forked from maxshep/Exoboot_Code
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_syncing.py
47 lines (42 loc) · 1.6 KB
/
analyze_syncing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import signal
from scipy import interpolate
import constants
import filters
import exoboot
import analysis_util
import gait_state_estimators
folder = 'exo_data'
markers = ['-', '--']
print('hi')
# for i, filename in enumerate(["20210617_2351_sync6_LEFT.csv", '20210617_2351_sync6_RIGHT.csv']):
for i, filename in enumerate(["20210617_2351_sync6_LEFT.csv"]):
data = exoboot.Exo.DataContainer()
df = pd.read_csv(folder + '/' + filename)
slip_detector = gait_state_estimators.SlipDetectorAP(
data_container=data, return_did_slip=True, start_active=True)
mydatalist = []
for idx, row in df.iterrows():
data = analysis_util.populate_data_container_from_series(row)
mydatalist.append(data.__dict__)
did_slip = slip_detector.detect()
if did_slip:
print('slipped!')
new_df = pd.DataFrame(mydatalist)
plt.figure(1)
plt.xlabel('time')
# plt.plot(df.loop_time, df.did_slip, color='black', linestyle=markers[i])
# plt.plot(df.loop_time, df.heel_fsr, color='brown', linestyle=markers[i])
plt.plot(new_df.loop_time, df.accel_x,
color='darkred', linestyle=markers[i])
plt.plot(df.loop_time, df.gen_var1)
plt.plot(new_df.loop_time, new_df.gen_var1)
# plt.plot(df.loop_time, accel_x_filt, color='green', linestyle=markers[i])
# plt.plot(df.loop_time, df.accel_y-1,
# color='indianred', linestyle=markers[i])
# plt.plot(df.loop_time, df.accel_z,
# color='lightcoral', linestyle=markers[i])
plt.show()