls.jl"), + l2 = [0.00047023310868269237, 0.00032181736027057234, 0.0014966266486095025], + linf = [0.002996375101363302, 0.002863904256059634, 0.012691132946258676] + ) + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_walls.jl: GradientVariablesEntropy" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_walls.jl"), + equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), + Prandtl=prandtl_number(), + gradient_variables = GradientVariablesEntropy()), + l2 = [0.0004608500483647771, 0.00032431091222851285, 0.0015159733360626845], + linf = [0.002754803146635787, 0.0028567714697580906, 0.012941794048176192] + ) + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_walls_amr.jl" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_walls_amr.jl"), + equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), + Prandtl=prandtl_number()), + l2 = [2.527877257772131e-5, 2.5539911566937718e-5, 0.0001211860451244785], + linf = [0.00014663867588948776, 0.00019422448348348196, 0.0009556439394007299] + ) + end + + @trixi_testset "TreeMesh1D: elixir_navierstokes_convergence_walls_amr.jl: GradientVariablesEntropy" begin + @test_trixi_include(joinpath(examples_dir(), "tree_1d_dgsem", "elixir_navierstokes_convergence_walls_amr.jl"), + equations_parabolic = CompressibleNavierStokesDiffusion1D(equations, mu=mu(), + Prandtl=prandtl_number(), + gradient_variables = GradientVariablesEntropy()), + l2 = [2.4593699163175966e-5, 2.392863645712634e-5, 0.00011252526651714956], + linf = [0.00011850555445525046, 0.0001898777490968537, 0.0009597561467877824] + ) + end end # Clean up afterwards: delete Trixi output directory diff --git a/test/test_parabolic_2d.jl b/test/test_parabolic_2d.jl index 471b976e990..3fff4382cd1 100644 --- a/test/test_parabolic_2d.jl +++ b/test/test_parabolic_2d.jl @@ -125,6 +125,39 @@ isdir(outdir) && rm(outdir, recursive=true) ) end + @trixi_testset "TreeMesh2D: elixir_advection_diffusion.jl (Refined mesh)" begin + @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_diffusion.jl"), + tspan=(0.0, 0.0)) + LLID = Trixi.local_leaf_cells(mesh.tree) + num_leafs = length(LLID) + @assert num_leafs % 8 == 0 + Trixi.refine!(mesh.tree, LLID[1:Int(num_leafs/8)]) + tspan=(0.0, 1.5) + semi = SemidiscretizationHyperbolicParabolic(mesh, + (equations, equations_parabolic), + initial_condition, solver; + boundary_conditions=(boundary_conditions, + boundary_conditions_parabolic)) + ode = semidiscretize(semi, tspan) + analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) + sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, + ode_default_options()..., callback=callbacks) + l2_error, linf_error = analysis_callback(sol) + @test l2_error ≈ [1.67452550744728e-6] + @test linf_error ≈ [7.905059166368744e-6] + + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 100 + @test (@allocated Trixi.rhs_parabolic!(du_ode, u_ode, semi, t)) < 100 + end + end + @trixi_testset "TreeMesh2D: elixir_advection_diffusion_nonperiodic.jl" begin @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_diffusion_nonperiodic.jl"), initial_refinement_level = 2, tspan=(0.0, 0.1), @@ -136,6 +169,10 @@ isdir(outdir) && rm(outdir, recursive=true) @trixi_testset "TreeMesh2D: elixir_navierstokes_convergence.jl" begin @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_navierstokes_convergence.jl"), initial_refinement_level = 2, tspan=(0.0, 0.1), + analysis_callback = AnalysisCallback(semi, interval=analysis_interval, + extra_analysis_integrals=(energy_kinetic, + energy_internal, + enstrophy)), l2 = [0.002111672530658797, 0.0034322351490857846, 0.0038742528195910416, 0.012469246082568561], linf = [0.012006418939223495, 0.035520871209746126, 0.024512747492231427, 0.11191122588756564] ) @@ -176,6 +213,27 @@ isdir(outdir) && rm(outdir, recursive=true) ) end + @trixi_testset "TreeMesh2D: elixir_navierstokes_convergence.jl (Refined mesh)" begin + @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_navierstokes_convergence.jl"), + tspan=(0.0, 0.0), initial_refinement_level=3) + LLID = Trixi.local_leaf_cells(mesh.tree) + num_leafs = length(LLID) + @assert num_leafs % 4 == 0 + Trixi.refine!