diff --git a/NEWS.md b/NEWS.md index cf695912ed7..3a3a504a911 100644 --- a/NEWS.md +++ b/NEWS.md @@ -9,6 +9,8 @@ for human readability. #### Added - AMR for hyperbolic-parabolic equations on 3D `P4estMesh` - `flux_hllc` on non-cartesian meshes for `CompressibleEulerEquations{2,3}D` +- Different boundary conditions for quad/hex meshes in Abaqus format, even if not generated by HOHQMesh, + can now be digested by Trixi in 2D and 3D. ## Changes when updating to v0.6 from v0.5.x diff --git a/docs/literate/src/files/p4est_from_gmsh.jl b/docs/literate/src/files/p4est_from_gmsh.jl new file mode 100644 index 00000000000..356339cdd47 --- /dev/null +++ b/docs/literate/src/files/p4est_from_gmsh.jl @@ -0,0 +1,459 @@ +#src # `P4estMesh` from [`gmsh`](https://gmsh.info/) + +# Trixi.jl supports numerical approximations from structured and unstructured quadrilateral meshes +# with the [`P4estMesh`](@ref) mesh type. + +# The purpose of this tutorial is to demonstrate how to use the `P4estMesh` +# functionality of Trixi.jl for existing meshes with straight-sided (bilinear) elements/cells. +# This begins by running and visualizing an available unstructured quadrilateral mesh example. +# Then, the tutorial will cover how to use existing meshes generated by [`gmsh`](https://gmsh.info/) +# or any other meshing software that can export to the Abaqus input `.inp` format. + +# ## Running the simulation of a near-field flow around an airfoil + +# Trixi.jl supports solving hyperbolic-parabolic problems on several mesh types. +# A somewhat complex example that employs the `P4estMesh` is the near-field simulation of a +# Mach 2 flow around the NACA6412 airfoil. + +using Trixi +redirect_stdio(stdout=devnull, stderr=devnull) do # code that prints annoying stuff we don't want to see here #hide #md +trixi_include(joinpath(examples_dir(), "p4est_2d_dgsem", "elixir_euler_NACA6412airfoil_mach2.jl"), tspan=(0.0, 0.5)) +end #hide #md + +# Conveniently, we use the Plots package to have a first look at the results: +# ```julia +# using Plots +# pd = PlotData2D(sol) +# plot(pd["rho"]) +# plot!(getmesh(pd)) +# ``` + +# ## Creating a mesh using `gmsh` + +# The creation of an unstructured quadrilateral mesh using `gmsh` is driven by a **geometry file**. +# There are plenty of possibilities for the user, see the [documentation](https://gmsh.info/doc/texinfo/gmsh.html) and [tutorials](https://gitlab.onelab.info/gmsh/gmsh/tree/master/tutorials). + +# To begin, we provide a complete geometry file for the NACA6412 airfoil bounded by a rectangular box. After this we give a breakdown +# of the most important parts required for successful mesh generation that can later be used by the `p4est` library +# and Trixi.jl. +# We emphasize that this near-field mesh should only be used for instructive purposes and not for actual production runs. + +# The associated `NACA6412.geo` file is given below: +# ```c++ +# // GMSH geometry script for a NACA 6412 airfoil with 11 degree angle of attack +# // in a box (near-field mesh). +# // see https://github.com/cfsengineering/GMSH-Airfoil-2D +# // for software to generate gmsh `.geo` geometry files for NACA airfoils. +# +# // outer bounding box +# Point(1) = {-1.25, -0.5, 0, 1.0}; +# Point(2) = {1.25, -0.5, 0, 1.0}; +# Point(3) = {1.25, 0.5, 0, 1.0}; +# Point(4) = {-1.25, 0.5, 0, 1.0}; +# +# // lines of the bounding box +# Line(1) = {1, 2}; +# Line(2) = {2, 3}; +# Line(3) = {3, 4}; +# Line(4) = {4, 1}; +# // outer box +# Line Loop(8) = {1, 2, 3, 4}; +# +# // Settings +# // This value gives the global element size factor (lower -> finer mesh) +# Mesh.CharacteristicLengthFactor = 1.0 * 2^(-3); +# // Insist on quads instead of default triangles +# Mesh.RecombineAll = 1; +# // Violet instead of green base color for better visibility +# Mesh.ColorCarousel = 0; +# +# // points of the airfoil contour +# // Format: {x, y, z, DesiredCellSize}. See the documentation: https://gmsh.info/doc/texinfo/gmsh.html#Points +# // These concrete points are generated using the tool from https://github.com/cfsengineering/GMSH-Airfoil-2D +# Point(5) = {-0.4900332889206208, 0.09933466539753061, 0, 0.125}; +# Point(6) = {-0.4900274857651495, 0.1021542752054094, 0, 0.125}; +# Point(7) = {-0.4894921489729144, 0.1049830248247787, 0, 0.125}; +# Point(8) = {-0.4884253336670712, 0.1078191282319664, 0, 0.125}; +# Point(9) = {-0.4868257975566199, 0.1106599068424483, 0, 0.125}; +# Point(10) = {-0.4846930063965668, 0.1135018003016681, 0, 0.125}; +# Point(11) = {-0.4820271400142729, 0.1163403835785654, 0, 0.125}; +# Point(12) = {-0.4788290988083472, 0.1191703902233889, 0, 0.125}; +# Point(13) = {-0.4751005105908123, 0.1219857416089041, 0, 0.125}; +# Point(14) = {-0.4708437376101668, 0.1247795819332056, 0, 0.125}; +# Point(15) = {-0.4660618835629463, 0.1275443187232316, 0, 0.125}; +# Point(16) = {-0.4607588003749649, 0.1302716685409717, 0, 0.125}; +# Point(17) = {-0.4549390945110529, 0.132952707559475, 0, 0.125}; +# Point(18) = {-0.448608132554204, 0.1355779266432996, 0, 0.125}; +# Point(19) = {-0.4417720457819508, 0.138137290538182, 0, 0.125}; +# Point(20) = {-0.4344377334597768, 0.140620300747629, 0, 0.125}; +# Point(21) = {-0.4266128645686593, 0.1430160616500159, 0, 0.125}; +# Point(22) = {-0.4183058776865576, 0.1453133493887722, 0, 0.125}; +# Point(23) = {-0.4095259787518715, 0.147500683050503, 0, 0.125}; +# Point(24) = {-0.4002831364505879, 0.1495663976315875, 0, 0.125}; +# Point(25) = {-0.3905880749878933, 0.1514987182830453, 0, 0.125}; +# Point(26) = {-0.3804522640292948, 0.1532858353164163, 0, 0.125}; +# Point(27) = {-0.3698879056254708, 0.1549159794501833, 0, 0.125}; +# Point(28) = {-0.3589079179688306, 0.1563774967770029, 0, 0.125}; +# Point(29) = {-0.3475259158676376, 0.1576589229368209, 0, 0.125}; +# Point(30) = {-0.3357561878650377, 0.158749055989923, 0, 0.125}; +# Point(31) = {-0.3236136699747923, 0.1596370274972017, 0, 0.125}; +# Point(32) = {-0.3111139160522804, 0.1603123713324616, 0, 0.125}; +# Point(33) = {-0.298273064867608, 0.160765089773461, 0, 0.125}; +# Point(34) = {-0.2851078039966239, 0.1609857164445887, 0, 0.125}; +# Point(35) = {-0.2716353306943914, 0.160965375714529, 0, 0.125}; +# Point(36) = {-0.2578733099632437, 0.1606958381868515, 0, 0.125}; +# Point(37) = {-0.2438398300730194, 0.1601695719599709, 0, 0.125}; +# Point(38) = {-0.2295533558334121, 0.1593797893750759, 0, 0.125}; +# Point(39) = {-0.2150326799566391, 0.1583204890160489, 0, 0.125}; +# Point(40) = {-0.2002968728818922, 0.1569864927736143, 0, 0.125}; +# Point(41) = {-0.18536523146042, 0.1553734778363979, 0, 0.125}; +# Point(42) = {-0.1702572269208345, 0.1534780035235666, 0, 0.125}; +# Point(43) = {-0.1549924525477129, 0.1512975329264932, 0, 0.125}; +# Point(44) = {-0.1395905715122586, 0.1488304493795921, 0, 0.125}; +# Point(45) = {-0.1240712652914332, 0.1460760678321895, 0, 0.125}; +# Point(46) = {-0.1084541831014299, 0.1430346412430583, 0, 0.125}; +# Point(47) = {-0.09275889275279087, 0.1397073621660917, 0, 0.125}; +# Point(48) = {-0.07700483330818747, 0.1360963597385416, 0, 0.125}; +# Point(49) = {-0.06151286635366404, 0.1323050298149023, 0, 0.125}; +# Point(50) = {-0.04602933219022032, 