diff --git a/examples/unstructured_2d_fdsbp/elixir_euler_convergence.jl b/examples/unstructured_2d_fdsbp/elixir_euler_convergence.jl new file mode 100644 index 00000000000..23c07b3300b --- /dev/null +++ b/examples/unstructured_2d_fdsbp/elixir_euler_convergence.jl @@ -0,0 +1,64 @@ + +using Downloads: download +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +initial_condition = initial_condition_convergence_test + +############################################################################### +# Get the FDSBP approximation operator + +D_SBP = derivative_operator(SummationByPartsOperators.MattssonNordström2004(), + derivative_order=1, accuracy_order=4, + xmin=-1.0, xmax=1.0, N=12) +solver = FDSBP(D_SBP, + surface_integral=SurfaceIntegralStrongForm(flux_lax_friedrichs), + volume_integral=VolumeIntegralStrongForm()) + +############################################################################### +# Get the curved quad mesh from a file (downloads the file if not available locally) + +default_mesh_file = joinpath(@__DIR__, "mesh_periodic_square_with_twist.mesh") +isfile(default_mesh_file) || download("https://gist.githubusercontent.com/andrewwinters5000/12ce661d7c354c3d94c74b964b0f1c96/raw/8275b9a60c6e7ebbdea5fc4b4f091c47af3d5273/mesh_periodic_square_with_twist.mesh", + default_mesh_file) +mesh_file = default_mesh_file + +mesh = UnstructuredMesh2D(mesh_file, periodicity=true) + +############################################################################### +# create the semi discretization object + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + source_terms=source_terms_convergence_test) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=100, + save_initial_solution=true, + save_final_solution=true) + +callbacks = CallbackSet(summary_callback, analysis_callback, + alive_callback, save_solution) + +############################################################################### +# run the simulation + +sol = solve(ode, SSPRK43(), abstol=1.0e-9, reltol=1.0e-9, + save_everystep=false, callback=callbacks) +summary_callback() # print the timer summary diff --git a/examples/unstructured_2d_fdsbp/elixir_euler_convergence_upwind.jl b/examples/unstructured_2d_fdsbp/elixir_euler_convergence_upwind.jl new file mode 100644 index 00000000000..261483a8edd --- /dev/null +++ b/examples/unstructured_2d_fdsbp/elixir_euler_convergence_upwind.jl @@ -0,0 +1,111 @@ + +using Downloads: download +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +# Modify the manufactured solution test to use `L = sqrt(2)` in the initial and source terms +# such that testing works on the flipped mesh +function initial_condition_convergence_upwind(x, t, equations::CompressibleEulerEquations2D) + c = 2 + A = 0.1 + L = sqrt(2) + f = 1/L + ω = 2 * pi * f + ini = c + A * sin(ω * (x[1] + x[2] - t)) + + rho = ini + rho_v1 = ini + rho_v2 = ini + rho_e = ini^2 + + return SVector(rho, rho_v1, rho_v2, rho_e) +end + +@inline function source_terms_convergence_upwind(u, x, t, equations::CompressibleEulerEquations2D) + # Same settings as in `initial_condition` + c = 2 + A = 0.1 + L = sqrt(2) + f = 1/L + ω = 2 * pi * f + γ = equations.gamma + + x1, x2 = x + si, co = sincos(ω * (x1 + x2 - t)) + rho = c + A * si + rho_x = ω * A * co + # Note that d/dt rho = -d/dx rho = -d/dy rho. + + tmp = (2 * rho - 1) * (γ - 1) + + du1 = rho_x + du2 = rho_x * (1 + tmp) + du3 = du2 + du4 = 2 * rho_x * (rho + tmp) + + return SVector(du1, du2, du3, du4) +end + +initial_condition = initial_condition_convergence_upwind + +############################################################################### +# Get the FDSBP approximation operator + +D_upw = upwind_operators(SummationByPartsOperators.Mattsson2017, + derivative_order=1, + accuracy_order=4, + xmin=-1.0, xmax=1.0, + N=10) + +flux_splitting = splitting_lax_friedrichs +solver = FDSBP(D_upw, + surface_integral=SurfaceIntegralStrongForm(FluxUpwind(flux_splitting)), + volume_integral=VolumeIntegralUpwind(flux_splitting)) + +############################################################################### +# Get the curved quad mesh from a file (downloads the file if not available locally) +default_mesh_file = joinpath(@__DIR__, "mesh_multiple_flips.mesh") +isfile(default_mesh_file) || download("https://gist.githubusercontent.com/andrewwinters5000/b434e724e3972a9c4ee48d58c80cdcdb/raw/9a967f066bc5bf081e77ef2519b3918e40a964ed/mesh_multiple_flips.mesh", + default_mesh_file) + +mesh_file = default_mesh_file + +mesh = UnstructuredMesh2D(mesh_file, periodicity=true) + +############################################################################### +# create the semi discretization object + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + source_terms=source_terms_convergence_upwind) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=100, + save_initial_solution=true, + save_final_solution=true) + +callbacks = CallbackSet(summary_callback, analysis_callback, + alive_callback, save_solution) + +############################################################################### +# run the simulation + +sol = solve(ode, SSPRK43(), abstol=1.0e-9, reltol=1.0e-9, + save_everystep=false, callback=callbacks) +summary_callback() # print the timer summary diff --git a/examples/unstructured_2d_fdsbp/elixir_euler_free_stream.jl b/examples/unstructured_2d_fdsbp/elixir_euler_free_stream.jl new file mode 100644 index 00000000000..e9aa345e80a --- /dev/null +++ b/examples/unstructured_2d_fdsbp/elixir_euler_free_stream.jl @@ -0,0 +1,76 @@ + +using Downloads: download +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +# Free-stream initial condition +initial_condition = initial_condition_constant + +# Boundary conditions for free-stream testing +boundary_condition_free_stream = BoundaryConditionDirichlet(initial_condition) +boundary_conditions = Dict( :Body => boundary_condition_free_stream, + :Button1 => boundary_condition_free_stream, + :Button2 => boundary_condition_free_stream, + :Eye1 => boundary_condition_free_stream, + :Eye2 => boundary_condition_free_stream, + :Smile => boundary_condition_free_stream, + :Bowtie => boundary_condition_free_stream ) + +############################################################################### +# Get