-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
1034 lines (881 loc) · 35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import warnings
warnings.filterwarnings("ignore")
import os
import streamlit as st
import pandas as pd
from tempfile import NamedTemporaryFile
import logging
import asyncio
# Import the main functions
from src.contrastive_learning import main as train_main
from src.plot_embedding_map import main as plot_main
from src.services.embedding_inference import EmbeddingSearchService
from src.services.qdrant_indexing import main as indexing_main
from src.services.search_rag import RAGSearchService, INTENT_DESCRIPTIONS
# StreamlitHandler class for logging
class StreamlitHandler(logging.Handler):
def emit(self, record):
try:
msg = self.format(record)
level = record.levelname
if level == "ERROR":
st.error(msg)
elif level == "WARNING":
st.warning(msg)
elif level == "INFO":
st.info(msg)
else:
st.text(msg)
except Exception as e:
st.error(f"Error in StreamlitHandler: {str(e)}")
# Initialize session state variables
if "training_in_progress" not in st.session_state:
st.session_state.training_in_progress = False
if "last_active_tab" not in st.session_state:
st.session_state.last_active_tab = None
# Training tab state
if "train_df" not in st.session_state:
st.session_state.train_df = None
if "train_csv_path" not in st.session_state:
st.session_state.train_csv_path = "./data/dataset.csv"
if "loss_values" not in st.session_state:
st.session_state.loss_values = []
if "training_metrics" not in st.session_state:
st.session_state.training_metrics = None
if "training_completed" not in st.session_state:
st.session_state.training_completed = False
# Visualization tab state
if "viz_df" not in st.session_state:
st.session_state.viz_df = None
if "viz_csv_path" not in st.session_state:
st.session_state.viz_csv_path = "./data/dataset.csv"
if "models" not in st.session_state:
st.session_state.models = [
"mixedbread-ai/mxbai-embed-xsmall-v1",
"truefoundry/setfit-mxbai-embed-xsmall-v1-ivr-classifier",
]
if "viz_figures" not in st.session_state:
st.session_state.viz_figures = None
if "last_viz_params" not in st.session_state:
st.session_state.last_viz_params = None
# Inference tab state
if "inference_model" not in st.session_state:
st.session_state.inference_model = (
"truefoundry/setfit-mxbai-embed-xsmall-v1-ivr-classifier"
)
if "inference_service" not in st.session_state:
st.session_state.inference_service = None
if "model_loaded" not in st.session_state:
st.session_state.model_loaded = False
# Indexing tab state
if "indexing_df" not in st.session_state:
st.session_state.indexing_df = None
if "indexing_csv_path" not in st.session_state:
st.session_state.indexing_csv_path = "./data/dataset.csv"
if "indexing_in_progress" not in st.session_state:
st.session_state.indexing_in_progress = False
if "indexing_completed" not in st.session_state:
st.session_state.indexing_completed = False
# RAG Classifier tab state
if "rag_collection" not in st.session_state:
st.session_state.rag_collection = "ivr-classifier"
if "rag_dense_model" not in st.session_state:
st.session_state.rag_dense_model = (
"truefoundry/setfit-mxbai-embed-xsmall-v1-ivr-classifier"
)
if "rag_sparse_model" not in st.session_state:
st.session_state.rag_sparse_model = "Qdrant/bm25"
if "rag_late_model" not in st.session_state:
