forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
type_traits.h
660 lines (565 loc) · 23.4 KB
/
type_traits.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// type_traits.h
// -----------------------------------------------------------------------------
//
// This file contains C++11-compatible versions of standard <type_traits> API
// functions for determining the characteristics of types. Such traits can
// support type inference, classification, and transformation, as well as
// make it easier to write templates based on generic type behavior.
//
// See https://en.cppreference.com/w/cpp/header/type_traits
//
// WARNING: use of many of the constructs in this header will count as "complex
// template metaprogramming", so before proceeding, please carefully consider
// https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
//
// WARNING: using template metaprogramming to detect or depend on API
// features is brittle and not guaranteed. Neither the standard library nor
// Abseil provides any guarantee that APIs are stable in the face of template
// metaprogramming. Use with caution.
#ifndef ABSL_META_TYPE_TRAITS_H_
#define ABSL_META_TYPE_TRAITS_H_
#include <cstddef>
#include <functional>
#include <string>
#include <type_traits>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#ifdef __cpp_lib_span
#include <span> // NOLINT(build/c++20)
#endif
#ifdef ABSL_HAVE_STD_STRING_VIEW
#include <string_view>
#endif
// Defines the default alignment. `__STDCPP_DEFAULT_NEW_ALIGNMENT__` is a C++17
// feature.
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
#define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT __STDCPP_DEFAULT_NEW_ALIGNMENT__
#else // defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
#define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT alignof(std::max_align_t)
#endif // defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace type_traits_internal {
template <typename... Ts>
struct VoidTImpl {
using type = void;
};
////////////////////////////////
// Library Fundamentals V2 TS //
////////////////////////////////
// NOTE: The `is_detected` family of templates here differ from the library
// fundamentals specification in that for library fundamentals, `Op<Args...>` is
// evaluated as soon as the type `is_detected<Op, Args...>` undergoes
// substitution, regardless of whether or not the `::value` is accessed. That
// is inconsistent with all other standard traits and prevents lazy evaluation
// in larger contexts (such as if the `is_detected` check is a trailing argument
// of a `conjunction`. This implementation opts to instead be lazy in the same
// way that the standard traits are (this "defect" of the detection idiom
// specifications has been reported).
template <class Enabler, template <class...> class Op, class... Args>
struct is_detected_impl {
using type = std::false_type;
};
template <template <class...> class Op, class... Args>
struct is_detected_impl<typename VoidTImpl<Op<Args...>>::type, Op, Args...> {
using type = std::true_type;
};
template <template <class...> class Op, class... Args>
struct is_detected : is_detected_impl<void, Op, Args...>::type {};
template <class Enabler, class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl {
using type = std::false_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl<
typename std::enable_if<std::is_convertible<Op<Args...>, To>::value>::type,
To, Op, Args...> {
using type = std::true_type;
};
template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible
: is_detected_convertible_impl<void, To, Op, Args...>::type {};
} // namespace type_traits_internal
// void_t()
//
// Ignores the type of any its arguments and returns `void`. In general, this
// metafunction allows you to create a general case that maps to `void` while
// allowing specializations that map to specific types.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::void_t` metafunction.
//
// NOTE: `absl::void_t` does not use the standard-specified implementation so
// that it can remain compatible with gcc < 5.1. This can introduce slightly
// different behavior, such as when ordering partial specializations.
template <typename... Ts>
using void_t = typename type_traits_internal::VoidTImpl<Ts...>::type;
// conjunction
//
// Performs a compile-time logical AND operation on the passed types (which
// must have `::value` members convertible to `bool`. Short-circuits if it
// encounters any `false` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::conjunction` metafunction.
template <typename... Ts>
struct conjunction : std::true_type {};
template <typename T, typename... Ts>
struct conjunction<T, Ts...>
: std::conditional<T::value, conjunction<Ts...>, T>::type {};
template <typename T>
struct conjunction<T> : T {};
// disjunction
//
// Performs a compile-time logical OR operation on the passed types (which
// must have `::value` members convertible to `bool`. Short-circuits if it
// encounters any `true` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::disjunction` metafunction.
