diff --git a/algebird-benchmark/src/main/scala/com/twitter/algebird/benchmark/ReservoirSamplingBenchmark.scala b/algebird-benchmark/src/main/scala/com/twitter/algebird/benchmark/ReservoirSamplingBenchmark.scala new file mode 100644 index 000000000..41e0bf884 --- /dev/null +++ b/algebird-benchmark/src/main/scala/com/twitter/algebird/benchmark/ReservoirSamplingBenchmark.scala @@ -0,0 +1,42 @@ +package com.twitter.algebird.benchmark + +import com.twitter.algebird.mutable.ReservoirSamplingToListAggregator +import com.twitter.algebird.{Aggregator, Preparer} +import org.openjdk.jmh.annotations.{Benchmark, Param, Scope, State} +import org.openjdk.jmh.infra.Blackhole + +import scala.util.Random + +object ReservoirSamplingBenchmark { + @State(Scope.Benchmark) + class BenchmarkState { + @Param(Array("100", "10000", "1000000")) + var collectionSize: Int = 0 + + @Param(Array("0.001", "0.01", "0.1")) + var sampleRate: Double = 0.0 + + def samples: Int = (sampleRate * collectionSize).ceil.toInt + } + + val rng = new Random() + implicit val randomSupplier: () => Random = () => rng +} + +class ReservoirSamplingBenchmark { + import ReservoirSamplingBenchmark._ + + private def prioQueueSampler[T](count: Int) = + Preparer[T] + .map(rng.nextDouble() -> _) + .monoidAggregate(Aggregator.sortByTake(count)(_._1)) + .andThenPresent(_.map(_._2)) + + @Benchmark + def timeAlgorithmL(state: BenchmarkState, bh: Blackhole): Unit = + bh.consume(new ReservoirSamplingToListAggregator[Int](state.samples).apply(0 until state.collectionSize)) + + @Benchmark + def timePriorityQeueue(state: BenchmarkState, bh: Blackhole): Unit = + bh.consume(prioQueueSampler(state.samples).apply(0 until state.collectionSize)) +} diff --git a/algebird-core/src/main/scala/com/twitter/algebird/Aggregator.scala b/algebird-core/src/main/scala/com/twitter/algebird/Aggregator.scala index a64ce4033..b603a53ac 100644 --- a/algebird-core/src/main/scala/com/twitter/algebird/Aggregator.scala +++ b/algebird-core/src/main/scala/com/twitter/algebird/Aggregator.scala @@ -1,5 +1,7 @@ package com.twitter.algebird +import com.twitter.algebird.mutable.{Reservoir, ReservoirSamplingToListAggregator} + import java.util.PriorityQueue import scala.collection.compat._ import scala.collection.generic.CanBuildFrom @@ -286,12 +288,9 @@ object Aggregator extends java.io.Serializable { def reservoirSample[T]( count: Int, seed: Int = DefaultSeed - ): MonoidAggregator[T, PriorityQueue[(Double, T)], Seq[T]] = { - val rng = new java.util.Random(seed) - Preparer[T] - .map(rng.nextDouble() -> _) - .monoidAggregate(sortByTake(count)(_._1)) - .andThenPresent(_.map(_._2)) + ): MonoidAggregator[T, Reservoir[T], Seq[T]] = { + val rng = new scala.util.Random(seed) + new ReservoirSamplingToListAggregator[T](count)(() => rng) } /** diff --git a/algebird-core/src/main/scala/com/twitter/algebird/mutable/ReservoirSampling.scala b/algebird-core/src/main/scala/com/twitter/algebird/mutable/ReservoirSampling.scala new file mode 100644 index 000000000..a80a4c32e --- /dev/null +++ b/algebird-core/src/main/scala/com/twitter/algebird/mutable/ReservoirSampling.scala @@ -0,0 +1,213 @@ +package com.twitter.algebird.mutable + +import com.twitter.algebird.