0.1283521764905442, 0, 0.125}; +# Point(51) = {-0.03051345534800332, 0.1242331665904082, 0, 0.125}; +# Point(52) = {-0.01498163190522334, 0.1199540932779839, 0, 0.125}; +# Point(53) = {0.0005498526140696458, 0.1155214539466913, 0, 0.125}; +# Point(54) = {0.01606484191716884, 0.1109421303284033, 0, 0.125}; +# Point(55) = {0.03154732664394777, 0.106223368423828, 0, 0.125}; +# Point(56) = {0.0469814611314705, 0.1013727584299359, 0, 0.125}; +# Point(57) = {0.06235157928986135, 0.09639821481480275, 0, 0.125}; +# Point(58) = {0.07764220964363855, 0.09130795666388933, 0, 0.125}; +# Point(59) = {0.09283808959671735, 0.08611048839446452, 0, 0.125}; +# Point(60) = {0.1079241789809607, 0.08081458090718853, 0, 0.125}; +# Point(61) = {0.1228856729475325, 0.07542925321638272, 0, 0.125}; +# Point(62) = {0.1377080142575372, 0.06996375457378261, 0, 0.125}; +# Point(63) = {0.1523769050236616, 0.06442754707512513, 0, 0.125}; +# Point(64) = {0.1668783179480157, 0.05883028871526293, 0, 0.125}; +# Point(65) = {0.1811985070933818, 0.05318181683604975, 0, 0.125}; +# Point(66) = {0.1953240182159306, 0.04749213189240609, 0, 0.125}; +# Point(67) = {0.2092416986775084, 0.04177138144606024, 0, 0.125}; +# Point(68) = {0.2229387069452062, 0.03602984428372727, 0, 0.125}; +# Point(69) = {0.2364025216754475, 0.03027791454712048, 0, 0.125}; +# Point(70) = {0.2496209503696738, 0.02452608575629232, 0, 0.125}; +# Point(71) = {0.2625821375791982, 0.01878493460541621, 0, 0.125}; +# Point(72) = {0.2752745726282818, 0.01306510441121807, 0, 0.125}; +# Point(73) = {0.28768709681727, 0.007377288098728577, 0, 0.125}; +# Point(74) = {0.2998089100619555, 0.001732210616722449, 0, 0.125}; +# Point(75) = {0.3116295769214332, -0.003859389314124759, 0, 0.125}; +# Point(76) = {0.3231390319647309, -0.009386778203927332, 0, 0.125}; +# Point(77) = {0.3343275844265582, -0.01483924761490708, 0, 0.125}; +# Point(78) = {0.3451859221046181, -0.02020613485126957, 0, 0.125}; +# Point(79) = {0.3557051144551212, -0.02547684454806881, 0, 0.125}; +# Point(80) = {0.3658766148492779, -0.03064087116872238, 0, 0.125}; +# Point(81) = {0.3756922619615632, -0.0356878223992288, 0, 0.125}; +# Point(82) = {0.3851442802702071, -0.0406074434050937, 0, 0.125}; +# Point(83) = {0.394225279661484, -0.04538964189492445, 0, 0.125}; +# Point(84) = {0.4029282541416501, -0.05002451391298904, 0, 0.125}; +# Point(85) = {0.4112465796735204, -0.05450237026215737, 0, 0.125}; +# Point(86) = {0.4191740111683733, -0.05881376343890812, 0, 0.125}; +# Point(87) = {0.4267046786777481, -0.06294951494382847, 0, 0.125}; +# Point(88) = {0.4338330828434404, -0.06690074281456823, 0, 0.125}; +# Point(89) = {0.4405540896772232, -0.07065888921378868, 0, 0.125}; +# Point(90) = {0.4468629247542237, -0.07421574789251445, 0, 0.125}; +# Point(91) = {0.4527551669150955, -0.0775634913396257, 0, 0.125}; +# Point(92) = {0.4582267415819197, -0.08069469742118066, 0, 0.125}; +# Point(93) = {0.4632739138007936, -0.08360237530891265, 0, 0.125}; +# Point(94) = {0.4678932811302005, -0.08627999049569551, 0, 0.125}; +# Point(95) = {0.4720817664982195, -0.08872148869699745, 0, 0.125}; +# Point(96) = {0.4758366111533843, -0.09092131844134463, 0, 0.125}; +# Point(97) = {0.4791553678333992, -0.09287445215953141, 0, 0.125}; +# Point(98) = {0.4820358942729613, -0.09457640559161551, 0, 0.125}; +# Point(99) = {0.4844763471666588, -0.09602325534252773, 0, 0.125}; +# Point(100) = {0.4864751766953637, -0.09721165443119822, 0, 0.125}; +# Point(101) = {0.4880311217148797, -0.09813884569428721, 0, 0.125}; +# Point(102) = {0.4891432056939881, -0.09880267292366274, 0, 0.125}; +# Point(103) = {0.4898107334756874, -0.09920158963645126, 0, 0.125}; +# Point(104) = {0.4900332889206208, -0.09933466539753058, 0, 0.125}; +# Point(105) = {0.4897824225031319, -0.09926905587549506, 0, 0.125}; +# Point(106) = {0.4890301110661922, -0.09907236506934192, 0, 0.125}; +# Point(107) = {0.4877772173496635, -0.09874500608402761, 0, 0.125}; +# Point(108) = {0.48602517690576, -0.09828766683852558, 0, 0.125}; +# Point(109) = {0.4837759946062035, -0.09770130916007558, 0, 0.125}; +# Point(110) = {0.4810322398085871, -0.09698716747297723, 0, 0.125}; +# Point(111) = {0.4777970402368822, -0.09614674703990023, 0, 0.125}; +# Point(112) = {0.4740740746447117, -0.09518182170326678, 0, 0.125}; +# Point(113) = {0.4698675643422793, -0.09409443106501386, 0, 0.125}; +# Point(114) = {0.4651822636784212, -0.09288687703518478, 0, 0.125}; +# Point(115) = {0.460023449577924, -0.09156171967354482, 0, 0.125}; +# Point(116) = {0.4543969102408585, -0.09012177224394632, 0, 0.125}; +# Point(117) = {0.4483089331151018, -0.08857009539864649, 0, 0.125}; +# Point(118) = {0.4417662922553667, -0.08690999040934186, 0, 0.125}; +# Point(119) = {0.4347762351819332, -0.0851449913634191, 0, 0.125}; +# Point(120) = {0.4273464693498908, -0.08327885624791403, 0, 0.125}; +# Point(121) = {0.419485148335155, -0.08131555684993674, 0, 0.125}; +# Point(122) = {0.411200857836944, -0.07925926741086739, 0, 0.125}; +# Point(123) = {0.4025026015879757, -0.07711435198240155, 0, 0.125}; +# Point(124) = {0.3933997872536054, -0.07488535044544484, 0, 0.125}; +# Point(125) = {0.3839022123897198, -0.07257696316779733, 0, 0.125}; +# Point(126) = {0.3740200505167618, -0.07019403429336624, 0, 0.125}; +# Point(127) = {0.3637638373540689, -0.06774153367408606, 0, 0.125}; +# Point(128) = {0.3531444572451353, -0.06522453747557577, 0, 0.125}; +# Point(129) = {0.3421731297908021, -0.06264820750853495, 0, 0.125}; +# Point(130) = {0.3308613966940724, -0.06001776935966011, 0, 0.125}; +# Point(131) = {0.3192211088076166, -0.05733848941811218, 0, 0.125}; +# Point(132) = {0.3072644133633567, -0.05461565091590426, 0, 0.125}; +# Point(133) = {0.2950037413531683, -0.05185452912263369, 0, 0.125}; +# Point(134) = {0.2824517950208982, -0.04906036585632723, 0, 0.125}; +# Point(135) = {0.2696215354188702, -0.04623834349241404, 0, 0.125}; +# Point(136) = {0.2565261699769623, -0.04339355867155523, 0, 0.125}; +# Point(137) = {0.2431791400293651, -0.04053099592384862, 0, 0.125}; +# Point(138) = {0.2295941082432855, -0.03765550144139543, 0, 0.125}; +# Point(139) = {0.2157849458952252, -0.03477175724299444, 0, 0.125}; +# Point(140) = {0.2017657199439165, -0.03188425598348005, 0, 0.125}; +# Point(141) = {0.187550679854507, -0.02899727666564914, 0, 0.125}; +# Point(142) = {0.1731542441359161, -0.02611486151457043, 0, 0.125}; +# Point(143) = {0.1585909865622793, -0.02324079427214604, 0, 0.125}; +# Point(144) = {0.1438756220597465, -0.02037858016395433, 0, 0.125}; +# Point(145) = {0.129022992251319, -0.0175314277805827, 0, 0.125}; +# Point(146) = {0.1140480506645569, -0.01470223310184333, 0, 0.125}; +# Point(147) = {0.09896584761949168, -0.01189356587453844, 0, 0.125}; +# Point(148) = {0.08379151482656089, -0.009107658532933174, 0, 0.125}; +# Point(149) = {0.06854024973648176, -0.006346397826038436, 0, 0.125}; +# Point(150) = {0.05322729969528361, -0.003611319287478529, 0, 0.125}; +# Point(151) = {0.03786794596792287, -0.00090360465249055, 0, 0.125}; +# Point(152) = {0.0224774877026287, 0.00177591770710904, 0, 0.125}; +# Point(153) = {0.007071225915134205, 