forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastfcn.yml
126 lines (126 loc) · 4.37 KB
/
fastfcn.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
Collections:
- Name: fastfcn
Metadata:
Training Data:
- Cityscapes
Paper:
URL: https://arxiv.org/abs/1903.11816
Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation'
README: configs/fastfcn/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12
Version: v0.18.0
Converted From:
Code: https://github.com/wuhuikai/FastFCN
Models:
- Name: fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 378.79
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.67
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.12
mIoU(ms+flip): 80.58
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth
- Name: fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
memory (GB): 9.79
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.52
mIoU(ms+flip): 80.91
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth
- Name: fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 227.27
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.67
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.26
mIoU(ms+flip): 80.86
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth
- Name: fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
memory (GB): 9.94
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.76
mIoU(ms+flip): 80.03
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth
- Name: fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 209.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 8.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.97
mIoU(ms+flip): 79.92
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth
- Name: fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes
In Collection: fastfcn
Metadata:
backbone: R-50-D32
crop size: (512,1024)
lr schd: 80000
memory (GB): 15.45
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.6
mIoU(ms+flip): 80.25
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth