From 5f4d9be8304ede0b218960280721710c307cfbf2 Mon Sep 17 00:00:00 2001 From: anantg Date: Fri, 8 Nov 2019 17:24:21 +0800 Subject: [PATCH 01/15] added csv to hive support and corrected files location in table creation script --- examples/csvs/demo1.csv | 986 ++++++++++++++++++++++++++ examples/csvs/demo2.csv | 986 ++++++++++++++++++++++++++ examples/demo.csv | 986 ++++++++++++++++++++++++++ getting-started/csv-to-hive.ipynb | 253 +++++++ getting-started/parquet-to-hive.ipynb | 8 +- 5 files changed, 3215 insertions(+), 4 deletions(-) create mode 100644 examples/csvs/demo1.csv create mode 100644 examples/csvs/demo2.csv create mode 100644 examples/demo.csv create mode 100644 getting-started/csv-to-hive.ipynb diff --git a/examples/csvs/demo1.csv b/examples/csvs/demo1.csv new file mode 100644 index 00000000..8b8027b9 --- /dev/null +++ b/examples/csvs/demo1.csv @@ -0,0 +1,986 @@ +id,street,city,zip,state,beds,baths,sq__ft,type,sale_date,price,latitude,longitude +1,3526 HIGH ST,SACRAMENTO,95838,CA,2,1,836,Residential,Wed May 21 00:00:00 EDT 2008,59222,38.631913,-121.434879 +2,51 OMAHA CT,SACRAMENTO,95823,CA,3,1,1167,Residential,Wed May 21 00:00:00 EDT 2008,68212,38.478902,-121.431028 +3,2796 BRANCH ST,SACRAMENTO,95815,CA,2,1,796,Residential,Wed May 21 00:00:00 EDT 2008,68880,38.618305,-121.443839 +4,2805 JANETTE WAY,SACRAMENTO,95815,CA,2,1,852,Residential,Wed May 21 00:00:00 EDT 2008,69307,38.616835,-121.439146 +5,6001 MCMAHON DR,SACRAMENTO,95824,CA,2,1,797,Residential,Wed May 21 00:00:00 EDT 2008,81900,38.51947,-121.435768 +6,5828 PEPPERMILL CT,SACRAMENTO,95841,CA,3,1,1122,Condo,Wed May 21 00:00:00 EDT 2008,89921,38.662595,-121.327813 +7,6048 OGDEN NASH WAY,SACRAMENTO,95842,CA,3,2,1104,Residential,Wed May 21 00:00:00 EDT 2008,90895,38.681659,-121.351705 +8,2561 19TH AVE,SACRAMENTO,95820,CA,3,1,1177,Residential,Wed May 21 00:00:00 EDT 2008,91002,38.535092,-121.481367 +9,11150 TRINITY RIVER DR Unit 114,RANCHO CORDOVA,95670,CA,2,2,941,Condo,Wed May 21 00:00:00 EDT 2008,94905,38.621188,-121.270555 +10,7325 10TH ST,RIO LINDA,95673,CA,3,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,98937,38.700909,-121.442979 +11,645 MORRISON AVE,SACRAMENTO,95838,CA,3,2,909,Residential,Wed May 21 00:00:00 EDT 2008,100309,38.637663,-121.45152 +12,4085 FAWN CIR,SACRAMENTO,95823,CA,3,2,1289,Residential,Wed May 21 00:00:00 EDT 2008,106250,38.470746,-121.458918 +13,2930 LA ROSA RD,SACRAMENTO,95815,CA,1,1,871,Residential,Wed May 21 00:00:00 EDT 2008,106852,38.618698,-121.435833 +14,2113 KIRK WAY,SACRAMENTO,95822,CA,3,1,1020,Residential,Wed May 21 00:00:00 EDT 2008,107502,38.482215,-121.492603 +15,4533 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,2,1022,Residential,Wed May 21 00:00:00 EDT 2008,108750,38.672914,-121.35934 +16,7340 HAMDEN PL,SACRAMENTO,95842,CA,2,2,1134,Condo,Wed May 21 00:00:00 EDT 2008,110700,38.700051,-121.351278 +17,6715 6TH ST,RIO LINDA,95673,CA,2,1,844,Residential,Wed May 21 00:00:00 EDT 2008,113263,38.689591,-121.452239 +18,6236 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Wed May 21 00:00:00 EDT 2008,116250,38.679776,-121.314089 +19,250 PERALTA AVE,SACRAMENTO,95833,CA,2,1,588,Residential,Wed May 21 00:00:00 EDT 2008,120000,38.612099,-121.469095 +20,113 LEEWILL AVE,RIO LINDA,95673,CA,3,2,1356,Residential,Wed May 21 00:00:00 EDT 2008,121630,38.689999,-121.46322 +21,6118 STONEHAND AVE,CITRUS HEIGHTS,95621,CA,3,2,1118,Residential,Wed May 21 00:00:00 EDT 2008,122000,38.707851,-121.320707 +22,4882 BANDALIN WAY,SACRAMENTO,95823,CA,4,2,1329,Residential,Wed May 21 00:00:00 EDT 2008,122682,38.468173,-121.444071 +23,7511 OAKVALE CT,NORTH HIGHLANDS,95660,CA,4,2,1240,Residential,Wed May 21 00:00:00 EDT 2008,123000,38.702792,-121.38221 +24,9 PASTURE CT,SACRAMENTO,95834,CA,3,2,1601,Residential,Wed May 21 00:00:00 EDT 2008,124100,38.628631,-121.488097 +25,3729 BAINBRIDGE DR,NORTH HIGHLANDS,95660,CA,3,2,901,Residential,Wed May 21 00:00:00 EDT 2008,125000,38.701499,-121.37622 +26,3828 BLACKFOOT WAY,ANTELOPE,95843,CA,3,2,1088,Residential,Wed May 21 00:00:00 EDT 2008,126640,38.70974,-121.37377 +27,4108 NORTON WAY,SACRAMENTO,95820,CA,3,1,963,Residential,Wed May 21 00:00:00 EDT 2008,127281,38.537526,-121.478315 +28,1469 JANRICK AVE,SACRAMENTO,95832,CA,3,2,1119,Residential,Wed May 21 00:00:00 EDT 2008,129000,38.476472,-121.501711 +29,9861 CULP WAY,SACRAMENTO,95827,CA,4,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,131200,38.558423,-121.327948 +30,7825 CREEK VALLEY CIR,SACRAMENTO,95828,CA,3,2,1248,Residential,Wed May 21 00:00:00 EDT 2008,132000,38.472122,-121.404199 +31,5201 LAGUNA OAKS DR Unit 140,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,133000,38.423251,-121.444489 +32,6768 MEDORA DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Wed May 21 00:00:00 EDT 2008,134555,38.691161,-121.37192 +33,3100 EXPLORER DR,SACRAMENTO,95827,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,136500,38.566663,-121.332644 +34,7944 DOMINION WAY,ELVERTA,95626,CA,3,2,1116,Residential,Wed May 21 00:00:00 EDT 2008,138750,38.713182,-121.411227 +35,5201 LAGUNA OAKS DR Unit 162,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,141000,38.423251,-121.444489 +36,3920 SHINING STAR DR,SACRAMENTO,95823,CA,3,2,1418,Residential,Wed May 21 00:00:00 EDT 2008,146250,38.48742,-121.462459 +37,5031 CORVAIR ST,NORTH HIGHLANDS,95660,CA,3,2,1082,Residential,Wed May 21 00:00:00 EDT 2008,147308,38.658246,-121.375469 +38,7661 NIXOS WAY,SACRAMENTO,95823,CA,4,2,1472,Residential,Wed May 21 00:00:00 EDT 2008,148750,38.479553,-121.463317 +39,7044 CARTHY WAY,SACRAMENTO,95828,CA,4,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,149593,38.49857,-121.420925 +40,2442 LARKSPUR LN,SACRAMENTO,95825,CA,1,1,760,Condo,Wed May 21 00:00:00 EDT 2008,150000,38.58514,-121.403736 +41,4800 WESTLAKE PKWY Unit 2109,SACRAMENTO,95835,CA,2,2,1304,Condo,Wed May 21 00:00:00 EDT 2008,152000,38.658812,-121.542345 +42,2178 63RD AVE,SACRAMENTO,95822,CA,3,2,1207,Residential,Wed May 21 00:00:00 EDT 2008,154000,38.493955,-121.48966 +43,8718 ELK WAY,ELK GROVE,95624,CA,3,2,1056,Residential,Wed May 21 00:00:00 EDT 2008,156896,38.41653,-121.379653 +44,5708 RIDGEPOINT DR,ANTELOPE,95843,CA,2,2,1043,Residential,Wed May 21 00:00:00 EDT 2008,161250,38.72027,-121.331555 +45,7315 KOALA CT,NORTH HIGHLANDS,95660,CA,4,2,1587,Residential,Wed May 21 00:00:00 EDT 2008,161500,38.699251,-121.371414 +46,2622 ERIN DR,SACRAMENTO,95833,CA,4,1,1120,Residential,Wed May 21 00:00:00 EDT 2008,164000,38.613765,-121.488694 +47,8421 SUNBLAZE WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Wed May 21 00:00:00 EDT 2008,165000,38.450543,-121.432538 +48,7420 ALIX PKWY,SACRAMENTO,95823,CA,4,1,1955,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.489405,-121.452811 +49,3820 NATOMA WAY,SACRAMENTO,95838,CA,4,2,1656,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.636748,-121.422159 +50,4431 GREEN TREE DR,SACRAMENTO,95823,CA,3,2,1477,Residential,Wed May 21 00:00:00 EDT 2008,168000,38.499954,-121.454469 +51,9417 SARA ST,ELK GROVE,95624,CA,3,2,1188,Residential,Wed May 21 00:00:00 EDT 2008,170000,38.415518,-121.370527 +52,8299 HALBRITE WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,173000,38.473814,-121.4 +53,7223 KALLIE KAY LN,SACRAMENTO,95823,CA,3,2,1463,Residential,Wed May 21 00:00:00 EDT 2008,174250,38.477553,-121.419463 +54,8156 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1714,Residential,Wed May 21 00:00:00 EDT 2008,174313,38.474853,-121.406326 +55,7957 VALLEY GREEN DR,SACRAMENTO,95823,CA,3,2,1185,Residential,Wed May 21 00:00:00 EDT 2008,178480,38.465184,-121.434925 +56,1122 WILD POPPY CT,GALT,95632,CA,3,2,1406,Residential,Wed May 21 00:00:00 EDT 2008,178760,38.287789,-121.294715 +57,4520 BOMARK WAY,SACRAMENTO,95842,CA,4,2,1943,Multi-Family,Wed May 21 00:00:00 EDT 2008,179580,38.665724,-121.358576 +58,9012 KIEFER BLVD,SACRAMENTO,95826,CA,3,2,1172,Residential,Wed May 21 00:00:00 EDT 2008,181000,38.547011,-121.366217 +59,5332 SANDSTONE ST,CARMICHAEL,95608,CA,3,1,1152,Residential,Wed May 21 00:00:00 EDT 2008,181872,38.662105,-121.313945 +60,5993 SAWYER CIR,SACRAMENTO,95823,CA,4,3,1851,Residential,Wed May 21 00:00:00 EDT 2008,182587,38.4473,-121.435218 +61,4844 CLYDEBANK WAY,ANTELOPE,95843,CA,3,2,1215,Residential,Wed May 21 00:00:00 EDT 2008,182716,38.714609,-121.347887 +62,306 CAMELLIA WAY,GALT,95632,CA,3,2,1130,Residential,Wed May 21 00:00:00 EDT 2008,182750,38.260443,-121.297864 +63,9021 MADISON AVE,ORANGEVALE,95662,CA,4,2,1603,Residential,Wed May 21 00:00:00 EDT 2008,183200,38.664186,-121.217511 +64,404 6TH ST,GALT,95632,CA,3,1,1479,Residential,Wed May 21 00:00:00 EDT 2008,188741,38.251808,-121.302493 +65,8317 SUNNY CREEK WAY,SACRAMENTO,95823,CA,3,2,1420,Residential,Wed May 21 00:00:00 EDT 2008,189000,38.459041,-121.424644 +66,2617 BASS CT,SACRAMENTO,95826,CA,3,2,1280,Residential,Wed May 21 00:00:00 EDT 2008,192067,38.560767,-121.377471 +67,7005 TIANT WAY,ELK GROVE,95758,CA,3,2,1586,Residential,Wed May 21 00:00:00 EDT 2008,194000,38.422811,-121.423285 +68,7895 CABER WAY,ANTELOPE,95843,CA,3,2,1362,Residential,Wed May 21 00:00:00 EDT 2008,194818,38.711279,-121.393449 +69,7624 BOGEY CT,SACRAMENTO,95828,CA,4,4,2162,Multi-Family,Wed May 21 00:00:00 EDT 2008,195000,38.48009,-121.415102 +70,6930 HAMPTON COVE WAY,SACRAMENTO,95823,CA,3,2,1266,Residential,Wed May 21 00:00:00 EDT 2008,198000,38.44004,-121.421012 +71,8708 MESA BROOK WAY,ELK GROVE,95624,CA,4,2,1715,Residential,Wed May 21 00:00:00 EDT 2008,199500,38.44076,-121.385792 +72,120 GRANT LN,FOLSOM,95630,CA,3,2,1820,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.687742,-121.17104 +73,5907 ELLERSLEE DR,CARMICHAEL,95608,CA,3,1,936,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.664468,-121.32683 +74,17 SERASPI CT,SACRAMENTO,95834,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,206000,38.631481,-121.50188 +75,170 PENHOW CIR,SACRAMENTO,95834,CA,3,2,1511,Residential,Wed May 21 00:00:00 EDT 2008,208000,38.653439,-121.535169 +76,8345 STAR THISTLE WAY,SACRAMENTO,95823,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,212864,38.454349,-121.439239 +77,9080 FRESCA WAY,ELK GROVE,95758,CA,4,2,1596,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.427818,-121.424026 +78,391 NATALINO CIR,SACRAMENTO,95835,CA,2,2,1341,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.67307,-121.506373 +79,8373 BLACKMAN WAY,ELK GROVE,95624,CA,5,3,2136,Residential,Wed May 21 00:00:00 EDT 2008,223058,38.435436,-121.394536 +80,9837 CORTE DORADO CT,ELK GROVE,95624,CA,4,2,1616,Residential,Wed May 21 00:00:00 EDT 2008,227887,38.400676,-121.38101 +81,5037 J PKWY,SACRAMENTO,95823,CA,3,2,1478,Residential,Wed May 21 00:00:00 EDT 2008,231477,38.491399,-121.443547 +82,10245 LOS PALOS DR,RANCHO CORDOVA,95670,CA,3,2,1287,Residential,Wed May 21 00:00:00 EDT 2008,234697,38.593699,-121.31089 +83,6613 NAVION DR,CITRUS HEIGHTS,95621,CA,4,2,1277,Residential,Wed May 21 00:00:00 EDT 2008,235000,38.702855,-121.31308 +84,2887 AZEVEDO DR,SACRAMENTO,95833,CA,4,2,1448,Residential,Wed May 21 00:00:00 EDT 2008,236000,38.618457,-121.509439 +85,9186 KINBRACE CT,SACRAMENTO,95829,CA,4,3,2235,Residential,Wed May 21 00:00:00 EDT 2008,236685,38.463355,-121.358936 +86,4243 MIDDLEBURY WAY,MATHER,95655,CA,3,2,2093,Residential,Wed May 21 00:00:00 EDT 2008,237800,38.547991,-121.280483 +87,1028 FALLON PLACE CT,RIO LINDA,95673,CA,3,2,1193,Residential,Wed May 21 00:00:00 EDT 2008,240122,38.693818,-121.441153 +88,4804 NORIKER DR,ELK GROVE,95757,CA,3,2,2163,Residential,Wed May 21 00:00:00 EDT 2008,242638,38.400974,-121.448424 +89,7713 HARVEST WOODS DR,SACRAMENTO,95828,CA,3,2,1269,Residential,Wed May 21 00:00:00 EDT 2008,244000,38.478198,-121.412911 +90,2866 KARITSA AVE,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,244500,38.626671,-121.52597 +91,6913 RICHEVE WAY,SACRAMENTO,95828,CA,3,1,958,Residential,Wed May 21 00:00:00 EDT 2008,244960,38.502519,-121.420769 +92,8636 TEGEA WAY,ELK GROVE,95624,CA,5,3,2508,Residential,Wed May 21 00:00:00 EDT 2008,245918,38.443832,-121.382087 +93,5448 MAIDSTONE WAY,CITRUS HEIGHTS,95621,CA,3,2,1305,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.665395,-121.293288 +94,18 OLLIE CT,ELK GROVE,95758,CA,4,2,1591,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.444909,-121.412345 +95,4010 ALEX LN,CARMICHAEL,95608,CA,2,2,1326,Condo,Wed May 21 00:00:00 EDT 2008,250134,38.637028,-121.312963 +96,4901 MILLNER WAY,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.38692,-121.447349 +97,4818 BRITTNEY LEE CT,SACRAMENTO,95841,CA,4,2,1921,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.653917,-121.34218 +98,5529 LAGUNA PARK DR,ELK GROVE,95758,CA,5,3,2790,Residential,Wed May 21 00:00:00 EDT 2008,258000,38.42568,-121.438062 +99,230 CANDELA CIR,SACRAMENTO,95835,CA,3,2,1541,Residential,Wed May 21 00:00:00 EDT 2008,260000,38.656251,-121.547572 +100,4900 71ST ST,SACRAMENTO,95820,CA,3,1,1018,Residential,Wed May 21 00:00:00 EDT 2008,260014,38.53151,-121.421089 +101,12209 CONSERVANCY WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,263500,38.553867,-121.219141 +102,4236 NATOMAS CENTRAL DR,SACRAMENTO,95834,CA,3,2,1672,Condo,Wed May 21 00:00:00 EDT 2008,265000,38.648879,-121.544023 +103,5615 LUPIN LN,POLLOCK PINES,95726,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,265000,38.708315,-120.603872 +104,5625 JAMES WAY,SACRAMENTO,95822,CA,3,1,975,Residential,Wed May 21 00:00:00 EDT 2008,271742,38.523947,-121.484946 +105,7842 LAHONTAN CT,SACRAMENTO,95829,CA,4,3,2372,Residential,Wed May 21 00:00:00 EDT 2008,273750,38.472976,-121.318633 +106,6850 21ST ST,SACRAMENTO,95822,CA,3,2,1446,Residential,Wed May 21 00:00:00 EDT 2008,275086,38.502194,-121.490795 +107,2900 BLAIR RD,POLLOCK PINES,95726,CA,2,2,1284,Residential,Wed May 21 00:00:00 EDT 2008,280908,38.75485,-120.60476 +108,2064 EXPEDITION WAY,SACRAMENTO,95832,CA,4,3,3009,Residential,Wed May 21 00:00:00 EDT 2008,280987,38.474099,-121.490711 +109,2912 NORCADE CIR,SACRAMENTO,95826,CA,8,4,3612,Multi-Family,Wed May 21 00:00:00 EDT 2008,282400,38.559505,-121.364839 +110,9507 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Wed May 21 00:00:00 EDT 2008,285000,38.410992,-121.479043 +111,8882 AUTUMN GOLD CT,ELK GROVE,95624,CA,4,2,1993,Residential,Wed May 21 00:00:00 EDT 2008,287417,38.4439,-121.37255 +112,5322 WHITE LOTUS WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Wed May 21 00:00:00 EDT 2008,291000,38.391538,-121.442596 +113,1838 CASTRO WAY,SACRAMENTO,95818,CA,2,1,1126,Residential,Wed May 21 00:00:00 EDT 2008,292024,38.556098,-121.490787 +114,10158 CRAWFORD WAY,SACRAMENTO,95827,CA,4,4,2213,Multi-Family,Wed May 21 00:00:00 EDT 2008,297000,38.5703,-121.315735 +115,7731 MASTERS ST,ELK GROVE,95758,CA,5,3,2494,Residential,Wed May 21 00:00:00 EDT 2008,297000,38.442031,-121.410873 +116,4925 PERCHERON DR,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,298000,38.40154,-121.447649 +117,2010 PROMONTORY POINT LN,GOLD RIVER,95670,CA,2,2,1520,Residential,Wed May 21 00:00:00 EDT 2008,299000,38.62869,-121.261669 +118,4727 SAVOIE WAY,SACRAMENTO,95835,CA,5,3,2800,Residential,Wed May 21 00:00:00 EDT 2008,304037,38.658182,-121.549521 +119,8664 MAGNOLIA HILL WAY,ELK GROVE,95624,CA,4,2,2309,Residential,Wed May 21 00:00:00 EDT 2008,311000,38.442352,-121.389675 +120,9570 HARVEST ROSE WAY,SACRAMENTO,95827,CA,5,3,2367,Residential,Wed May 21 00:00:00 EDT 2008,315537,38.555993,-121.340352 +121,4359 CREGAN CT,RANCHO CORDOVA,95742,CA,5,4,3516,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.545128,-121.224922 +122,5337 DUSTY ROSE WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.528575,-121.2286 +123,8929 SUTTERS GOLD DR,SACRAMENTO,95826,CA,4,3,1914,Residential,Wed May 21 00:00:00 EDT 2008,328360,38.550848,-121.370224 +124,8025 PEERLESS AVE,ORANGEVALE,95662,CA,2,1,1690,Residential,Wed May 21 00:00:00 EDT 2008,334150,38.71147,-121.216214 +125,4620 WELERA WAY,ELK GROVE,95757,CA,3,3,2725,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.398609,-121.450148 +126,9723 TERRAPIN CT,ELK GROVE,95757,CA,4,3,2354,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.403492,-121.430224 +127,2115 SMOKESTACK WAY,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,339500,38.602416,-121.542965 +128,100 REBECCA WAY,FOLSOM,95630,CA,3,2,2185,Residential,Wed May 21 00:00:00 EDT 2008,344250,38.68479,-121.149199 +129,9488 OAK VILLAGE WAY,ELK GROVE,95758,CA,4,2,1801,Residential,Wed May 21 00:00:00 EDT 2008,346210,38.41333,-121.404999 +130,8495 DARTFORD DR,SACRAMENTO,95823,CA,3,3,1961,Residential,Wed May 21 00:00:00 EDT 2008,347029,38.448507,-121.421346 +131,6708 PONTA DO SOL WAY,ELK GROVE,95757,CA,4,2,3134,Residential,Wed May 21 00:00:00 EDT 2008,347650,38.380635,-121.425538 +132,4143 SEA MEADOW WAY,SACRAMENTO,95823,CA,4,3,1915,Residential,Wed May 21 00:00:00 EDT 2008,351300,38.46534,-121.457519 +133,3020 RICHARDSON CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Wed May 21 00:00:00 EDT 2008,352000,38.691299,-121.081752 +134,8082 LINDA ISLE LN,SACRAMENTO,95831,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,370000,38.4772,-121.5215 +135,15300 MURIETA SOUTH PKWY,RANCHO MURIETA,95683,CA,4,3,2734,Residential,Wed May 21 00:00:00 EDT 2008,370500,38.4874,-121.075129 +136,11215 SHARRMONT CT,WILTON,95693,CA,3,2,2110,Residential,Wed May 21 00:00:00 EDT 2008,372000,38.35062,-121.228349 +137,7105 DANBERG WAY,ELK GROVE,95757,CA,5,3,3164,Residential,Wed May 21 00:00:00 EDT 2008,375000,38.4019,-121.420388 +138,5579 JERRY LITELL WAY,SACRAMENTO,95835,CA,5,3,3599,Residential,Wed May 21 00:00:00 EDT 2008,381300,38.677126,-121.500519 +139,1050 FOXHALL WAY,SACRAMENTO,95831,CA,4,2,2054,Residential,Wed May 21 00:00:00 EDT 2008,381942,38.509819,-121.519661 +140,7837 ABBINGTON WAY,ANTELOPE,95843,CA,4,2,1830,Residential,Wed May 21 00:00:00 EDT 2008,387731,38.709873,-121.339472 +141,1300 F ST,SACRAMENTO,95814,CA,3,3,1627,Residential,Wed May 21 00:00:00 EDT 2008,391000,38.58355,-121.487289 +142,6801 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,394470,38.408351,-121.423925 +143,1693 SHELTER COVE DR,GREENWOOD,95635,CA,3,2,2846,Residential,Wed May 21 00:00:00 EDT 2008,395000,38.945357,-120.908822 +144,9361 WADDELL LN,ELK GROVE,95624,CA,4,3,2359,Residential,Wed May 21 00:00:00 EDT 2008,400186,38.450829,-121.349928 +145,10 SEA FOAM CT,SACRAMENTO,95831,CA,3,3,2052,Residential,Wed May 21 00:00:00 EDT 2008,415000,38.487885,-121.545947 +146,6945 RIO TEJO WAY,ELK GROVE,95757,CA,5,3,3433,Residential,Wed May 21 00:00:00 EDT 2008,425000,38.385638,-121.422616 +147,4186 TULIP PARK WAY,RANCHO CORDOVA,95742,CA,5,3,3615,Residential,Wed May 21 00:00:00 EDT 2008,430000,38.550617,-121.23526 +148,9278 DAIRY CT,ELK GROVE,95624,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,445000,38.420338,-121.363757 +149,207 ORANGE BLOSSOM CIR Unit C,FOLSOM,95630,CA,5,3,2687,Residential,Wed May 21 00:00:00 EDT 2008,460000,38.646273,-121.175322 +150,6507 RIO DE ONAR WAY,ELK GROVE,95757,CA,4,3,2724,Residential,Wed May 21 00:00:00 EDT 2008,461000,38.38253,-121.428007 +151,7004 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,489332,38.406421,-121.422081 +152,6503 RIO DE ONAR WAY,ELK GROVE,95757,CA,5,4,3508,Residential,Wed May 21 00:00:00 EDT 2008,510000,38.38253,-121.428038 +153,2217 APPALOOSA CT,FOLSOM,95630,CA,4,2,2462,Residential,Wed May 21 00:00:00 EDT 2008,539000,38.655167,-121.090178 +154,868 HILDEBRAND CIR,FOLSOM,95630,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,585000,38.670947,-121.097727 +155,6030 PALERMO WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,600000,38.672761,-121.050378 +156,4070 REDONDO DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,606238,38.666807,-121.06483 +157,4004 CRESTA WAY,SACRAMENTO,95864,CA,3,3,2325,Residential,Wed May 21 00:00:00 EDT 2008,660000,38.591618,-121.370626 +158,315 JUMEL CT,EL DORADO HILLS,95762,CA,6,5,0,Residential,Wed May 21 00:00:00 EDT 2008,830000,38.669931,-121.05958 +159,6272 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Tue May 20 00:00:00 EDT 2008,69000,38.680923,-121.313945 +160,3432 Y ST,SACRAMENTO,95817,CA,4,2,1099,Residential,Tue May 20 00:00:00 EDT 2008,70000,38.554967,-121.468046 +161,9512 EMERALD PARK DR Unit 3,ELK GROVE,95624,CA,2,1,840,Condo,Tue May 20 00:00:00 EDT 2008,71000,38.40573,-121.369832 +162,3132 CLAY ST,SACRAMENTO,95815,CA,2,1,800,Residential,Tue May 20 00:00:00 EDT 2008,78000,38.624678,-121.439203 +163,5221 38TH AVE,SACRAMENTO,95824,CA,2,1,746,Residential,Tue May 20 00:00:00 EDT 2008,78400,38.518044,-121.443555 +164,6112 HERMOSA ST,SACRAMENTO,95822,CA,3,1,1067,Residential,Tue May 20 00:00:00 EDT 2008,80000,38.515125,-121.480416 +165,483 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1316,Residential,Tue May 20 00:00:00 EDT 2008,89000,38.623571,-121.454884 +166,671 SONOMA AVE,SACRAMENTO,95815,CA,3,1,1337,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.622953,-121.450142 +167,5980 79TH ST,SACRAMENTO,95824,CA,2,1,868,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.518373,-121.411779 +168,7607 ELDER CREEK RD,SACRAMENTO,95824,CA,3,1,924,Residential,Tue May 20 00:00:00 EDT 2008,92000,38.51055,-121.414768 +169,5028 14TH AVE,SACRAMENTO,95820,CA,2,1,610,Residential,Tue May 20 00:00:00 EDT 2008,93675,38.53942,-121.446894 +170,14788 NATCHEZ CT,RANCHO MURIETA,95683,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,97750,38.492287,-121.100032 +171,1069 ACACIA AVE,SACRAMENTO,95815,CA,2,1,1220,Residential,Tue May 20 00:00:00 EDT 2008,98000,38.621998,-121.442238 +172,5201 LAGUNA OAKS DR Unit 199,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,98000,38.423251,-121.444489 +173,3847 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1643,Residential,Tue May 20 00:00:00 EDT 2008,99000,38.588672,-121.373916 +174,5201 LAGUNA OAKS DR Unit 172,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,100000,38.423251,-121.444489 +175,1121 CREEKSIDE WAY,GALT,95632,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,106716,38.241514,-121.312199 +176,5307 CABRILLO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.52712,-121.435348 +177,3725 DON JULIO BLVD,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.67895,-121.379406 +178,4803 MCCLOUD DR,SACRAMENTO,95842,CA,2,2,967,Residential,Tue May 20 00:00:00 EDT 2008,114800,38.682279,-121.352817 +179,10542 SILVERWOOD WAY,RANCHO CORDOVA,95670,CA,3,1,1098,Residential,Tue May 20 00:00:00 EDT 2008,120108,38.587156,-121.295778 +180,6318 39TH AVE,SACRAMENTO,95824,CA,3,1,1050,Residential,Tue May 20 00:00:00 EDT 2008,123225,38.518942,-121.430158 +181,211 MCDANIEL CIR,SACRAMENTO,95838,CA,3,2,1110,Residential,Tue May 20 00:00:00 EDT 2008,123750,38.636565,-121.460383 +182,3800 LYNHURST WAY,NORTH HIGHLANDS,95660,CA,3,1,888,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.650445,-121.374861 +183,6139 HERMOSA ST,SACRAMENTO,95822,CA,3,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.514665,-121.480411 +184,2505 RHINE WAY,ELVERTA,95626,CA,3,2,1080,Residential,Tue May 20 00:00:00 EDT 2008,126000,38.717976,-121.407684 +185,3692 PAYNE WAY,NORTH HIGHLANDS,95660,CA,3,1,957,Residential,Tue May 20 00:00:00 EDT 2008,129000,38.66654,-121.378298 +186,604 MORRISON AVE,SACRAMENTO,95838,CA,2,1,952,Residential,Tue May 20 00:00:00 EDT 2008,134000,38.637678,-121.452476 +187,648 SANTA ANA AVE,SACRAMENTO,95838,CA,3,2,1211,Residential,Tue May 20 00:00:00 EDT 2008,135000,38.658478,-121.450409 +188,14 ASHLEY OAKS CT,SACRAMENTO,95815,CA,3,2,1264,Residential,Tue May 20 00:00:00 EDT 2008,135500,38.61779,-121.436765 +189,3174 NORTHVIEW DR,SACRAMENTO,95833,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.623817,-121.477827 +190,840 TRANQUIL LN,GALT,95632,CA,3,2,1266,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.270617,-121.299205 +191,5333 PRIMROSE DR Unit 19A,FAIR OAKS,95628,CA,2,2,994,Condo,Tue May 20 00:00:00 EDT 2008,142500,38.662785,-121.276272 +192,1035 MILLET WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Tue May 20 00:00:00 EDT 2008,143500,38.631056,-121.48508 +193,5201 LAGUNA OAKS DR Unit 126,ELK GROVE,95758,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,145000,38.423251,-121.444489 +194,3328 22ND AVE,SACRAMENTO,95820,CA,2,1,722,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.532727,-121.470783 +195,8001 HARTWICK WAY,SACRAMENTO,95828,CA,4,2,1448,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488623,-121.410582 +196,7812 HARTWICK WAY,SACRAMENTO,95828,CA,3,2,1188,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488611,-121.412808 +197,4207 PAINTER WAY,NORTH HIGHLANDS,95660,CA,4,2,1183,Residential,Tue May 20 00:00:00 EDT 2008,146000,38.692915,-121.367497 +198,7458 WINKLEY WAY,SACRAMENTO,95822,CA,3,1,1320,Residential,Tue May 20 00:00:00 EDT 2008,148500,38.487444,-121.491366 +199,8354 SUNRISE WOODS WAY,SACRAMENTO,95828,CA,3,2,1117,Residential,Tue May 20 00:00:00 EDT 2008,149000,38.473288,-121.3963 +200,8116 COTTONMILL CIR,SACRAMENTO,95828,CA,3,2,1364,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.482876,-121.405912 +201,4660 CEDARWOOD WAY,SACRAMENTO,95823,CA,4,2,1310,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.484834,-121.449316 +202,9254 HARROGATE WAY,ELK GROVE,95758,CA,2,2,1006,Residential,Tue May 20 00:00:00 EDT 2008,152000,38.420138,-121.412179 +203,6716 TAREYTON WAY,CITRUS HEIGHTS,95621,CA,3,2,1104,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.693724,-121.307169 +204,2028 ROBERT WAY,SACRAMENTO,95825,CA,2,1,810,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.609982,-121.419263 +205,9346 AIZENBERG CIR,ELK GROVE,95624,CA,2,2,1123,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.41875,-121.370019 +206,4524 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,1,904,Residential,Tue May 20 00:00:00 EDT 2008,157788,38.67273,-121.359645 +207,7140 BLUE SPRINGS WAY,CITRUS HEIGHTS,95621,CA,3,2,1156,Residential,Tue May 20 00:00:00 EDT 2008,161653,38.720653,-121.302241 +208,4631 11TH AVE,SACRAMENTO,95820,CA,2,1,1321,Residential,Tue May 20 00:00:00 EDT 2008,161829,38.541965,-121.452132 +209,3228 BAGGAN CT,ANTELOPE,95843,CA,3,2,1392,Residential,Tue May 20 00:00:00 EDT 2008,165000,38.715346,-121.388163 +210,8515 DARTFORD DR,SACRAMENTO,95823,CA,3,2,1439,Residential,Tue May 20 00:00:00 EDT 2008,168000,38.448288,-121.420719 +211,4500 TIPPWOOD WAY,SACRAMENTO,95842,CA,3,2,1159,Residential,Tue May 20 00:00:00 EDT 2008,169000,38.69951,-121.359989 +212,2460 EL ROCCO WAY,RANCHO CORDOVA,95670,CA,3,2,1671,Residential,Tue May 20 00:00:00 EDT 2008,175000,38.591477,-121.31534 +213,8244 SUNBIRD WAY,SACRAMENTO,95823,CA,3,2,1740,Residential,Tue May 20 00:00:00 EDT 2008,176250,38.457654,-121.431381 +214,5841 VALLEY VALE WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Tue May 20 00:00:00 EDT 2008,179000,38.461283,-121.434322 +215,7863 CRESTLEIGH CT,ANTELOPE,95843,CA,2,2,1007,Residential,Tue May 20 00:00:00 EDT 2008,180000,38.710889,-121.358876 +216,7129 SPRINGMONT DR,ELK GROVE,95758,CA,3,2,1716,Residential,Tue May 20 00:00:00 EDT 2008,180400,38.417649,-121.420294 +217,8284 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Tue May 20 00:00:00 EDT 2008,182000,38.417182,-121.397231 +218,2219 EL CANTO CIR,RANCHO CORDOVA,95670,CA,4,2,1829,Residential,Tue May 20 00:00:00 EDT 2008,184500,38.592383,-121.318669 +219,8907 GEMWOOD WAY,ELK GROVE,95758,CA,3,2,1555,Residential,Tue May 20 00:00:00 EDT 2008,185000,38.435471,-121.441173 +220,5925 MALEVILLE AVE,CARMICHAEL,95608,CA,4,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,189000,38.666564,-121.325717 +221,7031 CANEVALLEY CIR,CITRUS HEIGHTS,95621,CA,3,2,1137,Residential,Tue May 20 00:00:00 EDT 2008,194000,38.718693,-121.303619 +222,3949 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1174,Residential,Tue May 20 00:00:00 EDT 2008,195000,38.543697,-121.366683 +223,4437 MITCHUM CT,ANTELOPE,95843,CA,3,2,1393,Residential,Tue May 20 00:00:00 EDT 2008,200000,38.704407,-121.36113 +224,2778 KAWEAH CT,CAMERON PARK,95682,CA,3,1,0,Residential,Tue May 20 00:00:00 EDT 2008,201000,38.694052,-120.995589 +225,1636 ALLENWOOD CIR,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,202500,38.879192,-121.309477 +226,8151 QUAIL RIDGE CT,SACRAMENTO,95828,CA,3,2,1289,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.461296,-121.390858 +227,4899 WIND CREEK DR,SACRAMENTO,95838,CA,4,2,1799,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.655887,-121.446119 +228,2370 BIG CANYON CREEK RD,PLACERVILLE,95667,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.74458,-120.794254 +229,6049 HAMBURG WAY,SACRAMENTO,95823,CA,4,3,1953,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.443253,-121.431992 +230,4232 71ST ST,SACRAMENTO,95820,CA,2,1,723,Residential,Tue May 20 00:00:00 EDT 2008,207000,38.536741,-121.42115 +231,3361 BOW MAR CT,CAMERON PARK,95682,CA,2,2,0,Residential,Tue May 20 00:00:00 EDT 2008,210000,38.69437,-120.996602 +232,1889 COLD SPRINGS RD,PLACERVILLE,95667,CA,2,1,948,Residential,Tue May 20 00:00:00 EDT 2008,211500,38.739774,-120.860243 +233,5805 HIMALAYA WAY,CITRUS HEIGHTS,95621,CA,4,2,1578,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.696489,-121.328555 +234,7944 SYLVAN OAK WAY,CITRUS HEIGHTS,95610,CA,3,2,1317,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.710388,-121.261096 +235,3139 SPOONWOOD WAY Unit 1,SACRAMENTO,95833,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,215500,38.626582,-121.52151 +236,6217 LEOLA WAY,SACRAMENTO,95824,CA,3,1,1360,Residential,Tue May 20 00:00:00 EDT 2008,222381,38.513066,-121.451909 +237,2340 HURLEY WAY,SACRAMENTO,95825,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,225000,38.588816,-121.408549 +238,3035 BRUNNET LN,SACRAMENTO,95833,CA,3,2,1522,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.624762,-121.522775 +239,3025 EL PRADO WAY,SACRAMENTO,95825,CA,4,2,1751,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.606603,-121.394147 +240,9387 GRANITE FALLS CT,ELK GROVE,95624,CA,3,2,1465,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.419214,-121.348533 +241,9257 CALDERA WAY,SACRAMENTO,95826,CA,4,2,1605,Residential,Tue May 20 00:00:00 EDT 2008,228000,38.55821,-121.355022 +242,441 ARLINGDALE CIR,RIO LINDA,95673,CA,4,2,1475,Residential,Tue May 20 00:00:00 EDT 2008,229665,38.702893,-121.454949 +243,2284 LOS ROBLES RD,MEADOW VISTA,95722,CA,3,1,1216,Residential,Tue May 20 00:00:00 EDT 2008,230000,39.008159,-121.03623 +244,8164 CHENIN BLANC LN,FAIR OAKS,95628,CA,2,2,1315,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.665644,-121.259969 +245,4620 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.390557,-121.449805 +246,5340 BIRK WAY,SACRAMENTO,95835,CA,3,2,1776,Residential,Tue May 20 00:00:00 EDT 2008,234000,38.672495,-121.515251 +247,51 ANJOU CIR,SACRAMENTO,95835,CA,3,2,2187,Residential,Tue May 20 00:00:00 EDT 2008,235000,38.661658,-121.540633 +248,2125 22ND AVE,SACRAMENTO,95822,CA,3,1,1291,Residential,Tue May 20 00:00:00 EDT 2008,236250,38.534596,-121.493121 +249,611 BLOSSOM ROCK LN,FOLSOM,95630,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,240000,38.6457,-121.1197 +250,8830 ADUR RD,ELK GROVE,95624,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,242000,38.43742,-121.372876 +251,7344 BUTTERBALL WAY,SACRAMENTO,95842,CA,3,2,1503,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.699489,-121.361828 +252,8219 GWINHURST CIR,SACRAMENTO,95828,CA,4,3,2491,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.459711,-121.384283 +253,3240 S ST,SACRAMENTO,95816,CA,2,1,1269,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.562296,-121.467489 +254,221 PICASSO CIR,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.676658,-121.528128 +255,5706 GREENACRES WAY,ORANGEVALE,95662,CA,3,2,1176,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.669882,-121.213533 +256,6900 LONICERA DR,ORANGEVALE,95662,CA,4,2,1456,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.692199,-121.250975 +257,419 DAWNRIDGE RD,ROSEVILLE,95678,CA,3,2,1498,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.725283,-121.297953 +258,5312 MARBURY WAY,ANTELOPE,95843,CA,3,2,1574,Residential,Tue May 20 00:00:00 EDT 2008,255000,38.710221,-121.341651 +259,6344 BONHAM CIR,CITRUS HEIGHTS,95610,CA,5,4,2085,Multi-Family,Tue May 20 00:00:00 EDT 2008,256054,38.682358,-121.272876 +260,8207 YORKTON WAY,SACRAMENTO,95829,CA,3,2,2170,Residential,Tue May 20 00:00:00 EDT 2008,257729,38.45967,-121.360461 +261,7922 MANSELL WAY,ELK GROVE,95758,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,260000,38.409634,-121.410787 +262,5712 MELBURY CIR,ANTELOPE,95843,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,261000,38.705849,-121.334701 +263,632 NEWBRIDGE LN,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,261800,38.879084,-121.298586 +264,1570 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Tue May 20 00:00:00 EDT 2008,264469,38.482704,-121.500433 +265,8108 FILIFERA WAY,ANTELOPE,95843,CA,4,3,1768,Residential,Tue May 20 00:00:00 EDT 2008,265000,38.717042,-121.35468 +266,230 BANKSIDE WAY,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.676937,-121.529244 +267,5342 CALABRIA WAY,SACRAMENTO,95835,CA,4,3,2030,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.671807,-121.498274 +268,47 NAPONEE CT,SACRAMENTO,95835,CA,3,2,1531,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.665704,-121.529096 +269,4236 ADRIATIC SEA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.647961,-121.543162 +270,8864 REMBRANT CT,ELK GROVE,95624,CA,4,3,1653,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.435288,-121.375703 +271,9455 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.411522,-121.481406 +272,9720 LITTLE HARBOR WAY,ELK GROVE,95624,CA,4,3,2494,Residential,Tue May 20 00:00:00 EDT 2008,280000,38.404934,-121.352405 +273,8806 PHOENIX AVE,FAIR OAKS,95628,CA,3,2,1450,Residential,Tue May 20 00:00:00 EDT 2008,286013,38.660322,-121.230101 +274,3578 LOGGERHEAD WAY,SACRAMENTO,95834,CA,4,2,2169,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.633028,-121.526755 +275,1416 LOCKHART WAY,ROSEVILLE,95747,CA,3,2,1440,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.752399,-121.330328 +276,5413 BUENA VENTURA WAY,FAIR OAKS,95628,CA,3,2,1527,Residential,Tue May 20 00:00:00 EDT 2008,293993,38.664552,-121.255937 +277,37 WHITE BIRCH CT,ROSEVILLE,95678,CA,3,2,1401,Residential,Tue May 20 00:00:00 EDT 2008,294000,38.776327,-121.284514 +278,405 MARLIN SPIKE WAY,SACRAMENTO,95838,CA,3,2,1411,Residential,Tue May 20 00:00:00 EDT 2008,296769,38.65783,-121.456842 +279,1102 CHESLEY LN,LINCOLN,95648,CA,4,4,0,Residential,Tue May 20 00:00:00 EDT 2008,297500,38.864864,-121.313988 +280,11281 STANFORD COURT LN Unit 604,GOLD RIVER,95670,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,300000,38.625289,-121.260286 +281,7320 6TH ST,RIO LINDA,95673,CA,3,1,1284,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.700553,-121.452223 +282,993 MANTON CT,GALT,95632,CA,4,3,2307,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.272942,-121.289148 +283,4487 PANORAMA DR,PLACERVILLE,95667,CA,3,2,1329,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.694559,-120.848157 +284,5651 OVERLEAF WAY,SACRAMENTO,95835,CA,4,2,1910,Residential,Tue May 20 00:00:00 EDT 2008,300500,38.677454,-121.494791 +285,2015 PROMONTORY POINT LN,GOLD RIVER,95670,CA,3,2,1981,Residential,Tue May 20 00:00:00 EDT 2008,305000,38.628732,-121.261149 +286,3224 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,306500,38.772771,-121.364877 +287,15 VANESSA PL,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,312500,38.668692,-121.54549 +288,1312 RENISON LN,LINCOLN,95648,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,315000,38.866409,-121.308485 +289,8 RIVER RAFT CT,SACRAMENTO,95823,CA,4,2,2205,Residential,Tue May 20 00:00:00 EDT 2008,319789,38.447353,-121.434969 +290,2251 LAMPLIGHT LN,LINCOLN,95648,CA,2,2,1449,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.849924,-121.275729 +291,106 FARHAM DR,FOLSOM,95630,CA,3,2,1258,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.667834,-121.168578 +292,5405 NECTAR CIR,ELK GROVE,95757,CA,3,2,2575,Residential,Tue May 20 00:00:00 EDT 2008,331000,38.387014,-121.440967 +293,5411 10TH AVE,SACRAMENTO,95820,CA,2,1,539,Residential,Tue May 20 00:00:00 EDT 2008,334000,38.542727,-121.442449 +294,3512 RAINSONG CIR,RANCHO CORDOVA,95670,CA,4,3,2208,Residential,Tue May 20 00:00:00 EDT 2008,336000,38.573488,-121.282809 +295,1106 55TH ST,SACRAMENTO,95819,CA,3,1,1108,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.563805,-121.436395 +296,411 ILLSLEY WAY,FOLSOM,95630,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.652002,-121.129504 +297,796 BUTTERCUP CIR,GALT,95632,CA,4,2,2159,Residential,Tue May 20 00:00:00 EDT 2008,345000,38.279581,-121.300828 +298,1230 SANDRA CIR,PLACERVILLE,95667,CA,4,3,2295,Residential,Tue May 20 00:00:00 EDT 2008,350000,38.738141,-120.784145 +299,318 ANACAPA DR,ROSEVILLE,95678,CA,3,2,1838,Residential,Tue May 20 00:00:00 EDT 2008,356000,38.782094,-121.297133 +300,3975 SHINING STAR DR,SACRAMENTO,95823,CA,4,2,1900,Residential,Tue May 20 00:00:00 EDT 2008,361745,38.487409,-121.461413 +301,1620 BASLER ST,SACRAMENTO,95811,CA,4,2,1718,Residential,Tue May 20 00:00:00 EDT 2008,361948,38.591822,-121.478644 +302,9688 NATURE TRAIL WAY,ELK GROVE,95757,CA,5,3,3389,Residential,Tue May 20 00:00:00 EDT 2008,370000,38.405224,-121.479275 +303,5924 TANUS CIR,ROCKLIN,95677,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,380000,38.778691,-121.204292 +304,9629 CEDAR OAK WAY,ELK GROVE,95757,CA,5,4,3260,Residential,Tue May 20 00:00:00 EDT 2008,385000,38.405527,-121.431746 +305,3429 FERNBROOK CT,CAMERON PARK,95682,CA,3,2,2016,Residential,Tue May 20 00:00:00 EDT 2008,399000,38.664225,-121.007173 +306,2121 HANNAH WAY,ROCKLIN,95765,CA,4,2,2607,Residential,Tue May 20 00:00:00 EDT 2008,402000,38.805749,-121.280931 +307,10104 ANNIE ST,ELK GROVE,95757,CA,4,3,2724,Residential,Tue May 20 00:00:00 EDT 2008,406026,38.390465,-121.443479 +308,1092 MAUGHAM CT,GALT,95632,CA,5,4,3746,Residential,Tue May 20 00:00:00 EDT 2008,420000,38.271646,-121.286848 +309,5404 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.527502,-121.233492 +310,6306 CONEJO,RANCHO MURIETA,95683,CA,4,2,3192,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.512602,-121.087233 +311,14 CASA VATONI PL,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,433500,38.650221,-121.551704 +312,1456 EAGLESFIELD LN,LINCOLN,95648,CA,4,3,0,Residential,Tue May 20 00:00:00 EDT 2008,436746,38.857635,-121.311375 +313,4100 BOTHWELL CIR,EL DORADO HILLS,95762,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,438700,38.679136,-121.034329 +314,427 21ST ST,SACRAMENTO,95811,CA,2,1,1247,Residential,Tue May 20 00:00:00 EDT 2008,445000,38.582604,-121.47576 +315,1044 GALSTON DR,FOLSOM,95630,CA,4,2,2581,Residential,Tue May 20 00:00:00 EDT 2008,450000,38.676306,-121.09954 +316,4440 SYCAMORE AVE,SACRAMENTO,95841,CA,3,1,2068,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.646374,-121.353658 +317,1032 SOUZA DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.668239,-121.064437 +318,9760 LAZULITE CT,ELK GROVE,95624,CA,4,3,3992,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.403609,-121.335541 +319,241 LANFRANCO CIR,SACRAMENTO,95835,CA,4,4,3397,Residential,Tue May 20 00:00:00 EDT 2008,465000,38.665696,-121.549437 +320,5559 NORTHBOROUGH DR,SACRAMENTO,95835,CA,5,3,3881,Residential,Tue May 20 00:00:00 EDT 2008,471750,38.677225,-121.519687 +321,2125 BIG SKY DR,ROCKLIN,95765,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,480000,38.801637,-121.278798 +322,2109 HAMLET PL,CARMICHAEL,95608,CA,2,2,1598,Residential,Tue May 20 00:00:00 EDT 2008,484000,38.602754,-121.329326 +323,9970 STATE HIGHWAY 193,PLACERVILLE,95667,CA,4,3,1929,Residential,Tue May 20 00:00:00 EDT 2008,485000,38.787877,-120.816676 +324,2901 PINTAIL WAY,ELK GROVE,95757,CA,4,3,3070,Residential,Tue May 20 00:00:00 EDT 2008,495000,38.398488,-121.473424 +325,201 FIRESTONE DR,ROSEVILLE,95678,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,500500,38.770153,-121.300039 +326,1740 HIGH ST,AUBURN,95603,CA,3,3,0,Residential,Tue May 20 00:00:00 EDT 2008,504000,38.891935,-121.08434 +327,2733 DANA LOOP,EL DORADO HILLS,95762,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,541000,38.628459,-121.055078 +328,9741 SADDLEBRED CT,WILTON,95693,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,560000,38.408841,-121.198039 +329,7756 TIGERWOODS DR,SACRAMENTO,95829,CA,5,3,3984,Residential,Tue May 20 00:00:00 EDT 2008,572500,38.47643,-121.309243 +330,5709 RIVER OAK WAY,CARMICHAEL,95608,CA,4,2,2222,Residential,Tue May 20 00:00:00 EDT 2008,582000,38.602461,-121.330979 +331,2981 WRINGER DR,ROSEVILLE,95661,CA,4,3,3838,Residential,Tue May 20 00:00:00 EDT 2008,613401,38.735373,-121.227072 +332,8616 ROCKPORTE CT,ROSEVILLE,95747,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,614000,38.742118,-121.359909 +333,4128 HILL ST,FAIR OAKS,95628,CA,5,5,2846,Residential,Tue May 20 00:00:00 EDT 2008,680000,38.64167,-121.262099 +334,1409 47TH ST,SACRAMENTO,95819,CA,5,2,2484,Residential,Tue May 20 00:00:00 EDT 2008,699000,38.563244,-121.446876 +335,3935 EL MONTE DR,LOOMIS,95650,CA,4,4,1624,Residential,Tue May 20 00:00:00 EDT 2008,839000,38.813337,-121.133348 +336,5840 WALERGA RD,SACRAMENTO,95842,CA,2,1,840,Condo,Mon May 19 00:00:00 EDT 2008,40000,38.673678,-121.357471 +337,923 FULTON AVE,SACRAMENTO,95825,CA,1,1,484,Condo,Mon May 19 00:00:00 EDT 2008,48000,38.582279,-121.401482 +338,261 REDONDO AVE,SACRAMENTO,95815,CA,3,1,970,Residential,Mon May 19 00:00:00 EDT 2008,61500,38.620685,-121.460539 +339,4030 BROADWAY,SACRAMENTO,95817,CA,2,1,623,Residential,Mon May 19 00:00:00 EDT 2008,62050,38.546798,-121.460038 +340,3660 22ND AVE,SACRAMENTO,95820,CA,2,1,932,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.532718,-121.46747 +341,3924 HIGH ST,SACRAMENTO,95838,CA,2,1,796,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.638797,-121.435049 +342,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +343,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +344,5050 RHODE ISLAND DR Unit 4,SACRAMENTO,95841,CA,2,1,924,Condo,Mon May 19 00:00:00 EDT 2008,77000,38.658739,-121.333561 +345,4513 GREENHOLME DR,SACRAMENTO,95842,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,82732,38.669104,-121.359008 +346,3845 ELM ST,SACRAMENTO,95838,CA,3,1,1250,Residential,Mon May 19 00:00:00 EDT 2008,84000,38.637337,-121.432835 +347,3908 17TH AVE,SACRAMENTO,95820,CA,2,1,984,Residential,Mon May 19 00:00:00 EDT 2008,84675,38.53728,-121.463531 +348,7109 CHANDLER DR,SACRAMENTO,95828,CA,3,1,1013,Residential,Mon May 19 00:00:00 EDT 2008,85000,38.497237,-121.424187 +349,7541 SKELTON WAY,SACRAMENTO,95822,CA,3,1,1012,Residential,Mon May 19 00:00:00 EDT 2008,90000,38.484274,-121.488851 +350,9058 MONTOYA ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,90000,38.559144,-121.368387 +351,1016 CONGRESS AVE,SACRAMENTO,95838,CA,2,2,918,Residential,Mon May 19 00:00:00 EDT 2008,91000,38.630151,-121.442789 +352,540 MORRISON AVE,SACRAMENTO,95838,CA,3,1,1082,Residential,Mon May 19 00:00:00 EDT 2008,95000,38.637704,-121.453946 +353,5303 JERRETT WAY,SACRAMENTO,95842,CA,2,1,964,Residential,Mon May 19 00:00:00 EDT 2008,97500,38.663282,-121.359631 +354,2820 DEL PASO BLVD,SACRAMENTO,95815,CA,4,2,1404,Multi-Family,Mon May 19 00:00:00 EDT 2008,100000,38.617718,-121.440089 +355,3715 TALLYHO DR Unit 78HIGH,SACRAMENTO,95826,CA,1,1,625,Condo,Mon May 19 00:00:00 EDT 2008,100000,38.544627,-121.35796 +356,6013 ROWAN WAY,CITRUS HEIGHTS,95621,CA,2,1,888,Residential,Mon May 19 00:00:00 EDT 2008,101000,38.675893,-121.2963 +357,2987 PONDEROSA LN,SACRAMENTO,95815,CA,4,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,102750,38.622243,-121.457863 +358,3732 LANKERSHIM WAY,NORTH HIGHLANDS,95660,CA,3,1,1331,Residential,Mon May 19 00:00:00 EDT 2008,112500,38.68972,-121.378399 +359,2216 DUNLAP DR,SACRAMENTO,95821,CA,3,1,1014,Residential,Mon May 19 00:00:00 EDT 2008,113000,38.623738,-121.41305 +360,3503 21ST AVE,SACRAMENTO,95820,CA,4,2,1448,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.53361,-121.469308 +361,523 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,966,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.659414,-121.45408 +362,8101 PORT ROYALE WAY,SACRAMENTO,95823,CA,2,1,779,Residential,Mon May 19 00:00:00 EDT 2008,114750,38.463929,-121.438667 +363,8020 WALERGA RD,ANTELOPE,95843,CA,2,2,836,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.71607,-121.364468 +364,167 VALLEY OAK DR,ROSEVILLE,95678,CA,2,2,1100,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.732429,-121.288069 +365,7876 BURLINGTON WAY,SACRAMENTO,95832,CA,3,1,1174,Residential,Mon May 19 00:00:00 EDT 2008,116100,38.470093,-121.468347 +366,3726 JONKO AVE,NORTH HIGHLANDS,95660,CA,3,2,1207,Residential,Mon May 19 00:00:00 EDT 2008,119250,38.656131,-121.377265 +367,7342 GIGI PL,SACRAMENTO,95828,CA,4,4,1995,Multi-Family,Mon May 19 00:00:00 EDT 2008,120000,38.490704,-121.410176 +368,2610 PHYLLIS AVE,SACRAMENTO,95820,CA,2,1,804,Residential,Mon May 19 00:00:00 EDT 2008,120000,38.53105,-121.479574 +369,4200 COMMERCE WAY Unit 711,SACRAMENTO,95834,CA,2,2,958,Condo,Mon May 19 00:00:00 EDT 2008,120000,38.647523,-121.523217 +370,4621 COUNTRY SCENE WAY,SACRAMENTO,95823,CA,3,2,1366,Residential,Mon May 19 00:00:00 EDT 2008,120108,38.470187,-121.448149 +371,5380 VILLAGE WOOD DR,SACRAMENTO,95823,CA,2,2,901,Residential,Mon May 19 00:00:00 EDT 2008,121500,38.454949,-121.440578 +372,2621 EVERGREEN ST,SACRAMENTO,95815,CA,3,1,696,Residential,Mon May 19 00:00:00 EDT 2008,121725,38.613103,-121.444085 +373,201 CARLO CT,GALT,95632,CA,3,2,1080,Residential,Mon May 19 00:00:00 EDT 2008,122000,38.24227,-121.31032 +374,6743 21ST ST,SACRAMENTO,95822,CA,3,2,1104,Residential,Mon May 19 00:00:00 EDT 2008,123000,38.50372,-121.490657 +375,3128 VIA GRANDE,SACRAMENTO,95825,CA,2,1,972,Residential,Mon May 19 00:00:00 EDT 2008,125000,38.598321,-121.39161 +376,2847 BELGRADE WAY,SACRAMENTO,95833,CA,4,2,1390,Residential,Mon May 19 00:00:00 EDT 2008,125573,38.617173,-121.482541 +377,7741 MILLDALE CIR,ELVERTA,95626,CA,4,2,1354,Residential,Mon May 19 00:00:00 EDT 2008,126714,38.705834,-121.43919 +378,9013 CASALS ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,126960,38.557045,-121.37167 +379,227 MAHAN CT Unit 1,ROSEVILLE,95678,CA,2,1,780,Condo,Mon May 19 00:00:00 EDT 2008,127000,38.749723,-121.27008 +380,7349 FLETCHER FARM DR,SACRAMENTO,95828,CA,4,2,1587,Residential,Mon May 19 00:00:00 EDT 2008,127500,38.49069,-121.382619 +381,7226 LARCHMONT DR,NORTH HIGHLANDS,95660,CA,3,2,1209,Residential,Mon May 19 00:00:00 EDT 2008,130000,38.699269,-121.376334 +382,4114 35TH AVE,SACRAMENTO,95824,CA,2,1,1139,Residential,Mon May 19 00:00:00 EDT 2008,133105,38.520941,-121.459355 +383,617 M ST,RIO LINDA,95673,CA,2,2,1690,Residential,Mon May 19 00:00:00 EDT 2008,136500,38.691104,-121.451832 +384,7032 FAIR OAKS BLVD,CARMICHAEL,95608,CA,3,2,1245,Condo,Mon May 19 00:00:00 EDT 2008,139500,38.628563,-121.328297 +385,2421 SANTINA WAY,ELVERTA,95626,CA,3,2,1416,Residential,Mon May 19 00:00:00 EDT 2008,140000,38.71865,-121.407763 +386,2368 CRAIG AVE,SACRAMENTO,95832,CA,3,2,1300,Residential,Mon May 19 00:00:00 EDT 2008,140800,38.47807,-121.48114 +387,2123 AMANDA WAY,SACRAMENTO,95822,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,145000,38.484896,-121.486948 +388,7620 DARLA WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Mon May 19 00:00:00 EDT 2008,147000,38.478502,-121.403517 +389,8344 FIELDPOPPY CIR,SACRAMENTO,95828,CA,3,2,1407,Residential,Mon May 19 00:00:00 EDT 2008,149600,38.479083,-121.400702 +390,3624 20TH AVE,SACRAMENTO,95820,CA,5,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.534508,-121.467907 +391,10001 WOODCREEK OAKS BLVD Unit 1415,ROSEVILLE,95747,CA,2,2,0,Condo,Mon May 19 00:00:00 EDT 2008,150000,38.795529,-121.328819 +392,2848 PROVO WAY,SACRAMENTO,95822,CA,3,2,1646,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.489759,-121.474754 +393,6045 EHRHARDT AVE,SACRAMENTO,95823,CA,3,2,1676,Residential,Mon May 19 00:00:00 EDT 2008,155000,38.457157,-121.433065 +394,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155435,38.646677,-121.437573 +395,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155500,38.646677,-121.437573 +396,6000 BIRCHGLADE WAY,CITRUS HEIGHTS,95621,CA,4,2,1351,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.70166,-121.323249 +397,7204 THOMAS DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.697898,-121.377687 +398,8363 LANGTREE WAY,SACRAMENTO,95823,CA,3,2,1452,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.45356,-121.435959 +399,1675 VERNON ST Unit 8,ROSEVILLE,95678,CA,2,1,990,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.734136,-121.299639 +400,6632 IBEX WOODS CT,CITRUS HEIGHTS,95621,CA,2,2,1162,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.720868,-121.309855 +401,117 EVCAR WAY,RIO LINDA,95673,CA,3,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.687659,-121.4633 +402,6485 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,165000,38.42465,-121.430137 +403,746 MOOSE CREEK WAY,GALT,95632,CA,3,2,1100,Residential,Mon May 19 00:00:00 EDT 2008,167000,38.283085,-121.302071 +404,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +405,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +406,5217 ARGO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Mon May 19 00:00:00 EDT 2008,168000,38.52774,-121.433669 +407,7108 HEATHER TREE DR,SACRAMENTO,95842,CA,3,2,1159,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.695677,-121.36022 +408,2956 DAVENPORT WAY,SACRAMENTO,95833,CA,4,2,1917,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.620687,-121.482619 +409,10062 LINCOLN VILLAGE DR,SACRAMENTO,95827,CA,3,2,1520,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.564,-121.320023 +410,332 PALIN AVE,GALT,95632,CA,3,2,1204,Residential,Mon May 19 00:00:00 EDT 2008,174000,38.260467,-121.302636 +411,4649 FREEWAY CIR,SACRAMENTO,95841,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,178000,38.658734,-121.357196 +412,8593 DERLIN WAY,SACRAMENTO,95823,CA,3,2,1436,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.447585,-121.426627 +413,9273 PREMIER WAY,SACRAMENTO,95826,CA,3,2,1451,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.55992,-121.352539 +414,8032 DUSENBERG CT,SACRAMENTO,95828,CA,4,2,1638,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.466499,-121.381119 +415,7110 STELLA LN Unit 15,CARMICHAEL,95608,CA,2,2,1000,Condo,Mon May 19 00:00:00 EDT 2008,182000,38.637396,-121.300055 +416,1786 PIEDMONT WAY,ROSEVILLE,95661,CA,3,1,1152,Residential,Mon May 19 00:00:00 EDT 2008,188325,38.72748,-121.256537 +417,1347 HIDALGO CIR,ROSEVILLE,95747,CA,3,2,1154,Residential,Mon May 19 00:00:00 EDT 2008,191500,38.747878,-121.311279 +418,212 CAPPUCINO WAY,SACRAMENTO,95838,CA,3,2,1353,Residential,Mon May 19 00:00:00 EDT 2008,192000,38.657811,-121.465327 +419,5938 WOODBRIAR WAY,CITRUS HEIGHTS,95621,CA,3,2,1329,Residential,Mon May 19 00:00:00 EDT 2008,192700,38.706152,-121.325399 +420,3801 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1356,Residential,Mon May 19 00:00:00 EDT 2008,195000,38.544368,-121.369979 +421,508 SAMUEL WAY,SACRAMENTO,95838,CA,3,2,1505,Residential,Mon May 19 00:00:00 EDT 2008,197654,38.645689,-121.452766 +422,6128 CARL SANDBURG CIR,SACRAMENTO,95842,CA,3,1,1009,Residential,Mon May 19 00:00:00 EDT 2008,198000,38.681541,-121.355616 +423,1 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Mon May 19 00:00:00 EDT 2008,200345,38.46452,-121.427606 +424,909 SINGINGWOOD RD,SACRAMENTO,95864,CA,2,1,930,Residential,Mon May 19 00:00:00 EDT 2008,203000,38.581471,-121.38839 +425,6671 FOXWOOD CT,SACRAMENTO,95841,CA,4,2,1766,Residential,Mon May 19 00:00:00 EDT 2008,207000,38.687943,-121.328883 +426,8165 AYN RAND CT,SACRAMENTO,95828,CA,4,3,1940,Residential,Mon May 19 00:00:00 EDT 2008,208000,38.468639,-121.403265 +427,9474 VILLAGE TREE DR,ELK GROVE,95758,CA,4,2,1776,Residential,Mon May 19 00:00:00 EDT 2008,210000,38.413947,-121.408276 +428,7213 CALVIN DR,CITRUS HEIGHTS,95621,CA,3,1,1258,Residential,Mon May 19 00:00:00 EDT 2008,212000,38.698154,-121.298375 +429,8167 DERBY PARK CT,SACRAMENTO,95828,CA,4,2,1872,Residential,Mon May 19 00:00:00 EDT 2008,213675,38.460492,-121.373379 +430,6344 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,213697,38.423963,-121.428875 +431,2945 RED HAWK WAY,SACRAMENTO,95833,CA,4,2,1856,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.619675,-121.496903 +432,3228 I ST,SACRAMENTO,95816,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.573844,-121.462839 +433,308 ATKINSON ST,ROSEVILLE,95678,CA,3,1,998,Residential,Mon May 19 00:00:00 EDT 2008,215100,38.746794,-121.29971 +434,624 HOVEY WAY,ROSEVILLE,95678,CA,3,2,1758,Residential,Mon May 19 00:00:00 EDT 2008,217500,38.756149,-121.306479 +435,110 COPPER LEAF WAY,SACRAMENTO,95838,CA,3,2,2142,Residential,Mon May 19 00:00:00 EDT 2008,218000,38.658466,-121.460661 +436,7535 ALMA VISTA WAY,SACRAMENTO,95831,CA,2,1,950,Residential,Mon May 19 00:00:00 EDT 2008,220000,38.48403,-121.507641 +437,7423 WILSALL CT,ELK GROVE,95758,CA,4,3,1739,Residential,Mon May 19 00:00:00 EDT 2008,221000,38.417026,-121.416821 +438,8629 VIA ALTA WAY,ELK GROVE,95624,CA,3,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,222900,38.398245,-121.380615 +439,3318 DAVIDSON DR,ANTELOPE,95843,CA,3,1,988,Residential,Mon May 19 00:00:00 EDT 2008,223139,38.705753,-121.388917 +440,913 COBDEN CT,GALT,95632,CA,4,2,1555,Residential,Mon May 19 00:00:00 EDT 2008,225500,38.282001,-121.295902 +441,4419 79TH ST,SACRAMENTO,95820,CA,3,2,1212,Residential,Mon May 19 00:00:00 EDT 2008,228327,38.534827,-121.412545 +442,3012 SPOONWOOD WAY,SACRAMENTO,95833,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.62478,-121.523474 +443,8728 CRYSTAL RIVER WAY,SACRAMENTO,95828,CA,3,2,1302,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.47547,-121.380055 +444,4709 AMBER LN Unit 1,SACRAMENTO,95841,CA,2,1,756,Condo,Mon May 19 00:00:00 EDT 2008,230522,38.657789,-121.354994 +445,4508 OLD DAIRY DR,ANTELOPE,95843,CA,4,3,2026,Residential,Mon May 19 00:00:00 EDT 2008,231200,38.72286,-121.358939 +446,312 RIVER ISLE WAY,SACRAMENTO,95831,CA,3,2,1375,Residential,Mon May 19 00:00:00 EDT 2008,232000,38.49026,-121.550527 +447,301 OLIVADI WAY,SACRAMENTO,95834,CA,2,2,1250,Condo,Mon May 19 00:00:00 EDT 2008,232500,38.644406,-121.549049 +448,5636 25TH ST,SACRAMENTO,95822,CA,3,1,1058,Residential,Mon May 19 00:00:00 EDT 2008,233641,38.523828,-121.481139 +449,8721 SPRUCE RIDGE WAY,ANTELOPE,95843,CA,3,2,1187,Residential,Mon May 19 00:00:00 EDT 2008,234000,38.727657,-121.391028 +450,7461 WINDBRIDGE DR,SACRAMENTO,95831,CA,2,2,1324,Residential,Mon May 19 00:00:00 EDT 2008,234500,38.48797,-121.530229 +451,8101 LEMON COVE CT,SACRAMENTO,95828,CA,4,3,1936,Residential,Mon May 19 00:00:00 EDT 2008,235000,38.462981,-121.408288 +452,10949 SCOTSMAN WAY,RANCHO CORDOVA,95670,CA,5,4,2382,Multi-Family,Mon May 19 00:00:00 EDT 2008,236000,38.603686,-121.277844 +453,617 WILLOW CREEK DR,FOLSOM,95630,CA,3,2,1427,Residential,Mon May 19 00:00:00 EDT 2008,236073,38.679626,-121.142609 +454,3301 PARK DR Unit 1914,SACRAMENTO,95835,CA,3,2,1678,Condo,Mon May 19 00:00:00 EDT 2008,238000,38.665296,-121.531993 +455,709 CIMMARON CT,GALT,95632,CA,4,2,1798,Residential,Mon May 19 00:00:00 EDT 2008,238861,38.277177,-121.303747 +456,3305 RIO ROCA CT,ANTELOPE,95843,CA,4,3,2652,Residential,Mon May 19 00:00:00 EDT 2008,239700,38.725079,-121.387698 +457,9080 BEDROCK CT,SACRAMENTO,95829,CA,4,2,1816,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.456939,-121.362965 +458,100 TOURMALINE CIR,SACRAMENTO,95834,CA,5,3,3076,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.63437,-121.510779 +459,6411 RED BIRCH WAY,ELK GROVE,95758,CA,4,2,1844,Residential,Mon May 19 00:00:00 EDT 2008,241000,38.43461,-121.429316 +460,4867 LAGUNA DR,SACRAMENTO,95823,CA,3,2,1306,Residential,Mon May 19 00:00:00 EDT 2008,245000,38.46179,-121.445371 +461,3662 RIVER DR,SACRAMENTO,95833,CA,4,3,2447,Residential,Mon May 19 00:00:00 EDT 2008,246000,38.604969,-121.54255 +462,6943 WOLFGRAM WAY,SACRAMENTO,95828,CA,4,2,1176,Residential,Mon May 19 00:00:00 EDT 2008,247234,38.489215,-121.419546 +463,77 RINETTI WAY,RIO LINDA,95673,CA,4,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,247480,38.687021,-121.463151 +464,1316 I ST,RIO LINDA,95673,CA,3,1,1160,Residential,Mon May 19 00:00:00 EDT 2008,249862,38.683674,-121.435204 +465,2130 CATHERWOOD WAY,SACRAMENTO,95835,CA,3,2,1424,Residential,Mon May 19 00:00:00 EDT 2008,251000,38.675506,-121.510987 +466,8304 JUGLANS DR,ORANGEVALE,95662,CA,4,2,1574,Residential,Mon May 19 00:00:00 EDT 2008,252155,38.691829,-121.249033 +467,5308 MARBURY WAY,ANTELOPE,95843,CA,3,2,1830,Residential,Mon May 19 00:00:00 EDT 2008,254172,38.710221,-121.341707 +468,9182 LAKEMONT DR,ELK GROVE,95624,CA,4,2,1724,Residential,Mon May 19 00:00:00 EDT 2008,258000,38.451353,-121.358776 +469,2231 COUNTRY VILLA CT,AUBURN,95603,CA,2,2,1255,Condo,Mon May 19 00:00:00 EDT 2008,260000,38.931671,-121.097862 +470,8491 CRYSTAL WALK CIR,ELK GROVE,95758,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.416916,-121.407554 +471,361 MAHONIA CIR,SACRAMENTO,95835,CA,4,3,2175,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.676172,-121.509761 +472,3427 LA CADENA WAY,SACRAMENTO,95835,CA,4,2,1904,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.681194,-121.537351 +473,955 BIG SUR CT,EL DORADO HILLS,95762,CA,4,2,1808,Residential,Mon May 19 00:00:00 EDT 2008,262500,38.664347,-121.076529 +474,11826 DIONYSUS WAY,RANCHO CORDOVA,95742,CA,4,2,2711,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.551046,-121.239411 +475,5847 DEL CAMPO LN,CARMICHAEL,95608,CA,3,1,1713,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.671995,-121.324339 +476,5635 FOXVIEW WAY,ELK GROVE,95757,CA,3,2,1457,Residential,Mon May 19 00:00:00 EDT 2008,270000,38.395256,-121.438249 +477,10372 VIA CINTA CT,ELK GROVE,95757,CA,4,3,2724,Residential,Mon May 19 00:00:00 EDT 2008,274425,38.380089,-121.428186 +478,6286 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,274500,38.805036,-121.293608 +479,7744 SOUTHBREEZE DR,SACRAMENTO,95828,CA,3,2,1468,Residential,Mon May 19 00:00:00 EDT 2008,275336,38.476932,-121.378349 +480,2242 ABLE WAY,SACRAMENTO,95835,CA,4,3,2550,Residential,Mon May 19 00:00:00 EDT 2008,277980,38.666074,-121.509743 +481,1042 STARBROOK DR,GALT,95632,CA,4,2,1928,Residential,Mon May 19 00:00:00 EDT 2008,280000,38.285611,-121.293063 +482,1219 G ST,SACRAMENTO,95814,CA,3,3,1922,Residential,Mon May 19 00:00:00 EDT 2008,284686,38.582818,-121.489096 +483,6220 OPUS CT,CITRUS HEIGHTS,95621,CA,3,2,1343,Residential,Mon May 19 00:00:00 EDT 2008,284893,38.715853,-121.317095 +484,5419 HAVENHURST CIR,ROCKLIN,95677,CA,3,2,1510,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.786746,-121.209957 +485,220 OLD AIRPORT RD,AUBURN,95603,CA,2,2,960,Multi-Family,Mon May 19 00:00:00 EDT 2008,285000,38.939802,-121.054575 +486,4622 MEYER WAY,CARMICHAEL,95608,CA,4,2,1559,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.64913,-121.310667 +487,4885 SUMMIT VIEW DR,EL DORADO,95623,CA,3,2,1624,Residential,Mon May 19 00:00:00 EDT 2008,289000,38.673285,-120.879176 +488,26 JEANROSS CT,SACRAMENTO,95832,CA,5,3,2992,Residential,Mon May 19 00:00:00 EDT 2008,295000,38.473162,-121.491085 +489,4800 MAPLEPLAIN AVE,ELK GROVE,95758,CA,4,2,2109,Residential,Mon May 19 00:00:00 EDT 2008,296000,38.432848,-121.449237 +490,10629 BASIE WAY,RANCHO CORDOVA,95670,CA,4,2,1524,Residential,Mon May 19 00:00:00 EDT 2008,296056,38.579,-121.292627 +491,8612 WILLOW GROVE WAY,SACRAMENTO,95828,CA,3,2,1248,Residential,Mon May 19 00:00:00 EDT 2008,297359,38.464994,-121.386962 +492,62 DE FER CIR,SACRAMENTO,95823,CA,4,2,1876,Residential,Mon May 19 00:00:00 EDT 2008,299940,38.49254,-121.463316 +493,2513 OLD KENMARE RD,LINCOLN,95648,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,304000,38.847396,-121.259586 +494,3253 ABOTO WAY,RANCHO CORDOVA,95670,CA,4,3,1851,Residential,Mon May 19 00:00:00 EDT 2008,305000,38.57727,-121.285591 +495,3072 VILLAGE PLAZA DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,307000,38.773094,-121.365905 +496,251 CHANGO CIR,SACRAMENTO,95835,CA,4,2,2218,Residential,Mon May 19 00:00:00 EDT 2008,311328,38.68237,-121.539147 +497,8205 WEYBURN CT,SACRAMENTO,95828,CA,3,2,1394,Residential,Mon May 19 00:00:00 EDT 2008,313138,38.47316,-121.403893 +498,8788 LA MARGARITA WAY,SACRAMENTO,95828,CA,3,2,1410,Residential,Mon May 19 00:00:00 EDT 2008,316630,38.468185,-121.375694 +499,5912 DEEPDALE WAY,ELK GROVE,95758,CA,5,3,3468,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.439565,-121.436606 +500,4712 PISMO BEACH DR,ANTELOPE,95843,CA,5,3,2346,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.707705,-121.354153 +501,4741 PACIFIC PARK DR,ANTELOPE,95843,CA,5,3,2347,Residential,Mon May 19 00:00:00 EDT 2008,325000,38.709299,-121.353056 +502,310 GROTH CIR,SACRAMENTO,95834,CA,4,2,1659,Residential,Mon May 19 00:00:00 EDT 2008,328578,38.638764,-121.531827 +503,6121 WILD FOX CT,ELK GROVE,95757,CA,3,3,2442,Residential,Mon May 19 00:00:00 EDT 2008,331000,38.406758,-121.431669 +504,12241 CANYONLANDS DR,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,331500,38.557293,-121.217611 +505,29 COOL FOUNTAIN CT,SACRAMENTO,95833,CA,4,2,2155,Residential,Mon May 19 00:00:00 EDT 2008,340000,38.606906,-121.54132 +506,907 RIO ROBLES AVE,SACRAMENTO,95838,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,344755,38.664765,-121.445006 +507,8909 BILLFISH WAY,SACRAMENTO,95828,CA,3,2,1810,Residential,Mon May 19 00:00:00 EDT 2008,345746,38.475433,-121.372584 +508,6232 GUS WAY,ELK GROVE,95757,CA,4,2,2789,Residential,Mon May 19 00:00:00 EDT 2008,351000,38.388129,-121.43117 +509,200 OAKWILDE ST,GALT,95632,CA,4,2,1606,Residential,Mon May 19 00:00:00 EDT 2008,353767,38.2535,-121.31812 +510,1033 PARK STREAM DR,GALT,95632,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,355000,38.287785,-121.289903 +511,200 ALLAIRE CIR,SACRAMENTO,95835,CA,4,2,2166,Residential,Mon May 19 00:00:00 EDT 2008,356035,38.68318,-121.53484 +512,1322 SUTTER WALK,SACRAMENTO,95816,CA,0,0,0,Condo,Mon May 19 00:00:00 EDT 2008,360000,38.53805,-121.5047 +513,5479 NICKMAN WAY,SACRAMENTO,95835,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,360552,38.672966,-121.502748 +514,2103 BURBERRY WAY,SACRAMENTO,95835,CA,3,2,1800,Residential,Mon May 19 00:00:00 EDT 2008,362305,38.67342,-121.508542 +515,2450 SAN JOSE WAY,SACRAMENTO,95817,CA,3,1,1683,Residential,Mon May 19 00:00:00 EDT 2008,365000,38.553596,-121.459483 +516,7641 ROSEHALL DR,ROSEVILLE,95678,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,367554,38.791617,-121.286147 +517,1336 LAYSAN TEAL DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,368500,38.796121,-121.319963 +518,2802 BLACK OAK DR,ROCKLIN,95765,CA,2,2,1596,Residential,Mon May 19 00:00:00 EDT 2008,370000,38.837006,-121.232024 +519,2113 FALL TRAIL CT,PLACERVILLE,95667,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,371086,38.733155,-120.748039 +520,10112 LAMBEAU CT,ELK GROVE,95757,CA,3,2,1179,Residential,Mon May 19 00:00:00 EDT 2008,378000,38.390328,-121.448022 +521,6313 CASTRO VERDE WAY,ELK GROVE,95757,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,383000,38.381102,-121.42901 +522,3622 CURTIS DR,SACRAMENTO,95818,CA,3,1,1639,Residential,Mon May 19 00:00:00 EDT 2008,388000,38.541735,-121.480098 +523,11817 OPAL RIDGE WAY,RANCHO CORDOVA,95742,CA,5,3,3281,Residential,Mon May 19 00:00:00 EDT 2008,395100,38.551083,-121.237476 +524,170 LAGOMARSINO WAY,SACRAMENTO,95819,CA,3,2,1697,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.574894,-121.435806 +525,2743 DEAKIN PL,EL DORADO HILLS,95762,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.69288,-121.073551 +526,3361 ALDER CANYON WAY,ANTELOPE,95843,CA,4,3,2085,Residential,Mon May 19 00:00:00 EDT 2008,408431,38.727649,-121.385656 +527,2148 RANCH VIEW DR,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,413000,38.837455,-121.289337 +528,398 LINDLEY DR,SACRAMENTO,95815,CA,4,2,1744,Multi-Family,Mon May 19 00:00:00 EDT 2008,416767,38.622359,-121.457582 +529,3013 BRIDLEWOOD DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,420000,38.675519,-121.015862 +530,169 BAURER CIR,FOLSOM,95630,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.66695,-121.120729 +531,2809 LOON CT,CAMERON PARK,95682,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.687072,-121.004729 +532,1315 KONDOS AVE,SACRAMENTO,95814,CA,2,3,1788,Residential,Mon May 19 00:00:00 EDT 2008,427500,38.571943,-121.492106 +533,4966 CHARTER RD,ROCKLIN,95765,CA,3,2,1691,Residential,Mon May 19 00:00:00 EDT 2008,430922,38.82553,-121.254698 +534,9516 LAGUNA LAKE WAY,ELK GROVE,95758,CA,4,2,2002,Residential,Mon May 19 00:00:00 EDT 2008,445000,38.411258,-121.431348 +535,5201 BLOSSOM RANCH DR,ELK GROVE,95757,CA,4,4,4303,Residential,Mon May 19 00:00:00 EDT 2008,450000,38.399436,-121.444041 +536,3027 PALMATE WAY,SACRAMENTO,95834,CA,5,3,4246,Residential,Mon May 19 00:00:00 EDT 2008,452000,38.628955,-121.529269 +537,500 WINCHESTER CT,ROSEVILLE,95661,CA,3,2,2274,Residential,Mon May 19 00:00:00 EDT 2008,470000,38.73988,-121.248929 +538,5746 GELSTON WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,471000,38.677015,-121.034083 +539,6935 ELM TREE LN,ORANGEVALE,95662,CA,4,4,3056,Residential,Mon May 19 00:00:00 EDT 2008,475000,38.693041,-121.23294 +540,9605 GOLF COURSE LN,ELK GROVE,95758,CA,3,3,2503,Residential,Mon May 19 00:00:00 EDT 2008,484500,38.409689,-121.446059 +541,719 BAYWOOD CT,EL DORADO HILLS,95762,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,487500,38.647598,-121.077801 +542,5954 TANUS CIR,ROCKLIN,95677,CA,3,3,0,Residential,Mon May 19 00:00:00 EDT 2008,488750,38.777585,-121.2036 +543,100 CHELSEA CT,FOLSOM,95630,CA,3,2,1905,Residential,Mon May 19 00:00:00 EDT 2008,500000,38.69435,-121.177259 +544,1500 ORANGE HILL LN,PENRYN,95663,CA,3,2,1320,Residential,Mon May 19 00:00:00 EDT 2008,506688,38.862708,-121.162092 +545,408 KIRKWOOD CT,LINCOLN,95648,CA,2,2,0,Residential,Mon May 19 00:00:00 EDT 2008,512000,38.861615,-121.26869 +546,1732 TUSCAN GROVE CIR,ROSEVILLE,95747,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,520000,38.796683,-121.342555 +547,2049 EMPIRE MINE CIR,GOLD RIVER,95670,CA,4,2,3037,Residential,Mon May 19 00:00:00 EDT 2008,528000,38.629299,-121.249021 +548,9360 MAGOS RD,WILTON,95693,CA,5,2,3741,Residential,Mon May 19 00:00:00 EDT 2008,579093,38.416809,-121.240628 +549,104 CATLIN CT,FOLSOM,95630,CA,4,3,2660,Residential,Mon May 19 00:00:00 EDT 2008,636000,38.684459,-121.145935 +550,4734 GIBBONS DR,CARMICHAEL,95608,CA,4,3,3357,Residential,Mon May 19 00:00:00 EDT 2008,668365,38.63558,-121.353639 +551,4629 DORCHESTER LN,GRANITE BAY,95746,CA,5,3,2896,Residential,Mon May 19 00:00:00 EDT 2008,676200,38.723545,-121.216025 +552,2400 COUNTRYSIDE DR,PLACERVILLE,95667,CA,3,2,2025,Residential,Mon May 19 00:00:00 EDT 2008,677048,38.737452,-120.910963 +553,12901 FURLONG DR,WILTON,95693,CA,5,3,3788,Residential,Mon May 19 00:00:00 EDT 2008,691659,38.413535,-121.188211 +554,6222 CALLE MONTALVO CIR,GRANITE BAY,95746,CA,5,3,3670,Residential,Mon May 19 00:00:00 EDT 2008,760000,38.779435,-121.146676 +555,20 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885327,-121.289412 +556,24 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885132,-121.289405 +557,28 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884936,-121.289397 +558,32 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884741,-121.28939 +559,36 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884599,-121.289406 +560,40 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884535,-121.289619 +561,44 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88459,-121.289835 +562,48 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884667,-121.289896 +563,52 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88478,-121.289911 +564,68 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885236,-121.289928 +565,72 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88535,-121.289926 +566,76 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885464,-121.289922 +567,80 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885578,-121.289919 +568,84 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885692,-121.289915 +569,88 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885806,-121.289911 +570,92 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88592,-121.289908 +571,96 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886024,-121.289859 +572,100 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886091,-121.289744 +573,434 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.289406 +574,3 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884692,-121.290288 +575,11 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884879,-121.290257 +576,19 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885017,-121.290262 +577,27 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885173,-121.29027 +578,35 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885328,-121.290275 +579,43 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885483,-121.290277 +580,51 E ST,LINCOLN,95648,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885638,-121.290279 +581,59 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885794,-121.290281 +582,75 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886104,-121.290285 +583,63 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885093,-121.289932 +584,398 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.288952 +585,386 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886528,-121.288869 +586,374 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886525,-121.288787 +587,116 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289586 +588,108 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289646 +589,100 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289706 +590,55 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884865,-121.289922 +591,51 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884752,-121.289907 +592,47 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884638,-121.289893 +593,43 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884568,-121.289784 +594,39 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884546,-121.289562 +595,35 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884645,-121.289397 +596,31 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88479,-121.289392 +597,27 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884985,-121.289399 +598,23 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885181,-121.289406 +599,19 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885376,-121.289414 +600,15 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885571,-121.289421 +601,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +602,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +603,3 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886093,-121.289584 +604,8208 WOODYARD WAY,CITRUS HEIGHTS,95621,CA,3,2,1166,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.715322,-121.314787 +605,113 RINETTI WAY,RIO LINDA,95673,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.687172,-121.463933 +606,15 LOORZ CT,SACRAMENTO,95823,CA,2,1,838,Residential,Fri May 16 00:00:00 EDT 2008,55422,38.471646,-121.435158 +607,5805 DOTMAR WAY,NORTH HIGHLANDS,95660,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,63000,38.672642,-121.380343 +608,2332 CAMBRIDGE ST,SACRAMENTO,95815,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.608085,-121.449651 +609,3812 BELDEN ST,SACRAMENTO,95838,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.636833,-121.44164 +610,3348 40TH ST,SACRAMENTO,95817,CA,2,1,1080,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.544162,-121.460652 +611,127 QUASAR CIR,SACRAMENTO,95822,CA,2,2,990,Residential,Fri May 16 00:00:00 EDT 2008,66500,38.493504,-121.475304 +612,3812 CYPRESS ST,SACRAMENTO,95838,CA,2,1,900,Residential,Fri May 16 00:00:00 EDT 2008,71000,38.636877,-121.444948 +613,5821 64TH ST,SACRAMENTO,95824,CA,2,1,861,Residential,Fri May 16 00:00:00 EDT 2008,75000,38.521202,-121.428146 +614,8248 CENTER PKWY,SACRAMENTO,95823,CA,2,1,906,Condo,Fri May 16 00:00:00 EDT 2008,77000,38.459002,-121.428794 +615,1171 SONOMA AVE,SACRAMENTO,95815,CA,2,1,1011,Residential,Fri May 16 00:00:00 EDT 2008,85000,38.6238,-121.439872 +616,4250 ARDWELL WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Fri May 16 00:00:00 EDT 2008,95625,38.466938,-121.455631 +617,3104 CLAY ST,SACRAMENTO,95815,CA,2,1,832,Residential,Fri May 16 00:00:00 EDT 2008,96140,38.62391,-121.439208 +618,6063 LAND PARK DR,SACRAMENTO,95822,CA,2,1,800,Condo,Fri May 16 00:00:00 EDT 2008,104250,38.517029,-121.513809 +619,4738 OAKHOLLOW DR,SACRAMENTO,95842,CA,4,2,1292,Residential,Fri May 16 00:00:00 EDT 2008,105000,38.679598,-121.356035 +620,1401 STERLING ST,SACRAMENTO,95822,CA,2,1,810,Residential,Fri May 16 00:00:00 EDT 2008,108000,38.520319,-121.504727 +621,3715 DIDCOT CIR,SACRAMENTO,95838,CA,4,2,1064,Residential,Fri May 16 00:00:00 EDT 2008,109000,38.635232,-121.460098 +622,2426 RASHAWN DR,RANCHO CORDOVA,95670,CA,2,1,911,Residential,Fri May 16 00:00:00 EDT 2008,115000,38.610852,-121.273278 +623,4800 WESTLAKE PKWY Unit 410,SACRAMENTO,95835,CA,1,1,846,Condo,Fri May 16 00:00:00 EDT 2008,115000,38.658812,-121.542345 +624,3409 VIRGO ST,SACRAMENTO,95827,CA,3,2,1320,Residential,Fri May 16 00:00:00 EDT 2008,115500,38.563402,-121.327747 +625,1110 PINEDALE AVE,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,115620,38.660173,-121.440216 +626,2361 LA LOMA DR,RANCHO CORDOVA,95670,CA,3,2,1115,Residential,Fri May 16 00:00:00 EDT 2008,116000,38.59368,-121.316054 +627,1455 64TH AVE,SACRAMENTO,95822,CA,3,2,1169,Residential,Fri May 16 00:00:00 EDT 2008,122000,38.492177,-121.503392 +628,7328 SPRINGMAN ST,SACRAMENTO,95822,CA,3,2,1164,Residential,Fri May 16 00:00:00 EDT 2008,122500,38.491991,-121.477636 +629,119 SAINT MARIE CIR,SACRAMENTO,95823,CA,4,2,1341,Residential,Fri May 16 00:00:00 EDT 2008,123000,38.481454,-121.446644 +630,12 COSTA BRASE CT,SACRAMENTO,95838,CA,3,2,1219,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.655554,-121.464275 +631,6813 SCOTER WAY,SACRAMENTO,95842,CA,4,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.69043,-121.361035 +632,6548 GRAYLOCK LN,NORTH HIGHLANDS,95660,CA,3,2,1272,Residential,Fri May 16 00:00:00 EDT 2008,124413,38.686061,-121.369949 +633,1630 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Fri May 16 00:00:00 EDT 2008,125000,38.482717,-121.499683 +634,7825 DALEWOODS WAY,SACRAMENTO,95828,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,130000,38.477297,-121.411513 +635,4073 TRESLER AVE,NORTH HIGHLANDS,95660,CA,2,2,1118,Residential,Fri May 16 00:00:00 EDT 2008,131750,38.659016,-121.370457 +636,4288 DYMIC WAY,SACRAMENTO,95838,CA,4,3,1890,Residential,Fri May 16 00:00:00 EDT 2008,137721,38.646541,-121.441139 +637,1158 SAN IGNACIO WAY,SACRAMENTO,95833,CA,3,2,1260,Residential,Fri May 16 00:00:00 EDT 2008,137760,38.623045,-121.486279 +638,4904 J PKWY,SACRAMENTO,95823,CA,3,2,1400,Residential,Fri May 16 00:00:00 EDT 2008,138000,38.487297,-121.44295 +639,2931 HOWE AVE,SACRAMENTO,95821,CA,3,1,1264,Residential,Fri May 16 00:00:00 EDT 2008,140000,38.619012,-121.415329 +640,5531 JANSEN DR,SACRAMENTO,95824,CA,3,1,1060,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.522015,-121.438713 +641,7836 ORCHARD WOODS CIR,SACRAMENTO,95828,CA,2,2,1132,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.47955,-121.410867 +642,4055 DEERBROOK DR,SACRAMENTO,95823,CA,3,2,1466,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.472117,-121.459589 +643,9937 BURLINE ST,SACRAMENTO,95827,CA,3,2,1092,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.559641,-121.32316 +644,6948 MIRADOR WAY,SACRAMENTO,95828,CA,4,2,1628,Residential,Fri May 16 00:00:00 EDT 2008,151000,38.493484,-121.42035 +645,4909 RUGER CT,SACRAMENTO,95842,CA,3,2,960,Residential,Fri May 16 00:00:00 EDT 2008,155000,38.68747,-121.349234 +646,7204 KERSTEN ST,CITRUS HEIGHTS,95621,CA,3,2,1075,Residential,Fri May 16 00:00:00 EDT 2008,155800,38.695863,-121.300814 +647,3150 ROSEMONT DR,SACRAMENTO,95826,CA,3,2,1428,Residential,Fri May 16 00:00:00 EDT 2008,156142,38.554927,-121.35521 +648,8200 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1358,Residential,Fri May 16 00:00:00 EDT 2008,158000,38.474854,-121.404726 +649,8198 STEVENSON AVE,SACRAMENTO,95828,CA,6,4,2475,Multi-Family,Fri May 16 00:00:00 EDT 2008,159900,38.465271,-121.40426 +650,6824 OLIVE TREE WAY,CITRUS HEIGHTS,95610,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,160000,38.689239,-121.267737 +651,3536 SUN MAIDEN WAY,ANTELOPE,95843,CA,3,2,1711,Residential,Fri May 16 00:00:00 EDT 2008,161500,38.70968,-121.382328 +652,4517 OLYMPIAD WAY,SACRAMENTO,95826,CA,4,2,1483,Residential,Fri May 16 00:00:00 EDT 2008,161600,38.536751,-121.359154 +653,925 COBDEN CT,GALT,95632,CA,3,2,1140,Residential,Fri May 16 00:00:00 EDT 2008,162000,38.282047,-121.295812 +654,8225 SCOTTSDALE DR,SACRAMENTO,95828,CA,4,2,1549,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.487864,-121.402476 +655,8758 LEMAS RD,SACRAMENTO,95828,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.467487,-121.377055 +656,6121 ALPINESPRING WAY,ELK GROVE,95758,CA,3,2,1240,Residential,Fri May 16 00:00:00 EDT 2008,167293,38.434075,-121.432623 +657,5937 YORK GLEN WAY,SACRAMENTO,95842,CA,5,2,1712,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.677003,-121.354454 +658,6417 SUNNYFIELD WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.449153,-121.428272 +659,4008 GREY LIVERY WAY,ANTELOPE,95843,CA,3,2,1669,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.71846,-121.370862 +660,8920 ROSETTA CIR,SACRAMENTO,95826,CA,3,1,1029,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.544374,-121.370874 +661,8300 LICHEN DR,CITRUS HEIGHTS,95621,CA,3,1,1103,Residential,Fri May 16 00:00:00 EDT 2008,170000,38.71641,-121.306239 +662,8884 AMBERJACK WAY,SACRAMENTO,95828,CA,3,2,2161,Residential,Fri May 16 00:00:00 EDT 2008,170250,38.479343,-121.372553 +663,4480 VALLEY HI DR,SACRAMENTO,95823,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,173000,38.466781,-121.450955 +664,2250 FOREBAY RD,POLLOCK PINES,95726,CA,3,1,1320,Residential,Fri May 16 00:00:00 EDT 2008,175000,38.77491,-120.597599 +665,3529 FABERGE WAY,SACRAMENTO,95826,CA,3,2,1200,Residential,Fri May 16 00:00:00 EDT 2008,176095,38.553275,-121.346218 +666,1792 DAWNELLE WAY,SACRAMENTO,95835,CA,3,2,1170,Residential,Fri May 16 00:00:00 EDT 2008,176250,38.68271,-121.501697 +667,7800 TABARE CT,CITRUS HEIGHTS,95621,CA,3,2,1199,Residential,Fri May 16 00:00:00 EDT 2008,178000,38.70799,-121.302979 +668,8531 HERMITAGE WAY,SACRAMENTO,95823,CA,4,2,1695,Residential,Fri May 16 00:00:00 EDT 2008,179000,38.448452,-121.428536 +669,2421 BERRYWOOD DR,RANCHO CORDOVA,95670,CA,3,2,1157,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.60868,-121.27849 +670,1005 MORENO WAY,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.646206,-121.442767 +671,1675 VERNON ST Unit 24,ROSEVILLE,95678,CA,3,2,1174,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.734136,-121.299639 +672,24 WINDCHIME CT,SACRAMENTO,95823,CA,3,2,1593,Residential,Fri May 16 00:00:00 EDT 2008,181000,38.44617,-121.427824 +673,540 HARLING CT,RIO LINDA,95673,CA,3,2,1093,Residential,Fri May 16 00:00:00 EDT 2008,182000,38.68279,-121.453509 +674,1207 CRESCENDO DR,ROSEVILLE,95678,CA,3,2,1770,Residential,Fri May 16 00:00:00 EDT 2008,182587,38.72446,-121.292829 +675,7577 EDDYLEE WAY,SACRAMENTO,95822,CA,4,2,1436,Residential,Fri May 16 00:00:00 EDT 2008,185074,38.48291,-121.491509 +676,8369 FOPPIANO WAY,SACRAMENTO,95829,CA,3,2,1124,Residential,Fri May 16 00:00:00 EDT 2008,185833,38.453839,-121.357919 +677,8817 SAWTELLE WAY,SACRAMENTO,95826,CA,4,2,1139,Residential,Fri May 16 00:00:00 EDT 2008,186785,38.565322,-121.374251 +678,1910 BONAVISTA WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Fri May 16 00:00:00 EDT 2008,187000,38.476048,-121.494961 +679,8 TIDE CT,SACRAMENTO,95833,CA,3,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,188335,38.609864,-121.492304 +680,8952 ROCKY CREEK CT,ELK GROVE,95758,CA,3,2,1273,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.431239,-121.44001 +681,435 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,1082,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.659434,-121.455236 +682,10105 MONTE VALLO CT,SACRAMENTO,95827,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.573917,-121.316916 +683,3930 ANNABELLE AVE,ROSEVILLE,95661,CA,2,1,796,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.727609,-121.226494 +684,4854 TANGERINE AVE,SACRAMENTO,95823,CA,3,2,1386,Residential,Fri May 16 00:00:00 EDT 2008,191250,38.478239,-121.446326 +685,2909 SHAWN WAY,RANCHO CORDOVA,95670,CA,3,2,1452,Residential,Fri May 16 00:00:00 EDT 2008,193000,38.589925,-121.299059 +686,4290 BLACKFORD WAY,SACRAMENTO,95823,CA,3,2,1513,Residential,Fri May 16 00:00:00 EDT 2008,193500,38.470494,-121.454162 +687,5890 TT TRAK,FORESTHILL,95631,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,194818,39.020808,-120.821518 +688,7015 WOODSIDE DR,SACRAMENTO,95842,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.693071,-121.332365 +689,6019 CHESHIRE WAY,CITRUS HEIGHTS,95610,CA,4,3,1736,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.676437,-121.279165 +690,3330 VILLAGE CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.690504,-120.996245 +691,2561 VERNA WAY,SACRAMENTO,95821,CA,3,1,1473,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.611055,-121.369964 +692,3522 22ND AVE,SACRAMENTO,95820,CA,3,1,1150,Residential,Fri May 16 00:00:00 EDT 2008,198000,38.532725,-121.469078 +693,2880 CANDIDO DR,SACRAMENTO,95833,CA,3,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,199900,38.618019,-121.510215 +694,6908 PIN OAK CT,FAIR OAKS,95628,CA,3,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,200000,38.66424,-121.303675 +695,5733 ANGELINA AVE,CARMICHAEL,95608,CA,3,1,972,Residential,Fri May 16 00:00:00 EDT 2008,201000,38.622634,-121.330846 +696,7849 BONNY DOWNS WAY,ELK GROVE,95758,CA,4,2,2306,Residential,Fri May 16 00:00:00 EDT 2008,204918,38.42139,-121.411339 +697,8716 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1479,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.724083,-121.3584 +698,6320 EL DORADO ST,EL DORADO,95623,CA,2,1,1040,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.678758,-120.844118 +699,2328 DOROTHY JUNE WAY,SACRAMENTO,95838,CA,3,2,1430,Residential,Fri May 16 00:00:00 EDT 2008,205878,38.641727,-121.412703 +700,1986 DANVERS WAY,SACRAMENTO,95832,CA,4,2,1800,Residential,Fri May 16 00:00:00 EDT 2008,207000,38.47723,-121.492568 +701,7901 GAZELLE TRAIL WAY,ANTELOPE,95843,CA,4,2,1953,Residential,Fri May 16 00:00:00 EDT 2008,207744,38.71174,-121.342675 +702,6080 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,209000,38.681952,-121.505009 +703,20 GROTH CIR,SACRAMENTO,95834,CA,3,2,1232,Residential,Fri May 16 00:00:00 EDT 2008,210000,38.640807,-121.533522 +704,1900 DANBROOK DR,SACRAMENTO,95835,CA,1,1,984,Condo,Fri May 16 00:00:00 EDT 2008,210944,38.668433,-121.503471 +705,140 VENTO CT,ROSEVILLE,95678,CA,3,2,0,Condo,Fri May 16 00:00:00 EDT 2008,212500,38.793533,-121.289685 +706,8442 KEUSMAN ST,ELK GROVE,95758,CA,4,2,2329,Residential,Fri May 16 00:00:00 EDT 2008,213750,38.449651,-121.414704 +707,9552 SUNLIGHT LN,ELK GROVE,95758,CA,3,2,1351,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.410561,-121.404327 +708,2733 YUMA CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.691215,-120.994949 +709,1407 TIFFANY CIR,ROSEVILLE,95661,CA,4,1,1376,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.736392,-121.2664 +710,636 CRESTVIEW DR,DIAMOND SPRINGS,95619,CA,3,2,1300,Residential,Fri May 16 00:00:00 EDT 2008,216033,38.688255,-120.810235 +711,1528 HESKET WAY,SACRAMENTO,95825,CA,4,2,1566,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.593598,-121.403637 +712,2327 32ND ST,SACRAMENTO,95817,CA,2,1,1115,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.557433,-121.47034 +713,1833 2ND AVE,SACRAMENTO,95818,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.556818,-121.490669 +714,7252 CARRIAGE DR,CITRUS HEIGHTS,95621,CA,4,2,1419,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.698058,-121.294893 +715,9815 PASO FINO WAY,ELK GROVE,95757,CA,3,2,1261,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.404888,-121.443998 +716,5532 ENGLE RD,CARMICHAEL,95608,CA,2,2,1637,Residential,Fri May 16 00:00:00 EDT 2008,220702,38.63173,-121.335286 +717,1139 CLINTON RD,SACRAMENTO,95825,CA,4,2,1776,Multi-Family,Fri May 16 00:00:00 EDT 2008,221250,38.585291,-121.406824 +718,9176 SAGE GLEN WAY,ELK GROVE,95758,CA,3,2,1338,Residential,Fri May 16 00:00:00 EDT 2008,222000,38.423913,-121.439115 +719,9967 HATHERTON WAY,ELK GROVE,95757,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,222500,38.3052,-121.4033 +720,9264 BOULDER RIVER WAY,ELK GROVE,95624,CA,5,2,2254,Residential,Fri May 16 00:00:00 EDT 2008,222750,38.421713,-121.345191 +721,320 GROTH CIR,SACRAMENTO,95834,CA,3,2,1441,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.638882,-121.531883 +722,137 GUNNISON AVE,SACRAMENTO,95838,CA,4,2,1991,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.650729,-121.466483 +723,8209 RIVALLO WAY,SACRAMENTO,95829,CA,4,3,2126,Residential,Fri May 16 00:00:00 EDT 2008,228750,38.459524,-121.3501 +724,8637 PERIWINKLE CIR,ELK GROVE,95624,CA,3,2,1094,Residential,Fri May 16 00:00:00 EDT 2008,229000,38.443184,-121.364388 +725,3425 MEADOW WAY,ROCKLIN,95677,CA,3,2,1462,Residential,Fri May 16 00:00:00 EDT 2008,230095,38.798028,-121.235364 +726,107 JARVIS CIR,SACRAMENTO,95834,CA,5,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,232500,38.639891,-121.537603 +727,2319 THORES ST,RANCHO CORDOVA,95670,CA,3,2,1074,Residential,Fri May 16 00:00:00 EDT 2008,233000,38.59675,-121.312716 +728,8935 MOUNTAIN HOME CT,ELK GROVE,95624,CA,4,2,2111,Residential,Fri May 16 00:00:00 EDT 2008,233500,38.38751,-121.370276 +729,2566 SERENATA WAY,SACRAMENTO,95835,CA,3,2,1686,Residential,Fri May 16 00:00:00 EDT 2008,239000,38.671556,-121.520916 +730,4085 COUNTRY DR,ANTELOPE,95843,CA,4,3,1915,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.706209,-121.369509 +731,9297 TROUT WAY,ELK GROVE,95624,CA,4,2,2367,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.420637,-121.375798 +732,7 ARCHIBALD CT,SACRAMENTO,95823,CA,3,2,1962,Residential,Fri May 16 00:00:00 EDT 2008,240971,38.443305,-121.435296 +733,11130 EEL RIVER CT,RANCHO CORDOVA,95670,CA,2,2,1406,Residential,Fri May 16 00:00:00 EDT 2008,242000,38.625932,-121.271517 +734,8323 REDBANK WAY,SACRAMENTO,95829,CA,3,2,1789,Residential,Fri May 16 00:00:00 EDT 2008,243450,38.455753,-121.349273 +735,16 BRONCO CREEK CT,SACRAMENTO,95835,CA,4,2,1876,Residential,Fri May 16 00:00:00 EDT 2008,243500,38.674226,-121.525497 +736,8316 NORTHAM DR,ANTELOPE,95843,CA,3,2,1235,Residential,Fri May 16 00:00:00 EDT 2008,246544,38.720767,-121.376678 +737,4240 WINJE DR,ANTELOPE,95843,CA,4,2,2504,Residential,Fri May 16 00:00:00 EDT 2008,246750,38.70884,-121.359559 +738,3569 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.631139,-121.501879 +739,5118 ROBANDER ST,CARMICHAEL,95608,CA,3,2,1676,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.657267,-121.310352 +740,5976 KYLENCH CT,CITRUS HEIGHTS,95621,CA,3,2,1367,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.708966,-121.32467 +741,9247 DELAIR WAY,ELK GROVE,95758,CA,4,3,1899,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.422241,-121.458022 +742,9054 DESCENDANT DR,ELK GROVE,95758,CA,3,2,1636,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.428852,-121.415628 +743,3450 WHITNOR CT,SACRAMENTO,95821,CA,3,2,1828,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.627698,-121.369698 +744,6288 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.804993,-121.293609 +745,9355 MATADOR WAY,SACRAMENTO,95826,CA,4,2,1438,Residential,Fri May 16 00:00:00 EDT 2008,252000,38.555633,-121.350691 +746,8671 SUMMER SUN WAY,ELK GROVE,95624,CA,3,2,1451,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.442845,-121.373272 +747,1890 GENEVA PL,SACRAMENTO,95825,CA,3,1,1520,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.599449,-121.400305 +748,1813 AVENIDA MARTINA,ROSEVILLE,95747,CA,3,2,1506,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.776649,-121.339589 +749,191 BARNHART CIR,SACRAMENTO,95835,CA,4,2,2605,Residential,Fri May 16 00:00:00 EDT 2008,257200,38.675594,-121.515878 +750,6221 GREEN TOP WAY,ORANGEVALE,95662,CA,3,2,1196,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.679409,-121.219107 +751,2298 PRIMROSE LN,LINCOLN,95648,CA,3,2,1621,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.89918,-121.322514 +752,5635 LOS PUEBLOS WAY,SACRAMENTO,95835,CA,3,2,1811,Residential,Fri May 16 00:00:00 EDT 2008,263500,38.679191,-121.537622 +753,10165 LOFTON WAY,ELK GROVE,95757,CA,3,2,1540,Residential,Fri May 16 00:00:00 EDT 2008,266510,38.387708,-121.436522 +754,1251 GREEN RAVINE DR,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,267750,38.88156,-121.301343 +755,6001 SHOO FLY RD,PLACERVILLE,95667,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,270000,38.813546,-120.809254 +756,3040 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,271000,38.770835,-121.366996 +757,2674 TAM O SHANTER DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,272700,38.695801,-121.079216 +758,6007 MARYBELLE LN,SHINGLE SPRINGS,95682,CA,0,0,0,Unkown,Fri May 16 00:00:00 EDT 2008,275000,38.64347,-120.888183 +759,9949 NESTLING CIR,ELK GROVE,95757,CA,3,2,1543,Residential,Fri May 16 00:00:00 EDT 2008,275000,38.397455,-121.468391 +760,2915 HOLDREGE WAY,SACRAMENTO,95835,CA,5,3,2494,Residential,Fri May 16 00:00:00 EDT 2008,276000,38.663728,-121.525833 +761,2678 BRIARTON DR,LINCOLN,95648,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,276500,38.844116,-121.274806 +762,294 SPARROW DR,GALT,95632,CA,4,3,2214,Residential,Fri May 16 00:00:00 EDT 2008,278000,38.258976,-121.321266 +763,2987 DIORITE WAY,SACRAMENTO,95835,CA,5,3,2280,Residential,Fri May 16 00:00:00 EDT 2008,279000,38.667332,-121.528276 +764,6326 APPIAN WAY,CARMICHAEL,95608,CA,3,2,1443,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.66266,-121.316858 +765,6905 COBALT WAY,CITRUS HEIGHTS,95621,CA,4,2,1582,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.691393,-121.305215 +766,8986 HAFLINGER WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Fri May 16 00:00:00 EDT 2008,285000,38.397923,-121.450219 +767,2916 BABSON DR,ELK GROVE,95758,CA,3,2,1735,Residential,Fri May 16 00:00:00 EDT 2008,288000,38.417191,-121.473897 +768,10133 NEBBIOLO CT,ELK GROVE,95624,CA,4,3,2096,Residential,Fri May 16 00:00:00 EDT 2008,289000,38.391085,-121.347231 +769,1103 COMMONS DR,SACRAMENTO,95825,CA,3,2,1720,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.567865,-121.410699 +770,4636 TEAL BAY CT,ANTELOPE,95843,CA,4,2,2160,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.704554,-121.354753 +771,1524 YOUNGS AVE,SACRAMENTO,95838,CA,4,2,1382,Residential,Fri May 16 00:00:00 EDT 2008,293996,38.644927,-121.43054 +772,865 CONRAD CT,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,294000,38.729993,-120.802458 +773,8463 TERRACOTTA CT,ELK GROVE,95624,CA,4,2,1721,Residential,Fri May 16 00:00:00 EDT 2008,294173,38.450548,-121.363002 +774,5747 KING RD,LOOMIS,95650,CA,4,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,295000,38.825096,-121.198432 +775,8253 KEEGAN WAY,ELK GROVE,95624,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.446286,-121.400817 +776,9204 TROUT WAY,ELK GROVE,95624,CA,4,2,1982,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.422221,-121.375799 +777,1828 2ND AVE,SACRAMENTO,95818,CA,2,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,299000,38.556844,-121.490769 +778,1113 COMMONS DR,SACRAMENTO,95825,CA,2,2,1623,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.567795,-121.410703 +779,2341 BIG STRIKE TRL,COOL,95614,CA,3,2,1457,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.905927,-120.975169 +780,9452 RED SPRUCE WAY,ELK GROVE,95624,CA,6,3,2555,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.404505,-121.346938 +781,5776 TERRACE DR,ROCKLIN,95765,CA,3,2,1577,Residential,Fri May 16 00:00:00 EDT 2008,300567,38.800539,-121.260979 +782,5908 MCLEAN DR,ELK GROVE,95757,CA,5,3,2592,Residential,Fri May 16 00:00:00 EDT 2008,303000,38.38912,-121.434389 +783,8215 PEREGRINE WAY,CITRUS HEIGHTS,95610,CA,3,2,1401,Residential,Fri May 16 00:00:00 EDT 2008,305000,38.715493,-121.26293 +784,1104 HILLSDALE LN,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,306000,38.865017,-121.32302 +785,2949 PANAMA AVE,CARMICHAEL,95608,CA,3,2,1502,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.618369,-121.326187 +786,1356 HARTLEY WAY,FOLSOM,95630,CA,3,2,1327,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.651617,-121.131674 +787,633 HANISCH DR,ROSEVILLE,95678,CA,4,3,1800,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.76349,-121.275881 +788,63 ANGEL ISLAND CIR,SACRAMENTO,95831,CA,4,2,2169,Residential,Fri May 16 00:00:00 EDT 2008,311518,38.490408,-121.547664 +789,1571 WILD OAK LN,LINCOLN,95648,CA,5,3,2457,Residential,Fri May 16 00:00:00 EDT 2008,312000,38.844144,-121.274174 +790,5222 COPPER SUNSET WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,313000,38.529181,-121.224755 +791,5601 SPINDRIFT LN,ORANGEVALE,95662,CA,4,2,2004,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.668289,-121.192316 +792,652 FIFTEEN MILE DR,ROSEVILLE,95678,CA,4,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.775872,-121.298864 +793,7921 DOE TRAIL WAY,ANTELOPE,95843,CA,5,3,3134,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.711927,-121.343608 +794,4204 LUSK DR,SACRAMENTO,95864,CA,3,2,1360,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.606569,-121.368424 +795,5321 DELTA DR,ROCKLIN,95765,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.815493,-121.262908 +796,5608 ROSEDALE WAY,SACRAMENTO,95822,CA,3,2,1276,Residential,Fri May 16 00:00:00 EDT 2008,320000,38.525115,-121.518689 +797,3372 BERETANIA WAY,SACRAMENTO,95834,CA,4,3,2962,Residential,Fri May 16 00:00:00 EDT 2008,322000,38.64977,-121.53448 +798,2422 STEFANIE DR,ROCKLIN,95765,CA,4,2,1888,Residential,Fri May 16 00:00:00 EDT 2008,325000,38.82273,-121.26424 +799,3232 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,325500,38.772821,-121.364821 +800,448 ELMWOOD CT,ROSEVILLE,95678,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,326951,38.771917,-121.304439 +801,1214 DAWNWOOD DR,GALT,95632,CA,3,2,1548,Residential,Fri May 16 00:00:00 EDT 2008,328370,38.290119,-121.286023 +802,1440 EMERALD LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.861864,-121.267478 +803,3349 CORVINA DR,RANCHO CORDOVA,95670,CA,4,3,2109,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.580545,-121.279016 +804,10254 JULIANA WAY,SACRAMENTO,95827,CA,4,2,2484,Residential,Fri May 16 00:00:00 EDT 2008,331200,38.56803,-121.309966 +805,149 OPUS CIR,SACRAMENTO,95834,CA,4,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,332000,38.6354,-121.53499 +806,580 REGENCY PARK CIR,SACRAMENTO,95835,CA,3,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,334000,38.674864,-121.4958 +807,5544 CAMAS CT,ORANGEVALE,95662,CA,3,2,1616,Residential,Fri May 16 00:00:00 EDT 2008,335000,38.667703,-121.209456 +808,5102 ARCHCREST WAY,SACRAMENTO,95835,CA,4,2,2372,Residential,Fri May 16 00:00:00 EDT 2008,341000,38.66841,-121.494639 +809,5725 BALFOR RD,ROCKLIN,95765,CA,5,3,2606,Residential,Fri May 16 00:00:00 EDT 2008,346375,38.807816,-121.270008 +810,7697 ROSEHALL DR,ROSEVILLE,95678,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,347225,38.79218,-121.28595 +811,4821 HUTSON WAY,ELK GROVE,95757,CA,5,3,2877,Residential,Fri May 16 00:00:00 EDT 2008,349000,38.386239,-121.448159 +812,4509 WINJE DR,ANTELOPE,95843,CA,3,2,2960,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.709513,-121.359357 +813,1965 LAURELHURST LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.853869,-121.271742 +814,6709 ROSE BRIDGE DR,ROSEVILLE,95678,CA,3,2,2172,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.792461,-121.275711 +815,281 SPYGLASS HL,ROSEVILLE,95678,CA,3,2,2100,Condo,Fri May 16 00:00:00 EDT 2008,350000,38.762153,-121.283451 +816,7709 RIVER VILLAGE DR,SACRAMENTO,95831,CA,3,2,1795,Residential,Fri May 16 00:00:00 EDT 2008,351000,38.483212,-121.54019 +817,4165 BRISBANE CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,356200,38.686067,-121.073413 +818,506 BEDFORD CT,ROSEVILLE,95661,CA,4,2,2295,Residential,Fri May 16 00:00:00 EDT 2008,360000,38.733985,-121.236766 +819,9048 PINTO CANYON WAY,ROSEVILLE,95747,CA,4,3,2577,Residential,Fri May 16 00:00:00 EDT 2008,367463,38.792493,-121.331899 +820,2274 IVY BRIDGE DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,375000,38.778561,-121.362008 +821,14004 WALNUT AVE,WALNUT GROVE,95690,CA,3,1,1727,Residential,Fri May 16 00:00:00 EDT 2008,380000,38.247659,-121.515129 +822,6905 FRANKFORT CT,ELK GROVE,95758,CA,3,2,1485,Residential,Fri May 16 00:00:00 EDT 2008,380578,38.429139,-121.423444 +823,3621 WINTUN DR,CARMICHAEL,95608,CA,3,2,1655,Residential,Fri May 16 00:00:00 EDT 2008,386222,38.629929,-121.323086 +824,201 KIRKLAND CT,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,389000,38.867125,-121.319085 +825,12075 APPLESBURY CT,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,390000,38.5357,-121.2249 +826,1975 SIDESADDLE WAY,ROSEVILLE,95661,CA,3,2,2049,Residential,Fri May 16 00:00:00 EDT 2008,395500,38.737872,-121.249025 +827,5420 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,396000,38.527384,-121.233531 +828,9677 PILLITERI CT,ELK GROVE,95757,CA,5,3,2875,Residential,Fri May 16 00:00:00 EDT 2008,397000,38.405571,-121.445186 +829,1515 EL CAMINO VERDE DR,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.904869,-121.32075 +830,556 PLATT CIR,EL DORADO HILLS,95762,CA,4,2,2199,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.656299,-121.079783 +831,1792 DIAMOND WOODS CIR,ROSEVILLE,95747,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,412500,38.808581,-121.32785 +832,1124 PERKINS WAY,SACRAMENTO,95818,CA,2,1,1304,Residential,Fri May 16 00:00:00 EDT 2008,413500,38.551611,-121.504437 +833,4748 SALEM WAY,CARMICHAEL,95608,CA,3,2,2334,Residential,Fri May 16 00:00:00 EDT 2008,415000,38.634111,-121.353376 +834,1484 RADCLIFFE WAY,AUBURN,95603,CA,4,3,2278,Residential,Fri May 16 00:00:00 EDT 2008,420454,38.935579,-121.079018 +835,51 AIKEN WAY,SACRAMENTO,95819,CA,3,1,1493,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.579326,-121.44252 +836,2818 KNOLLWOOD DR,CAMERON PARK,95682,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.669805,-120.999007 +837,1536 STONEY CROSS LN,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,433500,38.860007,-121.310946 +838,509 CASTILLIAN CT,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,438000,38.804773,-121.341195 +839,700 HUNTER PL,FOLSOM,95630,CA,5,3,2787,Residential,Fri May 16 00:00:00 EDT 2008,441000,38.66051,-121.163689 +840,1240 FAY CIR,SACRAMENTO,95831,CA,5,3,2824,Residential,Fri May 16 00:00:00 EDT 2008,445000,38.506371,-121.514456 +841,1113 SANDWICK WAY,FOLSOM,95630,CA,4,3,3261,Residential,Fri May 16 00:00:00 EDT 2008,446000,38.673882,-121.105077 +842,3108 DELWOOD WAY,SACRAMENTO,95821,CA,4,2,2053,Residential,Fri May 16 00:00:00 EDT 2008,450000,38.621566,-121.370882 +843,3212 CORNICHE LN,ROSEVILLE,95661,CA,4,3,2379,Residential,Fri May 16 00:00:00 EDT 2008,455000,38.750577,-121.232768 +844,2159 BECKETT DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,460000,38.680092,-121.036467 +845,4320 FOUR SEASONS RD,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,475000,38.690867,-120.693641 +846,6401 MARSHALL RD,GARDEN VALLEY,95633,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,490000,38.84255,-120.8754 +847,2089 BECKETT DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,493000,38.681778,-121.035838 +848,6196 EDGEHILL DR,EL DORADO HILLS,95762,CA,5,4,0,Residential,Fri May 16 00:00:00 EDT 2008,508000,38.676131,-121.038931 +849,200 HILLSFORD CT,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,511000,38.780051,-121.378718 +850,8217 PLUMERIA AVE,FAIR OAKS,95628,CA,3,2,3173,Residential,Fri May 16 00:00:00 EDT 2008,525000,38.650735,-121.258628 +851,4841 VILLAGE GREEN DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,533000,38.664066,-121.056735 +852,3863 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1348,Residential,Fri May 16 00:00:00 EDT 2008,545000,38.588936,-121.373606 +853,820 DANA CT,AUBURN,95603,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,560000,38.865246,-121.094869 +854,1165 37TH ST,SACRAMENTO,95816,CA,2,1,1252,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.568438,-121.457854 +855,203 CASCADE FALLS DR,FOLSOM,95630,CA,4,3,3229,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.703962,-121.1871 +856,9880 IZILDA CT,SACRAMENTO,95829,CA,5,4,3863,Residential,Fri May 16 00:00:00 EDT 2008,598695,38.45326,-121.32573 +857,1800 AVONDALE DR,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.798448,-121.344054 +858,4620 BROMWICH CT,ROCKLIN,95677,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.772672,-121.220232 +859,620 KESWICK CT,GRANITE BAY,95746,CA,4,3,2356,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.732096,-121.219142 +860,4478 GREENBRAE RD,ROCKLIN,95677,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.781134,-121.222801 +861,8432 BRIGGS DR,ROSEVILLE,95747,CA,5,3,3579,Residential,Fri May 16 00:00:00 EDT 2008,610000,38.78861,-121.339495 +862,200 CRADLE MOUNTAIN CT,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,622500,38.6478,-121.0309 +863,2065 IMPRESSIONIST WAY,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,680000,38.682961,-121.033253 +864,2982 ABERDEEN LN,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,879000,38.706692,-121.058869 +865,9401 BARREL RACER CT,WILTON,95693,CA,4,3,4400,Residential,Fri May 16 00:00:00 EDT 2008,884790,38.415298,-121.194858 +866,3720 VISTA DE MADERA,LINCOLN,95648,CA,3,3,0,Residential,Fri May 16 00:00:00 EDT 2008,1551,38.851645,-121.231742 +867,14151 INDIO DR,SLOUGHHOUSE,95683,CA,3,4,5822,Residential,Fri May 16 00:00:00 EDT 2008,2000,38.490447,-121.129337 +868,7401 TOULON LN,SACRAMENTO,95828,CA,4,2,1512,Residential,Thu May 15 00:00:00 EDT 2008,56950,38.488628,-121.387759 +869,9127 NEWHALL DR Unit 34,SACRAMENTO,95826,CA,1,1,611,Condo,Thu May 15 00:00:00 EDT 2008,60000,38.542419,-121.359904 +870,5937 BAMFORD DR,SACRAMENTO,95823,CA,2,1,876,Residential,Thu May 15 00:00:00 EDT 2008,61000,38.471139,-121.432255 +871,5672 HILLSDALE BLVD,SACRAMENTO,95842,CA,2,1,933,Condo,Thu May 15 00:00:00 EDT 2008,62000,38.670467,-121.359799 +872,3920 39TH ST,SACRAMENTO,95820,CA,2,1,864,Residential,Thu May 15 00:00:00 EDT 2008,68566,38.539213,-121.46393 +873,701 JESSIE AVE,SACRAMENTO,95838,CA,2,1,1011,Residential,Thu May 15 00:00:00 EDT 2008,70000,38.643978,-121.449562 +874,83 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1158,Residential,Thu May 15 00:00:00 EDT 2008,80000,38.618716,-121.466327 +875,601 REGGINALD WAY,SACRAMENTO,95838,CA,3,2,1092,Residential,Thu May 15 00:00:00 EDT 2008,85500,38.64472,-121.452228 +876,550 DEL VERDE CIR,SACRAMENTO,95833,CA,2,1,956,Condo,Thu May 15 00:00:00 EDT 2008,92000,38.627147,-121.500799 +877,4113 DAYSTAR CT,SACRAMENTO,95824,CA,2,2,1139,Residential,Thu May 15 00:00:00 EDT 2008,93600,38.520469,-121.458606 +878,7374 TISDALE WAY,SACRAMENTO,95822,CA,3,1,1058,Residential,Thu May 15 00:00:00 EDT 2008,95000,38.488238,-121.472561 +879,3348 RIO LINDA BLVD,SACRAMENTO,95838,CA,3,2,1040,Residential,Thu May 15 00:00:00 EDT 2008,97750,38.628842,-121.446127 +880,3935 LIMESTONE WAY,SACRAMENTO,95823,CA,3,2,1354,Residential,Thu May 15 00:00:00 EDT 2008,104000,38.484374,-121.463157 +881,6208 GRATTAN WAY,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Thu May 15 00:00:00 EDT 2008,105000,38.679279,-121.376615 +882,739 E WOODSIDE LN Unit E,SACRAMENTO,95825,CA,1,1,682,Condo,Thu May 15 00:00:00 EDT 2008,107666,38.578675,-121.409951 +883,4225 46TH AVE,SACRAMENTO,95824,CA,3,1,1161,Residential,Thu May 15 00:00:00 EDT 2008,109000,38.511893,-121.457676 +884,1434 BELL AVE,SACRAMENTO,95838,CA,3,1,1004,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.647398,-121.432914 +885,5628 GEORGIA DR,NORTH HIGHLANDS,95660,CA,3,1,1229,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.669587,-121.379879 +886,7629 BETH ST,SACRAMENTO,95832,CA,3,2,1249,Residential,Thu May 15 00:00:00 EDT 2008,112500,38.480126,-121.487869 +887,2277 BABETTE WAY,SACRAMENTO,95832,CA,3,2,1161,Residential,Thu May 15 00:00:00 EDT 2008,114800,38.479593,-121.48434 +888,6561 WEATHERFORD WAY,SACRAMENTO,95823,CA,3,1,1010,Residential,Thu May 15 00:00:00 EDT 2008,116000,38.465551,-121.42661 +889,3035 ESTEPA DR Unit 5C,CAMERON PARK,95682,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,119000,38.681393,-120.996713 +890,5136 CABOT CIR,SACRAMENTO,95820,CA,4,2,1462,Residential,Thu May 15 00:00:00 EDT 2008,121500,38.528479,-121.411806 +891,7730 ROBINETTE RD,SACRAMENTO,95828,CA,3,2,1269,Residential,Thu May 15 00:00:00 EDT 2008,122000,38.47709,-121.410569 +892,87 LACAM CIR,SACRAMENTO,95820,CA,2,2,1188,Residential,Thu May 15 00:00:00 EDT 2008,123675,38.532359,-121.41167 +893,1691 NOGALES ST,SACRAMENTO,95838,CA,4,2,1570,Residential,Thu May 15 00:00:00 EDT 2008,126854,38.631925,-121.427775 +894,3118 42ND ST,SACRAMENTO,95817,CA,3,2,1093,Residential,Thu May 15 00:00:00 EDT 2008,127059,38.546091,-121.457745 +895,7517 50TH AVE,SACRAMENTO,95828,CA,3,1,962,Residential,Thu May 15 00:00:00 EDT 2008,128687,38.507339,-121.416267 +896,4071 EVALITA WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,129500,38.466388,-121.458861 +897,7928 36TH AVE,SACRAMENTO,95824,CA,3,2,1127,Residential,Thu May 15 00:00:00 EDT 2008,130000,38.52049,-121.411383 +898,6631 DEMARET DR,SACRAMENTO,95822,CA,4,2,1309,Residential,Thu May 15 00:00:00 EDT 2008,131750,38.506382,-121.483574 +899,7043 9TH AVE,RIO LINDA,95673,CA,2,1,970,Residential,Thu May 15 00:00:00 EDT 2008,132000,38.695589,-121.444133 +900,97 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.462376,-121.426556 +901,2636 TRONERO WAY,RANCHO CORDOVA,95670,CA,3,1,1000,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.593049,-121.30304 +902,1530 TOPANGA LN Unit 204,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,138000,38.88415,-121.270277 +903,3604 KODIAK WAY,ANTELOPE,95843,CA,3,2,1206,Residential,Thu May 15 00:00:00 EDT 2008,142000,38.706175,-121.379776 +904,2149 COTTAGE WAY,SACRAMENTO,95825,CA,3,1,1285,Residential,Thu May 15 00:00:00 EDT 2008,143012,38.603593,-121.417011 +905,8632 PRAIRIEWOODS DR,SACRAMENTO,95828,CA,3,2,1543,Residential,Thu May 15 00:00:00 EDT 2008,145846,38.477563,-121.384382 +906,612 STONE BLVD,WEST SACRAMENTO,95691,CA,2,1,884,Residential,Thu May 15 00:00:00 EDT 2008,147000,38.563084,-121.535579 +907,4180 12TH AVE,SACRAMENTO,95817,CA,3,1,1019,Residential,Thu May 15 00:00:00 EDT 2008,148750,38.54117,-121.458129 +908,8025 ARROYO VISTA DR,SACRAMENTO,95823,CA,4,2,1392,Residential,Thu May 15 00:00:00 EDT 2008,150000,38.46654,-121.419029 +909,5754 WALERGA RD Unit 4,SACRAMENTO,95842,CA,2,1,924,Condo,Thu May 15 00:00:00 EDT 2008,150454,38.672567,-121.356754 +910,8 LA ROCAS CT,SACRAMENTO,95823,CA,3,2,1217,Residential,Thu May 15 00:00:00 EDT 2008,151087,38.46616,-121.448283 +911,8636 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1670,Residential,Thu May 15 00:00:00 EDT 2008,157296,38.725873,-121.35856 +912,1941 EXPEDITION WAY,SACRAMENTO,95832,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,157500,38.473775,-121.493777 +913,4351 TURNBRIDGE DR,SACRAMENTO,95823,CA,3,2,1488,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.502034,-121.456027 +914,6513 HOLIDAY WAY,NORTH HIGHLANDS,95660,CA,3,2,1373,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.685361,-121.376938 +915,8321 MISTLETOE WAY,CITRUS HEIGHTS,95621,CA,4,2,1381,Residential,Thu May 15 00:00:00 EDT 2008,161250,38.717738,-121.308322 +916,5920 VALLEY GLEN WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Thu May 15 00:00:00 EDT 2008,164000,38.462821,-121.433135 +917,2601 SAN FERNANDO WAY,SACRAMENTO,95818,CA,2,1,881,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.556178,-121.476256 +918,501 POPLAR AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.584526,-121.534609 +919,8008 SAINT HELENA CT,SACRAMENTO,95829,CA,4,2,1608,Residential,Thu May 15 00:00:00 EDT 2008,165750,38.467012,-121.359969 +920,6517 DONEGAL DR,CITRUS HEIGHTS,95621,CA,3,1,1344,Residential,Thu May 15 00:00:00 EDT 2008,166000,38.681554,-121.312934 +921,1001 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Thu May 15 00:00:00 EDT 2008,169000,38.634292,-121.485106 +922,604 P ST,LINCOLN,95648,CA,3,2,1104,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.893168,-121.305398 +923,10001 WOODCREEK OAKS BLVD Unit 815,ROSEVILLE,95747,CA,2,2,0,Condo,Thu May 15 00:00:00 EDT 2008,170000,38.795529,-121.328819 +924,7351 GIGI PL,SACRAMENTO,95828,CA,4,2,1859,Multi-Family,Thu May 15 00:00:00 EDT 2008,170000,38.490606,-121.410173 +925,7740 DIXIE LOU ST,SACRAMENTO,95832,CA,3,2,1232,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.475853,-121.477039 +926,7342 DAVE ST,SACRAMENTO,95828,CA,3,1,1638,Residential,Thu May 15 00:00:00 EDT 2008,170725,38.490822,-121.401643 +927,7687 HOWERTON DR,SACRAMENTO,95831,CA,2,2,1177,Residential,Thu May 15 00:00:00 EDT 2008,171750,38.480859,-121.539745 +928,26 KAMSON CT,SACRAMENTO,95833,CA,3,2,1582,Residential,Thu May 15 00:00:00 EDT 2008,172000,38.622794,-121.499173 +929,7045 PEEVEY CT,SACRAMENTO,95823,CA,2,2,904,Residential,Thu May 15 00:00:00 EDT 2008,173056,38.502254,-121.451444 +930,8916 GABLES MILL PL,ELK GROVE,95758,CA,3,2,1340,Residential,Thu May 15 00:00:00 EDT 2008,174000,38.433919,-121.422347 +931,1140 EDMONTON DR,SACRAMENTO,95833,CA,3,2,1204,Residential,Thu May 15 00:00:00 EDT 2008,174250,38.62457,-121.486913 +932,8879 APPLE PEAR CT,ELK GROVE,95624,CA,4,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,176850,38.44574,-121.3725 +933,9 WIND CT,SACRAMENTO,95823,CA,4,2,1497,Residential,Thu May 15 00:00:00 EDT 2008,179500,38.45073,-121.427528 +934,8570 SHERATON DR,FAIR OAKS,95628,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,185000,38.667254,-121.240708 +935,1550 TOPANGA LN Unit 207,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,188000,38.88417,-121.270222 +936,1080 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1428,Residential,Thu May 15 00:00:00 EDT 2008,188700,38.634335,-121.486098 +937,5501 VALLETTA WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.530144,-121.43749 +938,5624 MEMORY LN,FAIR OAKS,95628,CA,3,1,1529,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.66745,-121.2364 +939,6622 WILLOWLEAF DR,CITRUS HEIGHTS,95621,CA,4,3,1892,Residential,Thu May 15 00:00:00 EDT 2008,189836,38.699714,-121.311635 +940,27 MEGAN CT,SACRAMENTO,95838,CA,4,2,1887,Residential,Thu May 15 00:00:00 EDT 2008,190000,38.649258,-121.465308 +941,6601 WOODMORE OAKS DR,ORANGEVALE,95662,CA,3,2,1294,Residential,Thu May 15 00:00:00 EDT 2008,191250,38.687006,-121.254319 +942,1973 DANVERS WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Thu May 15 00:00:00 EDT 2008,191675,38.477568,-121.492574 +943,8001 ARROYO VISTA DR,SACRAMENTO,95823,CA,3,2,1677,Residential,Thu May 15 00:00:00 EDT 2008,195500,38.46734,-121.419843 +944,7409 VOYAGER WAY,CITRUS HEIGHTS,95621,CA,3,1,1073,Residential,Thu May 15 00:00:00 EDT 2008,198000,38.700717,-121.3133 +945,815 CROSSWIND DR,SACRAMENTO,95838,CA,3,2,1231,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.651386,-121.45042 +946,5509 LAGUNA CREST WAY,ELK GROVE,95758,CA,3,2,1175,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.42442,-121.440357 +947,8424 MERRY HILL WAY,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.452075,-121.366461 +948,1525 PENNSYLVANIA AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,200100,38.569943,-121.527539 +949,5954 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,201528,38.68197,-121.500025 +950,8789 SEQUOIA WOOD CT,ELK GROVE,95624,CA,4,2,1609,Residential,Thu May 15 00:00:00 EDT 2008,204750,38.438818,-121.37443 +951,6600 SILVERTHORNE CIR,SACRAMENTO,95842,CA,4,3,1968,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.68607,-121.342369 +952,2221 2ND AVE,SACRAMENTO,95818,CA,2,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.555781,-121.485331 +953,3230 SMATHERS WAY,CARMICHAEL,95608,CA,3,2,1296,Residential,Thu May 15 00:00:00 EDT 2008,205900,38.623372,-121.347665 +954,5209 LAGUNA CREST WAY,ELK GROVE,95758,CA,2,2,1189,Residential,Thu May 15 00:00:00 EDT 2008,207000,38.424421,-121.443915 +955,416 LEITCH AVE,SACRAMENTO,95815,CA,2,1,795,Residential,Thu May 15 00:00:00 EDT 2008,207973,38.612694,-121.456669 +956,2100 BEATTY WAY,ROSEVILLE,95747,CA,3,2,1371,Residential,Thu May 15 00:00:00 EDT 2008,208250,38.737882,-121.308142 +957,6920 GILLINGHAM WAY,NORTH HIGHLANDS,95660,CA,3,1,1310,Residential,Thu May 15 00:00:00 EDT 2008,208318,38.694279,-121.373395 +958,82 WILDFLOWER DR,GALT,95632,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,209347,38.259708,-121.311616 +959,8652 BANTON CIR,ELK GROVE,95624,CA,4,2,1740,Residential,Thu May 15 00:00:00 EDT 2008,211500,38.444,-121.370993 +960,8428 MISTY PASS WAY,ANTELOPE,95843,CA,3,2,1517,Residential,Thu May 15 00:00:00 EDT 2008,212000,38.722959,-121.347115 +961,7958 ROSEVIEW WAY,SACRAMENTO,95828,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,213000,38.467836,-121.410366 +962,9020 LUKEN CT,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,216000,38.451398,-121.366614 +963,7809 VALLECITOS WAY,SACRAMENTO,95828,CA,3,1,888,Residential,Thu May 15 00:00:00 EDT 2008,216021,38.508217,-121.411207 +964,8445 OLD AUBURN RD,CITRUS HEIGHTS,95610,CA,3,2,1882,Residential,Thu May 15 00:00:00 EDT 2008,219000,38.715423,-121.246743 +965,10085 ATKINS DR,ELK GROVE,95757,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,219794,38.390893,-121.437821 +966,9185 CERROLINDA CIR,ELK GROVE,95758,CA,3,2,1418,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.424497,-121.426595 +967,9197 CORTINA CIR,ROSEVILLE,95678,CA,3,2,0,Condo,Thu May 15 00:00:00 EDT 2008,220000,38.793152,-121.290025 +968,5429 HESPER WAY,CARMICHAEL,95608,CA,4,2,1319,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.665104,-121.315901 +969,1178 WARMWOOD CT,GALT,95632,CA,4,2,1770,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.289544,-121.284607 +970,4900 ELUDE CT,SACRAMENTO,95842,CA,4,2,1627,Residential,Thu May 15 00:00:00 EDT 2008,223000,38.69674,-121.350519 +971,3557 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.631026,-121.501879 +972,3528 SAINT GEORGE DR,SACRAMENTO,95821,CA,3,1,1040,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.629468,-121.376445 +973,7381 WASHBURN WAY,NORTH HIGHLANDS,95660,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,224252,38.70355,-121.375103 +974,2181 WINTERHAVEN CIR,CAMERON PARK,95682,CA,3,2,0,Residential,Thu May 15 00:00:00 EDT 2008,224500,38.69757,-120.995739 +975,7540 HICKORY AVE,ORANGEVALE,95662,CA,3,1,1456,Residential,Thu May 15 00:00:00 EDT 2008,225000,38.703056,-121.235221 +976,5024 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,228000,38.389756,-121.446246 +977,2400 INVERNESS DR,LINCOLN,95648,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,229027,38.897814,-121.324691 +978,5 BISHOPGATE CT,SACRAMENTO,95823,CA,4,2,1329,Residential,Thu May 15 00:00:00 EDT 2008,229500,38.467936,-121.445477 +979,5601 REXLEIGH DR,SACRAMENTO,95823,CA,4,2,1715,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.445342,-121.441504 +980,1909 YARNELL WAY,ELK GROVE,95758,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.417382,-121.484325 +981,9169 GARLINGTON CT,SACRAMENTO,95829,CA,4,3,2280,Residential,Thu May 15 00:00:00 EDT 2008,232425,38.457679,-121.35962 +982,6932 RUSKUT WAY,SACRAMENTO,95823,CA,3,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,234000,38.499893,-121.45889 +983,7933 DAFFODIL WAY,CITRUS HEIGHTS,95610,CA,3,2,1216,Residential,Thu May 15 00:00:00 EDT 2008,235000,38.708824,-121.256803 +984,8304 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Thu May 15 00:00:00 EDT 2008,235301,38.417,-121.397424 +985,3882 YELLOWSTONE LN,EL DORADO HILLS,95762,CA,3,2,1362,Residential,Thu May 15 00:00:00 EDT 2008,235738,38.655245,-121.075915 \ No newline at end of file diff --git a/examples/csvs/demo2.csv b/examples/csvs/demo2.csv new file mode 100644 index 00000000..8b8027b9 --- /dev/null +++ b/examples/csvs/demo2.csv @@ -0,0 +1,986 @@ +id,street,city,zip,state,beds,baths,sq__ft,type,sale_date,price,latitude,longitude +1,3526 HIGH ST,SACRAMENTO,95838,CA,2,1,836,Residential,Wed May 21 00:00:00 EDT 2008,59222,38.631913,-121.434879 +2,51 OMAHA CT,SACRAMENTO,95823,CA,3,1,1167,Residential,Wed May 21 00:00:00 EDT 2008,68212,38.478902,-121.431028 +3,2796 BRANCH ST,SACRAMENTO,95815,CA,2,1,796,Residential,Wed May 21 00:00:00 EDT 2008,68880,38.618305,-121.443839 +4,2805 JANETTE WAY,SACRAMENTO,95815,CA,2,1,852,Residential,Wed May 21 00:00:00 EDT 2008,69307,38.616835,-121.439146 +5,6001 MCMAHON DR,SACRAMENTO,95824,CA,2,1,797,Residential,Wed May 21 00:00:00 EDT 2008,81900,38.51947,-121.435768 +6,5828 PEPPERMILL CT,SACRAMENTO,95841,CA,3,1,1122,Condo,Wed May 21 00:00:00 EDT 2008,89921,38.662595,-121.327813 +7,6048 OGDEN NASH WAY,SACRAMENTO,95842,CA,3,2,1104,Residential,Wed May 21 00:00:00 EDT 2008,90895,38.681659,-121.351705 +8,2561 19TH AVE,SACRAMENTO,95820,CA,3,1,1177,Residential,Wed May 21 00:00:00 EDT 2008,91002,38.535092,-121.481367 +9,11150 TRINITY RIVER DR Unit 114,RANCHO CORDOVA,95670,CA,2,2,941,Condo,Wed May 21 00:00:00 EDT 2008,94905,38.621188,-121.270555 +10,7325 10TH ST,RIO LINDA,95673,CA,3,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,98937,38.700909,-121.442979 +11,645 MORRISON AVE,SACRAMENTO,95838,CA,3,2,909,Residential,Wed May 21 00:00:00 EDT 2008,100309,38.637663,-121.45152 +12,4085 FAWN CIR,SACRAMENTO,95823,CA,3,2,1289,Residential,Wed May 21 00:00:00 EDT 2008,106250,38.470746,-121.458918 +13,2930 LA ROSA RD,SACRAMENTO,95815,CA,1,1,871,Residential,Wed May 21 00:00:00 EDT 2008,106852,38.618698,-121.435833 +14,2113 KIRK WAY,SACRAMENTO,95822,CA,3,1,1020,Residential,Wed May 21 00:00:00 EDT 2008,107502,38.482215,-121.492603 +15,4533 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,2,1022,Residential,Wed May 21 00:00:00 EDT 2008,108750,38.672914,-121.35934 +16,7340 HAMDEN PL,SACRAMENTO,95842,CA,2,2,1134,Condo,Wed May 21 00:00:00 EDT 2008,110700,38.700051,-121.351278 +17,6715 6TH ST,RIO LINDA,95673,CA,2,1,844,Residential,Wed May 21 00:00:00 EDT 2008,113263,38.689591,-121.452239 +18,6236 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Wed May 21 00:00:00 EDT 2008,116250,38.679776,-121.314089 +19,250 PERALTA AVE,SACRAMENTO,95833,CA,2,1,588,Residential,Wed May 21 00:00:00 EDT 2008,120000,38.612099,-121.469095 +20,113 LEEWILL AVE,RIO LINDA,95673,CA,3,2,1356,Residential,Wed May 21 00:00:00 EDT 2008,121630,38.689999,-121.46322 +21,6118 STONEHAND AVE,CITRUS HEIGHTS,95621,CA,3,2,1118,Residential,Wed May 21 00:00:00 EDT 2008,122000,38.707851,-121.320707 +22,4882 BANDALIN WAY,SACRAMENTO,95823,CA,4,2,1329,Residential,Wed May 21 00:00:00 EDT 2008,122682,38.468173,-121.444071 +23,7511 OAKVALE CT,NORTH HIGHLANDS,95660,CA,4,2,1240,Residential,Wed May 21 00:00:00 EDT 2008,123000,38.702792,-121.38221 +24,9 PASTURE CT,SACRAMENTO,95834,CA,3,2,1601,Residential,Wed May 21 00:00:00 EDT 2008,124100,38.628631,-121.488097 +25,3729 BAINBRIDGE DR,NORTH HIGHLANDS,95660,CA,3,2,901,Residential,Wed May 21 00:00:00 EDT 2008,125000,38.701499,-121.37622 +26,3828 BLACKFOOT WAY,ANTELOPE,95843,CA,3,2,1088,Residential,Wed May 21 00:00:00 EDT 2008,126640,38.70974,-121.37377 +27,4108 NORTON WAY,SACRAMENTO,95820,CA,3,1,963,Residential,Wed May 21 00:00:00 EDT 2008,127281,38.537526,-121.478315 +28,1469 JANRICK AVE,SACRAMENTO,95832,CA,3,2,1119,Residential,Wed May 21 00:00:00 EDT 2008,129000,38.476472,-121.501711 +29,9861 CULP WAY,SACRAMENTO,95827,CA,4,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,131200,38.558423,-121.327948 +30,7825 CREEK VALLEY CIR,SACRAMENTO,95828,CA,3,2,1248,Residential,Wed May 21 00:00:00 EDT 2008,132000,38.472122,-121.404199 +31,5201 LAGUNA OAKS DR Unit 140,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,133000,38.423251,-121.444489 +32,6768 MEDORA DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Wed May 21 00:00:00 EDT 2008,134555,38.691161,-121.37192 +33,3100 EXPLORER DR,SACRAMENTO,95827,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,136500,38.566663,-121.332644 +34,7944 DOMINION WAY,ELVERTA,95626,CA,3,2,1116,Residential,Wed May 21 00:00:00 EDT 2008,138750,38.713182,-121.411227 +35,5201 LAGUNA OAKS DR Unit 162,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,141000,38.423251,-121.444489 +36,3920 SHINING STAR DR,SACRAMENTO,95823,CA,3,2,1418,Residential,Wed May 21 00:00:00 EDT 2008,146250,38.48742,-121.462459 +37,5031 CORVAIR ST,NORTH HIGHLANDS,95660,CA,3,2,1082,Residential,Wed May 21 00:00:00 EDT 2008,147308,38.658246,-121.375469 +38,7661 NIXOS WAY,SACRAMENTO,95823,CA,4,2,1472,Residential,Wed May 21 00:00:00 EDT 2008,148750,38.479553,-121.463317 +39,7044 CARTHY WAY,SACRAMENTO,95828,CA,4,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,149593,38.49857,-121.420925 +40,2442 LARKSPUR LN,SACRAMENTO,95825,CA,1,1,760,Condo,Wed May 21 00:00:00 EDT 2008,150000,38.58514,-121.403736 +41,4800 WESTLAKE PKWY Unit 2109,SACRAMENTO,95835,CA,2,2,1304,Condo,Wed May 21 00:00:00 EDT 2008,152000,38.658812,-121.542345 +42,2178 63RD AVE,SACRAMENTO,95822,CA,3,2,1207,Residential,Wed May 21 00:00:00 EDT 2008,154000,38.493955,-121.48966 +43,8718 ELK WAY,ELK GROVE,95624,CA,3,2,1056,Residential,Wed May 21 00:00:00 EDT 2008,156896,38.41653,-121.379653 +44,5708 RIDGEPOINT DR,ANTELOPE,95843,CA,2,2,1043,Residential,Wed May 21 00:00:00 EDT 2008,161250,38.72027,-121.331555 +45,7315 KOALA CT,NORTH HIGHLANDS,95660,CA,4,2,1587,Residential,Wed May 21 00:00:00 EDT 2008,161500,38.699251,-121.371414 +46,2622 ERIN DR,SACRAMENTO,95833,CA,4,1,1120,Residential,Wed May 21 00:00:00 EDT 2008,164000,38.613765,-121.488694 +47,8421 SUNBLAZE WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Wed May 21 00:00:00 EDT 2008,165000,38.450543,-121.432538 +48,7420 ALIX PKWY,SACRAMENTO,95823,CA,4,1,1955,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.489405,-121.452811 +49,3820 NATOMA WAY,SACRAMENTO,95838,CA,4,2,1656,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.636748,-121.422159 +50,4431 GREEN TREE DR,SACRAMENTO,95823,CA,3,2,1477,Residential,Wed May 21 00:00:00 EDT 2008,168000,38.499954,-121.454469 +51,9417 SARA ST,ELK GROVE,95624,CA,3,2,1188,Residential,Wed May 21 00:00:00 EDT 2008,170000,38.415518,-121.370527 +52,8299 HALBRITE WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,173000,38.473814,-121.4 +53,7223 KALLIE KAY LN,SACRAMENTO,95823,CA,3,2,1463,Residential,Wed May 21 00:00:00 EDT 2008,174250,38.477553,-121.419463 +54,8156 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1714,Residential,Wed May 21 00:00:00 EDT 2008,174313,38.474853,-121.406326 +55,7957 VALLEY GREEN DR,SACRAMENTO,95823,CA,3,2,1185,Residential,Wed May 21 00:00:00 EDT 2008,178480,38.465184,-121.434925 +56,1122 WILD POPPY CT,GALT,95632,CA,3,2,1406,Residential,Wed May 21 00:00:00 EDT 2008,178760,38.287789,-121.294715 +57,4520 BOMARK WAY,SACRAMENTO,95842,CA,4,2,1943,Multi-Family,Wed May 21 00:00:00 EDT 2008,179580,38.665724,-121.358576 +58,9012 KIEFER BLVD,SACRAMENTO,95826,CA,3,2,1172,Residential,Wed May 21 00:00:00 EDT 2008,181000,38.547011,-121.366217 +59,5332 SANDSTONE ST,CARMICHAEL,95608,CA,3,1,1152,Residential,Wed May 21 00:00:00 EDT 2008,181872,38.662105,-121.313945 +60,5993 SAWYER CIR,SACRAMENTO,95823,CA,4,3,1851,Residential,Wed May 21 00:00:00 EDT 2008,182587,38.4473,-121.435218 +61,4844 CLYDEBANK WAY,ANTELOPE,95843,CA,3,2,1215,Residential,Wed May 21 00:00:00 EDT 2008,182716,38.714609,-121.347887 +62,306 CAMELLIA WAY,GALT,95632,CA,3,2,1130,Residential,Wed May 21 00:00:00 EDT 2008,182750,38.260443,-121.297864 +63,9021 MADISON AVE,ORANGEVALE,95662,CA,4,2,1603,Residential,Wed May 21 00:00:00 EDT 2008,183200,38.664186,-121.217511 +64,404 6TH ST,GALT,95632,CA,3,1,1479,Residential,Wed May 21 00:00:00 EDT 2008,188741,38.251808,-121.302493 +65,8317 SUNNY CREEK WAY,SACRAMENTO,95823,CA,3,2,1420,Residential,Wed May 21 00:00:00 EDT 2008,189000,38.459041,-121.424644 +66,2617 BASS CT,SACRAMENTO,95826,CA,3,2,1280,Residential,Wed May 21 00:00:00 EDT 2008,192067,38.560767,-121.377471 +67,7005 TIANT WAY,ELK GROVE,95758,CA,3,2,1586,Residential,Wed May 21 00:00:00 EDT 2008,194000,38.422811,-121.423285 +68,7895 CABER WAY,ANTELOPE,95843,CA,3,2,1362,Residential,Wed May 21 00:00:00 EDT 2008,194818,38.711279,-121.393449 +69,7624 BOGEY CT,SACRAMENTO,95828,CA,4,4,2162,Multi-Family,Wed May 21 00:00:00 EDT 2008,195000,38.48009,-121.415102 +70,6930 HAMPTON COVE WAY,SACRAMENTO,95823,CA,3,2,1266,Residential,Wed May 21 00:00:00 EDT 2008,198000,38.44004,-121.421012 +71,8708 MESA BROOK WAY,ELK GROVE,95624,CA,4,2,1715,Residential,Wed May 21 00:00:00 EDT 2008,199500,38.44076,-121.385792 +72,120 GRANT LN,FOLSOM,95630,CA,3,2,1820,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.687742,-121.17104 +73,5907 ELLERSLEE DR,CARMICHAEL,95608,CA,3,1,936,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.664468,-121.32683 +74,17 SERASPI CT,SACRAMENTO,95834,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,206000,38.631481,-121.50188 +75,170 PENHOW CIR,SACRAMENTO,95834,CA,3,2,1511,Residential,Wed May 21 00:00:00 EDT 2008,208000,38.653439,-121.535169 +76,8345 STAR THISTLE WAY,SACRAMENTO,95823,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,212864,38.454349,-121.439239 +77,9080 FRESCA WAY,ELK GROVE,95758,CA,4,2,1596,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.427818,-121.424026 +78,391 NATALINO CIR,SACRAMENTO,95835,CA,2,2,1341,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.67307,-121.506373 +79,8373 BLACKMAN WAY,ELK GROVE,95624,CA,5,3,2136,Residential,Wed May 21 00:00:00 EDT 2008,223058,38.435436,-121.394536 +80,9837 CORTE DORADO CT,ELK GROVE,95624,CA,4,2,1616,Residential,Wed May 21 00:00:00 EDT 2008,227887,38.400676,-121.38101 +81,5037 J PKWY,SACRAMENTO,95823,CA,3,2,1478,Residential,Wed May 21 00:00:00 EDT 2008,231477,38.491399,-121.443547 +82,10245 LOS PALOS DR,RANCHO CORDOVA,95670,CA,3,2,1287,Residential,Wed May 21 00:00:00 EDT 2008,234697,38.593699,-121.31089 +83,6613 NAVION DR,CITRUS HEIGHTS,95621,CA,4,2,1277,Residential,Wed May 21 00:00:00 EDT 2008,235000,38.702855,-121.31308 +84,2887 AZEVEDO DR,SACRAMENTO,95833,CA,4,2,1448,Residential,Wed May 21 00:00:00 EDT 2008,236000,38.618457,-121.509439 +85,9186 KINBRACE CT,SACRAMENTO,95829,CA,4,3,2235,Residential,Wed May 21 00:00:00 EDT 2008,236685,38.463355,-121.358936 +86,4243 MIDDLEBURY WAY,MATHER,95655,CA,3,2,2093,Residential,Wed May 21 00:00:00 EDT 2008,237800,38.547991,-121.280483 +87,1028 FALLON PLACE CT,RIO LINDA,95673,CA,3,2,1193,Residential,Wed May 21 00:00:00 EDT 2008,240122,38.693818,-121.441153 +88,4804 NORIKER DR,ELK GROVE,95757,CA,3,2,2163,Residential,Wed May 21 00:00:00 EDT 2008,242638,38.400974,-121.448424 +89,7713 HARVEST WOODS DR,SACRAMENTO,95828,CA,3,2,1269,Residential,Wed May 21 00:00:00 EDT 2008,244000,38.478198,-121.412911 +90,2866 KARITSA AVE,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,244500,38.626671,-121.52597 +91,6913 RICHEVE WAY,SACRAMENTO,95828,CA,3,1,958,Residential,Wed May 21 00:00:00 EDT 2008,244960,38.502519,-121.420769 +92,8636 TEGEA WAY,ELK GROVE,95624,CA,5,3,2508,Residential,Wed May 21 00:00:00 EDT 2008,245918,38.443832,-121.382087 +93,5448 MAIDSTONE WAY,CITRUS HEIGHTS,95621,CA,3,2,1305,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.665395,-121.293288 +94,18 OLLIE CT,ELK GROVE,95758,CA,4,2,1591,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.444909,-121.412345 +95,4010 ALEX LN,CARMICHAEL,95608,CA,2,2,1326,Condo,Wed May 21 00:00:00 EDT 2008,250134,38.637028,-121.312963 +96,4901 MILLNER WAY,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.38692,-121.447349 +97,4818 BRITTNEY LEE CT,SACRAMENTO,95841,CA,4,2,1921,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.653917,-121.34218 +98,5529 LAGUNA PARK DR,ELK GROVE,95758,CA,5,3,2790,Residential,Wed May 21 00:00:00 EDT 2008,258000,38.42568,-121.438062 +99,230 CANDELA CIR,SACRAMENTO,95835,CA,3,2,1541,Residential,Wed May 21 00:00:00 EDT 2008,260000,38.656251,-121.547572 +100,4900 71ST ST,SACRAMENTO,95820,CA,3,1,1018,Residential,Wed May 21 00:00:00 EDT 2008,260014,38.53151,-121.421089 +101,12209 CONSERVANCY WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,263500,38.553867,-121.219141 +102,4236 NATOMAS CENTRAL DR,SACRAMENTO,95834,CA,3,2,1672,Condo,Wed May 21 00:00:00 EDT 2008,265000,38.648879,-121.544023 +103,5615 LUPIN LN,POLLOCK PINES,95726,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,265000,38.708315,-120.603872 +104,5625 JAMES WAY,SACRAMENTO,95822,CA,3,1,975,Residential,Wed May 21 00:00:00 EDT 2008,271742,38.523947,-121.484946 +105,7842 LAHONTAN CT,SACRAMENTO,95829,CA,4,3,2372,Residential,Wed May 21 00:00:00 EDT 2008,273750,38.472976,-121.318633 +106,6850 21ST ST,SACRAMENTO,95822,CA,3,2,1446,Residential,Wed May 21 00:00:00 EDT 2008,275086,38.502194,-121.490795 +107,2900 BLAIR RD,POLLOCK PINES,95726,CA,2,2,1284,Residential,Wed May 21 00:00:00 EDT 2008,280908,38.75485,-120.60476 +108,2064 EXPEDITION WAY,SACRAMENTO,95832,CA,4,3,3009,Residential,Wed May 21 00:00:00 EDT 2008,280987,38.474099,-121.490711 +109,2912 NORCADE CIR,SACRAMENTO,95826,CA,8,4,3612,Multi-Family,Wed May 21 00:00:00 EDT 2008,282400,38.559505,-121.364839 +110,9507 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Wed May 21 00:00:00 EDT 2008,285000,38.410992,-121.479043 +111,8882 AUTUMN GOLD CT,ELK GROVE,95624,CA,4,2,1993,Residential,Wed May 21 00:00:00 EDT 2008,287417,38.4439,-121.37255 +112,5322 WHITE LOTUS WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Wed May 21 00:00:00 EDT 2008,291000,38.391538,-121.442596 +113,1838 CASTRO WAY,SACRAMENTO,95818,CA,2,1,1126,Residential,Wed May 21 00:00:00 EDT 2008,292024,38.556098,-121.490787 +114,10158 CRAWFORD WAY,SACRAMENTO,95827,CA,4,4,2213,Multi-Family,Wed May 21 00:00:00 EDT 2008,297000,38.5703,-121.315735 +115,7731 MASTERS ST,ELK GROVE,95758,CA,5,3,2494,Residential,Wed May 21 00:00:00 EDT 2008,297000,38.442031,-121.410873 +116,4925 PERCHERON DR,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,298000,38.40154,-121.447649 +117,2010 PROMONTORY POINT LN,GOLD RIVER,95670,CA,2,2,1520,Residential,Wed May 21 00:00:00 EDT 2008,299000,38.62869,-121.261669 +118,4727 SAVOIE WAY,SACRAMENTO,95835,CA,5,3,2800,Residential,Wed May 21 00:00:00 EDT 2008,304037,38.658182,-121.549521 +119,8664 MAGNOLIA HILL WAY,ELK GROVE,95624,CA,4,2,2309,Residential,Wed May 21 00:00:00 EDT 2008,311000,38.442352,-121.389675 +120,9570 HARVEST ROSE WAY,SACRAMENTO,95827,CA,5,3,2367,Residential,Wed May 21 00:00:00 EDT 2008,315537,38.555993,-121.340352 +121,4359 CREGAN CT,RANCHO CORDOVA,95742,CA,5,4,3516,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.545128,-121.224922 +122,5337 DUSTY ROSE WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.528575,-121.2286 +123,8929 SUTTERS GOLD DR,SACRAMENTO,95826,CA,4,3,1914,Residential,Wed May 21 00:00:00 EDT 2008,328360,38.550848,-121.370224 +124,8025 PEERLESS AVE,ORANGEVALE,95662,CA,2,1,1690,Residential,Wed May 21 00:00:00 EDT 2008,334150,38.71147,-121.216214 +125,4620 WELERA WAY,ELK GROVE,95757,CA,3,3,2725,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.398609,-121.450148 +126,9723 TERRAPIN CT,ELK GROVE,95757,CA,4,3,2354,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.403492,-121.430224 +127,2115 SMOKESTACK WAY,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,339500,38.602416,-121.542965 +128,100 REBECCA WAY,FOLSOM,95630,CA,3,2,2185,Residential,Wed May 21 00:00:00 EDT 2008,344250,38.68479,-121.149199 +129,9488 OAK VILLAGE WAY,ELK GROVE,95758,CA,4,2,1801,Residential,Wed May 21 00:00:00 EDT 2008,346210,38.41333,-121.404999 +130,8495 DARTFORD DR,SACRAMENTO,95823,CA,3,3,1961,Residential,Wed May 21 00:00:00 EDT 2008,347029,38.448507,-121.421346 +131,6708 PONTA DO SOL WAY,ELK GROVE,95757,CA,4,2,3134,Residential,Wed May 21 00:00:00 EDT 2008,347650,38.380635,-121.425538 +132,4143 SEA MEADOW WAY,SACRAMENTO,95823,CA,4,3,1915,Residential,Wed May 21 00:00:00 EDT 2008,351300,38.46534,-121.457519 +133,3020 RICHARDSON CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Wed May 21 00:00:00 EDT 2008,352000,38.691299,-121.081752 +134,8082 LINDA ISLE LN,SACRAMENTO,95831,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,370000,38.4772,-121.5215 +135,15300 MURIETA SOUTH PKWY,RANCHO MURIETA,95683,CA,4,3,2734,Residential,Wed May 21 00:00:00 EDT 2008,370500,38.4874,-121.075129 +136,11215 SHARRMONT CT,WILTON,95693,CA,3,2,2110,Residential,Wed May 21 00:00:00 EDT 2008,372000,38.35062,-121.228349 +137,7105 DANBERG WAY,ELK GROVE,95757,CA,5,3,3164,Residential,Wed May 21 00:00:00 EDT 2008,375000,38.4019,-121.420388 +138,5579 JERRY LITELL WAY,SACRAMENTO,95835,CA,5,3,3599,Residential,Wed May 21 00:00:00 EDT 2008,381300,38.677126,-121.500519 +139,1050 FOXHALL WAY,SACRAMENTO,95831,CA,4,2,2054,Residential,Wed May 21 00:00:00 EDT 2008,381942,38.509819,-121.519661 +140,7837 ABBINGTON WAY,ANTELOPE,95843,CA,4,2,1830,Residential,Wed May 21 00:00:00 EDT 2008,387731,38.709873,-121.339472 +141,1300 F ST,SACRAMENTO,95814,CA,3,3,1627,Residential,Wed May 21 00:00:00 EDT 2008,391000,38.58355,-121.487289 +142,6801 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,394470,38.408351,-121.423925 +143,1693 SHELTER COVE DR,GREENWOOD,95635,CA,3,2,2846,Residential,Wed May 21 00:00:00 EDT 2008,395000,38.945357,-120.908822 +144,9361 WADDELL LN,ELK GROVE,95624,CA,4,3,2359,Residential,Wed May 21 00:00:00 EDT 2008,400186,38.450829,-121.349928 +145,10 SEA FOAM CT,SACRAMENTO,95831,CA,3,3,2052,Residential,Wed May 21 00:00:00 EDT 2008,415000,38.487885,-121.545947 +146,6945 RIO TEJO WAY,ELK GROVE,95757,CA,5,3,3433,Residential,Wed May 21 00:00:00 EDT 2008,425000,38.385638,-121.422616 +147,4186 TULIP PARK WAY,RANCHO CORDOVA,95742,CA,5,3,3615,Residential,Wed May 21 00:00:00 EDT 2008,430000,38.550617,-121.23526 +148,9278 DAIRY CT,ELK GROVE,95624,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,445000,38.420338,-121.363757 +149,207 ORANGE BLOSSOM CIR Unit C,FOLSOM,95630,CA,5,3,2687,Residential,Wed May 21 00:00:00 EDT 2008,460000,38.646273,-121.175322 +150,6507 RIO DE ONAR WAY,ELK GROVE,95757,CA,4,3,2724,Residential,Wed May 21 00:00:00 EDT 2008,461000,38.38253,-121.428007 +151,7004 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,489332,38.406421,-121.422081 +152,6503 RIO DE ONAR WAY,ELK GROVE,95757,CA,5,4,3508,Residential,Wed May 21 00:00:00 EDT 2008,510000,38.38253,-121.428038 +153,2217 APPALOOSA CT,FOLSOM,95630,CA,4,2,2462,Residential,Wed May 21 00:00:00 EDT 2008,539000,38.655167,-121.090178 +154,868 HILDEBRAND CIR,FOLSOM,95630,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,585000,38.670947,-121.097727 +155,6030 PALERMO WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,600000,38.672761,-121.050378 +156,4070 REDONDO DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,606238,38.666807,-121.06483 +157,4004 CRESTA WAY,SACRAMENTO,95864,CA,3,3,2325,Residential,Wed May 21 00:00:00 EDT 2008,660000,38.591618,-121.370626 +158,315 JUMEL CT,EL DORADO HILLS,95762,CA,6,5,0,Residential,Wed May 21 00:00:00 EDT 2008,830000,38.669931,-121.05958 +159,6272 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Tue May 20 00:00:00 EDT 2008,69000,38.680923,-121.313945 +160,3432 Y ST,SACRAMENTO,95817,CA,4,2,1099,Residential,Tue May 20 00:00:00 EDT 2008,70000,38.554967,-121.468046 +161,9512 EMERALD PARK DR Unit 3,ELK GROVE,95624,CA,2,1,840,Condo,Tue May 20 00:00:00 EDT 2008,71000,38.40573,-121.369832 +162,3132 CLAY ST,SACRAMENTO,95815,CA,2,1,800,Residential,Tue May 20 00:00:00 EDT 2008,78000,38.624678,-121.439203 +163,5221 38TH AVE,SACRAMENTO,95824,CA,2,1,746,Residential,Tue May 20 00:00:00 EDT 2008,78400,38.518044,-121.443555 +164,6112 HERMOSA ST,SACRAMENTO,95822,CA,3,1,1067,Residential,Tue May 20 00:00:00 EDT 2008,80000,38.515125,-121.480416 +165,483 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1316,Residential,Tue May 20 00:00:00 EDT 2008,89000,38.623571,-121.454884 +166,671 SONOMA AVE,SACRAMENTO,95815,CA,3,1,1337,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.622953,-121.450142 +167,5980 79TH ST,SACRAMENTO,95824,CA,2,1,868,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.518373,-121.411779 +168,7607 ELDER CREEK RD,SACRAMENTO,95824,CA,3,1,924,Residential,Tue May 20 00:00:00 EDT 2008,92000,38.51055,-121.414768 +169,5028 14TH AVE,SACRAMENTO,95820,CA,2,1,610,Residential,Tue May 20 00:00:00 EDT 2008,93675,38.53942,-121.446894 +170,14788 NATCHEZ CT,RANCHO MURIETA,95683,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,97750,38.492287,-121.100032 +171,1069 ACACIA AVE,SACRAMENTO,95815,CA,2,1,1220,Residential,Tue May 20 00:00:00 EDT 2008,98000,38.621998,-121.442238 +172,5201 LAGUNA OAKS DR Unit 199,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,98000,38.423251,-121.444489 +173,3847 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1643,Residential,Tue May 20 00:00:00 EDT 2008,99000,38.588672,-121.373916 +174,5201 LAGUNA OAKS DR Unit 172,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,100000,38.423251,-121.444489 +175,1121 CREEKSIDE WAY,GALT,95632,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,106716,38.241514,-121.312199 +176,5307 CABRILLO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.52712,-121.435348 +177,3725 DON JULIO BLVD,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.67895,-121.379406 +178,4803 MCCLOUD DR,SACRAMENTO,95842,CA,2,2,967,Residential,Tue May 20 00:00:00 EDT 2008,114800,38.682279,-121.352817 +179,10542 SILVERWOOD WAY,RANCHO CORDOVA,95670,CA,3,1,1098,Residential,Tue May 20 00:00:00 EDT 2008,120108,38.587156,-121.295778 +180,6318 39TH AVE,SACRAMENTO,95824,CA,3,1,1050,Residential,Tue May 20 00:00:00 EDT 2008,123225,38.518942,-121.430158 +181,211 MCDANIEL CIR,SACRAMENTO,95838,CA,3,2,1110,Residential,Tue May 20 00:00:00 EDT 2008,123750,38.636565,-121.460383 +182,3800 LYNHURST WAY,NORTH HIGHLANDS,95660,CA,3,1,888,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.650445,-121.374861 +183,6139 HERMOSA ST,SACRAMENTO,95822,CA,3,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.514665,-121.480411 +184,2505 RHINE WAY,ELVERTA,95626,CA,3,2,1080,Residential,Tue May 20 00:00:00 EDT 2008,126000,38.717976,-121.407684 +185,3692 PAYNE WAY,NORTH HIGHLANDS,95660,CA,3,1,957,Residential,Tue May 20 00:00:00 EDT 2008,129000,38.66654,-121.378298 +186,604 MORRISON AVE,SACRAMENTO,95838,CA,2,1,952,Residential,Tue May 20 00:00:00 EDT 2008,134000,38.637678,-121.452476 +187,648 SANTA ANA AVE,SACRAMENTO,95838,CA,3,2,1211,Residential,Tue May 20 00:00:00 EDT 2008,135000,38.658478,-121.450409 +188,14 ASHLEY OAKS CT,SACRAMENTO,95815,CA,3,2,1264,Residential,Tue May 20 00:00:00 EDT 2008,135500,38.61779,-121.436765 +189,3174 NORTHVIEW DR,SACRAMENTO,95833,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.623817,-121.477827 +190,840 TRANQUIL LN,GALT,95632,CA,3,2,1266,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.270617,-121.299205 +191,5333 PRIMROSE DR Unit 19A,FAIR OAKS,95628,CA,2,2,994,Condo,Tue May 20 00:00:00 EDT 2008,142500,38.662785,-121.276272 +192,1035 MILLET WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Tue May 20 00:00:00 EDT 2008,143500,38.631056,-121.48508 +193,5201 LAGUNA OAKS DR Unit 126,ELK GROVE,95758,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,145000,38.423251,-121.444489 +194,3328 22ND AVE,SACRAMENTO,95820,CA,2,1,722,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.532727,-121.470783 +195,8001 HARTWICK WAY,SACRAMENTO,95828,CA,4,2,1448,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488623,-121.410582 +196,7812 HARTWICK WAY,SACRAMENTO,95828,CA,3,2,1188,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488611,-121.412808 +197,4207 PAINTER WAY,NORTH HIGHLANDS,95660,CA,4,2,1183,Residential,Tue May 20 00:00:00 EDT 2008,146000,38.692915,-121.367497 +198,7458 WINKLEY WAY,SACRAMENTO,95822,CA,3,1,1320,Residential,Tue May 20 00:00:00 EDT 2008,148500,38.487444,-121.491366 +199,8354 SUNRISE WOODS WAY,SACRAMENTO,95828,CA,3,2,1117,Residential,Tue May 20 00:00:00 EDT 2008,149000,38.473288,-121.3963 +200,8116 COTTONMILL CIR,SACRAMENTO,95828,CA,3,2,1364,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.482876,-121.405912 +201,4660 CEDARWOOD WAY,SACRAMENTO,95823,CA,4,2,1310,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.484834,-121.449316 +202,9254 HARROGATE WAY,ELK GROVE,95758,CA,2,2,1006,Residential,Tue May 20 00:00:00 EDT 2008,152000,38.420138,-121.412179 +203,6716 TAREYTON WAY,CITRUS HEIGHTS,95621,CA,3,2,1104,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.693724,-121.307169 +204,2028 ROBERT WAY,SACRAMENTO,95825,CA,2,1,810,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.609982,-121.419263 +205,9346 AIZENBERG CIR,ELK GROVE,95624,CA,2,2,1123,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.41875,-121.370019 +206,4524 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,1,904,Residential,Tue May 20 00:00:00 EDT 2008,157788,38.67273,-121.359645 +207,7140 BLUE SPRINGS WAY,CITRUS HEIGHTS,95621,CA,3,2,1156,Residential,Tue May 20 00:00:00 EDT 2008,161653,38.720653,-121.302241 +208,4631 11TH AVE,SACRAMENTO,95820,CA,2,1,1321,Residential,Tue May 20 00:00:00 EDT 2008,161829,38.541965,-121.452132 +209,3228 BAGGAN CT,ANTELOPE,95843,CA,3,2,1392,Residential,Tue May 20 00:00:00 EDT 2008,165000,38.715346,-121.388163 +210,8515 DARTFORD DR,SACRAMENTO,95823,CA,3,2,1439,Residential,Tue May 20 00:00:00 EDT 2008,168000,38.448288,-121.420719 +211,4500 TIPPWOOD WAY,SACRAMENTO,95842,CA,3,2,1159,Residential,Tue May 20 00:00:00 EDT 2008,169000,38.69951,-121.359989 +212,2460 EL ROCCO WAY,RANCHO CORDOVA,95670,CA,3,2,1671,Residential,Tue May 20 00:00:00 EDT 2008,175000,38.591477,-121.31534 +213,8244 SUNBIRD WAY,SACRAMENTO,95823,CA,3,2,1740,Residential,Tue May 20 00:00:00 EDT 2008,176250,38.457654,-121.431381 +214,5841 VALLEY VALE WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Tue May 20 00:00:00 EDT 2008,179000,38.461283,-121.434322 +215,7863 CRESTLEIGH CT,ANTELOPE,95843,CA,2,2,1007,Residential,Tue May 20 00:00:00 EDT 2008,180000,38.710889,-121.358876 +216,7129 SPRINGMONT DR,ELK GROVE,95758,CA,3,2,1716,Residential,Tue May 20 00:00:00 EDT 2008,180400,38.417649,-121.420294 +217,8284 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Tue May 20 00:00:00 EDT 2008,182000,38.417182,-121.397231 +218,2219 EL CANTO CIR,RANCHO CORDOVA,95670,CA,4,2,1829,Residential,Tue May 20 00:00:00 EDT 2008,184500,38.592383,-121.318669 +219,8907 GEMWOOD WAY,ELK GROVE,95758,CA,3,2,1555,Residential,Tue May 20 00:00:00 EDT 2008,185000,38.435471,-121.441173 +220,5925 MALEVILLE AVE,CARMICHAEL,95608,CA,4,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,189000,38.666564,-121.325717 +221,7031 CANEVALLEY CIR,CITRUS HEIGHTS,95621,CA,3,2,1137,Residential,Tue May 20 00:00:00 EDT 2008,194000,38.718693,-121.303619 +222,3949 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1174,Residential,Tue May 20 00:00:00 EDT 2008,195000,38.543697,-121.366683 +223,4437 MITCHUM CT,ANTELOPE,95843,CA,3,2,1393,Residential,Tue May 20 00:00:00 EDT 2008,200000,38.704407,-121.36113 +224,2778 KAWEAH CT,CAMERON PARK,95682,CA,3,1,0,Residential,Tue May 20 00:00:00 EDT 2008,201000,38.694052,-120.995589 +225,1636 ALLENWOOD CIR,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,202500,38.879192,-121.309477 +226,8151 QUAIL RIDGE CT,SACRAMENTO,95828,CA,3,2,1289,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.461296,-121.390858 +227,4899 WIND CREEK DR,SACRAMENTO,95838,CA,4,2,1799,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.655887,-121.446119 +228,2370 BIG CANYON CREEK RD,PLACERVILLE,95667,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.74458,-120.794254 +229,6049 HAMBURG WAY,SACRAMENTO,95823,CA,4,3,1953,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.443253,-121.431992 +230,4232 71ST ST,SACRAMENTO,95820,CA,2,1,723,Residential,Tue May 20 00:00:00 EDT 2008,207000,38.536741,-121.42115 +231,3361 BOW MAR CT,CAMERON PARK,95682,CA,2,2,0,Residential,Tue May 20 00:00:00 EDT 2008,210000,38.69437,-120.996602 +232,1889 COLD SPRINGS RD,PLACERVILLE,95667,CA,2,1,948,Residential,Tue May 20 00:00:00 EDT 2008,211500,38.739774,-120.860243 +233,5805 HIMALAYA WAY,CITRUS HEIGHTS,95621,CA,4,2,1578,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.696489,-121.328555 +234,7944 SYLVAN OAK WAY,CITRUS HEIGHTS,95610,CA,3,2,1317,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.710388,-121.261096 +235,3139 SPOONWOOD WAY Unit 1,SACRAMENTO,95833,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,215500,38.626582,-121.52151 +236,6217 LEOLA WAY,SACRAMENTO,95824,CA,3,1,1360,Residential,Tue May 20 00:00:00 EDT 2008,222381,38.513066,-121.451909 +237,2340 HURLEY WAY,SACRAMENTO,95825,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,225000,38.588816,-121.408549 +238,3035 BRUNNET LN,SACRAMENTO,95833,CA,3,2,1522,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.624762,-121.522775 +239,3025 EL PRADO WAY,SACRAMENTO,95825,CA,4,2,1751,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.606603,-121.394147 +240,9387 GRANITE FALLS CT,ELK GROVE,95624,CA,3,2,1465,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.419214,-121.348533 +241,9257 CALDERA WAY,SACRAMENTO,95826,CA,4,2,1605,Residential,Tue May 20 00:00:00 EDT 2008,228000,38.55821,-121.355022 +242,441 ARLINGDALE CIR,RIO LINDA,95673,CA,4,2,1475,Residential,Tue May 20 00:00:00 EDT 2008,229665,38.702893,-121.454949 +243,2284 LOS ROBLES RD,MEADOW VISTA,95722,CA,3,1,1216,Residential,Tue May 20 00:00:00 EDT 2008,230000,39.008159,-121.03623 +244,8164 CHENIN BLANC LN,FAIR OAKS,95628,CA,2,2,1315,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.665644,-121.259969 +245,4620 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.390557,-121.449805 +246,5340 BIRK WAY,SACRAMENTO,95835,CA,3,2,1776,Residential,Tue May 20 00:00:00 EDT 2008,234000,38.672495,-121.515251 +247,51 ANJOU CIR,SACRAMENTO,95835,CA,3,2,2187,Residential,Tue May 20 00:00:00 EDT 2008,235000,38.661658,-121.540633 +248,2125 22ND AVE,SACRAMENTO,95822,CA,3,1,1291,Residential,Tue May 20 00:00:00 EDT 2008,236250,38.534596,-121.493121 +249,611 BLOSSOM ROCK LN,FOLSOM,95630,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,240000,38.6457,-121.1197 +250,8830 ADUR RD,ELK GROVE,95624,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,242000,38.43742,-121.372876 +251,7344 BUTTERBALL WAY,SACRAMENTO,95842,CA,3,2,1503,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.699489,-121.361828 +252,8219 GWINHURST CIR,SACRAMENTO,95828,CA,4,3,2491,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.459711,-121.384283 +253,3240 S ST,SACRAMENTO,95816,CA,2,1,1269,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.562296,-121.467489 +254,221 PICASSO CIR,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.676658,-121.528128 +255,5706 GREENACRES WAY,ORANGEVALE,95662,CA,3,2,1176,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.669882,-121.213533 +256,6900 LONICERA DR,ORANGEVALE,95662,CA,4,2,1456,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.692199,-121.250975 +257,419 DAWNRIDGE RD,ROSEVILLE,95678,CA,3,2,1498,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.725283,-121.297953 +258,5312 MARBURY WAY,ANTELOPE,95843,CA,3,2,1574,Residential,Tue May 20 00:00:00 EDT 2008,255000,38.710221,-121.341651 +259,6344 BONHAM CIR,CITRUS HEIGHTS,95610,CA,5,4,2085,Multi-Family,Tue May 20 00:00:00 EDT 2008,256054,38.682358,-121.272876 +260,8207 YORKTON WAY,SACRAMENTO,95829,CA,3,2,2170,Residential,Tue May 20 00:00:00 EDT 2008,257729,38.45967,-121.360461 +261,7922 MANSELL WAY,ELK GROVE,95758,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,260000,38.409634,-121.410787 +262,5712 MELBURY CIR,ANTELOPE,95843,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,261000,38.705849,-121.334701 +263,632 NEWBRIDGE LN,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,261800,38.879084,-121.298586 +264,1570 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Tue May 20 00:00:00 EDT 2008,264469,38.482704,-121.500433 +265,8108 FILIFERA WAY,ANTELOPE,95843,CA,4,3,1768,Residential,Tue May 20 00:00:00 EDT 2008,265000,38.717042,-121.35468 +266,230 BANKSIDE WAY,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.676937,-121.529244 +267,5342 CALABRIA WAY,SACRAMENTO,95835,CA,4,3,2030,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.671807,-121.498274 +268,47 NAPONEE CT,SACRAMENTO,95835,CA,3,2,1531,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.665704,-121.529096 +269,4236 ADRIATIC SEA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.647961,-121.543162 +270,8864 REMBRANT CT,ELK GROVE,95624,CA,4,3,1653,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.435288,-121.375703 +271,9455 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.411522,-121.481406 +272,9720 LITTLE HARBOR WAY,ELK GROVE,95624,CA,4,3,2494,Residential,Tue May 20 00:00:00 EDT 2008,280000,38.404934,-121.352405 +273,8806 PHOENIX AVE,FAIR OAKS,95628,CA,3,2,1450,Residential,Tue May 20 00:00:00 EDT 2008,286013,38.660322,-121.230101 +274,3578 LOGGERHEAD WAY,SACRAMENTO,95834,CA,4,2,2169,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.633028,-121.526755 +275,1416 LOCKHART WAY,ROSEVILLE,95747,CA,3,2,1440,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.752399,-121.330328 +276,5413 BUENA VENTURA WAY,FAIR OAKS,95628,CA,3,2,1527,Residential,Tue May 20 00:00:00 EDT 2008,293993,38.664552,-121.255937 +277,37 WHITE BIRCH CT,ROSEVILLE,95678,CA,3,2,1401,Residential,Tue May 20 00:00:00 EDT 2008,294000,38.776327,-121.284514 +278,405 MARLIN SPIKE WAY,SACRAMENTO,95838,CA,3,2,1411,Residential,Tue May 20 00:00:00 EDT 2008,296769,38.65783,-121.456842 +279,1102 CHESLEY LN,LINCOLN,95648,CA,4,4,0,Residential,Tue May 20 00:00:00 EDT 2008,297500,38.864864,-121.313988 +280,11281 STANFORD COURT LN Unit 604,GOLD RIVER,95670,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,300000,38.625289,-121.260286 +281,7320 6TH ST,RIO LINDA,95673,CA,3,1,1284,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.700553,-121.452223 +282,993 MANTON CT,GALT,95632,CA,4,3,2307,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.272942,-121.289148 +283,4487 PANORAMA DR,PLACERVILLE,95667,CA,3,2,1329,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.694559,-120.848157 +284,5651 OVERLEAF WAY,SACRAMENTO,95835,CA,4,2,1910,Residential,Tue May 20 00:00:00 EDT 2008,300500,38.677454,-121.494791 +285,2015 PROMONTORY POINT LN,GOLD RIVER,95670,CA,3,2,1981,Residential,Tue May 20 00:00:00 EDT 2008,305000,38.628732,-121.261149 +286,3224 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,306500,38.772771,-121.364877 +287,15 VANESSA PL,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,312500,38.668692,-121.54549 +288,1312 RENISON LN,LINCOLN,95648,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,315000,38.866409,-121.308485 +289,8 RIVER RAFT CT,SACRAMENTO,95823,CA,4,2,2205,Residential,Tue May 20 00:00:00 EDT 2008,319789,38.447353,-121.434969 +290,2251 LAMPLIGHT LN,LINCOLN,95648,CA,2,2,1449,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.849924,-121.275729 +291,106 FARHAM DR,FOLSOM,95630,CA,3,2,1258,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.667834,-121.168578 +292,5405 NECTAR CIR,ELK GROVE,95757,CA,3,2,2575,Residential,Tue May 20 00:00:00 EDT 2008,331000,38.387014,-121.440967 +293,5411 10TH AVE,SACRAMENTO,95820,CA,2,1,539,Residential,Tue May 20 00:00:00 EDT 2008,334000,38.542727,-121.442449 +294,3512 RAINSONG CIR,RANCHO CORDOVA,95670,CA,4,3,2208,Residential,Tue May 20 00:00:00 EDT 2008,336000,38.573488,-121.282809 +295,1106 55TH ST,SACRAMENTO,95819,CA,3,1,1108,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.563805,-121.436395 +296,411 ILLSLEY WAY,FOLSOM,95630,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.652002,-121.129504 +297,796 BUTTERCUP CIR,GALT,95632,CA,4,2,2159,Residential,Tue May 20 00:00:00 EDT 2008,345000,38.279581,-121.300828 +298,1230 SANDRA CIR,PLACERVILLE,95667,CA,4,3,2295,Residential,Tue May 20 00:00:00 EDT 2008,350000,38.738141,-120.784145 +299,318 ANACAPA DR,ROSEVILLE,95678,CA,3,2,1838,Residential,Tue May 20 00:00:00 EDT 2008,356000,38.782094,-121.297133 +300,3975 SHINING STAR DR,SACRAMENTO,95823,CA,4,2,1900,Residential,Tue May 20 00:00:00 EDT 2008,361745,38.487409,-121.461413 +301,1620 BASLER ST,SACRAMENTO,95811,CA,4,2,1718,Residential,Tue May 20 00:00:00 EDT 2008,361948,38.591822,-121.478644 +302,9688 NATURE TRAIL WAY,ELK GROVE,95757,CA,5,3,3389,Residential,Tue May 20 00:00:00 EDT 2008,370000,38.405224,-121.479275 +303,5924 TANUS CIR,ROCKLIN,95677,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,380000,38.778691,-121.204292 +304,9629 CEDAR OAK WAY,ELK GROVE,95757,CA,5,4,3260,Residential,Tue May 20 00:00:00 EDT 2008,385000,38.405527,-121.431746 +305,3429 FERNBROOK CT,CAMERON PARK,95682,CA,3,2,2016,Residential,Tue May 20 00:00:00 EDT 2008,399000,38.664225,-121.007173 +306,2121 HANNAH WAY,ROCKLIN,95765,CA,4,2,2607,Residential,Tue May 20 00:00:00 EDT 2008,402000,38.805749,-121.280931 +307,10104 ANNIE ST,ELK GROVE,95757,CA,4,3,2724,Residential,Tue May 20 00:00:00 EDT 2008,406026,38.390465,-121.443479 +308,1092 MAUGHAM CT,GALT,95632,CA,5,4,3746,Residential,Tue May 20 00:00:00 EDT 2008,420000,38.271646,-121.286848 +309,5404 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.527502,-121.233492 +310,6306 CONEJO,RANCHO MURIETA,95683,CA,4,2,3192,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.512602,-121.087233 +311,14 CASA VATONI PL,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,433500,38.650221,-121.551704 +312,1456 EAGLESFIELD LN,LINCOLN,95648,CA,4,3,0,Residential,Tue May 20 00:00:00 EDT 2008,436746,38.857635,-121.311375 +313,4100 BOTHWELL CIR,EL DORADO HILLS,95762,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,438700,38.679136,-121.034329 +314,427 21ST ST,SACRAMENTO,95811,CA,2,1,1247,Residential,Tue May 20 00:00:00 EDT 2008,445000,38.582604,-121.47576 +315,1044 GALSTON DR,FOLSOM,95630,CA,4,2,2581,Residential,Tue May 20 00:00:00 EDT 2008,450000,38.676306,-121.09954 +316,4440 SYCAMORE AVE,SACRAMENTO,95841,CA,3,1,2068,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.646374,-121.353658 +317,1032 SOUZA DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.668239,-121.064437 +318,9760 LAZULITE CT,ELK GROVE,95624,CA,4,3,3992,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.403609,-121.335541 +319,241 LANFRANCO CIR,SACRAMENTO,95835,CA,4,4,3397,Residential,Tue May 20 00:00:00 EDT 2008,465000,38.665696,-121.549437 +320,5559 NORTHBOROUGH DR,SACRAMENTO,95835,CA,5,3,3881,Residential,Tue May 20 00:00:00 EDT 2008,471750,38.677225,-121.519687 +321,2125 BIG SKY DR,ROCKLIN,95765,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,480000,38.801637,-121.278798 +322,2109 HAMLET PL,CARMICHAEL,95608,CA,2,2,1598,Residential,Tue May 20 00:00:00 EDT 2008,484000,38.602754,-121.329326 +323,9970 STATE HIGHWAY 193,PLACERVILLE,95667,CA,4,3,1929,Residential,Tue May 20 00:00:00 EDT 2008,485000,38.787877,-120.816676 +324,2901 PINTAIL WAY,ELK GROVE,95757,CA,4,3,3070,Residential,Tue May 20 00:00:00 EDT 2008,495000,38.398488,-121.473424 +325,201 FIRESTONE DR,ROSEVILLE,95678,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,500500,38.770153,-121.300039 +326,1740 HIGH ST,AUBURN,95603,CA,3,3,0,Residential,Tue May 20 00:00:00 EDT 2008,504000,38.891935,-121.08434 +327,2733 DANA LOOP,EL DORADO HILLS,95762,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,541000,38.628459,-121.055078 +328,9741 SADDLEBRED CT,WILTON,95693,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,560000,38.408841,-121.198039 +329,7756 TIGERWOODS DR,SACRAMENTO,95829,CA,5,3,3984,Residential,Tue May 20 00:00:00 EDT 2008,572500,38.47643,-121.309243 +330,5709 RIVER OAK WAY,CARMICHAEL,95608,CA,4,2,2222,Residential,Tue May 20 00:00:00 EDT 2008,582000,38.602461,-121.330979 +331,2981 WRINGER DR,ROSEVILLE,95661,CA,4,3,3838,Residential,Tue May 20 00:00:00 EDT 2008,613401,38.735373,-121.227072 +332,8616 ROCKPORTE CT,ROSEVILLE,95747,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,614000,38.742118,-121.359909 +333,4128 HILL ST,FAIR OAKS,95628,CA,5,5,2846,Residential,Tue May 20 00:00:00 EDT 2008,680000,38.64167,-121.262099 +334,1409 47TH ST,SACRAMENTO,95819,CA,5,2,2484,Residential,Tue May 20 00:00:00 EDT 2008,699000,38.563244,-121.446876 +335,3935 EL MONTE DR,LOOMIS,95650,CA,4,4,1624,Residential,Tue May 20 00:00:00 EDT 2008,839000,38.813337,-121.133348 +336,5840 WALERGA RD,SACRAMENTO,95842,CA,2,1,840,Condo,Mon May 19 00:00:00 EDT 2008,40000,38.673678,-121.357471 +337,923 FULTON AVE,SACRAMENTO,95825,CA,1,1,484,Condo,Mon May 19 00:00:00 EDT 2008,48000,38.582279,-121.401482 +338,261 REDONDO AVE,SACRAMENTO,95815,CA,3,1,970,Residential,Mon May 19 00:00:00 EDT 2008,61500,38.620685,-121.460539 +339,4030 BROADWAY,SACRAMENTO,95817,CA,2,1,623,Residential,Mon May 19 00:00:00 EDT 2008,62050,38.546798,-121.460038 +340,3660 22ND AVE,SACRAMENTO,95820,CA,2,1,932,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.532718,-121.46747 +341,3924 HIGH ST,SACRAMENTO,95838,CA,2,1,796,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.638797,-121.435049 +342,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +343,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +344,5050 RHODE ISLAND DR Unit 4,SACRAMENTO,95841,CA,2,1,924,Condo,Mon May 19 00:00:00 EDT 2008,77000,38.658739,-121.333561 +345,4513 GREENHOLME DR,SACRAMENTO,95842,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,82732,38.669104,-121.359008 +346,3845 ELM ST,SACRAMENTO,95838,CA,3,1,1250,Residential,Mon May 19 00:00:00 EDT 2008,84000,38.637337,-121.432835 +347,3908 17TH AVE,SACRAMENTO,95820,CA,2,1,984,Residential,Mon May 19 00:00:00 EDT 2008,84675,38.53728,-121.463531 +348,7109 CHANDLER DR,SACRAMENTO,95828,CA,3,1,1013,Residential,Mon May 19 00:00:00 EDT 2008,85000,38.497237,-121.424187 +349,7541 SKELTON WAY,SACRAMENTO,95822,CA,3,1,1012,Residential,Mon May 19 00:00:00 EDT 2008,90000,38.484274,-121.488851 +350,9058 MONTOYA ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,90000,38.559144,-121.368387 +351,1016 CONGRESS AVE,SACRAMENTO,95838,CA,2,2,918,Residential,Mon May 19 00:00:00 EDT 2008,91000,38.630151,-121.442789 +352,540 MORRISON AVE,SACRAMENTO,95838,CA,3,1,1082,Residential,Mon May 19 00:00:00 EDT 2008,95000,38.637704,-121.453946 +353,5303 JERRETT WAY,SACRAMENTO,95842,CA,2,1,964,Residential,Mon May 19 00:00:00 EDT 2008,97500,38.663282,-121.359631 +354,2820 DEL PASO BLVD,SACRAMENTO,95815,CA,4,2,1404,Multi-Family,Mon May 19 00:00:00 EDT 2008,100000,38.617718,-121.440089 +355,3715 TALLYHO DR Unit 78HIGH,SACRAMENTO,95826,CA,1,1,625,Condo,Mon May 19 00:00:00 EDT 2008,100000,38.544627,-121.35796 +356,6013 ROWAN WAY,CITRUS HEIGHTS,95621,CA,2,1,888,Residential,Mon May 19 00:00:00 EDT 2008,101000,38.675893,-121.2963 +357,2987 PONDEROSA LN,SACRAMENTO,95815,CA,4,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,102750,38.622243,-121.457863 +358,3732 LANKERSHIM WAY,NORTH HIGHLANDS,95660,CA,3,1,1331,Residential,Mon May 19 00:00:00 EDT 2008,112500,38.68972,-121.378399 +359,2216 DUNLAP DR,SACRAMENTO,95821,CA,3,1,1014,Residential,Mon May 19 00:00:00 EDT 2008,113000,38.623738,-121.41305 +360,3503 21ST AVE,SACRAMENTO,95820,CA,4,2,1448,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.53361,-121.469308 +361,523 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,966,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.659414,-121.45408 +362,8101 PORT ROYALE WAY,SACRAMENTO,95823,CA,2,1,779,Residential,Mon May 19 00:00:00 EDT 2008,114750,38.463929,-121.438667 +363,8020 WALERGA RD,ANTELOPE,95843,CA,2,2,836,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.71607,-121.364468 +364,167 VALLEY OAK DR,ROSEVILLE,95678,CA,2,2,1100,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.732429,-121.288069 +365,7876 BURLINGTON WAY,SACRAMENTO,95832,CA,3,1,1174,Residential,Mon May 19 00:00:00 EDT 2008,116100,38.470093,-121.468347 +366,3726 JONKO AVE,NORTH HIGHLANDS,95660,CA,3,2,1207,Residential,Mon May 19 00:00:00 EDT 2008,119250,38.656131,-121.377265 +367,7342 GIGI PL,SACRAMENTO,95828,CA,4,4,1995,Multi-Family,Mon May 19 00:00:00 EDT 2008,120000,38.490704,-121.410176 +368,2610 PHYLLIS AVE,SACRAMENTO,95820,CA,2,1,804,Residential,Mon May 19 00:00:00 EDT 2008,120000,38.53105,-121.479574 +369,4200 COMMERCE WAY Unit 711,SACRAMENTO,95834,CA,2,2,958,Condo,Mon May 19 00:00:00 EDT 2008,120000,38.647523,-121.523217 +370,4621 COUNTRY SCENE WAY,SACRAMENTO,95823,CA,3,2,1366,Residential,Mon May 19 00:00:00 EDT 2008,120108,38.470187,-121.448149 +371,5380 VILLAGE WOOD DR,SACRAMENTO,95823,CA,2,2,901,Residential,Mon May 19 00:00:00 EDT 2008,121500,38.454949,-121.440578 +372,2621 EVERGREEN ST,SACRAMENTO,95815,CA,3,1,696,Residential,Mon May 19 00:00:00 EDT 2008,121725,38.613103,-121.444085 +373,201 CARLO CT,GALT,95632,CA,3,2,1080,Residential,Mon May 19 00:00:00 EDT 2008,122000,38.24227,-121.31032 +374,6743 21ST ST,SACRAMENTO,95822,CA,3,2,1104,Residential,Mon May 19 00:00:00 EDT 2008,123000,38.50372,-121.490657 +375,3128 VIA GRANDE,SACRAMENTO,95825,CA,2,1,972,Residential,Mon May 19 00:00:00 EDT 2008,125000,38.598321,-121.39161 +376,2847 BELGRADE WAY,SACRAMENTO,95833,CA,4,2,1390,Residential,Mon May 19 00:00:00 EDT 2008,125573,38.617173,-121.482541 +377,7741 MILLDALE CIR,ELVERTA,95626,CA,4,2,1354,Residential,Mon May 19 00:00:00 EDT 2008,126714,38.705834,-121.43919 +378,9013 CASALS ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,126960,38.557045,-121.37167 +379,227 MAHAN CT Unit 1,ROSEVILLE,95678,CA,2,1,780,Condo,Mon May 19 00:00:00 EDT 2008,127000,38.749723,-121.27008 +380,7349 FLETCHER FARM DR,SACRAMENTO,95828,CA,4,2,1587,Residential,Mon May 19 00:00:00 EDT 2008,127500,38.49069,-121.382619 +381,7226 LARCHMONT DR,NORTH HIGHLANDS,95660,CA,3,2,1209,Residential,Mon May 19 00:00:00 EDT 2008,130000,38.699269,-121.376334 +382,4114 35TH AVE,SACRAMENTO,95824,CA,2,1,1139,Residential,Mon May 19 00:00:00 EDT 2008,133105,38.520941,-121.459355 +383,617 M ST,RIO LINDA,95673,CA,2,2,1690,Residential,Mon May 19 00:00:00 EDT 2008,136500,38.691104,-121.451832 +384,7032 FAIR OAKS BLVD,CARMICHAEL,95608,CA,3,2,1245,Condo,Mon May 19 00:00:00 EDT 2008,139500,38.628563,-121.328297 +385,2421 SANTINA WAY,ELVERTA,95626,CA,3,2,1416,Residential,Mon May 19 00:00:00 EDT 2008,140000,38.71865,-121.407763 +386,2368 CRAIG AVE,SACRAMENTO,95832,CA,3,2,1300,Residential,Mon May 19 00:00:00 EDT 2008,140800,38.47807,-121.48114 +387,2123 AMANDA WAY,SACRAMENTO,95822,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,145000,38.484896,-121.486948 +388,7620 DARLA WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Mon May 19 00:00:00 EDT 2008,147000,38.478502,-121.403517 +389,8344 FIELDPOPPY CIR,SACRAMENTO,95828,CA,3,2,1407,Residential,Mon May 19 00:00:00 EDT 2008,149600,38.479083,-121.400702 +390,3624 20TH AVE,SACRAMENTO,95820,CA,5,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.534508,-121.467907 +391,10001 WOODCREEK OAKS BLVD Unit 1415,ROSEVILLE,95747,CA,2,2,0,Condo,Mon May 19 00:00:00 EDT 2008,150000,38.795529,-121.328819 +392,2848 PROVO WAY,SACRAMENTO,95822,CA,3,2,1646,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.489759,-121.474754 +393,6045 EHRHARDT AVE,SACRAMENTO,95823,CA,3,2,1676,Residential,Mon May 19 00:00:00 EDT 2008,155000,38.457157,-121.433065 +394,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155435,38.646677,-121.437573 +395,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155500,38.646677,-121.437573 +396,6000 BIRCHGLADE WAY,CITRUS HEIGHTS,95621,CA,4,2,1351,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.70166,-121.323249 +397,7204 THOMAS DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.697898,-121.377687 +398,8363 LANGTREE WAY,SACRAMENTO,95823,CA,3,2,1452,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.45356,-121.435959 +399,1675 VERNON ST Unit 8,ROSEVILLE,95678,CA,2,1,990,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.734136,-121.299639 +400,6632 IBEX WOODS CT,CITRUS HEIGHTS,95621,CA,2,2,1162,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.720868,-121.309855 +401,117 EVCAR WAY,RIO LINDA,95673,CA,3,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.687659,-121.4633 +402,6485 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,165000,38.42465,-121.430137 +403,746 MOOSE CREEK WAY,GALT,95632,CA,3,2,1100,Residential,Mon May 19 00:00:00 EDT 2008,167000,38.283085,-121.302071 +404,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +405,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +406,5217 ARGO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Mon May 19 00:00:00 EDT 2008,168000,38.52774,-121.433669 +407,7108 HEATHER TREE DR,SACRAMENTO,95842,CA,3,2,1159,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.695677,-121.36022 +408,2956 DAVENPORT WAY,SACRAMENTO,95833,CA,4,2,1917,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.620687,-121.482619 +409,10062 LINCOLN VILLAGE DR,SACRAMENTO,95827,CA,3,2,1520,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.564,-121.320023 +410,332 PALIN AVE,GALT,95632,CA,3,2,1204,Residential,Mon May 19 00:00:00 EDT 2008,174000,38.260467,-121.302636 +411,4649 FREEWAY CIR,SACRAMENTO,95841,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,178000,38.658734,-121.357196 +412,8593 DERLIN WAY,SACRAMENTO,95823,CA,3,2,1436,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.447585,-121.426627 +413,9273 PREMIER WAY,SACRAMENTO,95826,CA,3,2,1451,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.55992,-121.352539 +414,8032 DUSENBERG CT,SACRAMENTO,95828,CA,4,2,1638,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.466499,-121.381119 +415,7110 STELLA LN Unit 15,CARMICHAEL,95608,CA,2,2,1000,Condo,Mon May 19 00:00:00 EDT 2008,182000,38.637396,-121.300055 +416,1786 PIEDMONT WAY,ROSEVILLE,95661,CA,3,1,1152,Residential,Mon May 19 00:00:00 EDT 2008,188325,38.72748,-121.256537 +417,1347 HIDALGO CIR,ROSEVILLE,95747,CA,3,2,1154,Residential,Mon May 19 00:00:00 EDT 2008,191500,38.747878,-121.311279 +418,212 CAPPUCINO WAY,SACRAMENTO,95838,CA,3,2,1353,Residential,Mon May 19 00:00:00 EDT 2008,192000,38.657811,-121.465327 +419,5938 WOODBRIAR WAY,CITRUS HEIGHTS,95621,CA,3,2,1329,Residential,Mon May 19 00:00:00 EDT 2008,192700,38.706152,-121.325399 +420,3801 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1356,Residential,Mon May 19 00:00:00 EDT 2008,195000,38.544368,-121.369979 +421,508 SAMUEL WAY,SACRAMENTO,95838,CA,3,2,1505,Residential,Mon May 19 00:00:00 EDT 2008,197654,38.645689,-121.452766 +422,6128 CARL SANDBURG CIR,SACRAMENTO,95842,CA,3,1,1009,Residential,Mon May 19 00:00:00 EDT 2008,198000,38.681541,-121.355616 +423,1 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Mon May 19 00:00:00 EDT 2008,200345,38.46452,-121.427606 +424,909 SINGINGWOOD RD,SACRAMENTO,95864,CA,2,1,930,Residential,Mon May 19 00:00:00 EDT 2008,203000,38.581471,-121.38839 +425,6671 FOXWOOD CT,SACRAMENTO,95841,CA,4,2,1766,Residential,Mon May 19 00:00:00 EDT 2008,207000,38.687943,-121.328883 +426,8165 AYN RAND CT,SACRAMENTO,95828,CA,4,3,1940,Residential,Mon May 19 00:00:00 EDT 2008,208000,38.468639,-121.403265 +427,9474 VILLAGE TREE DR,ELK GROVE,95758,CA,4,2,1776,Residential,Mon May 19 00:00:00 EDT 2008,210000,38.413947,-121.408276 +428,7213 CALVIN DR,CITRUS HEIGHTS,95621,CA,3,1,1258,Residential,Mon May 19 00:00:00 EDT 2008,212000,38.698154,-121.298375 +429,8167 DERBY PARK CT,SACRAMENTO,95828,CA,4,2,1872,Residential,Mon May 19 00:00:00 EDT 2008,213675,38.460492,-121.373379 +430,6344 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,213697,38.423963,-121.428875 +431,2945 RED HAWK WAY,SACRAMENTO,95833,CA,4,2,1856,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.619675,-121.496903 +432,3228 I ST,SACRAMENTO,95816,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.573844,-121.462839 +433,308 ATKINSON ST,ROSEVILLE,95678,CA,3,1,998,Residential,Mon May 19 00:00:00 EDT 2008,215100,38.746794,-121.29971 +434,624 HOVEY WAY,ROSEVILLE,95678,CA,3,2,1758,Residential,Mon May 19 00:00:00 EDT 2008,217500,38.756149,-121.306479 +435,110 COPPER LEAF WAY,SACRAMENTO,95838,CA,3,2,2142,Residential,Mon May 19 00:00:00 EDT 2008,218000,38.658466,-121.460661 +436,7535 ALMA VISTA WAY,SACRAMENTO,95831,CA,2,1,950,Residential,Mon May 19 00:00:00 EDT 2008,220000,38.48403,-121.507641 +437,7423 WILSALL CT,ELK GROVE,95758,CA,4,3,1739,Residential,Mon May 19 00:00:00 EDT 2008,221000,38.417026,-121.416821 +438,8629 VIA ALTA WAY,ELK GROVE,95624,CA,3,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,222900,38.398245,-121.380615 +439,3318 DAVIDSON DR,ANTELOPE,95843,CA,3,1,988,Residential,Mon May 19 00:00:00 EDT 2008,223139,38.705753,-121.388917 +440,913 COBDEN CT,GALT,95632,CA,4,2,1555,Residential,Mon May 19 00:00:00 EDT 2008,225500,38.282001,-121.295902 +441,4419 79TH ST,SACRAMENTO,95820,CA,3,2,1212,Residential,Mon May 19 00:00:00 EDT 2008,228327,38.534827,-121.412545 +442,3012 SPOONWOOD WAY,SACRAMENTO,95833,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.62478,-121.523474 +443,8728 CRYSTAL RIVER WAY,SACRAMENTO,95828,CA,3,2,1302,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.47547,-121.380055 +444,4709 AMBER LN Unit 1,SACRAMENTO,95841,CA,2,1,756,Condo,Mon May 19 00:00:00 EDT 2008,230522,38.657789,-121.354994 +445,4508 OLD DAIRY DR,ANTELOPE,95843,CA,4,3,2026,Residential,Mon May 19 00:00:00 EDT 2008,231200,38.72286,-121.358939 +446,312 RIVER ISLE WAY,SACRAMENTO,95831,CA,3,2,1375,Residential,Mon May 19 00:00:00 EDT 2008,232000,38.49026,-121.550527 +447,301 OLIVADI WAY,SACRAMENTO,95834,CA,2,2,1250,Condo,Mon May 19 00:00:00 EDT 2008,232500,38.644406,-121.549049 +448,5636 25TH ST,SACRAMENTO,95822,CA,3,1,1058,Residential,Mon May 19 00:00:00 EDT 2008,233641,38.523828,-121.481139 +449,8721 SPRUCE RIDGE WAY,ANTELOPE,95843,CA,3,2,1187,Residential,Mon May 19 00:00:00 EDT 2008,234000,38.727657,-121.391028 +450,7461 WINDBRIDGE DR,SACRAMENTO,95831,CA,2,2,1324,Residential,Mon May 19 00:00:00 EDT 2008,234500,38.48797,-121.530229 +451,8101 LEMON COVE CT,SACRAMENTO,95828,CA,4,3,1936,Residential,Mon May 19 00:00:00 EDT 2008,235000,38.462981,-121.408288 +452,10949 SCOTSMAN WAY,RANCHO CORDOVA,95670,CA,5,4,2382,Multi-Family,Mon May 19 00:00:00 EDT 2008,236000,38.603686,-121.277844 +453,617 WILLOW CREEK DR,FOLSOM,95630,CA,3,2,1427,Residential,Mon May 19 00:00:00 EDT 2008,236073,38.679626,-121.142609 +454,3301 PARK DR Unit 1914,SACRAMENTO,95835,CA,3,2,1678,Condo,Mon May 19 00:00:00 EDT 2008,238000,38.665296,-121.531993 +455,709 CIMMARON CT,GALT,95632,CA,4,2,1798,Residential,Mon May 19 00:00:00 EDT 2008,238861,38.277177,-121.303747 +456,3305 RIO ROCA CT,ANTELOPE,95843,CA,4,3,2652,Residential,Mon May 19 00:00:00 EDT 2008,239700,38.725079,-121.387698 +457,9080 BEDROCK CT,SACRAMENTO,95829,CA,4,2,1816,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.456939,-121.362965 +458,100 TOURMALINE CIR,SACRAMENTO,95834,CA,5,3,3076,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.63437,-121.510779 +459,6411 RED BIRCH WAY,ELK GROVE,95758,CA,4,2,1844,Residential,Mon May 19 00:00:00 EDT 2008,241000,38.43461,-121.429316 +460,4867 LAGUNA DR,SACRAMENTO,95823,CA,3,2,1306,Residential,Mon May 19 00:00:00 EDT 2008,245000,38.46179,-121.445371 +461,3662 RIVER DR,SACRAMENTO,95833,CA,4,3,2447,Residential,Mon May 19 00:00:00 EDT 2008,246000,38.604969,-121.54255 +462,6943 WOLFGRAM WAY,SACRAMENTO,95828,CA,4,2,1176,Residential,Mon May 19 00:00:00 EDT 2008,247234,38.489215,-121.419546 +463,77 RINETTI WAY,RIO LINDA,95673,CA,4,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,247480,38.687021,-121.463151 +464,1316 I ST,RIO LINDA,95673,CA,3,1,1160,Residential,Mon May 19 00:00:00 EDT 2008,249862,38.683674,-121.435204 +465,2130 CATHERWOOD WAY,SACRAMENTO,95835,CA,3,2,1424,Residential,Mon May 19 00:00:00 EDT 2008,251000,38.675506,-121.510987 +466,8304 JUGLANS DR,ORANGEVALE,95662,CA,4,2,1574,Residential,Mon May 19 00:00:00 EDT 2008,252155,38.691829,-121.249033 +467,5308 MARBURY WAY,ANTELOPE,95843,CA,3,2,1830,Residential,Mon May 19 00:00:00 EDT 2008,254172,38.710221,-121.341707 +468,9182 LAKEMONT DR,ELK GROVE,95624,CA,4,2,1724,Residential,Mon May 19 00:00:00 EDT 2008,258000,38.451353,-121.358776 +469,2231 COUNTRY VILLA CT,AUBURN,95603,CA,2,2,1255,Condo,Mon May 19 00:00:00 EDT 2008,260000,38.931671,-121.097862 +470,8491 CRYSTAL WALK CIR,ELK GROVE,95758,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.416916,-121.407554 +471,361 MAHONIA CIR,SACRAMENTO,95835,CA,4,3,2175,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.676172,-121.509761 +472,3427 LA CADENA WAY,SACRAMENTO,95835,CA,4,2,1904,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.681194,-121.537351 +473,955 BIG SUR CT,EL DORADO HILLS,95762,CA,4,2,1808,Residential,Mon May 19 00:00:00 EDT 2008,262500,38.664347,-121.076529 +474,11826 DIONYSUS WAY,RANCHO CORDOVA,95742,CA,4,2,2711,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.551046,-121.239411 +475,5847 DEL CAMPO LN,CARMICHAEL,95608,CA,3,1,1713,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.671995,-121.324339 +476,5635 FOXVIEW WAY,ELK GROVE,95757,CA,3,2,1457,Residential,Mon May 19 00:00:00 EDT 2008,270000,38.395256,-121.438249 +477,10372 VIA CINTA CT,ELK GROVE,95757,CA,4,3,2724,Residential,Mon May 19 00:00:00 EDT 2008,274425,38.380089,-121.428186 +478,6286 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,274500,38.805036,-121.293608 +479,7744 SOUTHBREEZE DR,SACRAMENTO,95828,CA,3,2,1468,Residential,Mon May 19 00:00:00 EDT 2008,275336,38.476932,-121.378349 +480,2242 ABLE WAY,SACRAMENTO,95835,CA,4,3,2550,Residential,Mon May 19 00:00:00 EDT 2008,277980,38.666074,-121.509743 +481,1042 STARBROOK DR,GALT,95632,CA,4,2,1928,Residential,Mon May 19 00:00:00 EDT 2008,280000,38.285611,-121.293063 +482,1219 G ST,SACRAMENTO,95814,CA,3,3,1922,Residential,Mon May 19 00:00:00 EDT 2008,284686,38.582818,-121.489096 +483,6220 OPUS CT,CITRUS HEIGHTS,95621,CA,3,2,1343,Residential,Mon May 19 00:00:00 EDT 2008,284893,38.715853,-121.317095 +484,5419 HAVENHURST CIR,ROCKLIN,95677,CA,3,2,1510,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.786746,-121.209957 +485,220 OLD AIRPORT RD,AUBURN,95603,CA,2,2,960,Multi-Family,Mon May 19 00:00:00 EDT 2008,285000,38.939802,-121.054575 +486,4622 MEYER WAY,CARMICHAEL,95608,CA,4,2,1559,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.64913,-121.310667 +487,4885 SUMMIT VIEW DR,EL DORADO,95623,CA,3,2,1624,Residential,Mon May 19 00:00:00 EDT 2008,289000,38.673285,-120.879176 +488,26 JEANROSS CT,SACRAMENTO,95832,CA,5,3,2992,Residential,Mon May 19 00:00:00 EDT 2008,295000,38.473162,-121.491085 +489,4800 MAPLEPLAIN AVE,ELK GROVE,95758,CA,4,2,2109,Residential,Mon May 19 00:00:00 EDT 2008,296000,38.432848,-121.449237 +490,10629 BASIE WAY,RANCHO CORDOVA,95670,CA,4,2,1524,Residential,Mon May 19 00:00:00 EDT 2008,296056,38.579,-121.292627 +491,8612 WILLOW GROVE WAY,SACRAMENTO,95828,CA,3,2,1248,Residential,Mon May 19 00:00:00 EDT 2008,297359,38.464994,-121.386962 +492,62 DE FER CIR,SACRAMENTO,95823,CA,4,2,1876,Residential,Mon May 19 00:00:00 EDT 2008,299940,38.49254,-121.463316 +493,2513 OLD KENMARE RD,LINCOLN,95648,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,304000,38.847396,-121.259586 +494,3253 ABOTO WAY,RANCHO CORDOVA,95670,CA,4,3,1851,Residential,Mon May 19 00:00:00 EDT 2008,305000,38.57727,-121.285591 +495,3072 VILLAGE PLAZA DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,307000,38.773094,-121.365905 +496,251 CHANGO CIR,SACRAMENTO,95835,CA,4,2,2218,Residential,Mon May 19 00:00:00 EDT 2008,311328,38.68237,-121.539147 +497,8205 WEYBURN CT,SACRAMENTO,95828,CA,3,2,1394,Residential,Mon May 19 00:00:00 EDT 2008,313138,38.47316,-121.403893 +498,8788 LA MARGARITA WAY,SACRAMENTO,95828,CA,3,2,1410,Residential,Mon May 19 00:00:00 EDT 2008,316630,38.468185,-121.375694 +499,5912 DEEPDALE WAY,ELK GROVE,95758,CA,5,3,3468,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.439565,-121.436606 +500,4712 PISMO BEACH DR,ANTELOPE,95843,CA,5,3,2346,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.707705,-121.354153 +501,4741 PACIFIC PARK DR,ANTELOPE,95843,CA,5,3,2347,Residential,Mon May 19 00:00:00 EDT 2008,325000,38.709299,-121.353056 +502,310 GROTH CIR,SACRAMENTO,95834,CA,4,2,1659,Residential,Mon May 19 00:00:00 EDT 2008,328578,38.638764,-121.531827 +503,6121 WILD FOX CT,ELK GROVE,95757,CA,3,3,2442,Residential,Mon May 19 00:00:00 EDT 2008,331000,38.406758,-121.431669 +504,12241 CANYONLANDS DR,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,331500,38.557293,-121.217611 +505,29 COOL FOUNTAIN CT,SACRAMENTO,95833,CA,4,2,2155,Residential,Mon May 19 00:00:00 EDT 2008,340000,38.606906,-121.54132 +506,907 RIO ROBLES AVE,SACRAMENTO,95838,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,344755,38.664765,-121.445006 +507,8909 BILLFISH WAY,SACRAMENTO,95828,CA,3,2,1810,Residential,Mon May 19 00:00:00 EDT 2008,345746,38.475433,-121.372584 +508,6232 GUS WAY,ELK GROVE,95757,CA,4,2,2789,Residential,Mon May 19 00:00:00 EDT 2008,351000,38.388129,-121.43117 +509,200 OAKWILDE ST,GALT,95632,CA,4,2,1606,Residential,Mon May 19 00:00:00 EDT 2008,353767,38.2535,-121.31812 +510,1033 PARK STREAM DR,GALT,95632,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,355000,38.287785,-121.289903 +511,200 ALLAIRE CIR,SACRAMENTO,95835,CA,4,2,2166,Residential,Mon May 19 00:00:00 EDT 2008,356035,38.68318,-121.53484 +512,1322 SUTTER WALK,SACRAMENTO,95816,CA,0,0,0,Condo,Mon May 19 00:00:00 EDT 2008,360000,38.53805,-121.5047 +513,5479 NICKMAN WAY,SACRAMENTO,95835,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,360552,38.672966,-121.502748 +514,2103 BURBERRY WAY,SACRAMENTO,95835,CA,3,2,1800,Residential,Mon May 19 00:00:00 EDT 2008,362305,38.67342,-121.508542 +515,2450 SAN JOSE WAY,SACRAMENTO,95817,CA,3,1,1683,Residential,Mon May 19 00:00:00 EDT 2008,365000,38.553596,-121.459483 +516,7641 ROSEHALL DR,ROSEVILLE,95678,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,367554,38.791617,-121.286147 +517,1336 LAYSAN TEAL DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,368500,38.796121,-121.319963 +518,2802 BLACK OAK DR,ROCKLIN,95765,CA,2,2,1596,Residential,Mon May 19 00:00:00 EDT 2008,370000,38.837006,-121.232024 +519,2113 FALL TRAIL CT,PLACERVILLE,95667,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,371086,38.733155,-120.748039 +520,10112 LAMBEAU CT,ELK GROVE,95757,CA,3,2,1179,Residential,Mon May 19 00:00:00 EDT 2008,378000,38.390328,-121.448022 +521,6313 CASTRO VERDE WAY,ELK GROVE,95757,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,383000,38.381102,-121.42901 +522,3622 CURTIS DR,SACRAMENTO,95818,CA,3,1,1639,Residential,Mon May 19 00:00:00 EDT 2008,388000,38.541735,-121.480098 +523,11817 OPAL RIDGE WAY,RANCHO CORDOVA,95742,CA,5,3,3281,Residential,Mon May 19 00:00:00 EDT 2008,395100,38.551083,-121.237476 +524,170 LAGOMARSINO WAY,SACRAMENTO,95819,CA,3,2,1697,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.574894,-121.435806 +525,2743 DEAKIN PL,EL DORADO HILLS,95762,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.69288,-121.073551 +526,3361 ALDER CANYON WAY,ANTELOPE,95843,CA,4,3,2085,Residential,Mon May 19 00:00:00 EDT 2008,408431,38.727649,-121.385656 +527,2148 RANCH VIEW DR,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,413000,38.837455,-121.289337 +528,398 LINDLEY DR,SACRAMENTO,95815,CA,4,2,1744,Multi-Family,Mon May 19 00:00:00 EDT 2008,416767,38.622359,-121.457582 +529,3013 BRIDLEWOOD DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,420000,38.675519,-121.015862 +530,169 BAURER CIR,FOLSOM,95630,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.66695,-121.120729 +531,2809 LOON CT,CAMERON PARK,95682,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.687072,-121.004729 +532,1315 KONDOS AVE,SACRAMENTO,95814,CA,2,3,1788,Residential,Mon May 19 00:00:00 EDT 2008,427500,38.571943,-121.492106 +533,4966 CHARTER RD,ROCKLIN,95765,CA,3,2,1691,Residential,Mon May 19 00:00:00 EDT 2008,430922,38.82553,-121.254698 +534,9516 LAGUNA LAKE WAY,ELK GROVE,95758,CA,4,2,2002,Residential,Mon May 19 00:00:00 EDT 2008,445000,38.411258,-121.431348 +535,5201 BLOSSOM RANCH DR,ELK GROVE,95757,CA,4,4,4303,Residential,Mon May 19 00:00:00 EDT 2008,450000,38.399436,-121.444041 +536,3027 PALMATE WAY,SACRAMENTO,95834,CA,5,3,4246,Residential,Mon May 19 00:00:00 EDT 2008,452000,38.628955,-121.529269 +537,500 WINCHESTER CT,ROSEVILLE,95661,CA,3,2,2274,Residential,Mon May 19 00:00:00 EDT 2008,470000,38.73988,-121.248929 +538,5746 GELSTON WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,471000,38.677015,-121.034083 +539,6935 ELM TREE LN,ORANGEVALE,95662,CA,4,4,3056,Residential,Mon May 19 00:00:00 EDT 2008,475000,38.693041,-121.23294 +540,9605 GOLF COURSE LN,ELK GROVE,95758,CA,3,3,2503,Residential,Mon May 19 00:00:00 EDT 2008,484500,38.409689,-121.446059 +541,719 BAYWOOD CT,EL DORADO HILLS,95762,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,487500,38.647598,-121.077801 +542,5954 TANUS CIR,ROCKLIN,95677,CA,3,3,0,Residential,Mon May 19 00:00:00 EDT 2008,488750,38.777585,-121.2036 +543,100 CHELSEA CT,FOLSOM,95630,CA,3,2,1905,Residential,Mon May 19 00:00:00 EDT 2008,500000,38.69435,-121.177259 +544,1500 ORANGE HILL LN,PENRYN,95663,CA,3,2,1320,Residential,Mon May 19 00:00:00 EDT 2008,506688,38.862708,-121.162092 +545,408 KIRKWOOD CT,LINCOLN,95648,CA,2,2,0,Residential,Mon May 19 00:00:00 EDT 2008,512000,38.861615,-121.26869 +546,1732 TUSCAN GROVE CIR,ROSEVILLE,95747,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,520000,38.796683,-121.342555 +547,2049 EMPIRE MINE CIR,GOLD RIVER,95670,CA,4,2,3037,Residential,Mon May 19 00:00:00 EDT 2008,528000,38.629299,-121.249021 +548,9360 MAGOS RD,WILTON,95693,CA,5,2,3741,Residential,Mon May 19 00:00:00 EDT 2008,579093,38.416809,-121.240628 +549,104 CATLIN CT,FOLSOM,95630,CA,4,3,2660,Residential,Mon May 19 00:00:00 EDT 2008,636000,38.684459,-121.145935 +550,4734 GIBBONS DR,CARMICHAEL,95608,CA,4,3,3357,Residential,Mon May 19 00:00:00 EDT 2008,668365,38.63558,-121.353639 +551,4629 DORCHESTER LN,GRANITE BAY,95746,CA,5,3,2896,Residential,Mon May 19 00:00:00 EDT 2008,676200,38.723545,-121.216025 +552,2400 COUNTRYSIDE DR,PLACERVILLE,95667,CA,3,2,2025,Residential,Mon May 19 00:00:00 EDT 2008,677048,38.737452,-120.910963 +553,12901 FURLONG DR,WILTON,95693,CA,5,3,3788,Residential,Mon May 19 00:00:00 EDT 2008,691659,38.413535,-121.188211 +554,6222 CALLE MONTALVO CIR,GRANITE BAY,95746,CA,5,3,3670,Residential,Mon May 19 00:00:00 EDT 2008,760000,38.779435,-121.146676 +555,20 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885327,-121.289412 +556,24 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885132,-121.289405 +557,28 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884936,-121.289397 +558,32 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884741,-121.28939 +559,36 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884599,-121.289406 +560,40 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884535,-121.289619 +561,44 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88459,-121.289835 +562,48 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884667,-121.289896 +563,52 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88478,-121.289911 +564,68 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885236,-121.289928 +565,72 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88535,-121.289926 +566,76 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885464,-121.289922 +567,80 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885578,-121.289919 +568,84 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885692,-121.289915 +569,88 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885806,-121.289911 +570,92 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88592,-121.289908 +571,96 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886024,-121.289859 +572,100 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886091,-121.289744 +573,434 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.289406 +574,3 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884692,-121.290288 +575,11 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884879,-121.290257 +576,19 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885017,-121.290262 +577,27 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885173,-121.29027 +578,35 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885328,-121.290275 +579,43 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885483,-121.290277 +580,51 E ST,LINCOLN,95648,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885638,-121.290279 +581,59 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885794,-121.290281 +582,75 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886104,-121.290285 +583,63 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885093,-121.289932 +584,398 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.288952 +585,386 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886528,-121.288869 +586,374 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886525,-121.288787 +587,116 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289586 +588,108 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289646 +589,100 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289706 +590,55 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884865,-121.289922 +591,51 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884752,-121.289907 +592,47 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884638,-121.289893 +593,43 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884568,-121.289784 +594,39 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884546,-121.289562 +595,35 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884645,-121.289397 +596,31 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88479,-121.289392 +597,27 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884985,-121.289399 +598,23 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885181,-121.289406 +599,19 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885376,-121.289414 +600,15 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885571,-121.289421 +601,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +602,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +603,3 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886093,-121.289584 +604,8208 WOODYARD WAY,CITRUS HEIGHTS,95621,CA,3,2,1166,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.715322,-121.314787 +605,113 RINETTI WAY,RIO LINDA,95673,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.687172,-121.463933 +606,15 LOORZ CT,SACRAMENTO,95823,CA,2,1,838,Residential,Fri May 16 00:00:00 EDT 2008,55422,38.471646,-121.435158 +607,5805 DOTMAR WAY,NORTH HIGHLANDS,95660,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,63000,38.672642,-121.380343 +608,2332 CAMBRIDGE ST,SACRAMENTO,95815,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.608085,-121.449651 +609,3812 BELDEN ST,SACRAMENTO,95838,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.636833,-121.44164 +610,3348 40TH ST,SACRAMENTO,95817,CA,2,1,1080,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.544162,-121.460652 +611,127 QUASAR CIR,SACRAMENTO,95822,CA,2,2,990,Residential,Fri May 16 00:00:00 EDT 2008,66500,38.493504,-121.475304 +612,3812 CYPRESS ST,SACRAMENTO,95838,CA,2,1,900,Residential,Fri May 16 00:00:00 EDT 2008,71000,38.636877,-121.444948 +613,5821 64TH ST,SACRAMENTO,95824,CA,2,1,861,Residential,Fri May 16 00:00:00 EDT 2008,75000,38.521202,-121.428146 +614,8248 CENTER PKWY,SACRAMENTO,95823,CA,2,1,906,Condo,Fri May 16 00:00:00 EDT 2008,77000,38.459002,-121.428794 +615,1171 SONOMA AVE,SACRAMENTO,95815,CA,2,1,1011,Residential,Fri May 16 00:00:00 EDT 2008,85000,38.6238,-121.439872 +616,4250 ARDWELL WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Fri May 16 00:00:00 EDT 2008,95625,38.466938,-121.455631 +617,3104 CLAY ST,SACRAMENTO,95815,CA,2,1,832,Residential,Fri May 16 00:00:00 EDT 2008,96140,38.62391,-121.439208 +618,6063 LAND PARK DR,SACRAMENTO,95822,CA,2,1,800,Condo,Fri May 16 00:00:00 EDT 2008,104250,38.517029,-121.513809 +619,4738 OAKHOLLOW DR,SACRAMENTO,95842,CA,4,2,1292,Residential,Fri May 16 00:00:00 EDT 2008,105000,38.679598,-121.356035 +620,1401 STERLING ST,SACRAMENTO,95822,CA,2,1,810,Residential,Fri May 16 00:00:00 EDT 2008,108000,38.520319,-121.504727 +621,3715 DIDCOT CIR,SACRAMENTO,95838,CA,4,2,1064,Residential,Fri May 16 00:00:00 EDT 2008,109000,38.635232,-121.460098 +622,2426 RASHAWN DR,RANCHO CORDOVA,95670,CA,2,1,911,Residential,Fri May 16 00:00:00 EDT 2008,115000,38.610852,-121.273278 +623,4800 WESTLAKE PKWY Unit 410,SACRAMENTO,95835,CA,1,1,846,Condo,Fri May 16 00:00:00 EDT 2008,115000,38.658812,-121.542345 +624,3409 VIRGO ST,SACRAMENTO,95827,CA,3,2,1320,Residential,Fri May 16 00:00:00 EDT 2008,115500,38.563402,-121.327747 +625,1110 PINEDALE AVE,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,115620,38.660173,-121.440216 +626,2361 LA LOMA DR,RANCHO CORDOVA,95670,CA,3,2,1115,Residential,Fri May 16 00:00:00 EDT 2008,116000,38.59368,-121.316054 +627,1455 64TH AVE,SACRAMENTO,95822,CA,3,2,1169,Residential,Fri May 16 00:00:00 EDT 2008,122000,38.492177,-121.503392 +628,7328 SPRINGMAN ST,SACRAMENTO,95822,CA,3,2,1164,Residential,Fri May 16 00:00:00 EDT 2008,122500,38.491991,-121.477636 +629,119 SAINT MARIE CIR,SACRAMENTO,95823,CA,4,2,1341,Residential,Fri May 16 00:00:00 EDT 2008,123000,38.481454,-121.446644 +630,12 COSTA BRASE CT,SACRAMENTO,95838,CA,3,2,1219,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.655554,-121.464275 +631,6813 SCOTER WAY,SACRAMENTO,95842,CA,4,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.69043,-121.361035 +632,6548 GRAYLOCK LN,NORTH HIGHLANDS,95660,CA,3,2,1272,Residential,Fri May 16 00:00:00 EDT 2008,124413,38.686061,-121.369949 +633,1630 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Fri May 16 00:00:00 EDT 2008,125000,38.482717,-121.499683 +634,7825 DALEWOODS WAY,SACRAMENTO,95828,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,130000,38.477297,-121.411513 +635,4073 TRESLER AVE,NORTH HIGHLANDS,95660,CA,2,2,1118,Residential,Fri May 16 00:00:00 EDT 2008,131750,38.659016,-121.370457 +636,4288 DYMIC WAY,SACRAMENTO,95838,CA,4,3,1890,Residential,Fri May 16 00:00:00 EDT 2008,137721,38.646541,-121.441139 +637,1158 SAN IGNACIO WAY,SACRAMENTO,95833,CA,3,2,1260,Residential,Fri May 16 00:00:00 EDT 2008,137760,38.623045,-121.486279 +638,4904 J PKWY,SACRAMENTO,95823,CA,3,2,1400,Residential,Fri May 16 00:00:00 EDT 2008,138000,38.487297,-121.44295 +639,2931 HOWE AVE,SACRAMENTO,95821,CA,3,1,1264,Residential,Fri May 16 00:00:00 EDT 2008,140000,38.619012,-121.415329 +640,5531 JANSEN DR,SACRAMENTO,95824,CA,3,1,1060,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.522015,-121.438713 +641,7836 ORCHARD WOODS CIR,SACRAMENTO,95828,CA,2,2,1132,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.47955,-121.410867 +642,4055 DEERBROOK DR,SACRAMENTO,95823,CA,3,2,1466,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.472117,-121.459589 +643,9937 BURLINE ST,SACRAMENTO,95827,CA,3,2,1092,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.559641,-121.32316 +644,6948 MIRADOR WAY,SACRAMENTO,95828,CA,4,2,1628,Residential,Fri May 16 00:00:00 EDT 2008,151000,38.493484,-121.42035 +645,4909 RUGER CT,SACRAMENTO,95842,CA,3,2,960,Residential,Fri May 16 00:00:00 EDT 2008,155000,38.68747,-121.349234 +646,7204 KERSTEN ST,CITRUS HEIGHTS,95621,CA,3,2,1075,Residential,Fri May 16 00:00:00 EDT 2008,155800,38.695863,-121.300814 +647,3150 ROSEMONT DR,SACRAMENTO,95826,CA,3,2,1428,Residential,Fri May 16 00:00:00 EDT 2008,156142,38.554927,-121.35521 +648,8200 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1358,Residential,Fri May 16 00:00:00 EDT 2008,158000,38.474854,-121.404726 +649,8198 STEVENSON AVE,SACRAMENTO,95828,CA,6,4,2475,Multi-Family,Fri May 16 00:00:00 EDT 2008,159900,38.465271,-121.40426 +650,6824 OLIVE TREE WAY,CITRUS HEIGHTS,95610,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,160000,38.689239,-121.267737 +651,3536 SUN MAIDEN WAY,ANTELOPE,95843,CA,3,2,1711,Residential,Fri May 16 00:00:00 EDT 2008,161500,38.70968,-121.382328 +652,4517 OLYMPIAD WAY,SACRAMENTO,95826,CA,4,2,1483,Residential,Fri May 16 00:00:00 EDT 2008,161600,38.536751,-121.359154 +653,925 COBDEN CT,GALT,95632,CA,3,2,1140,Residential,Fri May 16 00:00:00 EDT 2008,162000,38.282047,-121.295812 +654,8225 SCOTTSDALE DR,SACRAMENTO,95828,CA,4,2,1549,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.487864,-121.402476 +655,8758 LEMAS RD,SACRAMENTO,95828,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.467487,-121.377055 +656,6121 ALPINESPRING WAY,ELK GROVE,95758,CA,3,2,1240,Residential,Fri May 16 00:00:00 EDT 2008,167293,38.434075,-121.432623 +657,5937 YORK GLEN WAY,SACRAMENTO,95842,CA,5,2,1712,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.677003,-121.354454 +658,6417 SUNNYFIELD WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.449153,-121.428272 +659,4008 GREY LIVERY WAY,ANTELOPE,95843,CA,3,2,1669,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.71846,-121.370862 +660,8920 ROSETTA CIR,SACRAMENTO,95826,CA,3,1,1029,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.544374,-121.370874 +661,8300 LICHEN DR,CITRUS HEIGHTS,95621,CA,3,1,1103,Residential,Fri May 16 00:00:00 EDT 2008,170000,38.71641,-121.306239 +662,8884 AMBERJACK WAY,SACRAMENTO,95828,CA,3,2,2161,Residential,Fri May 16 00:00:00 EDT 2008,170250,38.479343,-121.372553 +663,4480 VALLEY HI DR,SACRAMENTO,95823,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,173000,38.466781,-121.450955 +664,2250 FOREBAY RD,POLLOCK PINES,95726,CA,3,1,1320,Residential,Fri May 16 00:00:00 EDT 2008,175000,38.77491,-120.597599 +665,3529 FABERGE WAY,SACRAMENTO,95826,CA,3,2,1200,Residential,Fri May 16 00:00:00 EDT 2008,176095,38.553275,-121.346218 +666,1792 DAWNELLE WAY,SACRAMENTO,95835,CA,3,2,1170,Residential,Fri May 16 00:00:00 EDT 2008,176250,38.68271,-121.501697 +667,7800 TABARE CT,CITRUS HEIGHTS,95621,CA,3,2,1199,Residential,Fri May 16 00:00:00 EDT 2008,178000,38.70799,-121.302979 +668,8531 HERMITAGE WAY,SACRAMENTO,95823,CA,4,2,1695,Residential,Fri May 16 00:00:00 EDT 2008,179000,38.448452,-121.428536 +669,2421 BERRYWOOD DR,RANCHO CORDOVA,95670,CA,3,2,1157,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.60868,-121.27849 +670,1005 MORENO WAY,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.646206,-121.442767 +671,1675 VERNON ST Unit 24,ROSEVILLE,95678,CA,3,2,1174,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.734136,-121.299639 +672,24 WINDCHIME CT,SACRAMENTO,95823,CA,3,2,1593,Residential,Fri May 16 00:00:00 EDT 2008,181000,38.44617,-121.427824 +673,540 HARLING CT,RIO LINDA,95673,CA,3,2,1093,Residential,Fri May 16 00:00:00 EDT 2008,182000,38.68279,-121.453509 +674,1207 CRESCENDO DR,ROSEVILLE,95678,CA,3,2,1770,Residential,Fri May 16 00:00:00 EDT 2008,182587,38.72446,-121.292829 +675,7577 EDDYLEE WAY,SACRAMENTO,95822,CA,4,2,1436,Residential,Fri May 16 00:00:00 EDT 2008,185074,38.48291,-121.491509 +676,8369 FOPPIANO WAY,SACRAMENTO,95829,CA,3,2,1124,Residential,Fri May 16 00:00:00 EDT 2008,185833,38.453839,-121.357919 +677,8817 SAWTELLE WAY,SACRAMENTO,95826,CA,4,2,1139,Residential,Fri May 16 00:00:00 EDT 2008,186785,38.565322,-121.374251 +678,1910 BONAVISTA WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Fri May 16 00:00:00 EDT 2008,187000,38.476048,-121.494961 +679,8 TIDE CT,SACRAMENTO,95833,CA,3,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,188335,38.609864,-121.492304 +680,8952 ROCKY CREEK CT,ELK GROVE,95758,CA,3,2,1273,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.431239,-121.44001 +681,435 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,1082,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.659434,-121.455236 +682,10105 MONTE VALLO CT,SACRAMENTO,95827,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.573917,-121.316916 +683,3930 ANNABELLE AVE,ROSEVILLE,95661,CA,2,1,796,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.727609,-121.226494 +684,4854 TANGERINE AVE,SACRAMENTO,95823,CA,3,2,1386,Residential,Fri May 16 00:00:00 EDT 2008,191250,38.478239,-121.446326 +685,2909 SHAWN WAY,RANCHO CORDOVA,95670,CA,3,2,1452,Residential,Fri May 16 00:00:00 EDT 2008,193000,38.589925,-121.299059 +686,4290 BLACKFORD WAY,SACRAMENTO,95823,CA,3,2,1513,Residential,Fri May 16 00:00:00 EDT 2008,193500,38.470494,-121.454162 +687,5890 TT TRAK,FORESTHILL,95631,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,194818,39.020808,-120.821518 +688,7015 WOODSIDE DR,SACRAMENTO,95842,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.693071,-121.332365 +689,6019 CHESHIRE WAY,CITRUS HEIGHTS,95610,CA,4,3,1736,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.676437,-121.279165 +690,3330 VILLAGE CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.690504,-120.996245 +691,2561 VERNA WAY,SACRAMENTO,95821,CA,3,1,1473,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.611055,-121.369964 +692,3522 22ND AVE,SACRAMENTO,95820,CA,3,1,1150,Residential,Fri May 16 00:00:00 EDT 2008,198000,38.532725,-121.469078 +693,2880 CANDIDO DR,SACRAMENTO,95833,CA,3,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,199900,38.618019,-121.510215 +694,6908 PIN OAK CT,FAIR OAKS,95628,CA,3,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,200000,38.66424,-121.303675 +695,5733 ANGELINA AVE,CARMICHAEL,95608,CA,3,1,972,Residential,Fri May 16 00:00:00 EDT 2008,201000,38.622634,-121.330846 +696,7849 BONNY DOWNS WAY,ELK GROVE,95758,CA,4,2,2306,Residential,Fri May 16 00:00:00 EDT 2008,204918,38.42139,-121.411339 +697,8716 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1479,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.724083,-121.3584 +698,6320 EL DORADO ST,EL DORADO,95623,CA,2,1,1040,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.678758,-120.844118 +699,2328 DOROTHY JUNE WAY,SACRAMENTO,95838,CA,3,2,1430,Residential,Fri May 16 00:00:00 EDT 2008,205878,38.641727,-121.412703 +700,1986 DANVERS WAY,SACRAMENTO,95832,CA,4,2,1800,Residential,Fri May 16 00:00:00 EDT 2008,207000,38.47723,-121.492568 +701,7901 GAZELLE TRAIL WAY,ANTELOPE,95843,CA,4,2,1953,Residential,Fri May 16 00:00:00 EDT 2008,207744,38.71174,-121.342675 +702,6080 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,209000,38.681952,-121.505009 +703,20 GROTH CIR,SACRAMENTO,95834,CA,3,2,1232,Residential,Fri May 16 00:00:00 EDT 2008,210000,38.640807,-121.533522 +704,1900 DANBROOK DR,SACRAMENTO,95835,CA,1,1,984,Condo,Fri May 16 00:00:00 EDT 2008,210944,38.668433,-121.503471 +705,140 VENTO CT,ROSEVILLE,95678,CA,3,2,0,Condo,Fri May 16 00:00:00 EDT 2008,212500,38.793533,-121.289685 +706,8442 KEUSMAN ST,ELK GROVE,95758,CA,4,2,2329,Residential,Fri May 16 00:00:00 EDT 2008,213750,38.449651,-121.414704 +707,9552 SUNLIGHT LN,ELK GROVE,95758,CA,3,2,1351,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.410561,-121.404327 +708,2733 YUMA CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.691215,-120.994949 +709,1407 TIFFANY CIR,ROSEVILLE,95661,CA,4,1,1376,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.736392,-121.2664 +710,636 CRESTVIEW DR,DIAMOND SPRINGS,95619,CA,3,2,1300,Residential,Fri May 16 00:00:00 EDT 2008,216033,38.688255,-120.810235 +711,1528 HESKET WAY,SACRAMENTO,95825,CA,4,2,1566,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.593598,-121.403637 +712,2327 32ND ST,SACRAMENTO,95817,CA,2,1,1115,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.557433,-121.47034 +713,1833 2ND AVE,SACRAMENTO,95818,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.556818,-121.490669 +714,7252 CARRIAGE DR,CITRUS HEIGHTS,95621,CA,4,2,1419,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.698058,-121.294893 +715,9815 PASO FINO WAY,ELK GROVE,95757,CA,3,2,1261,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.404888,-121.443998 +716,5532 ENGLE RD,CARMICHAEL,95608,CA,2,2,1637,Residential,Fri May 16 00:00:00 EDT 2008,220702,38.63173,-121.335286 +717,1139 CLINTON RD,SACRAMENTO,95825,CA,4,2,1776,Multi-Family,Fri May 16 00:00:00 EDT 2008,221250,38.585291,-121.406824 +718,9176 SAGE GLEN WAY,ELK GROVE,95758,CA,3,2,1338,Residential,Fri May 16 00:00:00 EDT 2008,222000,38.423913,-121.439115 +719,9967 HATHERTON WAY,ELK GROVE,95757,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,222500,38.3052,-121.4033 +720,9264 BOULDER RIVER WAY,ELK GROVE,95624,CA,5,2,2254,Residential,Fri May 16 00:00:00 EDT 2008,222750,38.421713,-121.345191 +721,320 GROTH CIR,SACRAMENTO,95834,CA,3,2,1441,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.638882,-121.531883 +722,137 GUNNISON AVE,SACRAMENTO,95838,CA,4,2,1991,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.650729,-121.466483 +723,8209 RIVALLO WAY,SACRAMENTO,95829,CA,4,3,2126,Residential,Fri May 16 00:00:00 EDT 2008,228750,38.459524,-121.3501 +724,8637 PERIWINKLE CIR,ELK GROVE,95624,CA,3,2,1094,Residential,Fri May 16 00:00:00 EDT 2008,229000,38.443184,-121.364388 +725,3425 MEADOW WAY,ROCKLIN,95677,CA,3,2,1462,Residential,Fri May 16 00:00:00 EDT 2008,230095,38.798028,-121.235364 +726,107 JARVIS CIR,SACRAMENTO,95834,CA,5,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,232500,38.639891,-121.537603 +727,2319 THORES ST,RANCHO CORDOVA,95670,CA,3,2,1074,Residential,Fri May 16 00:00:00 EDT 2008,233000,38.59675,-121.312716 +728,8935 MOUNTAIN HOME CT,ELK GROVE,95624,CA,4,2,2111,Residential,Fri May 16 00:00:00 EDT 2008,233500,38.38751,-121.370276 +729,2566 SERENATA WAY,SACRAMENTO,95835,CA,3,2,1686,Residential,Fri May 16 00:00:00 EDT 2008,239000,38.671556,-121.520916 +730,4085 COUNTRY DR,ANTELOPE,95843,CA,4,3,1915,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.706209,-121.369509 +731,9297 TROUT WAY,ELK GROVE,95624,CA,4,2,2367,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.420637,-121.375798 +732,7 ARCHIBALD CT,SACRAMENTO,95823,CA,3,2,1962,Residential,Fri May 16 00:00:00 EDT 2008,240971,38.443305,-121.435296 +733,11130 EEL RIVER CT,RANCHO CORDOVA,95670,CA,2,2,1406,Residential,Fri May 16 00:00:00 EDT 2008,242000,38.625932,-121.271517 +734,8323 REDBANK WAY,SACRAMENTO,95829,CA,3,2,1789,Residential,Fri May 16 00:00:00 EDT 2008,243450,38.455753,-121.349273 +735,16 BRONCO CREEK CT,SACRAMENTO,95835,CA,4,2,1876,Residential,Fri May 16 00:00:00 EDT 2008,243500,38.674226,-121.525497 +736,8316 NORTHAM DR,ANTELOPE,95843,CA,3,2,1235,Residential,Fri May 16 00:00:00 EDT 2008,246544,38.720767,-121.376678 +737,4240 WINJE DR,ANTELOPE,95843,CA,4,2,2504,Residential,Fri May 16 00:00:00 EDT 2008,246750,38.70884,-121.359559 +738,3569 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.631139,-121.501879 +739,5118 ROBANDER ST,CARMICHAEL,95608,CA,3,2,1676,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.657267,-121.310352 +740,5976 KYLENCH CT,CITRUS HEIGHTS,95621,CA,3,2,1367,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.708966,-121.32467 +741,9247 DELAIR WAY,ELK GROVE,95758,CA,4,3,1899,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.422241,-121.458022 +742,9054 DESCENDANT DR,ELK GROVE,95758,CA,3,2,1636,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.428852,-121.415628 +743,3450 WHITNOR CT,SACRAMENTO,95821,CA,3,2,1828,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.627698,-121.369698 +744,6288 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.804993,-121.293609 +745,9355 MATADOR WAY,SACRAMENTO,95826,CA,4,2,1438,Residential,Fri May 16 00:00:00 EDT 2008,252000,38.555633,-121.350691 +746,8671 SUMMER SUN WAY,ELK GROVE,95624,CA,3,2,1451,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.442845,-121.373272 +747,1890 GENEVA PL,SACRAMENTO,95825,CA,3,1,1520,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.599449,-121.400305 +748,1813 AVENIDA MARTINA,ROSEVILLE,95747,CA,3,2,1506,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.776649,-121.339589 +749,191 BARNHART CIR,SACRAMENTO,95835,CA,4,2,2605,Residential,Fri May 16 00:00:00 EDT 2008,257200,38.675594,-121.515878 +750,6221 GREEN TOP WAY,ORANGEVALE,95662,CA,3,2,1196,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.679409,-121.219107 +751,2298 PRIMROSE LN,LINCOLN,95648,CA,3,2,1621,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.89918,-121.322514 +752,5635 LOS PUEBLOS WAY,SACRAMENTO,95835,CA,3,2,1811,Residential,Fri May 16 00:00:00 EDT 2008,263500,38.679191,-121.537622 +753,10165 LOFTON WAY,ELK GROVE,95757,CA,3,2,1540,Residential,Fri May 16 00:00:00 EDT 2008,266510,38.387708,-121.436522 +754,1251 GREEN RAVINE DR,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,267750,38.88156,-121.301343 +755,6001 SHOO FLY RD,PLACERVILLE,95667,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,270000,38.813546,-120.809254 +756,3040 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,271000,38.770835,-121.366996 +757,2674 TAM O SHANTER DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,272700,38.695801,-121.079216 +758,6007 MARYBELLE LN,SHINGLE SPRINGS,95682,CA,0,0,0,Unkown,Fri May 16 00:00:00 EDT 2008,275000,38.64347,-120.888183 +759,9949 NESTLING CIR,ELK GROVE,95757,CA,3,2,1543,Residential,Fri May 16 00:00:00 EDT 2008,275000,38.397455,-121.468391 +760,2915 HOLDREGE WAY,SACRAMENTO,95835,CA,5,3,2494,Residential,Fri May 16 00:00:00 EDT 2008,276000,38.663728,-121.525833 +761,2678 BRIARTON DR,LINCOLN,95648,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,276500,38.844116,-121.274806 +762,294 SPARROW DR,GALT,95632,CA,4,3,2214,Residential,Fri May 16 00:00:00 EDT 2008,278000,38.258976,-121.321266 +763,2987 DIORITE WAY,SACRAMENTO,95835,CA,5,3,2280,Residential,Fri May 16 00:00:00 EDT 2008,279000,38.667332,-121.528276 +764,6326 APPIAN WAY,CARMICHAEL,95608,CA,3,2,1443,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.66266,-121.316858 +765,6905 COBALT WAY,CITRUS HEIGHTS,95621,CA,4,2,1582,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.691393,-121.305215 +766,8986 HAFLINGER WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Fri May 16 00:00:00 EDT 2008,285000,38.397923,-121.450219 +767,2916 BABSON DR,ELK GROVE,95758,CA,3,2,1735,Residential,Fri May 16 00:00:00 EDT 2008,288000,38.417191,-121.473897 +768,10133 NEBBIOLO CT,ELK GROVE,95624,CA,4,3,2096,Residential,Fri May 16 00:00:00 EDT 2008,289000,38.391085,-121.347231 +769,1103 COMMONS DR,SACRAMENTO,95825,CA,3,2,1720,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.567865,-121.410699 +770,4636 TEAL BAY CT,ANTELOPE,95843,CA,4,2,2160,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.704554,-121.354753 +771,1524 YOUNGS AVE,SACRAMENTO,95838,CA,4,2,1382,Residential,Fri May 16 00:00:00 EDT 2008,293996,38.644927,-121.43054 +772,865 CONRAD CT,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,294000,38.729993,-120.802458 +773,8463 TERRACOTTA CT,ELK GROVE,95624,CA,4,2,1721,Residential,Fri May 16 00:00:00 EDT 2008,294173,38.450548,-121.363002 +774,5747 KING RD,LOOMIS,95650,CA,4,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,295000,38.825096,-121.198432 +775,8253 KEEGAN WAY,ELK GROVE,95624,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.446286,-121.400817 +776,9204 TROUT WAY,ELK GROVE,95624,CA,4,2,1982,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.422221,-121.375799 +777,1828 2ND AVE,SACRAMENTO,95818,CA,2,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,299000,38.556844,-121.490769 +778,1113 COMMONS DR,SACRAMENTO,95825,CA,2,2,1623,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.567795,-121.410703 +779,2341 BIG STRIKE TRL,COOL,95614,CA,3,2,1457,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.905927,-120.975169 +780,9452 RED SPRUCE WAY,ELK GROVE,95624,CA,6,3,2555,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.404505,-121.346938 +781,5776 TERRACE DR,ROCKLIN,95765,CA,3,2,1577,Residential,Fri May 16 00:00:00 EDT 2008,300567,38.800539,-121.260979 +782,5908 MCLEAN DR,ELK GROVE,95757,CA,5,3,2592,Residential,Fri May 16 00:00:00 EDT 2008,303000,38.38912,-121.434389 +783,8215 PEREGRINE WAY,CITRUS HEIGHTS,95610,CA,3,2,1401,Residential,Fri May 16 00:00:00 EDT 2008,305000,38.715493,-121.26293 +784,1104 HILLSDALE LN,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,306000,38.865017,-121.32302 +785,2949 PANAMA AVE,CARMICHAEL,95608,CA,3,2,1502,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.618369,-121.326187 +786,1356 HARTLEY WAY,FOLSOM,95630,CA,3,2,1327,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.651617,-121.131674 +787,633 HANISCH DR,ROSEVILLE,95678,CA,4,3,1800,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.76349,-121.275881 +788,63 ANGEL ISLAND CIR,SACRAMENTO,95831,CA,4,2,2169,Residential,Fri May 16 00:00:00 EDT 2008,311518,38.490408,-121.547664 +789,1571 WILD OAK LN,LINCOLN,95648,CA,5,3,2457,Residential,Fri May 16 00:00:00 EDT 2008,312000,38.844144,-121.274174 +790,5222 COPPER SUNSET WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,313000,38.529181,-121.224755 +791,5601 SPINDRIFT LN,ORANGEVALE,95662,CA,4,2,2004,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.668289,-121.192316 +792,652 FIFTEEN MILE DR,ROSEVILLE,95678,CA,4,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.775872,-121.298864 +793,7921 DOE TRAIL WAY,ANTELOPE,95843,CA,5,3,3134,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.711927,-121.343608 +794,4204 LUSK DR,SACRAMENTO,95864,CA,3,2,1360,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.606569,-121.368424 +795,5321 DELTA DR,ROCKLIN,95765,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.815493,-121.262908 +796,5608 ROSEDALE WAY,SACRAMENTO,95822,CA,3,2,1276,Residential,Fri May 16 00:00:00 EDT 2008,320000,38.525115,-121.518689 +797,3372 BERETANIA WAY,SACRAMENTO,95834,CA,4,3,2962,Residential,Fri May 16 00:00:00 EDT 2008,322000,38.64977,-121.53448 +798,2422 STEFANIE DR,ROCKLIN,95765,CA,4,2,1888,Residential,Fri May 16 00:00:00 EDT 2008,325000,38.82273,-121.26424 +799,3232 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,325500,38.772821,-121.364821 +800,448 ELMWOOD CT,ROSEVILLE,95678,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,326951,38.771917,-121.304439 +801,1214 DAWNWOOD DR,GALT,95632,CA,3,2,1548,Residential,Fri May 16 00:00:00 EDT 2008,328370,38.290119,-121.286023 +802,1440 EMERALD LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.861864,-121.267478 +803,3349 CORVINA DR,RANCHO CORDOVA,95670,CA,4,3,2109,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.580545,-121.279016 +804,10254 JULIANA WAY,SACRAMENTO,95827,CA,4,2,2484,Residential,Fri May 16 00:00:00 EDT 2008,331200,38.56803,-121.309966 +805,149 OPUS CIR,SACRAMENTO,95834,CA,4,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,332000,38.6354,-121.53499 +806,580 REGENCY PARK CIR,SACRAMENTO,95835,CA,3,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,334000,38.674864,-121.4958 +807,5544 CAMAS CT,ORANGEVALE,95662,CA,3,2,1616,Residential,Fri May 16 00:00:00 EDT 2008,335000,38.667703,-121.209456 +808,5102 ARCHCREST WAY,SACRAMENTO,95835,CA,4,2,2372,Residential,Fri May 16 00:00:00 EDT 2008,341000,38.66841,-121.494639 +809,5725 BALFOR RD,ROCKLIN,95765,CA,5,3,2606,Residential,Fri May 16 00:00:00 EDT 2008,346375,38.807816,-121.270008 +810,7697 ROSEHALL DR,ROSEVILLE,95678,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,347225,38.79218,-121.28595 +811,4821 HUTSON WAY,ELK GROVE,95757,CA,5,3,2877,Residential,Fri May 16 00:00:00 EDT 2008,349000,38.386239,-121.448159 +812,4509 WINJE DR,ANTELOPE,95843,CA,3,2,2960,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.709513,-121.359357 +813,1965 LAURELHURST LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.853869,-121.271742 +814,6709 ROSE BRIDGE DR,ROSEVILLE,95678,CA,3,2,2172,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.792461,-121.275711 +815,281 SPYGLASS HL,ROSEVILLE,95678,CA,3,2,2100,Condo,Fri May 16 00:00:00 EDT 2008,350000,38.762153,-121.283451 +816,7709 RIVER VILLAGE DR,SACRAMENTO,95831,CA,3,2,1795,Residential,Fri May 16 00:00:00 EDT 2008,351000,38.483212,-121.54019 +817,4165 BRISBANE CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,356200,38.686067,-121.073413 +818,506 BEDFORD CT,ROSEVILLE,95661,CA,4,2,2295,Residential,Fri May 16 00:00:00 EDT 2008,360000,38.733985,-121.236766 +819,9048 PINTO CANYON WAY,ROSEVILLE,95747,CA,4,3,2577,Residential,Fri May 16 00:00:00 EDT 2008,367463,38.792493,-121.331899 +820,2274 IVY BRIDGE DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,375000,38.778561,-121.362008 +821,14004 WALNUT AVE,WALNUT GROVE,95690,CA,3,1,1727,Residential,Fri May 16 00:00:00 EDT 2008,380000,38.247659,-121.515129 +822,6905 FRANKFORT CT,ELK GROVE,95758,CA,3,2,1485,Residential,Fri May 16 00:00:00 EDT 2008,380578,38.429139,-121.423444 +823,3621 WINTUN DR,CARMICHAEL,95608,CA,3,2,1655,Residential,Fri May 16 00:00:00 EDT 2008,386222,38.629929,-121.323086 +824,201 KIRKLAND CT,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,389000,38.867125,-121.319085 +825,12075 APPLESBURY CT,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,390000,38.5357,-121.2249 +826,1975 SIDESADDLE WAY,ROSEVILLE,95661,CA,3,2,2049,Residential,Fri May 16 00:00:00 EDT 2008,395500,38.737872,-121.249025 +827,5420 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,396000,38.527384,-121.233531 +828,9677 PILLITERI CT,ELK GROVE,95757,CA,5,3,2875,Residential,Fri May 16 00:00:00 EDT 2008,397000,38.405571,-121.445186 +829,1515 EL CAMINO VERDE DR,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.904869,-121.32075 +830,556 PLATT CIR,EL DORADO HILLS,95762,CA,4,2,2199,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.656299,-121.079783 +831,1792 DIAMOND WOODS CIR,ROSEVILLE,95747,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,412500,38.808581,-121.32785 +832,1124 PERKINS WAY,SACRAMENTO,95818,CA,2,1,1304,Residential,Fri May 16 00:00:00 EDT 2008,413500,38.551611,-121.504437 +833,4748 SALEM WAY,CARMICHAEL,95608,CA,3,2,2334,Residential,Fri May 16 00:00:00 EDT 2008,415000,38.634111,-121.353376 +834,1484 RADCLIFFE WAY,AUBURN,95603,CA,4,3,2278,Residential,Fri May 16 00:00:00 EDT 2008,420454,38.935579,-121.079018 +835,51 AIKEN WAY,SACRAMENTO,95819,CA,3,1,1493,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.579326,-121.44252 +836,2818 KNOLLWOOD DR,CAMERON PARK,95682,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.669805,-120.999007 +837,1536 STONEY CROSS LN,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,433500,38.860007,-121.310946 +838,509 CASTILLIAN CT,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,438000,38.804773,-121.341195 +839,700 HUNTER PL,FOLSOM,95630,CA,5,3,2787,Residential,Fri May 16 00:00:00 EDT 2008,441000,38.66051,-121.163689 +840,1240 FAY CIR,SACRAMENTO,95831,CA,5,3,2824,Residential,Fri May 16 00:00:00 EDT 2008,445000,38.506371,-121.514456 +841,1113 SANDWICK WAY,FOLSOM,95630,CA,4,3,3261,Residential,Fri May 16 00:00:00 EDT 2008,446000,38.673882,-121.105077 +842,3108 DELWOOD WAY,SACRAMENTO,95821,CA,4,2,2053,Residential,Fri May 16 00:00:00 EDT 2008,450000,38.621566,-121.370882 +843,3212 CORNICHE LN,ROSEVILLE,95661,CA,4,3,2379,Residential,Fri May 16 00:00:00 EDT 2008,455000,38.750577,-121.232768 +844,2159 BECKETT DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,460000,38.680092,-121.036467 +845,4320 FOUR SEASONS RD,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,475000,38.690867,-120.693641 +846,6401 MARSHALL RD,GARDEN VALLEY,95633,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,490000,38.84255,-120.8754 +847,2089 BECKETT DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,493000,38.681778,-121.035838 +848,6196 EDGEHILL DR,EL DORADO HILLS,95762,CA,5,4,0,Residential,Fri May 16 00:00:00 EDT 2008,508000,38.676131,-121.038931 +849,200 HILLSFORD CT,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,511000,38.780051,-121.378718 +850,8217 PLUMERIA AVE,FAIR OAKS,95628,CA,3,2,3173,Residential,Fri May 16 00:00:00 EDT 2008,525000,38.650735,-121.258628 +851,4841 VILLAGE GREEN DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,533000,38.664066,-121.056735 +852,3863 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1348,Residential,Fri May 16 00:00:00 EDT 2008,545000,38.588936,-121.373606 +853,820 DANA CT,AUBURN,95603,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,560000,38.865246,-121.094869 +854,1165 37TH ST,SACRAMENTO,95816,CA,2,1,1252,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.568438,-121.457854 +855,203 CASCADE FALLS DR,FOLSOM,95630,CA,4,3,3229,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.703962,-121.1871 +856,9880 IZILDA CT,SACRAMENTO,95829,CA,5,4,3863,Residential,Fri May 16 00:00:00 EDT 2008,598695,38.45326,-121.32573 +857,1800 AVONDALE DR,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.798448,-121.344054 +858,4620 BROMWICH CT,ROCKLIN,95677,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.772672,-121.220232 +859,620 KESWICK CT,GRANITE BAY,95746,CA,4,3,2356,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.732096,-121.219142 +860,4478 GREENBRAE RD,ROCKLIN,95677,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.781134,-121.222801 +861,8432 BRIGGS DR,ROSEVILLE,95747,CA,5,3,3579,Residential,Fri May 16 00:00:00 EDT 2008,610000,38.78861,-121.339495 +862,200 CRADLE MOUNTAIN CT,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,622500,38.6478,-121.0309 +863,2065 IMPRESSIONIST WAY,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,680000,38.682961,-121.033253 +864,2982 ABERDEEN LN,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,879000,38.706692,-121.058869 +865,9401 BARREL RACER CT,WILTON,95693,CA,4,3,4400,Residential,Fri May 16 00:00:00 EDT 2008,884790,38.415298,-121.194858 +866,3720 VISTA DE MADERA,LINCOLN,95648,CA,3,3,0,Residential,Fri May 16 00:00:00 EDT 2008,1551,38.851645,-121.231742 +867,14151 INDIO DR,SLOUGHHOUSE,95683,CA,3,4,5822,Residential,Fri May 16 00:00:00 EDT 2008,2000,38.490447,-121.129337 +868,7401 TOULON LN,SACRAMENTO,95828,CA,4,2,1512,Residential,Thu May 15 00:00:00 EDT 2008,56950,38.488628,-121.387759 +869,9127 NEWHALL DR Unit 34,SACRAMENTO,95826,CA,1,1,611,Condo,Thu May 15 00:00:00 EDT 2008,60000,38.542419,-121.359904 +870,5937 BAMFORD DR,SACRAMENTO,95823,CA,2,1,876,Residential,Thu May 15 00:00:00 EDT 2008,61000,38.471139,-121.432255 +871,5672 HILLSDALE BLVD,SACRAMENTO,95842,CA,2,1,933,Condo,Thu May 15 00:00:00 EDT 2008,62000,38.670467,-121.359799 +872,3920 39TH ST,SACRAMENTO,95820,CA,2,1,864,Residential,Thu May 15 00:00:00 EDT 2008,68566,38.539213,-121.46393 +873,701 JESSIE AVE,SACRAMENTO,95838,CA,2,1,1011,Residential,Thu May 15 00:00:00 EDT 2008,70000,38.643978,-121.449562 +874,83 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1158,Residential,Thu May 15 00:00:00 EDT 2008,80000,38.618716,-121.466327 +875,601 REGGINALD WAY,SACRAMENTO,95838,CA,3,2,1092,Residential,Thu May 15 00:00:00 EDT 2008,85500,38.64472,-121.452228 +876,550 DEL VERDE CIR,SACRAMENTO,95833,CA,2,1,956,Condo,Thu May 15 00:00:00 EDT 2008,92000,38.627147,-121.500799 +877,4113 DAYSTAR CT,SACRAMENTO,95824,CA,2,2,1139,Residential,Thu May 15 00:00:00 EDT 2008,93600,38.520469,-121.458606 +878,7374 TISDALE WAY,SACRAMENTO,95822,CA,3,1,1058,Residential,Thu May 15 00:00:00 EDT 2008,95000,38.488238,-121.472561 +879,3348 RIO LINDA BLVD,SACRAMENTO,95838,CA,3,2,1040,Residential,Thu May 15 00:00:00 EDT 2008,97750,38.628842,-121.446127 +880,3935 LIMESTONE WAY,SACRAMENTO,95823,CA,3,2,1354,Residential,Thu May 15 00:00:00 EDT 2008,104000,38.484374,-121.463157 +881,6208 GRATTAN WAY,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Thu May 15 00:00:00 EDT 2008,105000,38.679279,-121.376615 +882,739 E WOODSIDE LN Unit E,SACRAMENTO,95825,CA,1,1,682,Condo,Thu May 15 00:00:00 EDT 2008,107666,38.578675,-121.409951 +883,4225 46TH AVE,SACRAMENTO,95824,CA,3,1,1161,Residential,Thu May 15 00:00:00 EDT 2008,109000,38.511893,-121.457676 +884,1434 BELL AVE,SACRAMENTO,95838,CA,3,1,1004,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.647398,-121.432914 +885,5628 GEORGIA DR,NORTH HIGHLANDS,95660,CA,3,1,1229,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.669587,-121.379879 +886,7629 BETH ST,SACRAMENTO,95832,CA,3,2,1249,Residential,Thu May 15 00:00:00 EDT 2008,112500,38.480126,-121.487869 +887,2277 BABETTE WAY,SACRAMENTO,95832,CA,3,2,1161,Residential,Thu May 15 00:00:00 EDT 2008,114800,38.479593,-121.48434 +888,6561 WEATHERFORD WAY,SACRAMENTO,95823,CA,3,1,1010,Residential,Thu May 15 00:00:00 EDT 2008,116000,38.465551,-121.42661 +889,3035 ESTEPA DR Unit 5C,CAMERON PARK,95682,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,119000,38.681393,-120.996713 +890,5136 CABOT CIR,SACRAMENTO,95820,CA,4,2,1462,Residential,Thu May 15 00:00:00 EDT 2008,121500,38.528479,-121.411806 +891,7730 ROBINETTE RD,SACRAMENTO,95828,CA,3,2,1269,Residential,Thu May 15 00:00:00 EDT 2008,122000,38.47709,-121.410569 +892,87 LACAM CIR,SACRAMENTO,95820,CA,2,2,1188,Residential,Thu May 15 00:00:00 EDT 2008,123675,38.532359,-121.41167 +893,1691 NOGALES ST,SACRAMENTO,95838,CA,4,2,1570,Residential,Thu May 15 00:00:00 EDT 2008,126854,38.631925,-121.427775 +894,3118 42ND ST,SACRAMENTO,95817,CA,3,2,1093,Residential,Thu May 15 00:00:00 EDT 2008,127059,38.546091,-121.457745 +895,7517 50TH AVE,SACRAMENTO,95828,CA,3,1,962,Residential,Thu May 15 00:00:00 EDT 2008,128687,38.507339,-121.416267 +896,4071 EVALITA WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,129500,38.466388,-121.458861 +897,7928 36TH AVE,SACRAMENTO,95824,CA,3,2,1127,Residential,Thu May 15 00:00:00 EDT 2008,130000,38.52049,-121.411383 +898,6631 DEMARET DR,SACRAMENTO,95822,CA,4,2,1309,Residential,Thu May 15 00:00:00 EDT 2008,131750,38.506382,-121.483574 +899,7043 9TH AVE,RIO LINDA,95673,CA,2,1,970,Residential,Thu May 15 00:00:00 EDT 2008,132000,38.695589,-121.444133 +900,97 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.462376,-121.426556 +901,2636 TRONERO WAY,RANCHO CORDOVA,95670,CA,3,1,1000,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.593049,-121.30304 +902,1530 TOPANGA LN Unit 204,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,138000,38.88415,-121.270277 +903,3604 KODIAK WAY,ANTELOPE,95843,CA,3,2,1206,Residential,Thu May 15 00:00:00 EDT 2008,142000,38.706175,-121.379776 +904,2149 COTTAGE WAY,SACRAMENTO,95825,CA,3,1,1285,Residential,Thu May 15 00:00:00 EDT 2008,143012,38.603593,-121.417011 +905,8632 PRAIRIEWOODS DR,SACRAMENTO,95828,CA,3,2,1543,Residential,Thu May 15 00:00:00 EDT 2008,145846,38.477563,-121.384382 +906,612 STONE BLVD,WEST SACRAMENTO,95691,CA,2,1,884,Residential,Thu May 15 00:00:00 EDT 2008,147000,38.563084,-121.535579 +907,4180 12TH AVE,SACRAMENTO,95817,CA,3,1,1019,Residential,Thu May 15 00:00:00 EDT 2008,148750,38.54117,-121.458129 +908,8025 ARROYO VISTA DR,SACRAMENTO,95823,CA,4,2,1392,Residential,Thu May 15 00:00:00 EDT 2008,150000,38.46654,-121.419029 +909,5754 WALERGA RD Unit 4,SACRAMENTO,95842,CA,2,1,924,Condo,Thu May 15 00:00:00 EDT 2008,150454,38.672567,-121.356754 +910,8 LA ROCAS CT,SACRAMENTO,95823,CA,3,2,1217,Residential,Thu May 15 00:00:00 EDT 2008,151087,38.46616,-121.448283 +911,8636 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1670,Residential,Thu May 15 00:00:00 EDT 2008,157296,38.725873,-121.35856 +912,1941 EXPEDITION WAY,SACRAMENTO,95832,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,157500,38.473775,-121.493777 +913,4351 TURNBRIDGE DR,SACRAMENTO,95823,CA,3,2,1488,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.502034,-121.456027 +914,6513 HOLIDAY WAY,NORTH HIGHLANDS,95660,CA,3,2,1373,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.685361,-121.376938 +915,8321 MISTLETOE WAY,CITRUS HEIGHTS,95621,CA,4,2,1381,Residential,Thu May 15 00:00:00 EDT 2008,161250,38.717738,-121.308322 +916,5920 VALLEY GLEN WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Thu May 15 00:00:00 EDT 2008,164000,38.462821,-121.433135 +917,2601 SAN FERNANDO WAY,SACRAMENTO,95818,CA,2,1,881,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.556178,-121.476256 +918,501 POPLAR AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.584526,-121.534609 +919,8008 SAINT HELENA CT,SACRAMENTO,95829,CA,4,2,1608,Residential,Thu May 15 00:00:00 EDT 2008,165750,38.467012,-121.359969 +920,6517 DONEGAL DR,CITRUS HEIGHTS,95621,CA,3,1,1344,Residential,Thu May 15 00:00:00 EDT 2008,166000,38.681554,-121.312934 +921,1001 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Thu May 15 00:00:00 EDT 2008,169000,38.634292,-121.485106 +922,604 P ST,LINCOLN,95648,CA,3,2,1104,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.893168,-121.305398 +923,10001 WOODCREEK OAKS BLVD Unit 815,ROSEVILLE,95747,CA,2,2,0,Condo,Thu May 15 00:00:00 EDT 2008,170000,38.795529,-121.328819 +924,7351 GIGI PL,SACRAMENTO,95828,CA,4,2,1859,Multi-Family,Thu May 15 00:00:00 EDT 2008,170000,38.490606,-121.410173 +925,7740 DIXIE LOU ST,SACRAMENTO,95832,CA,3,2,1232,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.475853,-121.477039 +926,7342 DAVE ST,SACRAMENTO,95828,CA,3,1,1638,Residential,Thu May 15 00:00:00 EDT 2008,170725,38.490822,-121.401643 +927,7687 HOWERTON DR,SACRAMENTO,95831,CA,2,2,1177,Residential,Thu May 15 00:00:00 EDT 2008,171750,38.480859,-121.539745 +928,26 KAMSON CT,SACRAMENTO,95833,CA,3,2,1582,Residential,Thu May 15 00:00:00 EDT 2008,172000,38.622794,-121.499173 +929,7045 PEEVEY CT,SACRAMENTO,95823,CA,2,2,904,Residential,Thu May 15 00:00:00 EDT 2008,173056,38.502254,-121.451444 +930,8916 GABLES MILL PL,ELK GROVE,95758,CA,3,2,1340,Residential,Thu May 15 00:00:00 EDT 2008,174000,38.433919,-121.422347 +931,1140 EDMONTON DR,SACRAMENTO,95833,CA,3,2,1204,Residential,Thu May 15 00:00:00 EDT 2008,174250,38.62457,-121.486913 +932,8879 APPLE PEAR CT,ELK GROVE,95624,CA,4,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,176850,38.44574,-121.3725 +933,9 WIND CT,SACRAMENTO,95823,CA,4,2,1497,Residential,Thu May 15 00:00:00 EDT 2008,179500,38.45073,-121.427528 +934,8570 SHERATON DR,FAIR OAKS,95628,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,185000,38.667254,-121.240708 +935,1550 TOPANGA LN Unit 207,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,188000,38.88417,-121.270222 +936,1080 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1428,Residential,Thu May 15 00:00:00 EDT 2008,188700,38.634335,-121.486098 +937,5501 VALLETTA WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.530144,-121.43749 +938,5624 MEMORY LN,FAIR OAKS,95628,CA,3,1,1529,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.66745,-121.2364 +939,6622 WILLOWLEAF DR,CITRUS HEIGHTS,95621,CA,4,3,1892,Residential,Thu May 15 00:00:00 EDT 2008,189836,38.699714,-121.311635 +940,27 MEGAN CT,SACRAMENTO,95838,CA,4,2,1887,Residential,Thu May 15 00:00:00 EDT 2008,190000,38.649258,-121.465308 +941,6601 WOODMORE OAKS DR,ORANGEVALE,95662,CA,3,2,1294,Residential,Thu May 15 00:00:00 EDT 2008,191250,38.687006,-121.254319 +942,1973 DANVERS WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Thu May 15 00:00:00 EDT 2008,191675,38.477568,-121.492574 +943,8001 ARROYO VISTA DR,SACRAMENTO,95823,CA,3,2,1677,Residential,Thu May 15 00:00:00 EDT 2008,195500,38.46734,-121.419843 +944,7409 VOYAGER WAY,CITRUS HEIGHTS,95621,CA,3,1,1073,Residential,Thu May 15 00:00:00 EDT 2008,198000,38.700717,-121.3133 +945,815 CROSSWIND DR,SACRAMENTO,95838,CA,3,2,1231,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.651386,-121.45042 +946,5509 LAGUNA CREST WAY,ELK GROVE,95758,CA,3,2,1175,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.42442,-121.440357 +947,8424 MERRY HILL WAY,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.452075,-121.366461 +948,1525 PENNSYLVANIA AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,200100,38.569943,-121.527539 +949,5954 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,201528,38.68197,-121.500025 +950,8789 SEQUOIA WOOD CT,ELK GROVE,95624,CA,4,2,1609,Residential,Thu May 15 00:00:00 EDT 2008,204750,38.438818,-121.37443 +951,6600 SILVERTHORNE CIR,SACRAMENTO,95842,CA,4,3,1968,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.68607,-121.342369 +952,2221 2ND AVE,SACRAMENTO,95818,CA,2,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.555781,-121.485331 +953,3230 SMATHERS WAY,CARMICHAEL,95608,CA,3,2,1296,Residential,Thu May 15 00:00:00 EDT 2008,205900,38.623372,-121.347665 +954,5209 LAGUNA CREST WAY,ELK GROVE,95758,CA,2,2,1189,Residential,Thu May 15 00:00:00 EDT 2008,207000,38.424421,-121.443915 +955,416 LEITCH AVE,SACRAMENTO,95815,CA,2,1,795,Residential,Thu May 15 00:00:00 EDT 2008,207973,38.612694,-121.456669 +956,2100 BEATTY WAY,ROSEVILLE,95747,CA,3,2,1371,Residential,Thu May 15 00:00:00 EDT 2008,208250,38.737882,-121.308142 +957,6920 GILLINGHAM WAY,NORTH HIGHLANDS,95660,CA,3,1,1310,Residential,Thu May 15 00:00:00 EDT 2008,208318,38.694279,-121.373395 +958,82 WILDFLOWER DR,GALT,95632,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,209347,38.259708,-121.311616 +959,8652 BANTON CIR,ELK GROVE,95624,CA,4,2,1740,Residential,Thu May 15 00:00:00 EDT 2008,211500,38.444,-121.370993 +960,8428 MISTY PASS WAY,ANTELOPE,95843,CA,3,2,1517,Residential,Thu May 15 00:00:00 EDT 2008,212000,38.722959,-121.347115 +961,7958 ROSEVIEW WAY,SACRAMENTO,95828,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,213000,38.467836,-121.410366 +962,9020 LUKEN CT,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,216000,38.451398,-121.366614 +963,7809 VALLECITOS WAY,SACRAMENTO,95828,CA,3,1,888,Residential,Thu May 15 00:00:00 EDT 2008,216021,38.508217,-121.411207 +964,8445 OLD AUBURN RD,CITRUS HEIGHTS,95610,CA,3,2,1882,Residential,Thu May 15 00:00:00 EDT 2008,219000,38.715423,-121.246743 +965,10085 ATKINS DR,ELK GROVE,95757,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,219794,38.390893,-121.437821 +966,9185 CERROLINDA CIR,ELK GROVE,95758,CA,3,2,1418,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.424497,-121.426595 +967,9197 CORTINA CIR,ROSEVILLE,95678,CA,3,2,0,Condo,Thu May 15 00:00:00 EDT 2008,220000,38.793152,-121.290025 +968,5429 HESPER WAY,CARMICHAEL,95608,CA,4,2,1319,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.665104,-121.315901 +969,1178 WARMWOOD CT,GALT,95632,CA,4,2,1770,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.289544,-121.284607 +970,4900 ELUDE CT,SACRAMENTO,95842,CA,4,2,1627,Residential,Thu May 15 00:00:00 EDT 2008,223000,38.69674,-121.350519 +971,3557 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.631026,-121.501879 +972,3528 SAINT GEORGE DR,SACRAMENTO,95821,CA,3,1,1040,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.629468,-121.376445 +973,7381 WASHBURN WAY,NORTH HIGHLANDS,95660,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,224252,38.70355,-121.375103 +974,2181 WINTERHAVEN CIR,CAMERON PARK,95682,CA,3,2,0,Residential,Thu May 15 00:00:00 EDT 2008,224500,38.69757,-120.995739 +975,7540 HICKORY AVE,ORANGEVALE,95662,CA,3,1,1456,Residential,Thu May 15 00:00:00 EDT 2008,225000,38.703056,-121.235221 +976,5024 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,228000,38.389756,-121.446246 +977,2400 INVERNESS DR,LINCOLN,95648,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,229027,38.897814,-121.324691 +978,5 BISHOPGATE CT,SACRAMENTO,95823,CA,4,2,1329,Residential,Thu May 15 00:00:00 EDT 2008,229500,38.467936,-121.445477 +979,5601 REXLEIGH DR,SACRAMENTO,95823,CA,4,2,1715,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.445342,-121.441504 +980,1909 YARNELL WAY,ELK GROVE,95758,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.417382,-121.484325 +981,9169 GARLINGTON CT,SACRAMENTO,95829,CA,4,3,2280,Residential,Thu May 15 00:00:00 EDT 2008,232425,38.457679,-121.35962 +982,6932 RUSKUT WAY,SACRAMENTO,95823,CA,3,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,234000,38.499893,-121.45889 +983,7933 DAFFODIL WAY,CITRUS HEIGHTS,95610,CA,3,2,1216,Residential,Thu May 15 00:00:00 EDT 2008,235000,38.708824,-121.256803 +984,8304 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Thu May 15 00:00:00 EDT 2008,235301,38.417,-121.397424 +985,3882 YELLOWSTONE LN,EL DORADO HILLS,95762,CA,3,2,1362,Residential,Thu May 15 00:00:00 EDT 2008,235738,38.655245,-121.075915 \ No newline at end of file diff --git a/examples/demo.csv b/examples/demo.csv new file mode 100644 index 00000000..8b8027b9 --- /dev/null +++ b/examples/demo.csv @@ -0,0 +1,986 @@ +id,street,city,zip,state,beds,baths,sq__ft,type,sale_date,price,latitude,longitude +1,3526 HIGH ST,SACRAMENTO,95838,CA,2,1,836,Residential,Wed May 21 00:00:00 EDT 2008,59222,38.631913,-121.434879 +2,51 OMAHA CT,SACRAMENTO,95823,CA,3,1,1167,Residential,Wed May 21 00:00:00 EDT 2008,68212,38.478902,-121.431028 +3,2796 BRANCH ST,SACRAMENTO,95815,CA,2,1,796,Residential,Wed May 21 00:00:00 EDT 2008,68880,38.618305,-121.443839 +4,2805 JANETTE WAY,SACRAMENTO,95815,CA,2,1,852,Residential,Wed May 21 00:00:00 EDT 2008,69307,38.616835,-121.439146 +5,6001 MCMAHON DR,SACRAMENTO,95824,CA,2,1,797,Residential,Wed May 21 00:00:00 EDT 2008,81900,38.51947,-121.435768 +6,5828 PEPPERMILL CT,SACRAMENTO,95841,CA,3,1,1122,Condo,Wed May 21 00:00:00 EDT 2008,89921,38.662595,-121.327813 +7,6048 OGDEN NASH WAY,SACRAMENTO,95842,CA,3,2,1104,Residential,Wed May 21 00:00:00 EDT 2008,90895,38.681659,-121.351705 +8,2561 19TH AVE,SACRAMENTO,95820,CA,3,1,1177,Residential,Wed May 21 00:00:00 EDT 2008,91002,38.535092,-121.481367 +9,11150 TRINITY RIVER DR Unit 114,RANCHO CORDOVA,95670,CA,2,2,941,Condo,Wed May 21 00:00:00 EDT 2008,94905,38.621188,-121.270555 +10,7325 10TH ST,RIO LINDA,95673,CA,3,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,98937,38.700909,-121.442979 +11,645 MORRISON AVE,SACRAMENTO,95838,CA,3,2,909,Residential,Wed May 21 00:00:00 EDT 2008,100309,38.637663,-121.45152 +12,4085 FAWN CIR,SACRAMENTO,95823,CA,3,2,1289,Residential,Wed May 21 00:00:00 EDT 2008,106250,38.470746,-121.458918 +13,2930 LA ROSA RD,SACRAMENTO,95815,CA,1,1,871,Residential,Wed May 21 00:00:00 EDT 2008,106852,38.618698,-121.435833 +14,2113 KIRK WAY,SACRAMENTO,95822,CA,3,1,1020,Residential,Wed May 21 00:00:00 EDT 2008,107502,38.482215,-121.492603 +15,4533 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,2,1022,Residential,Wed May 21 00:00:00 EDT 2008,108750,38.672914,-121.35934 +16,7340 HAMDEN PL,SACRAMENTO,95842,CA,2,2,1134,Condo,Wed May 21 00:00:00 EDT 2008,110700,38.700051,-121.351278 +17,6715 6TH ST,RIO LINDA,95673,CA,2,1,844,Residential,Wed May 21 00:00:00 EDT 2008,113263,38.689591,-121.452239 +18,6236 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Wed May 21 00:00:00 EDT 2008,116250,38.679776,-121.314089 +19,250 PERALTA AVE,SACRAMENTO,95833,CA,2,1,588,Residential,Wed May 21 00:00:00 EDT 2008,120000,38.612099,-121.469095 +20,113 LEEWILL AVE,RIO LINDA,95673,CA,3,2,1356,Residential,Wed May 21 00:00:00 EDT 2008,121630,38.689999,-121.46322 +21,6118 STONEHAND AVE,CITRUS HEIGHTS,95621,CA,3,2,1118,Residential,Wed May 21 00:00:00 EDT 2008,122000,38.707851,-121.320707 +22,4882 BANDALIN WAY,SACRAMENTO,95823,CA,4,2,1329,Residential,Wed May 21 00:00:00 EDT 2008,122682,38.468173,-121.444071 +23,7511 OAKVALE CT,NORTH HIGHLANDS,95660,CA,4,2,1240,Residential,Wed May 21 00:00:00 EDT 2008,123000,38.702792,-121.38221 +24,9 PASTURE CT,SACRAMENTO,95834,CA,3,2,1601,Residential,Wed May 21 00:00:00 EDT 2008,124100,38.628631,-121.488097 +25,3729 BAINBRIDGE DR,NORTH HIGHLANDS,95660,CA,3,2,901,Residential,Wed May 21 00:00:00 EDT 2008,125000,38.701499,-121.37622 +26,3828 BLACKFOOT WAY,ANTELOPE,95843,CA,3,2,1088,Residential,Wed May 21 00:00:00 EDT 2008,126640,38.70974,-121.37377 +27,4108 NORTON WAY,SACRAMENTO,95820,CA,3,1,963,Residential,Wed May 21 00:00:00 EDT 2008,127281,38.537526,-121.478315 +28,1469 JANRICK AVE,SACRAMENTO,95832,CA,3,2,1119,Residential,Wed May 21 00:00:00 EDT 2008,129000,38.476472,-121.501711 +29,9861 CULP WAY,SACRAMENTO,95827,CA,4,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,131200,38.558423,-121.327948 +30,7825 CREEK VALLEY CIR,SACRAMENTO,95828,CA,3,2,1248,Residential,Wed May 21 00:00:00 EDT 2008,132000,38.472122,-121.404199 +31,5201 LAGUNA OAKS DR Unit 140,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,133000,38.423251,-121.444489 +32,6768 MEDORA DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Wed May 21 00:00:00 EDT 2008,134555,38.691161,-121.37192 +33,3100 EXPLORER DR,SACRAMENTO,95827,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,136500,38.566663,-121.332644 +34,7944 DOMINION WAY,ELVERTA,95626,CA,3,2,1116,Residential,Wed May 21 00:00:00 EDT 2008,138750,38.713182,-121.411227 +35,5201 LAGUNA OAKS DR Unit 162,ELK GROVE,95758,CA,2,2,1039,Condo,Wed May 21 00:00:00 EDT 2008,141000,38.423251,-121.444489 +36,3920 SHINING STAR DR,SACRAMENTO,95823,CA,3,2,1418,Residential,Wed May 21 00:00:00 EDT 2008,146250,38.48742,-121.462459 +37,5031 CORVAIR ST,NORTH HIGHLANDS,95660,CA,3,2,1082,Residential,Wed May 21 00:00:00 EDT 2008,147308,38.658246,-121.375469 +38,7661 NIXOS WAY,SACRAMENTO,95823,CA,4,2,1472,Residential,Wed May 21 00:00:00 EDT 2008,148750,38.479553,-121.463317 +39,7044 CARTHY WAY,SACRAMENTO,95828,CA,4,2,1146,Residential,Wed May 21 00:00:00 EDT 2008,149593,38.49857,-121.420925 +40,2442 LARKSPUR LN,SACRAMENTO,95825,CA,1,1,760,Condo,Wed May 21 00:00:00 EDT 2008,150000,38.58514,-121.403736 +41,4800 WESTLAKE PKWY Unit 2109,SACRAMENTO,95835,CA,2,2,1304,Condo,Wed May 21 00:00:00 EDT 2008,152000,38.658812,-121.542345 +42,2178 63RD AVE,SACRAMENTO,95822,CA,3,2,1207,Residential,Wed May 21 00:00:00 EDT 2008,154000,38.493955,-121.48966 +43,8718 ELK WAY,ELK GROVE,95624,CA,3,2,1056,Residential,Wed May 21 00:00:00 EDT 2008,156896,38.41653,-121.379653 +44,5708 RIDGEPOINT DR,ANTELOPE,95843,CA,2,2,1043,Residential,Wed May 21 00:00:00 EDT 2008,161250,38.72027,-121.331555 +45,7315 KOALA CT,NORTH HIGHLANDS,95660,CA,4,2,1587,Residential,Wed May 21 00:00:00 EDT 2008,161500,38.699251,-121.371414 +46,2622 ERIN DR,SACRAMENTO,95833,CA,4,1,1120,Residential,Wed May 21 00:00:00 EDT 2008,164000,38.613765,-121.488694 +47,8421 SUNBLAZE WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Wed May 21 00:00:00 EDT 2008,165000,38.450543,-121.432538 +48,7420 ALIX PKWY,SACRAMENTO,95823,CA,4,1,1955,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.489405,-121.452811 +49,3820 NATOMA WAY,SACRAMENTO,95838,CA,4,2,1656,Residential,Wed May 21 00:00:00 EDT 2008,166357,38.636748,-121.422159 +50,4431 GREEN TREE DR,SACRAMENTO,95823,CA,3,2,1477,Residential,Wed May 21 00:00:00 EDT 2008,168000,38.499954,-121.454469 +51,9417 SARA ST,ELK GROVE,95624,CA,3,2,1188,Residential,Wed May 21 00:00:00 EDT 2008,170000,38.415518,-121.370527 +52,8299 HALBRITE WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,173000,38.473814,-121.4 +53,7223 KALLIE KAY LN,SACRAMENTO,95823,CA,3,2,1463,Residential,Wed May 21 00:00:00 EDT 2008,174250,38.477553,-121.419463 +54,8156 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1714,Residential,Wed May 21 00:00:00 EDT 2008,174313,38.474853,-121.406326 +55,7957 VALLEY GREEN DR,SACRAMENTO,95823,CA,3,2,1185,Residential,Wed May 21 00:00:00 EDT 2008,178480,38.465184,-121.434925 +56,1122 WILD POPPY CT,GALT,95632,CA,3,2,1406,Residential,Wed May 21 00:00:00 EDT 2008,178760,38.287789,-121.294715 +57,4520 BOMARK WAY,SACRAMENTO,95842,CA,4,2,1943,Multi-Family,Wed May 21 00:00:00 EDT 2008,179580,38.665724,-121.358576 +58,9012 KIEFER BLVD,SACRAMENTO,95826,CA,3,2,1172,Residential,Wed May 21 00:00:00 EDT 2008,181000,38.547011,-121.366217 +59,5332 