This repository has been archived by the owner on May 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnsu-p5.py
464 lines (391 loc) · 13.1 KB
/
nsu-p5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
"""
This approach is immensly non-general, but if the Kolmogorov complexity is
irrelevant, it is optimal. I will build an algorithm which uses the same concept
as in [Minimal perfect hash functions], by identifying each unique matrix with a
number from 0 to 85036. This is not a practical algorithm because most of the
information is stored in the algorithm itself, and any matrix not in the input
set cannot be encoded.
Furthermore, we can treat those indices, or the matrices themselves, as
arbitrary symbols and use Huffman coding on the multiset of *entire matrices* to
obtain an optimal encoding.
Yet again, if the input set was changed, we would need to recompute the set of
unique matrices and the huffman codes, but this algorithm fits the requirements:
- the sum of the lengths of the encoded matrices is minimal, by the very nature
of huffman coding
- each matrix can be mapped to a seuqence of bits, and this is reversible
[Minimal perfect hash functions]: https://en.wikipedia.org/wiki/Perfect_hash_function#Minimal_perfect_hash_function
"""
from functools import reduce
from collections import Counter
import math
BIAS = 127
def Matrix(s):
return bytes([int(q)+BIAS for q in s.strip().split(' ')])
class HuffmanNode:
def __init__(self, a, b):
if type(a) == bytes and type(b) == int:
self.leaf = True
self.value = a
self.count = b
self.depth = 1
elif type(a) == HuffmanNode and type(b) == HuffmanNode:
self.leaf = False
self.value = (a.value, b.value)
self.count = a.count + b.count
self.depth = max(a.depth, b.depth) + 1
else:
raise TypeError
def __lt__(self, other):
return self.count < other.count
def __repr__(self):
return f"<HuffmanNode depth={self.depth}>"
matrices = []
hamming_sum = [0]*64
value_sum = [0]*64
bit_sum = [0]*64
nonzero_sum = [0]*64
element_frequencies = [Counter() for _ in range(64)]
def hamming_weight(x):
n = 0
while x:
n += x&1
x>>=1
return n
def bit_count(x):
n = 0
while x:
n += 1
x>>=1
return n
print("Reading matrices from file")
with open("jpeg-matrices.txt") as f:
for line in f:
m = Matrix(line)
matrices.append(m)
for i in range(64):
x = m[i] - 127
hamming_sum[i] += hamming_weight(abs(x))
value_sum[i] += x
bit_sum[i] += bit_count(abs(x))
if x != 0:
nonzero_sum[i] += 1
element_frequencies[i][x] += 1
def print_tbl(tbl, bias=0):
tbl = [[tbl[i*8+j]-bias for j in range(8)] for i in range(8)]
row_widths = [max([len(str(tbl[i][j])) for i in range(8)]) for j in range(8)]
for i in range(8):
for j in range(8):
print(str(tbl[i][j]).rjust(row_widths[j]), end=' ')
print()
print("Hamming sum:")
print_tbl(hamming_sum)
print("Value sum:")
print_tbl(value_sum)
print("Bit sum:")
print_tbl(bit_sum)
print("Nonzero sum:")
print_tbl(nonzero_sum)
from heapq import heappush, heappop, heapify
from collections import Counter
print("Building huffman code")
huffman = []
heapify(huffman)
ctr = Counter(matrices)