template <typename... Ts>
struct disjunction : std::false_type {};
template <typename T, typename... Ts>
struct disjunction<T, Ts...>
: std::conditional<T::value, T, disjunction<Ts...>>::type {};
template <typename T>
struct disjunction<T> : T {};
// negation
//
// Performs a compile-time logical NOT operation on the passed type (which
// must have `::value` members convertible to `bool`.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::negation` metafunction.
template <typename T>
struct negation : std::integral_constant<bool, !T::value> {};
// is_function()
//
// Determines whether the passed type `T` is a function type.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_function()` metafunction for platforms that have incomplete C++11
// support (such as libstdc++ 4.x).
//
// This metafunction works because appending `const` to a type does nothing to
// function types and reference types (and forms a const-qualified type
// otherwise).
template <typename T>
struct is_function
: std::integral_constant<
bool, !(std::is_reference<T>::value ||
std::is_const<typename std::add_const<T>::type>::value)> {};
// is_copy_assignable()
// is_move_assignable()
// is_trivially_destructible()
// is_trivially_default_constructible()
// is_trivially_move_constructible()
// is_trivially_copy_constructible()
// is_trivially_move_assignable()
// is_trivially_copy_assignable()
//
// Historical note: Abseil once provided implementations of these type traits
// for platforms that lacked full support. New code should prefer to use the
// std variants.
//
// See the documentation for the STL <type_traits> header for more information:
// https://en.cppreference.com/w/cpp/header/type_traits
using std::is_copy_assignable;
using std::is_move_assignable;
using std::is_trivially_copy_assignable;
using std::is_trivially_copy_constructible;
using std::is_trivially_default_constructible;
using std::is_trivially_destructible;
using std::is_trivially_move_assignable;
using std::is_trivially_move_constructible;
#if defined(__cpp_lib_remove_cvref) && __cpp_lib_remove_cvref >= 201711L
template <typename T>
using remove_cvref = std::remove_cvref<T>;
template <typename T>
using remove_cvref_t = typename std::remove_cvref<T>::type;
#else
// remove_cvref()
//
// C++11 compatible implementation of std::remove_cvref which was added in
// C++20.
template <typename T>
struct remove_cvref {
using type =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
};
template <typename T>
using remove_cvref_t = typename remove_cvref<T>::type;
#endif
// -----------------------------------------------------------------------------
// C++14 "_t" trait aliases
// -----------------------------------------------------------------------------
template <typename T>
using remove_cv_t = typename std::remove_cv<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_volatile_t = typename std::remove_volatile<T>::type;
template <typename T>
using add_cv_t = typename std::add_cv<T>::type;
template <typename T>
using add_const_t = typename std::add_const<T>::type;
template <typename T>
using add_volatile_t = typename std::add_volatile<T>::type;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using add_lvalue_reference_t = typename std::add_lvalue_reference<T>::type;
template <typename T>
using add_rvalue_reference_t = typename std::add_rvalue_reference<T>::type;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename T>
using add_pointer_t = typename std::add_pointer<T>::type;
template <typename T>
using make_signed_t = typename std::make_signed<T>::type;
template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;
template <typename T>
using remove_extent_t = typename std::remove_extent<T>::type;
template <typename T>
using remove_all_extents_t = typename std::remove_all_extents<T>::type;
template <typename T>
using decay_t = typename std::decay<T>::type;
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <typename... T>
using common_type_t = typename std::common_type<T...>::type;
template <typename T>
using underlying_type_t = typename std::underlying_type<T>::type;
namespace type_traits_internal {
#if (defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703L) || \
(defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
// std::result_of is deprecated (C++17) or removed (C++20)
template <typename>
struct result_of;
template <typename F, typename... Args>
struct result_of<F(Args...)> : std::invoke_result<F, Args...> {};
#else
template <typename F>
using result_of = std::result_of<F>;
#endif
} // namespace type_traits_internal
template <typename F>
using result_of_t = typename type_traits_internal::result_of<F>::type;
namespace type_traits_internal {
// In MSVC we can't probe std::hash or stdext::hash because it triggers a
// static_assert instead of failing substitution. Libc++ prior to 4.0
// also used a static_assert.