SANDSTONE ST,CARMICHAEL,95608,CA,3,1,1152,Residential,Wed May 21 00:00:00 EDT 2008,181872,38.662105,-121.313945 +60,5993 SAWYER CIR,SACRAMENTO,95823,CA,4,3,1851,Residential,Wed May 21 00:00:00 EDT 2008,182587,38.4473,-121.435218 +61,4844 CLYDEBANK WAY,ANTELOPE,95843,CA,3,2,1215,Residential,Wed May 21 00:00:00 EDT 2008,182716,38.714609,-121.347887 +62,306 CAMELLIA WAY,GALT,95632,CA,3,2,1130,Residential,Wed May 21 00:00:00 EDT 2008,182750,38.260443,-121.297864 +63,9021 MADISON AVE,ORANGEVALE,95662,CA,4,2,1603,Residential,Wed May 21 00:00:00 EDT 2008,183200,38.664186,-121.217511 +64,404 6TH ST,GALT,95632,CA,3,1,1479,Residential,Wed May 21 00:00:00 EDT 2008,188741,38.251808,-121.302493 +65,8317 SUNNY CREEK WAY,SACRAMENTO,95823,CA,3,2,1420,Residential,Wed May 21 00:00:00 EDT 2008,189000,38.459041,-121.424644 +66,2617 BASS CT,SACRAMENTO,95826,CA,3,2,1280,Residential,Wed May 21 00:00:00 EDT 2008,192067,38.560767,-121.377471 +67,7005 TIANT WAY,ELK GROVE,95758,CA,3,2,1586,Residential,Wed May 21 00:00:00 EDT 2008,194000,38.422811,-121.423285 +68,7895 CABER WAY,ANTELOPE,95843,CA,3,2,1362,Residential,Wed May 21 00:00:00 EDT 2008,194818,38.711279,-121.393449 +69,7624 BOGEY CT,SACRAMENTO,95828,CA,4,4,2162,Multi-Family,Wed May 21 00:00:00 EDT 2008,195000,38.48009,-121.415102 +70,6930 HAMPTON COVE WAY,SACRAMENTO,95823,CA,3,2,1266,Residential,Wed May 21 00:00:00 EDT 2008,198000,38.44004,-121.421012 +71,8708 MESA BROOK WAY,ELK GROVE,95624,CA,4,2,1715,Residential,Wed May 21 00:00:00 EDT 2008,199500,38.44076,-121.385792 +72,120 GRANT LN,FOLSOM,95630,CA,3,2,1820,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.687742,-121.17104 +73,5907 ELLERSLEE DR,CARMICHAEL,95608,CA,3,1,936,Residential,Wed May 21 00:00:00 EDT 2008,200000,38.664468,-121.32683 +74,17 SERASPI CT,SACRAMENTO,95834,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,206000,38.631481,-121.50188 +75,170 PENHOW CIR,SACRAMENTO,95834,CA,3,2,1511,Residential,Wed May 21 00:00:00 EDT 2008,208000,38.653439,-121.535169 +76,8345 STAR THISTLE WAY,SACRAMENTO,95823,CA,4,2,1590,Residential,Wed May 21 00:00:00 EDT 2008,212864,38.454349,-121.439239 +77,9080 FRESCA WAY,ELK GROVE,95758,CA,4,2,1596,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.427818,-121.424026 +78,391 NATALINO CIR,SACRAMENTO,95835,CA,2,2,1341,Residential,Wed May 21 00:00:00 EDT 2008,221000,38.67307,-121.506373 +79,8373 BLACKMAN WAY,ELK GROVE,95624,CA,5,3,2136,Residential,Wed May 21 00:00:00 EDT 2008,223058,38.435436,-121.394536 +80,9837 CORTE DORADO CT,ELK GROVE,95624,CA,4,2,1616,Residential,Wed May 21 00:00:00 EDT 2008,227887,38.400676,-121.38101 +81,5037 J PKWY,SACRAMENTO,95823,CA,3,2,1478,Residential,Wed May 21 00:00:00 EDT 2008,231477,38.491399,-121.443547 +82,10245 LOS PALOS DR,RANCHO CORDOVA,95670,CA,3,2,1287,Residential,Wed May 21 00:00:00 EDT 2008,234697,38.593699,-121.31089 +83,6613 NAVION DR,CITRUS HEIGHTS,95621,CA,4,2,1277,Residential,Wed May 21 00:00:00 EDT 2008,235000,38.702855,-121.31308 +84,2887 AZEVEDO DR,SACRAMENTO,95833,CA,4,2,1448,Residential,Wed May 21 00:00:00 EDT 2008,236000,38.618457,-121.509439 +85,9186 KINBRACE CT,SACRAMENTO,95829,CA,4,3,2235,Residential,Wed May 21 00:00:00 EDT 2008,236685,38.463355,-121.358936 +86,4243 MIDDLEBURY WAY,MATHER,95655,CA,3,2,2093,Residential,Wed May 21 00:00:00 EDT 2008,237800,38.547991,-121.280483 +87,1028 FALLON PLACE CT,RIO LINDA,95673,CA,3,2,1193,Residential,Wed May 21 00:00:00 EDT 2008,240122,38.693818,-121.441153 +88,4804 NORIKER DR,ELK GROVE,95757,CA,3,2,2163,Residential,Wed May 21 00:00:00 EDT 2008,242638,38.400974,-121.448424 +89,7713 HARVEST WOODS DR,SACRAMENTO,95828,CA,3,2,1269,Residential,Wed May 21 00:00:00 EDT 2008,244000,38.478198,-121.412911 +90,2866 KARITSA AVE,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,244500,38.626671,-121.52597 +91,6913 RICHEVE WAY,SACRAMENTO,95828,CA,3,1,958,Residential,Wed May 21 00:00:00 EDT 2008,244960,38.502519,-121.420769 +92,8636 TEGEA WAY,ELK GROVE,95624,CA,5,3,2508,Residential,Wed May 21 00:00:00 EDT 2008,245918,38.443832,-121.382087 +93,5448 MAIDSTONE WAY,CITRUS HEIGHTS,95621,CA,3,2,1305,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.665395,-121.293288 +94,18 OLLIE CT,ELK GROVE,95758,CA,4,2,1591,Residential,Wed May 21 00:00:00 EDT 2008,250000,38.444909,-121.412345 +95,4010 ALEX LN,CARMICHAEL,95608,CA,2,2,1326,Condo,Wed May 21 00:00:00 EDT 2008,250134,38.637028,-121.312963 +96,4901 MILLNER WAY,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.38692,-121.447349 +97,4818 BRITTNEY LEE CT,SACRAMENTO,95841,CA,4,2,1921,Residential,Wed May 21 00:00:00 EDT 2008,254200,38.653917,-121.34218 +98,5529 LAGUNA PARK DR,ELK GROVE,95758,CA,5,3,2790,Residential,Wed May 21 00:00:00 EDT 2008,258000,38.42568,-121.438062 +99,230 CANDELA CIR,SACRAMENTO,95835,CA,3,2,1541,Residential,Wed May 21 00:00:00 EDT 2008,260000,38.656251,-121.547572 +100,4900 71ST ST,SACRAMENTO,95820,CA,3,1,1018,Residential,Wed May 21 00:00:00 EDT 2008,260014,38.53151,-121.421089 +101,12209 CONSERVANCY WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,263500,38.553867,-121.219141 +102,4236 NATOMAS CENTRAL DR,SACRAMENTO,95834,CA,3,2,1672,Condo,Wed May 21 00:00:00 EDT 2008,265000,38.648879,-121.544023 +103,5615 LUPIN LN,POLLOCK PINES,95726,CA,3,2,1380,Residential,Wed May 21 00:00:00 EDT 2008,265000,38.708315,-120.603872 +104,5625 JAMES WAY,SACRAMENTO,95822,CA,3,1,975,Residential,Wed May 21 00:00:00 EDT 2008,271742,38.523947,-121.484946 +105,7842 LAHONTAN CT,SACRAMENTO,95829,CA,4,3,2372,Residential,Wed May 21 00:00:00 EDT 2008,273750,38.472976,-121.318633 +106,6850 21ST ST,SACRAMENTO,95822,CA,3,2,1446,Residential,Wed May 21 00:00:00 EDT 2008,275086,38.502194,-121.490795 +107,2900 BLAIR RD,POLLOCK PINES,95726,CA,2,2,1284,Residential,Wed May 21 00:00:00 EDT 2008,280908,38.75485,-120.60476 +108,2064 EXPEDITION WAY,SACRAMENTO,95832,CA,4,3,3009,Residential,Wed May 21 00:00:00 EDT 2008,280987,38.474099,-121.490711 +109,2912 NORCADE CIR,SACRAMENTO,95826,CA,8,4,3612,Multi-Family,Wed May 21 00:00:00 EDT 2008,282400,38.559505,-121.364839 +110,9507 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Wed May 21 00:00:00 EDT 2008,285000,38.410992,-121.479043 +111,8882 AUTUMN GOLD CT,ELK GROVE,95624,CA,4,2,1993,Residential,Wed May 21 00:00:00 EDT 2008,287417,38.4439,-121.37255 +112,5322 WHITE LOTUS WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Wed May 21 00:00:00 EDT 2008,291000,38.391538,-121.442596 +113,1838 CASTRO WAY,SACRAMENTO,95818,CA,2,1,1126,Residential,Wed May 21 00:00:00 EDT 2008,292024,38.556098,-121.490787 +114,10158 CRAWFORD WAY,SACRAMENTO,95827,CA,4,4,2213,Multi-Family,Wed May 21 00:00:00 EDT 2008,297000,38.5703,-121.315735 +115,7731 MASTERS ST,ELK GROVE,95758,CA,5,3,2494,Residential,Wed May 21 00:00:00 EDT 2008,297000,38.442031,-121.410873 +116,4925 PERCHERON DR,ELK GROVE,95757,CA,3,2,1843,Residential,Wed May 21 00:00:00 EDT 2008,298000,38.40154,-121.447649 +117,2010 PROMONTORY POINT LN,GOLD RIVER,95670,CA,2,2,1520,Residential,Wed May 21 00:00:00 EDT 2008,299000,38.62869,-121.261669 +118,4727 SAVOIE WAY,SACRAMENTO,95835,CA,5,3,2800,Residential,Wed May 21 00:00:00 EDT 2008,304037,38.658182,-121.549521 +119,8664 MAGNOLIA HILL WAY,ELK GROVE,95624,CA,4,2,2309,Residential,Wed May 21 00:00:00 EDT 2008,311000,38.442352,-121.389675 +120,9570 HARVEST ROSE WAY,SACRAMENTO,95827,CA,5,3,2367,Residential,Wed May 21 00:00:00 EDT 2008,315537,38.555993,-121.340352 +121,4359 CREGAN CT,RANCHO CORDOVA,95742,CA,5,4,3516,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.545128,-121.224922 +122,5337 DUSTY ROSE WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,320000,38.528575,-121.2286 +123,8929 SUTTERS GOLD DR,SACRAMENTO,95826,CA,4,3,1914,Residential,Wed May 21 00:00:00 EDT 2008,328360,38.550848,-121.370224 +124,8025 PEERLESS AVE,ORANGEVALE,95662,CA,2,1,1690,Residential,Wed May 21 00:00:00 EDT 2008,334150,38.71147,-121.216214 +125,4620 WELERA WAY,ELK GROVE,95757,CA,3,3,2725,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.398609,-121.450148 +126,9723 TERRAPIN CT,ELK GROVE,95757,CA,4,3,2354,Residential,Wed May 21 00:00:00 EDT 2008,335750,38.403492,-121.430224 +127,2115 SMOKESTACK WAY,SACRAMENTO,95833,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,339500,38.602416,-121.542965 +128,100 REBECCA WAY,FOLSOM,95630,CA,3,2,2185,Residential,Wed May 21 00:00:00 EDT 2008,344250,38.68479,-121.149199 +129,9488 OAK VILLAGE WAY,ELK GROVE,95758,CA,4,2,1801,Residential,Wed May 21 00:00:00 EDT 2008,346210,38.41333,-121.404999 +130,8495 DARTFORD DR,SACRAMENTO,95823,CA,3,3,1961,Residential,Wed May 21 00:00:00 EDT 2008,347029,38.448507,-121.421346 +131,6708 PONTA DO SOL WAY,ELK GROVE,95757,CA,4,2,3134,Residential,Wed May 21 00:00:00 EDT 2008,347650,38.380635,-121.425538 +132,4143 SEA MEADOW WAY,SACRAMENTO,95823,CA,4,3,1915,Residential,Wed May 21 00:00:00 EDT 2008,351300,38.46534,-121.457519 +133,3020 RICHARDSON CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Wed May 21 00:00:00 EDT 2008,352000,38.691299,-121.081752 +134,8082 LINDA ISLE LN,SACRAMENTO,95831,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,370000,38.4772,-121.5215 +135,15300 MURIETA SOUTH PKWY,RANCHO MURIETA,95683,CA,4,3,2734,Residential,Wed May 21 00:00:00 EDT 2008,370500,38.4874,-121.075129 +136,11215 SHARRMONT CT,WILTON,95693,CA,3,2,2110,Residential,Wed May 21 00:00:00 EDT 2008,372000,38.35062,-121.228349 +137,7105 DANBERG WAY,ELK GROVE,95757,CA,5,3,3164,Residential,Wed May 21 00:00:00 EDT 2008,375000,38.4019,-121.420388 +138,5579 JERRY LITELL WAY,SACRAMENTO,95835,CA,5,3,3599,Residential,Wed May 21 00:00:00 EDT 2008,381300,38.677126,-121.500519 +139,1050 FOXHALL WAY,SACRAMENTO,95831,CA,4,2,2054,Residential,Wed May 21 00:00:00 EDT 2008,381942,38.509819,-121.519661 +140,7837 ABBINGTON WAY,ANTELOPE,95843,CA,4,2,1830,Residential,Wed May 21 00:00:00 EDT 2008,387731,38.709873,-121.339472 +141,1300 F ST,SACRAMENTO,95814,CA,3,3,1627,Residential,Wed May 21 00:00:00 EDT 2008,391000,38.58355,-121.487289 +142,6801 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,394470,38.408351,-121.423925 +143,1693 SHELTER COVE DR,GREENWOOD,95635,CA,3,2,2846,Residential,Wed May 21 00:00:00 EDT 2008,395000,38.945357,-120.908822 +144,9361 WADDELL LN,ELK GROVE,95624,CA,4,3,2359,Residential,Wed May 21 00:00:00 EDT 2008,400186,38.450829,-121.349928 +145,10 SEA FOAM CT,SACRAMENTO,95831,CA,3,3,2052,Residential,Wed May 21 00:00:00 EDT 2008,415000,38.487885,-121.545947 +146,6945 RIO TEJO WAY,ELK GROVE,95757,CA,5,3,3433,Residential,Wed May 21 00:00:00 EDT 2008,425000,38.385638,-121.422616 +147,4186 TULIP PARK WAY,RANCHO CORDOVA,95742,CA,5,3,3615,Residential,Wed May 21 00:00:00 EDT 2008,430000,38.550617,-121.23526 +148,9278 DAIRY CT,ELK GROVE,95624,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,445000,38.420338,-121.363757 +149,207 ORANGE BLOSSOM CIR Unit C,FOLSOM,95630,CA,5,3,2687,Residential,Wed May 21 00:00:00 EDT 2008,460000,38.646273,-121.175322 +150,6507 RIO DE ONAR WAY,ELK GROVE,95757,CA,4,3,2724,Residential,Wed May 21 00:00:00 EDT 2008,461000,38.38253,-121.428007 +151,7004 RAWLEY WAY,ELK GROVE,95757,CA,4,3,3440,Residential,Wed May 21 00:00:00 EDT 2008,489332,38.406421,-121.422081 +152,6503 RIO DE ONAR WAY,ELK GROVE,95757,CA,5,4,3508,Residential,Wed May 21 00:00:00 EDT 2008,510000,38.38253,-121.428038 +153,2217 APPALOOSA CT,FOLSOM,95630,CA,4,2,2462,Residential,Wed May 21 00:00:00 EDT 2008,539000,38.655167,-121.090178 +154,868 HILDEBRAND CIR,FOLSOM,95630,CA,0,0,0,Residential,Wed May 21 00:00:00 EDT 2008,585000,38.670947,-121.097727 +155,6030 PALERMO WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,600000,38.672761,-121.050378 +156,4070 REDONDO DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Wed May 21 00:00:00 EDT 2008,606238,38.666807,-121.06483 +157,4004 CRESTA WAY,SACRAMENTO,95864,CA,3,3,2325,Residential,Wed May 21 00:00:00 EDT 2008,660000,38.591618,-121.370626 +158,315 JUMEL CT,EL DORADO HILLS,95762,CA,6,5,0,Residential,Wed May 21 00:00:00 EDT 2008,830000,38.669931,-121.05958 +159,6272 LONGFORD DR Unit 1,CITRUS HEIGHTS,95621,CA,2,1,795,Condo,Tue May 20 00:00:00 EDT 2008,69000,38.680923,-121.313945 +160,3432 Y ST,SACRAMENTO,95817,CA,4,2,1099,Residential,Tue May 20 00:00:00 EDT 2008,70000,38.554967,-121.468046 +161,9512 EMERALD PARK DR Unit 3,ELK GROVE,95624,CA,2,1,840,Condo,Tue May 20 00:00:00 EDT 2008,71000,38.40573,-121.369832 +162,3132 CLAY ST,SACRAMENTO,95815,CA,2,1,800,Residential,Tue May 20 00:00:00 EDT 2008,78000,38.624678,-121.439203 +163,5221 38TH AVE,SACRAMENTO,95824,CA,2,1,746,Residential,Tue May 20 00:00:00 EDT 2008,78400,38.518044,-121.443555 +164,6112 HERMOSA ST,SACRAMENTO,95822,CA,3,1,1067,Residential,Tue May 20 00:00:00 EDT 2008,80000,38.515125,-121.480416 +165,483 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1316,Residential,Tue May 20 00:00:00 EDT 2008,89000,38.623571,-121.454884 +166,671 SONOMA AVE,SACRAMENTO,95815,CA,3,1,1337,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.622953,-121.450142 +167,5980 79TH ST,SACRAMENTO,95824,CA,2,1,868,Residential,Tue May 20 00:00:00 EDT 2008,90000,38.518373,-121.411779 +168,7607 ELDER CREEK RD,SACRAMENTO,95824,CA,3,1,924,Residential,Tue May 20 00:00:00 EDT 2008,92000,38.51055,-121.414768 +169,5028 14TH AVE,SACRAMENTO,95820,CA,2,1,610,Residential,Tue May 20 00:00:00 EDT 2008,93675,38.53942,-121.446894 +170,14788 NATCHEZ CT,RANCHO MURIETA,95683,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,97750,38.492287,-121.100032 +171,1069 ACACIA AVE,SACRAMENTO,95815,CA,2,1,1220,Residential,Tue May 20 00:00:00 EDT 2008,98000,38.621998,-121.442238 +172,5201 LAGUNA OAKS DR Unit 199,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,98000,38.423251,-121.444489 +173,3847 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1643,Residential,Tue May 20 00:00:00 EDT 2008,99000,38.588672,-121.373916 +174,5201 LAGUNA OAKS DR Unit 172,ELK GROVE,95758,CA,1,1,722,Condo,Tue May 20 00:00:00 EDT 2008,100000,38.423251,-121.444489 +175,1121 CREEKSIDE WAY,GALT,95632,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,106716,38.241514,-121.312199 +176,5307 CABRILLO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.52712,-121.435348 +177,3725 DON JULIO BLVD,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Tue May 20 00:00:00 EDT 2008,111000,38.67895,-121.379406 +178,4803 MCCLOUD DR,SACRAMENTO,95842,CA,2,2,967,Residential,Tue May 20 00:00:00 EDT 2008,114800,38.682279,-121.352817 +179,10542 SILVERWOOD WAY,RANCHO CORDOVA,95670,CA,3,1,1098,Residential,Tue May 20 00:00:00 EDT 2008,120108,38.587156,-121.295778 +180,6318 39TH AVE,SACRAMENTO,95824,CA,3,1,1050,Residential,Tue May 20 00:00:00 EDT 2008,123225,38.518942,-121.430158 +181,211 MCDANIEL CIR,SACRAMENTO,95838,CA,3,2,1110,Residential,Tue May 20 00:00:00 EDT 2008,123750,38.636565,-121.460383 +182,3800 LYNHURST WAY,NORTH HIGHLANDS,95660,CA,3,1,888,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.650445,-121.374861 +183,6139 HERMOSA ST,SACRAMENTO,95822,CA,3,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,125000,38.514665,-121.480411 +184,2505 RHINE WAY,ELVERTA,95626,CA,3,2,1080,Residential,Tue May 20 00:00:00 EDT 2008,126000,38.717976,-121.407684 +185,3692 PAYNE WAY,NORTH HIGHLANDS,95660,CA,3,1,957,Residential,Tue May 20 00:00:00 EDT 2008,129000,38.66654,-121.378298 +186,604 MORRISON AVE,SACRAMENTO,95838,CA,2,1,952,Residential,Tue May 20 00:00:00 EDT 2008,134000,38.637678,-121.452476 +187,648 SANTA ANA AVE,SACRAMENTO,95838,CA,3,2,1211,Residential,Tue May 20 00:00:00 EDT 2008,135000,38.658478,-121.450409 +188,14 ASHLEY OAKS CT,SACRAMENTO,95815,CA,3,2,1264,Residential,Tue May 20 00:00:00 EDT 2008,135500,38.61779,-121.436765 +189,3174 NORTHVIEW DR,SACRAMENTO,95833,CA,3,1,1080,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.623817,-121.477827 +190,840 TRANQUIL LN,GALT,95632,CA,3,2,1266,Residential,Tue May 20 00:00:00 EDT 2008,140000,38.270617,-121.299205 +191,5333 PRIMROSE DR Unit 19A,FAIR OAKS,95628,CA,2,2,994,Condo,Tue May 20 00:00:00 EDT 2008,142500,38.662785,-121.276272 +192,1035 MILLET WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Tue May 20 00:00:00 EDT 2008,143500,38.631056,-121.48508 +193,5201 LAGUNA OAKS DR Unit 126,ELK GROVE,95758,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,145000,38.423251,-121.444489 +194,3328 22ND AVE,SACRAMENTO,95820,CA,2,1,722,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.532727,-121.470783 +195,8001 HARTWICK WAY,SACRAMENTO,95828,CA,4,2,1448,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488623,-121.410582 +196,7812 HARTWICK WAY,SACRAMENTO,95828,CA,3,2,1188,Residential,Tue May 20 00:00:00 EDT 2008,145000,38.488611,-121.412808 +197,4207 PAINTER WAY,NORTH HIGHLANDS,95660,CA,4,2,1183,Residential,Tue May 20 00:00:00 EDT 2008,146000,38.692915,-121.367497 +198,7458 WINKLEY WAY,SACRAMENTO,95822,CA,3,1,1320,Residential,Tue May 20 00:00:00 EDT 2008,148500,38.487444,-121.491366 +199,8354 SUNRISE WOODS WAY,SACRAMENTO,95828,CA,3,2,1117,Residential,Tue May 20 00:00:00 EDT 2008,149000,38.473288,-121.3963 +200,8116 COTTONMILL CIR,SACRAMENTO,95828,CA,3,2,1364,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.482876,-121.405912 +201,4660 CEDARWOOD WAY,SACRAMENTO,95823,CA,4,2,1310,Residential,Tue May 20 00:00:00 EDT 2008,150000,38.484834,-121.449316 +202,9254 HARROGATE WAY,ELK GROVE,95758,CA,2,2,1006,Residential,Tue May 20 00:00:00 EDT 2008,152000,38.420138,-121.412179 +203,6716 TAREYTON WAY,CITRUS HEIGHTS,95621,CA,3,2,1104,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.693724,-121.307169 +204,2028 ROBERT WAY,SACRAMENTO,95825,CA,2,1,810,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.609982,-121.419263 +205,9346 AIZENBERG CIR,ELK GROVE,95624,CA,2,2,1123,Residential,Tue May 20 00:00:00 EDT 2008,156000,38.41875,-121.370019 +206,4524 LOCH HAVEN WAY,SACRAMENTO,95842,CA,2,1,904,Residential,Tue May 20 00:00:00 EDT 2008,157788,38.67273,-121.359645 +207,7140 BLUE SPRINGS WAY,CITRUS HEIGHTS,95621,CA,3,2,1156,Residential,Tue May 20 00:00:00 EDT 2008,161653,38.720653,-121.302241 +208,4631 11TH AVE,SACRAMENTO,95820,CA,2,1,1321,Residential,Tue May 20 00:00:00 EDT 2008,161829,38.541965,-121.452132 +209,3228 BAGGAN CT,ANTELOPE,95843,CA,3,2,1392,Residential,Tue May 20 00:00:00 EDT 2008,165000,38.715346,-121.388163 +210,8515 DARTFORD DR,SACRAMENTO,95823,CA,3,2,1439,Residential,Tue May 20 00:00:00 EDT 2008,168000,38.448288,-121.420719 +211,4500 TIPPWOOD WAY,SACRAMENTO,95842,CA,3,2,1159,Residential,Tue May 20 00:00:00 EDT 2008,169000,38.69951,-121.359989 +212,2460 EL ROCCO WAY,RANCHO CORDOVA,95670,CA,3,2,1671,Residential,Tue May 20 00:00:00 EDT 2008,175000,38.591477,-121.31534 +213,8244 SUNBIRD WAY,SACRAMENTO,95823,CA,3,2,1740,Residential,Tue May 20 00:00:00 EDT 2008,176250,38.457654,-121.431381 +214,5841 VALLEY VALE WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Tue May 20 00:00:00 EDT 2008,179000,38.461283,-121.434322 +215,7863 CRESTLEIGH CT,ANTELOPE,95843,CA,2,2,1007,Residential,Tue May 20 00:00:00 EDT 2008,180000,38.710889,-121.358876 +216,7129 SPRINGMONT DR,ELK GROVE,95758,CA,3,2,1716,Residential,Tue May 20 00:00:00 EDT 2008,180400,38.417649,-121.420294 +217,8284 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Tue May 20 00:00:00 EDT 2008,182000,38.417182,-121.397231 +218,2219 EL CANTO CIR,RANCHO CORDOVA,95670,CA,4,2,1829,Residential,Tue May 20 00:00:00 EDT 2008,184500,38.592383,-121.318669 +219,8907 GEMWOOD WAY,ELK GROVE,95758,CA,3,2,1555,Residential,Tue May 20 00:00:00 EDT 2008,185000,38.435471,-121.441173 +220,5925 MALEVILLE AVE,CARMICHAEL,95608,CA,4,2,1120,Residential,Tue May 20 00:00:00 EDT 2008,189000,38.666564,-121.325717 +221,7031 CANEVALLEY CIR,CITRUS HEIGHTS,95621,CA,3,2,1137,Residential,Tue May 20 00:00:00 EDT 2008,194000,38.718693,-121.303619 +222,3949 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1174,Residential,Tue May 20 00:00:00 EDT 2008,195000,38.543697,-121.366683 +223,4437 MITCHUM CT,ANTELOPE,95843,CA,3,2,1393,Residential,Tue May 20 00:00:00 EDT 2008,200000,38.704407,-121.36113 +224,2778 KAWEAH CT,CAMERON PARK,95682,CA,3,1,0,Residential,Tue May 20 00:00:00 EDT 2008,201000,38.694052,-120.995589 +225,1636 ALLENWOOD CIR,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,202500,38.879192,-121.309477 +226,8151 QUAIL RIDGE CT,SACRAMENTO,95828,CA,3,2,1289,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.461296,-121.390858 +227,4899 WIND CREEK DR,SACRAMENTO,95838,CA,4,2,1799,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.655887,-121.446119 +228,2370 BIG CANYON CREEK RD,PLACERVILLE,95667,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.74458,-120.794254 +229,6049 HAMBURG WAY,SACRAMENTO,95823,CA,4,3,1953,Residential,Tue May 20 00:00:00 EDT 2008,205000,38.443253,-121.431992 +230,4232 71ST ST,SACRAMENTO,95820,CA,2,1,723,Residential,Tue May 20 00:00:00 EDT 2008,207000,38.536741,-121.42115 +231,3361 BOW MAR CT,CAMERON PARK,95682,CA,2,2,0,Residential,Tue May 20 00:00:00 EDT 2008,210000,38.69437,-120.996602 +232,1889 COLD SPRINGS RD,PLACERVILLE,95667,CA,2,1,948,Residential,Tue May 20 00:00:00 EDT 2008,211500,38.739774,-120.860243 +233,5805 HIMALAYA WAY,CITRUS HEIGHTS,95621,CA,4,2,1578,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.696489,-121.328555 +234,7944 SYLVAN OAK WAY,CITRUS HEIGHTS,95610,CA,3,2,1317,Residential,Tue May 20 00:00:00 EDT 2008,215000,38.710388,-121.261096 +235,3139 SPOONWOOD WAY Unit 1,SACRAMENTO,95833,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,215500,38.626582,-121.52151 +236,6217 LEOLA WAY,SACRAMENTO,95824,CA,3,1,1360,Residential,Tue May 20 00:00:00 EDT 2008,222381,38.513066,-121.451909 +237,2340 HURLEY WAY,SACRAMENTO,95825,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,225000,38.588816,-121.408549 +238,3035 BRUNNET LN,SACRAMENTO,95833,CA,3,2,1522,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.624762,-121.522775 +239,3025 EL PRADO WAY,SACRAMENTO,95825,CA,4,2,1751,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.606603,-121.394147 +240,9387 GRANITE FALLS CT,ELK GROVE,95624,CA,3,2,1465,Residential,Tue May 20 00:00:00 EDT 2008,225000,38.419214,-121.348533 +241,9257 CALDERA WAY,SACRAMENTO,95826,CA,4,2,1605,Residential,Tue May 20 00:00:00 EDT 2008,228000,38.55821,-121.355022 +242,441 ARLINGDALE CIR,RIO LINDA,95673,CA,4,2,1475,Residential,Tue May 20 00:00:00 EDT 2008,229665,38.702893,-121.454949 +243,2284 LOS ROBLES RD,MEADOW VISTA,95722,CA,3,1,1216,Residential,Tue May 20 00:00:00 EDT 2008,230000,39.008159,-121.03623 +244,8164 CHENIN BLANC LN,FAIR OAKS,95628,CA,2,2,1315,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.665644,-121.259969 +245,4620 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,230000,38.390557,-121.449805 +246,5340 BIRK WAY,SACRAMENTO,95835,CA,3,2,1776,Residential,Tue May 20 00:00:00 EDT 2008,234000,38.672495,-121.515251 +247,51 ANJOU CIR,SACRAMENTO,95835,CA,3,2,2187,Residential,Tue May 20 00:00:00 EDT 2008,235000,38.661658,-121.540633 +248,2125 22ND AVE,SACRAMENTO,95822,CA,3,1,1291,Residential,Tue May 20 00:00:00 EDT 2008,236250,38.534596,-121.493121 +249,611 BLOSSOM ROCK LN,FOLSOM,95630,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,240000,38.6457,-121.1197 +250,8830 ADUR RD,ELK GROVE,95624,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,242000,38.43742,-121.372876 +251,7344 BUTTERBALL WAY,SACRAMENTO,95842,CA,3,2,1503,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.699489,-121.361828 +252,8219 GWINHURST CIR,SACRAMENTO,95828,CA,4,3,2491,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.459711,-121.384283 +253,3240 S ST,SACRAMENTO,95816,CA,2,1,1269,Residential,Tue May 20 00:00:00 EDT 2008,245000,38.562296,-121.467489 +254,221 PICASSO CIR,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.676658,-121.528128 +255,5706 GREENACRES WAY,ORANGEVALE,95662,CA,3,2,1176,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.669882,-121.213533 +256,6900 LONICERA DR,ORANGEVALE,95662,CA,4,2,1456,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.692199,-121.250975 +257,419 DAWNRIDGE RD,ROSEVILLE,95678,CA,3,2,1498,Residential,Tue May 20 00:00:00 EDT 2008,250000,38.725283,-121.297953 +258,5312 MARBURY WAY,ANTELOPE,95843,CA,3,2,1574,Residential,Tue May 20 00:00:00 EDT 2008,255000,38.710221,-121.341651 +259,6344 BONHAM CIR,CITRUS HEIGHTS,95610,CA,5,4,2085,Multi-Family,Tue May 20 00:00:00 EDT 2008,256054,38.682358,-121.272876 +260,8207 YORKTON WAY,SACRAMENTO,95829,CA,3,2,2170,Residential,Tue May 20 00:00:00 EDT 2008,257729,38.45967,-121.360461 +261,7922 MANSELL WAY,ELK GROVE,95758,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,260000,38.409634,-121.410787 +262,5712 MELBURY CIR,ANTELOPE,95843,CA,3,2,1567,Residential,Tue May 20 00:00:00 EDT 2008,261000,38.705849,-121.334701 +263,632 NEWBRIDGE LN,LINCOLN,95648,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,261800,38.879084,-121.298586 +264,1570 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Tue May 20 00:00:00 EDT 2008,264469,38.482704,-121.500433 +265,8108 FILIFERA WAY,ANTELOPE,95843,CA,4,3,1768,Residential,Tue May 20 00:00:00 EDT 2008,265000,38.717042,-121.35468 +266,230 BANKSIDE WAY,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.676937,-121.529244 +267,5342 CALABRIA WAY,SACRAMENTO,95835,CA,4,3,2030,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.671807,-121.498274 +268,47 NAPONEE CT,SACRAMENTO,95835,CA,3,2,1531,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.665704,-121.529096 +269,4236 ADRIATIC SEA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,270000,38.647961,-121.543162 +270,8864 REMBRANT CT,ELK GROVE,95624,CA,4,3,1653,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.435288,-121.375703 +271,9455 SEA CLIFF WAY,ELK GROVE,95758,CA,4,2,2056,Residential,Tue May 20 00:00:00 EDT 2008,275000,38.411522,-121.481406 +272,9720 LITTLE HARBOR WAY,ELK GROVE,95624,CA,4,3,2494,Residential,Tue May 20 00:00:00 EDT 2008,280000,38.404934,-121.352405 +273,8806 PHOENIX AVE,FAIR OAKS,95628,CA,3,2,1450,Residential,Tue May 20 00:00:00 EDT 2008,286013,38.660322,-121.230101 +274,3578 LOGGERHEAD WAY,SACRAMENTO,95834,CA,4,2,2169,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.633028,-121.526755 +275,1416 LOCKHART WAY,ROSEVILLE,95747,CA,3,2,1440,Residential,Tue May 20 00:00:00 EDT 2008,292000,38.752399,-121.330328 +276,5413 BUENA VENTURA WAY,FAIR OAKS,95628,CA,3,2,1527,Residential,Tue May 20 00:00:00 EDT 2008,293993,38.664552,-121.255937 +277,37 WHITE BIRCH CT,ROSEVILLE,95678,CA,3,2,1401,Residential,Tue May 20 00:00:00 EDT 2008,294000,38.776327,-121.284514 +278,405 MARLIN SPIKE WAY,SACRAMENTO,95838,CA,3,2,1411,Residential,Tue May 20 00:00:00 EDT 2008,296769,38.65783,-121.456842 +279,1102 CHESLEY LN,LINCOLN,95648,CA,4,4,0,Residential,Tue May 20 00:00:00 EDT 2008,297500,38.864864,-121.313988 +280,11281 STANFORD COURT LN Unit 604,GOLD RIVER,95670,CA,0,0,0,Condo,Tue May 20 00:00:00 EDT 2008,300000,38.625289,-121.260286 +281,7320 6TH ST,RIO LINDA,95673,CA,3,1,1284,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.700553,-121.452223 +282,993 MANTON CT,GALT,95632,CA,4,3,2307,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.272942,-121.289148 +283,4487 PANORAMA DR,PLACERVILLE,95667,CA,3,2,1329,Residential,Tue May 20 00:00:00 EDT 2008,300000,38.694559,-120.848157 +284,5651 OVERLEAF WAY,SACRAMENTO,95835,CA,4,2,1910,Residential,Tue May 20 00:00:00 EDT 2008,300500,38.677454,-121.494791 +285,2015 PROMONTORY POINT LN,GOLD RIVER,95670,CA,3,2,1981,Residential,Tue May 20 00:00:00 EDT 2008,305000,38.628732,-121.261149 +286,3224 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,306500,38.772771,-121.364877 +287,15 VANESSA PL,SACRAMENTO,95835,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,312500,38.668692,-121.54549 +288,1312 RENISON LN,LINCOLN,95648,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,315000,38.866409,-121.308485 +289,8 RIVER RAFT CT,SACRAMENTO,95823,CA,4,2,2205,Residential,Tue May 20 00:00:00 EDT 2008,319789,38.447353,-121.434969 +290,2251 LAMPLIGHT LN,LINCOLN,95648,CA,2,2,1449,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.849924,-121.275729 +291,106 FARHAM DR,FOLSOM,95630,CA,3,2,1258,Residential,Tue May 20 00:00:00 EDT 2008,330000,38.667834,-121.168578 +292,5405 NECTAR CIR,ELK GROVE,95757,CA,3,2,2575,Residential,Tue May 20 00:00:00 EDT 2008,331000,38.387014,-121.440967 +293,5411 10TH AVE,SACRAMENTO,95820,CA,2,1,539,Residential,Tue May 20 00:00:00 EDT 2008,334000,38.542727,-121.442449 +294,3512 RAINSONG CIR,RANCHO CORDOVA,95670,CA,4,3,2208,Residential,Tue May 20 00:00:00 EDT 2008,336000,38.573488,-121.282809 +295,1106 55TH ST,SACRAMENTO,95819,CA,3,1,1108,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.563805,-121.436395 +296,411 ILLSLEY WAY,FOLSOM,95630,CA,4,2,1595,Residential,Tue May 20 00:00:00 EDT 2008,339000,38.652002,-121.129504 +297,796 BUTTERCUP CIR,GALT,95632,CA,4,2,2159,Residential,Tue May 20 00:00:00 EDT 2008,345000,38.279581,-121.300828 +298,1230 SANDRA CIR,PLACERVILLE,95667,CA,4,3,2295,Residential,Tue May 20 00:00:00 EDT 2008,350000,38.738141,-120.784145 +299,318 ANACAPA DR,ROSEVILLE,95678,CA,3,2,1838,Residential,Tue May 20 00:00:00 EDT 2008,356000,38.782094,-121.297133 +300,3975 SHINING STAR DR,SACRAMENTO,95823,CA,4,2,1900,Residential,Tue May 20 00:00:00 EDT 2008,361745,38.487409,-121.461413 +301,1620 BASLER ST,SACRAMENTO,95811,CA,4,2,1718,Residential,Tue May 20 00:00:00 EDT 2008,361948,38.591822,-121.478644 +302,9688 NATURE TRAIL WAY,ELK GROVE,95757,CA,5,3,3389,Residential,Tue May 20 00:00:00 EDT 2008,370000,38.405224,-121.479275 +303,5924 TANUS CIR,ROCKLIN,95677,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,380000,38.778691,-121.204292 +304,9629 CEDAR OAK WAY,ELK GROVE,95757,CA,5,4,3260,Residential,Tue May 20 00:00:00 EDT 2008,385000,38.405527,-121.431746 +305,3429 FERNBROOK CT,CAMERON PARK,95682,CA,3,2,2016,Residential,Tue May 20 00:00:00 EDT 2008,399000,38.664225,-121.007173 +306,2121 HANNAH WAY,ROCKLIN,95765,CA,4,2,2607,Residential,Tue May 20 00:00:00 EDT 2008,402000,38.805749,-121.280931 +307,10104 ANNIE ST,ELK GROVE,95757,CA,4,3,2724,Residential,Tue May 20 00:00:00 EDT 2008,406026,38.390465,-121.443479 +308,1092 MAUGHAM CT,GALT,95632,CA,5,4,3746,Residential,Tue May 20 00:00:00 EDT 2008,420000,38.271646,-121.286848 +309,5404 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.527502,-121.233492 +310,6306 CONEJO,RANCHO MURIETA,95683,CA,4,2,3192,Residential,Tue May 20 00:00:00 EDT 2008,425000,38.512602,-121.087233 +311,14 CASA VATONI PL,SACRAMENTO,95834,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,433500,38.650221,-121.551704 +312,1456 EAGLESFIELD LN,LINCOLN,95648,CA,4,3,0,Residential,Tue May 20 00:00:00 EDT 2008,436746,38.857635,-121.311375 +313,4100 BOTHWELL CIR,EL DORADO HILLS,95762,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,438700,38.679136,-121.034329 +314,427 21ST ST,SACRAMENTO,95811,CA,2,1,1247,Residential,Tue May 20 00:00:00 EDT 2008,445000,38.582604,-121.47576 +315,1044 GALSTON DR,FOLSOM,95630,CA,4,2,2581,Residential,Tue May 20 00:00:00 EDT 2008,450000,38.676306,-121.09954 +316,4440 SYCAMORE AVE,SACRAMENTO,95841,CA,3,1,2068,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.646374,-121.353658 +317,1032 SOUZA DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.668239,-121.064437 +318,9760 LAZULITE CT,ELK GROVE,95624,CA,4,3,3992,Residential,Tue May 20 00:00:00 EDT 2008,460000,38.403609,-121.335541 +319,241 LANFRANCO CIR,SACRAMENTO,95835,CA,4,4,3397,Residential,Tue May 20 00:00:00 EDT 2008,465000,38.665696,-121.549437 +320,5559 NORTHBOROUGH DR,SACRAMENTO,95835,CA,5,3,3881,Residential,Tue May 20 00:00:00 EDT 2008,471750,38.677225,-121.519687 +321,2125 BIG SKY DR,ROCKLIN,95765,CA,5,3,0,Residential,Tue May 20 00:00:00 EDT 2008,480000,38.801637,-121.278798 +322,2109 HAMLET PL,CARMICHAEL,95608,CA,2,2,1598,Residential,Tue May 20 00:00:00 EDT 2008,484000,38.602754,-121.329326 +323,9970 STATE HIGHWAY 193,PLACERVILLE,95667,CA,4,3,1929,Residential,Tue May 20 00:00:00 EDT 2008,485000,38.787877,-120.816676 +324,2901 PINTAIL WAY,ELK GROVE,95757,CA,4,3,3070,Residential,Tue May 20 00:00:00 EDT 2008,495000,38.398488,-121.473424 +325,201 FIRESTONE DR,ROSEVILLE,95678,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,500500,38.770153,-121.300039 +326,1740 HIGH ST,AUBURN,95603,CA,3,3,0,Residential,Tue May 20 00:00:00 EDT 2008,504000,38.891935,-121.08434 +327,2733 DANA LOOP,EL DORADO HILLS,95762,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,541000,38.628459,-121.055078 +328,9741 SADDLEBRED CT,WILTON,95693,CA,0,0,0,Residential,Tue May 20 00:00:00 EDT 2008,560000,38.408841,-121.198039 +329,7756 TIGERWOODS DR,SACRAMENTO,95829,CA,5,3,3984,Residential,Tue May 20 00:00:00 EDT 2008,572500,38.47643,-121.309243 +330,5709 RIVER OAK WAY,CARMICHAEL,95608,CA,4,2,2222,Residential,Tue May 20 00:00:00 EDT 2008,582000,38.602461,-121.330979 +331,2981 WRINGER DR,ROSEVILLE,95661,CA,4,3,3838,Residential,Tue May 20 00:00:00 EDT 2008,613401,38.735373,-121.227072 +332,8616 ROCKPORTE CT,ROSEVILLE,95747,CA,4,2,0,Residential,Tue May 20 00:00:00 EDT 2008,614000,38.742118,-121.359909 +333,4128 HILL ST,FAIR OAKS,95628,CA,5,5,2846,Residential,Tue May 20 00:00:00 EDT 2008,680000,38.64167,-121.262099 +334,1409 47TH ST,SACRAMENTO,95819,CA,5,2,2484,Residential,Tue May 20 00:00:00 EDT 2008,699000,38.563244,-121.446876 +335,3935 EL MONTE DR,LOOMIS,95650,CA,4,4,1624,Residential,Tue May 20 00:00:00 EDT 2008,839000,38.813337,-121.133348 +336,5840 WALERGA RD,SACRAMENTO,95842,CA,2,1,840,Condo,Mon May 19 00:00:00 EDT 2008,40000,38.673678,-121.357471 +337,923 FULTON AVE,SACRAMENTO,95825,CA,1,1,484,Condo,Mon May 19 00:00:00 EDT 2008,48000,38.582279,-121.401482 +338,261 REDONDO AVE,SACRAMENTO,95815,CA,3,1,970,Residential,Mon May 19 00:00:00 EDT 2008,61500,38.620685,-121.460539 +339,4030 BROADWAY,SACRAMENTO,95817,CA,2,1,623,Residential,Mon May 19 00:00:00 EDT 2008,62050,38.546798,-121.460038 +340,3660 22ND AVE,SACRAMENTO,95820,CA,2,1,932,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.532718,-121.46747 +341,3924 HIGH ST,SACRAMENTO,95838,CA,2,1,796,Residential,Mon May 19 00:00:00 EDT 2008,65000,38.638797,-121.435049 +342,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +343,4734 14TH AVE,SACRAMENTO,95820,CA,2,1,834,Residential,Mon May 19 00:00:00 EDT 2008,68000,38.539447,-121.450858 +344,5050 RHODE ISLAND DR Unit 4,SACRAMENTO,95841,CA,2,1,924,Condo,Mon May 19 00:00:00 EDT 2008,77000,38.658739,-121.333561 +345,4513 GREENHOLME DR,SACRAMENTO,95842,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,82732,38.669104,-121.359008 +346,3845 ELM ST,SACRAMENTO,95838,CA,3,1,1250,Residential,Mon May 19 00:00:00 EDT 2008,84000,38.637337,-121.432835 +347,3908 17TH AVE,SACRAMENTO,95820,CA,2,1,984,Residential,Mon May 19 00:00:00 EDT 2008,84675,38.53728,-121.463531 +348,7109 CHANDLER DR,SACRAMENTO,95828,CA,3,1,1013,Residential,Mon May 19 00:00:00 EDT 2008,85000,38.497237,-121.424187 +349,7541 SKELTON WAY,SACRAMENTO,95822,CA,3,1,1012,Residential,Mon May 19 00:00:00 EDT 2008,90000,38.484274,-121.488851 +350,9058 MONTOYA ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,90000,38.559144,-121.368387 +351,1016 CONGRESS AVE,SACRAMENTO,95838,CA,2,2,918,Residential,Mon May 19 00:00:00 EDT 2008,91000,38.630151,-121.442789 +352,540 MORRISON AVE,SACRAMENTO,95838,CA,3,1,1082,Residential,Mon May 19 00:00:00 EDT 2008,95000,38.637704,-121.453946 +353,5303 JERRETT WAY,SACRAMENTO,95842,CA,2,1,964,Residential,Mon May 19 00:00:00 EDT 2008,97500,38.663282,-121.359631 +354,2820 DEL PASO BLVD,SACRAMENTO,95815,CA,4,2,1404,Multi-Family,Mon May 19 00:00:00 EDT 2008,100000,38.617718,-121.440089 +355,3715 TALLYHO DR Unit 78HIGH,SACRAMENTO,95826,CA,1,1,625,Condo,Mon May 19 00:00:00 EDT 2008,100000,38.544627,-121.35796 +356,6013 ROWAN WAY,CITRUS HEIGHTS,95621,CA,2,1,888,Residential,Mon May 19 00:00:00 EDT 2008,101000,38.675893,-121.2963 +357,2987 PONDEROSA LN,SACRAMENTO,95815,CA,4,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,102750,38.622243,-121.457863 +358,3732 LANKERSHIM WAY,NORTH HIGHLANDS,95660,CA,3,1,1331,Residential,Mon May 19 00:00:00 EDT 2008,112500,38.68972,-121.378399 +359,2216 DUNLAP DR,SACRAMENTO,95821,CA,3,1,1014,Residential,Mon May 19 00:00:00 EDT 2008,113000,38.623738,-121.41305 +360,3503 21ST AVE,SACRAMENTO,95820,CA,4,2,1448,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.53361,-121.469308 +361,523 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,966,Residential,Mon May 19 00:00:00 EDT 2008,114000,38.659414,-121.45408 +362,8101 PORT ROYALE WAY,SACRAMENTO,95823,CA,2,1,779,Residential,Mon May 19 00:00:00 EDT 2008,114750,38.463929,-121.438667 +363,8020 WALERGA RD,ANTELOPE,95843,CA,2,2,836,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.71607,-121.364468 +364,167 VALLEY OAK DR,ROSEVILLE,95678,CA,2,2,1100,Condo,Mon May 19 00:00:00 EDT 2008,115000,38.732429,-121.288069 +365,7876 BURLINGTON WAY,SACRAMENTO,95832,CA,3,1,1174,Residential,Mon May 19 00:00:00 EDT 2008,116100,38.470093,-121.468347 +366,3726 JONKO AVE,NORTH HIGHLANDS,95660,CA,3,2,1207,Residential,Mon May 19 00:00:00 EDT 2008,119250,38.656131,-121.377265 +367,7342 GIGI PL,SACRAMENTO,95828,CA,4,4,1995,Multi-Family,Mon May 19 00:00:00 EDT 2008,120000,38.490704,-121.410176 +368,2610 PHYLLIS AVE,SACRAMENTO,95820,CA,2,1,804,Residential,Mon May 19 00:00:00 EDT 2008,120000,38.53105,-121.479574 +369,4200 COMMERCE WAY Unit 711,SACRAMENTO,95834,CA,2,2,958,Condo,Mon May 19 00:00:00 EDT 2008,120000,38.647523,-121.523217 +370,4621 COUNTRY SCENE WAY,SACRAMENTO,95823,CA,3,2,1366,Residential,Mon May 19 00:00:00 EDT 2008,120108,38.470187,-121.448149 +371,5380 VILLAGE WOOD DR,SACRAMENTO,95823,CA,2,2,901,Residential,Mon May 19 00:00:00 EDT 2008,121500,38.454949,-121.440578 +372,2621 EVERGREEN ST,SACRAMENTO,95815,CA,3,1,696,Residential,Mon May 19 00:00:00 EDT 2008,121725,38.613103,-121.444085 +373,201 CARLO CT,GALT,95632,CA,3,2,1080,Residential,Mon May 19 00:00:00 EDT 2008,122000,38.24227,-121.31032 +374,6743 21ST ST,SACRAMENTO,95822,CA,3,2,1104,Residential,Mon May 19 00:00:00 EDT 2008,123000,38.50372,-121.490657 +375,3128 VIA GRANDE,SACRAMENTO,95825,CA,2,1,972,Residential,Mon May 19 00:00:00 EDT 2008,125000,38.598321,-121.39161 +376,2847 BELGRADE WAY,SACRAMENTO,95833,CA,4,2,1390,Residential,Mon May 19 00:00:00 EDT 2008,125573,38.617173,-121.482541 +377,7741 MILLDALE CIR,ELVERTA,95626,CA,4,2,1354,Residential,Mon May 19 00:00:00 EDT 2008,126714,38.705834,-121.43919 +378,9013 CASALS ST,SACRAMENTO,95826,CA,2,1,795,Condo,Mon May 19 00:00:00 EDT 2008,126960,38.557045,-121.37167 +379,227 MAHAN CT Unit 1,ROSEVILLE,95678,CA,2,1,780,Condo,Mon May 19 00:00:00 EDT 2008,127000,38.749723,-121.27008 +380,7349 FLETCHER FARM DR,SACRAMENTO,95828,CA,4,2,1587,Residential,Mon May 19 00:00:00 EDT 2008,127500,38.49069,-121.382619 +381,7226 LARCHMONT DR,NORTH HIGHLANDS,95660,CA,3,2,1209,Residential,Mon May 19 00:00:00 EDT 2008,130000,38.699269,-121.376334 +382,4114 35TH AVE,SACRAMENTO,95824,CA,2,1,1139,Residential,Mon May 19 00:00:00 EDT 2008,133105,38.520941,-121.459355 +383,617 M ST,RIO LINDA,95673,CA,2,2,1690,Residential,Mon May 19 00:00:00 EDT 2008,136500,38.691104,-121.451832 +384,7032 FAIR OAKS BLVD,CARMICHAEL,95608,CA,3,2,1245,Condo,Mon May 19 00:00:00 EDT 2008,139500,38.628563,-121.328297 +385,2421 SANTINA WAY,ELVERTA,95626,CA,3,2,1416,Residential,Mon May 19 00:00:00 EDT 2008,140000,38.71865,-121.407763 +386,2368 CRAIG AVE,SACRAMENTO,95832,CA,3,2,1300,Residential,Mon May 19 00:00:00 EDT 2008,140800,38.47807,-121.48114 +387,2123 AMANDA WAY,SACRAMENTO,95822,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,145000,38.484896,-121.486948 +388,7620 DARLA WAY,SACRAMENTO,95828,CA,4,2,1590,Residential,Mon May 19 00:00:00 EDT 2008,147000,38.478502,-121.403517 +389,8344 FIELDPOPPY CIR,SACRAMENTO,95828,CA,3,2,1407,Residential,Mon May 19 00:00:00 EDT 2008,149600,38.479083,-121.400702 +390,3624 20TH AVE,SACRAMENTO,95820,CA,5,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.534508,-121.467907 +391,10001 WOODCREEK OAKS BLVD Unit 1415,ROSEVILLE,95747,CA,2,2,0,Condo,Mon May 19 00:00:00 EDT 2008,150000,38.795529,-121.328819 +392,2848 PROVO WAY,SACRAMENTO,95822,CA,3,2,1646,Residential,Mon May 19 00:00:00 EDT 2008,150000,38.489759,-121.474754 +393,6045 EHRHARDT AVE,SACRAMENTO,95823,CA,3,2,1676,Residential,Mon May 19 00:00:00 EDT 2008,155000,38.457157,-121.433065 +394,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155435,38.646677,-121.437573 +395,1223 LAMBERTON CIR,SACRAMENTO,95838,CA,3,2,1370,Residential,Mon May 19 00:00:00 EDT 2008,155500,38.646677,-121.437573 +396,6000 BIRCHGLADE WAY,CITRUS HEIGHTS,95621,CA,4,2,1351,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.70166,-121.323249 +397,7204 THOMAS DR,NORTH HIGHLANDS,95660,CA,3,2,1152,Residential,Mon May 19 00:00:00 EDT 2008,158000,38.697898,-121.377687 +398,8363 LANGTREE WAY,SACRAMENTO,95823,CA,3,2,1452,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.45356,-121.435959 +399,1675 VERNON ST Unit 8,ROSEVILLE,95678,CA,2,1,990,Residential,Mon May 19 00:00:00 EDT 2008,160000,38.734136,-121.299639 +400,6632 IBEX WOODS CT,CITRUS HEIGHTS,95621,CA,2,2,1162,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.720868,-121.309855 +401,117 EVCAR WAY,RIO LINDA,95673,CA,3,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,164000,38.687659,-121.4633 +402,6485 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,165000,38.42465,-121.430137 +403,746 MOOSE CREEK WAY,GALT,95632,CA,3,2,1100,Residential,Mon May 19 00:00:00 EDT 2008,167000,38.283085,-121.302071 +404,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +405,8306 CURLEW CT,CITRUS HEIGHTS,95621,CA,4,2,1280,Residential,Mon May 19 00:00:00 EDT 2008,167293,38.715781,-121.298519 +406,5217 ARGO WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Mon May 19 00:00:00 EDT 2008,168000,38.52774,-121.433669 +407,7108 HEATHER TREE DR,SACRAMENTO,95842,CA,3,2,1159,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.695677,-121.36022 +408,2956 DAVENPORT WAY,SACRAMENTO,95833,CA,4,2,1917,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.620687,-121.482619 +409,10062 LINCOLN VILLAGE DR,SACRAMENTO,95827,CA,3,2,1520,Residential,Mon May 19 00:00:00 EDT 2008,170000,38.564,-121.320023 +410,332 PALIN AVE,GALT,95632,CA,3,2,1204,Residential,Mon May 19 00:00:00 EDT 2008,174000,38.260467,-121.302636 +411,4649 FREEWAY CIR,SACRAMENTO,95841,CA,3,2,1120,Residential,Mon May 19 00:00:00 EDT 2008,178000,38.658734,-121.357196 +412,8593 DERLIN WAY,SACRAMENTO,95823,CA,3,2,1436,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.447585,-121.426627 +413,9273 PREMIER WAY,SACRAMENTO,95826,CA,3,2,1451,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.55992,-121.352539 +414,8032 DUSENBERG CT,SACRAMENTO,95828,CA,4,2,1638,Residential,Mon May 19 00:00:00 EDT 2008,180000,38.466499,-121.381119 +415,7110 STELLA LN Unit 15,CARMICHAEL,95608,CA,2,2,1000,Condo,Mon May 19 00:00:00 EDT 2008,182000,38.637396,-121.300055 +416,1786 PIEDMONT WAY,ROSEVILLE,95661,CA,3,1,1152,Residential,Mon May 19 00:00:00 EDT 2008,188325,38.72748,-121.256537 +417,1347 HIDALGO CIR,ROSEVILLE,95747,CA,3,2,1154,Residential,Mon May 19 00:00:00 EDT 2008,191500,38.747878,-121.311279 +418,212 CAPPUCINO WAY,SACRAMENTO,95838,CA,3,2,1353,Residential,Mon May 19 00:00:00 EDT 2008,192000,38.657811,-121.465327 +419,5938 WOODBRIAR WAY,CITRUS HEIGHTS,95621,CA,3,2,1329,Residential,Mon May 19 00:00:00 EDT 2008,192700,38.706152,-121.325399 +420,3801 WILDROSE WAY,SACRAMENTO,95826,CA,3,1,1356,Residential,Mon May 19 00:00:00 EDT 2008,195000,38.544368,-121.369979 +421,508 SAMUEL WAY,SACRAMENTO,95838,CA,3,2,1505,Residential,Mon May 19 00:00:00 EDT 2008,197654,38.645689,-121.452766 +422,6128 CARL SANDBURG CIR,SACRAMENTO,95842,CA,3,1,1009,Residential,Mon May 19 00:00:00 EDT 2008,198000,38.681541,-121.355616 +423,1 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Mon May 19 00:00:00 EDT 2008,200345,38.46452,-121.427606 +424,909 SINGINGWOOD RD,SACRAMENTO,95864,CA,2,1,930,Residential,Mon May 19 00:00:00 EDT 2008,203000,38.581471,-121.38839 +425,6671 FOXWOOD CT,SACRAMENTO,95841,CA,4,2,1766,Residential,Mon May 19 00:00:00 EDT 2008,207000,38.687943,-121.328883 +426,8165 AYN RAND CT,SACRAMENTO,95828,CA,4,3,1940,Residential,Mon May 19 00:00:00 EDT 2008,208000,38.468639,-121.403265 +427,9474 VILLAGE TREE DR,ELK GROVE,95758,CA,4,2,1776,Residential,Mon May 19 00:00:00 EDT 2008,210000,38.413947,-121.408276 +428,7213 CALVIN DR,CITRUS HEIGHTS,95621,CA,3,1,1258,Residential,Mon May 19 00:00:00 EDT 2008,212000,38.698154,-121.298375 +429,8167 DERBY PARK CT,SACRAMENTO,95828,CA,4,2,1872,Residential,Mon May 19 00:00:00 EDT 2008,213675,38.460492,-121.373379 +430,6344 LAGUNA MIRAGE LN,ELK GROVE,95758,CA,2,2,1112,Residential,Mon May 19 00:00:00 EDT 2008,213697,38.423963,-121.428875 +431,2945 RED HAWK WAY,SACRAMENTO,95833,CA,4,2,1856,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.619675,-121.496903 +432,3228 I ST,SACRAMENTO,95816,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,215000,38.573844,-121.462839 +433,308 ATKINSON ST,ROSEVILLE,95678,CA,3,1,998,Residential,Mon May 19 00:00:00 EDT 2008,215100,38.746794,-121.29971 +434,624 HOVEY WAY,ROSEVILLE,95678,CA,3,2,1758,Residential,Mon May 19 00:00:00 EDT 2008,217500,38.756149,-121.306479 +435,110 COPPER LEAF WAY,SACRAMENTO,95838,CA,3,2,2142,Residential,Mon May 19 00:00:00 EDT 2008,218000,38.658466,-121.460661 +436,7535 ALMA VISTA WAY,SACRAMENTO,95831,CA,2,1,950,Residential,Mon May 19 00:00:00 EDT 2008,220000,38.48403,-121.507641 +437,7423 WILSALL CT,ELK GROVE,95758,CA,4,3,1739,Residential,Mon May 19 00:00:00 EDT 2008,221000,38.417026,-121.416821 +438,8629 VIA ALTA WAY,ELK GROVE,95624,CA,3,2,1516,Residential,Mon May 19 00:00:00 EDT 2008,222900,38.398245,-121.380615 +439,3318 DAVIDSON DR,ANTELOPE,95843,CA,3,1,988,Residential,Mon May 19 00:00:00 EDT 2008,223139,38.705753,-121.388917 +440,913 COBDEN CT,GALT,95632,CA,4,2,1555,Residential,Mon May 19 00:00:00 EDT 2008,225500,38.282001,-121.295902 +441,4419 79TH ST,SACRAMENTO,95820,CA,3,2,1212,Residential,Mon May 19 00:00:00 EDT 2008,228327,38.534827,-121.412545 +442,3012 SPOONWOOD WAY,SACRAMENTO,95833,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.62478,-121.523474 +443,8728 CRYSTAL RIVER WAY,SACRAMENTO,95828,CA,3,2,1302,Residential,Mon May 19 00:00:00 EDT 2008,230000,38.47547,-121.380055 +444,4709 AMBER LN Unit 1,SACRAMENTO,95841,CA,2,1,756,Condo,Mon May 19 00:00:00 EDT 2008,230522,38.657789,-121.354994 +445,4508 OLD DAIRY DR,ANTELOPE,95843,CA,4,3,2026,Residential,Mon May 19 00:00:00 EDT 2008,231200,38.72286,-121.358939 +446,312 RIVER ISLE WAY,SACRAMENTO,95831,CA,3,2,1375,Residential,Mon May 19 00:00:00 EDT 2008,232000,38.49026,-121.550527 +447,301 OLIVADI WAY,SACRAMENTO,95834,CA,2,2,1250,Condo,Mon May 19 00:00:00 EDT 2008,232500,38.644406,-121.549049 +448,5636 25TH ST,SACRAMENTO,95822,CA,3,1,1058,Residential,Mon May 19 00:00:00 EDT 2008,233641,38.523828,-121.481139 +449,8721 SPRUCE RIDGE WAY,ANTELOPE,95843,CA,3,2,1187,Residential,Mon May 19 00:00:00 EDT 2008,234000,38.727657,-121.391028 +450,7461 WINDBRIDGE DR,SACRAMENTO,95831,CA,2,2,1324,Residential,Mon May 19 00:00:00 EDT 2008,234500,38.48797,-121.530229 +451,8101 LEMON COVE CT,SACRAMENTO,95828,CA,4,3,1936,Residential,Mon May 19 00:00:00 EDT 2008,235000,38.462981,-121.408288 +452,10949 SCOTSMAN WAY,RANCHO CORDOVA,95670,CA,5,4,2382,Multi-Family,Mon May 19 00:00:00 EDT 2008,236000,38.603686,-121.277844 +453,617 WILLOW CREEK DR,FOLSOM,95630,CA,3,2,1427,Residential,Mon May 19 00:00:00 EDT 2008,236073,38.679626,-121.142609 +454,3301 PARK DR Unit 1914,SACRAMENTO,95835,CA,3,2,1678,Condo,Mon May 19 00:00:00 EDT 2008,238000,38.665296,-121.531993 +455,709 CIMMARON CT,GALT,95632,CA,4,2,1798,Residential,Mon May 19 00:00:00 EDT 2008,238861,38.277177,-121.303747 +456,3305 RIO ROCA CT,ANTELOPE,95843,CA,4,3,2652,Residential,Mon May 19 00:00:00 EDT 2008,239700,38.725079,-121.387698 +457,9080 BEDROCK CT,SACRAMENTO,95829,CA,4,2,1816,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.456939,-121.362965 +458,100 TOURMALINE CIR,SACRAMENTO,95834,CA,5,3,3076,Residential,Mon May 19 00:00:00 EDT 2008,240000,38.63437,-121.510779 +459,6411 RED BIRCH WAY,ELK GROVE,95758,CA,4,2,1844,Residential,Mon May 19 00:00:00 EDT 2008,241000,38.43461,-121.429316 +460,4867 LAGUNA DR,SACRAMENTO,95823,CA,3,2,1306,Residential,Mon May 19 00:00:00 EDT 2008,245000,38.46179,-121.445371 +461,3662 RIVER DR,SACRAMENTO,95833,CA,4,3,2447,Residential,Mon May 19 00:00:00 EDT 2008,246000,38.604969,-121.54255 +462,6943 WOLFGRAM WAY,SACRAMENTO,95828,CA,4,2,1176,Residential,Mon May 19 00:00:00 EDT 2008,247234,38.489215,-121.419546 +463,77 RINETTI WAY,RIO LINDA,95673,CA,4,2,1182,Residential,Mon May 19 00:00:00 EDT 2008,247480,38.687021,-121.463151 +464,1316 I ST,RIO LINDA,95673,CA,3,1,1160,Residential,Mon May 19 00:00:00 EDT 2008,249862,38.683674,-121.435204 +465,2130 CATHERWOOD WAY,SACRAMENTO,95835,CA,3,2,1424,Residential,Mon May 19 00:00:00 EDT 2008,251000,38.675506,-121.510987 +466,8304 JUGLANS DR,ORANGEVALE,95662,CA,4,2,1574,Residential,Mon May 19 00:00:00 EDT 2008,252155,38.691829,-121.249033 +467,5308 MARBURY WAY,ANTELOPE,95843,CA,3,2,1830,Residential,Mon May 19 00:00:00 EDT 2008,254172,38.710221,-121.341707 +468,9182 LAKEMONT DR,ELK GROVE,95624,CA,4,2,1724,Residential,Mon May 19 00:00:00 EDT 2008,258000,38.451353,-121.358776 +469,2231 COUNTRY VILLA CT,AUBURN,95603,CA,2,2,1255,Condo,Mon May 19 00:00:00 EDT 2008,260000,38.931671,-121.097862 +470,8491 CRYSTAL WALK CIR,ELK GROVE,95758,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.416916,-121.407554 +471,361 MAHONIA CIR,SACRAMENTO,95835,CA,4,3,2175,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.676172,-121.509761 +472,3427 LA CADENA WAY,SACRAMENTO,95835,CA,4,2,1904,Residential,Mon May 19 00:00:00 EDT 2008,261000,38.681194,-121.537351 +473,955 BIG SUR CT,EL DORADO HILLS,95762,CA,4,2,1808,Residential,Mon May 19 00:00:00 EDT 2008,262500,38.664347,-121.076529 +474,11826 DIONYSUS WAY,RANCHO CORDOVA,95742,CA,4,2,2711,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.551046,-121.239411 +475,5847 DEL CAMPO LN,CARMICHAEL,95608,CA,3,1,1713,Residential,Mon May 19 00:00:00 EDT 2008,266000,38.671995,-121.324339 +476,5635 FOXVIEW WAY,ELK GROVE,95757,CA,3,2,1457,Residential,Mon May 19 00:00:00 EDT 2008,270000,38.395256,-121.438249 +477,10372 VIA CINTA CT,ELK GROVE,95757,CA,4,3,2724,Residential,Mon May 19 00:00:00 EDT 2008,274425,38.380089,-121.428186 +478,6286 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,274500,38.805036,-121.293608 +479,7744 SOUTHBREEZE DR,SACRAMENTO,95828,CA,3,2,1468,Residential,Mon May 19 00:00:00 EDT 2008,275336,38.476932,-121.378349 +480,2242 ABLE WAY,SACRAMENTO,95835,CA,4,3,2550,Residential,Mon May 19 00:00:00 EDT 2008,277980,38.666074,-121.509743 +481,1042 STARBROOK DR,GALT,95632,CA,4,2,1928,Residential,Mon May 19 00:00:00 EDT 2008,280000,38.285611,-121.293063 +482,1219 G ST,SACRAMENTO,95814,CA,3,3,1922,Residential,Mon May 19 00:00:00 EDT 2008,284686,38.582818,-121.489096 +483,6220 OPUS CT,CITRUS HEIGHTS,95621,CA,3,2,1343,Residential,Mon May 19 00:00:00 EDT 2008,284893,38.715853,-121.317095 +484,5419 HAVENHURST CIR,ROCKLIN,95677,CA,3,2,1510,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.786746,-121.209957 +485,220 OLD AIRPORT RD,AUBURN,95603,CA,2,2,960,Multi-Family,Mon May 19 00:00:00 EDT 2008,285000,38.939802,-121.054575 +486,4622 MEYER WAY,CARMICHAEL,95608,CA,4,2,1559,Residential,Mon May 19 00:00:00 EDT 2008,285000,38.64913,-121.310667 +487,4885 SUMMIT VIEW DR,EL DORADO,95623,CA,3,2,1624,Residential,Mon May 19 00:00:00 EDT 2008,289000,38.673285,-120.879176 +488,26 JEANROSS CT,SACRAMENTO,95832,CA,5,3,2992,Residential,Mon May 19 00:00:00 EDT 2008,295000,38.473162,-121.491085 +489,4800 MAPLEPLAIN AVE,ELK GROVE,95758,CA,4,2,2109,Residential,Mon May 19 00:00:00 EDT 2008,296000,38.432848,-121.449237 +490,10629 BASIE WAY,RANCHO CORDOVA,95670,CA,4,2,1524,Residential,Mon May 19 00:00:00 EDT 2008,296056,38.579,-121.292627 +491,8612 WILLOW GROVE WAY,SACRAMENTO,95828,CA,3,2,1248,Residential,Mon May 19 00:00:00 EDT 2008,297359,38.464994,-121.386962 +492,62 DE FER CIR,SACRAMENTO,95823,CA,4,2,1876,Residential,Mon May 19 00:00:00 EDT 2008,299940,38.49254,-121.463316 +493,2513 OLD KENMARE RD,LINCOLN,95648,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,304000,38.847396,-121.259586 +494,3253 ABOTO WAY,RANCHO CORDOVA,95670,CA,4,3,1851,Residential,Mon May 19 00:00:00 EDT 2008,305000,38.57727,-121.285591 +495,3072 VILLAGE PLAZA DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,307000,38.773094,-121.365905 +496,251 CHANGO CIR,SACRAMENTO,95835,CA,4,2,2218,Residential,Mon May 19 00:00:00 EDT 2008,311328,38.68237,-121.539147 +497,8205 WEYBURN CT,SACRAMENTO,95828,CA,3,2,1394,Residential,Mon May 19 00:00:00 EDT 2008,313138,38.47316,-121.403893 +498,8788 LA MARGARITA WAY,SACRAMENTO,95828,CA,3,2,1410,Residential,Mon May 19 00:00:00 EDT 2008,316630,38.468185,-121.375694 +499,5912 DEEPDALE WAY,ELK GROVE,95758,CA,5,3,3468,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.439565,-121.436606 +500,4712 PISMO BEACH DR,ANTELOPE,95843,CA,5,3,2346,Residential,Mon May 19 00:00:00 EDT 2008,320000,38.707705,-121.354153 +501,4741 PACIFIC PARK DR,ANTELOPE,95843,CA,5,3,2347,Residential,Mon May 19 00:00:00 EDT 2008,325000,38.709299,-121.353056 +502,310 GROTH CIR,SACRAMENTO,95834,CA,4,2,1659,Residential,Mon May 19 00:00:00 EDT 2008,328578,38.638764,-121.531827 +503,6121 WILD FOX CT,ELK GROVE,95757,CA,3,3,2442,Residential,Mon May 19 00:00:00 EDT 2008,331000,38.406758,-121.431669 +504,12241 CANYONLANDS DR,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,331500,38.557293,-121.217611 +505,29 COOL FOUNTAIN CT,SACRAMENTO,95833,CA,4,2,2155,Residential,Mon May 19 00:00:00 EDT 2008,340000,38.606906,-121.54132 +506,907 RIO ROBLES AVE,SACRAMENTO,95838,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,344755,38.664765,-121.445006 +507,8909 BILLFISH WAY,SACRAMENTO,95828,CA,3,2,1810,Residential,Mon May 19 00:00:00 EDT 2008,345746,38.475433,-121.372584 +508,6232 GUS WAY,ELK GROVE,95757,CA,4,2,2789,Residential,Mon May 19 00:00:00 EDT 2008,351000,38.388129,-121.43117 +509,200 OAKWILDE ST,GALT,95632,CA,4,2,1606,Residential,Mon May 19 00:00:00 EDT 2008,353767,38.2535,-121.31812 +510,1033 PARK STREAM DR,GALT,95632,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,355000,38.287785,-121.289903 +511,200 ALLAIRE CIR,SACRAMENTO,95835,CA,4,2,2166,Residential,Mon May 19 00:00:00 EDT 2008,356035,38.68318,-121.53484 +512,1322 SUTTER WALK,SACRAMENTO,95816,CA,0,0,0,Condo,Mon May 19 00:00:00 EDT 2008,360000,38.53805,-121.5047 +513,5479 NICKMAN WAY,SACRAMENTO,95835,CA,4,2,1871,Residential,Mon May 19 00:00:00 EDT 2008,360552,38.672966,-121.502748 +514,2103 BURBERRY WAY,SACRAMENTO,95835,CA,3,2,1800,Residential,Mon May 19 00:00:00 EDT 2008,362305,38.67342,-121.508542 +515,2450 SAN JOSE WAY,SACRAMENTO,95817,CA,3,1,1683,Residential,Mon May 19 00:00:00 EDT 2008,365000,38.553596,-121.459483 +516,7641 ROSEHALL DR,ROSEVILLE,95678,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,367554,38.791617,-121.286147 +517,1336 LAYSAN TEAL DR,ROSEVILLE,95747,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,368500,38.796121,-121.319963 +518,2802 BLACK OAK DR,ROCKLIN,95765,CA,2,2,1596,Residential,Mon May 19 00:00:00 EDT 2008,370000,38.837006,-121.232024 +519,2113 FALL TRAIL CT,PLACERVILLE,95667,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,371086,38.733155,-120.748039 +520,10112 LAMBEAU CT,ELK GROVE,95757,CA,3,2,1179,Residential,Mon May 19 00:00:00 EDT 2008,378000,38.390328,-121.448022 +521,6313 CASTRO VERDE WAY,ELK GROVE,95757,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,383000,38.381102,-121.42901 +522,3622 CURTIS DR,SACRAMENTO,95818,CA,3,1,1639,Residential,Mon May 19 00:00:00 EDT 2008,388000,38.541735,-121.480098 +523,11817 OPAL RIDGE WAY,RANCHO CORDOVA,95742,CA,5,3,3281,Residential,Mon May 19 00:00:00 EDT 2008,395100,38.551083,-121.237476 +524,170 LAGOMARSINO WAY,SACRAMENTO,95819,CA,3,2,1697,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.574894,-121.435806 +525,2743 DEAKIN PL,EL DORADO HILLS,95762,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,400000,38.69288,-121.073551 +526,3361 ALDER CANYON WAY,ANTELOPE,95843,CA,4,3,2085,Residential,Mon May 19 00:00:00 EDT 2008,408431,38.727649,-121.385656 +527,2148 RANCH VIEW DR,ROCKLIN,95765,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,413000,38.837455,-121.289337 +528,398 LINDLEY DR,SACRAMENTO,95815,CA,4,2,1744,Multi-Family,Mon May 19 00:00:00 EDT 2008,416767,38.622359,-121.457582 +529,3013 BRIDLEWOOD DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,420000,38.675519,-121.015862 +530,169 BAURER CIR,FOLSOM,95630,CA,4,3,1939,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.66695,-121.120729 +531,2809 LOON CT,CAMERON PARK,95682,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,423000,38.687072,-121.004729 +532,1315 KONDOS AVE,SACRAMENTO,95814,CA,2,3,1788,Residential,Mon May 19 00:00:00 EDT 2008,427500,38.571943,-121.492106 +533,4966 CHARTER RD,ROCKLIN,95765,CA,3,2,1691,Residential,Mon May 19 00:00:00 EDT 2008,430922,38.82553,-121.254698 +534,9516 LAGUNA LAKE WAY,ELK GROVE,95758,CA,4,2,2002,Residential,Mon May 19 00:00:00 EDT 2008,445000,38.411258,-121.431348 +535,5201 BLOSSOM RANCH DR,ELK GROVE,95757,CA,4,4,4303,Residential,Mon May 19 00:00:00 EDT 2008,450000,38.399436,-121.444041 +536,3027 PALMATE WAY,SACRAMENTO,95834,CA,5,3,4246,Residential,Mon May 19 00:00:00 EDT 2008,452000,38.628955,-121.529269 +537,500 WINCHESTER CT,ROSEVILLE,95661,CA,3,2,2274,Residential,Mon May 19 00:00:00 EDT 2008,470000,38.73988,-121.248929 +538,5746 GELSTON WAY,EL DORADO HILLS,95762,CA,4,3,0,Residential,Mon May 19 00:00:00 EDT 2008,471000,38.677015,-121.034083 +539,6935 ELM TREE LN,ORANGEVALE,95662,CA,4,4,3056,Residential,Mon May 19 00:00:00 EDT 2008,475000,38.693041,-121.23294 +540,9605 GOLF COURSE LN,ELK GROVE,95758,CA,3,3,2503,Residential,Mon May 19 00:00:00 EDT 2008,484500,38.409689,-121.446059 +541,719 BAYWOOD CT,EL DORADO HILLS,95762,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,487500,38.647598,-121.077801 +542,5954 TANUS CIR,ROCKLIN,95677,CA,3,3,0,Residential,Mon May 19 00:00:00 EDT 2008,488750,38.777585,-121.2036 +543,100 CHELSEA CT,FOLSOM,95630,CA,3,2,1905,Residential,Mon May 19 00:00:00 EDT 2008,500000,38.69435,-121.177259 +544,1500 ORANGE HILL LN,PENRYN,95663,CA,3,2,1320,Residential,Mon May 19 00:00:00 EDT 2008,506688,38.862708,-121.162092 +545,408 KIRKWOOD CT,LINCOLN,95648,CA,2,2,0,Residential,Mon May 19 00:00:00 EDT 2008,512000,38.861615,-121.26869 +546,1732 TUSCAN GROVE CIR,ROSEVILLE,95747,CA,5,3,0,Residential,Mon May 19 00:00:00 EDT 2008,520000,38.796683,-121.342555 +547,2049 EMPIRE MINE CIR,GOLD RIVER,95670,CA,4,2,3037,Residential,Mon May 19 00:00:00 EDT 2008,528000,38.629299,-121.249021 +548,9360 MAGOS RD,WILTON,95693,CA,5,2,3741,Residential,Mon May 19 00:00:00 EDT 2008,579093,38.416809,-121.240628 +549,104 CATLIN CT,FOLSOM,95630,CA,4,3,2660,Residential,Mon May 19 00:00:00 EDT 2008,636000,38.684459,-121.145935 +550,4734 GIBBONS DR,CARMICHAEL,95608,CA,4,3,3357,Residential,Mon May 19 00:00:00 EDT 2008,668365,38.63558,-121.353639 +551,4629 DORCHESTER LN,GRANITE BAY,95746,CA,5,3,2896,Residential,Mon May 19 00:00:00 EDT 2008,676200,38.723545,-121.216025 +552,2400 COUNTRYSIDE DR,PLACERVILLE,95667,CA,3,2,2025,Residential,Mon May 19 00:00:00 EDT 2008,677048,38.737452,-120.910963 +553,12901 FURLONG DR,WILTON,95693,CA,5,3,3788,Residential,Mon May 19 00:00:00 EDT 2008,691659,38.413535,-121.188211 +554,6222 CALLE MONTALVO CIR,GRANITE BAY,95746,CA,5,3,3670,Residential,Mon May 19 00:00:00 EDT 2008,760000,38.779435,-121.146676 +555,20 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885327,-121.289412 +556,24 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885132,-121.289405 +557,28 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884936,-121.289397 +558,32 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884741,-121.28939 +559,36 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884599,-121.289406 +560,40 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884535,-121.289619 +561,44 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88459,-121.289835 +562,48 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884667,-121.289896 +563,52 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88478,-121.289911 +564,68 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885236,-121.289928 +565,72 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88535,-121.289926 +566,76 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885464,-121.289922 +567,80 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885578,-121.289919 +568,84 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885692,-121.289915 +569,88 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885806,-121.289911 +570,92 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88592,-121.289908 +571,96 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886024,-121.289859 +572,100 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886091,-121.289744 +573,434 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.289406 +574,3 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884692,-121.290288 +575,11 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884879,-121.290257 +576,19 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885017,-121.290262 +577,27 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885173,-121.29027 +578,35 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885328,-121.290275 +579,43 E ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885483,-121.290277 +580,51 E ST,LINCOLN,95648,CA,4,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885638,-121.290279 +581,59 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885794,-121.290281 +582,75 E ST,LINCOLN,95648,CA,3,2,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886104,-121.290285 +583,63 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885093,-121.289932 +584,398 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88653,-121.288952 +585,386 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886528,-121.288869 +586,374 1ST ST,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886525,-121.288787 +587,116 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289586 +588,108 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289646 +589,100 CRYSTALWOOD WAY,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886282,-121.289706 +590,55 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884865,-121.289922 +591,51 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884752,-121.289907 +592,47 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884638,-121.289893 +593,43 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884568,-121.289784 +594,39 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884546,-121.289562 +595,35 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884645,-121.289397 +596,31 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.88479,-121.289392 +597,27 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.884985,-121.289399 +598,23 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885181,-121.289406 +599,19 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885376,-121.289414 +600,15 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885571,-121.289421 +601,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +602,7 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.885962,-121.289436 +603,3 CRYSTALWOOD CIR,LINCOLN,95648,CA,0,0,0,Residential,Mon May 19 00:00:00 EDT 2008,4897,38.886093,-121.289584 +604,8208 WOODYARD WAY,CITRUS HEIGHTS,95621,CA,3,2,1166,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.715322,-121.314787 +605,113 RINETTI WAY,RIO LINDA,95673,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,30000,38.687172,-121.463933 +606,15 LOORZ CT,SACRAMENTO,95823,CA,2,1,838,Residential,Fri May 16 00:00:00 EDT 2008,55422,38.471646,-121.435158 +607,5805 DOTMAR WAY,NORTH HIGHLANDS,95660,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,63000,38.672642,-121.380343 +608,2332 CAMBRIDGE ST,SACRAMENTO,95815,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.608085,-121.449651 +609,3812 BELDEN ST,SACRAMENTO,95838,CA,2,1,904,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.636833,-121.44164 +610,3348 40TH ST,SACRAMENTO,95817,CA,2,1,1080,Residential,Fri May 16 00:00:00 EDT 2008,65000,38.544162,-121.460652 +611,127 QUASAR CIR,SACRAMENTO,95822,CA,2,2,990,Residential,Fri May 16 00:00:00 EDT 2008,66500,38.493504,-121.475304 +612,3812 CYPRESS ST,SACRAMENTO,95838,CA,2,1,900,Residential,Fri May 16 00:00:00 EDT 2008,71000,38.636877,-121.444948 +613,5821 64TH ST,SACRAMENTO,95824,CA,2,1,861,Residential,Fri May 16 00:00:00 EDT 2008,75000,38.521202,-121.428146 +614,8248 CENTER PKWY,SACRAMENTO,95823,CA,2,1,906,Condo,Fri May 16 00:00:00 EDT 2008,77000,38.459002,-121.428794 +615,1171 SONOMA AVE,SACRAMENTO,95815,CA,2,1,1011,Residential,Fri May 16 00:00:00 EDT 2008,85000,38.6238,-121.439872 +616,4250 ARDWELL WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Fri May 16 00:00:00 EDT 2008,95625,38.466938,-121.455631 +617,3104 CLAY ST,SACRAMENTO,95815,CA,2,1,832,Residential,Fri May 16 00:00:00 EDT 2008,96140,38.62391,-121.439208 +618,6063 LAND PARK DR,SACRAMENTO,95822,CA,2,1,800,Condo,Fri May 16 00:00:00 EDT 2008,104250,38.517029,-121.513809 +619,4738 OAKHOLLOW DR,SACRAMENTO,95842,CA,4,2,1292,Residential,Fri May 16 00:00:00 EDT 2008,105000,38.679598,-121.356035 +620,1401 STERLING ST,SACRAMENTO,95822,CA,2,1,810,Residential,Fri May 16 00:00:00 EDT 2008,108000,38.520319,-121.504727 +621,3715 DIDCOT CIR,SACRAMENTO,95838,CA,4,2,1064,Residential,Fri May 16 00:00:00 EDT 2008,109000,38.635232,-121.460098 +622,2426 RASHAWN DR,RANCHO CORDOVA,95670,CA,2,1,911,Residential,Fri May 16 00:00:00 EDT 2008,115000,38.610852,-121.273278 +623,4800 WESTLAKE PKWY Unit 410,SACRAMENTO,95835,CA,1,1,846,Condo,Fri May 16 00:00:00 EDT 2008,115000,38.658812,-121.542345 +624,3409 VIRGO ST,SACRAMENTO,95827,CA,3,2,1320,Residential,Fri May 16 00:00:00 EDT 2008,115500,38.563402,-121.327747 +625,1110 PINEDALE AVE,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,115620,38.660173,-121.440216 +626,2361 LA LOMA DR,RANCHO CORDOVA,95670,CA,3,2,1115,Residential,Fri May 16 00:00:00 EDT 2008,116000,38.59368,-121.316054 +627,1455 64TH AVE,SACRAMENTO,95822,CA,3,2,1169,Residential,Fri May 16 00:00:00 EDT 2008,122000,38.492177,-121.503392 +628,7328 SPRINGMAN ST,SACRAMENTO,95822,CA,3,2,1164,Residential,Fri May 16 00:00:00 EDT 2008,122500,38.491991,-121.477636 +629,119 SAINT MARIE CIR,SACRAMENTO,95823,CA,4,2,1341,Residential,Fri May 16 00:00:00 EDT 2008,123000,38.481454,-121.446644 +630,12 COSTA BRASE CT,SACRAMENTO,95838,CA,3,2,1219,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.655554,-121.464275 +631,6813 SCOTER WAY,SACRAMENTO,95842,CA,4,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,124000,38.69043,-121.361035 +632,6548 GRAYLOCK LN,NORTH HIGHLANDS,95660,CA,3,2,1272,Residential,Fri May 16 00:00:00 EDT 2008,124413,38.686061,-121.369949 +633,1630 GLIDDEN AVE,SACRAMENTO,95822,CA,4,2,1253,Residential,Fri May 16 00:00:00 EDT 2008,125000,38.482717,-121.499683 +634,7825 DALEWOODS WAY,SACRAMENTO,95828,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,130000,38.477297,-121.411513 +635,4073 TRESLER AVE,NORTH HIGHLANDS,95660,CA,2,2,1118,Residential,Fri May 16 00:00:00 EDT 2008,131750,38.659016,-121.370457 +636,4288 DYMIC WAY,SACRAMENTO,95838,CA,4,3,1890,Residential,Fri May 16 00:00:00 EDT 2008,137721,38.646541,-121.441139 +637,1158 SAN IGNACIO WAY,SACRAMENTO,95833,CA,3,2,1260,Residential,Fri May 16 00:00:00 EDT 2008,137760,38.623045,-121.486279 +638,4904 J PKWY,SACRAMENTO,95823,CA,3,2,1400,Residential,Fri May 16 00:00:00 EDT 2008,138000,38.487297,-121.44295 +639,2931 HOWE AVE,SACRAMENTO,95821,CA,3,1,1264,Residential,Fri May 16 00:00:00 EDT 2008,140000,38.619012,-121.415329 +640,5531 JANSEN DR,SACRAMENTO,95824,CA,3,1,1060,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.522015,-121.438713 +641,7836 ORCHARD WOODS CIR,SACRAMENTO,95828,CA,2,2,1132,Residential,Fri May 16 00:00:00 EDT 2008,145000,38.47955,-121.410867 +642,4055 DEERBROOK DR,SACRAMENTO,95823,CA,3,2,1466,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.472117,-121.459589 +643,9937 BURLINE ST,SACRAMENTO,95827,CA,3,2,1092,Residential,Fri May 16 00:00:00 EDT 2008,150000,38.559641,-121.32316 +644,6948 MIRADOR WAY,SACRAMENTO,95828,CA,4,2,1628,Residential,Fri May 16 00:00:00 EDT 2008,151000,38.493484,-121.42035 +645,4909 RUGER CT,SACRAMENTO,95842,CA,3,2,960,Residential,Fri May 16 00:00:00 EDT 2008,155000,38.68747,-121.349234 +646,7204 KERSTEN ST,CITRUS HEIGHTS,95621,CA,3,2,1075,Residential,Fri May 16 00:00:00 EDT 2008,155800,38.695863,-121.300814 +647,3150 ROSEMONT DR,SACRAMENTO,95826,CA,3,2,1428,Residential,Fri May 16 00:00:00 EDT 2008,156142,38.554927,-121.35521 +648,8200 STEINBECK WAY,SACRAMENTO,95828,CA,4,2,1358,Residential,Fri May 16 00:00:00 EDT 2008,158000,38.474854,-121.404726 +649,8198 STEVENSON AVE,SACRAMENTO,95828,CA,6,4,2475,Multi-Family,Fri May 16 00:00:00 EDT 2008,159900,38.465271,-121.40426 +650,6824 OLIVE TREE WAY,CITRUS HEIGHTS,95610,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,160000,38.689239,-121.267737 +651,3536 SUN MAIDEN WAY,ANTELOPE,95843,CA,3,2,1711,Residential,Fri May 16 00:00:00 EDT 2008,161500,38.70968,-121.382328 +652,4517 OLYMPIAD WAY,SACRAMENTO,95826,CA,4,2,1483,Residential,Fri May 16 00:00:00 EDT 2008,161600,38.536751,-121.359154 +653,925 COBDEN CT,GALT,95632,CA,3,2,1140,Residential,Fri May 16 00:00:00 EDT 2008,162000,38.282047,-121.295812 +654,8225 SCOTTSDALE DR,SACRAMENTO,95828,CA,4,2,1549,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.487864,-121.402476 +655,8758 LEMAS RD,SACRAMENTO,95828,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,165000,38.467487,-121.377055 +656,6121 ALPINESPRING WAY,ELK GROVE,95758,CA,3,2,1240,Residential,Fri May 16 00:00:00 EDT 2008,167293,38.434075,-121.432623 +657,5937 YORK GLEN WAY,SACRAMENTO,95842,CA,5,2,1712,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.677003,-121.354454 +658,6417 SUNNYFIELD WAY,SACRAMENTO,95823,CA,4,2,1580,Residential,Fri May 16 00:00:00 EDT 2008,168000,38.449153,-121.428272 +659,4008 GREY LIVERY WAY,ANTELOPE,95843,CA,3,2,1669,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.71846,-121.370862 +660,8920 ROSETTA CIR,SACRAMENTO,95826,CA,3,1,1029,Residential,Fri May 16 00:00:00 EDT 2008,168750,38.544374,-121.370874 +661,8300 LICHEN DR,CITRUS HEIGHTS,95621,CA,3,1,1103,Residential,Fri May 16 00:00:00 EDT 2008,170000,38.71641,-121.306239 +662,8884 AMBERJACK WAY,SACRAMENTO,95828,CA,3,2,2161,Residential,Fri May 16 00:00:00 EDT 2008,170250,38.479343,-121.372553 +663,4480 VALLEY HI DR,SACRAMENTO,95823,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,173000,38.466781,-121.450955 +664,2250 FOREBAY RD,POLLOCK PINES,95726,CA,3,1,1320,Residential,Fri May 16 00:00:00 EDT 2008,175000,38.77491,-120.597599 +665,3529 FABERGE WAY,SACRAMENTO,95826,CA,3,2,1200,Residential,Fri May 16 00:00:00 EDT 2008,176095,38.553275,-121.346218 +666,1792 DAWNELLE WAY,SACRAMENTO,95835,CA,3,2,1170,Residential,Fri May 16 00:00:00 EDT 2008,176250,38.68271,-121.501697 +667,7800 TABARE CT,CITRUS HEIGHTS,95621,CA,3,2,1199,Residential,Fri May 16 00:00:00 EDT 2008,178000,38.70799,-121.302979 +668,8531 HERMITAGE WAY,SACRAMENTO,95823,CA,4,2,1695,Residential,Fri May 16 00:00:00 EDT 2008,179000,38.448452,-121.428536 +669,2421 BERRYWOOD DR,RANCHO CORDOVA,95670,CA,3,2,1157,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.60868,-121.27849 +670,1005 MORENO WAY,SACRAMENTO,95838,CA,3,2,1410,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.646206,-121.442767 +671,1675 VERNON ST Unit 24,ROSEVILLE,95678,CA,3,2,1174,Residential,Fri May 16 00:00:00 EDT 2008,180000,38.734136,-121.299639 +672,24 WINDCHIME CT,SACRAMENTO,95823,CA,3,2,1593,Residential,Fri May 16 00:00:00 EDT 2008,181000,38.44617,-121.427824 +673,540 HARLING CT,RIO LINDA,95673,CA,3,2,1093,Residential,Fri May 16 00:00:00 EDT 2008,182000,38.68279,-121.453509 +674,1207 CRESCENDO DR,ROSEVILLE,95678,CA,3,2,1770,Residential,Fri May 16 00:00:00 EDT 2008,182587,38.72446,-121.292829 +675,7577 EDDYLEE WAY,SACRAMENTO,95822,CA,4,2,1436,Residential,Fri May 16 00:00:00 EDT 2008,185074,38.48291,-121.491509 +676,8369 FOPPIANO WAY,SACRAMENTO,95829,CA,3,2,1124,Residential,Fri May 16 00:00:00 EDT 2008,185833,38.453839,-121.357919 +677,8817 SAWTELLE WAY,SACRAMENTO,95826,CA,4,2,1139,Residential,Fri May 16 00:00:00 EDT 2008,186785,38.565322,-121.374251 +678,1910 BONAVISTA WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Fri May 16 00:00:00 EDT 2008,187000,38.476048,-121.494961 +679,8 TIDE CT,SACRAMENTO,95833,CA,3,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,188335,38.609864,-121.492304 +680,8952 ROCKY CREEK CT,ELK GROVE,95758,CA,3,2,1273,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.431239,-121.44001 +681,435 EXCHANGE ST,SACRAMENTO,95838,CA,3,1,1082,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.659434,-121.455236 +682,10105 MONTE VALLO CT,SACRAMENTO,95827,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.573917,-121.316916 +683,3930 ANNABELLE AVE,ROSEVILLE,95661,CA,2,1,796,Residential,Fri May 16 00:00:00 EDT 2008,190000,38.727609,-121.226494 +684,4854 TANGERINE AVE,SACRAMENTO,95823,CA,3,2,1386,Residential,Fri May 16 00:00:00 EDT 2008,191250,38.478239,-121.446326 +685,2909 SHAWN WAY,RANCHO CORDOVA,95670,CA,3,2,1452,Residential,Fri May 16 00:00:00 EDT 2008,193000,38.589925,-121.299059 +686,4290 BLACKFORD WAY,SACRAMENTO,95823,CA,3,2,1513,Residential,Fri May 16 00:00:00 EDT 2008,193500,38.470494,-121.454162 +687,5890 TT TRAK,FORESTHILL,95631,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,194818,39.020808,-120.821518 +688,7015 WOODSIDE DR,SACRAMENTO,95842,CA,4,2,1578,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.693071,-121.332365 +689,6019 CHESHIRE WAY,CITRUS HEIGHTS,95610,CA,4,3,1736,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.676437,-121.279165 +690,3330 VILLAGE CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.690504,-120.996245 +691,2561 VERNA WAY,SACRAMENTO,95821,CA,3,1,1473,Residential,Fri May 16 00:00:00 EDT 2008,195000,38.611055,-121.369964 +692,3522 22ND AVE,SACRAMENTO,95820,CA,3,1,1150,Residential,Fri May 16 00:00:00 EDT 2008,198000,38.532725,-121.469078 +693,2880 CANDIDO DR,SACRAMENTO,95833,CA,3,2,1127,Residential,Fri May 16 00:00:00 EDT 2008,199900,38.618019,-121.510215 +694,6908 PIN OAK CT,FAIR OAKS,95628,CA,3,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,200000,38.66424,-121.303675 +695,5733 ANGELINA AVE,CARMICHAEL,95608,CA,3,1,972,Residential,Fri May 16 00:00:00 EDT 2008,201000,38.622634,-121.330846 +696,7849 BONNY DOWNS WAY,ELK GROVE,95758,CA,4,2,2306,Residential,Fri May 16 00:00:00 EDT 2008,204918,38.42139,-121.411339 +697,8716 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1479,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.724083,-121.3584 +698,6320 EL DORADO ST,EL DORADO,95623,CA,2,1,1040,Residential,Fri May 16 00:00:00 EDT 2008,205000,38.678758,-120.844118 +699,2328 DOROTHY JUNE WAY,SACRAMENTO,95838,CA,3,2,1430,Residential,Fri May 16 00:00:00 EDT 2008,205878,38.641727,-121.412703 +700,1986 DANVERS WAY,SACRAMENTO,95832,CA,4,2,1800,Residential,Fri May 16 00:00:00 EDT 2008,207000,38.47723,-121.492568 +701,7901 GAZELLE TRAIL WAY,ANTELOPE,95843,CA,4,2,1953,Residential,Fri May 16 00:00:00 EDT 2008,207744,38.71174,-121.342675 +702,6080 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1120,Residential,Fri May 16 00:00:00 EDT 2008,209000,38.681952,-121.505009 +703,20 GROTH CIR,SACRAMENTO,95834,CA,3,2,1232,Residential,Fri May 16 00:00:00 EDT 2008,210000,38.640807,-121.533522 +704,1900 DANBROOK DR,SACRAMENTO,95835,CA,1,1,984,Condo,Fri May 16 00:00:00 EDT 2008,210944,38.668433,-121.503471 +705,140 VENTO CT,ROSEVILLE,95678,CA,3,2,0,Condo,Fri May 16 00:00:00 EDT 2008,212500,38.793533,-121.289685 +706,8442 KEUSMAN ST,ELK GROVE,95758,CA,4,2,2329,Residential,Fri May 16 00:00:00 EDT 2008,213750,38.449651,-121.414704 +707,9552 SUNLIGHT LN,ELK GROVE,95758,CA,3,2,1351,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.410561,-121.404327 +708,2733 YUMA CT,CAMERON PARK,95682,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.691215,-120.994949 +709,1407 TIFFANY CIR,ROSEVILLE,95661,CA,4,1,1376,Residential,Fri May 16 00:00:00 EDT 2008,215000,38.736392,-121.2664 +710,636 CRESTVIEW DR,DIAMOND SPRINGS,95619,CA,3,2,1300,Residential,Fri May 16 00:00:00 EDT 2008,216033,38.688255,-120.810235 +711,1528 HESKET WAY,SACRAMENTO,95825,CA,4,2,1566,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.593598,-121.403637 +712,2327 32ND ST,SACRAMENTO,95817,CA,2,1,1115,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.557433,-121.47034 +713,1833 2ND AVE,SACRAMENTO,95818,CA,2,1,1032,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.556818,-121.490669 +714,7252 CARRIAGE DR,CITRUS HEIGHTS,95621,CA,4,2,1419,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.698058,-121.294893 +715,9815 PASO FINO WAY,ELK GROVE,95757,CA,3,2,1261,Residential,Fri May 16 00:00:00 EDT 2008,220000,38.404888,-121.443998 +716,5532 ENGLE RD,CARMICHAEL,95608,CA,2,2,1637,Residential,Fri May 16 00:00:00 EDT 2008,220702,38.63173,-121.335286 +717,1139 CLINTON RD,SACRAMENTO,95825,CA,4,2,1776,Multi-Family,Fri May 16 00:00:00 EDT 2008,221250,38.585291,-121.406824 +718,9176 SAGE GLEN WAY,ELK GROVE,95758,CA,3,2,1338,Residential,Fri May 16 00:00:00 EDT 2008,222000,38.423913,-121.439115 +719,9967 HATHERTON WAY,ELK GROVE,95757,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,222500,38.3052,-121.4033 +720,9264 BOULDER RIVER WAY,ELK GROVE,95624,CA,5,2,2254,Residential,Fri May 16 00:00:00 EDT 2008,222750,38.421713,-121.345191 +721,320 GROTH CIR,SACRAMENTO,95834,CA,3,2,1441,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.638882,-121.531883 +722,137 GUNNISON AVE,SACRAMENTO,95838,CA,4,2,1991,Residential,Fri May 16 00:00:00 EDT 2008,225000,38.650729,-121.466483 +723,8209 RIVALLO WAY,SACRAMENTO,95829,CA,4,3,2126,Residential,Fri May 16 00:00:00 EDT 2008,228750,38.459524,-121.3501 +724,8637 PERIWINKLE CIR,ELK GROVE,95624,CA,3,2,1094,Residential,Fri May 16 00:00:00 EDT 2008,229000,38.443184,-121.364388 +725,3425 MEADOW WAY,ROCKLIN,95677,CA,3,2,1462,Residential,Fri May 16 00:00:00 EDT 2008,230095,38.798028,-121.235364 +726,107 JARVIS CIR,SACRAMENTO,95834,CA,5,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,232500,38.639891,-121.537603 +727,2319 THORES ST,RANCHO CORDOVA,95670,CA,3,2,1074,Residential,Fri May 16 00:00:00 EDT 2008,233000,38.59675,-121.312716 +728,8935 MOUNTAIN HOME CT,ELK GROVE,95624,CA,4,2,2111,Residential,Fri May 16 00:00:00 EDT 2008,233500,38.38751,-121.370276 +729,2566 SERENATA WAY,SACRAMENTO,95835,CA,3,2,1686,Residential,Fri May 16 00:00:00 EDT 2008,239000,38.671556,-121.520916 +730,4085 COUNTRY DR,ANTELOPE,95843,CA,4,3,1915,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.706209,-121.369509 +731,9297 TROUT WAY,ELK GROVE,95624,CA,4,2,2367,Residential,Fri May 16 00:00:00 EDT 2008,240000,38.420637,-121.375798 +732,7 ARCHIBALD CT,SACRAMENTO,95823,CA,3,2,1962,Residential,Fri May 16 00:00:00 EDT 2008,240971,38.443305,-121.435296 +733,11130 EEL RIVER CT,RANCHO CORDOVA,95670,CA,2,2,1406,Residential,Fri May 16 00:00:00 EDT 2008,242000,38.625932,-121.271517 +734,8323 REDBANK WAY,SACRAMENTO,95829,CA,3,2,1789,Residential,Fri May 16 00:00:00 EDT 2008,243450,38.455753,-121.349273 +735,16 BRONCO CREEK CT,SACRAMENTO,95835,CA,4,2,1876,Residential,Fri May 16 00:00:00 EDT 2008,243500,38.674226,-121.525497 +736,8316 NORTHAM DR,ANTELOPE,95843,CA,3,2,1235,Residential,Fri May 16 00:00:00 EDT 2008,246544,38.720767,-121.376678 +737,4240 WINJE DR,ANTELOPE,95843,CA,4,2,2504,Residential,Fri May 16 00:00:00 EDT 2008,246750,38.70884,-121.359559 +738,3569 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.631139,-121.501879 +739,5118 ROBANDER ST,CARMICHAEL,95608,CA,3,2,1676,Residential,Fri May 16 00:00:00 EDT 2008,247000,38.657267,-121.310352 +740,5976 KYLENCH CT,CITRUS HEIGHTS,95621,CA,3,2,1367,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.708966,-121.32467 +741,9247 DELAIR WAY,ELK GROVE,95758,CA,4,3,1899,Residential,Fri May 16 00:00:00 EDT 2008,249000,38.422241,-121.458022 +742,9054 DESCENDANT DR,ELK GROVE,95758,CA,3,2,1636,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.428852,-121.415628 +743,3450 WHITNOR CT,SACRAMENTO,95821,CA,3,2,1828,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.627698,-121.369698 +744,6288 LONETREE BLVD,ROCKLIN,95765,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,250000,38.804993,-121.293609 +745,9355 MATADOR WAY,SACRAMENTO,95826,CA,4,2,1438,Residential,Fri May 16 00:00:00 EDT 2008,252000,38.555633,-121.350691 +746,8671 SUMMER SUN WAY,ELK GROVE,95624,CA,3,2,1451,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.442845,-121.373272 +747,1890 GENEVA PL,SACRAMENTO,95825,CA,3,1,1520,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.599449,-121.400305 +748,1813 AVENIDA MARTINA,ROSEVILLE,95747,CA,3,2,1506,Residential,Fri May 16 00:00:00 EDT 2008,255000,38.776649,-121.339589 +749,191 BARNHART CIR,SACRAMENTO,95835,CA,4,2,2605,Residential,Fri May 16 00:00:00 EDT 2008,257200,38.675594,-121.515878 +750,6221 GREEN TOP WAY,ORANGEVALE,95662,CA,3,2,1196,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.679409,-121.219107 +751,2298 PRIMROSE LN,LINCOLN,95648,CA,3,2,1621,Residential,Fri May 16 00:00:00 EDT 2008,260000,38.89918,-121.322514 +752,5635 LOS PUEBLOS WAY,SACRAMENTO,95835,CA,3,2,1811,Residential,Fri May 16 00:00:00 EDT 2008,263500,38.679191,-121.537622 +753,10165 LOFTON WAY,ELK GROVE,95757,CA,3,2,1540,Residential,Fri May 16 00:00:00 EDT 2008,266510,38.387708,-121.436522 +754,1251 GREEN RAVINE DR,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,267750,38.88156,-121.301343 +755,6001 SHOO FLY RD,PLACERVILLE,95667,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,270000,38.813546,-120.809254 +756,3040 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,271000,38.770835,-121.366996 +757,2674 TAM O SHANTER DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,272700,38.695801,-121.079216 +758,6007 MARYBELLE LN,SHINGLE SPRINGS,95682,CA,0,0,0,Unkown,Fri May 16 00:00:00 EDT 2008,275000,38.64347,-120.888183 +759,9949 NESTLING CIR,ELK GROVE,95757,CA,3,2,1543,Residential,Fri May 16 00:00:00 EDT 2008,275000,38.397455,-121.468391 +760,2915 HOLDREGE WAY,SACRAMENTO,95835,CA,5,3,2494,Residential,Fri May 16 00:00:00 EDT 2008,276000,38.663728,-121.525833 +761,2678 BRIARTON DR,LINCOLN,95648,CA,3,2,1650,Residential,Fri May 16 00:00:00 EDT 2008,276500,38.844116,-121.274806 +762,294 SPARROW DR,GALT,95632,CA,4,3,2214,Residential,Fri May 16 00:00:00 EDT 2008,278000,38.258976,-121.321266 +763,2987 DIORITE WAY,SACRAMENTO,95835,CA,5,3,2280,Residential,Fri May 16 00:00:00 EDT 2008,279000,38.667332,-121.528276 +764,6326 APPIAN WAY,CARMICHAEL,95608,CA,3,2,1443,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.66266,-121.316858 +765,6905 COBALT WAY,CITRUS HEIGHTS,95621,CA,4,2,1582,Residential,Fri May 16 00:00:00 EDT 2008,280000,38.691393,-121.305215 +766,8986 HAFLINGER WAY,ELK GROVE,95757,CA,3,2,1857,Residential,Fri May 16 00:00:00 EDT 2008,285000,38.397923,-121.450219 +767,2916 BABSON DR,ELK GROVE,95758,CA,3,2,1735,Residential,Fri May 16 00:00:00 EDT 2008,288000,38.417191,-121.473897 +768,10133 NEBBIOLO CT,ELK GROVE,95624,CA,4,3,2096,Residential,Fri May 16 00:00:00 EDT 2008,289000,38.391085,-121.347231 +769,1103 COMMONS DR,SACRAMENTO,95825,CA,3,2,1720,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.567865,-121.410699 +770,4636 TEAL BAY CT,ANTELOPE,95843,CA,4,2,2160,Residential,Fri May 16 00:00:00 EDT 2008,290000,38.704554,-121.354753 +771,1524 YOUNGS AVE,SACRAMENTO,95838,CA,4,2,1382,Residential,Fri May 16 00:00:00 EDT 2008,293996,38.644927,-121.43054 +772,865 CONRAD CT,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,294000,38.729993,-120.802458 +773,8463 TERRACOTTA CT,ELK GROVE,95624,CA,4,2,1721,Residential,Fri May 16 00:00:00 EDT 2008,294173,38.450548,-121.363002 +774,5747 KING RD,LOOMIS,95650,CA,4,2,1328,Residential,Fri May 16 00:00:00 EDT 2008,295000,38.825096,-121.198432 +775,8253 KEEGAN WAY,ELK GROVE,95624,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.446286,-121.400817 +776,9204 TROUT WAY,ELK GROVE,95624,CA,4,2,1982,Residential,Fri May 16 00:00:00 EDT 2008,298000,38.422221,-121.375799 +777,1828 2ND AVE,SACRAMENTO,95818,CA,2,1,1144,Residential,Fri May 16 00:00:00 EDT 2008,299000,38.556844,-121.490769 +778,1113 COMMONS DR,SACRAMENTO,95825,CA,2,2,1623,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.567795,-121.410703 +779,2341 BIG STRIKE TRL,COOL,95614,CA,3,2,1457,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.905927,-120.975169 +780,9452 RED SPRUCE WAY,ELK GROVE,95624,CA,6,3,2555,Residential,Fri May 16 00:00:00 EDT 2008,300000,38.404505,-121.346938 +781,5776 TERRACE DR,ROCKLIN,95765,CA,3,2,1577,Residential,Fri May 16 00:00:00 EDT 2008,300567,38.800539,-121.260979 +782,5908 MCLEAN DR,ELK GROVE,95757,CA,5,3,2592,Residential,Fri May 16 00:00:00 EDT 2008,303000,38.38912,-121.434389 +783,8215 PEREGRINE WAY,CITRUS HEIGHTS,95610,CA,3,2,1401,Residential,Fri May 16 00:00:00 EDT 2008,305000,38.715493,-121.26293 +784,1104 HILLSDALE LN,LINCOLN,95648,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,306000,38.865017,-121.32302 +785,2949 PANAMA AVE,CARMICHAEL,95608,CA,3,2,1502,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.618369,-121.326187 +786,1356 HARTLEY WAY,FOLSOM,95630,CA,3,2,1327,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.651617,-121.131674 +787,633 HANISCH DR,ROSEVILLE,95678,CA,4,3,1800,Residential,Fri May 16 00:00:00 EDT 2008,310000,38.76349,-121.275881 +788,63 ANGEL ISLAND CIR,SACRAMENTO,95831,CA,4,2,2169,Residential,Fri May 16 00:00:00 EDT 2008,311518,38.490408,-121.547664 +789,1571 WILD OAK LN,LINCOLN,95648,CA,5,3,2457,Residential,Fri May 16 00:00:00 EDT 2008,312000,38.844144,-121.274174 +790,5222 COPPER SUNSET WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,313000,38.529181,-121.224755 +791,5601 SPINDRIFT LN,ORANGEVALE,95662,CA,4,2,2004,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.668289,-121.192316 +792,652 FIFTEEN MILE DR,ROSEVILLE,95678,CA,4,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.775872,-121.298864 +793,7921 DOE TRAIL WAY,ANTELOPE,95843,CA,5,3,3134,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.711927,-121.343608 +794,4204 LUSK DR,SACRAMENTO,95864,CA,3,2,1360,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.606569,-121.368424 +795,5321 DELTA DR,ROCKLIN,95765,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,315000,38.815493,-121.262908 +796,5608 ROSEDALE WAY,SACRAMENTO,95822,CA,3,2,1276,Residential,Fri May 16 00:00:00 EDT 2008,320000,38.525115,-121.518689 +797,3372 BERETANIA WAY,SACRAMENTO,95834,CA,4,3,2962,Residential,Fri May 16 00:00:00 EDT 2008,322000,38.64977,-121.53448 +798,2422 STEFANIE DR,ROCKLIN,95765,CA,4,2,1888,Residential,Fri May 16 00:00:00 EDT 2008,325000,38.82273,-121.26424 +799,3232 PARKHAM DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,325500,38.772821,-121.364821 +800,448 ELMWOOD CT,ROSEVILLE,95678,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,326951,38.771917,-121.304439 +801,1214 DAWNWOOD DR,GALT,95632,CA,3,2,1548,Residential,Fri May 16 00:00:00 EDT 2008,328370,38.290119,-121.286023 +802,1440 EMERALD LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.861864,-121.267478 +803,3349 CORVINA DR,RANCHO CORDOVA,95670,CA,4,3,2109,Residential,Fri May 16 00:00:00 EDT 2008,330000,38.580545,-121.279016 +804,10254 JULIANA WAY,SACRAMENTO,95827,CA,4,2,2484,Residential,Fri May 16 00:00:00 EDT 2008,331200,38.56803,-121.309966 +805,149 OPUS CIR,SACRAMENTO,95834,CA,4,3,2258,Residential,Fri May 16 00:00:00 EDT 2008,332000,38.6354,-121.53499 +806,580 REGENCY PARK CIR,SACRAMENTO,95835,CA,3,3,2212,Residential,Fri May 16 00:00:00 EDT 2008,334000,38.674864,-121.4958 +807,5544 CAMAS CT,ORANGEVALE,95662,CA,3,2,1616,Residential,Fri May 16 00:00:00 EDT 2008,335000,38.667703,-121.209456 +808,5102 ARCHCREST WAY,SACRAMENTO,95835,CA,4,2,2372,Residential,Fri May 16 00:00:00 EDT 2008,341000,38.66841,-121.494639 +809,5725 BALFOR RD,ROCKLIN,95765,CA,5,3,2606,Residential,Fri May 16 00:00:00 EDT 2008,346375,38.807816,-121.270008 +810,7697 ROSEHALL DR,ROSEVILLE,95678,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,347225,38.79218,-121.28595 +811,4821 HUTSON WAY,ELK GROVE,95757,CA,5,3,2877,Residential,Fri May 16 00:00:00 EDT 2008,349000,38.386239,-121.448159 +812,4509 WINJE DR,ANTELOPE,95843,CA,3,2,2960,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.709513,-121.359357 +813,1965 LAURELHURST LN,LINCOLN,95648,CA,2,2,0,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.853869,-121.271742 +814,6709 ROSE BRIDGE DR,ROSEVILLE,95678,CA,3,2,2172,Residential,Fri May 16 00:00:00 EDT 2008,350000,38.792461,-121.275711 +815,281 SPYGLASS HL,ROSEVILLE,95678,CA,3,2,2100,Condo,Fri May 16 00:00:00 EDT 2008,350000,38.762153,-121.283451 +816,7709 RIVER VILLAGE DR,SACRAMENTO,95831,CA,3,2,1795,Residential,Fri May 16 00:00:00 EDT 2008,351000,38.483212,-121.54019 +817,4165 BRISBANE CIR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,356200,38.686067,-121.073413 +818,506 BEDFORD CT,ROSEVILLE,95661,CA,4,2,2295,Residential,Fri May 16 00:00:00 EDT 2008,360000,38.733985,-121.236766 +819,9048 PINTO CANYON WAY,ROSEVILLE,95747,CA,4,3,2577,Residential,Fri May 16 00:00:00 EDT 2008,367463,38.792493,-121.331899 +820,2274 IVY BRIDGE DR,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,375000,38.778561,-121.362008 +821,14004 WALNUT AVE,WALNUT GROVE,95690,CA,3,1,1727,Residential,Fri May 16 00:00:00 EDT 2008,380000,38.247659,-121.515129 +822,6905 FRANKFORT CT,ELK GROVE,95758,CA,3,2,1485,Residential,Fri May 16 00:00:00 EDT 2008,380578,38.429139,-121.423444 +823,3621 WINTUN DR,CARMICHAEL,95608,CA,3,2,1655,Residential,Fri May 16 00:00:00 EDT 2008,386222,38.629929,-121.323086 +824,201 KIRKLAND CT,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,389000,38.867125,-121.319085 +825,12075 APPLESBURY CT,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,390000,38.5357,-121.2249 +826,1975 SIDESADDLE WAY,ROSEVILLE,95661,CA,3,2,2049,Residential,Fri May 16 00:00:00 EDT 2008,395500,38.737872,-121.249025 +827,5420 ALMOND FALLS WAY,RANCHO CORDOVA,95742,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,396000,38.527384,-121.233531 +828,9677 PILLITERI CT,ELK GROVE,95757,CA,5,3,2875,Residential,Fri May 16 00:00:00 EDT 2008,397000,38.405571,-121.445186 +829,1515 EL CAMINO VERDE DR,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.904869,-121.32075 +830,556 PLATT CIR,EL DORADO HILLS,95762,CA,4,2,2199,Residential,Fri May 16 00:00:00 EDT 2008,400000,38.656299,-121.079783 +831,1792 DIAMOND WOODS CIR,ROSEVILLE,95747,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,412500,38.808581,-121.32785 +832,1124 PERKINS WAY,SACRAMENTO,95818,CA,2,1,1304,Residential,Fri May 16 00:00:00 EDT 2008,413500,38.551611,-121.504437 +833,4748 SALEM WAY,CARMICHAEL,95608,CA,3,2,2334,Residential,Fri May 16 00:00:00 EDT 2008,415000,38.634111,-121.353376 +834,1484 RADCLIFFE WAY,AUBURN,95603,CA,4,3,2278,Residential,Fri May 16 00:00:00 EDT 2008,420454,38.935579,-121.079018 +835,51 AIKEN WAY,SACRAMENTO,95819,CA,3,1,1493,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.579326,-121.44252 +836,2818 KNOLLWOOD DR,CAMERON PARK,95682,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,425000,38.669805,-120.999007 +837,1536 STONEY CROSS LN,LINCOLN,95648,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,433500,38.860007,-121.310946 +838,509 CASTILLIAN CT,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,438000,38.804773,-121.341195 +839,700 HUNTER PL,FOLSOM,95630,CA,5,3,2787,Residential,Fri May 16 00:00:00 EDT 2008,441000,38.66051,-121.163689 +840,1240 FAY CIR,SACRAMENTO,95831,CA,5,3,2824,Residential,Fri May 16 00:00:00 EDT 2008,445000,38.506371,-121.514456 +841,1113 SANDWICK WAY,FOLSOM,95630,CA,4,3,3261,Residential,Fri May 16 00:00:00 EDT 2008,446000,38.673882,-121.105077 +842,3108 DELWOOD WAY,SACRAMENTO,95821,CA,4,2,2053,Residential,Fri May 16 00:00:00 EDT 2008,450000,38.621566,-121.370882 +843,3212 CORNICHE LN,ROSEVILLE,95661,CA,4,3,2379,Residential,Fri May 16 00:00:00 EDT 2008,455000,38.750577,-121.232768 +844,2159 BECKETT DR,EL DORADO HILLS,95762,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,460000,38.680092,-121.036467 +845,4320 FOUR SEASONS RD,PLACERVILLE,95667,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,475000,38.690867,-120.693641 +846,6401 MARSHALL RD,GARDEN VALLEY,95633,CA,3,2,0,Residential,Fri May 16 00:00:00 EDT 2008,490000,38.84255,-120.8754 +847,2089 BECKETT DR,EL DORADO HILLS,95762,CA,4,2,0,Residential,Fri May 16 00:00:00 EDT 2008,493000,38.681778,-121.035838 +848,6196 EDGEHILL DR,EL DORADO HILLS,95762,CA,5,4,0,Residential,Fri May 16 00:00:00 EDT 2008,508000,38.676131,-121.038931 +849,200 HILLSFORD CT,ROSEVILLE,95747,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,511000,38.780051,-121.378718 +850,8217 PLUMERIA AVE,FAIR OAKS,95628,CA,3,2,3173,Residential,Fri May 16 00:00:00 EDT 2008,525000,38.650735,-121.258628 +851,4841 VILLAGE GREEN DR,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,533000,38.664066,-121.056735 +852,3863 LAS PASAS WAY,SACRAMENTO,95864,CA,3,1,1348,Residential,Fri May 16 00:00:00 EDT 2008,545000,38.588936,-121.373606 +853,820 DANA CT,AUBURN,95603,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,560000,38.865246,-121.094869 +854,1165 37TH ST,SACRAMENTO,95816,CA,2,1,1252,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.568438,-121.457854 +855,203 CASCADE FALLS DR,FOLSOM,95630,CA,4,3,3229,Residential,Fri May 16 00:00:00 EDT 2008,575000,38.703962,-121.1871 +856,9880 IZILDA CT,SACRAMENTO,95829,CA,5,4,3863,Residential,Fri May 16 00:00:00 EDT 2008,598695,38.45326,-121.32573 +857,1800 AVONDALE DR,ROSEVILLE,95747,CA,5,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.798448,-121.344054 +858,4620 BROMWICH CT,ROCKLIN,95677,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.772672,-121.220232 +859,620 KESWICK CT,GRANITE BAY,95746,CA,4,3,2356,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.732096,-121.219142 +860,4478 GREENBRAE RD,ROCKLIN,95677,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,600000,38.781134,-121.222801 +861,8432 BRIGGS DR,ROSEVILLE,95747,CA,5,3,3579,Residential,Fri May 16 00:00:00 EDT 2008,610000,38.78861,-121.339495 +862,200 CRADLE MOUNTAIN CT,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,622500,38.6478,-121.0309 +863,2065 IMPRESSIONIST WAY,EL DORADO HILLS,95762,CA,0,0,0,Residential,Fri May 16 00:00:00 EDT 2008,680000,38.682961,-121.033253 +864,2982 ABERDEEN LN,EL DORADO HILLS,95762,CA,4,3,0,Residential,Fri May 16 00:00:00 EDT 2008,879000,38.706692,-121.058869 +865,9401 BARREL RACER CT,WILTON,95693,CA,4,3,4400,Residential,Fri May 16 00:00:00 EDT 2008,884790,38.415298,-121.194858 +866,3720 VISTA DE MADERA,LINCOLN,95648,CA,3,3,0,Residential,Fri May 16 00:00:00 EDT 2008,1551,38.851645,-121.231742 +867,14151 INDIO DR,SLOUGHHOUSE,95683,CA,3,4,5822,Residential,Fri May 16 00:00:00 EDT 2008,2000,38.490447,-121.129337 +868,7401 TOULON LN,SACRAMENTO,95828,CA,4,2,1512,Residential,Thu May 15 00:00:00 EDT 2008,56950,38.488628,-121.387759 +869,9127 NEWHALL DR Unit 34,SACRAMENTO,95826,CA,1,1,611,Condo,Thu May 15 00:00:00 EDT 2008,60000,38.542419,-121.359904 +870,5937 BAMFORD DR,SACRAMENTO,95823,CA,2,1,876,Residential,Thu May 15 00:00:00 EDT 2008,61000,38.471139,-121.432255 +871,5672 HILLSDALE BLVD,SACRAMENTO,95842,CA,2,1,933,Condo,Thu May 15 00:00:00 EDT 2008,62000,38.670467,-121.359799 +872,3920 39TH ST,SACRAMENTO,95820,CA,2,1,864,Residential,Thu May 15 00:00:00 EDT 2008,68566,38.539213,-121.46393 +873,701 JESSIE AVE,SACRAMENTO,95838,CA,2,1,1011,Residential,Thu May 15 00:00:00 EDT 2008,70000,38.643978,-121.449562 +874,83 ARCADE BLVD,SACRAMENTO,95815,CA,4,2,1158,Residential,Thu May 15 00:00:00 EDT 2008,80000,38.618716,-121.466327 +875,601 REGGINALD WAY,SACRAMENTO,95838,CA,3,2,1092,Residential,Thu May 15 00:00:00 EDT 2008,85500,38.64472,-121.452228 +876,550 DEL VERDE CIR,SACRAMENTO,95833,CA,2,1,956,Condo,Thu May 15 00:00:00 EDT 2008,92000,38.627147,-121.500799 +877,4113 DAYSTAR CT,SACRAMENTO,95824,CA,2,2,1139,Residential,Thu May 15 00:00:00 EDT 2008,93600,38.520469,-121.458606 +878,7374 TISDALE WAY,SACRAMENTO,95822,CA,3,1,1058,Residential,Thu May 15 00:00:00 EDT 2008,95000,38.488238,-121.472561 +879,3348 RIO LINDA BLVD,SACRAMENTO,95838,CA,3,2,1040,Residential,Thu May 15 00:00:00 EDT 2008,97750,38.628842,-121.446127 +880,3935 LIMESTONE WAY,SACRAMENTO,95823,CA,3,2,1354,Residential,Thu May 15 00:00:00 EDT 2008,104000,38.484374,-121.463157 +881,6208 GRATTAN WAY,NORTH HIGHLANDS,95660,CA,3,1,1051,Residential,Thu May 15 00:00:00 EDT 2008,105000,38.679279,-121.376615 +882,739 E WOODSIDE LN Unit E,SACRAMENTO,95825,CA,1,1,682,Condo,Thu May 15 00:00:00 EDT 2008,107666,38.578675,-121.409951 +883,4225 46TH AVE,SACRAMENTO,95824,CA,3,1,1161,Residential,Thu May 15 00:00:00 EDT 2008,109000,38.511893,-121.457676 +884,1434 BELL AVE,SACRAMENTO,95838,CA,3,1,1004,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.647398,-121.432914 +885,5628 GEORGIA DR,NORTH HIGHLANDS,95660,CA,3,1,1229,Residential,Thu May 15 00:00:00 EDT 2008,110000,38.669587,-121.379879 +886,7629 BETH ST,SACRAMENTO,95832,CA,3,2,1249,Residential,Thu May 15 00:00:00 EDT 2008,112500,38.480126,-121.487869 +887,2277 BABETTE WAY,SACRAMENTO,95832,CA,3,2,1161,Residential,Thu May 15 00:00:00 EDT 2008,114800,38.479593,-121.48434 +888,6561 WEATHERFORD WAY,SACRAMENTO,95823,CA,3,1,1010,Residential,Thu May 15 00:00:00 EDT 2008,116000,38.465551,-121.42661 +889,3035 ESTEPA DR Unit 5C,CAMERON PARK,95682,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,119000,38.681393,-120.996713 +890,5136 CABOT CIR,SACRAMENTO,95820,CA,4,2,1462,Residential,Thu May 15 00:00:00 EDT 2008,121500,38.528479,-121.411806 +891,7730 ROBINETTE RD,SACRAMENTO,95828,CA,3,2,1269,Residential,Thu May 15 00:00:00 EDT 2008,122000,38.47709,-121.410569 +892,87 LACAM CIR,SACRAMENTO,95820,CA,2,2,1188,Residential,Thu May 15 00:00:00 EDT 2008,123675,38.532359,-121.41167 +893,1691 NOGALES ST,SACRAMENTO,95838,CA,4,2,1570,Residential,Thu May 15 00:00:00 EDT 2008,126854,38.631925,-121.427775 +894,3118 42ND ST,SACRAMENTO,95817,CA,3,2,1093,Residential,Thu May 15 00:00:00 EDT 2008,127059,38.546091,-121.457745 +895,7517 50TH AVE,SACRAMENTO,95828,CA,3,1,962,Residential,Thu May 15 00:00:00 EDT 2008,128687,38.507339,-121.416267 +896,4071 EVALITA WAY,SACRAMENTO,95823,CA,3,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,129500,38.466388,-121.458861 +897,7928 36TH AVE,SACRAMENTO,95824,CA,3,2,1127,Residential,Thu May 15 00:00:00 EDT 2008,130000,38.52049,-121.411383 +898,6631 DEMARET DR,SACRAMENTO,95822,CA,4,2,1309,Residential,Thu May 15 00:00:00 EDT 2008,131750,38.506382,-121.483574 +899,7043 9TH AVE,RIO LINDA,95673,CA,2,1,970,Residential,Thu May 15 00:00:00 EDT 2008,132000,38.695589,-121.444133 +900,97 KENNELFORD CIR,SACRAMENTO,95823,CA,3,2,1144,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.462376,-121.426556 +901,2636 TRONERO WAY,RANCHO CORDOVA,95670,CA,3,1,1000,Residential,Thu May 15 00:00:00 EDT 2008,134000,38.593049,-121.30304 +902,1530 TOPANGA LN Unit 204,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,138000,38.88415,-121.270277 +903,3604 KODIAK WAY,ANTELOPE,95843,CA,3,2,1206,Residential,Thu May 15 00:00:00 EDT 2008,142000,38.706175,-121.379776 +904,2149 COTTAGE WAY,SACRAMENTO,95825,CA,3,1,1285,Residential,Thu May 15 00:00:00 EDT 2008,143012,38.603593,-121.417011 +905,8632 PRAIRIEWOODS DR,SACRAMENTO,95828,CA,3,2,1543,Residential,Thu May 15 00:00:00 EDT 2008,145846,38.477563,-121.384382 +906,612 STONE BLVD,WEST SACRAMENTO,95691,CA,2,1,884,Residential,Thu May 15 00:00:00 EDT 2008,147000,38.563084,-121.535579 +907,4180 12TH AVE,SACRAMENTO,95817,CA,3,1,1019,Residential,Thu May 15 00:00:00 EDT 2008,148750,38.54117,-121.458129 +908,8025 ARROYO VISTA DR,SACRAMENTO,95823,CA,4,2,1392,Residential,Thu May 15 00:00:00 EDT 2008,150000,38.46654,-121.419029 +909,5754 WALERGA RD Unit 4,SACRAMENTO,95842,CA,2,1,924,Condo,Thu May 15 00:00:00 EDT 2008,150454,38.672567,-121.356754 +910,8 LA ROCAS CT,SACRAMENTO,95823,CA,3,2,1217,Residential,Thu May 15 00:00:00 EDT 2008,151087,38.46616,-121.448283 +911,8636 LONGSPUR WAY,ANTELOPE,95843,CA,3,2,1670,Residential,Thu May 15 00:00:00 EDT 2008,157296,38.725873,-121.35856 +912,1941 EXPEDITION WAY,SACRAMENTO,95832,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,157500,38.473775,-121.493777 +913,4351 TURNBRIDGE DR,SACRAMENTO,95823,CA,3,2,1488,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.502034,-121.456027 +914,6513 HOLIDAY WAY,NORTH HIGHLANDS,95660,CA,3,2,1373,Residential,Thu May 15 00:00:00 EDT 2008,160000,38.685361,-121.376938 +915,8321 MISTLETOE WAY,CITRUS HEIGHTS,95621,CA,4,2,1381,Residential,Thu May 15 00:00:00 EDT 2008,161250,38.717738,-121.308322 +916,5920 VALLEY GLEN WAY,SACRAMENTO,95823,CA,3,2,1265,Residential,Thu May 15 00:00:00 EDT 2008,164000,38.462821,-121.433135 +917,2601 SAN FERNANDO WAY,SACRAMENTO,95818,CA,2,1,881,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.556178,-121.476256 +918,501 POPLAR AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,165000,38.584526,-121.534609 +919,8008 SAINT HELENA CT,SACRAMENTO,95829,CA,4,2,1608,Residential,Thu May 15 00:00:00 EDT 2008,165750,38.467012,-121.359969 +920,6517 DONEGAL DR,CITRUS HEIGHTS,95621,CA,3,1,1344,Residential,Thu May 15 00:00:00 EDT 2008,166000,38.681554,-121.312934 +921,1001 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1202,Residential,Thu May 15 00:00:00 EDT 2008,169000,38.634292,-121.485106 +922,604 P ST,LINCOLN,95648,CA,3,2,1104,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.893168,-121.305398 +923,10001 WOODCREEK OAKS BLVD Unit 815,ROSEVILLE,95747,CA,2,2,0,Condo,Thu May 15 00:00:00 EDT 2008,170000,38.795529,-121.328819 +924,7351 GIGI PL,SACRAMENTO,95828,CA,4,2,1859,Multi-Family,Thu May 15 00:00:00 EDT 2008,170000,38.490606,-121.410173 +925,7740 DIXIE LOU ST,SACRAMENTO,95832,CA,3,2,1232,Residential,Thu May 15 00:00:00 EDT 2008,170000,38.475853,-121.477039 +926,7342 DAVE ST,SACRAMENTO,95828,CA,3,1,1638,Residential,Thu May 15 00:00:00 EDT 2008,170725,38.490822,-121.401643 +927,7687 HOWERTON DR,SACRAMENTO,95831,CA,2,2,1177,Residential,Thu May 15 00:00:00 EDT 2008,171750,38.480859,-121.539745 +928,26 KAMSON CT,SACRAMENTO,95833,CA,3,2,1582,Residential,Thu May 15 00:00:00 EDT 2008,172000,38.622794,-121.499173 +929,7045 PEEVEY CT,SACRAMENTO,95823,CA,2,2,904,Residential,Thu May 15 00:00:00 EDT 2008,173056,38.502254,-121.451444 +930,8916 GABLES MILL PL,ELK GROVE,95758,CA,3,2,1340,Residential,Thu May 15 00:00:00 EDT 2008,174000,38.433919,-121.422347 +931,1140 EDMONTON DR,SACRAMENTO,95833,CA,3,2,1204,Residential,Thu May 15 00:00:00 EDT 2008,174250,38.62457,-121.486913 +932,8879 APPLE PEAR CT,ELK GROVE,95624,CA,4,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,176850,38.44574,-121.3725 +933,9 WIND CT,SACRAMENTO,95823,CA,4,2,1497,Residential,Thu May 15 00:00:00 EDT 2008,179500,38.45073,-121.427528 +934,8570 SHERATON DR,FAIR OAKS,95628,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,185000,38.667254,-121.240708 +935,1550 TOPANGA LN Unit 207,LINCOLN,95648,CA,0,0,0,Condo,Thu May 15 00:00:00 EDT 2008,188000,38.88417,-121.270222 +936,1080 RIO NORTE WAY,SACRAMENTO,95834,CA,3,2,1428,Residential,Thu May 15 00:00:00 EDT 2008,188700,38.634335,-121.486098 +937,5501 VALLETTA WAY,SACRAMENTO,95820,CA,3,1,1039,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.530144,-121.43749 +938,5624 MEMORY LN,FAIR OAKS,95628,CA,3,1,1529,Residential,Thu May 15 00:00:00 EDT 2008,189000,38.66745,-121.2364 +939,6622 WILLOWLEAF DR,CITRUS HEIGHTS,95621,CA,4,3,1892,Residential,Thu May 15 00:00:00 EDT 2008,189836,38.699714,-121.311635 +940,27 MEGAN CT,SACRAMENTO,95838,CA,4,2,1887,Residential,Thu May 15 00:00:00 EDT 2008,190000,38.649258,-121.465308 +941,6601 WOODMORE OAKS DR,ORANGEVALE,95662,CA,3,2,1294,Residential,Thu May 15 00:00:00 EDT 2008,191250,38.687006,-121.254319 +942,1973 DANVERS WAY,SACRAMENTO,95832,CA,3,2,1638,Residential,Thu May 15 00:00:00 EDT 2008,191675,38.477568,-121.492574 +943,8001 ARROYO VISTA DR,SACRAMENTO,95823,CA,3,2,1677,Residential,Thu May 15 00:00:00 EDT 2008,195500,38.46734,-121.419843 +944,7409 VOYAGER WAY,CITRUS HEIGHTS,95621,CA,3,1,1073,Residential,Thu May 15 00:00:00 EDT 2008,198000,38.700717,-121.3133 +945,815 CROSSWIND DR,SACRAMENTO,95838,CA,3,2,1231,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.651386,-121.45042 +946,5509 LAGUNA CREST WAY,ELK GROVE,95758,CA,3,2,1175,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.42442,-121.440357 +947,8424 MERRY HILL WAY,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,200000,38.452075,-121.366461 +948,1525 PENNSYLVANIA AVE,WEST SACRAMENTO,95691,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,200100,38.569943,-121.527539 +949,5954 BRIDGECROSS DR,SACRAMENTO,95835,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,201528,38.68197,-121.500025 +950,8789 SEQUOIA WOOD CT,ELK GROVE,95624,CA,4,2,1609,Residential,Thu May 15 00:00:00 EDT 2008,204750,38.438818,-121.37443 +951,6600 SILVERTHORNE CIR,SACRAMENTO,95842,CA,4,3,1968,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.68607,-121.342369 +952,2221 2ND AVE,SACRAMENTO,95818,CA,2,2,1089,Residential,Thu May 15 00:00:00 EDT 2008,205000,38.555781,-121.485331 +953,3230 SMATHERS WAY,CARMICHAEL,95608,CA,3,2,1296,Residential,Thu May 15 00:00:00 EDT 2008,205900,38.623372,-121.347665 +954,5209 LAGUNA CREST WAY,ELK GROVE,95758,CA,2,2,1189,Residential,Thu May 15 00:00:00 EDT 2008,207000,38.424421,-121.443915 +955,416 LEITCH AVE,SACRAMENTO,95815,CA,2,1,795,Residential,Thu May 15 00:00:00 EDT 2008,207973,38.612694,-121.456669 +956,2100 BEATTY WAY,ROSEVILLE,95747,CA,3,2,1371,Residential,Thu May 15 00:00:00 EDT 2008,208250,38.737882,-121.308142 +957,6920 GILLINGHAM WAY,NORTH HIGHLANDS,95660,CA,3,1,1310,Residential,Thu May 15 00:00:00 EDT 2008,208318,38.694279,-121.373395 +958,82 WILDFLOWER DR,GALT,95632,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,209347,38.259708,-121.311616 +959,8652 BANTON CIR,ELK GROVE,95624,CA,4,2,1740,Residential,Thu May 15 00:00:00 EDT 2008,211500,38.444,-121.370993 +960,8428 MISTY PASS WAY,ANTELOPE,95843,CA,3,2,1517,Residential,Thu May 15 00:00:00 EDT 2008,212000,38.722959,-121.347115 +961,7958 ROSEVIEW WAY,SACRAMENTO,95828,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,213000,38.467836,-121.410366 +962,9020 LUKEN CT,ELK GROVE,95624,CA,3,2,1416,Residential,Thu May 15 00:00:00 EDT 2008,216000,38.451398,-121.366614 +963,7809 VALLECITOS WAY,SACRAMENTO,95828,CA,3,1,888,Residential,Thu May 15 00:00:00 EDT 2008,216021,38.508217,-121.411207 +964,8445 OLD AUBURN RD,CITRUS HEIGHTS,95610,CA,3,2,1882,Residential,Thu May 15 00:00:00 EDT 2008,219000,38.715423,-121.246743 +965,10085 ATKINS DR,ELK GROVE,95757,CA,3,2,1302,Residential,Thu May 15 00:00:00 EDT 2008,219794,38.390893,-121.437821 +966,9185 CERROLINDA CIR,ELK GROVE,95758,CA,3,2,1418,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.424497,-121.426595 +967,9197 CORTINA CIR,ROSEVILLE,95678,CA,3,2,0,Condo,Thu May 15 00:00:00 EDT 2008,220000,38.793152,-121.290025 +968,5429 HESPER WAY,CARMICHAEL,95608,CA,4,2,1319,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.665104,-121.315901 +969,1178 WARMWOOD CT,GALT,95632,CA,4,2,1770,Residential,Thu May 15 00:00:00 EDT 2008,220000,38.289544,-121.284607 +970,4900 ELUDE CT,SACRAMENTO,95842,CA,4,2,1627,Residential,Thu May 15 00:00:00 EDT 2008,223000,38.69674,-121.350519 +971,3557 SODA WAY,SACRAMENTO,95834,CA,0,0,0,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.631026,-121.501879 +972,3528 SAINT GEORGE DR,SACRAMENTO,95821,CA,3,1,1040,Residential,Thu May 15 00:00:00 EDT 2008,224000,38.629468,-121.376445 +973,7381 WASHBURN WAY,NORTH HIGHLANDS,95660,CA,3,1,960,Residential,Thu May 15 00:00:00 EDT 2008,224252,38.70355,-121.375103 +974,2181 WINTERHAVEN CIR,CAMERON PARK,95682,CA,3,2,0,Residential,Thu May 15 00:00:00 EDT 2008,224500,38.69757,-120.995739 +975,7540 HICKORY AVE,ORANGEVALE,95662,CA,3,1,1456,Residential,Thu May 15 00:00:00 EDT 2008,225000,38.703056,-121.235221 +976,5024 CHAMBERLIN CIR,ELK GROVE,95757,CA,3,2,1450,Residential,Thu May 15 00:00:00 EDT 2008,228000,38.389756,-121.446246 +977,2400 INVERNESS DR,LINCOLN,95648,CA,3,2,1358,Residential,Thu May 15 00:00:00 EDT 2008,229027,38.897814,-121.324691 +978,5 BISHOPGATE CT,SACRAMENTO,95823,CA,4,2,1329,Residential,Thu May 15 00:00:00 EDT 2008,229500,38.467936,-121.445477 +979,5601 REXLEIGH DR,SACRAMENTO,95823,CA,4,2,1715,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.445342,-121.441504 +980,1909 YARNELL WAY,ELK GROVE,95758,CA,3,2,1262,Residential,Thu May 15 00:00:00 EDT 2008,230000,38.417382,-121.484325 +981,9169 GARLINGTON CT,SACRAMENTO,95829,CA,4,3,2280,Residential,Thu May 15 00:00:00 EDT 2008,232425,38.457679,-121.35962 +982,6932 RUSKUT WAY,SACRAMENTO,95823,CA,3,2,1477,Residential,Thu May 15 00:00:00 EDT 2008,234000,38.499893,-121.45889 +983,7933 DAFFODIL WAY,CITRUS HEIGHTS,95610,CA,3,2,1216,Residential,Thu May 15 00:00:00 EDT 2008,235000,38.708824,-121.256803 +984,8304 RED FOX WAY,ELK GROVE,95758,CA,4,2,1685,Residential,Thu May 15 00:00:00 EDT 2008,235301,38.417,-121.397424 +985,3882 YELLOWSTONE LN,EL DORADO HILLS,95762,CA,3,2,1362,Residential,Thu May 15 00:00:00 EDT 2008,235738,38.655245,-121.075915 \ No newline at end of file diff --git a/getting-started/csv-to-hive.ipynb b/getting-started/csv-to-hive.ipynb new file mode 100644 index 00000000..5a765457 --- /dev/null +++ b/getting-started/csv-to-hive.ipynb @@ -0,0 +1,253 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# This notebook is to help automatically import csv file to hive" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is import of all needed dependencies. And in this sell you should pass path where parquet files located. " + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "import os" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is creating of spark context with hive support." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "from pyspark.sql import SparkSession\n", + "spark = SparkSession.builder.appName(\"Import parquet schema to hive\").config(\"hive.metastore.uris\", \"thrift://hive:9083\").enableHiveSupport().getOrCreate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define function below for getting sql script needed for creating table in hive using dataframe types as columns to table" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "def getCreateTableScriptCSV(databaseName, tableName, path, df):\n", + " cols = df.dtypes\n", + " createScript = \"CREATE EXTERNAL TABLE \" + databaseName + \".\" + tableName + \"(\"\n", + " colArray = []\n", + " for colName, colType in cols:\n", + " colArray.append(colName.replace(\" \", \"_\") + \" \" + colType)\n", + " createColsScript = \", \".join(colArray )\n", + " \n", + " script = createScript + createColsScript + \") ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION '\" + path + \"' TBLPROPERTIES('skip.header.line.count'='1') \"\n", + " print (script)\n", + " return script" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "#define main function for creating table where arqument 'path' is path to parquet files \n", + "def createTableCSV(databaseName, tableName, path): \n", + " df = spark.read.format(\"csv\").option(\"header\", \"true\").option(\"inferschema\",\"true\").load(path)\n", + " sqlScript = getCreateTableScriptCSV(databaseName, tableName, path, df)\n", + " spark.sql(sqlScript)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## One file example" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CREATE EXTERNAL TABLE test.table_from_single_file2(registration_dttm timestamp, id int, first_name string, last_name string, email string, gender string, ip_address string, cc string, country string, birthdate string, salary double, title string, comments string) STORED AS PARQUET LOCATION 'table_from_single_file2'\n" + ] + } + ], + "source": [ + "# Set path where the csv file located.\n", + "my_csv_file_path = os.path.join('v3io://users/admin/examples/demo.csv')\n", + "createTableCSV(\"test\",\"csv_table\",my_csv_file_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## One folder example for spark output job" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CREATE EXTERNAL TABLE test.table_from_dir2(id int, street string, city string, zip int, state string, beds int, baths int, sq__ft int, type string, sale_date string, price int, latitude double, longitude double) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION 'v3io://users/admin/examples/csvs/' TBLPROPERTIES('skip.header.line.count'='1') \n" + ] + } + ], + "source": [ + "# Set path where parquet folder with csv files inside located.\n", + "folder_path = os.path.join('v3io://users/admin/examples/csvs/')\n", + "createTableCSV(\"test\",\"table_from_dir2\",folder_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multiple files and folders example\n", + "\n", + "Write here name of database and path to folder where all csv's files (or folders with them) located. Database should be created.\n", + "In this cell code goes over all files and dirs in provided path and using them for creating table.\n", + "File should be ended with .csv format and should be \",\" seperated.\n", + "Directory (in which stored csv files) should be started with \".\"\n", + "Name of directory or file will be name of table." + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CREATE EXTERNAL TABLE test.demo1(id int, street string, city string, zip int, state string, beds int, baths int, sq__ft int, type string, sale_date string, price int, latitude double, longitude double) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION 'v3io://users/admin/examples/csvs/demo1.csv' TBLPROPERTIES('skip.header.line.count'='1') \n", + "CREATE EXTERNAL TABLE test.demo2(id int, street string, city string, zip int, state string, beds int, baths int, sq__ft int, type string, sale_date string, price int, latitude double, longitude double) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION 'v3io://users/admin/examples/csvs/demo2.csv' TBLPROPERTIES('skip.header.line.count'='1') \n" + ] + } + ], + "source": [ + "databaseName = \"test\"\n", + "filepath = \"/v3io/users/admin/examples/csvs\"\n", + "\n", + "for fileOrDir in os.listdir(filepath):\n", + " if fileOrDir.endswith(\".csv\") :\n", + " createTableCSV(databaseName, fileOrDir.split(\".csv\")[0], filepath.replace(\"/v3io/\", \"v3io://\", 1) + \"/\" + fileOrDir)\n", + " elif not fileOrDir.startswith(\".\") :\n", + " createTableCSV(databaseName, fileOrDir, filepath.replace(\"/v3io/\", \"v3io://\", 1) + \"/\" + fileOrDir + \"/*\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test how it works" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+------------+\n", + "|databaseName|\n", + "+------------+\n", + "| default|\n", + "| test|\n", + "+------------+\n", + "\n", + "+--------+--------------------+-----------+\n", + "|database| tableName|isTemporary|\n", + "+--------+--------------------+-----------+\n", + "| test| dir1| false|\n", + "| test| table_from_dir| false|\n", + "| test| table_from_dir2| false|\n", + "| test|table_from_single...| false|\n", + "| test|table_from_single...| false|\n", + "| test| userdata1| false|\n", + "| test| userdata2| false|\n", + "| test| userdata3| false|\n", + "+--------+--------------------+-----------+\n", + "\n" + ] + } + ], + "source": [ + "# test how the tables were saved\n", + "#spark.sql(\"drop database test CASCADE\")\n", + "spark.sql(\"drop table \" + databaseName + \".example1\")\n", + "spark.sql(\"show databases\").show()\n", + "spark.sql(\"show tables in \" + databaseName).show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# test how saving to table works\n", + "tableName = \"example1\"\n", + "spark.sql(\"select * from \" + databaseName + \".\" + tableName)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/getting-started/parquet-to-hive.ipynb b/getting-started/parquet-to-hive.ipynb index 3662a1d0..67e74ef8 100644 --- a/getting-started/parquet-to-hive.ipynb +++ b/getting-started/parquet-to-hive.ipynb @@ -53,7 +53,7 @@ "metadata": {}, "outputs": [], "source": [ - "def getCreateTableScript(databaseName, tableName, df):\n", + "def getCreateTableScript(databaseName, tableName, path, df):\n", " cols = df.dtypes\n", " createScript = \"CREATE EXTERNAL TABLE \" + databaseName + \".\" + tableName + \"(\"\n", " colArray = []\n", @@ -61,7 +61,7 @@ " colArray.append(colName.replace(\" \", \"_\") + \" \" + colType)\n", " createColsScript = \", \".join(colArray )\n", " \n", - " script = createScript + createColsScript + \") STORED AS PARQUET LOCATION '\" + tableName + \"'\"\n", + " script = createScript + createColsScript + \") STORED AS PARQUET LOCATION '\" + path + \"'\"\n", " print(script)\n", " return script\n", " " @@ -76,7 +76,7 @@ "#define main function for creating table where arqument 'path' is path to parquet files \n", "def createTable(databaseName, tableName, path): \n", " df = spark.read.parquet(path)\n", - " sqlScript = getCreateTableScript(databaseName, tableName, df)\n", + " sqlScript = getCreateTableScript(databaseName, tableName, path, df)\n", " spark.sql(sqlScript)" ] }, @@ -251,5 +251,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 04cad257ffdf44f2b5041b0f1989e2fb67d0f553 Mon Sep 17 00:00:00 2001 From: Sharon Lifshitz Date: Tue, 5 Nov 2019 12:13:26 +0200 Subject: [PATCH 02/15] [DOC] GPU Demos README: Minor editing following Or's review MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit See details in PR #147 review comment #2 — https://github.com/v3io/tutorials/pull/147#discussion_r338415412. --- demos/gpu/README.ipynb | 3 +++ demos/gpu/README.md | 4 +++- 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/demos/gpu/README.ipynb b/demos/gpu/README.ipynb index 188e4b74..1ea9aa58 100644 --- a/demos/gpu/README.ipynb +++ b/demos/gpu/README.ipynb @@ -25,6 +25,8 @@ "- A **horovod** directory with applications that use Uber's [Horovod](https://eng.uber.com/horovod/) distributed deep-learning framework, which can be used to convert a single-GPU TensorFlow, Keras, or PyTorch model-training program to a distributed program that trains the model simultaneously over multiple GPUs.\n", " The objective is to speed up your model training with minimal changes to your existing single-GPU code and without complicating the execution.\n", " Horovod code can also run over CPUs with only minor modifications.\n", + " For more information and examples, see the [Horovod GitHub repository](https://github.com/horovod/horovod).\n", + " \n", " The Horovod tutorials include the following:\n", "\n", " - An image-recognition demo application for execution over GPUs (**image-classification**).\n", @@ -32,6 +34,7 @@ " - Benchmark tests (**benchmark-tf.ipynb**, which executes **tf_cnn_benchmarks.py**).\n", "\n", "- A **rapids** directory with applications that use NVIDIA's [RAPIDS](https://rapids.ai/) open-source libraries suite for executing end-to-end data science and analytics pipelines entirely on GPUs.\n", + "\n", " The RAPIDS tutorials include the following:\n", "\n", " - Demo applications that use the [cuDF](https://rapidsai.github.io/projects/cudf/en/latest/index.html) RAPIDS GPU DataFrame library to perform batching and aggregation of data that's read from a Kafaka stream, and then write the results to a Parquet file.
