-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
311 lines (280 loc) · 10.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import math
import os
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from skimage import measure
from sklearn.metrics import roc_auc_score, roc_curve, auc
from tqdm import tqdm
import matplotlib
import matplotlib.pyplot as plt
from skimage import morphology
from skimage.segmentation import mark_boundaries
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def rescale(x):
return (x - x.min()) / (x.max() - x.min())
def cholesky_inverse(input, upper=False, out=None, inplace=True):
u = paddle.cholesky(input, upper)
u = paddle.linalg.triangular_solve(u, paddle.eye(u.shape[-1]), upper=upper)
if len(u.shape)==2:
uit = u.T
elif len(u.shape)==3:
uit =paddle.transpose(u, perm=(0, 2, 1))
elif len(u.shape)==4:
uit = paddle.transpose(u, perm=(0, 1, 3, 2))
if inplace:
input = u@uit if upper else uit@u
return input
else:
out = u@uit if upper else uit@u
return out
def mahalanobis(embedding, mean, inv_covariance):
B,C,H,W = embedding.shape
delta = (embedding - mean).reshape((B,C,H*W)).transpose((2, 0, 1))
distances = ((delta @ inv_covariance) @ delta).sum(2).transpose((1, 0))
distances = distances.reshape((B, H, W))
distances = distances.sqrt_()
return distances
def mahalanobis_einsum(embedding, mean, inv_covariance):
M = embedding - mean
distances = paddle.einsum('nmhw,hwmk,nkhw->nhw', M, inv_covariance, M)
distances = distances.sqrt_()
return distances
def svd_orthogonal(fin, fout, use_paddle=False):
assert fin > fout, 'fin > fout'
if use_paddle:
X = paddle.rand((fout, fin))
U, _, Vt = paddle.linalg.svd(X, full_matrices=False)
#print(Vt.shape)
#print(paddle.allclose([email protected], paddle.eye(Vt.shape[0])))
else:
X = np.random.random((fout, fin))
U, _, Vt = np.linalg.svd(X, full_matrices=False)
#print(Vt.shape)
#print(np.allclose((Vt@ Vt.T), np.eye(Vt.shape[0])))
W = paddle.to_tensor(Vt, dtype=paddle.float32).T
return W
def orthogonal(rows,cols, gain=1):
r"""return a (semi) orthogonal matrix, as
described in `Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks` - Saxe, A. et al. (2013).
Args:
rows: rows
cols: cols
gain: optional scaling factor
Examples:
>>> orthogonal_(5, 3)
"""
flattened = paddle.randn((rows,cols))
if rows < cols: flattened = flattened.T
# Compute the qr factorization
q, r = paddle.linalg.qr(flattened)
# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
d = paddle.diag(r, 0)
q *= d.sign()
if rows < cols: q = q.T
q *= gain
return q
def cdist(X, Y, p=2.0):
#2d P, C = X.shape| R, C = Y.shape -> P,R
P, C = X.shape
R, C = Y.shape
#3d B, P, C = X.shape|1, R, C = Y.shape -> B, P,R
#D = paddle.linalg.norm(X[:, None, :]-Y[None, :, :], axis=-1)
"""D = paddle.zeros((P, R))
for i in range(P):
D[i,:] = paddle.linalg.norm(X[i, None, :]-Y, axis=-1)
#D[i,:] = (X[i, None, :]-Y).square().sum(-1).sqrt_()
#"""
D = []
for i in range(P):
D.append(paddle.linalg.norm(X[i, None, :]-Y, axis=-1))
D= paddle.stack(D, 0)
return D
