forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hash.h
424 lines (402 loc) · 16.4 KB
/
hash.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: hash.h
// -----------------------------------------------------------------------------
//
// This header file defines the Abseil `hash` library and the Abseil hashing
// framework. This framework consists of the following:
//
// * The `absl::Hash` functor, which is used to invoke the hasher within the
// Abseil hashing framework. `absl::Hash<T>` supports most basic types and
// a number of Abseil types out of the box.
// * `AbslHashValue`, an extension point that allows you to extend types to
// support Abseil hashing without requiring you to define a hashing
// algorithm.
// * `HashState`, a type-erased class which implements the manipulation of the
// hash state (H) itself; contains member functions `combine()`,
// `combine_contiguous()`, and `combine_unordered()`; and which you can use
// to contribute to an existing hash state when hashing your types.
//
// Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
// provides most of its utility by abstracting away the hash algorithm (and its
// implementation) entirely. Instead, a type invokes the Abseil hashing
// framework by simply combining its state with the state of known, hashable
// types. Hashing of that combined state is separately done by `absl::Hash`.
//
// One should assume that a hash algorithm is chosen randomly at the start of
// each process. E.g., `absl::Hash<int>{}(9)` in one process and
// `absl::Hash<int>{}(9)` in another process are likely to differ.
//
// `absl::Hash` may also produce different values from different dynamically
// loaded libraries. For this reason, `absl::Hash` values must never cross
// boundaries in dynamically loaded libraries (including when used in types like
// hash containers.)
//
// `absl::Hash` is intended to strongly mix input bits with a target of passing
// an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect).
//
// Example:
//
// // Suppose we have a class `Circle` for which we want to add hashing:
// class Circle {
// public:
// ...
// private:
// std::pair<int, int> center_;
// int radius_;
// };
//
// // To add hashing support to `Circle`, we simply need to add a free
// // (non-member) function `AbslHashValue()`, and return the combined hash
// // state of the existing hash state and the class state. You can add such a
// // free function using a friend declaration within the body of the class:
// class Circle {
// public:
// ...
// template <typename H>
// friend H AbslHashValue(H h, const Circle& c) {
// return H::combine(std::move(h), c.center_, c.radius_);
// }
// ...
// };
//
// For more information, see Adding Type Support to `absl::Hash` below.
//
#ifndef ABSL_HASH_HASH_H_
#define ABSL_HASH_HASH_H_
#include <tuple>
#include <utility>
#include "absl/functional/function_ref.h"
#include "absl/hash/internal/hash.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// -----------------------------------------------------------------------------
// `absl::Hash`
// -----------------------------------------------------------------------------
//
// `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T`
// satisfying any of the following conditions (in order):
//
// * T is an arithmetic or pointer type
// * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
// hash state `H`.
// - T defines a specialization of `std::hash<T>`
//
// `absl::Hash` intrinsically supports the following types:
//
// * All integral types (including bool)
// * All enum types
// * All floating-point types (although hashing them is discouraged)
// * All pointer types, including nullptr_t
// * std::pair<T1, T2>, if T1 and T2 are hashable
// * std::tuple<Ts...>, if all the Ts... are hashable
// * std::unique_ptr and std::shared_ptr
// * All string-like types including:
// * absl::Cord
// * std::string (as well as any instance of std::basic_string that
// uses one of {char, wchar_t, char16_t, char32_t} and its associated
// std::char_traits)
// * std::string_view (as well as any instance of std::basic_string_view
// that uses one of {char, wchar_t, char16_t, char32_t} and its associated
// std::char_traits)
// * All the standard sequence containers (provided the elements are hashable)
// * All the standard associative containers (provided the elements are
// hashable)
// * absl types such as the following:
// * absl::string_view
// * absl::uint128
// * absl::Time, absl::Duration, and absl::TimeZone
// * absl containers (provided the elements are hashable) such as the
// following:
// * absl::flat_hash_set, absl::node_hash_set, absl::btree_set
// * absl::flat_hash_map, absl::node_hash_map, absl::btree_map
// * absl::btree_multiset, absl::btree_multimap
// * absl::InlinedVector
// * absl::FixedArray
//
// When absl::Hash is used to hash an unordered container with a custom hash
// functor, the elements are hashed using default absl::Hash semantics, not
// the custom hash functor. This is consistent with the behavior of
// operator==() on unordered containers, which compares elements pairwise with
// operator==() rather than the custom equality functor. It is usually a
// mistake to use either operator==() or absl::Hash on unordered collections
// that use functors incompatible with operator==() equality.
