Skip to content

Latest commit

 

History

History
87 lines (64 loc) · 14.7 KB

File metadata and controls

87 lines (64 loc) · 14.7 KB

NeurIPS Papers

2022

Paper Author PDF & Notes

2021

https://proceedings.neurips.cc/paper/2021

Paper Author PDF & Notes
Localility Sensitive Teaching Zhaozhuo Xu (RICE), Beidi Chen, Chaojian Li, Weiyang Liu, Le Song, Yingyan Lin and Anshumali Shrivastava pdf

2020

https://proceedings.neurips.cc/paper/2020

Paper Author PDF & Notes
Language Models are Few-Shot Learners pdf
Neural Methods for Point-wise Dependency Estimation Yao-Hung Hubert Tsai, Han Zhao, Makoto Yamada, Louis-Philippe Morency, Russ R. Salakhutdinov pdf
Fast and Flexible Temporal Point Processes with Triangular Maps Oleksandr Shchur, Nicholas Gao, Marin Biloš, Stephan Günnemann pdf
Generalised Bayesian Filtering via Sequential Monte Carlo Ayman Boustati, Omer Deniz Akyildiz, Theodoros Damoulas, Adam Johansen pdf
Deterministic Approximation for Submodular Maximization over a Matroid in Nearly Linear Time Kai Han, zongmai Cao, Shuang Cui, Benwei Wu pdf
Fourier Sparse Leverage Scores and Approximate Kernel Learning Tamas Erdelyi, Cameron Musco, Christopher Musco pdf
Bayesian Deep Ensembles via the Neural Tangent Kernel Bobby He, Balaji Lakshminarayanan, Yee Whye Teh pdf
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts Bertrand Charpentier, Daniel Zügner, Stephan Günnemann pdf
A Bayesian Nonparametrics View into Deep Representations Michał Jamroż, Marcin Kurdziel, Mateusz Opala pdf
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization Ben Letham, Roberto Calandra, Akshara Rai, Eytan Bakshy pdf
Ultra-Low Precision 4-bit Training of Deep Neural Networks pdf
Bayesian Robust Optimization for Imitation Learning Daniel Brown, Scott Niekum, Marek Petrik pdf
Bayesian Multi-type Mean Field Multi-agent Imitation Learning Fan Yang, Alina Vereshchaka, Changyou Chen, Wen Dong pdf
Continual Learning with Node-Importance based Adaptive Group Sparse Regularization Sangwon Jung, Hongjoon Ahn, Sungmin Cha, Taesup Moon pdf
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks Dennis Wei, Tian Gao, Yue Yu pdf
Searching for Low-Bit Weights in Quantized Neural Networks Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing XU, Chao Xu, Dacheng Tao, Chang Xu pdf
Sequential Bayesian Experimental Design with Variable Cost Structure Sue Zheng, David Hayden, Jason Pacheco, John W. Fisher III pdf
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs Ignavier Ng, AmirEmad Ghassami, Kun Zhang pdf
Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations Sebastian Farquhar, Lewis Smith, Yarin Gal pdf
Fast Fourier Convolution Lu Chi, Borui Jiang, Yadong Mu pdf
Learning Structured Distributions From Untrusted Batches: Faster and Simpler Sitan Chen, Jerry Li, Ankur Moitra pdf
Bayesian Deep Learning and a Probabilistic Perspective of Generalization Andrew G. Wilson, Pavel Izmailov pdf
Efficient Low Rank Gaussian Variational Inference for Neural Networks Marcin Tomczak, Siddharth Swaroop, Richard Turner pdf
Probabilistic Orientation Estimation with Matrix Fisher Distributions David Mohlin, Josephine Sullivan, Gérald Bianchi pdf
Sparse Graphical Memory for Robust Planning Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, Deepak Pathak pdf
Learning under Model Misspecification: Applications to Variational and Ensemble methods Andres Masegosa pdf
Structured Convolutions for Efficient Neural Network Design Yash Bhalgat, Yizhe Zhang, Jamie Menjay Lin, Fatih Porikli pdf
Bayesian Bits: Unifying Quantization and Pruning Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort, Max Welling pdf
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective Vu Nguyen, Vaden Masrani, Rob Brekelmans, Michael Osborne, Frank Wood pdf
Bayesian Probabilistic Numerical Integration with Tree-Based Models Harrison Zhu, Xing Liu, Ruya Kang, Zhichao Shen, Seth Flaxman, Francois-Xavier Briol pdf
Efficient Variational Inference for Sparse Deep Learning with Theoretical Guarantee Jincheng Bai, Qifan Song and Guang Cheng pdf
Bayesian Causal Structural Learning with Zero-Inflated Poisson Bayesian Networks Junsouk Choi, Robert Chapkin, Yang Ni pdf

https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html

2019

https://proceedings.neurips.cc/paper/2019

Paper Author PDF & Notes
E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin and Zhangyang Wang pdf

2018

https://proceedings.neurips.cc/paper/2018

Paper Author PDF & Notes

2016

Paper Author PDF & Notes
Learning Structured Sparsity in Deep Neural Networks Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, Hai Li pdf