-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradcam.py
138 lines (112 loc) · 4.95 KB
/
gradcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2020 Samson Woof
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras import Model
import cv2
def grad_cam(model, img,
layer_name="block5_conv3", label_name=None,
category_id=None):
"""Get a heatmap by Grad-CAM.
Args:
model: A model object, build from tf.keras 2.X.
img: An image ndarray.
layer_name: A string, layer name in model.
label_name: A list or None,
show the label name by assign this argument,
it should be a list of all label names.
category_id: An integer, index of the class.
Default is the category with the highest score in the prediction.
Return:
A heatmap ndarray(without color).
"""
img_tensor = np.expand_dims(img, axis=0)
conv_layer = model.get_layer(layer_name)
heatmap_model = Model([model.inputs], [conv_layer.output, model.output])
with tf.GradientTape() as gtape:
conv_output, predictions = heatmap_model(img_tensor)
if category_id == None:
category_id = np.argmax(predictions[0])
"""
if label_name:
print(label_name[category_id])
"""
output = predictions[:, category_id]
grads = gtape.gradient(output, conv_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_output), axis=-1)
heatmap = np.maximum(heatmap, 0)
max_heat = np.max(heatmap)
if max_heat == 0:
max_heat = 1e-10
heatmap /= max_heat
return np.squeeze(heatmap)
def grad_cam_plus(model, img,
layer_name="block5_conv3", label_name=None,
category_id=None):
"""Get a heatmap by Grad-CAM++.
Args:
model: A model object, build from tf.keras 2.X.
img: An image ndarray.
layer_name: A string, layer name in model.
label_name: A list or None,
show the label name by assign this argument,
it should be a list of all label names.
category_id: An integer, index of the class.
Default is the category with the highest score in the prediction.
Return:
A heatmap ndarray(without color).
"""
img_tensor = np.expand_dims(img, axis=0)
conv_layer = model.get_layer(layer_name)
heatmap_model = Model([model.inputs], [conv_layer.output, model.output])
with tf.GradientTape() as gtape1:
with tf.GradientTape() as gtape2:
with tf.GradientTape() as gtape3:
conv_output, predictions = heatmap_model(img_tensor)
if category_id==None:
category_id = np.argmax(predictions[0])
"""
if label_name:
print(label_name[category_id])
"""
output = predictions[:, category_id]
conv_first_grad = gtape3.gradient(output, conv_output)
conv_second_grad = gtape2.gradient(conv_first_grad, conv_output)
conv_third_grad = gtape1.gradient(conv_second_grad, conv_output)
global_sum = np.sum(conv_output, axis=(0, 1, 2))
alpha_num = conv_second_grad[0]
alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum
alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, 1e-10)
alphas = alpha_num/alpha_denom
alpha_normalization_constant = np.sum(alphas, axis=(0,1))
alphas /= alpha_normalization_constant
weights = np.maximum(conv_first_grad[0], 0.0)
deep_linearization_weights = np.sum(weights*alphas, axis=(0,1))
grad_CAM_map = np.sum(deep_linearization_weights*conv_output[0], axis=2)
heatmap = np.maximum(grad_CAM_map, 0)
max_heat = np.max(heatmap)
if max_heat == 0:
max_heat = 1e-10
heatmap /= max_heat
return heatmap
def get_heatmap(image, heatmap, alpha=0.2):
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]))
heatmap = (heatmap*255).astype("uint8")
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
#superimposed_img = heatmap * alpha + image
#superimposed_img = np.clip(heatmap, 0, 255).astype("uint8")
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
superimposed_img = cv2.addWeighted(image,(1-alpha),heatmap,alpha,0)
return superimposed_img