{Monoid, MonoidAggregator} + +import scala.collection.mutable +import scala.util.Random + +/** + * A reservoir of the currently sampled items. + * + * @param capacity + * the reservoir capacity + * @tparam T + * the element type + */ +sealed class Reservoir[T](val capacity: Int) { + var reservoir: mutable.Buffer[T] = mutable.Buffer() + + // When the reservoir is full, w is the threshold for accepting an element into the reservoir, and + // the following invariant holds: The maximum score of the elements in the reservoir is w, + // and the remaining elements are distributed as U[0, w]. + // Scores are not kept explicitly, only their distribution is tracked and sampled from. + // (w = 1 when the reservoir is not full.) + var w: Double = 1 + + require(capacity > 0, "reservoir size must be positive") + private val kInv: Double = 1d / capacity + + def size: Int = reservoir.size + def isEmpty: Boolean = reservoir.isEmpty + def isFull: Boolean = size == capacity + + /** + * Add an element to the reservoir. If the reservoir is full then the element will replace a random element + * in the reservoir, and the threshold
wis updated. + * + * When adding multiple elements, [[append]] should be used to take advantage of exponential jumps. + * + * @param x + * the element to add + * @param rng + * the random source + */ + def accept(x: T, rng: Random): Unit = { + if (isFull) { + reservoir(rng.nextInt(capacity)) = x + } else { + reservoir.append(x) + } + if (isFull) { + w *= Math.pow(rng.nextDouble, kInv) + } + } + + /** + * Add multiple elements to the reservoir. + * @param xs + * the elements to add + * @param rng + * the random source + * @param prior + * the threshold of the elements being added, such that the added element's value is distributed as + *
U[0, prior]+ * @return + * this reservoir + */ + def append(xs: TraversableOnce[T], rng: Random, prior: Double = 1): Reservoir[T] = { + // The number of items to skip before accepting the next item is geometrically distributed + // with probability of success w / prior. The prior will be 1 when adding to a single reservoir, + // but when merging reservoirs it will be the threshold of the reservoir being pulled from, + // and in this case we require that w < prior. + def nextAcceptTime = (-rng.self.nextExponential / Math.log1p(-w / prior)).toInt + + var skip = if (isFull) nextAcceptTime else 0 + for (x <- xs) { + if (!isFull) { + // keep adding while reservoir is not full + accept(x, rng) + if (isFull) { + skip = nextAcceptTime + } + } else if (skip > 0) { + skip -= 1 + } else { + accept(x, rng) + skip = nextAcceptTime + } + } + this + } + + override def toString: String = s"Reservoir($capacity, $w, ${reservoir.toList})" +} + +object Reservoir { + implicit def monoid[T](implicit randomSupplier: () => Random): Monoid[Reservoir[T]] = + new ReservoirMonoid()(randomSupplier) +} + +/** + * This is the "Algorithm L" reservoir sampling algorithm [1], with modifications to act as a monoid by + * merging reservoirs. + * + * [1] Kim-Hung Li, "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))", 1994 + * + * @tparam T + * the item type + */ +class ReservoirMonoid[T](implicit val randomSupplier: () => Random) extends Monoid[Reservoir[T]] { + + /** + * Builds a reservoir with a single item. + * + * @param k + * the reservoir capacity + * @param x + * the item to add + * @return + */ + def build(k: Int, x: T): Reservoir[T] = { + val r = new Reservoir[T](k) + r.accept(x, randomSupplier()) + r + } + + override def zero: Reservoir[T] = new Reservoir(1) + def zero(k: Int): Reservoir[T] = new Reservoir(k) + override def isNonZero(r: Reservoir[T]): Boolean = !r.isEmpty + + /** + * Merge two reservoirs. NOTE: This mutates one or both of the reservoirs. They should not be used after + * this operation, except as the return value for further aggregation. + */ + override def plus(left: Reservoir[T], right: Reservoir[T]): Reservoir[T] = + if (left.isEmpty) right + else if (left.size + right.size <= left.capacity) { + // the sum of the sizes is less than the reservoir size, so we can just merge + left.append(right.reservoir, randomSupplier()) + } else { + val (s1, s2) = if (left.w < right.w) (left, right) else (right, left) + val rng = randomSupplier() + if (s2.isFull) { + // The highest score in s2 is w, and the other scores are distributed as U[0, w]. + // Since s1.w < s2.w, we have to drop the single (sampled) element with the highest score + // unconditionally. The other elements enter the reservoir with probability s1.w / s2.w. + val i = rng.nextInt(s2.size) + s2.reservoir(i) = s2.reservoir.head + s1.append(s2.reservoir.drop(1), rng, s2.w) + } else { + s1.append(s2.reservoir, rng) + } + } +} + +/** + * An aggregator that uses reservoir sampling to sample k elements from a stream of items. Because the + * reservoir is mutable, it is a good idea to copy the result to an immutable view before using it, as is done + * by [[ReservoirSamplingToListAggregator]]. + * + * @param k + * the number of elements to sample + * @param randomSupplier + * the random generator + * @tparam T + * the item type + * @tparam C + * the result type + */ +abstract class ReservoirSamplingAggregator[T, +C](k: Int)(implicit val randomSupplier: () => Random) + extends MonoidAggregator[T, Reservoir[T], C] { + override val monoid: ReservoirMonoid[T] = new ReservoirMonoid + override def prepare(x: T): Reservoir[T] = monoid.build(k, x) + + override def apply(xs: TraversableOnce[T]): C = present(agg(xs)) + + override def applyOption(inputs: TraversableOnce[T]): Option[C] = + if (inputs.isEmpty) None else Some(apply(inputs)) + + override def append(r: Reservoir[T], t: T): Reservoir[T] = r.append(Seq(t), randomSupplier()) + + override def appendAll(r: Reservoir[T], xs: TraversableOnce[T]): Reservoir[T] = + r.append(xs, randomSupplier()) + + override def appendAll(xs: TraversableOnce[T]): Reservoir[T] = agg(xs) + + private def agg(xs: TraversableOnce[T]): Reservoir[T] = + appendAll(monoid.zero(k), xs) +} + +class ReservoirSamplingToListAggregator[T](k: Int)(implicit randomSupplier: () => Random) + extends ReservoirSamplingAggregator[T, List[T]](k)(randomSupplier) { + override def present(r: Reservoir[T]): List[T] = + randomSupplier().shuffle(r.reservoir).toList + + override def andThenPresent[D](f: List[T] => D): MonoidAggregator[T, Reservoir[T], D] = + new AndThenPresent(this, f) +} + +/** + * Monoid that implements [[andThenPresent]] without ruining the optimized behavior of the aggregator. + */ +protected class AndThenPresent[-A, B, C, +D](val agg: MonoidAggregator[A, B, C], f: C => D) + extends MonoidAggregator[A, B, D] { + override val monoid: Monoid[B] = agg.monoid + override def prepare(a: A): B = agg.prepare(a) + override def present(b: B): D = f(agg.present(b)) + + override def apply(xs: TraversableOnce[A]): D = f(agg(xs)) + override def applyOption(xs: TraversableOnce[A]): Option[D] = agg.applyOption(xs).map(f) + override def append(b: B, a: A): B = agg.append(b, a) + override def appendAll(b: B, as: TraversableOnce[A]): B = agg.appendAll(b, as) + override def appendAll(as: TraversableOnce[A]): B = agg.appendAll(as) +} diff --git a/algebird-test/src/main/scala/com/twitter/algebird/RandomSamplingLaws.scala b/algebird-test/src/main/scala/com/twitter/algebird/RandomSamplingLaws.scala new file mode 100644 index 000000000..40f5fd1cd --- /dev/null +++ b/algebird-test/src/main/scala/com/twitter/algebird/RandomSamplingLaws.scala @@ -0,0 +1,77 @@ +package com.twitter.algebird + +import com.twitter.algebird.scalacheck.Distribution._ +import org.scalacheck.