From e2c92f32457e22d6f8b766bf1ecd7a25d413cc6e Mon Sep 17 00:00:00 2001 From: Daniel Doehring Date: Thu, 1 Feb 2024 09:35:16 +0100 Subject: [PATCH] Move Jacobian for para P4est to respective files, add muladd (#1807) * Move Jacobian for para P4est to respective files, add muladd * fmt * compare checks without muladd * update test val for muladd * test vals --------- Co-authored-by: Jesse Chan <1156048+jlchan@users.noreply.github.com> --- src/solvers/dgsem_p4est/dg_2d_parabolic.jl | 176 +++++++++++++++------ src/solvers/dgsem_p4est/dg_3d_parabolic.jl | 137 +++++++++++----- src/solvers/dgsem_tree/dg_2d_parabolic.jl | 18 --- src/solvers/dgsem_tree/dg_3d_parabolic.jl | 18 --- test/test_parabolic_2d.jl | 4 +- 5 files changed, 228 insertions(+), 125 deletions(-) diff --git a/src/solvers/dgsem_p4est/dg_2d_parabolic.jl b/src/solvers/dgsem_p4est/dg_2d_parabolic.jl index 299f2f6140a..ed21f371449 100644 --- a/src/solvers/dgsem_p4est/dg_2d_parabolic.jl +++ b/src/solvers/dgsem_p4est/dg_2d_parabolic.jl @@ -1,7 +1,15 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + # This method is called when a SemidiscretizationHyperbolicParabolic is constructed. # It constructs the basic `cache` used throughout the simulation to compute # the RHS etc. -function create_cache_parabolic(mesh::P4estMesh{2}, equations_hyperbolic::AbstractEquations, +function create_cache_parabolic(mesh::P4estMesh{2}, + equations_hyperbolic::AbstractEquations, equations_parabolic::AbstractEquationsParabolic, dg::DG, parabolic_scheme, RealT, uEltype) balance!(mesh) @@ -167,12 +175,14 @@ function calc_gradient!(gradients, u_transformed, t, element) for ii in eachnode(dg) - multiply_add_to_node_vars!(gradients_x, derivative_dhat[ii, i], u_node, + multiply_add_to_node_vars!(gradients_x, derivative_dhat[ii, i], + u_node, equations_parabolic, dg, ii, j, element) end for jj in eachnode(dg) - multiply_add_to_node_vars!(gradients_y, derivative_dhat[jj, j], u_node, + multiply_add_to_node_vars!(gradients_y, derivative_dhat[jj, j], + u_node, equations_parabolic, dg, i, jj, element) end end @@ -185,9 +195,11 @@ function calc_gradient!(gradients, u_transformed, t, Ja21, Ja22 = get_contravariant_vector(2, contravariant_vectors, i, j, element) - gradients_reference_1 = get_node_vars(gradients_x, equations_parabolic, dg, + gradients_reference_1 = get_node_vars(gradients_x, equations_parabolic, + dg, i, j, element) - gradients_reference_2 = get_node_vars(gradients_y, equations_parabolic, dg, + gradients_reference_2 = get_node_vars(gradients_y, equations_parabolic, + dg, i, j, element) # note that the contravariant vectors are transposed compared with computations of flux @@ -199,9 +211,11 @@ function calc_gradient!(gradients, u_transformed, t, gradient_y_node = Ja12 * gradients_reference_1 + Ja22 * gradients_reference_2 - set_node_vars!(gradients_x, gradient_x_node, equations_parabolic, dg, i, j, + set_node_vars!(gradients_x, gradient_x_node, equations_parabolic, dg, i, + j, element) - set_node_vars!(gradients_y, gradient_y_node, equations_parabolic, dg, i, j, + set_node_vars!(gradients_y, gradient_y_node, equations_parabolic, dg, i, + j, element) end end @@ -219,7 +233,8 @@ function calc_gradient!(gradients, u_transformed, t, @trixi_timeit timer() "interface flux" begin calc_interface_flux!(cache_parabolic.elements.surface_flux_values, mesh, False(), # False() = no nonconservative terms - equations_parabolic, dg.surface_integral, dg, cache_parabolic) + equations_parabolic, dg.surface_integral, dg, + cache_parabolic) end # Prolong solution to boundaries @@ -231,7 +246,8 @@ function calc_gradient!(gradients, u_transformed, t, # Calculate boundary fluxes @trixi_timeit timer() "boundary flux" begin calc_boundary_flux_gradients!