-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtest.py
277 lines (241 loc) · 11.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import sys
import argparse
import pkg_resources
import importlib
import warnings
import scipy.io as sio
import yaml
# numpy warnings because of tensorflow
warnings.filterwarnings("ignore", category=FutureWarning, module='tensorflow')
warnings.filterwarnings("ignore", category=UserWarning, module='gym')
from tqdm import tqdm
import gym
import numpy as np
import time
import stable_baselines
from stable_baselines.common import set_global_seeds
from stable_baselines import PPO2, A2C, ACER, ACKTR, DQN, HER, SAC, TD3
try:
import mpi4py
from mpi4py import MPI
except ImportError:
mpi4py = None
if mpi4py is None:
DDPG, TRPO = None, None
else:
from stable_baselines import DDPG, TRPO
# Fix for breaking change in v2.6.0
sys.modules['stable_baselines.ddpg.memory'] = stable_baselines.common.buffers
stable_baselines.common.buffers.Memory = stable_baselines.common.buffers.ReplayBuffer
from gym_collision_avoidance.scripts.utils import get_latest_run_id, get_saved_hyperparams, find_saved_model
from gym_collision_avoidance.experiments.src.env_utils import run_episode, create_env
from gym_collision_avoidance.envs.config import Config
from mpc_rl_collision_avoidance.algorithms.ppo2.ppo2mpc import PPO2MPC
from mpc_rl_collision_avoidance.utils.compute_performance_results import *
ALGOS = {
'a2c': A2C,
'acer': ACER,
'acktr': ACKTR,
'dqn': DQN,
'ddpg': DDPG,
'her': HER,
'sac': SAC,
'ppo2': PPO2,
'trpo': TRPO,
'td3': TD3,
'ppo2-mpc': PPO2MPC
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--env', help='environment ID', type=str, default='gym-collision-avoidance')
parser.add_argument('-f', '--folder', help='Log folder', type=str, default='logs')
parser.add_argument('--algo', help='RL Algorithm', default='ppo2-mpc',
type=str, required=False, choices=list(ALGOS.keys()))
parser.add_argument('--scenario', help='Testing scenario', default='',
type=str, required=False)
parser.add_argument('-n', '--n-episodes', help='number of episodes', default=100,
type=int)
parser.add_argument('--n-envs', help='number of environments', default=1,
type=int)
parser.add_argument('--n-agents', help='number of agents', default=5,
type=int)
parser.add_argument('--exp-id', help='Experiment ID (default: -1, no exp folder, 0: latest)', default=29,
type=int)
parser.add_argument('--verbose', help='Verbose mode (0: no output, 1: INFO)', default=1,
type=int)
parser.add_argument('--no-render', action='store_true', default=True,
help='Do not render the environment (useful for tests)')
parser.add_argument('--coll_avd', action='store_true', default=True,
help='Enable collision avoidance')
parser.add_argument('--deterministic', action='store_true', default=True,
help='Use deterministic actions')
parser.add_argument('--stochastic', action='store_true', default=False,
help='Use stochastic actions (for DDPG/DQN/SAC)')
parser.add_argument('--load-best', action='store_true', default=False,
help='Load best model instead of last model if available')
parser.add_argument('--norm-reward', action='store_true', default=False,
help='Normalize reward if applicable (trained with VecNormalize)')
parser.add_argument('--record', action='store_true', default=False,
help='Save episode images and gifs')
parser.add_argument('--seed', help='Random generator seed', type=int, default=0)
parser.add_argument('--reward-log', help='Where to log reward', default='', type=str)
parser.add_argument('--policy', help='Ego agent policy', default='MPCPolicy', type=str)
parser.add_argument('--gym-packages', type=str, nargs='+', default=[], help='Additional external Gym environemnt package modules to import (e.g. gym_minigrid)')
args = parser.parse_args()
# Going through custom gym packages to let them register in the global registory
for env_module in args.gym_packages:
importlib.import_module(env_module)
env_id = args.env
algo = args.algo
folder = args.folder
dir_path = os.path.dirname(os.path.realpath(__file__))
folder = dir_path + '/' + folder
if args.exp_id == 0:
args.exp_id = get_latest_run_id(os.path.join(folder, algo), env_id)
print('Loading latest experiment, id={}'.format(args.exp_id))
# Sanity checks
if args.exp_id > 0:
log_path = os.path.join(folder, algo, '{}_{}'.format(env_id, args.exp_id))
else:
log_path = os.path.join(folder, algo)
assert os.path.isdir(log_path), "The {} folder was not found".format(log_path)
model_path = find_saved_model(algo, log_path, env_id, load_best=args.load_best)
if algo in ['dqn', 'ddpg', 'sac', 'td3']:
args.n_envs = 1
set_global_seeds(args.seed)
is_atari = 'NoFrameskip' in env_id
stats_path = os.path.join(log_path, env_id)
hyperparams, stats_path = get_saved_hyperparams(stats_path, norm_reward=args.norm_reward, test_mode=True)
log_dir = args.reward_log if args.reward_log != '' else None
####### Gym-collision-avodiance Environment - Swap Scenario
Config.TRAIN_SINGLE_AGENT = True