the FDSBP approximation space + +D_SBP = derivative_operator(SummationByPartsOperators.MattssonNordström2004(), + derivative_order=1, accuracy_order=4, + xmin=-1.0, xmax=1.0, N=9) +solver = FDSBP(D_SBP, + surface_integral=SurfaceIntegralStrongForm(flux_hll), + volume_integral=VolumeIntegralStrongForm()) + +############################################################################### +# Get the curved quad mesh from a file (downloads the file if not available locally) + +default_mesh_file = joinpath(@__DIR__, "mesh_gingerbread_man.mesh") +isfile(default_mesh_file) || download("https://gist.githubusercontent.com/andrewwinters5000/2c6440b5f8a57db131061ad7aa78ee2b/raw/1f89fdf2c874ff678c78afb6fe8dc784bdfd421f/mesh_gingerbread_man.mesh", + default_mesh_file) +mesh_file = default_mesh_file + +mesh = UnstructuredMesh2D(mesh_file) + +############################################################################### +# create the semi discretization object + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions=boundary_conditions) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 5.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=100, + save_initial_solution=true, + save_final_solution=true) + +callbacks = CallbackSet(summary_callback, analysis_callback, + alive_callback, save_solution) + +############################################################################### +# run the simulation + +# set small tolerances for the free-stream preservation test +sol = solve(ode, SSPRK43(), abstol=1.0e-12, reltol=1.0e-12, + save_everystep=false, callback=callbacks) +summary_callback() # print the timer summary diff --git a/examples/unstructured_2d_fdsbp/elixir_euler_free_stream_upwind.jl b/examples/unstructured_2d_fdsbp/elixir_euler_free_stream_upwind.jl new file mode 100644 index 00000000000..59e44376cd4 --- /dev/null +++ b/examples/unstructured_2d_fdsbp/elixir_euler_free_stream_upwind.jl @@ -0,0 +1,78 @@ + +using Downloads: download +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +# Free-stream initial condition +initial_condition = initial_condition_constant + +# Boundary conditions for free-stream testing +boundary_condition_free_stream = BoundaryConditionDirichlet(initial_condition) + +boundary_conditions = Dict( :Top => boundary_condition_free_stream, + :Bottom => boundary_condition_free_stream, + :Right => boundary_condition_free_stream, + :Left => boundary_condition_free_stream ) + +############################################################################### +# Get the Upwind FDSBP approximation space + +D_upw = upwind_operators(SummationByPartsOperators.Mattsson2017, + derivative_order=1, + accuracy_order=4, + xmin=-1.0, xmax=1.0, + N=9) + +flux_splitting = splitting_lax_friedrichs +solver = FDSBP(D_upw, + surface_integral=SurfaceIntegralStrongForm(FluxUpwind(flux_splitting)), + volume_integral=VolumeIntegralUpwind(flux_splitting)) + +############################################################################### +# Get the curved quad mesh from a file (downloads the file if not available locally) +default_mesh_file = joinpath(@__DIR__, "mesh_multiple_flips.mesh") +isfile(default_mesh_file) || download("https://gist.githubusercontent.com/andrewwinters5000/b434e724e3972a9c4ee48d58c80cdcdb/raw/9a967f066bc5bf081e77ef2519b3918e40a964ed/mesh_multiple_flips.mesh", + default_mesh_file) + +mesh_file = default_mesh_file + +mesh = UnstructuredMesh2D(mesh_file) + +############################################################################### +# create the semi discretization object + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions=boundary_conditions) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 5.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval=analysis_interval) + +alive_callback = AliveCallback(analysis_interval=analysis_interval) + +save_solution = SaveSolutionCallback(interval=1000, + save_initial_solution=true, + save_final_solution=true) + +callbacks = CallbackSet(summary_callback, analysis_callback, + alive_callback, save_solution) + +############################################################################### +# run the simulation + +# set small tolerances for the free-stream preservation test +sol = solve(ode, SSPRK43(), abstol=1.0e-12, reltol=1.0e-12, + save_everystep=false, callback=callbacks) +summary_callback() # print the timer summary diff --git a/src/equations/compressible_euler_2d.jl b/src/equations/compressible_euler_2d.jl index 65d5310d5b1..be9fa4eb0b2 100644 --- a/src/equations/compressible_euler_2d.jl +++ b/src/equations/compressible_euler_2d.jl @@ -780,7 +780,7 @@ end rho_2gamma = 0.5 * rho / equations.gamma f1m = rho_2gamma * alpha_m f2m = rho_2gamma * alpha_m * v1 - f3m = rho_2gamma * (alpha_m * v2 + a * (lambda2_m-lambda3_m)) + f3m = rho_2gamma * (alpha_m * v2 + a * (lambda2_m - lambda3_m)) f4m = rho_2gamma * (alpha_m * 0.5 * (v1^2 + v2^2) + a * v2 * (lambda2_m - lambda3_m) + a^2 * (lambda2_m + lambda3_m) * equations.inv_gamma_minus_one) end @@ -970,6 +970,46 @@ end return SVector(f1m, f2m, f3m, f4m) end +@inline function splitting_lax_friedrichs(u, ::Val{:plus}, normal_direction::AbstractVector, + equations::CompressibleEulerEquations2D) + rho, rho_v1, rho_v2, rho_e = u + v1 = rho_v1 / rho + v2 = rho_v2 / rho + v_dot_n = normal_direction[1] * v1 + normal_direction[2] * v2 + p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1 * v1 + rho_v2 * v2)) + + a = sqrt(equations.gamma * p / rho) + H = (rho_e + p) / rho + lambda = 0.5 * (v_dot_n + a * norm(normal_direction)) + + f1p = 0.5 * rho * v_dot_n + lambda * u[1] + f2p = 0.5 * rho * v_dot_n * v1 + 0.5 * p * normal_direction[1] + lambda * u[2] + f3p = 0.5 * rho * v_dot_n * v2 + 0.5 * p * normal_direction[2] + lambda * u[3] + f4p = 0.5 * rho * v_dot_n * H + lambda * u[4] + + return SVector(f1p, f2p, f3p, f4p) +end + +@inline function splitting_lax_friedrichs(u, ::Val{:minus}, normal_direction::AbstractVector, + equations::CompressibleEulerEquations2D) + rho, rho_v1, rho_v2, rho_e = u + v1 = rho_v1 / rho + v2 = rho_v2 / rho + v_dot_n = normal_direction[1] * v1 + normal_direction[2] * v2 + p = (equations.gamma - 1) * (rho_e - 0.5 * (rho_v1 * v1 + rho_v2 * v2)) + + a = sqrt(equations.gamma * p / rho) + H = (rho_e + p) / rho + lambda = 0.5 * (v_dot_n + a * norm(normal_direction)) + + f1m = 0.5 * rho * v_dot_n - lambda * u[1] + f2m = 0.5 * rho * v_dot_n * v1 + 0.5 * p * normal_direction[1] - lambda * u[2] + f3m = 0.5 * rho * v_dot_n * v2 + 0.5 * p * normal_direction[2] - lambda * u[3] + f4m = 0.5 * rho * v_dot_n * H - lambda * u[4] + + return SVector(f1m, f2m, f3m, f4m) +end + # Calculate maximum wave speed for local Lax-Friedrichs-type dissipation as the # maximum velocity magnitude plus the maximum speed of sound diff --git a/src/equations/numerical_fluxes.jl b/src/equations/numerical_fluxes.jl index ff9596848bb..31722bfc4d9 100644 --- a/src/equations/numerical_fluxes.jl +++ b/src/equations/numerical_fluxes.jl @@ -333,13 +333,25 @@ struct FluxUpwind{Splitting} splitting::Splitting end -@inline function (numflux::FluxUpwind)(u_ll, u_rr, orientation::Int, equations) +@inline function (numflux::FluxUpwind)(u_ll, u_rr, orientation, equations) @unpack splitting = numflux fm = splitting(u_rr, Val{:minus}(), orientation, equations) fp = splitting(u_ll, Val{:plus}(), orientation, equations) return fm + fp end +# TODO: FD. Works properly for `splitting_lax_friedrichs` but needs further +# testing for other splittings. +@inline function (numflux::FluxUpwind)(u_ll, u_rr, normal_direction::AbstractVector, + equations::AbstractEquations{2}) + @unpack splitting = numflux + # Compute splitting in generic normal direction with specialized + # eigenvalues estimates calculated inside the `splitting` function + f_tilde_m = splitting(u_rr, Val{:minus}(), normal_direction, equations) + f_tilde_p = splitting(u_ll, Val{:plus}() , normal_direction, equations) + return f_tilde_m + f_tilde_p +end + Base.show(io::IO, f::FluxUpwind) = print(io, "FluxUpwind(", f.splitting, ")") diff --git a/src/solvers/dg.jl b/src/solvers/dg.jl index f18fbca178a..5f644c2afed 100644 --- a/src/solvers/dg.jl +++ b/src/solvers/dg.jl @@ -349,7 +349,7 @@ function Base.show(io::IO, mime::MIME"text/plain", dg::DG) summary_line(io, "surface integral", dg.surface_integral |> typeof |> nameof) show(increment_indent(io), mime, dg.surface_integral) summary_line(io, "volume integral", dg.volume_integral |> typeof |> nameof) - if !(dg.volume_integral isa VolumeIntegralWeakForm) + if !(dg.volume_integral isa VolumeIntegralWeakForm) && !(dg.volume_integral isa VolumeIntegralStrongForm) show(increment_indent(io), mime, dg.volume_integral) end summary_footer(io) @@ -638,6 +638,7 @@ include("dgsem_p4est/dg.jl") # and boundary conditions weakly. Thus, these methods can re-use a lot of # functionality implemented for DGSEM. include("fdsbp_tree/fdsbp.jl") +include("fdsbp_unstructured/fdsbp.jl") end # @muladd diff --git a/src/solvers/dgsem_unstructured/containers_2d.jl b/src/solvers/dgsem_unstructured/containers_2d.jl index f1fda031ee9..31cb2228b1a 100644 --- a/src/solvers/dgsem_unstructured/containers_2d.jl +++ b/src/solvers/dgsem_unstructured/containers_2d.jl @@ -4,6 +4,92 @@ # See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. @muladd begin +###################################################################################################### +# TODO: FD; where should this live? Want to put it into `solvers/fdsbp_unstructured/containers_2d.jl` +# but then dispatching is not possible to reuse functionality for interfaces/boundaries here +# unless the FDSBP solver files are included before the DG files, which seems strange. +# Container data structure (structure-of-arrays style) for FDSBP upwind solver elements on curved unstructured mesh +struct UpwindElementContainer2D{RealT<:Real, uEltype<:Real} + node_coordinates ::Array{RealT, 4} # [ndims, nnodes, nnodes, nelement] + jacobian_matrix ::Array{RealT, 5} # [ndims, ndims, nnodes, nnodes, nelement] + inverse_jacobian ::Array{RealT, 3} # [nnodes, nnodes, nelement] + contravariant_vectors ::Array{RealT, 5} # [ndims, ndims, nnodes, nnodes, nelement] + contravariant_vectors_plus ::Array{RealT, 5} # [ndims, ndims, nnodes, nnodes, nelement] + contravariant_vectors_minus::Array{RealT, 5} # [ndims, ndims, nnodes, nnodes, nelement] + normal_directions ::Array{RealT, 4} # [ndims, nnodes, local sides, nelement] + rotations ::Vector{Int} # [nelement] + surface_flux_values ::Array{uEltype, 4} # [variables, nnodes, local sides, elements] +end + + +# construct an empty curved element container for the `UpwindOperators` type solver +# to be filled later with geometries in the unstructured mesh constructor +# OBS! Extended version of the `UnstructuredElementContainer2D` with additional arrays to hold +# the contravariant vectors created with the biased derivative operators. +function UpwindElementContainer2D{RealT, uEltype}(capacity::Integer, n_variables, n_nodes) where {RealT<:Real, uEltype<:Real} + nan_RealT = convert(RealT, NaN) + nan_uEltype = convert(uEltype, NaN) + + node_coordinates = fill(nan_RealT, (2, n_nodes, n_nodes, capacity)) + jacobian_matrix = fill(nan_RealT, (2, 2, n_nodes, n_nodes, capacity)) + inverse_jacobian = fill(nan_RealT, (n_nodes, n_nodes, capacity)) + contravariant_vectors = fill(nan_RealT, (2, 2, n_nodes, n_nodes, capacity)) + contravariant_vectors_plus = fill(nan_RealT, (2, 2, n_nodes, n_nodes, capacity)) + contravariant_vectors_minus = fill(nan_RealT, (2, 2, n_nodes, n_nodes, capacity)) + normal_directions = fill(nan_RealT, (2, n_nodes, 4, capacity)) + rotations = fill(typemin(Int), capacity) # Fill with "nonsense" rotation values + surface_flux_values = fill(nan_uEltype, (n_variables, n_nodes, 4, capacity)) + + return UpwindElementContainer2D{RealT, uEltype}(node_coordinates, + jacobian_matrix, + inverse_jacobian, + contravariant_vectors, + contravariant_vectors_plus, + contravariant_vectors_minus, + normal_directions, + rotations, + surface_flux_values) +end + + +@inline nelements(elements::UpwindElementContainer2D) = size(elements.surface_flux_values, 4) +@inline eachelement(elements::UpwindElementContainer2D) = Base.OneTo(nelements(elements)) + +@inline nvariables(elements::UpwindElementContainer2D) = size(elements.surface_flux_values, 1) +@inline nnodes(elements::UpwindElementContainer2D) = size(elements.surface_flux_values, 2) + +Base.real(elements::UpwindElementContainer2D) = eltype(elements.node_coordinates) +Base.eltype(elements::UpwindElementContainer2D) = eltype(elements.surface_flux_values) + +function init_elements(mesh::UnstructuredMesh2D, equations, basis::SummationByPartsOperators.UpwindOperators, RealT, uEltype) + elements = UpwindElementContainer2D{RealT, uEltype}( + mesh.n_elements, nvariables(equations), nnodes(basis)) + init_elements!