st.session_state.rag_late_model = "colbert-ir/colbertv2.0"
if "rag_service" not in st.session_state:
st.session_state.rag_service = None
if "rag_model_loaded" not in st.session_state:
st.session_state.rag_model_loaded = False
if "rag_intent_descriptions" not in st.session_state:
st.session_state.rag_intent_descriptions = INTENT_DESCRIPTIONS
# Page configuration
st.set_page_config(
page_title="Truefoundry Classifier - Train & Visualize & Evaluate",
page_icon="🤖",
layout="wide",
)
st.title("Truefoundry Classifier - Train & Visualize & Evaluate")
# Create a more prominent navigation with radio buttons
st.markdown(
"""
<style>
div.row-widget.stRadio > div {
flex-direction: row;
align-items: center;
}
div.row-widget.stRadio > div > label {
font-size: 24px !important;
padding: 10px 30px !important;
background-color: #f0f2f6;
border-radius: 5px;
margin-right: 10px;
}
div.row-widget.stRadio > div > label:hover {
background-color: #e0e2e6;
}
div.row-widget.stRadio > div [data-baseweb="radio"] {
display: none;
}
</style>
""",
unsafe_allow_html=True,
)
# Handle tab change
def on_tab_change():
st.session_state.last_active_tab = active_tab
st.markdown("---")
# Use radio buttons for tab selection
active_tab = st.radio(
"",
[
"Train Model",
"Visualize Embeddings",
"Embedding Inference",
"Multi-Vector Indexing",
"RAG Classifier",
],
horizontal=True,
format_func=lambda x: x.upper(),
)
st.markdown("---")
# Check if tab has changed
if st.session_state.last_active_tab != active_tab:
on_tab_change()
def render_training_sidebar():
with st.sidebar:
st.header("Training Configuration")
# File upload
uploaded_file = st.file_uploader(
"Upload CSV dataset", type="csv", key="train_upload"
)
use_default_csv = st.checkbox(
"Use default dataset", value=not bool(uploaded_file), key="train_default"
)
if use_default_csv:
input_csv = "./data/dataset.csv"
if not os.path.exists(input_csv):
st.error(f"Default dataset not found at {input_csv}")
st.stop()
st.success(f"Using default dataset: {input_csv}")
elif uploaded_file:
with NamedTemporaryFile(delete=False, suffix=".csv") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
input_csv = tmp_file.name
else:
st.warning("Please upload a CSV file or use the default dataset")
st.stop()
# Save the CSV path to session state
st.session_state.train_csv_path = input_csv
# Model selection
model_name = st.text_input(
"Model name (Hugging Face repo)",
value="mixedbread-ai/mxbai-embed-xsmall-v1",
key="train_model_name",
)
# Training parameters
train_samples = st.slider(
"Train samples per class",
min_value=4,
max_value=16,
value=8,
step=1,
key="train_samples",
)
test_samples = st.slider(
"Test samples per class",
min_value=4,
max_value=16,
value=8,
step=1,
key="test_samples",
)
batch_size = st.slider(
"Batch size",
min_value=16,
max_value=4096,
value=32,
step=1,
key="train_batch_size",
)
epochs = st.slider(
"Number of epochs", min_value=1, max_value=5, value=1, step=1, key="epochs"
)
model_suffix = st.text_input(
"Model suffix (required)",
value="",
help="Please enter a suffix to identify this training run (e.g., 'test-run-1')",
key="model_suffix",
)
st.markdown("---")
train_button = st.button(
"Train Model",
disabled=st.session_state.training_in_progress or not model_suffix.strip(),
help="Model suffix is required to start training"
if not model_suffix.strip()
else "Training in progress..."