(cache_parabolic, t, boundary_conditions_parabolic, - mesh, equations_parabolic, dg.surface_integral, dg) + mesh, equations_parabolic, dg.surface_integral, + dg) end # Prolong solution to mortars. This resues the hyperbolic version of `prolong2mortars` @@ -268,70 +284,94 @@ function calc_gradient!(gradients, u_transformed, t, # Compute x-component of gradients # surface at -x - normal_direction_x, _ = get_normal_direction(1, contravariant_vectors, + normal_direction_x, _ = get_normal_direction(1, + contravariant_vectors, 1, l, element) gradients_x[v, 1, l, element] = (gradients_x[v, 1, l, element] + - surface_flux_values[v, l, 1, element] * + surface_flux_values[v, l, 1, + element] * factor_1 * normal_direction_x) # surface at +x - normal_direction_x, _ = get_normal_direction(2, contravariant_vectors, + normal_direction_x, _ = get_normal_direction(2, + contravariant_vectors, nnodes(dg), l, element) - gradients_x[v, nnodes(dg), l, element] = (gradients_x[v, nnodes(dg), l, + gradients_x[v, nnodes(dg), l, element] = (gradients_x[v, nnodes(dg), + l, element] + - surface_flux_values[v, l, 2, + surface_flux_values[v, l, + 2, element] * - factor_2 * normal_direction_x) + factor_2 * + normal_direction_x) # surface at -y - normal_direction_x, _ = get_normal_direction(3, contravariant_vectors, + normal_direction_x, _ = get_normal_direction(3, + contravariant_vectors, l, 1, element) gradients_x[v, l, 1, element] = (gradients_x[v, l, 1, element] + - surface_flux_values[v, l, 3, element] * + surface_flux_values[v, l, 3, + element] * factor_1 * normal_direction_x) # surface at +y - normal_direction_x, _ = get_normal_direction(4, contravariant_vectors, + normal_direction_x, _ = get_normal_direction(4, + contravariant_vectors, l, nnodes(dg), element) - gradients_x[v, l, nnodes(dg), element] = (gradients_x[v, l, nnodes(dg), + gradients_x[v, l, nnodes(dg), element] = (gradients_x[v, l, + nnodes(dg), element] + - surface_flux_values[v, l, 4, + surface_flux_values[v, l, + 4, element] * - factor_2 * normal_direction_x) + factor_2 * + normal_direction_x) # Compute y-component of gradients # surface at -x - _, normal_direction_y = get_normal_direction(1, contravariant_vectors, + _, normal_direction_y = get_normal_direction(1, + contravariant_vectors, 1, l, element) gradients_y[v, 1, l, element] = (gradients_y[v, 1, l, element] + - surface_flux_values[v, l, 1, element] * + surface_flux_values[v, l, 1, + element] * factor_1 * normal_direction_y) # surface at +x - _, normal_direction_y = get_normal_direction(2, contravariant_vectors, + _, normal_direction_y = get_normal_direction(2, + contravariant_vectors, nnodes(dg), l, element) - gradients_y[v, nnodes(dg), l, element] = (gradients_y[v, nnodes(dg), l, + gradients_y[v, nnodes(dg), l, element] = (gradients_y[v, nnodes(dg), + l, element] + - surface_flux_values[v, l, 2, + surface_flux_values[v, l, + 2, element] * - factor_2 * normal_direction_y) + factor_2 * + normal_direction_y) # surface at -y - _, normal_direction_y = get_normal_direction(3, contravariant_vectors, + _, normal_direction_y = get_normal_direction(3, + contravariant_vectors, l, 1, element) gradients_y[v, l, 1, element] = (gradients_y[v, l, 1, element] + - surface_flux_values[v, l, 3, element] * + surface_flux_values[v, l, 3, + element] * factor_1 * normal_direction_y) # surface at +y - _, normal_direction_y = get_normal_direction(4, contravariant_vectors, + _, normal_direction_y = get_normal_direction(4, + contravariant_vectors, l, nnodes(dg), element) - gradients_y[v, l, nnodes(dg), element] = (gradients_y[v, l, nnodes(dg), + gradients_y[v, l, nnodes(dg), element] = (gradients_y[v, l, + nnodes(dg), element] + - surface_flux_values[v, l, 4, + surface_flux_values[v, l, + 4, element] * - factor_2 * normal_direction_y) + factor_2 * + normal_direction_y) end end end @@ -444,24 +484,30 @@ function calc_volume_integral!