\n", diff --git a/demos/gpu/README.md b/demos/gpu/README.md index df170449..a6fc7725 100644 --- a/demos/gpu/README.md +++ b/demos/gpu/README.md @@ -1,4 +1,3 @@ - # GPU Demos - [Overview](#gpu-demos-overview) @@ -15,6 +14,8 @@ The **demos/gpu** directory includes the following: - A **horovod** directory with applications that use Uber's [Horovod](https://eng.uber.com/horovod/) distributed deep-learning framework, which can be used to convert a single-GPU TensorFlow, Keras, or PyTorch model-training program to a distributed program that trains the model simultaneously over multiple GPUs. The objective is to speed up your model training with minimal changes to your existing single-GPU code and without complicating the execution. Horovod code can also run over CPUs with only minor modifications. + For more information and examples, see the [Horovod GitHub repository](https://github.com/horovod/horovod). + The Horovod tutorials include the following: - An image-recognition demo application for execution over GPUs (**image-classification**). @@ -22,6 +23,7 @@ The **demos/gpu** directory includes the following: - Benchmark tests (**benchmark-tf.ipynb**, which executes **tf_cnn_benchmarks.py**). - A **rapids** directory with applications that use NVIDIA's [RAPIDS](https://rapids.ai/) open-source libraries suite for executing end-to-end data science and analytics pipelines entirely on GPUs. + The RAPIDS tutorials include the following: - Demo applications that use the [cuDF](https://rapidsai.github.io/projects/cudf/en/latest/index.html) RAPIDS GPU DataFrame library to perform batching and aggregation of data that's read from a Kafaka stream, and then write the results to a Parquet file.
From 2d50c200fa309c83909ba094a309343862556623 Mon Sep 17 00:00:00 2001 From: Sharon Lifshitz Date: Tue, 5 Nov 2019 12:22:22 +0200 Subject: [PATCH 03/15] [DOC] Remove the obsolete gpu-prerequisites.ipynb NB The gpu-prerequisites.ipynb NB was replaced with a README NB and MD file in PR #127 / tutorials v2.5.3 / platform v2.5.0, but the obsolete prerequisites NB was inadvertently not removed as part of the commit. --- demos/gpu/gpu-prerequisites.ipynb | 50 ------------------------------- 1 file changed, 50 deletions(-) delete mode 100644 demos/gpu/gpu-prerequisites.ipynb diff --git a/demos/gpu/gpu-prerequisites.ipynb b/demos/gpu/gpu-prerequisites.ipynb deleted file mode 100644 index 53cdb510..00000000 --- a/demos/gpu/gpu-prerequisites.ipynb +++ /dev/null @@ -1,50 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Prerequisites for the GPU Demos" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To run the GPU-demo tutorials, you must fulfill the following prerequisites:\n", - "\n", - "- Your environment must have one or more [NVIDIA](https://www.nvidia.com/en-us/) graphics processing units (GPUs).\n", - "- To use the Horovod demos, ensure that\n", - " - The platform's Horovod service is deployed on your environment.
\n", - " > **Note:** The Horovod service isn't part of the default v2.3 platform deployment.
\n", - " > Contact [Iguazio Customer Success](mailto:support@iguazio.com) to deploy the service.\n", - " - Your Jupyter Notebook service uses the **Jupyter Deep Learning + GPU** flavor (configured from the custom service parameters).\n", - "- To use the RAPIDS demos, ensure that\n", - " - Your environment has one or more GPUs with the [NVIDIA Pascal](https://www.nvidia.com/en-us/geforce/products/10series/architecture/) architecture or better and [compute capability](https://developer.nvidia.com/cuda-gpus) 6.0+.\n", - " - Your Jupyter Notebook service uses the **Jupyter Deep Learning with Rapids** flavor (configured from the custom service parameters).
\n", - " > **Note:** In v2.3 of the platform, you must contact [Iguazio Customer Success](mailto:support@iguazio.com) before attempting to deploy the service with this flavor." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From c9a06e793296326d8554d756c02ef9420951c232 Mon Sep 17 00:00:00 2001 From: omesser Date: Mon, 18 Nov 2019 14:47:23 +0200 Subject: [PATCH 04/15] this now --- .gitmodules | 3 +++ demos/mlrun | 1 + 2 files changed, 4 insertions(+) create mode 100644 .gitmodules create mode 160000 demos/mlrun diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 00000000..657ee3cf --- /dev/null +++ b/.gitmodules @@ -0,0 +1,3 @@ +[submodule "demos/mlrun"] + path = demos/mlrun + url = git@github.com:mlrun/demos.git diff --git a/demos/mlrun b/demos/mlrun new file mode 160000 index 00000000..f984eaca --- /dev/null +++ b/demos/mlrun @@ -0,0 +1 @@ +Subproject commit f984eacae4211f19bb8a35ab67cec27150a2833b From bb34ffb347393599ebb79242017b0ab6a393dbd2 Mon Sep 17 00:00:00 2001 From: Sharon Lifshitz Date: Thu, 14 Nov 2019 18:50:58 +0200 Subject: [PATCH 05/15] [DOC] Frames GS NB: Minor text edit --- getting-started/frames.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/getting-started/frames.ipynb b/getting-started/frames.ipynb index d9a15877..1a452f78 100644 --- a/getting-started/frames.ipynb +++ b/getting-started/frames.ipynb @@ -27,7 +27,7 @@ "To use Frames, you first need to import the **v3io_frames** library and create and initialize a client object — an instance of the`Client` class.
\n", "The `Client` class features the following object methods for supporting basic data operations; the type of data is derived from the backend type (`tsdb` — TSDB table / `kv` — NoSQL table / `stream` — data stream):\n", "\n", - "- `create` — creates a new TSDB table or a stream (\"backend data\").\n", + "- `create` — creates a new TSDB table or stream (\"backend data\").\n", "- `delete` — deletes a table or stream or specific NoSQL (\"KV\") table items.\n", "- `read` — reads data from a table or stream into pandas DataFrames.\n", "- `write` — writes data from pandas DataFrames to a table or stream.\n", From 05c78a08ef2bc26f76afe084625ce72c25f75842 Mon Sep 17 00:00:00 2001 From: Sharon Lifshitz Date: Mon, 18 Nov 2019 14:51:54 +0200 Subject: [PATCH 06/15] [DOC] Frames GS NB:: Edit the `rate` param description for tsdb create --- getting-started/frames.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/getting-started/frames.ipynb b/getting-started/frames.ipynb index 1a452f78..8c9fa887 100644 --- a/getting-started/frames.ipynb +++ b/getting-started/frames.ipynb @@ -2726,8 +2726,8 @@ "The mandatory `table` parameter specifies the relative table path within the data container that was configured for the Frames client (see the [main initialization](#frames-init) step).\n", "In the following example, the relative table path is set by using the `tsdb_table` variable that was defined in the [tsdb backend initialization](#frames-tsdb-init) step.
\n", "The `attrs` parameter is used to set additional arguments.\n", - "You must set the `rate` argument to the ingestion rate of the TSDB metric-samples, as `\"[0-9]+/[smh]\"` (where `s` = seconds, `m` = minutes, and `h` = hours); for example, `1/s` (one sample per minute).\n", - "The rate should be calculated according to the slowest expected ingestion rate.\n", + "You must set the `rate` argument to the ingestion rate of the TSDB metric-samples, as `\"[0-9]+/[smh]\"` (where '`s`' = seconds, '`m`' = minutes, and '`h`' = hours); for example, `1/s` (one sample per minute).\n", + "It's recommended that you set the rate to the average expected ingestion rate, and that the ingestion rates for a given TSDB table don't vary significantly; when there's a big difference in the ingestion rates (for example, x10), use separate TSDB tables.\n", "You can also set additional optional arguments, such as `aggregates` or `aggregation-granularity`." ] }, From 0aaa9c1f1da9b79fb7b65a330956ce690507713b Mon Sep 17 00:00:00 2001 From: Oded Messer Date: Wed, 20 Nov 2019 11:58:36 +0200 Subject: [PATCH 07/15] Revert "Adding submodule to mlrun/demos" (#157) --- .gitmodules | 3 --- demos/mlrun | 1 - 2 files changed, 4 deletions(-) delete mode 100644 .gitmodules delete mode 160000 demos/mlrun diff --git a/.gitmodules b/.gitmodules deleted file mode 100644 index 657ee3cf..00000000 --- a/.gitmodules +++ /dev/null @@ -1,3 +0,0 @@ -[submodule "demos/mlrun"] - path = demos/mlrun - url = git@github.com:mlrun/demos.git diff --git a/demos/mlrun b/demos/mlrun deleted file mode 160000 index f984eaca..00000000 --- a/demos/mlrun +++ /dev/null @@ -1 +0,0 @@ -Subproject commit f984eacae4211f19bb8a35ab67cec27150a2833b From bacbed54ca379f1ff56aed72b8a7efd659889710 Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 20 Nov 2019 12:36:33 +0200 Subject: [PATCH 08/15] Replace the image classification with the MLRun demo --- .../01-image-classification.ipynb | 1706 +++++++++++++++++ ...-keras-cnn-dog-or-cat-classification.ipynb | 1288 ------------- .../02-create_pipeline.ipynb | 465 +++++ demos/image-classification/02-infer.ipynb | 585 ------ demos/image-classification/README.md | 24 + .../image-classification/horovod-training.py | 209 ++ demos/image-classification/hvd-pipe.png | Bin 0 -> 239903 bytes .../inference-docker/Dockerfile | 31 + .../inference-docker/main.py | 159 ++ .../nuclio-serving-tf-images.ipynb | 598 ++++++ demos/image-classification/summary.html | 22 + demos/image-classification/utils.py | 56 + demos/image-classification/workflow.png | Bin 0 -> 35003 bytes demos/mlrun | 1 + 14 files changed, 3271 insertions(+), 1873 deletions(-) create mode 100644 demos/image-classification/01-image-classification.ipynb delete mode 100644 demos/image-classification/01-keras-cnn-dog-or-cat-classification.ipynb create mode 100644 demos/image-classification/02-create_pipeline.ipynb delete mode 100644 demos/image-classification/02-infer.ipynb create mode 100644 demos/image-classification/README.md create mode 100644 demos/image-classification/horovod-training.py create mode 100644 demos/image-classification/hvd-pipe.png create mode 100644 demos/image-classification/inference-docker/Dockerfile create mode 100644 demos/image-classification/inference-docker/main.py create mode 100644 demos/image-classification/nuclio-serving-tf-images.ipynb create mode 100644 demos/image-classification/summary.html create mode 100644 demos/image-classification/utils.py create mode 100644 demos/image-classification/workflow.png create mode 160000 demos/mlrun diff --git a/demos/image-classification/01-image-classification.ipynb b/demos/image-classification/01-image-classification.ipynb new file mode 100644 index 00000000..1b0c1260 --- /dev/null +++ b/demos/image-classification/01-image-classification.ipynb @@ -0,0 +1,1706 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# End to end image classification workflow\n", + "The following example demonstrates an end to end data science workflow for building an an image classifier
\n", + "The model is trained on an images dataset of cats and dogs. Then the model is deployed as a function in a serving layer
\n", + "Users can send http request with an image of cats/dogs image and get a respond back that identify whether it is a cat or a dog\n", + "\n", + "This typical data science workflow comprises of the following:\n", + "* Download anb label the dataset\n", + "* Training a model on the images dataset\n", + "* Deploy a function with the new model in a serving layer\n", + "* Testing the function\n", + "\n", + "Key technologies:\n", + "* Keras and TensorFlow for training the model\n", + "* Horovod for running a distributed training\n", + "* MLRun (open source library for tracking experiments https://github.com/mlrun/mlrun) for building the functions and tracking experiments\n", + "* Nuclio function for creating a funciton that runs the model in a serving layer\n", + "\n", + "This demo is based on the following:
\n", + "* https://github.com/tensorflow/docs/tree/master/site/en/tutorials\n", + "* https://www.kaggle.com/uysimty/keras-cnn-dog-or-cat-classification/log" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: ignore\n", + "import nuclio" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting git+https://github.com/mlrun/mlrun.git\n", + " Cloning https://github.com/mlrun/mlrun.git to /tmp/pip-req-build-122oysyn\n", + "Requirement already satisfied (use --upgrade to upgrade): mlrun==0.3.3 from git+https://github.com/mlrun/mlrun.git in /User/.pythonlibs/lib/python3.6/site-packages\n", + "Requirement already satisfied: Flask>=1.1.1 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (1.1.1)\n", + "Requirement already satisfied: GitPython>=2.1.0 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (3.0.4)\n", + "Requirement already satisfied: aiohttp>=3.5.0 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (3.6.2)\n", + "Requirement already satisfied: boto3>=1.9 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (1.10.0)\n", + "Requirement already satisfied: click>=7.0 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (7.0)\n", + "Requirement already satisfied: gunicorn==19.9.0 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (19.9.0)\n", + "Requirement already satisfied: kubernetes>=9.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (9.0.0)\n", + "Requirement already satisfied: nest-asyncio>=1.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (1.2.0)\n", + "Requirement already satisfied: nuclio-jupyter>=0.7.6 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (0.7.6)\n", + "Requirement already satisfied: nuclio-sdk>=0.0.3 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (0.0.5)\n", + "Requirement already satisfied: pandas>=0.23.0 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (0.24.2)\n", + "Requirement already satisfied: pyyaml>=5.1.0 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (5.1.2)\n", + "Requirement already satisfied: requests>=2.20.1 in /conda/lib/python3.6/site-packages (from mlrun==0.3.3) (2.22.0)\n", + "Requirement already satisfied: tabulate>=0.8.0 in /User/.pythonlibs/lib/python3.6/site-packages (from mlrun==0.3.3) (0.8.3)\n", + "Requirement already satisfied: Jinja2>=2.10.1 in /conda/lib/python3.6/site-packages (from Flask>=1.1.1->mlrun==0.3.3) (2.10.3)\n", + "Requirement already satisfied: Werkzeug>=0.15 in /User/.pythonlibs/lib/python3.6/site-packages (from Flask>=1.1.1->mlrun==0.3.3) (0.16.0)\n", + "Requirement already satisfied: itsdangerous>=0.24 in /User/.pythonlibs/lib/python3.6/site-packages (from Flask>=1.1.1->mlrun==0.3.3) (1.1.0)\n", + "Requirement already satisfied: gitdb2>=2.0.0 in /conda/lib/python3.6/site-packages (from GitPython>=2.1.0->mlrun==0.3.3) (2.0.6)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (1.3.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.5; python_version < \"3.7\" in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (3.7.4.1)\n", + "Requirement already satisfied: chardet<4.0,>=2.0 in /conda/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (3.0.4)\n", + "Requirement already satisfied: multidict<5.0,>=4.5 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (4.5.2)\n", + "Requirement already satisfied: async-timeout<4.0,>=3.0 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (3.0.1)\n", + "Requirement already satisfied: idna-ssl>=1.0; python_version < \"3.7\" in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (1.1.0)\n", + "Requirement already satisfied: attrs>=17.3.0 in /conda/lib/python3.6/site-packages (from aiohttp>=3.5.0->mlrun==0.3.3) (19.3.0)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /conda/lib/python3.6/site-packages (from boto3>=1.9->mlrun==0.3.3) (0.9.4)\n", + "Requirement already satisfied: botocore<1.14.0,>=1.13.0 in /conda/lib/python3.6/site-packages (from boto3>=1.9->mlrun==0.3.3) (1.13.0)\n", + "Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /conda/lib/python3.6/site-packages (from boto3>=1.9->mlrun==0.3.3) (0.2.1)\n", + "Requirement already satisfied: urllib3>=1.23 in /conda/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (1.24.2)\n", + "Requirement already satisfied: google-auth>=1.0.1 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (1.7.1)\n", + "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (0.56.0)\n", + "Requirement already satisfied: requests-oauthlib in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (1.3.0)\n", + "Requirement already satisfied: python-dateutil>=2.5.3 in /conda/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (2.8.0)\n", + "Requirement already satisfied: setuptools>=21.0.0 in /conda/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (41.4.0)\n", + "Requirement already satisfied: certifi>=14.05.14 in /conda/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (2019.9.11)\n", + "Requirement already satisfied: six>=1.9.0 in /conda/lib/python3.6/site-packages (from kubernetes>=9.0.0->mlrun==0.3.3) (1.12.0)\n", + "Requirement already satisfied: nbconvert>=5.4 in /conda/lib/python3.6/site-packages (from nuclio-jupyter>=0.7.6->mlrun==0.3.3) (5.6.0)\n", + "Requirement already satisfied: ipython>=7.2 in /conda/lib/python3.6/site-packages (from nuclio-jupyter>=0.7.6->mlrun==0.3.3) (7.8.0)\n", + "Requirement already satisfied: jupyterlab>=0.35.4 in /conda/lib/python3.6/site-packages (from nuclio-jupyter>=0.7.6->mlrun==0.3.3) (1.0.2)\n", + "Requirement already satisfied: notebook>=5.7.2 in /conda/lib/python3.6/site-packages (from nuclio-jupyter>=0.7.6->mlrun==0.3.3) (6.0.1)\n", + "Requirement already satisfied: tornado<6,>=5 in /User/.pythonlibs/lib/python3.6/site-packages (from nuclio-jupyter>=0.7.6->mlrun==0.3.3) (5.1.1)\n", + "Requirement already satisfied: numpy>=1.12.0 in /conda/lib/python3.6/site-packages (from pandas>=0.23.0->mlrun==0.3.3) (1.17.2)\n", + "Requirement already satisfied: pytz>=2011k in /conda/lib/python3.6/site-packages (from pandas>=0.23.0->mlrun==0.3.3) (2019.3)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /conda/lib/python3.6/site-packages (from requests>=2.20.1->mlrun==0.3.3) (2.8)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /conda/lib/python3.6/site-packages (from Jinja2>=2.10.1->Flask>=1.1.1->mlrun==0.3.3) (1.1.1)\n", + "Requirement already satisfied: smmap2>=2.0.0 in /conda/lib/python3.6/site-packages (from gitdb2>=2.0.0->GitPython>=2.1.0->mlrun==0.3.3) (2.0.5)\n", + "Requirement already satisfied: docutils<0.16,>=0.10 in /conda/lib/python3.6/site-packages (from botocore<1.14.0,>=1.13.0->boto3>=1.9->mlrun==0.3.3) (0.15.2)\n", + "Requirement already satisfied: rsa<4.1,>=3.1.4 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9.0.0->mlrun==0.3.3) (4.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9.0.0->mlrun==0.3.3) (0.2.7)\n", + "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9.0.0->mlrun==0.3.3) (3.1.1)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from requests-oauthlib->kubernetes>=9.0.0->mlrun==0.3.3) (3.1.0)\n", + "Requirement already satisfied: entrypoints>=0.2.2 in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.3)\n", + "Requirement already satisfied: testpath in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.4.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (1.4.2)\n", + "Requirement already satisfied: nbformat>=4.4 in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (4.4.0)\n", + "Requirement already satisfied: bleach in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (3.1.0)\n", + "Requirement already satisfied: defusedxml in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.6.0)\n", + "Requirement already satisfied: traitlets>=4.2 in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (4.3.3)\n", + "Requirement already satisfied: mistune<2,>=0.8.1 in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.8.4)\n", + "Requirement already satisfied: jupyter-core in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (4.6.0)\n", + "Requirement already satisfied: pygments in /conda/lib/python3.6/site-packages (from nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (2.4.2)\n", + "Requirement already satisfied: jedi>=0.10 in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.15.1)\n", + "Requirement already satisfied: pexpect; sys_platform != \"win32\" in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (4.7.0)\n", + "Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (2.0.10)\n", + "Requirement already satisfied: backcall in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.1.0)\n", + "Requirement already satisfied: decorator in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (4.4.0)\n", + "Requirement already satisfied: pickleshare in /conda/lib/python3.6/site-packages (from ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.7.5)\n", + "Requirement already satisfied: jupyterlab_server~=1.0.0rc0 in /User/.pythonlibs/lib/python3.6/site-packages (from jupyterlab>=0.35.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (1.0.0)\n", + "Requirement already satisfied: jupyter-client>=5.3.1 in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (5.3.4)\n", + "Requirement already satisfied: pyzmq>=17 in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (18.1.0)\n", + "Requirement already satisfied: ipykernel in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (5.1.2)\n", + "Requirement already satisfied: prometheus-client in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.7.1)\n", + "Requirement already satisfied: terminado>=0.8.1 in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.8.2)\n", + "Requirement already satisfied: Send2Trash in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (1.5.0)\n", + "Requirement already satisfied: ipython-genutils in /conda/lib/python3.6/site-packages (from notebook>=5.7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.2.0)\n", + "Requirement already satisfied: pyasn1>=0.1.3 in /User/.pythonlibs/lib/python3.6/site-packages (from rsa<4.1,>=3.1.4->google-auth>=1.0.1->kubernetes>=9.0.0->mlrun==0.3.3) (0.4.7)\n", + "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /conda/lib/python3.6/site-packages (from nbformat>=4.4->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (3.1.1)\n", + "Requirement already satisfied: webencodings in /conda/lib/python3.6/site-packages (from bleach->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.5.1)\n", + "Requirement already satisfied: parso>=0.5.0 in /conda/lib/python3.6/site-packages (from jedi>=0.10->ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.5.1)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /conda/lib/python3.6/site-packages (from pexpect; sys_platform != \"win32\"->ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.6.0)\n", + "Requirement already satisfied: wcwidth in /conda/lib/python3.6/site-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython>=7.2->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.1.7)\n", + "Requirement already satisfied: json5 in /conda/lib/python3.6/site-packages (from jupyterlab_server~=1.0.0rc0->jupyterlab>=0.35.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.8.5)\n", + "Requirement already satisfied: importlib-metadata in /conda/lib/python3.6/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.4->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.23)\n", + "Requirement already satisfied: pyrsistent>=0.14.0 in /conda/lib/python3.6/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.4->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.15.4)\n", + "Requirement already satisfied: zipp>=0.5 in /conda/lib/python3.6/site-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.4->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (0.6.0)\n", + "Requirement already satisfied: more-itertools in /conda/lib/python3.6/site-packages (from zipp>=0.5->importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.4->nbconvert>=5.4->nuclio-jupyter>=0.7.6->mlrun==0.3.3) (7.2.0)\n", + "Building wheels for collected packages: mlrun\n", + " Running setup.py bdist_wheel for mlrun ... \u001b[?25ldone\n", + "\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-1whgihtf/wheels/05/17/d5/1b1c5e0d1edc2705aa1b5f6bfa48ce5de2b401cd99e8f98056\n", + "Successfully built mlrun\n" + ] + } + ], + "source": [ + "!pip install git+https://github.com/mlrun/mlrun.git" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: kfp in /User/.pythonlibs/lib/python3.6/site-packages (0.1.35)\n", + "Requirement already satisfied: PyYAML in /conda/lib/python3.6/site-packages (from kfp) (5.1.2)\n", + "Requirement already satisfied: six>=1.10 in /conda/lib/python3.6/site-packages (from kfp) (1.12.0)\n", + "Requirement already satisfied: google-auth>=1.6.1 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (1.7.1)\n", + "Requirement already satisfied: cloudpickle==1.1.1 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (1.1.1)\n", + "Requirement already satisfied: urllib3<1.25,>=1.15 in /conda/lib/python3.6/site-packages (from kfp) (1.24.2)\n", + "Requirement already satisfied: cryptography>=2.4.2 in /conda/lib/python3.6/site-packages (from kfp) (2.8)\n", + "Requirement already satisfied: requests-toolbelt>=0.8.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (0.9.1)\n", + "Requirement already satisfied: jsonschema>=3.0.1 in /conda/lib/python3.6/site-packages (from kfp) (3.1.1)\n", + "Requirement already satisfied: click==7.0 in /conda/lib/python3.6/site-packages (from kfp) (7.0)\n", + "Requirement already satisfied: kfp-server-api<=0.1.25,>=0.1.18 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (0.1.18.3)\n", + "Requirement already satisfied: python-dateutil in /conda/lib/python3.6/site-packages (from kfp) (2.8.0)\n", + "Requirement already satisfied: kubernetes<=9.0.0,>=8.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (9.0.0)\n", + "Requirement already satisfied: certifi in /conda/lib/python3.6/site-packages (from kfp) (2019.9.11)\n", + "Requirement already satisfied: Deprecated in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (1.2.7)\n", + "Requirement already satisfied: PyJWT>=1.6.4 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (1.7.1)\n", + "Requirement already satisfied: google-cloud-storage>=1.13.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (1.23.0)\n", + "Requirement already satisfied: argo-models==2.2.1a in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (2.2.1a0)\n", + "Requirement already satisfied: tabulate==0.8.3 in /User/.pythonlibs/lib/python3.6/site-packages (from kfp) (0.8.3)\n", + "Requirement already satisfied: rsa<4.1,>=3.1.4 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.6.1->kfp) (4.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.6.1->kfp) (0.2.7)\n", + "Requirement already satisfied: setuptools>=40.3.0 in /conda/lib/python3.6/site-packages (from google-auth>=1.6.1->kfp) (41.4.0)\n", + "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.6.1->kfp) (3.1.1)\n", + "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /conda/lib/python3.6/site-packages (from cryptography>=2.4.2->kfp) (1.13.0)\n", + "Requirement already satisfied: requests<3.0.0,>=2.0.1 in /conda/lib/python3.6/site-packages (from requests-toolbelt>=0.8.0->kfp) (2.22.0)\n", + "Requirement already satisfied: importlib-metadata in /conda/lib/python3.6/site-packages (from jsonschema>=3.0.1->kfp) (0.23)\n", + "Requirement already satisfied: attrs>=17.4.0 in /conda/lib/python3.6/site-packages (from jsonschema>=3.0.1->kfp) (19.3.0)\n", + "Requirement already satisfied: pyrsistent>=0.14.0 in /conda/lib/python3.6/site-packages (from jsonschema>=3.0.1->kfp) (0.15.4)\n", + "Requirement already satisfied: requests-oauthlib in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes<=9.0.0,>=8.0.0->kfp) (1.3.0)\n", + "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes<=9.0.0,>=8.0.0->kfp) (0.56.0)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /User/.pythonlibs/lib/python3.6/site-packages (from Deprecated->kfp) (1.11.2)\n", + "Requirement already satisfied: google-cloud-core<2.0dev,>=1.0.3 in /User/.pythonlibs/lib/python3.6/site-packages (from google-cloud-storage>=1.13.0->kfp) (1.0.3)\n", + "Requirement already satisfied: google-resumable-media<0.6dev,>=0.5.0 in /User/.pythonlibs/lib/python3.6/site-packages (from google-cloud-storage>=1.13.0->kfp) (0.5.0)\n", + "Requirement already satisfied: pyasn1>=0.1.3 in /User/.pythonlibs/lib/python3.6/site-packages (from rsa<4.1,>=3.1.4->google-auth>=1.6.1->kfp) (0.4.7)\n", + "Requirement already satisfied: pycparser in /conda/lib/python3.6/site-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.4.2->kfp) (2.19)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /conda/lib/python3.6/site-packages (from requests<3.0.0,>=2.0.1->requests-toolbelt>=0.8.0->kfp) (3.0.4)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /conda/lib/python3.6/site-packages (from requests<3.0.0,>=2.0.1->requests-toolbelt>=0.8.0->kfp) (2.8)\n", + "Requirement already satisfied: zipp>=0.5 in /conda/lib/python3.6/site-packages (from importlib-metadata->jsonschema>=3.0.1->kfp) (0.6.0)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from requests-oauthlib->kubernetes<=9.0.0,>=8.0.0->kfp) (3.1.0)\n", + "Requirement already satisfied: google-api-core<2.0.0dev,>=1.14.0 in /User/.pythonlibs/lib/python3.6/site-packages (from google-cloud-core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp) (1.14.3)\n", + "Requirement already satisfied: more-itertools in /conda/lib/python3.6/site-packages (from zipp>=0.5->importlib-metadata->jsonschema>=3.0.1->kfp) (7.2.0)\n", + "Requirement already satisfied: pytz in /conda/lib/python3.6/site-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp) (2019.3)\n", + "Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /conda/lib/python3.6/site-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp) (1.6.0)\n", + "Requirement already satisfied: protobuf>=3.4.0 in /conda/lib/python3.6/site-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp) (3.10.0)\n" + ] + } + ], + "source": [ + "!pip install kfp" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "%nuclio: setting spec.build.baseImage to 'python:3.6-jessie'\n" + ] + } + ], + "source": [ + "%nuclio config spec.build.baseImage = \"python:3.6-jessie\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Helper functions for downloading and labeling images\n", + "In the code below we have two functions: \n", + "1. open_archive - Get and extract a zip file that contains cats and dog images. users need to pass the source URL and the target directory which is stored in Iguazio data layer\n", + "2. categories_map_builder - labeling the dataset based on the file name. the functions creates a pandas dataframe with the filename and category (i.e. cat & dog)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that sometime after running pip install you need to restart the jupyer kernel" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import zipfile\n", + "import json\n", + "from tempfile import mktemp\n", + "import pandas as pd\n", + "\n", + "\n", + "def open_archive(context, \n", + " target_dir='content',\n", + " archive_url=''):\n", + " \"\"\"Open a file/object archive into a target directory\"\"\"\n", + " \n", + " # Define locations\n", + " os.makedirs(target_dir, exist_ok=True)\n", + " context.logger.info('Verified directories')\n", + " \n", + " # Extract dataset from zip\n", + " context.logger.info('Extracting zip')\n", + " zip_ref = zipfile.ZipFile(archive_url, 'r')\n", + " zip_ref.extractall(target_dir)\n", + " zip_ref.close()\n", + " \n", + " context.logger.info(f'extracted archive to {target_dir}')\n", + " context.log_artifact('content', target_path=target_dir)\n", + "\n", + " \n", + "from mlrun.artifacts import TableArtifact\n", + "\n", + "def categories_map_builder(context,\n", + " source_dir,\n", + " df_filename='file_categories_df.csv',\n", + " map_filename='categories_map.json'):\n", + " \"\"\"Read labeled images from a directory and create category map + df\n", + " \n", + " filename format: .NN.jpg\"\"\"\n", + " \n", + " # create filenames list (jpg only)\n", + " filenames = [file for file in os.listdir(source_dir) if file.endswith('.jpg')]\n", + " categories = []\n", + " \n", + " # Create a pandas DataFrame for the full sample\n", + " for filename in filenames:\n", + " category = filename.split('.')[0]\n", + " categories.append(category)\n", + "\n", + " df = pd.DataFrame({\n", + " 'filename': filenames,\n", + " 'category': categories\n", + " })\n", + " df['category'] = df['category'].astype('str')\n", + " \n", + " categories = df.category.unique()\n", + " categories = {i: category for i, category in enumerate(categories)}\n", + " with open(os.path.join(context.out_path, map_filename), 'w') as f:\n", + " f.write(json.dumps(categories))\n", + " \n", + " context.logger.info(categories)\n", + " context.log_artifact('categories_map', src_path=map_filename)\n", + " context.log_artifact(TableArtifact('file_categories', df=df, src_path=df_filename))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: end-code" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Complete Data-Science Pipeline with MLRun\n", + "\n", + "We are using a library called MLRun for running the functions and storing the experiments meta data in the MLRun database
\n", + "Users can query the database to view all the experiments along with their associated meta data
\n", + "- Get data\n", + "- Create categories map\n", + "- Train horovod model on the cluster\n", + "- Deploy model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the MLRun database location and the base directory" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from mlrun import new_function, code_to_function, get_run_db, mount_v3io, NewTask, mlconf, new_model_server\n", + "# for local DB path use 'User/mlrun' instead \n", + " #mlconf.dbpath = 'http://mlrun-db:8080'\n", + "mlconf.dbpath = '/User/mlrun-db'" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#base_dir = '/User/mlrun/examples'\n", + "base_dir = os.getcwd()\n", + "images_path = os.path.join(base_dir, 'images')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 1: Download and extract image archive\n", + "The dataset is taken from the Iguazio-sample bucket in S3
\n", + "Note that this step is captured in the MLRun database.
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:03:42,474 starting run download uid=a22c1412bd3f405384ea7160e0f2e121 -> /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:03:42,574 downloading http://iguazio-sample-data.s3.amazonaws.com/catsndogs.zip to local tmp\n", + "[mlrun] 2019-11-20 10:03:47,577 Verified directories\n", + "[mlrun] 2019-11-20 10:03:47,577 Extracting zip\n", + "[mlrun] 2019-11-20 10:03:56,203 extracted archive to /User/demos/image_classification/images\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
uiditerstartstatenamelabelsinputsparametersresultsartifacts
...f2e121
0Nov 20 10:03:42completeddownload
kind=handler
owner=adi
host=jupyter-edms7gwmf3-wmzhd-fd85c4467-g9rzb
archive_url
target_dir=/User/demos/image_classification/images
content
\n", + "
\n", + "
\n", + "
\n", + " Title\n", + " ×\n", + "
\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type result.show() to see detailed results/progress or use CLI:\n", + "!mlrun get run --uid a22c1412bd3f405384ea7160e0f2e121 \n", + "[mlrun] 2019-11-20 10:03:56,268 run executed, status=completed\n" + ] + } + ], + "source": [ + "# download images from s3 using the local `open_archive` function\n", + "open_archive_task = NewTask('download', handler=open_archive, \n", + " params={'target_dir': images_path},\n", + " inputs={'archive_url': 'http://iguazio-sample-data.s3.amazonaws.com/catsndogs.zip'})\n", + "open_archive_fn = new_function().run(open_archive_task)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Tag Images with Categories (cat & dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:04:07,471 starting run label uid=3399c41f3bde43adaa28d19e528a4210 -> /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:07,547 {0: 'cat', 1: 'dog'}\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
uiditerstartstatenamelabelsinputsparametersresultsartifacts
...8a4210
0Nov 20 10:04:07completedlabel
kind=handler
owner=adi
host=jupyter-edms7gwmf3-wmzhd-fd85c4467-g9rzb
source_dir=/User/demos/image_classification/images/cats_n_dogs
categories_map
file_categories
\n", + "
\n", + "
\n", + "
\n", + " Title\n", + " ×\n", + "
\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type result.show() to see detailed results/progress or use CLI:\n", + "!mlrun get run --uid 3399c41f3bde43adaa28d19e528a4210 \n", + "[mlrun] 2019-11-20 10:04:07,612 run executed, status=completed\n" + ] + } + ], + "source": [ + "# Create categories map\n", + "label_task = NewTask('label', handler=categories_map_builder, out_path=images_path,\n", + " params={'source_dir': os.path.join(images_path, 'cats_n_dogs')})\n", + "labeler_function = new_function().run(label_task)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Distributed Training with TensorFlow, Keras and Horovod" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:04:11,097 starting run train uid=beceb87e4d9343d3a6c9218d0b9a0cc3 -> /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:11,126 using in-cluster config.\n", + "[mlrun] 2019-11-20 10:04:11,150 MpiJob train-67226d24 created\n", + "[mlrun] 2019-11-20 10:04:18,185 MpiJob train-67226d24 state=Active\n", + "...\n", + "+ POD_NAME=train-67226d24-worker-3\n", + "+ shift\n", + "+ /opt/kube/kubectl exec train-67226d24-worker-3 -- /bin/sh -c PATH=/usr/local/bin:$PATH ; export PATH ; LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ; export LD_LIBRARY_PATH ; DYLD_LIBRARY_PATH=/usr/local/lib:$DYLD_LIBRARY_PATH ; export DYLD_LIBRARY_PATH ; /usr/local/bin/orted -mca ess \"env\" -mca ess_base_jobid \"2313355264\" -mca ess_base_vpid 4 -mca ess_base_num_procs \"5\" -mca orte_node_regex \"train-[5:67226]d24-launcher-j88qn,train-[5:67226]d24-worker-0,train-[5:67226]d24-worker-1,train-[5:67226]d24-worker-2,train-[5:67226]d24-worker-3@0(5)\" -mca orte_hnp_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm \"rsh\" --tree-spawn -mca orte_parent_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm_rsh_agent \"/etc/mpi/kubexec.sh\" -mca orte_default_hostfile \"/etc/mpi/hostfile\" -mca pmix \"^s1,s2,cray,isolated\"\n", + "+ POD_NAME=train-67226d24-worker-0\n", + "+ shift\n", + "+ /opt/kube/kubectl exec train-67226d24-worker-0 -- /bin/sh -c PATH=/usr/local/bin:$PATH ; export PATH ; LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ; export LD_LIBRARY_PATH ; DYLD_LIBRARY_PATH=/usr/local/lib:$DYLD_LIBRARY_PATH ; export DYLD_LIBRARY_PATH ; /usr/local/bin/orted -mca ess \"env\" -mca ess_base_jobid \"2313355264\" -mca ess_base_vpid 1 -mca ess_base_num_procs \"5\" -mca orte_node_regex \"train-[5:67226]d24-launcher-j88qn,train-[5:67226]d24-worker-0,train-[5:67226]d24-worker-1,train-[5:67226]d24-worker-2,train-[5:67226]d24-worker-3@0(5)\" -mca orte_hnp_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm \"rsh\" --tree-spawn -mca orte_parent_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm_rsh_agent \"/etc/mpi/kubexec.sh\" -mca orte_default_hostfile \"/etc/mpi/hostfile\" -mca pmix \"^s1,s2,cray,isolated\"\n", + "+ POD_NAME=train-67226d24-worker-1\n", + "+ shift\n", + "+ /opt/kube/kubectl exec train-67226d24-worker-1 -- /bin/sh -c PATH=/usr/local/bin:$PATH ; export PATH ; LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ; export LD_LIBRARY_PATH ; DYLD_LIBRARY_PATH=/usr/local/lib:$DYLD_LIBRARY_PATH ; export DYLD_LIBRARY_PATH ; /usr/local/bin/orted -mca ess \"env\" -mca ess_base_jobid \"2313355264\" -mca ess_base_vpid 2 -mca ess_base_num_procs \"5\" -mca orte_node_regex \"train-[5:67226]d24-launcher-j88qn,train-[5:67226]d24-worker-0,train-[5:67226]d24-worker-1,train-[5:67226]d24-worker-2,train-[5:67226]d24-worker-3@0(5)\" -mca orte_hnp_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm \"rsh\" --tree-spawn -mca orte_parent_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm_rsh_agent \"/etc/mpi/kubexec.sh\" -mca orte_default_hostfile \"/etc/mpi/hostfile\" -mca pmix \"^s1,s2,cray,isolated\"\n", + "+ POD_NAME=train-67226d24-worker-2\n", + "+ shift\n", + "+ /opt/kube/kubectl exec train-67226d24-worker-2 -- /bin/sh -c PATH=/usr/local/bin:$PATH ; export PATH ; LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ; export LD_LIBRARY_PATH ; DYLD_LIBRARY_PATH=/usr/local/lib:$DYLD_LIBRARY_PATH ; export DYLD_LIBRARY_PATH ; /usr/local/bin/orted -mca ess \"env\" -mca ess_base_jobid \"2313355264\" -mca ess_base_vpid 3 -mca ess_base_num_procs \"5\" -mca orte_node_regex \"train-[5:67226]d24-launcher-j88qn,train-[5:67226]d24-worker-0,train-[5:67226]d24-worker-1,train-[5:67226]d24-worker-2,train-[5:67226]d24-worker-3@0(5)\" -mca orte_hnp_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm \"rsh\" --tree-spawn -mca orte_parent_uri \"2313355264.0;tcp://10.233.81.78:56427\" -mca plm_rsh_agent \"/etc/mpi/kubexec.sh\" -mca orte_default_hostfile \"/etc/mpi/hostfile\" -mca pmix \"^s1,s2,cray,isolated\"\n", + "[mlrun] 2019-11-20 10:04:27,648 logging run results to: /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:27,656 Getting env variables\n", + "[mlrun] 2019-11-20 10:04:27,657 Validating paths:\n", + "Data_path:\t/User/demos/image_classification/images/cats_n_dogs\n", + "Model_path:\t/User/demos/image_classification/models/cats_n_dogs.h5\n", + "\n", + "[mlrun] 2019-11-20 10:04:27,664 Categories map: b'{\"0\": \"cat\", \"1\": \"dog\"}'\n", + "[mlrun] 2019-11-20 10:04:27,672 Got 2000 files in /User/demos/image_classification/images/cats_n_dogs\n", + "2019-11-20 10:04:27.676493: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", + "[mlrun] 2019-11-20 10:04:27,672 Training data has 4000 samples\n", + "[mlrun] 2019-11-20 10:04:27,676 cat 1000\n", + "dog 1000\n", + "Name: category, dtype: int64\n", + "2019-11-20 10:04:27.683355: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2195095000 Hz\n", + "2019-11-20 10:04:27.685028: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x6147dc0 executing computations on platform Host. Devices:\n", + "2019-11-20 10:04:27.685058: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): , \n", + "[mlrun] 2019-11-20 10:04:27,685 Is GPU available?\tFalse\n", + "[mlrun] 2019-11-20 10:04:27,709 logging run results to: /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:27,717 Getting env variables\n", + "[mlrun] 2019-11-20 10:04:27,717 Validating paths:\n", + "Data_path:\t/User/demos/image_classification/images/cats_n_dogs\n", + "Model_path:\t/User/demos/image_classification/models/cats_n_dogs.h5\n", + "\n", + "[mlrun] 2019-11-20 10:04:27,722 Categories map: b'{\"0\": \"cat\", \"1\": \"dog\"}'\n", + "[mlrun] 2019-11-20 10:04:27,730 Got 2000 files in /User/demos/image_classification/images/cats_n_dogs\n", + "[mlrun] 2019-11-20 10:04:27,730 Training data has 4000 samples\n", + "[mlrun] 2019-11-20 10:04:27,734 dog 1000\n", + "cat 1000\n", + "Name: category, dtype: int64\n", + "2019-11-20 10:04:27.735062: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", + "2019-11-20 10:04:27.741984: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2195060000 Hz\n", + "2019-11-20 10:04:27.742539: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x6079e30 executing computations on platform Host. Devices:\n", + "2019-11-20 10:04:27.742568: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): , \n", + "[mlrun] 2019-11-20 10:04:27,742 Is GPU available?\tFalse\n", + "[mlrun] 2019-11-20 10:04:27,779 logging run results to: /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:27,779 logging run results to: /User/mlrun-db\n", + "[mlrun] 2019-11-20 10:04:27,787 Getting env variables\n", + "[mlrun] 2019-11-20 10:04:27,787 Validating paths:\n", + "Data_path:\t/User/demos/image_classification/images/cats_n_dogs\n", + "Model_path:\t/User/demos/image_classification/models/cats_n_dogs.h5\n", + "\n", + "[mlrun] 2019-11-20 10:04:27,787 Getting env variables\n", + "[mlrun] 2019-11-20 10:04:27,787 Validating paths:\n", + "Data_path:\t/User/demos/image_classification/images/cats_n_dogs\n", + "Model_path:\t/User/demos/image_classification/models/cats_n_dogs.h5\n", + "\n", + "[mlrun] 2019-11-20 10:04:27,792 Categories map: b'{\"0\": \"cat\", \"1\": \"dog\"}'\n", + "[mlrun] 2019-11-20 10:04:27,792 Categories map: b'{\"0\": \"cat\", \"1\": \"dog\"}'\n", + "[mlrun] 2019-11-20 10:04:27,800 Got 2000 files in /User/demos/image_classification/images/cats_n_dogs\n", + "[mlrun] 2019-11-20 10:04:27,800 Training data has 4000 samples\n", + "[mlrun] 2019-11-20 10:04:27,800 Got 2000 files in /User/demos/image_classification/images/cats_n_dogs\n", + "[mlrun] 2019-11-20 10:04:27,800 Training data has 4000 samples\n", + "[mlrun] 2019-11-20 10:04:27,804 dog 1000\n", + "cat 1000\n", + "Name: category, dtype: int64\n", + "2019-11-20 10:04:27.804589: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", + "2019-11-20 10:04:27.804972: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", + "[mlrun] 2019-11-20 10:04:27,804 cat 1000\n", + "dog 1000\n", + "Name: category, dtype: int64\n", + "2019-11-20 10:04:27.811449: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2194985000 Hz\n", + "2019-11-20 10:04:27.811654: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2194985000 Hz\n", + "2019-11-20 10:04:27.812350: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x65d0880 executing computations on platform Host. Devices:\n", + "2019-11-20 10:04:27.812375: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): , \n", + "2019-11-20 10:04:27.812393: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x4868530 executing computations on platform Host. Devices:\n", + "2019-11-20 10:04:27.812422: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): , \n", + "[mlrun] 2019-11-20 10:04:27,812 Is GPU available?\tFalse\n", + "[mlrun] 2019-11-20 10:04:27,813 Is GPU available?\tFalse\n", + "Using TensorFlow backend.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "Using TensorFlow backend.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "Using TensorFlow backend.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "Using TensorFlow backend.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "58892288/58889256 [==============================] - 4s 0us/step\n", + "58892288/58889256 [==============================] - 4s 0us/step\n", + "58892288/58889256 [==============================] - 4s 0us/step\n", + "58892288/58889256 [==============================] - 4s 0us/step\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 128, 128, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 128, 128, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 128, 128, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 64, 64, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 64, 64, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 64, 64, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 32, 32, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 16, 16, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 8192) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 1048704 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 129 \n", + "=================================================================\n", + "Total params: 15,763,521\n", + "Trainable params: 1,048,833\n", + "Non-trainable params: 14,714,688\n", + "_________________________________________________________________\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 128, 128, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 128, 128, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 128, 128, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 64, 64, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 64, 64, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 64, 64, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 32, 32, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 16, 16, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 8192) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 1048704 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 129 \n", + "=================================================================\n", + "Total params: 15,763,521\n", + "Trainable params: 1,048,833\n", + "Non-trainable params: 14,714,688\n", + "_________________________________________________________________\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 128, 128, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 128, 128, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 128, 128, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 64, 64, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 64, 64, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 64, 64, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 32, 32, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 16, 16, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 8192) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 1048704 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 129 \n", + "=================================================================\n", + "Total params: 15,763,521\n", + "Trainable params: 1,048,833\n", + "Non-trainable params: 14,714,688\n", + "_________________________________________________________________\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_1 (InputLayer) (None, 128, 128, 3) 0 \n", + "_________________________________________________________________\n", + "block1_conv1 (Conv2D) (None, 128, 128, 64) 1792 \n", + "_________________________________________________________________\n", + "block1_conv2 (Conv2D) (None, 128, 128, 64) 36928 \n", + "_________________________________________________________________\n", + "block1_pool (MaxPooling2D) (None, 64, 64, 64) 0 \n", + "_________________________________________________________________\n", + "block2_conv1 (Conv2D) (None, 64, 64, 128) 73856 \n", + "_________________________________________________________________\n", + "block2_conv2 (Conv2D) (None, 64, 64, 128) 147584 \n", + "_________________________________________________________________\n", + "block2_pool (MaxPooling2D) (None, 32, 32, 128) 0 \n", + "_________________________________________________________________\n", + "block3_conv1 (Conv2D) (None, 32, 32, 256) 295168 \n", + "_________________________________________________________________\n", + "block3_conv2 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_conv3 (Conv2D) (None, 32, 32, 256) 590080 \n", + "_________________________________________________________________\n", + "block3_pool (MaxPooling2D) (None, 16, 16, 256) 0 \n", + "_________________________________________________________________\n", + "block4_conv1 (Conv2D) (None, 16, 16, 512) 1180160 \n", + "_________________________________________________________________\n", + "block4_conv2 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_conv3 (Conv2D) (None, 16, 16, 512) 2359808 \n", + "_________________________________________________________________\n", + "block4_pool (MaxPooling2D) (None, 8, 8, 512) 0 \n", + "_________________________________________________________________\n", + "block5_conv1 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv2 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_conv3 (Conv2D) (None, 8, 8, 512) 2359808 \n", + "_________________________________________________________________\n", + "block5_pool (MaxPooling2D) (None, 4, 4, 512) 0 \n", + "_________________________________________________________________\n", + "flatten_1 (Flatten) (None, 8192) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 128) 1048704 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 129 \n", + "=================================================================\n", + "Total params: 15,763,521\n", + "Trainable params: 1,048,833\n", + "Non-trainable params: 14,714,688\n", + "_________________________________________________________________\n", + "Found 1600 validated image filenames belonging to 2 classes.\n", + "[mlrun] 2019-11-20 10:04:35,287 classes: {'cat': 0, 'dog': 1}\n", + "Found 1600 validated image filenames belonging to 2 classes.\n", + "[mlrun] 2019-11-20 10:04:35,323 classes: {'cat': 0, 'dog': 1}\n", + "Found 1600 validated image filenames belonging to 2 classes.\n", + "Found 1600 validated image filenames belonging to 2 classes.\n", + "[mlrun] 2019-11-20 10:04:35,374 classes: {'cat': 0, 'dog': 1}\n", + "[mlrun] 2019-11-20 10:04:35,375 classes: {'cat': 0, 'dog': 1}\n", + "Found 400 validated image filenames belonging to 2 classes.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Found 400 validated image filenames belonging to 2 classes.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Found 400 validated image filenames belonging to 2 classes.\n", + "Found 400 validated image filenames belonging to 2 classes.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Epoch 1/1\n", + "Epoch 1/1\n", + "Epoch 1/1\n", + "Epoch 1/1\n", + "2019-11-20 10:04:37.034739: W tensorflow/core/framework/allocator.cc:124] Allocation of 268435456 exceeds 10% of system memory.\n", + "2019-11-20 10:04:37.146694: W tensorflow/core/framework/allocator.cc:124] Allocation of 268435456 exceeds 10% of system memory.\n", + "2019-11-20 10:04:43.511112: W tensorflow/core/framework/allocator.cc:124] Allocation of 268435456 exceeds 10% of system memory.\n", + "2019-11-20 10:04:43.611771: W tensorflow/core/framework/allocator.cc:124] Allocation of 268435456 exceeds 10% of system memory.\n", + "2019-11-20 10:04:49.686155: W tensorflow/core/framework/allocator.cc:124] Allocation of 268435456 exceeds 10% of system memory.\n", + "25/25 [==============================] - 166s 7s/step - loss: 0.9363 - accuracy: 0.6056 - val_loss: 0.4563 - val_accuracy: 0.7578 1:39 - loss: 1.6060 - accuracy: 0.51\n", + "25/25 [==============================] - 167s 7s/step - loss: 0.9610 - accuracy: 0.5944 - val_loss: 0.4360 - val_accuracy: 0.7578\n", + "25/25 [==============================] - 182s 7s/step - loss: 0.8777 - accuracy: 0.6094 - val_loss: 0.4797 - val_accuracy: 0.7604\n", + "25/25 [==============================] - 182s 7s/step - loss: 0.9620 - accuracy: 0.5838 - val_loss: 0.4936 - val_accuracy: 0.7578\n", + "[mlrun] 2019-11-20 10:07:39,708 history: {'val_loss': [0.4663899], 'val_accuracy': [0.7584635466337204], 'loss': [0.9342267668247223], 'accuracy': [0.59828126], 'lr': [1.6]}\n", + "[mlrun] 2019-11-20 10:07:44,729 MpiJob train-67226d24 finished with state succeeded\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
uiditerstartstatenamelabelsinputsparametersresultsartifacts
...9a0cc3
0Nov 20 10:04:27completedtrain
kind=mpijob
owner=adi
mlrun/job=train-67226d24
host=train-67226d24-worker-0
data_path
categories_map
file_categories
checkpoints_dir=/User/demos/image_classification/checkpoints
model_path=/User/demos/image_classification/models/cats_n_dogs.h5
epochs=1
batch_size=64
image_width=128
image_height=128
image_channels=3
loss=0.9342267668247223
accuracy=0.5982812643051147
model
summary.html
\n", + "
\n", + "
\n", + "
\n", + " Title\n", + " ×\n", + "
\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type result.show() to see detailed results/progress or use CLI:\n", + "!mlrun get run --uid beceb87e4d9343d3a6c9218d0b9a0cc3 \n", + "[mlrun] 2019-11-20 10:07:44,783 run executed, status=completed\n" + ] + } + ], + "source": [ + "#code_dir = '/User/mlrun/demos/image_classification'\n", + "code_dir = os.getcwd()\n", + "HOROVOD_FILE = os.path.join(code_dir, 'horovod-training.py')\n", + "\n", + "params = {\n", + " 'checkpoints_dir' : os.path.join(base_dir, 'checkpoints'),\n", + " 'model_path' : os.path.join(base_dir, 'models/cats_n_dogs.h5'),\n", + " 'epochs' : 1,\n", + " 'batch_size' : 64,\n", + " 'image_width': 128,\n", + " 'image_height': 128,\n", + " 'image_channels': 3\n", + "}\n", + "\n", + "inputs = {\n", + " 'data_path' : os.path.join(images_path, 'cats_n_dogs'), \n", + " 'categories_map': labeler_function.outputs['categories_map'],\n", + " 'file_categories': labeler_function.outputs['file_categories']\n", + "}\n", + "\n", + "image = 'mlrun/mpijob:dev'\n", + "trainer = new_function(name='horovod-trainer',\n", + " command='mpijob://{}'.format(HOROVOD_FILE), \n", + " image=image,\n", + " interactive=True)\n", + "trainer.apply(mount_v3io())\n", + "trainer.spec.image_pull_policy = 'Always'\n", + "trainer.spec.replicas = 4\n", + "# trainer.gpus(1)\n", + "mprun = trainer.run(name='train', params=params, out_path=os.getcwd(), inputs=inputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Delete job\n", + "In order to delete the job take the job name (see above in the log) and search for a similar string such as \"MpiJob train-6d05fac9\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:09:57,271 del status: Success\n" + ] + } + ], + "source": [ + "trainer.delete_job('train-67226d24')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4: Deploy Model Serving Function\n", + "The following code will use a Nuclio serving function a Notebook format and will deploy it with proper arguments " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model_name = 'cat_dog_v1'" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:10:10,199 deploy started\n", + "[nuclio.deploy] 2019-11-20 10:10:11,302 (info) Building processor image\n", + "[nuclio.deploy] 2019-11-20 10:10:18,402 (info) Build complete\n", + "[nuclio.deploy] 2019-11-20 10:10:23,466 done updating tf-image-serving, function address: 192.168.224.70:31021\n" + ] + } + ], + "source": [ + "# convert the notebook code to deployable function, configure it\n", + "from mlrun import code_to_function\n", + "inference_function = code_to_function(name='tf-image-serving', \n", + " filename='./nuclio-serving-tf-images.ipynb',\n", + " runtime='nuclio')\n", + "\n", + "# set the API/trigger, attach the home dir to the function\n", + "inference_function.with_http(workers=2).add_volume('User','~/')\n", + "\n", + "# set the model file path SERVING_MODEL_ = \n", + "inference_function.set_env(f'SERVING_MODEL_{model_name}', params['model_path'])\n", + "inference_function.set_env('classes_map', inputs['categories_map'])\n", + "addr = inference_function.deploy(project='nuclio-serving')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test The Serving Function (with Image URL)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "from PIL import Image\n", + "from io import BytesIO\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"prediction\": [\"cat\"], \"dog-probability\": [2.1335177180503706e-08]}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9WYxkaXbf97t73LixL7lnbT3d093TPTOcnhlO05YhmqJNCbZomKQtE7D9YFiSQYsgIALis58EGLBfbAMiaMMyLC6CbUqyQWlI26QEGeB4ZsRhs9fauiorKzMjM/bl7osf7j1fRlJsUpTYVj/UBQpVlRkRN+63nPM///M/59OKouDF9eJ6cb245NL/ZX+BF9eL68X12bpeGIUX14vrxXXjemEUXlwvrhfXjeuFUXhxvbheXDeuF0bhxfXienHduF4YhRfXi+vFdeP61IyCpmk/omnaR5qmPdQ07ec+rfu8uF5cL64/2Uv7NHQKmqYZwH3gh4FT4NvAf1AUxft/4jd7cb24Xlx/otenhRS+DjwsiuJxURQx8MvAj35K93pxvbheXH+Cl/kpfe4h8Gzr/6fA93/Si726Wwx6XQDyPAcNKCj/BgzdwDB0siwjSVMoQNM1irxAN3SKvKAocvI8pwQ+BZqmYZomRVGQpCmGbqDrGpqmla8DdE3DMCzSNEHTNErUpKHp5Ws0NAzDoCjKzy//LtB0vfwOGmi6Xt23oMhzDMNA0zTSNKUoCvTq/xqUf1ffK00Tsqx8Vl3X0TWdLEsxDANdNyiKHICigCzLAMiq71SrOeR5+bxUQ1XkBVAgwE/Ty3sahkGW5RTVmOTVZxUF6IYORVE+q1Y+R3l/GacMTdMpioI0S9F1HUPXybLr1yVJQp4X6n6apmFZVnnPolATKeNejvP1HJX3zbbGvxpXtHJsqvtn1fOlaVbe29BJ4hTPqxOGYTkv1Xst2yLLMrI0LT+XAtO0yfOcLMvQdZ0sz6s1oaPrWrX2CgxDJ00z8jwjzwuyPEPXNPK8qL6PhmGa2JZFXhSkSUIBGLquvn+5hjUoiutn1fVyWVc/K7+nTV6tafn+um6gaeV3ybIMy7bQq7EpiqJaV+W8lmNerdcsr8aarfHV0ar1VRSQ5xkywIvlio0faH/Qfvy0jMIfdLMbcYqmaX8R+IsA3XaTn/3P/iPyPCeOY2q1GrZtk6YpYRiyWq0wDIOdnR00TSPLMvI8x3Ecnj9/TqfTwfM8PvzwQyzLot/vlwNqWQCsVisAXNelXq8TRRFFUVS/N5nNZnieR5IkauDFoGRZRhzHtNttbNsmCAKKoiCOY3zfV9/D8zwsyyIIAmq1Gpqmoes6tm3j+z6GYdBoNNRrIFXfKwgCsizD8zzW67WMT/WsGp1OB9u2abVaZFnGfD4HwHEcsiwjTVMWiwWmadJsNrFtG8uy0LTSqF1eXpLnOe12mzzPSZIEz/PodDrM53N0Xef8/Fx93zQtjdP+/hDbtplMJpimyWazUWPVbreJ45jxeMzdu3fxfZ9ut6vGO4oiGo0Guq6r58tznVarhe/7nJ2dYds2tVqNLMtwHEcZYNfSMQyDnAJDt0iShCjNSLOMIAjB0InChG6ri23bLBczXNeh3WwQhj5JHGJZBroGvr+mKAqWQWn8dnd31bp4/vw5AJ1OB9M08X2f9XpNnufcu3ePOI5ZLBbouk4URcxmM3RdZzgsx6UoCvV8UG6+xWJBFEX0+31WqxWmaRLHMbZtV5uzwPM8tc41TSMMQzabjfoMWeNpmqo5y/OcVqtFkiRkWcZkMsF1XWq1GhcXFxwfH2OaJvP5HNM01e/SNCVNU/I8J01TptMppmnyK//Hb3zi5v20jMIpcLz1/yPgbPsFRVH8PPDzALePDop6va42e1EU1Go1Go0GeZ5zcXFBEAQsFgscp/SSsnlkkFqtFsPhkCzL1GbO8xzLsnBdlziO0fXraEk8eRyHQLnBxFvJe7IsY7PZqL+LoiAMQ+XxWq0WpmmSZaWnW6/XZFmmjE+e54RhqDZZnuesVit838c0wfd9bNvGdV216GQj27aNYRikKcznc/b391kul2RZRhRF1Go1er0eQRBwfn6uvnscx+o18ly6rmNZFoZhYJpm5d1LY1av1zFNE13X1Xe1LItOp4NlWei6rl5Tq9VIkkQZnjAMsSwL0zTRNE3dW4x46YV1hZ7iOCeKIpIkwTRN9Zl5nqsNk2UZmV5U7zXLcbAd0vUaNJ1aDaIkI4rWaJrGdDqlIKNhNKh51ZgHG5pND0PXCIIA2zbQwkgZA5mjZrNJFEXKaMO1Ma7X6xiGQRzHNJtN0jQljmP1R4yBrBPDMNRzyjjneU6v1+Py8pI4jtW6cBxHzXer1aJWq2EYhnJKYoCLoiBJEqBEH5vNhjzPOTg4wDAM1us1URTRbDYJw5BarYZlWcoAFEWxhXQLhZLg93no33d9Wkbh28DLmqbdBZ4DfwH4yU96cVHkagGJVb66umK1WpFlGb7vqwccj8foeulxdF2n1+vh+z6np6f0ej3yPGc+n1MUBZvNBsuy1MLbntQkSdB1nXa7r9CBeM1Op6M2mMB9QS9RFGEYBo7jlANomuXCLAo6nY5a3OXGN+l2u7iui+u6pGnKw4cPKxhbqO8gm2o4HNLpdG5s8DwvN/RkMlGbMgxDfN8vYXCWYds2zWZTfVf5fjKWzWYTXddZLpdoWgniJpMJYRgqI2Hbtlq4sig3mwWe5zEcDplMJqzXa7X5gyAgSRLq9TqTyQzbtkmSjCzLaLe7TCYTxuOp2iClQS2RheM4HB0dKW+o67r6W9M0krQMq4oiIUxSNHRGl+Xzo5ukaU6r0yXJC1zXKw27rrFcrEjSGKdWp9VqlQacAtN26PU8dF1ns9mQJAm1Wk0Zu8lkosa/1WoRBIEy+rZts9lssG2b4XBIHMdYlqVQWhRFpGmqPs9xHIUCxICKowuCgCAIME0Ty7JoNBoAakMXRYHjOLRaLRaLxY31mGUZQRBgWRaPHj3i9ddfxzRN3nvvPYVQfN9nd3dXIezFYoFt2+WYVs5T1/XSKWT5J27eT8UoFEWRapr2nwPfBAzgfyiK4r1Per14UNkIYnGvIXTp9afTKbu7uzSbTQXD8zxXD351dUVRFDSbTQzDUAu80+lweXmpFqh4AsuyWC59tcCbzSbdbld5kO2Ju7i4UO8TzmAwGJAkCe12W3nj9XpNv9/H930WiwWLxQLLsmg2m8qwrFYrHKfG8fExWZYxm81oNpvs7+9zeXlJURTcvn2bMAyZTpf4vs+tW7dYLpfKc61WK1arFUmSEAQBvV5P3ce2bbUR1+u1Wohpmqowx3Vdlsslu7u7hGHIxcUFrVaLer2uFpC85smTJ3ieh+/7HB0dKa8jCx/AsixarRZxHLNcLqnX6yoMkxDEdT0GgwHtdptWq8VsNgNQENc0y+VYaCaFppOkCXFUorAgSrBrdaaTGUmS0Ol0efjsEa+99hp+FFOsNZIoqBBCgR9GJElKkcNivsRyS1TX6/WIoojxeKyQ0GAwIMsy1us1L7/8MlEUKSQlG3y5LOdBwkLHcbh79y7z+ZzVakUYhtTrdTzPU156Z2eH9XpNkiRYloXneQDKe3uepxxNHMd4nqf2QhRF7O/vEwQBvu8TRZFCxPfu3SMIAqbTqUJkgmZHoxH7+/vU63VWq5V6v23b7OzssFgsboz1H3R9WkiBoih+Dfi1f5bXGoZZwTwbx3HUZr64uMD3fXZ2dlT8ZlkWURQxmUzI85yjoyPG47GCejKBtVpNWfE8z9nf3688b65iuTiOFeIQsipJEhUXynfSNA3XdSmKgsFgoGLP2WxGrVbDcRx1X7HKjUaDJEkwDENBZtkwEn5so5A8zxmNRoqou7y8rLiCjTKWpmmqeLTdbrPZbBQMlo0lSEbgruM46h6Xl5dkWaa8V7fbVePgOI56j4Q6woPIIhaYrGma8mK9Xo+iMCgKjdHoSoVscRypTdXt9slzaLfbLJdLNpsNcRwr79lsNtnb2+P+/fvl76KMl156icvLMce37pAkCZrhMJlO8bwGs9mM8XTCrdt3ePjoMc2GR1Fk3D4+5OzsFNsysc0SJsdpory6cC3L5ZI0TVUIWq/X0SvC+OnTp1iWVXIVy2X5GdXYbxu6JEnodrs0Gg2ePHmiDLHwVeKUBPXVajWm0ymu6yoUl2UZSZLg+74KqdI0BVChgKBOcX5JkrDZbJQhcRwHx3FIkoTd3V2m0ynz+RzLstjZ2SGKIi4vL9E0jcvLSxXuFX9IAPGpGYU/zpVlqVqc8/lcTZ54doE9ruveiHsbjQa1Wk3FrYPBQJEy4imh5B0mk4myqkEQqPfoeqEWjCx+8RRxHHN1dQWgNtBsNqPT6SjmXzaxbdvs7u5SFAXn5+eYpkm/36fT6bBarSpGPlMWutMpjYYsAokzHcchDEO16dIUtSAkBJEQQIyYkEriAcUIAIogtSxL3W+z2WCaJnt7ezx9+hRN09TYZVmmsh2bzeYGqto2ILJYNU3DtusKWQi0TtNUGVIZ+9FopMjSxWKhjJcYvbt377LZbDg7GxNGCe3OgJUfkCYZ56ML1msfy7a5vJrhtZo8f36O41hs/IAkTYnTnE1Qzt3a18tY3XIoCg0/8Fkul1xcXNDv9xkMBgpZNhoNTNNkuVwq4yeEo8yXoDwZnyzLOD8/V+tNNrGMV1EUXF5eslwuFQ/mOA6+7yuEkqbXZHNRFMznc3Z3dxVfIKShOMKiKHBdV4U0YRiqdStzXK/XgdKQCffU7/cVdyLO6P/38OGf5xJ4JASU4ziK4ZVNXK/XFZwHlOHwPI9Go3Ej1haEYJomYRjeSBVKXFnC6KaaKCEH5T1ivW3b5uLigjzP6ff7rNdr5bG3WX6BlfP5XHmD9XqtUAhwI6NRbihbLTzZlOKlS4OYKub6OmWoq3vKBpaNKIhKPJHcU8g8uZemaco4CCkmWQB5j2layjgKAlgsFsrQCDrRKA2VW6urZ1oVa6IwJs8KhQriJFKpySiKlMcVr9dut6txMzFNmzQNIa9SfOhlGlk3qxDQIAh85osFO8O+Mjqe50GeEoax8tJJNafiYCQbIuSizI2gInlWuEYJsp5kDYkxl9+FYUi321VjblkWYXhNYkvo4vs+V1dXNBoNRRDKvEpot01WOo6jslbT6ZT1ek2321VOURyErKflcqnmZ7PZKOcnSGcb7X3S9ZkwCrJQsyyj2+2qB9zeAGIthSkXyC4PHkURq9UK13UVxBKGXogxQRvCC5Sf4/H8+XNl/QVWOo7Dyy+/zHq9Jk1TFQ6UcLjLaDRSsF8mTMKEba+xXC7V4hBEEccxk8lEcQBFUShiC8C2bWzbBiCOFwr+isEKggDDMBgOhxiGwXw+VwhCOIVtjydZAiHEJPYfjUbcuXNHGS9JtxqGUZFWfRqNBmmakiQJy+VSGeXBYMBisWC1WinPKPer1+u89dZbfO9731Meq9lssre/y3w+V88qaVJ5BgnHvGaLdrfH7MkTWh0PP4zwg4jVakOcQRAnLFZXzCbn9Pt9Hjx6SLfd4eBgH69eo+45xEFAlMTUbEfpJcTpyMaWMFXCTOEb0jSl1WqhaRrj8Vg5pjRNaTabKs04nU4VAhwOh8oLSxZGeIQ4jlUGql6vK+QlhLcYciEykyQhSRLW6zWu67K3t6dCHN/3GY/HuK5Lr9dT4SlQhXLXYXYQBDdSn+12W82TaRqfvB8/rY3+x7myCn7Jho+iiOVySa/XA1CEzHw+vxbyVJtEvJB4Rhl8QQtRFCkDIAy3xGpRFOF5ber1uvL6wgC7rqsIKMliOI6jNr9kN+I4ptFoqOyD7/s4jqOIUwlNBOqLtxYOIk1TFecLmy+stqZpN7xXu91G0zSVOViv19i2rVCA53lomqYWtni77fGSlJdlWXS7XWXExBMKLyJpX/k9XEPSMAzxPA/P80rPrlkqKxLHMcPh8Ma8TadTxa5LWCebaT6fK9Ze0JVpX/NBq9WK6XRKEAREUUKuBSUvk6HuOZ2WoZa3qGOYGlkeYRsGFDpFJYQTzkmgthgIMb5CaMs8y5wJwbqd1hPjnySJMgIyPjJXEmZ5nsdsNiNNU0ajkeIRZH7kvrI+hcOStK6kumXuJH0t611QgCBgTdNUilMyDYDKsAnP84eVN3wmjIIs6M1mowiaZrNJv99X8HJbvJPnuWJVN5sN3W4Xx3EU4bYzGNBuNvnoo49wK/2Bv9koS29ommJ059Mpuq4TxzGd1iFRENGo13Fdm4uzk3LgtYzID0uP0BsA4JsbBcvDTYBj2ZiaQb/b5OnTp4qAjKvFLRthMBgQhqVll80gC1ZQiry2KApcpxS3uK6LoZUGptOqq7g0jkMso8Bx6yrXLeGGCKLk3+Kd47Dc7INeuyRUNwvqNRNTLw1BGEW0Wi0MLLK4YLKclZvJqKHbJovpisvzsTJYhlMqJtM0pd2pUxCz8efUXIONP2dvv08cx6xmU4oiQ9fBrOU0vBpRnOPUNXaGuyzXIWmaE24MPvrwPpNZmb589PgBeVGAlnNxdUmrVaZY/axgfTXBsQwupwv8KKQ1bvDqK6/QajaxTZNWqwF5gdvzmE9n1cbVGHT6zCdjNoFPr9vBNA1WqwlpYiieQSlYK56g3W6zWq1KRGCZkGckRU6ua0yXC2W47bpLHobkuka33SYIAmazmUJ8lmXh+z6dTgcoDVYQBKzXayV0cl1XCeGWyyWr1Yr9/X3a7TZJkjAej5nP5wppSmpVQocoimhX+2e9XpehWlFwdXFRGqXPOqega5qKp5rNJk+ePFExsugUgiBQMHU7zhWyajqdqnzybDZjsVjw+c9/njiOefPNN/n2t7+tYljxAALv79y5ozbTwcGBivN83wdKL9tqSk65TIN6lVCm/FlIHEdAQc31VEZD4GMYhsxmM6Vcazab+FVuWkhC27Y5OztT7LSo5wRqLhYLBSG3oeh27Co/k3hXQq7tZ3Ech8VsqbI7/X6fo6Mjzs/PVWpT0zRGoxFhcM20i9GVfL3k8OM4xnIMhfTE+7uui2EYSrHY6XTI6xlBsMGuWQx3ShQYRBGu16iMYin2WvsJjlvDWlt885vf5O692+RFQZyE7A6GzGZTwjCk0RkQRVGJqoqcJFiznM2xDAPLfJl202M+L9O494YdtY7+1L/6A7z//vs3hEci2Lq6XCoUIZ5WREau6yo+RM+v+a/tbINknGTzXl5eMpvNFLIUJCBpZTGswnPJuC2XSzzPUw6i2Wwyn8+ZTCYMh0PFETSbTRW2SdpbkMfjx49vcBMSfpdCq08ue/pMGIUsz6nX64r4kkkZDocURcFisVBZBxk0UW41m02VkvF9nzRNmc1mCsZNp1Pee+89Go2GuocQRRKKSDwtXlXkvhKLlcpE/0bGQWLTkgA0Kw9gqPSThDICNyVskM+XxSBIQbIVi8VCvUdgrngsIcYk5SrhQZ7nRJVmQ6C+QFsxIBJWAIqTEOJM7iEpSF3Xubq6Uqy5hEu1Wk2lM8MwVNyOZhTqsyQsE6Mtz21ZFlmuESUxhZaTpQUZlRa/0IjjtILWKUEQ0+v1sG2Tu3fvUhQZaZIQbHza7TbtdvuGilCvahvIU7QClfasOzVag5ZSxmqaQRiGPHzwmMViwd5woEIiUXlK2CZzJWHAarVSXEGSJGQUSvwUxzH1ep1arcZ4PCbPc2Vwto2+jNk2Ifn7w10xGtsOT0JaGV8JO7fHXOZH0pYSekrYIfMs6/czTzQmScKjR48wDIOPPvqInZ0d4jjmvffeU5tfILEgComLhLAbDAZ0u93KaxQqVfnmm2/y7rvvKlGTEI++Xy6we/fuKeXk0dGRMkwSc0m4Mtzp3tjcEhOmaYq+yUlTjSSJyDJTSUllciX9V6r/JsxmM+xaTTHbwvz3ej01cTs7O6RpyrLiUYRfkYW2TTDFcYxhuWpxF0WhdPcSY9ZqNUUkQrlxjo6OALi8vFSoRIip/f19HNtjuVwqIZeIxYSrEePqNtwbBrvV6hAEEYvFogqjNFarDV7NrRZ/jh+VYh80Ez9MAZ3pbMl8vuT5symr1YqPP37E7du3Kci4urqi0+ngWg7tRgO9ANN2yaosSF6khH65Ua4uL3k3zxl0O7z99tvs7e2BXs4/wHe/+11ee+01dN3EMAo2W9kIIXnFIKzXa0UACudxcXFB3fPoNMtwdjaeYBsmQZqRhBUZXoBjWkRpRrtd8laSGdtsNsznc27duqV0ESJ3FrQhqUWZY8Mw6Ha7KnW6bcQkHSlZM5HDHx4d4ft+mV0zDOLqGWVNf9L1mTAKVBBJlFeS9hJSZDQa0Ww22dnZueHhhM3PskxBaE3T2NvdZb1es9lsCIKAdrvNycmJEpwIzBY2VrIYMphCjL300ksEQVBZ/wxd18iylDwvB3e1WipG3/PqVSza5vz8XHkAKbQSjmHbO4thqVUGAlBFL6JuCyq9u6RcBabKs0pGxXJKQkx0+ZKKkj+CSFzXJfRLUY4gFMnwSFwrqs7AT1Sc7DjODa2/oKA4jqk368qriYcTr5qmKb7vU6vV8FdrsjwhB3w/wLTsEr0FGZZls1lHzKZLxa7L+N1/8CFpnLAzOMYwDKbTKXWnRq5rmIaJrhVEUZUmzAuVoRkDFxeXWJbDzvGAOCqh/cHBkUrJCgEscfm2LFu4BTGsYji63W5VnBUoLyyaAEGbYqCpEJimaYpTkLBKEIDMvfxsOzW8ncKVdVtumUKhMdu2lbMUByMIQ/7IPAjB+5knGsXjiqy22+2qYo8wDDk8PFQKs9FoRL/fV6TKdkGPpNukFuHq6uqG0Ec+Q8jL8/NztQjCMMRxHCX02Gw23L9/n+FwWMWVCzabDcPhUKkDBYZL1WBZDLTG930ODw/xfZ9nz56piez1ego6GpbFyckJm82GwWCgiEMR9Qi51Ww21XOen5+r6kaB6MKW1xtlpZ+w1o1GA9u2efLkCf1+v+QxKuXc3t4euq4rskpgpvAGkt5N4kIZgyiK2N3dVQt4MpmoLE0QRIpJD4JIIamyLiGuaiICHMeq4GzGau2z8UPQTbxGlzTNmc1XPHz0lDyH19/4Ah9//Ij5fE7NdrBdD8swSKMYs9DwnBr93R1ms1lZodls0nRd/CgkiUvjFIUxv/O773D/4SN+4if/XWXcRlppSKfjy1L8o1tKeLXZlHqZq6srhQo9z1NVpGJka7UaVlWVuFMhCdMwyLMMQ9fZVKlsMQZSZ+I4jor/DcPg3r17SnHoOA6LxYL1ek2n01GZKNd1FcIQWbyEw4vFQvFh8plSf7OYT0uVaoX0jg73yzWv65jGZzwlSVWMsk0girZ+Gw1I3C3lt5ZlKbUgoCSoVoUmBO6L5kHiXbi2ykICCZchWgdJz0l6NMviG2kpsebiFSQVKWToZDJRqVJZCGdnZyr+lFoL0QBILlzSWrKBt2XKAn8ldBLUFIYhfjhWJJeoNgX2y7MLF6OTKqJqG56K0lDKnpuNrjJWUmMhMa8YHYGvgk6ExxAoLBmV0oBapHkIWvk63TK5Gs8xTA+v0eLk5JQozND0gvF4rDQBrVaLLE6wDJONvyyzB70+/sanyHKaXgPTLpGmlhfUbJugcihQhqcff/wxtmnRaNTRdeOGWCiJYsV7uK6u1qFkbIS9FwJXnIqMjRCHIjDbjvPlj/AM2xWlvu8r1Wccx4psFOThOI4KC4IgUIpLUTFKWllety30K0luF8/zGI/HimT1PE850U+6PhNGQddK8mU8HlOrlYVC24MknvPi4oIwDLm8vFTst0yATEiWZdSqRSqLdbPZsLu7C5TSXfFwWZZxeHjI1dWV2mBSjCIxG6AmplTxFUSRj6aZiu0tc/oB5+eXKhyRnLLU2gsBJFWV9pa2XTZRXhGuMmlZlrGs1JGapvHqq6+SZZmqNNyW40ZhpBafiKxk8Uj2Q6pLiyxSYyoCGNHTixgriiIM3b/WylcEl3zmcDhUEHftB5ydnSkj3Gg06LRLWfh0M2UxXzIYDPCaHqt1mbpbrktS2Kl53Lp9j9/93nt84c2v8HvvvMfXv/F93P/gQ/YPD1hMZwwGfTqNJhfPT2m3Wniui6Hp9DsNYs9ViFIrwHPruJ7H6GpCkmSs/YBs6fPd7/4Ot4+PqNfrHB7skaYZbq2E+qEfsF4nuG5BFCXqOaT+xfM8VawmG/bZk6eYWmksDTTSan5lvdqGiZYXNDtthsNhVQTnqLGVuF7GXQyskMX1ep1nz54pPkrCRJH6h2GZIpe0tiBV4YXCMCRPIy4vFvR6PfrddlnUB9Ts2mc/+5DnmRJ4CCwSEk5SKWma8sorr1Cv1xmPx3zpS19iuVzy4YcfKvWiwPSg0jvIgEk5tUC/8p4lkrh37x6tVkvVGoggRwRLi8WiNDqaTRzlpEmpGbh393aZBl1HShTi2B6mVdYbiLRZ6iGExJLy4yCKaLfbCu2IUEieQd7fbreVjPbq6krFi/Iz8ViCWhqNBlEU8fz5c6XGlDhSkIFlFIp1Pzg4UHUTtm2r7/T06VPVH0JCLCmpbjQaLBbl5i6zBDb37t1T5bpSMCaoSQrKDNui2e7iOBZXk1Ky64cRf//XvsmHDx7z1vf9AEFQ5uDPL0ccH+zTud2i4daIwpBXX32V6dUYLc853j9gNL3AMQ28epswcCkKDXSdpEJxjUaLVfUMk8kEx7LZ39/FqzfZ+CtM06o4nbqqC7AsS6Uni6JELJeXl6p0fTt9KfyNOJjtoitJRa+qorUgCDg9PVXchPAJ22O+LUdvt9vs7u4qJaVwUlLiLTL8zWaj0s3iGCWtnUQblXETY+W6rkrHf9L1mTAKoKlUjsRr291s0jRV5b8iGxXYLNBblIe2bSu5pyj+RKcvHk/gn1RbSnGJWPDVaqU4Dglj4ihXAynfR7z6dDpV0JIwVaRemqZ0Oh2FOlzXZbValT0W4ph+v69QQUlcrlS4IHGhhCG7u7uKSNwuzJHwwKhievFGImUWQZhs6jRNaVR6h+0KPUE9Uv6raRrPTs7VM0t2QkIt8WxhGGI5Ndrttop9t0uAwzBUYYB4NwlnAHZ29vjVv/M/cnh4mzfeeIOnT5+pcYPrui/oJsgAACAASURBVIHh/gEaOXmSklXQu1azKYoqNHTKkAZdJ4giul2dPIe8KMiygk00URkM0zTRtfIZ6nUXXZPGKjUsy1FEsOu6dDodFouF4roEjQqHIq+V8EOQn0B4KW6S/0s4eV1NGqu0ofA60q1Lq0R2wl0J7yFrWDiL7RSjlHLruk69ZipDsl14Jgjvk67PhFGwLIv9/X1WqxXL5ZIHDx5QFAXHx8dqAbmui+/7jEYjdF3nu9/9rtKFCwwTAY14XTEoBwcHiiCTiRL2XHLH4v1EWahpGnt7e0r/3ql08U6tjl0zuZqOlJah2fFUyFF3muiaiefVq8WiEwQxlmXi+yvQEuJkQxQG5Fmd2XJDEmc06g7Dfkm4RVFElhY4NQcdFHw9Pz9Xxk44DCEkL8fnpQpPK0m2w+M9RqMRnV5TZS/Ozs4wq4W5nbPeJk5FxxEEAb3hQNUlaJrGfLUsC8eaDfr9sghJagPee/9djo6O6A96TKdTVUmZjzKOj49L9OBr3DreRytyJhdXdBwP/2rCXm/A973xZe4//hijVseoWbz2xpdYXo159aV7vPWlL/K//53/FUvXSeMNug6tQQeNFpPJhFarxXK55Hh3WPIypoFflKlgq9ckjmN+7+M1RVwwHs2ZLUI63T6mAWESslhM8FybPF5wdPeL2LbN48ePqdVM4thkvS7Y3e2jaRlRVHZp6vf7yquvVitFYm4Lmfr9Pp2woxzX7qCsj3jw4AH9fl/VkozHY3INhSa3y62Fj5J05rZsX9d1JWqS+hbJQBiGwSZIiFMwLJfeoCTg0xyipCCOk0/cj58Jo6BpZSpuW/Jbr9e5uLig0WhwfHysuATpaCQiHYHTQso1Gg1a1UBLfr/sS7AA+Kd6NmxLS6XHoIihzs7OlMUWAY/cU1JB0mhEoRmvRDP1ust6vVZNU6TJaRSHKqwRMtDfhNVzJ4RhabwcuzSCUdUuTgq/tuGneGZRv5mmqQqWJKQQL5Omaak9cBz0vFCoSDyPNOAQg+q6LtP5WvEyYkylVFgQnaRcO52OGgNBZ8KKb8PlxWKBTkWWaRrvvfcBr7zySslt1Dscxhm7u02+853v0G80+drX3uK//xs/z8HuAAMqXUfpiaOwbDgjxHCeVE1dGhah76twRpR8QRQqhBiGIXkWE0cbimoNBdV7xJvLeEsPDc/zrsVhYXYDggvnIu8RgnW7fdt6va50HC1VwyBefx34ivzVNE3VLEh4ImSj7/tKsCeVkrpe9gOR30vWQhCM8BDiQCTM+KTrM2EUTNNS3IFlWQpW/9iP/RjT6ZTvfOc7pGmqQgeJ/SSmEhZ2tVqVhmO9plYrIa0Us4hx2IZ2uq5zfHysqgylwEm4jE6no4qQvGZTtcOS+4pysoShdY6Ojgg3IWdnZximQLasarHVLDdQelPoMxgMmIxniuHWtNK49bplarRYZaqYRr7X4eGhUnkKyWTWHC4uLlSnp1arxa1bt7h//z7r9ZrJZMJbb72FaZo8+ui+gr0CbWVziYGdzWb0h/vKOwGKjW+1WlW7tjLsGo/HAJyfn6u+EkEQqJDs+fPn5HnOzI/YGfTJkpRZ1XBkupgzXcekuYld7/Dx0xPefWfN3bt3efurX+W/+2/+Wz7/8kskoQ+UCtYoLb2l53kcHR1xcXHBcDhkOZuXJG+WEzWbKoWXZRnddg1jbVAUGc9OnjC+ctnbH0KRMez30cnJs4STkxPFsUwmE+r1Ot1uV2WihMsh0xU/Jc5MKiBFoi8btSy8K9OaEjoIud3r9UryVy/DIOkqVhQF0+kUTSsb99ZqNXzfZzqdAmV/T6kFEg4iiiL1HaQxrmSjtkOdMlz9l9B56Y9zFcV1gZPEVcPhkI8//ljVJhiGoarMRFUnTG2SJKp5qcSBsrjFS8rrJCaUrjuSphRDIxJXyfmKhRWlmLRek4Ug3IZ8F9cuFWlZTjXpfVW4lec5QVgu1O0yVokvSy4jVykrSZvJs4gXF9h6eHio0I7j1HCsCnpmOXEYgV2QJSmWYRLlIc+fnapxE55FkJBAXxHwyGYXtlwktKZpVkVdoTK2lmUpsZikeWUhiscTGbiu65iOQ6fXJ40TLkZXtHu7vP3220wWG27ducP/849/nTe+8Bo/+7M/y3/4F36C+XRGEmxAy9ndHdJr9SpjbajvJwKePM+p11ySygtLyzrTqdFuNtCratvVasXe7oCaW1WIpmXtxSZcqmpDCQV0XVfckBhCx3TVRpOsgDgnQPFDwqHIZhVnICSuiJJEkCbaCNGMSJGbrBEhO6Vnh2QaJPPheZ5qPyAkr4jORJEq4ccnXZ8JoyCl02IhwzBULa5kYrZTL4CKoyRnvrOzo9I7WdU30TTL9u0iNZZQQyCZ5Oa73a4q7pEOQEVR8PDhQwXRXM9TElQhGaXjr5B1SZLQa/fKttujs4q5vqDb7bJYzMsQp1Z6cckknJ6e0mp2VIMXQCkFt3tICKciEDMMQ05OTrBtu+RDKqlyt9tV3MB0OlWh1507d1itVvR6PTaVrFuKaaQtXRRFqtvP3t4ehWapjS0EmtxXmp0KIrNtm1u3bqkU8HK5ZG9vTzWkWS6XaJaFYZRNWHTgo5MHFJrOm29+iQ8++ICT0xFJlvLn/9yfZTlf8Nf+6s/w7OPH+Os1+zs7zBfT0jD3usyXCzy3wdOnTxWRuTfcKbkkNNK4rJ9wXZfpdMp4tSLLM3qdDmeXl6xWK27fOsR1y/e0Gk2yJMWPSuMt4qH5fM7Z2Zmaa+AGcSdGVhCXOAqRy0saV7I2gsaEyATKdvD+dU2OaGO2pfSi1wmCgLt376oKSqUWrUKf5XKpMnm7u7tEUaT6MkroVGohPnk/fiaMgq7rPH36VFXTSRpvu9uRV21KafcudfDn5+c0K6jYbDZLqGXbPHr0iIODA2U0ZKDECgvJ6HmeamMmiEEMieM47O3tUavVWFRts6Qtm6QdV6uVgtNpmjKZTJRqsIx1U15//XUeP35EkiScPj9hOp2qhed5HoEvfRUzoqiMw2fTJyRJws7uQC1AsfoPHjxQ36PZbKpFm2UZaRxTr7I39VqNy4sLAIosY9Drqc5R0tREhE4CNSXFZZomB0d3VKZB5N/bjWDr9boixiSWlhj+4OBAGfQwDMvQqmq2cn5+wehqwqOnJxwc3yGKU17/wsu02z2+9847+Ks5Tx7dJ/R9+s02EfD89KREY3WHk5MT4jSi6bU4PDxUhsnUSmK57tbZ29tjs9koJn6+XNJoNtgslqznC9Is5f79h2w2G/Z3Ki7JreMVKMckDmBbQt9qlQVWjukyn88VcpQ1KGMpehEJCeLKSHmex9XVFfv7+6zXa77xjW8wGo2w3RrdbpfHjx+r14rjEIchXNvDhw/V31ITs1qtSoK50t1Ihk3SkaPRSK2hsvFO9In78TNhFLJKnyDx32g0otfrMZlM1IaQ+EwgrEBygXnSXSkMQ6aVGk3IMOmdkKapQhxSEiyfIZA9CAJeeeUVNamS3gyr1JHwCpPJRP1OauzjOCaISwsuPEWSRKzXaw4ODkrF4LKUqK5WK8WdjPOpSllCyXfYVk2VzYpiU4yWTLYUfW2nx7ar5yzLUm3vJfx6+PCh6iok6TBZ/OKNpLRcCCn5ufTElFblEsNK2CGEq9SwNBoN1SpvZ2eH6XSsDOI7v/cep6fP+cbbf4qsEP1Izg984+ucntzHNk2Gh/vEQchiOWPYH7C7O2S1WWO7Ncz0uuZFILVj2VV+Plbj0Gg0SijuufhhzO27d/HjCK0KC/QCkjhlPl+i5RmdfudavGVcl0Nvc017e3skYaZCI0ApY6VWQSpsf39losyFELiq+rTTVjUykp4WYns7fJBshHA6g8FAaSO2UZ0Y622id7vpiqZ/5nUKsLe3p5hyOblHPFAclyf1SP58G/JKr8U8z1Ufg6BCDVKBJiy7TIQ0MtkuCpH229uFJPP5nA8//LAUOX3ucziOw9XVFZZllem+6sCUOI5V56SdftlB9/nZs0r5168IoonK4W8rG8tQxqty4AW1WiU71stJ1o3rpqHSbEPkzkKG2bZNnmbEUcTz+eJGzLi7u8vz58+Joqg8PGbj31DWAaoIrVarqcKrdrutMjYSKu3s7Kj+DZqmcXZ2phrZStmw8C1FUSgp+nw+Lw26mdNs1JlOZ+X7BkO+9d3vcefWHeIs5R/9w9/i4OCAV++W9Sbnp8/YzJe0Gh6mXqLCg6NDWt0Oj58+YW+4c0OCHW5K8s2yLPwKpQyHwzJn71hcjSecja9oNRpM53OSJOY0TWi1X8XSNCynpjinIAhKwreqXJXMwnQ6LUVKRll5KmHDtmxZivDKvhueWsuiO9guVHvnnXfQNI2D4yPVh0LIxm3+Sz5bPs80yzNFjo6OlAZFWsRti9gkKydGQ1oQ/GGnwXwmjEJaFXlAWTIsQheRbsrgCKyyLEv1vN9ukCpwVYQkw+EQz/OYTqfKewmbLlZXioikNx7AaDS6riisKhNlYUun5v39fYVkhLSTIiNAHUYidRpywEhBpmSqUuiUxGllZLo3ZNuysYTMErZ5Gxoul0sODw/VYhHtu2yURqPB4eEhy+WS+bzkNZbLpeJTRDSzXRIttRzTaXlkmu/7qoJUoKyo6oIgUMZYdPvSOUiMDlRquzRBN6s0cp6zni8Z7hzghwHPnz/Htm2+/MUvsZk9YToZ8/z5M7rNFvWq1+aqImslnbo9n77vQ3XGZb1WxuqCIAFMHXaGAx6fPAO79PazxZzFojyxq1N1cxLeRJCBZKQAdeCO53nYRk3xUNttAgWhyPyJJkTmTfQzsjlnsxmmaTJ//31FJEr2SFCcIIXtGgf5TEG6QnhL6fs2hyaoRbgMEUt90vUvZBQ0TXsCrIAMSIui+KqmaT3gV4A7wBPg3yuKYvZHfA7rKo24Xq8VXBYvL/nhTqej0kwi3pFuQLJR8jxnMBhwenpKnpdNVvb29hTUF9JFcuniESRXL0fPiWUWWHxxcUG9Xuf4+Fid+ZDnuWqrNZ/P8X2fQbc87KSgHPynT59W5cetauKiGyFQkiRYpqMsfZ5XDVLcsjbh8vKSfr+vJjRJEnZ2yupA2eCmaaIVULMdtALSuDx3ol5zWS2WzCZlGst1arSbLZb+WpGSEqIIiSaHmkhjXCkfTpIyXSeQXI64KzmCc6XEy/Oc27dvYxhGKZaq8uthGGLkIXE2IU0T3njjDX7jN/8RR26dn/6pn+ZXfvkXuXXrFqenJ6zGT5hOp/Q6bXrNDr6/ZjabcPfuS9y7dw/brREmseKRhOPotkoSerVakSaJGq88zynSjDgrjdncD+l2OpyPLpjP54xGI9rNFrpmYBgo5axpmiwWCzqdjqofETQVrCOVMmy322ptXl5eqpSkoFjRb2zLmKFEx/P5vOz4NL0+AUz2hPABgjCLorgha47jWFX9yr6QsFGMiGTJRBOxs7NTGZ5PNyX5g0VRjLf+/3PA/1UUxV/XNO3nqv//tT/sA9yaqxRicjiIeK6iKFSXYzkGSzIHm82GxWKhat63F7dIg7ebjW7LfmVjivUX5l8mUNqAt1otpZEQ7ytxn6SrttvG5e3Sky2WMxXjaZrGkydPyknZHahFLCKqNCmt/Pn5Ba7rYRgGuzv7ZQvwyFcNVwQdie5euBa4ViZKmmob0o9GI0UkCokorcLEsG53bBISV8ZRQqP1eq3CF8mXb2s+AFX3IOlBSbHJJqk3WpyNnrG/v49hGHz+85/n3XffLcfVNNG06y5FaRQzHZXVkkdHR4xGIxabNUbNJopT9oYDJQmG667g8r0kvQqwe7DL+eiCi8mMVsvm5ORElabHUVpVqIYMdzo3PLKsCyGnhfD2V6EKuaQtXrvdZjweqw0dRZE6I0S8PqD4LjEYIioSZCHk73ZaXUhmKBvkbJfbi/ZAEKsgge1eHZJClvv+YdenET78KPCnq3//TeC3+COMQhLHpNWG1TQNvTryqt/vYxkGi0okNB1fqrp0KCFhqyOQOmY+jaqJuW7JJRay3W4zm83UQEqKabmcK6t6TZJZOI6F69bYbFakaUy93qBWFTTpQByGvPTSS5yfn5ekYhzjuS6YFpso5tnZJe12WzWktWqlCGoTaDQaXbQ8pu6WCEhztcp4XQurlqs5frCm1Wrg++uKAygN1TvvfE/lvI+PD9E0mK/nZWYhLFHAydkJnlcamJ2DHbV47LoNeaEWrvSPePb0yXXNRBjgr1eYVlkHgaahGwZoGkfHxyUxVvE5q9UKrQi5rPo99rsewWZBlgTkSYyfxBwf3y4Lkto2//dv/mMePnpGZ3CbN15+g3gV4N22yOOQZ6fPeP1Hfoj7foNXvvi1sgQ+zXDdGkkQcnZySnZ5yeHePq1Gk3SVk9kFLbtFOAu43FxS5DmDQQ+SHNOAYFMSohd5hOHY9Ns1njx9SsvK2SQZ/XaL+49PsJoD3GaLQW4TBhme18QwNPxgzWq9wK15dLtDao7L89Mx3U6Nvf2BQktyiHGv31LQ3ms4JHGmkIcUwwkXJUShpA9FBSmoV8JbQVtyzmWz7mHppaGYXpWno7lyrEBNU5kKcRrCqQnCLBHpp9dkpQB+XdO0AvgbRXmS9G5RFOcARVGca5q28we9Uds6in7QKw8k3S72kZRfv9/n/fffJ8syXn75JR48eHBDPit8gzDEpWdrq8Ne5bMkTBCvJ9kBx7kmIMWii5JNBE7SZ0DXde7evavSf5vNhpdffpnd3V2+/e1vl0ankj5/+ctfVuHK0VHZ6WdbFEQlXNku4jo8PFSxqTRRybJEISBJfQqxJWXgkv8G2N/fV5tVEMmtW7ewLIvxeEwcx/S7JS9z9+5dzs/PieOY27dvlw05qswNlJWkImDa399XRVAy3uLxkixR9QfdbpeDg31Go5HiibrdPuPxmEbT5lvf/i6G6dDdKXAcm3fffYcsjWi3m3Rbn+Mf/uZv4ftlEdXh4SEfP/yYw8NDXn/9ddB0gqoGoDBNak2P2bqEz4NBjy+8/gV0o9woy8UM27Spd1pYSYJTM8myBK/e5ODgiPPRBZfzS2y3QavR5Pz0GT/wr/0gcRyx2awIwnV5LmXFW+VZWXOyWfv4fohGqNS1aZoqsdLu7i66rqu04MJfKlXt7xcuiVZEZPWe59Hr9VgsFpycnNzImAFKAp0nqeJutrUmIsSTVLHb8JSzE85su9jq0zIK/0pRFGfVxv8NTdM+/Gd9Y7F1FP3L924X0nxC4iHZhBITClkixItc7XZbkULyoJIakvSaZVmK6BMiT4Qipqmr94maUSz7NgPcbJb56Nu3b2PbNh988IFi6q+urojjuNRFGJbqcZClKXXXwd+s1OJybJNup8XkanSjnFU8jpCVopJ0nOuzKATdSNpJUoGO46gDbeXZBEqKmEYWocDY7eP35N+SwpVYNEwLsjQm8NfEUUC71VDhUhwFWKZBv9+DPOLy8kpBUyF9BcaKwX76dESWlSdFvfrqq7z3/v1Kfh6TZymPHz1A0zPuHB0ShCGubbG7W2Yinp+eMZ5NSdOc3Z1Sfh2mCZugDB1ydOabFXmS4jU80iLFQKt0FRGGCUVxXXWpaRq3Do+w3AZXi4/Y29nl+ekJjVtDlSXQtIK6V2M4HBKFCatVQJFDu90hjhbKMErsv7Ozo05zEhJX1pSMgTgU+b8oIbeJWhHXSZGTyK6FoJY1CvxTMmZJR9q2zarKWkjVrehyVEXvJ1z/QkahKIqz6u9LTdN+Ffg6MNI0bb9CCfvA5R/1Obp2feKTZVlKtCH17FLE8fz5c5VdEKHSwcGBEh5J/L9YLJhMJhwcHGAYBrPZTPUSkME8ODjAsiwePryv8vWyiOU8P9mAJXSP1YY1TZM333yT8Xisil4Gg0FJltYtlVW4vLxUKSHZmDKp9+7dU6o34UeyLGN3d5ednR3F9sdxqH4nJd3ynURrsJ0W63a7zOdzVWDWbrcVXyBt1ybj8mzH6XTK0dGR0jIAahxM06TbLHUJ9+/f5+TkhFdeeUURpHI+ZK1WwzYdfD9QxOV8Xh7ko1FKzOU077TIGe7sM1+u+d7v/i5Pnpzw9a9/g/l8yvhqxPHeDmkaM766wLZtTp8+YbUOeenlVwiTlIPD26w2EW98+Ss8PXlGGq1p9vu4To24SBnNZrS8Oo6usX/7NkWWo00uscKQYD7F0HRcr4G1WjLo9fneu+9juXU8x+bZyROarQ61wqder9HuNJReIEkSdM2kKAyKHDodXZ0onqapIhqLolCNWMQwt1otRfQJOpVamW1eTBSNklURDkuyHdu9QQw0JSoT/qHf7yu0INycfA+pkZGam3LtfApGQdM0D9CLolhV//43gP8C+HvAfwz89ervv/tHfVZe5Ao6iZIRrpVlwn4vl5troUpF0smpTOJxS+GOUcXbx5imydXVlTo+TWSm0lRFshfbBI1MonhQCUME0p6envLbv/3bfPWrX1VGqt/vq4rI+XxOlkTEoa9Ku2WCJIxxHEf1FxSjJ0VbsrjyKj4Wmbc8g4RGIoWVCd+u0ReUJNASUAhDwjJhu0XKvVwuVVenXq9HEgX46yWNemmsQ7/sLaiTk6cxeQpx6LMMNxwdHSllaL8/UFJwIcCiKGLjB4RxSqPZ5oMPPsC2ayyXc+7ducXp00fkeZe3v/EN/s9/UB5W3u/36Q/K0On8/JIvffkrdId7xFHCrTt3IQ8UAtILcBwL07bp9npoOkRZiu24mJaDleeQZ+iGhmPZFFUzn7rXZDI/Y2cwwA/TqkQZBlbZOXk2L2sdak6dbndIUZ1teXh4qMIGgeaCAgAVGkZhpuC/hKibzUYRlsvlstzA5s0WcULOCrITQjOOYyK/bM3WbDbVGA+HQ0VEqiKsVlNVbEJZaSsh8acVPuwCv1p9uAn8YlEU/0DTtG8Df1vTtP8EOAF+4o/6IIFPUmxycHCgGoBIk8pSwDOg1WqV9QJVt6R3331XLewkSap0WckKT6dTpbKL4xjP81THIMlKmKauMhAS90uaRziITqfDaFSeUPzkyRMVwpyfn6s2cpKiOzg4IM9zLi4uVHWjdL+Bsmbji1/8ImEYlpV9y6Xq4SDtt4qiUC3rsyxRaSUJM6T4S/oHCmwUDkMau2qapmTaUVSm0A4ODmg3W0rqvD0Hot+QYi0JweSAGFFuCms/n8+ZTqc0GmXzGElNighnfDWpOhDFPHv2jA8ePSOMUv79f+fH+Jv/0/8MhsbV1Yj55JIvvPYaNdPgm3//1/nq17/G1dUVtuPy5a98nbOzc5x6m9Um4NbdFlpbZ2/vgCKPFDm3Wa357j/5NpPLK77/+7+GW6vantul+tRIC9IsxdVtGo0Wur/mzvExT09Pee3zr/D4yVPSLGcyCUjTmJpbks2aft2Oz/d90iTD90MMvUSOOzs7KlySkFdOsV6tVhi6oxSH0jhmNBop57S3t1emgZuNG3oD6Qgurd9lDQsi3s5OADx79kyFJZKhK/Tro/DEqYhC9g+RKfzzG4WiKB4DX/oDfj4BfuiP81lxFKvU0WAw4P3331dQSWoTXNflK1/5CicnJ6qsdLst1mQyUT31sqzg9u3bqtxYRETCEQjEyrIMx7FU4YywvlJcIjn6UoJdjqLEZ67rqjTj9sb+4L13aTabeG4Nre6q9vE6BXfv3mU+n3N5cc7h8S21qefzudq0kmsWCHhxccadO3cIw1ClWAeDgYo9RdM+nU5vwFUhnZ49e6ag5d27d0tthu6r0EIUmtKdWTT8EnLVajV2BqVOYqVrxGFAr9PmcH+Peq3s4NPv96nXPZUanExmN1KbksLUNIe80Pjdd95l6S/LysM0JM8yprMxk/MRtw6PGE1X/Fs/+uP8rb/1i6zWAXfuvsQP/pkf5v/91nd48vHj8rj6Z6esq6yMTilS6nUH7A13aDYa5YGvecbHH3/M1eWYllPDNnSKQk6NzqEoyJOUj957l5rXwI9C/CAiSSKarTp57lD3ypoEDQNdtwn8EMtysExDGdter6c0DHBd0JZlGflWibWEDsLLiDMLw5AovZY4l8TpQJ31KYIyCRefjp/yxhtv0Gg0+Na3vsWtW7duIGAJBYWXqtfrSsh2za998n78TCgaRRwkp+mIXl5kz1JsIwzta6+9xoMHD8pKvirdKPLSKIpYr31FAkpDFiFpNlXPPBl802yoFlXSMXcwGCiJqCCC6XSuWrlLPll6LsrBMlEUEemaar4iG1t0EaKbf/ToEaPRSMWrokBbLBbqVGwVP1bhiYQ0krKSkEJ4EpFCi/5CUMV27YLA3SSKFRsui3P7DEJphiL8guTORR0qHIcoFss6AVP1njDNiuA1rztD5XlOoemYps14NlfoJooihu02p09PeOn4NlmS4rW7/PL/8r/xfV/7On/u3/7z9Ho9fumXfgldMxmdn/HDP/zDvPvuu+zv7m01f0mp2TaWZRCHEadPT4BSvn779m1GT0+J8wzLLGshyHJM3aDdajKelyd7x0lGUmVXSp4pJU5KPcLhwTHrdYihmziOi65F6oi+fr+vxluIxe1wDrhB9AIKEQqkNx1bOSEhlWVsRd7c7Xap1+t8NJmqn0sWStYboBS0tltTnIPoVwSVf+ZLp23HVgrC0WjEvXv3ePbsmaqTl1TdBx98wJ07d7h16xZnZ2eqQlFCB8/zyLJMwXLpUeA4juqvJ9pyCRV0HRXXQRlrfe5zn1NnN4rYSTaudJTWdZ29vT0lJpKr3+uqNml5nmOZBpPJhGbD48H9jzg+PqbbadNod1XcKWnJfr8PlEZSGrgMh0N1SpHEnI8fP1axq4RZYuQEHYm6MIoi3n//fcVDdLtdyAulyhQeRlq9SXqz0WgwnYyJo5AsvRZt9brls2qGTt2tKeVikqS8/PLLCtGsViuytFClu8+fPye3hthuXXXtDsMAx9JxahYHB3sVaWlxdjXn6NZLAqZ9SwAAIABJREFU3Hv5C/yX/9V/zZ/9N3+E4XBIr93Bc2yKLOWtL72B4bbZbNZkcdlj0jJLhn2TLxgHpair1WjSqDcpgpjFrDx56mBngL2zy7Oz5xwdHXE2GrOaz6g3W6RaQlFIj4wU2ymPqndsl6IwlFEYDAbKoEt9gsyBOLeiKNCro+oAJYgSib1sTl3X0UxDCfYsy1IH0gphKMg1jmNee+01Hj16pPgvUduapnnjjM+g2j+S8pTU+qcqc/6TuqSgCMoUy0cffaS+uBShnJ+f88Ybr6uDXrrdLqenp4o4i6KIW7duVQPTUY1gpahH2PJtZVhZ2FOoDSTeUuJzOWJuZ2eH0ehKSZHT9Lohq1QqXlxclFCyfajq56VWoF6vK15EJlCq8CRlKE1di6JQhOJwOFQiFymg2iYsRaUpLdjE88rCAhTLvb+/z/3791kul8rDCokqaUNJiwZBcMPYSIpOiEtBSUJolv0dSoQxHo/ZbEp9RJrkFZIpjUrTs1kFZR/OnBwNaa+W89orr3Dy8DHHn/s89+68ws/8zE/zV37qr/CX/9O/xN/9e7/KrcMDhr0+//oP/WnCTdlDoOb1yhSjWyMLQ1Ve3djdpV67lhqLOKhm24wunqmGvqZpli3h6w5REtNut1nH/o36ABF0GYZBu91XLeDke2/rAASdSgrZsiw0LLUBt7MF8l6FKkAhQ0EJV1dXN3Qh2/0apKZGFKYSDkt4q2kam7Bc5zKngqbLGpxPvj4TRkHXNNrNsq/i4eEht44OGY/HJdlkGsynE7QiV+x+eVpvi3q9wXLhkyQLjo9v8+D+UzzP43vfe0e1zRbJryjJpJR6vV4rq9psNqvmFAuCIODhw8fcunWLi4tLDMNiNLoqm4RoGm+99RarqrfC9jFtd+/e5dGjR5xfjvE8T/X6ny3XTKZzVn4ZynitTrV4fOK4oFazcV2nakN3qyIsC1qtBpZlqhz4crlUxKnUgUhYVXrrC3S9QNdNNE3HcVza7VrVN2HB5eU/qU6XajOZlfDTrjksViWLfe9zLykptYQnha7R6nb58pe/zPPnz7l//yFWnNLwWnQafaga6fbbPSxNZzmes9PqslgtuDg/Y+/wiFXoczWb0tjfI5yv0dOUnU6HydUFb7/9Ns9PT+g0+9z/6GP6/T3c9i6Tp0/4q3/pL/OTP/7jzEfn3Nnb58/84A/RaDT4hV/4BX7qp36K2WzGgw9/h9FopHL+hmFwfHzMpCo2c73SWLquy2QygXhDbuq0Bn1qjk2z1abX63H3+CU+DB+Shhl2YfP/UfemQZJl53nec2/e3Pc9s/alu3rfZh8sMxgMYRAUF4CiqSBNAwqJhiMoR5gUzZB+MLhYP8QIh2yRtE2FJIoGuIBhahAAKZLYCAwGM4NpzNLd02vtW1bu+77cvNc/Tp4zPTQIMCxLMcqIierKqa7qyrz3nPN93/s+b6c3IndcIRgO4PKHCXpDWE4Y2wMcLihXD+j3gop8XS1XGA2GTEcTXIaBNpnSqTWU8QvEjelxiimWbY7QbROXw2Bqjgj63LQGI1VOgJggyHKh3RYjXqmvKJVKaqKwtLSkHLTyJCH7CKYtvD+yv+FwOEilUqIsnJ00v9vjPbEoyJGdXJnlCyOP4LITPh6P1J/fmfuKScK6a51QKEShUFB1cDQaxev1KhpRMBhUu53UnMufI3sIiUSCQqFAJBKhWCwqebR0NcqLT/49aQ+WfQq5a8j6Tk4N5BsjVWnyNCF3BzlqlF8nTVqySSR3F8lI8Hg8FAoF9TEcjqipijySyh0LUCeah5WfshchEWJyZCln5aFQiGq1yp07dxQ4pVKp0Gq1cLu9SksytcxZIywIukYqlSaaSNDqCsXlpNWhWCzy6Pn38c2XvkEoFCCRSHB4eMhkPFSl3/r6Op/85Cd57fXX6PV6XL9+XTESX3jhBbLZLD/5kz+p+BiFQoFarcby8jKWZZHL5ZSUXYq4pF9DNpelvHs46L/rd1XsBEvM9buTvjqeD4dDAk7hIXDwTq7kYDBQkxa3242hO97lldA0je5wIPQl1pSpPUMNplOiCatpDPpDpUuQWZ6yNPR6vepEI0VlAN1WWwmb5PsmexTya+RrIP/9gGIsaJqG9l7vKciFwO12s7+/r5iA0gsha9zRWByHptMpumYQj8cwzakIejE0AkEPg/2OUj/COzf8eDxWXAF5w8j/pOtPglNisRh7e3tqvCYdc8PhkLt376qsS9kAlMw/2aCU4yKn06mapnJ0KG/yyWSkbnR5UTUaDfWz5AUsa8D5+XmSySSlUonRaKT6GcFgkFarpTrVgLLzOhwO0uk06+vrGIah0qWTyaT6d0rZtPyZEmsvOt5DIhFxE3Q6HXK5HG63WyHn5THb4TCI+cXC1+m0BBtjNGQ0maLhoFptEgrHefXVV/nYxz7GN7/5DeZWFimXyywsLJBMJPE43ZRKJfb29vjN3/xNPvCBD5DNZvn0pz/NZz/7WR555BHW1ta4fv06mUyGt956i0wqwcWLl1UZ9uyzzzGdTnnw4IESw43HUkswxJraxGIJokEfmg29VJ9KpUan02N1ZY3s/ALtXptiscD20S6Gw0WpVMLtcbFgzBFJJ9FtS2QzGgb+WckbDoUUIq/TauN4aJPwh98RL8mE9NXVVZVE1mw28fl8ZBaWlSs3Ho8rvYsE5cq+j6Zp2DOEoCwTAFWiSBn9eDxmfmlRIeRl83l3d1csEt+jp+D4tV/7tf9U9/rf+vFb//J/+7VnnnwEl8tFIpFQARyRSIRgMChELPE4pXKeWq3KaDQU+PRKCa/HS6/Xne3gOpcvX6JUKiv0mtwx9vb2gHci3qW4RrrvKpWK6p7L5mKxWKRSqVCr1VhfX2d3d5dHHnmEZrPJwsKCcs3J0FcZhCsnBvV6nd3dXSqVijqZyP5FNBpRx3QQpUiz2SSdTuP1ehUuTY5LJUBDjkDb7bZi8gkB10BNAyQDIpFI0G63lWBFKtvAVlZeuVM+3D2Xx9BAwK8clCLaXkhuB/0h4/FE1amxaIxWW4jBXB4XO7u7aLrBSaFMrdHGRKdYrKCZ0O60qNWqtJp1KpUKiXgMw+HE0B3Uag3u3L5Lt9fl7NmzSsj23HPP4Xa72d7eVqK00WjERz/2USKxKD6/H4/PS7ffw7SmBMMhhqMRU8vC6/cRCAWxLZt6vcbNN99As8G2oFqtEQiEsNFEzoCmc+bcGUxzynE+jz/gw+l2MZ417EbDPsP+EI/bSyQWJRgIEovFcEtWotvDcDTCoTuYmCadbpfRxMTpcuPxeNEdBl6fH90hSjxdd+APBAmFI2Tm5pT+QE7jZB9HcjCkPiQ5Q85Lb4vH4yGbzSoBmtz4mDXTpZtTTkacTifXb7zNz//jX/z173Y/vidOCvJmkeM1Wb9L4YZ0oQWDQdFncLnw+4MMh0MuX7480yiMFQtA7rKSgSiR1+FwWIluJJX44emB3NFNU2Qk5HI5lpaW3iUSuXz5MicnJ2o6EYvFyOfz+P1+0uk00WiUk5MTBbeQ6DU5EZA7mNyppTpT3mDy9YhEIupzCU7x+/2KOSi1F/K4KssaSQCWJRigXkN5sbjd7+QWSm+J1BjI104ePyVRSJQ3YoGKRuL4fAE1PWlYdQXJdblcaLrB8fExhWqTydTGFQgzHJvkcjmWjUUis55COp3GMER3f2l+kXpdGKpsXTSSP/rRj5LJZPj2t7/N5uYmfr9f9Td+8Ed+hNe+9S0l95aNz0ajwfLyMoOBmBAtLS0Jh2Krjc8XwOvxq5OnUAhOMM0pCwtLlCs1lpdW1Xth2xrVaoXQzPMx6I/QvW6BQPO4qTcbjM2JkFmPx3THXSUQcmgC/uKfLaQC8x9SJ2DZtJblsJSWy4X5YRirEIgF1N+X43WpuJWLgywPZNPx+PhYjZFln0GWlvK6+W6P98hJ4X/9tY8885R6UeSbK19MqdaKxqM0Gk3G4wkaDnw+P81mi16vz2AwYm5unnqthdvtIpvNMhyKDAaZa9hut1X8vPRJHBwc4PF4qNVqajSZSqWUAEjeILlcTo0o5ThSoNUFou3MmTPcvHmTcrmsfA9yVi2bgnL02O12OTnJqfovmUwSDodVEK6cBMjvPR6PlRZjfn5eBYDouq76EG63EM7IbAzbthUcdG5uTs2lxQLQUyOxxcVFJZAxTVNNPKQgq1KpKuLTuXPnxZ9Ni4sXLxEIBCiXy6SyaarV0szyLWS/3d6AertHoVjFF4rS6Q7xGk7M6YRQKMhoKPokPq+HpcVlTo5zuFwehsMRP/ixH2Q0GnHq1Cn+5E/+hIWFBd7//vfj8/l4+eWXxekxEmFuYRGfP8Dc/ALzp07hchhYNqyfOoXP7ycWjxNMp9A8bhymxcbGaTrNFulEEnNiAhqhYIRgMEKxXMK2odvvUiyWmNhToYD0+6jX6/hmY0aX00m/16c77GFrYE4mDGZ4OjQBCXZ7ZrGBUxPN6aY/GBIMhylXqzRaLWLxBGg6lWoNc2rhdLvZ29ujXq+rk8LDzUNJtpKLeLPRUCe9drutTgEPTyJcLhe2Jnoby8vL7yo1dF3n5etv8gu/+D+9d08KsraXN4NhGOomkSaibrfLZOrG7wvicnqYTi1sG1wuQWuajKf0ugM0zaEkqXJXVQafaFQpFiU5+s6dO5w7d45ut6uEO0tLS8o2LFV5ciwlm32TyYRkMkmhUGD6EE5O/j955AOUSEjKXaU+QHodZA0oQS1yl5caDYmeLxaLilAld4N2uw2Arj9M6h0qaezDDEtZe8sYeenwrNVqAGrOLX0VDof+rrJCshkl3k42BzVD0Id0xHG1VK4SDIYZ5sqARqvZYTLrlsvfUwJgZVZCIZenUKhw4fwlajXBs3zzzTd5/vnn2dvbYzQasbm5ybPPPsvCwgK3bt0ilckqV6A1GzmfOnVKKF1jMcbDIbWc6CPNZTPcuXVLWMsHPUXjcru8DIYTpmhMLai36ty+fZuJPqVar+ENeXE6BWAlEAiAJXZmyyGa4pNZf8rpEP0l/aFd3+v1Mpk1i3O5nDoVtttt1SuQjVSpS5HXmNy4ZBNbXmPNZhPdRgnk5P0iF31Zpsp+18NCNrmhyTHz3/R4T5wU/o/f/s1f+9GPfhjbtoVIZYatvn//vrKk1ut1XG4vGk503clgMELTnJgTi/F4ynRqU6006XX7uD2ibkokEu+ISGbwknQ6TSQSodPp0Ol0WF9fV6VFrVZTxGj5AkoLq2ysyZtbqh2LxSKLi4scHBwoSXav16NarTKZTFRpIpV3csGr12tKESebiVLFOJqh0CeTCbVaTV2Q8uQkfRbJZFLdXL2eMFbJi00qJGVHWmYROhwOrl27qgAsUiMiL1C5qNXrdUajoWpCiqmG6GQnEyk6na4SiMWSUQaDoepqe9xe/KEQN27dJZcvEklm2D845tFLl6jWKgwGfYYD4XMxHDoH+4dEQmHOnj3PhQsXcXlcJJNJUqkUh4eH9Pt9rl+/TiwWY3FxEU0TixAOF+1OFxsNl9uD2+PF6w+geV3YE4vhaIzDcOL2eHFMbSbmmKX5BdrNJn6vH7fLw9HRMUfHOSzA7fbwrZe/xdLSMmPLxGHo5ItFUikxXtawGQ1GeL0+TEwMx4xzCaSSSXx+Hw6HgTmdYllTNF3D6fYRCofJZLO43G48Xi+RaBRN14nHE0wmJv3BgPFDDl4pYX8YOSinRaFQCH3WK5hMJgqpLz07ctLg8XhwedxKOzEcDtUG5/P5+MYr1/kff+EX3rsnBSnOkMKNer2uZrNylfP5fGg4cLkcaJoDy2oxGo2ZjMXNZGMzGHQxTYtFV0odw2TNKV84+bwcW8rewcOlS6lUUl19eXqROYwPh9devXpVhdKm02mF3g4EAiqyToatSnFWo9EgFAoRj8eVmlFKrzVNI5VKqWh62xYhu3IxAtQCJ0VbIBkB72Dq5K7QmB0z5e8t/04iERPmHtNUElk5tpPyZ+H3MHG7PWo6IqXn4rV0KjVjo1tn0OvjmoFOHbqTQr5Ic/b6OXSD0QxOK157U43L/H4/45GY1GxtbbEwv4Q+1pWCVOYgfPzjH+fg4OBdsmHDKSTxD58Kg8Eg/X6f+fn5d8aPwyGVXI54PM4f/dEf8eiVS4pIlEgk0B1utnb2OD7ZVjdfvV7H6/Mpc5nApYGNrZrXmkPHoTtUv0DSsmu1Gq1GYyaX7iukvrSoy2Zfq9VSPpbRUGxGEs4CqD6PFLs9POaW5ePDpaQ8Fcv+ksfvU6NO+XrLa/89732QjTNpHy6Xywqt/TCAst0RxqfhcMh4JLzhtWZDKNG64gUcDEbkcjnVaZdzXnm0lm+gXD2/+c1vMj8/r/wL8k0DmJ+fV6anfD6vduZms8nKygq3b99mNBqRSCQAlGPS5/ORTqdptVqK2ZdKpXC73ZycnJDP50kkYsrwJS23kiUhzSuj0Yj9/X1AmI7+elkjLbvhcJhMZk7p6H0+H8vLyywuLtLpdFRAjbyAisUi9XpdzdvltEday6UMt9831bxdvkfBYBCHLgRdUhJt26KGdczq2vMXr2LhwOl0kUikKJfLZLNZyuXyzOk3QLNNdUM/+cTT3HjjLX7xF/8JhXyJWFJY6D/zmc/woQ99iEKhwCuvvMLS0hJ/+qd/SjAY5JFHHuH1G6+ysbHB5cuX1cIAvMswJj0fyWRSvVbC/i03gDLDoQjsKVdrzM0t8Pbbb2MZtrrJup0+c3NrtJp1fG7hMRkMB0q1OB6JCIJGo4HXLco2yVC0ddEvkBoQOWHL5XIkk0ll8OvP7NRSMXr+/HlFkq5UKliWpezummUrPwugfm952pMp4ZIWLRdLSTOTPae/6fGeWBQ0TWdj4zy1Wo2trT1aLVFTLy2tzTT5YqfLziUIhd3E43E2d7aEky+iM7J6TJ1T0qlFdM3B9uZd1a2X5pJ4PE4sIjrz/W4f09QI+OJEfDo+l1t0eIPCV3Dl6iUCoRC9fodoWJQfXiOMzxUgHA4S9As+YTKTxJxO8cfE8a7b6xEJBYVlVvORTacY9nuEw2GuXr4koCZzWR48eCDgLENRJsgFoN/vk4jF6bY77O3skkqliEWiKpil0xKNUKfDIODzq4shnzth0BMqTXmkl00peRP4vR4sc0IiJoRKrpRTdf4nozEBnx+/14fP66PX6TI/P4/bK0Jrp1MTTQOPx0mvJxSQDsNkPOmIxdcbYtDtYY6nnF47h8fh4e7b99GwCQW9pBfnSM9l+cqffhkbyBdKrKysUK7WWD99lm9885v8xE/8BJphUWsVSSxH2bz/gNMX1jkuHnHu/DkODnLYGjjdHtyeAK12n2c/+H56vR5vvPZtgsEgmcycKIdcXqyJ4Gg2a4JZ0R8IcEsyGafVEZqRdDyBZdkU8wVKuX3iPoOdcpneqIbbGabRbWLpBp6Qn6N8Aa9Lw+dxMBq3ifqihNwhBVlp1jviJGVNiMcTVCoV/H4HXveY5YX0bKQoiMyjfouA14DpkHjEPzt5hTjJ5wnPYC2j8ZhUOo1lWayurfG1r32NZz/0IVHaVQqqx2NOh/gDbrJzSYDZQiMakHJCpuv6uxaOh5uO3+3xN8ua/jM+9Jk8NZvNKrWa1JJLx6A8ng8GA7V7yiOTbETKkWRvOEIznNi6QzSQ0CiUK1TqDTTDiTcQZGLZtLo9BhOL3sik1mrT7vVYXluj1RF5CocHx6p08fk8uA0HwaCfZDKuxntej4eA14dTdzCaHUkBVTLIHoOk9DxsipEnkod7FXKRkM0i+eYJT0FP+elBXAAyZk827yRxSY5w5VFXlhEP48AkOl5OXaRfXx4/M5kssVicTqeLy+VmOBwxGo3pdLqY5hTLsplOLaX3l7kRd+7cETdIf6hCfubmF1WJtLq6isPh4Pz58woRVqlUuH37Npqm8e1XXuX69escHx/z0z/90zSbTZy6gzt37vDoo4/y1NNPkEwk2L5/j2a1QjoZJx6JEvB6iEeimOaE0bDPaCwIzePxUAXpSCx8NpsF3gH5jEYC+qtZNi5DMAdGgyHjwRBrOqHdbKLZzMbmTiWhl/oS+fvL5+RYUYrKpENR9nceJjvLvo/slUh/xOHhoRK0ra6uUi6XFdE8Ho+r9zoSiahmoxxLSviObF5KhJu06r/nTwrYNru727PjqJtIZGEWXlLHMHQqlZKi3rrdbrLZLNWGaMDpgyHBYJT+cMJJ7oR2q4M/FMXl9VKbqfocre7MMXnCmzdvK+iE0+lkZx9cbieJaIT5aFpo9pMJNN3N2JySCgoBVSKaIJVKiaNX3yQS9DMxp3S7PQZdkbbsdbtpN9tcuHCB7e1t1UWPRCIcHQm6ssxxkCITGSgjjuG2cFQGgzz66KOMx2O2t7cV/l4KpcrlsmqISrBHp9MhlUopOrOmCZ6lNH9JkZRgNBRV81IeJWXdK4/htVqNZluIXtbW1pQxR5Zd8mILBoPYmhPTtJhM2jjdAr/e6Q146qmnePnbr3Hpscf4jd/4DZaSc0rVl0wmCYVCKqj25s2bPP/cc9Trdd737AfZ2dnjAx/4AH/4+7/Pk08+ycu7r/D888+z8+A+w4UFGvUWS8mocGDWawRCIeoFD2NzwvziMh6fX8BaGdEdNKlXhK/m2rVruAwng1nO5GAwwDUbIQ7GY0aDMfFIFEt3clw9wASSkRDJ+XmqlSKWy0nP28WaGu8Sfs3NxEcy01EyE+QESKg9OyqLUhrOQDQFo/EkumYTDgXwet6xUVuWRa/bJhoJcef2LXHT20LRKL+XnGhJj4ymaaKEcojGtRwvy6Rqqa79mx7viUVBjiOFBVf4D2TDTdbOsj7KZFJCszDjAVa2tvF6RSe3URdNJVvTMS0bl8erLvT+cARooDuo1htMKyJPYGJDv9PGH/ASjsXRHS7yJWG8SsSTeDw+NM1BpVyk3Xkn/luQi2Oz0eCs8WSJcVS5XFY3j/g3Z9SbIbkQspNs2/a7cHJyl5bGJ/mzpFtUKtkkoUcaxCRsNhqNKtafnGrIDIvRaKQUjg6HQ8me5XjS7/crOrBpmuSLBWKxGOnZMVZi3WQCtlxABmNYmKVUjUemGs/6AiK1Shq3ut0ui4tC3ry8vEylUhLH4MGA5557Tkmtv/rVr7KxscHnP/95Lp2/yP7+Po8//jjdVptMKonTYTAZD3Fr4Hca+NyCkTi/tITu8YgAnLbYELw+NxErxKAtdmCnQ4h8xrOFTXboez2hO/C4XFSrdYrVE8LBEMPxCCwbHY1Bt4cR8Cm3o9zhH4aiyhNePB7H7XZTLOYVI2QymSh5vOwHSTCLXChrtZra9eXoMpFIiJJ0NtJ0OjQ1WZLvlQSy9no95ufnhZq1O1SN1+FwSCqVUgv693q8JxaF4XDA8fEhp0+fZjIZUamU1E1vmmOeeuoJYfqJRiiXBb8xGBFjt8uXL/PgwY5SFY6NCflqE7PdU8wAaZ3N5/MUi0UikQiJRIJGp8/pC1e4d/c2nUafncMTKsUCg14Tv9fNtUsXWFk2CAR0rEmPfLEAwGQ8JT2XFeISS3gzXIZoanZazZmLUzj01tbWAIHLWlhYUPoCyRmYTCZKXNJut9na2sLj8XDp0iVMUzAKyuWymnpIYIbkIMTjcdXM7Pf7ahzZ6XQ4OTkhnU6LC962icfjBINBNfItFApqLCrBo4BSao4mJpPJlJ2dPd73vveRz+dVv6LbFYIx0Jmby+APBDncP6LfLzK1NZxuN1/60leIJJKsrp/ia994kUa3QSaVJBgMcuPGDXRN0KiS8QUlhLp16xYf/PCHhIhKd+B0GFw+dwFrOqVcLNFrizyQs2srtE9ydLpdguEQls/N0f4uU9siFIuTzSRw+n2U8nm63Sb7u3ssLi7iPXde/M6znVvTNFqdNs12S5SvvTHnz5ylWn0Z3TRZnZ+nXq/Snw5ZX1mdZXzYTLWh0lhIFa20ostydzKZUMybarGt1wXPQdrWY7GYam6//NKLPP300xg6xKNh8vm8GD/XKsQiISxzzNmNUyr+UMqgk8mkmhpFo1E6nQ77+/vkcjlSmQU1Fvd6vTQaDcUe/V6P90ZPYTZaqdVqavWVs/5Go8Hx8TH1ev1dEXHlchmZl7e6uqrqueFwSKvdptVuMzFNnC4X5UqFGzdvcpLP4/P7qdXrtDsdVlZX+fZ3XmfjzDkuXbrMm2/dxOnxEk+keenl1yiUqty9t8mtt+/icHpZWlkjlZljbnER05yytLgyc0m6yefzKtBWEpWr1SrNZpNKpaIkyxICK2tbad+WUw0JWjk6OuLBgwfU63USiYSCrcg6UuokyuWyOrqGQiH29/cpFosKmjIYDEgmk6yurqpa0+v1Uq/XiUajxGIx5ubmWFpaIhwOqylFs9kkm80qPPnm5qYSVcn+SL/fJxaLkUinKZVKMxKWKFu2t7cZT8REJZ/PY1lw6tQput0u0WiUaDTKlStXcLmE+vSVV17BsixOnTpFvzfg5W+9gq47uHr1Clvbm4wGAzrNJsGAn/XlZarlEoahk82kSCdTGJqOz+0hEYuTTKVwul1Men28M19AKBBAmy16Ur4tNSPtdptoPE57Np2q1RrEI1EW5+bxul3YlonX5abZaNHvDegPBiLHYjbNefi0Jl+jhyGp5XJZjcRTqRSxWIxMJkO/3+fg4IDhcKjk2FLrMhqN1Fg1n8+rsag078XjcVUGyx6F7CmlUuI0XalU3oXylxJ2MR5/j5cPlmXR7XUIG2Echk6311FHIofDg2VPcRi6gkj4/X4Gs+bRxJyi68J6WizUqdca1KpVdbzVNI3gQ29ePp8nlUrx3Ic+BEAo4OHLX/pzUR97PZSKRTbW11g/dYZvvfo6xkxEUms8w8bGhlIhYll85/UbjMYDqvUGk9GYCxcu4HCKmyaVShEOh9nZ2SEcFit/tSokw6dOnSIcDrO/v692eF3XCYfDisrb6XTMT9JQAAAgAElEQVRUmo+u64r0807mpKVuYLngdDodSqWS0h7Io60cs4odvqsQdpIo3Ov1uHnzpjKQeTwe4vE4xVINt8tLIu6k2Wjj9/vJHefFotc4xqE7aTU7nJTvkEql2D84ot5oUSyX6Q1EX8Pj9TMam3zwQ8/y0p//JafWVtXv1Ov1aDabnDm9jsvl4uDggNOnT+N0uSicnPAPP/X3efXllzm7cYbd7U1Ora3z9ls3aFfLhINBnG4vDsum0qyTzmZIbWwwqlXBshl1Rd7BsD8Q2pBAkEgojGVOldHIAmxNw+314nAaXH/lZZrtjlJa+vweBoMuqXicRreNLxRCNxy0egNCYT+1Wk0Rw5xOJ2+//bYqL+UoXDpnI5GIKtPkBjg3N8fW1hY7Ozvo2NhTU210kVCQk+MjdE1jNJilWfe6BAIBhSGUqlK/X/xb5DUhnba5fJlKpaJOgKlUilarNeszvccbjTbvZBhKsKQk4tq2rSSg+XwesN7JGjSFuKbTERSiWq1G/qRAq9VV38/hcGCORyTSadFcmYoO+b3bbxONRjm1mEGf9CkWi9iWiW5bHB4e0+/3ef/T7+P+/U3qrRF/9uVX0L/8KtceucSptVWuXLqI2+8nk0pTzB+zsChYA4tp4TPI5XKMx2OV2CShL1KlWK1WVXLU0dER6XSaK1euUK/XVT7m0tKSmn7IutflcpHP5wmFQjQaDSVK0XVd7QzyyDiZTFhcXKRQKHB0dKRAtw8ePFCIOynsikaj7O3tKQr2eDym3RnNRExTvF4/R0c5lT1x+vRphcvzRNzkcnm2tnYo5E5YO3WGyGRKpdXh1Vdf5Xd+93f5+z/7s8QMJycnJ4oP0ahX1cj02rVr7O3scO/ePZ778Ef4gR/4Ab74xS+iTacY6ER9PnRrSrteIeh24ovFuLW1yeOPP040mqQ3noCm447EqReLuN1eBr0hw+4Yj+ETCLp2R6R8z66BQqGA0+mk2W6xv7/Pzv4e5tSm22mRTcbRNJvRWPRjYrEIIxt6ozGpuSTmpK8Edw8bmcbjsdKqpFIppTLVdZ3d3d13cTAbjQYbGxvCdzJjhUhrvSwJ5Nc9zNpIJBJKFCf7RTK7U+pxZLNTfpSiJenElFOy7/Z4TywKhsPBcNinMktNksGu8heSN4ZQ9b0Tzy2Px4AiEo/HY3TNRsMCe4rhMAgFw3Q7LdVg8/s8DPpdDIdGcSePaU7xeVz4vH4CgRCDwYjz5y7y0rdewel0EYsnGIwm2JrG3bs7nOTLWNhcOH+aTq/LeGpiaxqaZquxkTRVyRwF+bNlN3pubk6VPNJHL3f0hxWPUnAlTwjSQZlIJJTxSu5MpmkSjUaVpbrb7bK0tKQaf4Ay2cjGWLVaZTAYUCqV1PhM6uglqUrmSxwdHSkgiDRpHR8fY7nctLsC8a4ZooHp8wdFOE0iSbsrVJ5Hu9tcOX8Rr9dLNpvlJHckUPAzSbjcwUulEk888QQ/+F99lL2tLV751ss8+xOfEAKmhUWcuoNUMsGPXr5Ms9nG4w/gnE7ZvHGTWCxGMpkG3QCPB/J5Wq0Wp0+fFv2WaAzDnLDi9eKZLRCtTptOv8fZyVn2DnPiGrQtugPpQ7HwRkLoFljYIkfCpSlJ+sPN2mg0qk4Jov5PK+Buu90mm82q06EUEw0GAyKhoDrdSqxeIBBQpY5kIoxGIyazMfBkMlENbfm1gOoZSEK5vK4kMv6/CHCrwyGOzoFAQOUlyNFOIBBQtXcgaNBo1JTJwzRNTp86xeHhCXatKZpVpQqDmYRXx8tU1xj0ROfc5xE0I3M8QrP92FOTZ55+guOTAoeHh9iWSa/bxh+IsLm5yT/42f+emzffptfrUag0MEdDOoMR9dYxxWKe+xdPEY9GuHzpDOVqiYX5LL1OVzUTJXI7Go0q66u8QHK5HIuLi7jdbgEamanbJHVJ1vVSvisbSpPJhCtXrmDbNtevX1dZmQsLC4r/WCgU1CJkGAbz8/Pq4pE6gaOjI5VRISXU8kLt9/vcuHGDcCSlQCyDwQC/369cpfF4XL1HuVye1157DZfhZmpa6JqTfEEkXXsCbhVXv7YksiszmYw6yXU6HVqtFoeHh7gMg6eeeorHn3iSF154gblsGsOy+dEf/iHe+M7rjAZDYXvXNazphN3jY3ETBvzYU4uN7AKa10u/XMMXCGC1utTKYuR7cnxMeWYuarZbtDptTgoF8sUCr7/1JolEQpxEdR2H06DVatDrNhkN2jg9bnq5HNmVVVweD+VqhUmvoRZmucjGYjHi8TjJZJJ4PM5gMKBcLqmbXO7ivZ4wZBUKBbLZLOl0mkLuiN5Mh5NIJOh22oxmjEW3y0mtWuHpp5/G7Xbz1q3bpNNp5Y14mBotQ2Pcbje1RkellC0uLpJMJhX38XtNIL5vo1HTtH+naVpZ07Q7Dz0X0zTtq5qmbc8+RmfPa5qm/ZamaTuapr2tadojf5tFQdcdvP/pD9JudtExsExwaE5SiQyWCUsLK+ztHDAcjDEcHgyXj3ZrgMcbYjSa4nA6CQS8NNoFBpM6Y8vE0mE0ndAd9ukN+soR2Ot00AGnw4HH5WI8HDEZ9HEbTiaDHvVamcLJHoYx4Q8++3/SbByztBhlORvh4rlV1pbm8Hs82JaDQr7D9e88YP+wR6vj5dadKt5ghN7IpDucMBpbnD1/gUqlhtPpptftEvD7SSYSaLqLqaVjazq7+wd8/cVvsLu/S2/YIT2XZPdgk73DLTTNQaPRot8XPIPhcMz29i71ehOXyyM4le0ut+/eo9Fqs7O3T384IpXJohtOmu0OtUYTp9uDren4AkEO8xWiqXkKlTomDsbmFK8/wOHhoRj/TsbUqhXq3TKbe/eotirE0nGcXi/lepN2z2RzJ8dk6qFUGdJotplaGol0mv38MX1zTHPQpVwt0em0WF9aIBONMDYtsksL1DsNvEEHtXYRzRhhaibNTou5pTVu3dnm1Re/QjoewGXYrJ8/zY0Hd+liUR4O6No624UK9aHN6noG6OPUJgR8TjRtCp02HiaMKidY3RIR5wB9UMIRDuEIhxg5dIxAAM3tod0fMJnaJBNpPG4fve6AevmYqTnA6QvRGE4ZuyOYRgivP4I2HjEf8qE1TnDqohR1YBPwuUglInhcEA66MfQJ9rSP36sr74p0xUqQrlyEJXHM5fVjuL0EwlEGYxOHy4OtG4RjCVrdPstrp/AFwzg9PsLhMK1WC8Mw1JRD2vxlTEAmk8HrduB1O5jLJDg62KFWKWCZQyzze5OX/jYnhf8L+N+Bzz703D8F/sq27d/QNO2fzj7/J8DHgNOz/54Efmf28Xs+3G43R0dHBINBgsEge3t7OJ1OyuUy586d4/j4WGCt94+V6s8wDJwOQ8VnHRwcKIONLCkmkwk6GpZjiqELTHt0FgM+7A+YjMZMzQGgEwqFiEQiDCcmhsPJcDxiOrWVnNTjdbG4NM/NmxVabbFLnL9wFsuy+PO/+DPOnj3L4uIi33jxkGtXrhIIiIToaqXO3MI8TsNBMBah027R6XTwB7wMhr0ZlUkc/3/kR36Yra0t7t65T7Ek5tuHh4csLy9zeHhIu92mXC4znYqQE8mfPDg4AF1AaWQOpq7rLCwsqCnIyckJ165do1wus762ojQGmUyG+/fvUy6XSaTSGC43hmUTjMS4e39LjIJDcSZTjeFggi8QIhSJcn9zG1tzzvDmPSKRCNlsFtvSODk5YTieKCWlIkxZmjop1WYlTbXeEI02hyH6CF/4Mza3t9A0jctXrnF0dMRwOOSll17ip//eT3P7jRtEZtzMzq260B7gxKE7CXnFzXL9tdfweQx6nTYfeu6DzC0uELBdSuE3nYzIpBLcvzul1aiRTQsX5NXLF2l0BNNgMJ5Qa4pG76DXw556adZLPPn4o9TrVXzRJIGA2JHjsSRnz20odeN0OqVarRKLxQiFoip4Vr4Wksshd/SbN29ycnKC0+lkbW1NCcPk9ZxIJLBtm7t376opVTAoyrNyuawiCw4ODpTOREYgLCws0O122djYYGtri0QiIaYP/zGGKNu2X9I0beWvPf1jwIdmf/4M8OJsUfgx4LO2KG5e0zQtos3CZr/Pz6BWq7GysqLkt9ISCqibPBgUtKV+v6+aKlvb25w/fx7DMCgVinT7PSxLGEUeRlKFQ2GYhZtg2cpcsrwyRygUYTqbvfeGA6qVGgFsTp3a4N79+9y6dYuVlTWazTof+cjzXL16ma9+9avcvPkWHo+HjY1TbG9vcuPGmzz7vsd49bXrfPD97xNKsmGPCxcugC1uEgFvmTIYDonF5tE0W8FYisUS+byAxkbCImAkFhYqxcPDQ+bn5+nNlHiTiYh/lwxIj8/7rgCRdrutmlwyQ0DyGhwOB8N+H49LyF4zmQx3797F6QnQaIsSYopBs9XBnGr0B0Mq1QaDgcg/SGfnGE9sKtW6ilIfj8eUS9UZIl803ZyGW5U8k4nIe5zaFqY1pd3uMhybxKJRpqatVJ7FYpGQF1ZWViiUS4xmo8Nf+qVf4nN/8Ic8+9QHWVlexjAMktEgGg567Q7D4ZiG3qRWq80AIza98ZBWu0t/OMB0+Mlm0gD0e10G/R4Bvw9sC2tq4jQcJOIxkqkIx/kCuUIRt9s9Q9q1cDps4pmk6vHIa7PXE/Jwt8dJKpVSidPS0SjDV+RUQYqW+v0+8XhcsRRkboNsDkqHayqVUorVUCjEyiwtzLIsBQeyLEuV2FJ1KonikhAtYUHJZFLIzf8TjCTT8ka3Rbp0avb8PHD80NflZs/9vxYFTdM+DXwaIBmPcvHiRdWEu3v3rlocJM76jTfeIJnKCPXYqE8mlWAwGnH54gViiTgej4vDo6e4c+cOR4ciH8GYNYBCwSCGruH2+nA7xYLRaNSZjEYUijmhKtMEaWlqw8LCAvOLS4xGI5544imy2Szj8ZCVlRU+97nPcXJywjPPfEA1Qb/2ta/NVHsu3rxxh1DAR63aIpmM89ijV2g0WtTqBS6ev8Cdu7dIpRIsLi6oBp5QCmocHBzh9wdF88wdYDyaEAmLpl6321UCpkgkQjKZVN4Qh8OBwylYfcfHxyq9OxaL8eSTT/Lqq68Sj8fZ29sjk8nQazdxYLGwsMxffOkrPPb4kzQ6PfoTm3K1xuLyKl/88tcxx8NZA61PpdrBtjTi8ST37m+zuLBMp9MhGksS0fy8+cYN0qksn/rUp/jMZ34fTXMQT8QZmWJyIbgPQpvR7Qbp9vrYtk7+pMzp0xt8+MM/wO/8q39Fvd7kfY9foVpv0u33GIxnmYmf/zzr6+vcevsG5mSE2R+yvrqAy+XizJnz+N1BavUm7XaH7qDPX37lL7l27Qq397bodrusZJeJBsVMX6ZztesVQj43GlN0Q6N0ckQ0HSfg9TCdjFmcn2NsCrhJIhmjXKlQrdpgmXiC0YeSuyaUihUVZCRNaYPBkO3tbTW2NAxDidok6UrmMCwsLCg4rs/nU7xQufmFQuLkeevWLYB30cOlGM3lctFsNpVydmVlhUKhoCZT0WiUUqkktDLWf77pw3dbfr5r8WLb9r8G/jXA2dNr9urVq3znq18VlN5Mhrm5OcWpazSEPboza8R0Oh2uXLvKdDohk03NEqTB5dDxOA1cbvFrOTQNXbNxYDMc9LAtE3MoZtDhUIipz4NpQbfTFQjuqQW6jtPpxtZ0vB4/sUQcv9/P/Qe32dvfIZGMEY2FefmVl6hWq5w9e5bnf+A5CoUC586dY3/rmPsP7rK9e0CtVid3csTK0iLnz57mm996mXQ6gWlalEolptMp6+vrjEbv4Od0zaDd6tNuNRSivlAoKJvx6uoqtVqNYrHIysqKQo2nwoIPWS6XSSaT6ij7pS99Se3CJycnIicCi5OTE6KJFIbTzQtf+AJv3bqD1x9Ed3nYPirS6A5xztx6S0tzMwaAsJ37vAHypRLz8/MMxiNajQrPPfccb711E81wks3O0+v3yWTm6PR7uF0eNHQGgx7D8ZjRZMpkMsXpdKE5TH7khz/BH//xH2NaU8LhIPe2tgiHw+TyJzz55BP0+30q1So3btzg4vop3nz9Oh/7yEeJBYXlu1lvMRiO+fqL32T/+JB/8On/jtYXP8+t+/e5s3ufQCjEretv8MyzH8DXc+FxG7zxxhvcvPEGS0tLLC4tsbOzQ7GQIxj2k82kqDaazC8tc/311xmORSZnMi5Om16PayZZ7qlJQ683IBIRXg6v10urJazp6+un2dnZURZomRwtmQ9ra2tYlsXx8TGRSIRMJqOER1LOL0s96Y/xeATjQobblstlMpmMamZLZmOpVCIWi3FycqJEUXL68b3SYP6/LgolWRZompYFyrPnc8DiQ1+3AOS/3zcbDgb8xec+h23bLC0tkclk1JF6OBzS6XQ4c+aMwGe53dTqdeypRSwSpVGtEYnHuHfvngqD1ey6ogxJvLYxw1z5Q6L+6raFlrzZ7YkxjWEIp5rDyc///D+m1+/z4MEDqvUGX/7yVzk82iafz7O6ukqlUlFUplwux+HhobiIczkS0SxXr17ltddexbJM3O4UlgVv3LjJ6bVVmk0hp41Fo1QqFXZ2dmm3u1y6dInjo5NZLZpQcFcpOFpaWqJcLqsYvJWVFfL5vDqSOhwODg8P1ShXHhuj0SjXr1/n2rVrCvpSLhYIBoO88u3r3Lp7n1K5iq05aHe6+MMuzKlNKp2lV68Tj8dnM/IZiNYfUt1rOT+fn1/kwYMHnD9/nsPcCbFYDKfLQyqVonjnLpFIRMzfx35l5PL5fEyGE1wu2Dh3VnXoI5EIzUYFuw1rp9a5v/mAbrvDyoLA0kWjUc6snyKZinNylKPeaNDs9Gl3ehRKRbB1tra2eOaZZ/D43Hzlr77EUx94P+NihRe//jXW19f5vd/7vZlD1WI6nVCrVdA0e+aATbJ7sI/X6ybo9ykKeCgYYdAf4vW58fmD2DgYjQez0kCg/G3bptcVfYPTp0/PvA9FZV9+ON1cBtNKxqIcN8uR5ubmplh0Z1AbyeQol8uUy2XloZGlx3AoJjOJRELxQjRNo9FoqGnY+vq6+lx3/P8/kvxT4FPAb8w+fvGh5/8HTdP+GNFgbH2/fgKAzydyBPL5vOoZ9Ho9CoUCw+GQjY0NcYyyLNxuFx63i+Ggj8Np0O126HY7BIMBUskEw9UV7tzdxzJNHJoTHR2n4SQ005/7Z+5IScmNRmNcvnyZdDbD/XubHOaO+ef//J/T6w85d+4cDza36Xa7nDl7ltOnzgh7a0jImGu1Ggvz87z66qusroqR0P27D3j88cdxedziTR32+fo3vsW1q5e5e3+HVqvFE489gtsVZC67IkaWkTQ3b9whlRJ4e4dhq0h4SeGV/obBYEAoFBJkIK9XAV7kwiQJvpVKhbm5Oe7fv8/CwgL7+/vs7u4yGo3IlwSopt3r0WgLX8R4CsOJiUkLyxaAklRcYPDm0nNYmkU6kaRarRKJRKjX6wz7OovzGba3t8TJIxoXI7fuAM2hc+PGTVqdDq+99h2CwTAjs0M+XyAajaNpTsq1Ek8/8RS/+iv/DK/PT3fQJ1/KEwyGaXZ7dPYPmVoTXA4HlgaXLl1gYWEOw9B5/bXX2Lm/Q7VRJxSOk5mbp9cfMpyY/N5nfp/1M+vUmnXuPdik0WpzKpGi0+vzgWeeZWxOCUdjivE4NqcsLC3jcLooFo7xuAw69Q5vvfWWuB6lJX8wZDATGQUDYTQcaDhmLtMwXq+HXq8jeje9IYbDhcvtpFAoEAqFFHz35OSEs2fPqrDe27dvs7CwwGAw4M0331TGqkZDnBYjERH0I8Gujz32GFtbW9TrdRYXF/F4PO9SzI7HY7UQjcdjFhcXVT6JTBf/j+IpaJr2OeDbwBlN03Kapv3D2WLwEU3TtoGPzD4H+AtgD9gB/g3wc9/v+wPYtqWaMdJH3u12abVa7xLb9Pt9eu3OLOKtQafVZjRbIZ26SHYOBALYM42AdJXJY5kUePT7fXqdLg5NZ35+nnA4zNbmDsViEdDxeQOKnDM/P8/ly5fZ3t5ld3efU6c2WFhYIhZLMD+/yMHBERcuXJoBY12cv3iOYjFPMOhnZ2+X4WCEZjjY3TvAaXiplBvs7OaoVlocH+Up5Mv4/QFlkllbXyGdTmJZJi7XO+BNmVMhYZ1S6NJoNMjlcso9KdVqkgItdwlpk67Vauwfn5ArlukOxqAbuDw+pSY1DAOnoeNxOwkHQ4yHI8bDEV63h16nTTadwuNyEg4GWF1eQrMtPB4fhiE8/hqOmRzdORuVady7d09AaPqCLiSmOT58Xj/Pf+Sj1JtNqhWBiXe73VjYjM0JY3OCwzAIx6IkEgmWlpbI5XKUyyVa7QZje4rm0BlPzRngVMh7z5+/SCGf59TaGmdObxCPxsidnPDmW2/xb/7tvyUcibC3v0+v36dQLDIcjXC6XNTqdfq9HpY5xTB0hoOeCtY1DIPp7LW00Ol0ekpoNx6Zs9OaAeiqdyATnqSBSTpWZW8IUM1FqWCUqLaHFYqSuiVFRxL/Byi1rMxBlQnq0jov+w7yfngYA/83Pf4204ef+hv+1/Pf5Wtt4B9931Xgrz0kdkyaheTFubi4qAAllmWhM6VYas/wWsKaevPtW6L7GvLj97qJhgWkpN/vg2VjTy2siXjTBjOPgcsQKT3JZJKRZaDrBgsLC3i9fibWlGQizcraKrpuEE8kqNVqbJw5xeHhIcfHJzMox4SPf/zH1Q24v7/PBz/4QTa33+IrX/kaxdKA0XDC4vwCum4QDoR568Ydstl53r61zVe/9HUee+wR3G4nhUKJM2dOE40GaDbr1Os10pk4LjcYmkclUiWTSWVokYlXe3t7hEIhFpfFRSM5iHKi4/P5uHnzJp1OhxdffFE4+twxRsPh7PjuQrfE6NXnduF2OXDpNrptsnF6HZfTQafTYXVlifF4SLVSmoWuBtjavEs6nSYUTuD3+2nUW7OFfUggZJBOZWl1O7z88qsz0K642bOZeSqVGqn0PA8ebIGtoxsOTgo5dGzWz5xnMJoAFktLiwSDftrdDjdu3CAdDtFpNHDrGp/+uX9ENBql1e5y7959kv0xlm2zvbfLE088wQ//8N/hP/yHP+XKtatc/9a3+OQnP8kLL7xAu93mp/7bT/Grv/qrPPLII6yns5TrTSKJFMdbt5lfWmZrc5NqUzAU3V4vY9PENC10l7hlpGV+OrUVq+Cdml8QoEUvRHhRFhYWFB/hypUrqrRwu91cu3aN4+NjJR7TtHdyUJxOJ6VSSW0I165dE7g4y1KNw0qlonwWkg5dLpcVnFdCiw3DoNlsisXmvW6IAhTWStbMkq8okdg+nw+Hjmqi+DweprOmi1z95PjH63XPtORTJpMR/UGXsBnA7/dijicEg34ikRDdbhuHRxyF05kMiYSDTr9Hv98nl8vz0ksvEYlGqdXqZLMZ9vb2iEQiLC8v8/Ef+3G+8IUvqBFTt9vF6/GzsXGKVCrFgwdbTIYmt269TdAfwhxZLMyvcPfuPa5cuozX5aTV7GFOx+gOQdxJpaM4XU66vRamOabdaRLwuBS3r9frKfutDH2RUI3NzU21m0iK0PHxsYrik/Vqr9djrE9xGC7cHh9OQ8BAHNZUpQ15PB6sqUmv3eHcxhk2N+9jmxM0y+bU2gq6rnPjxg0WFxfp93vKo7+/v084HMY0xZze7fJizoKBZV2s6/rMugwbGxt89rN/QDjgxWbKuXPnmE4ndPo90DUWFhYJhEMUTnIsZdP0xgJZ59Tg6mOP0Wg2WVtfJxiJU2u06e0fwlSMQD/87PP8i//lX/B3/+tPcOvGTVqtFr/8y7/MxYsX+fSnP81v//Zvq8Ceo6MjhcQbj8eKcBWLxeiOhIR9PHMaOp0G5tQm7A8o9P506mEyns5KOs+7KNwy/GU4HHJ4eEgsFlMaBTlql9Qmy7KUIe7hyVQikSCbzXJ0dCSus1nzeW5uTrFM5YlgNJqVN8GgCP+Nx5Xhbn5+Xp00NP09vii43e7ZzVcjEo0q6e/Ozo6AhkyndLpdUqkM85EEvV6PZGZRdGzDSU6fPo2u6xwcHGBoHhbm17ieu47XHyIYidPpjVkLZui02ixl50nF4/SaNQaDHj2vuMFqrSL7+4f80A/9MNs7+6QzUZaXF7l16xarq6u879oFtGFb9D1CHr7zza+iDdu879FH6XZFzNnv/M5v0Rh0FPxkMBiwtrbG1atXCQaDvPjii0SSHnaO7/LY40/x4MEDRpMBr77xBt9+6w3m0hk+8fEfZTQasbwQYGVlhVQmILIpLpylXC4zvygyDx57/Enefvtt0hknb775Jul4ikq+jtcvtAmd9pA337qD7nZy/8ED/MEAnd6QUChK1BEUwJNEGtu2KRdLZDMLVCoVHEOYz2RE46o3Ib0QoNxsk1lawh/ycmfrPsFgiOHUIleqCoHVrRt4fT5s3YE90XE6DVxTF7tHB3zgg8+ys3cAbjd6z4897hL2x5gMTH7mv/l7/NVf/SVzC1lyuSNOCiXOnz9P7sZNnn76abY27+OeTJmPJvDZDnrDCdn1BXweF7Vmg3Y1jzU8zb/73d+jPxqxtbvH8x/5CP6gwa/8z79CIBDgdz/zh9QbDU6vLYLLRalW5/9+4d8LDoLLSTIaZmdzi77fj2HoHBZKFKotzpzZmAUNh6g3WzhsJ4Ou4x3fQixKr98Fc0w4EaLcKDPVIjg9MQzLolLNEYvFOHPmigq6tSwxdZKBuEtLS8r0d/HiRaU3kAyQjY0NHjx4oHJEZMBxr9djbW3tXZg9j8ej/DZ7e3uYpok9mTJ0exn0evTtLqlYAoetgWmha+9x74M5s0TXajUWFxdxOp3s7e2JlbrbZX19fUbAzStyTS6XQ9d10um0mjTIiPlnnvkAR0dHjCZC03/tkSt0mi1Vp7VaLWKhEMFgkJ4h2AZTxoqOD6sAACAASURBVHz42Q9RPMnjc7qpVar81r/8TT7/+c8LoYhTI7uwyOVrj7Czs0N/NObilavEkilMG779ndcJhCM4g4L2JBs6o9GIF198UX0ejQqF2+3btzEMg0uXrvD2zRsKifbCCy8IqGm5KObSdwfUajVKlTqFglj5Y4kMb916m8ODIxHm0mhjTjSGE3Fq6XQ6lMpl9vf3sTSIJeIsLCzQ7or0pmZLuCLlbpTJZNja2uLHf/zHuX/nLvF4fEacTrC5ucmlS5cYDgdMrZGCtYSCEZpN0dsxZ27LWr1OKp0VwNBAgGw2qxpkkjAkX5NPfOITfOc731E06/F4zFNPPcUbb7zBx3/sx3jjjTeEN6LXxTB0XDoMxyNu3XqbRDRKJBzk4oWr/PsvfJE7Dx5guJyMrSkvv/oK2/tHhONxOsM+gVCE9Y3THOxv8ciVq+ho7O/v49Qd/ODf+SHyuRNCkTB3b99hZWUFl9MzY3L6OHV6g+6gj9vrY2t7m/5sciKTvWS5K65JB9hTXC4DdzyKxyOYFa+//rqaCHi9XnVjj0Yjhaz3+XxkMhkRR+dyCfHYTBUpaeaSlCXHyoCaTMi8z9FopDJBgsEghu4QorxZItj+4YFigdrfYyb5noCsaIjkoNOnT7/LzbW1tcXGxoZyRcpfSGq8h8OhqqXa7TaGYTA3NzfLPrDVG9ZqtYjH46rmCgaDnDlzhgsXLjCXyWCZJrY55f69e5QKRQ4PDnjkylX+2a//On/3p36K82fPks7McenyVYqlCqFwlKklqMR/9fUX8Xj9tNpdMlkR6ZbNZnn66ad58skn6Xa7rK6u8jM/8zP83M/9HOl0mt3dXQXFEFLYkAqFcbpcVKtVXnvtO7x6/TWK5QroDobjCW6Pj/5gRKFYYnNrl1qjycQEry9Ardul3u5QaTQ5LhQZmVN8wRD+QIj1tdMMB2OYanicXoXTz2QyqvmYyWSIx+McHR0Ri8WIRCKKATgYDBSApdvtquPo/8PcmwZJct/nmU9WVVZV1n1XV/V9d093YwZzAJgZAhgQBCiSokCQIlf3ilyJor0rWbIlOeSVvAxJQcV6l6uw5dUBWTZF0RQFS6IhkiABEAQHBDADzH10T0/fd9d931lVuR/+lQnAQVBa7YYD9QWY6YmensrKf/6O931e/bqoqkpDbVGpVg0BWrlcFgMwtwdzTyrudDp7MfY2fuZnfoann34an8/HpcuXmJycZHFxkSeffJLLly+L8J+eBkCAdToodictVcWqKFhtAu+/uLxMuVFjP3FIvlRkdXMLWRGsxmw+T6NVZ2Nrk7HRCV6/fIlKrcra2hrFStlox1qtFi6PG6fTSSAQYHh4GLdb4NJHR8eFSpE3w1nNVhFlqKdteb1e4vE4IG5U3enYbrc5PDwkk8kYwCA9Qbyvrw/gzaF5uUyhUGB9fZ1kMmnYp10uF4FAwAg1ajQahntWx+PpbZC+jrZYLPh8PpGH0rPW6zh/HSjb/QHW6XdJQtQffPY3/vn/Yqix6vW6YQ++evUqExMTbG5uks3mDOilnutQrVaNXe/m5iY+n4+21kW2yuwd7NPVuoRDYdbX1ikUcvjcbnweD1azwJ91220+9pEnqZYqpFNpJkbGsVvtjI2OUsqX+S9f+QqrK6uMz0zz0vnznHvve7l5e5H7HjjN2MQER+YXKJTKjE1MkCsU8Ps8xGJxtrd3SCaS9PcPkEgkWVxc4trVa6gtFbWlMjI2SaPZYunOEuPjE7g9bg4PE1jMFirVGl6vh2vXrrO8tk4ynWVze58r125Qb6rcXdnE4fSws3dAOltAtinkG3XqzRaFcoX9ZJJmq01XMqHYHUiY6OuLY5NtaF2w9OAr5WJJfKg9Xk4cP47ZbGZ0eIQrV64IvqHLi9vtottt02jUDVFYq6VSrdTI5fI9MpMgXrXUNrLNhkW2ksvnMZstDA2PsLW9g9PhYKA/9haIaYnFxUXW1td49NFHWVpa5Fd/9Vd57rnn0CQTtYogSLt7EXf7+3soDgculxvF6cBmV1jd2WZ1axNPIEA6X8Tp9dLqtDlMpwhFo7h9Xkq1CharBdlkYmt7hyNH5nG6nNhsdvZ2d5FtMjtb23Q6Xe7cXeaBs2c4du9xGs0me4cHVOt1Uuks6UyGZlOl2eNfunr8yVqtBlqHWCyGSRKbtFq1Ymy8nE6XIUDS4wrL5bJhknK73TgcYvvT6XRYWVkxoK+FQoFqtWpAi3Xpsl4pWCwW45DQU73eGrNY71XOSi8H0+VyGXOKZ188zz/7le+fOv2uqBSQBDUoEAhw4sQJgzNosViMYFidFKTruPUTUF/z6JNbh8NBpVI2AK+6Hz0Y9OP1eolGo704OdF7WyQTa8t3KRdLvOf0GdwOJ3Q1um0BPvU4XbTqDf72q8/wP/7sp7hw8Q2OHjuObLUjW+2kMzlsdgdmi5X3PPiwMUA6ceIEExMTXLp0yfBq6EDWfD5PJpPpYc26PPvss+zvC16iZBEp2LV6XfTpWDCZbdQbLba299g/SFIoVsjmCqTSeaw2hUq1TrlSo1xvIMlWFKcbyWzBZlNwuTy0mm3sNgeybEOWbcTjcYPV2N/fj9Vq5bXXXmNmZsaAjtZqtbf1t/o10GPwdLGN2+1GtlmpNepoEkbcnv6++3rVglNxGEE3kUiE5557zqhWlpeXOXbsGE8//bQxKJNlG1JPRl4slBkeGqVUKtNFQsNCrdniMJ0hVyqTyRfomiQk2Uqz3cHt89LoqHR7n6tmq8XtpTtMzc5w5+4ymUyGXCGPN+AHTEgWM9VGnbm5eUqlMmtra2xvb6OqHbLZrPAhNFq0NeGdsdrsxoDb6XQa1CidSaHTlgqFgtEe6C5JwEjx0mEroVCIYDBIJBKhv7/fGAhPTk7i9/vfhmjXv4+OVwOMp7+OH/D7/fT19SHbrMg2ETRbKBUpVcooTgdur4d2551Xku+KQ8HaExMlEgkuX75sEIn0fiqZTPLGG28YJVA4HDZ2svpk9/DwELvdztbWFhOTI/gDHhrNCu12g63tdSM38c6dO6ysrPSMRVVskpnNtXXajSYH27s0e2Xu4q3bxONxjh07xun3nOVTn/oUly9fJhKJEI1G+bEf+zFCoRAf+tCHDHJQMBjk6NF7UdUOiUSKfL7IwsJRHA4XNpuC1WrHbncQDkfJFopMzszS1rpIJgs7u/s4XG72dvfJ5PK0Wm1CoQiK202xWiWRyWGxK7S6EolMnoNUFllxgcWG0xugVK4Siw8QCIQYGBqm3YV4/yCTk9NIkplmvUWzoSJbbIbzU5/HZLNZ7rnnHl5++WVUVWVmZoaBAeErGBsbw+VyMTExYYBjK5WKQdpOJBJ0ul2SqRTRaJRStWLkO3hdbs6ePYvW6ZLLvJmJeeLECSRJMuYJDz/8MD/3cz9nOCjL5TJmq0wuV2A/kcSmONhPpmh1JZptjf1UhkK1iWS14wmGqakdhienqLdaDI+NYbZaCUfD7B/u4w/6abYamGUL+weH1BpN7qyusbyyxt2VNRrtDvlyBbvi5J7jJ1DbXSrVOoVyhUq1zvrGFvWmKmC5dgdWm93gIlitVjweD4VCwVB56i7JZDIp3KKNBslk0sjm0B2S+qag3W4byVH6gaqvKmu1GgMDAxweHhrZHPq1GxkZIRwOE41GmZyc7EUiFIxcER18rOdx6nGG29vbbGxsYOulS32/17ti0NhSVQ4PD3nfhz9MZnfXsMvq4Rj1ep2hoSG2t7cZHR0lHo8b6U9//ud/ztjYGIFAgHw+Ly5WPkunozIw0E86naFcqpDOJFFsDvp7se+6WMjWC+gwSaLH0mPUnG4XNruLTm8gs76+zsLCAsfuO45abRowDJ28s7q6yuuvv04+e2gAW/ULqNN+9ciuQCBA39AI58+f59y5c2w514zIOJtiN7BtktrC4/GRyWRot9uMjIwZ2oNGo8HMzBFsNhuHhwlmZ2bY29sjFovRF4myurSMq9cj9/f3Y7KYjXmGV/Eb76Heiy4vL3PixAnKvSj5U6dOUW+baDYFTj6dTtPuNEilUmi9UBRJEuEy2Wwai81KvlQ0Yux1ebTH6cJutVLprcJkWebMmTN84xtfM/IJpqen+dznPkcoFOrh43thtV3BkizXqihOF6GQg0q5iEm2Eo700c4mCYaE/j+bySNZzBTKoiVaX19HkiTjvZscnqRer7OzvUk4FKRcKOIPBvAF/BQLOUbGxzDJFmZmZlAUha3dPQ4TCQKBEKVKhVxBPGnNZpm+mBOrbDYkyzoZS3eiCiWizyAr6UNAnZmpU6R13qiOc3O5XG/jLS4vLxuuRkVRBEm6d5hYLBa2t7eNFa9ugtO9Eel0mlqjAaUSFqsVi9XK3sEBXSAQDP5/s07/93hZzGa8Xi8XvvMdgsEgg4ODxlQVYHNzs6ce0wwBhn5q/uiP/ii3bt3i2LFjbG1toSgKFbWKz+9lbn6ar/3dBl6v8JA77CLSO5fLYzeJC9Gwgi8oIsmbmoaGiXK9jiSb+eGf+ikONoRH3R0OQKtFvidZLRezWC1wsLfF4f4209PT9EUCzEyNGU+DtbU1pqamKJVKfPvb32Z4eJjr16/TaLRYunOXvlg/V65exaEoVBtNWo0Wit1OvlhC0zo4OgqZYpl4PC6YCLt7PV17i1azyfrqGmazWZSl9QaDoTBhn8h9WJidQTZJXLtyGbPZLA6LeJQ7d5d69mbNYD0GAgHaqsrx48fJptKsra0JRBrCIdnpdLh8+TJj40O9ktnFXvXAGB42u22cbhfVeg3ZYiNfFKnO9WqN0eER2i2VaDBEo1NndnaWJz7yAT772X8tsgo6Kq+99hqbm5ukUim8Xi+zs3P4e96QYi6PCtgdLhLpDOFAEIfDQbpQQXF5Wbp7l/HxUeYmJsnnRWamRod6vYbW6RLvjxEMBrnw2hsi6i8QRO3JmovVGodXr3P/qRP0x/txe3xIiDSutfV1TBYZk7WJ2uv/TRYZtbdetHgU0Zo0m9hkUYWWu23sdisCCUsvaMdk6Ap0MtPBwYGR0qRTyovFotFW6IeZfoDotmt9ZhAKhbh06RIgSEu61dpmszE5OWmY65xOp/Ez6oY4XQb9rsex6b1RvV43AjeTySRDQ0PIskw8HueNN95AkkwGxmtnZ4elpSWcTifT09O8+uqrWK1WSqUSuWoar9fP6dP3YzbJfO/li6TTKVwOF4pZRjaZ3zKVFW1IpwtOvx+Hy8NHH3scUw9EEYyG6XQ6JNbXuHjxIgBLS0tEIhEymYwRfxbyefnQ+x9neW2dRCJBMBhkdnaWxcVFUqmUoT8fGhoiGAzyvStX6XQ6LCwc5WtfewaP243VaqFeNyNbRKpUp9NhMNZHMnHYE3C56DQbRPxBOp0OQ3HheCuVSoR8HmrNBjYgn8ngslqxAKGgn3qzgcNpp6O1aXdVEokEk5OTmBFeiuRhgqnJSc6fP8/k2Dgmk4nDw0MKVZWFhTmuXb9MNBpld3cXr9dDo9HslboCctNsizJ4YGCIQr5EX1+celWs74ZGxYpycHAQr9vDxz/+cX7nt/93Q3r7W//6t/jUpz7FmTNnuHXrVi/A1sLW5rZRiiuKQrPVIRYfwG4XAa4Ws8z21iYT41MoDhvJgyQTE2MCRrJ0g8G+OIVCgYmRYV5//XWGR8dEpdaoIyGRSCUJBvy02iq+YIBIX5RkOkU+k8XldtMX72dlZQV373BK5fI4XS7sdgfegB9Tp24EvApPSg3sogXweVyGIGph4ZhQXRaLbGxskM1mmZmZoVgsGjRr3QRVrVYN09309DQAW1tbJBIJJEliamqqNzOrGFzIjY0N6vU6/f39tNttEomEoYCV7TbCjggOl/BSeHwCQhMIBQ2Z9fd7vStmCpqmCXoQGINAPdnG5/MZ5bge0Q4YZOJAIEAsFjNKbl1GOjExZhB1dU6dPqnVraiFQgHF5WR0bIyRsVEikQj+YID19XVye3uUc3kq9RovfvclTCbw+TxUq2X8fi+ZTIpIJMTExBjb25tcuvQ6Pp+HVDLDmdPvYXZmjqHBET765I/y3kfex8jwGNFIDJtVQbbYCAZCZPI5SqUS9933gOGgEweUAIKK1V6JcrnUk6mKAZ7Dae/tuxuGE3JjbR27WSYWitCo1jD3vCRTU1PYbDYajYaRnK3H0DebTex2u7F+1FWToVBIEIo6HdbW1oTiMxrF1dsE6KsufZKtdjsoLjEE1tsHnRysNsBpV1CsorSen5/nxRdfNNK/f/d3f1cEBt+9a+QoZHJZIwNDTz6Se9Fupp613WpXjOi0XCpHLBYjHA4L92NXM7ZT9WoNxWan1vPO6INgp9NJsdAL4+1AvdVkYWHBWNFOTExw7NgxUqkUSm/qHwiEsCp2sTru8R51F+5bV4SqqhqZoKqqIssyoVDICNxJJpOAAMnoSeI6el+vhPVUaX3wqw8c9VV2Pp9nbm7O0MTAmz4K3ewUCoWMvFLd86Ov6Vutd/mh0Gm3sVkk/B4nfeEAG6vLeJx2pK5Ks1YmebCL3+M0es7NzU2Gh4eN/u/GjRtMTEwY0VyF9SK59QJyy8Ls2BThSID4cJSx2VGaUpdyW6XQ6lLvWpFrJvyOINVinWA4imQ2oXaaBIZifPeFb/C3X/oCe8u3efbLXyG1uomlrtLvCzE/Oc/Q4ASjo0f48Z/+NL/wP/8q0cEpPv6JJ4lEA8wemWRmdoK7K4t0tRb3P3CC6Zlx5uanaXcaxP0e/uknfxZaDdw2mV/5pV/EjIRVsWNzOGkBtXab3Y19WtU2c1PzBD0hhmKDjA+N8fEnP8pgLI6mtnDarMycuof11C57+TSSw4bD48VidWDBznBsnFZJ4+zxh+kPDHPm4bMcpJJ0ZRstLBw/8zD5hkpDstBWbGxlkzj6/ExPTxvCo52dHZrNJrlcznBu6mhxh9WFWZNBs2A2y3S7GqlMGqfbheyAvsEYLr+b3Z1D7DYXhXyFbtfEr/3ab1Ap19G6JoKBCH5fCI/bT6taxmqGSNBH8mAXi9Qlm9pnY2OZTOYAn8/OrVuXcLhMaDRJ5RIUyiWWVza5tbhCvWUmV2owPj3HxSs36FpklB4qPZFI0Na62BQ7JqsZk1XmW9/5Nn/ztWfI1ypMTEwQCYfJpNK0Gk2cioNoMMLsxAxOmxO11iboCTEcHyISCOJWHJi7JqROl06jjQUJta4S8PrpC0colUoGXt/j8RCPxwmHw0bg7ZUrV4TWo1XH43YQCvoEJ/Rgl3wuTaNeYX5uBokOil2mkM/QaUv0RQe4s7RKrG+Q9z36QzQbHTzuAD5vCIvZjtvlxyrZcFpdtKoqtWKdwb4h7p0/js1kN7JCvt/rXdM+6AEm6XTa2Nm6XELiqyiK4BTuJY2+S2cG6Cz8dDoNCGrSUGgQVVXZONjBHwoyNTXB9165QDw+wEj/GJFQlJA/hMPm5KFHzvHC+ZeIjwxxcHDA5Ow00ckJvv5XT5PLZGn3shss9TbZfA5fIEij1cRuFWWs2+02VnDNpngavfDCC2QyGSKRCFtbW0Z4h6IojIyM9HT2KpevXCEYDPLaa6+RzmaYnZ3l0tUrdDodYv1xwzc/OTnJrVu3OH36NNVqlZWVFUOANDAwgM/n4/qd62JXbjIJ1aMvSK0q9tXLy8u4HG6+8Y1vGFZb3bxTKBYMnT9g5HY2m02iYeEgtdktlMtFtrbT2O02Y2qu8wJNVpuB4Bc6fCEiq1aroInqb3Nzk+npaeN6njgpeJEAZrP0to2S7pjVhUGaptHf38/29ja1Wo3bt29z5MgRHE4Lw0OjFApC8zA5MWP4X0KhEHfu3Hkz79Hc4x9KoiTXeYVFtWgoCRcXFzE1VEOhiUlUbhZZZWnlOi21YwwTd/f3OH7sXubm5nj55e+SzaVFSG29jtUiU6vVsFjMhKIi3bpYFH9PIBBgb2/P2Fro16PefVOcp1vT9UAhncSkV8c2m2Ig2d663dC1DZqmGQe3rrrUE7GsVquoIMzvfOu/K8RLf/SH//6zHzj3HjY3t3AoTkySmWKhhNYVpOdGo0k2m8NiFWsaXc1YKBQMoISec1gqlWhWmhw9fi8m2czu3g5Wm5WWqiLLFhq1Fq2mSkft4vX6aNZLeIJ+AtEwJ888QKvV5Ld/61/jUBRMXY0Pf/BDqM0W5VqTwbExvIEAIxNTxAYGmJ6dxmq1UK1VabUaPP30VzjY3+XGjRsMDw8bk/zBwUEWFxdZWlpieXm5F4W3R7FUor+/X6Dse8DNkbFRFEVhfWNdQDs9gi40Pj5uyGLHxsaoVqtEIhFjIt0F9vcPGBkZoVyqEvAFaTQaeN1eTpw4QbVS5tSp+7hy5QpDo/2EAiEiwSixaB9SF4IBP/Vqlf3dHVwOB9VymbGRKcxmE1evXsZkkgyyUCAQpNVUaTaFb7+ptnuo8zfnQ2KA5uFHPvwR/uIvvojVasNqs/OFL3yBsbExfuEzn+Zzn/scwWCAcFjs6Vtqk/2DffoikbcF7OrtTjAYZH5+3ijLO73DKxYTaLuhIYEfAwgEhZHN43Hh8/oJRyLs7OxQyBdwOh34vSKyHg0qlQqNRpOhoWFq9RqZXIH17U2y+Tz5Uhm106bT1fjJn/5pvvX8twhEQizMTuFyu1hZXaPVrOP3eelqXdA0FIcCmnhoub1ew9z31rZMzyk5ffq0eKglU2QyWSQkZNmK1WqjkC9gkkysr2/QqDeQZStul5v1jW1DR/LWdiOfzxOJRIw1p77d0TH0eoBzJBLhr7/2LL/0y7/8fcVL74pKQdM03D4v8UGhT1AcDkyyhZ39Pfr6+rDYrFQbdZxWq1Eh6CenPmXV34RgMIhdUshk0qiqSDCKRCKsr6+jaTAUH0NRxNOuUMrT7ISIRSIEQ2GajSZul4eQP0ghm2eof4B0IoVJk+gbEuiziZlZzGYJb8BPPpfD7nTwvdeeE4Rmh4iGP3nypBHH9v73v9/gTDocQsBTKpWo1Rp0ul0uXrxIKBQyJLcmWVwSi0UM8UanB2i1WmxsbxEKhag1G7S1LleuXyNXLDA0NERb63JwcMDQ0BAH+wkxoFO7nDhxgksXL5FMpohEIly69DpHjy4wPDDI9773KhIyo6NjdDoa1VIZqasRDYUpFvOEQgFWVlbodoV7NZ/PoqEaq7FQKEw2K3T2XcmExWzGKst02sIINjQwSLVSotvuYJZMlMolFKebYMiPyQxPPfUU0O2p+pzUGzUjWVkXpO3v7xuAUrfbbWj733jjDT7xiU+Qz6e5ffs2fX0DxPoEpWh4aBTJpJFOp7BarQwP92M2m0mmRGK3bBahOqbeASZJprcZ2FZXBVQnmUyiIaFpEm6bFYdk4pmvP8PZBx+k0Wxy5cpVBgZEnoZDsbG1sYLT6cDpEBVkSzVh7wUJ22w2o6rqdrt4vV6y2SzBYJBms8nAwADbmxsG5FZXIZpMJkMXoudDvlXarAfadrtdQ/XY6XQMY1Q6nTboXIqi0N8vhqeKotDutN/xfnxXHAr6BmF1dZXBwUHjHzI0NISmafT19YkPSkN9W1afLpl1u92cOnWKnZ0dnE4nQ7Fhsc/3OFHsVuoHFR48e5pkIs3tW3fJ5fL43EHKtSqNZonHnvywoYG/ePEiI8PDVMsV3nP/aXa3t5E6XdzhCIODg3Q7beGFT6dYXVmmWMxz/wMnqZXFAHRocJQvf/nLxCJRPvwLn+FrX/sah4eHXHjlVYaHh6kUSwwNDWG22uj2gkmXlpYIR8WTzBsQXMZWW3gKkslkz7Irk0gksNvFoCsejxsy2aWlJfz+IEtLy9x79DjXrt3g1/7Fr/Lss88SDUWZmBinXCpxZG5WBMEGQnz8iSe58NolGqVKT7kn2q+h4X4KqRSS2sFkN5FOZxkaGqJQyOF0ulDVFvl8gQfun2R62sLt27eRLOKp1e1igF1yuSzz8wtoCLJxJBLBapMZjPdjsVg43NvFaVeolAo0akIIJXU79IVDZDMZ/H6/sa7TU7B1O/iTTz7Jt771LT784Q8RiWSMNd2tm0uGMa5aKxGLR9nc3DaEWH3ROBJQrZYpZHPIspmO1sblclOv1/m7Z74GNrGqbrYErblWb3KYTTM8LD5TxWqFRqNBULGTTGcYGuinWi3jcHnw+jxYLWZMZpm+vvjbDrhUKoXL5TJ0K2azmVwuRzabxeVykU6JwNpyudqDrLiNGc74uEC7pVIpul2hiAyFQuTzeRYWFgiHw+zv7xstm67wtVqthqlQH8LHYjEODw+xyu8sXnpXtA9/8G9//7OPP3wGxeGgv3+AfKHA1NQ0xVKJbC6Hojgolcp4PKI6cLvdximoT1dDoZDR26ezGQ6Th5w6JcQ44aAfl8NNR+2QSmfxBwLIVivvffx9LJy4l3yxhMlkZmdrm/3dffoifaiNlmhhOhrTUzMMHz2CqrZZWlykpaqkUgkikTA+n5drly/j8XhYXLxFvdbk3Llz/N0zz7B4+zZ3l5fZ2triJ3/iJ7h58yYSoqctlMqGWUuSJGq9wJr+wQGhj6+Ip+bCkTmk3vop2tdHsVQy3HZ6rqTabqOqGqFgBNkiBEXNXpLxzvYWnW6beKyPSqVMs9nA5/Pw10//NW21Q9AfZO7IHB63m6XFJaamJohGwty8eR2H20+9XsNkglqtyt7eTi/Ny0elXKVcruB2u+mP9XG4v4/H5aZcLIKm4XG7mJs9QjwWY2tzA6ts4QMf+ADFQoF/8plf4PLl19G6HdwuJ8PDA6yu3OX4vfdSLhVoNJrMzMwAGFFpbrebS5cuceTIEZaXl1EUBZvNyubmNi6nB7PZQqOuEg5H6HY1oIvfJ7B5icQhVpuDcrnChz74AdLpDLLZzIkTJ8nnstRqdQqFPDarjVq3QxcwyzKYzJjMZoLhEJgkOloXVW0gmTTUegvZIlOpVjnznrNYzGbKpRKyTcbn8dFSVbp0DYmy2+2mhyTpugAAIABJREFUWq3S7XaFXwJxcx89epSBgQGKBZEHortXdSCLfhPr/MVCoYDZYjVEfbpKUudvejzCyLW/v0+5XDYozs1mE6fTyfj4OE6nk68++xy/9M++f/vwrtg+IEkEwxEyuTzJdIZcocjm9g6ZXJ7xySmaapu9g0ODlJvNCpGKPvRJJpPcvn2b3d1dw7UXiUS4du0arVZDRJG7nQQCPoJBPysrKzzyvkd58cUXMPXSenQY64kTJ7BbrUxOTvLGG2/w4PseJRiPsbchnmzWHgm63W5zcHDA2NgYI+NjjI6O8sgjjzI8PMx3v/tdw849OTmJ0+nk+eefByAWi/Hwww+LhOoeGEMfBnm9XiHYKRYNFWSukMcsW+iikcll0SRhIa43G9QadRqtJk21ZaC/Dg+TnD37INls3gBr6E8Om02m1Wrw6quvGrOMVqvF4aHwXUxOTtJut4nFYkZe5EMPPUQqlcLj8RhJ1uKGtBGNRo0VrziQO711ZafXcuS5efMmmibK29OnTzM4OMj3XjnP0NAQfr+faDRqxLFfuXKJra0tIpEIV69eNVB8mUyGvb09PvKRj7C0tMTMzAznzp3j/PnvMTIywszMLLVqw3AeBgIBHIoLj0fYlI8fP2kATq9dvUEkEmFgYIitrS1y2R6JSDLTaAi9SrujGSg0HVNnRsNmMeOw2XEpwsugdtrkiyWuXr3K6uoqUzPTtNUOO/t7gmFZbxkrSX2dWKlUDDSaoiiGRN9mU7DbHVitdoLBMHa7A5fLg6I4CQbDKIoTMBEIhAy0njBcOSmVRCJ4Lpdja2sLk8nEcC8bIxaLGRRp3Wnpcrl+YEKUpP2AL/73eh1bOKJ98+kv8NprrzE3NyegoZEI6XSa9fV1jhw5gqIoJA4OGR8fJ51Os729zQMPPMDi4iI7OzsMDw9zeHhIp9PhQ0/8CMnDQ1793suEw2HQusTj/XQ1M8urW/yb/+PzxAaHOThM4vMFeP/7HiOfyWLFxOz0DPefPCXKVq+btY11IUd1e3n11VeZnJxEVZvce+I47Xab3YN9bDZx0S9cuEBie5eBgQG+9KUvMTk5iSRJBAIBtra2BAuy57voyjKjY2O0Wi0h6241OTg4wB8KAuLGN5vN+JxuwyJut9uNQFKdiKzLY8slkdFw/Ni9ZDIZGvUahUKOe+bnqdUqOOwKSCJzsNlq0WyqPPieR9jc3EJRnGxtbYhJP23q9SomE2gWF7dv3yQY8rG2toLarqOqLebnF9jc2EaWBSFLQj/YxFxnZ3uPmZkZWq12T38hDscf/vCPUK1W+fVf/3VUtdWD1Epcu3aFubk50uk0/f0xMvmSYYnXNw96EK7+lB0bG8PtdlMuVUmnMyh2JyBs9+l0mqmpMZbvLjE6OsLlK28wNDzG448/zn/6sz/j1KlT3LpxTYTnFvLIsiwYB40aak+DoXV6wzqtI2z7ahNFTzFvt3E6fGidLmaLhKLYGOiPA106ap16tUY4EkJRbFgtJmZnZ/H5fIaGQJ+R6FSlSqVCJBSlXC5zcHBgAFOcTicbGxuG9XlxcVFI8+0O7r33XoaGhtjf3yeREOwNs9lsVNL5fL6Hnq8aYJjh4WEDy/aZX/9Nbi0tf1+x87uiUtA0WF1ZZ3JiGrfLS7OhkkpmqNeaxPr6CQbCVMo1Fo4eNaas/f397O3tGVBNXZji9/u5ePEiX/rylxkZGcHpUDBpkM9kaTXq5PNZFhYWWF1fY3x8nPn5eVKHCfLZHE5FODKz2SyrG+uY/D5qjQZDY6P816e/wsLsFM1qCa/bTTadYXt7G4fNTjw2xOFBmjcuXTOi2+bn54lEIoyMjLC+vk6tJqLLh4eHmZ2dZWJiwrCJ68IUPRfQarUyMjJCIBAgGo0iy7KBm9OHVrrQqFgskkqleM97HsJiEYGtLpeLvr4+IwpvcnKSvf0dY8hUbdRJ57KkshmSmTSZXA63z8t+4hCzLNOVQDMJZsXCwgLLy8uMjIwQi8UYGxtje3ubcDhsRPSpqorUS+KSZdkofXWXq90uoK5PPfUUX/ziFw1/iY7vn5qaIplMMjk5zv3332+ARvQMhJ2dHSwWC6urqxQKBVRVFR6BjLih1ZYA9eorvOHhYa5cuYKEmd3dXYaHRnE6nfze7/0eH//4J1heXmbuyEKvOvMb0QAmk/gc6WG8jVpNPIUVB16XG6/bg8vhxG6TeylUYDKLRKhSqcTIyAiTk9PEB/p7a3MM/Fk+nzeurdPpNKoHWZbx+/34fUGGh0bx+4LYbQ7aaheX04PNqtBpa6CZcDk9eD1+I3TZZDIZIUFer/fNIOZe/oNe2XV7yWhvXVF2f4BL8l0xU/h3//b3P/uJJz9MXyyGy+2m1VYJRcJIJhOr62tcv3EDn99P3/gYG3fuEA6HjQ/T+vq6YQXW33CT1UxLbWK3yszPzdFpqdy6dZt6o0lXEqaZUKSPw3SCB06e4ebVG9TKVdFTlqscO3GCI2ce4NqFCwyMjvCN577FI8fvxWYxo3U6HOztYrFYqdWbTNyzwHdeeIl6o8nP/+I/QeplNei8xHa7jcvlwmaz0dfXRyAQ4ODgAKvDQVfTDEGNXVGEVdvrFRSqXFY8lTodgqEQqXQayWSi0WxiMptRO22q9RqdbheT2cyVS9eZmZkhcZjE6/Xg9/k4ODjEbNLY29vh4YcewmyWaDYbxAYHeeKJj3Dr9iLz8wssLi3xI0/8CCurq3TpABrLd+9w+vRDfOlLf8Ho6DDBYIBGU+zeBwYGqJSrlEplstksEh0atQZej5u22uolYCep1arIFivxWIzpqUn29g9IJhOG8MlkhnA4SKvVYmpqgt3dXdLpNIpD6BNu377N448/TrVaJZ/PG6CcU6dOcf78eUZGRrl9+za2XtDu5ctXONg/JJvN8EM/9EO4XE6GhgTePh4fxOFw4lDshEJBquUKnW6b8bFxJAnDityRzEiA1AXZasGjOHC5FCRNo1Iu0qxW0TpdOpoFm83aSwaz09U65HNZEocHVCpluprYmkxNjhvbJd08VS6XDby7Dmfd2d57G++gXBZYP6X3uahUKgwMDBAIBGg0GwZBTPgrNAYHB8nlcgaXMR6PG+2jJElMTk6KyqhUwmw281+/+Ty/+A4zhXfF9gENw5Ou76Cj0SiZTIbh4WEjRHUwJnpGWZapVqvs7e0ZVCVVVbFYLAQCAeqdJo899hgbvVJ9Z2eHe+65h5u3l+iabZw5c4bf/3d/SLVR58aNGyQSCXxuD/FoH1NTU6J1Wd/k2rVrKF43bp+XSDhILl/k1o0bPPmxj1Go1Ak7HNAUUFWXy8W3n30RuV0lGo3yl3/5l4a33ePxUC6XuXFD9LOKotB+SxyY2Wym3mwYNnG73Y7b6zHWkpFIBJvNxvDwMHt7e3Q6HWPzommCMHXkyDxXrlzh/Y89zvLyEjarwNNPTo4BIoFIV9Z97Md/nOe+9QLVatX4sF67dk2U5lKHZFLExT/33HM89NBDtDtNw925s7ONz+fvYcdHuHDhgjhsGi0j0EXPLCwWiz0I7h7lcpm1zS2sViuVSoVA0GfYpG02G/v7+wbC/OTJk9y8eRO/388rr7xivEd6y/Tiiy8yNzfH4uIiTqcTv9/P0aP3MjY2wdLiHcqVEslkkuXlJcKRAG6323DYCqm0mf39fTLZFLLZQqUiID3xeJygWVQLtXIJi1nCabfRabeoVSs0qxU6Jk3Me8xCoShmW1Zk2YRit+PzuQgH/b0tQM2YGemCLJ3epM8WALxeL9sbe8b7pStF9fxI3fnYbrfZ3983Phu6vFmWZSMsWK8gdQjt7u4uo6Oj5PN5I3+iXq//QEPU3ztTkCTpPwI/DKQ0TZvv/d5ngZ8H0r0/9q80TXu297XfAP4noAP8kqZpz/19Z8LCkWnt6//5KbFWunULVVUNpkI0GmVxcRFN0ygVygZsRd/J6oq1vb09Tp8+Tb1eJ5FK0u12uXnzJrOzs4ZWvVAoGDbWmzdvoqoqV29v8cRHfpRMJsfZsw/i83i5ceUylUKesNfN5MgQ95w6RbtY4vUrV2l027S6Xaqqyoc/+jG+853v8thj7+fOnTtcv34dv9vF1NQUmiRx7doNnG4XaBKr62v4fAG+893vCq97R3gGvH4f127eQDKZsNllknsH2KxWIn4/dpuNZKmK1yfQdHbZysBAnN2dLaGvd4iniCjXMRiQ5XLZ2FVHo1HOnj3L2toaPp+PjY0N0okiVqsVu93KsWPHxHTf4+Kll17C7Xbz7W8/z0MPPUT6MGHo9qvVMorLSSKREG1Op2V4SaqVvHHAhcJREokETrebzZ1tAn6xP9ckmJua5/btm5hMgNQxhnnNRpehgVHCoTiZdJ5EclX4GGRFwEBMFtROF18wwNVr1/D5fMQHYrSKOaKRGHc2NnE4vewcJnH7vLQaNc7ef4JKuQBqTfwdXXGztxpNdre3GRsb42BvH6tZeCUURaFeq2GxS4ZgSh+WFgoF433W3Zs+t+tNu3JHpb+/n1APftJRmwadeWg4Rj6fF1ua/n7Dsq7ng5rNAqFfKecNTmd/f79BS1JVlVKphM/nw+VyiTWtx4HFLA4CEOa14eFRJEmirYq2wO12c5hM9hKqBQ/j/PmXKJVzqKrK55/6MmubO993pvCPjaIH+H1N0/7Pt/6GJElHgB8D5oA48G1JkqY0TXtnIBxgMQsjR6lUIhqNGjgpnUnn8/mMQYrdbieTyTA+Pt5TojUYHx+n3W5z8+ZNLBYLuz3RUywWo9FokE6LPXM0GqXZbDI5Ocng4CBLS0ts7GQpFnLEYlHq9SqlQp5SqcTs7AyPPPwQL379GdaXlljf2CJXyBMbGSKVSPDRT/wPXHn9DZL7e/zB5z/P4OAghxvbNEJeIpEQ3S4E/V7yRZE0dObsewiFQiQSB+TzRbpdiXgkbMA5KrUy4cgwa7VVJEmiXK1RLJapdTWOHj1Kt6PxxsULyLLM4OAw+XwWkwbhsGiZ+vsHWV9fp1QSxGkQ/ezBwYFhrvrgBz/I8ePH+fIX/4pEIoE5EGBjfb33ZyXe/9jjvPjii8wfWWBjbZMjM1Pk8/meuEfqZXaa2NnZMiC4arNFp6Viki3k83k6HRFqQlfDLluJBENs7e7Q6XT4zvPfxu0R1GSNNqFwmEajwdjsOMlkmu3rV+jri+P2KphljXZHPE1rdfHUy6Y26dQzdGwtknslLGqXO7ev4faFqVWKhAMBMIPL4SWRTuBU7Lz48isE/T5kq5N4PE4sFuPcQw9x4YJ4L4cHh8QB4PawsbHB+PgoHo/HkM3rZPHt7e2e6EwM7Er5nPG01TmKjUZDbBYkzchv0MOARbBuxdj2TE9P4/V6BVC3VKJUzLK1tUWz2SSRSBhqRb366nQ6RnucSiVBk3pSZ/B4PMLT0W7jcQsMnNlsJpPJoGliuLy+vso9R+dZWlrCbP4BMIV/yKHwDlH07/R6AviKpmlNYFOSpDXgPkTC1Du+zGaTMZyq1WpGhqJ+iuq9lq5ilCTJcJrpKb16KaZjsmdmZrh69SqVSoUf/+mfZmttjc3NTex2O5VKhVdeeYV2u82tW7c4Mr/A9tYG/bEBrl69ylC8n9XVVcJeN7LFxvDoCFaXi8uXL1OuVjgyN0cul2NosJ9cJktfIMT29i6zU5OMTI+wviYMW0okhNVu58knn2B5ZRWrTeaRh8+xtbNNq1njG998lnypSKgvSqGU5+rVq9x7770oVhvrd1do1OqoZgHTOHfuHKVC3hgaeb1+ZJOIFtMdi3quQl9fnzGACofDgMCSraysiHJWA7/Hi8NmZ6hfxJUNDg5w8eJFTvZo1fVKlXyxjMVqB0lDcTppV9rE43Hu3r3Tq7yEWcqEk06nQ7UhYtmV3kBL143orV2zWsGt2OlqXRSXQjgUIpkS8XabO7todKjUykQCAqK6u7tLJpNBtppxKg7UTgPFasEideg2qmCSObZwhEvXb3Lv8ftI5IvEBwfpYmJ4eIhkKsGP/8RPoCgKq8urrK2t0VZbJA8FC6KvL0pff4zdrW0cLgfNVsPYbnQ6HQOKopOYdQFQt9s1HJ1vnRNonY6oXjvCgaivHIvFIh6Px0C69/f34/P5jOAe3VWptwi6W7bbc8sWi0WDsah/fiPhKMFgkMPDZM9nYTV+Fh3wYzabMJksZDIZkslDRseGe0Nhcdi80+sftJLsHQpf/2/ah58FSsBl4F9ompaXJOnfAxc1TftS78/9GfBNTdP++gd9/6NzM9rffuH/xmazGYYZPehCN+jcuXOH0WEx+Z6bm+Pw8BCXy9ULJOkJf/r7KRQKpLMZQ+sdjUaZPXEC6nXUVovV1VWKxSIgpKIm2cV/+LM/54EzZ9nZEd6BkNfPwtwca3eXmJ+colgscljIsra2xqOPvY+m2haWWquNxOEhAaePbCqNbLHQNz5IMBTiuedewOVysXjnLmbZQigUYe/ggPFxQS1WHDJmi4WT951CM1u4fWeJl1/5HuViBY/Hg9NqRzaZKTaEcKevL0Ly8BBJkuiLRKhUS3RaKpKk4XQ6WVpaYmhoiJWVFUPAEggEWFtbM9Zoc3NzjIyM4LMLk823vvUtRkZGGBgY4OqVa3i9XuHDl2VmZo6QyKXY2toiFAxgMkGzJcQy2VSSQNBHuSyCaLRum2oPTGqxWDHJFvpiQl3n9vjY29vDZrPRLtSwKWI45/K68Pp9tNHY2d3HYrMTCIY5ODggdbCLx+0mlUpgkrpEQgEkrYsJMPWQQWbJRKfbolprMDM/z87ePidPP8jW3j6K28fVm7c4feYMVqsNWZa5e+0Gg4ODbG0JaM7m5iYWk9kQ9ug3pU2WjPCdYDBINps1Dl19M1Wv17FZzAZ2brA/htfrxdxb/ZUKOUDMCkJhL1NTU4yPjxths6FQCFVVOXLkCCsrK2INaTP32JSysbFwuVwUi0WKxaIxO5EkiWP3LvDC89/uZVM6yWQyxONiCJlJ54yE6f3DPdLptDHHUttNI5Lu53/lN1m8u/qPbh++3+uPgN9BBFr/DvB54FP8v4iilyTp08CnAWLRMPm8KNuPHDliZEjqrIDhkRFjX1sulwmHw4brUI9ir9fr5PN5mk3hdygWi4yOjrK/v8+rL7xANBolnU4zMDBAt9tlZWWFcDhMKnHA+vqquEjzR/H5fJw8dYqLr11ArZXZ2t2h1WqxtLLMqfvvo1SpIMtiZeaw2sgkU9SrZYb645w8cYKsWuVP//RP0TRoNGr0x6LYHApLd+4yPj7OztYGicQBjVqF0ckJLl68yOjUBE888QSzc0d46k/+A7LFQlNVaXSadDTo6+vj7t27+L2CRLW/vy+08WhkMlmsViuKojA2NobNJhyLly9fZnd315DU6v2oqqo8evYcW1tbWK0CBKpLxc1mM/fd9wBXrlzB4/EQ7hfuRpPFbKQeX7hwAZssUSmVkIByuSCemr2VJCC0FFWxgq1WKkaKVcjuQjZbMMsiqq9ea+Jwi8GyZpLYP9hGUZxoHROdtiSyIenSbKhYzRqybMVikumqbWw2BcXhpK/PhlmC8dERtrfWaTRUCqUK586dY/nuXSKxGHfv3iXuFolg7XaLO3cWBWG5WqXZqqOhEYmG8Pv93F1aNFgPeiaj3h7oSsNarYbVbDLYDHrb0FFVI6FLh7UCJJNJwuGwcS1u376N1+sFhHtScBCkN41evSollUoZzsh6vW4crktLS9Tr9V41kTYOGZ/PR6oX0KPLnGOxGA6n2Dr09fUZjJEflBD1j6oU3ulrvSEjmqb9Xu9rzwGf1TTtB7YP0+Mj2p9+/rcZHBwUFFpZ5vz58zidTqampoxQUrqS4ZK8desWQ0NDhg8iEAhw/vx5sYIxmxgfH8fr9fLSSy8Z4her1cr09DQej8cQw9TrTb7+zee5fv02P/zER6lW69hlO6dOnOSN117FabPi83mJDQ0imYQQJZVNY5Nlrl++SqVY4qd+8ifZXVmFdoer68tileRysrO9R6utIstW9vYPKZfLqN0Ofl+Qza1V2kjUmw1agE1RePCh93L16jW++MUv8hv/8l9xsLvH3mGCM2fO8PLLL2NG9OsBvxe/34cZQV1yuhSaTRFBVigUjPdVb8VCoRD1ep1oNEqlUmFhepZTp05x5co1PG4fu7u7TExMUq3WuX7tJufOnaNeryM7FeYXjvCFL/xHGvUaw0NxRoeGWb5zi43NVaSuhsvloFKpiX24BM2GimQ2iSe0zYbPFyCZTlGv1wk6RPJ3uVylg7C9x/v7yRVzpDJprFYZr88NbSc+nxeny0atkicY8NFuNpAAMzYsZituh5eqmmRkZIS9fRFcs59MMb9wlO+88iqlhorD7ePG4iLHj58kvbVBJpN5281RrlREBdNuG65DqdM2cjj0G1cPsNF6K2SbzUa1VDQYl32RELVajWw6TbVaxWLCCJSZnBoxWI2BQABN03j88cf54z/+Y4LBIHNzc+LvsJqIx+Ps7grxG2AAbo4fPy4+O6oqfk6Pg3yu0DuwPL1rLqTwDsXFyZMnuX37Nmq31gPeYAjBAn5hB/jIz3yaqzdu/f9XKUiSFHtLxPyTwO3e//8d8GVJkv4vxKBxEnjj7/t+mqYRjUYxm81sbwsM19mzZ41TWF+7RWIDuBoN8YTv8fz01U4qleL48eP09fWxub1lVBl+vx+Hw8H09DSVSsV4IuqDn1AoQDQcIhwOUsznqTdVAgMBnnrqKd7/6Htp1KscPXqMlfU1ZFvPRNLtcvfuXRSHjQ8+/jH+05/8EV63m6mJSSbHx0ikklgsVpKyEM843S4cig2bTSaRSLGyvITNYcPVYxPYrVZMZjOXLl2iVKnw0Y9+lGe//jW++tVvsLu7y/PPP8+pU6fIZ9Lk83kUxcbOzi7O3hpN0IVLxr9NVYWbUYfK6rMGfRW1tr3OxOwkIxOj7Ozska+UWNnY5IknnqBcb3Dt1m2OHz9OIptkc3tX4L3MFpoNlU5HRVHsSF2NbreNbLFgNovS1yLLdGXo9IZbojRvGZBStdvBJIv/Wm0KGiaWlpYZGR1gamyMrtYCk4mxkQW6Whu304Zs7adcLGCWXKhqG60to9idBH19yI5wj1cRF9DaaJS7y0tEQiFaqSx22cL46BgmJMqFPHTaeL1uWq0GZrOEbDXT6aoUyiLAOO6LEw+G31aNwpscxHq9bnAkTJogjauqanAeQoGAANpqYrbQ6XQMi7vubnS5XEYocLfbRVVVscb1udjb2zMqXr1S8fv9mEziIbe3t2d8D6fDRSaTIRaLiXmGJhk/q05v7tAw1p8Au7u7tJpi9tZsNt/5/v4HrCT/EjgHhIAk8L/1fn0M0RpsAb+gHxKSJP2viFaiDfyypmnf/PsOhYmRQe3f/OavGLiver2OoigsLy/zyU9+kvX1dRHG2ZWMXbXeZ01MTLC4uGhAJDRNwx8MGGVWIpEQISejo2xsbHD06FGcTiexWIxCocD1a1eoN9oUS1W++J//C2MTkwwPDIvdsEXGYpZwO13Ew1ExwFyY4/LlS4xNjPLG6xeg0+WRs2dJJhL43G6uLy1icyi0muLpU2+2SKVS7B0khD/BbmN3d49ao0apUgGLpVcpOHjg7MPcWlykWChjtyr09cX5zKd/gfvvX+Azn/nnLN66wZkzZ7hnfo4//pM/ROpqTE1Ncu3aNXx+lzHQs/Ys5oCRYahTfyORCJKsMTN9hFarjSzbuHVzEQkL8/P3YDbLIvZecVKpiw2QiQ52q4XLr1+gUSsxMz1Bs1aiXq9SKZVxOL2onXaPXt2i1mhgs9npHxzg8CAJZqGi8wTcdNtdTCYLrYZKV+0yNNBPwOdiaDCO221jZ2eLpqaitpvcf/9JHn3fgyJdqViiXlP53vnLrK5sUa10GRgYYHCwH5fdhtOpsLsjBsmJTJZcpcrdlTXKTQE8DThEcJBZtlCuCW2G8JQIMI9ZFlGEg6GouMFDIePprmMBdft7sVjE1cOypdNpKqUCbrcbp6IIcZAkWlun04nLbWNwcBCfz8fp06ffJlC6efMmtVpNIPOsb6LdC4XC24xfJ0+eJBwOc+HCBaFU9TpZWrzD5OQkmiYO/FQqQyqV4tH3PiYgv/v72J2m3kBUtI97ewcU8iVMJhP/9F9+lqWV7z9TeFd4H2YmxrS//JPP02yKVGF9s+DxeMjlckiSJKK8HW5UVTUQ3kePHuVv/uZv+MQnPsHGxgalUon5+XlKFREso1tJt7a2GBsbY2VlxbAi6/vglaXbmKx28oUKf/XXz2Cy2OjvH2Rve4f3PvIIz/7dM4yNjXHP+Cx2uxVJtjAwNMDNpZuMjAyRThwyP3eE5MEhit1Ot7dG9Xi8HCQTKHYnuUKey5evkisWKORFqEq9WaPR7oBJoqy2aXc1PP4w991/ho2NDVRVo1wsIfXIRZ/85CdZvHWDdDrNxtoqd+/eFe5Pl4tCoYDDKQNvkpMajQaqqhIMBtne3jYw4sFgkGC/cNv19cWRLQrz8/dQLtVIp7MMD43y4IMP8dWvPsPx48d46cVv0203CQV8lAs58tkkVjNUKwUsJolsLoPF4hD5iiZxKJgsFpT/h7k3j7HsTM/7fme7+75X3drXruqu6m6S3RxuPRzbw5nRSNHi8SjeHUuIYdkeCAgEyXaQCIhtyQakRLKFOPIYiTRRZFmakUajmdGIbFLchks3m72wu/auveru+3buPUv++O49khJJCWIj4AUIEmywq1n31nfe73mf5/d4fciqgtvlRVIV6vU6TaNJMpnG7wnill0E/SHS0QjzM5Pkz0+Q7R5PP32NxReXwDTpVs6xZBNFU9EHFrbt4vS0xuFBjrffvs9s9jLTU1PkTw9JxcPsbT8SSPh2i/uPNlE9XrZ29hlYFpgdYrEYuXyeUrWCruvMzs/R7nXR+31CoRDReIzGeRld14nHBRw3k8nQaDRbfebVAAAgAElEQVQAEWYb8QpcikyhUBDAn06LcrmMjBCvvW5h9fZ6vWguHILUiHswMSFclnNzc3zuc5/j4cOHuF2y0+1ZKBRIJpPOxFetCjv3yJcTT0Qo5IssLi5ydHSCZVmk02Ok02nOTnPU63UqlQora7O0mh0KhQJjY+MYhkXuvIBp2vyTn/l5Nnf3/tRD4WNhc/6lf/OLP/3F7/+c4/oKBsVKKp1OO803uVyOZqPJxYsXuXPnDl6vl60tId51u11qtRqLi4sUi0UurFwgFouxubmJqqrU63VOTk5IpVL0ej1nIjk/P6eYzzE7v0Cr1eGt777LwDQ4OjphbnaWfC7H5bVLdDodarkSLrcLC+jpPWRVRpIgGotSq1RoNhp4PC62t3ecuGwoGCSZSuNyuzBNi8zYGNgSH3zwAZpLxR8MgQSBYAjV7UYfmIQjUU5Pz8lkxqhVa4SCguv367/+63zhL/8Qzz33HL/9ta+JFqlhtt/n8zEY9BzY7Si1ONIRKhWhho/uxbOLc0PmQRVNczM/v0Cj3qTZbHHp0hqPHz8ml8vjcmmcnZ6QTqWRJRvJtqhWSujdDpYlcPSmZdLrCUqSqqmAhM/vR5ZlenqPYCAEsiSgrkE3tmmDLbF64RJ+n494JMKje/doNur8zb/2w4yvr9Ipb8Oghzvmx+WRURQb3TAxzQG27MEfCNEfWGw8OKJcrpCKR3nn3XeQsWg3mvQHA6KJOOVSlezkNMV8nvFMkmgsyuO9PaSh3wUJ2p0OHq9X6AimQeE0h67rjnjdbredcpVKRXgTer0eiiwJoKymEQoGaLfbuIfofFnCyU+AuEKM+KGj+vpRF+fe3h5nZ2fUaxXHGTtCt6mqSqUitgkjyEo4HCYUDuL3+cnn81iWoJJvbGwOSUtJTk5OxDq036JQyKNpgj0yNzc/5DYEufnmO/z9f/APPr42Z1FBpnB0dMiNGzfY3Nyk220TDsPJiUBIra2tcX5+TrPdYnp2hieeeIIHDx44d2p7B+LJBLFE3Gngefz4MUdHR+RyOf7KX/krvP3220xMTLCyssL774segKPTU84KJWZnZ3n+mad45513CPk9FAonNFsdNLdCo91E1Q2CnTBzY3Hu3LlNMBJkff2S8AN0WiiqwsL6Go8+OiAVn2TpwhIHx0d84/d+n1gyQaPT5vD4CG/Az+KlZdqmB08kwuneHoupaVYmJykWi2zcvYvX6yUTDSIP0sheL9/6g99jZmaGf/Yv/zmmafLijU/y4z/+4/zSL/5r7t69S6VS4fqTlxkMBpSLJcbSGVRF4vCwR+74gHQsTLNeJxT00e222b23gc8fJOD1Ew/F2NncJlcocf3pZ3jju2+RnZxidnmeD997ky9+8YdJxFOkUhlef/U1en2J/qDD9s4GyeksbVnDq/RQvV5sy0JSIBaOYpgDJNPE7AnXXsSt0tTbeDUfab+fkOzC7Pe5srTA01eyZGdiNLpbYBTwhNzItsmg1kZzhZFkN2GfDJJFNNLGwkDxhqBaZm/7Pju5R0wFIxh9C8XvZbuc56xWFkUsnQqRpI+TfAXzrEg0mRnSigxqtQpe1YVqW+SOj2g0GrhdorUqOlyHd3WdeCqJiY2kKvRNA1O36Zw1mZqaolwuYiKRSMTpdrs0mjUqzSaaLA3BM5ozzUWjUcePM7rqjQ6LSDRJNBoFYDw7TblSF1dYb5BcvsjJqXDpxmKiwKarN5mcFlu5k7NTZudnWFxe4Pbt22gemYHRo3w8zEaEFCKhGDIST1y9PCSG/9nkpY/FpPDv/u2//env/fSLTsZ8tKcdrddUVRgw1tfXCYVCnJ+fOzDQCxcuOH2Toz3v/fv3aQxhJHNzcywtLZHL5Zibm+Pk5ESg3b1eDg8PqddrhELhYUmGaEwuV2ooiophmEOxTuGZYZx6Z3cbv99PqVJC13uAKBUdIeFM3SYYCvLyzZuc5/PsHTymVCnTNwwKpTKn5+dUKmV0Q/4TBh/RKynurPl8fthlOABFodFoMDk5SW3Y6/i5z36WL3/5y/ydv/23RTmpqnF8fCCeQENRr9cV/ZXVilhZSuBkJjS3h57eR9VcBIIhgqEQSDKJZIrDoyMCfj+X1tZoNSrsPX6MMTB5/HifUqEoCnos8dQuFvPYlolliESkEB1lNFVF1VQG/T6KIjtCpKRKBL1+QoEwyWiEcinPU0+vM/nECkrAi2x1MS0bW5FRNDeWYSFZMpJLAySwbPS+gWkrDEyFwpGIB3eqbdLJNH3TxpZl2pZBriQQdKptYw9M1q88xerqKvG48G40GnVsWwCDDVOIfe12G5fL4zQwybLs1M6PNIXRk94aTgm1moDKVIcBtlarKfQcWVDKZUVyVptut9tBv48szaM4840bN8hms464WK1WCQQCSJJEpVJxvraqqqTSomV9BL5dX193QCu2bXPt2jW2t7eZGDIzRgyMkRVdkiR+5Te+yj/4h1/6+E4KsiJElk984hO89tprfOELX3DwY+12m2w2SygU4sGDB2QyGV789Kd54+ZN1tfX2d7eplAoUCqVePLJJ5046ugNaDabgiEw3B3ncjlM02R9fZ10Os3hwWPCEdH1MOpBGNV0pdJjQ7NHgEBYqMXXn/kErVYLc1tEeqvVKpYt7pntVguNIEdn5+RKZe5/9IAf/Ms/xHu3b1Gv1plZWKLWqIs7bCTt2GRH+YJut0ulUuHixYvkcjlKpRJer5cbN25wdHjI6uoqRweH3Lx5k0a1xj//H/4ZLpeLH/uxH+Nn/sVPMz4+zrkueAszMzPD8hPh/R/VkEciEaThE2p8LMNkdgyvP0il1mB7a4OV5SV29h6TfLzHrXsfMjczx+beDi/9xZfw+XxsPdpgcmKCdqNKr1nDq7npI/bqPq9X5BqGsdxRSnSUQAx6w1iDAbOT4zz46LssLy8ytpqlUzym1qhju1UebWzw1NPrKK4Aqs9CUmWwDLBsUDQwwpiWyqDvJpw5x+XzcuvtO6huN9FImnAiQcA9Ts8QT+JqvUkmJsjOzWaTldXl4YNGplwuOhmQkVlJU71EIhGHsTBqwdra2nKIV+Pj47hVhfffe49gMMj4eAbDsqkWC2BLKKqKaRhYw5hyp9P5E4CaWq1GLBYjGo2yubmJx+Ph3r17joYwOztLa7gurdfr6LpOJBKh0Wj8iZbp0Ybtww8/5KmnnuLo6Ijr169TrVaZnZ1lLJ1xXJjBoNDjHj58KK423d6f+fP4sTgU2q02KysrbGxs8Pzzz3NwcEAoFHJ+kBOJBJZlEY1GSSaT9NttksmkU0oyCo/s7+/jHd4P/X4/rVaLTqfD5OQkR0dHTp681WpRq9WcN+ns7MxZHVWr1WEnZUeszWybdDrA9va200T18OFDnn32E0SjgqfodbuwLRu3qrGxsUevr9Pp98mMZ/n9V24SCATY2t6l1e7i8XlJpDPO/8v+/j6PHj0iEonQ7/eZnZ11at0+//nPU2k1iMViFAs5zk9PGAx0tjYeous645kxQkqIw6N9AgHxZxxLp1BVld3dXVZXV50DsdvtOuQdj6Y4OPJOp0On1ycU8LG1s0cylaHb7bK7u8tLn/ss1UqNv/3X/xZf/uV/T8DtJZ1OM56MoWKxt/UITQK3z+/Uo4OwmstDXcU07T+aFCwFvdOgWi0TjvhYv7IItFFdCt5gkN3DM97/YJOLV67jGXiQ7B4elwtkG7s/QFI0XF4fiqmhKeAK+Kg3G6ApdPQeWruN7dLIXlhi0NOpNku0KlUYmAwGopi4WCw6n5kR+HfEkRwlMUcHwshyXK8LVFoikXCe3o8ebRKJxrFtk05H2KPjsQS2KQjTnXYT+KPpbFT9NhgMnFDfCBYrScKuXq/XndKiUdhqJIqPUPejUttRYfLk5KTDa7x27Rq+dJrNzU1mZ2fp90SuZkTyKhQKznpS+rh3SWqaxltvvcULL7zgfDMSiQSAszEIBALE43Hu3LnD7PKy0xEw6kNMp9MO3nvkSBvVnj9+/JjP/OAP8uZ3voPb7WZ9fd2p8ZqemhCU5E6HzFicarXKpUuXqFRqvPrqq7zwwgucnZ2xef8Bt+98QL/fc0pApyeyVCoVsjMzbGxsEA6GKNfFjrlwUiKVSTOQZDwBPxcuXabZbLK1d8jdR9uMp0SaMJVKOVy+arXqMPyTySSPHj3i5ddfE1gwVaQ808kkf+Ov/XVarRb3P7xLvVrjy//LL6OoYkd9fn4+FMJwKsXa7TaWYeD3ixan5NDdmc/nxVipqAxsiexYmvOzE6LhEEsL86hBjVg8wW/+1m8RTyS4dvkqr998lU69QrtWYTyVod/rYCF8/tg2Ho8Lj+ai2WqgKSqGIVBxvW6XeqlFdjLJzvYG//LnfhJ/xEu3cUJDV1C0AJYW4Z1be6ytN1m5kGF+cQIoATqS1gfJxrZ6DAwD3egytTDH48MDcKl0zAEhVabdEwddwO+nmMsT8HhRLYhGo5TLZSanssOV3TGRSGhISBZZBY/Hg8/rc6zAqqo6HESvVzRS9ft9dnd3sWWJdq/L9MQkJydHjGUnsG2TerUGikw0JlyGjaqoEBzF4INDlP+oTl7XdZaXlzFNk3g8jiRJjjA56oAY5UcGg4EDsG02m6ytrVEqlZiZmaFcLou4+fGx0+ExWturqsr8/DztdptSqSSIVx/33od/+z//0k//xJf+Pqenp84I3263KRaLqKrKzMyME2GNxWK889ZblMtl2u02Y2OiQLRUKpHJZGg2hQDk8XhQFMVRjWvFolPdNcKYtVotIpEwlmVzenrK6sU1sbXY2qZWq6NpwjOxsbEpuIymQTqTIhIOoyoyg75OwO+n3W4Rj0Qp5PO0+wNa3Rb+QIB6XVSp64M+Xp+fgWkSDId56aXP8qlP3nDCLpZlMTs7y6VLlxxl+t69ewJ37/cSCgVp1GpMT00J0apa5aN79zg9PaVaKeP1eJBkMa436rUhFl2MnoO+PuxeVJwwT6NexzJNIpEwsiLU83v3H5BMpVBUbRhQCzIw+xwcHIJpk0wkqZbKxKIxxtMpHj38iEDAR3+gEx3ixQVNSCYRj9Pv64xlMsjyELvv8VCrNoklQoxlE9z4zLMg65iyheYLgOLlNN/G5YsSdF9iYmIey7DxBTSwDaCLJfWRJBtJsVBVm7NSiZnpGY62D7BNi3g0ycA0Oc6dUygWMQ0DxbaxDBNXOEIqlaLRqA8fPCrt4fam3Wk5qU+/P+j0dBweHjpJ3dHVdrQ1CIej1OsNznI5Aj4/nW4P73AD49JcuNxuDMvAGvQwTdMpb8lkMs6Db3x8HMBpUFcUhWq1it/vJxQKOetP0zRJp9OOv6ZYFJHo8/PzYfI250BZqtUqV68KJJ9lmmxsbBCPx7Esi3K5zMTEBGtra/wfX/tdfuwf/qOPr6agDM0V2WyWhaUl9nZ2hj0Ft5ifn8ftdrOyssJrr71GIBDgmWee4eWXX3aKOU9PTzk9PXXuXSJDHnRO33K5LNJ7Xi+VSsW5b49gLbl8kbGhR36Ew15YWKDRbDu7Y0XTCHi9gv4TixOPRZAsE8s0GQw9Aa1mk3giiSRJ7B8e0Wo3SCZi1IeR24GuUyiV+LVf+zVSsaiTmvP5fBweHnJ2diZy+cMxVZZl6ucnjKczlPIFoY8oKhG/4PuFgkG0WEyIZZbtJEgHgwHdrtjqjNajtinS66NR3jAM6vU6tiQOi3g0TL/XI+TxgCwzOzNFtVPj6OCI7PQY6VSK1/7gFZ66+oRwkdoWsgUuzx9ZgEW010ur1RK7dUU8aUc7e8O2sGUbWZOxDQMp6MNjKrQNFUlSSCYTzM5NM5OYJZuFvu7CNrtIkgqoyBggmUOHpClaxHt9R0caDAbUmw0axgBJlkGW6LZ7eF0iR2CaJmPjae7evYvH43L6M/2BGTwejzM5ja6WoykuFAqxt7fnjO26ruP1BXAPk4sut5tOs0G+UODaU0/R7/fYePjI6az4416gUc4kEomg67oD0LEsi+npabrdLs2mIFr98d6HbrfrXHsqlYqzqszlcpydnTExMUGvJ9bSlUpFPGwMk5mZGRRFoVar4XIJLF46ncYYfMx7H0CEfKampnjt5k2CwSBHR0fOuJbLCdjHxYsXabfb7O3tsba25ryRMzMzxONx5ufnnQrver3O1NQUGxsbTtnpnTt3HG7D3NycmDCKecbGxggEAuzsHjhI8WbzjHK57JzwkiJj2haxZILFhUUCXg+1khjBq8PsfSwSpdxrcHBwgNvjI+D3kMvn8AfDVIs53F4fvU6HTCLumGNGyvLk5KSjgWxubjpvejQURNe7zMxMERgKXue5U/Reh2QyiWWYBHxejs9PKZfLpBLi9x0l8hRJwFTNoatRlmUkW5hg9G6XttYG4PP/xQ/y/u07JBIJh2S1+2iTs4MjlibneOv1N5idnQVg//iI7PQU1VoRr0um1+2TTqeJRaOcnh7jdYkfKL3bc75mq9kkEPdhqbB/eozkDdKtV/EEfWiqC1nSyIwF0dwujna3ePMdg+tPrQynBEBygamAjADSKBKJaIybf/AyxmDAQO9zWDkkkkxgDfpoPg8BRaau9zBkcKkuBzozOzvL9PQk5bIAAFcqFecp7dJ8TsBsFDR69913SafT9Pt956Gyv78/JCkJ0tHANIgEQxweHVEpl8nnC4TDQSJRgZ4bmccqlQqqqnL//n0Bixn/o36IS5cukU6nyefzZLNZ0XY2PDhG9K5sNkuheIZlWbhcLoLBINevX+fk5IRWq4XL5WJ3d5dAIOAQrD0ej8MhsW172Af6ZyNOPhbgVk1TnZNzbm6OUCjE3Nyc03coyzJTc3Pk83mnCSeRSPDBBx+wtLRELBbD7/cjDSGup6en4g32+ZxvzNWrVwXqPRRy4CyDwYBEIsHq6qqTnR+tRXVdp9frOSk5VVVJp9MOG2+Uthz0dMbGxhzIaKvZQO91abcaNKoV6tUq9WpZZDA8bq6uX0aSxH1/1PmwsLBAMBgU4Z7hm9toNJxy16mpKSzTFIh7l9sBm47WSyN4qqZpDoMgFos5U8PICTfqGFSHeQXLsuj3OrRaLYrFIrVKyTHoHDzeJZNM8dQTT7C0sMjy4hKNas2BrtYadcYnsoxPTRKLxXC5XI6xZ9Q1ORLqRpZrb8jLwBw+xTUPpiVjWyI85VJUPC6FSNiLJZcolbax7TqDQRfMAdga4AbLDaaGbGlUSmWODw4Z9HRHuR+BdGrNBq1Om75h0Ol1CQ/Zl1tbWw5WvlwuO6tHXddJp9PDz6PGxMQE09PT7O/vO27EWCxGJpMRus/4GJOTk0KgTqeZmJiiUq/x8OEG9Xqd9fV1Mplxzs7OqFarTufDqP15NPKPrpDz8/MEhsyFqakpACfzM/pvDMNwBPF4PO4cXqMJIZlM0mq1iMfjQlcJBCgWi2xvbzsw4HK5LMJSf86k8LHQFH753/3yT//Uf/eP2d/cdLrwRqLYlStXUFWV7c1NLn/iE9y7fdtpnw4Gg9RqNbrdLqFQiI/u3v0TpJq33niDsbEx6vW6syk4Pz/n0qVLDtAlEgmzvbNLLBajVhNsv5nZORRFxe0Ro3CpVKZcq3J6fML8/BxYNvfufkjA58XoDzCMAZWS2FM3OzUazSaSLIudvcdDMBDEtCwGA4Pt7W3GxzPYyM6HLBaLOahuAT3NOWRi0xyws71NLBbDrWrYtk27KWy1rUbTgdAk0ylRi6aqhEIh2sN9udslFGzvcNXqcrmwTANVVbFskBUFyxYQllg8jq73WVhc5OzsjPzJGZIFnXaH8cw4169f55133mFmdgrDGtDptpEVCZ/Ly87OztBX4qXZaNBsNQkGAvh8fxTNrnTrnOVOuLS2xuXVFXx+P5VqDduWaLTadPs6LpfK6lKa1ISfWNiHZXRQPB6wFLBUMFWwNIyBxP/+H36N85NTxmIZJMOiXmuxd7CPFgpQbzVpd9qEgmLMd3kCTE9Pc3p6gsvlIpc7ZzAQT/5WW9zHxXUhzoULF3jjjTc4PT11KNqjg+P09FRU2PUtcoU8yUSCTqdLX++hKDIet5v+oE9xqPQnIgHnST3KnrhcLgKBAKlUiieffJJGo0EoFOJgf9+hYo/CgIuLi7hcLvb29hzaWCwewev1Oh6Eubk5oZvVas46Utd1vB4v8/PzhEIhTk5OnMNieXmZX/2PX+MffeljDG6tVyp89N3vYhgG3W6X/f19BxUu8FHi6V05P6PWqNPudtAHfQzLZGVlhaOjIz68d1eEfXo9FtOL7O7uks1mnaftyDCSSqU4OTkRvL5+H9nuI1sS3337Dfz+APFYiIFhcXntAkdHj3G7wO2SUAOiU+DdD94hEY0RC4SIBPycnp5iGybWwEDv9mjoAwJKiEqjTqvT43t/6AcIhsN0jD5dfcDOwWMePXrEWDTFQG+ROzvk4QNh2/b5fBTzJj6PgiIZVEolJpLTLE0sUszn6ZsDFEXC61FR5CC2ZOJTPBh2i26zQSCoYRpubBMi4TQKEjISmmqhqoBtoPe7yJpIiXpdHTo9Hc0l0241SKTStAc2kfQkar5BOiQ6CZ74xHPk8mccnZ/StweUqhU0tw+fN4gkQb1UJJudRNe7mKaBooJPESagVqtNIp6hXu0j9SVWli9iWiD5NSrdJrHxCBIWPlNDb/eRMWg3NYKaD5CRZRdGp4fqcoOmgq7TrFZ57ZWb1PZyRN3iA19vtkSjk19DxiQTS4jSYa/A3VumTrF0yurqBR4+3KDZ6JJJZ2nWLRaX58nn81y7+ml29m/xh6+/wsRkRkwSmkxPF56B/qBHMOTFsvv0m01k26ZcEJHr1nBaSyQSjGeTHB0d0Ww2KTQGzM/P4/F4GEulCQT9BHx+mq06wZCbe/dvEQ6H6XRFW3SrXSGZTNI9rxMIurh7Tzhvs9ksxyd74lq3K5iPAAG/h9OTQ6Ymx1lanOPWrVvkc4K30Wg06Pf7zM/PMxgMODg4YGlpiYcPH2Iaf/b14WNxKLhcbnK5nLN5uHRJYBvOz88FuiqT4cGtWxSLRV588UXeeustms0mwWDQaQ8yTVMorpaF3hUUJsBp43n8+DH9ft/Z+5pD4a1azIsatFabZCJDMp2iWhPuyHQmxa3b75NIRqn3dFRZol5r0u/20YNdzJ5Bu97A1IVBxO/1Mp6d4CyfEw3D9SavvvoqtUYDU5FIpscIR8Upf3BwwOzsrNOaPaL87uyI7MTa2hqapnGWP3M2KYIr0WFgWPSNAbZtIssmqqrQH4jdtoSBYdq43BoyNgGfB1W2kBUby7SwbBnLEvd8l8sFsoKqubFUzxCGKzwMmWSCZETQih98dI90Oo0sw7Vr12g2apTyBVbW1vjoowdomoLXG6bVtGk0BL+h0Whg9AUu3jQHmKaB7FUZSDbRZIrDkwKz81P0bR3JtpAwkT0uZBtckoSiSNhGB0m2UdxuwKZ6ekjQH6LX6/DBB7doNi36fYNmW5TTev0B3F43oVCYSCyB2yt8Kc1mE6OvUypVUFUPxkB0ICwszg3zBj7c7gk8Xrco0un1HPfgyFkoGrbcBAKBYd1fw9kk6LpOPl9genqaWq1OrVan2+0RDIZwaxYSLixTodnoYQwkZqcXkCSNcChJtVqmWmmSSKTY39/H5/PhdnsZDEx0vY2quohEYrjdAtJr2zbxWMIpBWo2BA5A7/WRJYWpyWnH03Pv3gMH9DKqqO90OqTT6WFO5U9/fSw0BaQ/gkCM1iqj2uxarcZHt287iuzIVNJqtbjywgvOODcas0bpSIHylh0Pwqh8JJlMsnrxIslkknQ6ze7OIacnedwuv1OjtnxhkVK5wGDQZWIyhWX3nDthJBIhkUhwaViScpbLYUsQDIfw+HwcnZ5weHjIg0cP6QyZha1Wi+eeeZZENMbGxgaqJDsiqqZpzlXBtm1mZma4fPkyS0tLvPjii1xcWyGZjgu/vyYzjM0jSyqS7MK0ZFrtHqlEEsWWyI6PsbgwQyTsITMWI5mK4PFJaC7weGUCQSG4jWy3I/emW1Mo5nOsXVrl1T/4fVyawsMHH5Edzwjc+7e+zZUrV9jfe4zH42FmZpoHD+6zv78vqtSLRbHzH/QEWarXQde7DkdA0zTOyucUajWqHZ2zos5p0cSUMlhyHN0OILl8mC4NiRbdTgFJNWg2inRqeaxeg0g0yP37d/nyl7/MrTsfYJoWjUaTVquDhYRpS1i2RCqZQVE0DvaPCEfjTE7PsjB/kanJedqtHvF4glQqzb17d+npbf7uj/xN2p0av/07/4Hzszy2JSFLKudneSLhGLKkEgpG6OsG7VYXVXFhGgqNeo9atUNfh/GxGUxDoa+DaSj4vBFsS8MceKhVBjRqJnpXxhy4ODupEA2PYVsuAv4knbZJsSBEzlg0RbczoFJuEAkn8HqCnJ8V2dnep9Pu43b5kSTJaa22bZtyueysm9vtNuFw2BGqW60WDx8+ZGVlxakQtCwLRVb+zB/Hj8WkYFtCUJmdnaXb7ToGixFEZX9/n2vXrhFLxLl16xbLy8vCgDJsLhoJNoYhsgujVCDgtPL4fD6HkzcyoxSLRcbGsoJnmEyxu7vNydkpzXaLTCZFKCxalkulIqbtcdZCqiowZn/xpU9jDQyqxZL4d24Py2NrvHfrfVrdDpKssnd4wNzCAqVSibPzPBPjWc5y58xkp50/WyaTIRwOi1XRMPb88OHDYcJT2LQ1t0qtUcU0TYEVN0Dv9JxOgKA/hGTLeDQhmHY6HfRuD/dYUnQHYtPTW/QNkWh0uVxItiWqz2SQFA3dGBAJBdjc2iEzXmBg6A7E9ZlnnuZ3vvbbIpQUCtHv97l+7RqRcJDWsHrN7VYJBAI0qpWhqCmETYEqs3B7XIRDUY4OT3n2+Ri722f4PHG8XplBX8KrqmiSCi4DyxBTRjgcBtVDq1gBZG7efJ3Dw2NWV9Zp1Qbow3YqVXEhSUVhGiwAACAASURBVAogCZZAIMzVq1fxDWEky7MrmIaEbZ0BDSzL4oknnuDe/Q/56td+g+2dR1y/fp2dnS1HhB4BWQOBgHOdVRRFdFFmZsjnBTS1OxT1ksk42GIKSyaTeDwe4hHRdBVPRIlHorjdGpoqMzY2BpZotopGw5iWTjIpsISZzBjj48Jk1el0SSREWMq2xSZJkVWnxt7lcjmaw+TkpEN38vv9+P1BcYX6Yzb/EVxlJP7+aa+PxaGguQTYY2Jign6/7xST9Pt9stks169fx7IsPvzwQ4LBoFNP/vjxYyKRCMVikZmZGe7evcvMzAyBYaz0ypUrjqBoGAaZ8XESiQRbW1s0m038fj+X15/g4cMHJIfW46ULy3x47zaf//z34PG7KZXP8fo0tnbLQ21D1JX9xm/8JqlEkngsxuVLa6QSSfL5PGPZcS711ykUi+K+7vWgud34PF68Hg87m1usX72CKqlcuHAB27Z5/30Bpxp1WIyuN+l0mlgy5vQDyDYCbJo/F74AVcM0bRq6ztaDNouLiyh4UGWVJy5fo5DLiRyCLKaCaCTlXLNcmoC59jptJEVFNyySsRDtepVLK4s0qiXmpufY3dpkeXkZv9eHafRp5aq8/vrr/MD3f58DBdk8OSKeiFIonIsJodsWh5fiwjLBssUmwmp2ubd3m5XVy7z826/w3/73/w2DPmgSVFs69UYJzWWhKTqy5KZ4VCQYiHDr/bf41V/5dRqNFkFfFFUNcbTfcLoxQ+E4vYEIeEWicSLxFLsHh0xOTGHZsH75Cu+9foeTkyMSyTitZodgyM/Tn7jG73/n93B7JKamx3n9jVeYmpxnairjuGXT6bSz0UqlUkPLuE7A46PfN/H5gnzf9/0AL730ElNTU9y9e5c7d+5w8+ZNLMuiFspxcipISy5VQVEkVleWeePNl5mayBKJhFheXsa2Ily4eAk8HrrDsuNkIu1EqwN+cRC3223QbAzDYmJCmPRM0+T09BS32zvMa4gJdGxM/NkNw3CKgNrtNqurqx//Q8G2hACYHhvj4YMHXL9+nXK5zMLCAltbWxQKBad6ze12c3x8TCqVYnx8HJ/PRyaT4Y033uDatWu0220mJiYwDIOdoQmqWCzyzDPPcHp87EBEs9ks+/v7tOyewx+4evUqRyfHfPrTn+bmzZv0zT7j4+M8fvzYWZcWCgVkG6ZmZ3DLKj1dZ3NnW0BLZYmBZbK0tMTM7Cyvv/kWvV6PRqvFzt4efUPYWyvFEpVKjUKhQC6XY3V1VRSCtFpOcGlkp5Vdwn6bjAnXZqNeRZUlZFnB6Is+hKA/QDycplau0aw18fu9BH3C/dZuCwOWhI3X48IcTgqSJIl1ocuFaYMiCXyYYRjIyDx59TIXV9eIxSIc7h/QdjVYW71I7vSUqcms6EGo1fH5PcQTUSqV8tBS3aLf64jEoeom4A9hWSZenxt3XcaveejUWnSbx/z4f/1PubS2zt/9kR/mjVf+ENsskUyEqLeE3fvg4IjjoxyDvkmnPSAQiOAPxBn0TRTVRO8LPmW5XMbrD5AYSxEKR1lYXqE3sIjH4+SLJY6P38PjEk9OUS8o87nv+Qz/8l/9CxYXFymVc0iSqLAbHz44vvWtbzm+mK2tLRYXF53E5IsvvojPFWZhYYHLly/z7rvv8hM/8RN4PB6xzWi1SKfTgsnQEZsvVZPwRkX/Y7VWIBT2Eon6UFWbQumYgDfDnfffZ2Fhgf39fSYmJohnsyxeuOAcNqP3LBKJOIVIhUKBTqfDE088weHhIQCpVIqtrS0UReHRo0eEQiGWlpY4ORFAlnv37iEr/wkNUf9/vC5dWLLf/OZvUiwWMQzRLZDP59nd3eXq1avD8RdCkbDTN7i1tcWzzz5LNpvl/v37Do/w6eefJ390jNvt5vz8fFjfJcb+YDDI1aee4vzkhEajweLiIo/ubYg78vwc+fw5iVScWqPO7dvvMz45wfn5GW+//Ta5gk6j0eDVV1/Fo7lwqRrTk5OCnNsSVXEXLlzgU5/6JOfn50xOT3F0dMLJ2Rm5QoGtnR0kSWFze4uVlRUazbZzyI3o1deuXWN8fJx6vc7W1pYQwYIeFElmY+MRvW6bVr3BzPQkoYCP+dlZvB7B+zd0kcKLREMA1BoiS58vlIhGksiaC4/bj9vtRVHqYuXVbWP0xfq23mxh2RJXrj9Lt9dncfkCXd0Y8v9sJsezHBzsI2Hh9/oYzwoikYJELn/C8fER9VqJfr+HKotDzTZtbFvC7wsTi8QYi0W592CT/sDGH0rj8/pxedyEw24kBqhyh2a9wt6pKLPJZifpD2x6XR1kF7at0Gr3MAaWoD7LwjeRnZxmfnGBWr2NbgwIR+I8cf1pHj3c5OHGJnNzc3zjP36d559/Hq/PxeHhHpZtsL2zQTgcpFA8I5sd5/DwkIX5i3i9XidA1+0KIO7nP/95fvRHfxRZlvnc5z6HSxZRZIBKpUKjIYhaIw1lfHx8OO2eDUViH+lklEDARzwWxh/wsnZxmWpVmJkurbxANpt1glfHx8dMT0/jC4W4e/s2V556il6rhScep3K0T6VScZySuq47dKhRPkhVVebmRDwgkUhwcHDAD3zhC5SHrVHf+9d/lI3tP5289LE4FC4uL9rvvfx1ut0uyUyG1155hU997/ey/eGHZLNZJ/xULJdEEOSJJ8gdH1Ov1zFN0zEaxWIxisUiQb9Qi0d39Z2dHSYnJymXy+TzeWZnZ53159zUJGdnOeLD0hSPz0swEefhh/dpdtrs7OwA8PVvvMrh4SHhcJjNR4/IZrNUyxV8Ph9TU1OCLCQrXH1inWAwSG/Q58rlJ2g0Gjzc2ODevXvMzswTCIf49re/jS8YcrogR52EI63DNE0H7NltiPScpijMz04yPZUlEvbTalTpNKqEI0EmshmWVtZF5XivTafTodnpYtkS5VKL3d0TkDW8niiqoqG6+lhGH8sc0G42MAd9fIEgfcMkOT6FLxBic2uH5z75F0knkhweHggnXLnI2toa3U6LwvmZswHqD7psb29SLJxhmAN8bsGI9Lp9SJKMhIbfG8AluQhHI5SrVU5yORKpFItL81SKBdwuF7FgyImP981hLaAkocgaXb2PommomhiRS6Uymldsl5KpDKurl3jhU3+Bubl5/sd//W/Q+wbn+QKX168QikbYf7jB2NgYd+/eYXw8w8NHD6hUi0NnoMr5+SkTExOMZaZRFIVQKMSVK1f44he/yDe/+U2++c1vOiag+fl5Bj2dszNRKhOPx8nlcpTLZcbHx9F1nWKxKDIOygDNpeLzeUglIkQiYcbHkgRDfi6uLHB8fMjM7BTxyAzFYtERgROJBOfn58zNzTE1NcXZ2ZlzFc6OiUrFcDhMrVZz7NnVatUBIBeLRUxLdzSrkZ9namqKXq/HX/qhv8GDja3/rL0P/1lfHo/bISznz87w+Xyc7YguhrOzM6cEY2xsjEajQe742MFrn5+fOzHUTqcjeAQrqxwcHDin/UggqlarjjEERBBlY+MRsVicN996nWc+8Rz37t2jPzCJRqOMj0/Q6/Ud2+hovE4mkyiKgi/gxzYtBwjTaDTY2dkhnkry1FNP8Z3vfIcLFy44Tj/TNPnw9gesrKyQK5acGPeIuByNRh3YysipqBgGbs3FwtwskbAXr8fFvTu3iIb8vPjisywtzPPUE+vYXhVJlunrOp1ul26/j4RCudzlrbfucHpeolJuo+ttgqoI5FgyaIqMZKuOgFkbMjEb9SpbjzYwF/pMT09TKZd57dVX0BQB+fB4PE6t+UjkHbkm//hfsixhWzbtdpumPSAxkSWoQOd4l3pXwVanaOkt9k+KxENxopEIkmzjUVRMFNGNKNt4PCp9c+CsiyMJPz6fgNU+99xzBEJhvvrVr5KdnGR8fIJqrUG92cLj9xEKhXjxxRusr69zenpIdmKM/YM9BoMwsgLn56cEg2FKpQpul4Cg/OzP/iypVIqXXnpJWIsLBWKxGPV6nTfffBO/x8u1a9eQZZmTE2GImp2ddTZkoqjFS6/dQpGV4VpSxTIVZMlNr2vQbvVJJsfwesL09A61eoW5uTkCgQAzMzNoLoVINES702T/YE9E4V2K0/41qlIcfb5G2Z/R5Dk7N+lMCbIsk0qlnAJb+0+vYwE+JodCpyOw1qOcQyQScehIAI1GQ+QEhj2PoxErFouRSqWo1Wo88clPcvu117hx44ZYpQ2pM6MRL53JkJ6aAsPg3p07pNNpHjx4QCzs4Tx3QigU5PBon93dXVTNTTAYZtA3mJ6aQ1M9FEpt1tfX2dzcZG5mhq9//esiU4BNpycOmaULy6RTcR49euT4Db7xjW+QTKd5/PgxHrePWq1Gp9OhPRg4dtWRA3NkNpEkaSgcuVnMTjA5OUmpmEPvgd518T/93L9C77UY9Op4PRqV4gnelEtsFYJuVLeJ1rOwJYn0+BTTszP4AlFefeUdvvMHr2AZForLhd7rOLSqo5MTxsbGKDeqFEqlYZHOCamUmKCikRAej4eT0yMk2yQQEBHj+/fuoWiS8/6ZlkFfQtyn2z08Hi+hYAxzYKHbNsVGjXgyQigTRDfbnNWOMD0mql+l2ungjcTwKDaqqmCYJrYt4LZ6r4ttmciq+P5YtAmHs4yNjbGzs0d6LMPFi5c4y52zdnmF/TfeRJFVNM3N2tplfvIf/X3hELUGPNr4yHG+ttttxjKTIFn84i/+Il/76u/wzjvv8PM///OOJfz+/fuOgzCXE1HogM/D2blgIfYHPRRVYm39Ip/97Gfpdrt85StfAaCca9Hv9zD6Fq2GiUuzaTUHIJmUik10vcNAl3F7FC5cWBpOvBG63TaJRIxEIsY3vvENrly5gqJI+HweOk3x2RHBt65TNf/mm2861XMj89Lu7i7LQ9TA7u6u43n5824IH4tDweP14vL5iaXS9I0BjVqVubk5Bn1BnHG7NdA07AFEQkJX0Ls9FElGkRXOTk7pdbpcXFnl6OiItdk5vv3tb/PiX/iU6CDwuIf+eYW9nQ36gy6Hx/vMzE2haAHOHz1CklQKxzkuXLosbKfRCIWi4DgkklGuXJzn6OiYQa/O737jq8wuLLG8uoplws0/fB1fwE/LlAjaMrbHz3v3H4pDzefjrFIhNTXF5uFj8QTQNKRel3BCIL7GJ8fZ2dmhVCogIUbidCpBNBwh4gqiSQrzC5P0jQpPf3KNrlLG9hr4fBqWYdPtD1B0HdMcEIhlaLTr1Bt9klEfg26BQMiF7Woz90yY//LSZ/jKz/4KhZJB2JcCU0WWIRUPINFDkwf09QGF0yIrC+PkDzfwzs9huG0qxROaNRe63mZyekY8cTSFTqOKioRuymAqdAYmtq1h2DI93UTVuqJ/oNfgLGfg9rrwqVFcVoBOUSIaiqP6fITSorqt35cxLAs0iWaljG2BrIVQNJmAV2xNLl+9wv7jIyw0Wl2LCVeIXLFBT5f45re+w9zCDO8cvcfzn3yK3/zNr3Dt+pO8++67+P1+6rUm09PTglvgC7G+vs6P/MiP8Ku/8qucHh/Tqrepliqi10HvMjUxTrfbpl6vkkoGUFUTmx4Hhyd4PB4B9Ql4uXvvPd7+7qtYlsXP/MzPcPHiRX73d17md7/+28O+SD++oIeT3DnZsQybO/u88PyzFAo5FucWkfHTarSJhNNsb2+TTqe488F9el2DWq1BtVrnwoULpLMh8Hq58/rrLC2JWsPNnYcYts7y6iV2dnbo9XqUilUmsuM0GzWWlpZoNqKOx+HPe30sNIW11Qv2d1/+PQKBAL12i+Mj0ffXqFdZXltj76OPRFpRFv6ATCbD+fm5cyc/PT3lxo0b5HI5cZdFolQq4Xa78fh99I0BkXhMQEd6PVqdNteuXePx48c8/cwnOTo6olAoODXjIzTXxIQoXV1YWCB/ckYgFOSd997n/fdv88G9+5TKNSxbIp5Kow/6uDQPsWhwyOproeu6GL0rFbxeL8lk0hk1D4+PCIVCwtraaBKJRKhXqviHTMpUKoVbcxGQ3ESjYertPH/zv/ohZJeNRAdZMvFrbsz+AKtvMZBVXF4vCytPkS/XsC2LsEclGpDRQh5sSaIhqViyyltff4Obr7xJrzogGgpTKpxj0QYsyrUOA0PC7QoRTwSwJMFpsC2Jw+MjDMOkbxh4fH6HLZCKBp2n1sgrMgqTjSrrAoEAXVOi2WigaRrJZJJ2U9iH/R4R6omEwwQCAUKRoOP9j8aT1Go1Nrd2WF1dRXW52dvb4yd+6icpnpcIBoN8eO+hSLyWa5RrVVweNwtLgs15eLLPz/3czxHR/EQiEWKxGIPBgOXlZT7zmc8wvzDL3/t7f49qtcpgMCAZiw/JW+I96Q96WJZBtVp2RFzbtikUCg4IZWRsGzE2R4U8k5OTvPfuh6xfWsPt1kilE/ylv/Apnn/hORRsdna3KOZzNJp1PJrYbIiMjmfovxGCcDgisIJer3t4RWgxNTX1JwpqR5iA09NTp/RItgVNKp/PO9qXZVkUCgX+1pf+MR9tbP9/0xQkSZpE1NBnAAv4Zdu2f0GSpBjwG8AMohDmi8OSWQn4BeB7gA7wd2zbvvP/8DUoFcu4NDfb27t0Oy2CwTDHR6ekU2PUagJTlZmYBHCYd6NRKBAIcHx87OyTn776JOOTUxweH+H3+ykeHeEPR4jFkwTDIW7dusX+4TGa20un2RIpu56O1+VGlWS2t7ZhYQFNVggHghh6n4ODA9YuC2JTPB4XLkC3wKuNjCoXVlfQux3efPNN1tbWnGvAyKFZKBQ4OztjcXGRTkeAVX0+n/NhGE9nMIYY8BHfcHn9Mq1Wg0ZPRvO4UVQL0+4jWRJ6v4/e7WMPLI4LbZCaRDMWXd2Dz6UwMGwGAwvNdCEpCqrswrJVZpcu4n//Ic1KEUuSkV1uZEwGhhhFZUmYyXLFgrMH73R1seFRBbdg0Gw6acv6EJo7+nAOBgPM4dXNBhHbVhQiwRCuYWPRKJ34x9ejvZ6IWqfG0/QNg2Q4jD8YQtFUZgYGB0eHJDNjfN8PfD/f/v0/IOwLcuNTL9JoNATP0iecrY8P9vn0pz/NV77yFX7zt36d9StX8NlupqenCYfDHB7us7S0xKXLK/yv//5/4+7dD8lkMiQSCZ577llnDT4xOc7RkQDi1utVp2THtoWNeHQAigi1eGB1Oh2nBj6VSnHp0iq1WgWXWwXJ4Dvf+Q5vvf06k9kx0ukk83OzhMJBshkBC4qNjXG0s0Mw6Gd8bpLTx49RFAmPRxw+Dx48YGJiinK57NCkTFPg5DRNY3FxkZdffplkMomh95wrdKVSIRwOMzU1haZpqH8Oeen/zfXBQLRK35EkKQh8IEnSy4jW6Zu2bf+sJEk/BfwU8JPA5xB1cYvA04gy2qf/vC+gKCqzCxd4cPcOsWiS0NTMEFN1kUajw5PPfpJmsUilWSUcDhOZmkIvFh2kWjwep9frkcvluHLlCqeFMnNzc5SqTVrdAbMLyzQ7bWYXL4jp4NkbNJtNzs/P2dx8RK1WQ1EUjo8PCQQC/NW/+sPs7e2Rz5+jKApnZydcu/4kt2/f5pmnr/N73/o2E2PjeH0But0e/W6HVCrB/bv3CAQEWXpkrz4/P3ecaCMT0snw/t5qtfD5fMSjMSzLcjBdgIgiI3H37h0uX10nZERoNJu4fAqm3aff7WD1dRRJRUPjOKdy995DUvOfZnx8EhOdQjGP2TXIejSUUAif5qVnGCxf+QSzH+wxMHY43tthLJmgUTtmYFhYtoFpWrRaFboDcfi63G4MwxIuTQRXAsnCHHIN6/WWo92M/g4S2GAbJi7TQvUIjmb6j3EwR7ZybfhrI+I0qoytSCQzY/QGfYLRGP52j4VYHF8whKS5CEUjBDx+vvnNbyJJmgMfKRaL/MIv/Sw3brzE4tISX/ihv0yn0+H2Wx/idvlQFI3l5RW+9KUv8U/+6U8xNTXJ7t42Y+NJ4okwb739Br1ej1argSSbdDpi4puamiKdSTpIM1Vx02q1REZCUSkWisOadyEYT03O4HZ5OT87IOD3MzMzRaNRp1orobkSHB0dMDaWQte71Gpl+t0O+fw53Q9ucf3ppzg6PiDRbQx/vSoszRjIiujgHInw5XLZST6OWCJO9kTvDQXzcapDEnipVBLoAP0/Adw6rIM7H/5zU5KkDSALfD+iPg7gV4A/HB4K3w/8qi3uJe9KkhT5v3RP/t9ehmGC4qLZbBP0BQmnMhSOj/H7xAQQDhQ5OzvD5Re8gM3NTeLxuPjmT03R7XZZX19ndXWV/f19PP4I5XodSdOQXS4kRcXt8vCtb/8+N27c4P79+/h8Pp588ike3HmfdCrB2NgYp6enRCMhPrj9vmiV9gofQUnvEvB5WZxfwDBtPvnC86yvt7h99x7FUoV7Dx7AIUQTcf5P5t47SNL7Pu/8vG+//XbOuXt6ws7OzszOZuwCi0hEERLFIFEMEinJFJ1UCuezJYvS+SxKtq/sOlmlk8+6s3S6stKJokmKIiEBIAACWGAXwOa8s5PzTOec33B//HpesSxSdtlXV+gq1G71zs42evr9vd/wPJ9neXkZXdd57bXXaLfbFndh/6DodDoWAEVVVRwOB+OjY+zu7g6t0iI8JBgMMpLOMJ5Ic3Bqkin7GK1uB8XtoT8Y0OkPcNqdOJ1uuo0OB2eP8/alW/hCEabmUjRKLbRemXDEjc0OeruJ5pJwONzsVrscPvEgP/B9n+CX/oefpVhtgGGgGfpwE2LS7bVRHHb6gwHVZgOn042m62haH1MC05AwZYGTt9lt9IaeFHHI2yx2gGEYyA47PUPDaLUwh8O7breL1y0EOPseDH24wbh15x6nTp1Ctqv02m0RJGwIzcPJU6fodnvkSyU8Hg/9fp+x0SyBQICJA1M8+PBRfvYf/iJHD8/RaDQo7O6xtLTEL/zCL/HE06f58A/8CN2u8MIcmBynUMjzsY99BE3TKJfLNOo1gsEgPp/HSnzelwnfuX3POtgNQx5i/UycThdjY37hmDVNGo0OdruLblcjEolQr1VIp9P4fF72drdJpRPkd/fY2t6gkN8hm81aP3uP18Xe3h6qqpDL5ZiaOohh6FRrZUvhGw4luHPnjkUDP3jwILu7u7jdblqtFrdv3+a5556jVi7h8/lYWFgQ4bLhsKWBMPT/jyArw4Tpk8B7QGL/Qh/+Gh9+WQbY/I6/tjV87j//Xn9fkqTLkiRdrjUavP3aayIcdnUVBgMhjBlmQO73SfvAlGQyiWEYrK2tceXKFZLJJAyBI1NzcwTDIbx+HwtLixiYuL0eisUip06cJJhKc/DAJEF/gPxeztp2lIYfslAoZPWdDoeDSCQiZgzpNIah0e21KRdLFAo5nHZVsP2RsCkSm2vrVh/t94v+U/SnIpNxd3fXChGt1wWleX+N5B4CYfbR7v1+H6fTKUi95TKNhuhxB70+qurA5XbT6XRpNtrYFBW7CkgDllfusrNbp9OtYtCh3amAU8bmd2AywDAHRIJeHnhglkKxzG4+hzlMNGo0GnS6Xbp9gapTFHHP2I8s21+d2mw2HG6Xlaws2xRsih3FrmJXHdhVBwNNx6bYkWQb/YGGbFMsD4Gu60SjUYsx0O/3rRwDsUsfJxQSsNNGvUWxUCafL+L3+/nqV7/GV77yFYrFIlevX6M36HNoZppAKMjpU0f5h5//R3hcbgI+Pz/4Ax9ic32DH//MZxkfH+W3f/N3KZVKpFIpQqGQIGQ5HBSLZfp9zWpnEokE9Xqd69evW87ExcVlarUWkmSn0egI2XFPo9vp06i3KJeqtJodfN4A0Ugcu+IAUx5ejFFeeukllpaWBEJtVyh0W80ObrcXw4BkMkmxWOTObYGiBxmfz8fW1jbdbpdEPGUFCNvtdtxuscnad9YC5POi3Xv++eepVqtMTExY6/rDhw9b2ZfiZ2v/ntf5f/X2QZIkL/BVRGhs/a/LxL/5pd/lub8xzTRN83eB3wU4eeyoOXdklm996yVGUmlqlRK6PiAQj7K2sECzKS6a7byg2MzNzZFMJrl586YQE83Pk2k0SB46RHNnB5vDTblc4rnnnsXr8XDz5g2mD06xt7fHrbffpl6v8+gTT9Cq1zl65DDtloj5nj5zhl61SioZx+P3s7W+zoXzbzE1NcVffuXLfOgHP8K//53/k2g8hmSaRKIi1doE1tc3qJSLqG4xfKpUKjidTrLZLO122wq/3acq+Xw+RkZGyOfzLC0uAaD1BHfR4XBYbD/FMChVytx59wY/GHoWj8+Jqes4VSem08TQTBwON5gVPvujTzE1HWZn6wqS0SQZ9uBw6mA0QO9jmA76Oiwu1ohHkhiDPuFAkEIuj6p00U1TbGpkg4Gm0RnKqPvaAEwZA2Fykm0SkmFgYKL1dVxOFdMw0IazhEG/L2LjZRnF4SAcChEMBMimstSq1b82demiZSoXiqiqSjwep9PpUMoX0PsDZFnh2MkTeNw+Op0e5UKJ40ePoSgqKysrHDhwYJijmCAYDPLRj36C559/Hr/Xy/z8HR596CwzByf4jd/4Df7wD/54yN4cZ2trA13XCQUjjI+PAVAqlSjkqwx6bUrFGslkkpnpI9TrDdqtPbyeEAF/VKyPB3lGR8doNBroum4FIh8/fsLSKuyzPZeW7zM+msDnDeByOzC0AR5PgOzICKpDoVouEQpF2NjYRlEcKIqDdqtPJOwkEg6h6X12d3e5ePEKc3OzaAPhc+h2uxZJaWRkxEKz7WMNo9Eo/U7bSvwul8si2m4Yi2Ca/53eB0mS7MMD4U9M0/za8OncflsgSVIKyA+f3wKy3/HXR4Cdv+37dzodQtEwhw/P0G23OXfuTcbGxrh15RKpVIrlZg2H0z4Eg3rY3d1le3sbj8dDNBolEAhQLBYJ5HJ402ly6+t4PS46nQ6bm0Wy6RT+WARZMvG6PVy4cIF74r7/VwAAIABJREFU169RqVQIx4NEIhHhXVBVHLEY82+9RSwWw+PxWAowh8PBq6+8zKc+9QmuXbuBYndQqtTpD3RMw8BuF7i2RqdrlcPhcJiJiQkkSbJYgNVq