0.004426769294862437, 0, 0.125}; +# Point(154) = {-0.00833555242305456, 0.007048814950562587, 0, 0.125}; +# Point(155) = {-0.02372759010533726, 0.009642253300220296, 0, 0.125}; +# Point(156) = {-0.03908967513210498, 0.01220760427359278, 0, 0.125}; +# Point(157) = {-0.05440665578848514, 0.01474569380579989, 0, 0.125}; +# Point(158) = {-0.06966345527617318, 0.01725763587663899, 0, 0.125}; +# Point(159) = {-0.08484508582421563, 0.01974481207672138, 0, 0.125}; +# Point(160) = {-0.09987987792382108, 0.02219618763023203, 0, 0.125}; +# Point(161) = {-0.1145078729404739, 0.02450371976411331, 0, 0.125}; +# Point(162) = {-0.1290321771824579, 0.0267015185742735, 0, 0.125}; +# Point(163) = {-0.143440065923266, 0.02879471001709845, 0, 0.125}; +# Point(164) = {-0.1577189448447794, 0.03078883518202784, 0, 0.125}; +# Point(165) = {-0.1718563428491159, 0.03268980457290044, 0, 0.125}; +# Point(166) = {-0.1858399037768357, 0.03450385196323842, 0, 0.125}; +# Point(167) = {-0.1996573773370766, 0.03623748825421298, 0, 0.125}; +# Point(168) = {-0.2132966095779342, 0.03789745574015834, 0, 0.125}; +# Point(169) = {-0.2267455332406906, 0.0394906831577609, 0, 0.125}; +# Point(170) = {-0.2399921583489679, 0.04102424186233269, 0, 0.125}; +# Point(171) = {-0.2530245633834605, 0.04250530343879837, 0, 0.125}; +# Point(172) = {-0.2658308873846617, 0.04394109901707172, 0, 0.125}; +# Point(173) = {-0.2783993233102972, 0.04533888052223981, 0, 0.125}; +# Point(174) = {-0.2907181129514687, 0.04670588405019788, 0, 0.125}; +# Point(175) = {-0.3027755436824813, 0.0480492955198111, 0, 0.125}; +# Point(176) = {-0.3145599472847223, 0.04937621871394801, 0, 0.125}; +# Point(177) = {-0.3260597010456697, 0.05069364578437131, 0, 0.125}; +# Point(178) = {-0.337263231291058, 0.05200843025992359, 0, 0.125}; +# Point(179) = {-0.3481590194623916, 0.05332726256406103, 0, 0.125}; +# Point(180) = {-0.3587356108043638, 0.05465664801682354, 0, 0.125}; +# Point(181) = {-0.3689816256782782, 0.0560028872679817, 0, 0.125}; +# Point(182) = {-0.3788857734692287, 0.05737205908247899, 0, 0.125}; +# Point(183) = {-0.3884368690074614, 0.05877000537646382, 0, 0.125}; +# Point(184) = {-0.3976238513788748, 0.06020231838219783, 0, 0.125}; +# Point(185) = {-0.40643580495675, 0.06167432980291591, 0, 0.125}; +# Point(186) = {-0.4148619824472646, 0.06319110180426264, 0, 0.125}; +# Point(187) = {-0.4228918297057104, 0.06475741967717524, 0, 0.125}; +# Point(188) = {-0.43051501204915, 0.06637778599795482, 0, 0.125}; +# Point(189) = {-0.4377214417649294, 0.06805641610468524, 0, 0.125}; +# Point(190) = {-0.4445013064933708, 0.06979723470503821, 0, 0.125}; +# Point(191) = {-0.4508450981473512, 0.07160387342876083, 0, 0.125}; +# Point(192) = {-0.4567436420215075, 0.073479669138689, 0, 0.125}; +# Point(193) = {-0.4621881257395756, 0.07542766281688272, 0, 0.125}; +# Point(194) = {-0.4671701276898881, 0.07745059884734995, 0, 0.125}; +# Point(195) = {-0.471681644606229, 0.07955092452372269, 0, 0.125}; +# Point(196) = {-0.4757151179639407, 0.0817307896190848, 0, 0.125}; +# Point(197) = {-0.4792634588791559, 0.0839920458658267, 0, 0.125}; +# Point(198) = {-0.4823200712220043, 0.08633624620581726, 0, 0.125}; +# Point(199) = {-0.4848788726822436, 0.08876464368523246, 0, 0.125}; +# Point(200) = {-0.4869343135575803, 0.09127818988394577, 0, 0.125}; +# Point(201) = {-0.4884813930704814, 0.09387753278635144, 0, 0.125}; +# Point(202) = {-0.4895156730580155, 0.09656301401871749, 0, 0.125}; +# +# // splines of the airfoil +# Spline(5) = {5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104}; +# Spline(6) = {104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,5}; +# +# // airfoil +# Line Loop(9) = {5, 6}; +# // complete domain +# Plane Surface(1) = {8, 9}; +# +# // labeling of the boundary parts +# Physical Line(1) = {4}; // inflow +# Physical Line(2) = {2}; // outflow +# Physical Line(3) = {1, 3}; // airfoil +# Physical Line(4) = {5, 6}; // upper/lower wall +# Physical Surface(1) = {10}; +# ``` +# From which we can construct a mesh like this: +# ![mesh_screenshot](https://github.com/trixi-framework/Trixi.jl/assets/75639095/67adfe3d-d403-4cd3-acaa-971a34df0709) +# +# The first four points define the bounding box = (near-field) domain: +# ```c++ +# // outer bounding box +# Point(1) = {-1.25, -0.5, 0, 1.0}; +# Point(2) = {1.25, -0.5, 0, 1.0}; +# Point(3) = {1.25, 0.5, 0, 1.0}; +# Point(4) = {-1.25, 0.5, 0, 1.0}; +# ``` +# which is constructed from connecting the points in lines: +# ```c++ +# // outer box +# Line(1) = {1, 2}; +# Line(2) = {2, 3}; +# Line(3) = {3, 4}; +# Line(4) = {4, 1}; +# // outer box +# Line Loop(8) = {1, 2, 3, 4}; +# ``` +# +# This is followed by a couple (in principle optional) settings where the most important one is +# ```c++ +# // Insist on quads instead of default triangles +# Mesh.RecombineAll = 1; +# ``` +# which forces `gmsh` to generate quadrilateral elements instead of the default triangles. +# This is strictly required to be able to use the mesh later with `p4est`, which supports only straight-sided quads, +# i.e., `C2D4, CPS4, S4` in 2D and `C3D` in 3D. +# See for more details the (short) [documentation](https://p4est.github.io/p4est-howto.pdf) on the interaction of `p4est` with `.inp` files. +# In principle, it should also be possible to use the `recombine` function of `gmsh` to convert the triangles to quads, +# but this is observed to be less robust than enforcing quads from the beginning. +# +# Then the airfoil is defined by a set of points: +# ```c++ +# // points of the airfoil contour +# Point(5) = {-0.4900332889206208, 0.09933466539753061, 0, 0.125}; +# Point(6) = {-0.4900274857651495, 0.1021542752054094, 0, 0.125}; +# ... +# ``` +# which are connected by splines for the upper and lower part of the airfoil: +# ```c++ +# // splines of the airfoil +# Spline(5) = {5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, +# ... +# 96,97,98,99,100,101,102,103,104}; +# Spline(6) = {104,105,106,107,108,109,110,111,112,113,114,115, +# ... +# 200,201,202,5}; +# ``` +# which are then connected to form a single line loop for easy physical group assignment: +# ```c++ +# // airfoil +# Line Loop(9) = {5, 6}; +# ``` +# +# At the end of the file the physical groups are defined: +# ```c++ +# // labeling of the boundary parts +# Physical Line(1) = {4}; // Inflow. Label in Abaqus .inp file: PhysicalLine1 +# Physical Line(2) = {2}; // Outflow. Label in Abaqus .inp file: PhysicalLine2 +# Physical Line(3) = {1, 3}; // Airfoil. Label in Abaqus .inp file: PhysicalLine3 +# Physical Line(4) = {5, 6}; //Upper and lower wall/farfield/... Label in Abaqus .inp file: PhysicalLine4 +# ``` +# which are crucial for the correct assignment of boundary conditions in `Trixi.jl`. +# In particular, it is the responsibility of a user to keep track on the physical boundary names between the mesh generation and assignment of boundary condition functions in an elixir. +# +# After opening this file in `gmsh`, meshing the geometry and exporting to Abaqus `.inp` format, +# we can have a look at the input file: +# ``` +# *Heading +# +# *NODE +# 1, -1.25, -0.5, 0 +# 2, 1.25, -0.5, 0 +# 3, 1.25, 0.5, 0 +# 