(du, flux_viscous, @threaded for element in eachelement(dg, cache) # Calculate volume terms in one element for j in eachnode(dg), i in eachnode(dg) - flux1 = get_node_vars(flux_viscous_x, equations_parabolic, dg, i, j, element) - flux2 = get_node_vars(flux_viscous_y, equations_parabolic, dg, i, j, element) + flux1 = get_node_vars(flux_viscous_x, equations_parabolic, dg, i, j, + element) + flux2 = get_node_vars(flux_viscous_y, equations_parabolic, dg, i, j, + element) # Compute the contravariant flux by taking the scalar product of the # first contravariant vector Ja^1 and the flux vector - Ja11, Ja12 = get_contravariant_vector(1, contravariant_vectors, i, j, element) + Ja11, Ja12 = get_contravariant_vector(1, contravariant_vectors, i, j, + element) contravariant_flux1 = Ja11 * flux1 + Ja12 * flux2 for ii in eachnode(dg) - multiply_add_to_node_vars!(du, derivative_dhat[ii, i], contravariant_flux1, + multiply_add_to_node_vars!(du, derivative_dhat[ii, i], + contravariant_flux1, equations_parabolic, dg, ii, j, element) end # Compute the contravariant flux by taking the scalar product of the # second contravariant vector Ja^2 and the flux vector - Ja21, Ja22 = get_contravariant_vector(2, contravariant_vectors, i, j, element) + Ja21, Ja22 = get_contravariant_vector(2, contravariant_vectors, i, j, + element) contravariant_flux2 = Ja21 * flux1 + Ja22 * flux2 for jj in eachnode(dg) - multiply_add_to_node_vars!(du, derivative_dhat[jj, j], contravariant_flux2, + multiply_add_to_node_vars!(du, derivative_dhat[jj, j], + contravariant_flux2, equations_parabolic, dg, i, jj, element) end end @@ -503,7 +549,8 @@ function prolong2interfaces!(cache_parabolic, flux_viscous, # this is the outward normal direction on the primary element normal_direction = get_normal_direction(primary_direction, contravariant_vectors, - i_primary, j_primary, primary_element) + i_primary, j_primary, + primary_element) for v in eachvariable(equations_parabolic) # OBS! `interfaces.u` stores the interpolated *fluxes* and *not the solution*! @@ -602,7 +649,8 @@ function calc_interface_flux!(surface_flux_values, # primary element. We assume a BR-1 type of flux. viscous_flux_normal_ll, viscous_flux_normal_rr = get_surface_node_vars(cache_parabolic.interfaces.u, equations_parabolic, - dg, node, + dg, + node, interface) flux = 0.5 * (viscous_flux_normal_ll + viscous_flux_normal_rr) @@ -624,9 +672,11 @@ function calc_interface_flux!(surface_flux_values, end function prolong2mortars_divergence!(cache, flux_viscous::Vector{Array{uEltype, 4}}, - mesh::Union{P4estMesh{2}, T8codeMesh{2}}, equations, + mesh::Union{P4estMesh{2}, T8codeMesh{2}}, + equations, mortar_l2::LobattoLegendreMortarL2, - surface_integral, dg::DGSEM) where {uEltype <: Real} + surface_integral, + dg::DGSEM) where {uEltype <: Real} @unpack neighbor_ids, node_indices = cache.mortars @unpack contravariant_vectors = cache.elements index_range = eachnode(dg) @@ -683,7 +733,8 @@ function prolong2mortars_divergence!(cache, flux_viscous::Vector{Array{uEltype, j_large = j_large_start element = neighbor_ids[3, mortar] for i in eachnode(dg) - normal_direction = get_normal_direction(direction_index, contravariant_vectors, + normal_direction = get_normal_direction(direction_index, + contravariant_vectors, i_large, j_large, element) for v in eachvariable(equations) @@ -732,8 +783,10 @@ function calc_mortar_flux_divergence!