for mat in ctr:
heappush(huffman, HuffmanNode(mat, ctr[mat]))
while len(huffman) > 1:
a = heappop(huffman)
b = heappop(huffman)
heappush(huffman, HuffmanNode(a, b))
huffman = heappop(huffman)
print("Building compression table")
compress_table = {}
uncompress_table = {}
shortest = '1'*100
longest = '1'
def bfs(subtree, bits=''):
global shortest, longest
#print(subtree)
if type(subtree) == bytes:
compress_table[subtree] = bits
uncompress_table[int('1'+bits, 2)] = subtree
if len(bits) < len(shortest):
shortest = bits
if len(bits) > len(longest):
longest = bits
else:
bfs(subtree[0], bits+'0')
bfs(subtree[1], bits+'1')
bfs(huffman.value)
def optimal_compress(matrix):
return compress_table[matrix]
def optimal_uncompress(bits):
b = 1
while b not in uncompress_table:
b = b * 2 + int(bits[0])
bits = bits[1:]
return uncompress_table[b], bits
def conventional_zigzag():
for d in range(15):
if d % 2 == 0:
if d < 7:
i = d
j = 0
else:
i = 7
j = d-7
di = -1
dj = +1
else:
if d < 8:
i = 0
j = d
else:
i = d-7
j = 7
di = +1
dj = -1
while 0 <= i < 8 and 0 <= j < 8:
yield (i,j)
i += di
j += dj
def my_zigzag():
return iter([(0, 0), (1, 0), (0, 1), (0, 2), (1, 1), (2, 0), (3, 0), (2, 1), (1, 2), (0, 3), (2, 2), (3, 1), (4, 0), (1, 3), (3, 2), (4, 1), (5, 0), (2, 3), (0, 4), (1, 4), (3, 3), (4, 2), (5, 1), (2, 4), (0, 5), (6, 0), (3, 4), (4, 3), (1, 5), (5, 2), (0, 6), (2, 5), (6, 1), (1, 6), (5, 3), (1, 7), (4, 4), (7, 0), (2, 7), (0, 7), (2, 6), (6, 2), (3, 5), (5, 4), (4, 7), (7, 1), (3, 6), (6, 3), (3, 7), (7, 2), (4, 5), (6, 4), (7, 3), (5, 5), (4, 6), (5, 7), (7, 4), (6, 5), (7, 5), (5, 6), (6, 6), (6, 7), (7, 6), (7, 7)])
def expgolomb_compress(m):
zz = [m[i*8+j]-127 for i,j in my_zigzag()]
nnz = 0
bits = ""
zeros = ""
assert nnz <= 64
for x in zz:
if x == 0:
zeros += "0"
continue
bits += zeros
zeros = ""
if x < 0:
sgn_bit = "0"
x = -x
else:
sgn_bit = "1"
assert bin(x).startswith("0b1"), x
bits += "1" * (len(bin(x))-2) + "0"
bits += sgn_bit
bits += bin(x)[3:]
nnz += 1
bits = bin(0b1000000 + nnz)[-6:] + bits
return bits
def expgolomb_uncompress(bits):
try:
nnz = int(bits[:6], 2); bits = bits[6:]
m = bytearray(b"\x7f"*64)
for i,j in my_zigzag():
if nnz == 0 or bits == "":
break
if bits[0] == "0":
m[i*8+j] = 0+BIAS
bits = bits[1:]
continue
length = bits.index("0"); bits = bits[length+1:]
sgn_bit = bits[0]; bits = bits[1:]
x = int("1" + bits[:length-1], 2); bits = bits[length-1:]
if sgn_bit == "0":
x = -x
m[i*8+j] = x+BIAS
nnz -= 1
return m, bits
except:
print(f"buba. {bits}, {m}")
def benchmark_algorithm(name, compress_fn, uncompress_fn):
global beep
print(f"Benchmarking {name}")
compressed = ""
longest_matrix = None
longest_encoding = ""
shortest_matrix = None
shortest_encoding = "1"*1000
for m in matrices:
enc = compress_fn(m)
compressed += enc
if len(enc) > len(longest_encoding):
longest_encoding = enc
longest_matrix = m
if len(enc) < len(shortest_encoding):
shortest_encoding = enc
shortest_matrix = m
print(f"Total output size: {len(compressed)} bits ~ {len(compressed)/8192}kb")
print(f"Average of {len(compressed) / len(matrices)} bits/matrix")
