-
Notifications
You must be signed in to change notification settings - Fork 14
/
compute_paths_neighb.py
executable file
·102 lines (84 loc) · 3.32 KB
/
compute_paths_neighb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#! python3
# coding: utf-8
import sys
import time
from multiprocessing import Pool
from functools import partial
import numpy as np
from nltk.corpus import wordnet as wn
from nltk.corpus import wordnet_ic
def calc_similarity(pair, metrics='lch', infcont=None, printing=True, threshold=0.01):
syns0 = wn.synset(pair[0])
syns1 = wn.synset(pair[1])
if metrics == 'jcn':
similarity = syns0.jcn_similarity(syns1, infcont) # Jiang-Conrath
elif metrics == 'lch':
similarity = syns0.lch_similarity(syns1) # Leacock-Chodorow
elif metrics == 'path':
similarity = syns0.path_similarity(syns1) # Shortest path
elif metrics == 'wup':
similarity = syns0.wup_similarity(syns1) # Wu-Palmer
else:
return None
if printing:
if similarity > threshold:
print(pair[0] + '\t' + pair[1] + '\t' + str(similarity) + '\n')
return similarity
def wn_neighbors(synset, debug=False):
hypernyms = synset.hypernyms()
hyponyms = synset.hyponyms()
holonyms = synset.member_holonyms()
if debug:
print('Hypernyms:', hypernyms)
print('Hyponyms:', hyponyms)
print('Holonyms:', holonyms)
neighbors = set(hypernyms + hyponyms + holonyms)
return neighbors
def deep_wn_neigbors(synset, rank=1):
deep_neighbors = {synset}
for step in range(rank):
for found_synset in deep_neighbors:
new_neighbors = wn_neighbors(found_synset)
deep_neighbors = deep_neighbors | new_neighbors
deep_neighbors.discard(synset)
return deep_neighbors
if __name__ == '__main__':
method = sys.argv[1]
ic = None
if len(sys.argv) > 2:
corpus = sys.argv[2]
if corpus == 'semcor':
ic = wordnet_ic.ic('ic-semcor.dat')
elif corpus == 'brown':
ic = wordnet_ic.ic('ic-brown.dat')
cores = 10 # How many threads to use when generating similarities
walk_rank = 2 # Order of graph neighbors to consider
thresholds = {'jcn': 0.1, 'lch': 1.5, 'path': 0.1, 'wup': 0.3}
sim_threshold = thresholds[method] # Similarity threshold
synsets = list(wn.all_synsets('n'))
print('Total synsets:', len(synsets), file=sys.stderr)
print('Method:', method, file=sys.stderr)
if ic:
print('IC corpus:', corpus, file=sys.stderr)
print('Cores:', cores, file=sys.stderr)
print('Neighbour rank:', walk_rank, file=sys.stderr)
num_neighbours = []
synset_pairs = set()
for cur_synset in synsets:
neighbours = deep_wn_neigbors(cur_synset, rank=walk_rank)
num_neighbours.append(len(neighbours))
for neighbour in neighbours:
synset_pairs.add((cur_synset.name(), neighbour.name()))
print('Average neighbors:', np.mean(num_neighbours), file=sys.stderr)
print('Std neighbors:', np.std(num_neighbours), file=sys.stderr)
print('Total pairs:', len(synset_pairs), file=sys.stderr)
counter = 0
start = time.time()
with Pool(cores) as p:
func = partial(calc_similarity, metrics=method, infcont=ic, threshold=sim_threshold)
for i in p.imap_unordered(func, synset_pairs, chunksize=100):
counter += 1
if counter % 100000 == 0:
print(counter, 'out of', len(synset_pairs), file=sys.stderr)
end = time.time()
print('Total time spent:', end - start, file=sys.stderr)