-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_motion_classifier.py
54 lines (47 loc) · 2.12 KB
/
train_motion_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import ins_tools.SVM as svm
from sklearn.externals import joblib #Used for saving the model
import sys
sys.path.append('../')
walk_dirs = ['data/vicon/processed/2017-11-22-11-22-03',
'data/vicon/processed/2017-11-22-11-22-46',
'data/vicon/processed/2017-11-22-11-25-20',
'data/vicon/processed/2017-11-22-11-40-44',
]
run_dirs = ['data/vicon/processed/2017-11-22-11-44-47',
'data/vicon/processed/2017-11-27-11-11-24',
'data/vicon/processed/2017-11-27-11-11-53',
'data/vicon/processed/2017-11-27-11-12-18',
'data/vicon/processed/2017-11-27-11-13-10',
]
stair_dirs = ['data/stairs/train/2018-07-24-16-16-52/processed_data',
'data/stairs/train/2018-07-24-16-20-53/processed_data' ,
'data/stairs/train/2018-07-24-16-50-37/processed_data' ,
'data/stairs/train/2018-07-24-16-53-05/processed_data',
'data/stairs/train/2018-07-24-16-55-02/processed_data',
'data/stairs/train/2018-07-24-16-56-23/processed_data',
]
samples_per_file = 2000
sample_duration = 200 #samples consist of 2 seconds of inertial data
walk_train, walk_test = svm.importdata(walk_dirs,crop=300, samples_per_file=samples_per_file, seq_len=sample_duration)
run_train, run_test = svm.importdata(run_dirs,crop=300, samples_per_file=samples_per_file, seq_len=sample_duration)
stair_train, stair_test = svm.importdata(stair_dirs, crop=300, samples_per_file=samples_per_file, seq_len=sample_duration)
## uncomment to train instead of loading the current one
#clf = svm.traindata(0.001, walk_train, run_train, stair_train)
#joblib.dump(clf, 'results/3class_vn100_2_new.pkl', compress=1)
#print("testing accuracy")
clf = joblib.load('results/3class_vn100_2.pkl')
motionlist = [walk_test, run_test, stair_test]
c=0
m = len(motionlist)
#Test with new data:
walk_acc=np.zeros(m)
run_acc = np.zeros(m)
acc = np.zeros((m,m))
for motion in motionlist:
print('motion: ', c)
for i in range(m):
acc[c,i]=svm.testdata(i,clf,motion)
print('subject: ',i)
c+=1
print(acc)