-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun_sample.py
240 lines (183 loc) · 6.52 KB
/
run_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import copy
import os
import sys
import os.path as osp
from pathlib import Path
import yaml
import time
import pprint
import importlib
def parse_args():
parser = argparse.ArgumentParser(description='Run a network')
parser.add_argument('-c', '--cfg_file', help='path to the config file')
parser.add_argument('-m', '--model', help='network model')
parser.add_argument('--ckpt_path', help='path to the checkpoint')
parser.add_argument('--data_path', help='path to the data')
parser.add_argument('--inflow', help='Inflow timing', default=0, type=int)
parser.add_argument('--timesteps',
help='Amount of timesteps',
default=None,
type=int)
parser.add_argument('--device',
help='device to run the pipeline',
default='gpu')
parser.add_argument('--output_dir',
default="output",
help='the dir to save outputs')
args, unknown = parser.parse_known_args()
parser_extra = argparse.ArgumentParser(description='Extra arguments')
for arg in unknown:
if arg.startswith(("-", "--")):
parser_extra.add_argument(arg)
args_extra = parser_extra.parse_args(unknown)
print("regular arguments")
print(yaml.dump(vars(args)))
print("extra arguments")
print(yaml.dump(vars(args_extra)))
return args, vars(args_extra)
from o3d.utils import convert_device_name, Config
import tensorflow as tf
from datasets import DatasetGroup
import models
from tqdm import tqdm
import re
from datasets.dataset_reader_physics import write_results
import multiprocessing
multiprocessing.set_start_method('spawn', True)
import random
import numpy as np
random.seed(42)
np.random.seed(42)
import zstandard as zstd
import msgpack
import msgpack_numpy
msgpack_numpy.patch()
cmd_line = ' '.join(sys.argv[:])
args, extra_dict = parse_args()
def setup():
args.device = convert_device_name(args.device)
device = args.device
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if device == 'cpu':
tf.config.set_visible_devices([], 'GPU')
elif device == 'cuda':
tf.config.set_visible_devices(gpus[0], 'GPU')
else:
idx = device.split(':')[1]
tf.config.set_visible_devices(gpus[int(idx)], 'GPU')
except RuntimeError as e:
print(e)
if args.cfg_file is not None:
cfg = Config.load_from_file(args.cfg_file)
Model = getattr(models, cfg.model.name)
cfg_dict_dataset, cfg_dict_pipeline, cfg_dict_model = \
Config.merge_cfg_file(cfg, args, extra_dict)
model = Model(**cfg_dict_model)
else:
if args.model is None:
raise ValueError("please specify pipeline, model, and dataset " +
"if no cfg_file given")
Model = getattr(models, args.model)
cfg_dict_dataset, cfg_dict_pipeline, cfg_dict_model = \
Config.merge_module_cfg_file(args, extra_dict)
model = Model(**cfg_dict_model)
return model
@tf.function(experimental_relax_shapes=True)
def run_inference(inputs):
"""
Run inference on a given data.
Args:
data: A raw data.
Returns:
Returns the inference results.
"""
results = []
for bi in range(len(inputs)):
pos, vel = model(inputs[bi], training=False)
results.append([pos, vel] + inputs[bi][2:])
return results
def run_rollout(data, timesteps=2):
"""
Run rollout on a given data.
Args:
data: A raw data.
Returns:
Returns the inference results.
"""
in_pos = tf.convert_to_tensor(data["pos"])
in_vel = tf.convert_to_tensor(data["vel"]) + (
tf.constant([[10.0, 0, -6]]) +
0 * np.random.normal(scale=(1.0, 0.1, 0.6), size=data["vel"].shape))
in_acc = tf.zeros_like(in_pos) + tf.constant([[0, model.grav, 0]])
inputs = [
in_pos, in_vel, in_acc, None,
tf.convert_to_tensor(data["box"]),
tf.convert_to_tensor(data["box_normals"])
]
results = []
# dummy init
run_inference([inputs])
results.append(inputs[0])
timing = []
for t in tqdm(range(timesteps - 1), "rollout"):
start = time.time()
#print(inputs[0].shape)
inputs = run_inference([inputs])[0]
end = time.time()
timing.append(end - start)
results.append(inputs[0])
if args.inflow > t and t % 2 == 1:
# inflow:
inputs[0] = tf.concat([inputs[0], in_pos], axis=0)
inputs[1] = tf.concat([inputs[1], in_vel], axis=0)
inputs[2] = tf.concat([inputs[2], in_acc], axis=0)
print("Average runtime: %.05f" % (np.mean(timing)))
return results
def load_ckpt(ckpt_path, model):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=model)
manager = tf.train.CheckpointManager(ckpt, ckpt_path, max_to_keep=100)
epoch = 0
ckpt.restore(manager.latest_checkpoint).expect_partial()
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
epoch = int(re.findall(r'\d+', manager.latest_checkpoint)[-1])
else:
ckpt.restore(
ckpt_path).expect_partial() #assert_existing_objects_matched()
print("Restored from {}".format(ckpt_path))
return epoch
def load_data(path):
decompressor = zstd.ZstdDecompressor()
with open(path, 'rb') as f:
data = msgpack.unpackb(decompressor.decompress(f.read()), raw=False)
return data
def main(model):
data = load_data(args.data_path)
epoch = load_ckpt(args.ckpt_path, model)
results = run_rollout(
data[0],
len(data) if args.timesteps is None else args.timesteps)
pos = np.ones((len(results), results[-1].shape[0], 3)) * 1000
for i in range(len(results)):
pos[i, :results[i].shape[0]] = results[i]
print(pos.shape)
out_dir = os.path.join(args.output_dir, "example", "0000")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
output = [(pos, {
"name": "pred",
"type": "PARTICLE"
}), (data[0]['box'], {
"name": "bnd",
"type": "PARTICLE"
})]
write_results(os.path.join(out_dir, '%04d.hdf5' % epoch), model.name,
output)
if __name__ == '__main__':
model = setup()
main(model)