-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfer_1C.m
41 lines (31 loc) · 1.45 KB
/
tfer_1C.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
% TFER_1C Evaluates the transfer function for a PMA in Case B.
% Author: Timothy Sipkens, 2019-03-21
%
% Inputs:
% sp Structure defining various setpoint parameters
% (e.g. m_star, V). Use 'get_setpoint' method to generate
% this structure.
% m Particle mass
% d Particle mobility diameter
% z Integer charge state
% prop Device properties (e.g. classifier length)
%
% Outputs:
% Lambda Transfer function
% G0 Function mapping final to initial radial position
%=========================================================================%
function [Lambda, G0] = tfer_1C(sp, m, d, z, prop)
[tau, C0] = parse_inputs(sp, m, d, z, prop);
% parse inputs for common parameters
%-- Taylor series expansion constants ------------------------------------%
C3 = tau .* ([sp.alpha]' .^ 2 * prop.rc + ...
2 .* [sp.alpha]' .* [sp.beta]' ./ prop.rc + [sp.beta]' .^ 2 ./ (prop.rc^3) - C0 ./ (m .* prop.rc));
C4 = tau .* ([sp.alpha]' .^ 2 - 2 .* [sp.alpha]' .* [sp.beta]' ./ (prop.rc^2) - ...
3 .* [sp.beta]' .^ 2 / (prop.rc^4) + C0 ./ (m .* (prop.rc^2)));
%-- Evaluate G0 and transfer function ------------------------------------%
G0 = @(r) prop.rc + (r - prop.rc + C3 ./ C4) .* ...
exp(-C4 .* prop.L ./ prop.v_bar) - C3./C4;
ra = min(prop.r2, max(prop.r1, G0(prop.r1)));
rb = min(prop.r2, max(prop.r1, G0(prop.r2)));
Lambda = (1 ./ (2 .* prop.del)) .* (rb - ra);
end