//
#if defined(_MSC_VER) || (defined(_LIBCPP_VERSION) && \
_LIBCPP_VERSION < 4000 && _LIBCPP_STD_VER > 11)
#define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 0
#else
#define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 1
#endif
#if !ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
template <typename Key, typename = size_t>
struct IsHashable : std::true_type {};
#else // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
template <typename Key, typename = void>
struct IsHashable : std::false_type {};
template <typename Key>
struct IsHashable<
Key,
absl::enable_if_t<std::is_convertible<
decltype(std::declval<std::hash<Key>&>()(std::declval<Key const&>())),
std::size_t>::value>> : std::true_type {};
#endif // !ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
struct AssertHashEnabledHelper {
private:
static void Sink(...) {}
struct NAT {};
template <class Key>
static auto GetReturnType(int)
-> decltype(std::declval<std::hash<Key>>()(std::declval<Key const&>()));
template <class Key>
static NAT GetReturnType(...);
template <class Key>
static std::nullptr_t DoIt() {
static_assert(IsHashable<Key>::value,
"std::hash<Key> does not provide a call operator");
static_assert(
std::is_default_constructible<std::hash<Key>>::value,
"std::hash<Key> must be default constructible when it is enabled");
static_assert(
std::is_copy_constructible<std::hash<Key>>::value,
"std::hash<Key> must be copy constructible when it is enabled");
static_assert(absl::is_copy_assignable<std::hash<Key>>::value,
"std::hash<Key> must be copy assignable when it is enabled");
// is_destructible is unchecked as it's implied by each of the
// is_constructible checks.
using ReturnType = decltype(GetReturnType<Key>(0));
static_assert(std::is_same<ReturnType, NAT>::value ||
std::is_same<ReturnType, size_t>::value,
"std::hash<Key> must return size_t");
return nullptr;
}
template <class... Ts>
friend void AssertHashEnabled();
};
template <class... Ts>
inline void AssertHashEnabled() {
using Helper = AssertHashEnabledHelper;
Helper::Sink(Helper::DoIt<Ts>()...);
}
} // namespace type_traits_internal
// An internal namespace that is required to implement the C++17 swap traits.
// It is not further nested in type_traits_internal to avoid long symbol names.
namespace swap_internal {
// Necessary for the traits.
using std::swap;
// This declaration prevents global `swap` and `absl::swap` overloads from being
// considered unless ADL picks them up.
void swap();
template <class T>
using IsSwappableImpl = decltype(swap(std::declval<T&>(), std::declval<T&>()));
// NOTE: This dance with the default template parameter is for MSVC.
template <class T,
class IsNoexcept = std::integral_constant<
bool, noexcept(swap(std::declval<T&>(), std::declval<T&>()))>>
using IsNothrowSwappableImpl = typename std::enable_if<IsNoexcept::value>::type;
// IsSwappable
//
// Determines whether the standard swap idiom is a valid expression for
// arguments of type `T`.
template <class T>
struct IsSwappable
: absl::type_traits_internal::is_detected<IsSwappableImpl, T> {};
// IsNothrowSwappable
//
// Determines whether the standard swap idiom is a valid expression for
// arguments of type `T` and is noexcept.
template <class T>
struct IsNothrowSwappable
: absl::type_traits_internal::is_detected<IsNothrowSwappableImpl, T> {};
// Swap()
//
// Performs the swap idiom from a namespace where valid candidates may only be
// found in `std` or via ADL.
template <class T, absl::enable_if_t<IsSwappable<T>::value, int> = 0>
void Swap(T& lhs, T& rhs) noexcept(IsNothrowSwappable<T>::value) {
swap(lhs, rhs);
}
// StdSwapIsUnconstrained
//
// Some standard library implementations are broken in that they do not
// constrain `std::swap`. This will effectively tell us if we are dealing with
// one of those implementations.
using StdSwapIsUnconstrained = IsSwappable<void()>;
} // namespace swap_internal
namespace type_traits_internal {
// Make the swap-related traits/function accessible from this namespace.
using swap_internal::IsNothrowSwappable;
using swap_internal::IsSwappable;
using swap_internal::StdSwapIsUnconstrained;
using swap_internal::Swap;
} // namespace type_traits_internal
// absl::is_trivially_relocatable<T>
//
// Detects whether a type is known to be "trivially relocatable" -- meaning it
// can be relocated from one place to another as if by memcpy/memmove.