def compute_pro_(y_true:np.ndarray, binary_amaps:np.ndarray, method='mean') -> float:
pros = []
for binary_amap, mask in zip(binary_amaps, y_true):
per_region_tpr = []
for region in measure.regionprops(measure.label(mask)):
axes0_ids = region.coords[:, 0]
axes1_ids = region.coords[:, 1]
TP_pixels = binary_amap[axes0_ids, axes1_ids].sum()
per_region_tpr.append(TP_pixels / region.area)
if method=='mean' and per_region_tpr:
pros.append(np.mean(per_region_tpr))
else:
pros.extend(per_region_tpr)
return np.mean(pros)
def kthvalue(x:np.ndarray, k:int):
return x[x.argpartition(k)[k]]
def get_thresholds(t:np.ndarray, num_samples=1000, reverse=False, opt=True):
if opt:
# use the worst-case for efficient determination of thresholds
max_idx = t.reshape(t.shape[0], -1).max(1).argmax(0)
t = t[max_idx].flatten()
#return [kthvalue(t, max(1, math.floor(t.size * i / num_samples)-1)-1)
# for i in range(num_samples, 0, -1)]
r = np.linspace(0, t.size-1, num=num_samples).astype(int)
if reverse: r = r[::-1]
t.sort()
return t[r]
#idx = np.argsort(t)
#return [t[idx[max(1, math.floor(t.size * i / num_samples)-1)-1]] for i in range(num_samples, 0, -1)]
else:
#return [kthvalue(t.flatten(), max(1, math.floor(t.size * i / num_samples)))
# for i in range(num_samples, 0, -1)]
r = np.linspace(t.min(), t.max(), num=num_samples)
if reverse: r = r[::-1]
return r
def compute_pro(y_true:np.ndarray, amaps:np.ndarray, steps=500) -> float:
y_true = y_true.squeeze()
pros = []
fprs = []
for th in tqdm(get_thresholds(amaps, steps, True, True)):#thresholds[::-1]:#
binary_amaps = amaps.squeeze() > th
"""
pro = []
for binary_amap, mask in zip(binary_amaps, masks):
for region in measure.regionprops(measure.label(mask)):
axes0_ids = region.coords[:, 0]
axes1_ids = region.coords[:, 1]
TP_pixels = binary_amap[axes0_ids, axes1_ids].sum()
pro.append(TP_pixels / region.area)
pros.append(np.mean(pro))"""
pros.append(compute_pro_(y_true, binary_amaps, 'mean'))
inverse_masks = 1 - y_true
FP_pixels = np.logical_and(inverse_masks, binary_amaps).sum()
fpr = FP_pixels / inverse_masks.sum()
fprs.append(fpr)
if fpr>0.3: break
#print(np.array(list(zip(pros,fprs))))
fprs = np.array(fprs)
pros = np.array(pros)
return fprs, pros
#ported from OrthoAD repo
def compute_non_partial_auc(fpr, pro, at_fpr=1.0):
acut = 0. # area cut
area = 0. # area all
assert 1 < len(pro)
assert len(fpr) == len(pro)
for i in range(len(fpr)):
# calculate bin_size
if len(fpr) - 1 != i:
fpr_right = fpr[i+1]
else:
fpr_right = 1.0
b_left = (fpr[i] - fpr[i-1]) / 2
b_right = (fpr_right - fpr[i]) / 2
if 0 == i: # left-end
b = fpr[i] + b_right
elif len(fpr) - 1 == i: # right-end
b = b_left + 1. - fpr[i]
else:
b = b_left + b_right
# calculate area
if fpr[i] + b_right > at_fpr:
b_cut = max(0, at_fpr - fpr[i] + b_left) # bin cut
acut += b_cut * pro[i]
else:
acut += b * pro[i]
area += b * pro[i]
return acut / at_fpr
def compute_roc(y_true:np.ndarray, amaps:np.ndarray, steps=500) -> float:
y_true = y_true.squeeze()
tprs = []
fprs = []
for th in tqdm(get_thresholds(amaps, steps, True, True)):#thresholds[::-1]:#
binary_amaps = amaps.squeeze() > th