(mesh.tree, LLID[1:Int(num_leafs/4)]) + tspan=(0.0, 0.5) + semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; + boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), + source_terms=source_terms_navier_stokes_convergence_test) + ode = semidiscretize(semi, tspan) + analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) + sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, + ode_default_options()..., callback=callbacks) + l2_error, linf_error = analysis_callback(sol) + @test l2_error ≈ [0.00024296959173852447; 0.0002093263158670915; 0.0005390572390977262; 0.00026753561392341537] + @test linf_error ≈ [0.0016210102053424436; 0.002593287648655501; 0.002953907343823712; 0.002077119120180271] + end + @trixi_testset "TreeMesh2D: elixir_navierstokes_lid_driven_cavity.jl" begin @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_navierstokes_lid_driven_cavity.jl"), initial_refinement_level = 2, tspan=(0.0, 0.5), @@ -184,6 +242,13 @@ isdir(outdir) && rm(outdir, recursive=true) ) end + @trixi_testset "TreeMesh2D: elixir_navierstokes_taylor_green_vortex.jl" begin + @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_navierstokes_taylor_green_vortex.jl"), + l2 = [0.0009279657228109691, 0.012454661988687185, 0.012454661988689886, 0.030487112728612178], + linf = [0.002435582543096171, 0.024824039368199546, 0.024824039368212758, 0.06731583711777489] + ) + end + @trixi_testset "P4estMesh2D: elixir_advection_diffusion_periodic.jl" begin @test_trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_advection_diffusion_periodic.jl"), trees_per_dimension = (1, 1), initial_refinement_level = 2, tspan=(0.0, 0.5), diff --git a/test/test_parabolic_3d.jl b/test/test_parabolic_3d.jl index 67a27238969..86076460294 100644 --- a/test/test_parabolic_3d.jl +++ b/test/test_parabolic_3d.jl @@ -78,6 +78,27 @@ isdir(outdir) && rm(outdir, recursive=true) ) end + @trixi_testset "TreeMesh3D: elixir_navierstokes_convergence.jl (Refined mesh)" begin + @test_trixi_include(joinpath(examples_dir(), "tree_3d_dgsem", "elixir_navierstokes_convergence.jl"), + tspan=(0.0, 0.0)) + LLID = Trixi.local_leaf_cells(mesh.tree) + num_leafs = length(LLID) + @assert num_leafs % 16 == 0 + Trixi.refine!(mesh.tree, LLID[1:Int(num_leafs/16)]) + tspan=(0.0, 0.25) + semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver; + boundary_conditions=(boundary_conditions, boundary_conditions_parabolic), + source_terms=source_terms_navier_stokes_convergence_test) + ode = semidiscretize(semi, tspan) + analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) + sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5, + ode_default_options()..., callback=callbacks) + l2_error, linf_error = analysis_callback(sol) + @test l2_error ≈ [0.0003109336253407314, 0.0006473493036803503, 0.0007705277238213672, 0.0006280517917198335, 0.000903927789884075] + @test linf_error ≈ [0.0023694155365339142, 0.010634932622402863, 0.006772070862236412, 0.010640551561726901, 0.019256819038719897] + end + @trixi_testset "TreeMesh3D: elixir_navierstokes_taylor_green_vortex.jl" begin @test_trixi_include(joinpath(examples_dir(), "tree_3d_dgsem", "elixir_navierstokes_taylor_green_vortex.jl"), initial_refinement_level = 2, tspan=(0.0, 0.25), @@ -86,6 +107,41 @@ isdir(outdir) && rm(outdir, recursive=true) ) end + @trixi_testset "TreeMesh3D: elixir_navierstokes_taylor_green_vortex.jl (Refined mesh)" begin + @test_trixi_include(joinpath(examples_dir(), "tree_3d_dgsem", "elixir_navierstokes_taylor_green_vortex.jl"), + tspan=(0.0, 0.0)) + LLID = Trixi.local_leaf_cells(mesh.tree) + num_leafs = length(LLID) + @assert num_leafs % 32 == 0 + Trixi.refine!