-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathft.py
711 lines (609 loc) · 30.8 KB
/
ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
import logging
import os
import random
import sys
import datasets
from datasets import ClassLabel, Value
import numpy as np
import torch
import evaluate
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from options import DataTrainingArguments, ModelArguments, WandbArguments, FtArguments
from utils import create_dir, get_timestamp
from task_utils import task_to_keys, load_glue_datasets, load_hans_dataset, load_mnli_mismatched_dataset, load_paws_qqp_dataset, load_cola_ood_dataset, save_dataset
from ft_trainer import FtTrainer
from models.gptj_wrapper import GPTJWithClassifier, GPTJWithLMClassifier
from models.opt_wrapper import OPTWithClassifier, OPTWithLMClassifier
from models.llama_wrapper import LlamaWithLMClassifier
from models.gptneox_wrapper import GPTNeoXWithLMClassifier
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.23.1")
require_version("datasets>=1.8.0",
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments, WandbArguments, FtArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args, wandb_args, ft_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args, wandb_args, ft_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
# send_example_telemetry("run_glue", model_args, data_args)
# Enable/disable wandb logging
# os.environ["WANDB_DISABLED"] = f"{wandb_args.disable_wandb}"
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Create unique output dir
TIMESTAMP = get_timestamp()
if "llama/hf" in model_args.model_name_or_path:
# these are our local llama weights
name = model_args.model_name_or_path.split("/")
MODEL_NAME = f"{name[-3]}-{name[-2]}-{name[-1]}"
else:
MODEL_NAME = model_args.model_name_or_path.replace('/', '-')
run_name = f"{MODEL_NAME}_{data_args.task_name}-{data_args.max_train_samples}_{training_args.data_seed}_{training_args.seed}_{TIMESTAMP}"
training_args.output_dir = create_dir(
training_args.output_dir, run_name)
if wandb_args.wandb_output_dir is None:
wandb_args.wandb_output_dir = create_dir(
training_args.output_dir, "wandb")
if wandb_args.wandb_run_name is None:
wandb_args.wandb_run_name = run_name
# Load training and validation datasets
raw_datasets, label_list, num_labels, is_regression = load_glue_datasets(
data_args, model_args)
additional_evaluation_datasets = {}
if data_args.eval_on_hans:
for heuristic in ["lexical_overlap"]:
# for heuristic in ["lexical_overlap", "subsequence", "constituent"]:
# Load HANS subsets as additional validation data
for label in [0, 1]:
subset, subset_name = load_hans_dataset(
data_args.dataset_cache_dir, heuristic=heuristic, subcase=None, label=label)
additional_evaluation_datasets[subset_name] = subset
if data_args.eval_on_mnli_mismatched:
# Load mnli mismatched validation set
for label in [0, 1]:
subset, subset_name = load_mnli_mismatched_dataset(
data_args, label=label)
additional_evaluation_datasets[subset_name] = subset
if data_args.eval_on_paws_qqp:
# Load PAWS QQP validation set
subset, subset_name = load_paws_qqp_dataset(
path=data_args.paws_qqp_file, cache_dir=data_args.dataset_cache_dir)
additional_evaluation_datasets[subset_name] = subset
if data_args.eval_on_cola_ood:
# Load CoLA ood validation set
subset, subset_name = load_cola_ood_dataset(
path=data_args.cola_ood_file, cache_dir=data_args.dataset_cache_dir)
additional_evaluation_datasets[subset_name] = subset
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Add vanilla fine-tuning specific args to the model config
config.classifier_type = ft_args.classifier_type
# Add pattern-verbalizer fine-tuning specific args to the model config
config.untie_embeddings = ft_args.untie_embeddings
# Add adapter specific args to the model config
config.use_adapters = ft_args.use_adapters
config.adapter_type = ft_args.adapter_type
config.adapter_dim = ft_args.adapter_dim
config.lora_alpha = ft_args.lora_alpha
# Add soft prompt tuning specific args to the model config
config.use_soft_prompt = ft_args.use_soft_prompt
config.num_soft_prompt_tokens = ft_args.num_soft_prompt_tokens
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if "gpt-j" in model_args.model_name_or_path:
if ft_args.target_tokens is not None:
model = GPTJWithLMClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
else:
model = GPTJWithClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
# We need to add a padding token for gpt-j
tokenizer.pad_token = tokenizer.eos_token
config.pad_token_id = tokenizer.eos_token_id
elif "facebook/opt" in model_args.model_name_or_path:
if ft_args.target_tokens is not None:
model = OPTWithLMClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
else:
model = OPTWithClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
elif "gpt-neox" in model_args.model_name_or_path or "pythia" in model_args.model_name_or_path or "RedPajama-INCITE" in model_args.model_name_or_path:
if ft_args.target_tokens is not None:
model = GPTNeoXWithLMClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=False,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
torch_dtype=torch.float16,
)
# We need to add a padding token for gptneox
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.convert_tokens_to_ids(
tokenizer.pad_token)
tokenizer.padding_side = "right"
else:
raise NotImplementedError(
f"Unsupported model_name_or_path: {model_args.model_name_or_path}")
elif "llama" in model_args.model_name_or_path:
if ft_args.target_tokens is not None:
model = LlamaWithLMClassifier.from_pretrained(
