-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test.py
128 lines (112 loc) · 4.72 KB
/
main_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import sys
import pprint
import random
import time
import tqdm
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import losses
import models
import datasets
import lib.utils as utils
from lib.utils import AverageMeter
from optimizer.optimizer import Optimizer
#from evaluation.evaler_save import Evaler
from evaluation.evaler import Evaler
from scorer.scorer import Scorer
from lib.config import cfg, cfg_from_file
class Tester(object):
def __init__(self, args):
super(Tester, self).__init__()
self.args = args
self.device = torch.device("cuda")
self.setup_logging()
self.setup_network()
if(args.split == 'test'):
self.evaler = Evaler(
eval_ids = cfg.DATA_LOADER.TEST_ID,
gv_feat = None,#cfg.DATA_LOADER.TEST_GV_FEAT,
att_feats = cfg.DATA_LOADER.TEST_ATT_FEATS,
eval_annfile = cfg.INFERENCE.TEST_ANNFILE
)
elif args.split == 'val':
self.evaler = Evaler(
eval_ids = cfg.DATA_LOADER.VAL_ID,
gv_feat = None,#cfg.DATA_LOADER.VAL_GV_FEAT,
att_feats = cfg.DATA_LOADER.VAL_ATT_FEATS,
eval_annfile = cfg.INFERENCE.VAL_ANNFILE
)
else:
self.evaler = Evaler(
eval_ids = cfg.DATA_LOADER.TRAIN_ID,
gv_feat = None,#cfg.DATA_LOADER.TRAIN_GV_FEAT,
att_feats = cfg.DATA_LOADER.TRAIN_ATT_FEATS,
eval_annfile = cfg.INFERENCE.TRAIN_ANNFILE
)
def setup_logging(self):
self.logger = logging.getLogger(cfg.LOGGER_NAME)
self.logger.setLevel(logging.INFO)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s: %(asctime)s] %(message)s")
ch.setFormatter(formatter)
self.logger.addHandler(ch)
if not os.path.exists(cfg.ROOT_DIR):
os.makedirs(cfg.ROOT_DIR)
fh = logging.FileHandler(os.path.join(cfg.ROOT_DIR, cfg.LOGGER_NAME + '.txt'))
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
self.logger.addHandler(fh)
def setup_network(self):
if cfg.MODEL.TYPE=='XLAN_SUPTOPIC_V6_SAP' or cfg.MODEL.TYPE=='XLAN_SUPTOPIC_V6_SAP_PARA' or cfg.MODEL.TYPE=='XLAN_SUPTOPIC_V6_SAP_XE_topic' or cfg.MODEL.TYPE=='XLAN_HIER_SUPTOPIC_V6_SAP_XE_new_loss' or cfg.MODEL.TYPE=='XLAN_HIER_SUPTOPIC_V6_SAP_XE_new_loss_rev' or cfg.MODEL.TYPE=='XLAN_HIER_SUPTOPIC_V6_SAP_kl_ls' or cfg.MODEL.TYPE=='UpDown_SAP':
model = models.create(cfg.MODEL.TYPE,self.args)
else:
model = models.create(cfg.MODEL.TYPE)
self.model = torch.nn.DataParallel(model).cuda()
if self.args.resume >= 0:
self.model.load_state_dict(
torch.load(self.snapshot_path("caption_model", self.args.resume),
map_location=lambda storage, loc: storage)
)
def eval(self, epoch, split):
res = self.evaler(self.model, split+'_' + str(epoch), cfg.MODEL.TYPE)
if(res is not None):
self.logger.info('######## Epoch ' + str(epoch) + ' '+ split+ ' ########')
self.logger.info(str(res))
else:
self.logger.info('######## Epoch ' + str(epoch) + ' ########')
self.logger.info('######## Training data Ends ########')
def snapshot_path(self, name, epoch):
snapshot_folder = os.path.join(cfg.ROOT_DIR, 'snapshot')
return os.path.join(snapshot_folder, name + "_" + str(epoch) + ".pth")
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Image Captioning')
parser.add_argument('--folder', dest='folder', default='experiments/Xlan_suptopic_V2_RL_10_5', type=str)
parser.add_argument("--resume", type=int, default=38)
parser.add_argument("--split", type=str, default='test')
parser.add_argument('--markov_mat_path',type=str,default='/home/huangyq/my-image-to-paragraph/data/markov_mat.npy')
parser.add_argument('--topic_num',type=int,default=82,help='number of topic')
parser.add_argument('--drop_prob_lm',type=float,default=0,help='0')
#if len(sys.argv) == 1:
# parser.print_help()
# sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if args.folder is not None:
cfg_from_file(os.path.join(args.folder, 'config_server.yml'))
cfg.ROOT_DIR = args.folder
tester = Tester(args)
tester.eval(args.resume, args.split)