//
// Note: the list above is not meant to be exhaustive. Additional type support
// may be added, in which case the above list will be updated.
//
// -----------------------------------------------------------------------------
// absl::Hash Invocation Evaluation
// -----------------------------------------------------------------------------
//
// When invoked, `absl::Hash<T>` searches for supplied hash functions in the
// following order:
//
// * Natively supported types out of the box (see above)
// * Types for which an `AbslHashValue()` overload is provided (such as
// user-defined types). See "Adding Type Support to `absl::Hash`" below.
// * Types which define a `std::hash<T>` specialization
//
// The fallback to legacy hash functions exists mainly for backwards
// compatibility. If you have a choice, prefer defining an `AbslHashValue`
// overload instead of specializing any legacy hash functors.
//
// -----------------------------------------------------------------------------
// The Hash State Concept, and using `HashState` for Type Erasure
// -----------------------------------------------------------------------------
//
// The `absl::Hash` framework relies on the Concept of a "hash state." Such a
// hash state is used in several places:
//
// * Within existing implementations of `absl::Hash<T>` to store the hashed
// state of an object. Note that it is up to the implementation how it stores
// such state. A hash table, for example, may mix the state to produce an
// integer value; a testing framework may simply hold a vector of that state.
// * Within implementations of `AbslHashValue()` used to extend user-defined
// types. (See "Adding Type Support to absl::Hash" below.)
// * Inside a `HashState`, providing type erasure for the concept of a hash
// state, which you can use to extend the `absl::Hash` framework for types
// that are otherwise difficult to extend using `AbslHashValue()`. (See the
// `HashState` class below.)
//
// The "hash state" concept contains three member functions for mixing hash
// state:
//
// * `H::combine(state, values...)`
//
// Combines an arbitrary number of values into a hash state, returning the
// updated state. Note that the existing hash state is move-only and must be
// passed by value.
//
// Each of the value types T must be hashable by H.
//
// NOTE:
//
// state = H::combine(std::move(state), value1, value2, value3);
//
// must be guaranteed to produce the same hash expansion as
//
// state = H::combine(std::move(state), value1);
// state = H::combine(std::move(state), value2);
// state = H::combine(std::move(state), value3);
//
// * `H::combine_contiguous(state, data, size)`
//
// Combines a contiguous array of `size` elements into a hash state,
// returning the updated state. Note that the existing hash state is
// move-only and must be passed by value.
//
// NOTE:
//
// state = H::combine_contiguous(std::move(state), data, size);
//
// need NOT be guaranteed to produce the same hash expansion as a loop
// (it may perform internal optimizations). If you need this guarantee, use a
// loop instead.
//
// * `H::combine_unordered(state, begin, end)`
//
// Combines a set of elements denoted by an iterator pair into a hash
// state, returning the updated state. Note that the existing hash
// state is move-only and must be passed by value.
//
// Unlike the other two methods, the hashing is order-independent.
// This can be used to hash unordered collections.
//
// -----------------------------------------------------------------------------
// Adding Type Support to `absl::Hash`
// -----------------------------------------------------------------------------
//
// To add support for your user-defined type, add a proper `AbslHashValue()`
// overload as a free (non-member) function. The overload will take an
// existing hash state and should combine that state with state from the type.
//
// Example:
//
// template <typename H>
// H AbslHashValue(H state, const MyType& v) {
// return H::combine(std::move(state), v.field1, ..., v.fieldN);
// }
//
// where `(field1, ..., fieldN)` are the members you would use on your
// `operator==` to define equality.
//
// Notice that `AbslHashValue` is not a class member, but an ordinary function.
// An `AbslHashValue` overload for a type should only be declared in the same
// file and namespace as said type. The proper `AbslHashValue` implementation
// for a given type will be discovered via ADL.
//
// Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
// only be extended by adding `AbslHashValue()` overloads.
//
template <typename T>
using Hash = absl::hash_internal::Hash<T>;
// HashOf
//
// absl::HashOf() is a helper that generates a hash from the values of its
// arguments. It dispatches to absl::Hash directly, as follows:
// * HashOf(t) == absl::Hash<T>{}(t)
// * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c))
//
// HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when
// * The argument lists have pairwise identical C++ types
// * a1 == b1 && a2 == b2 && ...
//
// The requirement that the arguments match in both type and value is critical.