model_args.model_name_or_path,
from_tf=False,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
torch_dtype=torch.float16,
)
# We need to add a padding token for llama
tokenizer.pad_token = tokenizer._convert_id_to_token(
config.pad_token_id) # let's use the <unk> token
tokenizer.padding_side = "right"
else:
raise NotImplementedError(
f"Unsupported model_name_or_path: {model_args.model_name_or_path}")
else:
raise NotImplementedError(
f"Unsupported model_name_or_path: {model_args.model_name_or_path}")
# --------------- Preprocessing the raw_datasets ---------------
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [
name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(
num_labels=num_labels).label2id
and data_args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {
k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {
i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif data_args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {
id: label for label, id in config.label2id.items()}
elif data_args.task_name is not None and not is_regression:
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {
id: label for label, id in config.label2id.items()}
if ft_args.target_tokens is not None and not ft_args.target_tokens_logits_only:
# we need to convert the label ids to target ids
target_tokens = [t.strip() for t in ft_args.target_tokens.split(",")]
target_tokens_ids = tokenizer.convert_tokens_to_ids(target_tokens)
model.config.label2id = {
l: target_tokens_ids[i] for i, l in enumerate(label_list)}
model.config.id2label = {
id: label for label, id in config.label2id.items()}
# Compute max_seq_length
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# Tokenize the texts
# Apply a pattern to the inputs
pattern_examples = [
ft_args.pattern.format(
text1=examples[sentence1_key][idx],
text2=examples[sentence2_key][idx] if sentence2_key is not None else None)
for idx in range(len(examples[sentence1_key]))
]
args = (pattern_examples,)
result = tokenizer(*args, padding=padding,
max_length=max_seq_length, truncation=True)
# Get mask for soft prompt tokens
# TODO(mm): For GPT-J and GPT-NeoX we have a different tokenizer. Adjust accordingly
if "opt" in model_args.model_name_or_path:
# For OPT models, the first token is always the bos token </s>
# Which happens to be also the unk token we use to mark soft prompt tokens
# Hence, we have to be careful about which tokens to mask as part of the soft prompt
result["soft_prompt_mask"] = [[0 if (idx != tokenizer.unk_token_id or pos == 0) else 1 for pos, idx in enumerate(indices)]
for indices in result["input_ids"]] # <unk> is the placeholder for prompt embeddings
# Get tokens
result["input_tokens"] = [tokenizer.convert_ids_to_tokens(
ids) for ids in result["input_ids"]]
# Decode input
result["input_text"] = [tokenizer.decode(
ids) for ids in result["input_ids"]]
# Replace labels by target tokens indices when using lm_head
# - special case: when using target logits only, we keep class indices instead of token indices
if ft_args.target_tokens is not None and not ft_args.target_tokens_logits_only:
result["label"] = [target_tokens_ids[l] for l in examples["label"]]
else:
result["label"] = examples["label"]
result["label_text"] = [model.config.id2label[l] if l != -1 else "unlabeled"
for l in result["label"]]
return result
# We need to update the number of classes of the dataset when using the lm_head
if ft_args.target_tokens is not None and not ft_args.target_tokens_logits_only:
for split in raw_datasets:
# raw_datasets[split].features["label"].num_classes = len(tokenizer)
# raw_datasets[split].features["label"].names = [
# f"{idx}" for idx in np.arange(len(tokenizer))]
new_features = raw_datasets[split].features.copy()
names = [f"{idx}" for idx in np.arange(len(tokenizer))]
new_features["label"] = ClassLabel(
names=names, num_classes=len(tokenizer))
raw_datasets[split] = raw_datasets[split].cast(new_features)
for name, dataset in additional_evaluation_datasets.items():
# dataset.features["label"].num_classes = len(tokenizer)
# dataset.features["label"].names = [
# f"{idx}" for idx in np.arange(len(tokenizer))]
new_features = dataset.features.copy()
names = [f"{idx}" for idx in np.arange(len(tokenizer))]
new_features["label"] = ClassLabel(
names=names, num_classes=len(tokenizer))
additional_evaluation_datasets[name] = dataset.cast(new_features)
# before running the pre-processing, subsample datsets if specified
# subsample datasets (if specified)
# we fix the random seed that controls the sampling of the training data
np.random.seed(training_args.data_seed)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
# randomly select a subset of the training data
max_train_samples = min(
len(train_dataset), data_args.max_train_samples)
indices = np.random.choice(
range(len(train_dataset)), size=max_train_samples, replace=False)
train_dataset = train_dataset.select(indices)
if training_args.do_eval:
# we fix the random seed that controls the sampling of the validation data
np.random.seed(123) # we only use this for debugging
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation_matched" if data_args.task_name in
["mnli", "mnli-original"] else "validation"]
# (optional) subsample eval datasets
if data_args.max_eval_samples is not None:
max_eval_samples = min(
len(eval_dataset), data_args.max_eval_samples)
# randomly select a subset of the eval data
indices = np.random.choice(
range(len(eval_dataset)), size=max_eval_samples, replace=False)
eval_dataset = eval_dataset.select(indices)