{Gen, Prop} + +object RandomSamplingLaws { + + def sampleOneUniformly[T](newSampler: Int => Aggregator[Int, T, Seq[Int]]): Prop = { + val n = 100 + + "sampleOne" |: forAllSampled(10000, Gen.choose(1, 20))(_ => uniform(n)) { k => + newSampler(k).andThenPresent(_.head).apply(0 until n) + } + } + + def reservoirSizeOne[T](newSampler: Int => Aggregator[Int, T, Seq[Int]]): Prop = { + val n = 100 + + "reservoirSizeOne" |: forAllSampled(10000)(uniform(n)) { + newSampler(1).andThenPresent(_.head).apply(0 until n) + } + } + + def reservoirSizeTwo[T](newSampler: Int => Aggregator[Int, T, Seq[Int]]): Prop = { + val n = 10 + val tuples = for { + i <- 0 until n + j <- 0 until n + if i != j + } yield (i, j) + + "reservoirSizeTwo" |: forAllSampled(10000)(tuples.map(_ -> 1d).toMap) { + newSampler(2).andThenPresent(xs => (xs(0), xs(1))).apply(0 until n) + } + } + + def sampleSpecificItem[T](newSampler: Int => Aggregator[Int, T, Seq[Int]]): Prop = { + val sizeAndIndex: Gen[(Int, Int)] = for { + k <- Gen.choose(1, 10) + i <- Gen.choose(0, k - 1) + } yield (k, i) + + val n = 100 + + "sampleAnyItem" |: forAllSampled(10000, sizeAndIndex)(_ => uniform(n)) { case (k, i) => + newSampler(k).andThenPresent(_(i)).apply(0 until n) + } + } + + def sampleTwoItems[T](newSampler: Int => Aggregator[Int, T, Seq[Int]]): Prop = { + val sizeAndIndexes: Gen[(Int, Int, Int)] = for { + k <- Gen.choose(1, 10) + i <- Gen.choose(0, k - 1) + j <- Gen.choose(0, k - 1) + if i != j + } yield (k, i, j) + + val n = 20 + + "sampleTwoItems" |: forAllSampled(10000, sizeAndIndexes)(_ => + (for { + i <- 0 until n + j <- 0 until n + if i != j + } yield (i, j)).map(_ -> 1d).toMap + ) { case (k, i, j) => + newSampler(k).andThenPresent(xs => (xs(i), xs(j))).apply(0 until n) + } + } + + def randomSamplingDistributions[T](newSampler: Int => MonoidAggregator[Int, T, Seq[Int]]): Prop = + sampleOneUniformly(newSampler) && + reservoirSizeOne(newSampler) && + reservoirSizeTwo(newSampler) && + sampleSpecificItem(newSampler) && + sampleTwoItems(newSampler) +} diff --git a/algebird-test/src/main/scala/com/twitter/algebird/scalacheck/Distribution.scala b/algebird-test/src/main/scala/com/twitter/algebird/scalacheck/Distribution.scala new file mode 100644 index 000000000..06442406d --- /dev/null +++ b/algebird-test/src/main/scala/com/twitter/algebird/scalacheck/Distribution.scala @@ -0,0 +1,153 @@ +package com.twitter.algebird.scalacheck + +import org.apache.commons.statistics.inference.ChiSquareTest +import org.scalacheck.Prop.forAllNoShrink +import org.scalacheck.{Gen, Prop} + +import scala.collection.mutable + +/** + * ScalaCheck properties for probabilistic testing. + * + * For randomized algorithms, we want to verify that the output follows the expected distribution. The + * [[forAllSampled]] properties execute the test code a speecified number of times, collect results and + * perform a chi-squared test. + * + * These properties do not shrink their input generators, as this is less useful for probabilistic tests. + * + * @param expectedFreq + * A map of outputs (results of the test code) to their expected frequencies. Frequencies do not have to add + * up to 1, only their relative size matters. They can all be equal to 1 if a uniform distribution is + * expected. + * + * @param alpha + * the significance level for the chi-squared test + * + * @tparam T + * the result type of the test code + */ +class Distribution[T](val expectedFreq: Map[T, Double], val alpha: Double) { + private val samples: mutable.Map[T, Long] = mutable.Map().withDefaultValue(0) + + def