4, -1.25, 0.5, 0 +# ... +# ******* E L E M E N T S ************* +# *ELEMENT, type=T3D2, ELSET=Line1 +# 1, 1, 7 +# ... +# *ELEMENT, type=CPS4, ELSET=Surface1 +# 191, 272, 46, 263, 807 +# ... +# *NSET,NSET=PhysicalLine1 +# 1, 4, 52, 53, 54, 55, 56, 57, 58, +# *NSET,NSET=PhysicalLine2 +# 2, 3, 26, 27, 28, 29, 30, 31, 32, +# *NSET,NSET=PhysicalLine3 +# 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, +# 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, +# 23, 24, 25, 33, 34, 35, 36, 37, 38, 39, +# 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, +# 50, 51, +# *NSET,NSET=PhysicalLine4 +# 5, 6, 59, 60, 61, 62, 63, 64, 65, 66, +# 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, +# 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, +# 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, +# 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, +# 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, +# 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, +# 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, +# 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, +# 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, +# 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, +# 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, +# 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, +# 187, 188, 189, 190, +# ``` +# +# First, the coordinates of the nodes are listed, followed by the elements. +# Note that `gmsh` exports also line elements of type `T3D2` which are ignored by `p4est`. +# The relevant elements in 2D which form the gridcells are of type `CPS4` which are defined by their four corner nodes. +# This is followed by the nodesets encoded via `*NSET` which are used to assign boundary conditions in Trixi.jl. +# Trixi.jl parses the `.inp` file and assigns the edges (in 2D, surfaces in 3D) of elements to the corresponding boundary condition based on +# the supplied `boundary_symbols` that have to be supplied to the `P4estMesh` constructor: +# ```julia +# # boundary symbols +# boundary_symbols = [:PhysicalLine1, :PhysicalLine2, :PhysicalLine3, :PhysicalLine4] +# mesh = P4estMesh{2}(mesh_file, polydeg = polydeg, boundary_symbols = boundary_symbols) +# ``` +# The same boundary symbols have then also be supplied to the semidiscretization alongside the +# corresponding physical boundary conditions: +# ```julia +# # Supersonic inflow boundary condition. +# # Calculate the boundary flux entirely from the external solution state, i.e., set +# # external solution state values for everything entering the domain. +# @inline function boundary_condition_supersonic_inflow(u_inner, +# normal_direction::AbstractVector, +# x, t, surface_flux_function, +# equations::CompressibleEulerEquations2D) +# u_boundary = initial_condition_mach2_flow(x, t, equations) +# flux = Trixi.flux(u_boundary, normal_direction, equations) +# +# return flux +# end +# +# # Supersonic outflow boundary condition. +# # Calculate the boundary flux entirely from the internal solution state. Analogous to supersonic inflow +# # except all the solution state values are set from the internal solution as everything leaves the domain +# @inline function boundary_condition_supersonic_outflow(u_inner, +# normal_direction::AbstractVector, x, +# t, +# surface_flux_function, +# equations::CompressibleEulerEquations2D) +# flux = Trixi.flux(u_inner, normal_direction, equations) +# +# boundary_conditions = Dict(:PhysicalLine1 => boundary_condition_supersonic_inflow, # Left boundary +# :PhysicalLine2 => boundary_condition_supersonic_outflow, # Right boundary +# :PhysicalLine3 => boundary_condition_slip_wall, # Airfoil +# :PhysicalLine4 => boundary_condition_supersonic_outflow) # Top and bottom boundary +# +# semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, +# boundary_conditions = boundary_conditions) +# ``` +# Note that you **have to** supply the `boundary_symbols` keyword to the `P4estMesh` constructor +# to select the boundaries from the available nodesets in the `.inp` file. +# If the `boundary_symbols` keyword is not supplied, all boundaries will be assigned to the default set `:all`. + +# ## Package versions + +# These results were obtained using the following versions. + +using InteractiveUtils +versioninfo() + +using Pkg +Pkg.status(["Trixi", "OrdinaryDiffEq", "Plots", "Download"], + mode=PKGMODE_MANIFEST) diff --git a/docs/make.jl b/docs/make.jl index df8ac04be12..dee87371bd1 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -65,6 +65,7 @@ files = [ "Adaptive mesh refinement" => "adaptive_mesh_refinement.jl", "Structured mesh with curvilinear mapping" => "structured_mesh_mapping.jl", "Unstructured meshes with HOHQMesh.jl" => "hohqmesh_tutorial.jl", + "P4est mesh from gmsh" => "p4est_from_gmsh.jl", # Topic: other stuff "Explicit time stepping" => "time_stepping.jl", "Differentiable programming" => "differentiable_programming.jl", diff --git a/docs/src/meshes/p4est_mesh.md b/docs/src/meshes/p4est_mesh.md index 1e5d782ebb6..db75346cab3 100644 --- a/docs/src/meshes/p4est_mesh.md +++ b/docs/src/meshes/p4est_mesh.md @@ -55,7 +55,7 @@ This heading is used to indicate to the mesh constructor which of the above mapp create a curvilinear mesh. If the Abaqus file header is **not** present then the `P4estMesh` is created with the first strategy above. -#### List of corner nodes +#### List of corner nodes Next, prefaced with `*NODE`, comes a list of the physical `(x,y,z)` coordinates of all the corners. The first integer in the list of the corners provides its id number. @@ -71,7 +71,7 @@ Thus, for the two-dimensional example mesh this block of corner information is 7, 3.0, -1.0, 0.0 ``` -#### List of elements +#### List of elements The element connectivity is given after the list of corners. The header for this information block is ``` @@ -98,7 +98,9 @@ The construction of the element neighbor ids and identifying physical boundary s directly from the [`p4est`](https://github.com/cburstedde/p4est) library. For example, the neighbor connectivity is created in the mesh constructor using the wrapper `read_inp_p4est` function. -#### HOHQMesh boundary information +#### Encoding of boundaries + +##### HOHQMesh boundary information If present, any additional information in the mesh file that was created by `HOHQMesh` is prefaced with `** ` to make it an Abaqus comment. @@ -230,8 +232,38 @@ For completeness, we provide the entire Abaqus mesh file for the example mesh in ** Bottom --- Right --- ``` +##### Standard Abaqus format boundary information + +As an alternative to an Abaqus mesh generated by `HOHQMesh`, `.inp` files with boundary information encoded as nodesets `*NSET,NSET=` can be used to construct a `p4est` mesh. +This is especially useful for usage of existing meshes (consisting of bilinear elements) which could stem from the popular [`gmsh`](https://gmsh.info/) meshing software. + +In addition to the list of [nodes](#nodes) and [elements](#elements) given above, there are nodesets of the form +``` +*NSET,NSET=PhysicalLine1 +1, 4, 52, 53, 54, 55, 56, 57, 58, +``` +present which are used to associate the edges defined through