(surface_flux_values, for position in 1:2 for node in eachnode(dg) for v in eachvariable(equations) - viscous_flux_normal_ll = cache.mortars.u[1, v, position, node, mortar] - viscous_flux_normal_rr = cache.mortars.u[2, v, position, node, mortar] + viscous_flux_normal_ll = cache.mortars.u[1, v, position, node, + mortar] + viscous_flux_normal_rr = cache.mortars.u[2, v, position, node, + mortar] # TODO: parabolic; only BR1 at the moment fstar[position][v, node] = 0.5 * (viscous_flux_normal_ll + @@ -824,7 +877,8 @@ end function calc_boundary_flux_gradients!(cache, t, boundary_condition::Union{BoundaryConditionPeriodic, BoundaryConditionDoNothing}, - mesh::P4estMesh, equations, surface_integral, dg::DG) + mesh::P4estMesh, equations, surface_integral, + dg::DG) @assert isempty(eachboundary(dg, cache)) end @@ -913,7 +967,8 @@ function calc_boundary_flux!(cache, t, boundary_index) # Outward-pointing normal direction (not normalized) - normal_direction = get_normal_direction(direction_index, contravariant_vectors, + normal_direction = get_normal_direction(direction_index, + contravariant_vectors, i_node, j_node, element) # TODO: revisit if we want more general boundary treatments. @@ -922,11 +977,13 @@ function calc_boundary_flux!(cache, t, flux_inner = u_inner # Coordinates at boundary node - x = get_node_coords(node_coordinates, equations_parabolic, dg, i_node, j_node, + x = get_node_coords(node_coordinates, equations_parabolic, dg, i_node, + j_node, element) flux_ = boundary_condition_parabolic(flux_inner, u_inner, normal_direction, - x, t, operator_type, equations_parabolic) + x, t, operator_type, + equations_parabolic) # Copy flux to element storage in the correct orientation for v in eachvariable(equations_parabolic) @@ -938,3 +995,22 @@ function calc_boundary_flux!(cache, t, end end end + +function apply_jacobian_parabolic!(du, mesh::P4estMesh{2}, + equations::AbstractEquationsParabolic, + dg::DG, cache) + @unpack inverse_jacobian = cache.elements + + @threaded for element in eachelement(dg, cache) + for j in eachnode(dg), i in eachnode(dg) + factor = inverse_jacobian[i, j, element] + + for v in eachvariable(equations) + du[v, i, j, element] *= factor + end + end + end + + return nothing +end +end # @muladd diff --git a/src/solvers/dgsem_p4est/dg_3d_parabolic.jl b/src/solvers/dgsem_p4est/dg_3d_parabolic.jl index 83d663809a7..63d431d35d5 100644 --- a/src/solvers/dgsem_p4est/dg_3d_parabolic.jl +++ b/src/solvers/dgsem_p4est/dg_3d_parabolic.jl @@ -1,7 +1,15 @@ +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin +#! format: noindent + # This method is called when a SemidiscretizationHyperbolicParabolic is constructed. # It constructs the basic `cache` used throughout the simulation to compute # the RHS etc. -function create_cache_parabolic(mesh::P4estMesh{3}, equations_hyperbolic::AbstractEquations, +function create_cache_parabolic(mesh::P4estMesh{3}, + equations_hyperbolic::AbstractEquations, equations_parabolic::AbstractEquationsParabolic, dg::DG, parabolic_scheme, RealT, uEltype) balance!(mesh) @@ -73,11 +81,14 @@ function calc_gradient!(gradients, u_transformed, t, Ja31, Ja32, Ja33 = get_contravariant_vector(3, contravariant_vectors, i, j, k, element) - gradients_reference_1 = get_node_vars(gradients_x, equations_parabolic, dg, + gradients_reference_1 = get_node_vars(gradients_x, equations_parabolic, + dg, i, j, k, element) - gradients_reference_2 = get_node_vars(gradients_y, equations_parabolic, dg, + gradients_reference_2 = get_node_vars(gradients_y, equations_parabolic, + dg, i, j, k, element) - gradients_reference_3 = get_node_vars(gradients_z, equations_parabolic, dg, + gradients_reference_3 = get_node_vars(gradients_z, equations_parabolic, + dg, i, j, k, element) # note that the contravariant vectors are transposed compared with computations of flux @@ -115,7 +126,8 @@ function calc_gradient!(gradients, u_transformed, t, @trixi_timeit timer() "interface flux" begin calc_interface_flux!