if st.session_state.training_in_progress
else "Start training",
)
return (
input_csv,
model_name,
train_samples,
test_samples,
batch_size,
epochs,
model_suffix,
train_button,
)
def render_visualization_sidebar():
with st.sidebar:
st.header("Visualization Configuration")
# File upload
uploaded_file = st.file_uploader(
"Upload CSV dataset", type="csv", key="viz_upload"
)
use_default_csv = st.checkbox(
"Use default dataset", value=not bool(uploaded_file), key="viz_default"
)
if use_default_csv:
input_csv = "./data/dataset.csv"
if not os.path.exists(input_csv):
st.error(f"Default dataset not found at {input_csv}")
st.stop()
st.success(f"Using default dataset: {input_csv}")
elif uploaded_file:
with NamedTemporaryFile(delete=False, suffix=".csv") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
input_csv = tmp_file.name
else:
st.warning("Please upload a CSV file or use the default dataset")
st.stop()
# Save the CSV path to session state
st.session_state.viz_csv_path = input_csv
# Parameters
batch_size = st.slider(
"Batch size for embedding generation",
min_value=1,
max_value=32,
value=4,
key="viz_batch_size",
)
num_samples = st.slider(
"Number of samples per class",
min_value=-1,
max_value=50,
value=10,
help="-1 means use all samples",
key="viz_num_samples",
)
st.subheader("Models to Compare")
for i, model in enumerate(st.session_state.models):
col1, col2 = st.columns([4, 1])
with col1:
st.session_state.models[i] = st.text_input(
f"Model {i+1}", value=model, key=f"model_{i}"
)
with col2:
if (
st.button("Remove", key=f"remove_{i}")
and len(st.session_state.models) > 1
):
st.session_state.models.pop(i)
st.rerun()
st.markdown("---")
viz_button = st.button("Generate Visualizations")
return input_csv, batch_size, num_samples, viz_button
def render_inference_sidebar():
with st.sidebar:
st.header("Inference Configuration")
# Model selection
model_name = st.text_input(
"Model name (Hugging Face repo)",
value=st.session_state.inference_model,
key="inference_model_name",
)
# Load model button
load_button = st.button(
"Load Model",
disabled=st.session_state.model_loaded
and model_name == st.session_state.inference_model,
help="Load the selected model for inference",
)
if st.session_state.model_loaded:
st.success(f"Model loaded: {st.session_state.inference_model}")
return model_name, load_button
def render_indexing_sidebar():
with st.sidebar:
st.header("Indexing Configuration")
# File upload
uploaded_file = st.file_uploader(
"Upload CSV dataset", type="csv", key="indexing_upload"
)
use_default_csv = st.checkbox(
"Use default dataset", value=not bool(uploaded_file), key="indexing_default"
)
if use_default_csv:
input_csv = "./data/dataset.csv"
if not os.path.exists(input_csv):
st.error(f"Default dataset not found at {input_csv}")
st.stop()
st.success(f"Using default dataset: {input_csv}")
elif uploaded_file:
with NamedTemporaryFile(delete=False, suffix=".csv") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
input_csv = tmp_file.name
else:
st.warning("Please upload a CSV file or use the default dataset")
st.stop()
# Save the CSV path to session state
st.session_state.indexing_csv_path = input_csv
# Collection name
collection_name = st.text_input(
"Collection Name",
value="ivr-classifier",
help="Name of the Qdrant collection to create/update",
key="collection_name",
)
# Dense model selection
dense_model = st.text_input(
"Dense Embedding Model",
value="truefoundry/setfit-mxbai-embed-xsmall-v1-ivr-classifier",
help="Model for generating dense embeddings, should be present in the Infinity service",
key="dense_model",
)
# Batch size
batch_size = st.slider(
"Batch Size",
min_value=1,
max_value=4,
value=4,
help="Number of documents to process at once",
key="indexing_batch_size",
)
# Options
delete_existing = st.checkbox(
"Delete Existing Collection",
value=False,
help="Delete the existing collection before indexing",
key="delete_existing",
)
update = st.checkbox(
"Update Existing Collection",
value=False,
help="Update the existing collection with new data (skip existing documents)",
key="update_existing",
)
st.markdown("---")
index_button = st.button(
"Start Indexing",
disabled=st.session_state.indexing_in_progress,
help="Start the indexing process",
)
return (
input_csv,
collection_name,
dense_model,
batch_size,
delete_existing,
update,
index_button,
)
def render_rag_sidebar():
with st.sidebar:
st.header("RAG Classifier Configuration")
# Collection name
collection_name = st.text_input(
