-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstateutils.ml
242 lines (210 loc) · 4.91 KB
/
stateutils.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
(*
* Utilities for evar_maps, which in Coq store state (evars, universe
* constraints, and so on)
*)
open Evd
open Utilities
(* --- State monad --- *)
(*
* I'm actually rarely sold on this style of programming. But here I think
* it can help define combinators that force good evar_map discipline.
* I expose these because people might like to use them more generally.
*)
type 'a state = evar_map * 'a
let bind f1 f2 = (fun sigma -> let sigma, a = f1 sigma in f2 a sigma)
let ret a = fun sigma -> sigma, a
(* --- Threading state through arguments --- *)
(* Internal utilities *)
let sconsr bs b = ret (b :: bs)
let srev l = ret (List.rev l)
let sarray_of_list l = ret (Array.of_list l)
let sappendr l1 l2 = ret (List.append l1 l2)
let shas_some o = ret (Option.has_some o)
let ssome a = ret (Some a)
let snone = ret None
let sget o = ret (Option.get o)
(*
* fold_left with state
*)
let fold_left_state f b l sigma =
List.fold_left (fun (sigma, b) a -> f b a sigma) (ret b sigma) l
(*
* fold_left2 with state
*)
let fold_left2_state f c l1 l2 sigma =
List.fold_left2 (fun (sigma, c) a b -> f c a b sigma) (ret c sigma) l1 l2
(*
* for correct evar_map threading, fold_right is defined in terms of fold_left
*)
let fold_right_state f l b =
fold_left_state (fun b a -> f a b) b (List.rev l)
(*
* Same over two lists
*)
let fold_right2_state f l1 l2 b =
fold_left2_state (fun c a b -> f a b c) b (List.rev l1) (List.rev l2)
(*
* mapping over tuples
*)
let map_tuple_state f (p1, p2) =
bind (f p1) (fun r1 -> bind (f p2) (fun r2 -> ret (r1, r2)))
(*
* folding over tuples
*)
let fold_tuple_state f (p1, p2) sigma =
f p1 p2 sigma
(*
* For a function that takes and returns state, map that function over a
* list of arguments, threading the state through the application to the result.
*
* The order here is left-to-right since that is the way functions are applied
* in Coq (arguments may depend on earlier arguments). This is sometimes
* significant.
*)
let map_state f l =
bind (fold_left_state (fun bs a -> bind (f a) (sconsr bs)) [] l) srev
(*
* map2 version
*)
let map2_state f l1 l2 =
bind (fold_left2_state (fun cs a b -> bind (f a b) (sconsr cs)) [] l1 l2) srev
(*
* Array version
*)
let map_state_array f arr =
bind (map_state f (Array.to_list arr)) sarray_of_list
(*
* flatten
*)
let flatten_state l =
fold_left_state sappendr [] l
(*
* flat_map version
*)
let flat_map_state f l =
bind (map_state f l) flatten_state
(*
* Stateful if/else
*)
let branch_state p f g a =
bind
(fun sigma_f ->
bind
(p a)
(fun b sigma_t -> ret b (if b then sigma_t else sigma_f))
sigma_f)
(fun b -> if b then f a else g a)
(*
* Stateful and (pa a && pb b)
*)
let and_state pa pb a b =
branch_state pa (fun _ -> pb b) (fun _ -> ret false) a
(*
* Stateful or (pa a || pb b)
*)
let or_state pa pb a b =
branch_state pa (fun _ -> ret true) (fun _ -> pb b) a
(*
* Stateful and (pa a && pb b)
*)
let and_state_fold pa1 pa2 a =
and_state pa1 pa2 a a
(*
* Stateful or (pa a || pb b)
*)
let or_state_fold pa1 pa2 a =
or_state pa1 pa2 a a
(*
* Stateful not
* Note that if p holds, this returns false and the evar_map from p
* If p does not hold, this returns true and the evar_map argument
*)
let not_state p a =
branch_state p (fun _ -> ret false) (fun _ -> ret true) a
(*
* Predicate version, for exists
*)
let exists_state p l =
fold_left_state
(fun bool -> branch_state (fun _ -> ret bool) (fun _ -> ret bool) p)
false
l
(*
* exists2
*)
let exists2_state p l1 l2 =
exists_state
(fold_tuple_state p)
(List.combine l1 l2)
(*
* Stateful forall
*)
let forall_state p l =
fold_left_state
(fun b -> branch_state p (fun _ -> ret b) (fun _ -> ret false))
true
l
(*
* forall2
*)
let forall2_state p l1 l2 =
forall_state
(fold_tuple_state p)
(List.combine l1 l2)
(*
* Predicate version, for find
*)
let find_state p l =
bind
(fold_left_state
(fun o a ->
branch_state
shas_some
ret
(fun _ -> branch_state p ssome (fun _ -> snone) a)
o)
None
l)
(branch_state shas_some sget (fun _ _ -> raise Not_found))
(*
* find2
*)
let find2_state p l1 l2 =
find_state
(fold_tuple_state p)
(List.combine l1 l2)
(*
* Filter
*)
let filter_state p l =
bind
(fold_left_state
(fun a_l ->
branch_state
p
(sconsr a_l)
(fun _ -> ret a_l))
[]
l)
srev
(*
* filter2
*)
let filter2_state p l1 l2 =
filter_state
(fold_tuple_state p)
(List.combine l1 l2)
(*
* Partition
*)
let partition_state p l =
bind
(fold_left_state
(fun (a_l1, a_l2) ->
branch_state
p
(fun a -> ret (a :: a_l1, a_l2))
(fun a -> ret (a_l1, a :: a_l2)))
([], [])
l)
(fun (l1, l2) -> ret (map_tuple List.rev (l1, l2)))