-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
150 lines (112 loc) · 4.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn.functional as F
from data_processing import TEINet_embeddings_5fold, esm_embeddings_5fold
from model import GraphNet
from sklearn.metrics import roc_auc_score, average_precision_score
import pandas as pd
from libauc.losses import AUCMLoss
from libauc.optimizers import PESG
from arg_parser import parse_args
import numpy as np
import collections
from torch_geometric.data import Data
import random
from sklearn.model_selection import train_test_split
import yaml
seed = 18
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def compute_accuracy(preds, y_true):
return ((preds > 0).float() == y_true).sum().item() / preds.size(0)
def compute_aupr(preds, y_true):
probs = torch.sigmoid(preds)
probs_numpy = probs.detach().cpu().numpy()
y_true_numpy = y_true.detach().cpu().numpy()
return average_precision_score(y_true_numpy, probs_numpy)
def compute_auc(preds, y_true):
probs = torch.sigmoid(preds)
y_true_numpy = y_true.detach().cpu().numpy()
probs_numpy = probs.detach().cpu().numpy()
return roc_auc_score(y_true_numpy, probs_numpy)
args = parse_args()
with open(args.configs_path) as file:
configs = yaml.safe_load(file)
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
data_list = TEINet_embeddings_5fold(args.configs_path)
# data_list = esm_embeddings_5fold(args.configs_path)
data_list = [data.to(device) for data in data_list]
train_data = data_list[0]
test_data = data_list[1]
model = GraphNet(num_node_features=train_data.num_node_features).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-4)
margin = 4.0
epoch_decay = 0.0046
weight_decay = 0.006
aucm_optimizer = PESG(model.parameters(),
loss_fn=AUCMLoss(),
lr=args.lr,
momentum=0.4,
margin=margin,
device=device,
epoch_decay=epoch_decay,
weight_decay=weight_decay)
num_epochs = args.epochs
best_valid_roc = 0
best_valid_acc = 0
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
aucm_optimizer.zero_grad()
out = model(train_data.x, train_data.edge_index)
preds = out
y_true = train_data.y.to(device)
num_positive_samples = (y_true == 1).sum()
num_negative_samples = (y_true == 0).sum()
weight_factor = num_negative_samples.float() / num_positive_samples.float()
pos_weight = torch.ones([y_true.size(0)],device=device) * weight_factor * args.positive_weights
bce_loss = F.binary_cross_entropy_with_logits(preds, y_true, pos_weight=pos_weight)
aucm_module = AUCMLoss()
aucm_loss = aucm_module(torch.sigmoid(preds), y_true)
total_loss = args.w_celoss * bce_loss + args.w_aucloss * aucm_loss.to(device)
total_loss.backward()
optimizer.step()
aucm_optimizer.step()
accuracy = compute_accuracy(preds, y_true)
roc_auc = compute_auc(preds, y_true)
aupr = compute_aupr(preds, y_true)
# Validation part
model.eval()
with torch.no_grad():
out_valid = model(test_data.x, test_data.edge_index)
preds_valid = out_valid
y_true_valid = test_data.y.to(device)
valid_acc = compute_accuracy(preds_valid, y_true_valid)
roc_auc_valid = compute_auc(preds_valid, y_true_valid)
valid_aupr = compute_aupr(preds_valid, y_true_valid)
if roc_auc_valid > best_valid_roc:
best_valid_roc = roc_auc_valid
torch.save(model.state_dict(), configs['save_model'])
print("Epoch: {}/{}, Loss: {:.7f}, Train Acc: {:.4f}, Test Acc: {:.4f}, Train AUC: {:.4f}, Train APUR: {:.4f}, Test AUC: {:.4f}, Test AUPR: {:.4f}".format(epoch+1, num_epochs, total_loss.item(), accuracy, valid_acc, roc_auc, aupr, roc_auc_valid, valid_aupr))
# Load the best model
best_model = GraphNet(num_node_features=test_data.num_node_features).to(device)
best_model.load_state_dict(torch.load(configs['save_model']))
# Evaluate on test test_data
best_model.eval()
with torch.no_grad():
out_test = best_model(test_data.x, test_data.edge_index)
preds_test = out_test
y_true_test = test_data.y.to(device)
test_acc = compute_accuracy(preds_test, y_true_test)
roc_auc_test = compute_auc(preds_test, y_true_test)
test_aupr = compute_aupr(preds_test, y_true_test)
# save results
probabilities = torch.sigmoid(preds_test)
binary_predictions = (probabilities > 0.5).type(torch.int).detach().cpu().numpy()
df = pd.DataFrame({
'prediction': binary_predictions,
'label': y_true_test.detach().cpu().numpy().astype(int)
})
df.to_csv(f'results/{configs["dataset_name"]}.csv', index=False)
print("Test Acc: {:.4f}, Test AUC: {:.4f}, Test AUPR: {:.4f}".format(test_acc, roc_auc_test, test_aupr))