-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
52 lines (46 loc) · 2.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import *
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.regularizers import l2
import matplotlib.pyplot as plt
import numpy as np
class myCallback(Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('accuracy')>=0.97):
self.model.stop_training = True
callbacks = myCallback()
train_dir = 'NonAugmentedTrain'
val_dir = 'ValData'
train_image_gen = ImageDataGenerator(rescale=1/255, rotation_range=0.1, zoom_range=0.1, shear_range=0.1, horizontal_flip=True)
train_datagen = train_image_gen.flow_from_directory(train_dir, color_mode='grayscale', target_size=(240,240), class_mode='categorical')
val_image_gen = ImageDataGenerator(rescale=1/255)
val_datagen = val_image_gen.flow_from_directory(val_dir, color_mode='grayscale',target_size=(240,240), class_mode='categorical')
model = Sequential()
model.add(Conv2D(32, (3,3), input_shape=(240,240,1), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
#model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
#model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3), activation='relu', padding='same', kernel_regularizer=l2(0.001)))
model.add(MaxPooling2D(2,2))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(256, activation='relu', kernel_regularizer=l2(0.001)))
model.add(Dropout(0.5))
model.add(Dense(4, activation='softmax', kernel_regularizer=l2(0.001)))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
r = model.fit_generator(train_datagen, validation_data=(val_datagen), epochs=200, callbacks=[callbacks])
plt.plot(r.history['accuracy'], label='accuracy')
plt.plot(r.history['val_accuracy'], label='val_accuracy')
plt.legend()
plt.savefig('graph.png')