collect(t: T): Unit = samples(t) += 1 + + def isNotRejected: Boolean = { + val (expected, observed) = expectedFreq.toSeq.map { case (k, v) => (v, samples(k)) }.toArray.unzip + val chi = ChiSquareTest.withDefaults.test(expected, observed) + !chi.reject(alpha) + } +} + +object Distribution { + private val defaultSigLevel = 0.001 + + implicit def propFromDistribution[T](d: Distribution[T]): Prop = + d.isNotRejected + + def uniform(n: Int): Map[Int, Double] = (0 until n).map(_ -> 1d).toMap + + /** + * Runs the code block for the specified number of trials and verifies that the output follows the expected + * distribution. The propoerty passes if a chi-squared test fails to reject the null hypothesis that the + * distribution is the expected one at the given significance level. + * + * @param trials + * the number of iterations + * @param alpha + * the significance level + * @param expect + * A function computing the map of outputs (possible results) to their expected frequencies. For the + * overloaded versions of this method taking generator parameters, this function takes the generated + * values as input. + * @param f + * the test code + * @tparam T + * the result type + * @return + * a [[Distribution]] object that can be used as a ScalaCheck property + */ + def forAllSampled[T](trials: Int, alpha: Double = defaultSigLevel)( + expect: Map[T, Double] + )(f: => T): Prop = { + val d = new Distribution(expect, alpha) + (0 until trials).foreach { _ => + d.collect(f) + } + d + } + + def forAllSampled[T1, T](trials: Int, g1: Gen[T1])(expect: T1 => Map[T, Double])(f: T1 => T): Prop = + forAllNoShrink(g1)(t1 => forAllSampled(trials)(expect(t1))(f(t1))) + + def forAllSampled[T1, T2, T](trials: Int, g1: Gen[T1], g2: Gen[T2])(expect: (T1, T2) => Map[T, Double])( + f: (T1, T2) => T + ): Prop = forAllNoShrink(g1)(t1 => forAllSampled(trials, g2)(expect(t1, _: T2))(f(t1, _: T2))) + + def forAllSampled[T1, T2, T3, T](trials: Int, g1: Gen[T1], g2: Gen[T2], g3: Gen[T3])( + expect: (T1, T2, T3) => Map[T, Double] + )(f: (T1, T2, T3) => T): Prop = + forAllNoShrink(g1, g2)((t1, t2) => forAllSampled(trials, g3)(expect(t1, t2, _: T3))(f(t1, t2, _: T3))) + + def forAllSampled[T1, T2, T3, T4, T](trials: Int, g1: Gen[T1], g2: Gen[T2], g3: Gen[T3], g4: Gen[T4])( + expect: (T1, T2, T3, T4) => Map[T, Double] + )(f: (T1, T2, T3, T4) => T): Prop = forAllNoShrink(g1, g2, g3)((t1, t2, t3) => + forAllSampled(trials, g4)(expect(t1, t2, t3, _: T4))(f(t1, t2, t3, _: T4)) + ) + + def forAllSampled[T1, T2, T3, T4, T5, T]( + trials: Int, + g1: Gen[T1], + g2: Gen[T2], + g3: Gen[T3], + g4: Gen[T4], + g5: Gen[T5] + )(expect: (T1, T2, T3, T4, T5) => Map[T, Double])(f: (T1, T2, T3, T4, T5) => T): Prop = + forAllNoShrink(g1, g2, g3, g4)((t1, t2, t3, t4) => + forAllSampled(trials, g5)(expect(t1, t2, t3, t4, _: T5))(f(t1, t2, t3, t4, _: T5)) + ) + + def forAllSampled[T1, T2, T3, T4, T5, T6, T]( + trials: Int, + g1: Gen[T1], + g2: Gen[T2], + g3: Gen[T3], + g4: Gen[T4], + g5: Gen[T5], + g6: Gen[T6] + )(expect: (T1, T2, T3, T4, T5, T6) => Map[T, Double])(f: (T1, T2, T3, T4, T5, T6) => T): Prop = + forAllNoShrink(g1, g2, g3, g4, g5)((t1, t2, t3, t4, t5) => + forAllSampled(trials, g6)(expect(t1, t2, t3, t4, t5, _: T6))(f(t1, t2, t3, t4, t5, _: T6)) + ) + + def forAllSampled[T1, T2, T3, T4, T5, T6, T7, T]( + trials: Int, + g1: Gen[T1], + g2: Gen[T2], + g3: Gen[T3], + g4: Gen[T4], + g5: Gen[T5], + g6: Gen[T6], + g7: Gen[T7] + )(expect: (T1, T2, T3, T4, T5, T6, T7) => Map[T, Double])(f: (T1, T2, T3, T4, T5, T6, T7) => T): Prop = + forAllNoShrink(g1, g2, g3, g4, g5, g6)((t1, t2, t3, t4, t5, t6) => + forAllSampled(trials, g7)(expect(t1, t2, t3, t4, t5, t6, _: T7))(f(t1, t2, t3, t4, t5, t6, _: T7)) + ) + + def forAllSampled[T1, T2, T3, T4, T5, T6, T7, T8, T]( + trials: Int, + g1: Gen[T1], + g2: Gen[T2], + g3: Gen[T3], + g4: Gen[T4], + g5: Gen[T5], + g6: Gen[T6], + g7: Gen[T7], + g8: Gen[T8] + )(expect: (T1, T2, T3, T4, T5, T6, T7, T8) => Map[T, Double])( + f: (T1, T2, T3, T4, T5, T6, T7, T8) => T + ): Prop = forAllNoShrink(g1, g2, g3, g4, g5, g6, g7)((t1, t2, t3, t4, t5, t6, t7) => + forAllSampled(trials, g8)(expect(t1, t2, t3, t4, t5, t6, t7, _: T8))( + f(t1, t2, t3, t4, t5, t6, t7, _: T8) + ) + ) +} diff --git a/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirMonoidTest.scala b/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirMonoidTest.scala new file mode 100644 index 000000000..12ca77288 --- /dev/null +++ b/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirMonoidTest.scala @@ -0,0 +1,39 @@ +package com.twitter.algebird.mutable + +import com.twitter.algebird.scalacheck.Distribution.{forAllSampled, uniform} +import com.twitter.algebird.{CheckProperties, Monoid} +import org.scalacheck.Gen +import org.scalacheck.Prop.forAll + +import scala.util.Random + +class ReservoirMonoidTest extends CheckProperties { + val rng = new Random() + implicit val randomSupplier: () => Random = () => rng + + property("adding empty is no-op") { + val mon = implicitly[Monoid[Reservoir[Int]]] + + forAll(Gen.choose(1, 20)) { m: Int => + val a = new Reservoir[Int](m) + val z = new Reservoir[Int](1) + a.accept(1, rng) + mon.plus(a, z) == a && + mon.plus(z, a) == a + } + } + + property("plus produces correct distribution") { + val mon = implicitly[Monoid[Reservoir[Int]]] + + forAllSampled(10000, Gen.choose(1, 20))(n => uniform(2 * n)) { n => + val left = new Reservoir[Int](n) + val right = new Reservoir[Int](n) + (0 until n).foreach(left.accept(_, rng)) + (n until 2 * n).foreach(right.accept(_, rng)) + + val c = mon.plus(left, right) + c.reservoir(rng.nextInt(c.size)) + } + } +} diff --git a/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirSamplingTest.scala b/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirSamplingTest.scala new file mode 100644 index 000000000..5d29a0085 --- /dev/null +++ b/algebird-test/src/test/scala/com/twitter/algebird/mutable/ReservoirSamplingTest.scala @@ -0,0 +1,26 @@ +package com.twitter.algebird.mutable + +import com.twitter.algebird.{Aggregator, CheckProperties, Preparer} +import com.twitter.algebird.RandomSamplingLaws._ + +import scala.util.Random + +class ReservoirSamplingTest extends CheckProperties { + + val rng = new Random() + implicit val randomSupplier: () => Random = () => rng + + property("reservoir sampling with Algorithm L works") { + randomSamplingDistributions(new ReservoirSamplingToListAggregator[Int](_)) + } + + private def prioQueueSampler[T](count: Int) = + Preparer[T] + .map(rng.nextDouble() -> _) + .monoidAggregate(Aggregator.sortByTake(count)(_._1)) + .andThenPresent(_.map(_._2)) + + property("reservoir sampling with priority queue works") { + randomSamplingDistributions(prioQueueSampler) + } +} diff --git a/build.sbt b/build.sbt index 97e3f1f7f..262a04c97 100644 --- a/build.sbt +++ b/build.sbt @@ -240,6 +240,7 @@ lazy val algebirdTest = module("test") Seq( "org.scalacheck" %% "scalacheck" % scalacheckVersion, "org.scalatest" %% "scalatest" % scalaTestVersion, + "org.apache.commons" % "commons-statistics-inference" % "1.1", "org.scalatestplus" %% "scalatestplus-scalacheck" % scalaTestPlusVersion % "test" ) ++ { if (isScala213x(scalaVersion.value)) {