-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_inverse_model.py
203 lines (150 loc) · 6.36 KB
/
train_inverse_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR
from torch.utils import data
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import csv
import numpy as np
import torchvision.transforms as transforms
import torchvision.models as models
import os
import pdb
import time
from itertools import permutations
from absl import app
from absl import flags
from dataloaders.gibson import GibsonDatasetPair
FLAGS = flags.FLAGS
flags.DEFINE_integer('batch_size', 128, 'batch size')
flags.DEFINE_integer('bottleneck_size', 3, 'Output dimension of CNN')
flags.DEFINE_float('lr', 0.0001, 'Learning rate')
flags.DEFINE_float('lr_decay', 0.1, 'Learning rate decay gamma')
flags.DEFINE_float('lr_decay_every', 200, 'Learning rate decay rate')
flags.DEFINE_float('weight_decay', 0.0, 'Weight decay in optimizer')
flags.DEFINE_integer('gpu', 0, 'Which GPU to use.')
flags.DEFINE_string('logdir', 'debug', 'Name of tensorboard logdir')
class model(nn.Module):
def __init__(self):
super(model, self).__init__()
# resnet
self.resnet18 = models.resnet18(pretrained=True)
self.modules = list((self.resnet18).children())[:-2] # converts [batch_size, 1000] to [batch_size, 512, 7, 7]
self.resnet18 = nn.Sequential(*self.modules)
# freeze resnet model
(self.resnet18).eval()
for param in (self.resnet18).parameters():
param.requires_grad = False
# CNN
self.conv1 = nn.Conv2d(in_channels=1024, out_channels=256, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3)
self.conv3 = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=3)
self.dropout1 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(64*3*3, 128)
self.fc2 = nn.Linear(128, FLAGS.bottleneck_size)
# accuracy_learned_fc
self.fc_accuracy = nn.Linear(FLAGS.bottleneck_size, 3)
def forward(self, k, k_plus_one):
# freeze resnet
self.resnet18.eval()
# resnet
resnet_k = self.resnet18(k)
resnet_k_plus_one = self.resnet18(k_plus_one)
resnet_output = torch.cat([resnet_k, resnet_k_plus_one], dim=1)
# CNN
x = self.conv1(resnet_output)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = self.conv3(x)
x = F.relu(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout1(x)
x = self.fc2(x)
x = F.relu(x)
# accuracy_learned_fc
y = self.fc_accuracy(x) # [batch_size, 3]
return y
def train(model, device, train_loader, optimizer, epoch, val_loader, writer, iteration):
model.train()
print_every = 100
iteration_ = iteration
train_loss = 0
train_acc = 0
for batch_idx, (be, ae, act, rew, term, gt) in enumerate(train_loader):
be, ae, act = be.to(device), ae.to(device), act.to(device)
optimizer.zero_grad()
# forward pass
y = model(be, ae)
# losses
cross_entropy_loss = nn.CrossEntropyLoss()
loss = cross_entropy_loss(y, act)
train_loss += loss.item()
# accuracy_learned_fc
pred = y.argmax(dim=1, keepdim=True) # get the index of the max log-probability
train_acc += pred.eq(act.view_as(pred)).sum().item()
# backprop
loss.backward()
optimizer.step()
if batch_idx % print_every == 0 and batch_idx != 0:
iteration_ += 1
train_loss /= print_every
train_acc /= ((print_every * FLAGS.batch_size) + FLAGS.batch_size)
val_loss, val_acc = validate(model, device, val_loader, train_loader, 25)
model.train()
print("iter: ", iteration_, ", train_loss: ", train_loss, ", val_loss: ", val_loss.item())
# save to tensorboard
writer.add_scalar('Loss/train', train_loss, iteration_)
writer.add_scalar('Loss/val', val_loss, iteration_)
writer.add_scalar('Accuracy/train', train_acc, iteration_)
writer.add_scalar('Accuracy/val', val_acc, iteration_)
# save model
file_name = os.path.join('inverse_model_runs/', FLAGS.logdir, 'model-{:d}.pth'.format(iteration_))
torch.save(model.state_dict(), file_name)
# reset
train_loss = 0
train_acc = 0
return iteration_
def validate(model, device, val_loader, train_loader, print_every):
model.eval()
val_loss = 0
val_acc = 0
j = 0
with torch.no_grad():
for batch_idx, (be, ae, act, rew, term, gt) in enumerate(val_loader):
be, ae, act = be.to(device), ae.to(device), act.to(device)
# forward pass
y = model(be, ae)
# losses
cross_entropy_loss = nn.CrossEntropyLoss()
val_loss += cross_entropy_loss(y, act)
# accuracy
pred = y.argmax(dim=1, keepdim=True) # get the index of the max log-probability
val_acc += pred.eq(act.view_as(pred)).sum().item()
j += 1
if j == print_every:
break
val_loss /= print_every
val_acc /= ((print_every * FLAGS.batch_size) + FLAGS.batch_size)
return val_loss, val_acc
def main(argv):
torch.cuda.set_device(FLAGS.gpu)
train_dataset = GibsonDatasetPair('data/inverse_model/medium_inverse_train_40k_data.npy')
train_loader = data.DataLoader(train_dataset, batch_size=FLAGS.batch_size, shuffle=True, num_workers=2)
val_dataset = GibsonDatasetPair('data/inverse_model/medium_inverse_val_data.npy')
val_loader = data.DataLoader(val_dataset, batch_size=FLAGS.batch_size, shuffle=True)
device = torch.device("cuda")
model_ = model().to(device)
optimizer = torch.optim.Adam(model_.parameters(), lr=FLAGS.lr, weight_decay=FLAGS.weight_decay)
writer = SummaryWriter(str('inverse_model_runs/' + str(FLAGS.logdir)))
scheduler = StepLR(optimizer, step_size=FLAGS.lr_decay_every, gamma=FLAGS.lr_decay)
iteration = 0
for epoch in range(1, 200):
print("Train Epoch: ", epoch)
iteration = train(model_, device, train_loader, optimizer, epoch, val_loader, writer, iteration)
scheduler.step()
if __name__ == '__main__':
app.run(main)