From bb12934779d731e3ef9b2c0f0f4f4a1640fc3aaf Mon Sep 17 00:00:00 2001 From: Ralf Date: Wed, 18 Dec 2024 13:26:47 +0100 Subject: [PATCH] first draft of visualisation of lidar data (3d bounding boxes) --- code/perception/src/lidar_distance.py | 211 +++++++++++++++++++++++++- 1 file changed, 208 insertions(+), 3 deletions(-) diff --git a/code/perception/src/lidar_distance.py b/code/perception/src/lidar_distance.py index 5c937be0..9e711ce0 100755 --- a/code/perception/src/lidar_distance.py +++ b/code/perception/src/lidar_distance.py @@ -7,6 +7,8 @@ from sensor_msgs.msg import PointCloud2, Image as ImageMsg from sklearn.cluster import DBSCAN from cv_bridge import CvBridge +from visualization_msgs.msg import Marker, MarkerArray +from geometry_msgs.msg import Point # from mpl_toolkits.mplot3d import Axes3D # from itertools import combinations @@ -68,6 +70,12 @@ def listener(self): queue_size=10, ) rospy.loginfo("dist_array_lidar_publisher successfully created.") + + self.marker_visualization_lidar_publisher = rospy.Publisher( + rospy.get_param("~marker_topic", "/paf/hero/Lidar/Marker"), + MarkerArray, + queue_size=10, + ) self.dist_array_left_publisher = rospy.Publisher( rospy.get_param("~image_distance_topic", "/paf/hero/Left/dist_array"), ImageMsg, @@ -107,15 +115,45 @@ def start_clustering(self, data): & (coordinates["y"] <= 1) ) # Exclude points related to the ego vehicle & ( - coordinates["z"] > -1.7 + 0.05 + coordinates["z"] > -1.7 + 0.25 ) # Minimum height in z to exclude the road ] # Compute cluster data from the filtered coordinates - clustered_points = cluster_lidar_data_from_pointcloud( + clustered_points, labels = cluster_lidar_data_from_pointcloud( coordinates=filtered_coordinates ) + filtered_x_y_z = np.column_stack( + ( + filtered_coordinates["x"], + filtered_coordinates["y"], + filtered_coordinates["z"], + ) + ) + + # Labels reshapen + labels = labels.reshape(-1, 1) + + # Kombinieren der Arrays + points_with_labels = np.hstack((filtered_x_y_z, labels)) + + bounding_boxes = generate_bounding_boxes(points_with_labels) + + marker_array = MarkerArray() + for label, bbox in bounding_boxes: + if label != -1: + marker = create_bounding_box_marker(label, bbox) + marker_array.markers.append(marker) + # can be used for extra debugging + # min_marker, max_marker = create_min_max_markers(label, bbox) + # marker_array.markers.append(min_marker) + # marker_array.markers.append(max_marker) + + marker_array = clear_old_markers(marker_array, max_id=len(bounding_boxes) - 1) + + self.marker_visualization_lidar_publisher.publish(marker_array) + # Only store valid cluster data if clustered_points: self.cluster_buffer.append(clustered_points) @@ -316,6 +354,173 @@ def reconstruct_img_from_lidar(self, coordinates_xyz, focus): return dist_array +def generate_bounding_boxes(points_with_labels): + """ + Generates bounding boxes for clustered points. + + This function processes a set of points, each associated with a cluster label, + and generates an axis-aligned bounding box (AABB) for each unique cluster label. + + Args: + points_with_labels (numpy.ndarray): + A 2D array of shape (N, 4) where each row contains + the coordinates (x, y, z) of a point along with its + corresponding cluster label in the last column. + The array should have the structure [x, y, z, label]. + + Returns: + list: A list of tuples, where each tuple contains a cluster label and the + corresponding bounding box (bbox). The bbox is represented by a tuple + of the form (x_min, x_max, y_min, y_max, z_min, z_max). + """ + bounding_boxes = [] + unique_labels = np.unique(points_with_labels[:, -1]) + for label in unique_labels: + if label == -1: + continue + cluster_points = points_with_labels[points_with_labels[:, -1] == label, :3] + bbox = calculate_aabb(cluster_points) + bounding_boxes.append((label, bbox)) + return bounding_boxes + + +def create_bounding_box_marker(label, bbox): + """ + Creates an RViz Marker for visualizing a 3D bounding box. + + This function generates a Marker object for RViz to visualize a 3D bounding box + based on the provided label and bounding box