"Collection Name",
value=st.session_state.rag_collection,
help="Name of the Qdrant collection to use",
key="rag_collection_name",
)
# Dense model selection
dense_model = st.text_input(
"Dense Embedding Model",
value=st.session_state.rag_dense_model,
help="Model for generating dense embeddings",
key="rag_dense_model_name",
)
# Load model button
load_button = st.button(
"Load Model",
disabled=st.session_state.rag_model_loaded
and collection_name == st.session_state.rag_collection
and dense_model == st.session_state.rag_dense_model,
help="Load the selected model for RAG classification",
)
if st.session_state.rag_model_loaded:
st.success(
f"Model loaded: Collection '{st.session_state.rag_collection}' with Dense Model '{st.session_state.rag_dense_model}'"
)
# Advanced settings expander
with st.expander("Advanced Settings"):
# Sparse model selection
sparse_model = st.text_input(
"Sparse Embedding Model",
value=st.session_state.rag_sparse_model,
help="Model for generating sparse embeddings",
key="rag_sparse_model_name",
disabled=True,
)
# Late interaction model selection
late_model = st.text_input(
"Late Interaction Model",
value=st.session_state.rag_late_model,
help="Model for late interaction embeddings",
key="rag_late_model_name",
disabled=True,
)
return collection_name, dense_model, sparse_model, late_model, load_button
# Clear the sidebar before rendering the active tab's sidebar
st.sidebar.empty()
# Render content based on active tab
if active_tab == "Train Model":
# Training Tab Content
st.write(
"Train a sentence-transformer model using contrastive learning for text classification"
)
# Get training parameters from sidebar
(
input_csv,
model_name,
train_samples,
test_samples,
batch_size,
epochs,
model_suffix,
train_button,
) = render_training_sidebar()
# Load dataset if not already loaded or if path changed
if (
st.session_state.train_df is None
or st.session_state.train_csv_path != input_csv
):
try:
st.session_state.train_df = pd.read_csv(input_csv)
st.session_state.train_csv_path = input_csv
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Display dataset preview and statistics
try:
df = st.session_state.train_df
st.subheader("Dataset Preview")
st.dataframe(df.head())
st.subheader("Dataset Statistics")
st.write(f"Total examples: {len(df)}")
unique_labels = df["label"].unique()
st.write(f"Number of unique labels: {len(unique_labels)}")
label_counts = df["label"].value_counts().reset_index()
label_counts.columns = ["Label", "Count"]
st.bar_chart(label_counts.set_index("Label"))
except Exception as e:
st.error(f"Error displaying dataset: {str(e)}")
st.stop()
# Training section
st.subheader("Training")
# Create placeholder elements for training progress
status_text = st.empty()
progress_bar = st.empty()
metrics_container = st.empty()
progress_chart = st.empty()
# Display previous training results if available
if st.session_state.training_completed and not train_button:
if len(st.session_state.loss_values) > 0:
status_text.text("Previous training completed successfully!")
progress_bar.progress(100)
# Display the loss chart
loss_df = pd.DataFrame({"loss": st.session_state.loss_values})
progress_chart.line_chart(loss_df)
# Display metrics
if st.session_state.training_metrics:
metrics_container.json(st.session_state.training_metrics)
if train_button:
st.session_state.training_in_progress = True
st.session_state.loss_values = [] # Reset loss values for new training
try:
def progress_callback(stats):
try:
if "embedding_loss" in stats:
loss = stats["embedding_loss"]
st.session_state.loss_values.append(loss)
loss_df = pd.DataFrame({"loss": st.session_state.loss_values})
progress_chart.line_chart(loss_df)
# Store the latest metrics
st.session_state.training_metrics = stats
metrics_container.json(stats)
except Exception as e:
logger.warning(f"Error in progress callback: {str(e)}")
# Set up logging
from src.logger import logger, formatter
logger.handlers.clear()
streamlit_handler = StreamlitHandler()
streamlit_handler.setFormatter(formatter)
logger.addHandler(streamlit_handler)
status_text.text("Starting training process...")
with st.spinner("Training in progress... This might take a while."):
train_main(
input_csv=input_csv,
model_name=model_name,
train_samples=train_samples,
test_samples=test_samples,
batch_size=batch_size,
epochs=epochs,
model_suffix=model_suffix,
progress_callback=progress_callback,
)
progress_bar.progress(100)
status_text.text("Training completed!")