1bJ/r62tDfMABT9x/y7a7XYtAG3K6UHSDdr1Bg7Fjt2mgAyyJCMjmIV2m4qi6PiyYZxqn0DQQ6/RQbXrOOyApGNqGvlSi+5Ap7Crs7u2xc1Lt9C1Ph6PC0NvY/ZFv9rtabS7A/q6ANkAyJKEarej6waGBKYEyjAnAcNElhTsisMSLemyjmITiDaH6kKWBMTV4XBYqsVIKGwFm2iahjEcmPnsTor5Es888wzVYpWKWSGdFOTjGzdvW4dppVQgHA4ze2SSX/1n/4pf+7Vfo9fp8MILL/Avfv3XkV3wS//0H2O32xkbz7KyssJbb7/J0aNHabdEv722uoHH46Neb3LgwAGq5Tw+n2/4szCR5Q6tZncIpnXi8QR45pkTeLwqY2NjJBIJkQTt91OpVMhms5baEKBYzLG4sMD8/F3W1lbotJuUimVcqoNwOIjNZscmq4yPHRi+B9BoNNnbyw0TqKpkMiOsrW6QyxVwuVxiTR6NWgpYl0sQwlwuF08/+yx4PNy7eBFFwqo6Q6GQ9TkOBoPYVfW//VAYbhN+H7hnmuZvfscffQP4SeBfD3/9i+94/mclSfoSYsBY+9vmCSAYjTevXyYYDLK0cA/VbuPg1Djffu0VNrdW8bnd7O1tozjdlntQlH1FRkdHyefz9Ho9oUFfWyMYDrCxty2SkkbHiCbiYAzoteoUtjfJRIf20mSM0YMHuD8/L2jPqoN+v08qniCfz6NpGidOn2ZrbY1es83MzAwenx+Px0W3NyCZjHN/cYmdnS1kWSEcDhFziAjy/Yn6nTt3LL/7PkFK0zQ2hzJt15AQ3Ww2aVRrBPx+/H4/qVRKpFPXGiiSzEgiRbveJuB34w8E0NFxyE5skg2Xw4vfbxBLJJBdXuz+ANVCD7/Thqz16DZadLU+3Z6dRtvgxsW3ufTeVVbvb5KIBAkG3LR7shj8aToDw8S02ZAlG4ox5DxiIMsSIKMNBtgQYcCqy4mqg6bY6ck9S/VpSjLGQMOUZfrtDrntHdqNJvIwumw/Acw0Taanp+l0OqytrorPXFWwK20mKJLM1vYW66vr+P1BMokkRn+ArEv86E98hiefeoy3Xn+PM2fO8Prrr/Pg6dP8yhd+mc/+2GcEHLc/4MjsYd689AadTod0JoFpGkwenKDb0XC7/YyNiorj7bcv8NCZYyiKcLCePfsIUzPjoEGnAy+++C2uXbvGxsYG7U6Je3fvMxgMrE3YPtErGo1aUYa5/K5AzKsqY+MjYJg8+dRjTB+c5LHHH+Hu7du0Wi3m7y2TSifJZidYWlrC5fRRKlaHODgn4bBQ0Rq6jVarxdbWFpOTk+zu7gqAryEMYJcvXuT0ww8z++CDlJaXrC3Xfgzhfsz93yJo/K+qFB4Ffhy4JUnS9eFzvzI8DL4sSdLngQ3gE8M/+yvEOnIJsZL83H/pHxCZfXZGJ8YYnZ3i/F+9yI0b14hGo1SrFcrlsrCxZrIWE2E/dmtrawvTNJmZmaFarVKv11FUma2tTVxOJ71+l1qpyKDbw+N2Uy0WCYRC9DrCM2/oGuIdMqnXa8PU3w4+n5ft7W3u37ktPPU+D4GJCW6/fd4CvBqyjMflZmRkhGazLQCaIbc1VZckiXA4zMjIiHU49HoitWega4RCIQKBAKVCUQiWhmx/RVGsXT8IZ6PL6WR1eZlozD+0TaugShiGCaZMp1GkLBt4oklsChj9Dpqsokomva5Bs6uzuVWiUK6zvryE2e9jDvoYuoZTVWi1BuIuL4kyQNc1kMQ2wZSAoZ5lv6Kx2exgEzoF2ZCsweL+f/v/D4ClHgzIMsaQbKxpIkkpFApZeZp2u+hzEzFBL75z+x4HDx5kbu4I6+vrOF0eioUisXiSbDrDk08+xq/88j/nUz/yo+zs7PDTP/3TNOt1zp49SyadYHdrG7sq8eKLLzI6myGZTLJwfwUJm0D+KR4C/iBXrlwjFotx5vRD/NzP/V1GsimwA3341//yt3jzzbeIRGLYZIV8Pi/mQVEn29vb1Go1ZFkmm82ytbVlUZoGgwHNZhOvx0+71RKE8WqdVrPJn33pP3FgfJSbN28yms3w5JNPUi4UrdSn0ewYkmTDNHV03aCQL4EpUy5V8frcHJ6bQpZlYWn3eKwt3OqQ8Xj90iXK5TInjx1lcXGRdDrNgQMHmJ+fp9vtWq/vv/lQME3zbb77nADgme/y9SbwM/+l7/udDxkTqddm/e4t+v0+iUiIg4cOcefWLbqtFg8+fppr165RrlXxeV3IUoxAIMDly5d57LHHWFlZwdD7+H1uJHSmTj1ALBYXAhOvD7uqUqpW2cwJMGo4HufunTvE43F29krUm0JktLW1BRQplUo897GPUW/2UJ1eciubxJIhFq9dIRiP0traJZ5O0+lq6Gs7zEzNcuPWHWxuJ5Mjk+zm9mhV9/B6vWxtbtPpCCipLMvopoY2FPrs7GyxtraCx+XF4/EQicTY2drlk5/8JIOBTrfdodwQ8WOqK8i9O/PUqk1+5NMfJhD0sNtZJRD0ItvL+N1hMQ23NTEGHdwOKJZL+HwZ2l2VTtPgja+9QqVcQ+tV0Ro1wgEFf0BFlw08wTQ4gnh8AkrS3dvDwI4sSQyafVRVoVVt4fV68Tnc2GUbhm6g1Tt4UyGRPdFqEwqFGHTFLEJVBXDELZs40anv7jE9dxi7Q2V9Y4NOv4eLID1TQsOGxx3C63Dh9PpIZEZQVDuVapWtpfuUG2JIpmPSunqBV779KjfPL+A2/NgNhU996of4xz//P9Ltdjh0VPT7piShuD20ahr1kpNes4PPkSEcCjAykubo7Cxnzz5IKBMGE/7NP/sX/Ktf+18oV0qEQgFUVWFndxOvx6RSuUelWkZRZA7NTHD73gKKYieZ8VAp19DNJplslEFfp1IVwzxVdZJv7eJ1ezAljb3KBl6Xi26vS62hktt1YfSr/PbVC6THxsR76/Px0EMPEQgEeO+99wiHwzTaDbLjWSLtCA6Hg2a1iWzIdJtddjZ2iMfjzE7NYrfbmZ+fJ7edIxaLsby6zQNnHiWfz9Pq6Hj9UYLhJKVKC+P9LnOWJJnNzS1GRkaQZZmRkSxXLl1GVVXOnn2YjY0NkskUDrebUqnMoTNnWL1+nUceeZR79+aHO1gdt9tNuVzhzoV3RIthV2k3W2wU1/H7/STjCQxNp9tqMz11CJuioHkNer2exdFvtVpks1kuvPIKmUyGeDxOt9vFH/TQbrfZ2tjk5q07PPTwY1y/fhtN64s98dQk5Wodl9tBsZi32huv102v10GWZSv4ZZ+WtJ+qNBiI1OPl5WUwJC5evEg6PUIkFEZXbIBBr6+RTGeo1Iq8/vpbJBIRDh85QKPaI54I0+2YqHYbNkOi1emjGyaSYef1V98kEpnihW+8gqkL0rLbJRMMhbCrKnt7e3T7PcLRKHaHyszMDIVCgbt37+ILhCyWo8PhwD7kSIIwk+0r97SBgWp34nIbGAaYpoTT6UYe3ks0A1qtDoOegIe6vR4xFygVURU7oVCIbCpDca+A3+PF5nWRTKcIBoM0hjj+8+fPC+LRSIb/4/d+h4//8Cc5EJvkV3/1V/n83/8cU1OTLC8vMXVoEkqwt1sgkx2h2egSDEQ5NH2Qxx9/lKc/8CQOVaFSKfPv//ff5mtf+wq1ahlVVVhcXMRUXKgOhXxRdLw2BbLZDG6vi0gsiizLbGxu4HYJcKquSfR6OpgKpgmtVpt+X8Pt9qLanegDg8JeAY/XRSaeEO1jv4PT4UbXTDweLzabwurqKsePH0eSJF5++WWefvppHnzwQZF8NjkJus5X/viPOX36NIZpUK3XWNtYFzMfWSKZTmEYhkX1zhcLmMgWxWx/JalpmuXG/F6P98Wh0OmKwdM+CLM+TFQ6cOAATp+PZFKQdbHJLC0tWWuxnZ0dYUjp963sg/2Vjd/vF6isTgdlmLIsyl6bVa4CQwhnzZKu7lthH3n8cZAkNleFd3329HG6lQrr65uMjIxQq1SYmTnEK6+8hqbp5HJ50RvOL/DgQw/xh3/0H5mensZld1oqP03T0IcILrfbbYldOm3hDTAxOXXiAYrFIidOnCKTSvP6yy8QjUZRbODyuDGlCG++cR6f30U09mmSySh+d5hKpYo5UHD7/GAKV6Jm63Lzxh3u33sF01DRdReBQAhdG2CaEtgU/IEQjl6Pfl/D5fHSqDVpNTsE/CEGw8Hf/ipyf4Oynwa1P8mutWvWmsw0DHCoqDZF0H0M02q3up2emCc4VJwOB94hWLVaroDfsFqQeDxOKpUSB+XSEoVCgWQsTqlY4t/91v/Gay+8QiVfRAuP8k9+4R8Ri0UYDERuQ7lcxjQk3C4v2gBOnTrN4dk5PvaRH0JVFTa31vnTP/kTavUKd2/fotPp4HEJl24ymSRXqeF0qkOQro3MSHrINYSNje1hgHEISVY4evT4MLl8k83NLarVKoqiEg7FhxuCXUYOCD6GXZFptTq0Wy2S8Rh2uwNJstHva7RaHSv+7fDhw2iaxrVr1/B6vYTDYe7cucPJkyd55JFHxGdVE23X/tB9b2/Pcv5KkmRpYro9MUPYb0UNw6BQKAz9RI7veT2+Lw4Fj8/HJ/7u59man+fOnTvMzc1hSBAazXLn0iVGRkZwetw43C6Lt5iZnuatF1/E4XBYPVIwGBRBmu22ta7c97Y7HA4ymYzlj9hnQUYCYUqFHIoMAZ+HUyeOoes6L33zLzhz5gz1apl0Mk6vUmF3aOtW+houl5Nut8cDD5zkm9/8S8DA6/WQG/rYT5w4RrfbpVDMYVdt0GU4fLSh6wPa7bZVNfiGB9/m2qa1riwWi+gDjdhoBptNolwsMTd2CGerwVHlQQb9Hm+8cpF+t4Nit1nJQ8GwD0VRyJfyNBotNE1G1x1IyIyPZajXGwQiYYvjWKnXGFR1BoO+5QoMBgIiebkrmAZ22WapMnVdR0Z88PZTm2OJhKiyGk1yuRwyEgMM9GEMuiLbUFUJfyhIuVpBlmX84Qhjo6OCTN0VB+bM7CzhUIhSo8KVK5colUrDwJc1fuC5Z/n0pz/Nb/7Gv6XZbJL0+CiVd5AkE28ghmI36Q/arKys8dgTT/FnX/oa1VqbxYVV/sN/+F2+9Kd/DMDYSJZTD5wgFPaxubmO0y1Wpjabje3tLUIhH+FwGEVRaDabLNxfJBKJUC6XCQXj2O12KpUKsmJy6+Y8d22LtJoidyQRz3LyhDhEPvvZnxTVqlsh6PcDBndu36JcLNBpNcDUkQwdWVJRbCpTU1OkUimq1Sq9Xo+RkRE2Nzex2Wwi8CibZXthQWzEsjPsbm2haRoPnjlLLpezVI6YMslEGk3TCAaDVtbJvr5nn8a1f4h8t8f74lDotFoUVzcIh6IcmTtGtVolFIywvbCMx+3D5fTQ64rS0263E48lWbp2k35PYyQziq7rVv6foUMoGOTGjRu4nE5Mw+DQ1BSKotBqNokOw043NzeZPnSIwl7BuijX19dZWVnh1EMPceTIESLRKKurq6LEHnRZXxOJvsV6mSc/+AOce/VVErEITzzxGJ1OjzfeeIOHHznLnbt3yOX2SKczSDbZwoYbhoEp7WPnRe7jfj6gaZqcPHkSl8PN3Nwc5XKVarWKP+4D3UCqVOgONAzThmHasCkO2rU+ToeXfruLxyUEV3s7NUx0TNlEtXvwenzk8hWOHZ1lZXmLUChCMBIWsestJ5Iiysh6s2GFrAL4vF66g76V0LX/0HUdh121xEyKohDwi0xPm2ynVmuIu9AQ2sqQN9EfaCBLuN1udNNke3OLYDhEIp7Crbqt+Pd6o0EsIQJTqtUqy8vL2G02IqEw/9M//QKXLgq16cTYOMVOTUB4HDKJZIxqvcYnPvEJPvHJz/Lt197k9//vP2R3p4iu60wdyuJw2EnG45TLZfb29shmhb1+ZWVFgGxlG76AH6/fRyaTodfrsbKyJrIyUUimssiyTDAUwzQlRkZGrGSvs2fPEolEcfqG79VwClfNN5i/f5dKqUwkFOHo3BH8XicOu0osGhRmq1KZUNzP6uoqMzMzPPTQQ1y+fBlJkpidnWVzc5PS+fPWgTQ6MY4pQa1RJxQJ0xnKmYPBIHt7e+KGo4jK2DAMvF4vBw4cGFay81bk/fd6vC9cknPTU+bFV7/B5uYmmUyGjY0NK1pe0zROnDhBs9lkaWHRuvuvra3x/PPPI7lcbCws4PP5rDXf+sYqjz32GNeuXePUqVNkMhlr/bdPy5EkSUyNk2kkSaJardJoNCwU3He2I/1+38oQ2NjaIplMMzKaZWN9C0W1c/KB07z11lu88sordAYab5x7k0BA2FQDwTAbG5vUW01ssp1Wp40k2ZAkcVH5fD4CPpGE7ff4WV5cYWZmhnK5ytTkQfzpAIlojH63x8riEqrdjt/hpdfpUCtViIUj5Pb2SGSEIk62Qb1ew0DoHXyBIKFIHNOQUFUn09OzNPvCkFQoFKjX66RSKS5fvozNZiMQCKCqKvfu3WO3KD5gsXBEtD5D0nQiFicWFmlD4XCYvVoVr9dL0Cci+eLRmIi28/up1WpsrK4BUK4ViUQijI2N4XC4WF5YJByOkspkh9FswvMxMpri4sWLKDYbboeT7c0ttjc3sUkybqeLXrtDOBSiYgiceXZsVKzbag1sNgfVWoe93QoDTSIYENyBeExCVVVrjqMoCru5HJVKxWqLgsEg8WiYbrfPkSNHOHnyJNOHZglEvBh9kEX8BK++dI6bN26ztbVFq9Wycht1XUe2YVVUAOGAD03TKJUKlAo5IpEwbpeDbrdNJpUgkYhhVxWe/9Cz3L17V2xzZJlTp07h9XoJDKu2e/fuMXvkCO+eP49zSFMCLPXlK6+8wuzsLJqmcejQIYrFItmZae5eElqfe/fuWbmSkUiE7/uRH+PazdvvZ/KSk3qjhepwcfvOPY4dO4amaVRrAmaaL5SGwzk3u7s5gsEgrVaH9fXN4YW+R7e7RiaTwe32YuoDnHaVkVSaV156mZ/6qZ+iUa3htKu4HU6+9eJLHDsm9tH24eHQ7/dJJBN0um10Q2NxSZRqZ86codlssrW9RzabZcQw6Pb7JA5OWXbbr3/tq9jtdp547FHOvfcu8XiURqOFaUrkFgTUtdVqCTGPTcZmE+7C/fKuXm1Qq9W4snmFo3PHSKfTzM0dZSSd4cLNd3C73XRbXcbGJlhfXaPaaxCPxsCQyJdrFMp12pqGJInciIFm0Bv0GU+JfENJVjg0PU2z0WZ1bY3ZE3NsbGwQjsaIxhNDUlCI3nC20O32SSbTDNDI5XKWcs+hqpYzdX+uI2zQCUu7f3JqWhC0dvc4ND1Lo1ZHtTu5ePEiqZE0jVqder3OqeMH8brc3Lp1B6/XP3T6AbKE6gCvR4SfbG+s02o2yWRSDHp9bJKM3W6j2+/g9DpptVpsbGzgdDqpVOu0Wj3CkZSInW+I9Zugdo1Sr9cFlMRmw9AM2u0ukmQjEApz/PhJPve5z+F1u4ZDZxlJgnq9x+rKDl6PsIe73W6e/b4nePaDT6B1QXHDoAV2D6BBs9FH13UCQRemAXpnQLMlZmSL9+fpD3oUiyL4aHN9mXKlhNfrZX5+3or1CwQCpFIpzp07ZylfU6kUtXJZbCMaDYLhsFiBdjogy0TjcWx2O+FolKvXrwvi2NYWiUSCYrHIkSNHuHDhAtFoVFRlvf73vB7fF4dCfzAgFotZuuxer2d57gOBAPfv3+fAgQPW/CAcDvOhD32ImzdvYpom0WiU9fV1NjY2eOihhzC0LlevXmVvb4+nn36ad999F0mSSKfTpCcmKBaFLuDo0aPcGHonVEXh1vUb1nQ96POTz+fJ7+6RTqcJzIb5+te/zg//yMe5cuUK9Dr0Om3iyQRgUCqVaHVaTEyMsrWzRbk8j6IoRKIhtIHBwDAY9HV0E5HjaPSHuPAOjZow2eyj286fP08mk6VarhANxllb2sDn9RL2hfD4/LgcburtDsVqjUQywdzx45RrRYrFIpVWC380zub2NrulOrNzR6jV67QHGtnJA9h2dri7cJ/Dhw8jSRKLCwvYkBjompD6FgrYJFkItTwe4QPpClGSfWiVBiyfQCgUwh1NEI1GOXbkKJqm4bSrTH9ymnffeYf79xdptNoEg2E2tjZxqg5KpRK1apWN9XUcNgWv24Pb7SYYjaEbBqX8Drqm0Wm28Pt82GQZ2a4gmQYGgC7j8QUw7Lahb6KJrpucOnUaj8dHMJTgz7/2V3S7LSLhJI8++jg/9JEPEAgG6fc1nB4FSYH8njhQJJud8fFxAmEF2QAMmfV1sYERytKyJU/fy+1iGAaZxCiXL19GloXtvd1pCoy7aicUClAoFMjn85jt5rDVkshmMzicdjqdFpOTE3S6bUZHR8hmM5x56AwgEP7BYNCKSwRYX1/n0Sef5NUXX2Rubg5VdVKp1KhW67TbXbrdLo888hjVanVo7Y8NM1DF5kGWZW7duoXHIxgYKysr9Aff+1B4X7QPp0+fMv/T7/+Opc1OJpN4vV7u3btHIpGwvOuqZKNULHLz5k28XhHcCVicwHq9zsmTJzn37ZeZmJggk8lw7Zrwyq+trTE5OYkyDGC9cuUK3//9349ig8uXLmEYBvF4XISZ1OuWR/7evXt4PB5ye1W+/0Mf4qWX/0r43qMRytUqjz7+CNhs/Lvf+i1GR0e5v7HOtes3KRRKVMpVEqk0lUoNZDvtVpdOr49iU+kPmlYis8shWhNTMxnLjg8TjqOsr67x8GOPCtORLJNOpwkGg7TbbaFQ03pWXPrNG1cIhUKk0iOEw1G2d3MEgyFu3rrDsZMn8Pv9wxi0EtMzh1haWhKrKk0nv5djY3WNTrvN9uYWPp9PbEWMFpVKhWpJDDFDwSBOpxOXw8nE6NhwfTzC+JETHDl82BIl5fdyXL16lXajSa/TtXI8dKVD0OfH6GvMTR/Godh56823GT0wSTyZwOH1YUgQcwnWQqlaYWVlhXK1gup0UiqVCEdF+zE9O8OB7AyGofHmW+dYXl6k0WoiSTZmDh/lJ3/i75HOjJLPlYnHo0haD7fbgeyCv/rmOe4vLPD6ubfo9frYVSfNdktQnxpiAOx0qezu7ojsTreDbq+FzSbCZh9//FHee+uKEFQ5nXzpz/4fyuUSr776LS5dfm+4rRAbJr/NRrfbpVoVr8Pr9yHJBoGAj3a7STIjNm5LS0uMjo7yxBNPkBji+x5++GGRL1oQgNl9F2at0WR6etoSyYVCIXI5UUErikIoFGJ3d5dyfg8QLUa73SYSibC4uEgikeCjP/55rt649f5tH7R+n2w2ixIIsLcsQjTv379Ps9nk8NGjYLezMz+P1u4yNjZGs9nE6XQSCAS4cuUKkUiEWCzG7u4uOzs7jI6OIssyu7u7FqNgbGzMYiGmDx6k2WzSbrfxhwP4fD5KpRJOp5NGo0EkEiEQj7O+sMDBgwcZHR3l3t0V9nZ2mJubs/pQw9S4dfMmhWH0e7lSotFo4A94abVa6LoP0zTxer00Wl3r99rAoNPVrXUqYN0VvvCFL/Ctb32L+fkFPvrRj7K5tU0qkWJza4PtbUEcVhSFXCknErQ6bXTDIBQJYrPJLK4s480XkG0qTz/7LIrTxQ9+5MPcunWLe/fusbW1RSKVoFKtitdcK7O7u4vf78fldFLI5anVaqK18tqsIaOiKFb2htftsWC6Ho+Hvb080WicaknE2J97Q3hXRkaEBH0w0On3NVSnIjI2EECVntGxlIzBYJCOpg+9H5o1id83T/V6PcLRCCcfOEUoFCKWTPB7v/d/4XI5KVcFaGTm8GE8Hg9PPv0c07PjIIPLGaXTgRdeeIHNzU3yhRKbO7tUqnXcPh9uj4NWu4tNtuP3BTFVH6ap43G7GBsbx+dzE4mGWF1bQlUVBoMe7753gYA/xvT0NP1Bly984ZfI5Xap1+v8z//8l9nd3eW1117F5/OidPs0m3ULdNtq1vEHherR5/dgYtBqN3n44YepVCriNebzBINBrl+/bg1gT58+zfb2NoVCgbHxg3Q7fWHLrtdFvF0wSCqZEQFJgTD5XBGvy8nC8DN88+bNYSUj4uu/c3j8nz/eF5XCyWNz5rXL52jkBBPxvffes7IlDx48yObmJvfv3yeaEGhrVVUZG81y4cIFUvEYvV6PZEIMt1wOJ2++dY6HH36Yd955h9OnT3P9+nV8PtETJhIJC53lcDiYnhlndVVYnjeG24WZqWkqlQo+X4Dl5WXcThf1bptYLMbq6iper1fIUUfFgOvixYt4PB6Rfn3nDuFQlLv372OaJusbO9hkOwbgdnmpNVsiJDQQY2e44tzPATQMwwrCqdWEUy+ezIhdfrXK5OQkFy5cYHJykna7zeHDgkn5wAMP4Pb6ePfddzlz5gxXL1/C5/MxPTXJ/Pw90qkUKytLjKTFh8au2oTibXmZkydPWqasQCDA7du3uX79OpOTk4zPiAtzeWGZXqfP7KE5XKqLiZEDJONpAoEAMjZ2ew3cbje1eoV0MsXVq1fQen3GRke4desW3/rWS0yMj2N3KERCYXxuD5sbGxY56MiJ48wcnmVjbwdd17ENhOW83W7TbrcBkaMAQldSKonDNxgRlUs8nqTRbmHoMuFolN7AJBZN4vUFmJiYFA7MkSAejw+/x4upG2BIBIJ2zD688Bcvs7G2LpytniiKojA1dQCX20G5nEd12Jmbm2by0DjmUGfSbDa5du0ajUaDVrPL7Vt3KZUqbGxs4fX4aDbbzM3N8bM/8zl+8Rf+yTC5qY026PHAA8fptts4nXZssrCtj0+mLUFYPBpjZ2eP8ey4mNvYxGB0fFTc2FJjY5imyeZ+1c0aAAAgAElEQVTmNpGICMdZX1+nVqvz3Mc+xsK1Gxyanub1N15ldHSUUNDPjRvXyKQStFpN2q0GP/2FX+Xmnfn3b6Wg6zqtQsGyGO9juVRVpVgsMjIyAoDdKfzkly5dwuV0MDk5SToRZ3FRbCUajQaqTyUSiVipzna7nbm5OYEX29sTWLfh+rFarTJ96gjlchmbJIg1DocwRe2z81VVJZaIY28KuXEuJySkk5OTgiEYCjEzM0Or1SKfzwuM+NauFdWlGzLtfhdTkhj0dZweL36/n92tXULhAIqicPbsWfx+P+fOneOdd8/T6/U4ceIEJjq3b9/G4/Hw4IMPWrvnbreLx+NhYjgfkWXZmrvE42KQVK2VWVkRtKfl5UVLyebz+eh0W+RyOWsmsO+wGwwG1Go1/EM2hdfrxRiI9alhiGRsh8NBvdVELhboDfo4FCdrObE18nm9uFwugbBzChfo+vo6sViM8fFxEinBnUQ3yOdymKZJKpWy8Px+rw9ZsVHY3LMQ5vsMhv1sTVmWLWdlzB6zeJrT07OcOHWadDqDPxAAGSQJen3oduH6rYsUCjeplitMjI/j8wZIRkXO5oc//kFhf+mBDtgcMOhAu6Oj6z2uXb/Kl7/8ZY4dn0PTNL72518hEokwNzfH5IEpnnv2IX7oYx/H5VPJbVcxDIM//IM/YmFhiS9+8Yv8+q//Os1mk3ffvUC5VOD+/TsEfD4cDgWHQ/wMQqEQOzs7OBwOJsYO4PU2GQwG5HI5Zg5N43Z7WFtbE05KRQjDRkezVKt1NrdE+FE8HqO8ucnYWJZyqcBTH/oQ969d4YUXXuDhhx8CQ7OMee/7SuH4kVnzxS//RyqVCqVSiYmJCUuSGRgZoZPPiw2BLlMoFAS5yOUkFothakL40mk3BTI9kWRzdYWNjQ28Xq+ljLty5QozMzNWurPf72dlZYV6rUgymaRWa2AYBqVSWbAMNKHcm52Zw+FwUKgWmT5+nHo+L+62djvZbJZWq8X29rb1A9NkmZXlNdY2N9na2mIvV6LXHeD1CyiHwy3k0npfGJAikYj1PiwsLBCLxXA4HESjUeG2tIkoso985CNcv36daFRIbVOpFC6Xi4WFBR5//HGuXr9mId3mZg+j6xr1SpVYPML66gqxWIzbt0Q0eSaTYX5+3oJwOBwilLbX6/Hmm29afEF/xM766gbNZpux0Qn6/QEg4/eEiMeT2GwK9XqdsalJZFkWrcIwnPXE8aO88MILbKyv8sgjjxCLxRgMhKJR7w9YWlwE3UDHZPTABE63CxQRvVfZLVIfch/3FXr7wNv9bMdAIIDDpWK32wkFIzidbpqtDq1WmzMPPcoHn38e1QXFXId8Pk+puGuFBu3t7dFqtdjd2kZVnfT7gllgs9moNzvD6kNYkze3Nuh0WgSDfgaaQMI7nU567Q7JZHJoBe9ZKc+lUglDh5MnT3LkyBHOPHiSw8fnGLS6bG6uc/G9dwiFfLz3zjtUqyUCftGS2R1i1pXJpOl1uwQCAZYX7pPJZDg8Oyta0FqVGzduYFNdli6h1+vjdrvZ3cnx9NNPU6s1uHNHkMSn5w7T6/XI50RbfeTwDM1mg8X7C/ziv/w33Lhz7/1bKQCsrq7idrtJpVLcvHmTbDZrrfLC4TBLS0vMnX2czc1NTp06xcb6GisrK7TqNR5//HG2NgUPcWH+PmcfeZhCoUC1WsXtFsKYj3zkI+Tzwiu/srJCPp/nxBNP8O7LLwxVhjrJZJJsdpRyqUomk6FUqhCMhKnX6yJIo1y2cgU3NzcpFosUhhVOr9dDkiRcHg+RSIT1YW6f3W6n2xH8hH3AJkAgEKDVatHr9ahUKuIAmp0lFosRDot/c2Njg3hyhGq1wgsvfNNy5D300EMUi4Xh1Plhvv3t13j40Ue5fPkyjUadnZ1tzl94C8kwURSZVCLJ1vYGU5MHKZVKDAYDJicnh7mKKvV6HYfDQaVSGQaTpsSAN+oCQ2JlZY1IJMLOzi5IYHc5CEbCYn0WFi2AqqqUCwU6nQ6pZFwARTVBj3IodrwuJzV9QLUkmBKdYRtlmqbQQZgGhiKjqHbMoMC67ezsiPfU5WJmZsZ6r/aFNycmTnD8+HGe/MDT9LUBqt0FThmzC92BQb2kEQi4CIfHWLjTo1qtIhsmE6NjGIbBT3zms7jdblZXV7l69Sob20KDYrfbrcjBdEZkQt6+fZNQKEI8JtKW3KqX9fVNq3pTFGWYUC3s/esby+zsbnDr9jX+zk/+BN1ul50dsSJ86qnHee6ZZ/j6179Koy5kyKGIoHC53W5UxcapB05Sr4j09FdeeRnD0Hji8cc5OHUA1eUmk85y/vx5KpUaExMTqA6F3b1tlpdWh+BfeOONNxgdHeXQ1CTVatWaJ4yPj9N/v4uXjs5Omy995Q+E8q3ft5hz+0O/XC7H0WPHuHj5Bpom8g3HRrMoisLBiXHefPNN3C4Hx44dY21lFckm02g0OHToEAsLC5w8eRI5EKCTz7O0tEQqlbJ4iXduXCOVEnvtcrlCrdlgZ3uPUCiCZJMZyYwSHhvj5oU38fl8lMtl/H4/r776Kk8++SSKopBKpURuYy7HbqnE8tIqS6ur1Ot1Nrf2qJRrlCoVtIGBZiIESwFhqNk3p7jdbrrdLrOzs9ZKqtPpkE4LBmUymbSCZ8+cOWPNWU6cOIGiKHS6fY4dO8b6+irf/MY3OHnyOINuj4WFeWLRKD6fh0xK6PDdbr9l6+52u2QyGatPvnpVgLedTifF/KYQi2k6it1OtV5HdbqpN1sMdGGPHp+Y5OjBaQxdH4p5GnRabaJhoa4zDQ2fz8czzzxDPJ3i6qXLrK2u4lDs9DpdkukUE1MHWd/axOX1UG3UMbqa5avYV+jlcjk8Hg9TU1PioO12GXQHwlDW1/EFA3Q6XZaWl/noRz/OyVOn6ff7XLp6hUK+SDufp1qtslfIo9jtyHYZySaTTKd48OxZHE47pVKJra1NUqkUH/zg8zidTu7fv8/y0irXrl3DMMT68dChQ4yNjHH06FG8Xi/Ly4ucv/Am6+vr9Ps9XG4HLpdIDNvZLiBLYpCczWYoFnL8g3/weSqlEnfv3uIzP/ZpwtksX/2jLxEOh4nFojTqVSYmsmyur1Ao5hjNpmm3m+Rzu0QiEbJjk6ytrWEYJul0Gl03KRbKlMtlRkfHUVVhbLu/vCq8ErrG2UceYXVxkXw+h6Hp/OTP/wILK6vv3yzJ0yePmZcvn+Py668zNTXFzo4YOM3OzrK8vGx9QManDjPo9Th//jxPPv2UMP5UK8LlqAvzx4HxCeRwiEGpZEWlr6+vk06nLXNULBaj0WiwurqKx26n3W5z9oMfZPPuPSq1GrKssL27w9zhoyTTAui6trrI+Pg4Y+PjbG9tsbOzY7kd93MaookEuWKRjfUtvvr1r2Oz2bh85QY723uYkoQ2MNARqcHNdoNut2uVwvuchXA4jH34mux2OzZE2Eg4HKZUKqFpmpWGXCqVrJyBVCZNsVik1+uR29uh0+mQTacYHx+n3WoIRZtTgGhDoRhut5tYLDY8JNzDbYnOlStXyGQyuFwuVhfvgSzhdHuYnp6mXKuL4WggQLsrtimyYsNjOEin02ysrVCr1bBJQpk4PjpCv98nn9vlAx/4AO2Bxu7ODt1WG1M38PmETwO7Da/Px04hh01RcNqdVhXRbDYtJaLIPnBZK7eQbzg7OjiJ0+miVq9z6tRpXnntVTrtHuWaSOPSNA2lpYk1s2pDk8RGw+5S8QcD1FsNUdG4VDLp5PCQ9qKqKjvbe+RyOR544DQPnjnL2toad+/eJRqIiVSvRhXD0DAMjUg0zHPPPcXExARXrl6iUqmwtLTF9WtX0TSNeDyKNuhx5MgMi/fv8/TTH+Dw7DTr6+v88Mc/zcsvv8xTTz1JtVJibW2JSinPkaOHqZQLuFwOLl18l09/5jPM353H7/fTbLZxOBxUK7UhXt8cgoIhHA5z5eYtstksGHDu3Dk+9YlP8PbbbzOWHeWH/s7f4/b8d8+StH3xi1/8//kI+JuP3/y3/+sXZ0cSPProo6ytrQkDlNOJN5Gg22iQnZlB1nVy+eJfk22cTuq1Gv5IBIeiUK0KhHW9VicUDFAtlaxU52q1SigUAsSkd21tjYMHDzI2OUktl6dYLtEqVYhEo4wfmkVRZMKhKB6fl35/gKI6CPq9GIZBq9m0YuNTqRR+vx+HwyEGcx4P3lCIeDTG1nB9pBtQKVcZaBqmCSZCUm1T7BiGic2mEAqF8Xp99Hp9XC433W4PSZKFHdzltfIB9/bEAG6fBr2PdEun05hIQzZgA5/HR6VSpV6rUa1WeObpZ+n1umxubOJwOHE6XZaJzOv1WlmE+2SodDrN7u4u9WoFXRO5mv5AAFV1kEgmKZdL+P0BksP9dy1fJBwKDrmLmpjiqwqqYkfX+6iqyrEjR6nW65TLZSQgEY8Tj8ZwOB20Wi0KpRK+oBi8ypIYgu2HAO+7NJ1OJ3Nzc0xNTdHv90mmRpCGs5D+YECpVGJja4tao8G9+/dottt4fV78gQCKIaE6VPr6AE3XsKk2QmGhKG11m+iGRrvdtMJiK5UqHo+HI0fnwJS4desW+UKOWq3K8ePHcNkdFAp5RjJpJiZGadRr7O7ssL29yY3r19EGfc6cPs3jTzxNtysqvUajTrVS5siRw4yPjfHNb34Dh2qnXq+TzmQ5efIk7733LslEnEQiRiQcIhwJcf3aVXw+L5o2wOt2Mz5+gPXVNdqtDqlkiuWlZbTBAK/by6HpaUqFIoV8nlgqxcjICP1+j+xolnZTZE86HQ7+5Kt/zs/83M//2ne7Ht8XMwUJifHxcavfrlQqwi49DIgFEbftdrvZ2NggEonQaDSEvNWuUCqVyOfzHDp0CJfDSWs4S3AlEtDvMzc8GHq9ntDoB4PYg0HodDA0kwcfeJArV65w9ANPUVxcJDo+QbdeQzfB4XIK7cPICNubm2RmZ7n33ntiXRiPc/PmTc4+8wz0ety6do2ZY8f48pe/gmEYPPHEE9xfWCEUjHD95k3qtSadviDyODx+ZMWGZFOoN7tiah+K4XC5kGx9a+oe8kTodDoW0Wef6z8YDEilUjjUeRyql5XldZHO3TPY3VrD4/HgcthJxDN8+ctfI5/Pc/rUSSsEt9VqWZJaTdMsUdd+aR4KhTAHghWh9XV2t3ap1WocP36cZx99AtUlJMbPP/kUr730bV5//TXcQzqzU7HR7/ZotxqC1CTLNGs1kZxVqzPo9dF7AyqlspUJGksmuHXvLqpTTN+/k4qtqiqLi4sYhsE777xDMBjE6/Xy1oV3ADhy7JiYHXk8dLtdRiYnOH76FJValcXFRXRdJz4qWB3tTpNmu4HdbqNcLWFv1ZFlA5fTBTaVTqeHoqgUCoVhcLCdZqtKIOhie2eVUqnEXm6dmD/B8ePH2dzcZHdvi2q1TDIZp9lsUi5VKRUrzN9bIhSN4/W4OX36ND/2Y59me2uDd955i/zengDSDAaMjY3xp1/6Q1wuFx/+8Ic5d+7bnDx1gtFDU2AY1GstbLKKods49+Y7AvsXi+F0ulhYWMTt8g6RbPCX3/xLJiYmcThcbG1vEItHSI2Psr6wZIXBNGrNv/V6fF8cCkgSBw4coNlsEovFLLNOIpHg8uXLREslotEowazQBfT7fasH7/V6KIqC0+mk3W7TrDdIZEfY2djAFY2CJvT72aFLbGFhgUOHDoGmsT10Sq5vCCjmlW+9gs2uojhduIcp04o/iKNUwdA0MhMTlFZXmX3wQYqrq7j9fqLRKPT7DIZ9f71eZ2pqik6/z8rKiliTqqoV6rkP3dRMxSLwptNpwuEwk5OTOBwOfD6fCImJRIgGEni9opTdt7s2GoI+nc8L0dDp06eJJeLE4xEkCVaXN9jYWEPr9ckX9tjdFuxAv89naTb2cye63S4+n498Ps/o6CgHDhyg1+tx7do1Al6xN9c0DY/NRrfT4f78PJVCXkTSV6vQ6+H3urHbbMLj73JSLBZxOgTTwj5cIZbLZXomwiVpV4ciKLdI2m418Ph9QpjWbrG+vv7/MvfeUXaf9b3u89u99zJtT++jkUa9WJa7ZXDDNoZjCKbYYB8CmOQeICShZOViIJwAoYSSY1MOwWAH4gI2xl0SsiWrjaZpet8zu/defuePd88O68ZwcnLvXcuzlpdtyTOSR7Pf+b3f7+fzPPU5SyqVqq8dt3Tr+XyeQCDAvfd/lNXVVY4dOwZABVkM/txO+gYFquyOO28nl8vx8x88xsLiPNdeezWyXGFpeYFKKY9KpcBo1KPWKEVSdGWzfoULBoO8+GKAoaEB+vp7ePXVkzicVhxOK1okzpw+yS233MJvf/s8hVyOdDKJXq+nkBW7TZ/Px/KGnyOXH+ZXv/oVP/iBn21DA3zoQx9gbmaGiYmLVCslzp07h9vrwuVycP78GcxmE3Nzc2iUChoaGrj55lvFatpgpq21A0mu1J2Q5XKVVCpFR2sHm5ubFHNFVJKCjtY2HGXhIdm+/4C4hinV9TDUH4apvUlmCrtHhuXv//3fUiwWMRqFIMRqtdI1MMDJl1+mqUkEOxzuJpR6PVQqFLMZQqEQqXgMj8eDvgbGWFlaBoVE1/btYkFtMJDZ3GRxcZGhoSGR+KoJPgKBAKp8mcefeIpmXwuhSIw//eQnmLp4kYH9+0gEgpQq4g9gc3kWo9GIx+NBp9OxsLDA6uoquVyO/fv34/R4iIXD2Ds6eOXpZ9EaDPT19TE9s4Db5UWt1aJUqFn1b/D6668TTRTrgSG9Xo9ara5/0edyOSYmJoSpKCqyG5lMpj6Jz+fztLa2cvLkSVpbW0W+o/YYmkqlcNjsqNVKFEClUkarEcSngb5+KpUS3kYbra2tKJVKnn32WSFaNRpxuwUcNJ/Pi1SjJKrR+VwGqSqTTYs5RntLMzqNuDIdPnyY8bl5Zi5NU6mUhF+xxnfQ1+jbZpMBk8lEKJmhUhLCl3ztUVapVOLraKdYLpHIZ6kik05m6oeCwLppxK/b3i4O1HKZsbExkiUFvX19TE1N0d3Tyb0f/CBjY2OcPHWSEydF3qO7u1toCf1xcvks1XKJO26/hW3DQwTWhUM0n01SKZUIhUL4NzNksincbhcmswGLxYDH60KlkpiYHEOn05BOp3HoHEiSAqPRSHdXLwMDQzz22C+YmZ5Dq9XR0tKKJEkU5BI333QjExMTXLhwDovZiMViYGlhgTvvvJ233HA98XiccMzP888/z549e/CvbdDX18dg3yBLS0sU8wVAwuNy1+LmBs6fP08ikWDnyG4uXryI2+0lGBCbsNZWIf/dccVuUrEYo+cvAtDX3YdKqSWXzfLWu97DhfE3bkm+KQ6Fof4e+YmffJ9SqVSvsFosFqrVal1Jn8lk0JuEqCUWi1Es5PF6vVw4ewaLxYLH7cRoNJLP5lCqxXpoa3C3VWy57IormBobo7e3l1gsxtraGvlwHKVKgFsKlSq7Dh4Qs4qmRsrZHOFolGq1ik4SgppSqUR7ezszMzP1x2ydTofRaAQglEjQ2NBMrraNMJpsrK36OfX662z4A8wuLDI/P49KI0AnNputPqNQq9V1eYckSWKNmRcVaIPBgF6vr0tjmpubmZmZobm5mXA4THOLOBwkhUwxX0CtVmLU6ymXS+g0WhxOG73dPSwsLFAoiarzVr23UqkQCATo7e1lfX2dVCrFwMAA+YwYdlKVyaaTGPUG1lZWKeQyNHuFezGXySCZLciVKrGYsBnrtGoqxRKpVBKzyURbmw+NRkO2AtWyOGRzKVEUSiQS5MslfG2tFCWZaDRKuVyth6dUKpWQDdfgM1sHmMViYWYtRDQa5cCBA2wGA5w69SpdvT285S1H+d2rJ5mYmMAf2MRg0JNLlFEqFditZhq8TixmE/FokEavhz27Rsim0xw7doxovEIymWTHyDZsdguFQoadu3aQSsWJxUNotRrOnTtHPrplRNeRTKQpl6tcd91RTr32OoVCEaPRjNPppH/7IKsryxSLRcxmI6VinlBogwP79jEzM8WVV1xOe3s70YSYF0WjUYx6A9lsnpHhEdbX1ynkRHHusoOH0BqNjJ45SUNDAyqleHpUq7Vo1NpahTtRJy2dmjglvpnanFSrVTrbOrHbXCTicW69+/2cuTD65j0U+ro65Ue+/012XXEFkaUlIpEIvX19jF28SENDA+72dmbOn0dRKdaDR6lUql7c2djYoLW1VfgGanKOUqlER0cHCrOZcg0qsQUFSSaTxGIx0TeoKLHabczOzjK0fZi19XXUWiEmyeRzSFvk5nyJqakpHC4nVqsVZY06tBEQd0Ob08HGxgbBxVWqyFitdlQqFdMzc8JTsRHA7/dz7MQJnE4nY9N+vF63IC9ZjPVVViaToloVZOd4IorL3kapVMLpstfDN11dnYTDwrjscjuYnZ3F47KI0phaVJvDwQjpdBa1UkNbSyulUkWEpewOQhtzYksRDNPa3obJaqFcER0ET2MDCqWSfL5IPplEoVDQ1t2OLMvMzc2QTCbJp9NIlSoKScbjdFGQFGi1WsoFsVJ2OZ1kMhnma5Kbq45cIbIX6aw4jORqHYG3RcAqFAoYzeKgUteSkUgSuVwOjU54G0vViqAImYwUCgXSyRJ/8zd/w6OPPlrvkOzfvx+Hw8HFixfx+/3ceeedNd7ACzXRrwhBWaymGglZbCisVjMul4vm9lb8fj+BDVEmctlE2UglKZArVbRqUR+vFsNsBkXbVqHU4nQ3IClUHDx0hAMHDjK/uExPTw+P/exH4grnX8XX7Aa5SnOjmx3D2/nXX/ySbQPbWF9f57qbb8Fms+Hz+Ugmk0xOTiJJEkNDQn/ndrvJZrPIskzPzh2ceeUV9BphMEvE4qhVKpqamlhdWiYYDIpymqbM/v37OX9ulFwuh8fTgMfTQDAQ4va772Vy+o2t02+K7cP3v/edz//tlx9ErunTtkCqkiSRyWRIxwTCy2Yx0dLRgX91ldbWVqxuN+VCQXwyVlfrwzlPXx9GhcgqqGQZtVZLqVhkdHSU1vZ2VpaXazx9NVqdgXA4THt7OxfHxuju7kZVWwlabeKw8G9soET8ATV4G1CqlKytrmIym4lGooTCYUqFIrFIlGqpQDgcoaHBw8LCPJvBDcKRIJVqhc1Nfw24EUapNWC3W9HqNMTiYZqaGimXi6hUAqFus1sE+l4nYbXpqcpFlEpwOCxYrSYBUqmWicWieDxuKhUVmWyRYr5MOpUjncyi1xlIp9I4XR462ttRqVTEEwmq5QJICjQ6LYlUhnKpQjKVJJ/P09TSTLFYZGVlGb1GiyxBMp2mVClRqcqolLW2ptnMjuEdKCUlZQmSySTJRAKr1YrX4xF4uZUVkfAri2CYSW8UiLZKhWKxSCadJl87DJRaNflikWK5TFUWc5NKjdlYKpexWCw43aIPk0ylaG9vx9fSwU9/+tP6NwqDwcDm5iYXLlyol4nSaaFt1+sNyHKF97znPWRzIo/R29tDqVRi27ZBotEoBoOB4OYapUKeSDDAYH8vPZ0d5DNpVBKUSwUUVKmUi2RzaWQU6PQG9EYzJouFtrZ2PN5GXnzxRbK5PLOzs+SzKQwGPdVqmXIpj0KSWF1ZYmF+nr179tDb3cvevXupIpFJp1EqFJiMRtwuF/sPHuT4K6/gcbvxr6/j9XjY8PuZnZrE5/PhsAnBSzaTQYI6wi+bzbKyskJTSwPBQIBgIMjVV13FytIKZqMZvU7PTx79Bf/1Tz/yhtuH/yOX5P9fb+l0Gv/0NJLBwMLCAkajEavdXpN1ilOyvbcXk8UCCgV2pxMUCvLpNAqVimK5jFxLE1rsdoKzs0TjcSqyTGGLlLy4yMDQEBcvXqShqYmp6WlKlQre9nYCgQDrm0Lwevr0aZxuN3a7XURF+/po9fmwWaz1gM/y4hIajYa1tTU6OztF+WhwkI6ODg5edQWDQ/0YjDqisTAGg55du3Zit1sFkadawmQ20NfXy/LKIoWi0L9rtWqcTnvtIBCpQofDgdGoI5WKMzDQTyQaZHVtmWw2i04nIr8eTwNebyMryxsgq+nsHsDlbCRXKJJOZ2lpbsXr9YJCgV6vpaHBg85gFIp3pYCtblXTC+USqVSKcDhMR0cHKpUGWZYJhUJEI2JF5/J4xe/L/G/V9a3O/la2oFAo1GcgitrhnM/nKWZzaJQq9CoNUk0+C4BSgaRQIKmUKNRi9l0ul0kkEhQKhfp2ZGumUq2K4ZpOo8VutRGPxoiEwug0WoYGBnnm109z6823YDGZeemFF/ncZz7L2OgFbBYr+WyO/t4+3nf3e3E5nLidLixmc/2v6UuTRIMB1EqJarnI0uI8dquFcrlIqZCjKpdRSDKFYrkGtRVQYJtVcB01Gg3XXnstBoOhrrW7cOFCPYnZ3NyM2+1meHiYeDxONBplaWmpFkYSIuKtKPqpkyc5cuQIsixz+MiRuk9027Zt5HI5nnvuOSKRCDMzM0QiEQKBAJVKhUOHDnH48GEB6a0IiO/42CSZmn8inU5R/SPauP/t9UGSJB/wY6ABqALfl2X5HyRJ+jzwQSBU+0//Upblp2vv82ngHkS/5GOyLD/7x36Nwb4e+cmfPCzy9s3NUCiwvrhYfxGGQkKXpdeo67y5rZlBuVwW9KKau69YLKLX60XKryZy7evrIxKJ4PT5SGxs1A1OmUyG+flFdu7axerKCuVKRcSph4ZoamtDLpdYXFxkdnaWvu4ewVUIBNh22WXkAgFiCaGAU9aGfGq1mt7BHlI1zFk6nSVXyDM5cQmFWkMqleJXv/41qVSa42fGMer1KJVKvvzlL/PII48IRNjmOgqFgu7uboLBICDT29vL6dOvs3fPQZxON/mcwKpfvDiO19tIT3cvXd2DdHV1MbJjWKwXzQqQYfT8BC+9+FtUKhVD2wZEmzESwWKx0CT9maEAACAASURBVNHVzhNPPMGZM2fEgVR7QW5xLcqFMlVAZ9CjUAAKiUI+S6VUpsnpRK1SYdQbqKoUzMzMoFEKBLxBrxd4vOUVNjc3mb00TVtbG51eH3aXU0Sr8+JzU6QqOg9qJVqdjngqiV6pFYalVKp+3VheXkal1VAoFHB53AIIsxnj/vvv5/nnn0ehULC0tIRer2dtbY39+/cTiUQYGBjg2LFjZNI53G43rW1ib69UKrn2uqtZX1/nxIljeL1e+vv7UVNmdHRUQFOR6psjrVZLOllzcGg0aM0mACwWC/39gwwMbkOWJcwmK5cuTRNLJgBwWAzEE1GGBvv4nz/6J7KZNDqNkAht3zaMXJYF4l8W6cStOdWePXto6Onh7Msv4/WKqLWmhuQ3WS34/X5cdgeFQoH+3j5ePXmSoaEhGj2iGyLZbBz/7dMolUqamppQKsXwN58vsmvXLoYvu4pLs/P/6e5DGfi/ZFk+J0mSGTgrSdJztZ/7mizL//3/cYgMAv8FGAKagOclSeqVZfkPuq9LpRLdPT3Mz80xU+Mt2mw2crkc3d3dNDU1sby8jNPlACAUCaNWqzE3NBFfW0Ot1ZDKpOs9hH379omwi0FPOpthMxgQK5z1NWw2G7/73e/YvXs3/s0NWtvamJubQ6EQ2jSz2SyGhuUygY1N9Fodne0dNHoEPrytrY2p116ju0bf3djYwGA2MT8/zxVXXAGlIul0mkuXLgmoxfwCXq+XUDRSL3udO3eOg/v3Y7fbefDBB7nnnnvqzomurq66a1GlUuFyNlDIV/G1dJFOFYhFlkmlcnR39XDwwJXsHNnNW996I1a7RLkMv/zlb5ibmWVpeY5oKMz1113N+z5wD1arGUlX8zAkcoyNjfG5z/4Nu3bt4tbbbiMUCjE2PkowGMTtdrO+vorX2UxzSzNGs4FwNEIul0FSqFAqZTR6HalYnGK+gMEmcGp6k4hub+Ht1Gq1gOnWYCCBDTFM0+h1yAqJbKlAWQEmpx2zwYBKp6UcixKJp+stPoVCQalUrr8YFxcXUdRgs7tHdvKjh39Qb3ru2bmLaDSKQgapKlMuFLl4/gJXHbmCl19+GZ1GxfzMLJIEHo+Hs6df5+jRowT868zPz5NOJHGYtQT86zQ3iBdioVAgnU7S2NCNUoGocktVtDrRqTGZLSApSSRSHDhwgNdePU1jYwNtbW0kk0lMRg2RaIinn366jrGTJAmPx0M4HKbJ20QymcRotaFSKHE5hPBldXmFaDiC1Sx8JamUSF2WCkXCiRgdHR2YDaKuPzo6Sm9vLz6fj+DGJpubm2IGkcmI2VRM/PelYhGTQSISCv/RF/x/xBC1AWwp51OSJE3xBmr533u7FfiZLMsFYFGSpDlgH/DqH3oHnVZHqVjEYrHUQSdmswCUrK+v07ljhyDOJBJEIhHMZrN45E2kyOWLVGMJqrKETm8kEAzz/Asv0d7eTiaTobu7m0KhwPr6Gjt37kRpd9DU7CMciaFSa9EZ9FRjUVKpJDuGt9fLQZjNmFMpofZqbSWbTaPXa1lfWaa7twf/+irexgYCm352tu1n3+5dTI5dxGrW09QsFGWPPPJzhndsZ2J8isuOXMGxY1+kUq3y7W//I9mKmo9+9KPceuutgmkYCOByeaiUJZQKLRazBZPJhMUoyDx2S5X3v++DeDweDHozKyt+Pvzhj7C2HOd/fP9nPPDJ+9BoNNxyyw0oFDcQi6b5p3/6Hh1dXZjMFk6ffp3f/OZpCoUCw8M76O3tRmMw8cxzz6HXaQkGN9HqRLYgFg6hU2uoSlCuVlhZXUepVVKsCNO0WqUhm82jUKrJ5gpozWJmsLEmjMdytYrf7yebzgg3Z2MjbW1t6CpKMvmcwL7rdKipYjQZAElIfmtXhOhmmGg0irrWipxfXMDlchGJx+js7GR1fQ23282ZM68jSRIdHe1YLGaOHz9GIpGgtbWV+fm5uhNydXUFl8tFIhFHo1HjaxVwYKfLylNPPYFer+Xeez/AsWPHiG1uMDy0XcwjshkWFxcpFstMTk0jqQRX0+V2ky0ruPzwFbjdboYGB9HrxCr98OHDKJVKTp9+nVOnThGPBZGpYLOaamlOGYdN9CdWl1fw+/3Y7XZ27xZcC7dLbMt27drFhn8Ni8WCXC2ztrZGqVTi0KFDZIriaSIeEZux9vZ28rkcc3Nz9AwM4u3vh3icpu4uxs+eZW5ujpFde1GgJBjcJBwKIP2RnML/UXhJkqR2YCdwCuGY/IgkSXcDZxBPE7HagfHa773bGm9wiEiS9CHgQwBNDV7UJhPampX49++kbrebciyGo7GxDt7Ytm2bKOyEBR14ixXQ2dlZ3+NvO3iQ2XPn2NjYqJN9JEmiEo/XtxBbM4uGhgampqZYWVlh+/btnD59mo72dhr7+6mcP8/U+ASNXk89XffS8y/Q5GvBbLWwc/9+EjWzL4g0ZlWW0Gq13H777fz66d9gNArS9MiOnbR1tHPvvfei0NuZnJzEZLKQzxdxu93o9UYi4YT4wnN6BBimoGHfvkPcdONNbGwEefLJXzM5McPk5CRdnd20tLRwzz0f5PA1g6RSRX7w43/mwtlzmMwG7v6Td6NWq7ntttvp7e0lGglx5MgRiqUSX/ryV3C5HaKSm06KR2KNjnQiTlGjYWhoiHS2gt3mIJVOY7XY0enEI2xwfZ219XXkahWpXEVt+DegazqdFlr6shh4ZTKZuo9DUZRBIb4YNQY9uUKe9t5ussWCKEMlE2i1Whan58V2Aur9iC3M2JY52e/3o5XENWN1ZYWhoSE6aqviDb9f9EnyeQr5PCajUbgwZYE0UypArVSxvLiEwSi6JU8+8QRXXnmE30UjnD9/Ho1OfB1aLBZaO9pFszOfR6PV4nS5GGzrpX9oG26HE29zI/lUnsXFRcIBUbp78cWXBGpPp2Tdv0pzkxe3283mhh+LxcL09DQWk5mu/i4MBgPj4+P09/czPDyMcDpTb9FuMTueffZZTDYb8soKU1NTbBsYrM9dHA6hDdxcXqZarbK2tsbwjhF0Wj0NDQ1Ui0W0WsHHdLlcKJX/H4SXJEkyAa8AX5Bl+ZeSJHmBMAJP8bdAoyzLH5Ak6dvAq7Is/6T2fg8BT8uy/Is/9LG3DfTJv3n0J6RSqbpmfG1tjcbGRsLhMJZactBud6A1Gjl76lSdy18sihBQPp9n+/btLCwsCBpNqVRn1+n1enFHrtGWtnL/RqORqiTXH+sUMsxcmmZtdZVDhw4R3BAdg0ZvAxfHzmEwGDAajbS0tTI3O8vE1BT79+8nlUmL35/TyeriCqGwQJw1NDSwUHNVvO097+XvPvc5FpdW2NjYII/4fUSjURx2FxaLFYvFwsEDl3HXXe/GZrPy7LPP8zeffxCXy0V7ezsOh4O9e/ZzzTVXYbLB177yMIFAQBSrTFW2bdvGDUePsr62wZ898AA33ngjH//YA4RDEWanp1msNTdfeOVlLCYzWp2GXEYUmLK5FFRl1EqhF8tkU1jtzbg8bjL5HDqDjlAohEQVh9VGPpmEqoxSkqhKYhCoVogKeiGfp1KpkEokKRQKDPUP0NHRQUuTD5/PR0WukisUhJ/AZMRoNhGMhLkwOopSqeTixCQ6nY7mlhbW19epIrgT65uCeaDV63jyySfZP7K3nl3weDxMT08Ti8UIh8P09/ej1WrR6/VUKhUkSUlvbzfj4+M4HDbC4TBKlVTrxQjiVF9fH4M9A7hcLp5/6UUqlQrFcgmtTofOaBCy4FYfIyMjWB2N6HTC/mXQ6WmsEb1eeuEFNtf9zMzMsL62Rji8yb79ewgFN7js4G4K+RypRISWpmZCgSCVYgWfz4dGq2JkZES0P0slLl26xG233cb58+dZWFhg//79BAIBLl68yI79B3G5XGSS4krhtDuYm50VV1+dQPyVy2WikUQt9NVKOBxGo1WTSMQwW4z817/8WyZm5v7zPAVJktTAL4B/lmX5lwCyLAd+7+f/CfhV7V/XAN/vvXsL4P9jH1+r1VIqCWvS5uameHEcPMjSkpjyt7S0iLRfIkFydZXG5mamZ2cZHBzEptHU75+jY2N4vV4ytTt5vlikpaWF+fl5kskkNpuNarVKd28vAKvLy/i6O8VvQq0mFwjWXQ8Gg4G2tjae/tWv8fl8JGJhcDjq2XuDSQwrT5w4wYWLoxSLRY4ePcrKop8b3voWnE5PzZWwzOrKCv/3X3wGq9XK2tqGIBAXijQ1NWG3ufj4A3+O2+3mm9/8No//669ZWw2QyeTw+Xw8/IPv4PV62dzc5POf/yzTMxd4/Kn/id1uZ2BgAK3BytGj7+Dvvv5VItFNQpENdu8d4IP330MmmUKtBbfbydRUleWageru93+At7/9KL9+6gV+/shP2b5tkEI+w/mzZ7j++usoFousri2j1joplcTVIBAS7MY9e/aQjsdIlEsYdXqUMmQL4hBwNzYRDAZr2xEdg4ODZDIZ2traBLa/Ck6vB4PJWL8jb6n6csk0lCts+DdQqVTMzMyIirNCQTQqroypVAqr1UqxWMTj8VAti4OnWCyyvLhEg8eL2WgSbohcnlwmi8Ihsg65XI7lxQUaGxuZnJigo6ODlZUlisU8pUKejrZ2xscuMntpicbGRm6743aWV1coVso0NTXR3d8notZGA2azmUpFWe+K5GpPRJFIhFwuz9raGvNzc7jdbgYGerA7rLT6mrh06RIjO7bT39vJhXPn2b1zF0adkVAohK+1GZ1O9GzUajVXXnklzzzzDLe8612srKxgsViIx+McOXIEg0MQwvIZoUV0djsx1UjNZ0+/zoHLLyefStHVqSaXy3Hy5AkCgQBWm4XGRi/5QpZS+f+FdVoSzzIPAVOyLH/19368sTZvALgNGK/985PATyVJ+ipi0NgDnP5jv8YWT1+j0dS9i8laZsHhcLC8vCyGKMEg20dGOHP6NFdcfz2vvvwyPT09FArCI9jY2Ii3s5NSPE5zdzcbCwtItS2E1WrF5XJhsdtZX1mp04sWZ2Zoa20lF4uxtrKCVqvFaDTy4nPPI0nCAqTRaNBoNCQSCfbt20coFGJ9w08wHCYej+PxeAiFQnzjG98gFk4xMTWJVivWSguLy1itVk6cfI3GxkYMBoN4hGvq4IorrqS7u5sf//jHLCwsoVSqGegfpFyu8ld/9Vd4PFa++rWvcvHiRfQGLc0tjXR3dwk0mVqir7+T5eVlfvij/8HHHvgIfX19PProo0xNTvLOd96JXJb5ylf+gTOnzpDN5hkeHGL//v3ceONRfvvbVzl16hR33HEHt97xVv7bR/8Mr1f0LE6ePIlWowJFiWK5VK932+3b6zYuYblSUi0Kg/aWqxOo9zysVmv90Pf5fEQSSVQaNdSkujqdTqj1akAcrVqDXBFU7UQigcPhYGZmhkQiIXIjDlEgyqVTNDc3k46JpqrNZuP06dN1EO5WiC2RSNRAsPm6+3IrKen3+3E6nVQqpfrHHxoagqoWtVasmwcHB8kVCxhq6Lstc5Vao0GtUpJOl+pr1UothRoKheju7uaaq6/m/PnzrKws0Nbuo621GUkuYDab62zMTCaDXiM2ZcP793PqpZe47PLLWVtZIRQSS73nH38cnU4n/ky0oqJuNpuZnp7GZhYhvmq1Wl/dNjQ0sDw3RzQaJZcto9drUShUXHXVVWRzGTo62nj+hd8iV//wDeE/spI8DBwHxhArSYC/BO4CRhDXhyXgvq1DQpKkvwI+gNhcfFyW5Wf+2K+xZ/cu+czx50nUklhGux20WmIrK1QqFaJR8Ti+c+dOisUiDodDFKZaWxmtacS2zEblcpmSArGaWl6hr6+PWDQqBogqsdI0GYx1ClK5IqrUbrdIF7obGylkMmxsiFbg1mEQ3ghhMpk4N3qB7u5ukpk0y2vrXBwbQ28yEo3HSKVSrG8IPHyhIGjNpWKVheUlfI0dqFUavvCFL6JSafjBD/6JpaUlfD4fOp2O/fv38yd/8id861vfYnx8vL4KUxkU+P1+BgYGatCVJt72trfR2tqKyWQiEAjw8ssv8+53v5tMJsePf/QTGhsbOXHid0xNTdPY0MzOnbt517vejVar5p//+RFi4SUGBgYYHh7m77/yZbq6urj/vg/x7nffVZ9+J5IxfC1tdHR0MH5pEpfXw8FDhxgdHWXD76fR5WH0/AVaW1qoKJTodDrSqRSBQACtWsOBAweIBEOiZNXRIf5fW700NTVhMZqIhgWBee7SNLlMVnyhT04JYG6rj7GxMXr6ejl37hw2h108WRgN2Gw2krWSWSaeQV17miiViqRSKcqVYq2mLKS3lYqQ+FZKeUwmE71d3XUTUz4rCmbV2gFnMpmw+9qQJDH47Onp4ciRIyiVSiH5rbERFUol2UoerVpXJ2rls2IOlk6kmZubY3pqWhymuhyrq6vIckWIcz1eZFlmz549nPjdMXp7eynk8vjaWknXDNv9/f0sLi7W6U86na5+2JjNZihX67MalUolREZeIfVJp4XPs6WlhUg0SaVSYffVV7F+6RKexgYuXbpELB7nw5/4a8Yn/5PgVlmWT/DGlaqn/8j7fAH4wv/uY9ffKmVS4TDWlhbyoRAUi4y+/rpoMyLw4n6/uIGYzWby+Twej4eNpaV6vNnu9UK5TKVUwh8J1Vdiy8vLFAuFOqRUo1LXAaWFQgGLVbQRZVnsi6nBPLY4+z6fD5PJxMi1O3j00UdRq9U8/uQT3HLrbZx+/XFMJhMTk1M4nU7CoQgbG2EOHTrM2NiEaFkqtfR29nLDDTcxODDEj3/8Y4rFMqOjZ7nxxhtpb2/nbW97G2q1mgcffLCOe1teXiYSidDc0czIyC7y+Tx33vlODh48iM2m47XXLrC5ucnQ0BC33nobf//f/wGlUsmlS5eYmJgUEBK7neuvv56bb74Zqw0++pHPsm3bNj7xqb8gGU9w//0fYtfIdgYGBnjggQcwGEz1oVdvby9erxej0Ugmk0GdSPDSSy/Vg06xWKw+z5EUEga9lrnZaSQZVCoFk+MXsVms5LJpCoUcNrMJJRKZZAqpKtcxcNF4nHQySaFUJJPPkcpm8BoMgsZ96jXRa/F48Hq9BCNhIpEIhaKwMOmUOgKBQC2AZROyEyU1P4JITY6MbCedTrO6MIdUFU8vW0+iZrMZtVpdD0X5fD6s3ibRyK2h0YLBIG01enK5XK73UraeELY6KqlUilwux6uvvsrCwgL+NYGSk/MbNchviXy+iEavw26xMjo6CoBeqyOwsVlnR77rvvtYnZxksH+AZDxRl+c4bHYSsTilQhGz0VRvBycSCQEeViqJRCLo9Xp6e3tFBH8zzL5rryXj32BmZganRwB0WyqVeu/ljd7eFNXpcqVS/yLbqgdvfdePx+PMzMzUdVmRSISzZ8/y9ne9i7W1NeDfnARbp6rP1wpaLeuzszQ3NfH666/T4PaIZF02h9lsxmwyUSmX6/h0tVpNKpViYWGB5uZm2traCIVCjI+PE4lEOMZxGhoaUOsNNDa1MDYxSWNLC7lsgfe+/wO8/vrrnD1/ERRKLo6PYbXaKRbLvO3229i7Zz9f/eo3+PUzTzM0uI2rrrma7z70jzz44IM8+cyv+OE//xij0VhnRsw+9xs0Gg07d+7ku9/9HkajmrGxaX75y1+Sz5W47fbrMZtsPPjQl4lEIhw6dIhz5y7gcDjo6OjgyJEjXH31FSgU8PDDP8Jqh9WVKJ/7/KcpFot8/ON/zqVLl7juumuIR2OcPXueufklrrvmamZmZti9Zz9qlZL5+XkCoSB9gwOUymWKlTI2p3ikTyeStLa3MTU9Tb6QFTZwrSAm+RobSKfTxKNh5EoJs15sJkr5DAspoZbX1OAqWw6N6cX5einsxRdfRK/Xc+XVV3Hx4kWy2SzJZJJCuVQbGorgWTwbr1foY7EYDoeDdI3p2dTUQLFYZHp6WhC3iiUy5RThYBiFQklXTy+FkqB2W+3iADBaLbS0+mhqaqK5uVmshC0WgPpBoJAExk2v0aOUxIDaYrEgyaIjc6J6oo7rr1Qq9HZ2EQyJYXlXVxc6nYELFy4I7J7VTKFQYGpqiuuuu45qtcry+DhtbW2g1da3Zs3NzVQqFZ599lm6u7uJRaIMDw8zMTHByMgIbW1tbGxsoNVq61SxM2fOUC5XGX9VzBMsFgvlQh5JqaBcKqCvpVHf6O1NcShUKpU63n0rv77FSBgfH+fw4cN1U07H9u0olUqOPf88hw8fZmlJAEWy2Wz97lguFIgHAmjUalAq6evuEad2pUq2mqFaM0pVKhXC4Si9O3czf/EixWIZk8lCMBimWCxTLlex28WwzeNyc+zEcW66+VYkpYKXT5wgkytQqlT51a+eRq3VMjA0TDKVB1nBtm3ba2m647z4wstsbgbZvXsvd999N2fOnOHa668jnRakH1sNfhoKhejq6qK1vY3vfe97tLf7WFsJ8NhjL+FwOHjPe97LysoKf/npL3Lu3DkSiURt1hLGZLRw2aHL+cAH3g9AoVBmcXGeD3/4vZx6bYy2dh9/9ucfE/mBZA6zxcTb3/4OEjHhJxwbG2N6do6DBw7Q1dXFc889h1ZvQK3WEgyEMZpN+AObdHZ2UypVKOdLKJVq0ukspUIKs8eDz9fMzPS08D94G1hfX0enUbOxsU4ikWCor78e5dWV9RQKBVKZNDqjAZfXg8Yg2rAdHR1IksTMzAzlchmHyynCT2shGhsbMZnFi8llddW6JBEcDjs+n49QOMDs7CyFQq4uUw2Hw5QLQtW+ZVvSaDRoDKLd6utoF41MrVjFejweEaWXJORyGUmphN+3bysUSFK1fgXd0hFUq1U+8IEPkEgkCGyIJ5h4eAH/2po4vLIZgoEQzc0+UqkU115zFeFgiBuuP4rb62FtbY3z58+zubmJ0Whk92WXgUYDpRKRtTX27dvHnssv5/RLLxOPC7jwyy+/THNzcz0MFYlE6OzspKenB7vdybFjxyhVylx55ZWs+/209vRgMpv/6JPCm6IluWfXiPzqb57k1KlT9ahnNBpl165dLCws0NTUhFarZW5uTvT1a08RRqORWC2tFQqFaubiKoVyCU9bG+tzcwT8GwwNDREJhdFqtWjUYiIbj9QKMLEQPp8Pd3MzawsL+P1+RkdH68OuQCBAd3c3kWgUi8XGiZOvksllsTk8PPGrX2Oz2YkmhX69UqnQ0TXAvffeyze+8Q3m5xa47LLLBW16zc8Pf/hDqhUE0ceorQ/atFote/fu5TOf+QzpdJrR0VGq1Sq33347agx88pOf5KWXXqoTmFwuF9lsloMHDzI8PMw997yfY8dOcuTIIUwmuPnmd5PNpWlo8PD1f/h79u7djVIpknSlUontw3v51re+RSIR5/4PfYj29laGBgaRZCEVKZeLtDQ1UyoXMZnNJLJprA475UqFzs5Onn/uOUrZPJViiUq5zMriFLt37yafzTE0NMSZU2KurFap6OnpgaroQ5j0Joy1QZvJYiYcjZDMZti+c4RILEq8JsBxWFy1erma9fV1imWxEZIVohGr1mgYHh4mGhCOx5aWFpxOBxMTE2xsrnPVVVexsrJEMBjE6xWOUjmVw+awMzyyA6PVglKtYtuuEZpbfbS1tyMpha9SVRHf8aXaAZCIx+tagK0fk6tVUAKysEsrlUqiYUHCDm0KBUF7a7vI2BRiGPR6UEAmEUOlULK2skiDx0s+lyIeDZNKpejq6cNkMvHYY4/VQ3xbw3CNRrR2t3ypTU1N9PX11ZH/drvIvGi12to8q0BPTw9TExNIksT+gweZnJxElsDb2EAqleJt77mPsck3ZjS+KQ6FncPb5F898kNKpRKxWAyfz0cul6tLStqHhyGdJlN7vFQqlYTDIqq51UEfHBwknRYd/S3+viRJGAwG0skUmXSazs5OpsYnkGW57jpApax7FmKxGIGaper48ePkcjmuuOIKVlZWCETDnDp9mmyhwI7tO0llCzz9m+dIZbK4PA0olGo+85nP8MF7Psjhw4fp7+/n6NGjPPDAn9XTaHa7nUKhJO7oOjVHjhzh6NGj7Nu3jy984Qvcdttt3HjjjTz00EN897vfpVqtsji/htPurPseUqkUX/rSl+pPT8WiQKa95YYbicfjuNwOvF4vX//6V3nggY8xOSX28qWSCLjc8JajHDp0NZ///Ocp1zwM/T3dHL3+Wl577TX8/nUcVgFhOXv2HAq1imK1wuHDh5menWF4eJiVpWVmp6dRIFHI5qiWxaowEYthMBhYXlwS8JSmZtrb2wXMVaHAbLJSqogikcFsIhqLodaJVKnBaCQUFfh5p8nJ4qKgcptMJpLpFLGYIG23tbWRroV6bEYbR44c4eTJk8zOzqDX67HZLfh8Prxed+06JkJug109eBsaKMtVegf6MdusmOxWtDodRpOJKlCWK2iqyn/39bkVJvr9N1khgywOWlmWKeSK6PRa4uEE1WqVkydOMjs7y8rSNGaTidbWFrq7OtGqlMQjATQqFQ6rEblSpqOjg2Q6w+rqKmazmebmZiYnJwXgt/Ya2Ll3L5fGxzl16hQ7du5kfHycVCrF7t27iUQEx2JgYICJiQlMJhMNDQ3kMhmsVqswmtVKZemsAPTe8p77/mD34U1xKAwP9suPPfSduhvP7XZjcbsZP3uW1tZWDAYDS0tLdfHs1lDHbDaTzWaJRCJ4vd76tiAQCLBj926Cfj8rS8sMDw+zWlvzlGsK7q2o6QvHX+HChQsMDg7S39+P1+vla1/7GiMjI8zOztbbehaXKJ8sr/pZXfcTjSVJZPL09g+i0ep517vezUc/9nGGt4m25LFjxygWy/X1nUKhECWkmrXqnnvu4R3vuJNPfeov2LZtG5dffjlf+tKXeOqpp2qk3rSAw3rayGazVKtVvvrVr+LxeIQ3sLGR48eP09rayr333ksul8Ng0PHOd76T02dRrwAAIABJREFU3bt386lPfVIIaipFiuU8bqebf/mXRxkZGWFo2wg2mw2dXkOjt4Fqtcx/+/M/4+Mfe4Dh7UOMjY0xMrydUrFKWa6iMegZ2bWTXEE81Zx+7RTVYon52TnymSzd3S31hGg4GEKJWOX29/XV5zQKGbQGPRaLBVPtz83ucqLWCpKRy+1mYmJCxHfDgiBldzrIZrOYLKKPcm70gliFqlTs3LmTQrrA5qbQujc1icSrTq8hFovR39/L8PAwPl+zQOS7G7Db7YQjETp6u3G4nEhKpeBkKhSUZZHC1KnU/7EvWklGrv7bgVHMC0DQ0rzI1hTzRTEvUcusryyTy2aRqyVcdhtKypgMBqwmHRsrKyiUEp6mFiqVCouLi2i1Wg4dOkS5XGZuTrAVm5qaOHv2LNlsFptDJFFNJhOvvPIKXV1ddHV1ibax34/D4SCXy1HMCrdGe2cH6XSaXLFAT2+viGPf+A4mLs2+eQ+FkW1D8hM/eaju0lOpVHWTtNVqJRKJEIvF6O7uFrtmpRK5NocAMJpMIEkk40KsoVaq6pkHo8lEMh5HIQvhjMkgpulOp5PG/n7W52ZpHhjg5Sef5MKFCzidTqampkROXZLqwhSN1cjC4hIXLo4JeQxq2jt7afG1cfbcKGazldvuuJNXXvwtL774IuVyGZ/Px2wtaWYyiTTkI488wvve9z46fR187nOfIxKJ8Mwzz/DYY4+RSqUoFgW0dSu66vI0MTIywr333suOHX1ks1Uefvhhent7ueuuu0imk3S0ddDU7GHv3r389Kc/xePxMDExhdVqpbGxkW9/+9sMDQ2xtLjCgYMH0BjE/1c8GuMzn/0r7nrnf+HmG9+CUqnEZjHX+QT5rEQ6m6Grt4emlmYSySQHDhxgYnycYr6A2WDk4oVRwnE/VrOlvi9vaRStvL6eXlEuk2WWl5eRFaIJGAgE6ko4jVot6NZKZb04ZdRZCAaDNPuELlCj03Ly5Ekcblc9J7B//35avC01jPocwWCAXbt24d9YI51OA1UOHDjA5ZdfRrlcxltTD2r1ekCAgLV6MWz7Ywo1gDd8jUgy1YpcLzhVSlVUKiW5tAhyqRQqdCYtVCGVTJDPpKmW8lCtoKiWcLsdhNZXWF9ZJp1KsvfgZYyNjdWLcVtrdmEgF3j/8fFxdDod/duGGB0dRafTceDAAU6dOsWVR48SDwRYXFxEVzN0d7W1UiyKVa1Gp6V3aIhMjZtxxa3vYnzqjSErb4pBo1KppK23FxQKqFYppdMsLCzQ0NDAysoKvcPDNNW4gVuhGdELT2O1WonHYthq24lqtYpKocRitbKyvCx4jx4P46dOiz1uVVwdLEYTVGWCwSAzMzMYjUY6OzvZtm0ba2tr+Hw+nnvuOWZnZ4W/UVklFBRXFqvdyfzCMn9+x51897vfw2y2c811R/nrv/5rPA475VIVp8vJzMxMnQd5zz33cPXVV3PXXXfxiU98gpuuv4H77rsPt9vNE088QSgaoq+7j3w+j81mY319HbfLwV/85adwuVw0NHo4dNmVpFIpvvjFL/Kpv/gESFV6uruIRqP0mtv40H338NRTTzAxMcaRI1cyNjZGX18fvpY2vvTFv+OXv/xXPG4vyVyQSCREY0MD73znnbz//e8lk8+QSSZYWSnR1NTE2voyrc1CLx8IBUEpvpvmS0Vi8Tg3XHc9P//pI2I+k0yjUGko5cV1JFcs0dfXSSgSZXF5hTZfK+v+Tfq29xFJxomlk+zZtZszZ85g1ImBoyzLNHi8ddN0pVJBo9Hw6quv4mkQq9GttKmyWq1fnarVKkajkf7+frGhSidwu910dLTVvZMNDQ0oNKKxCSIsp9b+WxKWqizEk/DHeKb/7m3rsNhC0JfLFfQmcdAE1oKcPTuH0WwkFg2TiMYwaFXYrSZKuTSlfAtz01NYjQaam5vrsuHBgwehVGKt1hbecnwqFAqam5upVqusrq5y7bXXilxEOo3FYiG0tla7nooBusfjIRIMkc5lBcpPq2NydBSzTTBB3+hKtPX2pnhSGOzrkV999qn6TGHru7zZbK7LSrxer7iLq9XMzc3h9XpxOp1sbGzUWHnaOoptaWFRhDyAttZWMpkM2VSafDbHiy++iNvtJrgh4tQFhSDWHDhwgJ///Od0dXVx5swZbr75Zp544ol6N/9fnnmSYqGEzmBGUqp5xzvfxYuvvEpjczPzC2K6nkilUEvy733Cq9xxxx3cdNNN/Ovjv2Dnzp089dRTJBJxtGWJ+fn5euhqfn6+vrZqaWnh/vvvZ2xsjLfedhsf/ehHOX36NB/+8IeRZZlvfvObQkOfTmMymfjTP/1Tvvb1L1EuV2uQkxJXXnEV119/AydOnKSjvZvHH3+cVEqIZdXGAnq9ngce+Chf/MKD6A1a5EqVfD5HS1MTKyviqqbGQaFURG3QsXffPhRqIb159JGfUS4UaW5opJgvoDLWAkS1EE0sHOHw4cMENwOsrq7icbq4/vrrefhnD9Pe3o7ZZEKn1jA3N0dXaztrq6tYTGYqxZI4sG0umpqamLw0xcbGBulsje8gCzmqRqvlwIEDBNeDddQ+yKJUZtDS1taGSiVKb11dHWQyGVQ174dGqaBaFcNClUowJ4D63+U3eGiQ+fevEQmZSllkFVQqFVtggGJOzHgKOaERdHncnDt3llg0TGuTl2qxQDoeZuf2YU6dfIW25kZ8HZ3k8+IqpFAoaG1vZ/ziRex2O8ViUXwcl4tCQajv9GaRyNxzzTW8/MQTdQXhoUOHCIfDzM3NiVxFNo3P5yOWFHMOnV5PJB4jk8nw3/72a0zNLrx5nxTUKhVWtx3KZZQK8YneiqQaDW7W19eJaxTo1Soq+TzDu7cTWF5iauI8rW1tqJQVMtkYhXJJiFKMWsqVPNlslmBYzcKCqN6ura2htWgpUKC1X3gmZs6PIVdlLpw+hcfhoFjI097ZwWtnXicny2DQ88KrJ1n0pxgaHCKdTjOyfYSfPfpL3vKWt1CtVvn1k49jMBhqeQkHxWKRoaEhuru7aW/18eMfPMzll1/OU48/zuTkJH19feiMRoorC4wtzNDS0oLDJ+K6R2+/hcOHD7OwuMjIZfu54S3Xsb6+zu7du9FolXznO99BpZYoFLMYTTqMJh3FUo5UUjy2Op1OTEYVd999NwMDA3zjG19neXmeldVZNBoNOr2MUqFDhYY9I/toavCxvLyI2WJEpzMSicUxmm2kMnmqlU3xCFvJsrYySyKRoKenh5tvvJbp6WmxG9drqeaL2J1OUuUqgTVxp3U7XSzMzYv1n17Hq6dPQapMfDWMrd2EUWtAj45KQaZaklheWhdtvkKF9cU5xmYv0d7ejslho6pSsL6+jkYjjOJKpZLR0VG8nham5xd45XcnMZlMHD58GI/Hg7uhikVrQlKpkRU6NHotUqFUK76JxQEKBXKhgqQWg8VKoYRSq6ZcydevBJIkISEhvwGlSCEXxKGCAuQKkqQAWYFapUCjUhPLxgiHovz8pz/A5XKglBSU0zFUSolsKsny0gLXXH0Vr544TkNrG3Pnx4QCripz/DfPoTMZBb2pv4/l5SWC8SgoJJq72okFQvR2d7N68SKRUIhGr5dwMEg+m8VsNKJVq2lqaiIe8DMxdhGz2YpOb2B6aZY73v4Ojv3uJPl88Q++Ht8UTwo7tw/JLz/xUyKRCD6fT2TodTqKSVF2qdSYfm6bg2AgQDQeEzxGnQBXSgoFSrudc8deoaOjg6WF1TrrsaOjgxdeeKEuJd2KiwqZho7oRpjZeQEynZyZIZPLEk9nyORyBMMRylXxKFtRCDvzfffdx2c/+1luuukmTp06xeLioujGr66KarXayDve8Q48Hg/r66usrq4yOioKU1qdhqamJo4fP47RZK5bnrq7u/F4PHz84x+nvb2dr3zlKzz99NNCH5dJc9ttt3H8+HFSqVQdOGuz2bj//vuZmZnhoYcewu3yEI1Gueeee9ixYwdf/OIXWVha4B+/9Y98+tOfZmRkhM3NTUKhEKVykeuvv55nn32m1krdRKXewqmJb3myLFOtiG+bRqORkZERxsfH62Ehi8WCLMtsbGygVxno7+8Xa0SVqv443NHRgd/vp6enRxzs4UDdSCWiyKl6IaqhoYFcTqDp1CY9qVSq/vmRJIl0Oo1SqcRoNNar1NFIql6DL9UMUVv8BrPZjE6no6enB5vNxkc+/OH6VU6tViOpJfF0UAEkKBWFvVxnE1eMraeDP/T6UFIEqbapqEhi6KjSMH5hguXlFeIxgVXbt2uAFl8zi3PzTI6P4XE7KeayBAMb7N2zm7npS+TyGdwGAarxNjUiyzIdO7YzNzmORqejdXgb5USchaUlrFYrSzMLFAoFBgcHWV5eJp/P43K56OzsFFdrq5Uf/a/23jzIsqu+8/yce+/bX77cMysrMytr36WSCslaLANCGgQE3XgdHGaM3XaE23aPu3GEY5qxewyN7Qg3Ed0d3e6ecXTbPWDCDNCAw6ZZbGBAMmAESCWVVPuWyqzc98y3v3vvmT/O/d133q0sgQ2SKoY8ES/ee/fdd8/+O7/f97f9p//EkYkxFhYWGBndjcKh3vLJF7roHRjk7f/LL3H+8h0MNN519LD+9J/+R1ZWVjh+3PiIK6UYO3iQ5uZmZLaq2Vrd5K57TvHCCy+YHAUpj81ymZmZGY4eP8bFixd54xvfyNe/8S1u3LjB4KBRS83Pz8fBWc6dO8ejjz7KF77wBeM16cPi0hKtULNVLtMMQlZWV6k1GqxvbZLJ5slms5y+70G01qytrXHy5Ek+85nP0Gwag5h0Ok1PTw9Hjx7lp3/qnVy/fp0/+7M/w3Vd5uZnOX78OFtbW4yPm0zB3d3dtHyfVCrFoUOHeN/73seZM2d4z3veQ29vL4tLi/T1mqzO//J/+y3+5E/+hFqtRhAETE1P8VM/+VM8/vjj/O7v/i71ej0y3qqbfIiR3FypVDh9+jRf+vKXGB4aZmFxgULe4CbvfOc7efTRR/nRRx4CYHT3CC2/cQtRCHyTpSkVRa7u6enB933uv/9+nnrqqTglX6vW5OTJk1y6ZOz9x8bGuHLlCvv378dxnDj9W0+P8SqcmZmJcaF8Ps/CwkKcvaurqwvHceLwdmEYkslk4vgaAkg2Gg2KhZ742UCcV1PkasEcuru7OX78BKdPn+bnfu7nmJiYwHHNRg7DMM68VSjkwQxfHG9SzJqTpVrZiPJWpHCUBzh4KZepyfkoJGCBeq1JMd3g/PkXWV5colGrkk653H3iOFub60zeuE4xlyXUPrv7hzh16hTPnX2edC5LrpAnnTfOUhuVMlNTU2ZzK0VPrseEp/M8Tpw4QSaT4fLly/FYiTv96IAh3Ckvzcr6GoODw2yVqxQKBX7uPf+S7zzz7LZE4Y4I3Koche+3aDYbrK6uEAQ+jqPYWlqkXq9RKnXhOIqRkVHOnT2HDhUD/UP4jYBCtkA+X+Qv/+Kv6O3tZ2lphXqrSbG7xOLKMi9eOG9Ch1UrVOo1evr7+NrffYNyrcr80iIzC4uU6w3wUmxWayyvrOLjUOjqZnjXbrRyabQCnChn4dGjR/nSl74Ugzz1ej1K2WXwg7/54l9z8dIF5uZnqVTLZLNZLl68GLtw57J5FheWaDQanDp1il/6pV9ibm6OD33oQxw5coRMJsPEngkGBwd55JFH+OhHPxprWaamp3jowYc4ceIEH/zgB1laXmLfvn3ML8zH/huiwRBvusOHDpPJZBjdPcqBAweoVCo8/vjjvOMd7+DQwUMcPnQ4NsuVDSABV3VkxSfBUzKZDFtbW5GDj2ZycjLekELIa7VanPZ8ZWWFRqMRv5erFfwwwE151Bp1tiplLl+9wvDILrp7e6g3G1RqVRqNRpwDpNVqdXze3NykWjWJVcvlchwXQ/JY1Ot1/IjgSn6IfD7P4sIy169Ncu3qDbY2K7QaIa1mgOs6dPUUKZTyoEEH5kWoIFQo7Wz7SmdyeKkcyvEINLT8kNXVLdY21ilXajz3/At86i8+zUc/+lEcx4ltb8SDVMy1xadiaX2VqbkZZhfmGZ/YA1F4wOXVFQYHB3nzW56gWCzSPzRIo9Vi99gYuUKBQGvWNzc5ePgwZ198kb97+mkeeOghxvbsYXNji77eftK5LMeOneDg4cM4jsOXv/xlVpcWb78f7wRO4ejBffrD//b3qdeNJ9vwsIlJFwRBrF5ZXV2lv2+EY8eO8eyzz1JrGNnP1yHz8/MsLC5y6NAhY1dQq/PlL3/Z6OKzWRqNBrt27TIGMZHzi0mbXmFpvcxGeYt8rshWpUyh0EW92cT3QxzPZWSXCTSyubbKL/7iL/L+97/foPM3b8a+/Y899hgPPPAAH//4x5mcvB5bWwaBjizTvDjVm+t47Nmzh5/4yX/M0NAQv/EbvxFHrF5bWyMMo2Apb3kLH/7wh6nVKvGGP3DgAG9961v5vd/7PaMGi6zpzIlInDoP4P777+fChQsEQcDY2Bg3b97k9a9/PW94wxv47d/+V4yMjABhZDOfAhVGxICYKLhOJs5+LVmqisUiWmvy+byJh+g49HaZEymXy5mISFFcRhEz5PTuHugBoFarmfD7kc9KPcpgnc0ar8N0qKhWq+RyuZgASDtE/DCZo7Kx6hoMDiUBcyRNgOcZ2KzeUHGwnYmJCXp6ejh27JjBiO65h1OnTjE2NkYmb+wUjEYhWqDbnKctHeAog1FobV6OAyvLZZRSTE/PcPnyZX7irT/GZz/7GVzlcO3KZfp6uylkM7gOsfiwVd7gH/3ETzAV5TzJFfLgGF+L4w88QH1t1cSmdBwmJiZ44dlz9PT0EARBbLczPT1tco/2GnPvmZkZmlvrDAwMMDMzw7333su1a9e4ev0aPT09/Nrv/D4Xr24PNN4ReR/+w7//d+//sfvvIZfPkUqncVyHow8/xFB3idm5OYaGh6hUK1y/NsXK6ipLS8tsrG8wOz/PtavXqDcarK6uMTn1EjOzs7iZLN09PdyYnKTl+3SVSpx57jmqtRrlSoXllRXWovBaTQ0aBz/wCXFo+T6VWh0NFPJdFLqKHDlyhK5igbNnz7K0tGQ2Qm8vlUqFvXv38va3v50zZ87wzDPP0GhWcV2H9fUNPM8lk8mSTqdYXzfq1Hy+wK//+q8zPDzI+973vlj8kDDmo6OjbG1tce3aNQA2NtbZ2tpCa82pU6f42Mc+ZvTgkZ+I60bRjhpNBgYGaDabeJ5HX19fHA5NApo8+uijfOQjH8GJIiTV65HrcGhOTHsjhGGI75tNJUFthWuQ084QvoCg1YojW0lMA/EHkOK6Ls2gs69yYoZhGNuneJ6HCgyBAWLuRUx4RewwDkqGe5DNrpSJvqyj8PFyCgdBgMaLr4l78dTUlDHyaTaZn58nCAK6S10UigVDB1wM5gCEfkgYhDiRxsL1HFqtgCAIUcohlYK1tQq5XJae7izNZsDo6G6+/uSXeN3rTrOxvk46lSKTSdPd1cX6+hrra2scP3aUo0ePMD1zk2qtZszKNza4+5FHuHj2LDnPIwxMAtxszjiczd2c5+TJkzQajViVubq6yvr6OhMTE8zOzlKpVAhbPpcuXWbP3j3U6nVQirSXIgxC/uqLX+E3/sV7ts37cEdwCof2Tej/8IH/g7U1oy4ZHx/H900E35mZmdiI6dBBA6ycP3+ebD6H7/u8dNOwsrUoNPZmpcz6lrEG3NraIpVKmdRk9TqAtaAMotxUxiFL62g3aAfHcwlDc/1/evwJKpUK58+9QCplNBmpCN39mZ/5GR555BF+8zd/M4770N0j/gxZstk8zYbP0tIK/f2DDA0O8973vpd//s/fg6MaJsdDJhMnys3n8+zatYsnnniCP/zDPzTJa11i24Xe3l4TkSgKcCqyrtaadCpLq9WKDa6azSazs7MMDQ1RKBSYnp6mp6cnUnGl0Frjuio6XVWMKQRBq20nkMrfUo9sUtn0QRDgYa41m8047L4k85F7lVLgGKMosUsQmT+fz8cnfiqVopDKxM/IZrMRgfLjBD7Sfwk7Jmy4EJdUKhV/F44hoG2oJNyEhGsrFArkcjmGh4fp7e5icHAwzuexvr6O53kcOXKEo0ePGq1RrcbkzRlGR0fZ2NhgaWmJQ4cOMzs7G4OZ3/jGNxgZGeGFZ7/J3NwMzXqDsd0jnLr7JI1qBXTA4sI8B/ZOsLm1TkuHvBAlI0qlUlQqFU6cOMHVq1d5+OGHcV2Xja1Nw51Wm3GC4XK5zN69e5mZmWFsbMwYj+3bx/z0NMvLqya58u4RxsfHOX/hRRq1OvV6nV/97Q9weXLqzlVJeqk0M7MLbGxsGLvvC5d57LHHWFlZYXnFsErnL1ymt2+YVD5LV59Z3OvlLWZmZ8kVCzSbTVa3TKSdgcHh+DQNw5CVlZWOvIn2QvX9FmEUhUYpF6VCquU6nueZRJ1+k0bdmFKPjo7S3d0dE62JiQn+4A/+gNnZWUZGoph9YYtQ++RyWZQyrPL997+ORiPg/vt+hOvXJ82G9Nw463OjYQjE4uIijz/+OJ/97Gdj+V07Jp3b8ePH+drXvkatVouRf9l4gsBLuLJCoRBbRi4tLZFKpbjvvvt49lkTZzKVSkeoehgRgvYG1rqd1AXa6Lv8LsRUCBBATE+j/9mxBuwS+D6B7xMGBqNBaxQQBgE6DHGUwon+I4ZFdv1A7JIMhvuw67VDqAsgKQROR/eF2kdHa6C+WaVaK7NV3sDzPNbWV8hLkF8dxv4wjuNwc+olXjz7fOxWXWn4fOC//msOHTrEE088wX//+MfjEHTVapWVpSU2o2Qvb3/723n6775JJp3iK1/5Cp6Ce07dxbFjx2hUK2xubpLOZnnogQdjn5xr166xOL/AgX37mZm+ie/7nLjvPr715JO0Gia35H333cfNm00KuQyFXIbF+VnK5TKXLpzj0KFDPPfcc2SzWUZGRoz7uOdR8X3C0N/W9kLKHcEp7B4e1r/+C+9mbm4ujg9w8+ZNXNdlbW3NeNUVi/jaoKtb5XJ8WszOz9EKTVLQ3n5j800YmbFGSHy9Xo9ZR8MVtPscOBF/GPnDO9o4UVWrdfbu3ctgv/FO26qZsGFyqv38z/88X/3qV3n++edjp5ONjQ2y+YBUKkV//yBbmxWCAJoNnz//84/zT3/lV1ldNQlkerrScYYlMJtMIhdPTU2ZtgUBw2NDrK+v8+CDD/LUU0+ZoKqVSrzg5fR0nUwcU6C7u5vFxcX4NM/lcjz88MN88pOfjMQKw947DhH77uMHzRhTALOBXCcTt0+Ij8jp9Xo9FiPSro5xBKWUCSRrcTNCgOtbBniV8HtioRhEREIs7aQOyTbleV78fOmzhO0T7YbRHhQ6rAztwCgtdMxxxFxiJGqJmlNrTVobsUwIS29vL7VazfyWThvT7HSarmIvx48fp7+/nxfPnaVcLjMxMcHGxhqZTIaXXnrJxNE8cZwXXniee0/dQ7NeY3lpgT2ju6nXKjQbdQ7t30c6Y8Sm/v5+5ufn2djYYGBggAP79tNoNFhaWmJjY4OJMeNyfeK+u6mtrXHmzJlYVLx69Srj4+MMDAwwPD5OZW2N+bU6169fp1Y1gW0X52bJZT3Srsc//Vd/wMXrk3cup9BstvjC33zZBOJotbj4oY/Q3d1NNps1UYIzedY3Kyyvm5iIxWKRUJmNX65UTJCLVIqVNeN81KobGVfTihaqY+iiAjdKJNKOoiOsLhBqtHJxHYcwaLF3zwSf/x+fNQFQcDhw4ACvf/3rOXbsGB/4wAdwXZf+/v4Y6DLtrZGLMj9ls1nuuuseBgeGede73kWr6RNGZtZdXXnW19cBYpCuWMwzNzeH5zl0d3ezubnJ4uIiJ06c4Itf/KJJKhNly4L26Wk2VUA645FKu5S6i1SqW2xtbTGxe5xcLsf6xirZXJpyZZNctjs6QSXpbhonEG6grYrT4a16ekkNL2HQtNY4KojtSdLpdAwYJksmnQatjTWh6+JEbH+xUIj9HlKpFJ7r4kd2JV0RsCligGAbAKnIalGHPkppPNfgDHKvjJFSKuIUQsIwsH4zr2w2E4c18+tNmk0nJjq1WiXmTMTEvl6vMzwwwuWL5yPQs86+ffv4ypXLZLIpBgcH6e3uJuUq5ufneeihh1iYm2d5cYGuoknT99LGGsePH2dzbRWNcY2em5vjwL79XLhwgdGR3Xzz69/g4MGDpJXLxO4x/GaLVqNJdWmRfHc3lU1DPDZWVziwd8J4BocBzz/7DEeOHKHsm6hSTpQdanBwkEzaoV6pbjs/Uu4IouCHAU7OoxyBYlpr6uvNmJIPDg7S8lsEWpHO5qk3I+rfCkh7GerVRgebmc5l0UArNFxBq9nqOLmUUngZA4LppkuoQ3TY1kcX8l0sLRpVULG7ZAyn+ntYX17g8P4J/vJTn0AFTRQuuZRDLpWDoEnGhWbNpe77pLQxdx3q7eebX/8aYbNCIZulUqlSKpTY2NiI2XyJc3D69Gk+8YlPxHb+XV1dpIIWBw8e5urV66yurpNOZ2NzZumvUq7BFLwAR3lsbpQJAygWSszOzPP444/z13/91+hQkcsWCHUdTYgmwA80RAShkwAoUCFi/6uBlu+DCmn5DbyUF528LULHIZvNknIcMl7KENxQGZBSG5bfcz3qnnlOKp+mHmiUckhn0tSkP26Kplb4UVq3XC5HEBGewHUIFeA6aMeJNqqi1miaZLnpNIHrgQuOcgharXgTe56HqrVwMYdDIzQqTpSHH8DqZjnmqJopzVa1bPCMlAnQ2opsHlSoSSmHQqmbpU0Tv8PFJVABV6evU6/XmZiYoNJqEFZMyjt3rcm18y9RLm9y6MABSqUiy4trdBV7mXppmt6+HjK5Ll6aX8Xz8jx36TpaeaxVG2S6e1nc2qRZb1BsGW1brVXH1yFnnztj3NoDPzaBHpvYY5LcDA2uyxfKAAAgAElEQVTy0s1p8j27efwtT3DxhRfitAZHTpxkYWEBN3V7b9A7gig0GiY+nVBwUTlpranX63HshGqlHlsmyiaXU0NYyzAM8UMDPsk9AjzZcrIQANeSXYVgbGyYoJ8LCwu0osUVhiFvfvOb+eAHP2gs36IAKcJmSltyuRzZbJY3vOENHDhwgD/6oz8CDBehlIpjHnqeF+e+FIRfvOTEIGlra4sDRw/z4osvGlVdFN0HOuV1GScg8hA09VUqFXbv3s3MzAx9fX0sLCwYTio2VGr3eTsx0gYVY7DQ+s3+T8zah4ZlL+ZNCHyCMLYzEA7Ctn8QEcR+yXjIaR3jAtHv8pvMr9QtBFY4Ba11HINRxAMBI7U2iWmUUgSRAdPm5iaFQiEm1s26sbFIe2b9pBw37qvv+ywuLppwblbQ4GvXrpFOpzl27BiDg4MM9g6ahDTFIi+eP8/wYD9+0KCn1MXwrn5WVlYol8tcjixje0oljh07ydnnnqdS3uT06dPs3mVyWoyPmzDwjgqpNpoMDO9iZWWF7lBz8MhR0t3daMcQwWq1yo2pJa5euBCHIxDPSgPGpm+Zbyl3BFEIw7bsZ5+AMnmysVvNILq/vTHshSnsrHinCKuZXMzJuu0NIhtMXFilHfv27TP5GjY3KRaLrK2txWowqSOWnSODpk9/+tMxqx2GIeUICxGATNojsr9gCQIS+r5PsVjkxo0b8f02VmKPgZyIEurbRDg2BG1qaipmzz3P68g4nAT07GJzVjYBkbHd7lqowg5RwIHYtDiIuA5bvWnXL5hEOp2J65d6tgM/bXwoSeTk/1IEu7B/b0ZgqXba4KZoRLTWOBjbh9CP8AuP2ChqaHggHuv19XUmJyfjvCKe53H9+nUTsMe7Rv+AccYqFQvMLS7gEJD2XC5dWiWT8hjeNUQxn8NzFDenptja2CCVdkmlXLq7CmQKObq7imysrbPcarGytgLKZWp6xlj2emm8VAZw6O7pM2Clu85DDx3k4sWLccaooaGhGGfxv5+8D69O2R6xloUiiT4zUYx83/djsE02o5wIWmt0ZKgZBEGssrJ95u2F5AS3mrIGQRAbJklYrOHhYZ555hl6e3tjz01ZlLb6LZvN8sQTT/C5z32OUqkUJ7np7e2Nre7ErFZOONE+aK3jDS+nnsiwUp+t+7c3lNgGAHEmrK6uLhYXF2NNQSqVMgFAWu0+C5cjHJhdxPBHNlwQBDGBS2pxRN4PIyOoeNwtWqOdNtch9fq+H3MD0idJwSdWjBJTMamJEKDR1kKACfqb/E3G255rWUutVlvd2Wg0TFSnnh5SjrHk7O4qGS/cZot6vW5iT+bSMafjeZ7JKVIqxWMqnEMtrFEup+ju7mJ2foaRXbuYm5tjfHyUk3cd52//9knG9ozz+GOP4jgOA339PPnkV1hbKnPvvadYWVpkY2WJs2fP0tVVMNzEwC6CIGBpbYtS3xDleoONSoNuL8vaVo3hfIlizwCVrUqcL+XEiROsrq6STpvM3TbIfcu83/aXqCilssBTGKtwD/ik1vp9Sql9wMeAPuBZ4Oe11k2lVAaTuv51wArwTq315HepJV5o9mIVQiFsc6VSiVRqqVh/bS/O2FxX6Vs2a7wwE6eOfRq21ZR+h85bIgwrZaIIix2ArR+XjTE7O8ulS5eiVPTlmJXb2NiIg8f09vbGC8dxHGq1Gr7vMzY2FoeDE8KzsLAQ+xiIBaA4DtknNCqK/Rjl4mw2m/T09LCwsMDx48e5efNmrLd33LbdgT1+yWL/ZosQNisv4LCw9C7SJnNPjCl4HvVWMzZCstWXQhRsQmGtvw4RQ4rYMMhvIooJIRAOTBLU6FabSwl1GM+d53m4TtuuQdbf+vo6LioO/ZfJZMilM/E4ifgiRB4wwUzSaZRSMeFPqSqV6gY35zTDA4PUGlXS2SyXrpisZc2W5vLlq/gtQ/iXeky+0p/8xXeztrAISvP8s2c4dOgAExMTzM/OMbb/GOvr6+QLy5S6+0zWq/PnqdaarK1vMTo2QTafwnNSXLlivGOfffZZ7r7bJM5dXFyMwfHtyvfi+9AA3qS1PoVJ/vIWpdSDwL/BpKI/BKwBvxzd/8vAmtb6IPDvo/u+p2Lr3GXhyUKRzWlYnzaAJItVFrjNGcjvwC2EwF7otpUcGJaxVquxtLQUG/8MDQ2ZwK/RCSDou/38IAgYHR2NFwjQYeQjEyF9qFQqcV9KpVIccWltzXiBbkZeooVCIYreVIzVffKSkzAMwyj5SRAv7q0tk0nJ932GhoZib0J7fOS0k5dtByD3ybiK3C4ETbgGUQvKeAuHIUTVcRyq1WqH/C/Ps+uTefQ8L+6LtEEMlaRddjYxW80o4xtzLtbzkyKGTeSEY5E+2GKTEBZps3CE4v8iHFilUomfJZaS1XolVr1WG1UWFhaYm5ujVqtRrVZZX1+nUCyxvLrCPafvRWtjlPXStRs0Wk1aTZ++wQE2Nrb47Gc/y/rmBpcvX6ZSqXDy5Mk4f8nY2BjZbDZWpy4tLjI9Pc3GxgaHjx/n8OHDpAYGIJejp6cH1709P/BdiYI2pRx9TUUvDbwJ+GR0/cPAj0ef3xF9J/r9MWUf1bcpyYmSd3uzJydLTiDbDFcWavL19ylSx+bmZnwiCZGSzSgnmywI2VBa69iDbXFxkVrNZGoulUr09JiEJVKH4ChAbOPf398fs3Zy6ku/t7a2YmIoxEApY9MvYKo8UxamxHoUq1CT3ToXG8nIphGiYHMgNqGU8ZZoQALy2ZydnNACEoszExC3TzZys9mk0WjE/7XnVoiF/bKJoG0SLXUmxU8BA8WTVcQQITxyv31YyG9J7ELepd5UKkW9XieXy8Wqc9/3Y/FBgE3ThiaNVp1ao2rGynXx0ilqjTrXJ6fo6u5lcuomjpvmc5//G144f5Hd43tZXtvi0pUb/N23v8PlK9fJFLo4ec9pxvcdIGj5LM4vQKjp7e7h+tVr9I7voVTsYm5mFrerxEs3JpmZmaFSqfC1r37V5FSZn+dClBpACPd25XtNMOsCzwAHgf8MXAPWtdbC59np5keB6WgwfaXUBtCPyVB9m9IpKyY/C3vuOp2yI9CxCeR/2jLASd7/vRZBsYUrSHIdQHyC2JZzImIIFpDL5W7hUmRDAR1cjqDfrVYr5ggkwU2xWIwXuIhOguprrUmns/F32ViyueRZQgiEfRfia8vZSVDRZt9FBpdxt/MexAQk6ourInFOtTkOza1AoLD5SbxAPtuHQ7xabgGL28Rju/44jkO9Vr8FUE4+65Z2JdpqEz8vlY3rVMpolcRqEIi5Ka1DHEcBGj/0CUKfoV0j9JRKNGp1qlFyorUtE0XLdTyy+QIH9u3jG9/4OvlCN6pLMzl1k/7+XvLFEuNjZqvNztyMCdxLZ583VrjjY3zqQ/83pVKJmZkZJiYm4oxe+bxJuzeyZw+NRv22a/97IgraONnfo5TqAf4COLbdbTK2L/ObPQG/AvwKGLWgzbLa2IL9MhFuOifbnmDbKMVq+y2LKtGS7fqLUirOzRcEAfl8HiA+dRzHia36JOy8cBSCCYiRkbjzysYUMUhOSJnYy5cvs3v3bvr6+pienjYenqEfb+q+vj601lQqlQ48ICnnx9iKtZGNIU4t6nLYOa60CZyMrc25xcZCqVQMAgK3iBxhGOLoNheUSqVic9owDHHTqY5TWcQJmyM0Y+J2qCxlrEEMtZx4fux22mtAvgsRLJVKMffUahlOBkd1EOwkdqGQddceF3lvtZpxoGERB2VuRbwx7t1bccRox3FM5Gjf59KVKwz09dHX14fruswurOLPLDA8PMzHP/VXTEyM09vdxcrKCrt3DTM0Ok61XOaprz/NqSNHGBoaYixKCJwrFFhdNvkjsuk0r7v7bs6dO8fExASP/viPszltgv08++yzMadjz3ey/L3iKWit14GvAg8CPUopISp2uvk4FX30ezewus2z/ovW+j6t9X2yOGwQMAkIyoQncQHppLDwSUJiE46Xe3aibR2ybLVajd24Bdyy2VQboPJ9P85XKGa7chraQJrN2UB7Ea+vr0cnv5HZZaHJYhez3Hw+H7sKC1cgz5F+2aeW7ce/XbFtAaRd0jb5TYhhcnxlzJJsuDzHFhvkZcv9yfndbn5sMSZ5CMgaEAJiE1ohiPJfW2Nlz7fUcTvR026TPMMu4rUqoqJk8EaFKKfNvQmxHBwcNEFx55dYWV1neGQXfQMDtFo+6xubBIFmdX2TrmI3xVI3k5NTOF6a4ydPkstnuHzlIpqA9Y1VLpx/gb6RIUbHRtAE7D11kp5eI65W5+bQWrOwsEAYhpRKJWZnZxF/n+3K95J1ehBoaa3XlVI54G8w4OEvAJ/SWn9MKfXHwFmt9f+plPpnwF1a619VSv0s8JNa6//55epIpzw90FOKvycXlUyArZGQyc9kMh2Lzpar7Qm3F4rNXuptABdb3pL7u3ImqpEEiK1Wqx14h9Qh3IAATXb7pQ9J2wm5J4yMaLTW9PX1GZfYjRr1ej3K65CPQb2krj9bNCo7SZ8np67I0kKQtNYo3Ykl2CKCtM11XZyoX/ZmFflZnpnNZmODKZtQ2GNss9l2n6GNNdicoet1qkq11h0YivRbNAASj0FANgFTZU3YMr5wV0A8b9vhCHZdMh4iRqZSKTzl4Ech3DKZDP29Ji/IoQMHGBgY4MWzLxg8qlhgcnKSbDYbq6gLhULMKebzJsFxV58BmatlI3oW8zkKxRwnjx0nlfLo6+3l6tXLdHd309NtUuFtrK1x7NhRGrU6w0MD1Ot16tVyzE129ZqAxtlslq4uY2AV+Jre3l4efOIfce7SPzzE+wjw4QhXcIBPaK3/h1LqPPAxpdTvA2eAP43u/1PgI0qpqxgO4We/exUqRqlt6myza0C8QOwJs++1T2Kb+9jOAMY+BZNFNoftpttoNOLFJwTJ5k6kniAwGarkXgGfbNTd5hLsdgOx0dLq6ipra2v09A/T1WXY1Hb481aHPK+Uot60jIrCkLQX+SYEIYEGxzDDhFH7BaRLntj25ojVeYmNYos9tVpt2/tsdbAAdPb4Sn1J9aOZ0zY7Lye62GdIW+X0t4mN3GuHcpc22QTAnnN7fch4JteC1GOLuBpFJjKNzufzcZQnx3HiyFStVgu/XObIkSMEQcDi4iLFYpEDBw7gOA7Xr19neHg4Tm7caDSobBk1diblkU53RzhSEwXMzS0wP7/IsaOp2AFr165dBC2fQwf388wzz3D16lXe9a538bWvfY19+/bxmc98hne/+91Uq3UqlQoju0a/K8b2vaSiPwvcu83168CPbHO9DvzMd3tu4l8dBGA79ixJIKK6OjiHpGwo98h7cjCUUuiXYaPsemxZXU5JmxOQk07Ui67rxtqLpEbF7oe9KB3HiQOXyAm/vLwcx0csFosdRM9mi32/vWBvJ0LJ70l038Zd7PGyCa78X9SaSdDVHqcOTszCPgTgtO+339uahE4cyHGcjr5K24TQJLkxez7sa/Y60RHeIu2T8b+dpsoWG4womYvFKlEZb21tUa1W2draioPc9A8Psbi4SLVqMnN7nkkf39PTY/wkKhUWFxfJFo1GSNTOpVKJlGfiLV65coWebpNdbGhoiI31Tfbt24fnGJ+TPXcdZumlG1QqFfbs2cP58+e59957OXv+HG9/+9spjIxQvnKNmZkZUl4mjmF5u3JHWDRq3fbPtyl2cnHZJ+p2eEPSz94mDiJS2LjE7SimzV7KPSnV9rewCYQsdsE1yuUy8/PzsRgDWACaEy8MWYwi90ofRN1XKpnovkFoFmolip7keR59PT20Wq0OF+rQWtAydrbNhs3RBEFb7JF22W2ICYrlOyIET8ZEZPhYM2RZFdqii/TxdriRLRLGdVvgpMyjAIzSFntNJLlBuz4pwokqpWJX+uTGsPsh3+3DxuYy1tbWKBW7YnFyaWnJRLqKxkX+f/ny5VgUtAH0RqNBoVDg2rVrpFIpulImB+aesXGmp6eZvHGNy5cvk89mKRRyNKI0dBsbG+RzBW7cuEGpWKTZbLC8uITfanD//fdTr5a5ceMGy8vLvPFtb+OpL3whWgshP/rWt7J6YypWK9+u3BFEQalbjYtsVNrGFJJEISkOQCdLaf/XZgXb/7sVa7XBqHhB0LbZhzamIYtLrkto8dXV1TiSkG1kJc+3zYrttgu6L3U3LWLZaNRwnFwEPBo3ZwjNy/gGm3ZbhCvmFpRtGdg+8ZJig7QneeLbokA2m40XVblc7uB0kpsyOT82ZyX9vGU+LS7l1rXSOS82R2QTattJzeYSbK5iu2ck8Y3tuAebixIxIfSN1qmrUDCxMssmcdGePXvQWrO5uYnWBpNZWlqKCWxvby9DQ0Ps3jOG7/tcvHgxxoWEsAdBQKVhDJkcx8FPGfB0aWmJnp5uMpkMx48d4XOf+xx9PSV27dpl1lGrRalUoru7m2vXbjB/+TKBb7AX9/u1U3jlS5tC2xZ50CnD2gZCNtWFW+VZaC8CWXjJid5OpJD77IUuz7SJlDzH1m6Ij4aoDuWEE8Q9ufDk1LNPdOEcBJdQumVYKa0Jw4DKlkmVl0mlaaVNRGOlIQg7VZKivZDQZ7Y9gdZtbMMeHynyHDEYs8dORCdJemuLMknCbPs0yCawN6tcFzFAtBLaIspyX5wyzlIbCmGTe2wVrWAlUr+tgrP7K/iKzKNYnYoBlmAZ0n4wKub+nt7YbqSrq4tsLmPS0UVqWzFGG9g1jOd5DA8PU61WaTab9PWZhEFHjhxhZmaG1dVVAmXSB/hNI5pVq3VSKZfBgWG2yhsErYChoV3RgbNsOJ9Uije96U2ce+FFsoUCBw8eZHnRBGl54Md+jIWbN6nVakxPT3P6jW/kha9/nZMn7jZexwnx3C53BFFQSsWDLwtY9NJyLXniJPXSdrE5guT9yROLsPM0vF3ZjiPZTgxJsp9CWOxTy2ZD7bbIJpPTJwgCNLLQ23X6QRMXl1TaJZc3MR4ztC0a0aB9E1TUjZhxpTE2BGFnnMWkPL5dv+1xTH6+HWH+bqKa1GurQSFyUgqat4gCMecU+Tckwc1kn+z/2/iB3T4RcSTgbE9PD4uLi/i+T1dXF0opVldXOyIxSdt934ewk/CLVkrUxul0mvX19Ti6ssRvlH5ev36d9fV1stksN6dnDSeRMQfFWJQQt9Vq0V3qRYc+L774IrlcjoGBPvbu3cuVS5fY2tpieXmZhdlZgiBgYGCAarXK6vx8HIptZWWF9akpDh06RLPZNFzInY4pQHuTCHgjKqTk4oJbWcZkSSLdssnku/2bUp0b43bPFJk06W+RJCg2lyGfbXk2SZwEZ7CfZftwqFDjOJ3xAJo1E8chm81SKhRRoabW8uN2QlvUStpDyG82lmBvdHuThbrtoixjJP4B2xG/5P/tuRJOLzn+tlm6EAjbg0/uFy5RIjzZ4y/jbZtuJ+u3OUt7fuX+er3O4uIi4+PjtFotJicnY58RSTcgY5vL5XA05PO5eBylD+IwNzQwiFKKzWqFSqXCoUOHKJfLrK2t0dvby+rqKhsbG4yMmIxQDX8V3/eZm1ugu7ubPWPjFIp5Ctkcly5dYGN9nV27dgEOq6urXLx4ESKO8PTp06yvrRjVdMb4jJw5c4ZAwe7duykUCiwuLpJOp9k1vDsGi29X7gii4EQoqi1rJ08WG7izicJ2ZTu77iSSLq9ay98WpEoWYY/tk0ueIWKA4ziUSiW2trbik0U2t83yJgmBLCrxBZDFb54hMreAmm2vwM3NjXhzFnL5mAOJOQ7AVZ1YBlp3iGHyntTYhGFIaM2DbRORHMvtAERbtLKNyoQI2eMieTjlerNV73i+zKkQwiAIYlsMe2yhrXq01cZKqThOQhLbsQlWOp3m+vXr5PN5Dhw4QBAEzM3NxaBqV1dXbGbuoigVu2LNiKvMM3IRQVtbWzP1RuHflpeXGRoaMvhApUK1arJBv/TSSwwNDfHmN7+FmZkZbly/GuXLTHHt6nXWV1c4dOgQhw8dYnV1NSI+TRNerb+fixcvUip28cLZ5+jv7yc90MfGxgbj4+MM7R6hWCxy7tw5yuU1wxW12jYrtyt3BFEQSh0vxgT4leyAfardbgNDp6mrjQXYJ7btWfhyahpZQPEJrtpYh7TJdU0IMbGBFxPjpBwscrSceMKC2gtUio2u25tSTnmR+72EijCJf9jFVknaWgn7//LZHuPt1JD2vUnikFx8ttXkdn1NXrPnaTvOwx4ze93YbU/OuzzDHiObG/E8L85bKSHgBc8QrkYphed6HSpRWWPCTUgwnGKxyPLyMl1dXWxubsYh/bPZLN3d3aRSKXK5HJubmyaAT6FEqVRieXEpUruaBDiiSgQ4fvxIHMDmqaee4vQ995LP5xkYGKC7u4vp6WlGR0cp9HRzc3o6Ar/zsaFVvV6/8zkFrYlZVR29HMeJw32be0w48OTiSIKKNsGwN5wsNBuolP+5joODRqFjW30VRePxxU5eOziOQjkuCuOc5SiTGKTVDAhdCANMpOnIjFVrTS4dRSFutY2EXF/TbNVju4NGo4ECMp4hUJ5yDAagFGk38i50Ik2C46CUiVPoaE0QhgRgQstHuvtcOkcQpGNbh5jYqUh9qRQ44HjRKY8mGtwYu1AKghAg2piui/YcFA5h7PwFjqNohZEBkmPuV8ohCEPclItyXUIid+ZmI4pf4MQq3Gw2a/wRfBOXERXG+JK9aYUA2B6POmqochyc6H43is2RchyUVqSVEXXKtTKhirKZuxE+QURcgwA/CKjWauQzWbKpNM1anUa1FhM3gMqmyWpFEFJr1qhVqm0i77gxhhAEAdm0AR6ddIaBAeN+L6nlJSze7t1daG28cRdmp2nVaywvLXL50jnuuecelDK5N1tByNrWFs3AHGJXr71Ed6lId3cXI8O78FIOi/OzlPIZVuam6e8ucOXcWSZO3o92cqyurTA02E9lY52wtkYqCFH6jscU6OAObOptX9sO0LKRZPu+JCubfK6wowISQVsOt01hY1Y77OROkmKGPFvCgQcRYNis1TsWuSygINCxW7R9+tsqNdd1SbmGUIg6SkVtR0faEUsel5PfPh2TYKC0I8lR3K4kxYLbnfT22CbnUopgEVKniAFyAiZNrbebb5t7CK0+iMORF2FEqch8PeUZ1r9QKBBEYeiCBFeRVIsmOR5b82SvF4fO+Ze+K6ViexMZn2azyfq6Ce+/tLTE2NgYy8vLaK3ZtWsXMzPTcdax+++/n9XVVUZGRjoiZ42OjjIxMcHayiJhYCJ6DQ30s7CwwNjYGHML84yPjHDy5Mk4KfP43j1MTV6L4kWWuHbpEq1GvYNDS5Y7hijIIrA3bXJBkvhuZOzOkGH2Z/kuZq+2Xl7AP9u6K0lQZNG7rkso6SGsjSHPEjHAcRwaUdTdpsjoQZRrwG9vJs9x0a6KA79KUFeRq2U8HMeJjWNCK2Sd4zhGq6A1WMZBQlRsDsEWd6Q4KHPCKky8xpg9uNV6U/4n8n4srnjtFG42ECn326pluSaxJIIgiJPI2gZQMl9J70epQ4q0UbAcpVSsxrQxDHuugiAg0G1xSSlju+F5XmyDEgTtTNW24Zr0V8ZE4k+mXC8+cIIwoFar4eRypNPpOFpYo2E4oEajEWfSHhoaolarMTExwerqKpOTkxw9fgzf9zl6/ATFUjd+qJmZm+fAgQN4nsfS0hIra+ssLC1TyLiUK5sQanKZNCnXY9fQIJNnnmFsdDeZYonhYZ8rU5P0jY+ya2iYWq3G6uIcSqk4UNDtyh1BFJSClGUtaANfNuW2T/DkqWSfIPYilWcI8bAtG4FYvSWLIolStxfnrVGH7RMxBrG8zlByjmr7PcREBB+8tgajXq/HYJYUexMC8UQGWqz+Og2KXEuuFmKQBASTHFeSWCRBwyQWsR1QZ5+k9oazn5N0Aku2JWknIWNqE+kOoibPsgiW1GckHYt7wVpDtI27zPMiLtKqM2g1b8EnbM7FXnehskRX2gCyzFWj0cBJtxPbyNh1dXXFfXJdl7GxMS5fvszAwACnT5+mr6+Pz3/+80xMTOA4DpVKJY47GYYh/UO72O3tZmV5ka6uEksLC1GIPheFw8LNmyilqFerPPvkk2ysreE6e+JoX61WA61v1bBJuUOIQhvBh04W3T79hbW3N2SShYdOpFxOpaQoIc8WIxW7Lba40S63stg2Yi+LJg58Em2UbCody+SxSKIcWrrTmlD05baTlai4HMfBS0enYiQz+6FhvUPdjgZlP0eebW9I6bcX9U/kcVvccJQigDi1W3I8tuMIkr75QoRtAut5XgzA2uMqOIjMhT2utk+CZIgSIu44DtUoVqXMeSqVIuUYgNCLiLgXxWbIZrP4EbvXCsz4tPzIDNtqj68N8Qis+fYck908DCMRMOWhNB1gXS6T7QgZuFHfMGOn24ZXpVIpdoXPZs39p0+fplqtUq5V6e3r49vf+Q6nTp1iYHCQb3372wwPDzM+Pk4lsn8Y37OHlZUlqtUyuwaHmJ2fZ9fQEEsrq4yMjjIzN0u5skWz2aTSgJ/6J/+Er332M1y4cI69e8ao1GukHBfPu32I9zsibVw2k9Z7hoc62EVhIcGKrKNudSSyF5DNRidlXMEQkqecrRqz9d1J2TKdageKlfaIWNLRbt/Ix3KSO5qOxam1Np6LqpMQAbFrtN1Ov96Mnmus5ZRrOIJmYIKv6Oj/2WjTiB9GtVqN7etFpIg3XcaozcQCTxycpH1yykmxLQ6Tp76w8RKgNgzDbaNNOY6DR1utLOKHPcZSZHxl09kilhAEgEYUL9LzPAPKptOkXc+oIbXhCpWmLSbqyIu1qwjA8tqqCT4TiXE2IZN6BaiGNoF1XZeM6xG0jGapWCyiAxO2zxPbDz8wmbhRjIyM0NPTE3MIMifSx1wuh6+hUqmwvr7OvhYVd38AAA/XSURBVH372NjY4J577uHZZ5/lrrvuYmxsjOeee46hoSHm56ZRaEZGhqmWN2k16hw5cICl5QUKmTTVqokbOTq+D9dVJiSg57GyssT+vftQDrzz136Li9fu4LRxrmNUeUm59VZwrNPIxmZD5R75TUoSAJJiy7s2WwttXbct18p3223YBiiTHI198oLJWtTmUnRsf2DXbwdVFaDKI4pQZHmS2uwyqm0rYW9QOVWT+IBSCi/y99DKAHNaRY7VBrbBxdwTbMMd2RxIUixJjrldhJVPGn3JRtxOJWyPvz1OybHOZDKxb4eiU8zwHLftyBXSQRzt+5Ki6nbrwi6+75Py2klrsmkTpTopCEl4PfF9EELoui49PT0sLS2ZpDI5k/n62Mm7mJqa4s1vfjNra2vsO3iIQqmbxZVVyrU66a0yynU4sG8fUy+9RL26SV9PL0sryxQKBaYmb3Dk0CGWlhbo7+1mdnaWI0eO8PzzZ+IDcM/4njsfU5DTE60xPj56W1zATbkdEyUcgpSkbGrLgHJf0gbC1qUnN2dHgFQ6ZUphkYWQCSrtppyO53oRMfAcK+6CE+DTKRpprWODJmGlfd+nr9RjTsO6CRbaaJnrfhBFFo7YZhFb5PSR+JJiKxGGYUwwgkicFA4g6f0pTk+1ZjsnY3I87TG04wwI2GljQrE4SKftgg3UClGwny/ci2xaux2e55GPwqF5nkcQhVpTkSu8g7mnVOxq2xi02r4sdqAaIUytVsukplPgug5aKUIFTioCvYFQRYZkITipduQvyR/qRxyuqFxFpLCBSjn4yuUy+XyesbExljaMuvOhhx4inU4zOjoat+nKlSvk83nGx8dN9OZ6i8nJl+jv7+P5qUnOnDnDQ/ffx4ED+1lYWOKRRx5haWWFG9eu8thjj/Hkk08yMb6HUqnEyOhurl+/Tub7yfvwahQZKLhV/dTxnuAekovudv+z77XvSf5HvouMbINcSRHDPom3e952JeYgXFCO2wEMJomUcCLlsslz6LiRFaSKuJ6wsy7bQnI7AM8WcfyWFeRWQELHiU7yWz0F7fG18Q6Zu+1O8lsxmfY82J/t4LM2lrTdnMhmE+tDHT2jXq+bFPdhGGtlVMTmC95ig9BBwnjHnjdbfLsdJyQco3C0MvY2mCz1Sn/klAbjUFUulxkeHmbv3r3U63WOn7iL7u5uvvDXX+Sxxx6j0fS5eOkKIyMjPPDgw1y9epUXXjyP67o88Lq7qVS3ePrpb1GtbLJreDeZXI5vf/vbPPSjD3Pp0hWGh4fxVMhTf/skW1tbPP/88+zfv590NsPy8nIHsb9lnd4JmEIundYHdu9GqbbdgO0vEJ/gTqetgs1GxwYtuhNdl3d7M0Nn4FAbiLtdcZTXQRSkTluk8DwPP2zFYoNSKk6OkvZSbT29Bu3e6rQjPh92e1o1437teCZnoZsyQTpqzYZJxgtRKvpbw9/DrZvYcRyajbafhIy1vRGE2yg3ah2cmP0Mew6ELRbOI8ldxL4WYad2R+Zb7ktyBbYIKf+ziadr1acwmEw2ZVD6TMoYRuWzubivlVqVWq1GiCEkwgk1o7UThiHK63TPT3KiMaaA4f5SqRRdXV1kUiYPBRGRzaRM3AyVSsdqTuEa8vk8xWKRbDZLs9lkYmKC/t176Ovrw/M8pqenjRt2lHRobm4OgNHRUUqlEi+c/Q6Xzl/gwMF9FHM5pqYmyaUcZm/eZO+ePezbu4discjMjSvs37+fWrNhIj7tP0i5WiGXK/CPf+FXuTZ1887FFELddtO1T4ukDKncToDLZldtim7Lz7C9hiL5PQl0yf+SrK59zXZSgkgV6iRUpnIKul7MViulaFhAqjzTDhkvv4mHXr0Z6fVTXrwB7T7b9gOyEW1sQ56rdZuFTrLnMp5JjKZjrhJE1YmAtduNa7IN9vzYxk/JZ9r/s2Vx4SxEdJJnyhi0MPYfSEStUMcbstYw/hJeuq3+vR1XI+3cToyVuc5lsrGnZT6KxGT3NQgCmq1qHCdR5rdYLFIul2m1Whw9ejQOqFOtGqJ1+PBhpqenmZ2dpVAoMDY2xtDQEOVymampKVqtFqOjo6ytreFi7HBajTo9PT3Mz8/z8EMPUK1WGR0dpV6vs7pugrM88CMP4m2mmJ6ewUvd6fEUFLRccByMTXnYDsuFbk9u3W/cslBFdk3KqslJttk6+x5bRZbEK+zroW472tjso0YTismoBqVv3UiO41DzmzihgxO0bgHb3AivcC3z5iizGw3d5oAqtSrlaiVmUyULcjqVphn4sRwrRjjSfuE+5N3NGbuMzc3NeHNIRChpb7PZpDubwfddGo0mrTBA+yEpz4TqFGZAKY9UqhNvSRJksf+gJb4KXsd8xT4MKvKMxcjt9vwGgeT3COI+Nfw29uM4Ls1Wy2gkHAc/DNDNRmzXUQtbsQWlaiSIJmbMlePQDMTQXpaeMSs33xVhCM2mj+84hFHo/YKr2KqUSaU8gmYTE/QmbVLmKYfA0bgqJHSVicKdy5LKZhgdHad/ZBdBoAkaPt2DRTzPY+rmDAPDwyxdusLh4/tIexme/rtv4tdaJixfVz8Te/uZn5vhwoUL9Ja6KFd90qk8u/aN87fffpGxsTHSbop02uPu+45w9oXn+MYzT5PLmAA5Ke8OT0UPbZbX1yb/oLGDt7AA3Zk0RN7FBkFYb8/zOmIzJDe3farYrGhHa26zwLcD2ZJlO6cqWwsg/7UJQ5urCA1hUO2EMUHkVyCoubRHnK+kLyKa2DYL4vMhbZLTqlFvR0hOjoXYAxQKBTxHRCQHNwwIU9BoNQmCED8+7RWaThEgOV7xWPnt6NHCoSS5OGlPklNMEvowDAl00DG2KVH7hp1OdUoZOwNoa5ZscaSDSIe3zl9ynqT+VkRo0AG+08B1HTKuRzodYQlBgPJMm/L5PMVSN1ob8/aW75vwbZUKmUzOsPszM/QODRiv0bSxdzh/4QJry2sM9Q9w7wP3MDc3R+A2+OY3v8n01CRjY2ORM1QfxUKBzc11VpdXcF2X0V39NBo1MpkMg4ODJhaFcFIvU+4QomCK1saHXxH5H2iLKIQax7vVXtvGC2zWVH5LssRStgMJ7UUi7bF/s+vcjrWW536vfW0/V7Jlg52bRohDTDQssSjZZkWb2AjR0NpoNOyYhHa/RTMBdOAjvu+TzWbJpMzGbbV8s1di7uZWkcsmANuNt9baOJ5ZLyFY23Fq24F90EnAbW5L6vU8z4CnYZv9B+KM1/aYJef05TAle77iZ9AGyR2lCUNDFKQdKIdMoUixWKSnpwcvnYmjXxeijF9CvJrNJr4OTYi1vn7CMCSfzzM1NYUKFccOH8HLpE0CmlyewcFB9u8zFo/PP/sMBw7so1arMTc3RyGXZ2tri0UnYGxsN7Ozs8zOzrJ3YsyIUbUazVbztn29I4iCUpasaa4AUVjyeHGATyf7bi8YSfqRBIfM89W2Cw7okPNt4hJvNqVuWXz291v7cuv17dSeHRvKGggZhxjAy7TRdjEOEkcq4SY8z2R0lv/YGYCS2gytNTo0YyDJZMIwjEPJgSEQPT09lIo5qtUq1WoNgnam5TD0Y0DNcRxC3clZ2UZASU4tyXlJxCJ7Lm1swRb3kv/NeJm4r1prClkTEblSLhO22hwBgON2+mrIM+3x9n0ftonZuR3xcBwnnjhDIHSHP4gZdye2idDaOMvVajXWNjbJ5fMMDAyxsbFBvd5kz/hehkZ2MbZvgoXFJZp+i30HD3D06FEeeuBhFhcWuHzuEqdPn+bM2acBYwPxzDPPcPDgQZaWFih1dbG6usrxh49RLBZ56folzp07x2OPvp63vvWtTN64GoeQf7lyR2gflFJLQIWXzTf5ipaB17DuH/b6f5j7/lrWP6G1HtzuhzuCKAAopb6jtb7vh63uH/b6f5j7fifUv135e+WS3Ck7Zaf8/7/sEIWdslN2Ske5k4jCf/khrfuHvf4f5r7fCfXfUu4YTGGn7JSdcmeUO4lT2Ck7ZafcAeU1JwpKqbcopS4ppa4qpd77KtU5qZR6QSn1nFLqO9G1PqXUF5VSV6L33h9gff9NKbWolHrRurZtfcqU/xiNx1ml1OlXoO73K6Vmov4/p5R6m/Xb/x7VfUkp9cT3U3f0vHGl1FeUUheUUueUUv8iuv6K9/9l6n5V+q+UyiqlvqWUej6q/19H1/cppZ6O+v5xpVQ6up6Jvl+Nft/7/dT/Dy5JY51X8wW4wDVgP5AGngeOvwr1TgIDiWsfBN4bfX4v8G9+gPW9HjgNvPjd6gPeBnweY8H1IPD0K1D3+4Hf2ube49EcZIB90dy432f9I8Dp6HMXcDmq5xXv/8vU/ar0P+pDMfqcAp6O+vQJ4Gej638M/Fr0+deBP44+/yzw8Vd6L2z3eq05hR8Brmqtr2utm8DHgHe8Rm15B/Dh6POHgR//QT1Ya/0UsPo91vcO4M+0Kd8EepRSIz/gum9X3gF8TGvd0FrfAK5i5ugfXLTWc1rrZ6PPW8AFYJRXof8vU/ftyg+0/1EfytHXVPTSwJuAT0bXk32XMfkk8Ji6nensK1hea6IwCkxb32/y8pP2gyoa+Bul1DNKqV+Jrg1rrefALCZg6BVuw+3qe7XG5H+N2PP/ZolKr2jdETt8L+bEfFX7n6gbXqX+K6VcpdRzwCLwRQz3sa61lnhodh1x/dHvG0D/91P/P6S81kRhOyr4aqhDflRrfRp4K/DPlFKvfxXq/F7LqzEm/xdwALgHmAP+7Stdt1KqCHwKeI/WevPlbv1Bt2Gbul+1/mutA631PcAYhus49jJ1vFb7oaO81kThJjBufR8DZl/pSrXWs9H7IvAXmMlaEDY1el98hZtxu/pe8THRWi9EizUE/ittFvkVqVsplcJsyj/XWn86uvyq9H+7ul/t/kd1rgNfxWAKPUop8Uqy64jrj37v5nsX/X5g5bUmCt8GDkVobBoDrvzVK1mhUqqglOqSz8CbgRejen8huu0XgL98JdvxMvX9FfDuCIV/ENgQNvsHVRIy+k9g+i91/2yEgu8DDgHf+j7rUsCfAhe01v/O+ukV7//t6n61+q+UGlRK9USfc8DjGFzjK8BPR7cl+y5j8tPA/6sj1PFVLa8FuplAaN+GQYWvAb/zKtS3H4MwPw+ckzoxstuXgSvRe98PsM7/B8OmtjCnwS/frj4MC/mfo/F4AbjvFaj7I9Gzz2IW4oh1/+9EdV8C3voD6PsjGBb4LPBc9Hrbq9H/l6n7Vek/cDdwJqrnReB3rTX4LQyQ+d+BTHQ9G32/Gv2+/5XeD9u9diwad8pO2Skd5bUWH3bKTtkpd1jZIQo7ZafslI6yQxR2yk7ZKR1lhyjslJ2yUzrKDlHYKTtlp3SUHaKwU3bKTukoO0Rhp+yUndJRdojCTtkpO6Wj/H/CPyt+k5pxYgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cat_image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.102.jpg'\n", + "response = requests.get(cat_image_url)\n", + "img = Image.open(BytesIO(response.content))\n", + "plt.imshow(img)\n", + "\n", + "headers = {'Content-type': 'text/plain'}\n", + "response = requests.post(url=addr + f'/predict/{model_name}', data=cat_image_url, headers=headers)\n", + "print(response.content.decode('utf-8'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test The Serving Function (with Jpeg Image)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"prediction\": [\"dog\"], \"dog-probability\": [1.0]}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAAD8CAYAAADQb/BcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9SaxlWZam9e3udLd7rdmzzttwj8gmgswkKitFgSgGSEwQYlaJBAMkikkNkJhAjZBqSjtCSgQDJCQmMEKFCpAQKBIyK7OyiYj0CA8PNzN3a19z321PvxsG+9xrzzzSIzODcqWXZFsyPbvdufucs9de//rXv9YVIQTejDfjzfirD/nXPYE34834Z3W8MZ434834Bccb43kz3oxfcLwxnjfjzfgFxxvjeTPejF9wvDGeN+PN+AXHV2Y8Qoh/TQjxsRDip0KI/+ir+p4348346xriq8jzCCEU8BPgXwWeAn8A/HYI4aN/6l/2ZrwZf03jq/I8vwn8NITwMITQAf8j8G98Rd/1ZrwZfy1Df0XHvQc8ufH4KfA3v+zNo9lhOLp9l67rMImhbVomkwlt22G0JgQIwSOlQCvwrqfra6bTMd458sQTvMd5h9Ea5x0heGxvQQhCEIBCSoNUCdYGQpBolWCtQ4keIQQhBJz3hBCQUiKEBOLzQgi893gfPbWQEiklzlukkAghQIBAIATDnANy94AbrwOB+LoHhIifYf82AcPrAeIxhvkhxH6u3ntkPEJ8z26EMBxh+Ex8Ms6JeAw5HMcFQdh9ZngOwnCu8VoopZBSDkcExG5+HudcPH8p9vPezd0HH58T3Dh2PE/vPeBfPTdch+ADgXj9nbX7743nEefIcB7e+92EIAR8vOgIEe9N/I7hmgq5P+fdPz9cpzB8VgqBVJLgA9a5/dn86Ec/ugohnH5x3X5VxiP+nOdew4dCiL8L/F2A6fFtfvs//i9ZrBfcu3+Xjz/+mAcPHjC/WvKd7/waXd2RyMCoMExGgeCWCLHh2995D0nL3ewZzlm25ZLD2ZjV+hqE5+LiAu81yAKtDlHmhDu3f5lnLyrKOiFND1ktaw6zOWmaIqWk6yzWWpQ0BAHOeWzv8QScHU5LSbQ28QYpu79RrotGaIxBK0UIAS003ntEACklWioAnHM45xBGobWOC9k5CPHG2+Cx1sZjaQMQb6gQKKXo+566rsnzeDyFQAmJERIRAOfxzkUDGxag857eu7gZKIlSii6Y4Y74YcOI5+htnF+aJWRZhlEaay3ee5SKRtn3fTTwwUB3cwPo+56u67h16xbWWvq+3y/mvfHbhsRo6rrm8vISay1HR0fkiaEsSwQepRTWWpq6xDlHlmUkSQLApl4jRbx+UkpCCMMc4xkdHh5jraVtWwiS6XTKdDrFOcdmsyHgqOuaNE05OjqibVtevHhB27bMZjNWqxUA/8q//Lc/+/MW+VdlPE+BBzce3wee33xDCOF3gN8BuPf+L4UsyzgrzkjTlHv37nF8fMzB7Ji7d+9y+fKSXGuMcTT1iq6vOZwZfviDjzi7e8jprZ4kMWit6X2PdR1ZlpCmhrrxhODw3lJv14g7Aed6vJWU3RohNAGJ8xCQBCQIhQe8D/ggUEbje4dSkjRNEVrjnKPve7LUxIWPI0gHgIxLmRA8QYp4Y70gINjtZw6BFxLjPWLYoUWIcxUYNIEQPCp48H08rh8MkOj5RJJAkuCto/OeRCiU0gjA+h7nPVIawuAlAwHhHM47nPdgA1L0SElc9N7hXfQGidGozMQFb1u6vqFtW6y1CCH2izUrxnRdR9/3KKVQSmGM2f/dGVHbtvT9cB6DkXrbUFWB6WTMgwcPWK/XGGNwznJ9fc3BwQHe9/EYvcPZLl475+KGEAS97WmaBiklSZKQpvl+M9oZt3OOpq7p+/heay3b7ZZ79+/QdR1Syv184/fHTWo8Hv/cRf5VGc8fAB8IId4FngF/B/i3vuzN3sdd1gvPRx89QilFURT0nef3fu/3+Ma738ALMCZFqYIk7Tg4THn82Qt+7favUjeXmCTZ71Jxxy5IEkPbtVjn8KGn3K5omhLnLT4orJMUxQhkQucDru/3F1wphZIGqSRaa4Lvo2cAZIiGhfP0dYNOE7RSqLTYL6wd7FEqerAgIwRzw04dgCAEsm8QwQ0Qatj9EUihQEm87cHG66SUQguNVgGjFYkRrDAIbVCAD9AGECHgggIpCFLiRYRUjkCQCi88TsTtOfElEokMAQRExxFQwiEJJFoNEMeTGImSau9hood83fM45/aPpZT765kkCUmS7OFv3/fUbct8Pmc6/Sb3759RVUc8f/4cS1y4fd+jVfyuLMtw9pV3gXhN94boPc6FvXFD3Oi01oyKCW3bstlsWCwWpGnO4eExXdeR5zl1XfPw4UPG4zH37t2jqiqePXtGlmU/d5F/JcYTQrBCiL8H/CNAAf9dCOHPvvT9gLWWvEhJkoTxuCAvCsYTjevja11To2WOlhG/brcNL19cEdDEvV4hlIJgccHig8Vhsa4hAEoJjJEgPNNJTtc5+t5BcNgQdxvvPUIme2zMEPd4DygJg7fZ7XxpmoDr0EEgPXjvEEIhRBiYmHizwxD2uMGbxNhFxdhj2OWEEHjnQEoCAoQnOEcYjFAIgUSDBN/5/WeaIEmTBK00wXm6po2xAgKjDZ4B07toLF4AMnqoABjXRBg3xBl7iOccbdfijUGIXTwEUsbzdM4DioAarsUO9kYvA5Cm6X7uO690c2PJsgytdfRcFs4vLlmtVozHYw4ODri6usI5kMP3IxQQUBK01jR9w3g8Jk1T+t7RNE2cd9vS9467d+/SNj1JEo1RCMX19TVa6wjTupLDw0Pquubly5ckScKtW7f2hrbbLL9sfFWehxDCPwT+4V/mvc46nj17wcnpAePxGO8tT58+ZTye8K0Pf4XNuqR3Huc8fd+SGcl8saCqO16eX/HBkYnmoxRBRJfd9h1NU9F1LUEIjOkpRhPaZstodIfzl9f0Xcd125NkCnxAG7nH933f03c9XQhoFYGYFALvLYFINiSJQSMBSdt39G2L9Z4kyVBGo4WMu6QUeASegHcQBHs8L3UCUuJDwAWPtR5PNKjgXPR6IeB9QEr2xrtblC6bEIxCCEXA44PF2g6jNFIpgvN47/BhFzzHDSHyAgEhYiC+C0lf7eI9ztkI72APbZxzdF0X4zmt6V2HEII0TffGsXstyzI2m81wvLgQb5IPbdtxdHSE1ppHjx5xfn6OMYau65hvNsghrrLWIojz0FpjioK8GOE70GmCF5K6q+hsT5ZlTGaHSCkp63Yftxwfn5KmKfl4RAiBdblleX1B27YYE+PX5XLJD37wg7h+2pa7d+/+3HX7lRnPX2WkacqdO3fIck2Sp1xcvGRbbthsttw6vYvrPSIEpE7o6pLZrROUGpEXGpOOsdbT0NM7T2qiEXkfF5GQDuc6AhZtBBcXL3jrwS3qZoNSM/q6o9Nxh0yFJEWDUAjhgT4yMAHEwPQhBp/ie0IfF3AARN+B7REhgLfgBUJIgusJXuGlwA0MWUAijY6snNAgVfQwROgUhAYRcCIgkbggAAFSE0SgdxZvh8WY9UgrCMIhrEeHHiEcOgSE9RACMsTrhxAoofDBYQfCwisxGFNkn2xno7EKiUoz0jTbe1plYqwnOgNBxphmudlDpUhu6D1c2v3tBzi8Iy92BrTdrhmNDvBEeLfzIl3X0TQNo9EIbhANwUdILmWE0j4QNxsfCQmtNZPxjOl0ipSSp0+fM5lMiGnHuDHMZjO6tqepW+7duxehsNYURUFZljRNgzFmTyD8vPG1MB7nHH3b0XYlmc0BeOedd6jKOHllNEpogpDM5wsmE4OUDW3n+NPv/5ijb3dIo8E7MqMROi5+pQUpBkNKohUEeH59yb27PXjH0dGUJnXYJKVrXl0oIRTGQKoVqVJ0bY0IngRJkJEq972jaxxuYMSUkmRDjKGVxOGwtif0DnRABIFEDPRqQHiBlILORVwbgsAR4wlUglYCqQa6WOwWb4JE4FygD2IgD1qk65E+smwSj5QxHsNHmntHcUshQcgYl/QdruvoiwnGGISU2L6n6WNQnqUFaZZRtw3WDtDLMbBsAqUkShpOT08py3IfZEOMYdu23cPAXRy0TwcM8Pf4+JgQAtvtFq0TTg6OCC4G9ZPJuywX17gkJRs81Y5h3Gw2dF2HVxFqTiYTxqPp3njX6zXX10vatuXOnXtkWcZiseB6vqAoCrz3rFYrilzRti1lWVJVVTzvLMMYw2azwRjDzxtfC+MRIk56PDvk0aOHvPXuWzx6/JgH999ms12hZMqDe29x/uIZ/9yvf5dPf/oD7tyZMT24hWlWJNmGxKS8OD9nNDpmPJry8Sff53A2YrtZYfuW6d3bbNYVx4cHjIqMNE2pywofNFVZ453j4GDG2dkt+qbm5bOnqBAY3zqhWpXMRiNcU7K6ntNUW7quw3Yd02KE1hplEkyaoE2K9z1eSKRUQ1Qg8FLS9Y7g7MDmOXrX0XeaYDuMMWRZhnUdy+WaLEs4PDzEDmyQt27PDAmhkDIGx6fa0zQVro87snCe0Fu0jEH2dh09Q+8izSy1Qg2sUiolq6oiTVMQiq6LhpPnOTpJcQE2ZRuhUpKA0Cgl8TIawLpq8BLquqaqKoQQTKdTxuPIwK1WK4qi2J8bsDckrXWEs96TD1Cvruu9B9uxXd57VJZxenSIUjFmKcsykgiTPM4d2JRbmqYhhIHM0IppdhhJGu8xScp6s2X+7OmegPjss8/23nHHDNZ1Tdu2e0O/mYf64vhaGI8cch/j8ZjDw0M2mxWnp6fM53NMkpMlIy7nV5g0Z7FcMz04pm5aslTy/Pmc5r4izzSJKdBkaBU4Ob7F4UGOQHF5scLaDuc0PsRdL9ESpRWSjNF4wjgvqOotP/3xT0g0nJ2cEGzLi88ecfvkkGp1xZOHP6GvK5SAIsuYpAmuWe/pZ6EkUieoNCNJc0RikEIhSNFCo7TESB3hGZ4QIMkmA8z0tF1N33b7eGe1mIMP+OAQAbSWpDrSwDqReK1ZPPsxUkryNKNIM5q25vLFSy5enlOWJXmaRkNJU5QxKKNJkoSsiAsvmb5NomKcGLTE2V2c4XHBM8pybAg4a+l7t4dd2mjSJKfbXO/ZyV2wrrWOEGoy2UO0m8lOa22MnWy/Jz7k4LF3xIISYR/XrVYrqsHIU604Pj5mMplwvVnQNM2evdtsSlarFVJKxqPpfq5JEomooijIsmIPI7uu2zN3u+9KkmTvwXavfdn4WhiPs47Lyzmz2YQ0TblaXPCr3/k2z19cUuQTNpuaqqy5c+cOV9cr7t87Zrl8yXRaUNWWpoPgJUIa1m2Fs2vKsqS3NS+fPWc0mu2z5UC8wVIhgkQqyfXFOe1ohFaCItMI52jKNZmR3D6akgjLcrPAl0voO2zfUW6hM4bZbDawVwohNc7V9NuK7cpjnWdyeIRJM0yao9IUIxT+Rg657Lak4zFSCZy3aCMZFTnCO8qyZDoZEVzcsfEWYR24sBMjMEsCy+srHl9d0WxLfG/BB4zS3B4nNE1FnuSMjEEZTwgtwvbItkeEhFV3QZ7ne7ZMS42UIAjYADJYlAtYH8B7vJAIpSL9oRxKKdI0jamFgcxwNxhEY8xeDXFz7BKnuwWulEIojZSDgmKILYvRGCHEfiHbANu6oaoqXly9pOs6sizj8PCYo6MjJpMJ08kBd+/e5fz8nLbt9rmdHX1dFAVSShayfw1SftHQm6b5uev2a2E8xhju3r1LlmXU3Yb1es3z58/xQXF1dcVseorUMYlV1y1lWRG8ROqM6eSQ66vnjMdjjM5RKpAmI+7de4AxETJV5ZAZFxIpNV3TonVC0/Qoa8izBN+1iERzMCmwTUO9WtD4nmmm+fSzhywuz0l9zchoHC3CB3IJy8un0e2nOUmWYpIMrQ2ZVnihCH0TGTpv0SJg0gykQAqNNJrmuowxTaKYGtBaoYSl6ypolqyrOcH19G2HtT3eOUJwyEGvkYcLqqqiKyuE8+RSRepaKpSUmMRgpEA7iwiRlAhdoG1reimp8dgkw+Y5WZaR5jnKRwo5kYq6qtHKkGmNTDSeQU3R1vGvkK+RA9bafVzjnCNN032MA+xhkBACqcxgPK8kR70LiOEYCLWHgU1d7Y1zs9mwXC558N5b1HU95AjBeYf1sC632GdPMSbBZCkoyXZTsVitCCEwGo0YjUb7uRpjGI1GJEmyj4GapmE6nd6QN/3s+FoYT9e1tFXNhW2QxnNwcMBqteLXf+O7PH92Sd95pNT0zpOkGZfzFYezjKrqKMYHPHn+xxEmzDR1a9G6QcmKEFoWiwVaFfRVhQwpaZbQdR1pekC1tSAdk3FG37RUmxXtqud4NuPozjGri3OePvoJzWZFXy7QoaMVHtdWJFpjTODseIr1jr7vsHWHa7Zok2LSAmMS0AHbtVHVIAISi9IJaSpITYIfScpyQbvtSYyhc5ZtuaYuK/CWpqriLh8cIgRE8Cgt0UqjlKJptkhgWuRIBImMtLvrerqyJssyfN/Tdh06Meg0wpJdvDGVFtwWUZbYLkXUKU5req0RyiCEQpuUJM9IVIZUBo/HhUCPY965fTZ/D78Geh14DSLt4J3Wce5ykCwhorJj55289+DdPvZxztG0HcG7vZcsioKnT5/u1QxCCM5u3+XevXsYFRnQ7/3u7zEajRiPppycFEyn07jRdJbNptzrAZMkYTqdUhTFnrpumob5fP71Nx6lNffv3+d6dUU2ihKbh48f8fz5cz59/JS7d96JLH+QnJ7e5vLiGWk+pqzWJOmI05MzpocnnBznKFXjwwrvPOW2BiRt29I1jjQdU+SCrrNMRwVrVaJlQltuaeuKRAkOZ4fIYHn+6CHPP3vIdnHJs8c/JVeB3/jmOxyMC1J9yrjImI5HPF+vkTIBGeMG6wNt19O1NU1TgpBsqwbnJVkxIktzpNEUxZjRaIQ0Cd31Oev1epCs9NTlFklgVGSM8VE0pGT8KyLDZJSPO31+SN/3lJst5XZLGQKjvGCcF8wmU4yKREDTdTFQTjN0GrVh1ju072nbFmcDdBJ0Ej2mMujE4HzAKU2nDCpJMXogRnRCoRTh6B7e+5+R6Oxg2y6+2UG3XR7pVf7K7/VxUrwSp4ob6oQwUOVCKUySYnSEiuPDCUmS7HNPo9EIo6JBrNYlR0dHeBcNOEkSTk5OcC6wXC5ZLpccTA9pmmZv/E3T7KFkURSRDv8C3Lw5vhbG46zl4uKCl5fPee+Dt8iyjPfffx+tNe+//z7ORkoxhIAymjQvohSn9+SF4eMffspyec17754xnUnStEPruIMVRcF20w7UaXT7XVWjpgrCTvqRkyrIs5RMC548fMQf/8Hvs56fczLO+Bd/62+Qayh8Q1euubhc8NlmTdc1dFlGnsddbTI9IM9HjLKEIhU4L7i8uqYvNzSdw7UNnUkJUlAlOc14jBQddVXRlSWu75BEijxLDZnowFuUEKgQCN7i+riDOyEIEhZiTJ7njMdT8iTH26gsV1LhXMAYjVABPdzpvnf0vt0ryGeJAFvTW4dGI6WL+j402ib4zmID9A7CEO8kWfYqh1Pc2nucndHsFpy19jVPs1MW7ORYOwi3NyIhUHJguKQiDMlgPci1btLc3ll0bl7FskGy3W4HY/Vst1um0ynltqaua5xzWOv3xMbOYMqy3P/dyYkg5h53CokvG18L41GDArksS6y11HXN3fv3eP7inAdvf4PVsuZ6HhmX3sYbX1UNre1JvULrhBBEpIbVIKlx0HUWghhUuLtdjD1DEy+MoNquGRU5i6tLPv3kR9SbFe+98zbH3/4WoS3pyxVNU/P0s09wXUmmFVoKEilwIrBdL7g6P6dzjsRkjKczDg6OyIoxxwdHSCGom440KRDaYK1FS4ERsLy+IMsyprmhcg0ywLjIMEphu4o8S9ASjJIQNEGHoQwgeqCNSMnzgkQbOtHQ0yGFREmNVIIQwJiEJElflRJIEZlBKZmECuV7WuFRShKEo+s7fA/WGrIkwwZwweOCw1tLX3W4OiqZP93+KAbp0ynpwOx9Mbdz03h2Hqrve0yW/4z3IbzSq0XZTU/dWkRw+/cZY0iznKav98nRPM/3ygAhooI6qs5zDg4Ohu+PZNEOpnXl1X79JUmyn+deWzkY0peNr4XxWGeRheL47BYvzq/ZbreMR8fMRkdsr5fU2y2ZDlTlOXemd8jzKavVCmclm61nWrzLxx/9kPfe/ZAkT1itHnF8mqH7jLapqMuObFSwWV1z91ZHq1ccji+4FA8ZJzNu+ZLFiwXdcsM3TUudNqyffMbTdYW3Ae+hazoQis1GcDWfA1BMxpBZlstlzI0YSVFIOm95fv6Y0Sjn5PiaW7duMTuesN4s8Z3l9PCQolD07RKKlKoq91qqCD2GHRxJkAlWCISK9KkbJPZ7CYyt8U2Pja4WBqWFZ8icZ8W+XmW/YTiQQ+nD3Bl0NoXEs61LvI1xpZSBvu/o2jXgkYpYTyVlZOMGQ/wQCFuBrDRBKqTJMKMpB9MD0mLKqlyBT3FCY3tP0/UEqcjygoMiSnF6F1UOLgTcwCRKZSiblmIyQQvBer2l9T1JmlBZy+Zyw+xWigoKLSTeCRJpUCJFoxC9IiWBIGg7T+MbatvSBocVDplKVNWRTNOhfMOiteZweoAM0NcNq5fnqJ9TaP21MB5t9B5itW3L6ekpm82G0WhEmqaMRqP9zdpsNnuIEOHKmIPsDp8+/hHz6yUYgTaBrouyjqbuooiw7JAeqs02FsF1HcpDWze8eHnOfD7n+mpBW9X0TUe1rqjLBt97lFC0bU9Vt9R1y2pT0nUxH7MJFVVVcXg4I8syDqZjZrMZIUR8/9HFx1xcXHB6esJklKOUYrFYsF5G5uf+vXf2eq7tdhvjj8GI8jzfU7Q3k3U7+ALsA+Z9sdqNvMlOqHkTHu3es8/XqGTPku0gjXUdMrxeZOwdCLkTqb46Th9KtDKoNEqJpLfYpmTjPWVZkhZT+r4hCElqMop8jPNQtTXrxeoViWAMSqhY2iEESlhMKtHE8olMOYyUGCMQSUKhAioxSETMoQUJXhCso7GW4D29tZgsxmmZSUEJdOjxKn7nvaNvsFqtOH/xksXVnCUwyQoSYwhdDCW+9sYD7Aud1us1R0dHbLdbRqMRVVXtqcS6rlmtVnu8vcsjSJsyPTnl7P5b5KMK5zzL5QXTyZjTwyNefPaC0naMiwmubZgVUzaLa8rVknnT4V+es1qt2K62uN4iHHQ25jac9yzXG5Q0eDRpbjgwKcvlkuvlmsdXz6iqivlqSaI009mYs1un+8w3wXF5dR1LJY6OSLN4w0ejnMPDQ9quxiSKo+MDilHMwiepjgLP/kaBmvCxhkcGhBxyLiGQJaPXEpC799+UxrxW5OZfKbKFEFEGNDBkOyPy3u3rW6LxDvTyLh65UQFqkEgNSgQEFh88ofdRZdEZtAgkaUZAs1mtWa1L2i4u6tmkwFlL5xz1sA6EVozHE8bpZKDEG5x1JMNmIUKca5FIKtsP6QeQSEKIpRM+eJyPrKQQgYAl2EDoO/A9UoHQnk8ePuLtt97ib/7z36Xaljz+9CFPnzyh3pZID5PRCPF1N57dDd7h3q7rmExiwnS9XtN13T6xtWNqdoLDruuwOuPl9YY//dHHPLif8a1v3qJtPO32iuePP2ecjsA6DqYj2rIl6Janzy549tkLFosFYh0Ltfq2w3UW3/XYzmFbR7CBJJ1wMD0gy0d4EYNKoc/ZVBZdFHRVxXy5oes8s22JC4Is0TRNw+FsihSBrmmpqopxnjPK47nkeZTvZ1lGUWSkqdnnHvo+zmkna4n2IdFaYozaQ6cvBuk38yjxc68C+Z0aexewK6VwSiNE2EtoQghY1w2B/k6y47/g2fTw2DNODc4GrGtxXU0QCmkSjMpRUuCbJZKCIDRhu6GezymrhqzIOTBnCGuRw5x23rTrtnRd1JZ1bbMvx97lglBRYmRDipcSrRO8MigV668SJfHo/XqJ6pIeiSOJlYJgPb/2S7/C559/zh/93j9mOb8mTVMOZwdMj08RIVCX1T6f9ueNr4Xx7G70drvl9PSUvu8ZjUb0fc90OmW73e4x/m5H3SXmhBCs6557737Aux++xd3bGiFLmronz0Z88M43OH/yAtmDcoHN1TV25Xjy2Quu50uqTcU4OUApjVOS2lbUlYU+kOiUZJRyfHgUi6d6T1lVtH1P1VnKtifoBBsknbU4B05KbID5as1iteJoOuHoYEY4mAKxXLrIctqm5+r8iqPbM1ywtL3fB9J7WUlmcCEak/Cgh7ILk2p0iFDNDb0SbkIyeMVg7f5/c/HtNqu4uCze631Njg8WX9vByMTATL2imRH2NQiZU+FcGAgCgdAK5UG6WH6XpzldtcQHOMwyTt67R9XUXJxfUc1fDgqFqLWzRLKorBY015KDgwP6Lmb59UBGhBCTvLJTZOkpwkWySXoPwSNMQlBiKOrz+L4H78m0JFUJwVvqcktVVXz/8U+Zz+dsVismacbx8TF5mlHXNdvNBi0VX861fU2MR0pJ0zQsl0tu377NdruNF7EsuXv37h6y7W7wer2mKIo9wzI6vsP54pJ//Ccf8SsfHPPeg5zZ9JTVxWNePH/G6eyYVNT0Zct2vqb0NdViiewdszynbodiNJ/gfYc2E8azgsPZEeO8wLuAMjnr1ZzNtqauW+re46Vhvtqy7SyZSSjGKbfu3OH49JiL85eUq2vOL6/ouo66rCjylK4+JEsiQ6aQlNUGIcOecECogUaOMdsu7vHB4nw/wLYIpJQSdO0NRkjEwD4MDVOcj1n+RCRIxQD9AlLFz2ojMSq+JoaqzFc9CDq8V3v4GcIuVzM06QgBhN+XQGulSJIMbQxS6lj4Z3uEEhghkFKTaE9iApnQ6OMRy21F29ZsyuEcBoNXSqC1oVn2SDHERFhSmexzL7azTPPbIMGJgBMOF6Li3AeLc7FkIha+e4TzuL6l2Wy4Or9gtZjjm5aiKDi991ZULqw2rPtrZrMZ7731DovF4ueu21/YeIQQD4D/HjgDPPA7IYT/Sgjxn3LJa3UAACAASURBVAD/HnA5vPXvD4VxXzp2O2Se58zn8z1dmGVZZN7GY+bzecwWj8eUZQmwpxO30nHn7ffZLjWHp8cs18+ZpQm5LpicvUV1vcKWLdtuQbPe4jpFaCy2bpFJwudPzkmSBCUic1MUIybTQ7I8wo3edzSbmuWmom17tnXLalOx3tbMlxua1pOkGpMX5OMJxXRGsd1i24bl/Iq6rllnKSeHM4wUFHlOZhLS42O8d0BAazV4VLVvWtH3HYeHB7QtQ3l5/6oSFQbP8SohuVv4Owh00xvt4iB4RRzAEF8NwspdymDXpeZmrBS7lL3e7QZA2NihSMhYfBdL5RU2DFCstzFGTRSu71hvNwCMRwVCK9brQLlu997QKKJ6I5F0dYUyGjEoOKQ16KIA62i2W5RconSCSg1SZkgpCHisi7kpIR2273FVQ1/WdNstzXpLs97Q1w2z6ZSualhVTVT1pzlWGbqy5mn5+Vfaw8AC/2EI4Y+EEBPgnwgh/vfhtf8ihPCf/mUP5JxjMplwfHzMRx99xO3bt7lz5w6TyYRPPvmEg4MDuq5jNouFTrsEm9YxrmhaT2oEL84XvHt/Sh4Uh9kpL+wFq/mG8nLJ9mqDbQLdpqVtYjwzP78GJRHqlMTkjIuoeTocH5BlGU1ds1quAdhWDVXT0naWy8WSh58/4fPPP6cyPb2FurfIumZdVkzrFhcE0iSMxlOE7zg9PeFbH37I3VunGC1Ji8gUzm7HhG/nLF3d4VyUpaRFTjYqMFkaO954R+/dflHuoJhWsf7pi4t9tyHt4sOburNdzBM/B85Fw9zt6rtmGsYYVqvV6+ycflVOLaWkD7FHRNtaGhvIHK/yPUoRcPTO4btXMphd5x1jUiaTGdPpAUUae1BUZclqcU1d1UM7Fkmwnm1T0TUGvKDvW5aLBca+xOQZ2XRCosDoIirDXcCFQFdt6dueerWhvF7QrUsS7znIckaHR6y3G0aTqPQwxlDVNZtNR5IY8vHoq1NVhxBeAC+G/2+EED8i9mv7Kw+tNY8fP+bs7IwPPviA9XrNZhPrUG7dusXFxQVFUeCc48WLFwghKIpi35qpC7HQbTo55OWLOb/17Xs8/OwR92fHzD95hK0si/M5mRzTVx3L+QYfFCEITg9PyMRtjg8OOTw8JLjYOyBJUpqq49mL81gngoy7ppI8efqcz589R5qE4Gtm0xFFnjIZj8iLEUrFEoDriwbX95wcH/HWO+9w+/ZtJrMJt