-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbellman_ford.py
52 lines (46 loc) · 1.27 KB
/
bellman_ford.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from math import inf
from collections import OrderedDict
def shortest_path(G, s):
"""
The bellman-ford algorithm for single-source shortest paths in
general graphs
"""
dist = {v:inf for v in G}
prev = {v:None for v in G}
dist[s] = 0
for i in range(len(G)-1):
print(f"Iteration {i}: ", dist)
for u in G:
for v in G[u]:
if dist[u] + G[u][v] < dist[v]:
dist[v] = dist[u] + G[u][v]
prev[v] = u
#dist[v] = min(dist[v], dist[u] + G[u][v])
print(f"Iteration {i+1}: ", dist)
return dist, prev
if __name__ == '__main__':
G = {
'S': {'A': 10, 'G': 8},
'A': {'E':2},
'B': {'A': 1, 'C': 1},
'C': {'D': 3},
'D': {'E': -1},
'E': {'B': -2},
'F': {'E': -1, 'A': -4},
'G': {'F': 1}
}
G = OrderedDict(G)
src = 'S'
tgt = 'E'
dist, prev = shortest_path(G,src)
# print("Distance:", dist)
# print("Previous:", prev)
print("Shortest Path length:", dist[tgt])
short_path = []
while True:
short_path.append(tgt)
tgt = prev[tgt]
if tgt is None:
break
print("Shortest Path:", end=' ')
print(*short_path[::-1], sep=' -> ')