Title | Authors | PDF & Notes |
---|---|---|
Statistical Robustness of Markov Chain Monte Carlo Accelerators | Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, Alvin R. Lebeck (Duke University) | |
Exploiting Gustavson's Algorithm to Accelerate Sparse Matrix Multiplication | Guowei Zhang, Nithya Attaluri (MIT); Joel Emer (MIT & NVIDIA); Daniel Sanchez (MIT) | |
BayesPerf: Minimizing Performance Monitoring Errors Using Bayesian Statistics | Subho S. Banerjee, Saurabh Jha, Zbigniew Kalbarczyk, Ravishankar K. Iyer (University of Illinois at Urbana-Champaign) | |
PIBE: Practical Kernel Control-flow Hardening with Profile-guided Indirect Branch Elimination | Victor Duta, Erik van der Kouwe, Herbert Bos, Cristiano Giuffrida (Vrije Universiteit Amsterdam) | |
Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology | Sabrina M. Neuman (MIT); Brian Plancher (Harvard); Thomas Bourgeat (MIT); Thierry Tambe (Harvard); Srinivas Devadas (MIT); Vijay Janapa Reddi (Harvard/UT Austin/Google) | |
SherLock: Unsupervised Synchronization-Operation Inference Extended | Guangpu Li (University of Chicago); Dongjie Chen (Nanjing University); Shan Lu (University of Chicago); Madanlal Musuvathi, Suman Nath (Microsoft Research) | |
Analytical characterization and design space exploration for optimization of CNNs | Rui Li, Yufan Xu (University of Utah); Aravind Sukumaran-Rajam (Washington State University); Atanas Rountev (Ohio State University); P. Sadayappan (University of Utah) | |
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search | Kartik Hegde (UIUC); Po-An Tsai (NVIDIA); Sitao Huang (University of Illinois at Urbana–Champaign); Vikas Chandra (Facebook); Angshuman Parashar (NVIDIA); Christopher Fletcher (University of Illinois--Urbana Champaign) | |
MERCI: Efficient Embedding Reduction on Commodity Hardware viaSub-Query Memoization | Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, Jae W. Lee, Tae Jun HamSeoul National University | |
Scalable FSM Parallelization via Path Fusion and Higher-Order Speculation | Junqiao Qiu, Xiaofan Sun, Amir Hossein Nodehi Sabet, and Zhijia Zhao, Michigan Technological University, University of California, Riverside |
Computing with Time: Microarchitectural Weird Machines
https://dl.acm.org/action/showFmPdf?doi=10.1145%2F3373376
Title | Authors | Link |
---|---|---|
Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerator | XuanYang (Stanford University), MingyuGao (Tsinghua University), QiaoyiLiu, JeffSetter, JingPu,AnkitaNayak, StevenBell, KaidiCao, HeonjaeHa, PriyankaRaina (Stanford University), ChristosKozyrakis (Stanford University, Google), MarkHorowitz (Stanford University) | |
DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints | XingHu, LingLiang, ShuangchenLi (University of California, Santa Barbara), LeiDeng (University of California, Santa Barbara & Tsinghua University), PengfeiZuo (University of California, Santa Barbara & Huazhong University of Science and Technology), YuJi (University of California, Santa Barbara &Tsinghua University), XinfengXie, YufeiDing (University of California, Santa Barbara), ChangLiu (Citadel Securities), TimothySherwood, YuanXie (University of California, Santa Barbara) | |
Prague: High-Performance Heterogeneity-Aware Asynchronous Decentralized Training | QinyiLuo (University of Southern California), JiaaoHe (Tsinghua University), YouweiZhuo, XuehaiQian (University of Southern California) | |
SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping | Chien-Chin Huang, Gu Jin, and Jinyang Li. | |
Capuchin: Tensor-based GPU Memory Management for Deep Learning | Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai Qian. | |
AutoTM: Automatic Tensor Movement in Heterogeneous Memory Systems using Integer Linear Programming | Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power,Venkatesh Akella | |
The TrieJax Architecture: Accelerating Graph Operations Through Relational Joins |
https://dl.acm.org/doi/10.1145/3297858.3304006
Paper | Authors | |
---|---|---|
FA3C: FPGA-Accelerated Deep Reinforcement Learning | Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee | |
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms for Probabilistic Models | Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer | |
PnP: Pruning and Prediction for Point-To-Point Iterative Graph Analytics | PnP: Pruning and Prediction for Point-To-Point Iterative Graph Analytics | |
DiGraph: An Efficient Path-based Iterative Directed Graph Processing System on Multiple GPUs | Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu | |
PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference | Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. | |
Bit-Tactical: A Software/Hardware Approach to Exploiting Value and Bit Sparsity in Neural Networks | Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas Moshovos | |
TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators | Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis | |
Packing Sparse Convolutional Neural Networks for Efficient Systolic Array Implementations: Column Combining Under Joint Optimization | H.T. Kung, Bradley McDanel, and Sai Qian Zhang | |
Split-CNN: Splitting Window-based Operations in Convolutional Neural Networks for Memory System Optimization | Tian Jin and Seokin Hong | |
Astra: Exploiting Predictability to Optimize Deep Learning | Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong Zhou | |
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Methods of Multipliers | Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin, and Yanzhi Wang |