-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMAPS-OF-WOTR
54 lines (35 loc) · 2.51 KB
/
MAPS-OF-WOTR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
I. Different corpora in /corpora/wotr:
1. 'cwred-20150415': CWRED corpus of Civil War military actions, from
Scott Nesbit.
2. 'dsl-080414': Corpus of emancipation and similar events.
3. 'volspans-predicted-wotr-*-predicted-deg*', e.g.
'volspans-predicted-wotr-may-18-715pm-predicted-deg1': Predicted volume
spans with predicted coordinates from WOTR, using annotations from the
given date and running the predictions using Naive Bayes with uniform
grid size as given.
4. 'wotr-*-60-20-20', e.g. 'wotr-may-18-715pm-60-20-20': 60/20/20 split
of annotated WOTR spans for the given date.
5. 'wotr-*-100-0-0', e.g. 'wotr-may-18-715pm-100-0-0': 100/0/0 split of
annotated WOTR spans for the given date.
II. To generate a KML map of the distribution of a corpus, e.g.
'may-18-715pm-100-0-0':
for x in 1 1.5 2 2.5 3.5; do for z in 2000000; do run-nohup -i kml.num-docs.deg$x.$z textgrounder run opennlp.textgrounder.geolocate.GenerateKML -i wotr-may-18-715pm-100-0-0 --kdt num-docs --kml-max-height $z --kml-prefix kml-dist.wotr-may-18-715pm-100-0-0-deg$x.$z --dpc $x &; done; done
This generates KML maps for degree sizes 1, 1.5, 2, 2.5 and 3.5, using
KML max height of 2,000,000, which usually works well.
III. To generate a heatmap of the distribution of a corpus, e.g.
'may-18-715pm-100-0-0':
1. Use WriteGrid to write out the grid to a TextDB database.
for x in 1 1.5 2 2.5 3.5; do textgrounder run opennlp.textgrounder.geolocate.WriteGrid -i wotr-may-18-715pm-100-0-0 --dpc $x -o grid.wotr-may-18-715pm-deg$x; done
2. Use WriteGridToPolygons to convert the TextDB database into R input data
and copy it to the R working directory (~didir).
for x in 1 1.5 2 2.5 3.5; do textgrounder run opennlp.textgrounder.postprocess.WriteGridToPolygons -i grid.wotr-may-18-715pm-deg$x.data.txt --or wotr-may-18-715pm-deg$x.rect; cp wotr-may-18-715pm-deg$x.rect ~didir; done
Note, you can also output centroids, useful for some R graphs.
for x in 1 1.5 2 2.5 3.5; do textgrounder run opennlp.textgrounder.postprocess.WriteGridToPolygons -i grid.wotr-may-18-715pm-deg$x.data.txt --or wotr-may-18-715pm-deg$x.rect --oc wotr-may-18-715pm-deg$x.centroid; done
You can also output the rectangles and/or centroids in GeoJSON format if needed
using '--geojson'.
3. Edit plot-dist-heatmap.R in ~didir, setting the date appropriately and
uncommenting the appropriate section for annotated WOTR spans. Open up R
and execute:
setwd("~/ut/dissertation/dissertation/r-code/")
source("plot-dist-heatmap.R")
This creates a file like 'wotr-may-18-715pm.pdf'.