(mesh.tree, LLID[1:Int(num_leafs/32)]) + tspan=(0.0, 0.1) + semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), + initial_condition, solver) + ode = semidiscretize(semi, tspan) + analysis_callback = AnalysisCallback(semi, interval=analysis_interval, save_analysis=true, + extra_analysis_integrals=(energy_kinetic, + energy_internal, + enstrophy)) + callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback) + # Use CarpenterKennedy2N54 since `RDPK3SpFSAL49` gives slightly different results on different machines + sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false), + dt=5e-3, + save_everystep=false, callback=callbacks); + l2_error, linf_error = analysis_callback(sol) + @test l2_error ≈ [7.314319856736271e-5, 0.006266480163542894, 0.006266489911815533, 0.008829222305770226, 0.0032859166842329228] + @test linf_error ≈ [0.0002943968186086554, 0.013876261980614757, 0.013883619864959451, 0.025201279960491936, 0.018679364985388247] + + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 100 + @test (@allocated Trixi.rhs_parabolic!(du_ode, u_ode, semi, t)) < 100 + end + end + @trixi_testset "P4estMesh3D: elixir_navierstokes_convergence.jl" begin @test_trixi_include(joinpath(examples_dir(), "p4est_3d_dgsem", "elixir_navierstokes_convergence.jl"), initial_refinement_level = 2, tspan=(0.0, 0.1), @@ -101,8 +157,8 @@ isdir(outdir) && rm(outdir, recursive=true) linf = [0.0006696415247340326, 0.03442565722527785, 0.03442565722577423, 0.06295407168705314, 0.032857472756916195] ) end - end + # Clean up afterwards: delete Trixi.jl output directory @test_nowarn isdir(outdir) && rm(outdir, recursive=true) diff --git a/test/test_special_elixirs.jl b/test/test_special_elixirs.jl index 23017059eaa..c05dfbdfca1 100644 --- a/test/test_special_elixirs.jl +++ b/test/test_special_elixirs.jl @@ -107,6 +107,15 @@ coverage = occursin("--code-coverage", cmd) && !occursin("--code-coverage=none", @test maximum(real, λ) < 10 * sqrt(eps(real(semi))) end + @timed_testset "Linear advection-diffusion" begin + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "tree_2d_dgsem", "elixir_advection_diffusion.jl"), + tspan=(0.0, 0.0), initial_refinement_level=2) + + J = jacobian_ad_forward(semi) + λ = eigvals(J) + @test maximum(real, λ) < 10 * sqrt(eps(real(semi))) + end + @timed_testset "Compressible Euler equations" begin trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "tree_2d_dgsem", "elixir_euler_density_wave.jl"), tspan=(0.0, 0.0), initial_refinement_level=1) @@ -165,6 +174,15 @@ coverage = occursin("--code-coverage", cmd) && !occursin("--code-coverage=none", end end + @timed_testset "Navier-Stokes" begin + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "tree_2d_dgsem", "elixir_navierstokes_taylor_green_vortex.jl"), + tspan=(0.0, 0.0), initial_refinement_level=2) + + J = jacobian_ad_forward(semi) + λ = eigvals(J) + @test maximum(real, λ) < 0.2 + end + @timed_testset "MHD" begin trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "tree_2d_dgsem", "elixir_mhd_alfven_wave.jl"), tspan=(0.0, 0.0), initial_refinement_level=0) diff --git a/test/test_threaded.jl b/test/test_threaded.jl index 9b30836d0ed..2337d73f30a 100644 --- a/test/test_threaded.jl +++ b/test/test_threaded.jl @@ -12,27 +12,38 @@ Trixi.mpi_isroot() && isdir(outdir) && rm(outdir, recursive=true) @testset "Threaded tests" begin @testset "TreeMesh" begin @trixi_testset "elixir_advection_restart.jl" begin - @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_restart.jl"), - # Expected errors are exactly the same as in the serial test! - l2 = [7.81674284320524e-6], - linf = [6.314906965243505e-5]) + elixir = joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_extended.jl") + Trixi.mpi_isroot() && println("═"^100) + Trixi.mpi_isroot() && println(elixir) + trixi_include(@__MODULE__, elixir, tspan = (0.0, 10.0)) + l2_expected, linf_expected = analysis_callback(sol) + + elixir = joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_restart.jl") + Trixi.mpi_isroot() && println("═"^100) + Trixi.mpi_isroot() && println(elixir) + # Errors are exactly the same as in the elixir_advection_extended.jl + trixi_include(@__MODULE__, elixir) + l2_actual, linf_actual = analysis_callback(sol) + + Trixi.mpi_isroot() && @test l2_actual == l2_expected + Trixi.mpi_isroot() && @test linf_actual == linf_expected - # Ensure that we do not have excessive memory allocations - # (e.g., from type instabilities) - let - t = sol.t[end] - u_ode = sol.u[end] - du_ode = similar(u_ode) - @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 5000 - end + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 5000 + end end @trixi_testset "elixir_advection_restart.jl with threaded time integration" begin @test_trixi_include(joinpath(examples_dir(), "tree_2d_dgsem", "elixir_advection_restart.jl"), alg = CarpenterKennedy2N54(williamson_condition = false, thread = OrdinaryDiffEq.True()), # Expected errors are exactly the same as in the serial test! - l2 = [7.81674284320524e-6], - linf = [6.314906965243505e-5]) + l2 = [8.005068880114254e-6], + linf = [6.39093577996519e-5]) end @trixi_testset "elixir_advection_amr_refine_twice.jl" begin diff --git a/test/test_tree_1d_shallowwater.jl b/test/test_tree_1d_shallowwater.jl index cafa17edd4c..09fb2d9e432 100644 --- a/test/test_tree_1d_shallowwater.jl +++ b/test/test_tree_1d_shallowwater.jl @@ -102,7 +102,8 @@ EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_1d_dgsem") @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_shallowwater_beach.jl"), l2 = [0.17979210479598923, 1.2377495706611434, 6.289818963361573e-8], linf = [0.845938394800688, 3.3740800777086575, 4.4541473087633676e-7], - tspan = (0.0, 0.05)) + tspan = (0.0, 0.05), + atol = 3e-10) # see https://github.com/trixi-framework/Trixi.jl/issues/1617 end @trixi_testset "elixir_shallowwater_parabolic_bowl.jl" begin @@ -111,6 +112,20 @@ EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_1d_dgsem") linf = [0.00041080213807871235, 0.00014823261488938177, 2.220446049250313e-16], tspan = (0.0, 0.05)) end + + @trixi_testset "elixir_shallow_water_quasi_1d_source_terms.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_shallow_water_quasi_1d_source_terms.jl"), + l2 = [6.37048760275098e-5, 0.0002745658116815704, 4.436491725647962e-6, 8.872983451152218e-6], + linf = [0.00026747526881631956, 0.0012106730729152249, 9.098379777500165e-6, 1.8196759554278685e-5], + tspan = (0.0, 0.05)) + end + + @trixi_testset "elixir_shallowwater_quasi_1d_well_balanced.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_shallowwater_quasi_1d_well_balanced.jl"), + l2 = [1.4250229186905198e-14, 2.495109919406496e-12, 7.408599286788738e-17, 2.7205812409138776e-16], + linf = [5.284661597215745e-14, 2.74056233065078e-12, 2.220446049250313e-16, 8.881784197001252e-16], + tspan = (0.0, 100.0)) + end end end # module diff --git a/test/test_tree_2d_advection.jl b/test/test_tree_2d_advection.jl index 973d0caf88b..36cb1e882cc 100644 --- a/test/test_tree_2d_advection.jl +++ b/test/test_tree_2d_advection.jl @@ -25,10 +25,22 @@ EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_2d_dgsem") end @trixi_testset "elixir_advection_restart.jl" begin - @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl"), - # Expected errors are exactly the same as in the parallel test! - l2 = [7.81674284320524e-6], - linf = [6.314906965243505e-5]) + using OrdinaryDiffEq: SSPRK43 + println("═"^100) + println(joinpath(EXAMPLES_DIR, "elixir_advection_extended.jl")) + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "elixir_advection_extended.jl"), + alg = SSPRK43(), tspan = (0.0, 10.0)) + l2_expected, linf_expected = analysis_callback(sol) + + println("═"^100) + println(joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl")) + # Errors are exactly the same as in the elixir_advection_extended.jl + trixi_include(@__MODULE__, joinpath(EXAMPLES_DIR, "elixir_advection_restart.jl"), + alg = SSPRK43()) + l2_actual, linf_actual = analysis_callback(sol) + + @test l2_actual == l2_expected + @test linf_actual == linf_expected end @trixi_testset "elixir_advection_mortar.jl" begin diff --git a/test/test_tree_2d_euler.jl b/test/test_tree_2d_euler.jl index 6de380288db..e1e3ad32e7d 100644 --- a/test/test_tree_2d_euler.jl +++ b/test/test_tree_2d_euler.jl @@ -63,6 +63,12 @@ EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_2d_dgsem") linf = [0.18527440131928286, 0.2404798030563736, 0.23269573860381076, 0.6874012187446894]) end + @trixi_testset "elixir_euler_shockcapturing_subcell.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_shockcapturing_subcell.jl"), + l2 = [0.08508147906199143, 0.04510299017724501, 0.045103019801950375, 0.6930704343869766], + linf = [0.31123546471463326, 0.5616274869594462, 0.5619692712224448, 2.88670199345138]) + end + @trixi_testset "elixir_euler_blast_wave.jl" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_blast_wave.jl"), l2 = [0.14170569763947993, 0.11647068900798814, 0.11647072556898294, 0.3391989213659599], diff --git a/test/test_tree_2d_eulermulti.jl b/test/test_tree_2d_eulermulti.jl index 800dc31f84f..606afca1034 100644 --- a/test/test_tree_2d_eulermulti.jl +++ b/test/test_tree_2d_eulermulti.jl @@ -19,6 +19,14 @@ EXAMPLES_DIR = pkgdir(Trixi, "examples", "tree_2d_dgsem") tspan = (0.0, 0.001)) end + @trixi_testset "elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulermulti_shock_bubble_shockcapturing_subcell_positivity.jl"), + l2 = [81.52845664909304, 2.5455678559421346, 63229.190712645846, 0.19929478404550321, 0.011068604228443425], + linf = [249.21708417382013, 40.33299887640794, 174205.0118831558, 0.6881458768113586, 0.11274401158173972], + initial_refinement_level = 3, + tspan = (0.0, 0.001)) + end + @trixi_testset "elixir_eulermulti_ec.jl" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulermulti_ec.jl"), l2 = [0.050182236154087095, 0.050189894464434635, 0.2258715597305131, 0.06175171559771687], diff --git a/test/test_trixi.jl b/test/test_trixi.jl index ddace6b4fbe..f2cd0cab94d 100644 --- a/test/test_trixi.jl +++ b/test/test_trixi.jl @@ -5,7 +5,7 @@ import Trixi # inside an elixir. """ @test_trixi_include(elixir; l2=nothing, linf=nothing, - atol=10*eps(), rtol=0.001, + atol=500*eps(), rtol=sqrt(eps()), parameters...) Test Trixi by calling `trixi_include(elixir; parameters...)`. diff --git a/test/test_unit.jl b/test/test_unit.jl index e70a9be6a4a..5c5291c2430 100644 --- a/test/test_unit.jl +++ b/test/test_unit.jl @@ -402,6 +402,9 @@ isdir(outdir) && rm(outdir, recursive=true) indicator_hg = IndicatorHennemannGassner(1.0, 0.0, true, "variable", "cache") @test_nowarn show(stdout, indicator_hg) + limiter_idp = SubcellLimiterIDP(true, [1], 0.1, "cache") + @test_nowarn show(stdout, limiter_idp) + # TODO: TrixiShallowWater: move unit test indicator_hg_swe = IndicatorHennemannGassnerShallowWater(1.0, 0.0, true, "variable", "cache") @test_nowarn show(stdout, indicator_hg_swe) @@ -637,7 +640,7 @@ isdir(outdir) && rm(outdir, recursive=true) for normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for HLL flux (naive): SWE" begin @@ -674,7 +677,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(0.0, 1.0), SVector(0.5, -0.5), SVector(-1.2, 0.3)] - orientations = [1, 2] + orientations = [1, 2] u_values = [SVector(1.0, 0.4, -0.5, 0.1, 1.0, 0.1, -0.2, 0.1, 0.0), SVector(1.5, -0.2, 0.1, 0.2, 5.0, -0.1, 0.1, 0.2, 0.2),] @@ -704,7 +707,7 @@ isdir(outdir) && rm(outdir, recursive=true) for u in u_values, normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for HLL