(cache_parabolic.elements.surface_flux_values, mesh, False(), # False() = no nonconservative terms - equations_parabolic, dg.surface_integral, dg, cache_parabolic) + equations_parabolic, dg.surface_integral, dg, + cache_parabolic) end # Prolong solution to boundaries @@ -127,7 +139,8 @@ function calc_gradient!(gradients, u_transformed, t, # Calculate boundary fluxes @trixi_timeit timer() "boundary flux" begin calc_boundary_flux_gradients!(cache_parabolic, t, boundary_conditions_parabolic, - mesh, equations_parabolic, dg.surface_integral, dg) + mesh, equations_parabolic, dg.surface_integral, + dg) end # Prolong solution to mortars. These should reuse the hyperbolic version of `prolong2mortars` @@ -165,7 +178,8 @@ function calc_gradient!(gradients, u_transformed, t, for dim in 1:3 grad = gradients[dim] # surface at -x - normal_direction = get_normal_direction(1, contravariant_vectors, + normal_direction = get_normal_direction(1, + contravariant_vectors, 1, l, m, element) grad[v, 1, l, m, element] = (grad[v, 1, l, m, element] + surface_flux_values[v, l, m, 1, @@ -173,18 +187,22 @@ function calc_gradient!(gradients, u_transformed, t, factor_1 * normal_direction[dim]) # surface at +x - normal_direction = get_normal_direction(2, contravariant_vectors, - nnodes(dg), l, m, element) + normal_direction = get_normal_direction(2, + contravariant_vectors, + nnodes(dg), l, m, + element) grad[v, nnodes(dg), l, m, element] = (grad[v, nnodes(dg), l, m, element] + - surface_flux_values[v, l, m, + surface_flux_values[v, l, + m, 2, element] * factor_2 * normal_direction[dim]) # surface at -y - normal_direction = get_normal_direction(3, contravariant_vectors, + normal_direction = get_normal_direction(3, + contravariant_vectors, l, m, 1, element) grad[v, l, 1, m, element] = (grad[v, l, 1, m, element] + surface_flux_values[v, l, m, 3, @@ -192,18 +210,22 @@ function calc_gradient!(gradients, u_transformed, t, factor_1 * normal_direction[dim]) # surface at +y - normal_direction = get_normal_direction(4, contravariant_vectors, - l, nnodes(dg), m, element) + normal_direction = get_normal_direction(4, + contravariant_vectors, + l, nnodes(dg), m, + element) grad[v, l, nnodes(dg), m, element] = (grad[v, l, nnodes(dg), m, element] + - surface_flux_values[v, l, m, + surface_flux_values[v, l, + m, 4, element] * factor_2 * normal_direction[dim]) # surface at -z - normal_direction = get_normal_direction(5, contravariant_vectors, + normal_direction = get_normal_direction(5, + contravariant_vectors, l, m, 1, element) grad[v, l, m, 1, element] = (grad[v, l, m, 1, element] + surface_flux_values[v, l, m, 5, @@ -211,11 +233,14 @@ function calc_gradient!(gradients, u_transformed, t, factor_1 * normal_direction[dim]) # surface at +z - normal_direction = get_normal_direction(6, contravariant_vectors, - l, m, nnodes(dg), element) + normal_direction = get_normal_direction(6, + contravariant_vectors, + l, m, nnodes(dg), + element) grad[v, l, m, nnodes(dg), element] = (grad[v, l, m, nnodes(dg), element] + - surface_flux_values[v, l, m, + surface_flux_values[v, l, + m, 6, element] * factor_2 * @@ -366,37 +391,46 @@ function calc_volume_integral!(du, flux_viscous, @threaded for element in eachelement(dg, cache) # Calculate volume terms in one element for k in eachnode(dg), j in eachnode(dg), i in eachnode(dg) - flux1 = get_node_vars(flux_viscous_x, equations_parabolic, dg, i, j, k, element) - flux2 = get_node_vars(flux_viscous_y, equations_parabolic, dg, i, j, k, element) - flux3 = get_node_vars(flux_viscous_z, equations_parabolic, dg, i, j, k, element) + flux1 = get_node_vars(flux_viscous_x, equations_parabolic, dg, i, j, k, + element) + flux2 = get_node_vars(flux_viscous_y, equations_parabolic, dg, i, j, k, + element) + flux3 = get_node_vars(flux_viscous_z, equations_parabolic, dg, i, j, k, + element) # Compute the contravariant flux by taking the scalar product of the # first contravariant vector Ja^1 and the flux vector - Ja11, Ja12, Ja13 = get_contravariant_vector(1, contravariant_vectors, i, j, k, + Ja11, Ja12, Ja13 = get_contravariant_vector(1, contravariant_vectors, i, j, + k, element) contravariant_flux1 = Ja11 * flux1 + Ja12 * flux2 + Ja13 * flux3 for ii in eachnode(dg) - multiply_add_to_node_vars!