their corner nodes with a label. In this case it is called `PhysicalLine1`. +By looping over every element and its associated edges, consisting of two nodes, we query the read in `NSET`s if the current node pair is present. + +To prevent that every nodeset following `*NSET,NSET=` is treated as a boundary, the user must supply a `boundary_symbols` keyword to the [`P4estMesh`](@ref) constructor: + +```julia +boundary_symbols = [:PhysicalLine1] + +mesh = P4estMesh{2}(mesh_file, polydeg = polydeg, boundary_symbols = boundary_symbols) +``` +By doing so, only nodesets with a label present in `boundary_symbols` are treated as physical boundaries. +Other nodesets that could be used for diagnostics are not treated as external boundaries. +Note that there is a leading colon `:` compared to the label in the `.inp` mesh file. +This is required to turn the label into a [`Symbol`](https://docs.julialang.org/en/v1/manual/metaprogramming/#Symbols). + +A 2D example for this mesh, which is read-in for an unstructured mesh file created with `gmsh`, is presented in +`examples/p4est_2d_dgsem/elixir_euler_NACA6412airfoil_mach2.jl`. + ### Mesh in three spatial dimensions +#### `HOHQMesh`-Extended Abaqus format + The 3D Abaqus file format with high-order boundary information from `HOHQMesh` is very similar to the 2D version discussed above. There are only three changes: @@ -346,4 +378,222 @@ transfinite map of the straight sided hexahedral element to find \mathbf{X}(\boldsymbol{\xi}) = \boldsymbol\Sigma(\boldsymbol{\xi}) - \mathcal{C}_{\texttt{edge}}(\boldsymbol{\xi}) + \mathbf{X}_{linear}(\boldsymbol{\xi}). +``` + +#### Construction from standard Abaqus + +Also for a mesh in standard Abaqus format there are no qualitative changes when going from 2D to 3D. +The most notable difference is that boundaries are formed in 3D by faces defined by four nodes while in 2D boundaries are edges consisting of two elements. +A simple mesh file, which is used also in `examples/p4est_3d_dgsem/elixir_euler_free_stream_boundaries.jl`, is given below: +``` +*Heading + +*NODE +1, -2, 0, 0 +2, -1, 0, 0 +3, -1, 1, 0 +4, -2, 1, 0 +5, -2, 0, 1 +6, -1, 0, 1 +7, -1, 1, 1 +8, -2, 1, 1 +9, -1.75, 1, 0 +10, -1.5, 1, 0 +11, -1.25, 1, 0 +12, -1, 0.75000000000035, 0 +13, -1, 0.50000000000206, 0 +14, -1, 0.25000000000104, 0 +15, -1.25, 0, 0 +16, -1.5, 0, 0 +17, -1.75, 0, 0 +18, -2, 0.24999999999941, 0 +19, -2, 0.49999999999869, 0 +20, -2, 0.74999999999934, 0 +21, -1.75, 0, 1 +22, -1.5, 0, 1 +23, -1.25, 0, 1 +24, -1, 0.24999999999941, 1 +25, -1, 0.49999999999869, 1 +26, -1, 0.74999999999934, 1 +27, -1.25, 1, 1 +28, -1.5, 1, 1 +29, -1.75, 1, 1 +30, -2, 0.75000000000035, 1 +31, -2, 0.50000000000206, 1 +32, -2, 0.25000000000104, 1 +33, -2, 0, 0.24999999999941 +34, -2, 0, 0.49999999999869 +35, -2, 0, 0.74999999999934 +36, -2, 1, 0.24999999999941 +37, -2, 1, 0.49999999999869 +38, -2, 1, 0.74999999999934 +39, -1, 0, 0.24999999999941 +40, -1, 0, 0.49999999999869 +41, -1, 0, 0.74999999999934 +42, -1, 1, 0.24999999999941 +43, -1, 1, 0.49999999999869 +44, -1, 1, 0.74999999999934 +45, -1.25, 0.25000000000063, 0 +46, -1.25, 0.50000000000122, 0 +47, -1.25, 0.7500000000001, 0 +48, -1.5, 0.25000000000023, 0 +49, -1.5, 0.50000000000038, 0 +50, -1.5, 0.74999999999984, 0 +51, -1.75, 0.24999999999982, 0 +52, -1.75, 0.49999999999953, 0 +53, -1.75, 0.74999999999959, 0 +54, -1.75, 0.25000000000063, 1 +55, -1.75, 0.50000000000122, 1 +56, -1.75, 0.7500000000001, 1 +57, -1.5, 0.25000000000023, 1 +58, -1.5, 0.50000000000038, 1 +59, -1.5, 0.74999999999984, 1 +60, -1.25, 0.24999999999982, 1 +61, -1.25, 0.49999999999953, 1 +62, -1.25, 0.74999999999959, 1 +63, -2, 0.24999999999982, 0.24999999999941 +64, -2, 0.49999999999953, 0.24999999999941 +65, -2, 0.74999999999959, 0.24999999999941 +66, -2, 0.25000000000023, 0.49999999999869 +67, -2, 0.50000000000038, 0.49999999999869 +68, -2, 0.74999999999984, 0.49999999999869 +69, -2, 0.25000000000063, 0.74999999999934 +70, -2, 0.50000000000122, 0.74999999999934 +71, -2, 0.7500000000001, 0.74999999999934 +72, -1.25, 1, 0.74999999999934 +73, -1.25, 1, 0.49999999999869 +74, -1.25, 1, 0.24999999999941 +75, -1.5, 1, 0.74999999999934 +76, -1.5, 1, 0.49999999999869 +77, -1.5, 1, 0.24999999999941 +78, -1.75, 1, 0.74999999999934 +79, -1.75, 1, 0.49999999999869 +80, -1.75, 1, 0.24999999999941 +81, -1, 0.25000000000063, 0.24999999999941 +82, -1, 0.50000000000122, 0.24999999999941 +83, -1, 0.7500000000001, 0.24999999999941 +84, -1, 0.25000000000023, 0.49999999999869 +85, -1, 0.50000000000038, 0.49999999999869 +86, -1, 0.74999999999984, 0.49999999999869 +87, -1, 0.24999999999982, 0.74999999999934 +88, -1, 0.49999999999953, 0.74999999999934 +89, -1, 0.74999999999959, 0.74999999999934 +90, -1.75, 0, 0.74999999999934 +91, -1.75, 0, 0.49999999999869 +92, -1.75, 0, 0.24999999999941 +93, -1.5, 0, 0.74999999999934 +94, -1.5, 0, 0.49999999999869 +95, -1.5, 0, 0.24999999999941 +96, -1.25, 0, 0.74999999999934 +97, -1.25, 0, 0.49999999999869 +98, -1.25, 0, 0.24999999999941 +99, -1.75, 0.25000000000043, 0.74999999999934 +100, -1.75, 0.25000000000023, 0.49999999999869 +101, -1.75, 0.25000000000002, 0.24999999999941 +102, -1.75, 0.5000000000008, 0.74999999999934 +103, -1.75, 0.50000000000038, 0.49999999999869 +104, -1.75, 0.49999999999995, 0.24999999999941 +105, -1.75, 0.74999999999997, 0.74999999999934 +106, -1.75, 0.74999999999984, 0.49999999999869 +107, -1.75, 0.74999999999972, 0.24999999999941 +108, -1.5, 0.25000000000023, 0.74999999999934 +109, -1.5, 0.25000000000023, 0.49999999999869 +110, -1.5, 0.25000000000023, 0.24999999999941 +111, -1.5, 0.50000000000038, 0.74999999999934 +112, -1.5, 0.50000000000038, 0.49999999999869 +113, -1.5, 0.50000000000038, 0.24999999999941 +114, -1.5, 0.74999999999984, 0.74999999999934 +115, -1.5, 0.74999999999984, 0.49999999999869 +116, -1.5, 0.74999999999984, 0.24999999999941 +117, -1.25, 0.25000000000002, 0.74999999999934 +118, -1.25, 0.25000000000023, 0.49999999999869 +119, -1.25, 0.25000000000043, 0.24999999999941 +120, -1.25, 0.49999999999995, 0.74999999999934 +121, -1.25, 0.50000000000038, 0.49999999999869 +122, -1.25, 0.5000000000008, 0.24999999999941 +123, -1.25, 0.74999999999972, 0.74999999999934 +124, -1.25, 0.74999999999984, 0.49999999999869 +125, -1.25, 0.74999999999997, 0.24999999999941 +******* E L E M E N T S ************* +*ELEMENT, type=C3D8, ELSET=Volume1 +153, 54, 21, 5, 32, 99, 90, 35, 69 +154, 99, 90, 35, 69, 100, 91, 34, 66 +155, 100, 91, 34, 66, 101, 92, 33, 63 +156, 101, 92, 33, 63, 51, 17, 1, 18 +157, 55, 54, 32, 31, 102, 99, 69, 70 +158, 102, 99, 69, 70, 103, 100, 66, 67 +159, 103, 100, 66, 67, 104, 101, 63, 64 +160, 104, 101, 63, 64, 52, 51, 18, 19 +161, 56, 55, 31, 30, 105, 102, 70, 71 +162, 105, 102, 70, 71, 106, 103, 67, 68 +163, 106, 103, 67, 68, 107, 104, 64, 65 +164, 107, 104, 64, 65, 53, 52, 19, 20 +165, 29, 56, 30, 8, 78, 105, 71, 38 +166, 78, 105, 71, 38, 79, 106, 68, 37 +167, 79, 106, 68, 37, 80, 107, 65, 36 +168, 80, 107, 65, 36, 9, 53, 20, 4 +169, 57, 22, 21, 54, 108, 93, 90, 99 +170, 108, 93, 90, 99, 109, 94, 91, 100 +171, 109, 94, 91, 100, 110, 95, 92, 101 +172, 110, 95, 92, 101, 48, 16, 17, 51 +173, 58, 57, 54, 