for name, dataset in additional_evaluation_datasets.items():
if data_args.max_eval_samples is not None:
max_eval_samples = min(
len(dataset), data_args.max_eval_samples)
# randomly select a subset of the eval data
indices = np.random.choice(
range(len(dataset)), size=max_eval_samples, replace=False)
dataset = dataset.select(indices)
additional_evaluation_datasets[name] = dataset
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
# we fix the random seed that controls the sampling of the validation data
np.random.seed(123) # we only use this for debugging
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test_matched" if data_args.task_name in
["mnli", "mnli-original"] else "test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(
len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(
range(max_predict_samples))
# set all random seeds again (not sure if this is really needed)
set_seed(training_args.seed)
# tokenize and encode datasets
with training_args.main_process_first(desc="dataset map pre-processing"):
if training_args.do_train:
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
batch_size=1000,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on training dataset",
)
if training_args.do_eval:
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
batch_size=1000,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
batch_size=1000,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on test dataset",
)
for name, dataset in additional_evaluation_datasets.items():
if "hans" in name:
sentence1_key, sentence2_key = task_to_keys["hans"]
elif "mnli" in name:
sentence1_key, sentence2_key = task_to_keys["mnli"]
elif "paws-qqp" in name:
sentence1_key, sentence2_key = task_to_keys["paws-qqp"]
elif "cola-ood" in name:
sentence1_key, sentence2_key = task_to_keys["cola-ood"]
dataset = dataset.map(
preprocess_function,
batched=True,
batch_size=1000,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Running tokenizer on {name} validation dataset",
)
additional_evaluation_datasets[name] = dataset
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 1):
print(
f"Sample {index} of the training set: {train_dataset[index]}.")
# Log training and evaluation examples to training_args.output_dir for reproducibility
if training_args.do_train:
save_dataset(train_dataset, path=os.path.join(
training_args.output_dir, f"{data_args.task_name}-train.csv"))
if training_args.do_eval:
save_dataset(eval_dataset, path=os.path.join(
training_args.output_dir, f"{data_args.task_name}-eval.csv"))
for name, dataset in additional_evaluation_datasets.items():
save_dataset(dataset, path=os.path.join(
training_args.output_dir, f"{name}-eval.csv"))
# --------------- End preprocessing of the raw_datasets ---------------
# Get the metric function
if data_args.task_name is not None:
# use default metrics
metric_script = f"{os.environ['PROJECT_DIR']}/metrics/glue.py"
if data_args.task_name == "mnli-original":
metric = datasets.load_metric(path=metric_script, config_name="mnli",
cache_dir=data_args.dataset_cache_dir, keep_in_memory=False)
else:
metric = datasets.load_metric(path=metric_script, config_name=data_args.task_name,
cache_dir=data_args.dataset_cache_dir, keep_in_memory=False)
else:
metric = datasets.load_metric(
"accuracy", cache_dir=data_args.dataset_cache_dir, keep_in_memory=False)
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(
p.predictions, tuple) else p.predictions
preds = np.squeeze(
preds) if is_regression else np.argmax(preds, axis=1)
if data_args.task_name is not None:
result = metric.compute(predictions=preds, references=p.label_ids)
# When using the lm_head, compute fraction of predictions that are not one of the target tokens
if ft_args.target_tokens is not None and not ft_args.target_tokens_logits_only:
unique_preds, counts_preds = np.unique(
preds, return_counts=True)
unique_preds_counts_dict = dict(
zip(unique_preds, counts_preds))
num_of_target_token_predictions = 0
for idx in target_tokens_ids:
num_of_target_token_predictions += unique_preds_counts_dict.get(
idx, 0)
num_other_tokens = len(
preds) - num_of_target_token_predictions
result["frac_non_target_tokens"] = num_other_tokens / \
len(preds)
# # Combine eval metrics
# if len(result) > 1:
# result["combined_score"] = np.mean(
# list(result.values())).item()
return result
elif is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
# we already did the padding.
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif training_args.fp16:
data_collator = DataCollatorWithPadding(
tokenizer, pad_to_multiple_of=8)
else:
data_collator = None
# Initialize our Trainer
if training_args.do_eval:
if len(additional_evaluation_datasets) > 0:
# add the training task eval dataset
additional_evaluation_datasets[data_args.task_name] = eval_dataset
eval_datasets = additional_evaluation_datasets
else:
eval_datasets = eval_dataset
else:
eval_datasets = None
trainer = FtTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_datasets,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
data_args=data_args,
wandb_args=wandb_args,
ft_args=ft_args,
callbacks=None
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=["past_key_values"])
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(
train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
kwargs = {"finetuned_from": model_args.model_name_or_path,
"tasks": "text-classification"}
if data_args.task_name is not None:
kwargs["language"] = "en"
kwargs["dataset_args"] = data_args.task_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()