st.success("Model training completed successfully!")
st.session_state.training_in_progress = False
st.session_state.training_completed = True
except Exception as e:
st.session_state.training_in_progress = False
st.error(f"Error during training: {str(e)}")
elif active_tab == "Visualize Embeddings":
# Visualization Tab Content
st.write("Visualize embeddings from different models using UMAP projection")
# Get visualization parameters from sidebar
input_csv, batch_size, num_samples, viz_button = render_visualization_sidebar()
# Load dataset if not already loaded or if path changed
if st.session_state.viz_df is None or st.session_state.viz_csv_path != input_csv:
try:
st.session_state.viz_df = pd.read_csv(input_csv)
st.session_state.viz_csv_path = input_csv
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Display dataset preview
try:
df = st.session_state.viz_df
st.subheader("Dataset Preview")
st.dataframe(df.head())
st.subheader("Dataset Statistics")
st.write(f"Total examples: {len(df)}")
unique_labels = df["label"].unique()
st.write(f"Number of unique labels: {len(unique_labels)}")
except Exception as e:
st.error(f"Error displaying dataset: {str(e)}")
st.stop()
# Generate visualizations when button is clicked
if viz_button:
# Save the visualization parameters for state tracking
current_viz_params = {
"input_csv": input_csv,
"batch_size": batch_size,
"num_samples": num_samples,
"models": st.session_state.models.copy(),
}
# Only regenerate visualizations if parameters have changed
regenerate = (
st.session_state.viz_figures is None
or st.session_state.last_viz_params != current_viz_params
)
if regenerate:
with st.spinner("Generating embeddings and visualizations..."):
try:
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Generate visualizations
st.session_state.viz_figures = run_async(
plot_main(
dataset_path=input_csv,
batch_size=batch_size,
num_samples=num_samples,
models=st.session_state.models,
)
)
# Store the parameters that generated these visualizations
st.session_state.last_viz_params = current_viz_params
except Exception as e:
st.error(f"Error generating visualizations: {str(e)}")
# Display visualizations if they exist
if st.session_state.viz_figures:
for model_name, fig in st.session_state.viz_figures.items():
st.subheader(f"Visualization for {model_name}")
st.plotly_chart(fig, use_container_width=True)
elif active_tab == "Embedding Inference":
# Inference Tab Content
st.write("Perform inference using trained embedding model")
# Get inference parameters from sidebar
model_name, load_button = render_inference_sidebar()
# Load the model when button is clicked
if load_button:
with st.spinner("Loading model..."):
try:
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Load the model
inference_service = run_async(
EmbeddingSearchService.get_instance(model_name)
)
# Update session state
st.session_state.inference_service = inference_service
st.session_state.inference_model = model_name
st.session_state.model_loaded = True
st.success(f"Model loaded successfully: {model_name}")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
# Input area for inference
st.subheader("Enter text for classification")
query = st.text_area("Text input", height=150, key="inference_input")
predict_button = st.button("Predict", disabled=not st.session_state.model_loaded)
# Result area
result_container = st.container()
# Perform inference when predict button is clicked
if predict_button and query:
with st.spinner("Predicting..."):
try:
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Get prediction
result = run_async(st.session_state.inference_service.predict(query))
# Display result
with result_container:
st.subheader("Prediction Result")
st.info(f"Predicted Class: {result}")
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
elif active_tab == "Multi-Vector Indexing":
# Indexing Tab Content
st.write("Index documents into Qdrant for vector search")
# Get indexing parameters from sidebar
(
input_csv,
collection_name,
dense_model,
batch_size,
delete_existing,
update,
index_button,
) = render_indexing_sidebar()
# Load dataset if not already loaded or if path changed
if (
st.session_state.indexing_df is None
or st.session_state.indexing_csv_path != input_csv
):
try:
df = pd.read_csv(input_csv)
# Validate that the CSV has the required columns
if "text" not in df.columns or "label" not in df.columns:
st.error("CSV file must contain 'text' and 'label' columns")
st.stop()
st.session_state.indexing_df = df
st.session_state.indexing_csv_path = input_csv
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Display dataset preview
try:
df = st.session_state.indexing_df
st.subheader("Dataset Preview")
st.dataframe(df.head())
st.subheader("Dataset Statistics")
st.write(f"Total documents to index: {len(df)}")
unique_labels = df["label"].unique()
st.write(f"Number of unique labels: {len(unique_labels)}")
label_counts = df["label"].value_counts().reset_index()
label_counts.columns = ["Label", "Count"]
st.bar_chart(label_counts.set_index("Label"))
except Exception as e:
st.error(f"Error displaying dataset: {str(e)}")
st.stop()
# Indexing section
st.subheader("Indexing")
# Create placeholder elements for indexing progress
status_text = st.empty()
progress_container = st.empty()
# Display previous indexing results if available
if st.session_state.indexing_completed and not index_button:
status_text.success("Previous indexing completed successfully!")