(elements, mesh, basis) + return elements +end + +function init_elements!(elements::UpwindElementContainer2D, mesh, basis) + four_corners = zeros(eltype(mesh.corners), 4, 2) + + # loop through elements and call the correct constructor based on whether the element is curved + for element in eachelement(elements) + if mesh.element_is_curved[element] + init_element!(elements, element, basis, view(mesh.surface_curves, :, element)) + else # straight sided element + for i in 1:4, j in 1:2 + # pull the (x,y) values of these corners out of the global corners array + four_corners[i, j] = mesh.corners[j, mesh.element_node_ids[i, element]] + end + init_element!(elements, element, basis, four_corners) + end + end + + # Use the mesh element information to determine the rotations, if any, + # of the local coordinate system in each element + calc_element_rotations!(elements, mesh) +end + +###################################################################################################### # Container data structure (structure-of-arrays style) for DG elements on curved unstructured mesh struct UnstructuredElementContainer2D{RealT<:Real, uEltype<:Real} @@ -43,7 +129,7 @@ end eachelement(elements::UnstructuredElementContainer2D) Return an iterator over the indices that specify the location in relevant data structures -for the elements in `elements`. +for the elements in `elements`. In particular, not the elements themselves are returned. """ @inline eachelement(elements::UnstructuredElementContainer2D) = Base.OneTo(nelements(elements)) @@ -75,30 +161,30 @@ function init_elements!(elements::UnstructuredElementContainer2D, mesh, basis) # loop through elements and call the correct constructor based on whether the element is curved for element in eachelement(elements) if mesh.element_is_curved[element] - init_element!(elements, element, basis.nodes, view(mesh.surface_curves, :, element)) + init_element!(elements, element, basis, view(mesh.surface_curves, :, element)) else # straight sided element for i in 1:4, j in 1:2 # pull the (x,y) values of these corners out of the global corners array four_corners[i, j] = mesh.corners[j, mesh.element_node_ids[i, element]] end - init_element!(elements, element, basis.nodes, four_corners) + init_element!(elements, element, basis, four_corners) end end end -# initialize all the values in the container of a general element (either straight sided or curved) -function init_element!(elements, element, nodes, corners_or_surface_curves) +# initialize all the values in the container of a general DG element (either straight sided or curved) +function init_element!(elements, element, basis::LobattoLegendreBasis, corners_or_surface_curves) - calc_node_coordinates!(elements.node_coordinates, element, nodes, corners_or_surface_curves) + calc_node_coordinates!(elements.node_coordinates, element, get_nodes(basis), corners_or_surface_curves) - calc_metric_terms!(elements.jacobian_matrix, element, nodes, corners_or_surface_curves) + calc_metric_terms!(elements.jacobian_matrix, element, get_nodes(basis), corners_or_surface_curves) calc_inverse_jacobian!(elements.inverse_jacobian, element, elements.jacobian_matrix) calc_contravariant_vectors!(elements.contravariant_vectors, element, elements.jacobian_matrix) - calc_normal_directions!(elements.normal_directions, element, nodes, corners_or_surface_curves) + calc_normal_directions!(elements.normal_directions, element, get_nodes(basis), corners_or_surface_curves) return elements end @@ -135,7 +221,7 @@ end @inline nnodes(interfaces::UnstructuredInterfaceContainer2D) = size(interfaces.u, 3) -function init_interfaces(mesh::UnstructuredMesh2D, elements::UnstructuredElementContainer2D) +function init_interfaces(mesh::UnstructuredMesh2D, elements::Union{UnstructuredElementContainer2D, UpwindElementContainer2D}) interfaces = UnstructuredInterfaceContainer2D{eltype(elements)}( mesh.n_interfaces, nvariables(elements), nnodes(elements)) @@ -274,7 +360,7 @@ end @inline nboundaries(boundaries::UnstructuredBoundaryContainer2D) = length(boundaries.name) -function init_boundaries(mesh::UnstructuredMesh2D, elements::UnstructuredElementContainer2D) +function init_boundaries(mesh::UnstructuredMesh2D, elements::Union{UnstructuredElementContainer2D, UpwindElementContainer2D}) boundaries = UnstructuredBoundaryContainer2D{real(elements), eltype(elements)}( mesh.n_boundaries, nvariables(elements), nnodes(elements)) diff --git a/src/solvers/fdsbp_tree/fdsbp_2d.jl b/src/solvers/fdsbp_tree/fdsbp_2d.jl index be1e24dee5c..b831e550c27 100644 --- a/src/solvers/fdsbp_tree/fdsbp_2d.jl +++ b/src/solvers/fdsbp_tree/fdsbp_2d.jl @@ -9,7 +9,7 @@ # 2D caches -function create_cache(mesh::TreeMesh{2}, equations, +function create_cache(mesh::Union{TreeMesh{2}, UnstructuredMesh2D}, equations, volume_integral::VolumeIntegralStrongForm, dg, uEltype) prototype = Array{SVector{nvariables(equations), uEltype}, ndims(mesh)}( @@ -19,7 +19,7 @@ function create_cache(mesh::TreeMesh{2}, equations, return (; f_threaded,) end -function create_cache(mesh::TreeMesh{2}, equations, +function create_cache(mesh::Union{TreeMesh{2}, UnstructuredMesh2D}, equations, volume_integral::VolumeIntegralUpwind, dg, uEltype) u_node = SVector{nvariables(equations), uEltype}(ntuple(_ -> zero(uEltype), Val{nvariables(equations)}())) diff --git a/src/solvers/fdsbp_unstructured/containers_2d.jl b/src/solvers/fdsbp_unstructured/containers_2d.jl new file mode 100644 index 00000000000..b3b3f07ec89 --- /dev/null +++ b/src/solvers/fdsbp_unstructured/containers_2d.jl @@ -0,0 +1,187 @@ +# !!! warning "Experimental implementation (curvilinear FDSBP)" +# This is an experimental feature and may change in future releases. + +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin + +# initialize all the values in the container of a general FD block (either straight sided or curved) +# OBS! Requires the SBP derivative matrix in order to compute metric terms that are free-stream preserving +# function init_element!