55, 111, 108, 99, 102 +174, 111, 108, 99, 102, 112, 109, 100, 103 +175, 112, 109, 100, 103, 113, 110, 101, 104 +176, 113, 110, 101, 104, 49, 48, 51, 52 +177, 59, 58, 55, 56, 114, 111, 102, 105 +178, 114, 111, 102, 105, 115, 112, 103, 106 +179, 115, 112, 103, 106, 116, 113, 104, 107 +180, 116, 113, 104, 107, 50, 49, 52, 53 +181, 28, 59, 56, 29, 75, 114, 105, 78 +182, 75, 114, 105, 78, 76, 115, 106, 79 +183, 76, 115, 106, 79, 77, 116, 107, 80 +184, 77, 116, 107, 80, 10, 50, 53, 9 +185, 60, 23, 22, 57, 117, 96, 93, 108 +186, 117, 96, 93, 108, 118, 97, 94, 109 +187, 118, 97, 94, 109, 119, 98, 95, 110 +188, 119, 98, 95, 110, 45, 15, 16, 48 +189, 61, 60, 57, 58, 120, 117, 108, 111 +190, 120, 117, 108, 111, 121, 118, 109, 112 +191, 121, 118, 109, 112, 122, 119, 110, 113 +192, 122, 119, 110, 113, 46, 45, 48, 49 +193, 62, 61, 58, 59, 123, 120, 111, 114 +194, 123, 120, 111, 114, 124, 121, 112, 115 +195, 124, 121, 112, 115, 125, 122, 113, 116 +196, 125, 122, 113, 116, 47, 46, 49, 50 +197, 27, 62, 59, 28, 72, 123, 114, 75 +198, 72, 123, 114, 75, 73, 124, 115, 76 +199, 73, 124, 115, 76, 74, 125, 116, 77 +200, 74, 125, 116, 77, 11, 47, 50, 10 +201, 24, 6, 23, 60, 87, 41, 96, 117 +202, 87, 41, 96, 117, 84, 40, 97, 118 +203, 84, 40, 97, 118, 81, 39, 98, 119 +204, 81, 39, 98, 119, 14, 2, 15, 45 +205, 25, 24, 60, 61, 88, 87, 117, 120 +206, 88, 87, 117, 120, 85, 84, 118, 121 +207, 85, 84, 118, 121, 82, 81, 119, 122 +208, 82, 81, 119, 122, 13, 14, 45, 46 +209, 26, 25, 61, 62, 89, 88, 120, 123 +210, 89, 88, 120, 123, 86, 85, 121, 124 +211, 86, 85, 121, 124, 83, 82, 122, 125 +212, 83, 82, 122, 125, 12, 13, 46, 47 +213, 7, 26, 62, 27, 44, 89, 123, 72 +214, 44, 89, 123, 72, 43, 86, 124, 73 +215, 43, 86, 124, 73, 42, 83, 125, 74 +216, 42, 83, 125, 74, 3, 12, 47, 11 +*NSET,NSET=PhysicalSurface1 +1, 2, 3, 4, 5, 6, 7, 8, 9, 10, +11, 12, 13, 14, 15, 16, 17, 18, 19, 20, +21, 22, 23, 24, 25, 26, 27, 28, 29, 30, +31, 32, 33, 34, 35, 36, 37, 38, 45, 46, +47, 48, 49, 50, 51, 52, 53, 54, 55, 56, +57, 58, 59, 60, 61, 62, 63, 64, 65, 66, +67, 68, 69, 70, 71, +*NSET,NSET=PhysicalSurface2 +1, 2, 3, 4, 5, 6, 7, 8, 9, 10, +11, 12, 13, 14, 15, 16, 17, 21, 22, 23, +24, 25, 26, 27, 28, 29, 33, 34, 35, 36, +37, 38, 39, 40, 41, 42, 43, 44, 72, 73, +74, 75, 76, 77, 78, 79, 80, 81, 82, 83, +84, 85, 86, 87, 88, 89, 90, 91, 92, 93, +94, 95, 96, 97, 98, ``` \ No newline at end of file diff --git a/examples/p4est_2d_dgsem/elixir_euler_NACA6412airfoil_mach2.jl b/examples/p4est_2d_dgsem/elixir_euler_NACA6412airfoil_mach2.jl new file mode 100644 index 00000000000..6673053d88f --- /dev/null +++ b/examples/p4est_2d_dgsem/elixir_euler_NACA6412airfoil_mach2.jl @@ -0,0 +1,108 @@ + +using Trixi +using OrdinaryDiffEq +using Downloads: download + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations2D(1.4) + +@inline function initial_condition_mach2_flow(x, t, equations::CompressibleEulerEquations2D) + # set the freestream flow parameters + rho_freestream = 1.4 + v1 = 2.0 + v2 = 0.0 + p_freestream = 1.0 + + prim = SVector(rho_freestream, v1, v2, p_freestream) + return prim2cons(prim, equations) +end + +initial_condition = initial_condition_mach2_flow + +# Supersonic inflow boundary condition. +# Calculate the boundary flux entirely from the external solution state, i.e., set +# external solution state values for everything entering the domain. +@inline function boundary_condition_supersonic_inflow(u_inner, + normal_direction::AbstractVector, + x, t, surface_flux_function, + equations::CompressibleEulerEquations2D) + u_boundary = initial_condition_mach2_flow(x, t, equations) + flux = Trixi.flux(u_boundary, normal_direction, equations) + + return flux +end + +# Supersonic outflow boundary condition. +# Calculate the boundary flux entirely from the internal solution state. Analogous to supersonic inflow +# except all the solution state values are set from the internal solution as everything leaves the domain +@inline function boundary_condition_supersonic_outflow(u_inner, + normal_direction::AbstractVector, x, + t, + surface_flux_function, + equations::CompressibleEulerEquations2D) + flux = Trixi.flux(u_inner, normal_direction, equations) + + return flux +end + +polydeg = 3 + +surface_flux = flux_lax_friedrichs +volume_flux = flux_ranocha + +basis = LobattoLegendreBasis(polydeg) +shock_indicator = IndicatorHennemannGassner(equations, basis, + alpha_max = 0.5, + alpha_min = 0.001, + alpha_smooth = true, + variable = density_pressure) +volume_integral = VolumeIntegralShockCapturingHG(shock_indicator; + volume_flux_dg = volume_flux, + volume_flux_fv = surface_flux) + +# DG Solver +solver = DGSEM(polydeg = polydeg, surface_flux = surface_flux, + volume_integral = volume_integral) + +# Mesh generated from the following gmsh geometry input file: +# https://gist.githubusercontent.com/DanielDoehring/5ade6d93629f0d8c23a598812dbee2a9/raw/d2bc904fe92146eae1a36156e7f5c535dc1a80f1/NACA6412.geo +mesh_file = joinpath(@__DIR__, "mesh_NACA6412.inp") +isfile(mesh_file) || + download("https://gist.githubusercontent.com/DanielDoehring/e2a389f04f1e37b33819b9637e8ee4c3/raw/4bf7607a2ce4432fdb5cb87d5e264949b11bd5d7/mesh_NACA6412.inp", + mesh_file) + +boundary_symbols = [:PhysicalLine1, :PhysicalLine2, :PhysicalLine3, :PhysicalLine4] + +mesh = P4estMesh{2}(mesh_file, polydeg = polydeg, boundary_symbols = boundary_symbols) + +boundary_conditions = Dict(:PhysicalLine1 => boundary_condition_supersonic_inflow, # Left boundary + :PhysicalLine2 => boundary_condition_supersonic_outflow, # Right boundary + :PhysicalLine3 => boundary_condition_slip_wall, # Airfoil + :PhysicalLine4 => boundary_condition_supersonic_outflow) # Top and bottom boundary + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions = boundary_conditions) + +tspan = (0.0, 5.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 1000 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +stepsize_callback = StepsizeCallback(cfl = 4.0) + +callbacks = CallbackSet(summary_callback, + analysis_callback, + stepsize_callback) + +# Run the simulation +############################################################################### +sol = solve(ode, SSPRK104(; thread = OrdinaryDiffEq.True()); + dt = 1.0, # overwritten by the `stepsize_callback` + callback = callbacks); + +summary_callback() # print the timer summary diff --git a/examples/p4est_3d_dgsem/elixir_euler_free_stream_boundaries.jl b/examples/p4est_3d_dgsem/elixir_euler_free_stream_boundaries.jl new file mode 100644 index 00000000000..bdc4da26c1f --- /dev/null +++ b/examples/p4est_3d_dgsem/elixir_euler_free_stream_boundaries.jl @@ -0,0 +1,60 @@ + +using Downloads: download +using OrdinaryDiffEq +using Trixi + +############################################################################### +# semidiscretization of the compressible Euler equations + +equations = CompressibleEulerEquations3D(1.4) + +initial_condition = initial_condition_constant + +polydeg = 3 +solver = DGSEM(polydeg = polydeg, surface_flux = flux_lax_friedrichs) + +############################################################################### +# Get the uncurved mesh from a file (downloads the file if not available