// This implies that its object representation doesn't depend on its address,
// and also none of its special member functions do anything strange.
//
// This trait is conservative. If it's true then the type is definitely
// trivially relocatable, but if it's false then the type may or may not be. For
// example, std::vector<int> is trivially relocatable on every known STL
// implementation, but absl::is_trivially_relocatable<std::vector<int>> remains
// false.
//
// Example:
//
// if constexpr (absl::is_trivially_relocatable<T>::value) {
// memcpy(new_location, old_location, sizeof(T));
// } else {
// new(new_location) T(std::move(*old_location));
// old_location->~T();
// }
//
// Upstream documentation:
//
// https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__is_trivially_relocatable
// If the compiler offers a builtin that tells us the answer, we can use that.
// This covers all of the cases in the fallback below, plus types that opt in
// using e.g. [[clang::trivial_abi]].
//
// Clang on Windows has the builtin, but it falsely claims types with a
// user-provided destructor are trivial (http://b/275003464). So we opt out
// there.
//
// TODO(b/275003464): remove the opt-out once the bug is fixed.
//
// Starting with Xcode 15, the Apple compiler will falsely say a type
// with a user-provided move constructor is trivially relocatable
// (b/324278148). We will opt out without a version check, due to
// the fluidity of Apple versions.
//
// TODO(b/324278148): If all versions we use have the bug fixed, then
// remove the condition.
//
// Clang on all platforms fails to detect that a type with a user-provided
// move-assignment operator is not trivially relocatable. So in fact we
// opt out of Clang altogether, for now.
//
// TODO(b/325479096): Remove the opt-out once Clang's behavior is fixed.
//
// According to https://github.com/abseil/abseil-cpp/issues/1479, this does not
// work with NVCC either.
#if ABSL_HAVE_BUILTIN(__is_trivially_relocatable) && \
(defined(__cpp_impl_trivially_relocatable) || \
(!defined(__clang__) && !defined(__APPLE__) && !defined(__NVCC__)))
template <class T>
struct is_trivially_relocatable
: std::integral_constant<bool, __is_trivially_relocatable(T)> {};
#else
// Otherwise we use a fallback that detects only those types we can feasibly
// detect. Any type that is trivially copyable is by definition trivially
// relocatable.
template <class T>
struct is_trivially_relocatable : std::is_trivially_copyable<T> {};
#endif
// absl::is_constant_evaluated()
//
// Detects whether the function call occurs within a constant-evaluated context.
// Returns true if the evaluation of the call occurs within the evaluation of an
// expression or conversion that is manifestly constant-evaluated; otherwise
// returns false.
//
// This function is implemented in terms of `std::is_constant_evaluated` for
// c++20 and up. For older c++ versions, the function is implemented in terms
// of `__builtin_is_constant_evaluated` if available, otherwise the function
// will fail to compile.
//
// Applications can inspect `ABSL_HAVE_CONSTANT_EVALUATED` at compile time
// to check if this function is supported.