(elements, element, basis::AbstractDerivativeOperator, corners_or_surface_curves) +function init_element!(elements, element, basis::DerivativeOperator, corners_or_surface_curves) + + calc_node_coordinates!(elements.node_coordinates, element, get_nodes(basis), corners_or_surface_curves) + + calc_metric_terms!(elements.jacobian_matrix, element, basis, elements.node_coordinates) + + calc_inverse_jacobian!(elements.inverse_jacobian, element, elements.jacobian_matrix) + + calc_contravariant_vectors!(elements.contravariant_vectors, element, elements.jacobian_matrix) + + calc_normal_directions!(elements.normal_directions, element, elements.jacobian_matrix) + + return elements +end + + +# initialize all the values in the container of a general FD block (either straight sided or curved) +# for a set of upwind finite difference operators +# OBS! Requires the biased derivative matrices in order to compute proper metric terms that are free-stream preserving +function init_element!(elements, element, basis::SummationByPartsOperators.UpwindOperators, corners_or_surface_curves) + + calc_node_coordinates!(elements.node_coordinates, element, get_nodes(basis), corners_or_surface_curves) + + # Create the metric terms and contravariant vectors with the D⁺ operator + calc_metric_terms!(elements.jacobian_matrix, element, basis.plus, elements.node_coordinates) + calc_contravariant_vectors!(elements.contravariant_vectors_plus, element, elements.jacobian_matrix) + + # Create the metric terms and contravariant vectors with the D⁻ operator + calc_metric_terms!(elements.jacobian_matrix, element, basis.minus, elements.node_coordinates) + calc_contravariant_vectors!(elements.contravariant_vectors_minus, element, elements.jacobian_matrix) + + # Create the metric terms, Jacobian information, and normals for analysis + # and the SATs with the central D operator. + calc_metric_terms!(elements.jacobian_matrix, element, basis.central, elements.node_coordinates) + calc_inverse_jacobian!(elements.inverse_jacobian, element, elements.jacobian_matrix) + calc_contravariant_vectors!(elements.contravariant_vectors, element, elements.jacobian_matrix) + calc_normal_directions!(elements.normal_directions, element, elements.jacobian_matrix) + + return elements +end + + +# construct the metric terms for a FDSBP element "block". Directly use the derivative matrix +# applied to the node coordinates. +# TODO: FD; How to make this work for the upwind solver because basis has three available derivative matrices +function calc_metric_terms!(jacobian_matrix, element, D_SBP::AbstractDerivativeOperator, node_coordinates) + + # storage format: + # jacobian_matrix[1,1,:,:,:] <- X_xi + # jacobian_matrix[1,2,:,:,:] <- X_eta + # jacobian_matrix[2,1,:,:,:] <- Y_xi + # jacobian_matrix[2,2,:,:,:] <- Y_eta + + # Compute the xi derivatives by applying D on the left + # This is basically the same as + # jacobian_matrix[1, 1, :, :, element] = Matrix(D_SBP) * node_coordinates[1, :, :, element] + # but uses only matrix-vector products instead of a matrix-matrix product. + for j in eachnode(D_SBP) + mul!(view(jacobian_matrix, 1, 1, :, j, element), D_SBP, + view(node_coordinates, 1, :, j, element)) + end + # jacobian_matrix[2, 1, :, :, element] = Matrix(D_SBP) * node_coordinates[2, :, :, element] + for j in eachnode(D_SBP) + mul!(view(jacobian_matrix, 2, 1, :, j, element), D_SBP, + view(node_coordinates, 2, :, j, element)) + end + + # Compute the eta derivatives by applying transpose of D on the right + # jacobian_matrix[1, 2, :, :, element] = node_coordinates[1, :, :, element] * Matrix(D_SBP)' + for i in eachnode(D_SBP) + mul!(view(jacobian_matrix, 1, 2, i, :, element), D_SBP, + view(node_coordinates, 1, i, :, element)) + end + # jacobian_matrix[2, 2, :, :, element] = node_coordinates[2, :, :, element] * Matrix(D_SBP)' + for i in eachnode(D_SBP) + mul!(view(jacobian_matrix, 2, 2, i, :, element), D_SBP, + view(node_coordinates, 2, i, :, element)) + end + + return jacobian_matrix +end + + +# construct the normal direction vectors (but not actually normalized) for a curved sided FDSBP element "block" +# normalization occurs on the fly during the surface flux computation +# OBS! This assumes that the boundary points are included. +function calc_normal_directions!(normal_directions, element, jacobian_matrix) + + # normal directions on the boundary for the left (local side 4) and right (local side 2) + N_ = size(jacobian_matrix, 3) + for j in 1:N_ + # +x side or side 2 in the local indexing + X_xi = jacobian_matrix[1, 1, N_, j, element] + X_eta = jacobian_matrix[1, 2, N_, j, element] + Y_xi = jacobian_matrix[2, 1, N_, j, element] + Y_eta = jacobian_matrix[2, 2, N_, j, element] + Jtemp = X_xi * Y_eta - X_eta * Y_xi + normal_directions[1, j, 2, element] = sign(Jtemp) * ( Y_eta) + normal_directions[2, j, 2, element] = sign(Jtemp) * (-X_eta) + + # -x side or side 4 in the local indexing + X_xi = jacobian_matrix[1, 1, 1, j, element] + X_eta = jacobian_matrix[1, 2, 1, j, element] + Y_xi = jacobian_matrix[2, 1, 1, j, element] + Y_eta = jacobian_matrix[2, 2, 1, j, element] + Jtemp = X_xi * Y_eta - X_eta * Y_xi + normal_directions[1, j, 4, element] = -sign(Jtemp) * ( Y_eta) + normal_directions[2, j, 4, element] = -sign(Jtemp) * (-X_eta) + end + + # normal directions on the boundary for the top (local side 3) and bottom (local side 1) + N_ = size(jacobian_matrix, 4) + for i in 1:N_ + # -y side or side 1 in the local indexing + X_xi = jacobian_matrix[1, 1, i, 1, element] + X_eta = jacobian_matrix[1, 2, i, 1, element] + Y_xi = jacobian_matrix[2, 1, i, 1, element] + Y_eta = jacobian_matrix[2, 2, i, 1, element] + Jtemp = X_xi * Y_eta - X_eta * Y_xi + normal_directions[1, i, 1, element] = -sign(Jtemp) * (-Y_xi) + normal_directions[2, i, 1, element] = -sign(Jtemp) * ( X_xi) + + # +y side or side 3 in the local indexing + X_xi = jacobian_matrix[1, 1, i, N_, element] + X_eta = jacobian_matrix[1, 2, i, N_, element] + Y_xi = jacobian_matrix[2, 1, i, N_, element] + Y_eta = jacobian_matrix[2, 2, i, N_, element] + Jtemp = X_xi * Y_eta - X_eta * Y_xi + normal_directions[1, i, 3, element] = sign(Jtemp) * (-Y_xi) + normal_directions[2, i, 3, element] = sign(Jtemp) * ( X_xi) + end + + return normal_directions +end + + +# Compute the rotation, if any, for the local coordinate system on each `element` +# with respect to the standard x-axis. This is necessary because if the local +# element axis is rotated it influences the computation of the +/- directions +# for the flux vector splitting of the upwind scheme. +# Local principle x-axis is computed from the four corners of a particular `element`, +# see page 35 of the "Verdict Library" for details. +# From the local axis the `atan` function is used to determine the value of the local rotation. +# +# - C. J. Stimpson, C. D. Ernst, P. Knupp, P. P. Pébay, and D. Thompson (2007) +# The Verdict Geometric Quality Library +# Technical Report. Sandia National Laboraties +# [SAND2007-1751](https://coreform.com/papers/verdict_quality_library.pdf) +# - `atan(y, x)` function (https://docs.julialang.org/en/v1/base/math/#Base.atan-Tuple%7BNumber%7D) +function calc_element_rotations!(elements, mesh::UnstructuredMesh2D) + + for element in 1:size(elements.node_coordinates, 4) + # Pull the corners for the current element + corner_points = mesh.corners[:, mesh.element_node_ids[:, element]] + + # Compute the principle x-axis of a right-handed quadrilateral element + local_x_axis = ( (corner_points[:, 2] - corner_points[:, 1]) + + (corner_points[:, 3] - corner_points[:, 4]) ) + + # Two argument `atan` function retuns the angle in radians in [−pi, pi] + # between the positive x-axis and the point (x, y) + local_angle = atan(local_x_axis[2], local_x_axis[1]) + + # Possible reference rotations of the local axis for a given quadrilateral element in the mesh + # 0°, 90°, 180°, -90° (or 270°), -180° + reference_angles = [0.0, 0.5*pi, pi, -0.5*pi, -pi] + + # Find the nearest value and save the amount of rotation + elements.rotations[element] = argmin( abs.(reference_angles .- local_angle) ) - 1 + end + + return nothing +end + +end # @muladd \ No newline at end of file diff --git a/src/solvers/fdsbp_unstructured/fdsbp.jl b/src/solvers/fdsbp_unstructured/fdsbp.jl new file mode 100644 index 00000000000..8645d08de82 --- /dev/null +++ b/src/solvers/fdsbp_unstructured/fdsbp.jl @@ -0,0 +1,16 @@ +# !!! warning "Experimental implementation (upwind SBP)" +# This is an experimental feature and may change in future releases. + +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin + + +# dimension specific curvilinear implementations and data structures +include("containers_2d.jl") +include("fdsbp_2d.jl") + + +end # @muladd \ No newline at end of file diff --git a/src/solvers/fdsbp_unstructured/fdsbp_2d.jl b/src/solvers/fdsbp_unstructured/fdsbp_2d.jl new file mode 100644 index 00000000000..0d0bece473b --- /dev/null +++ b/src/solvers/fdsbp_unstructured/fdsbp_2d.jl @@ -0,0 +1,292 @@ +# !!! warning "Experimental implementation (upwind SBP)" +# This is an experimental feature and may change in future releases. + +# By default, Julia/LLVM does not use fused multiply-add operations (FMAs). +# Since these FMAs can increase the performance of many numerical algorithms, +# we need to opt-in explicitly. +# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details. +@muladd begin + + +# 2D unstructured cache +function create_cache(mesh::UnstructuredMesh2D, equations, dg::FDSBP, RealT, uEltype) + + elements = init_elements(mesh, equations, dg.basis, RealT, uEltype) + + interfaces = init_interfaces(mesh, elements) + + boundaries = init_boundaries(mesh, elements) + + cache = (; elements, interfaces, boundaries) + + # Add specialized parts of the cache required to for efficient flux computations + cache = (;cache..., create_cache(mesh, equations, dg.volume_integral, dg, uEltype)...) + + return cache +end + + +# 2D volume integral contributions for `VolumeIntegralStrongForm` +@inline function calc_volume_integral!(du, u, + mesh::UnstructuredMesh2D, + nonconservative_terms::False, equations, + volume_integral::VolumeIntegralStrongForm, + dg::FDSBP, cache) + D = dg.basis # SBP derivative operator + @unpack f_threaded = cache + @unpack contravariant_vectors = cache.elements + + # SBP operators from SummationByPartsOperators.jl implement the basic interface + # of matrix-vector multiplication. Thus, we pass an "array of structures", + # packing all variables per node in an `SVector`. + if nvariables(equations) == 1 + # `reinterpret(reshape, ...)` removes the leading dimension only if more + # than one variable is used. + u_vectors = reshape(reinterpret(SVector{nvariables(equations), eltype(u)}, u), + nnodes(dg), nnodes(dg), nelements(dg, cache)) + du_vectors = reshape(reinterpret(SVector{nvariables(equations), eltype(du)}, du), + nnodes(dg), nnodes(dg), nelements(dg, cache)) + else + u_vectors = reinterpret(reshape, SVector{nvariables(equations), eltype(u)}, u) + du_vectors = reinterpret(reshape, SVector{nvariables(equations), eltype(du)}, du) + end + + # Use the tensor product structure to compute the discrete derivatives of + # the contravariant fluxes line-by-line and add them to `du` for each element. + @threaded for element in eachelement(dg, cache) + f_element = f_threaded[Threads.threadid()] + u_element = view(u_vectors, :, :, element) + + # x direction + for j in eachnode(dg) + for i in eachnode(dg) + Ja1 = get_contravariant_vector(1, contravariant_vectors, i, j, element) + f_element[i, j] = flux(u_element[i, j], Ja1, equations) + end + mul!(view(du_vectors, :, j, element), D, view(f_element, :, j), + one(eltype(du)), one(eltype(du))) + end + + # y direction + for i in eachnode(dg) + for j in eachnode(dg) + Ja2 = get_contravariant_vector(2, contravariant_vectors, i, j, element) + f_element[i, j] = flux(u_element[i, j], Ja2, equations) + end + mul!