# Start indexing when button is clicked
if index_button:
st.session_state.indexing_in_progress = True
try:
status_text.text("Starting indexing process...")
with st.spinner("Indexing documents... This might take a while."):
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Run the indexing process
run_async(
indexing_main(
csv_path=input_csv,
collection=collection_name,
dense_model=dense_model,
delete_existing=delete_existing,
batch_size=batch_size,
update=update,
)
)
status_text.success("Indexing completed successfully!")
st.session_state.indexing_in_progress = False
st.session_state.indexing_completed = True
except Exception as e:
st.session_state.indexing_in_progress = False
st.error(f"Error during indexing: {str(e)}")
elif active_tab == "RAG Classifier":
# RAG Classifier Tab Content
st.write("Perform RAG-based classification using Qdrant vector database")
# Get RAG parameters from sidebar
(
collection_name,
dense_model,
sparse_model,
late_model,
load_button,
) = render_rag_sidebar()
# Load the model when button is clicked
if load_button:
with st.spinner("Loading RAG model..."):
try:
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Load the RAG model
run_async(
RAGSearchService.get_instance(
collection=collection_name,
dense_model=dense_model,
sparse_model=sparse_model,
late_interaction_model=late_model,
)
)
# Update session state
st.session_state.rag_service = (
True # Just a flag to indicate model is loaded
)
st.session_state.rag_collection = collection_name
st.session_state.rag_dense_model = dense_model
st.session_state.rag_sparse_model = sparse_model
st.session_state.rag_late_model = late_model
st.session_state.rag_model_loaded = True
st.success(
f"RAG model loaded successfully: Collection '{collection_name}'"
)
except Exception as e:
st.error(f"Error loading RAG model: {str(e)}")
# Set up the classification input area
st.subheader("Input for Classification")
# Two columns layout
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_area("Query text", height=150, key="rag_input")
with col2:
limit = st.number_input(
"Number of similar sentences",
min_value=1,
max_value=20,
value=5,
help="Number of similar sentences to retrieve from the vector database",
key="rag_limit",
)
use_custom_desc = st.checkbox(
"Use custom intent descriptions", value=False, key="use_custom_desc"
)
if use_custom_desc:
intent_descriptions = st.text_area(
"Custom intent descriptions",
value=st.session_state.rag_intent_descriptions,
height=200,
help="Custom intent descriptions to use for classification",
key="custom_intent_descriptions",
)
# Save to session state
if intent_descriptions != st.session_state.rag_intent_descriptions:
st.session_state.rag_intent_descriptions = intent_descriptions
else:
intent_descriptions = INTENT_DESCRIPTIONS
# Predict button
predict_button = st.button(
"Classify", disabled=not st.session_state.rag_model_loaded
)
# Result area
result_container = st.container()
# Perform classification when predict button is clicked
if predict_button and query:
with st.spinner("Classifying..."):
try:
# Helper function to run async code
def run_async(coro):
try:
# Try to get an existing event loop
loop = asyncio.get_event_loop()
except RuntimeError:
# If no event loop exists, create a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)