dimensions. The marker is + represented as a series of lines connecting the corners of the box. + + Args: + label (int): The unique identifier for the cluster or object to which the + bounding box belongs. This label is used as the Marker ID. + bbox (tuple): A tuple containing the min and max coordinates of the bounding box + in the format (x_min, x_max, y_min, y_max, z_min, z_max). + + Returns: + Marker: A Marker object that can be published to RViz to display the + 3D bounding box. The marker is of type LINE_LIST, + representing the edges of the bounding box. + """ + # for 2d (top-down) boxes + # x_min, x_max, y_min, y_max = bbox + + # for 3d boxes + x_min, x_max, y_min, y_max, z_min, z_max = bbox + + marker = Marker() + marker.header.frame_id = "hero/LIDAR" + marker.id = int(label) + # marker.type = Marker.LINE_STRIP # 2d boxes + marker.type = Marker.LINE_LIST # 3d boxes + marker.action = Marker.ADD + marker.scale.x = 0.1 + marker.color.r = 1.0 + marker.color.g = 0.5 + marker.color.b = 0.5 + marker.color.a = 1.0 + + # for 2d (top-down) boxes + # points = [ + # Point(x_min, y_min, 0), + # Point(x_max, y_min, 0), + # Point(x_max, y_max, 0), + # Point(x_min, y_max, 0), + # Point(x_min, y_min, 0), + # ] + # marker.points = points + + # for 3d boxes + points = [ + Point(x_min, y_min, z_min), + Point(x_max, y_min, z_min), + Point(x_max, y_max, z_min), + Point(x_min, y_max, z_min), + Point(x_min, y_min, z_max), + Point(x_max, y_min, z_max), + Point(x_max, y_max, z_max), + Point(x_min, y_max, z_max), + ] + + lines = [ + (0, 1), + (1, 2), + (2, 3), + (3, 0), # Bottom + (4, 5), + (5, 6), + (6, 7), + (7, 4), # Top + (0, 4), + (1, 5), + (2, 6), + (3, 7), # Vertical Edges + ] + for start, end in lines: + marker.points.append(points[start]) + marker.points.append(points[end]) + + return marker + + +def clear_old_markers(marker_array, max_id): + """ + Removes old markers from the given MarkerArray by setting the action + to DELETE for markers with an ID greater than or equal to max_id. + + Args: + marker_array (MarkerArray): The current MarkerArray containing all markers. + max_id (int): The highest ID of the new markers. Markers with an ID + greater than or equal to this value will be marked for deletion. + + Returns: + MarkerArray: The updated MarkerArray with old markers removed. + """ + for marker in marker_array.markers: + if marker.id > max_id: + marker.action = Marker.DELETE + return marker_array + + +def calculate_aabb(cluster_points): + """ + Calculates the axis-aligned bounding box (AABB) for a set of 3D points. + + This function computes the minimum and maximum values along each axis (x, y, z) + for a given set of 3D points, which defines the bounding box that contains + all points in the cluster. + + Args: + cluster_points (numpy.ndarray): + A 2D array where each row represents a 3D point (x, y, z). + The array should have shape (N, 3) where N is the number of points. + + Returns: + tuple: A tuple of the form (x_min, x_max, y_min, y_max, z_min, z_max), + which represents the axis-aligned bounding box (AABB) for the given + set of points. The values are the minimum and maximum coordinates + along the x, y, and z axes. + """ + + # for 2d (top-down) boxes + # x_min = np.min(cluster_points[:, 0]) + # x_max = np.max(cluster_points[:, 0]) + # y_min = np.min(cluster_points[:, 1]) + # y_max = np.max(cluster_points[:, 1]) + # rospy.loginfo(f"Bounding box: X({x_min}, {x_max}), Y({y_min}, {y_max})") + # return x_min, x_max, y_min, y_max + + # for 3d boxes + x_min = np.min(cluster_points[:, 0]) + x_max = np.max(cluster_points[:, 0]) + y_min = np.min(cluster_points[:, 1]) + y_max = np.max(cluster_points[:, 1]) + z_min = np.min(cluster_points[:, 2]) + z_max = np.max(cluster_points[:, 2]) + return x_min, x_max, y_min, y_max, z_min, z_max + + def array_to_pointcloud2(points, header="hero/Lidar"): """ Converts an array of points into a ROS PointCloud2 message. @@ -422,7 +627,7 @@ def cluster_lidar_data_from_pointcloud(coordinates, eps=0.3, min_samples=10): clusters = dict(clusters) - return clusters + return clusters, labels if __name__ == "__main__":