TP_pixels = np.logical_and(y_true, binary_amaps).sum()
tpr = TP_pixels / y_true.sum()
tprs.append(tpr)
inverse_masks = 1 - y_true
FP_pixels = np.logical_and(inverse_masks, binary_amaps).sum()
fpr = FP_pixels / inverse_masks.sum()
fprs.append(fpr)
#print(np.array(list(zip(pros,fprs))))
fprs = np.array(fprs)
tprs = np.array(tprs)
return fprs, tprs
def compute_pro_score(y_true:np.ndarray, amaps:np.ndarray, steps=500, non_partial_AUC=False) -> float:
fprs, pros = compute_pro(y_true, amaps, steps)
return compute_non_partial_auc(rescale(fprs), rescale(pros)) if non_partial_AUC else auc(rescale(fprs), rescale(pros))#compute_non_partial_auc(fprs, rescale(pros), 0.3)
def compute_roc_score(y_true:np.ndarray, amaps:np.ndarray, steps=500, non_partial_AUC=False) -> float:
#fprs, tprs = compute_roc(masks, amaps, steps)
fprs, tprs, thresholds = roc_curve(y_true, amaps)
return compute_non_partial_auc(fprs, tprs) if non_partial_AUC else auc(fprs, tprs)
def denormalization(x):
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
x = (((x.transpose(1, 2, 0) * std) + mean) * 255.).astype(np.uint8)
return x
def plot_fig(test_img, scores, gts, threshold, save_dir, class_name, save_pic=True, tag=""):
num = len(scores)
vmax = scores.max() * 255.
vmin = scores.min() * 255.
with_gt = gts!=None
for i in range(num):
img = test_img[i]
img = denormalization(img)
heat_map = scores[i] * 255
mask = scores[i]
mask[mask > threshold] = 1
mask[mask <= threshold] = 0
kernel = morphology.disk(4)
mask = morphology.opening(mask, kernel)
mask *= 255
vis_img = mark_boundaries(img, mask, color=(1, 0, 0), mode='thick')
fig_img, ax_img = plt.subplots(1, 4+with_gt, figsize=(12, 3))
fig_img.subplots_adjust(right=0.9)
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
for ax_i in ax_img:
ax_i.axes.xaxis.set_visible(False)
ax_i.axes.yaxis.set_visible(False)
ax_img[0].imshow(img)
ax_img[0].title.set_text('Image')
if with_gt:
gt = gts[i].transpose(1, 2, 0).squeeze()
ax_img[1].imshow(gt, cmap='gray')
ax_img[1].title.set_text('GroundTruth')
ax = ax_img[with_gt + 1].imshow(heat_map, cmap='jet', norm=norm)
ax_img[with_gt + 1].imshow(img, cmap='gray', interpolation='none')
ax_img[with_gt + 1].imshow(heat_map, cmap='jet', alpha=0.5, interpolation='none')
ax_img[with_gt + 1].title.set_text('Predicted heat map')
ax_img[with_gt + 2].imshow(mask, cmap='gray')
ax_img[with_gt + 2].title.set_text('Predicted mask')
ax_img[with_gt + 3].imshow(vis_img)
ax_img[with_gt + 3].title.set_text('Segmentation result')
left = 0.92
bottom = 0.15
width = 0.015
height = 1 - 2 * bottom
rect = [left, bottom, width, height]
cbar_ax = fig_img.add_axes(rect)
cb = plt.colorbar(ax, shrink=0.6, cax=cbar_ax, fraction=0.046)
cb.ax.tick_params(labelsize=8)
font = {
'family': 'serif',
'color': 'black',
'weight': 'normal',
'size': 8,
}
cb.set_label('Anomaly Score', fontdict=font)
if i < 1: # save one result
if save_pic:
save_name = os.path.join(save_dir, '{}_{}'.format(class_name, tag if tag else i))
fig_img.savefig(save_name, dpi=100)
else:
plt.show()
plt.close()
return