#print(f"Longest encoding ({longest_encoding}) for matrix (count: {matrices.count(longest_matrix)}):")
#print_tbl(longest_matrix, BIAS)
#print(f"Shortest encoding ({shortest_encoding}) for matrix (count: {matrices.count(shortest_matrix)}):")
#print_tbl(shortest_matrix, BIAS)
cs = compress_fn(shortest_matrix)
ucs = uncompress_fn(cs)
#print(cs, ucs)
assert(ucs == (shortest_matrix, ""))
cl = compress_fn(longest_matrix)
ucl = uncompress_fn(cl)
#print(cl, ucl)
assert(ucl == (longest_matrix, ""))
#benchmark_algorithm("Optimal", optimal_compress, optimal_uncompress)
#benchmark_algorithm("Exp-Golomb", expgolomb_compress, expgolomb_uncompress)
#print_tbl(expgolomb_uncompress("0000011111111011111111")[0], 127)
fc = Counter()
for i, j in my_zigzag():
if i == j == 0: continue
fc.update(element_frequencies[i*8+j])
class Huffman2():
def __init__(self, val, freq):
self.val = val
self.freq = freq
self.leaf = True
def __lt__(self, other):
return self.freq < other.freq
def __add__(self, other):
c = Huffman2((self.val, other.val), self.freq+other.freq)
c.leaf = False
return c
def __repr__(self):
return f"<Huffman2 freq={self.freq}" + (f" {self.val}" if self.leaf else "") + ">"
for i in range(-127, 129):
if i not in fc:
fc[i] += 1
fch = [Huffman2(b,a) for b, a in fc.most_common(256)]
heapify(fch)
while len(fch) > 1:
b = heappop(fch)
a = heappop(fch)
heappush(fch, a+b)
assert len(fch) == 1
fch = heappop(fch)
a_enc = {}
a_dec = {}
totalbits = 0
def bbfs(n, bs='', i=1):
global totalbits
if type(n) == int:
#print(str(n+BIAS).rjust(3, '0'), bs)
totalbits += element_frequencies[0][n] * len(bs)
a_enc[n] = bs
a_dec[bs] = n
else:
bbfs(n[0], bs+'0', i*2)
bbfs(n[1], bs+'1', i*2+1)
bbfs(fch.val)
def encode_element(x):
return a_enc[x]
def decode_element(bits):
for k in range(len(bits)):
B = bits[:k+1]
if B in a_dec:
return a_dec[B], bits[k+1:]
def a1_compress(m):
zz = [m[i*8+j]-BIAS for i,j in my_zigzag()]
nnz = sum(q != 0 for q in zz[1:])
bits = bin(0b1000000 + nnz)[-6:] + bin(0b100000000 + zz[0])[-8:]
assert nnz <= 63
for x in zz[1:]:
if nnz == 0: break
bits += encode_element(x)
if x != 0: nnz -= 1
return bits
def a1_uncompress(bits):
try:
nnz = int(bits[:6], 2); bits = bits[6:]
m = bytearray(b"\x7f"*64)
tl = int(bits[:8], 2); bits = bits[8:]
if tl >= 0x80: tl -= 0x100
m[0] = tl+BIAS
for i,j in my_zigzag():
if i == j == 0: continue
if nnz == 0 or bits == "":
break
x, bits = decode_element(bits)
m[i*8+j] = x + BIAS
if x != 0:
nnz -= 1
#print("a1_uncompress:")
#print_tbl(m, BIAS)
#print(bits)
return m, bits
except Exception as e:
print(f"buba. {e}, {bits}, {m}")
#benchmark_algorithm("a1", a1_compress, a1_uncompress)
def a2_compress(m):
bits = a1_compress(m)
num = int(bits[:6], 2) + 1
B = bin(num)[2:]
enc = "0" * len(B) + B
return enc + bits[6:]
def a2_uncompress(bits):
L = bits.index("1")
num = int(bits[L:2*L], 2)
bits = bits[2*L:]
bits = bin(0b1000000 + num)[-6:] + bits
return a1_uncompress(bits)
#benchmark_algorithm("a2", a2_compress, a2_uncompress)
nonzero_sum_by_my_zigzag = [ nonzero_sum[i*8+j] for i,j in my_zigzag() ]