//
// Example:
//
// constexpr MyClass::MyClass(int param) {
// #ifdef ABSL_HAVE_CONSTANT_EVALUATED
// if (!absl::is_constant_evaluated()) {
// ABSL_LOG(INFO) << "MyClass(" << param << ")";
// }
// #endif // ABSL_HAVE_CONSTANT_EVALUATED
// }
//
// Upstream documentation:
//
// http://en.cppreference.com/w/cpp/types/is_constant_evaluated
// http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#:~:text=__builtin_is_constant_evaluated
//
#if defined(ABSL_HAVE_CONSTANT_EVALUATED)
constexpr bool is_constant_evaluated() noexcept {
#ifdef __cpp_lib_is_constant_evaluated
return std::is_constant_evaluated();
#elif ABSL_HAVE_BUILTIN(__builtin_is_constant_evaluated)
return __builtin_is_constant_evaluated();
#endif
}
#endif // ABSL_HAVE_CONSTANT_EVALUATED
namespace type_traits_internal {
// Detects if a class's definition has declared itself to be an owner by
// declaring
// using absl_internal_is_view = std::true_type;
// as a member.
// Types that don't want either must either omit this declaration entirely, or
// (if e.g. inheriting from a base class) define the member to something that
// isn't a Boolean trait class, such as `void`.
// Do not specialize or use this directly. It's an implementation detail.
template <typename T, typename = void>
struct IsOwnerImpl : std::false_type {
static_assert(std::is_same<T, absl::remove_cvref_t<T>>::value,
"type must lack qualifiers");
};
template <typename T>
struct IsOwnerImpl<
T,
std::enable_if_t<std::is_class<typename T::absl_internal_is_view>::value>>
: absl::negation<typename T::absl_internal_is_view> {};
// A trait to determine whether a type is an owner.
// Do *not* depend on the correctness of this trait for correct code behavior.
// It is only a safety feature and its value may change in the future.
// Do not specialize this; instead, define the member trait inside your type so
// that it can be auto-detected, and to prevent ODR violations.
// If it ever becomes possible to detect [[gsl::Owner]], we should leverage it:
// https://wg21.link/p1179
template <typename T>
struct IsOwner : IsOwnerImpl<T> {};
template <typename T, typename Traits, typename Alloc>
struct IsOwner<std::basic_string<T, Traits, Alloc>> : std::true_type {};
template <typename T, typename Alloc>
struct IsOwner<std::vector<T, Alloc>> : std::true_type {};
// Detects if a class's definition has declared itself to be a view by declaring
// using absl_internal_is_view = std::true_type;
// as a member.
// Do not specialize or use this directly.
template <typename T, typename = void>
struct IsViewImpl : std::false_type {
static_assert(std::is_same<T, absl::remove_cvref_t<T>>::value,
"type must lack qualifiers");
};
template <typename T>
struct IsViewImpl<
T,
std::enable_if_t<std::is_class<typename T::absl_internal_is_view>::value>>
: T::absl_internal_is_view {};
// A trait to determine whether a type is a view.
// Do *not* depend on the correctness of this trait for correct code behavior.
// It is only a safety feature, and its value may change in the future.
// Do not specialize this trait. Instead, define the member
// using absl_internal_is_view = std::true_type;
// in your class to allow its detection while preventing ODR violations.
// If it ever becomes possible to detect [[gsl::Pointer]], we should leverage
// it: https://wg21.link/p1179
template <typename T>
struct IsView : std::integral_constant<bool, std::is_pointer<T>::value ||
IsViewImpl<T>::value> {};
#ifdef ABSL_HAVE_STD_STRING_VIEW
template <typename Char, typename Traits>
struct IsView<std::basic_string_view<Char, Traits>> : std::true_type {};
#endif
#ifdef __cpp_lib_span
template <typename T>
struct IsView<std::span<T>> : std::true_type {};
#endif
// Determines whether the assignment of the given types is lifetime-bound.
// Do *not* depend on the correctness of this trait for correct code behavior.
// It is only a safety feature and its value may change in the future.
// If it ever becomes possible to detect [[clang::lifetimebound]] directly,
// we should change the implementation to leverage that.
// Until then, we consider an assignment from an "owner" (such as std::string)
// to a "view" (such as std::string_view) to be a lifetime-bound assignment.
template <typename T, typename U>
using IsLifetimeBoundAssignment =
std::integral_constant<bool, IsView<absl::remove_cvref_t<T>>::value &&
IsOwner<absl::remove_cvref_t<U>>::value>;
} // namespace type_traits_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_META_TYPE_TRAITS_H_