(view(du_vectors, i, :, element), D, view(f_element, i, :), + one(eltype(du)), one(eltype(du))) + end + end + + return nothing +end + + +# 2D volume integral contributions for `VolumeIntegralUpwind` +# Note that the plus / minus notation of the operators does not refer to the +# upwind / downwind directions of the fluxes. +# Instead, the plus / minus refers to the direction of the biasing within +# the finite difference stencils. Thus, the D^- operator acts on the positive +# part of the flux splitting f^+ and the D^+ operator acts on the negative part +# of the flux splitting f^-. +# Further note that appropriate plus / minus contravariant vector terms are applied +# to the corresponding plus / minus derivative operator. +@inline function calc_volume_integral!(du, u, + mesh::UnstructuredMesh2D, + nonconservative_terms::False, equations, + volume_integral::VolumeIntegralUpwind, + dg::FDSBP, cache) + # Pull the derivative matrix assuming that + # dg.basis isa SummationByPartsOperators.UpwindOperators + # TODO: FD, improve performance to use `mul!`. Current version allocates. + # Also, would be good if the logic below for local rotations could be avoided + D_minus = Matrix(dg.basis.minus) # Upwind SBP D^- derivative operator + D_plus = Matrix(dg.basis.plus) # Upwind SBP D^+ derivative operator + @unpack contravariant_vectors_plus, contravariant_vectors_minus, rotations = cache.elements + @unpack splitting = volume_integral + + @threaded for element in eachelement(dg, cache) + for j in eachnode(dg), i in eachnode(dg) + u_node = get_node_vars(u, equations, dg, i, j, element) + + # Compute the flux vector splitting. If the local coordinate + # system in an element is rotated, then the role of +/- swaps + if rotations[element] == 0 + # standard flux splittings + flux1_minus, flux1_plus = splitting(u_node, 1, equations) + flux2_minus, flux2_plus = splitting(u_node, 2, equations) + elseif rotations[element] == 1 # corresponds to 90° rotation + # `i` direction flipped so swap x-direction + flux1_plus, flux1_minus = splitting(u_node, 1, equations) + flux2_minus, flux2_plus = splitting(u_node, 2, equations) + elseif rotations[element] == 2 || rotations[element] == 4 # corresponds to 180° rotation + # `i` and `j` directions flipped so swap x- and y-directions + flux1_plus, flux1_minus = splitting(u_node, 1, equations) + flux2_plus, flux2_minus = splitting(u_node, 2, equations) + else # rotations[element] == 3 # corresponds to 270° (or -90°) rotation + # `j` direction flipped so swap y-direction + flux1_minus, flux1_plus = splitting(u_node, 1, equations) + flux2_plus, flux2_minus = splitting(u_node, 2, equations) + end + + # Compute the contravariant fluxes by taking the scalar product of the + # appropriate contravariant vector Ja^1 and the flux vector splitting + Ja11_plus, Ja12_plus = get_contravariant_vector(1, contravariant_vectors_plus, i, j, element) + contravariant_flux1_minus = Ja11_plus * flux1_minus + Ja12_plus * flux2_minus + + Ja11_minus, Ja12_minus = get_contravariant_vector(1, contravariant_vectors_minus, i, j, element) + contravariant_flux1_plus = Ja11_minus * flux1_plus + Ja12_minus * flux2_plus + + for ii in eachnode(dg) + multiply_add_to_node_vars!(du, D_minus[ii, i], contravariant_flux1_plus , equations, dg, ii, j, element) + multiply_add_to_node_vars!(du, D_plus[ii, i] , contravariant_flux1_minus, equations, dg, ii, j, element) + end + + # Compute the contravariant fluxes by taking the scalar product of the + # appropriate contravariant vector Ja^2 and the flux vector splitting + Ja21_plus, Ja22_plus = get_contravariant_vector(2, contravariant_vectors_plus, i, j, element) + contravariant_flux2_minus = Ja21_plus * flux1_minus + Ja22_plus * flux2_minus + + Ja21_minus, Ja22_minus = get_contravariant_vector(2, contravariant_vectors_minus, i, j, element) + contravariant_flux2_plus = Ja21_minus * flux1_plus + Ja22_minus * flux2_plus + + for jj in eachnode(dg) + multiply_add_to_node_vars!(du, D_minus[jj, j], contravariant_flux2_plus , equations, dg, i, jj, element) + multiply_add_to_node_vars!(du, D_plus[jj, j] , contravariant_flux2_minus, equations, dg, i, jj, element) + end + end + end + + return nothing +end + + +# Note! The local side numbering for the unstructured quadrilateral element implementation differs +# from the structured TreeMesh or StructuredMesh local side numbering: +# +# TreeMesh/StructuredMesh sides versus UnstructuredMesh sides +# 4 3 +# ----------------- ----------------- +# | | | | +# | ^ eta | | ^ eta | +# 1 | | | 2 4 | | | 2 +# | | | | | | +# | ---> xi | | ---> xi | +# ----------------- ----------------- +# 3 1 +# Therefore, we require a different surface integral routine here despite their similar structure. +# Also, the normal directions are already outward pointing for `UnstructuredMesh2D` so all the +# surface contributions are added. +function calc_surface_integral!(du, u, mesh::UnstructuredMesh2D, + equations, surface_integral::SurfaceIntegralStrongForm, + dg::FDSBP, cache) + inv_weight_left = inv(left_boundary_weight(dg.basis)) + inv_weight_right = inv(right_boundary_weight(dg.basis)) + @unpack normal_directions, surface_flux_values = cache.elements + + @threaded for element in eachelement(dg, cache) + for l in eachnode(dg) + # surface at -x + u_node = get_node_vars(u, equations, dg, 1, l, element) + # compute internal flux in normal direction on side 4 + outward_direction = get_node_coords(normal_directions, equations, dg, l, 4, element) + f_node = flux(u_node, outward_direction, equations) + f_num = get_node_vars(surface_flux_values, equations, dg, l, 4, element) + multiply_add_to_node_vars!(du, inv_weight_left, (f_num - f_node), + equations, dg, 1, l, element) + + # surface at +x + u_node = get_node_vars(u, equations, dg, nnodes(dg), l, element) + # compute internal flux in normal direction on side 2 + outward_direction = get_node_coords(normal_directions, equations, dg, l, 2, element) + f_node = flux(u_node, outward_direction, equations) + f_num = get_node_vars(surface_flux_values, equations, dg, l, 2, element) + multiply_add_to_node_vars!(du, inv_weight_right, (f_num - f_node), + equations, dg, nnodes(dg), l, element) + + # surface at -y + u_node = get_node_vars(u, equations, dg, l, 1, element) + # compute internal flux in normal direction on side 1 + outward_direction = get_node_coords(normal_directions, equations, dg, l, 1, element) + f_node = flux(u_node, outward_direction, equations) + f_num = get_node_vars(surface_flux_values, equations, dg, l, 1, element) + multiply_add_to_node_vars!