print(nonzero_sum_by_my_zigzag)
def zero_count(left, right):
N = len(matrices)
return sum(N-nonzero_sum_by_my_zigzag[i] for i in range(left, right))
def find_approx_halfway_point(left, right):
#return (left+right)//2
if left == right-1: return left
best_diff = 99999999999999
best_i = None
for i in range(left, right):
zl = zero_count(left, i)
zr = zero_count(i+1, right)
if abs(zl-zr) < best_diff:
best_diff = abs(zl-zr)
best_i = i
return best_i
q = [None] * 1024
def D(i, left, right):
q[i] = find_approx_halfway_point(left, right)
print(i, left, right, q[i])
if left >= right: return
D(i*2, left, q[i])
D(i*2+1, q[i]+1, right)
D(1, 1, 64)
#print(q)
#q = [None, 36, 22, 51, 14, 30, 44, 58, 9, 19, 27, 34, 41, 48, 55, 62, 6, 12, 17, 21, 25, 29, 33, 35, 39, 43, 47, 50, 54, 57, 61, 63, 4, 8, 11, 13, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 63, 64, 3, 5, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, None, None, 23, 25, 26, 27, 28, 29, None, None, 31, 33, None, None, None, None, None, None, 37, 39, 40, 41, 42, 43, None, None, 45, 47, None, None, 49, 50, None, None, 52, 54, None, None, 56, 57, None, None, 59, 61, None, None, None, None, None, None, 2, 4, 5, 6, 7, 8, None, None, 10, 11, None, None, None, None, None, None, 15, 16, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 23, 24, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 31, 32, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 37, 38, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 45, 46, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 52, 53, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 59, 60, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 1, 3]
LEAST_DIVISION = 1
def a4_compress_recurse(data, i, left, right):
if all(q == 0 for q in data[left:right]): return "0"
if right-left <= LEAST_DIVISION:
return ''.join(encode_element(data[i]) for i in range(left, right))
return "1" + a4_compress_recurse(data, i*2, left, q[i]) + a4_compress_recurse(data, i*2+1, q[i], right)
def a4_compress(m):
zz = [m[i*8+j]-BIAS for i,j in my_zigzag()]
return bin(0b100000000 + zz[0])[-8:] + a4_compress_recurse(zz, 1, 1, 64)
def a4_uncompress_recurse(bits, i, left, right):
#print(f"a4_uncompress_recurse({bits[:20]}, {i}, {left}, {right})")
if bits[0] == "0": return [0]*(right-left), bits[1:]
if right-left <= LEAST_DIVISION:
elems = []
for i in range(left, right):
x, bits = decode_element(bits)
elems.append(x)
return elems, bits
if left == right: raise ValueError(f'left={left} right={right}')
bits = bits[1:]
leftdata, bits = a4_uncompress_recurse(bits, i*2, left, q[i])
rightdata, bits = a4_uncompress_recurse(bits, i*2+1, q[i], right)
return leftdata+rightdata, bits
def a4_uncompress(bits):
topleft = int(bits[:8], 2); bits = bits[8:]
zz, bits = a4_uncompress_recurse(bits, 1, 1, 64)
zz = [topleft] + zz
m = bytearray(64)
for i, j in my_zigzag():
m[i*8+j] = zz.pop(0) + BIAS
return m, bits
for i in range(1, 64):
LEAST_DIVISION = i
try:
benchmark_algorithm(f"Partitions {i}", a4_compress, a4_uncompress)
except:
print("FAIL")
pass