locally) + +default_mesh_file = joinpath(@__DIR__, "mesh_cube_with_boundaries.inp") +isfile(default_mesh_file) || + download("https://gist.githubusercontent.com/DanielDoehring/710eab379fe3042dc08af6f2d1076e49/raw/38e9803bc0dab9b32a61d9542feac5343c3e6f4b/mesh_cube_with_boundaries.inp", + default_mesh_file) +mesh_file = default_mesh_file + +boundary_symbols = [:PhysicalSurface1, :PhysicalSurface2] + +mesh = P4estMesh{3}(mesh_file, polydeg = polydeg, boundary_symbols = boundary_symbols) + +boundary_conditions = Dict(:PhysicalSurface1 => BoundaryConditionDirichlet(initial_condition), + :PhysicalSurface2 => BoundaryConditionDirichlet(initial_condition)) + +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, + boundary_conditions = boundary_conditions) + +############################################################################### +# ODE solvers, callbacks etc. + +tspan = (0.0, 1.0) +ode = semidiscretize(semi, tspan) + +summary_callback = SummaryCallback() + +analysis_interval = 100 +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) + +alive_callback = AliveCallback(analysis_interval = analysis_interval) + +stepsize_callback = StepsizeCallback(cfl = 1.5) + +callbacks = CallbackSet(summary_callback, + analysis_callback, alive_callback, + stepsize_callback) + +############################################################################### +# run the simulation + +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); +summary_callback() # print the timer summary diff --git a/src/meshes/p4est_mesh.jl b/src/meshes/p4est_mesh.jl index 60db285e04f..c5d39ef00c0 100644 --- a/src/meshes/p4est_mesh.jl +++ b/src/meshes/p4est_mesh.jl @@ -289,7 +289,8 @@ end P4estMesh{NDIMS}(meshfile::String; mapping=nothing, polydeg=1, RealT=Float64, initial_refinement_level=0, unsaved_changes=true, - p4est_partition_allow_for_coarsening=true) + p4est_partition_allow_for_coarsening=true, + boundary_symbols = nothing) Main mesh constructor for the `P4estMesh` that imports an unstructured, conforming mesh from an Abaqus mesh file (`.inp`). Each element of the conforming mesh parsed @@ -310,8 +311,9 @@ To create a curved unstructured mesh `P4estMesh` two strategies are available: straight-sided from the information parsed from the `meshfile`. If a mapping function is specified then it computes the mapped tree coordinates via polynomial interpolants with degree `polydeg`. The mesh created by this function will only - have one boundary `:all`, as distinguishing different physical boundaries is - non-trivial. + have one boundary `:all` if `boundary_symbols` is not specified. + If `boundary_symbols` is specified the mesh file will be parsed for nodesets defining + the boundary nodes from which boundary edges (2D) and faces (3D) will be assigned. Note that the `mapping` and `polydeg` keyword arguments are only used by the `p4est_mesh_from_standard_abaqus` function. The `p4est_mesh_from_hohqmesh_abaqus` function obtains the mesh `polydeg` directly from the `meshfile` @@ -345,11 +347,14 @@ For example, if a two-dimensional base mesh contains 25 elements then setting - `p4est_partition_allow_for_coarsening::Bool`: Must be `true` when using AMR to make mesh adaptivity independent of domain partitioning. Should be `false` for static meshes to permit more fine-grained partitioning. +- `boundary_symbols::Vector{Symbol}`: A vector of symbols that correspond to the boundary names in the `meshfile`. + If `nothing` is passed then all boundaries are named `:all`. """ function P4estMesh{NDIMS}(meshfile::String; mapping = nothing, polydeg = 1, RealT = Float64, initial_refinement_level = 0, unsaved_changes = true, - p4est_partition_allow_for_coarsening = true) where {NDIMS} + p4est_partition_allow_for_coarsening = true, + boundary_symbols = nothing) where {NDIMS} # Prevent `p4est` from crashing Julia if the file doesn't exist @assert isfile(meshfile) @@ -373,7 +378,8 @@ function P4estMesh{NDIMS}(meshfile::String; polydeg, initial_refinement_level, NDIMS, - RealT) + RealT, + boundary_symbols) end return P4estMesh{NDIMS}(p4est, tree_node_coordinates, nodes, @@ -444,7 +450,8 @@ end # the `mapping` passed to this function using polynomial interpolants of degree `polydeg`. All boundary # names are given the name `:all`. function p4est_mesh_from_standard_abaqus(meshfile, mapping, polydeg, - initial_refinement_level, n_dimensions, RealT) + initial_refinement_level, n_dimensions, RealT, + boundary_symbols) # Create the mesh connectivity using `p4est` connectivity = read_inp_p4est(meshfile, Val(n_dimensions)) connectivity_pw = PointerWrapper(connectivity) @@ -469,12 +476,215 @@ function p4est_mesh_from_standard_abaqus(meshfile, mapping, polydeg, p4est = new_p4est(connectivity, initial_refinement_level) - # There's no simple and generic way to distinguish boundaries. Name all of them :all. - boundary_names = fill(:all, 2 * n_dimensions, n_trees) + if boundary_symbols === nothing + # There's no simple and generic way to distinguish boundaries without any information given. + # Name all of them :all. + boundary_names = fill(:all, 2 * n_dimensions, n_trees) + else # Boundary information given + # Read in nodes belonging to boundaries + node_set_dict = parse_node_sets(meshfile, boundary_symbols) + # Read in all elements with associated nodes to specify the boundaries + element_node_matrix = parse_elements(meshfile, n_trees, n_dimensions) + + # Initialize boundary information matrix with symbol for no boundary / internal connection + boundary_names = fill(Symbol("---"), 2 * n_dimensions, n_trees) + + # Fill `boundary_names` such that it can be processed by p4est + assign_boundaries_standard_abaqus!(boundary_names, n_trees, + element_node_matrix, node_set_dict, + Val(n_dimensions)) + end return p4est, tree_node_coordinates, nodes, boundary_names end +function parse_elements(meshfile, n_trees, n_dims) + @assert n_dims in (2, 3) "Only 2D and 3D meshes are supported" + # Valid element types (that can be processed by p4est) based on dimension + element_types = n_dims == 2 ? + ["*ELEMENT, type=CPS4", "*ELEMENT, type=C2D4", + "*ELEMENT, type=S4"] : ["*ELEMENT, type=C3D8"] + # 2D quads: 4 nodes + element index, 3D hexes: 8 nodes + element index + expected_content_length = n_dims == 2 ? 5 : 9 + + element_node_matrix = Matrix{Int64}(undef, n_trees, expected_content_length - 1) + el_list_follows = false + tree_id = 1 + + open(meshfile, "r") do file + for line in eachline(file) + if any(startswith(line, el_type) for el_type in element_types) + el_list_follows = true + elseif el_list_follows + content = split(line, ",") + if length(content) == expected_content_length # Check that we still read in connectivity data + content_int = parse.(Int64, content) + # Add constituent nodes to the element_node_matrix. + # Important: Do not use index from the Abaqus file, but the one from p4est. + element_node_matrix[tree_id, :] = content_int[2:end] # First entry is element id + tree_id += 1 + else # Processed all elements for this ELSET + el_list_follows = false + end + end + end + end + + return element_node_matrix +end + +function parse_node_sets(meshfile, boundary_symbols) + nodes_dict = Dict{Symbol, Vector{Int64}}() + current_symbol = nothing + current_nodes = Int64[] + + open(meshfile, "r") do file + for line in eachline(file) + # Check if the line contains nodes assembled in a special set, i.e., a physical boundary + if startswith(line, "*NSET,NSET=") + # Safe the previous nodeset + if current_symbol !