Config.ANIMATE_EPISODES = args.record
Config.SHOW_EPISODE_PLOTS = False
Config.SAVE_EPISODE_PLOTS = args.record
Config.EVALUATE_MODE = True
env, one_env = create_env()
if args.scenario != "":
one_env.scenario = [args.scenario]
one_env.number_of_agents = args.n_agents
env.unwrapped.envs[0].env.ego_policy = args.policy
model = ALGOS[algo].load(model_path, env=env)
obs = env.reset()
# Force deterministic for DQN, DDPG, SAC and HER (that is a wrapper around)
deterministic = args.deterministic or algo in ['dqn', 'ddpg', 'sac', 'her', 'td3'] and not args.stochastic
# Save plot trajectories
plot_save_dir = log_path + '/figs/'
os.makedirs(plot_save_dir, exist_ok=True)
one_env.plot_save_dir = plot_save_dir
total_reward = 0
step = 0
done = False
num_test_cases = 1
trajs = [[] for _ in range(num_test_cases)]
episode_stats = []
total_n_infeasible = 0
for ep_id in tqdm(range(args.n_episodes)):
actions = []
agents = env.unwrapped.envs[0].env.agents
ego_agent = agents[0]
number_of_agents = len(one_env.agents)-1
agents[0].policy.x_error_weight_ = 1.0
agents[0].policy.y_error_weight_ = 1.0
agents[0].policy.cost_function_weight = 0.0
agents[0].policy.policy_network = model
agents[0].policy.reset_network()
agents[0].policy.enable_collision_avoidance = args.coll_avd
episode_step = 0
state = None
n_infeasible= 0
episode_nn_processing_times = []
episode_mpc_processing_times = []
while not done:
start = time.time()
action, state = model.predict(obs, state=state, deterministic=deterministic,seq_length =np.ones([1])*(number_of_agents*9))
end = time.time()
episode_nn_processing_times.append(end - start)
actions.append(action)
# Send some info for collision avoidance env visualization (need a better way to do this)
# one_env.set_perturbed_info({'perturbed_obs': perturbed_obs[0], 'perturber': perturber})
# Update the rendering of the environment (optional)
if not args.no_render:
env.render()
# Take a step in the environment, record reward/steps for logging
ego_agent.policy.network_output_to_action(0, agents, action[0])
obs, rewards, done, which_agents_done = env.step(action)
episode_mpc_processing_times.append(agents[0].policy.solve_time)
n_infeasible += agents[0].is_infeasible
total_reward += rewards[0]
step += 1
episode_step += 1
# After end of episode, store some statistics about the environment
# Some stats apply to every gym env...
generic_episode_stats = {
'total_reward': total_reward,
'steps': step,
'actions': actions
}
agents = one_env.prev_episode_agents
time_to_goal = np.array([a.t for a in agents])
extra_time_to_goal = np.array([a.t - a.straight_line_time_to_reach_goal for a in agents])
print("N infeasible solutions: " + str(n_infeasible))
total_n_infeasible += n_infeasible
collision = agents[0].in_collision
timeout = agents[0].ran_out_of_time
all_at_goal = np.array(
np.all([a.is_at_goal for a in agents])).tolist()
any_stuck = np.array(
np.any([not a.in_collision and not a.is_at_goal for a in agents])).tolist()
outcome = "collision" if collision else "all_at_goal" if all_at_goal else "stuck"
if len(agents) > 1:
specific_episode_stats = {
'num_agents': len(agents),
'time_to_goal': time_to_goal,
'total_time_to_goal': np.sum(time_to_goal),
'extra_time_to_goal': extra_time_to_goal,
'collision': collision,
'stuck': timeout,
'succeeded': agents[0].is_at_goal,
'all_at_goal': all_at_goal,
'any_stuck': any_stuck,
'outcome': outcome,
'ego_agent_traj': agents[0].global_state_history[:episode_step],
'other_agents_traj': agents[1].global_state_history[:episode_step],
'episode_nn_processing_times': np.asarray(episode_nn_processing_times),
'episode_mpc_processing_times': np.asarray(episode_mpc_processing_times)
}
else:
specific_episode_stats = {
'num_agents': len(agents),
'time_to_goal': time_to_goal,
'total_time_to_goal': np.sum(time_to_goal),
'extra_time_to_goal': extra_time_to_goal,
'collision': collision,
'stuck': timeout,
'ego_agent_traj': agents[0].global_state_history[:episode_step],
'all_at_goal': all_at_goal,
'any_stuck': any_stuck,
'outcome': outcome,
'episode_nn_processing_times': np.asarray(episode_nn_processing_times),
'episode_mpc_processing_times': np.asarray(episode_mpc_processing_times)
}
# Merge all stats into a single dict
episode_stats.append({**generic_episode_stats, **specific_episode_stats})
done = False
one_env.test_case_index = ep_id
print("N infeasible solutions: " + str(n_infeasible))
total_n_infeasible += n_infeasible
episode_stats_dict = {
"all_episodes_stats": episode_stats
}
results_file = stats_path + '_model_'+str(args.exp_id)+'_'+str(args.n_agents)+'_agents_perf_results.mat'
sio.savemat(results_file, episode_stats_dict)
perf_results = process_statistics(episode_stats)
print("***********Number of Infeasibilities**********************")
print("*********** "+str(total_n_infeasible)+" **********************")
with open(os.path.join(stats_path, 'model_'+str(args.exp_id)+'_'+str(args.n_agents)+'_agents_perf_results.yml'), 'w') as f:
yaml.dump(perf_results, f)
if __name__ == '__main__':
main()