flux with Davis wave speed estimates: CEE" begin @@ -718,7 +721,7 @@ isdir(outdir) && rm(outdir, recursive=true) for orientation in orientations @test flux_hll(u, u, orientation, equations) ≈ flux(u, orientation, equations) end - + equations = CompressibleEulerEquations2D(1.4) u = SVector(1.1, -0.5, 2.34, 5.5) @@ -734,7 +737,7 @@ isdir(outdir) && rm(outdir, recursive=true) for normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end equations = CompressibleEulerEquations3D(1.4) u = SVector(1.1, -0.5, 2.34, 2.4, 5.5) @@ -752,7 +755,7 @@ isdir(outdir) && rm(outdir, recursive=true) for normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for HLL flux with Davis wave speed estimates: LEE" begin @@ -815,7 +818,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(0.0, 1.0), SVector(0.5, -0.5), SVector(-1.2, 0.3)] - orientations = [1, 2] + orientations = [1, 2] u_values = [SVector(1.0, 0.4, -0.5, 0.1, 1.0, 0.1, -0.2, 0.1, 0.0), SVector(1.5, -0.2, 0.1, 0.2, 5.0, -0.1, 0.1, 0.2, 0.2),] @@ -845,7 +848,7 @@ isdir(outdir) && rm(outdir, recursive=true) for u in u_values, normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for HLLE flux: CEE" begin @@ -873,7 +876,7 @@ isdir(outdir) && rm(outdir, recursive=true) for normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end equations = CompressibleEulerEquations3D(1.4) u = SVector(1.1, -0.5, 2.34, 2.4, 5.5) @@ -891,7 +894,7 @@ isdir(outdir) && rm(outdir, recursive=true) for normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for HLLE flux: SWE" begin @@ -907,7 +910,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(0.0, 1.0), SVector(0.5, -0.5), SVector(-1.2, 0.3)] - orientations = [1, 2] + orientations = [1, 2] u = SVector(1, 0.5, 0.5, 0.0) @@ -937,7 +940,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(0.0, 1.0), SVector(0.5, -0.5), SVector(-1.2, 0.3)] - orientations = [1, 2] + orientations = [1, 2] u_values = [SVector(1.0, 0.4, -0.5, 0.1, 1.0, 0.1, -0.2, 0.1, 0.0), SVector(1.5, -0.2, 0.1, 0.2, 5.0, -0.1, 0.1, 0.2, 0.2),] @@ -956,7 +959,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(0.0, 0.0, 1.0), SVector(0.5, -0.5, 0.2), SVector(-1.2, 0.3, 1.4)] - orientations = [1, 2, 3] + orientations = [1, 2, 3] u_values = [SVector(1.0, 0.4, -0.5, 0.1, 1.0, 0.1, -0.2, 0.1, 0.0), SVector(1.5, -0.2, 0.1, 0.2, 5.0, -0.1, 0.1, 0.2, 0.2),] @@ -967,7 +970,7 @@ isdir(outdir) && rm(outdir, recursive=true) for u in u_values, normal_direction in normal_directions @test flux_hll(u, u, normal_direction, equations) ≈ flux(u, normal_direction, equations) - end + end end @timed_testset "Consistency check for Godunov flux" begin @@ -1137,7 +1140,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(-1.2, 0.3)] u_values = [SVector(1.0, 0.5, -0.7, 1.0), SVector(1.5, -0.2, 0.1, 5.0),] - fluxes = [flux_central, flux_ranocha, flux_shima_etal, flux_kennedy_gruber, + fluxes = [flux_central, flux_ranocha, flux_shima_etal, flux_kennedy_gruber, flux_hll, FluxHLL(min_max_speed_davis)] for f_std in fluxes @@ -1157,7 +1160,7 @@ isdir(outdir) && rm(outdir, recursive=true) SVector(-1.2, 0.3, 1.4)] u_values = [SVector(1.0, 0.5, -0.7, 0.1, 1.0), SVector(1.5, -0.2, 0.1, 0.2, 5.0),] - fluxes = [flux_central, flux_ranocha, flux_shima_etal, flux_kennedy_gruber, FluxLMARS(340), + fluxes = [flux_central, flux_ranocha, flux_shima_etal, flux_kennedy_gruber, FluxLMARS(340), flux_hll, FluxHLL(min_max_speed_davis)] for f_std in fluxes @@ -1173,11 +1176,11 @@ isdir(outdir) && rm(outdir, recursive=true) normal_directions = [SVector(1.0, 0.0), SVector(0.0, 1.0), SVector(0.5, -0.5), - SVector(-1.2, 0.3)] + SVector(-1.2, 0.3)] u = SVector(1, 0.5, 0.5, 0.0) - fluxes = [flux_central, flux_fjordholm_etal, flux_wintermeyer_etal, + fluxes = [flux_central, flux_fjordholm_etal, flux_wintermeyer_etal, flux_hll, FluxHLL(min_max_speed_davis), FluxHLL(min_max_speed_einfeldt)] end