(du, inv_weight_left, (f_num - f_node), + equations, dg, l, 1, element) + + # surface at +y + u_node = get_node_vars(u, equations, dg, l, nnodes(dg), element) + # compute internal flux in normal direction on side 3 + outward_direction = get_node_coords(normal_directions, equations, dg, l, 3, element) + f_node = flux(u_node, outward_direction, equations) + f_num = get_node_vars(surface_flux_values, equations, dg, l, 3, element) + multiply_add_to_node_vars!(du, inv_weight_right, (f_num - f_node), + equations, dg, l, nnodes(dg), element) + end + end + + return nothing +end + + +# AnalysisCallback +function integrate_via_indices(func::Func, u, + mesh::UnstructuredMesh2D, equations, + dg::FDSBP, cache, args...; normalize=true) where {Func} + # TODO: FD. This is rather inefficient right now and allocates... + weights = diag(SummationByPartsOperators.mass_matrix(dg.basis)) + + # Initialize integral with zeros of the right shape + integral = zero(func(u, 1, 1, 1, equations, dg, args...)) + total_volume = zero(real(mesh)) + + # Use quadrature to numerically integrate over entire domain + for element in eachelement(dg, cache) + for j in eachnode(dg), i in eachnode(dg) + volume_jacobian = abs(inv(cache.elements.inverse_jacobian[i, j, element])) + integral += volume_jacobian * weights[i] * weights[j] * func(u, i, j, element, equations, dg, args...) + total_volume += volume_jacobian * weights[i] * weights[j] + end + end + + # Normalize with total volume + if normalize + integral = integral / total_volume + end + + return integral +end + + +function calc_error_norms(func, u, t, analyzer, + mesh::UnstructuredMesh2D, equations, initial_condition, + dg::FDSBP, cache, cache_analysis) + # TODO: FD. This is rather inefficient right now and allocates... + weights = diag(SummationByPartsOperators.mass_matrix(dg.basis)) + @unpack node_coordinates, inverse_jacobian = cache.elements + + # Set up data structures + l2_error = zero(func(get_node_vars(u, equations, dg, 1, 1, 1), equations)) + linf_error = copy(l2_error) + total_volume = zero(real(mesh)) + + # Iterate over all elements for error calculations + for element in eachelement(dg, cache) + for j in eachnode(analyzer), i in eachnode(analyzer) + volume_jacobian = abs(inv(cache.elements.inverse_jacobian[i, j, element])) + u_exact = initial_condition( + get_node_coords(node_coordinates, equations, dg, i, j, element), t, equations) + diff = func(u_exact, equations) - func( + get_node_vars(u, equations, dg, i, j, element), equations) + l2_error += diff.^2 * (weights[i] * weights[j] * volume_jacobian) + linf_error = @. max(linf_error, abs(diff)) + total_volume += weights[i] * weights[j] * volume_jacobian + end + end + + # For L2 error, divide by total volume + l2_error = @. sqrt(l2_error / total_volume) + + return l2_error, linf_error +end + +end # @muladd diff --git a/test/test_trixi.jl b/test/test_trixi.jl index 044e421107d..c1a5d991e4c 100644 --- a/test/test_trixi.jl +++ b/test/test_trixi.jl @@ -153,6 +153,9 @@ macro test_nowarn_mod(expr, additional_ignore_content=String[]) "WARNING: importing deprecated binding Colors.RGB4 into PlotUtils.\n", r"┌ Warning: Keyword argument letter not supported with Plots.+\n└ @ Plots.+\n", r"┌ Warning: `parse\(::Type, ::Coloarant\)` is deprecated.+\n│.+\n│.+\n└ @ Plots.+\n", + # Ignore the message about ODE Symbols nonsense. DO NOT COMMIT! This is local to my machine + "┌ Warning: Backwards compatability support of the new return codes to Symbols will be deprecated with the Julia v1.9 release. Please see https://docs.sciml.ai/SciMLBase/stable/interfaces/Solutions/#retcodes for more information +└ @ SciMLBase ~/.julia/packages/SciMLBase/0IYdl/src/retcodes.jl:360\n" ] append!(ignore_content, $additional_ignore_content) for pattern in ignore_content diff --git a/test/test_unstructured_2d.jl b/test/test_unstructured_2d.jl index 882309d70da..4f68e1424d4 100644 --- a/test/test_unstructured_2d.jl +++ b/test/test_unstructured_2d.jl @@ -155,6 +155,37 @@ isdir(outdir) && rm(outdir, recursive=true) linf = [2.7639232436274392, 3.3985508653311767, 3.3330308209196224, 2.052861364219655], tspan = (0.0, 0.25)) end + + # TODO: FD; for now put the unstructured tests for the 2D FDSBP here. + @trixi_testset "FDSBP (central): elixir_euler_free_stream.jl" begin + @test_trixi_include(joinpath(examples_dir(), "unstructured_2d_fdsbp", "elixir_euler_free_stream.jl"), + l2 = [1.0782928209546407e-14, 7.961856579424368e-14, 5.54300886580838e-14, 1.160015193708739e-13], + linf = [3.410882687404637e-11, 1.5696624555694427e-11, 9.794248745365053e-12, 2.504663143554353e-11], + tspan = (0.0, 0.2), atol = 1.0e-11) + end + + @trixi_testset "FDSBP (central): elixir_euler_convergence.jl" begin + @test_trixi_include(joinpath(examples_dir(), "unstructured_2d_fdsbp", "elixir_euler_convergence.jl"), + l2 = [3.372206837157435e-5, 6.001247046050437e-5, 6.0012470460493534e-5, 0.00018518205373473714], + linf = [0.00015638063264633573, 0.0003329723828695563, 0.00033297238286467135, 0.0009179128246792345], + tspan = (0.0, 0.025)) + end + + # TODO: this free-stream test might change once proper boundary conditions + # are implemented for the upwind solver + @trixi_testset "FDSBP (upwind): elixir_euler_free_stream_upwind.jl" begin + @test_trixi_include(joinpath(examples_dir(), "unstructured_2d_fdsbp", "elixir_euler_free_stream_upwind.jl"), + l2 = [1.317918039557329e-13, 1.0704743312905878e-13, 8.090840230283804e-14, 1.6278848188744677e-12], + linf = [6.595390900088205e-12, 6.5621397205006815e-12, 4.15131817810277e-12, 8.673950446791423e-11], + tspan = (0.0, 0.2)) + end + + @trixi_testset "FDSBP (upwind): elixir_euler_convergence_upwind.jl" begin + @test_trixi_include(joinpath(examples_dir(), "unstructured_2d_fdsbp", "elixir_euler_convergence_upwind.jl"), + l2 = [7.953799252662559e-5, 0.00012546042648804053, 0.00012638745384152826, 0.00040076939261004185], + linf = [0.0005051201525521076, 0.0008676201698107899, 0.0008294017394752107, 0.0023917887756228495], + tspan = (0.0, 0.025)) + end end # Clean up afterwards: delete Trixi output directory