-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoising.py
53 lines (40 loc) · 1.5 KB
/
denoising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import signal
import numpy as np
import random
import matplotlib.pyplot as plt
import matlab.engine
import numpy as np
eng = matlab.engine.start_matlab()
def read(filepath):
rf = eng.RPread(filepath)
rf_np = np.array(rf._data)
rf_np = np.reshape(rf_np, rf.size, order="F")
return rf_np
class Denoise_us(nn.Module):
""" Median pool (usable as median filter when stride=1) module.
Args:
kernel_size: size of pooling kernel, int or 2-tuple
stride: pool stride, int or 2-tuple
padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
same: override padding and enforce same padding, boolean
"""
def __init__(self, low=6, high=-60, fs=4e7):
super(Denoise_us, self).__init__()
samplingFrequency = fs
samplingInterval = 1 / samplingFrequency
tpCount = 256
values = np.arange(int(tpCount / 2))
timePeriod = tpCount / samplingFrequency
frequencies = values / timePeriod
desired_filter = np.zeros(tpCount // 2 + 1)
desired_filter[low:high] = 1
bands = np.append(frequencies, frequencies[-1] + frequencies[1])
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.kernel = signal.firwin2(151, bands, desired_filter, fs=fs)[:, np.newaxis, np.newaxis]
def forward(self, x):
x = signal.convolve(x, self.kernel, mode='same')
return x