diff --git a/src/equations/polytropic_euler_2d.jl b/src/equations/polytropic_euler_2d.jl index e900fd64073..571d4723f6f 100644 --- a/src/equations/polytropic_euler_2d.jl +++ b/src/equations/polytropic_euler_2d.jl @@ -62,7 +62,7 @@ in combination with [`source_terms_convergence_test`](@ref). function initial_condition_convergence_test(x, t, equations::PolytropicEulerEquations2D) # manufactured initial condition from Winters (2019) [0.1007/s10543-019-00789-w] # domain must be set to [0, 1] x [0, 1] - h = 8 + cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t) + h = 8 + cospi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t) return SVector(h, h / 2, 3 * h / 2) end @@ -78,19 +78,20 @@ Source terms used for convergence tests in combination with rho, v1, v2 = cons2prim(u, equations) # Residual from Winters (2019) [0.1007/s10543-019-00789-w] eq. (5.2). - h = 8 + cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t) - h_t = -2 * pi * cos(2 * pi * x[1]) * sin(2 * pi * x[2]) * sin(2 * pi * t) - h_x = -2 * pi * sin(2 * pi * x[1]) * sin(2 * pi * x[2]) * cos(2 * pi * t) - h_y = 2 * pi * cos(2 * pi * x[1]) * cos(2 * pi * x[2]) * cos(2 * pi * t) + RealT = eltype(u) + h = 8 + cospi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t) + h_t = -2 * convert(RealT, pi) * cospi(2 * x[1]) * sinpi(2 * x[2]) * sinpi(2 * t) + h_x = -2 * convert(RealT, pi) * sinpi(2 * x[1]) * sinpi(2 * x[2]) * cospi(2 * t) + h_y = 2 * convert(RealT, pi) * cospi(2 * x[1]) * cospi(2 * x[2]) * cospi(2 * t) rho_x = h_x rho_y = h_y b = equations.kappa * equations.gamma * h^(equations.gamma - 1) - r_1 = h_t + h_x / 2 + 3 / 2 * h_y - r_2 = h_t / 2 + h_x / 4 + b * rho_x + 3 / 4 * h_y - r_3 = 3 / 2 * h_t + 3 / 4 * h_x + 9 / 4 * h_y + b * rho_y + r_1 = h_t + h_x / 2 + 3 * h_y / 2 + r_2 = h_t / 2 + h_x / 4 + b * rho_x + 3 * h_y / 4 + r_3 = 3 * h_t / 2 + 3 * h_x / 4 + 9 * h_y / 4 + b * rho_y return SVector(r_1, r_2, r_3) end @@ -113,9 +114,10 @@ function initial_condition_weak_blast_wave(x, t, equations::PolytropicEulerEquat phi = atan(y_norm, x_norm) # Calculate primitive variables - rho = r > 0.5 ? 1.0 : 1.1691 - v1 = r > 0.5 ? 0.0 : 0.1882 * cos(phi) - v2 = r > 0.5 ? 0.0 : 0.1882 * sin(phi) + RealT = eltype(x) + rho = r > 0.5f0 ? one(RealT) : convert(RealT, 1.1691) + v1 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * cos(phi) + v2 = r > 0.5f0 ? zero(RealT) : convert(RealT, 0.1882) * sin(phi) return prim2cons(SVector(rho, v1, v2), equations) end @@ -181,17 +183,17 @@ For details see Section 3.2 of the following reference v_dot_n_rr = v1_rr * normal_direction[1] + v2_rr * normal_direction[2] # Compute the necessary mean values - if equations.gamma == 1.0 # isothermal gas + if equations.gamma == 1 # isothermal gas rho_mean = ln_mean(rho_ll, rho_rr) else # equations.gamma > 1 # polytropic gas rho_mean = stolarsky_mean(rho_ll, rho_rr, equations.gamma) end - v1_avg = 0.5 * (v1_ll + v1_rr) - v2_avg = 0.5 * (v2_ll + v2_rr) - p_avg = 0.5 * (p_ll + p_rr) + v1_avg = 0.5f0 * (v1_ll + v1_rr) + v2_avg = 0.5f0 * (v2_ll + v2_rr) + p_avg = 0.5f0 * (p_ll + p_rr) # Calculate fluxes depending on normal_direction - f1 = rho_mean * 0.5 * (v_dot_n_ll + v_dot_n_rr) + f1 = rho_mean * 0.5f0 * (v_dot_n_ll + v_dot_n_rr) f2 = f1 * v1_avg + p_avg * normal_direction[1] f3 = f1 * v2_avg + p_avg * normal_direction[2] @@ -207,21 +209,21 @@ end p_rr = equations.kappa * rho_rr^equations.gamma # Compute the necessary mean values - if equations.gamma == 1.0 # isothermal gas + if equations.gamma == 1 # isothermal gas rho_mean = ln_mean(rho_ll, rho_rr) else # equations.gamma > 1 # polytropic gas rho_mean = stolarsky_mean(rho_ll, rho_rr, equations.gamma) end - v1_avg = 0.5 * (v1_ll + v1_rr) - v2_avg = 0.5 * (v2_ll + v2_rr) - p_avg = 0.5 * (p_ll + p_rr) + v1_avg = 0.5f0 * (v1_ll + v1_rr) + v2_avg = 0.5f0 * (v2_ll + v2_rr) + p_avg = 0.5f0 * (p_ll + p_rr) if orientation == 1 # x-direction - f1 = rho_mean * 0.5 * (v1_ll + v1_rr) + f1 = rho_mean * 0.5f0 * (v1_ll + v1_rr) f2 = f1 * v1_avg + p_avg f3 = f1 * v2_avg else # y-direction - f1 = rho_mean * 0.5 * (v2_ll + v2_rr) + f1 = rho_mean * 0.5f0 * (v2_ll + v2_rr) f2 = f1 * v1_avg f3 = f1 * v2_avg + p_avg end @@ -360,14 +362,14 @@ end v_square = v1^2 + v2^2 p = pressure(u, equations) # Form of the internal energy depends on gas type - if equations.gamma == 1.0 # isothermal gas + if equations.gamma == 1 # isothermal gas internal_energy = equations.kappa * log(rho) else # equations.gamma > 1 # polytropic gas internal_energy = equations.kappa * rho^(equations.gamma - 1) / - (equations.gamma - 1.0) + (equations.gamma - 1) end - w1 = internal_energy + p / rho - 0.5 * v_square + w1 = internal_energy + p / rho - 0.5f0 * v_square w2 = v1 w3 = v2 diff --git a/test/test_type.jl b/test/test_type.jl index 9b8c3366cfb..d22afa65c0a 100644 --- a/test/test_type.jl +++ b/test/test_type.jl @@ -1926,6 +1926,80 @@ isdir(outdir) && rm(outdir, recursive = true) end end + @timed_testset "Polytropic Euler 2D" begin + for RealT in (Float32, Float64) + equations1 = @inferred PolytropicEulerEquations2D(RealT(1), + RealT(1)) # equations.gamma == 1 + equations2 = @inferred PolytropicEulerEquations2D(RealT(1.4), RealT(0.5)) # equations.gamma > 1 + + for equations in (equations1, equations2) + x = SVector(zero(RealT), zero(RealT)) + t = zero(RealT) + u = u_ll = u_rr = SVector(one(RealT), one(RealT), one(RealT)) + orientations = [1, 2] + directions = [1, 2, 3, 4] + normal_direction = SVector(one(RealT), zero(RealT)) + + @test eltype(@inferred initial_condition_convergence_test(x, t, equations)) == + RealT + @test eltype(@inferred source_terms_convergence_test(u, x, t, equations)) == + RealT + @test eltype(@inferred initial_condition_weak_blast_wave(x, t, equations)) == + RealT + + @test eltype(@inferred flux(u, normal_direction, equations)) == RealT + if RealT == Float32 + # check `ln_mean` and `stolarsky_mean` (test broken) + @test_broken eltype(@inferred flux_winters_etal(u_ll, u_rr, + normal_direction, + equations)) == + RealT + else + @test eltype(@inferred flux_winters_etal(u_ll, u_rr, normal_direction, + equations)) == + RealT + end + @test eltype(@inferred min_max_speed_naive(u_ll, u_rr, normal_direction, + equations)) == + RealT + @test eltype(@inferred min_max_speed_davis(u_ll, u_rr, normal_direction, + equations)) == + RealT + @test typeof(@inferred max_abs_speed_naive(u_ll, u_rr, normal_direction, + equations)) == + RealT + + for orientation in orientations + @test eltype(@inferred flux(u, orientation, equations)) == RealT + if RealT == Float32 + # check `ln_mean` and `stolarsky_mean` (test broken) + @test_broken eltype(@inferred flux_winters_etal(u_ll, u_rr, + orientation, + equations)) == + RealT + else + @test eltype(@inferred flux_winters_etal(u_ll, u_rr, orientation, + equations)) == + RealT + end + @test eltype(@inferred min_max_speed_davis(u_ll, u_rr, orientation, + equations)) == + RealT + @test typeof(@inferred max_abs_speed_naive(u_ll, u_rr, orientation, + equations)) == + RealT + end + + @test eltype(@inferred Trixi.max_abs_speeds(u, equations)) == RealT + @test eltype(@inferred cons2prim(u, equations)) == RealT + @test eltype(@inferred prim2cons(u, equations)) == RealT + @test eltype(@inferred cons2entropy(u, equations)) == RealT + @test typeof(@inferred density(u, equations)) == RealT + @test typeof(@inferred pressure(u, equations)) == RealT + end + end + end + @timed_testset "Shallow Water 1D" begin for RealT in (Float32, Float64) equations = @inferred ShallowWaterEquations1D(gravity_constant = RealT(9.81))