// It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if
// `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`.
template <int&... ExplicitArgumentBarrier, typename... Types>
size_t HashOf(const Types&... values) {
auto tuple = std::tie(values...);
return absl::Hash<decltype(tuple)>{}(tuple);
}
// HashState
//
// A type erased version of the hash state concept, for use in user-defined
// `AbslHashValue` implementations that can't use templates (such as PImpl
// classes, virtual functions, etc.). The type erasure adds overhead so it
// should be avoided unless necessary.
//
// Note: This wrapper will only erase calls to
// combine_contiguous(H, const unsigned char*, size_t)
// RunCombineUnordered(H, CombinerF)
//
// All other calls will be handled internally and will not invoke overloads
// provided by the wrapped class.
//
// Users of this class should still define a template `AbslHashValue` function,
// but can use `absl::HashState::Create(&state)` to erase the type of the hash
// state and dispatch to their private hashing logic.
//
// This state can be used like any other hash state. In particular, you can call
// `HashState::combine()` and `HashState::combine_contiguous()` on it.
//
// Example:
//
// class Interface {
// public:
// template <typename H>
// friend H AbslHashValue(H state, const Interface& value) {
// state = H::combine(std::move(state), std::type_index(typeid(*this)));
// value.HashValue(absl::HashState::Create(&state));
// return state;
// }
// private:
// virtual void HashValue(absl::HashState state) const = 0;
// };
//
// class Impl : Interface {
// private:
// void HashValue(absl::HashState state) const override {
// absl::HashState::combine(std::move(state), v1_, v2_);
// }
// int v1_;
// std::string v2_;
// };
class HashState : public hash_internal::HashStateBase<HashState> {
public:
// HashState::Create()
//
// Create a new `HashState` instance that wraps `state`. All calls to
// `combine()` and `combine_contiguous()` on the new instance will be
// redirected to the original `state` object. The `state` object must outlive
// the `HashState` instance.
template <typename T>
static HashState Create(T* state) {
HashState s;
s.Init(state);
return s;
}
HashState(const HashState&) = delete;
HashState& operator=(const HashState&) = delete;
HashState(HashState&&) = default;
HashState& operator=(HashState&&) = default;
// HashState::combine()
//
// Combines an arbitrary number of values into a hash state, returning the
// updated state.
using HashState::HashStateBase::combine;
// HashState::combine_contiguous()
//
// Combines a contiguous array of `size` elements into a hash state, returning
// the updated state.
static HashState combine_contiguous(HashState hash_state,
const unsigned char* first, size_t size) {
hash_state.combine_contiguous_(hash_state.state_, first, size);
return hash_state;
}
using HashState::HashStateBase::combine_contiguous;
private:
HashState() = default;
friend class HashState::HashStateBase;
template <typename T>
static void CombineContiguousImpl(void* p, const unsigned char* first,
size_t size) {
T& state = *static_cast<T*>(p);
state = T::combine_contiguous(std::move(state), first, size);
}
template <typename T>
void Init(T* state) {
state_ = state;
combine_contiguous_ = &CombineContiguousImpl<T>;
run_combine_unordered_ = &RunCombineUnorderedImpl<T>;
}
template <typename HS>
struct CombineUnorderedInvoker {
template <typename T, typename ConsumerT>
void operator()(T inner_state, ConsumerT inner_cb) {
f(HashState::Create(&inner_state),
[&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); });
}
absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f;
};
template <typename T>
static HashState RunCombineUnorderedImpl(
HashState state,
absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>
f) {
// Note that this implementation assumes that inner_state and outer_state
// are the same type. This isn't true in the SpyHash case, but SpyHash
// types are move-convertible to each other, so this still works.
T& real_state = state.Real<T>();
real_state = T::RunCombineUnordered(
std::move(real_state), CombineUnorderedInvoker<HashState>{f});
return state;
}
template <typename CombinerT>
static HashState RunCombineUnordered(HashState state, CombinerT combiner) {
auto* run = state.run_combine_unordered_;
return run(std::move(state), std::ref(combiner));
}
// Do not erase an already erased state.
void Init(HashState* state) {
state_ = state->state_;
combine_contiguous_ = state->combine_contiguous_;
run_combine_unordered_ = state->run_combine_unordered_;
}
template <typename T>
T& Real() {
return *static_cast<T*>(state_);
}
void* state_;
void (*combine_contiguous_)(void*, const unsigned char*, size_t);
HashState (*run_combine_unordered_)(
HashState state,
absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>);
};
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_HASH_HASH_H_