== nothing + nodes_dict[current_symbol] = current_nodes + end + + current_symbol = Symbol(split(line, "=")[2]) + if current_symbol in boundary_symbols + # New nodeset + current_nodes = Int64[] + else # Read only boundary node sets + current_symbol = nothing + end + elseif current_symbol !== nothing # Read only if there was already a nodeset specified + try # Check if line contains nodes + # There is always a trailing comma, remove the corresponding empty string + append!(current_nodes, parse.(Int64, split(line, ",")[1:(end - 1)])) + catch # Something different, stop reading in nodes + # If parsing fails, set current_symbol to nothing + nodes_dict[current_symbol] = current_nodes + current_symbol = nothing + end + end + end + # Safe the previous nodeset + if current_symbol !== nothing + nodes_dict[current_symbol] = current_nodes + end + end + + for symbol in boundary_symbols + if !haskey(nodes_dict, symbol) + @warn "No nodes found for nodeset :" * "$symbol" * " !" + end + end + + return nodes_dict +end + +# This function assigns the edges of elements to boundaries by +# checking if the nodes that define the edges are part of nodesets which correspond to boundaries. +function assign_boundaries_standard_abaqus!(boundary_names, n_trees, + element_node_matrix, node_set_dict, + ::Val{2}) # 2D version + for tree in 1:n_trees + tree_nodes = element_node_matrix[tree, :] + # For node labeling, see + # https://docs.software.vt.edu/abaqusv2022/English/SIMACAEELMRefMap/simaelm-r-2delem.htm#simaelm-r-2delem-t-nodedef1 + # and search for "Node ordering and face numbering on elements" + for boundary in keys(node_set_dict) # Loop over specified boundaries + # Check bottom edge + if tree_nodes[1] in node_set_dict[boundary] && + tree_nodes[2] in node_set_dict[boundary] + # Bottom boundary is position 3 in p4est indexing + boundary_names[3, tree] = boundary + end + # Check right edge + if tree_nodes[2] in node_set_dict[boundary] && + tree_nodes[3] in node_set_dict[boundary] + # Right boundary is position 2 in p4est indexing + boundary_names[2, tree] = boundary + end + # Check top edge + if tree_nodes[3] in node_set_dict[boundary] && + tree_nodes[4] in node_set_dict[boundary] + # Top boundary is position 4 in p4est indexing + boundary_names[4, tree] = boundary + end + # Check left edge + if tree_nodes[4] in node_set_dict[boundary] && + tree_nodes[1] in node_set_dict[boundary] + # Left boundary is position 1 in p4est indexing + boundary_names[1, tree] = boundary + end + end + end + + return boundary_names +end + +# This function assigns the edges of elements to boundaries by +# checking if the nodes that define the faces are part of nodesets which correspond to boundaries. +function assign_boundaries_standard_abaqus!(boundary_names, n_trees, + element_node_matrix, node_set_dict, + ::Val{3}) # 3D version + for tree in 1:n_trees + tree_nodes = element_node_matrix[tree, :] + # For node labeling, see + # https://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node26.html + for boundary in keys(node_set_dict) # Loop over specified boundaries + # Check "front face" (y_min) + if tree_nodes[1] in node_set_dict[boundary] && + tree_nodes[2] in node_set_dict[boundary] && + tree_nodes[5] in node_set_dict[boundary] && + tree_nodes[6] in node_set_dict[boundary] + # Front face is position 3 in p4est indexing + boundary_names[3, tree] = boundary + end + # Check "back face" (y_max) + if tree_nodes[3] in node_set_dict[boundary] && + tree_nodes[4] in node_set_dict[boundary] && + tree_nodes[7] in node_set_dict[boundary] && + tree_nodes[8] in node_set_dict[boundary] + # Front face is position 4 in p4est indexing + boundary_names[4, tree] = boundary + end + # Check "left face" (x_min) + if tree_nodes[1] in node_set_dict[boundary] && + tree_nodes[4] in node_set_dict[boundary] && + tree_nodes[5] in node_set_dict[boundary] && + tree_nodes[8] in node_set_dict[boundary] + # Left face is position 1 in p4est indexing + boundary_names[1, tree] = boundary + end + # Check "right face" (x_max) + if tree_nodes[2] in node_set_dict[boundary] && + tree_nodes[3] in node_set_dict[boundary] && + tree_nodes[6] in node_set_dict[boundary] && + tree_nodes[7] in node_set_dict[boundary] + # Right face is position 2 in p4est indexing + boundary_names[2, tree] = boundary + end + # Check "bottom face" (z_min) + if tree_nodes[1] in node_set_dict[boundary] && + tree_nodes[2] in node_set_dict[boundary] && + tree_nodes[3] in node_set_dict[boundary] && + tree_nodes[4] in node_set_dict[boundary] + # Bottom face is position 5 in p4est indexing + boundary_names[5, tree] = boundary + end + # Check "top face" (z_max) + if tree_nodes[5] in node_set_dict[boundary] && + tree_nodes[6] in node_set_dict[boundary] && + tree_nodes[7] in node_set_dict[boundary] && + tree_nodes[8] in node_set_dict[boundary] + # Top face is position 6 in p4est indexing + boundary_names[6, tree] = boundary + end + end + end + + return boundary_names +end + """ P4estMeshCubedSphere(trees_per_face_dimension, layers, inner_radius, thickness; polydeg, RealT=Float64, diff --git a/test/test_p4est_2d.jl b/test/test_p4est_2d.jl index cebc2917d52..b034091a175 100644 --- a/test/test_p4est_2d.jl +++ b/test/test_p4est_2d.jl @@ -391,6 +391,27 @@ end end end +@trixi_testset "elixir_euler_NACA6412airfoil_mach2.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_NACA6412airfoil_mach2.jl"), + l2=[ + 1.9752162683735258e-9, 3.150450205812513e-9, + 1.8885499402935914e-9, 7.273629602920966e-9, + ], + linf=[ + 6.007577890709825e-7, 1.005273289944597e-6, + 5.948514542597182e-7, 2.3111764217986774e-6, + ], + tspan=(0.0, 0.1)) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end + @trixi_testset "elixir_eulergravity_convergence.jl" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_eulergravity_convergence.jl"), l2=[ diff --git a/test/test_p4est_3d.jl b/test/test_p4est_3d.jl index dc5d32b5a04..ea7d9193add 100644 --- a/test/test_p4est_3d.jl +++ b/test/test_p4est_3d.jl @@ -234,6 +234,29 @@ end end end +@trixi_testset "elixir_euler_free_stream_boundaries.jl" begin + @test_trixi_include(joinpath(EXAMPLES_DIR, + "elixir_euler_free_stream_boundaries.jl"), + l2=[ + 6.530157034651212e-16, 1.6057829680004379e-15, + 3.31107455378537e-15, 3.908829498281281e-15, + 5.048390610424672e-15, + ], + linf=[ + 4.884981308350689e-15, 1.1921019726912618e-14, + 1.5432100042289676e-14, 2.298161660974074e-14, + 6.039613253960852e-14, + ]) + # Ensure that we do not have excessive memory allocations + # (e.g., from type instabilities) + let + t = sol.t[end] + u_ode = sol.u[end] + du_ode = similar(u_ode) + @test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000 + end +end + @trixi_testset "elixir_euler_free_stream_extruded.jl with HLLC FLux" begin @test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_euler_free_stream_extruded.jl"), l2=[