Skip to content

Latest commit

 

History

History
106 lines (83 loc) · 2.98 KB

README.md

File metadata and controls

106 lines (83 loc) · 2.98 KB

Some basic examples for reinforcement learning

Installing Anaconda and Gymnasium

  • Download and install Anaconda here
  • Install the essential dev libraries on Linux or WSL (Windows Subsystem for Linux)
sudo apt-get update
sudo apt-get install build-essential
  • Create conda env for managing dependencies and activate the conda env
conda create -n conda_env python=3.10
conda activate conda_env
  • Install gymnasium (Dependencies installed by pip will also go to the conda env)
pip install gymnasium[all]
pip install gymnasium[atari]
pip install gymnasium[accept-rom-license]

# Try the next line if box2d-py fails to install.
conda install swig
  • Install ai2thor if you want to run navigation_agent.py
pip install ai2thor==2.4.10
  • Install torch with either conda or pip
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install torch torchvision torchaudio
  • Install other dependencies
pip install numpy pandas matplotlib

Examples

  • Play with the environment and visualize the agent behaviour
import gymnasium as gym
render = True # switch if visualize the agent
if render:
    env = gym.make('CartPole-v0', render_mode='human')
else:
    env = gym.make('CartPole-v0')
env.reset(seed=0)
for _ in range(1000):
    env.step(env.action_space.sample()) # take a random action
env.close()
  • Random play with CartPole-v0
import gymnasium as gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range(100):
        print(observation)
        action = env.action_space.sample()
        observation, reward, terminated, truncated, info = env.step(action)
        done = np.logical_or(terminated, truncated)
env.close()
  • Example code for random playing (Pong-ram-v0,Acrobot-v1,Breakout-v0)
python my_random_agent.py Pong-ram-v0
  • Very naive learnable agent playing CartPole-v0 or Acrobot-v1
python my_learning_agent.py CartPole-v0

  • Playing Pong on CPU (with a great blog). One pretrained model is pong_model_bolei.p(after training 20,000 episodes), which you can load in by replacing save_file in the script.
python pg-pong.py

  • Random navigation agent in AI2THOR
python navigation_agent.py

https://metadrive-simulator.readthedocs.io/en/latest/training.html

  • Training PPO agent to control robot dog (quadruped robot) with Genesis and rsl_rl:

https://genesis-world.readthedocs.io/en/latest/user_guide/getting_started/locomotion.html