(du, derivative_dhat[ii, i], contravariant_flux1, + multiply_add_to_node_vars!(du, derivative_dhat[ii, i], + contravariant_flux1, equations_parabolic, dg, ii, j, k, element) end # Compute the contravariant flux by taking the scalar product of the # second contravariant vector Ja^2 and the flux vector - Ja21, Ja22, Ja23 = get_contravariant_vector(2, contravariant_vectors, i, j, k, + Ja21, Ja22, Ja23 = get_contravariant_vector(2, contravariant_vectors, i, j, + k, element) contravariant_flux2 = Ja21 * flux1 + Ja22 * flux2 + Ja23 * flux3 for jj in eachnode(dg) - multiply_add_to_node_vars!(du, derivative_dhat[jj, j], contravariant_flux2, + multiply_add_to_node_vars!(du, derivative_dhat[jj, j], + contravariant_flux2, equations_parabolic, dg, i, jj, k, element) end # Compute the contravariant flux by taking the scalar product of the # second contravariant vector Ja^2 and the flux vector - Ja31, Ja32, Ja33 = get_contravariant_vector(3, contravariant_vectors, i, j, k, + Ja31, Ja32, Ja33 = get_contravariant_vector(3, contravariant_vectors, i, j, + k, element) contravariant_flux3 = Ja31 * flux1 + Ja32 * flux2 + Ja33 * flux3 for kk in eachnode(dg) - multiply_add_to_node_vars!(du, derivative_dhat[kk, k], contravariant_flux3, + multiply_add_to_node_vars!(du, derivative_dhat[kk, k], + contravariant_flux3, equations_parabolic, dg, i, j, kk, element) end end @@ -574,7 +608,8 @@ function calc_interface_flux!(surface_flux_values, viscous_flux_normal_ll, viscous_flux_normal_rr = get_surface_node_vars(cache_parabolic.interfaces.u, equations_parabolic, dg, - i, j, + i, + j, interface) flux = 0.5 * (viscous_flux_normal_ll + viscous_flux_normal_rr) @@ -606,7 +641,8 @@ function calc_interface_flux!(surface_flux_values, end function prolong2mortars_divergence!(cache, flux_viscous, - mesh::Union{P4estMesh{3}, T8codeMesh{3}}, equations, + mesh::Union{P4estMesh{3}, T8codeMesh{3}}, + equations, mortar_l2::LobattoLegendreMortarL2, surface_integral, dg::DGSEM) @unpack neighbor_ids, node_indices = cache.mortars @@ -642,11 +678,14 @@ function prolong2mortars_divergence!(cache, flux_viscous, element) for v in eachvariable(equations) - flux_viscous = SVector(flux_viscous_x[v, i_small, j_small, k_small, + flux_viscous = SVector(flux_viscous_x[v, i_small, j_small, + k_small, element], - flux_viscous_y[v, i_small, j_small, k_small, + flux_viscous_y[v, i_small, j_small, + k_small, element], - flux_viscous_z[v, i_small, j_small, k_small, + flux_viscous_z[v, i_small, j_small, + k_small, element]) cache.mortars.u[1, v, position, i, j, mortar] = dot(flux_viscous, @@ -688,7 +727,8 @@ function prolong2mortars_divergence!(cache, flux_viscous, for i in eachnode(dg) normal_direction = get_normal_direction(direction_index, contravariant_vectors, - i_large, j_large, k_large, element) + i_large, j_large, k_large, + element) for v in eachvariable(equations) flux_viscous = SVector(flux_viscous_x[v, i_large, j_large, k_large, @@ -827,7 +867,8 @@ end # TODO: parabolic; only BR1 at the moment flux_ = 0.5 * (u_ll + u_rr) # Copy flux to buffer - set_node_vars!(fstar, flux_, equations, dg, i_node_index, j_node_index, position_index) + set_node_vars!(fstar, flux_, equations, dg, i_node_index, j_node_index, + position_index) end # TODO: parabolic, finish implementing `calc_boundary_flux_gradients!` and `calc_boundary_flux_divergence!` @@ -862,7 +903,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, for j in eachnode(dg) for i in eachnode(dg) # this is the outward normal direction on the primary element - normal_direction = get_normal_direction(direction, contravariant_vectors, + normal_direction = get_normal_direction(direction, + contravariant_vectors, i_node, j_node, k_node, element) for v in eachvariable(equations_parabolic) @@ -873,7 +915,8 @@ function prolong2boundaries!(cache_parabolic, flux_viscous, flux_viscous_z[v, i_node, j_node, k_node, element]) - boundaries.u[v, i, j, boundary] = dot(flux_viscous, normal_direction) + boundaries.u[v, i, j, boundary] = dot(flux_viscous, + normal_direction) end i_node += i_node_step_i j_node += j_node_step_i @@ -940,7 +983,8 @@ function calc_boundary_flux!(cache, t, j_node, k_node, element) - flux_ = boundary_condition_parabolic(flux_inner, u_inner, normal_direction, + flux_ = boundary_condition_parabolic(flux_inner, u_inner, + normal_direction, x, t, operator_type, equations_parabolic) @@ -959,3 +1003,22 @@ function calc_boundary_flux!(cache, t, end end end + +function apply_jacobian_parabolic!(du, mesh::P4estMesh{3}, + equations::AbstractEquationsParabolic, + dg::DG, cache) + @unpack inverse_jacobian = cache.elements + + @threaded for element in eachelement(dg, cache) + for k in eachnode(dg), j in eachnode(dg), i in eachnode(dg) + factor = inverse_jacobian[i, j, k, element] + + for v in eachvariable(equations) + du[v, i, j, k, element] *= factor + end + end + end + + return nothing +end +end # @muladd diff --git a/src/solvers/dgsem_tree/dg_2d_parabolic.jl b/src/solvers/dgsem_tree/dg_2d_parabolic.jl index b1c27343999..a6c962e03cd 100644 --- a/src/solvers/dgsem_tree/dg_2d_parabolic.jl +++ b/src/solvers/dgsem_tree/dg_2d_parabolic.jl @@ -951,22 +951,4 @@ function apply_jacobian_parabolic!(du, mesh::TreeMesh{2}, return nothing end - -function apply_jacobian_parabolic!(du, mesh::P4estMesh{2}, - equations::AbstractEquationsParabolic, - dg::DG, cache) - @unpack inverse_jacobian = cache.elements - - @threaded for element in eachelement(dg, cache) - for j in eachnode(dg), i in eachnode(dg) - factor = inverse_jacobian[i, j, element] - - for v in eachvariable(equations) - du[v, i, j, element] *= factor - end - end - end - - return nothing -end end # @muladd diff --git a/src/solvers/dgsem_tree/dg_3d_parabolic.jl b/src/solvers/dgsem_tree/dg_3d_parabolic.jl index ee0e7c6b069..d5504744742 100644 --- a/src/solvers/dgsem_tree/dg_3d_parabolic.jl +++ b/src/solvers/dgsem_tree/dg_3d_parabolic.jl @@ -1033,22 +1033,4 @@ function apply_jacobian_parabolic!(du, mesh::TreeMesh{3}, return nothing end - -function apply_jacobian_parabolic!(du, mesh::P4estMesh{3}, - equations::AbstractEquationsParabolic, - dg::DG, cache) - @unpack inverse_jacobian = cache.elements - - @threaded for element in eachelement(dg, cache) - for k in eachnode(dg), j in eachnode(dg), i in eachnode(dg) - factor = inverse_jacobian[i, j, k, element] - - for v in eachvariable(equations) - du[v, i, j, k, element] *= factor - end - end - end - - return nothing -end end # @muladd diff --git a/test/test_parabolic_2d.jl b/test/test_parabolic_2d.jl index 6632cd0bb27..f7185a1a904 100644 --- a/test/test_parabolic_2d.jl +++ b/test/test_parabolic_2d.jl @@ -561,8 +561,8 @@ end @test_trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_advection_diffusion_nonperiodic_amr.jl"), tspan=(0.0, 0.01), - l2=[0.00793438523666649], - linf=[0.11030633127144573]) + l2=[0.007933791324450538], + linf=[0.11029480573492567]) # Ensure that we do not have excessive memory allocations # (e.g., from type instabilities) let