46PmE5GtG3LaDRisYjS+izLyPN87zV2nneneF6v17HXw6Dv8t5j+27wKIoQBkZKCLSO5EKaplxeXhJC4Pj4mDQ1zOfx8dnZGXVd71MBuyR1lmV7mntXPLYzqF2yM2bsLcLkaANChL2ReiEo21g+PZlMYk2NEHTWY70dqm8lTgiUjnFMYz3SBrzQJPk4NmjpezZ1TBzn2RSlBetNRVmWdJ2jKz/n9PYdJpMRy/kFp/cf8PTpM9RozPGt27x8ecH88orlxRW+6ZglOUWSgO1ZXF6g0oy+7Vj3r+I4KQTOWlbXEbI5vpwx+KcS8wgh3gF+Hfh94G8Bf08I8e8Af0j0Tj8DHsVrfdtuMZlMaJqG9XpNnsfM83q95uTkhKOjI+q6xhhDkiR72LFnZ+qO+2+fMTIdT3/y+zTv3WKSjOnLimbb8fH3f8zZwS021w2fPXrKvfvvcnJ6xrMX5xwen6D7A9q2x/We6XTKi6fP+OH3/yyKBJWm6x3r9YLL5TWb7ZanL56TZCl3795l9fCHrNYlfdPy4OwuRwdRL1XXNQcHB9QbwfHxIWdnZ5zcOqZIE5JUo4wml4L5fL6vfdk3MhxYovV6/ZpObEfR75jJSAD4V2XJA/zaMZK7AHvXq2ynSj44OIiq6WTX7GTXmCS26NoZr3NRiLkjMpqmfY3mllKCNq8MyVm0Y6gP0iitcT56w9j8UA4l7rHcXJscrwaI6QMqSUgQ1I1lXa2ot5uBTldUXUVTxThYBoa5d6w319R9jchHHJwcM0oTzi8vefn0GVXd0rUtrrVkgCYgQlRrJHlG1Tm88AilCGrIaw3kiwD6r7qeRwgxBv4n4D8IIayFEP818A+IHSX+AfCfAf/uFz93s2/byYP3Q1EUezbo7OwMrTVPnjyhqioODg721X273IO1lm4QO3oLTdUgneTq/IrN1YLxFD5/9BnXLy64f+s+1y+vWVxuOT66xb27bzE+OEYlY45vnfLiMuxrPuYXl/vdvmtaXr58ydX1nIuLC7LxhMV6Rd1GqtX6nt/87t/g4aNP6eoG7xzVdst2vabaLIZWTbFMeHYQpfWJiZo07x0mVWyantE40vJVVWGtJUli+W/X2wHDR6WvSVL0UExm3U5c+aqP2k2PANGjV1W1J1aWy+XemLIsi/ITafcCzF1TQ+8tQpg9NB7W1GuNC733eAf5LN+/b593k3oPIXvnB4g39GEIINj1TBAIFN7FbjwmkUhjsF6y3NS4PsRrEQx1XTOfb6g226F+Z4ShxAfHerNkpDXb5YK8GNOtN1xcXiGEJFEJudIYIXG9pewsnQAlJOVQeHhzg4qdjsJeR/mVqaqFEGYwnP8hhPA/D0ZxfuP1/wb4X/7iI0UMnOc5xkSx367yb6fK3cU5NwPj3U374J17VJtrCpPwy+99E9tYZqdHfHa9JRMZ9XbD9//oB7z7zrf4rX/hb+MxWGlQ+YRPHj4iT25TbUuqzZb1es12s8Jbx3K55PPPP8c5x3x+yZERBHpObx0yGkqEfddjkFRNy8WLl2RaMJtOGKearikRWIpRhtax7ZU2CVIJvPCoJCENOSFEpXekfAPW+qH7TLHfJMBhTIoQYO1O3i8GGtnS9zuNmBtyQPH5rmswZge1dh0+Hc719H1LCPZVbsn2COK1lZK98kEpvY9jnI1GVrUVdV3jifcgzTKyNNvX/XsfolEED0Lteym8RqkHh9Ia7fUrLZzUQ+Vnyov5Eigh7NjYNVVVUaSOppccH3aM9cHQNVQyf3nB8ZlEe89Ep9EgpSZRBhnAhp6u62kH6Cikjp7Gf4HiJ85zlCZfjfGI+G3/LfCjEMJ/fuP5O0M8BPBvAj/8i46llWa1WtH3PVVVcXV1xbvvvht5/mFXvFnpt/v/Tsy3XZSs5pdkh5qDYsz/+3/+I4rf/BaPP/4Ut1mRCs27b3+Dt996F+vgYrHg6PY9bj14i4t1hdsE1struqYlMYrNas1PfvITRPBMDw+w1nJsj9huN5Rtw4O33+LDb32TNE355ONPEC7Cpa6usHULeYbwDrzj3Xff4t7ZGVmW4IUnK1KMkgQcJtX0NhlKJ2KgnZiY/HU2yui1Suhx2N7TtfGmOxtvqHeRcdtVZX7xGu02IYjvm81mP6N47rpoePuyABVuiDVfV0s7GxDa3/A0inJxFaF0nyNsTkhi8ZkQguCHXm8iiVo6QezMOCjCM61IEoNTEk1Aqqh4mM2mPHjwIBY+DqkBhGY6O6IYTaOSQEo27Yq8LtEqIeDo2p7QWXIUtRf4IBG9x7seMai75QBvdwLTm2N3DXb/vsgs/sy6/UvYyZeNvwX828APhBB/Mjz394HfFkL8GhG2PQb+/b/wSCI2kSiKgiRJWC6X+8c7Je7O6+ygwy4bXtc1M53z3ltvc3smWTxZsr66pitbcpMS0oJHP3nI/Tvv8OTJC55flpAU/MmPHzE6POTOW/dZXV/QD9Rw8B6TaN5+cB/n+kFztmY0zumxdKFFGzg8nPDOO+/wy+9/yPe+9z3+9E/+COd6tssl1WbJ0eGE+/fOeP/993lw/w5aBYRgrw5oux7vLVJG6GWMYTKZxaTvej2cJwNtb4aYZVfevOuP9jpce8WIvaqV2enVdlpA5141B9zFPXExAUMSFhi8UWzCsWtB2/c7j2fIsiJ28bFLZHD42lL3FdbE17J8hE4T2qZHY1FDD23vY9WnFgnCtfjOIpAYGcWZrm1Ileb06BjxDcHlfMFisYYgSbIIEfsuIpHadmzqLVmSM3GO2XhCkaT0WcGiWzAuRvQu9sMTXiCNRCjJrkG9Vq/r90KIMdGu+bv1Q8uuLxn/f9i27/HnN3T/SzU6/MKx9uW2u8SglJLr62smkwlVVe1vauyQEtjFSG3bUrUbZA9Xj57w6M++R5bknD9/wfXlNXnwuM5RlTWdVXz3N77Ngw9/hf/jd3+XTx5/Ric15z/5eIidHE0ZtXTf+taHlNst3//hn+L6FmsFxyczHozuYooMgmMyHTGVEz549x3W13POL57hbM90MuabH3zAt7/zSxSZ5vjkENvX9H2D0ApCDNyFEjgfyIsxSZJgXcDaft83u7ceH2K5ckAORiBJs6is2EHZ3bXZXctdb7Pd9dl5jh1hsDOsvu8pivRGQ8IoMg1+94sQ8Zg3tXI7QmMXnxaaQSjagZWAxUsQRsZkLD0qCFRQw6J04Ilxn4W+jc3ttU4QSPq+Q+mMJCuYjAuapqOrOzoboo5NGUwRVdgHo7s8f/4SZTRt2zLOpti6ZTYaczSZIYTEihBbKUtwgdg8M8RmjsK9rsrQQsLQQ0ENLbr+GZDnSE5OTvYNuCeTyR7CPXjwgBcvXuzzDjt4kuf5XoU9TcacP33ID/7wd3n503/C3/nX/yXs8gnb9YbJ4Yy2bfn+97/PYt1j9Yitk9w+u4vIR/xf3/sexwiC8xwdHTF9EOviu7ZGSvjGe+/z8uKcZy+fYYzhvffewwvIspTJZMz5T19y+9Ytvv2rv4z4oWW9WnJ2+zYnJyfgooccjUb0naBtIU0NzkGSGIqiYHm92OvX5vM52+123+0G2Dcf31HEu4YbwJ4Y2CWVd7HhTf1fJCCSAaJ1eO/3cKVt29dyRrvvCiHghlKM2A3HoFVCmu7yRxEqVlUFbRmZPZ3EbrgefF9TlR7VNqRFgSLExvV4CC72/HWOREiqrgEpSdIMlKZtewgOLSWz8ST+QoWDbV1j+9jgPt77EWHUcHW9wOiE7XaL8pqSkncevMfp8QlPnjxFSI3Ykx6x9bGQGqUFBLtbgINhDvKnoR93N5R+fNn4mhhPYL25RAL375zw+PFjPvjwl3l55ZH5CFHMWHWWo9kxx9Jy9eRT8lXLsTPMug0v1v8bP/nj32Pz8CHfvXOHd0XH4+fX3CtOWS1qrhr4vK45fPst/p+f/ohuMuNXv/ltPv0nP+Rbh/eYX8V2RU0l6KqSru7Zllv6pobgKFTB8WjK2cmY2weQFgmnZyNc+ZDDQ8N6vSZN1ty+pTg9nXHv3jH37o05Pi44OBjTtjVKJYzGOc7mpGmG0bBcdYwmis5G8at1Pdp4EF1s6as1va33PbzrGtqmjwtlUAMI5/fNNoDYcF4qRIDQW1KlES6qnFWARBvM8JMlGkHZVgNRo3HBQh+NS+mAb9qoHfEtYAm2xVmPQpCKnmkmeXqtmE4njHQam0F6S6YUhU6QRrPZrMkLRyocQhnk0BvBI7guuz1UXZYlQiumB/HxfHOFkAnj0ynzcstm0XJyfAeTFJRlS2MNmf4OMsnAaIxuWLYld06PubY1Ie2Zt1ecnp7SNhXBCeaX19w+u0ddt3RtT3owiZvG0IQedoziUIFrsj8XWu3G18J4YpeVnK6pWCwW3L59OzI5Pv6uTd/3GK2oyy29q8kSQ5oayu2a8yeP+b//8H8lDYFEaq7P5zz//BlFMUYpxY8/fchqteKdd97h8OwubQ992/DJjz7C1jVX1yvKvifRBkyCEAohYVwkOCOxrmW9Ljk+OuT22Qnj8QhhAlpKfLDUtaVpqj2UTDPDrVsnHB0d7KsZd8F6no8ot7GpeOx0OePy8mIv/995kJt5rNgIUL2W37op+Oxstw/gdzmgHSTbkQI3g9+bjNeulmYHyYRQaKn2nkkGaJrY2yz2pRdISWxAH24kRW1H1wkEPsJO2+GHZh1JkqDN0OA9BIL3KMXQ3mpoByzBJEOlaVPHBpJGEzzYrufwcEbXOtabFQezhNlswnYbaf0iy5lNRnjX4ruU2WyGCD1d63j77be5vr7GudgDfDSJ92M0mZIX4Ix87drtxi4h/PNKsOHrYjzek6Yp5WZF3zacnd3l4nIes9x9w3Q8ihfFdfTrjukoZb2Y89nHf8pHf/wHGNMghWCsC+4dHKGlYbOcU9cVvfN8+OGH3Pvgfcq+Z7UsWV6+ZFEFjkdHbFYVibbkmSHRgmB7vHV472iaNavVgiw3nJ4ecu/OKWmhsaHD+ZZu21BuoSy3ON8xnmQcHR1xenrMZDomSQ3jyYjNZsPFxUtms8PhfDv6PkI3o/QAe4Yfy/IMpQMO72KHHdv1iDCwcWnsTQC739SRezLl5tgZyY4s2MUoX1Rb30wDKOHxWry2aKQE27WgIzulhaSxDSE4jFGM8l1rqRajZVQtdy04h1GCPE9RQsJQxk3woCRSmLgBuRYpDYlWdNbTDy2tkjTDWehtx9HhDO8ki+tHdF3FbDZjMW/oF4H1YklXlRgNJ0cTTg6PWK/mXG+33Dk74/nzAfInGbNizOXVguNiTAiCstsO5AFEiV5MOsfhqevy567br4XxiPgDFzR1x+HBdN+LeDw9pN6WPPz0EQ8ePCCVgUI4zo5v8WT+OfXyGul6ctdjGwsm5+j+EcEqFouKdbmgbFv+P+re5MfSLD3v+53hG+8cQ85VWWN3V5HNalItEhQJGhRhAYIBkxsJ3tiCZEAb/wNe2iuvDBheemUtbEAyBEJeySZoizTFFt1NsdlDNbu65hxjvNM3n8mLc++NLKK7RJpNoHiAQmZGRUZG3Pud6X2f5/fgCj559AmrzZZgA4nPWORzbs0mzGXCdz79HqmaIZUDIcgzhSwUEo3pYFQqbp1OmE5SgnSR8dwalqtrhiajbWuCs5RltpPqpBAMfWfRaoSzHWZwSAF5XpBqRe96qu2acZkfHvw4aV7YEXa2i6ZpDseyWJoeCCGumGmeH5rGL/bC9neYPfJpP16cPPvLf2Q7eIKKKRDWBmSQh+/D2AHvLVpnKCEwViAdKKUZjYpoGfEWKeICgPO4XSBXcLGnhBSx2iYs3scCR5YUMRMpxHtZogV9b/F2iMFdARQSEQLjIuf4aMrQG5ZXZzjT4oUg1zlZogiujxBLIVAqYTIaY22sTuokYzydEbwkL8cEJNbZQxVx/7rsf92/RtPp9HOf2y/E5NFpyqaqCFJx7/5L/Ltv/FveeutnmE3GrFZL7pwcUyYS124J9KzOB/6P3/6XFKLl9rRAP1kTgmRejLm9uM/lcsPaJ/zoasu33v0hv/J3f5nFvOD1B6dsLq/JrKY/r/nWH/we92/d4/7tDGcr2uoK0/WRQJMklEXGy/cL7ty9xfHplCBqWtPRbpcYM3B2/gw3jFBKMZmOuHU65XhRkGkHrkEqRVt1zMYlfQeXF4/wHubzOYmOk2LZR9VxBIynaC0Ok8h5A2K/I8WGJ3xW7Lm9vv6McHPvHt2DNoBDweBF2AbElbbM889MTAnYHbNay9jc1IlAi4AIFqk0RZ4gRRSXpolAq0A39LS2JRrnLAIY+ooaQ+FH5LJE6TTusEoQhCfThqqrcJ1DjUfkeUGSK5zzhKFDBEmWKFbnT8iKCe/83Ft8+P6HvPfDD5hOp/hawtDvCgmOFEmzrlheXZIkis2m4s03v8zTs3N647leLjm9fZ+qbcnyknJnqNwfQfeGwRACwboDtfQnPrd/LbPhLzsCOBuYTGdst1um052qeRf3UJYloyJjcB2hqWi3A+vlBUmhuKhWvJEmrDcNTdNh0FxWLU82Hdcm4CYTzrqan/vy32J1/oyLzRWTkNM2NdOTOdOjBZ8svx3vVTJWslSWoCQcLQpOT0/RWpAqS+8Npt1SrS4xLnr1Q4jM5lGZMSoTlHRY0yJl/PhsNmOz2XB5cbmzV0x3sp2Akp5yp+jdU2e8C+DD7l4hcMaSZwnshKBKxku/lFFu8mK5+sfda+DGknBwYnKTC3rIvxECCQQpsdYgEcgkfq1EKqQCY3sEMVhZiMAwdCgpSBOJ7WMbQeDJtEbiMH2LJPpzpBJIbaPLVIBUimHokcIjNQhnCW5A7tL4PLEvZk1sXCsRGNqKo8WEhy/fZbXacHK84OnjhqvlOVki4e4J7EK69oBDnaVIGbN35seneMC6wDjJ6LvrQ/V2L2yFmGcUgsDuYhx/0vhCTJ74hkrG4xFXV0tu3bqF1pr1pmI+O+bx48eczGckWDLrSMcpi9mc02nK5dNPWK023L73kGx6ymZwVCLh53/9N/hq5ll8+//hlTdu8w/+8X/OH/zfv4MXjrHPecZTJmpK1Tpef/O1mMStNEWWUG22nJ894+LiOc53PLh3F+8Hgo8ww3q9ihimYUAlgVQL8lSS6ti8GEyHICFPFR9/+COUUswmJbdPj2P5t6sIXqDVTSLdPqFACIGS+qCeaNto2FJK0vfu8GZ772nblvTQwDQHT86L/Oe9JvDP27P3v5cixkZJESNPlJKIEFfhNNN0dYPQEgg447CEXWXKY2xLplN8ljB0QIghVFLJ2CexHT02FhlwoBOSNI8PapYz2Lg4xvBkizMCnSiEloiYxEI/9BRltDFsVpccHZ1QvPIS//5Pv8311QV26MBbnj695PLiGUrDZFLwa//Rr5KmGrfbVYZh4N69ezx7fhHvefF8fHgd9kLafckfOPifftL4Qkweay1lWXJ9vWKcZwQv+OD9j7j/0ktorXn55VfwfU8qHKmK59jRaMTZ2WMmZckIAVpgtSaZL7DVwOkbbzEklq/NE6ZzyXc+/ICXvvIGt++c8um7H2NdQqjhpfld2s0PuDUaU1cb6s2adJRRjktW11fUtWK9LTC2oe0b1tUaKWC13rBardCppcgfUGQpRZ4A0SZQbRrqahVXM5/SB8/Qt4QQJ0eWFWSZpneOvt9He4wOuZ2B6NvJdoHBe8HmvqCwP+qtLs8OUqX9CCFESuruvrPH1gKHPtFe1mMPWNtd/IeLblMQDG20YDszRNdpGm0PdbWOEEmiYsK7WBBQIqCEoG0qOgGzWSQKLddX3C7vIQjU1Sby2PoG4fudyqJHihSf+HhUMpbBwmAC8+Nj0iShaXtGZU4IjrbbsphNODsbyHLFqyevkOjAhx/9iMlkxK3bL1HXNevNhvsvP6RrWo6Pj1lfLxmGYafS75hkKfnOyr8P/d2LW5Mk+ZsRbiWl5PT0FGcHjo8WbNdr7t27F8/qabaz+iqMNZRpSZI47ty7zyerC7qhR5Wa1huEG7BpDpMFtUwJecH4zgO++e3fxaiX+JW//VWqquLLv/BzPHztZ3j6wTl/9Id/zDsv3Y5bfV5y++5LVJtrnjx9zuA8k0U8Qg42Hm/sMNBWDanQ3L9zn7v3XyPLU/CO5eUFiHhMyfOMPC+iGjvPyfMCkAx9nABaa9Ik4+jWXVS6I1M6ixtip9+HgA0DeV7Eh1ImqOymEma6/uBn2qsKXnSP7l/XfZDu3rKwP6pBbAHoND4CIojY05ARBCl8LJ4Eb/FS4pyMXDgRiwE+2BjF3mwJIZBqGKQnBE+id+VfFWibDX3b0DVbkJpuGGjyFKVTikLRDw0EQZJ4UikJGASBEBSTySTq9oY6Ki0kDKZBa8mtW0fUfYc3lsm04GXxgG/98TeYzQsSKVmvr9lsKqarKfP5lM22jWJA7yN0Xwr2UZJ79+z+z+yyY5Pk86fHF2LyOOeoqoqri0vGecbV1RX37z9gtdxgXUyEK7KUfjCkkwlB9Dx89U2efPgj+nUHI0GPRScaOZ5QuIJO5FjvSYoZv/BLv8r5s3dZ1jXrtuHWyy+RjzJOHrzF0cMv8Yf/8n8mkYJES4pEUa3W1MZRTGYsTu/gTHSRut7QVC3rZfQc3T5dxBKssVjZIzON1hIlo6GqqbdMxiVZVuwUyT7m7ThI04hzXW+WcScQN3kw0YymD0e5PdNgH9y0l+bE2PnPVoj2x8D9JNqrF15E3b7o14mSfwj7BycEdhvPTn3tCLuo+xgOHEvbwVrwBtNbsiwWV7pW0Xd9xAWnMVLS2wHveszQIaTG+0gGGmxPCHp3rFSMxlF6gxMIBWmS7naDAakTxqMpKtF0XY/zliRPmM12YVddxemdY/JCc/v2LcpRyma9ZL3dkF9lvPTwNVar9xHBkSkZASWJIoSbo/KLEqS9/Kiqqs99br8Qk0dKSb2tDm9sUUTdGkozmky5ul4yKsdYLxEqpe1qTm4/QKY5IckwbFHlhGIyxamEdDSi95q27cD0SGH48INHfOnlu5R5waquqbc1RabIT+/xW//ZP+HD99/j+9/7NlcXVxzNFrzz9V+huj7no0fPuHOyIKDpekvXWgiaRBckumC73jCelJRFRp5mKCWwztB19cFJ2dYVlQs462MjUsfoeWcU1cGnFLDGH+4sWkuMiavji5q0LC0Ozcc0TVktb0j+e0HoPrRJCPFjj25/3tpxGMIjg4j3k5jJjXMWQszFiRPO7IoZ+1Rvh1YZSZlRV5pm0+NVCl7R9x1CRSvGMHRIlaCSFG97tk1LnylcgDwvATDOYgaLTgNZPj24OEMI9GZAOsvgLIgYTj4/nrLcXHF5dcbiaMTbP/sVZvMRbVtzvTxHoFgtr/jqV9/B2QFBoMiSeA8SMi5mQkR5jryR5+z/e+ne5xujvxCTR+u4Ao3yAmdsdGB2A0IklKMx51crvFSgM0xQtK1jdjQCmZPkE6y/ZlLGGIx11dKJlNQpvEiwJpAnknu3HlBkI24dLzADnN67TW8KqtqSyZKv/u1f452v/x3e/e63+dYf/j5Pnz3hzvGMn/25v8XZ08coHVitHtG1hvlkwcnxCeNiQjkekWUJqU6w/UBr+x00UJAnKd7Y3cPsEUKSpQUywNB2dHWHKkexUSoVDhshgH2PNYa27g5GNu93CQL4SJQRkiDkQe+33232/R7g5v60N3e9UJHbPyD7IUO8oIf9ljdCvgAAIABJREFU8SX4w+4TAjsMlcFbw54aKqUE77B2IEs1qY7ldWeAImUwPcorgrUMfYvSjiKRtF3N1fkFi1tH8UhbFAglqduOuu5JU0eQObPZEVmRMxjHer3GCxiNRvHzhUBrxXQ+YrkW9KblS2+9wXvvfp+2axA+io3rzRpnO3CWYAaUzrBmwDuJxyLYZ7WC0tEXpFQ07z17/uTzn9u/rgnxlxlSCMJOZbAvTzdNiwmSTdWQZiMCGpXm9Cbgg8CRMqBR2RhhbiLX16sNbjTDDJDkOVk6YTJSXD0K/L//9o9456s/Q5bPWKUamR4RKBnIee+TM4pMMzu9z2tvvcPHUtI2Wx6dXZMKTTM0XJxfo6Xi9GjGdHJEqjK2/XIHqogrtrUGCGil0btdJEtT8lTtgOs5wYsoPu16VJLSdd0LF/4bIKHScedI05QsS5Ey2g328YV7YOJejvOiMLQoCqbT6UF2spcAwU1zVGsdj1+7EXewKIlC7nhvIu5+UQ29P8a5m54S0DYVgnha8NbgtIgJ3N4RdtIbrdWhCNL1PXWz5TQ9pRyPyPOc3hg2m5q6sUjtaftAVQ9MpnPKckxWFggp0bvGb9219KGjmOSM5yOEdEgFnzz6BK0E9+/cxZiIR96ulpRpih16dJAx+QFQ+Y3U6cXK2n4RerEI8+PGF2LyBALHxwuUCNghllxPT085v44QkHIyxvoYJd97S5GPYoYMCk/0x1hrUECW5OjpEXaID8JoVlJKy2I0Y3W9Ik8L3vzSW7z3wTnj8RHdIFBlQuoUk0nBOJVU2y1dtcW1a0TfMNRrri4vUUnB0WzKqJziDbR2oO5qnIsvcpZHNXSUeMRS8l6xrGSCtY627Ql+34wTDENHXcfdYV8Fc84cGHV9Z17YJcRBBLrfYV5UW+97Rftd5sV0ggNzgBvkrlLqhhAjXtBxic82UqUUiBAOd57o+AwR1ZtqVquKZO9qDQ7TtZiyiH2SIMnSnCJLaAYTOW071neWRcGr8Y71esOmavFOE6ygqgaWm4rJpuH41imLo2OSRNP03YHn3QbPeHJMkkRA5Hs/+gFtV7OYTemHNt4vraCuNpycHlFtW7yLEEQt9W5nvQHg7x21+4+9qHf7ceOnwTD4GNgCDrAhhK8LIY6Afw68QjTE/cMfBwHZD2t2UgkTz/9XV1c8eOlVnp4vqZqW27NjNtuaRCUE58jyMnKREXgXf1g7GMZKc3R0RHFyypPrhqZqGeeai9UFD+4+QNk13/n2dymKYzaV4UtfOeF7Hzxmrko8mm3VMkjP4uQOb735OqnrePz+D3j3T77JhUy4f/8l7pwcR8FkE+809+7fi8eZAy5W7PhhHASZ+we67/tosVYp4/GY0WjC1t0kqr3oWTLG7YAf6QtiT3uYKHtial3Xh4lXluXhjrPvHe13qv1EevEY93lOycMuJGKzct8TCSEQcEj0wRqyXF4dJqT3nt4auq75TJoDgOkHOmNYLtf0fQdK4gUMbctmU9G2A1k+RxB9SEU55Wq1pG472q4nyTOsjTTZO3fusDEwmpQE4VFpwkcffYDQAqng0aNPuH16hyTJYmr4ySl9Z7EGUBKVaIxwh+95n9mz/30spnz+zvP5XaC/+Pj1EMLXQghf3/35vwZ+N4TwJvC7uz//xCGCp7q84Pz5GVfXG45uv8x10/PwtTdxZoChYpE5CjaE4YpR5klLjdUaMZ0xEVPEoJlP7vLkyZqrymGLCW2WsE4MVd7C3HJePyHLPYtRwesnr3D2Z5ccd8d09fuMxx3ZJMGlI0x+lwt7i8fuLu7u13nnP/0njN/+RfT9u1zQ02Ww9R0NA0+WV5ytV9TOko3GpFlB1/XUmxrXDUgXyKTGD4a+acmTNBJpnKVqarTsUaJDhoZEOHKtKJOCXOYkIaNeD2yuW4ZGkKkJqRwzNNBsLH7QmM05mW/QrqFenWOHltlsSjkesa4b1nVDOZ1hiXCLPM9iBOTQ0jVbOno2Q001eIwsGcSEdZ+x7hRtSOk8DN5ivCF4iwqS3I8p/IyRP6KuM5Q+pRtyknROlk3Ybmu8M4xHOakOZNJTKFCmZ57m2OWWW8WcYWtRLsF0lqIYUTUDQmkaYyFNqa3FC82ybjm7WKNVya2Th4yyI7oqkDSG6vElb9x9lY++/wHKJ2gKHj++Ji2OWDeWcnrKprU8v1pDljE9Peb58oqgJaurczIteHD3Fn2zBTcQbM98UoIbEN4g/E/O6PlpTZ4/P34T+Ge73/8z4Lc+75P3R4j79+8zmUSPRVVVbLdb0jRluVzy/PlzzBCxSZvNBh8Cs8UcAJUVTGZHsZqTJnRDi1ICFAihODm5w/K65tbpfaRM+P3f/wPG45zB1IwnCWmRE6Q6rDh7OLhEkBcpg+n42te+Ft2eJqaOdV3H0dFR3B12SoG6rqmq6rDij0ajm2bkC6JNY3vatqXvW9bLFZvVmu06surquo7/b4jHE62isnp/DLR2iEplJdhsVqR5gROKznh6G2i6gabrsB7yYkRRjllvKpwHoTIulmuMc0xmR9Gi7G6yP7fb7YElsQ/OfZGJcDji7ExkUkp0ElMKnLuxQOx7T8MwHFDK+2Rpay0yibvsZDKhqWrqbfQnpUpzdXV1wI8ppUgzzaiIaGXvPZvtitXqmrreHna7NFHkWcbZ2dmOb7ei6zqGYWC73dKZAZnoQxVyOp0yn8+jUl9EXt2+pA8cWOnT6fRzxaE/jckTgP9TCPHHIrLYAG7vISC7X2997hcIgUePHtG2LZeXl9R1JNmsVqvPWIhDCEwnc1brLdZ6ppM5SqeEdM705B4hSdB5RtVuUemuFCs0OplQbQPHxy8hRMknj57w+MnHzBYaG64RUmK9wXmP1CrGujt3SKEb2ijRaZqGvo1Aiuh4vEkOuCHy28M9Z39katv2wHTek2z2P09UE6eH8rWWikRpUp0cBJ1JqiA4unaLswNpGuPeN9trvMqwQeJlgsoKRJLRW4n1mqQY42TKsuowQUGSs6k7eitR+YhNM8S0PeNo+8gK324qvAvR+h0irOOgi+PmjhBCDMx6kQ/nnCVJFTKRGLeTKe36JU3TICV0XROPqFqwXa0jh01oiiQ/RCeaPirOnelZrVZcXV3QNBVCRJ3d/sjqg438bRGYzSaYvgP2vSzDbDbD+BtFStM0LNcrkIKu7w//3nK5PFQtIfI0lFJcXV1xtQsy+3HjpzF5fiWE8AvA3wf+KyHEr/1F/pIQ4p8KIb4lhPjW0DUMxtB30XqdZRnT6ZQkSRiPxwc5yoskURuiiHE0nmL1jHxxD6NSVJnQuxaReIQSWC+5vh5AzkEuCKHk/ksv84d/9PtMF7BpPqZzht5FMIVKFTpV+OAYhg7T16SJ4vL8nL7tcDYCMEajCet1HQsAu0lQ7OLY9938fUDs/ledqAO4UKkoAwk2RhXafqBvWrq6oa23VFVFXW2QRHlMFCnGQoSzHc52SCJpc3ASmZaMZ6eUsxNEmuN0AklBazwqK/EqxXiFzsY4qdm2hqq3gKRuGrab+LM0TcN6vb55ne1O56VvDHvAoWjhiI1WreOjtC9K7BUPgzU0XRvlPFrRNM2u6mbZrrckMqEsCtarFW3ToIQkT7O4Y3Qd5+dnfPrpp1xdXeC9pSgyyjInz9NY0QuGtt6yWMx4/Y3X6NqGk5NjQggU4whsHIwhK3KMtdRNB0Ky3m4Oto2952lfpdw3kE9OTqKd/ieMv/LkCSE83f16Dvw28IvAmRDi7m6S3AXOf8zf+59CCF8PIXx9PFvE1IAd3H3/xlT1hrarubi4QAjB9fU1z8/PGM9mMV2s7RFaY7NjKI/pZYLXkpA4rG8RihgLUoHgiLrJsb7k6OgOm+0FH378bVS6ihHraYJQMV3Ae4uQjkSBEoIskbz3Zz9gOpnES6WDo+PbmMHtLpoKKRRS3GRaxgKB2S8UhxV67/aMnydIomMFQeyzsCO4KBHQQoC3tF2NGTrSRCFVoG4qBtMynhQMTmCCxAWFE3GnFSpD6Ryd5Mg059a9B0iVsmka8vEMlRSs64YsHx3uaNGTA9Z6rq6uuLy8xAw74Ly/Ie2kaRqTqr3d5SP1ZHlCkmmCuCkaGBMZcIcwXRePcO0Qj57d0FFmeUxw6wxXV1esr9Zcnp1T1zVuiB/zxpLlcdKavqeqNzRtRdc3KB3RVpvNmjLP+PrXf4Htds3x8THGDFHfto3J1wHQacwgmi7meBGPZ/tCy/5926cRDsPAcrn83KSEv9LkEUKMRIS8I4QYAX+PyGn734F/tPu0fwT8q8/7OkM/HI49UcK/YrNZM7QdOI/W8YcajUZ4D8cntxiMwyJoBkeyeAmXzehkQh8MupBU3XZHyYckndObkqrJEGrOxXLNw9de4hvf/B3SskJlKWmRInVs4HVtjSSQpZJUBZaXZzx59DHzyZTgAqvVGikUQkbMkpTyACzpuuEzZjMhxI5BvSPe7Hz++yNeojWZTElkQqpS8iSNxP5yxHQyibbmIdqapYxmtb6vcc6QZhKlkoOSYLvd0jRdBBEmKVJqRqMJi8UxKE3bxGOUUDqWkIsRXdez3dZ03YDUiqzI0WlGnpdM57MDNGS/SosXKnb745FKbxYMocXBUxQEB6rrYBzO7UrBgl0KtePq/Iqh65lN4h3k6dOnvP/++zx//pyPP/wIKSUPHjzg6HhO03UHSIq1A0JwKO0b0/Pw4UOSLEamOMJB+2dc3AVlotFZeuB87+9F+6C0PTBl/3ruE7F/0virlqpvA7+9K3lq4H8NIfxrIcQ3gX8hhPgvgU+Bf/Af+kJHpyd0Xcf86Jj1tmayGDMei2h6cvEHWhwfoYJHqIS667j/4BXOzp8xvf9lfDHBmEtq05NPS9bVFfOjewQvkXKMBbreMcqPqJrnTOY57fk1j578gOPpS4zLMUJqrO1QVqIUBOOotpd88sGP6NstfRLLl9VqTdN0IBVSRuZZ3xssAS0DUgRwDmcNWktGoxHArmknsdYRcDhvqOsB50FKjTMe0xt0mmFMjD63NgbNChV7QkF4lI4p18PQI2WKVkm8tA8GoSDJcqSAvm2QWrFdLVHeU+QZXdOiJeRlzsXFBdvlBdtNjfMSqXoSncWc0iTBe7DBE3ys1PkXKttRPhV3aiklztvdYpCRpDlmiPGWzkNR5DsO3yjuYCEWXarNlsE6pvMjEqkp8gheb3of3ap6t5CMxxDkAaOlvKc3DrGL4iwnU9bVlul0yhtvvMHV1RWz2QydJMzmRzHjaCcncs7FcOMQ0Ik+XBP2DIp9pPznTZr9+CtNnhDCh8A7P+bjV8Bv/EW/jtKK8WjKdz76LkFILi8vmS2OAFgto1Py/Pyc+XSMt4b1tqI1ljff+hlUmlKePMBph6nXtF3FWEvatuGICAhse8izBeuqZjKZMju+zdnlt7n/8gO+9/0/4e0330GeCkbJCCV8bL0Gw9CsuHr+iOXlMzIF9WbDYj7DtgbjAsgEa3rkrh8iRazuQZTkdG1DkqhD6oDZrWpB7CPvBXlRROnOLr16f2fY88L21E8voG4rlBKMJjExYruqSLOcLE1J0gQXBCpJUJlmMIaqakBq1tfXTMcls8mEs2dPUYkiETnnTx8zmF2ym/VcX60QQpEkiroRrFaOB/dPDvxm73fVNgJK7Y6eIYLbe2Nw3pHsjndm6LAmSpK0TthuK3pr0GmCJ9D2/QEpLKXk0aePqDqDSlJO51OcFyxO7jBdLLAu0Fc1k4lkkhd4BMv1hlmRkeYF48mU5WoFoubNL7/F09/7Pe7cu0vbdJTj0c3dcm8mTOI9azZKDhm3aZoyn8959uzZISj6PyQM/esqVf+lhnOeIOCdd34emWju3buHUoKjo6Mdu9oeMkoXx6cEBGk2om57Xnn9y9h8RGUFuhgh04zJZMJiNmGzXuK9p2l7nFcsju/x6bMrdDZFZyOePb9gPJvxg3e/w+3TBV29YVYmNNsrfF8xLzO+/c1vsLl6TpkILi/O+PDDD5nMZxGgt8PcOhuQOwMbcCCczmYz0jSl6xuM7Q+5n+NJSZZltG1zKOPuK3v7EWSsFnZdR28Ng42q6sE6Li6uWG62zI6OSRXcOp5TJJKuWuOHFtd2mLZhPi5otyuKRFKvV5w/fYTtG86fPeOD9/6MYA2bTaRxtm3PcrPF+kA7GLbbLUJKmq6lqqqD4S7J4m6wD1q21tINPSHAeDxG6oS+tyRJhheSrrW0TU8QEaZoTFx4iqKIxyZrWK1WMbU6zXj48CFHi2MWx6csTk5I0hKdFEiVsVrXXF5u6DoPpHQ2cHYVg5WPTm7TGcN8ccTR8QlSKMpyjHdw584drq+vWUxnlHnKR++/T5qmnylRJ0mEye9L033fH6wcP2l8ISZPtMluuLy8PJR9ry4uefr4Edv1CjtEicrFxQV5WbDaVMwXR3TGEaRGFiWqLOlDoChGXJydo4Mg0wmzyTT2Gqxj8AGhC4JIyYtjxpPbDF3CtMz57/7b/4YyFbSbFT/7xquEfsu//lf/G/dvzcmV4+zRRzx7+ikQuWZBCkgSpLxJY9sfs5z9LO94XyzwPoIC6zreWZJE7XossSdS19vdvamj7w39YGJqgIOm7ai6jsEGTJAMJtC0hlQKNqsl11eXSDyzyZQyT6k3Gz7+8CPGeUYiwFuD8D7Ga2iJMz3VakmSZFwulzx5dsZmvcU5x3g0YTyd41zYsRUSglB4AtYONH3DZrPi8voKoRXe3cBLtEpJ8xKpUgiK0XSGzspoa/aBPUZLp8nhiDSZxX6KzlKQmvF0xt17L6GTAuclxoFKR+SjOV5mrOuBs6sNq02LcZKqtXTG40nxQTGdHZOXIxZHJyzmc4LzbDcb7GCYTabcvnWLyU5c+qKVY18h3Mt1XpQ0/bjxhdC2id1lFCAflTCK59vIb465Pd57bPCxgiUVFhELBt2AGwWsEiA18/ERT598wsnJBKFSUi0Zj0v6wUMi0GVJ5zuUnjOfvcqnH1fcPc15+83X+ODd7/PGy6/x+KMfUp2fQbdlVdUMmyVnzz5m6Op4GQ0W4z1KpUihIdj4AOHA+d0F+7OTRymFHQaM6RFWkeWRy+37XVPWeYS1KO0QIcSyatdGqtAuytF6RzGOdwqhYnM4cu0czsbde7lc0huLC57FYsHl9ZKyLGnr2Ih0NpZ2Aax3bLcDTd2TZQXBw9nFJW3fcXw0QaSeqop9oEQLpHdkMspy4hk1Kkg7Y7EuYBzkOiHPxjTGI7CkSYSwm8HTNgPDzkMUQvTt+F2FLklTilGJkwGdjcnLMaicVdVwXW1IE0OS7pPBd2HOKjA5GTN0PYXISQqFNR2vf+ktgo2N3nJnQuzblixJkd4hvWNzfUWQ/jNathe9PPv37AtPDDXGgIpNxe12l1k5HpMkmm21ZjQaMQw9t07vcHm94ujoiLOLJXlesm17QlIzNNt4ecwLJvmUVGi0zGg2G0hGGNuj8izeB6xgnCy4e/seq8uOD77/Pd5+6y3+6A/+DcUvDWzOLhFtw6v3T/nG7/8pzfYSaVqOT2ZoDb3pMV4iU0lwAUJcwQQKpUHgUDvdVHgxrVrcrGb7EN2mqyOHTQiEkgitkDqJQsHeoHSOQDB4wWBA9uHgy7chYXADbdswWI9OM7ptS931qCRjPJvQDktG05y0VDhnqKuaujFMJiOmi1s8+/B92sbEIw6C68tlVGtnmsF40izQd45EBLSEkJdooQ9I4KobdouEwtmAwYPQWBOQOiMEiVJ693MkEebuBcHDaDrBWMtyvUZnBUlWkBNobKBdV4xmGVVtaHobzXbW0XUxejLPc/IUxrOTaKhLMsCz3VRMxyOcGZBmQOsUZyyT0YhxXjD0LaZtIrNifIP92r8v+4mzr/5+nv7vCzF5YLfdJyl9H6UrwodDA6tIY+VjT9TxBHpjKUYaqT0DA01fczqZ0NUdi/Ex3jiKImW5XeOSgcYYhC1QiWCwEs+Ee3fepl1J1u0Z7/3pt/n5t75Mu7zi/umcH/3pRzx57xnt+oKuXlLmCpmnCBlDcINSBCHiCgq7i7EmUQqvAG9RMmDM3l/jEVJQlBk6TREqqg+kjpUsZ6EzHQ6F8RKlPT4kpGUM+0WkGGvZNIbQmJvJozzPnl/jApzevktRlrhBcrXc8unza4RQiLSLpV2gNoJNbxlCF4Ov8hHXy+csV1sIsVQ7Ghf0ZqCqt9y+9RJCeKx3OGNRQZAQu/HGWpqui30pmRICmCHgnKA3gVERS8JZXjCbHaMzjasCUkVDIBKMM1jbRXuE1PQu0A8Oi6S93tDbQF7OKEZHNE3L42dPefr0OcNgOb01pfOK6bgEmTAuCzbbjiTJ0EHiLAxhwJmB2WTKuBhRbysypZgtFjTCHZ6/P29J+Lwd5/DM/nSnwP+/oZQ61NmPj4/p6iZeWIU4XPbGsylVVVGOR2w2FePJBOviGzMoi9Zx9V9drzkdL3CDQ6MoU4VNwScQlAEhsYNkuRoY+ow8eZmXv/wV9GB5ePc2tqqpL89RfuDx+39GInumoxTnBuquokhHZGVGGDTWQUJCcOzUxwIpFYIY9y6Fp+/3kh1BksUmY5rnWO8wJoJPjA80dUddt9h6IM0GsnwCMoXBk5ceYwPGRYt3EAKQ0RhYdaw7UInmamtoLs/YbCsG6xls1KeNziP4YjYZx7ItOU1jOHt+zcu3J0zGM7yrWK92faLdsXM8lrs+iMX7BLG3cssAu6O2ryF4T1qWhCFaw5XUeCfQKqfpK6RISXQepVYkO/OZomorlM7IEg1S0rQt69og1Jh8MmVTGZAZNiSs65aryzXPni958uSKpmn4sw/f46NPH/P6q6/w5huv8ubrD6nqniRpmO/s7zJY2u0AmcN0HdvlkiLLycdj/O6qsJ8sf55r99duSfhpDO/9rvFlca4kuBtfxd5+bIwhKEHoJUJKhJAEKeiNoxcNk+kI31hkkAzdQKoShrZjMhrRJR4P1H2H1jlSpSyXW66voG0LHj96n1tHC7777T/mwfEt3v2Tb1HIwP3bp9hhhZKO9bYlTaOsput7BufIiymlj3wya3du0eAQOLTkIGWJPwuHN+bFVc14g9YpWZHTWY9pLL0ZML4B4Rh8T9bZWBoXimI8AQG9dfhQc3Z5EXsoozFX1SUffvKYqmmZzhcIlXB9vWQ0Gui6jsmmodhxzMZlQUhGPH/+nPEoXtjNEBicp2kaVqsVk8kxq9WKspTMxhnpTvSZyISQy8jmbmO1UCmFU5CQUpYOpZIdQTQBZAzkUnHSRZuFRmqFCxHQqEgwHoz1CAJJgCAVIsRFajAWITPu3H2JcnJE3xs++vSHfPL4jMHCahOP+8F21NsN6cv3OZqNyZOMZhlpP8J6TD9QJCn1eoM4mR3ehxe5dvv352/EsU0IwfHxcWQZNFtw/qCuvr6+jhfetuXO7QWPnjzly1/5CpeXVxyf3uZidUGVbTm98zJ1tWFcjnHVQD6fsG0qZvNjlvUlvbRU9ZZkdkKWFRAUzoKWY06Ojnny6DF3To6pVitOT4557zv/nuNxQZGlONeiJBwfH9F5xWp9jadksjil2NEljenj3c2HCDQUAHvI4E28uzExpWyfA1NtKyazeRQpCo1UEZo+2EDvehAJvm2pOxtLvzZgvaOuGgDOVqs4WaZTkqJkXbe0veH60TPOLi4Yj8fM54a6rvnwo4rNdoUI8MZrr8TXeP2Eo0W/u5skvPrqq1EhPdQ76mgCxEjFdNfbEYhDRSrPS4bBIoUmyECWZAiIeTsippbvi0FCiENcZm86JpMJy9WG9XZFVgpkEnOKGmNZrVbUrSAfJYzGI46P5+TlFK2zQ1LEf/Jbf5/f/b9+B9t3uL5FKI2WOUgYjSY0dcvkaBaV4QjyNON4saDMow/K7MS6L6bfvXh823t8ftL4QkyefujwtFTb9lAq7NYNL7/8CrOjGcvlMh53Ms3x0ZRnjx9F2Pf5U04XC0x3Rl2d0dkBnS3Y1JZxUSCzjM5rlJ4S2g3z4ghtFUPTcPfuXa63FbnKua4km0ax3K45yhI+ef8j7p7eJZGOpgmENCWbj3AhodvUnC5GLGZHXH/yCfVtybbf0ncDeZLuwCCx4++FJEkCUkUH5mCiLTlIT9jdh2CM6TVKSDJdYLXHDj1lljHLR3RW8OR8xdmyxsocmQc6J1huW7Z1R79dc+/OXba94pN3f0CRJCRIVtfX/OLPfY22s4zGR3zt1/8O33/vY6zI+Hd//F3+zbce8Uu//DYnaeDZypApOJqVBBtIg48huJ2nGDJKM+Xyw4rRdExfRBji8fFtVr1FmMCsmNDVfTT9pSmd6UnKKauuYzwu2QyedHoM+AjhbzqyYsp2mZKqu8hMMRiJcSlK5ggZqBvD1WrD2/cfMpmWaA1Hc0XTbFC55Z23X+dHP+r4zd/4h/yLf/6/8PIrr9Oue5QyPHjtPs1QMy4SNv2W4miKt46l6RBKYZ1Aj+f4UJGlRWzy9jVS6kNoWlN3u4nzBZ88WRqFeKvVivl8zmg04uLigsePHx+aWFqnB8n4viqyF1o6G1her5iVR5w9O2MxOeH58+fMjo+pVxV6nO3YzhKtFEZ7tIBUQ5oq7t27x1BvqWxHU21xztI0FbNx9JQkRYqpo0/HOBuxs0IwnY1BxoqOT24iN+L3d5NkIGQ8SwteiGDfsTfG+fQmkS0EiryEoGiNZeg6miEwmYxIRzPqAdZdvMtMipyyKDh+7XWaaosmkOmMervhzVdf4ZUH90kSTZnnHN+6xa2TOT/zzm9iRcaX33qL//5/+B/5wfe/yVfvO7JUk6iEqu7ou4ZREphPC8pxznK1iWVbHUhNjtLRulHvKla53D1CUiB1AlKgdIpOMqRxtP1ww7ErNHnI6IcswuplipA6yoHQNCYqD6yNO8HDhw/ZbDa8/6MPOT69xZv/8d/j7bff5umjx1xeXiKSD+XzAAAgAElEQVTlmE8//ZSmrRDiDqPRiHEJZZkznU5IhI9yKQReOZywOOMPLluf+MN7FO83cdfZtxg+b9eBL8jkkUoe1K2j0YjJZHIof2ZZFhW/O3PV3p+/32qttYyKMcGJ6JUvHGU+Ah/P4ZpYwTPWIGWCFwFrOowMWNcSfMzg6fuW4CzbnRFL2I5yXKASH207Iu4gSRIrUsb25HlBx3Dw7uwnTggO5yOFJnqKYpqa87G6I4RA6X0KWfYZus14PI45Pm1P0xvQgnQ0w4qcZd2j6p7RSNAaT9v1FDKl7izHt09x9x7wwQ9/wNF0xssP7vPRRx/x/ofv8fjxI86vnvNf/ON/ykDg3p0xeTYwnsyx9KigaI2j7y2ZCiTTjCA0zkuQmiAVgch4HgaL1AFjYlPUiqh9kypB6tjklElKWpR0xkZUlQ8Y78lEVK8HKQh95HBbY6N6XCu8t9R1S2dApCXr5YqXH77OqJywXm/5xje+QZ5H+tBkMkGIgo8/+mDn8xEUecrJyZRsJ/7sqjVeBvQu7OuwcDk+c++88WN9lu+wh7//pPGFmDxmiAyA8Xgcz7o72cQenZRlGUolB+7yAYru4+W2sYYyKbh4fsVstODi4oLF4pjr62uSImUQQwSE6IDwAm87nDA4l+G95eLsGdfLSxJjMH3NdFbSbw1K7S6QIoLC8iwj0Q7TO+p6S6oT3B6I8cKF03uP37HNkjxKdkK4gbBDbPRJKVH7LWg39ouCR+KF4niywIqETROPVrePpuhszHKz5fHTZzSrCukF4yRHHJ1wXo6wXUsqBUezMcWbr7PcrPH9hq654v1PH/H+R4/IVcev/vLbfPjDDwBP7wZUcJRZTjqaYILgYlXx4N4pSVZirdllpBqS4A/vg3cR4JIkcbfxQaJ0GjkTVUOqU4aho+sdUnXkZIBG6QwhOoahZ/CCrNSwUzD0g0Mh6W1Mh8jTjDWw3VbIICjLMUIoLi+ecXV9xp1bp6RZ1NhNp2MSHRA+kGVJvHv6GKGyHw6HCDfcuhtYJAcl9s0J4gs+efYrt8AfGGRJkhyQTFHCEr0he7nIfvfZbrfgNU7ElUNKtbv8yReak/HfiQ1xh5QWKQwiVBFx63qU8DgXaZQqjZikumtp+pbpaEruo2NTCMXQ1QxDF49mQSJQSLnbEVVE10oZz8txUsWH4IY5vft+hCDNinhkcP7gOBVCYbyDEBiXOb2L7sZMerJcM5oW5AlgGsL0NDIJuh7bD5wsjuirGLMxmxR4P3C8mJCPJ7z/3vf403ff5Yfvf0yqDYk0rJuBPEsp0xFFOkZnEhs0rXVgBW3vqY0Da3Y7ZczMcUFAALGzr2cqA50wDAapEtJyTFBrBufoXVxcUhRBJtG6HTImKsWKNb2JL0hEECuqpqdvO9JiTNs0CGkxXY+Uij7J6bprnj094/K8YehqXn/1TdJEkmrFZFyS6ECSwOz4Ft4ahq5n6HosAwKPEBFTpvRnkyLi87M7RbwAyf9J4wsxeWLeZkvfDQd1a5wYNfP5nKqqSNPYC9rH3VlrD67NkZzQNT1HsxP6uufOnTssl2smkwm9G3aCRIuQBpGAd7EM7AZP7xUj4Um1YFVvGIaGXqZkRYrWkul8RlpkjBPFxeUSESIBM4gQUwSGXaVGKZJEk2iJlBEaqJQgOIOU7Jqakf8chwTkTqpffgZIiJLkaYJOAlW1Qac54yLGKrrQgak5muQsxg/Yro/ouoaPPnwfnQheeXify6sznj9/itJRZT2dz0iShO999zs8v7hkNC746t23MX3H88sli/mUcnRKPinAD2y7lnGmmE3nXFUNMtEkIpDmkiLJdtWzGLIllcLYsMtJ1BhryHNNXqQkacn2+hLvIc9T0mxMMRrtmAcOnSa0xmDrHucs1jnA44Oja2vSvEALKEclTdXy6SeP+FHzwQHdpVVBmghm0xGCnsXRhLIsKHKJEjuWnRkYhuHgFk3ULoArSKzsDtyKeGz+7G7zN+LO45xjtVohhTqYlGK8Rou1Ud5fFKNDGbFt2xivsfP4d01PW3UorzDNQJPHJmvnDL01FNMo4Te9RYeACB0Cg7OxXyObDcENbDcrNA7nLYvpFIJhNBmxabekeYZQEiU0SZrumpU7OiDy0CSN95mYrqwTiel2uaB4HH6XO3PzpqzXMUy4KApkoiPneSfTH4xju60jCEOnjAtN0w0EU1GUisl0hnGKLM+ZLwogQxAwPtqenz17Rprn1MZRtc9ZVhVXyw15OeVq2bPdfoDSE6q653q9YTwqyYsR3gjQoLOSvnF0vWM7VARcBLyH0c5FapCZpjeW0kc8b+88uY53jqQoQKeIEAgqwQlNb3e5ppGqSJrmZBbazmJMQEnIE401htlkTNc2CKGYT6Zkb76JcyEqwK/XSAVFmpGlAaVS7t09RclIY/Le0NUVbqdxk9xkjyqx77+pw8RJkoQ0zT9jM/8bcefx3nP79m1m0/kBBLJYLMjzqD3aM7SMiTDAtm0ZhuEgH09UTjrNaLYb7p7eYrPZMJ9PudpsSPKMLC1IhxYhBYkySCD7/6h7s1jbtvS+6ze62a5md6e595arrn3LqbIDKccOxKCIRpYlnKBAJBSSB5qAZCTIAxIPwBtSXiIEQjwhJRKCCCnwhGgUeLGESGJiO3Fsk3Icu5rbnnZ3q5nt6HgYc869zk3daxOXo+spLZ1z1l5n773WHGN83/f//t//rzxZ5hCuxY0dQvrkPG3SCa8yRXtoMD7n0HRs8yJ9L50jQyQMSePAT0TQGMFLj5IQRSI9KiXwUqK0ZBFpJyKEJA3JCIxUi6jFbKqbZdlyaFRVgQ8Q/YhWgrqQBB/AdWA16/M1IQguug3dseHVq1dkVc5X3vshTFXz4sVr9q2nGyI//Ad+nLObe9rR07QdZVVR1WtePH/G61c3XJ5teXL1JZSo8eOR3gZMVjF4y93tnvZ4oD3WjBdnlHlBxJPpPE31+ogO4GNESE2Wl5isol6dMY6JtdC0A9aliJzlGqViGnFAMYYWFewkL1yQmZFoLcqUnJ9tqKtz9oeGwQaurgxvv/023rZEH9AqUBQZVxcXtMd7joOFaNmu6rR5XAKaZqvIYUwRR5dpo8xuEvN6O41Un3f9I48kCCG+JoT4lZPHXgjxHwoh/jMhxCcnz//x3+57SSn51re+lVTxJ7EM7z2r1YoQAlVVcXNzszCty7Kc0JZ00o+tZexHjrsjo+3JjaJpD/zQD73L/f2Otu1ojh1GKoo845MPvouMPdHfY1Qyg+3aI6uywLs00ns8Hsmrmt3+gMlyUAo1nUSjC8tcv3epX5NOr3yiGg2LDJN1I217XGSE1+vNJEmlcS6BJNZa+qZFKZUi0CQ6vlqtkuqOgtH21GVG9CPnZxUiDLjhCLqjdzvytSBbSVYXFV5Hnl2/4uzJU95+96s8eecHefzOezQ9mPySLL/gbPtl3nr760gBjy4vENHTNS2r1YpxHLm9uefy6jE+RPrBYkyOtY6mS/enaVJEPDQdnsj94UjT9WzOLohScbc/UK025GXN9e2eol6xP7YIpSlXa/JyjQ8SpQvyrMSYjASfCPJMU1clQ9ewLgoOt3f85m98k/3uDjt03N5e0zQHDvtrlHRI4XnnnUdcv3pG1x+5PD9DEZNm9UT0dM7RdQ3WDqlBrdIhPK3lpHcwyW7NjOp5TOGzrn/kyBNj/AfAj00/XAGfkARA/hzwX8UY/4vf6fcSQnB2drZsjq7rJmkmsWyevt+RZQl2FqhFpAGgyEqcTUZEyZB2oG2T7lviaSUM39tAc9izWZdUORgxougQIhJc6iHleU6GRJscZTQZFV4JglQIbdAqp6ocfjKkWq/XdJ0mzga2cbaBT+IYWku8j5OwSFjY11on49mx6cnzVLvpyQMzAuPoaPsOoeSSWiSj4562PVLmBauq5D4eMYXgarUhPjpndbfm449e8frVPTfPn2H0ClTGZruiKM8JZBwPA01n8T7wo1/NkRK+/Vuam5vXfPD+d/jS08fI83M++ugjVBzJtaCs1xhZUhqFkibVnTZQbapJ3yBfENA0sWlSnZMV1PUaoqQsa6z19J3F+xahAj4mPYcYEqpa6aSS6qNifRyReA7NgaYdGF1Si030HnjrrUtWqxWF0VxsV8nr1DuUTkwGraZRl5g+Q8+DRUsIgiAeLOTTQfwgTZzW0j8eK/mfAr4dY/zgtyuyPus6Pz+nbdtpoySBvFmmNs/zRdR81vmqqorj8UhRFCihsa6dzIs8ITj6oeFw2C3aaSFEnAu0u1veuViTZxYTRoRvGPqB9nik7zryssLoNG9ifRLLUEYRokDIZMpUlDUejQ9prt97T5wWTZ5plMpRMgEKEo216WfPCwtYhDtQnqLIKaeUQYjUr4pCYuODxJPKTBIhJHJ3d0M8OyNEh7m8AiRKBoSWrFcljx6dY3RB38PoFG0bGPqQkEmRA4Z1XaOVoWm+yQ+8+y5vX/5TvP/+dwjeoZXg4mzD7etUc2qRZHHFZHfSddDmGqMEVKtpQToGBkKALAsUeTUZFOvpno5kWTHpLji6ruXqydk0YxTJc4WUFq1MAgpUQV1Fnr94jRs7jEo2jTFoirJCK812nVFVGVVRUuR6EmNMFHUhZwjawkz6FCBPZIPTfVDLhvKTCGQIAeLDjNlnXd+vzfNngL968u8/L4T4N4G/DfxHn6dTDSx6WTfXt2y320X/TKkH17NxHDHGTBJJSdGl67qkhDKJwyOSbJRU6c+2O6JMTtv0+NETtOCwO5I/WSNjgxYWKS2d89ghuUerWqOVSTWMC6AlbmqqSZXMmYSQ6CxR8EfrJg2CeVNIMpkheHATmDdNFA+9nvkGVWVOWWQwKc3ICKYoKes1wuTc7/cJCi5KRNNQrVYpfQmeYb9HFokFgS5w0RFtoMoM5qoACtrGc3vb8qK7oz3s8UGTZxVFtUKrkuPNC57FkXfeeYevPH3E8+efcPPiI8qyILiRuqpw/ZFj29KGgSJTqFixXZUAHA47sqygKMI01yRSpM8fXLuLouDZs2ecn2+xoyfPY4LrRY42OWWh0Dqna9rUplA66bKNjhgcdVVwudrQtD3CZKxWaW0Y7RGMZHmJEp7oPUIKQvQYpRcIet48QiS3hxAeSMezoHvS2nMLn01NnLfPu74fQu8Z8CeB/3R66r8B/gIp+/gLwH8J/Dvf4//9LPCzAKuLq6VRNUeamT0ghFhy0wVdm2RTZ2XOWUdZC7CuQ2uBkJ7j8YCpFPvDkGRqswzbDwydYdQdWTagGMimHDfThtwkpc406SjxAnwICT4uKsa2RwtFZgwyRKScjKOiWiJlYocnpvVmVS1DcELNLtSC4NKNVJmCECcrwXRDh94iMnAB8rLC+oCQCmEyirrCB0teFHQ07F5ec35+yeqiQOuCQ+wJQ4ttO/qxJdc1ZyuBEiv6TYF3Au8D/XDPcHjFj//IV/n444959dG3yYsCxqS4o2Ig2p5CV9yNI81+R24EdVlTFqm4zk2W5qSMQQuJlgItZ6+f1KisixK/WvNBP9Adu8Tzcx6F4HgYkaIgXxes6gwRJW7oybWhLtIsUF1mqLxktT5DmQMuCKoyIy8rtnVaA6sqRxsBQpGbDBEfjL5icEmzbaLfeO+R0+Zh8hqC+fXpcJNSotWDguhnXd+PyPMzwC/HGF8CzH9OG+QvA//79/pPMca/BPwlgMdf+WqcBeiOx+NyWh8Oh0UCaNZTTsos/kEPbBwhaISASOC435FXhhA8h2ZHHg1Nk7D8KgcpFHd3d1xWDuEtgWRXoSYGtLMBryJaG0AwWocq8mQklefYLslJ5cpg256+60BElJitKgRKhokpIN4YQxAPnwtCSpKabUQQyHJNUdc4IRl8ZOx7fISz80ui0nRdA1ImxGm0jJP4SB4qiqgpo0ZGCTpHlZCj6QdPEJFSp7mmsYpJS8BFmsZzOLTkUXK5zgkB2qHB9w3rsy2rwmB7xWF3T7Pf4ZzjbF1zvtkmwIPJdY6YdOjigxYdMTV6E0qac3Z2toiGrNZVsnjXGqkyIgopDHmmiR66EBf/obrIubo8xyFQGsoyZ/QBbaCuc7ZnKasocoMUEUlETRJdiUvIcsjOiqYxRlywC0NiZoWkuk0uqbPRGbMr9mdd3w8BkD/LSco2K4VO158iiSB+/i8xiQbWdb30PYBFkG6eF5mlgKSUtG0K8dfX1wlaHC1te+Tlqxfc39/ig1069s55+n6ga3oyY9jd36OVSvD00GKHcTqlRBLfmCj2QiVELNFOUkGJnGwRJze7GRmcF85s9b7ojfGmFyjMjtRJm1mLJAQffZiMf4uleC2rFdZH8qJCKkO12nDoOqwLHJoWFyIbs0L0cHy94/DqFrqRbVnz9PKctx+dc7XKOasltbbk4kCpDpzXlicXnrcfwYuPvov0I+vKUGWKTILtGtrDfZL5HXukgHVdcnFxkRSBVBJNb9sWESHMae/Y460jeI+3I3YYcdayXq24vLjAuxElkoWmRFBVG2IUDIMlhuQGXlUVUgiGqe7dbFYURSr+Ly82XF6ek2WGLFdURY4Uk2O3t0T8YghmJx7kaRM0bZQHgY/5kJ7vIbzp1zMrpH7W9buKPEKICvhp4N87efo/F0L8GClte/9TX/ue14zSzHM7s9rMLH96c3NDlhWLa8Jc72RZxvX1NeZig7MtXdOyO1wjtccU9eStmU76pBkdqdeabtdgzAVaSLpxBJJ1eHaCvOR5jtCGZlIzdUOqbeZTKkYxsQNWSAUESwhJ9UYLiRQGrR+61LN3z+xXM9OMxtsm+Zf6iMrLpCltLSor2Gw2fPuDD9lutxiTs91uE2UpV/RNS12XuJcjYXD0UiQm8zaln9YnWanVugIioUwNXqlAKeh7jxsHfuIPf4PdbkfTDVycbdlsNnRDTzdYVlUxARiKqtBcnJ2nuSPbE4NFIFFGvVEbaJ2Q0CIvMSZnvz9ydnbGZrPh44/jcugkGN8z9F2i4ijN+dmaIpN0mWYYOoaxo6hWZD4Slebi8WMGHzi23aJgOkd4SDVKURQ0uiNM7g9z5M+yiVlAWFgE3j/YUCZyqH4wuArfw7P1U9fvVvSwBS4/9dy/8f/3+4QQ2G7OePbsGV//+tf5zne+w9d/5GtstjWH4z2rdUnTJMvys/On3Nw+4+zsjNF15KXjg1d/l1VxDqIg4236W8moRwpjMeEFu92OVXlJLtd897desilydneS8kmNVwoXHN3Yo0uNHz3deGTwNc516FLhZSBqCcag8xXt6OitReRbxsGhlEAZlciOymMJyBjxEfKiYOx6XHRUWUWhNbZridYRs5IDjuJsgy5yGtsjvWVVFCij8IcdV5ki9EfGruP+fmSba9ruSBxbnPQ4M0w1liDXOWN/YOcLpDbIyvD8/prHT54mQcKi4uOPn2GynD/0h/5Z/tYv/SIXdUWpJKLvidFPPZGSw+HAsdnT9w3VKqeuK5RRWAKqKIGSIXrEqKiqAqFLPJLeBVQMZEoQNVy9/Zj3n32IqUuefvnL/Oqv/BqPHj2iPrvCxoZ6lU53i2XXNeS5QZQ1Uhk2JrFMpAKjYLh/TYyRrdYUMdIcR6qyYL/bMSt+du0eo+HQtYDD2mRLo7Xm9vYeIQSr1Vmigx2P+NFR1zXDMbFaVqtVcnQQnqosPheu/kIwDATgrUVLSVUUKAG72zvatmW9XjM6jwgRJSXt4YgIEdsn0p4bHDevXhM2oKkncQnFYAfud9eMrwe0KWnaGzqTPCqVa2n6AWNy8rIi36QTy/VDmvNwLsHlSkOml7A/w5tzXjxHFedHfAyURaLZVIVCKg/REoJfIM/5hF5sUyYp3Zn8GnwqaIcwIH1C47bbLUGkgrYfWtyUhsxsCzP3LVyqA0MU5EImt+eQWA593xNjpC5LHj9+zGgdw9DxztO3KHwx/Q4JnTpNYZRSyyTofMq/2YqQC53/9DGTLUMIINQUZVO74fLykhACd3d3qCp7oyacf4aZMg8IFDESQoY2EiXkIhE1z3cVRUFV1csIgZQSZ9NrUhRJdK7T9zAjanPNM8+MzenaEsEm173Pur4QmyfEyO3tLcfjkYuL88XYaIYQT5nWt7e3yyhCnue0bVLLj97S9S1hAJ9rghiJPiAFtG1L1/eESmF0hguRw7Ehsgap6O2QVHlGSwwBMc8LGYMqcjqbuszzTZYn4wfe26T2iUMqw0okpDDE5GoteLjZ3nsGayelmcgwDij94PGzfB4hEH1iVc8C5cYYIjlqkl2ClObub+6mpp9jHB0mQF7VaC0JXlCXJTH4hQJ0dXXF3d0d19fXnJ1t6F41CMEb1idCRLSR1KuSceynXohcuF6nxMkZqTw1wZrrCGstIT4MLRZFkbTkrq95/fo1l289mdwl0li6Gcd077Umk0m7b0bN5rkocaIv4EK6L/OmmQ8V5/zCEJhpXc4l97kY4+KVdHoYzgNy8/cGlrmyz7q+EJvHaM26rmkn8e/okyPz2A98fHefFksQSCE47PfUdU3XthBjQrusxSuLHT1D43FWooxDqEhZFuyvd0ASGTxfbekPe/aHjrYraLvA0HUMdsQgyIqcwiSjKR8Cwk24v5BLvwBm1MaDksggJ6KjxLlAN1qC6xmHAUk6UWMIjL3F2Uim8sXkSoSkWxeISJGhtcHohO45mxahUQ96YmLiYcWYNtEeFgXTNKAWwAe8dVgf0AikTrl+e9yzPb+kzAtu7+946+kTetFOGyIipULKAm0kzpmJJTHXgdPQmOINccAsM2RaoYRIvqUzLH/S00pcvYAUivOrS/bNkabtuTqN3tYz6HGRuRVm8nI16b0S4jQ7JJmpgXMxP0PKpwyO2XBrrqNnICc1eR+Y7PMmn9VCT//8x8Uw+F1d3nlkhFVZ0R0bxq5HITjfbJMC59QX8IPHDx5RCMZ2JIwB21muX7/g8kygqVMjzHta29CHPapP+H29XqGy1JRDGvbHe7phi5A5680mERKtR4UUUYZhwPmIDJ6iXiV6jngQ9AgkEMAohVQ5WmZonaBRhgSbSqnx3qKnAtT5SAyW0SctZ20Sh805h/UOowV5XiR5qBAJfkw3OUv26aMNhCkazSyMqqoSwDINc4WQUMrBOkbn0Wrg8tFjBuvYH46TVUvJMHTkRrPZrJaiOYSAkJFIagHMCzlhPw+b5zTS6GUw0RNjmi5PGz2RXMUUdUMYyauSp/lTjseWpvmQ0QdUBEUkxMA4WPpsxOQDQqRUT04tgBTFxuScN4FJUbnlnpzy0aaB3SUFm/X/FiidtPGkMgsJdCaHznNkcyT6wrOqrR0J3nJxnsQ+hr6lbRrOz88R5+e8evUqsanbFiUl3jmctUuhmGcaRMAOPX1rUUIQZAcqGU9FKdlsNjS7nlvrMUERvEaIgrLaktcNKjPY0eJHn0793KF0on54wEya1LM2GyqpfA7DMJksCXBpnEGNgSJTaKPQ8+mq0wksYmKJuxDITZr5D2FSauFBK3me4JvrpIdexIPdYowRHxxhDEvNkFJLj5KSqsgJCM63G65v7yAGnB3QIVJkmuP+HoQikixPhAQtNBBwTuH9jFA9bB6lxBv1hVYCQSB68JPdSHKNSO97GFId6cKMMlas1msQiv3xQBSc1EoePQ5kfZZSOR600xKEDF6JBI8Hzzi000bSS13pnKPvh6VOTcOFD+RQYKnjvH/YOPNnfQpv/74YSTDasK5XFEXB2A/slObu5pq+TaZLACjFcT+NPluPGx2317dsNpvUG4iBQ3tkbD2rdUVdV0RjkIWm2/esVxuuXzzH9QNferxmtRYIlSFFBrI9GY+WKCSSlKoZrXE+bSgpkkazVhoQySR2aIhOJsoHFokn9VcjhZAYJQmAVpqsypdeUCcahFghZLIlmUcv+r5HSYPJJyh7HIkupRtKJ+v2EDfEmG76wVr6LpFijTF4IXDWoZRhVVUc2x4lJWPfUecZMka6Zk9RlLT7HTIWy6aAhxn+tEFT3fEwEStSjSLfrM/SAkujzXHywUnFusf7FMVTyzKBGFW14urqite7u0kptkCppJ0tuySBZYOncqkXlhmNkHqKijHdDxuwblzSx3mUII2ruCUSzbWxlJJhGKceWyIVh6mWPq3V5sNrZlp/4TdPiJ6PP/lwKVofP3580k9pUjNOCNq24+Ligr5P8xiHw4G6rrnf35CrCj8aiqLm6uqKrAzct9c03RFIKFgMafFfXDzi7KwAJH3nKfOMvChQAYwB6cLU5T5iCWRVDfJh9kNNCpfGGERZJo9NZ4kxWYMIAcRkvxhUikjaaFSWIkPXtktvASfS8JtONVBywM4webFYTAbx4BieZRnO50uUubi44P7+nqFPC8kOlsNhTzYx1O9vb7jZbLi7vebx46fkmabvGjbrCmKA8DCvP7vbdV235Pun4MCCtiX9rGR6FR1xSlGjCEmpJgTiMGJDZLXeIrWGEBlGhw+w2qz58ld+kI9/+ZrRh+QvGwOMAeIIssG5nCwrQEmyvEAqnT73ySNodm4riiL15KZ6xjlHlmVJxNFadrvDAwo3jYnMG6OapmJnY9+kU2cXMutMC/us6wuxeaSUnJ+fMwzDwhwQpFpgGCy73Y6Li4vFuev169fEICjyCjt6siJnu74ko0KGjKzIkTI14owwPD6/5KOPPuKtt95i//qGm9e3rIxjW7/D4XDD6I6UdcX9oUHHNFZt+yGpwKiE9rh+oK6Srpm1qRFar1c0bmC0w2T4ZABHDCFFKmMY+p4YUoPV+8T3musFxOzS3BOGSF1tH3JuBOuVYL/fk5XFNCQG9/f3yaN0gpQrnW4+QNukm/348gqPoDnuKbKMm9cvJ49TaPd3PLq64rC/RwDd4NnkG7JM44NFyDgBBgE7ptRl9tLp+35BQmclIy0sYxCozFBVqzeYyHmec39/T1E5iqKcbBn1pB4qKcqKF375B78AACAASURBVC9f4rzn6ZMnjN4x+oSw2bHF5NkEoxeYzBCHyDCNnuRFSd81S813Kg7jXVjSxbkO0lon2H+qe+q6RriEWA7D8CaNSghevHjxhr3897q+EJsnFYQDEE4kasOSvxtjGIYxUXeERqDYnm0oioL1eksfCjb1FdJlBCcpy4yoBKUqMSSRvc3mEX0z8vjxY67WnkfngVcvXrMqU2NsvV4z7hu0jSifpGGVkNP4riFMvQEpJUIKREyggdQSjcGYpN7inWAYW4bdQHMIXJxtERPpdJat8n3qyTjnQCWLEGUebsUpWlXXNVGK9Fr/UNvIiXJfKk0ta9b1ilt9z6tXr7i/vyfPS1arDaYwjC5waFvubq8T+mUUIqZoPAwpvZofc+rifbJ9lDH1sRZAYSrQZ1SqWicCp1bJ3p7o8TYQSYhpWZYImWxSXBhTVC1yVqs1b3/pHdRzRd8P3O/208aUHLse55KOd2sGsqKjjAURkXpvQBAP3kGfjo6e9D6Su8YDgXhOmWd0blutlhrndERhfo+/pwyD79eVhC08QiZKrhsTXj8MlmEYiAgOxyOH4zEtiDxjvT2jrF1iYAdHXW3wo8L3HqRctAIykxGOKXfVMsHiTx494tGlo9ADjy5L7KtPQEmEkrjRJqh3crmOE0V+DCc1kZDIxMBfFlmMSWI3ChAkIXOk4NC0CcotJZF0kuo8Q0yHRUoNZHLjXnpHDzw5rfXiBSplqrsmnXW899ze3C6npXcWrRRyQrtWq4rb29tE31eCMku9JhEC49hDsCiVEMoQ3FSUJ6015yxhImmebhxg6ad47yGY1HsRATGlVD4AMiJjitp2tAxjgs6lzqhiJMtL1qst9tLz6tUrdvsjcZKJSuIuOfumxU/1VlhPCJlOLHRgiYKfNqMSIiwULudS+pllSR973hynA2+nc1az9Bew9H0+6/pCbB5Eov+HEBitpe0TUDBvnrKoccEnt6/LC4Y+UfIZLM5HMDlBatAGYSJRBZxL6I+Sms1mw9A1lOaK++vXjFcZmozH55cYdhztuJw+88mb7NzlsqDn/slce8hJyD0vDKFLjAQXQ1pEgClyCqNpjnsUIvVcrEVPaFUIavlZWj/ww5xzidkdgZhQKFPklGWJyRQhxmmGKD0ePXrEy5cvORwO04h6wTAM7O7vOez3SJHSLgkYLSF6greMQ4d3I+XF2QkEn7xVH9gUU59panLOr0u1gUNKuRTV+ZyOCoho5PQ5JbBAESPJCAzBaNN9a4eRar2h7juOuz3HQ3LFEzKyWr3N4dgsbIAoBVuxJpd5mtmZCv3TKPgAoaeNkGzs44Lm5fnD+1BKYSdHiNN+znyvl3v+OdcXY/MQGf3IODoO3ZF2OjGst7gYUJlBAeu85PzyETc3N0SpUNmE9uiMqDJk1JhCk2URMQ6EIUOaxIK+7wPeDmip+M63vs0f/to3iPbA9e0rtBDozGCKnGAjwoM06UYoBME5gpspOim6SJGiRTZpKaSbOBL97LcTsHjqep269jB52oTpdH0obqUMJ5SbtNDm3kaMMVkXhoD3MIxjoum4dCqeQqtlWS4+oXPOXxVJD28YLM1xn3o3Ji3yssimxTQV7GJeaA/w8dyNV0bhnVo2j/c+oVb9HWqSc1JWo4MgiIgSAjkvwhgm53BN0tMT+ElNNcsyyrKeUNW0WJ0N9OOAnOB6NVGYsqxAmgylgCmVnRkFb26ehERWVYW1D4zqU5pVQlVZ6qT5s5w/9/nefN71hdg8IUaObUPXJmOrECM6Uyij0TagjMb1PUZrApGma5E6OZMZnTGKgI0ggqBQCpNpQswZfYZUcDz2aJnTHVveffI2zfWBd95+i+cffAdCkrSd+ydOOxCeSIo01lrEhOYIkSKI9D71cLSmb0bsdOO0rpBMJ6FL067OpxMckmualgKTCYwwIOLEI7PQC4iaPC8wOk/ETvGQQgzDQNe76dROC01Kyfvvv7/Yzc/sdCUkZ5vkxXo4HJfIsakrWjFJO7mAFnKi87uH7rx86OdIqZfOfEqJxLRRH9KkBC2mRR99wAaLixYZAj6m8fXRRTyKKJI/kpQaU5SsN0m3golfppTCmJymOXB3u+Pi8mxazI5+GBZJsvm1M+I2b445Ep0yIJYe2gnjYX58WqcNHuZ/TtPUz7q+EJsnTvlp16eIk2UpTQE5je3mHA4Pszzez8Lp6SRURUWwEmctEk1ALhYeQoQlj9VFTte2/JEf/wlcN/D8ow/5gS+VSwqQZRkyc8QxEGOYtFymfs+0WQY7NeB0fKOB6UJASwlqlpjSxOgZhp6gJVqkk11nU+oQ0/DePLpsrUUwoLUhz6amYUhTtS5OvCvxkDaOo6Xv+zTroldLQdy2bWJHLDR7QWGyheQ5NwVDGHFuRE3o0+ngl5DpINI6eX/OCFVSRpXLwnXOYaZ/q9N6yAdUlCBTeta7sOhehwguQmEdqyxLDGapyYsCO43a1/WaZr9DSYNQczrr6YcBPRE809h0mBqg6mRtPAA78/s65bDNNY/WGuHeTMvmr8+p3e+LtC0C1nus90QhUJnGFHlS+vQD1XpFdmwSgrTdUK/XFFWFmpqIVVUztJ7QueUU0lojjUbrwMXFittXA5ePHvH3funv8uf+9T/BN3/1r/Gtb32LdfUlzh+VqMnmPVgQaKRNHCmhFV4p8iklOJ19jyL5CimluL+/x44j4+gJzk+E0NS4zIxCxqTzPOfowXm6vuXi/BJrPda7N9yYCUmdRghBmE76LNdkeY51A12XpJK2ZQGMLEpDRcnZJpk2jeNIezyijaJpGpxz7HY7Li8ukqdoljGc8Lnmk3v+DIWI00xManQqaZYiHVIaaqQnxvn0fvAigqlj71JtNAvBWxcZ+i65fk+fRV0nVvTt7S1KyjREuFmnTSkfFvJsUeln1I+5wNfLzzvtT6VemHgj8pxuCB0fGqPz/3+jn/XbXF+IzeNtoGTDanXOLAaSSB6BzXZDc2h4en5J0zSEruHxWU3btpxtKw7eET+44+3LC/y55uaw47brWZ2dga755PkrnlxecDx+m4vyFV99d8Q2f4fu/tf4g+895f7ZJ1RP32aMB/p+T+Elm7ykGwesg3pzzs4P+CJjCB40KOsRXUMpNa+GxE7QVYUXEj8kSd9cawqTcdjdEV3AiDQCHpzH+5SmrM9XeDmAGCH6NN8fOpwTyJCQquaQehRVUZIbBcExtC320OCOLf20AObO+eAGdrtd4t1N9Y8yBqk1WZnzdPVWSnfqkvvjniyMyABKKERQaCHJcsU4ONwwEsYRgaSWMo1ZjEdK6TGVwPsBqwVSANGikajMoEWGD4LjcCBERT9YkAYVMgKS7dkKIRW3TWS0EJpUv2XFNm04mWrV17uWd999l6qquL59TWz3fLk+ozI1d0MAVWGHiIwdq0xzliu64w39/p4nlxdJICYKAomO5YMhCIOQBotif/d86RMl54uwQN+Jq/f5vqS/o80jhPhvgX8ZeBVj/Cem5y6A/wl4lzQx+qdjjHcibdn/GvjjQAv82zHGX/6877/c+KlJOiM8p7Dh3d0dZVny/vvv8+jRI549SwNxh8OBp5u3uN3dY3EUZ2t0WdH1Pd0wslpX2GFgva4Z+5Z/5o/+JM+ffczu7o7b7hrFwBP/hCgTi3p0HjvZHGZo8jJDNONyssoJOp3oXqzXNcGlk1kiGKLATTDuGEfquk51lbN45/B+xLpJ180qMG6aSVkxjo79fs/h0LDdnnN2dkZZ1Eu0a5qGEPyi2X1+niY7T/P0mTU8n6hJYFEuTU1gqZG891w+ecTQj/R96q4HnyYsh94m+VulltEI3MOIsvfpPRbFmlkcfeGGhYjzDuthdCNS5RRlifWB4+HIMDrW6w1SFAgexp9PqTHWOi4vL0EKfAysVhucS45x8/rIc0eVF9TVGhUdbdsjpKau16SMTCKQE2gBLjpsCPgw4hFkU4Q5tb88nYr9fmkY/HfAv/Sp5/4T4OdijD8M/Nz0b0iCID88PX6WpKbzuZfWmvPzczabDev1mtVqRV2nefayLJP3ZZ6zWq2oqmrx8ZnzU5UpBtvTTUNfc3oVoyfXBqJDBs/h/pYf+dp7PPvoQ0SEZn8gWocuStabLdV2i5OSwQeCFAQpGOw41U9JR3lmB8wfspj4bqdMY0gLtBtmKDTB5oGYUEKlkFolK0IhEUonpZ4YGOxIN/QM44h1DqSYFpBnsCNt3zM6i84Mq80aZXTqxGepPghEhJqQwCInCrA+/S5t32G9QxlNtarZnp+9seHatl0UW+f3dvqeThuo8IDIpYdO/S1O3Cngjc8jNSj9ArPPP0MKnfh8Uz2T5TlZnhjwh32T1FvznLKq6AfL3f2erh958eo1t/d7ghC4AHf3O6z1aJMlc+QAnphcGyY7x/V6zXa75exs84aNyKdnkua07/O0235HkSfG+H8LId791NP/CvAvTH//74H/C/iPp+f/Skyf3t8SQpwJId6KMT7/rO/vvVum9tKJkhRzZtrEjPg0TcPFxQWHw4Hz83Nub28Zx5Fm7ClWNSIka3M3Kd2UIWNoW662Kz55+QGXq5zD7TV319c8qjN6bTCTlNVFfcbmAvzB4TqPlTJFl2lmJ830CKKSKK9QITm9zXAypEPAFOl39wiCd4zOIQkoEjUf3IRkSaKAPC+TOmjbEwPTnEm6YXd3d4TAiV+MWACTRNaUSCkW5vHMTzsld572r+ZaZv6M5TRwNkcu7z3OJudugUKImaU9DZ/5hxkXNfmTLs1kQSLOisTtU2oacJMZh6alGxyRWRO6xDnHsTu+4XYhpJ56VRVZlurAYRyIAooyDQWiNC4Eeus4Ni2vrm843245q3MCGkcEqbHOc3GxndaPx05UL+tF4tIF2BRmqaemdb78eRqBPuv63dQ8T+YNEWN8LoR4PD3/DvDRyes+np57Y/OIE922anMBsFDuTxGeGOPCgp1v1sOAlaMsSzweZSS5LBintGb0ic4igkcHh/ADf+QbP85v/f3/l9A39NGhEagg+OiTl2RfrqnLimyzwdOTsDaNyjPE0COkRAmBkAqlI9IBEwUfmOZWNMZkWG0YzYAfR4J1KOERMSDxEME6Ox0Mnq2ulm793PPQOqnTDP3Ifn9PUVQTt028kdoAC0UFWD4fYAEB5q+dOtfNqJz3nqIqJ1Qt0YTapmUYLESJUomoy1xYB7fUV2KSqo3TKLZAEoUkePAhEqInCoMPPs0mAUhBnIijo/Xc3h8SxcdWCwlWCPEQpaMgKyukUmlsPkRMlnQFun4kK1Ycm577/ZHtekW5PkO6jiAlplxhJ6DF+YiboGmdGZTOkNogxnZhUHxqbS6f9eddvxeAwfeCKf6hyiue6rZ9+b243W6Xxt6cQ0PaUKvViv1+z+XlJR9++CFPnz7l/v6ei4sLhmHAC8nx2ILUVKs1o7Xc3d4SveNsnfP+t3+ds1Ly5bcu+Bu/9tfJlOB4v2edZWyrmk+OHcOYJJKKzYYxasZ2ZLAWbZkiT9JQkChkjMgA+JPNMynwoyBM4T8ImTxMg0eJiJIBRUrD4uQocHe3SynJ1OA8TYvmHoZzIzPBN4S41IJCCPp+IEzdfSEkZVktJ7ubtBhSd71Y3PYAlNI4l+ooopiIqydaDVO06vt+ma2JPJAn599BZgalJugYgQ2O0XqsB2RgGBNJtixW2BDZH45LbWInf1Dn0sOHiHWBcVIp6vuBer1KQ2s+ooVmc3aR+lfNEREaurbhdtewro5UuQSXXCS0zpIdy4weIlFaYfJ8MRRr7UNteDqWMK+738s+z8s5HRNJq+3V9PzHwA+cvO5LwLPP+0YCsQjdzROSc0E7UzxmIGEYhmWT7fepYy7LHItDhDT8FHwq7L2zdLuOdnfDT/7kN/jog9/ED3suK0PTCEptqEwJIjBYwehBFgXKCdxo6doB6R2rqk6DYgiUSHK7UbjU+lyabp7Us06MYSElUQqkUkSRhtbSYA8oaVBKIkygOdwjFWQh8eXctHG0kWg9db2J+JjSqRgmIXjriTisHd6wAZy9Xef5lmfPnoEQqUs/bdIQAibLcN7THvfYMaU0SZA+pVbBp6lU5xxqYhyEeCq9NaU4AVAQhSRO/yc1UVPaG6e6YxzTZGvfj0QkUnrATMV8KuhjhCCSo14UYGMkoBAmp9Saer2mWm8mfmDB8ShZZxX92PL+x8+53K6oM0muBKvCoHMN4YEMmhwebpbN+eW331qi+IyyzWMJQoilfPis63ezef5X4N8C/uL05/9y8vyfF0L8j8AfBXafV+8AMAlQzCnBDAbMCjExRrbbLUop3nvvPfq+55133uH58+cIIbg73LPdnoFPaqBKKM5Xa0YZeP3xt3jn8Rk/8U9+jf/jf/4fqKSlMDmhyBA+0B47hsKz3zUYmVHqDFkVmLGiHy1KCpAJt1EL2hYJU2gXMiZ9hSkqCa1RSqMmRf7NZoPte/quwdkBHy3RT8LjIZJnFd55mmNLXmQURTaJffhFAEOpgJTphI/hgZg5+/fMKcacpp32KhL9R75RuM/I2/F4ZLWu2dvDVPsEtMoRAobB0vduYkxPY8+EJZ2eOXBSaNK4dSTM4gKThpqQhjLX3N0f2TV3hJi0HvI8px8dbZcAFaUNTCCP8gXOp9nWzfaSoigoq4q8KinyCofCuYgXmryoWa1W3Lx6wc3NK5Q05BdrjFTIrKQ57DCTnl1RVG/wFOeIMwNMM7p7Wv99X/x5hBB/Ffh/gK8JIT4WQvy706b5aSHEb5GED//i9PK/BnwH+Bbwl4F//7f7/lJIdrvdkr9ba3nx4gXjmMYQToffvPfspvHruU7I8jRDv9vtuDg7py5K/s4v/CKFlPzA0yueXGyw3S2lDqwKye3NM2JwXFxccNwfwQquX96iVYHOC4p6Rest68vz5A2qEsMgUxIZU1g3xlDW1SQb+xAhAKRWE5mzTvJSeU692pBXJTrLQSeHaU+i5HRdslPJTJ44aE2DMWZxjuj7fom4s/VKav5FdrsDu92Bvh9JJsF6WvgjSZs5jS/X9ZoQUl1TljV5XnJ5+WiBfufBMmvtYqoshFg226xelOf5G2o4IQpMloTXx3EkClhtziirFf0w0rY94+go8nLZvMe25+bmlru7O84uL8jLmrbpiUi60XK3PyCVoe0HeufpXUi1zfFI29skRxzg5r7lft9Src45u3qLMUiOvcdjaEdPXq/JqxqTF/gYaZoD+/09bhwoMvNGFjMMA03TJJ04mSS/TscXvtf1O0Xb/uxnfOmnvsdrI/Af/E6+76evBw6VXKDD01NhRocgMWbnkyEEx+vXLynzNUPbcffqjq9/9YeJw0i/v+Nf/Jmf4df+9s8xdDdcna/JckMWNWM/cH72iCaDoe94fPWUl69f4rJIsdkgQyKlChmRBLQwBKWm1GJygCPpFKRpz2kWxCe7xSACeV4iRMQRiWOKXRFJlHKJXkiTimtE4rSpSD+OHNrDlBIJUCC0gihSbTBFn6JIwEkYB1CS0bs3UpHBWVRMEV1Pw2XWe16/vOH+/p51XdB3w9Tn8YyDn+RvBVr7KbpMmgSSN2qDEAJRJlt5N7lKuBAZ3RHn08bzUZFXJSYr2Tc9UmrOLi4BxSDGJGovHC542mHEhEiIaZRDZznWReKU6unBM/oHUXZpKvbNSKYluSoIMXK/71LKdXWOUJLD4Z6xPWK0ZFVl1FWZUv77O5TO/6G2w6wPcdpj/KzrC8EwOA2ln/X1GWEbhmGZbJw5VkpL8kyzqmpsEyhMxtPzK97/1q/yT3/jPdal5pu/8gv8wNM1wXXEOGKynKFznG22rLWgP/asqzXX8iZJza7X2K5N0PMkhaVFJEqBl5owD09NAiNazUE8MSO8SwIhOs+W96BMhgseEQTRRaJI05rOBrouUfGLQrPerNFastuPUxo2awIMENUUeRLFPzmePcjPzilcnueTUk5N3/c0TfPGiPF8SGkZcdYT47CkMHkuF7RtHEfEqYbBtNgeFphJzHcvJwTLT/WYwhQlQzNwvN+D6DgcGnSWY5qOtuswpuBud5/EJ6sy1VlaoE2WRjJ8pLcOFVNNhXP0IT4giFFw2O/IM83TxxdomdOOHbUTlNWGvtuhi5oiM8Qw4v1I8A5FpCg1iGyh9MxRfebHzU5+n3d9P4Tef9dXUtoPbzxmCHFeHHM+r7VmvV4v/7bWoiQ8urxilZeE0fL2oye8fv6COA781D//x/jlX/ibiNDzztNznN1DtAiRIHCEQnvFStfcvLjjrSdvp0kzpUGlGRAZQ1KEIfUypASUTPoEE/FUGrmITkitlgabmKNolkQ98rJO7mYmT96dWUGWVRAlbdOnfk8UE+ugIpt0D/q+X1K4cRxhLuwDS2o2p3MhJPOsqlpNsk/QdQO73YH9/rikeFWVpGUPhwP7/X4BZeaaakbq5lrh048QAgGBs36Zm0El068IZKbg6uoqucH1PavVirIsOTYN3scUWWyqLapylcYMfCBKhfMRO6FvzoOPEKJkdIFu8HQ20PSWZvC0vaVpPd0QGBx0NnDoBqQuKKsV1Wq9iGfaPs0xicgCUccYl/c9Hw6nY9mfdX0hIs/pyfZp6vj8JuYG4Pz8TD1JULVl6BoQkuHYMqiSV88+4U/89B+jUILvfuvv8+6Xn6CExfuRi7MrbOfI83VKwTrHttjwm7/+D/iTf/pPcXu4ox9bxBTtQjeASw7LUmpQiYYfp0W1IJpKIkNCizDpJO7bLpn76oy8hCwz+GAJAkbvWJmKsnJELF1/wPqOY9MgdWQYR4oyTx7aIiBVsj1xLmJdj3KasszIpv6IdQ/U/X4YFuKkkJLLq6slnQsh0Eybpu+Sc3ZaODPFRuCdx3s3EVOnUeVpTD6lM1OWIKu0YbFIH7E+TLK/ktGlBT8MSfKYKBhHx7FJhsxZlsifWVGRFTlN1zEOA8emIQjJap2B80ST6mICODcSYkLDVsWK1focrSJNP3J0IyJY5O7Ib333Q37sD/4w/dhwaPeEviHXkjKvsGPL7v4WXZwv622O3KvVaqEzNU3zuev2C7F5gDdmMk7Tg1OqxDwtOcOJSiUdZCt7nj9/zdXG4J3j+vlrHl9e8Wf+tX+V//N/+ysUuWK7rvj4o+9QKEFR5BzvGwweJT14qFYF3332IUpIzs8v+eT5kRg8ZZYRjEKHpIITcESpk4DMp/oAaaMnXbHUd1EMagApk3KoyMEEQjC4kDrodp/00sqqJi8Ubftge4F4oNKnznsNUXHYd5NQSkTrs6UmPE0/hBBJfKMoFqrT/JqZhRBCoG/ul6E0rTO0yvE+4t0czR6yAqkeZmbme/YgRTULDiZdOzs6uqHlg08+wWQVeaW5vrtlGCxZXnJse4b2OVJn5GWHMjpxsrUBJFplWOcZA6gYUSbHBxjsiAvp841OsapLIopjdwQ3UGWa3gbG61uePX/FWW2ojEmkUNcRgiDPMpQUePGQUp8qCM2R6PfFPM9M+Jt7O6cKjzFGXr9+zdnZGU3T8N577/HJJ58AcHNzw+FwoBtf8tUf/BGun+0QLvCjf+BHuFoX/OLP/xK/+RvfREfL7v41Tx6fc7FZ8xt/7zd57yvfoDSXPH92S2lWtHdHvvzWV/ibf/3n+fF/7idougN318+o65pgLZqeMFiYAQ0jJwu/aQpx6ok4l2Z0lDJkKokteu8nz5jkbC21oihrIpJCSu7vbxl6S5ar6dQbyKykKPNJpGOYNMdGjE5SS1lWkOcFz59/zNXVFUVRTIa/41Lo7vd7tNYnBskPi77ve7quSyoySLQeUwroAsMw4pwnxuSJ5Ow0A7RovD3oADx//pyyrlDSMPrkRVrVNZGRm901T5++ze3djv2ECPoAjAnB6xE82p5zaI7c7XY8fvIWVVXSDEno/ri7x/pAFCoheiYDKSnrmrKuOR7bCckzKAHCC3aHBhkHdLR889d/gx985xFfenJOoRRKGKQKeOcY+xZZVEtqul6vJ6GZYUFxfztW9Rei5gkEehw3zY5X+2sa3yFzyW9859dxcqTeFtjYMvgjXX/PxVWF9Qd05tie52TZV3j2yYEvfekdtpsBb3+d8/oDmtc/j9h9h7frkq3bYl9qDp/AVx59jeHQsNt9xOVlpLMjF9sznn/3Q27ff8ETfU42KH70az/Gd1/d8lIoPikMN6uCoayQKicbQN/1ZEeBaQSmg9xrKpVTFUXSohaBIALSJB2BVbEhCwW6N9S+5mnxhDE31I+vaKPn0I1sz6+oihXHu4bQRmIf0CFDkuOswHlD1BWtV7y4awmDZ2wGxmYgDEm5xtlkYlvkOXd3dxyPx0kIJPXQUJK8KolyMr+NLkHw3jEOPUNviVGRFTUeg1M5QzQcRsHRStpoOHrD/SAQZYYqSvJ1jdSCfuyQE/ARbY8RUFcVbdtT1Vuq+pL7owd9xmvXwnmNPF+zfuctrocBZwqy+pxXN0ec1fSNx7YO5QXaeWg7ZNuRu5Ft1lCIOxiu8cM+TbFKg1drRnXGy0bxvDV8fJCM5WMatWUfSvTZk/+PuneLtTTNz7t+7+E7r/M+Ve+q6urqnunpcXfPwR7PZGYY2zEJICYHI3EBQjIKCClX3BuQQNwhkLjhCgkIIAQ3AYJIItsJEY6R7RDH2PG4p3u6quu8q2qf1vE7vgcu3m+tvWtwzxhPgppPKlXPnl1rr/2t7z39/8/ze2C4t9u9bNFV26LKtmH/T6RU/U/72g7wbaxEaMyFLVnTBO7Atox4enqKdVcSfAhklCLRPH3yCFuXHN98g/39Mf/oN3+P0WiE6wxSgVavNhC9oC84xFxcnvHW3Tucri/5nd/5Hd7+0hf45PEnfOHz73B+foprG5RTuM5QthW0BuEco+lroUMuwOHpvMNsffDeUiQhglB4D9KACLhgnMchKAZDlAxRgOv5BZuqRiGJ06zfFhNw0QAAIABJREFUyoSmotQJHh0Y2Z1B9FsNFV8ReYoo/L098G82G+Ik2WnZhBC9FtDvQpNNV/aKB4+xAt935K01NF2vLxQS0cNQrAuMAa3DQb/IhzuYYFEU1FXL5eUCIRUHB0ecvDxHRimz2Yz9GzfDSq1ilusNqY15/OAh3/zmt1ivS7raspovWK0q0jhjtQxp5pFUdHWFSDRZmhIpQb1ZkyUOFcVEUYxUMU4E3pw3Fmctx0cBnnlxcUGmOo73R6wv56yloWtbhj166vofuFKC/7jV57MxePC7zq4QYauQxQlKhkiRYRHiCbXWXF5cBsXBZLTTwSmZUG5WKNtx48YhaRQyKp8/f8bnbx/SdRtSpdAqFJLBEUUxtrc3a5nhgFgrIin58I8+4M9855s8ePyE6WSPzaak9ZJ8HBE7i28aIu9J44TO7YdDtNah+SlCEK/1DuN73ZR3eGexXUWTlPiqxLQtnXNIEuI0ohjP6LoGT4cXGhXFONSOeCmUxjpD3TZhKxPEQjTGsK4qun4isb0jtW5D4eDgIMP18PeqqkLTl6u0PNvfd3gVJtJ0HmnBGBBKIvSVXXxbPVReEBHOetsMHCnVbptqXK/BkzL0kNq2D0ZO0XHCeuP53d/9Xf7Mn/kmZVmGxiySZ8+ec+fOXYpBxmg0QilFXYcc09EopF00bd0XORxe9fq1rYs4ipDxNstH40zLyckJbxzv71aatvG7M+D1ytp1m0VZlj/yuf1MDB7ZH4i3v0xVVSjC184vNkhChOHe3hQISuJBMeTl6YvwQfqIk2eP+eZX3+fmrOD05RNkpSnyjK6p0TIEuiopcKYFa0kSgSCULxUde3t7PH5wn/3bx2ys4cG9Rxwf3WKxWTEoZsy7MxASrRW6SMkiyaDIuZzvo3WEipKwJ+/7PoEcJdhs1gjf4WxL12yw8YJOC1wdVj2/UbjOodOcvaNjumrNen2Ba1tog9w/UhqtY4SDXEZ4oQIXDkmqrkCEXddhXeDf5XlBUQx2q4JOgnpiG3a1Xq/DymS6ULjo40y2sPY41iAUje3QIkhuOmPwXagUxlm60x1uw3pXqwDnn+7NuDi/5OTpC9IsvIflck3nJTJKaVrHYDTlMN3HtZb7H32MEIqL05ccHryGFtBWYbCYpkYlEVp4FA5vW2xnwBp0nOz6Mk1XYrowCcRxTBJrHj58yBs3j0hUy+LsGfYr7xDFIcmu3qxewen+cA9ru9P5zK88Sikmk8k1OEN402maolWILQ+SkaAqCHAQaJuOOBZoZUm1oEgiXjx/im4WnG5aBnmKljbAO5REeINxDrVtcPazkG0bpG9pmiXK3yDTMf/XP/w9/pk/+4sM0jG+GNF2ltXlM5zr0MLS4KnKltH+O0FzJnToTRjobOi5IAUynYI34CpkpIgiiYs1oo6RpkFFKZvVAh1HDEcjNkvNYr2ktWEJ00JSthZRl723JzwYzjqqtiKKg/LaWYvxHVWvJA59opS2MsQ9heeKvRakPV1nwV7BDdu+XyN0hBYaQYTqAjbKOkfbml6upEPAsdQYDypOkHW7Q16tVkErl+c5602JSvKdJcIBjelwmyUiS3jr7l1enrzkrbfeYnk553DvkGFe0NUVXmtMohkNEqbjMdZ1lOWSdY/cbZpgZYiTAu9FDyUJu4k2UtR1zb17P8B3a1Jl8S7E1Zg2NENNa15Rs/ywsnq7In3a9ZkYPCDIs4L1eo2QQSRqmhalQtVjMplRlmXoDfRJzFviDYDyhtvHR9y/9yEvHn7IL3zjq/j1Ct/VZIOCWBrA4b3tjWh9aRz6FW/N2cvHHB/uUy4X+KRgfrHk44/u85Wvf51luWJQTLmcn7Bxllg7WiybuiGdWbTSKK0QNsh0nBDggxnMOof3Eic8RJ5YR6gsIe4GGFsznk54/vwE4S1pomitoZjuo6KIrlqhpcTYjqZqsF1HlhZIoek6y2q5JMoGCOF355HOQFWVlFXAeCVJEh6opkOrltCoNzudWrPc9Ma8HiDoHM6r0FPxFql08OBYT+f6JOlrZwRr+/J4Hx+5Xpfcv/8Ah+Dzn/sinb0gSjMMYevnOreLHDk7fcnB3j6np+eMhkNM23FxdooQitpa9vdnpIkizyK0gouLcz755B7n56cY25FlUw6ObnDr1utMpge9Ni8EYeE8k/GQj7//h9Trc77x5Xf67NFgoEzT+BWA/nVAyPbP9QrlH3d9JgbPtscTUEqhL3FRVrRtkIVba9nbO+D09AXWWsqyRqkASa+qCtdtkEnExx/9EYPI49oN2JY40uACpdN1LQJDEschGh6LMR6hIgQtzrRkiaLetCR6iPaCj773IQev3aIYDRkNp+SjKXWzQCQelKEzNS/nj8jzEYNiShQXJDpG2wh8jBA69GMAnEcKiZAaJSJ0kmJtR2rHTJ1AS4dwBhlppnszlhdnfPzhPyYdjfGmRsiStqqJ4zQIOyOLt1B7djQZHaXkRfgZ3oWYx6Y1SB3CrlSznbHbnbQppIqnOBH0dkJphBW01tK0HVLFwSpA/94lwc3poe4MlTEUxTAoGRIQ1lLWTZ/EPUUnaVBc99vxunU0TU0sYH5+wXA4ZLNcsV4sGeQ5TVXt+i51ucYUCfOLc05OHvPhRx/w+PEj1qsFCMdk7w5N0zIYjILwNsnDZy3CxPjkyROkELx+85gvfvGLgAuqde0xbbOj7lwvPl0vHBRF8f+PwbPNnozjmKIoWM0XAGRZwcXFBUdHR8GyXJV9+TDwvdbrkrZcsTxdslle8I1vfY3FxSm5aLkxG7I+O2EwG+Bss2sGKq2oO4N1AXXrMUymAy7OX5KPD9if7lF3l5ydX/C7v/0P+bk/94uMBlOKfEzVrKldh8BTNx1N9QjHlCg26MiGjrvRONvhnSZNIkwngsDR970BrxBeIXzHpjWkgxGDPMN0G9I8YzbOefnsMR989CHn8zXSG5pNRVtWNHFQOcjeAr5oLHUZTF1x3G+NvEP6sBLVTRvurRPB6dk3UsMkVFJtSgoUWoXzmurzhJyxGGPRAhwCL3y/PRUoGYWGZWvonGEwHGK6bhf5YjrL9773Ad///vc5Or7JYDSlM6CS3togwtYtS1POz85Yr5acvnjJwd5s19nPkhgpPEkc0dYVjx5+woP792m7kiQJtoStNR3AdB3OlbRtn18rBL/5m7/Jz3/ra3zlK1/mjTu3Wc4X5FqTxpLTywsSXbxSLPjhc4+5Vkz5467PRJ9HqaCSffPNz/H48WO892RZzsHBIV3XsTc72KkLbt16fed7v7i4CIriruT5k0+4/doBkXSYesPBdES5vGR/MqSpNoyHA2KtQpxgL7/f3py2rfHeMRoNaKqSRw8/oUhi7t55Heksv/G//T2q9YaiGHBwdJMsH1E2jqSYMBo5muYFFxf3WK+f0NbP6dqXaFbsjTW+XSNMjcaSKE2qM1I9IJYFkRjghSQfTvBK0VqFSjI6ND7KeOvz7yGSAqKc+aomzgYImfD46XOsE0gR0VkYzfYZTKZ4NE1nWG8alutQgTOdY1PVwQjWBr1g0xmkDOkQRzeOSdI8rI5Ko+MUHYVKp46SYOjTiiTJSPMiGNIGg96xmiKl4vz8gvliyfxywfOTFwwGAz739ufJsownT5+yWq2I04SqKVmtFyGA2VuWywVCCMbjMc9OnlCW5W7yXC6XrNdrXr58SVmtA7Tdtn2RIpzTmrpkvV5z+uIkbMXihOVyye2btzg9fYHrWr75zW/y+q3bO13djRs3uHfvHnGsQ4O4t11sr63hcgu3/8yvPNvZEGAwGKF1zHA4JEkSDg4OGQ0GPHgQdEY3btygbVvm8/kuaj63cy5On/HuW8doYYmyCO86kkjStRVK+BB5IXuPuAhAc9mjZcd7+zua/mCYY3xMXa0R1pEMJqAVjx98ws0v3OSgOODkVFM1HbHWCHdGliu6asHpi5K9yWvcOLyLErBaPiWNep6bFeACUFEICSJFKofOFUJF2KASwqDwKmKyd4iUkifPnvPy6SOGe4c0ZYnynqaBh49PcJ1hsxVi+lDulz1JxrQdrEv2ZhO8d7TLOVXTInzo3bQmzNBFnuCto+ksdV1hrMA5DShUnFBWDUJJIuFJ87gHzgc1cmcsw+G4L2RoDm8c9ZW14PCd7u9xezjm7HzOkydPyIZjkrwIHDdCNetqtldsyiBQ3UIrB4MBm82G8/OSi4sLrPGkWfjZeZ4ynMy4cXjEeDymSBPOzs4Q3vPyZdje//Iv/zKzyQghPS9evEB2K9pNweHhPtPhAGfDSrg1+G1Xna0t/icuVX8Ks+0/Bv4i0AL3gL/ivZ/3hJ0PgA/7f/7b3vu/+if4GSRJhrUd+72AUQrNZrPZqWEPDg76VSJUkwaDAUIIyrLmznTEME/ZnwyRviOJJV21ZhCDq1uSRCKcRfUW6esUGSEEUZoxPz3D0bGXj8ApyvkcdB1Sw4zn5OEn7B1NKIqCo71bCBIWqzmmahmPp6g0Yr2qWS3P0V4wHOwTiZRISTovEU5hvQYPQoRqFkpitrEk/fuQ3mHRpFnCjXzAnTe/wJMnTylUxsX8DKwhj2M8gmI8xnhPFCdBiyUhjjVSKTqtSePQZIU+Sbr38gtUsEHUG5p6g5IBXyVVQlV3VGVvWTZwdHSTpjPB3Rnw3URKh7Q3YLkOLOyBzFGKXYhXFEVMJimbsma+WlK2lijLUD6lahuquqEoshDWVYVy92QypciHu8Deh48+YbFY9Kw6y3Q6Yzqd4LzpcWRjprMxWRKa6S9ennDr5utIKblz+3UOD/ZZLpe8cfMtbu4PsPWSZn2B9HDv/g+Yjo939o3tz9yuOFVVMRqNfrLBQ2C2/WfAf3Pta78O/Ir33ggh/iPgVwjYKYB73vuv/Ale95XBs5VIjMdjyjJQOFfLDdPZmKZpybJAVzk7vWCxWOz6QkIIpG/51td/hlgJhG3RylGXayZpgRGWSCq8M4gtU8BaEME24ISnbBxV6xCih28IiZIOKTu0CCVYaeDk4VO6zvLG5z7H4NaMh48esXIHmFaiopjxKGezKjk7f07XtLz22m26ZoH3GqFixE6I2Fd2RMi16bpQOUyzIqQ/dy1la4ml4O7n3ubBg0e8fPwYqxKWF0uK114LgBSlME3Num7YrNe0bU2RJiActmuxNqIsS7IsAaWIdIKQHtUEy7PpFQRZFpHoJBQROjC+wziPtUH8GsVpsKBLTWc93XKzc846AbNZRmsM5+fnGGMY9jjk1WpD1dRhQpQKJ1Svhs9Iszxo+/KE1WpD2xqkUowmY4Z98sTB0WFvR+l4dvKUtq0Zj4d0pk/90wmDLEcpybNnz2jKsCWfTSbs742hzyzdrNbUAw1d1yOVHYPBYOcJS5Jkh+LaKqq3K+hPNHj8H8Ns897/2rX/+dvAv/z/ZrD88OVcKF/Wdc1sNgsNquQqL7JrWs7PLyjLDa4zWOM5efaE0XjA3bt3uf/b/yN//s/9Ih/8wT8iGybESmJloNUIrdBKYG1HJCOU6pFC+spp2TpJlIUPrHMWrQXDYfDbYCqSJA1VnLqlvKwoL2tGs32OxrfYm/4sJycnzBfnpLEgTcYkOkV4x+X8RZC+yBSpcqQugrzGOazTeCtIeiTu9sCvdLRbYZ1xZMMZ737pp3n44AmTvUPOX15StY71Zs1iPqc4CPer7ULeZ+cE3jiquqKqKryzHOoZSvYxKK3FGEeShMljMBwjpMRaKDcbVpsK53ygcMYJp+fnDIoRo8kUqTV1XbNcr3ben8+/8wUAVqsNl4twhtH9tq41HcPhMMTYlw2busXJiHwwIssHWO955513SJKEH/zgHg8ePOLZsydMp3vEccrbb78dwsvUlar+4HAfIXyP56oDw05qHj99ynRyQFuXeB/UJ7apuHP8OovFJfMMfLvi7q0D5udzbhwcslpflaQX/XsPXLn0lfTsT7v+SZx5/g0Cdnd73RVC/B6wBP497/3f/3EvcJ3YGA7xV+arumpZLefhQ1uuePHs2c4JWeRDIp3w6OEnmK6mrTckk4wsEXifEskAKRTC4zqD1xolBG1/8NSRwHceIzRRNsB7S+sMtgtR7NBRbS6YpIf4dsMke5NYpZw8eMnivGX/8Ihs/AXy/E3Oz5/y4tknLFYL8ixCiJb14iWDYoSKOmIdQIHOewxha4ZQxDrFmfCgtW3A+iodQCQCh3SWu5/7AsPRjHK5oPOCTd0RCYmxYduapilSB3BIkibUlaVtDN4Z8iycK6zxrKsK0zSYrtlp2zyg+sQ0h8IRUdUd1gei6VZKY5zDNx112yGEYjSaBJetUJycnARJVZaRZXHPPwgzemccL05fMl+WFKMJg+Got0svEErT2pY8HjCcjJnMZnSdYbWpqM4uePb8JUdHR9y5c4c4HTDSEVGSU5Zrmq5F9EShtq2JlObo6GAHRrm4uEDYDqUCAHNvb49m5cmzjKerNcIaEMXOx3O9RL0dUJeXlz/yuf2JBo8Q4t8FDPDf9V86AV733p8LIX4G+J+FEO967/8f69916OFw73AnAl2vA0Wy6sKyudlsWK8WxHHMYrHg/v37vPnmmxwcHDAajVitVrx+6xb3f/ARwyJH9qFHkRRIIXBCoBDU7grvaq1Beo/oiS3ICGM7cKAUYdvjOryxeC9QWIphTqojiqzgctFxvpmT6jHOF+wfHHD75gFaFTw/+YiuvUAIB1rQiRrwGC8DRRSLFw6iDIHsV5wQF2itpTGWJNHESiOEB2PJxwXvfuXL/O2/8b8QJxl157BSkA8nPL94QdYf+sGRxpqmrtgs10hhSZOQSepMMKjhHELJXtYiArpLatI8J81j0iyQhJbrYKjLsyFCKYxxu8b0cDikGA3J85yT588pq2YHCInjlLouaZqABTY2OHb39rKQAjee4mTEelOxqkrufXKPLDshTQYc37pJ21jm8yWdDQWci8s548mUaZ9gt1zOefL0BUIIpkPNcDTi9PSc/f390OJYbXoWt+LWrVtcXFwwKTS+F8vO53NGoxHCB1PeFuW8tcMAV8FgfVDyp11/6lK1EOJfJxQS/rUe+oH3vvHen/f//buEYsLbf9y/997/5977r3nvv5YNxiFK0NpdpWabM7NdTh89esTDhw/x3jOZTGjbdle+/vo3vsazp0/Z398HZ6jLMqS5OQPimtSCV2UXW01YlPRhsUCchuTp4CgW5FlElsTcuXkTZyyxTtifHVAkA+qy4eys5uOPT3hxtuHGjTd49/2f5sbx66R5RjEcgAQvLRZD5wJ6ykqL1BClcrfvLrJ8ByS01oZk6Naw2mywDr72M18HIdk7OKJuOp48ecaLF6eh+qUTHH7HvbPOEWcp48mMzTX+tBDB3p2lV/D3bUrAznPU+/i3DISXZ6esViuEEIwmYw4ODhiMg0dpPg9Gups3b3Lnzp3dw7alfz5+/JizszNGoxGT2ZSzszPu379P01QMBvnOTt+2LTq6EmM65zg8PGQ6mXF2dsaHH37I85MXVD2JJ45Tjo+Pw/lmNqNpKmaz2c4DtvU0RVry8ccf78rho9GIuq4ZDoes1+ve5h7vel6bzWYnNk6S5J+OJUEI8S8QCgQ/770vr339ALjw3lshxJsE2Pv9H/d61nnO5wtoSgrZcf70AXW5ZDKa8GJxTrr/GhenF1ycr7n7+ptEIkYJS9LWTIRjcf/3ef/2iO78EZESDIoUjWRTduRJSmMgG+wT6xhFzN4wVFFcaRjphMXiB+ynOTpNaF3JunJ0ThGlE0Q2YiFnbNIjOgnnzQYpG8gF8TAjr87RQtOerXi5Uhweznj37s9zdvGMBw9/QCQMbb2mthU6MqRpRZw0eHOKbSwrN6BtYhKfoSNNrCXeS3ARSkSMioyLiwtuH9/l2z/3l/mb/+uvopO7zG3G3uSAc75PtVzjnAu/q5bYtsM4x3LTMs6GrDsoopT1qqU0a1ItEZuIRAtWizV3776FUhHrTUmaRNSRoesWSCko8oSyWuGlJx8myCihLkuMCzGO2BItPEmS4lLNfL7k+csz1usSJWNGwymRzFmvN8yKKatyQ+EVzXzJxXkbei+Ht0mihJOTE5T3HM6mAX4pLeNxxuXlSz75pOHGa6/1k57DmJZEFqzmDYNsxttvvcP3PviAOFKhpxYLLs5OGA01Xbvk9PQJuXbgGlaLNXmWUJmKxjVIqRCxRGmNcRZre5JTpPlR68ufpFT93xOA7vtCiCfAv0+oriXAr/eaoG1J+ueA/1AIYQhti7/qvb/4cT/D9QnIpycnNJsLEjyzyYioTw775Pd/H+c8x8fHDIdFUEJHEMfZrkKi+/NMrIPkXXmP7Vxv17U7/44XV3Kg3U3oBZPbS0qJElusldvJNJIkRUcxTdPRGkfXNQyHI6JIYa2hqjc8ffqUshoxnuR8+ctf5dnJQ5qmoKwXNM2GrjM9sVOhtSLTjq5ds1hdBmZClJIlA9I0Q8scbDD8XS4f8+5X7/Brf6dhMb8kyVvq9gUyEhTFMARZlaEXluoIvAgxIXGE6RwdoL3bAdqRV959YwxJkvVxJY5WhvtWlTXDYcFoPMFLxWq1YrOu0Em8g1QmvV9ovV7jCFXTg4MD8rwKotAemCilxPbQ9aZp8E4wnU53rte2bXcrn/Vu16icTqe7ALHrzD6tNbMbx5RlzWQ27Xs/OUIGYOJyvcLbmmEP/dRRRJ4pvIa2XFJuGuIk3unYtq0LAGvC8zgYDPiJBs+nMNv+i0/53r8O/PUf95o/fFnb8fTJI5bnL7lzfMjeoODJo/vMFyuapuPFixccHd9ibxLCj4xtSfNBANfVJbrrk82UupafcwUQEcIBV+zh3cFQCMSuWSf7EnKIYZdOY3uFbdtUbNYrRnsDojgOr6XCHn8+v+hhjeFWVlVF87ykqgvG4wHHr92kqtfMFzEXl7DZLPoqjkSlCVqvaH1J22x6YlCKkEOEyLEqJo0HxHFBVZe88dYe73zpBn/rb/4qN2/cDBD4aLwDoZzVoTueRIpIKwwNXWupRIt0gqS3ZiAl1gtsZ0jyhLIsSZIs5As1Dc6FfpFbO5QWjMZDutbw9PkLrHfcODrewfetcUQ6RkkXlAtCE6cxcZITxRkeuSMKaa6opUrHAdvVW8K3fD6lVIgX6WH3+0eHxP0kulytdoPI9KkHT5495fXXX+esT8yw3uFdy+V5xWSYk8cZyJDBapwijhKiNIWy3PEwfG/D2KnO+/NxKFX/BIPn/4vLGLujNE5HYwSBGHpxuWA6O+C1114jz4tg1DItaZ6SxBq8ZbMsKYTbGbmMcFgbgQ9x8GEghZ+zGzxYXM+VllIRqzT4913fcxIKrxXCC4wNs+p41uw+OKUUWZT0q1IeRIXChVl6lFM3G+qqoape8PhJzXCYMdubcnT4Gm1XcnZ+yvPnz3j88jm33pJkiSVSOqgQvAO/omlKWqGJIktZr0mHKZvmhF/853+Gv/u//w2ioiF2NYIDBDFJHDEoOvBLvBcY5/G9fEe3ltpLkA4lBdr2aK+2JR4WrBZLtI6JozCQkJo0ToiUQOAQPqgzwqQiQTjaqma1WiGF5ejoiDQvWCwWzJdrlA+SqyzP+zgU+sJI6NxLEfJEXX8eDSrndNf4VpHe8ee2nf7tuWtvb29XlZQ6IJn3Do4wzhOnGV0XCiBCgI6jPnUipqwabLthEEvSSKL7lfMVZ/E1Kc629/iZHzwCuPvG61ycPOV73/seplrtDo3OS46PDqg6i3WQ9H4Wa5pAVhGWNE1JoihYnXEI55FKIqOIJIlpKvPKtsx6v4sHEQqUCGxo4T0KiZC92cyHWHesJUsitIT5ckmUDgKUcLXk9u3bbDYb6rrGmBat5a4woVTEcDikqtc8fPAM5wxplpDnKXfvvMPn3lScnP6D4JpN1Q5t25ntTBiAFCGqXXN5eclbn3+Dr/zMl/j+Bx+Rphn13GJNFTjX+QjvFOvVAtvWKCnxqFAet57WeiSBVyBwmK5Br0LDM80GRKNQ7layp5dKiJMI0yN+96chocAJyXJxyfxyyeHRDOM8VVX1QVQlSZwSpyHoyjhLW5eUm5rp/pA8GyCUpCprokHYsm1XkjiOg9K7qXfSnW0Fdr1ek/ZBZ9uBZZwjyQrSPCgVWmOo6pa8SImSBOcD8ktHCRZBuamhBTVI0CqmbLtdmwTY9dsC8HEb6vUZHzxaK5bLJc+fn7BeL1Eu6IyyLMNYet1R8N8PigztWprNGhXBbDRAG7Vbbrc5MgIBGLzfIlMDX82FGGq8sOGgKAQO2atzPXiBFDJkvBByZ9qmYrVYMjmwOGdBOLQOs9XLl8+vYYsaqsogpCdJwoN4eblASsjSEUWRk2YBj7tczFmtVuBSiGOcUhjb0tTiijGgBlRNQz6csFxtiOMpbR3xC3/2u/zhHz7EuhQhIpyTQcGdpggraZoARUwigXcdXoEXntZafNdvGaUAJ7m4nIf7bAxax8xmBaZzzFfr3jDWsm5LlI4ZjSakWU7XWWxrGY1gOA5Uo4vzOfPVkihKiJOQodO0hrJuWW9qqqphhkLHEca40BfSw34bfhWrEmwLDYPBgK7rGMfR7v2J3mm8NUTWdc14PKaqKharMOEuVkucN6SxBOOpuxYpFXlWYITBdTVNZ5FcwdyF+KFYR8JZMCR2fMYHjxCCh/fvsbw4441bt8C0nDx7Evo1cUbdeZTWRFoiQu4FEoNGImy/ZyV4oHYrjHMYZ+g6icURi2BUC7i+7QByIHSIyUD0A0jifAgIRIBUge384uQJr7/1RbIsC4xqFQ6odR3EqUWR7UqbUm1jzQ3TyQGuB5aYTrA2TZ/AplAyx9c3wPXsatchjUFKj7YpvkuQziLcEOkyhsWIsml59wvf5ivvf48/+uBDsqTYnRW61mK9YlBMcJlBOkNdrZBKIITDeUtrPUoJEqXRsabdrMgyTVl1bMqavazAuLYvIsQAniUBAAAgAElEQVSUZYUxQVvmHORt4K5tUb5KRjT1irKpEUKhVRS4by4UVaqqDqVytw3FUrRNTd20V7DGa5Ee2+SCbbl7u7VK0xTZrxBKKYbDIcv5iluv39xxFfJBQWs6kjQlSxSC8J6NC/q1VI1o16FSJ/r3sx001+0IzrLTvH3mB49zjkhLptMpWitWq6p3kE5Y1y3FIMP25Mm2XDOMJJM8JlOOrtoQx5pYqyC5EZAlKcJ32H77g6V3DW5BFy4gdQEhPd70MD8pEF6EPT4qqLCVYDYe8eJ8jtaSRCoWmyrwx6QIujHcDle7xQE7Z1mvNwhRht5Klu088V0XvD5Kpghz0G8Rwut5b7GBdo0zEAtBvZZMhkcIFCRBNPvtb32XP/reCVpqkiTrtVgLjGmDIl0l1OUGj8YriRce74KS2iIROkZGEbJuUDqhLGvO5wvSYhAGt7XkeYHQmri1LJdB2Ty/XDEeTxkMx+FQXzWgNNPpHt5BZx1N3eEwSB1hbEh4UzJCxwmiDro5kLvYGFar8Fn0BZptNW3bON8mNownk11kShRFzBcX3Dh+jRcvnuGQIYO1v7+tsBwd7vVi1aBE0NvQsS4Mia3oeIvZ3eolW2d2X/tR12fCzwOe6WhEmkQUacZoNNiVDUMJNsTfxUqhhMeaGttU2KbCNBs2q3VYgnuaZV2XlGWJMS1RrHvpRZjFOtvu0EpeCFQUYTzkwxFS6l1Z+nB/j1grTNtQlSsO9meslguKQdZnB4UVpGkrNuUK6zqyrE8cK0uaOlim4yhwGLSKe51bgiDCWYnpIE/3Wc4Nwg+I9RhchiTHthGJGrGcd+RZ6JWkyRAlU7J0xBfffp/bx29yebFgdbmibQI/II5TtI45v1zSAUmekxdjrJeUjSfOCrLRHkbGlK2hbCyNgbPLNdYJ6qblcr4gSoP62buQ3OC5QoRtyiCVEkLTmI7ZdI9BMaRqgj0+HxS9Dq7FWs9074DZ/gGL+RLZn+PwsldMux1scLVaBXhHknB6ekrTNMFc16d3Q1jRj4+PaZqG0WjAybMnQePmOqpyHaqENjR6V/OQurc/22O5XO4aw9tKHrBbfbal6i2je5vK95n38ygp0UqBdcHd2FP/8zwHHXN+sUTKcBbx3uFNi8UhUkmkBFmcEOsonEM8JEripEP06uU8T3cQdi9AyAATd97SdOEB2e65hfPonlEW6yjQ+VWMVJK6LjFNu6vkRFFC117lVnos25L4toKT9BF+QmzTDQJeK4T7SoQFKX3IOVUOqTxeeoSweN8x2xsgaLHOk8gI4Vu8k9w4nPHn/9nv8D+dveTk5ITp/h6j0YjFckmW5+wfHrBer4iTnKQIzQ7TwzsMEusk+AihUpoOluua56eXeKXx3jLLC4aj4JGJ4pRiOELpDLymaVo2mwprzkjGKcvlkrrt+iTrgLoSwpAXBZ1xHBwc0RnLi9MzfFWTxBmy92xtAYPbUvV2mzYejxmPx5y8fMF0OmU+n1MMBhwfH/Ps2bOgBMCzWi9YrzckaY6U/XYrUmTJhCwOeUpt2zLJMvI0pU1SYuWRffQkvJryvR1I26LEjyLufiYGj+k6ynLNYJCzNxlSb6Le7Fbz8nxOlKQoRJDr47GmwWARcUwaR2ip8FhsG+zRXoZVa0tzUUpgTIv1wYe/LUu2XUfTtuTJrI8zv6LqeNuhJXihMN73JVuLlAEaYpHYa83Wre5re9jcWnmvS90hZPhI6a8as6JExjUqbtGxwvomUEZthZcto9GIti1RKibNYuq2wdqGvb09fv4XvsZmPue/+i//GsvlnMPDQ84uTtlsNgzHA6qq7j1RM/LBiDzPyVKNt4ZyvcKYlmLUJ0KLJYvlBqE0KOh88PDXxqISiY41qUgQQmN9TdVsKOsOl0rWZcD55tmANM3ZVOGgHUUJyAov2AFHutZipSDyemeC3MqE0jRlvV5Tt2EwvXz5EhVH3L59m/F4vOv/BG53xuXpCtPWdE2JUpK2Dn0bqzVmPKQYz1ASqnJDpT1lIvF9WyHWirYzu2fhhwcP0Pu9Pj2j5zMxeLTWAafUNpyfnrFZL7HWkmYhS0ZFMVJIrG3AGpTwRIL+735ZtaFAIAUIEQxhIVfzKuxJKEmUgI7SAPo2gQiT5hlRFB5yby1aKkzb4fHgoOtaYhUTRYo0S6gcVI2hqmtSrV4BSCh5FYwUBk04a21XIwClQgyIcx6vN8ikRaUtQguEr9EClG16VYREKk+RRySxJYmCatibmL1JxC/90l/gt37r73PvwUM62xHHEU1XIzchh3S9XFPVQa8VKYF2OqRS6Iw4ThFV8E5FaYHDUbYGazvqpmMwDKgv1ZgAfXeKOEqJk5zCa7SKWdXnCBTWeFpjsSYcxJ0Xu3S6k2fPSfOCyXhG5zzn5+d0rWHcnwGrPj5l+yBvaTaz2Yw33noTY0KK36YsuXfvHsPhMGzrVku0cGRpaNJKZ5DCoYTHdA2RkkxHQxIlqcoNZ13JIAmASmf9rpdjjH2FjQ5XcP3P/ODZ3jQh2EUIpmm6q8BESUpdtZi2RTpDrBVpLImlR2GIdQ+qwxEpSOMEhEFJH5jRW0W1CofCKNYgFY3sUK1CCoV1Hq1jOhvIl9Z1/QFS0BqLlmKraHllJYEroal3AhldDZStxeKHkx8gGOCs7Ygih4odKu4HmfLoSBKZfkbs2hAxn2raZgPekCVJSIIDjm7e5pf+pb/Ib/zm/8H3P/oBEMJ6G9MyGo97BkHEclPT1RVppNFKoLViVAxoTIXzFhkXtF1Ja0Pce9s0xEWG6zosDTiFIIhlpY6Jkog4Slk1lxSDgqYLq3zVNiRJOBcuVhtAstlscAiytAgSHhVho1COT5KEsqo4Pz/vKUl7FMMBRVGwt7cHSvLkyRNWqxVp//3bIIBYC9K0YFM3bMoqWC2ShDzPSCJNXW2YjV9nfzrBVCtMsyGfTIiVoK4rVKT613K7wbP9fGGrRPmMn3mMNdSbNbPRCI1FSUIZuLG4Lqwa1oUycOw9WoISYhtQGJZbe5Uqt0WvwpVXCNjpuay14PvmnOtoW4MQHYMiD2XSJKFtKmIdgVChkpMl18Jww5KeIvA9jMJ7h1I2HGyFQ0jfI5cseBnSngnJCkoLpOorfSJCqAShEry3CKGJdIKJwTuD1hFplBOJnPV6AUZTjIa0jSGKYqrNmn/xu/8cBzcO+Gv/9X9LaxqQmvXlEh1HWO+wPnC6VaHIkjgAEtuGTdMxLkah0KA05bzBdAYloGkbRk5QNw1CxggBkYxASpxVdKbD0/Xq6yGirmjqbYn7KmJFKs1olKGjhIvFkrbpGIyGJFnOs2fPGI/HpGnKeDxmMBgwHA5RUTCiPX/+nIvFnKOjox3x5/j4mBcvXnD79m0Gao+6rnn67Dmrtqb1DiXAJRqJpa1KIiXJ0hgZDSgvKpJI4eqKpi4hGr6iLriuONj6yz7zK4/e8oO7OizHfdp1mqYMJwXnl/MeQGcDa9p5rOnwWqBEtJPHCK5AGPgO6wyqD6JCehSqFwLaq1jEXnIDbrfXjaOIutrCAIMfP88y4t7VKJ0PDzmCpm534kJg9/f22s5izoWwKKVCQ1ZrRRxHCNJee5fircUjUCIlUhpkSKLGKaBAug6JAJPT1SVFPqFyC+Is56s//T7nl9/lD7/3Afc+eURZfbTblkit0FKRxQl5llFVJavWUrUd02SIkJYkVqhoGTRgOKqmo+k6HJLOeYTrcFITtwbvBJ0J8cXBKGf7hOywHS2rkKyd5zkhyDQkv8mmpa4ucQ7SNOLy8jLEPBYFN27cCBD63h6wTQEcj8c7Fcemt6lIGdoa+2nBRx99xMX5KSAY5lmvCDGkScLN1w4D+qvtGGcRlfA0VU2zWSMlVG27K1K8Wq6+ysL9zA8e02dAjgdThsMhcX/jlqsVZrnp/fS9Vk2K3u/SYiONUimJCuVN6QMTQCmF61PNQlk5KBSklMj+YRI62mXtyC6IQq8jV4NkpA2sMytQSjAY5OR5Tlu2tIbdAfO6MveHS5vBK2NeAYoH6Y0ENG2ThMHjEzzBkIfM0SoKK4+PsJ0DYrI4kGpMDeWyYzIWZKOC8xfPGU6m/KW/9Bd47/0v87d/9dfYlDVpmuN9wCldns85XZ+T6KhfeVqSJOHsYo51HePxABUlRJFGyI66rkJydxuomXVj8M4hZEqsQIjegSkCRzyQZkKfplqv8V4wGE0w1rEuK0bDCcd7++AFy3UAu9y8eXNXOLnOKZdaBW8WkBY59+7dYzqd7rRv3/nOd1BK8ckf/Ab3P/mYJw8fcOvOGxweHtI0DVEUcbS/x3vv/RTjPMWaGq1iBCG42ZqWvcmY5ToY57bFgu1Za7vqbD/TT7s+E4PHA2oy4rLr0IMhxWBM5UDkGoynLWu80sTSkShHM59z8zBDNBfkicT6ilWvzNVa05lQVPACmqqmyDNUFOEAU7U9GyFEc5jOoLzHY6g352S5pnMLktzTuoYonSKijGWV8Prsc1RNyOEcTArmz5+8sj/eFQW8DDaA1gLt7uwWRxla9eVYghDT2xobNSyXzwN3OY1o2tA0jJKIstmAgMTFVLLCeks2ykgTRaXXbBYl8WiIlRHGwBt3bvPL/+pf4ee/+R0ePfyQjz/8A+YXT7nUG1bzc8ymwjtPmuXkaQ7pBUII3vr8lP299/noB/e5/+AJoxsDvGto24bhJIAM13VF1K6oVROaweMBl/OoZ1O7IJ+KCuI0NLTPl2vyQUE2HLHqapanJzjtGM9GxGlCkox5eX4GzjPcG4UmqpBIpbCxolotGM0yvvz+G0hfM0wUd24dsb/niCR8de99ZuKcP5pY8jyhiM5wynF8fMz770yYZRvwG1Ss6IxhuDcMGkSZ86KzxOOIdbtCRIrBwQDTOdZtSRYJsnyAdwJj7ac+t5+ZwbOrrxMySr0PPvK2Zxt716FFyAHdOv1iGXz4tBWBRe13/RrZa5a2UXnbLcz2z3U+sZSyRzS5nkEWtFOGaOfjUWnW+3wE0ttdSTpJQql3i8QyxuxSp7erGFzbTnJV1tY6NGWvv8frq9h2K9F13W5bdN17JKVkOp5ivaMqA1I3y1KGQ8l777/Ne+99jurnfpaXzx/y7MHHPH30CefPnrM4X2Aag0Tx2t3XyfOcO3fucnj0Gt/69s9hPPzhP/6AX/v1v4dSEUmsUQK6tmaxCNGRUodufGcgiTVFHvRsi0XYYhdFwXQ27rWDHoEIkPo8YzAYUBRDjJHoSLJarTBtQ5rG3Dy+wWg0YDTIWcwzXjuaUaQRwlUcH8x48/VjuqbkwSf3+OKdW3z3u9/l29/+NmdnZyilODo6oiiKXfm7qqqdV2h7b3fk2FTgbWjEWxRZmjIsRuHed6HC+KMgIJ+JwfPqJXZ70JDpEg6l3km0a0PzkIBv2lp4M6XwXuK93Q2gIL/oUUJNe+0QGO0KCLvzifAoGVRv4cHVJFmKcZqqUWRFTlxMdpR/5YMWKpIK6cMguJ7gfb3Pc307d70cupWZJH259vr2b7u12w6WrSV9u7Je9YwEdb3GGjCdx1mFbHTgqvWC4KzI2JuM4fgGg0zTHh/TVR3CCSIVMzsSPH/+MmT6lBVxIhBK84UvfIHjm7d5eTbn3r0H/IP/8/dIIsnewYw8H7Apa0y7oRhM+61P4BhobZE9ugvXcHB4IxRXipzRcLJTRVdNjXcxaaJZDzI6axgMByEiMktwruXue1/kxfPHrOZzXj8+YjYZUpdrtIL33v0i3XLBcDhkNptx8+bN3aQF7CbJ7SR0vRiwzVVtagdeI+gxXMoRR6rX29ldUtynXX9a6OF/APxbwGn/bf+O9/5v9f/frwD/JsFJ+m9773/1xw+Xra7JBh+KDY7D7S8dReF8IDF4d9VT2Q6eNN12hbe/jusfRvrD+LVycv+Qbr36QF8hivobv314Qx8j9ookLxhPwuDxQqCdQfSFBNOvONsP5HrDbbuP31X7+uv6QLleYNieobZnr610ZFvlS9P0mlR++/l4kjShKJJAIyVYgtrW4roVkWzpTIunI9YKlcfESiF9KCK0bdDjbZ2kTdOymi+ZzPZ4790vcvrykrt37vD5z3+ODz+6x717n3Dy/DnOERQC7QYBFGnCcDghLwqSJAtaviylaw1JlvZC0iGyz/Spy5qPP/qIPM8ZTScc7N/m4MZ+H2YlsbbjxfMnSFNz68YhP/3+F8ljxdMnDzG2YTpI8L3MJuQJBQtDVVVsEVJbJsFWWLrFSbVtG3JenSHPB2id9M1ai9ZmR9M5Pz/Hffqu7U8NPQT4T733/8krg0CInwL+FeBd4Bj4O0KIt733P+ItsJNDGOPAdHjr+gc/BOOWZYnE43yDJFScoihCxVlfp29fyZ8Jnoxrs3wUIXvXYngYA9VS63DoDV6S4J8R0uGAujUkaUJWFCRxxnA82YESI9Ph+sFjRXetISp3A2ALztsOnOuryXaAtW270+Nt3/cPd7m3g3KLhA2ze/jYrLXoVOJ6MowAlNC9D0dBUoCDOJahyqccxveFkM7ReIFjHYinSlGtS/I8Z/+NQzrjOHn8GGMdaZLypffe4a27d/jo4495+PAxVVOjpKYoxv02rKAsSx49fsqzZz1vvBjwUz/1UwilkdLR1QHmonTMa0cz0h55NZxMmUwmdMbw9MFHVNUGrSRHRwd8+e33ONyf4tqSxbpkMkwQPmJxfk6k4922dz6fc50ku/VYbbfDV9Wzq5WoSIZEMgwUJxxRHJFGgWFer2vKZYn89GLbnw56+COuvwz8D977BvhECPEx8HXgt37cPwwdd4czJkigfXgYIxnQsKGDrHHGhW+mhyU2higWr+jJnHN9KoB7tdsvrmbtUBWTPfn/6gGO4xjrDZ01aC8o0hypI7J8QAe7SowXljiOIE13D/11TdQWIr8Fyndd18e1Xz343nt0f/bavq/rFbymaXbynm3DtW3b3SzbdR21LbHGBzdplONVGnKHlEdqy+ryjOXigvXqEtsEbneRRYhUooVGqhAUtl6v6ZwjjiI2ywVeKobFAOsdz54H1NNs/4BvfO1LfONnv0pd11xeXlJVfa8nH6K15r1332axWIQKZ79t1TreuUMFareNk2+ELWtRFAxGQ6zt2GxukGYxe3sz1qsFAkO1Pmc5v0R5w3QyZFBkFNGAxogdXWm7HdyKiLcDZTtZbc+M3odJL4oidDRks/m/mXuTWNuyLT3rm9UqdnnOuedWceNG8eLls9OknU7LImXAyEJ03LKgQdEBS0gGCUsg3MB9y5I7doOOUSKMjERhZINwAwlZiMrIxmTlLN7L5/ciXhQ34pan2sUqZ0Fjrrn22ufeiEheptFd0tY5Z+99drHWHHOM8Y9//GM/QuPLZVQSur7e8PTpU4AjL3/7+L3kPH9eCPFvAb8M/IUQwhXwiKggmo4nw32vHWKi25YvTyaNSEMrAAofJJ6IVCkJsvcINyx+L/DD7r0q1dB6G9kEzjlwfjSaJG+rlKIoSsIgdp68VTbLsS56itmiQMmMpu1jNTwvcEEgTYbzAjUsZBd8JI4aP9LaE6VjWjuIHtWOZNc01S49XpMGGR888NQ7pc+dch8hxKju3/c9s2WGlQGtCspiEU9uANc1hK6JLQ59F1ngXYMP4FxAogmiJ5NmbIE/OTlBZRlPnjyht5Z37t9jW9Ws5kUUd/eWz37y45EJcLae0WQ9u92Oq1c3Q+vFHLmKZNFqX/H4/fciYbSYjXme9x7rA8bFv5GCvr6hbvbYvqftJRfdFiEC2+srtAq89/AuuVHcXF1ydfmK+XzOcn1vbAOZ3bkDwP6LL3DOcX5+zn6/Hz03HDamBNZ46/HWo4QiNxneBq43V1y+uqDa7wdZrt9/4/nrwF+Kl4m/BPxVonLom0DxN/IbQgi/BPwSwPLeoxBj/8gFkyJ6nuBjt2PX1ZFS4mKrtJaRZCjcjLJUKOXGk+RcvIkhvJFCD/mHGVGW1N4rZXTnRVay2bZDU5VBZYrWhdiKLRQO4ihB68fFrYLAjQVQP6IyWZaN75HqFtMQblpDCCGwHy7S7RpDOlJ7cirmThPYSNUvaduGttlje0GRlTFvEh5hYr3LB0fwsRCslMAoTSYNWmU0TcOdO3fY7Xb85Cc/YbFYkOcZWWbYbG8iotbUKCVYLecEf0JnezIj2O+uyXTOvNTMywHIEJZcBR6cn2AeFcPnbKm2NW0S+TAagmS33XB6ekpuchpn0bnGLHNs17LZXJEXhrsnC7SRdNWWXd+ghWRRlighePbsGYtFbF/ZPH8+aWBj1M0Gxg0t9fqk+7vak5uM0/XJIKp5zcWrVzR1zXK+iGvxG5p2fqp+nhDC8xCCCyF44D8jhmYQPc3jyVPfBb761tcjkGXF2BFZ5DOUMiNyZUxM6Nqmx5gonXp1dTUick3djYldaqSaz5dRTjYEVqvVMKriisePH4+qpGdnd7i+vsH1LXIY57jb7eh6R5aX7Js4eXp1csZuV1GUh94SbdQoc5Xn+dGuOt3hkpEk3e0kspeMIIV46WiaZhyfkgwqhSMJadtut+MIjiTwl+f5gLJJMm3iqJGmwbmeut7HPAdHWzd418dpCiJ6t5cvX2KM4ezsLHqz2Yz79+9zfXmFUorzu3cwSnJz9YreNkjh6bsaKTy5EhRaYhRoGciUp9ACQk9b3eD6Jk7ni40QSByZhOXMsFqWSNEj6Mg1uG7H5fMvqXc3nK5KcuEItsE2eySeMsswRo9hWJK9SucgzguS47mv63o8/yk6SIZkrQUX9S6aas/L58/inJ+6IdeKMjfgLb7/fYaqhRAPQwhPhz//FeC3ht//LvBfCyH+GhEw+BngH33r6w1yUdY5Qu+Q9GNSL6QfJWFDiAtLZj3r8xmLRcnMBEIXYVLp43h1RjWd6BU+++wLfuZnPop6xU3PvbsPeP7iKW0be+WllOTaDPlOXNheg5CafDZnsVojdbxQKBnFRcLhIo15UDgeRZ4eSygZHGo8ybCiOqkcc6TkZVK4l/Kk9Jxp3SiEgJJxaEj02gPxNAzoovO4rgcX39MIjTd+BDZcH4eENU0cy67zjMw7+r6lbRXGKJpqT+8szsVFpMUB6g1CRgQUByHW4ESIiKUcRFBcVyO1iaCNjPU7b/vYlqAM3na0rkMKgVZQZDJ2AbcViMCAxRJ8iK8vJjnr4KBHKTF/EG631o5Dor33g0DLgaTrvUdLyWzodbq5ueDi4iVtFyV4lS7Q+hvQAn560cM/JYT4o8SQ7FPg3x2+xG8LIf474PtEDet//9uQNkjFxhz6qOCfqPwxZ4lw5GJeIryhreJzjDGRee0b/JBgp6Q/BDnhmsXw5v33P2S9XvLpx5/w8OHDmNR2cWCw9Idcpe8drY36Y1JnZOWM2WKFCzn73qOVwEiJdJEzZwYJqpSfDOdsvKWC7NR4pkJ/UWjQjoZRluWI1iUvcJhifSC7jsaDjFV5aVDKIJKOSR+GKWdxIWkpMdLEgmUIONvRtT1mFsXW665mXWZkWVTNbPuOrMjHIVjpfacJdOrQTbxAEYi6AYKxnb3rO0qtMSrGQN7H93YSjM7oexsZ7EqSaYnMDF3f0ndtzDeEAiWjWqWMIx4hspjS+UjnYopYTsPbdC2m4BGA9gFno8zu1eULqv0NUkXRlK71Iwjxdcfvq+jh8Py/DPzlb3vdo0OAFNOY3wx9OJZg7eB1ApnJKVannOT9KFMUuoZcgHMepQ45ifdRhiqEwAfvf4eiKNhu9+z3+3EOUNM02N5T6ADi0NQmVJzWJhKrOsSmOCkT+zZeLCliz8y0uDkthI5E0zRJbZiunAwqibyn56XvPy24pvvTxZ++brxfQYjImRp2ZQbFob53QwEzIL0YyLEiek3ihrOvK4KIoihNF0mXWk2XhXzNYLz3OBvPQ56m7eEjxz0ERBxGDcRBWBDDU0Vs5R4BEeLt8N0FGBWLvvj43cY+EEEQKnINOXif2+djiqa2bTtSo4oBFZ2imhrL86dPePHyWWz5nmUDeONxvUVSfFNHwtvBMPA+HDB5f5ABatsW5yNc2zYNIbSclTnzeYb3sdfc4EEl9CrVQNJJlSgFZ2dnPHv2jL7vWa1OuLi44PT0NNIyhvwkAMF5go96a1mR40SG91C3HSYr0KbEDcoygUMIldCwVBydDoJ9E1l0WuWeFkXT3+k5KTY/7kQ9NiSFBFQMVwF83Eis9fRtR3Cx6OxclBXBuUFVNXqz1necnJygpaLtowZCXkRv2jb9eB7HRYmIgpKJzOksQsTAkRA7fUMQiDgCL4qT+HgttYqhsUr1lkE7L45HUcjgsSGAPJB0kXJgZmtAE4a/QwjgJ4ySiVdJxdD5fD5uTgn5BEbPVO1f8vT5p1xd3rBarSiKw6ykmE+137hu3w4BkMDRoknUihifHhZm0zTDLYqCeMfYNDdN1NORFuDNzQ2ff/aEvu85OzujrqOkbPICEHtr4FDMNHoAAXRsvEJGbelp0TLF11OuWgrJpkaUwjJgvJDAKLUEBwOc7qKJ9jM1xOkiiQ2A8RyFIPAWsERSau9Gz2OHydbxOw/FV5EUbRSLVRQODAKUkSgT55xaH4UFU01MiGikQhmUKdHZ7Mjg4/mbbhaDLnYQuGFECUqidYaUOkqFKYnOIrsjSIFL7ydjF21g4nGkJKDxaLw048Z0u7iczlMqGTRNQ13X47VK6OhXX35G2+yYzzWzmcL2NbvtFX1XkRmFsx3+bSeGJgJn3MHCWA0uigLrDrKrUnv67obNpqGce8jzSZh2oLtIGXfCCE0X1HWckqa1ZrvdxjmjI6zdM8800ui4S3UxeQ5SkBUli9WSrJiNvLa4Ayu8jRrbfXsIw1J/fQrdUn6TjCjVc1LVuyzLQY3z0Ig15V+lHXVK1bnNz5JSD0YRQ6WY4/lhZEuga6Ph6hCT71gsPuRQU+OObeoZ1g05T5YNUok5VK4AACAASURBVMgmaj8E8CEQwsF7+i4m8UJIPJ7gXazBDZ23XXcIVY3JUepQ0/KADCIaPpJArI9bFyDEZkJBiAYUBEGIONY+xJ+ZOgzjBUagJZ37RAZN+WTauLbbLVdXV7x69XwY8hW9jLUOk4kIlDTVa7Sq28db4Xmiom0Yp3pZa/HusNPGcGvF+fn5KM6dduSmaY52oHRMd5/U7kuQfP7556xWq3FXqqr4/5k2r9E3sixjuVxTzOdIbfA+IMWBcJiYA7e9RwIIpuTQqXFMWdLpYqdwYfQow/3T2lBasNMkNlXtE5cvIYzhCKINR0igEILgBSIEmr7hanPDzW47GngCK4rZjDwrD8wIqYYia/y8zr4hIQhy4ilja0JEEYsx9wshjAwSR6B3SWdCIYaQrB04g27IzXwYCuODRpEPB62DFLqlTWAq5pHAqLKMVK6mafjyyy/54Q9/GGeb6tilvNle473j7OyM+bxks70er8/XHW+J5/FoI8CcMMtOefHiBR999x3ykyu+ePoJem14vrvk7vJddvYhD87e48df/Cr3H52y6V+R9Y75UNPBdhRFhnc9/W5PF2oAHt6/T727YDbPEDqwbXbs24bl6ZrWvmSR32e3r1mUC3qRc/2iZrXIsTsXxTmMGNAfgQsBF8B5TV3tyYzBDKFl8INc67CzdsPicSHQDj1HcfF66irK2KpJUu2SkUmNkD7uwp3FD816QkRF06RyugkBraJsVehr+r6iryqCqynoobOczk6RWGzX4GSPyDOCDoiiZFULcplTtzXKCLZXN1jrWS8WVNubMTSWUhK8JYR+UCAV+NBFea8QZYmlkAgdRo8WnCNYO4ySZAi4smFHtwjvkS6Gk51Nm0QUYXdA7z1GGrSSCOFxroEuTvUD2HQrchOHexkNZW6odlv67Z5sEGax3qOzGTebmmy24MUGfuuTV5zf+xDhvmLTOOj2rGaa07mi335FZx3LWYkXDVYWX7tu3wrjUTLWQq6uK/Z9pIFvNhtqH0dKIOIFBMYkuiyjyETwCiUic6BtW+q6JtOS1XIxqvtPCYL5EOolV5/nOZkuQCj2+y1ZoTm9/4DcxTxis9tyWixHCDwMCJ4Y9NkSWzd5uilwcBsMSPelHRheR4jSbpl+pueMC3LiYeOuGD1lbx2h7/B2qLsMx2JW0DZ7mrZC4OLwLBzdoJITvAfyo5wted4oJGnG7+P9IURNXm3KVr+NGqbPfbuVYgxps1QEPgAh0/zOOYcUbuLFj4ETfKqXORLmJ2IOgFCazBj6fYvJMu7Ml1gUd+4qHj56zI9+/AkP1w3C95zM9ChTtpjPoGtxHM751x1vhfEwSOE65/AuUu/rumbbbTGloetjNblvW6QS1PWeRRmNKYTIpFUDQrNcLlksZoTg6doWbdR4IZNWQgq3YLhIAbQ2+CBwCPKiIPSHHp20YEMk3cVke8jLjMiOjCEl+Sm0TAsnhDCMRXcjAmStRZtYpEtF0/SZUviW/gaOHj+EK+C6nr5rwPZoH5AiToHwwTKfz6j219RNRW4kQuRY29G3zaTm5I9Cw3ReI6nz2GC1zkaWhLWR/Dk17OnnBV4LO9Nrj5deRI3wFE5Ob0dLRAjkhOIshEBbMbDtXfSAXo6Gq7VGmYyg+4iWSsPNriKfL/lnf/FPYFHUr77PbnfDyfKMzvZRjP50PWjjOWzT4OWxJsX0eCtynml/TZZlnJ+fDQnzgYmc5E8TR2k+nw+7GSOsnec5jx8/5sGDB3gflfjTTp+oP1VVsdvtxsp/VVVUTY/MSsr5HKnyqLfcW4KA2WwxxtGjZxBxVyuyYhhsZcaLPYWV0+caQYxJbpZ2uilCeDuXuf0/t+tHwMAGqOmbGtf3xIJlwIeerquIw4lbrO0i88JbuiYKDSL8ZLEeJInj+xyg3bQgby/+15HRQw6X5spOvfDtZr/bAMjt75+u2W3Pm15LYVFYRHB42x+dH6E0ddszm69pXaC10LrAtu64+/ARv/gn/gUevfs+QmV0fcD5CEI4G6irdvzc0+L37eOtMJ50yqIml4o9GiqGWHkeUTdtDgqcCQBI6NbNTWT0np+fj3rR8/mc5XI5LuyEXm02G7bbLfP5nPV6PXRozvBBEoTBI+hsnJSdl3OQckxoD5CtwOh8NJzbFx4OtarUBTpN/pNnSmDDNPR5PSw7vN7thRZCoKsbur7Buj7OGJKRBNr1FXWzo663BGfRMoZHydicj2PWp14teuR2rIkkL6r0YSE7Z+m6w3OmIdsURk+vd5sFcAgBX++aTc+bfuf0OtNNZvRywcYRKr7HBxdv3hNHN0uqtqNYLBC6oFyueffD7+JRfPb0OV4aPvjuz7I6PWezb7AuDsdqun7kyiUhmq873grjkYObnc0iXT8tqkTfD/ixJTb1xdR1TW/jDprnOe+99x73798fCKAXA1K2HMOz6WJNodN8PkcpxXx9StU6qtYNutSG9ckdTs/OaboWEOMs0+nCVgOd//bFn+6AaQdOAuMpbDxINfnXFsx4XiavnRZm2uXTQuz6Btt1ONfjvaXvO9puT9PUNPWWfbUBLCaTSBEb4ZzvSYXk4PrUTAXeE5wDb5EBtCDy4gJoOSyW4TkiaaRN2BDpO2utR3b5NGyL/+7H738bHb3tXVJ4na5bev1R5ch1UY7LO8TADI5sCYlDkM0WdF5Q945955itTihPzrjaVNTOsz67y+MPv0fXQ9N58mxO23QoZSLvznu+qZX0rTAeQayZJK/hXLwQeWEGSSPYbreD8GFLOcvZV9t4Ym0kdyb6f4KBq2GEupSR+ZwAg5OTk3F0RTLEIAuaLlDM1yzXZ3g0Ki9YnZ7GLkhzgKfxAW8DwRFrEZMYe4RhORZbTHrMUyZCCGEcvX7bo0yNJXHuko7ZtAibGBJpAbdtTVPtqKodbb2l6xpsX6M0mCz2OvlgMVKiEHRNNQzO7UgUxHERk3Z6PzKXre1G40iGnzzvFG4HRgNKrznNY0Z2gj+0oU+97u/GI0XQxkUNceHQKk6yi6wEhRcSU8642uzRsxnbuuXzr56j85L5+hRTLLAh43s/+0cw5YJmUEWqB8H6ruvo26hS+3XHW2E8zh+E7soy9enHC7Dd3QxkSTfmLuv1eoyJE/r2ox/9iE8++YQsy1iv1+O0hbt3745jQxLtvizLcVSflJJ9Y3EYTs7vcXr3Aa311G2HKIpIzDQGOQzsTQvVOTfWOabhSlp8yXgSenW7rpOQuttJ8ps8ze3aETAuaDGwM7zrsV1L01S09S6GX74DIplViVghkeHAqkhGnbyGnOhqhxAGDwXWdmN+plQsIibELdVPEjqWEDhgBEWSgadzlQxr6nnSMQUekrTuNO+ZEj/lMFlWjYVkE2k8QuGlpO49+9by8PH7zFanfPnsBXVv0UVJ3fVUNvDo/e8yW57ROugtUT0WOTYeflOd560wHq01JlNkueb58+cRWet7qir21H/88Y+4d+8eITjm8zkXFxc8fvyYr756gjGGly9f0vf9+H+Xw2RkpeL482RwCe1KO2bf93FY8PIMUyx5+WrL6Z0H/KE/8vOYvAQfUCYfh1Kl0SBSahQKI83IGpgWQeFADSqK4mgWjHOOxWLB6enpKFAxzTGmslhpobxpkSXj6vuevm3Rg/Bj30Wtb0RsC7BdO4IqOH80MGq5WHOyXtE2NVoq+rbj5uo65kcBqt2evutw1iJFQAmJ66PKTt82aCm4uLgYRTeSsaTSwBRWnhp/CjmnrJCpF0rGlRoJp20c06KylJLetkDU6Kvqmt55hMlAZjgUxXzBF1+9oLWOe+88wiNp+9hmv1jf5eOffMH3/tDPU9Udry5uUDpju91zcnIC3sYw9uvW7e+nEfy0R/CHqchaa+pmP8C7Uf3x7t277Pc7djcdugjcm0uyTGMWC7pux3t372JkzC/qakvXVAg8J6s73L17l91uN8bfUsrYjapjN6PWGukXkYFg5uhijtQZOi8BSdPV6GJ2mOwEyNRmwjEtHo5DsNS5mlgSSekl7fwhhNd6b6ehTVp0U3Qr/V+6GZPTNy3ORmF7rTVoSegCfd9iRKBtaxgGPnkXh4DlWUZwAZkN+gguJt1SHlgBEKdMJK8SBv6f4JDDzOdz4DiMTDlN3/csl8sRrEmPJ0NKSGo6H1Nm+oisenH02LSGJEUfazpCjR4nCEVAx85fH/BSx4KzGkilQ+9YAC6va5TIOT1/SD47AWmA2ON09eqCbGh3/7rjrfA8U1pIXpihUzI2fyUBwt1uN4YHCXJOnaJJKSV5lMViwXq9HhvN0i6Y/n8aT1trQefk8xNWp3fRWYnKCubLNZgMFwZRxsmpEkIhQuwxme6Ytw0nQexpfF+iyN/mqU2TZWC8L4WmyRtN7x/rMEITXCSDhgBSauQkhFJKUe+roadHYXuHkppZOcf7AwF1zMt0NJ6bmxviKBRP0oUYE/0Qb7fRMzhQlNLnfhOQkjzqm1DKaQh7OxSehn5J6lcojVASObSQBKUJSuNl7F31yMGoDmstvc+2dQSRsVifsjq5w2Zb03SespxH/QMEgt9DnUcI8TeEEC+EEL81ue9vCSF+fbh9KoT49eH+D4QQ9eSx//TbXh/i4iyKHO/tWCCNpMTBNfeRGv7w4QPW6zXWWp4/f473dgyb0kkty5LT0yhlJIQYYeyUvCZAIV3ApmmQqkBlJbPVCUEaXBDMFktAYPLjpFcl6v/kYtxe+NNcJdWu0ntPk+Jp1f1Nnmv6+/Q2zY+cjQRXP8z5jJp38TsGF/OdaegTIXNDUSwAifAORcB1Pb63ZCoOv7JdR24MktiqLLwb25bTTzF03d7m9yWkLXHJEuJpjBk98RRJmwINUwDmTUXhKazvEZEMi8aJRC4V+IE46gfgwIYp6GEJIU7i0NkcdMa+dty595BnL1+y39V0zo5NjrivN56fSrcthPCvp9+FEH8VuJk8/+MQwh/9XbzueKRd2A/hVAgu1lDauIP5IJjNBtSs3bPf72jrPd5rdC754IMP6OoIEGy3W4IrmM8KtIxCimVZIoQYL9ZtwkW5OCHL53FMugMfPKaIRpmZIjZkTc7hdK8ci3K3ULLkXUIIY4E3XfiUoM9mM7reHe3O0yLrbXrINJ9Ku3Kk2QSMkMgAfeeoqzayDbTmsD9GFSHhYzOcQqGFxvtU/I0jIadk1ts1DjG0RU+RsdttE+lzT+syU3b49FxNDXrqkdIZ7rouTuxTB2nkI5Jt8Fgf4WmFwKLoA/QhNkMGouE4F7Chh3BgICilwBT0tuf64orH73+HX/37/zN123B1CXmW4XuLE1/vX35Pum0ifqN/DfiXvu11vuU9YmgVMoKPfft5YcibfPQmXdtxeXlJe7WlsA3r1Wo8oWlHiaNFLM4NSjlG4wcINtV5lFLISUi0Xq+ZnZ7H5xczhNT0fUdkZUiEGk7eLQOanIMjw5kmtykvSANr02PApJ/+ANVOXwdeH1fyxnPnQuzqlJGq75zDW4vkwAPMVAY+DB5AYq2nqTsECmsPnyu1TySvORqFTIznQYPAB+wwJcL2h88+heynqGNikKTNIYV0qEMbwXEIGMZzpNWh/eK2J/KADSB8bFtwREcRfwZc8IRwmNznfTznSgSEhNZFJLFqWj58/A537z3A2hs2mw0nq1hG8OqfXs7zJ4HnIYQfTe77UAjxa0KI/10I8Sd/Ny8ihgJkungJ3QKo6z2vXr1CCMH19fWoiHJ6ejruQl9++eWYEyWxjSmknEIDreOY99SSq5Ti7OyMfDbHC4nOcqTOxkVvvUOr4wa1oxBdHBvPm27JQ6ScYbow044Mx2Hbm/7/NucsfTdj8mH0Y4+zg0yw1nGYlVLjyA3vPV3dEYKgbXq22x0hHKhRCRJummqsjVXV/o1eJTIkIqqXJvndRg1v16amSGR6jaknOl4Px7B9MqwEe8OAXA7hWWrN9kicEPH+IGj7OIdphMeVHlrBPc5ZnBeDUP0c6wKPH79P30WApK0bvLdHQ9NuH79X4/k3gf9m8vdT4L0Qwi8A/xFRSWf1pn8UQvw5IcQvCyF+uavqcUdKCyop2282Gz755JOxTpIUNBPkCoyyTkk8Y7vdcnl5GVUwh7qDGOoqibIzDZ1CiFK/Y4JucuQ3KadMrvXti397IaSkOeUFaWGl8O1N/zM1HjgACHBsPNbaGFYSAYMURmWmGDyAHiH7EMTo/bouduJOw69DGNiN5zSBMN77kak9Xch9346yW9PCaRrHXlXVUSNgURTj5na77yZ9z3R+pipC0/cME2NIVKkgxegZhRBHEwBDCAitRkOWUsZ2cdeP3avlfMb19fVEemv+u/L6P7XxiKiq/q8CfyvdF0JoQwgXw++/AnwMfO9N/x9C+KUQwh8PIfzx+XxNVhtC2zKfK4TxOJ8xL97l+mnGvdl3kTtFEXoyWfHg4RlVmLHnA27cH8YFS9U3dH2NkCHSUPqGvtkj+5bq6oI7iwUfPXrE5sUFzdWOs9maR3cf8vSTL2h9RbE02NDRtDtC0utyHhEkMiiEG+jyihjs6tj16J3E9pHFIYXGmGJc0GnsCHgWixnGKLbba4TwrNcL+r6J6ko+1lCUiAl/17TYro+CHj7geovr4y4oAuNztVR4uWFxojAzTxsqhBHIssALTWsFNmj2vaNcruhCT+srrNizPDNsm5fUVYXte7qmRwnNcr6iqWpurm5YLVYoITEqo8xnXF5ckJs4huPO6TnVrj7anNKCTUY8m82icuhAT5py1IyJumiub+maHbarCK7H246+rai2W7QQlLlhXuaUuWFWZMyKLLZVuB7l90hXI20LviPYgHMCZyXWZmTZCY6CphN0VhJMjinn6FmBzHL29RMWM8edswhJ373/LkLPQZVsmo46WLz5p9OS8C8DvxNCeDIxqLvAZQjBCSG+Q9Rt++TbXsg5j9CK2WLObl+z2WzYVy3z+Zy79+9R7XbM5nO8FvTNltb2KKFQRqPzjFzl4MOga9AjXEehNU6rMc+5vLwcG7sCkpvrLQjDvfv3jxCc4XschUrTGs/t40DJ8UfPnYYeaSdNtZ6maUZay/R4U7g2vT8d0zAqkWUJjtA3BOeQQzgWka443XvME6yjbTrKrI+5gjgw1a+urka4P8vycTJD11mur+OoekIMEbfbLev1emypSB4HGAi9kTh7cnIyftbkMUePqsIRuGLtAQxIofu0Z8iY/Mi7FUWB9eCFwYmo7Wato+0dFiiXJ9FrBT+G2yEEfIjvc+fOOcr2VNUOoRWFijSuVBds25Ygfg/cNhF12/4B8AeEEE+EEP/O8NC/wXHIBvAvAr8hhPjHwN8G/r0QwuW3vYdUcRrYdr9jW+1BCqTRsQVXxIsxXy44OTuNiJuzhOEixcVz6KdJ0PCRGPogGLKrK5q2p3XQWkfrHJ0NR2jO9PA+igPcjvsP5wakenOtZpr4T8GDhPgB46J9E9QtI1cGbuVAk+sS39N7iixnlhdIGUOZaJj6QI2xQ2gUZGx3n+QoKQ8b2QrDZiOEOKqdee+HESTtGHYladsURk2ZEen7pDJBuv82KTRB27fbOr7uvmnzYQKBpqTUxAdM9J8pEHN87QR107Gra6qmYb1ec+/ePfI8HzWu50U5NmG+6fhpddsIIfzZN9z3d4C/822vefsQIiqotHWLCx6dZSito4IooIosCnQIhSkL6BpMnqELQ4+naVp0OuFaYoSPoxK9HXYzy2J1gguB5xeXIAynd++TlUuuq4ZH+vUpbiNsGpLcakJ9XiMFDIDHMdvgTQnybQNRStF3h+T/iKF9y1CmiNN0obS1xRQ5GEM/KMxkusDlM3Yq6lF75+hai3cOoxUSEeWovEeqYT5RZsbxHKl2FkL05ufn98Z5N20bI4Ik9dtbRsnhlEumvCp91ykdJ3329Nh005l+/+l9U8Bmev7azuGCADxiLDoPtTih4kBiKQcpq0Haa6IT1/WOUhp657DOUw3rj0HCrG0bjDjUEW8fbwU9x1qLygynszki29Ff3VA1sVB6fu8uu+2GzvYoI8mKHKkF2axEG0FT7anrmjzPMCq6ejv030gRMEqRlQXeBza7iqaDYlEgTIHKZqDkaztXnLhwWPxxYU+N4Zu/z3SRRxDk0LU6wrSkoqk+dGXKiUpOepPkfXi9kJoQpNwYHILeVHgCSgaUGtRqgqerdjRNi+098yIucimivHFRlpH5gIoduUqNCz+pmSZZ4ouLC2azGfv9nrIsB6b64XtPz1kKraaIWuqoTUeC9tMAqvScKUJqTDaekwR3J+Mqy5LeBbwweCnpnafvPa2NYRv64BnTZ/LeEbDgAyYzLOYFu3rD1dUNT19+zn5fc2d5YKKIbxC8fSuMJwwKKp2PQnknZ6fs647e2hiLliV12yLRFHmO0gKhFcgIJ+dlEaknHlzTIH1PrhR5OTTOZSUXV1d0TrC+c59yeUJjPSWKh/cejaGI934I+fQhfBJquLgH9C2EcU2Pf08v6tRzJQ+TDCahSGlxaaVf80xwqPFM86LpDjzWkIYF74LAZiVd8ARrAYk2JYFAvd/RddELixDBBoVAi6gsU9f12ImbvIQx2dhPdXV1M+Zuq9WKTz/9dFy8mT90zSZkbsqGmPbzTGs50xrQwcMcBoE550djOtScjr2xtRbnIchjrx5rOQqhNUEppFYRnvYDG973iABfXj7D3znDINHGcLPbxhRhXtDU1yyWOeqfYp3n9+WQShKEYFft6WzPYrVitV7jCOyrinIxxwUfZ+IUOajY3RkEqMxg8jlCaqyPajMBCeowEr6ua9o+ChcKkyGkIsgMU8yYn5y9Fl6lW6KQHMKNw2dO69y71yWv0utYa9nv98MOasbO02RMiapym+P1deFeeiwZj9aaWV6gBrJjDFtzotCCZj5bAJow9HQdIO4hKddmzGlSmSAajjnyQFLKsWWkbdsR/IDDZpCel3KV2wXjN4EeCRy43eAHaZZSMT427W2aeqxpo9yUjJt0FqYRxZR3l1j1V1dXNE0zlj5iDm2o65rN5prtZvO16/bt8DwBilmJynKqtqNuGy6uN9R1Hee3lANFRkU1y74OtH1PkStMltFUUVtYuB4jwWQaAuyrBtfvcMGzWJ2Szdd0vYPWcu9syXJ9BycOTVtplz9q+fWHfGP6eafoTTKsZDhwoJFEbl021qe0ViNCJqWkrg61ntuGdBuASMcUySPtps4jlUEPKJk2Obk2XF5d4IIi6hpAZwcRdF+MtZzlckmelSPEXJYl1kZxwKIoxhEt3nuury44OzsbJ6rNF/HcTcmg3sfGxKZpxlBtuqkko0kdvQmQsLYfc7/bPUIAWZbm/cRhYfNFQtsiY7p3HmsDrfVYoPMiTi/XUe01as9FWS8lJH/4D3/I5VdfUl8+ZRNqvvriCVcXr3h4593B2ECp3wM95/+PQwzqKdvtDafnd3l5dc1iMaBrWc7Fyxe8++67vHr+1dgdenpyhm0rpBDkZw84W634+Iffp5wXtO0OrSW5UlEVx3u63lFIxfLkDD0/JZ8vaF3gy2cvWN99OErfxiFUh4R3vTodCrSKEGIMndax98PJHf62Ey+VELM4M/MQaqVdLz2eZdFY2ralbdvYXSri1Dul9ejiDkZ6DGMrB46AziO0WrUt2WJFwYLd5obTe++AkLhmQ9vWzBYrMq2Yz7KoRiQOQMS0iq/1oaiZPGea2lDX9VjkjeNfDr1FqZid5gclY0oGM2W2I2Jumrp6QY7GlvIgpQ5gzjTkG4X+hUKaKLiPzslFwCuJFgWlKagHBNF7ByKON5EqkJuMbn+DCj3nqyUf3lvxP3z2CR+9/x5Pv/iUD96/C7LFfwNU/VYYT1K3TJpqhcnwKJSMrQepyS2GCx3aO2azGRe7G2Z5xurOQz763kf8xm/9Nuwa3ntwj5vnX+F1YL1cgPdcbSrc1SVeFahe4GSGLhYs1idHTVpT959Ch91uB8DIERxa/uNzjz3C7RArwrTHnK7kYbTWg3ghY/XfOYee1n9SngNvfB+pDIYQaSjWR0o+RKF1bchnS3Rxg+0bXADrPEGACwHrHUEcw+TjNRnORV3XpOheKYVWx5+/rusj+HiqV5fCpCk8HUIYz4Hzx541evSU1x3rGkx/P/LugNBTIGVgm4dD3jiGg3GKwLhZKOFo9htyHdjcODKjaZuK1WKGFAGpNf4NJYx0vBXGI4QkNxk292NVPjhHkJJmX3F6sqZvanJt0AHoY5jWVjUP755z9nDJ6uwh9x59wPXzL6haS+c9qve0bc9sVqCHGP7y8hWmscxXZ8xmJevlipuqOorhUxyfaOyjdkCYfubpBU/3vQ4vR3DAvuYxINVHjqdhe3+Qyr11kuKYJ3EgXMb7Q9ROQxCUjWM+RCRyBqWRMiebzRG+ZXtt6IIjOEsRFI7j9025S7oPkq72cRfoEdeusa8BBVOofoogThdzWtDTXGhKLHUqSimHcKAO3c6jrHMxbPMRJHHCRoaBC7jgaNoKL2Oob4wG4QlO4Hw3dNs6jAzkCn7l//4HvHPvDpsXn/LeozOUGjbLr7edt8N4tNZxQlnXU+9rwqC5vMgWuNksep66QkvFclbQbB31PmqCnZ+fUywX3FQd3/tnfp7frPdcXF+wzGbI0NF0LSE4ZrOCvFxjZYaezTk9XVNmOVW1o+7iDmutHUYfFiOZs23boRtS49wB8Yk7HPS9jTnWcEwT+hSi9P0tNvCtWs2U3gK8bjiHFx9FRw73RZoQA0HSEqI30xKG3X9xcgqlZre9QOHouwqpFSZkOH/oMUreY+qBYzRwKCJPOWbx2h3a0KevMf0uyevebj1I3ulQBJ6CCwyw9QF1TMYDg5iijgPR+mRAQ4uvlLHlQnqP1Box/F/AQQKErMN1NQ/OT7n4/BN+57f/MY9OZmRaE7xDohBSfqPxvBVom7OW7c0NEsGsKDk/O0PJ6LyY5wAAIABJREFU2DJcVxW4OHg1hECZFzGs8571csXpak2H4NWm4u7DR5w/eAedzRDKkJeHERjGGPLCINWwOIPH+Z662o9hR2oVTnF7lmWjrO+UGR1je4dzic38usB8QtOmFP1pAfA28XDKIjgyjoiDH263Dj/076dQzBMHDXsVPY9DkJcl5XJJOVsgjSZINU5Wm0LI0yJv+kxfp5k23SCmjO/02JsW+/RcACNYMDXaBBAkatA0zJ0+nozvtoeb6kCkGbAhxG7j3W43jpAMIRBsw7LM+MmPfgdhLdevXnDndE1bR8Wmvu/pJhPmbh9vhecJIbDb7ZiVC0yWM5/PefHqKu5wNhrQ2WrJ5rImDCdtlmecru6SaUPTd+Q6p3Xw4J13WWaCz77/axTKIFAjxOr8FisMoQtsrm84uVNRFAvkwMNKFzPRfhK5MclWpfrDqN4iJdZ2Y2EVDsCAGObHxHpOexRuJDhWSImz/mjBHRnPJL5Px22aiQ/DYC4Z2cQ+xnYIKZEmAxdrVEZn6DxDa4frIkLW9h3zWfFajWb6eeJolvhekZF83FDmA0ceJOU2R4NzJ597+j1THHyojR3+tjaeo2moB4fZRtPHxPB9/XCNmqahsVEF1ktJ10dI24dYjE+vp3B89smPePL5Z6yWM+qLa7QqWc9PkDIMs3K/nl3/VhhPlmUs5wuatqepYoLa1XHE+aKc8eL5M2YP7nP9KuZEMsByueT+/fOBfwaL9QnbV085Ob3D/VXJb/6j/5OZmpFxmM1ZzhSL0zUimxGGFuL5UtJ0HfP5fDSgRIqccrFSqvJ6oS/t2od8QQgxTmqb9uy8iWpyG2AYOW0c3u8bQ7oxbBsMSIhYz1ISqRV5XqK8QgdFOZ9hvEL5DiMsVb0fjfl2Mp4+T2whMKNRpdaHtHloU47eYworJw8wZQ9Mv4/Wmq6vRgOIn+HAB4zh7jEPcOqZY7jbHeVXIQTatmO3a9jWHnSFLgqkjoZt9MDuEC6yK6TgV3/t16mrHSerGYvFgv1+zx/47h/k2asvmBdz3Nue87S2oy0917s9ZXbC1eWOR/cfc/3sFUWuUf2eH//w1/noo/dj09tyxqebikux4733vsM79ROMDYQu8NWrSx6en/AL/9yf5ge/+ctkBMK+YjlfUxQz9m2D6GuUdFRzWKodrvgFepFBJlBSoWYaIxxVU7HrXtJ3jvXyBHqN8tDse9rKUhQlZlYR2h3WDwvMx91fSokUCmsDRpQEGQhe4YNCkOGdomsk5IoQwOkYHnVCoQRYqQdPEh/3o3KNOIq1TdBIqeidpxCKs8UihjV9lL+g6+ldS/Ad5/feYXvxjMopgrMs7r6Lv3yBGlgOUQBxGBcpBda7qLraxrqKRJGZgsxkeJu06HroZcxRiAYcgsB1PVXYD9MkhtGPQqBMDMP63kHQOJuKt+B91MIrioLFIhtESFKfUezdSnA3OKRbsyoNz1495e5qzvOrT/neR9/lb/wXf5vv/sGf5+JZxer0Ha5uWpq6Y71ec93V1HXFvfvnvPqVv0m53fJQNJjGMF8uyWdzvnj1HK0WuKBQ8utN5K0wHjlMOLh79y77jWW5XLLZbGLdYr/hvccPcb4bOx7n8zmElqbpePHiBSZc8vLlS/abK05Xc5qup2paAhKTK1anS5r9huvr6xgH51Heqq52uP4Oai4wmSCNDj/ArYY8KyG0CKHorSUMdBQfbCzqDYXAlCxLoeP0ZngtDBs9C2lnVmz3sU5iu1gj6rsOrxTWOaTMCEOrQ+zWHoAFIRBDJtunnZ1DFT69l/MB1/dIqSOlyQbycs58saKpt/TWoYXEqDiBOrELGAYXj7R8N3yXIMB7bLBI4iLu/SFHFEIMnZtDFT/PCJ6hsfCY2BrlgQ/jKBN9aQx7hTjKkab5VLrV1Q5EQVnm6CxjNpux22x5+vwF2+Y36V1O9f3PULqkLOY8efKErq/R0vPk8x/zsKlGLfH03mkYWmYKXPAo9ZYbTyyKWZblgpv2kmy25qbfsFgscC7WetYnC7bbq4G8aPBEWn3b9DRScHVxwebyFS9fCl4804iuRpkS6zpa65DaoAYlma5vwMck8ur6gvmyBXKEkES95ziBTKDRKqcXHudjW68WAhRIHRDyeGJ1CMN4D5/g2ZQ4h6OcZ1wYKrY0aK0wmR6Jj871EAJSHCBrJabh2yGBV2YQ+RAg7ED7T1T9rgECWZ5hdAQX8vkJyzgfku3NhkwbillJv40Nd1IqXIjASVmWtHUqghoEgt45lPBolWGkigYFYy4SXzouq1jLScBIlMYK/nhixNRI4IDadV13JCiZjulmVGYGZ2NYd311RTCSunM8fPwBxeyc622PF5a75w9YzVfU22tWywKj4cf/5AdjYbrrurFtIrUzZCZjX1ckjYk3HW+H8RDVT/o29phUVYXWmvlsRlEu+ewnP+T0bBW/VBk5SDfXW0CzOpHsO8uH3/tDfPTBe5Qq0Fc35NKyefklv/3rv8yXn/6Yxw/PWS+WbG8uqfYVRmnq/Z6Xz5/Tr5+RlQKp5iAkfS8JInaGWq8R5HinsbbGZAGTSbyVKBUITh1f+BBHQsYF5ylmJUK8DkXHBRGBDynBdRLXeVxfI4Ziocw1Phx2dTks1IA7gAkyi2fQxftE8EgiLcUJEc+sjPNUPQZlZsxXit7CtvKoUKNNidItoncIJfFdZA50TXv4vNbF2hYHwfYu9CgtRgbF8GS8H8RYhh1diUntaGCsa63xVr52XqY6cHmeH8Hb6Tnp7zLXtF2NUYLL7Zbi9AyE4ed+/o9TLu/x6lVFkS8p8wX1doNrVpyuMp5/9RNefPUTHqnDKMvbvLmpTNjXHW+F8UghWa/X7Dct6/Wa7c2eeVbESW35ijt37mCMIs9PQGnaLk57bnuLubhGGc+2hcYp+r5jc7nlwZ0l737nexSZ4ebqkl3T42yHUYqynBOsY7/doqXk4vIZi2VOURqkTA1YcVBu1waUmiGGKn5EtQJBOrx0yHAcVgQfxgR+6iGmCXOitkgZC5oEokxuU+H6BLsKcDpSGUQAEQgi9q7AwCAIAWwsKPfWR5WBINBKUGQ5Rmm6roEQQ05rJVoWqDwjn0PReNyrSzrrQWYY4yEcQs6+70eeW0QVTdSpFlE80VpLXiTW9FD0VUnLwNL3EYmT06RevGlAl3vNM08Jurf7gNKCtt0WpWSkWglBUJqbukPmc5pe0njJPJ+z21cE23Hv/ITq+hmf/fj7iHZDp7sRFJkN9cRkPGHQEJwO1Hpt3X7bwhZCPBZC/K9CiB8IIX5bCPEfDPefCSH+nhDiR8PP0+F+IYT4T4QQPxZC/IYQ4o9923uEEFBCo4VkvVpR5gVlWUb0pqk5Ozvj6dOnBKnYbDZIGWfnCDSvLq94eb3n86cv2TaWdz78Lh987+cQ2YKql8xOzvljv/jP47zgJ198Rd87lqtVJC/uK5SAen9J1+/xrkaS9AQU3kma2kFggC1jWOdci3U11tVHO2W6Tc7da6zfaU3EWou3Mbn3rofg0AK0DKjgcH2HcB3YltC3+K6Cvka4FhEsUtgYrnlHsD2+awh91GxztsN2PVpnsXu0C3EGkcwJeoaenbA4fYhUGVXdgVSYvKS1bujtWU6QwwMSFw1AxEG83o1CLaM4h2KicJo8sDxmTvt+DHdTwTSdn9QtWpbl+Ni0PWPq5fE9SgbwbpBp7qg6ixc5+95higXbfdTym88KFoXh2ZOPef75x7xzvhhznTzPR+NJAEXKw25r102P343nscBfCCH8qhBiCfyKEOLvAX8W+F9CCH9FCPEXgb8I/MfAnyZqF/wM8IvAXx9+fpP1UNf1SINfruZgYT6foZTAOcvHH3/Md37muzx99gKdr9A6Y7Yw1FXH2f1T6mrHb/34MzrrmJmA8S13Fhl31vd4+Njz5ZMvqPY7WhtomkQ6TBMMdri+wvUVVmqUKQBJ2zq8s8igybLUUzLMJZUxPxC3PI93Udoo/i1iZ2KQk2LfYSeLsHQcUKuFJNeKPDN429E0Fb6ro4fxUeUyjtOATB/anpUKcQ6pdZHkKSAgEM7ircWYOZ2zWBc1ALTJcQhElrE4XeDO7vLq1YsIN8vAxcsts0KzWi65ubnG2S5SZLRESUEIDh8kQoShuNkTgsO5YWEPP6UwsY7lHDpE1rmUUZgRYug5DdmmnvlNHmdaZB0ZETJ64v3NBleUNI0lK89AzWn3jvPzB1TbGlkUaFfz/d/8VX79//m/eP7FP6Fa5KyKCUAw5DxTI7YTAcafynhCCE+JklKEELZCiB8Aj4A/A/yp4Wl/E/jfBuP5M8B/GWK88g+FECdCiIfD67zxUFIjAxRZyYtnF9w5OeN6e02Z5whizL+rK959912+evoSaz1dbzHZAmOWfPb0OUWmybctzy43fPjoPifrc3y34/NnzzHe8t6HH5HJwNPPP+HlqytO1zOKckZVNbBqCa6m72pCUChZEISkayy2jyPayzKPRkFACIcxmjyThO6Q1MZqvMfaFII4dGZGYfQpkpQukreR3Oi9JTbeWJqm4vryAu8sIvRxCrW1EHq0ihe8yNLuvo59TcpQlHOK2RxhMorc0HaO1kUmMYHYWWoKnHXIxPA+v8fNZks2nOu67VB62FhsR4fHSIXWg6hjCATixqGMxgg1LnTneoIdvJURCD9IX+k034hBcHJo/biVT0x7qPq+P0LgkjeY1qVc34DM6bqe2ckZGxfHwuyrnquLa5o6kCvDg5M1V18+4we/+Wv4ruI7j++zu3lBli1GsZJEkwr2QFwV4ThX/f9sPNNDCPEB8AvA/w3cTwYRQngqhLg3PO0R8MXk354M932t8QAsFkvqXcfZ2Rn1vmZzfYM4WXB+tuLVq+d89NFH/OCHvxO9U2tpW4eURNavyuLMFSd48vwSIQSZfsh6VpLNT5mpuAAffQA/+uEP+Lk/8LN88emPaNuWDx6/izCSm6tX7K53zFbnPH48Y7U+QXhBLTz77QbbG05ODMH2QNQ67vsW1x4XPuMOnk74gKwNTOTYvOXGhaCUQMuM7XYbWyCCZ7PZcHXxihfPv2K3ueb8ZBlDk+DAdyghyI2iNQbwOG6Yz5bkeU7X7rH9kuXqBCFU1J92njI3SF3QOc92u2e5OsEUefy9WHPn/rtcXb7ANjVn53cJtuby8nJA2/bE4KakKCItqmk6ELEA62wTFV5TF+rgheIJsRF5E5EK5V2sAxkjh9dpjqZIpB0/hUtpdmwqkKbQMIVyBQHf9ywWC+q2RYRA1zRgBSp4dpcXPPzwO1y//Ipf/od/n+dffUYedrjQsZxn+ImXS/1INvgxXIxo3++D8QghFkRxj/8whLD5Bot80wOvkbKEEH8O+HMAi7O7dE3L5mbDcnHKvXv3KLIcb9uoPY3j0aNHGGPY7q9ZLO/iQ8P1pqIo5ljfY4PEBkndBTa7jqtdh1GaTGZUfY/MF5R4Hn34PZ48e0ZeLjhbLbi83lEYyLRG5QLX1jT7DWU2pyyXrNdrnj3r0VoQXB/rIb4GH2fgGDk/4n3dbh0YT8AbHgsBut6hMsNCrhA4XJ/h+o79zRX7m0tePH9GnkmKLPYnIaDtPb2UQEAoj+9qNoMHMHnB6uQO67M7lLMVoQ1Uuy192IHO0aYAcRAmbF3ABQnCIKSB4BBCIweEMIQQpXpti+ziOKkwXGTnPZkWcTR97+IEwiG/KYoCcyTWP+iED3QXpRTr9Xrc8SOD+tBdGkIKCw+gwog6ytRqren6mG8hFIKAcj0zXXJvvYBguPjqcz7+7d/g2RefYOjJdMC7BiEcZ3fuj+M3Izig8cNUQmvtUAb4+uN3ZTxCCEM0nP8qhPDfD3c/T+GYEOIh8GK4/wnwePLv7wJf3X7NEMIvAb8EcO/974YiK1ksPGWWR2UXZzFak+Ulz1884fz+ObttxfX1NUotub6+YbvzPHhY0NgWJQ0g8RI2VcP1rma9mrOYn9DtPC7UGJnxsz/3R/k//t7/hMg0ppxzfbMhbLcsijlYSbVtqXctLxbPWJ7c4/zuA/pmjzM6jhURLgq7qlinSdvCmFAjCBz4W9PdTfhDkTQ+Hzrbk2lDyCS2dbihOJli8LZtkR5UMCgt8cIRpEAPheUgerq2GxLxQLW7pq42iGDJjUa5AH0VO0vzOUFJXN8hdaAwmr6TeDRBaLyQgBxbH2SAbNC+c72lDS1IM4xdCZGUyoE4KYRADEwLrRsYABPpo4h8CAEhD+hjou4kaDiFtcnbTAmpyaim7QlCKpx1BGsJUiN9wEiLVg6vPJubS5786Id8/IN/TLd9yZ2FQHmLwDKfz8acavr5b2tOfNPxrc8Qcfv8z4EfhBD+2uShvwv828BfGX7+j5P7/7wQ4r8lAgU335TvQEwkF4sFwQb6znGzv2G32bBazShnBSozI8fs7PwuCEHVWBAGJQ0hCGyAOIfFs2t6XlzcMCtytFyyLJfsby7pes+Duw959MF3+X/bO5MYy7Izr//OdMc3RERGZGZVpatrcLXB3bLAcrdaamQWSAzeNCyQegMSYtksWRh601uQWCIkkHqDRLfYIFiAhMSmAYkGI9y226qyKyvTWc4pxhfx3rvjGVic+4bIqvRQLldESfFJqRe6efPluXHvd8853/cfHj/8AWeLlrTcYZrDKEsRSkV83XJG11T0tkHr+FbVfYIiQ0kQSiGkQgdBt9WH2MwuG9ZcbMqvdKkFQlx2vFY6QScJXddQ1y1910TzrTQmUKslIThs19I60MLjBegswSQaK3p88GhtSKWi6xzN8pzj5wHvWhyazgl2bt1hPEqpWk/TViTkFHlCaBKkTkFprBOEPlovSuFxRJp0wNO1PV3fIFQAEQX0nXME+vVy1RgTCWQ+GjDXbUPw0aYliiDmqDUKO6z9irbL+avf1fbx1d+9uNrpUWiTY4WjbWqkVORZzqKZc/LoMT/8wQNmp2fofkGWGxLd49vo+bSzO2E23+y5NhSLlda3/uhy6YX4WWae3wb+HvBdMfjwAP+UmDT/XkQRxEfA3x3+7j8D3wDeByrgH/y0/yDyLwTLZY1t3RrZHELg/PwcraPdopeK1+69yYMHzzl8fsxovM/x6TnFePM2d0FQ1S2PuyNs1zA/H/EX3/4CppggWjifV7z9pS+zXFywqC64tTulr06oLiqU7vAIhAlY17K8sMwMpFmO8Am9cLihYmaFpFcKkW2EC+MYPIjVzCJi03Ggi8b+z2aP5JxDpAYx8Oqjq9lm5tJaR0Nj25IoKDMDRgKOVriIZsgEve3B9+g0RQkPruH8tKapljih6Jyi79u4EU4LUqVQwuNti0oKTN6RLAsqzultjw4WQU8QFpEohB8ETXxAotHGoJXEejBKX6JYq2HGgChkGeS2zfxlB4iVtjhsEmdFQFwdX80y21CnTTM16hqo0Ee+l3HkGo5PD3nv23/Khw+fUOY5I+MQzkbnbE0UkRle2EVRUJblsK+Sg9NcHEtctv1i1bb/8RO+4a99zPkB+L2f9r3b4QZRiizLsMIR1qhlMfQIolpO13VkaUFdtSzrCp1a7OkMG6CtauxoRFlk4Hsa1yGcJdiWcZHw1mu3KcqUH/3ge7zxyj7v/IVf4zv/71t0FlTdUcsFUitUYtDBUfctF/NAU19QjscokzMqbpEkGUVakmclUupLFaOYFNGyb3WDtdr4z0RY2mVOfNd3dCZBBB8xZVLR1h1V3azR4K6tcFqQJwKjCiQR5hJ/HxnCO9q+w9lmaFSGiEFrF3Q2MLuoWVZznHMcvPYGu/t3QQou5guMNqRpSZoXJEmKbzS4dng4W3y3lgnCuUAQbsABaiQSxabPI6VE+5VcbpQM01pjXfwOay34LZkuGwYM4Ud5QavP7T3QdksAoHMgUSA9Sgg0IPuGdnbE6eMPyBFkQQxODgvMWFOMcnTiaLoWQrZVKXQoJVEDL4iw6ildcxp27C5r8jSjdi31YG+uTUKeZzS24tV7r/Hh46dordm5tce9e19A6QlaZXTtIX3TDlRiQWIUzgaqumVu4MdPDpnmCdnBlKQoqdqOu6+9zv/8739ClmUcFGPyLActMKlGppreNjR9RdsG5oszpEoZlxWjchd2IDMlJkuwW32IFd/FcVkyavMQxOTZhv93QtK2g1K877FdR11HdLNOUnZ3d7k47bBd1FazicYoASLCXnywKC0I3tF1Fr0q6Wpo+i6Wwl1DdeH58NEDlnWLc57p3i2C73FWo7QhLwu6eoS0C1xjsa4ajMA8Wg/I6AF2Y60lqChO4oXfqoJZpN/4+gi1Ki1HAZVIB/B4FwYulL1Ealslz2rPsWpirqpr28UCIQQexaJpSaQjTQ1KWJrFOa6Zs5MniDTOIK1t0DiytCBNFdI4TGqoF/ZS8ki5kbn63CTPqjz59PQZbdMzKorom5Mp2rbi+PiYL//6r/H+Bw958uQJzrko1tf0aFWwu7u7brKummht39E2HbiGMlV88KNHjNI3uHPnFU6ePWJ3tMvRySn7+/tczOZRYCQz+GCQQdG0C7q2RiZgHYS+x/YK23mUMCRmhJYJjNJN9UepiP1aLdO22hgRurNBIKxuWjLeoakWdG1EDfiBTJamOZmRpNJjmzkni3POzxuE66NbQJ6SGk1VLdawEryjsz14j3Oepmpo+xBnPyE4PnrO4dEpVd3z9pe+RDEa0/tAqiRpmkflnrak8w2ujcQzo1eKNgLoWdnKy8jAIy82zM2yLFEmoWmayIciFgUCUBSjOLsYHZe/zrG7u7vmTa0YratYJcqLzdJNc1iBVVTLJSELTEcpwgaqi3OE6yO9+vAEFwK5kahyRFFkIKI293Q6JdXRr2mzfNxIjzlryU3BtU8e7z3vvvsuWgq0kgTqQTGn4dbtA3748AFNp1HpHi7JOXenzEKNS+BoecIbco/JuGRUJFjbUC3ndIMYfNX0LE81v377Lk9cgg+aXsSK3l5iOH/wQ5JdR6YVgUCR5YgQrfmKNOfieIZCEoRispeTqSUynCCEwiSeI/XOhsbdD29SBEgIeOraRltHSRQQF+2gkxaFA+v5LPYTtKbvPcqUYKLjWlFMaGY1X3jnq4x3nvL+u9/n9NEpr796l/FklyAUs75inGSYILAuIK3DAEnokKFC2jlOeFqhGSUJvZpwsXjOk6Mpr5icUQmztkGKlPTuF/HlAWeP7nNxETBGE0SNcpZUOopM4YOkw9J7j3WCRTNQqZOExloYZLqSLNLXExP1IPSwHFXdYIAlBBezxbBciy+lEAJaDr2kqmOxWKyFIsMAEZJo8FF5R7pHHOyMWS4ayuJ1zo4CMrvLkjNOW4+fJCznp9R6QZmXZNNb7Iz2cA7mpx217SKUb9DRA0/nBInSJKOE1jvQ11yr2odAUYxIU8Pi4nw9i0RFxxmLeRT72NvbI+iMZ8cz0iTh2dEx+7cOuH2wj+1bZrMZVTVHSEdWFqRZBipqCdy/f5/q5Dnjr3yJ23u3ULKhbTu8a+jK+IbE+7hB92GtoTYejyOCW0awo+ttNG5aLDk3ZwRV4bA4wPeD+r8xGKURQGMbXBMbo5mKUlWyb+jaYVmUaoTWl96qLssirk1K7n3hV8B1jIbZZvb8GW015/DohMQY/DSlbnva3tEtKoz3pEWclUyak9HTeUvvGcDXFms7bNfRNTVLlWB7jxjsPtIsZ//ggJQWdwEsHWJATcsNUQOPwsuNDsFqzxL3fVtOD1ux3acRWyDXS9VKIdbLtLIsLzVRt3XlvPckQ7FGCMH84mKtL7ea1Z4fXTCajNnZHa+/4+LigiwdR1GXriLLkmHlM5TptSLJUtIso+5apLruyeOjRpZJc1w4p297sgJ6F7DLhqOjE6z1nJyc8vjZMY8eP+XV199kuagpi4L79+8zKnNGRcp0Z4xSUcvah0Dbddy79yqz42MWiwXL5ZJ+oul8hN9fXFSMMs+oKFB5Dj5Em/QtI6nd3V3aPrrUyWVN0XYb6db8DBmieHqQASlBSYccbObvTkvsQLWQMibp0eGM8/Nz+qbF3H2dNE3X+4Z8GEPcY0uCDDRVh5CagzuvoZTi0QfvczG/oCwCLT2ToiQ3CTorSXygD45msaCqTlHa46QHGSnImUiQSuD7hq5ZkBa7JElkrQYRS+fT6S6iWzBvzsFmSD+o0ogImkUoNGZNnXgRui/ERjVHGn1pj7c5ZzuJLhcHtpdqq+Xw9s9regOOldve7CwChkMIPH36FCVimT3LFVliQAT6LqofrfaoiVYRDeId3q9AsJGKIoQhyxO47kzSEALLpgUZBcsxhoEphkkSxtNdnIX3vv8ejogaSKVmp5wwSnPMZMJ0MqLIDG23pOsaUinZ2d2hnEzpukjBHcnAyekMzjv0Xs7urQMW52fM5+fsTCZkWVTLkQrwAYiysdPdaEtvsbgg6Zqa87Mz+r5n6qIyphzKnXK4sVVVU1UVh73lgw8+4EcPH9I0zSBeknFwcMCdO3eoz6PNY1VVtE0fdQaMQYpAm2ZIPMvFHOktudG0XhF0hioCpiiZtWfozkHwpEIjpUeGgA2SPkjaLrpLaGOQaYpC47yjWcw5E4eY4oBiVGJMSm8t4EiTlDQvqbMMXIbo+qglp0TswgeBEDo60/mIjt5uaIot/o5WG40CITYogW2U+XZhZfW5ze3ZRnRv93uWixohFOPRDuddzXS6gx9kgifTnMl4B+cbemfJkpRyp0CKlK71XCwXFJlACY8SIfbv5Ir7JOi9AKERIn3pc3stkkdIyaKuaa1FBDA6o7OeznqyIsN7wYcfPubB/Yd85S9/jQmCRw8egZBoBKmJVIGuc7jerp2fL87PWSwqqrZhnGe4TJE5jc4CVamY3trn8NljbHW4Nqf13jMqS8SAcYpLtDlSG+4c3Mb5mOhNXVHXS2xTUxcFVVluVDN7y2KxYLFYMD8/jzfTSN565S5pmkYZXn5AAAAN4klEQVQs2/yQw+aM23d/lTxLhwdqsWZRWmtp2p6d6ZgkH0ekdd/hZMLk4DW87RAEbusRtutZLmvmTUMhBZNcUxQT9sqM+eIYhAMhCNZhfYP1IEjRQnJ0dMS+kJQjg3MRBJummrScMN3Z56KNiHPvxdAc1vgQZx9hEpJw2cUhziaXrd83M45dn7uhWIcBhe5YsU0ZqHtpalj56ji3ojDYNSLBi4g2nw6zQ5ZF863pdJe9WyPqZobtAs5Hxm2SJAQfe17LRc10VGC0JM00OsnitUkDKsEFRdcO1toviWuTPH0A31mkiLCV3kZhQykNj3/8lLt37jEZ73D87DnWCUQQ3Lv3WqQLpwqlJWmacLC/w3RnglKK49mMw6MTjDScnZ3hEsVeuo/OctreopKMznuKQRJ2Pp9zMZ+RGIVRiqwskUT9Lus9wUX1zMzoWOFSCu1qZO9ozhfx7Tg8J67vEV3Dq/sjjkLNbDbj7Nli/UZO05SinLC4mFFkGeOyGEq5Cu9DtFSRkqq15GmGNhm9qMnTgumewrqOZlmhRtHlurlY0FcNwvZ0rqNdLsFVGG3obU/XNgQ6gsxJ8pydUc7O3i4nW1K4jkjmq7se5Yj+NjrFoQlBYqRBKE1wIKRGKoN4wbQqJtDlCtVmSbahGjgXKRTby7Ttnk4IG0tF2KgQbTsyjMYT6qrHBU/vLFVVRWH9PF/PavmoRInYz1lWDV1j6btBMxuPYCXgGAhSEZB4L7FBIHRJuP57Ho+SBqUF9WLJwtZoqajmFV3nuXVwm8OjE9564y0+ePgjEpPx9ltvcevWAXVd8/zsMV3X8bxZoiRMpxN29nbRJhkg5zl5mqB8x7JumJ33TPWIpChptiDoro+WIKmJhlFpmpAlCUWR0zQtjW0RMomNxTwjS3No3FZ33CEGzJmREh0UP374fmRcKkmWmTVCOFGR0vDs/IzpeEIuRwTnY4NVqaFpmTC7WEDnETIgZII0CpWlCOtwMiXIJSZLSZMRKkBoW6rZGecnNdW8pSxF7PUE0EqSaMUoS5mUGbtlxrxNhl5IH/F6MuLxnI/kOaVTOmnwQuGlQkkTyXFCI3UCbgPo3JaNgs2+58Vj62WZd+t/u0rg1TJulTzbwoYr+5DN/kcD/SAMk9D1/RoNXtVzjEmQqsf7MDiANwMqYUSa5GhZDfcuUkmCcASZ4ILEiSRiAfUvYKv4WYS1DqTAJBln3Tn14DxWd9FP9M233uE//rs/4jf+yl9lOp5wa++Axeyc9/78+7z55pvoVHP71h7jUYZ3lratCZG5TJ4WVHXLndt3oK95+uBdFkctB6N32N2/g0wyRBAoJaIhUoCuabBdS5YO9hhWIILk9v4tkIq66WiamrPlgkJ26+TTa/hJtCrv+oad3ckltqTzEQtmFQgvGOUFWR7F4KtqQdcHhIlqpybNmezsrkUqhBAEL+jrPla+hKFpLd56lJfkJiFJU8odhTaS6e6ExfkzpBYoGY27lEyRQFMtORen9EnKcjknICkmE5IsJ5EQdADR016kIPSAG5RRg4AQbTqURg0+ONtaAFpviGVhw0n/CDbNuh5FRFW7YTkWWKkTObI8vTQTIcL6vK5vmTdz2rZHqIzRaESWjjDJMXfGJc8PLdo4mqZluZxH7x0UeTYiy0qMzsiy+NKWWiOUjHoQJkPpAqFyuqDAX/OZRw7lyZOTk1iKDILz2TzqFPuIb/uNr3+dxUVc9rT1kjsHt3n93msR8jGSeNvx9OlTJuOCPE3p2ggXWdY1TdPx+PFTuuqcnSxnbzLlO99/l6988R5BaYyIwNOsKNebVC0Ny4s5SolYRJCC5fwCF4h9DG3I0wTfO7p+4yuztky0sc/UtBFTplZWG2FwxRSDyqV3tFVNEN3AIUkJStH2Dres0Cbh4mKOMdGxzDlHcB6pFNbFAoYQCgssG4/TitSU6DKADPjlLMoW13NS6xkVJsJ6TMvkoGAhNGLgJtXL+CYW2YBs7yzWQx8gMQlISd02CJ2RDnQDBWtbkNV+re/dGmC52u5s8G0bY+O2/aiU7WrptkIYbKMK1uiGIZmm0ylN0/P8+XPefONXefLkyYCvi8vB09NTfGgRMEjvFqQqi4IuPgo4puMEnRV0QeGEQCqDlzoyjp3F0b30ub0WydPbjqPDZzi7Ut+M8JP1EicrKIsxr7wCiTaUWU6R5+AcbQudCiQ6wY9KRkWOEnKwLFSkWnBWXdC0NbZZ0hlHEkpKqVh2lqBTXNfjnMT5Huc0zinCcAOUULjeDtZ9fhA1tDjX4waTJFhpP0f5Tu89nQ10NiBUQlCKsBL7WCGudbK1no5Q/W1S3SqEEAhlQMZGbbRFlwRiQbAcT/A2YBuH6z1og0wTkjwh5BqdKqr5IbMTh7U9nY1l9LZtqeoFIt0hAA5J12tMn0TT3xABqhFiowneQhD4EKt56/K0/KiK6Ys8plWs9i+bUrO/dM4KGwiR6xSLCNt4tssqq4eHx+zt3WJ//zbGGJZNjW07mkYwH6wkTSJJ0pxEmyifNSDxjVQY2aPSDGky6KF1QO9RUoEpSLOU2HL++LgWyRO8j6xHEVX3o0qLQWuDFhKtE8ZlwbgsSZSK0BAfLdJ9EFgVSLTBpSZqDdhYdetUR99HR+ejoyO0DFShJhOW6d0JjXWk5YjQRsLXannlekvQCpQCHdVtCAHpRPR9ISCcwskh+XxMnHhPo+ayHXo1yiTI1bpdBliVa41BbAkUBjZv5yDEmif04hs7DDPXqsblnAOvQGqkEgSpCdJgQ8BjmO7fRerAsppTz2f0NqDCoD7U9Ogifp9zNoqIOAtEZqVKElqto2hhF697NYb1UvSSntxHl2ar81djffHnF8/fTrZtLs/HfvewP+v6WCwQKHSScXz4hPvvP+CV1/aQMjo9JEmCwiBlglYZWqVoFVBpQRCGNlgaS7z2VKBNig0a/xNS5Fokj9aag/3oDSqVQeoErRO0HnS0ejvAJwJt3xCcJZECJcEkklZsNp192+H7KA8b6o55ZYcydMe4zAhI6rZDZwVORKc4cTb0DwKEoYvddQGjQbsUla4AgxLpB7WaELvtwUbbipWVufArkcLoVLBuBG4jg+VloT/YQO9X564UQb2PiOE1sjisloeG4KICkNE5WqUIlSClpg+evo4PVBAJXibovET3sV/jHGtfG+F6nLd0QRIGC3WXGLwJKDn0h+RKPzvSwUWQBGejh5LazBrbM+fq5+0CAFzu4WyjpbcTY1ujbfvYi+dFN7/Boa6L2geLxYIfP40OgkVRoI3fEOx0En9XMot7nUTgPNSdpe4CvZexiig0Tkja3vJy1bbrkjxKcWs6RcjhDaoNQhmU2riNCT+4DdiORElMmqAkONeToLBdQ9NWSN8jvKCrG6rOcnS6ICgT/WiylExpXGjXZcmkKNe/3NXD7HxP33v6ViKBPE3QMhoPCxHf1Csj3+B7JMMMIQRBRgFHZRRaRtuPdc9jJYChJCp6Dg8PhESgECLu07wQqEHg0HZRnUYJjQgOMVTN0sTE5RMJiUnRKoVgCCEqAvVBYIPm2fEZk0KQjXYjZq+qcH1Dbx2dc7jFnM4HagdOpfgg0EYSUo22LXr4vUS137AuxweiSZb3H+PusBXbybMS/niRHbpdidv+fPH4KlbHbe9IDJHOLVOOT094cP8DTs8OefuLr0dLTFfFIoMDlUbdBSkM3oNKChbzBbN5Q+slOi+QJiNIQ+f8QBl/OTBUvDiwqwghxBGwBI6veiy/YOxzcw3XIT7ta/iVEMLBiwevRfIACCG+FUL42lWP4xeJm2u4HvFZXcO1cIa7iZv4PMZN8tzETXzCuE7J86+vegCfQtxcw/WIz+Qars2e5yZu4vMW12nmuYmb+FzFlSePEOJvCiHeE9GS5JtXPZ6fJ4QQD4UQ3xVCfFsI8a3h2Mdar1yXEEL8oRDiUAjxva1jn5pdzGcRL7mGPxBCPB7uxbeFEN/Y+rt/MlzDe0KIv/GpDWQbIv5Z/wEUcB94C0iAPwO+fJVj+jnH/xDYf+HYPwe+Ofz8TeCfXfU4Xxjf14GvAt/7aWMmilf+F2Kn8LeAP73q8f+Ea/gD4B9/zLlfHp6rFHhzeN7UpzGOq555fhN4P4TwQQihA/6YaFHyeY7fIVquMHz+7Sscy0cihPAnwOkLh1825rVdTAjhfwE7IuqSX2m85BpeFr8D/HEIoQ0hPCAq2f7mpzGOq06el9mRfF4iAP9VCPF/RXR9gBesV4DbL/3X1ydeNubP2/35R8Py8g+3lsu/tGu46uT5mexIrnH8dgjhq0Q3vN8TQnz9qgf0Kcfn6f78K+Bt4C8RvaD+xXD8l3YNV508P5MdyXWNEMKT4fMQ+A/E5cDz1dJGXLZeuc7xsjF/bu5PCOF5CMGFEDzwb9gszX5p13DVyfN/gHeEEG8KIRLgd4kWJdc+hBCliB6tCCFK4K8D32NjvQKXrVeuc7xszP8J+PtD1e23+BnsYq4qXtiL/R3ivYB4Db8rhEiFEG8SvXL/96fyn16Dysk3gB8QqyC/f9Xj+TnG/RaxivNnwJ+vxg7cAv4b8MPhc++qx/rCuP+IuKzpiW/lf/iyMROXPP9yuDffBb521eP/Cdfwb4cxfmdImFe2zv/94RreA/7WpzWOG4TBTdzEJ4yrXrbdxE18buMmeW7iJj5h3CTPTdzEJ4yb5LmJm/iEcZM8N3ETnzBukucmbuITxk3y3MRNfMK4SZ6buIlPGP8fQmwm7SapRKYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cat_image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/dog.105.jpg'\n", + "response = requests.get(cat_image_url)\n", + "img = Image.open(BytesIO(response.content))\n", + "plt.imshow(img)\n", + "\n", + "headers = {'Content-type': 'image/jpeg'}\n", + "response = requests.post(url=addr + f'/predict/{model_name}', data=response.content, headers=headers)\n", + "print(response.content.decode('utf-8'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Alternative: Deploy Function From Pre-built (container) Image" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-20 10:10:41,471 deploy started\n", + "[nuclio.deploy] 2019-11-20 10:10:49,626 (info) Function deploy complete\n", + "[nuclio.deploy] 2019-11-20 10:10:49,632 done updating tf-image-server, function address: 192.168.224.70:31541\n" + ] + } + ], + "source": [ + "# Declare model server\n", + "srvfn = new_model_server('tf-image-server', \n", + " models={model_name: params['model_path']}, \n", + " model_class='TFModel',\n", + " image='zilbermanor/nuclio-serving-tf-image-server:latest')\n", + "srvfn.with_v3io('User','~/') # Add v3io mount\n", + "srvfn.spec.env['IMAGE_WIDTH'] = 128\n", + "srvfn.spec.env['IMAGE_HEIGHT'] = 128\n", + "srvfn.spec.env['classes_map'] = os.path.join(os.getcwd(), 'categories_map.json')\n", + "\n", + "# Deploy\n", + "addr = srvfn.deploy(project='nuclio-serving')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/demos/image-classification/01-keras-cnn-dog-or-cat-classification.ipynb b/demos/image-classification/01-keras-cnn-dog-or-cat-classification.ipynb deleted file mode 100644 index a5d3c2d4..00000000 --- a/demos/image-classification/01-keras-cnn-dog-or-cat-classification.ipynb +++ /dev/null @@ -1,1288 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Image Classification With TensorFlow - ML Training\n", - "The following example demonstrate how to build Keras and TensorFlow based image classifier
\n", - "starting with data exploration, training, validation and model generation
\n", - "the next notebook demonstrate how to automatically create an inference server based on nuclio (serverless functions) \n", - "\n", - "This demo is based on the following:
\n", - "* https://github.com/tensorflow/docs/tree/master/site/en/tutorials\n", - "* https://www.kaggle.com/uysimty/keras-cnn-dog-or-cat-classification/log" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "fe76d1d1ded592430e7548feacfa38dc42f085d9" - }, - "source": [ - "# Package installation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install --upgrade git+https://github.com/fchollet/keras\n", - "!pip install --upgrade tensorflow \n", - "!pip install --upgrade numpy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Note: After running the pip command you should restart the Jupyter kernel.\n", - "# To restart the kernel, click on the kernel-restart button in the notebook's action toolbar (the refresh icon next to the \"Code\" button)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Import Library" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", - "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mkdir: cannot create directory 'model': File exists\n" - ] - } - ], - "source": [ - "# This Python 3 environment comes with many helpful analytics libraries installed\n", - "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python\n", - "# For example, here's several helpful packages to load in \n", - "\n", - "import numpy as np # linear algebra\n", - "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", - "\n", - "# Input data files are available in the \"../input/\" directory.\n", - "# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory\n", - "\n", - "from keras.preprocessing.image import ImageDataGenerator, load_img\n", - "from keras.utils import to_categorical\n", - "from sklearn.model_selection import train_test_split\n", - "import matplotlib.pyplot as plt\n", - "import random\n", - "\n", - "import os\n", - "import zipfile\n", - "\n", - "# Define locations\n", - "BASE_PATH = os.getcwd()\n", - "DATA_PATH = BASE_PATH + \"/cats_and_dogs_filtered/\"\n", - "!mkdir model\n", - "MODEL_PATH = BASE_PATH + '/model/'\n", - "\n", - "# Define image parameters\n", - "FAST_RUN = False\n", - "IMAGE_WIDTH=128\n", - "IMAGE_HEIGHT=128\n", - "IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT)\n", - "IMAGE_CHANNELS=3 # RGB color\n", - "\n", - "# Any results you write to the current directory are saved as output." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/User/demos/cats_dogs/cats_and_dogs_filtered/catsndogs.zip'" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DATA_PATH + 'catsndogs.zip'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Download the data" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mkdir: cannot create directory 'cats_and_dogs_filtered': File exists\n", - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 65.2M 100 65.2M 0 0 14.3M 0 0:00:04 0:00:04 --:--:-- 15.3M\n" - ] - } - ], - "source": [ - "!mkdir cats_and_dogs_filtered\n", - "# Download a sample stocks file from Iguazio demo bucket in S3\n", - "!curl -L \"iguazio-sample-data.s3.amazonaws.com/catsndogs.zip\" > ./cats_and_dogs_filtered/catsndogs.zip" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "zip_ref = zipfile.ZipFile(DATA_PATH + 'catsndogs.zip', 'r')\n", - "zip_ref.extractall('cats_and_dogs_filtered')\n", - "zip_ref.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "7335a579cc0268fba5d34d6f7558f33c187eedb3" - }, - "source": [ - "# Prepare Traning Data" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "import json" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "def build_prediction_map(categories_map):\n", - " return {v:k for k ,v in categories_map.items()}" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", - "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" - }, - "outputs": [], - "source": [ - "# create filenames list (jpg only)\n", - "filenames = [file for file in os.listdir(DATA_PATH+\"/cats_n_dogs\") if file.endswith('jpg')]\n", - "categories = []\n", - "\n", - "# categories & prediction classes map\n", - "categories_map = {\n", - " 'dog': 1,\n", - " 'cat': 0,\n", - "}\n", - "prediction_map = build_prediction_map(categories_map)\n", - "with open(MODEL_PATH + 'prediction_classes_map.json', 'w') as f:\n", - " json.dump(prediction_map, f)\n", - "\n", - "# Full samples DF\n", - "for filename in filenames:\n", - " category = filename.split('.')[0]\n", - " categories.append([categories_map[category]])\n", - "\n", - "df = pd.DataFrame({\n", - " 'filename': filenames,\n", - " 'category': categories\n", - "})\n", - "df['category'] = df['category'].astype('str');" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "_uuid": "915bb9ba7063ab4d5c07c542419ae119003a5f98" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
filenamecategory
0cat.0.jpg[0]
1cat.1.jpg[0]
2cat.10.jpg[0]
3cat.100.jpg[0]
4cat.101.jpg[0]
\n", - "
" - ], - "text/plain": [ - " filename category\n", - "0 cat.0.jpg [0]\n", - "1 cat.1.jpg [0]\n", - "2 cat.10.jpg [0]\n", - "3 cat.100.jpg [0]\n", - "4 cat.101.jpg [0]" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "_uuid": "72bf69e817f67f5a2eaff8561217e22077248553" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
filenamecategory
1995dog.995.jpg[1]
1996dog.996.jpg[1]
1997dog.997.jpg[1]
1998dog.998.jpg[1]
1999dog.999.jpg[1]
\n", - "
" - ], - "text/plain": [ - " filename category\n", - "1995 dog.995.jpg [1]\n", - "1996 dog.996.jpg [1]\n", - "1997 dog.997.jpg [1]\n", - "1998 dog.998.jpg [1]\n", - "1999 dog.999.jpg [1]" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.tail()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "a999484fc35b73373fafe2253ae9db7ff46fdb90" - }, - "source": [ - "### See Total In count" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "_uuid": "fa26f0bc7a6d835a24989790b20f3c6f32946f45" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEACAYAAAC6d6FnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADUZJREFUeJzt3X+s3Xddx/Hni9WhQNzGdllG29kpxYkmhuVmTkmIoQYYGLsYlkCINLNJ/xkKzkSq/wzwH0iMQxKz2LBhUcKPTJI1OCVLgRhjmHSwDEbFNhPWayu7uDEVJDB5+8f9NFza23vLPXfnlPt+PpKb+/1+vp9zv5+b3PTZ7/ecc2+qCklSP8+a9QIkSbNhACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNbVl1gtYzRVXXFE7duyY9TIk6UfKgw8++PWqmltr3gUdgB07dnDkyJFZL0OSfqQk+er5zPMWkCQ1ZQAkqSkDIElNGQBJasoASFJTawYgyd1JHk/yxWVjz09yf5Jj4/NlYzxJ3pvkeJKHk1y37DF7xvxjSfY8M9+OJOl8nc8VwF8Crz5jbD9wuKp2AofHPsCNwM7xsQ+4E5aCAdwO/BJwPXD76WhIkmZjzQBU1T8AT5wxvBs4OLYPAjctG/9ALfkMcGmSq4BXAfdX1RNV9SRwP2dHRZI0Ret9I9iVVXUKoKpOJXnBGN8KnFg2b2GMnWv8LEn2sXT1wNVXX73O5U3Xjv1/O+slbCpfeddrZ72EzeXtl8x6BZvH25+a9Qo21EY/CZwVxmqV8bMHqw5U1XxVzc/NrflOZknSOq03AF8bt3YYnx8f4wvA9mXztgEnVxmXJM3IegNwCDj9Sp49wL3Lxt80Xg10A/DUuFX0CeCVSS4bT/6+coxJkmZkzecAknwI+FXgiiQLLL2a513AR5PsBR4Dbh7T7wNeAxwHvgXcAlBVTyT5Y+CzY947q+rMJ5YlSVO0ZgCq6g3nOLRrhbkF3HqOr3M3cPcPtTpJ0jPGdwJLUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmjIAktSUAZCkpgyAJDVlACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWpqogAk+b0kjyT5YpIPJfnxJNckeSDJsSQfSXLxmPvssX98HN+xEd+AJGl91h2AJFuB3wXmq+oXgIuA1wPvBu6oqp3Ak8De8ZC9wJNV9SLgjjFPkjQjk94C2gL8RJItwHOAU8ArgHvG8YPATWN799hnHN+VJBOeX5K0TusOQFX9O/AnwGMs/cP/FPAg8I2qenpMWwC2ju2twInx2KfH/MvXe35J0mQmuQV0GUv/q78GeCHwXODGFabW6Yescmz5192X5EiSI4uLi+tdniRpDZPcAvo14N+qarGqvgt8DPgV4NJxSwhgG3BybC8A2wHG8UuAJ878olV1oKrmq2p+bm5uguVJklYzSQAeA25I8pxxL38X8CXgU8Drxpw9wL1j+9DYZxz/ZFWddQUgSZqOSZ4DeIClJ3M/B3xhfK0DwNuA25IcZ+ke/13jIXcBl4/x24D9E6xbkjShLWtPObequh24/YzhR4HrV5j7beDmSc4nSdo4vhNYkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmjIAktSUAZCkpgyAJDVlACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmpooAEkuTXJPkn9JcjTJLyd5fpL7kxwbny8bc5PkvUmOJ3k4yXUb8y1IktZj0iuAPwP+vqquBX4ROArsBw5X1U7g8NgHuBHYOT72AXdOeG5J0gTWHYAkPwm8HLgLoKq+U1XfAHYDB8e0g8BNY3s38IFa8hng0iRXrXvlkqSJTHIF8NPAIvD+JJ9P8r4kzwWurKpTAOPzC8b8rcCJZY9fGGM/IMm+JEeSHFlcXJxgeZKk1UwSgC3AdcCdVfVS4Jt8/3bPSrLCWJ01UHWgquaran5ubm6C5UmSVjNJABaAhap6YOzfw1IQvnb61s74/Piy+duXPX4bcHKC80uSJrDuAFTVfwAnkvzsGNoFfAk4BOwZY3uAe8f2IeBN49VANwBPnb5VJEmavi0TPv53gA8muRh4FLiFpah8NMle4DHg5jH3PuA1wHHgW2OuJGlGJgpAVT0EzK9waNcKcwu4dZLzSZI2ju8ElqSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmjIAktSUAZCkpgyAJDVlACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLU1MQBSHJRks8n+fjYvybJA0mOJflIkovH+LPH/vFxfMek55Ykrd9GXAG8BTi6bP/dwB1VtRN4Etg7xvcCT1bVi4A7xjxJ0oxMFIAk24DXAu8b+wFeAdwzphwEbhrbu8c+4/iuMV+SNAOTXgG8B/gD4Htj/3LgG1X19NhfALaO7a3ACYBx/KkxX5I0A+sOQJJfBx6vqgeXD68wtc7j2PKvuy/JkSRHFhcX17s8SdIaJrkCeBnwG0m+AnyYpVs/7wEuTbJlzNkGnBzbC8B2gHH8EuCJM79oVR2oqvmqmp+bm5tgeZKk1aw7AFX1h1W1rap2AK8HPllVbwQ+BbxuTNsD3Du2D419xvFPVtVZVwCSpOl4Jt4H8DbgtiTHWbrHf9cYvwu4fIzfBux/Bs4tSTpPW9aesraq+jTw6bH9KHD9CnO+Ddy8EeeTJE3OdwJLUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmjIAktSUAZCkpgyAJDVlACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSU+sOQJLtST6V5GiSR5K8ZYw/P8n9SY6Nz5eN8SR5b5LjSR5Oct1GfROSpB/eJFcATwO/X1U/B9wA3JrkJcB+4HBV7QQOj32AG4Gd42MfcOcE55YkTWjdAaiqU1X1ubH938BRYCuwGzg4ph0Ebhrbu4EP1JLPAJcmuWrdK5ckTWRDngNIsgN4KfAAcGVVnYKlSAAvGNO2AieWPWxhjJ35tfYlOZLkyOLi4kYsT5K0gokDkOR5wN8Ab62q/1pt6gpjddZA1YGqmq+q+bm5uUmXJ0k6h4kCkOTHWPrH/4NV9bEx/LXTt3bG58fH+AKwfdnDtwEnJzm/JGn9JnkVUIC7gKNV9afLDh0C9oztPcC9y8bfNF4NdAPw1OlbRZKk6dsywWNfBvwW8IUkD42xPwLeBXw0yV7gMeDmcew+4DXAceBbwC0TnFuSNKF1B6Cq/pGV7+sD7FphfgG3rvd8kqSN5TuBJakpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1ZQAkqSkDIElNGQBJasoASFJTBkCSmjIAktSUAZCkpgyAJDVlACSpKQMgSU0ZAElqygBIUlMGQJKaMgCS1JQBkKSmDIAkNWUAJKkpAyBJTRkASWrKAEhSUwZAkpoyAJLUlAGQpKYMgCQ1NfUAJHl1ki8nOZ5k/7TPL0laMtUAJLkI+HPgRuAlwBuSvGSaa5AkLZn2FcD1wPGqerSqvgN8GNg95TVIkph+ALYCJ5btL4wxSdKUbZny+bLCWP3AhGQfsG/s/k+SLz/jq+rjCuDrs17EWvLuWa9AM/Aj8bPJO1b6J+yC9FPnM2naAVgAti/b3wacXD6hqg4AB6a5qC6SHKmq+VmvQzqTP5uzMe1bQJ8Fdia5JsnFwOuBQ1NegySJKV8BVNXTSd4MfAK4CLi7qh6Z5hokSUumfQuIqroPuG/a5xXgrTVduPzZnIFU1dqzJEmbjr8KQpKaMgCS1JQBkKSmpv4ksKYnyW+ex7RvjyfmpalJctt5TPtmVf3FM76YxnwSeBNL8p/Avaz8DuzTXl5VPzOlJUkAJDkF3MnqP5tvrKoXT2lJLXkFsLn9XVX99moTkvz1tBYjLfNXVfXO1SYkee60FtOVVwCS1JRXAJtckmtZ+pXbW1n6xXsngUNVdXSmC5POIcktVfX+Wa+jA18FtIkleRtLf3MhwD+z9LuYAnzIv8amC9g7Zr2ALrwFtIkl+Vfg56vqu2eMXww8UlU7Z7MydZfk4XMdAl5cVc+e5nq68hbQ5vY94IXAV88Yv2ock2blSuBVwJNnjAf4p+kvpycDsLm9FTic5Bjf/0tsVwMvAt48s1VJ8HHgeVX10JkHknx6+svpyVtAm1ySZ7H0t5i3svS/qwXgs1X1fzNdmKSZMwCbWJLPVdV1k86RNpo/mxcGA7CJJflf4NhqU4BLqurqKS1JAvzZvFD4HMDmdu15zPFWkGbBn80LgFcAktSUbwSTpKYMgCQ1ZQAkqSkDIElNGQBJaur/AewYAginOUF/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "3a08da58107777a1dd05c4a4bf5c484484923cac" - }, - "source": [ - "From our data we have 12000 cats and 12000 dogs" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "400a293df3c8499059d9175f3915187074efd971" - }, - "source": [ - "# See sample image" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "_uuid": "602b40f7353871cb161c60b5237f0da0096b2f47" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU8AAAD8CAYAAAD35CadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvdnvZdl13/fZe5/xjr+p5qG72exmS6RIKaQswbIyOXbyFCcwDMcBAgcI4IdAQALkIUb+gTgPyWtgAzZsIHPgIDEQG4bh2I4YUZZI06JEUSSbzeqa61e/6Y5n3jsPe51976+6mt1dVFtt4C6gUPd37xn22WefddbwXd+lnHPsZCc72clOPpnoP+oB7GQnO9nJv4yyU5472clOdvIKslOeO9nJTnbyCrJTnjvZyU528gqyU5472clOdvIKslOeO9nJTnbyCvKpKU+l1L+jlPq+UupdpdRf/rTOs5Od7GQnfxSiPg2cp1LKAD8A/hTwEPht4C84537/D/1kO9nJTnbyRyCfluX5x4B3nXPvOedq4H8B/syndK6d7GQnO/kXLtGndNxbwIOtvx8Cv/RhGx8dHbnXX39N/lIfeXBrYbVcAXB6ekpvPStAKQ3hb8XVm1cASNMUpT762D9JwnmU4v79+/47NHdu3wJA47i4OAcgiSLA9UPBOYfrr02Z8L21lqoqAVguFgwGOQBZmmKcvNsUWMA6u3Wsl8xLa9Han2O5XGGt334wGIB8b51DG0MkfzvniEwkn62fP8BZi9YGgM524VhVVaOUIor8PibaXEtnbfi+0yrMl7MOJ2NXzoXvbddhuy7c8aZpiWX/umnQMhalNHEchc+rtg3HTZJEJtiPv65rPy5twv12bK6xbpqwT5qldF0X7kP/eTAeY61Fay1zucTIsfJ8wGq1DPs4mRcTRQyHQwCiyNB2HeuVX6Nxkvh7ACg0tvP7zBdzosjPcT7Iw7ptu5bFYhHu63g8xhgj1wxFUYRrnkymfr67jlb2L8uSrvNzNBwM6Je9s5ZivaJpGoBwfQB5ltHIvHadJc/zsE0/j0WxDnOUZhlaqfBbWZZYOX9kDFVVyZEV2ugwxizL/HwZg1aauvH3y9YVnfXHTiKDkbF1bYsxSvaJaWW+rXO0rXyW8/Sitp4O27VY+VMpvaUDNuvQ/69kG1guz0+cc1f4CPm0lOfLtNSl510p9ZeAvwRw9+5dvvnbvyk/mK2tdNjJubC2KFYVv/Wbvw3A3/zrf5Oq8DcgUprpcCKKyy+6v/Cf/nkAvvCFL4SJU1s33TkXPnddFxYpcOkBAmhlcUVRxK/92q/5YyUj/tv/5r8GILY1/+vf+hsATPKYtqkwJgag6TS1TPe6tCwKv4DrumYxmwPwnX/227z1Of8SOTrYZ2L8w6jiCBsZGiVKxyiixB83jlIime4sSlB+/fH//qN/zFqU8i/8sV8iGvpFe7Fe0uK4uj/xY1mvOdw/CJ+RB/vs5Dwog6IoqFt/4Pfeew9lDKOpf2iTPKOs/YNyMZ9zeHgIwDGgZVxtXdGW/oFPjCaVh6mar5idn/HWG5+Tc54xHo4AODk5wzVO7uOU4cSPN0kSnjV+HiOt+cIXvuC/j2JW8wW/953f9ffVbhTp1atX2dvbA+CH777LG2/6873zxZ9lVawBuHfvHjNRWF/91V+lqiqGmVcgX//1Xw+ff/4rX+a3fvOfArCczVnMLwB4/fXX+ZVf/RMyxojnZ6f87u/9Xvjti1/8or8xXcb5+SkAv/71f8KdO7f9Ob/2FcrSj+Xhwwf8w//nH/h7rxT/5r/xb3F4eOTnsrV8/w9+BECaZvyJX/lXAXj69Jjz0q+pH733LlaU0q/88tfoWn9/nj55wO9885ucnx4DkOc5cezX0Ze+9CWePHkGwPlszs/93FcA0FFMJcd99vQ+T58+BeCXfumXSNM07P/973+fe/fuhfl++PCh31/rsA34Zx3g4OAArTXPnz8H4NEPvhvGeXVvxMEwBaApFgzlxTOZ7rNq/Dq8KFoeP58BMC8bQAfFHiuLcn7M69USGT5xHIexOOfCS6Rt26ADjDF84xt/+30+hnxabvtD4M7W37eBx9sbOOf+mnPua865r125cvQpDWMnO9nJTj4d+bQsz98G3lJKvQE8Av4D4D/8ybt8Ej3ugimvjaXr/BvLdpYmTUgibyVEkXqpq75tbW5/fhWpipq69G/5ql6Ht/dzV9M2NUnqLb7GRiRDcbFMAjLGqihZVX7/xkHbG+1RjBv7N66JY1ykgrvXaHBieaooxYpf8uz4OYn23591NavGz8uD8xNY++8L20BkeO/8CQDz+ZyrV6/6c1qHlbf3o4dP2BfrMooiosRbAk9sSRTFLJw/dmKhtH78M1fRyPfdcEIqLqktNaWV139kyIb+ujBQFnOeVt69XdNQyr00B1OUeCF3336HNPfzOBiMOP7WdwHQGozx126MQxtLnIgFoWLSVM5va8ZjP997+yP29r11myQap7wL33UV0z1vaY+yhEGkiSRsMYgMg9h/TpVjnEgIQLUkWs7vWmInrnKcsdQK1fp50V1FGvntksiwkPnKtWOc+nU/iiNU7cceu5Zp1o+rI6FjKHO5rhtM5z2KqNNQr2WfhsnQ75PpjlXt57Raz3Gdn3tVV0SqRYbP3mQQPA1sDZ0f1yCNONrzln6cpsEFP37c4MQ6dG1F1dVoce/zxJDF/lpi7ZiIpwMbj21vbw+DuOYGynJNGim5FwlJ7tdYbFTwGrRSNLKOV6sFLvbnG+YD4tiHT3TR4LSidxKNNoh6IE1T+uhXFEXBk7TWBi9Tax2+3/Y8P0o+FeXpnGuVUr8G/H3AAH/DOffdj7ezfrnTrxy4PmZoSbPeNR/gar84yqKgqZbMG7+grC0vueofMtafdB2Xh7B1jP7zeDBmNPI33RU6xNMSFeHiBCWxtqpsmS38zW51QjbwN+l8sWIh7rWNEpaVv5az5YofHXv3zqQJtbLMK+/6NrYjSjexI8SVWZxecO3AW/GnTcmy9set7/+YVhbQYH/K9HCfJ4V3US9WM7raK5M8y+gn/4wGiTgwGY+oJYCySg06iXEy/26UYW0i1+UoBn5cKo5IxNW1CurCD0BHBjfMZQ4tbpDByCvTrms5l4cmz+MQT1R7Yyq591ZDUUrMMYqpGz8nio62rbDirsVRgpYnaLmaMV/4WPRiecFy6d29ql6jJISwLhakSsbVVsQOrLzUYtegZQLbYoWxXhnoruHagQ8HRK7BVmuZ4wnTQUyMH4urCxKJzA0zwyD1c3ewNyYXTdY1K9raX1esLXdv3fBjrCoMLRpRbJlmJErGGE2k/HGvHU358TPvjse0uNbPSzk/I5J5mIwS9scDivmZn2OteHrs3ebjNObiwocg6qrlvR/6x3W5Ln04B9CuITP+fO+/+z3W63UI7VxcXARlMj99SrWUtd624bi2usLpU7+OludXmM1m4RnLkzTMRVutKIu5zGuHc359m2hBPvVhoeHeUYjDOzqMiYhjPy+JdhgnMWJR3HA5fmtR6C09ua1IP658WpYnzrm/C/zdT+v4O9nJTnbyRymfmvL8ZKJgK7P84Vv12eaGYe7NooP9MbG8fZczh2s7irVYVdUivEmUUi9k137KEcsb7OzsjPNT/5ZvV3POzryFM8lSlHasZCz3Hh8z2vfu8dPzJY24pOcXcw729wGIhwOOL/wb996jB+y/5pNHCRGthrVMUWcihmLh6Tj2/j5w9uQpef82zgdhjEulaGVe83wAgyG5825Z0bWkw7E/T5bRirXVGUMnIQAXx/T5fRsltNaxFvfeOIWVrPi6aejE4sgTRSRv/6ZuaWrZ3oIYEmiVkMQZSSJWdFTjxA11KIwE9/PBiE5umU9ASIIsixhPvLU4yHKM6sJvVb2iLL3lfefOHVDeAkkSjROLMMsjksxbK4NhghWXUtUVSmtc67cbZikDsfRTLPsjCQu5Qx498KgL1Yx4+tDnGS5OnlHWFcViLn/HfPef/zMAysIxm/k18vDhfc6f+1TAybMHzOfeIr64OGMlmXrnHI/vv8/+vre4rly5yuxiEX4zEipQyhCN/T09nA45mPjxHu1PaMUDGeQjqrt3SSTx2DQVXet/Gw1zXn/DJ3Omk31uy9qbzWYhC784Pw+ogefPnzObzUL2PE8S3njjDQCePXvG6an3mqqqQtne6s7CPdHOYfzAAVitVnS1WIvVikaem0R1ARkyGEUk0cbtbiUp1nUdcarDb9iORkImZbmmlXW47Tk654LlqpTCiv75TFien1zUpf8+8Kuz4QHGdUQyUYNhiur8DU1Uh7OWpbgWXdNectu3leaHKdKfFAN92fdHB0fs7/uHiTzh6tE1AA4mI8DyRFypqn7M4rlfULOyYTD17nXRdKxlcZo4o8MvLuKMtcSjOufoOigEmtEZRSwxYqUjOlEGo/0jrCgcG0WY3LtU6TDHiUsUDweUbYuu/LVEjcHUPbSrg8p/jmuNrkQRr1u06rf3Gdis9cdLrcHJ4h7qnERiiNfyffLUz0urEuJU4DG2w5QCaelgYgawFBRDZdmLfQihqzqSRFzlRRkUrHNdCI00TcPZmXdB59pQLFfBxUziOGz35MmTAKEaDIchw/vNb36TQkImz549Yzj2L5Hf/MY3MMZgBWFw/OQpA3GVlxfnzMQN1bigVG9cuxKywsfHxyituXX9OgDT6ZT5ud9nsndImvp7P57kQflMpxPWa/8SPTkZhThjnuc8fvyY0cjfy6OjQ65cuSJz4VBeBXFxccHs7MRfexoh+pGmWnHyzGfIDyYTurYmTcXt14TzPHjwgB+/fw+AsqiZHvixXMzmGzRKVTGWOSqKgqZpAqTp2bNnIRN/enrK0dFRuEd9zPP8/Dwca7XyULo+ttk2Dbb1gx4YGElcPKJjItd+9foNRvv+2k9XVcicR1FLliUBZdOWKwqJ8zZtRef8OnhZ2K2fx23I2seVXW37Tnayk528gnyGLM+XS3DVAcQ9jyKDkSyn6ypsn6GNHKMsZ5BsTPsPy7Z/mLyYif/Qcck262WBeE60W+5pXdc45zgXDOfT4+ckY+96ZeM9br/+ut+/tXQ9+F47YnGhx/v71JJhzdIBrXJEffBba6LIv01jkwQQtG0tki/BEKMkE23bDaheuwjbKEa1gOG7mEnn3+C61Djrl8SRGXBgvBWYdnFwt8ZtQpbkJE6sl7UKlueoMYzE2uRshU0FzN42mIW4WGVNOetxuZA2lknsr2UQj5lOvcXz3o/fZ7n2ltS3579JKpZn0zQw8mOcn1/QSTzCdRY6y2LhQyjXrowZDvwYsywLbvBbb32B96XAoakd52fePZyMDxiMe6vX+oIEMUIG4wmD1I/RWu/+AuztT/jWb3/T38eq5nzmj3VydkqSpdTiLu8dHgTLprv/MFg37RYA/Pr168FSfvzkUQDJJ0lCURR0Viy2H/yQ2cy794PBKFiRq9WKXNARjx6fUay8BX7j+lVmEko6PTmhLspQcHD9+nUODr2ndOXqVR499QiMdV1zXSzMycFBCG08f/w0uONvv/02cRwHy3P84EGw+j//zjucnPh7F2UZVyWpVJZlsJqn0ylJkoRreXTvPZAwyf7eiHHm12e9nDPd82M5PNwHWSt5Q/A+I21IIk0siAjVRTSSDYq1wbmNjdi75dvJI39fNwUoH1c+M8qzH/KHhjyVRQkkJ0uioEibqqSU+IjCEo8GZOMPVkfAB0317f9fVZqmCQ/ZdrzEg/odvRfQNpYs8kqqajvWAm9aFmVw3ZIkpZCM7apYk6XedYlNgjUKJ+61No5E4jiZikMmvZytOUj9A7Q3mAR3abZc0Wr/gkltRD4ZYY+9Um9qSNb+uF1XYRuJoc0rLH4sBevwkExJGaicRlzvcrGgqHsoyZJo6vc/PV+F64ojDaEqqEXJw5vlA/IsI5J3QpKOeeOGhwevn8847zPcy5p0Im6cjThd+fOtVxXDgYQ8lCY2MUqWdNs4nMCjrl+7xXd/7w/8NVrFvfs+Nnn39dexnVTIFA0/+rGnXrh947ZfF31pSmepZV7Om3kA/5s04+jaTcDHvuOlV9yjvUOSNOXe++/56x+2Pu6KRxv0Sma7iujg6o0AGUuHo6CkmqbhZ2/e5K23fDHA48eP+f73vw/ArVu3QpHAeDzmwTMPk/uD7303VCH9a3/iV4kF8XF+esbv/s7vcCbu/YMnzxhPPFrg81/8EqMDf/7z2QVf+vLP+WtM4gAmv3J0g9/4jd8A4J0vfeUSxKdxmm9961sAfPErd3n3ni8wHAwG7I/8mqw62L/iQxl7e3tMJhOiYx/Wmp0cU8tzPBoNGAma42RxRi3XUqyXLCu/bl08pBb0SVkVZHWOACe8ASTGldbg6j4urIKhoRyhgs3fa/9yczu3fSc72clOPl35zFievTjLlvnpCDap2liORVli5PsoNsEKpWvRuJCds7YNbk3btiFpAJfN995kN8ZcChhHURQC2tsA2+0a3bZ0KMFDlrMiJCOuX3mbx48f8Xvf9Xi5G7dvcVH4N+D1OzeDO3/1xs3gUl7M5kzFwjpfLrm579/Sy/kamxjGxrssq7Jm9swnStosx4j1NIlykqYPZ2hyLRbtwHAm51g+O+f04TPGhXcpF4tFyNZX6yrUlldFjRv4t3Hb2JAIm81W/Ow7X2Qt5ZZf/41v0EndemwMtvLXaJWmle/LZYmWz4f7e6E8c1WsWS4tt2946+3KlSv8+q//f/78VcNaxjid7of7UhQV5wIAL5Y1U59gZjwccHpyQtd6i/zsdMmtW55z4EfvPuC1u28BcP/BA9783M/4faZTrl33c3p2dkacevfwZ770RYzWIeny5OEjKimd/IUvf4Uffv8Hfi4XM9aSxPv8z36JX/zFrwIwmoypqopvfdtn2G/fvsUv/rKndlDKBZf261//ehjjL//yHw9eUDqc8P2/9/f85zTl7Z/9SnDpf+bnrlJKImt/f58bd3yG3FrLdQnzPHj8KFiUR1evh/U1nOwzmh7y/kOf2Llx4yYPHngL8RdMjpKQy7w8Jh76iTWxppb9F0UdLMfaKiajcbCi0+GE6aG3XDsV4WStthiizLvt9XxFKUmhOB9RNDb8XVdFwOV2bb0JmQxy/ze+fHg48WGdVsVBH+RJQp4ltOL2d02F6m+echizee4nk01Zco9RPT8/D/O7qcn/aPnMKc+PI3mWB1CrbTtaAckbZzFKhcoQpz65Yf2iG78NdeqlaZrgyqwXJcsLP+Gjgwk3bnol8+TJY5bLZbhZD58+5drdNwGviNu136dtXMga7u3tkUpW3NoTFideQS7LAhdpOrnmRbEO11+nA4w8wKkyqNI/WJN8yDs/65XEycWM7/7Qu3rzsxkmTbiQqo1FU6Fl0bV0NPLmWlvLUlyZjo4nQnjy9OKMdx++H2rd20ihBZxcNTVaKkbMwZi0B8wXJY3UkBeJAolNtUTYtuO0r5KpV5SyInWSM5r4xX3rzuuhNr1sWsxjD+9pq5ovfelL/trjhIvTMx6KMqiKMpCcjEbjkP21wGt3Xwfg2s0bWHqyF02y9kri1muvYbSmk3W1WhcsFwKbGk+IevD/ckWSSzghzUgkFjqYTDFVRTIYyrVkRJkQg7iaXDLJ+XCEkRieNlFYY1GcBOhMFGcMhqPwoCuliPsCiTgJ8UhrLZEA4x2EUEpZV4FAo2pamq4LELC6sTiphOiUoZYXVG0tTW9EOE0lqI+ybSkl/FJ1HWXbXtqn/21d1+F7t7VP4xw9ZL3FP2t1MFwU9GiSrqUTg0BZt4WY2bjKUaRDRZE3nlx4Vv3U9bHwFi0IECCgRhQbG03BFpnQx5ed276TnexkJ68gnz3LU23RLymC63RJtEbJm1lZUJKJ1MqgUbi2BwE3n/j0bosyTSkVLLxtnKi1NriRr7/5Bn/1r/73AOQRPHj/xwAY58HQk7G3GO5mAx5IcHzZaZa13z8fTbl72wOSX7t7k6HUcN+/9x7f+SffAKBuamy8SQzVRRGsh1TFWCnPtHXHQHlL5GyxZi44w4f3H1DOPXi9qgoOspxy7M/T0eD2hUrNuk1oI1LYqSTelKLqKd2GMU+qBa1YI4NbV0iFRu/4+XPifW8h1pEhE/C/KlZUZ8KwlCZosbx0kdCslsyk9NA0a4pUXNckCtjO6WvXODjwWdqu63gmiZYubXhNwNxd0zIeDHkuc6zc5QxqD+6O4zhc4+HhIXW7WSP9vR4Oh0RRRCmJCmU0SlzKKE3Q4h5XbXVpTQjkkizLcAo6Wcmt22TVu6YLWWH/v1h4ypEIf0AURSE7v16vsdaG8FNZFVgpD2223VMsiRQIJLHCNj0yRaMFo1qt/fVE4lJvz4sxGwq/KIqCC23iGCPexHaCqP/cz1mSJJfqwntvanufKIqCexxF0aX68ixLacsNaF3LdZloU2wRm039ulMqcK71z6yS6gtHh2Nz7/tr8fcq8LQFmkT/v9v6/PHkM6M83UfYy5eUaOfoun7RghYD2qBoG68ggBCP+STycSoMjDEh+/yn/vSf5O//338HgN/54fdCZcTeaMDDR/dJcqneGR9w55aP7UXjI1LJGF8sV6FKpVovqArvOv7ohz/gaOD31TZBZwmtTILOknD+yWiMlpjl+bPnXLnm404nT5/xTOKvDx68z9FNf+799Aqj/Sm18RCR+kIzOJIKJ5OE618bR9STQ2xRiuUcUmeGQjKYR1eOiEXhN6sLjJBuVF1DI5CiVifUhYDUR3k4bjefsy4XDMT1XKsGm/lztbGh7ZWEUZRSIdRiQ2yrKovAW7laLcFaSonFRtqEzKrf3s9RUayZCY1c09SBQ7Kuq/Dg1NUaZ2O6xsdcm7oIcLhIW6KejER1VOIqd7Yi0j0axNC0gPX7KNcSiWKLAWX9HGeRI+qJMrRjLEpumKaYvgyrraFtSUUBVF0dyEhUVwbCkRYbSFXyqMNqfy2ZcRhBeRSRQrdNqDAyyjLpK9VsSyQKJ49NIPDIYkcl0L9YOeJ+DdoW1TVhnIn2//y4mrCdwoZtIizaBlwfrutQAmY3StH012zbLXiRxclYmqbByvPRGUcrsVBsh+uaAA1ryhIt+xij5JOXbZTNyz5/Etm57TvZyU528grymbE8P1q0pOIBpdH0CSNHJUxErYV6UNGKVVSX7UuP9BPPovWlt1Dv+m1jRtM0DWVq9+69x5/9c38WgJMn9/k///f/GYAIx507d5gJWPnk5DmPT71VOjxcEg+89dWWFaXgCes8oy299TDOBwz2PT7OaYXJU5rexSsLhgKmn44nKHHbT09PcZm4TnmEEiuOPCEZCUVYFqOziCjukzkxSujP4iTFiQvQamjFeoliE9xIUk2FZS1v/ZqOTqjMlnXJVMbYakstlkTRVtSC3rfGhRrydbVmtrhgPPQMQm1XM5S6caMiyqVQr2mFCtT7LZIvwXYWHYnbrSu0AhP1hNWektD/1tFj95PUEcVCmpva3tP2v4urm8UQRR3OtDJ9Dlf3l2/Jo75WO6IWDyIzHYl8b1RFpCoSLazrxpLI9ScJmB6vHHUkyn8fuQrj/PUaWwRGpskwJ3Il2koIoV2H83fNEidMTF1ds555nKcrF6wvfLLx5NGPSYTGbX0+p1qdQSNUbnUoLWd5+oxi7rGlrl5SzgXkrkZY8eRcvaQrPUqkWp6h2g2zfFussNVCPs+g8RaidY6u9KGBZn1BIcedJ/7ZKhfeAyrLNU3PGhZZ+ohbW9W0sr4cGiXPtovbkBm3DrquCdjWuliRC5Y4NgbbhHYOGwo+KaoAn5TSPXfCJzBAP5vK85KPvjHfw2etiKXCRmF6GkJs19I1YCS71lcavaq8rO4dfEymhyr95m99gz//5/49v8Hbr/Eb/+QfArA3yhkMBvz4nmfUbnjIOBYXfjRiIpUd5/MFbbO5ia3UWg/TFDuSTGxkUHlKK7Cp2uq+0II6djh5GPU059nSu6Tn6zmZFf7QLOLBmY8FZtMx0d6IuNcrbQuSOTcxuP5hKAu6SuJhaRZCI5FT6EjTaL90tCMw2Sdak/UIhygh7ddpZ8lkKpOmg5Vf5HZRwLoEAZdjFUdCbhHpOMRC93XMyPnzNc4hiWucBYffNx8o6qIMv9XlCidB4qZtqJu5XGNDnIir3sxDexJUSSEA7FiVuNZhxA1OVEPZyYO5OqUrZ/J9jZbvbbVgfeHn+MI0VG0Dotiq1RknTz0wf6jrEIuvLo5R4oaePbrHUmK8F0/u49b+HFEecfrwx7jC39fFYsb61EONLmanPLq6gd7UohSr+THnjz3q4AepZpD4mHbXKlanT7GCfEC70AXgyb0fMFv76y+qgqf33wVgsjemkTWhmxVOlGc5e0672qiPrmnCb66ck8q9s84SyRxRLShnPpQ0dxVaaxoJrbVt+1I3urPNJVo5o/vwRYeTkI11nkW+hzS1bUvXVyDalq7rESybVitd112qZ38Vt/2zpzxfmiF6QdwmUD0YDBnLA+fqljwbBjiCjT655Qm8NGEEhMk2xoRt9vamGOFnbCpLmnpr7/DwQLbrwmVpscpmFxcQ+QelLttNnLVrA6tRHBnW0lMjNgYTQSFKbq1a9FZMy0o8MD2YYPvg8SDlohaLYRDRSGxvsj9GDTMSSSCZssVItVMSp3SSbIvqjliqagbOhD40q86SxBFa4miZdaQS0J9EaYBNZR1ESq6l6kir/gVRUIvCU4s1BzrFzMXicrA38iWsptEszoVh6XRBM/cPedN0zMR6KVdrHj2+B0CeZiznc6yQMRflPLzg6qYM+xTlnOXaw64eP3k/kCw37Zrlyn9//PCer84Sr2N1ccxKyEBOj/eZX3gLT7UtCJ/oevacR/c8/nN2MiLJE4qlt+RO2xXf+46QIXerkLB6cv+HjIY+wfZeakK103y+DEp5PXvOe9//Lk8lNtl2Feu1v3fPjh9x/9ArxuVyyXAofZ6aBary2yyeP6ZNhSAmGeLKJa5viTIashBe1+eP1zRihdSu5fiRYKqXozBeVStqmaPl+TOfjNmC8jVriSWvJ8S98sQSyT1x9ZK1KE+a1aXEWNM0WHmpNI2mFMhdXZa3a4TSAAAgAElEQVSBlWmkCbF+o9IwrrLuPMOU6RNxMX0izhOTbCqJ+jhp1zUh8eaf0T5Z9fGV6C7muZOd7GQnryCfHcvzozS+0/RvB1dVITY3GU5wRxJPqxrG4wm1xA3r9uPDDi6dyvV1sZffLdvQl971Wq7mVEKaYYwiEZC71prhcMjBgW+ulj07RYlPeXG6Yi3dP5uWS3CRTlyURGsqsVo7ZUk0AarURYq+l4JK4xAPfP8H73L7qocnJeOMi3XPuK5JBdgdD1Menz5lr+++UNYo6ZClkhbdx3irlkjCCalzOPncLNa+/UMPrF+siXv3fFVSSBa/UxYn8JpmvaKdewunQFPJNaqmZWISEoFtqc6SibPQlTVlT+H38DEzgaPVdc1J4y2/9XIZOgoc7h+wuJgFZnnrGhKxuJRO6KT1RdOWrAUR8fzkKXtCvRbFKsRIH97/MW3TEIuLuLg4Zy1dANbzc5qi5yxNMaq3kFacHXt3erGIOTw8pJMY3qIueP+exJZWx4zHPpxycXKME+v+5GlGI7FrRcwotOFomZ+dUK56uI8O0CHaGid8nLZZUSzkfhnFdNRn7iNy8YbSJCIxsJYM9yiPmF3I+NcFVir1lLaUwrYf6TZY8LawrOfe8pyfjYTYxMi4ovBbsZjgBKlgu45O+Brq9YIVfVhoRZIkG87ZZYmVEIKxNUhLknI5I5bnsG86CBs4GYAtG8AGVIiiow+a1nWNdULTuAUxfFVXfVs+M8pTvQRf5RmVNuWZfcJIxR3jgbgVxSkX577iZG84BiJqiUlFURQm+JOQnH7YttsuSv+5bSMSI8mXrqWde6U42JsQz8/4/J5XWieJI9+TNgF0PFv6gP7puqAdeIXXxTHzsfSqSTRHsgAipVBAJ2VybV0zETxkvu6oZ37RXSMjOZMWJGXNFeFBPD07Ix9K6dp8yfXDKUN5UOu2gZVXJme2xkgibJma0IHRni0YylIZNTHxvEILLERVJZWUS+IWnC2867Yf36KTl1hKzMmxJCkGeWhJMcpzLs6eczD18KY4UtT4/fNpQn7kxzhr36eSEIRSis9LBdnD+YK9mT9uM19yOByxFGV0kA2I5OVZlCXXZR1MDg45e+6V3JuHE9ypV8TTrsVceNf+1pUBnXY4IawejjMeCFFxvVwyTPzLzqExWliNFgXtYa/5W56v3ieWyqnjp4+59vbn/RwvNc+Ffcm1OU8eeIUT6wM61/fRgQcP/ffjwZBBnvD8qf97lMVY6WHEuuX0nrxI1ktaLXjZKObxI+8eD0dXOD4XXKwrSKZHzE/k5bGsaWXtZvmEnh7s8eOH3L4uRNw6JpZwQpIpUnmhHE2HDEY5jZCvdA5OL7xyG02mPDv283Xj+msoMXQO9+4wHnpFduVoSpppIgk/fe9Hj9jb8zC7o/29oAirck0pSdfOOWbyEh7riEja7RzGmqircErCZ1HGxUrauYyuUDWbWGosRoRuWlxfiagNWpIIkfn4KnHntu9kJzvZySvIZ8by/ERizKZ9wmAQqhZAkjp605Hv05DtOvdtshGspZUAuM8YbqqcyrLkplTczGzErKfmXBUhzBCti1DVEnU1J2JRxnnO+PCQWLKx3bri+XNvJdVlSyaZ77ptyOWzcy4Qc9Rtg8TscUBZprSSJJqv12ipeLE4IqmeWRVr37kNWKuEgYD94yQhiwydWCmt2sBdVGQCzVek1YbmCxUqbOJIo+R7rXw3yb4neoQlkUSU0SoE75XeJCaMUdhqM8c9KYxS5lIVWNvWISHw/PlzBpIYKlYLTqV44PhgL1jXTVPz8JEvVihd6StWjIQdWsfzE28RD0ZjlsIZ2jnLQtzbrmmpxBp3kcHpTWa3bevw+dq1w1BrbhLDWlziw6MpneubkEVMpt5rGA+GXL16xGTsxzLKE4qVz2qvlxE3bvjKK+v2iXK/3uumpRVr8dq1a+Fz5yKWq4rH0uF1u+JnMMhDo7iqOuS6VKfleUIqVmBTrEMY6vDwkHyYBcuztS7wD+zv75Om/hxpmgbLs6nTkFBN05Q03Vie29VKxphLlUyBx8LaS+Q8GxKfyzbgi90wew8INs+uMSY8u9vn+yTyGVKe25CkbekV1VZ8ouvC9jralJX18IP+709LecKWAjU6VEc11lELfKJqG7RRtKIoGtsxnwvMoyhDbNN1FtMTWKQ5jKU8MU9Yn0gfmLLBrEpiIYfAGCphL6rbRrpeejfSiduhE0AUYefcBtahoHGWgRCWpF1HLNREdpASSzxuNF8zkpjhaDhlfeFdc+0csdKB2aexDVHaz7+jlfunTUslMaxEK2J5SBIDTqrDIg15lnB64pVZrCxpX4kTR1xIi40k0kERxnEcML5eKfU4T19u18l2ddUEhbV/sBeIQcpBhpGxXL9+VdYSVHXBSjCHX/75n6NrXejNVFcdR6I877z2Js/lvqzXZeDKtLbl7m3P2TnIIiLjKKWl8iCLQn8gRbxh7jGONPMK9/BoL4QJus4yHEl5o2oZjhKGwnI0SA1ai5K2hj0prU2SBCPrYLFckWVeeQ0GA7S8BCwxnZ1del62+/j0yiRJEnJ52YxGA/KecNnZEP/0yi9FiWLW1oXnLY7jrRYZUVCe22G0KIqIYxOUZxRFl5TnyxTpdrjs5Z1t5UF0XFaePdTqhVLR7TF+2HF/kryy266UuqOU+kdKqe8ppb6rlPrP5PsDpdQ/UEr9UP7ff9Vz7GQnO9nJZ1V+GsuzBf4L59w/U0qNgW8ppf4B8B8D/9A591eUUn8Z+MvAf/lRBwvJ9o/DCdW5LZeoDZ0VVWyIkjS8EXoM3x+2eEZqcWnrhkJc87YsmUnHxNPzjNzo4La37YZbdDyOKfBvvYuiCSDzpixYnHtrazXTTAW/2qxXrFZFoEgrmzbQkikTU/WuJ7b3tFGRpqfWtnrTnNRqhYsN98Wqe3Z+Sir4Pl3mpJJVPz47Z50KbV7ZMRVcqnYdum1pJCRgt4Ltuk6glSSRIZAzJFozFHdtPMxwUrywNxpAnoTMbJ4lvHHXW2iDYUYmWeVr168EvGyapjyXLLx1LTelZt8kMaPhhMG5t8RWq033TOc6htIrPo0Vzvrvr1w9CrywVVUwl7mfjj0wvC9ecLYOYQfnOkrJop+fn4VWENqkDASLORokxJEilkaEi2HGUPCJyoA2ci2ZopLuAElK6CFf1xak8qjtLI4q4HqVdjjBUDpVg5bGepHZgO+rKvA7tG1LrMUDUw7nutBhYNvytNaG7+u6DnMXxwbT46ZfAJm3bUsrHk1rNwiUpmkuA96tC/t03aZFjrUK14dmtqzK7edr+/N2i5xtKxLlrdO+eOjDatW3QwAflkz+JA3gXll5OueeAE/k80Ip9T3gFvBngH9dNvtbwD/mYyjPzYH1htyYDTxp8zeQJLitG7pdQpkkCbV9OdToYw9hCyS//d323/2x9w72SQfC9RjtkQ595tiJO9/HZkfjcSClhZg86aEkWVByprV0Um1TdHWIOeaDIWaUM5N46KooGffllTqikgyzRW+UpzLYPlYUG0zSx9M0Jks4es27sW46ZiCxKpXn5KKwaxSj2GeVDwdjlJTArs9mWEUIIWTjnFzic7VSRAKdGcY6dNLMTIwWBXkwGRI76QS5N8U1Nb//3d/1g54MAwFHrBL6TrLaSU8hPCpjNPLjGg7zoBTjLGUyGdN0vWJoAiC6qprQlmF7PSnliEyPmlBBQUexfzCjnnTDeWUOMJmOGM39+dfrdWilYazCuk3FS9s56p5YpKrC58QYlO5jwS1d15cYViF841xDI5CrPE1R2gKbVhKmJyYxhO87W/SFYsAGMK71lvKhb90scWWjQ4zbu829wtooHw/p6cK5X2RV0n3L3i0+ze0S523l+UGokH7ps7YtLxJ4bBOXh3yDii4pzxfP82HhgJf1MAplyB9D/lCy7Uqp14FfAP4pcE0Ua69gr37IPn9JKfVNpdQ3e/b1nexkJzv5l0V+6oSRUmoE/G3gP3fOzT/sDfKiOOf+GvDXAL72ta+9UETem+NbVqdTbGM++zdFWbehPjfWhtV6TS0B+Y87lo8Y50u/74/9/PycZSFJh4tzjiX5kbiKlC68jY+PjyH2FpfLxuENmBqDkTr9LEkYhZ7kiuXCW6rXb9zm5ut3eb70Vo598DCEJCZ7+8SSaCgXBUnvHnZtoIrLhkNi6SSpEs1gb8ICKUssMjrJ4sdxgu4TTiYObqSLNIPEW9SL8xk4SyznGQzHmN79wZD3TetsHfquZ7GhmourqmEsSYe9UU61soHKbJDEjGXMw0FGJq5+HBmarrdQXKCdW69XrATwntiGNE0ppV3Ger1kIQmgyWQSsrzKNRt0gHKBH1JpsK4L+yplgiVTFAVrYZkvilVoybFeL0NRRBxpMgG2p2mCVh1t4s+ZpFE4vye52JQC9qENa1tM/70mxLG0oA6cJB5RJljRSm/QBl1nMdLtNN7qWZ8kCUrQJ84qsR79obbXtp+LD7rK2xZeu/X9i9tpfdkq3Vi+l63LF93urernl8qHUcdtn8PPyVYRzUuTSR8MB7x4npft+5Pkp1KeSqkYrzj/R+fc/yFfP1NK3XDOPVFK3QCOP+bR5P8XB7+Vhe83qTZxTqcIGe11VZKWSaiR7VsX/GHIh92Qw6Mj8tzfxFF8xK3XfMzu7dvXGcaGTtzd2aLk9uc8UNpFA5ZScLIsuuBumc6hBcaiu5ZMeupgHUZp9ic+E37lqAwA3+FwyFAog86Hx8TywHaVw/XhgDQJipRYobOcpvW3votiOnHd4iiCXnmytdCsC2TAZV1glGbcKwNnWc176MySwcg/wInpQpwvNoZFz6/oGobS02aYxdSrFiPursYFElyspQsxtCq4U85oMoHkpFlMkmygL1mWkMtLIl3FJNLTo+3q4MLXdUUpFS9VVaGl+qRpmhAnHOYDTBxhux4WY0N7lCyJQuw6z5JNKMbFdNLapI0cRnV0fTjFtqETZ9dtCG60jlBhfWuUvASNhsj042rpOhcgYDiNk9iM7QifldmwfllrQwjBORe4Hnqlud36eJscw27FDDckzRt4UNu2H4iXbtz7y0ruZS78i2TKPpP+QcX6YQp6+7fLpOVckheV/7YLv/15W7bH9XHlp8m2K+CvA99zzv13Wz/9HeAvyue/CPxfr3qOnexkJzv5rMpPY3n+CvAfAb+rlPrn8t1/BfwV4H9TSv0nwH3gz32yw26559vJI0Wgm+/YtIvI85w0EaYVDdqYEBAfC5bx05D+zXaxWFII1NCt1uHtnQ9HjAcJ1dJbOcaYgJFzURay1XmcYOUuTCYTzFbA+t6Ft+ieP3lM2dbkArKn27zx67JCErG0zm4yrmUd2kWsmwbXCren0pR1gxNr1cVxYEjSOiKmZw2HuLcY1MYitK7DaBWyzHRtqNOvVgVTKQmdDjKmo77sUjNLxVJODBOxDieDlGKuSPq2FJEKdcxa6+CeRluB/izLWIqFuE0r1tn2A5ZF/1uappcA0QHPmEYBz6iNC57KcjX3a0qse8/Ms7Hk+pr3bYZ97ewH3EPZndhExJKwWy8UxvQYzhjVt151Ueg5b0yEEWxmW9UoomCJRlHM5rE1YbskjgNnQNvVoetrZxsSI9wJOiGK9NY4N2GLy9nrbXde8WHu8La8mEx6Wcjso/bfnr8Py7z30nXdxvJ8yXbbiaEPszy3wwnbuNCPKz9Ntv3rfDiw6E9+omNZF/rw6MSwkPrw8WTUF6mgI4MVt8ikKVHVwzUMsWS0jYPXPvcGP373R35/ySK/KNuTuF2V0ks/kdvbbdNnwYbMI0nWlKI9p8MBmfTzsc53xazFdU4Hm46fKo4ZyuemLBiOpTPkckUi5x6PRlwINGlelqzOzygFBrR/7Vro4IjrKMR1tE3LQHoIdXVDIoohKZLQHjiJUlZVSZdvXiyxjDHRikriqs1iycEdX9/clkV4EaWJ5mh/j4cPPU/pdDzBCaxlnEZM5QVxdU+HXj2us6yl5n3v7m0ieTka7VDOMRA3mM6GrLbrmvAwlGXJUBTxer2+BPLulVqu9aV2svfv37/kbvYvrqpYb0GYNlnpuq5D25bpdMrpyTm5ICcmkwnvP3iC3FhGMpbT0/NAqNspf50goGsuu8f9GsvScSDttVYj4ACydEwiNfNPnjyjbfw17k2PgA2IuyzaUO11fnKKchIjr12A/WRZFmKeSqlAJFJWDavVikbWkTEmkHo3bRVyDcaYQEAMmxdylmWXno2maWj78IDSlxRTqE2vqlAUsS19L6lSKPG01gG5cOVgP9xXrXWYr+l0eukZ7McyHA45XywCEUxRN+G+rlarDyUD2UYU9Odrt7hDP0p2te072clOdvIK8pkoz1Rahfpq8BYngO1csBLSLA4dI4vlkrqngYsjIukb3lUlZd0ErGNV1y/Nor0sAP2qotVmCl3rqKsN0Lgoq2DNLJebzCxxTNdsuRjbgXZJLCjbcee6r1tuneX5csEjAXE/qguu3bgNwP7RFSI57kVsSMUFL+OYTIDtSZyhxG1OB0PiLMaJ67laznn9hm+DUZ7PuHPVI8vyGzfopIaaqubZQ89eVK8XREd7pKYfZ8VIyKCVixhLbX2eaGJphaCsYyyu+niYkaeCLkhj8jQODOBNveECuJSx3XLbt70BY0xI3qRJRhRFNN2GBLcvgyyKIhx3u4VKHKXUktDrOrcJq7SO6XQaXOLVuiCTQoD1es3FhZ+L4XAYrCVPtCv3vih9tr3eEP12dY/tzIjCfclBGPKrssMJqTXOkGcyxjjDdoq1sATRVvQtzYp1zXLZhzBaUuk8YFGhMV7TVMFyazqF0oTrHA1HwUIsyhrb9jwM67BujVGBxLsrrUeNANPpiDRPLlmez575klCtsjAXVVXR9EnTi3MWM5mTekWcwFo6H5wtN8krvRV+wnUsZ/Nw73trcxInlwD72+vixQz9Nv9EvyaWy2XYviiKS11yP658JpQnDs6ldni1WpFLH5u9vT0GWxnzvldOPhgEerrhYEwkD2NdFXTWMt335AVRmn0k1OinlbZqw+JolUZLJCNNc8bjcWgbcHB0GAhLPOGFZAP1JnYWR1GoR58MhnSJH/vo4IDsPOVMKNOeHj/jSK4x0wSITL1eUQjsqFqtKcR1K4oK4/qWwjEWTT6WrHrbsSfbudGQr37+LQCaa9f559/8LT/eYcKeEEK4Yk5mLJlUz6TKcWXqH/QIxVTc7iyxxFvxo8GWwjS9v9NZuqbd8DLazUOjoyRkkp1TtPJSaa0jjlKZr1RigP5+WrvJPkcmIZd+TqPRKLQxnq1WNNtKzW3A0Xnu19qDBw+4euU6pSiG1bri+nXpfJpkrJdeSVy5dp3Hjz29XVNVLARa1jU1RltWS//QL2dLZjMPmzo+Ow6x+/lqzaNHPhyQpENigXkVRcWFMNfXhV/DjVDy0Vahe+fx8UlQWHVd4WJRZGju3bvn58UkxNKGo7Wa+aIICnD85ji48MvlMijP+XweeBjatsYJf8Akn35AQQUlhbvkHm/XyfctXPI8R5Yq4/GYLDfk8lK3URUU7nQ6DetAYYkEaTCdTl/63Pbxzm0Y1Cbm6Ugk3uzc5fr77Tr7V1GeO7d9JzvZyU5eQT4bliee+QZg/2gvpKHqquH01Ncx7+1NSPpukM5SSzKl6doN7VvVUNQVqbglZxfnH+m2/7QyGQwZCEN8bFr60zRVzWq1Yilu3Ww242aPqaOhEre9rutNAN8S2JbqugxZ6RuHY9JMs1h5mrDFeoETAuLF6XPazIc5cmNC18AqioMLn+oIbeSNaxISk9AKM/pQQX3hiXb/+Be/zFfeeB2A5ckJ98REHE9H/PFf/WX//fkzLuYXRNIN0jSKRGjJXNNuehslw1ATDWwy6kbTg3TbuqKqquB6l3VFWUgiUDcsVhIq6DqqLS6D3qV89uw4XFeUJii1KTg4P58FK2O5PKa/MY8f3Ofk+TMZY4QTa2uxmPHg3vsAvPX259Aq4exCCJAbx1d+/qv+vjaOkxMfPlEq5vipL4ooyzUjSSLmeUwcKVbikj598izQtcWDvVCIYIwKSbU0TUn7QgalQp18bAyDQRa6ohqXEUsCqC4XHB4ehHnJp+K2O8Vs7ufozp07pLI+OhdxMVtRCEXbZDLZympvgPjaOK5c8b2kptNxuI/GRhwe+u8PDw/JBmlw2y2Kw8OL8NsPT+/5fXR6iVUpz2M57pTJNKetvVU8L5+GcMLBwcHmubUtrt1QEPYhiNF07wOY0W1L0rHxWvoimiiKNqEZ50I/pKqqLiUhP658ZpTnxbl3E/YOJ5yd+kWb52mYxCRLaSXbHsUxkbi6t2/fZk/A421ZcO3q1cDR+J3vfOeSm7Etf1hxT+VU6ESZaEOkN5UVsYlIk57aaxSytJ3OcFLfnGTppn1Aa0P8z1qLaf1CSV3LMIJbRx6q9KN7hkoISN4/vwjxMTpFW0itdN3QCe9lU7UbcLGp6CysK5ljZzl73/NYfvnf/ffZFxdpfnYGc/8wDKcDDgSY3iwv6MoVt6/5h6icrykv/AtueTYjveq7gv5Bud6Ao1H84A++768lTrB9i98k5cGDRyEOtViumew98uNUivsPfEY/zvIQvnHOsSftGKwNPdpwTuGsVOfI3/1vw+GQo0Mfy02jmANp6fzmm2/RSLVSWa6Zjvz3//af/pMobfj93/8DAC7ma37xq38MgLZTPH7qwydda3nt7ut+Xtqat9/yIY/JOCeJdYjn7Y0nfOGttwEoXBdCC+kyDa7qrdtXSCWLPpstODuXkuXOsrc/JpUyrAiLoqfdm3F0ZU+ut2Mtz0fTburRe74HgNYqrG2DAtpGIeR5HpRnWWYBTbK3t8dAtlldrIPCGQwG5MMsKM/ObRAoeZ6HF2KWZSHb3jZ9Bv/l5B3bbndYr1tY9m1ExGj6ciTNy2QbZrZNXhIqp7Yy7CHW+jHkM6E8m6bh977jySGcglIWwec//3nu3r0dtjs79Yvx6vUrDAU68+Vf+HmOpl6pKCzKRJw99W05vv3tb3/qlmcxX1ILVCmJCYms1WLFInKXWJWeHktfbZ1TiuW5XC5DSaNyXAqCP3/sFclgmLCo60CwELuWXJI05WpJJW11q7IjEdzgelESSyKtXBW4vqWHteiqJjYSP1aGoUzHzfGY5tQrhtnjh0RyLXlXc/rgnj/H7JSb167y1a/+KwA8uf+Yk8c+htZdXDCWF8HN1+9i2w2Ori+Zfeett8M1ZknOaDThQtpSrNdr3n77CwDoOCHO/bxEccpw4hWLMYZCOn8uF2tu3brl52g0QSkTqs0W8+UWj6NhMvEPW6Q1pbT7dRYmAhN75513gqV+eDDh6ZNj5nKex4+fcXbm195ovM9AYqOPHj1hvd4wN21XDvlSR7HqnKZ3pwbDOCQVtelQ2n82kUWbDclHKW2QI6WxrkTpvtV2R9f2SnJFJe2NnevIRPmqut5SXklQeE13mbx7sViEOarrMmiq9XoZKqfG4yFSXHYJ6vOBmKfjUsyzP+e28qyr8gMVRf2zmOf5paqfbQxmr/yzLLtcRfUCpncbbtT2fLNNG4yT7aReWZbhWNuMZ/3/H0d2Mc+d7GQnO3kF+UxYnl3b8fbb3q1J8yxYnt/+9reJJFN248YNBlK9UpVl4GHMshw96AHjFhwha3p6MfupO+R9lMRRRKSlYoSG1cK7FY8ePeLi1ASiih/84AeUwrrtoiGd8HmenZ2Q9s2ntKHrwf9dQy4WZUyLpiOVTPzVwz3eePsdAO4/Oub0TOKqzZqB8HxiTeADra2FnnMzT9BJzDj2FlNxccGXv/BFALr1CifNtqK64arM9/4gJxI3MMExGWZ87jXvEYyTlLuHnt7uXacZD/w+N2/c2DCmO+171QNXrlwJ1nieDijrhvfve/e8alus3NckitBmUz/fBtLWbfowF1xzpYzPvG/xRfbnHw4PgvWyhmD5KWU4OPDhh9u37pIJ5Gs5n1GWJSNhb4/MecikjycH3BaY2Pn5bFOZgtki48iItMPIukiShFzq+W1ahLi4ibrA7al0i4mkkCFV5AMhHNGGJFXBQsW1RLF4IAlE8QYt0BOmdNZtzVEXqo2qxl7i2hwMskBY4lzXg0HI8zy44HEcv7TeO1iOYlG/6Mstl0v5Pg5l8kVRIMuIsizJchNatWxXcRVFsQn5qI33liTJS5/nF63gF3lH+4ou2FQQbbPdJ0kS7t2/ED7PP0zpuo6pxLFMHDEVQoyqqkKAum03cbs0yzb9cZbLTeCrrsC6l5KcflpKtGk2LD1JHrMvJZS3jsbs7w/p+/Ck+YCDa97FtGZALQ/5clFw5YqPE9JaKlFeaWy4lvgDf+Hzb3K6KliKYmmU4Ss//2UAsvwe3/39dwE4OT7HChkF1gWIR6RNT/6I1gatDVPB0i6fHvMzEqtbnJyQSiJukMQcSbXSdDjgSO5PrODi7JSZYE5jrbh62yuT5bNTKlEySbLB4fXuO/h7HVrsKp8w2o45JXHPBDUILlTdXq4MiaKtnlVt37OoJYo2D0SeD9F9b6e6ppKXUtduyjBv377N9StHYf93JfY7HCTUdRvW3vPTi4A3LstqE0NsN2QaPre2cSmbrt2KtW3K/9blOiizuq5C59GqLgLkzkQuwM/auqSq1lTSHjrWjqQPsqsW10OtbIMxfZjDBLc5SZKtxIp3fXuca3/d4J+1qCcp2ipX7LqOopAwg4o+UIK6rTy3f9uOjW7HPJP+BZEkpGkalOk2vGi77NXoTajBw9E2GN8XW3V8WElnWW0SRv2xPJGM9LXaUtafJOa5c9t3spOd7OQV5DNhecZpwqlUs9y4cRRI6T7/hbdDZlKbKLCht7UL2fbWGZBKEMQF+Vv/w//k9//KL4RzpGn6UpN8mz6rqqpLkIdLZAlcroXtP0epxUR9Vh3RG0UAACAASURBVLvGSU/tK0d3uXa0x8WZhwHZoiaVxmV2q0HV4WTE+bFPcO1PJwwzAcYPY1wt5B1OsZcrVo89lGZaPWW68BCVX7odcyf1FtI/tcc8Onngz9GldJ00DctiHkki6Nrtm4yGGYVYfzbLuT/zv+0f5SR41285LDhxPiP/5s2fYbrnLbRrB7dZlxVXpdf88fwJlfP7/NzP/wxPJck1NZqhcA60tsN0Us/tVnR9kiQ36KymVP48WZbR4T+X6zWqFUhQUTIe+GscpmMezWvZPqGWJmuxGjFKYCnA9KhboaWVRZZmZM7fl8oVvPOmr9mfDHNWUnN/+rzktdf897qYkV6b8u1v/46//juHTDN/rHr1CIO/p231EINHGmhj0Np/Nrokjg1t21s8S9rWz/E4mnK+8td4c3KTpz/yybaJHtAupUCg6shk3c9WNYOjiPXKj19Fmljq2evTFrsUb0zn5NM+2aEZiQ8+QKP75n9Nhy4LlGTbr964yaNH/n4N44hEYG4np2fQ1/kf7QcP4sLWFLK+beqoVEknT2ucJZRIKMiVVDL3NnE8FzjXZDTESRtXmzoKu6KWOdKRo+07caqWOOo9syWxdGpYFUuiTAoqaIkltNHqCqc7nCTc3nzrdX743o/9fMUE+sU4iol6XeEa2qa3iF2gHEy2Kh0/Sj4TytO7kn6ymuYyJf4mLqE3+M+yCVyLruuC2942nkyi36dr2k8Uw/i4Wfjt7dIkD3E6jCYfSlldml0ihIjTjIMDcRFVzOnMx4SKLYyZc45C2tdmecK+EFNEUUJLx0DcrWG5CoxJxsTs7XlFmqY5Vw68S3q+duQS/zx9fhq4JlfzhYf77PtjZ3FCLPAqoyLM/8/em8VakmXXYevEHHHjjm/OuTKzxh5Jdptsk+qWKBEwRdnmh2gbMAzZJsA/QX+27G9/yF+WvmwQEmwakEkbBAxRNkhAFGey3Y2eWF1jV2VWTi/feOd7Y45z/HH22RH3VRY7u8qSq4F3gEK9fO/eGE6c2GcPa6/FoY/NeawkSfgFcn0PO70hRlu6dXQ2myFL9b0M+tt46ZVX6ZyPWCqlKCtum1QQnP9zXR8SAvt7untHY171CxCFMSKaS98PYYKk4+Nj+GS4L8o91EpwSqAoCn72q9U57t7VXKrXb95EjyBjQRBgvSZ4TlFhPNVGbStyIWwfgjqZHDdAEHXp2QmURKDRH2xjPNP55qKqUBAEq1I2VAXGU+a1gkXMX2UlUJvnXUrkVBWuhYM41ueQYomKztGJB/A7PbhEBONZAh7hPMNuDxF9JwgCrImntKxLrCjML6REZEJ4S8HyMkhKZyxXa9iEMFC2A5tSJp3+ABYhNdKshKQUWb8/QkDPbr3IEPdDrZUFIM8qBD7hjYMORkO92e3tXsV8rNfHYrGCLQivW9SoPRsOp1YqlKV5V23OF7tugIqwuFW5ZtSGbYfwiQikE/dQFBMo2Hwsk+YoihJ13YT9JmWi0zxNZ1ubp/R5x2XYfjkux+W4HB9jfCo8T8exuLonBHh3CDyfpRyApvBg2/YGDkxd6Kk1VebxeLzheX4Ux+BHUfObvz/rb+bfeVUy1s8LHdhus5vlRcVSDpZlYU50b348QFYQcUMt0SWcaq8XI1lo72cw3EI+JyXNNAdExRXnspbIMgp9fRs2YQD39/exa2lP5OHTKUJCISynE6bbrrI1ELo4PaTumfUSeaLDuMBx0Q303KVxFzvbupC1u7vPVenVKoGdSXiEwfzs5z+H8anuz56en+PwUIdoL9zY4+S7ms3h2NqrKSqw55SkJabzNU7PdRgcRRFqlmBxsFw2XKj9be1d226AeSrpWDVc8twqqSvvpfEcLAchpXF6vR4G5Ant7mxx3/ZitUKH7mNvbx8HB9qjzeZzlJihtohwxvbR29LkKUmWIq8pBB/twiaMK2QJQT3kThDDcSw4xHlg+SvYnn4utRKQDjHOSwlJYWQtXFjEsYq0hKJzK1FjkWSMtSwtgaTQ9z9PCkyWeu1FBeAQJwSEhDJa7cJDRT5SAQu5tEC9ExjuXkWf3o+jo0NMiXtWWh5IWQZJKRHSHK2WGWy6rqpS6MYj9jzHkyksof+2XGTYGun5unLlOg4f6v7/IisRERojDPqwhERA3mMUVkgpZQTlAJSasK2a1Vl9ryEPEcJFN9bvzWhrF+fnK+TkuZYF4Dr6mpWs4LRSb+0iUxs/aoqTP3Yg+aqSDXuS33RdmI4cM7i7oNsBEctojRZDdFvVsBwXe3v6pR+Px418w3NU23+UsJ0BtrWCpADXCwImqqiVJpHoUFhiuz4bv34QwaMcmmO7cElJMy9rTIgAOY5jhMTY5PghIBxgRS8UbNi8oDosSbJarNHf0gvKcxz41F65ms94AU7SJZLVDIO+NkaiqCBI+mPQ6SIkWdsiLSBMJ4wfoiBj77g+dvevIKYNyrYEzs+1MamUQod+P5muYJNERl5KKCMrUQkEFil/Oja63S2MtnRYt729jTCijhnhYkothp7joN8z+Wab0wGW48Gm8FLCQpoVSJnntUmh7O5uM3yt199iUH5ZSfjUWtvrD7nVM967jlUlYBHqQzkBLApJi6zGIiGQf3cLSWnkHgLkxGo9W5UIQg/K0ecspYsjIr4ZDffYMEpLoTvSa1XaAVY5sfxUCj3qiLJtG1m6hpJ6/juBjyjU3x/sXkHYIxIcx0JK4a1t+7ANNMoJkFbE51kqCC9CPNQpFyfqNS2sHzxERmkGz40gqdlildeoqRtufDJFXRg2rhKT8Qo1vYjT+QymgWi9XMDZ0+iMxTzF6cmUvrPmFNHhk1PMZ2eIuwE91wDj8Rl9LmM+5rrMuSpe5kUjHbwsoISpzvfw8MFTJORQ9Idr7XBcGG041Hq93mBYancePe+4DNsvx+W4HJfjY4xPhedZlgVTdoV+gDWRVhhNaQCA2sRtGqSx4zis2mG8wZ2dHTpus9O0uQAv6rGbcZFVflNkatMr5QJXLRu9aIDD8cVqjTgIoIgUYb5YwutqL6FXyaZn17KhCI8pLBuOETQLO6hI3sJ2IiiRoahM2C7guBSiWR5yqjhnaYEReavdTowh4TT3hyNUtJUv0xWQrbGmY9V5ihW1HgqpmEKvSnOEtONvD7cQUntjrzeE4/l4QMD2Yb8Li3CXcVeHYgBQZTmzv8MOsb2jK9FS2Vgb3KCj4Hgh4p4OqQejPZxPTD/4AFFHnzOOOigl9dzPFqhsE5463My+Wq0xLWcckq/THN2YGinCLheDbr5wB8Mt7e0d7O0wvlhYFp481emH1TLH+WSC2UpHQ/UyxzvvPwAATKZzHJ/rY71w5zYKaYptAqdjEsJbHyKOO+h3tfd3Ol5gSZ5QVT7gtk/X8zChdT9dpKw5X5YlX9drr72G+w8fYkWfc2zBleHTo6c4PtXeWpFm2LmuQ+V+b4BTmseoNwPV0FDBgbA8+AT+ny3X2N7Wc1lIwUWt3rAPQcWjRZLgdKLPvd/fZVwrrBqnJ2MucPphgFFfF0SLSgBUvFnPUySJdkm78RBXrmiss+9pkpidXf1OnJ+vGVHguRGn4oQU8FzCr1o+e8qduMckNNeu3sL29kOk1Pzg+SHCqOmTt5yGY5fbMAOX8a5B6DW8Ez9uxCC2bWM00OFmpxPg9LSg3wcoKEFjgLAAANXkRY0qIaBv3AJ44WXr5EcO2y8SFvwwPtDR9g5XQh0XCCg8tGwXCoJVJ2sI+JQ7qiRYH8d2fYBCez8MOf/phwGKzOjzWJAQ3N9sOz4qMiZVUSIngz0YDGBq5LaSqAiS0u34UGTUdkZ7ELYNWRMQucwQG2KSooCkaqjn+IijhjSYKB3RH26hO9zGIeX6iqKAQXecTqY4O9HQF1ELZhJapxnOyOCkh6fcf66EDWFbmFGe99btV5AcGSO7xpzyeatlzuFUXVZYkTVYr9eI12SgVU3dJMTLCIcbA2Db+LM//zoA4IMHj/DBBxrG0ut2NvgdDYem7/V0BdasHcvGOfEqZFXJaZKXXg5whwg/qqrCgPrvq6qC5/mIYm2kBqMtzun7XsjEHG4Q4IDSVXG3DxMIlrLGARFUd6MO/CDi7++ORtgjg1MXOa5Tg4JSNe4T/0CvP4CiavW1mzdAfQ+opF5DQajnLIoibgSIOjFKYh8qyhIJhfCO5bADcnx4jDGRwHQHHaxWM2RkPLuDAZJUp2+UdPBLf/uX9TVWNraGhDLJMxwRf2lZrTCbnuLkSL87YbzNaYM47sIxi6puuoXytGjxAnhQBIdSSkHAYpTNer1mJ0YpAddvGLnMPK7Xa363L0p1PO+4DNsvx+W4HJfjY4xP7HkKLTb9LQCHSqm/I4R4AcBvARgB+A6A/0wpVfxVx3AcB6NRj47XeHu+17ThSSlRmy3U9VCxXMOFEFyB+6uzLHsmJd1Hhe0Xx7Nosy4eo9cbYEl9vB23A5ewlbbrY52l8Gyj1Bgyy9E6zZAzY7qNghL9eW5hRpID8/kcVwc6/fDo8CmqOkFVJ/T9Eo+faA+vqiRKKgicnp5hMtGeQFk3EiHDKMR8pb07F0CVp0gWJpYr8Z2va69sfP9dKGIsP37yBIKu/Xf+5e9BknREJTx87Rf+Fr7+jW8AAN77wdsoC31dqkwBaaQoFLeqwhJIyauppTS1PvhBgNH2Fgvg3X3pVZwca4TBYrHAeEIh+HKF9Vpf1/b2NkuIqBauM01T+L6L7W3tSbmui15fr6mf/xt/C/fv39fnjCIICvWXqwR5rosZ/X4finyJftzBeDyGZ56l48GndEoUd7AkxqH5dIL77+nW2DRLcLC3S8+kgCxyJJRCODx8jCtXdCW/rie8pupaYUbheG84ZNq85XqFNXnjP/fv/ix8z2lE8mSNxw+053x2eoyTp7opwrZt7Bzo7xd5hvnE8OCOAKqClzUwX57h3n3dhvrVr34VHUJkeK6DynDELpaIiYLwyvVr6FEVP1A+inv6Ob545wVYLmCepu36ePMtoh30Yrz99lsAdIHM9M97juQW0Jdv3kAn/gIjL9597xABNVVcu3aNwerZOoGic6wWS9a29/yQvWPXsxF1Qi6i1ucT0y8LARtl3bQMm1DdsiwuRLXx5P+2e9v/AYC3ARg5xv8ewP+glPotIcT/BOBXAfyPf9UBZC2xXpPL3vFRFQ0RAFPoV0DaykcwcYBlc87T9HKbvIbRNml//q8aPwpVnfnsG2+9iUGsQ4H9YQdvvPEGAGC3H6FKV7xwHj56indp0UrLR0T5z0oqjEjiIux0EYb6pZnPZvj2t78LAHDfsFGUK/SH+mHPZmO41PeeZgWikNIUaY0hQWru3H0Vr72m6d3u3rmJN97U3TLj8RmOnz6GLfTjCl0HcwpJfzA+QmTIeV1Py51A80sO9/Tnt/eu4OrV6/jL1/V9VrXCiMKywBcoc228qwRM5FLKGgGF6us0xTqlbp9CopIWAiLrdd0Qx2dUuc9L7BJ4Pn6hwxRpVw+uYLykFECaQlJz9Gw8QRRFOLiiw1jL0nK8AHB4dMwkyz/181/G3/jrWtz1+tUDTv8MBoOGri3J8P9885uYkfFTsLC1qzcy2/Hwl29o+sTzk6foUg+6iwq3rum539vdQRB4mE+1AfOtGq++qp9FWZZMVLFYLvGY8qw723t46RX9mZOTM0wmtIlMT1FnK4y29TPuRAFWtPGVSYQ94njdGgxRUlU8z0rUJM/sQaLX18+hhoMiy1FSh9Pb3/8ebt26pY+1niMwctK5AnEWY39ngCwjvgE7wBtvflt/vkrQCSO49K4pS6Aq9XPd2trB+FzTL24NR+gPtPGdT1PMqJvtStmDa7uYz/UcQVSwSNpFE6aY/v2yyX9aErZJg8kUS+JLnU7PsVieI+zoOcqLBIpSfJ5vYX6u145W/zTEzDb/LGWNsmzA8887PlHYLoS4BuCXAPxT+rcA8PMAfps+8hsAfvmTnONyXI7LcTk+jeOTep7/GMB/BcDQtGwBmCmljPl+AuDqs74ohPg1AL8GAFevXsNqobF3h4+fcMVUPq5x6/oNAHrXYLW7JEGHRMc4Gw6qgEvJlXi0APBKNTRdbdaY9riotCeE2Ki+Ge91Pp/zcX/xF38Rf/qvfx8AUK2nOCU988P7a+wMuggJkzeZTOBGlJpwFWDrUHc8neEaJf2//OUv4wdv6V3+/ffew/pU76x3bt/CKp0iiIx0R4rXPqMp6ZI0hU24SdsKYLsE1LYtOLSz/sG/+j2WPxh0fXi3rkFW2qs8OXyCr35Fs6SHtkDgkj74OoFDGMgbd17BzRd12+U//+3/E7/zL/9vfP7znwUA/Nxf+woqagss8iWD/OfTAvfu3dPHKisOt7KsYHSC43t4/PgQHpFBv/f+PTx+pPv88zznNE2yXsOnSvC779yD5TcSJqZAlKcpfN9jcTPbtnHn9i0AwDe+8Q3cunUbAPDWW29he1t7yo8fPoRZBv1+nxEfW45Atkpw/FhHCk8Oj5jxKIxi7BGY/vbN2zh58kDfi7IRG4VSR8JDCavW0ZSoc4hKe2WDTowxeZX9yMc98p72XnkRy4n21kJHwIW+99nZU7x44xrW1GChHAlq6Ua+mmHYuaPnYj1H0KdGE1uxQJ8nalimn7yuIKoUQup/dwMHBXmhoSegqLdcihodak5ZjI+bgo3wmCpPIIfvdyAJF7xaJOjEFJ67wN6u9oh3doe4997b+tplhkE/4p/LyobJzHViD5MJ0dhZFTLynP1AYE6tzJZdc6uo63ua0g6A6ykMhh0UhiGqWCIivHGarjaUVw220+DKgU3GNi5EP8f42MZTCPF3AJwqpb4thPjr5tfP+Ogz42Wl1K8D+HUA+NJPfUntHxDxxN428rQhfkAbrdSio+KjtsLxIsvhhVarC6FhoW53JUkpN4yqGbpK2lCp2ba9EcqbvEin0+FK8r3Dp7h7V7+Yt6/u4N4bGgaz3Q2wN+pyKuF7b7yNl17TNHK5tLGm3tvX33iTQ5HJ+SmHa4DCT33xCwCAl157EUk6Y77H7Z0+vvCFzwHQYbuirpz3fvCw6QApgZQ0gMp0hZhYxntRD65VAlIbo/XYgU17XZZkyAkuMx6PIYlzVNoBjqfUw10U6I76DLc5Oz1mlcp+7KOmsvx6vWbqt63dHZQExJ/MF5hSSBd1Y0Rhh3OjWVZwlbnX68Gi+8rTJnftOA5SYk+vqoqlf+/duwcpJa4e6FC/2+1iOCIYkgJXlcsyh1BNp5qhfhsMBpwPU+eHeDw5wdlTbTwdpdA33J6eAEjF1bMU0qV+XkWZIV0RYUhkw/M9WNJoUxWwjSyGLOCSjIYlLTiUI3ZUCZ8gOVVVwZLUrJAUWiGBDLGtfFYfDR0BymrBD2yEdC+ZUjByX76jEFI4XgmFyAECWm/DbgSXNktVZEiJYT9Pl1CFni/fFvAoF7nKa5YAqesCtUz5NRRWCUGGtKoTdGP9PkeBDYco9KxCAcI4IxUsUQG0pvNiibwwzQspJM2LLRwoGF9MwqDngzBCDZIQiRw4jkANw8oPcBeNKOHQ/SslNWM+QPdqODRKXgfm/88zPonn+bMA/gMhxN8GEEDnPP8xgIEQwiHv8xqApz/sQFIpJkwVLSndtuFcz9YsBseEv4CuMFX1xr9N3uKipGgbs2mMovm7+fl5EsaO4zDkYWfHxRc/o72yl2/u4n99+J7+/VYXw24HNj0433NQEjmHsAJuGRMKSInD8+zsDDkR2u7tbMEmqFI39GBbAQqp/+ZYgj1ay7G5s8PzPNgEe4KSSBOSjy1y2JbOK8aBS+8+QZI86EUMAKJGQG9dFPpQ5NFub4/w6he/DACYrFIIJ8AXiU+0LFIsZ8QMFAXodV4AAMxv1IxZHW5vYU7RhB+FeOtt7YnsHezj7ksv86ZkQeHzn9fHvbp/0Ey4UowBDIMA8UDPvZQSh4fa0/+zP9Etdl/72tcAAKNhn72LH/zgB/jsa9pTbz/jOAr53N1ul9dCdPsAVZljeq4xlN1BHz2Sel6lCZQh4vZt9LpGLlggoPx24FoIfAcBSaX4roBj0cYvFDxaE1JJNoSWktw5lKYSgl6IKIq0Jhd9J/Rd1uiyhURNnpRlgcXsyiJFnmhDmK5X3L5bSQvpeoWUvFhZFNy269kWnI7eUH1HIiCnwxKKj+v7PlxqP7Zs/VXLGG/PZSMlLAXj3UhVsS5XUWS81soqg5Q+F4M8z4XnufyzNB2EtgOPcK2yFQWWZcFOh7AUqrqAlKYQV6KiDU6qCkKQhEkr4rwoGPdxyJA/ds5TKfXfKKWuKaVuAfhPAPyBUuo/BfCHAP4ufezvAfgXH/ccl+NyXI7L8Wkd/yZA8v81gN8SQvx3AL4L4J/9sC9Ylni2Ga/BLNRlWXIInGUZ/NBIb4CTBZ7nAbbNshZX9g+4SltVjRDUR0GVTGj/UX83+ZC2tzqbjBH5BmgNHB8Rn6V/BT5qDl1dS6Amj8ELA/i0g8dRwOFWniZYUyW534mQJ9rTVnUGJQsUGdHYZSuULZXNipnam2qkH7gcQtuO9mz0zdfI0iWEMizvGWoKEX1HYIt644MggEuh/mc+8xncflV719/83vdxPpvjCoXXUBXOKL8WuALbBDkLggbm5doW92arqkRGOVIpK+xsjbAmb3s2m+HGdeLUtIGMCEu63T43Q/i+B488hrqu4drG01bIs4S9nDzPcXaiK9l1mXMThuvaLBERR1HDXm5b7FWh38doewtxX3vr/eFAR0fQa88wk+d51jCuyxI55emSPITrOezFlLJmkL8lKhSUwijLHAX9fpmkiLokoZ0VyIlUJI4tZEXDb1lVFcP08rLCnFRUPc/D3nVdXhCWgw719UdRDJ/gSK5yEMVdRF19X+ssRUkuXpJn7BErKZhgpS2U5iib76PISuRJBovQGVUtUdF9FUkB5dV8LDNsYcExvemWo5n+pUmlKdSUDK+qCiXlu6XVSE3LulEeFXaOkCgblRTI8xxKNOaskfFwULXSNIbhXs9NRM+h/P9Pelgp9UcA/oh+vg/g3/nRDgDkiVk4WcPGU9d8M0mSIKfODEDnNwGtfc0vgKPxcIKM5Msvv8zdHHVdP1MZrygKntCLhhPAMwtO7VzoydFTpMmKPj1Al0KfreEAngVIepmhJDwCufmewx07jiUQ0+L2PReKFpAFCZugJ66tEDhA7RhZDQnHNlAth6UQOp0QUAavhpbxFGwgHVtQ3shodNdQlE+roGA7jSE2eacg8HB2qPGEcdzBcp0iodAvT5YIaV63+xEkpSb2dvcxnetiSJomfKzBsMedOL7nIAybPGngOtghHfLZZIoZ6cmHgc8MSa5rc3icJCVvPL1ejGydMM7UsQDP6Na7Dny3Sd9UhTF+Dm+0ynWhKLRODp8iq2o4lB6yPB/jc72RpWXJXJejnT1YhvB5ZaGgZ1fUErUQsGhebD+AbTCjXgjHhJciR0Byx8pyuSuothx0iKPVDSLksxUErZ1SCljUOhnGfdhUSAs6HW4BXWcF83kukgwFha21dLBKS2Rk5K7eeIELKMq+j4RIVfKsRErMTcIOOI1WFgK2MRnKRlWC2Z4gHN3VBc14ZHJuQjicNrBtn3OmsrZQ5ZK5OmVtoSa8cllKlIXRNxFgeyYtLjzKWiEMDd9rB7IW3K5pWR6UbJRMlWo6kdraRrwRFAUb2x+lYHTZYXQ5LsfluBwfY3wqetsXiwV+//c13MdCIx7luk6zUxQlaoJSBEHAlFW2LTjxGwYBthYLTjAPh0NMqLrWFpVqj4vQpIujTSZiksqWZfH3et0OosBQ+wN96mqxoGBBISdAuKpL5KSkKVwfy4X+/Xwxw9ZIh5RxFCCiXT4MfSRT2nJlDqgKNnlGllCoyKMVlsedMN1BF+sFwVJkjaIwtFySi1WOYyEMfSgitIhCFybyFVJyZbRGgao0imCS+QI8x0WWJdgluA+qGBbBanwXqBP9/eOTY5xRgW+5XkFQZcR1BHuH89kEs+kZa6rb1gDblDYoiwxK6rnsBD76/SGf/5Sq9UmSMJxJVgUm4zOcnejiVRT4nJqwheC56Hd7ONjTUKMw8nkdKaWwpJRJskpRwgJoXoNuH+mJBnenlUKHum+2rlxBSN1R1mKJhDy6RZIDTsIRydlsge5YV+UDr+Y0RZZlWBKN2tHpFLkiJvS84m60UrgYL1YctnuOzRC009kKlquLWv1ejqEwcjIFZtR0Mlmm8AoK+ZWD2TpHRs5VCQcpyWAkJVCRt7da5zgmYpEKzbr3lIPTE/17CQvLVQKLqvWW42JyRny1AeC7+nmlqwKrpT7hcpFAVhQJlgXWyyUK6k7LlI/xuU5BdDoLbpQJPIeJRVzbgU0Rl7AcBEQZ6Nih9oqJhKfMNUs/ANi25KJUUZZYJ/oaF4sFglw/3+Vqzum1H0v1zMVML9y2DKjj2BsN+8aQLWZzdrk7nZDZf4o8x2Kx4BDR8zxUFOKtVis2oG0i1IsGsz15bZkH8++Ln6vygnNdZZajJvXKk5MT3Lyy0wore+gQgUgcd5GkJjVRwaY32BZgKMVqOYdDIU5ZZKjrHBZVMC3UqAqjaQNEflN9Xmc6xyvq5to9z+MOilpWEEIhL/U1V7JAST87EIx7FEJXgwG98XiUWpCqQpYkCHu0YeQ2Jkc6pJ+nC5QEd5mkEhlVfJWsEBApSqcTwrZNSCXQ7XYxm2nDopTCfK5Ddde2sEOGNE1TlKTnJNBUqIeDHrZG2nhtDUc4fnrEBtNzHCSGc7UocHRI+NGthMmyXcdqKTM2xrNWApPFGmfEJtQd7eF8oe/l6OQYEb1os3WG6UrP3cl0joRQHp3JFL1uBwnd/737D5FTSO/YXU4lFWXNksZnszW6ZxOaFwvXr1/Xc+J6eHo245yxrEsEFMKfHR9jTpyn/X4XzrHeVOpa4fV3fgAAmCYVbIeeHRys1hnufaCf1+dO6DjlYQAAIABJREFUp4xIOJ+uIAmytlolUCf6WmbLhNdn3+nhKZFdV1LBCx3mVrVdB8dH+m9hVOLqwUv07B1Gg6RJhdIoWdoCFhQK6kqaZxnOifM0CGIUtMGEvs+phdAPGnXUKIZtmTVB56BrkbUN0ygkPItbSNupt4uMacYOPAv//VHjMmy/HJfjclyOjzE+FZ5nEIR4kbTDlVKtwo5CQtyeuVSMKZNezTvEcDhEl7j48jzH6ekpJhMdYsVxjIo8v6dPG7ip7/sMzA6CgL2PLMvgum6rb97aAMy3K3Fmx7YdgS5V/dzAx4D00JfnRyjLAVeMz06OcXSqw9j9ay9gstS/n0+nraJWjwth6TpBSTjD85MTlCoHXH1dk8kEJyda2sDyAgyo+LRYzrlLphN0moKJ7yNdN6FimqYMcl8sZpj1CBEgLK5srlYrlATyXq9XSIlYY39/H1leMQb5vbffwXpOXT2ywCkRVTi9naZZwbEbffAkxZoULnv2EL1ujPHEUJkBBXnxg8EAw55+Rh/cu8/RhFLNc9ja2mJge7/fhwXZVLjLEvOp9mKvX78OSUWps5NT5ouN4wgHu7qpwdvbw3UKMo7nMyRFiRnxqcJxmTd0naTIDReqFFgbNvK0gE28ppZjI7Zs7vsO4y46dC+qDphO0HYVBIXnlu3Cpx5/LwxwcP0WACDyPXT7o1bhsUInokKWbaNP6200GiGk5ygVMF/p67py4wUIKkRJuMjyGk6oPe87L72EKc3RB48eIaeoRQEYUS//3s42F4zspWSkwu7BLlzfQg2jw+7DtnR0EXeG2CGBwNFoF0NSLajLCiVhOQf9CMN+hIqKlbF0ubC0t3uAjN6JwPU4sguDgDvNFqslK2E6dgDbduGZ4lkQgTIoCIIIc6Oo6jhMBgI01XYpJUeiP3YyHIBEJ9aXEkQd5rSM4x6r+5VlyfCNuq5xRsbj+tWriImYQ5UlhGMjW2j3fzmbI2351m2XfUnsRXma8csES2h2HYrk18uk0TZREhZV9WtZoyCIx7Wrt1FT/lDmwJd/5q8BAESd4MmD+5ic6Wu5f3yKjBQ/j9c1lrS4z2YrvP+BBnq/8vJncPhUG5L5fI2UGH+yex9geX6MPkkWTM9OEdsmX5Ohv00ywPM159Du3H0JIwppJ/MZ5yXPjk5RFhksShuIHFAlvfRxHw9OSYFRxUgLfY/3Dk+xf6Cfw5NH95AsZ/jON/8YAHB+fsqEEFJWuHbnlr7HswQZpTD6YQxBoWO3v4v9XQ2kT5IE+VJir68hNmEYQOV6jgI75LzXYNBD1GkgJl6hjcT2/h6HdEmZQroWYlIFnSdTBH1SD12cI630fQVBxJIkyXiOjGQlrioXE8rzJbMJ6qTEktpjn957gD7B0b70uc8iJahVvRpj4Oo1ddDz8erLutMsCjxcPbiCvV2dF/7N3/xN/Aypikq3xpSImYXt4Duva5KRn/jJzyGkdIBwbMxmGvImcx8/89Mv4+xIr5FkPsX1A/1+PMQZSNoJN66GGF3V85rmJRbHujvq+n4Xg5FmW8oLhfsPnuBpqe+rXp5gO6K0kpMBHQpdsxIv7Op3ajR0sb+vN5h0WWNdUAtpJHD1+j7Op3q9bu/sohaUSoJAKSl/2ROQln6/gqiGTbC2K9cG8AOBkDSMTmcr5JSb3d8NIBWxkTku5hNj0CQchyrklUS/S/yn+RR3bl/F0Ym+tk7HRkLIA9vKERIjmOd5/HONCi6Zv44XsVHNxYflOz5qXIbtl+NyXI7L8THGp8LzHI/H+J3f+R0AwAt37uLuS7qV7vr1mwiJmzPPc6S0m9R1zT3gqq4R0a7huzYOdncQ0A4eBCHWFK65rrtRcWeFaNvmRDNIuVNYTesmg6DrGlYLqMzHaRWyLA8sPucNQlzb30Wvp0OkR0+fYl3ocG//6i1MpqY/WzK6wHEc/vz+3g6STHu0L7/8Mooru4ioh/xs0MfLL+s0R1ULDHd1P/d4leHxsfYEBsMtriB2Oh2EPu3q+/uQdYHFuZ4/IWyWIHCCgIshlXKQl7oyuVwucXBF0JwGSFOXmw/yPGeuy6Ko+LmM+ruYUJ98VeSw6B5932XURF3X2N7ewuPHj2k2Fc9lURTwvIifncHyVlXFuFA/COAP9LO/ffs2vvvd77Anur+/y+28aZpyz3xZNvi+nZ1d9jiEEDg40M/unbMTpGm6wZHAxTfXhUXCbr7vc898kiScQuiEPgaDAT/LTqfTYIk9MDepcF0WpovjGD3iS/CCCC5pxru2gAVgNKJecdeGR4KBtm0jYlb4hhW/kg26xPM8vkfbEYiihpXe932eV8uyYFNeLAxDvl7P81pFtYYTwrQ0NsgYl4+bZ2qDod9ci+M4kFWjXimE2jheu11SMprGbjWlWE0LbRTxuWspNt7VZxV2zWgXiNuquW1Vzecdnwrj2Y1jNjrvv/8+/vzrmmh3vU5Ry3ZFrHnQSwJg9+IYS8rzrRYzvHDjOjP+fOGzn8M1MjK9XqMUCDR9sm2SkFrpnJnVOo95EG2DKYTgcP4kWTM5xSp08Nb3vgcAGHY9RJ7DL3MQBBjs6BjrxVdewdMjbeRmswV3yUgpOQWxv7+Pp8dz/lmMelC1Douy1ZKZgWwnwGiPwt5VhqSkrh4v2OjjNd0zvu9D1qJZ6GXV5IEcBwFV7oXrY0552fUqbbo8pIQQNhtPIQTDmIAeQ6iePP6g0ZTa28ft2zfpWjx8/3uaW/SN43ewWi94XitZA8awSgmLqsqW7wL0YlVVycZvuZyhI7XxGY2GkLLSjQIAXn31ZfzFX/wFACDN1vCoz3w+n2NKgHcASCgnLaVkMmIhJZPEANqYJJQPtCwLvt8YHzZMrcYJk1szf2sb/3jQxZzTRDZ/JghCxATZiuMed+tIWaFIVrzeHPSZtLgoKjiOWdMWb5ZK2Px5z/P4Z2Ft8j20mcr05tAYk7YhavNDtKvS7Z5w27b5/Hm2auBNnrdpPOk56ndLbazRDeOnrA+ds03J2zaqiq8f/P12c0t7g2ifo31uVuV0nt8kXobtl+NyXI7L8THGp8Lz7A+H+M9/9VcBAMk6Yc1lpQSE1bjTFjEGdTohEqqE1mWJv/yuZlz/zre+idW8UVA8OTlBtKPDqvZOI6VERm1Y7Z1NQukww2p2VxPKCNFU2j3X45DMdQv2HhzXwoMHDwAA72dzXNndZsD+9vY2JBV59vf3sSRlRs/zGKjd7rH1vKZBwHVdQDqsDphlWeMJi7opmiQJ/z6MnMZbae2mZVmiLDJkWas3nvCcqiy51zls7cYSze6tLAFlCWY5atOHea7DIfX2dg8O6aAHoQtQi5znBvCDhm2o0wmxJq/WdV2W2PAjHzYVaWxZwqZ7cD0fn/3ca/x85hSBhKEPx7UwHGoveLQ1wMNHWq7CguAmAT9w4bMnZDGTj+t6cInfLS+1yuKAmhf6wwHmyxnPl1lH7TSQLmhSWin0oQS4MUAIAdPi3esOYVm62CmV4DbCqlYwvowQNhdHbVsgTTNYHIFZyDIjaCb5nSgqyZ5fJbHhLZqhlEJVVXyd7XREex1kWcZokn4v5vA48+TG8drok7pueBzOTud83I+SstHv3Wb7c/s77BELq+UdiwZfXckWBlxffxu3yetVYcPzfBZvxcVzP+/4VBhPAJx3jLpdRN3uh/5cVUCeN6GzWcBxv4+f/umfBgD8xBc+h8nZKd55R+unVHmxAWUxuVDUNaxWfsUYFwmFPM+fmTu5CJ5t98MbMo4g9vn3uUw5BAd03ova99HtdlvnAALOYVmth67YKPu+j7rON2j0jGG07OYFbsO8er0eL+YoiiBUi9TEdZsXvWpyQnUlGTYF4aCSDWTLSGesV4kOS4k+rSNC7h0eDQecDrBVwT87jgffaxHXkixEvx/DdW02WmEnhEsGMx70ENBcVlAIIgpDZQifOrqyNOU0wdb2ELu727h+g7i3o5A1ceqywoQ0fcKwyZVNZ2PUBDsaDrdwdKThbN1QGwyTC46iCK45lmpeUj8KEURNXhZGT8u2PrReOCz0gyYkV4Jlp+tacVoKoqkWd+MIthPAIQB7ndcQhEAJfK2saea4CaEbol8ArVBbOwrG6LSNnw6Vm9+be+x2u0zWXSRPNusGrXxiXdeNjLM44tRKW/77r5LFufjvZ+cmm3lVqtEdsqnZoZ3DbB9Xte633c9unkmWNQQvl73tl+NyXI7L8W94fHo8T9oFy6pAaYSxYXHY7roOwtBU/dAk6j2BiMC5US8C6op3lEJK9sTa4Fi02jPtVkhrC/Ion9HjLoRgElzRIszvdjvsxZVphSTVxQDX0uc0xaQ0TeAQCLrb6/A1el6TAmhXENtJbCnlh8JF4y1bdpO0931/o//e7PhZlrHnWVUVBMBExWVVwzYgaqfxRubLphBWVRXOzjRgf7FYYGt7xPMZhj5KAjH3Bv0GOSBX8AhPGUUxOjtUVAo6uHOXaOccGy++9hLO/0yrd9quxazlfhjCI28zgELYbZ7f6aMndO4Qg6HRHZRwXZt72Mv5HIMB6ab3++iQBn0YhvBsgx0+gxAG5O0wGNuBrUmmyUvRypz6Woqq5PA2jpuQ1nbdD1V5WWteNeGubbmoSqNY6MBzTcEoQicy1flYCxsCqCuF4XALkrC0s3QNA0QWtgtT5LGE88wQWJ/GkBdYG+3PF+kYDZG267r8fIfDIa5c0WiOw4dnH6pKM5G1ZXHjSbuhxKzdiz/ra8RGqL3RIqk+XMwBmnZap1Yc2Vi2rvo3XqlqnVMxhV/7mbQ9z7IsNzzl5x2fDuOpExMAANdx8SwKD6XYvsK2weqRAJC1yDfm8zk/uF6vx4Ytz3P4pqOgLFGZzqGW8dTwGI+lBaSSsESTt3rW2N7e3jBYnENS2tg5btMJZQDsURRxt5RlWRsVSxPCum7T11+WJeQFeJS5L9ezNxZ0m8Kv3TnlEL1dWZaAairJ6zTjpgAdeurvrNYp546XyxVzJ3qBj07c5fNUVcO3ePS0xIQUIz/34j6+/baWop3MF+hSJRmWi9e/r5nke/0RAMmckJZlQZIxgyVADSewahsmoq1rICb29mikvw8A2WyCk9NjvPnmmwCA+/ffx2ym85Sr5ZLRHGdnNbP4W8JutJXyhI9bZjWEEDinUL93cgI3aCrGCYHk27CWtsGSUuoQtc0j2TEV+oBTLY4XaK5SAFHcQ4+aQzqdDueLa6VwsH8VZa5z/LPzUyhluCcVCkplWZb9IePd/r+Z33aes91Bp+kYG4PFdQC6F32+mjdkV+rPsPG0G8hbe27axu9izrE92iG9lJIdFaD97jUGtqoaJykIQ107aF3zD8tdtlEEbdTAj6Kg++kwnkBjGS2wfjbQSBVZFqNVUNeApFyVUA3cwYu72Cq2eALMyw9sTorlOHA/QgAO0B1E+jw1e0/ApsdpJv78/BT7O8QK5I84x1qlElJVfG2j0Qizx0cb3wU0+5GRzzXSAeZ62xAPeB5skjBoG0lbys3PtYY5TxiG8BxDJuyjyGvOtbVxj0EY8iZW1zXWCZGUJAlCkgqJ4xjD4ZCFuA72dwG6Ls+28O672mDevXsbT57oLpesyllPaJUUyIuGYxV2I7si7EZwr1IV0JJPKKqGjDinFkHXdeES8cvJyQlWqxUTq0hZ4SpJATuWjbt3NVHFo0ePsCJBsa3tLS6cFUXBEcCiTlDXFbe6no7PsX9FG1+JpjW3kjVq1XhSpihk2TZsz2Vv1cwZoPXGGYPp+wgI5xmGEX/e9nzUtNYC28XuwQEqIhl5eO8HyNcOnRMwQZrjNpjNi4UgntNaoSiKjYJRe4M2Kdv25jyfz3F+ToxSabqxaavWuwc066+tg96GRrXhSPp93NQPM+uwqipmQrJFW5Os2QySJOHP+8FmsecibKltJM11ua67we/bJkZ+3nGZ87wcl+NyXI6PMT4dnqcQ7PFAKlS1IYEQTMjguoJTkbbdcA/6rg0T381Oz+EI4O7duwCAP/hXv8+75o0XXuDTVUUB5xms8oLE40wovxHyiGdXT0ejQZNPlWAw+uxsydAQANjb28fDIw1Rgd/selEUsYdz/fp1/CFVu9vfzbIMrqw/UirAeNhx3OM8pR9E3P1iWRYyAnmb0Q7FmDMAKXzqYlKiyZkuFgvskiBbXdewbZdZ3l96+S76QwrJHYGvf/MbNHcVywAfXLuOn/nKzwIA/vhPv84A/69/85tIFwukOcnyRh0UhlLO85CmFJK2iEVqpbBLObgqy2C0a3/3d38XOzs7eO01DWMKwxAfPNDSx9PplO/XcRx85Stf0c/QcrBaEZ9kVuA+kZ8MuttYp2sOQ2ezGW7c0hRxjw8PYTmCn4vJBU/nM1Z2LNIE69UKd27p3O779+7xXCg7wiOix1OwcO/+A30vUuDeQ53LvX79Old9h70+Xn/9dYSU2vj+99+ETeiGs/NzWOShnR4f4cmZPu58ucZbb2nEyWS2ZCKSs/M5nh6fs+fseR57acvlEguKJlarBd57TwsZdqKAu/+W0xyPHuloIox8JNkKpTTeX4Q339JRxw/efYBbN3VzSp7n3Ok1HZ+jpJSHZRWo6gS9WOeMl3nN5D2WAkcnnuOioLRcvz/EgBj29TrUczIej7Fer9mrzPOcveCyrBhB0iYGmUwmvKbOz8/xyiu6q/GE+uOfZ3wqjKeSEhmFYkpYkC28mykYSdl0GM1mM8wM9MT3YZNRSddLxGHTNRFFEbPGyLKE1eLzbE6uuEDkOM5z4bwUmvyWPhZBIaqSjdfZ2RkePQqZq3K+TviFyOZzHJKsxdnZGasmApKLFtPZmDGjO9tbcGXBHUbvvfcefApXHTdEZ6CNkRV22QDUEvzyz+dzrEkiNxAK69UcqtZzMJlOEVChIrZcuGEDh+JcleMiDAj21I1hOQ5K2WACPZI4Dnsxbty4AQBYpRluv6g3sTQr8edf10Wh8/EYC5qjmzdv4o/+9E9w9dotfW1BwDIewkJrjgWEMJ0pghUjHcdBTZ1OBiZjSDd838cNYiZ6d/0Oa8ivlgl+4vM/oa+308V8rq/l5OSEX74kS3VxgzZrpRRD2+I4hhLNptounDAPre/B9TzYXiudQmvs6tWrnNqxbBd37mjd9ZdffQUH17SB7vX7OKNNXwpg2O2hQ8+7E8eoUlK/bLEB9QZ9LuwEswXzgb786mfxk1/SyqcfPDhEJd/FEfF+tiFvvV6Pw3bfd/HiHW34f+EXfoFltv/0D7+BVao36iD0cO3GFTaew9E2szfVVav7R7UKO9hCnurzHRwcwPUUQur8OpkuOWTe399HSSTNru0gJUx3FMXoUO69qCTPY5pNqIuuCcmlMrnReqOF1MD3+v0+p1KEENjf3+efn3dchu2X43JcjsvxMcYn8jyFEAMA/xTAZ6Gzv/8lgHcB/O8AbgF4AOA/UkpNf8hx2J2WEFzxtSzBBAFl2cAMHMdpdhPbhmoROADg3Xh7e5tD2izLEBn1zJbnWZYl3Fa1vB2qb4Btobhg1K6sGpIL83kDmNc7ob0BI/ILqlS2yBI8vwHpt7Wk25yjo9Fow/McDof8N9eLEA91eC7dEKORDmt2dna4wry3t4dVaDqdthD4DsuAhGGnBaaP2RNJM4nSCJoVBRbkXXphgMViwbyOi/kKikLtMI7w6qufAQB84y/+L3SJsb1K5jgmGYv9K1fwARXOrty4jddffwO71JvffnZ+4LB2t0aumHl1YBvdkFrh+8Ql4DgewiDikPTRoydISAajrmsm2njxxasIt3UPezmdYzzWS/PsdMxg8KOjU9R1/czKbm/Q5y6qWkpsE+/lwWyG7W39HHZ3ttCPu+z9XblyhZ9FvLeLXaKqi7t9ZFQI29ndwtWrOjUyGHbw5psdetZ93L51A12KTt596waWhGhYzcbYI8KTm9ev4uZNAwE7ws6Ovq67d+/i9mc114OwfDx5esrv2nw+3+i6M/XQtCW0uLOzgx2KJm7eP8bbP9BohiD0MBwOkVJ4vbOzA5+ik3vvP+Yoy0RigI4Ea4JcxXGM/iBkLoNFVvE67PV6/F65tgOLSUIac9V+T+fz+UYBSUpJHVv62TutQpq533aFvc1RYLzk5xmfNGz/JwB+Tyn1d4VWlo8A/LcA/rVS6h8JIf4hgH8ILUf80UMILqVfzC2aFyhJEiRU/V2v10zT71gWU/snqwVmAliv9QMbj8cYXtOhzEbHx8UWLROqt7Bm+p+bLryBT7SNZ57nnE+zWka9P+hie3ubF8T+tStYvv8AAGBHIYcJT58es85RG3u2tbWF45NWd5SoNWEo9KZgXo4g7KK3RXyL0uLwNQzDDYiIWSjdbhe+Z8P3cvqbw0bOi0I4poNEZK1WuKalr65rrNcp54uSPAOW+nO95RrRQJ//az//C3j9e6/rY9kpfu6rX9Xn72/hn/0v/5u+3+ptfP4LP8E5sU7cQxh3zGTzY5J1q3pqC6bEknmJb3/ru/TxGoCFnR1tGIPA5+OeHp+wYbl9+w5Am9iTJ09ZytayHNR0ntVqBcdvAHNtUpggCEApYhRFwTCtvCw2MIwbLYJWU9WGqiFpHfWHAwSVXjtnZ2cY0rUPtzqMX83zHFEUwraaNJFD7F6lqmA7JuVkMVrAO2uITyzL4oncTDVtbgq+78MlIpb5fLqBvzSaFkIINoqGaMUY2izLYBG8arlcYjSs+O+MDHFs/n47n39xXEydNR1RBcO02sc9OzvTNqHVHfSs9Jskwhd9rHoDx2ueY3vj+GHjY4ftQogegK+CdNmVUoVSagbgPwTwG/Sx3wDwyx/3HJfjclyOy/FpHZ/E87wN4AzA/yyE+AKAbwP4BwD2lFJHAKCUOhJC7P7QIymFgix/JRUXjAALKclSLBYL5kGczWYshuY5DgPIy6JAVhZMFpFlWctDa5jIISWM0tmPIvj0rNHuA25YQhuN6JqQA+1dT3+v3PgssMlVCWyKVbUgph/qIGl7yOY7ba9ouVyiyBr+TVnXMI5QJWvkpJ2t8hxSNN0njI/zgqYLKu7A8Vzu2FFKITEiYufnGBFJSDwI8Pmf+xqdpMY7r+tw7/Dd9/BTX/4ZAMC7776HsqyR5U241b4vI8FSy5I95yCKuIfcijyORk5OjvDHf/JH2Cfv7cbNa+x5Xtk/YO86z0vMSfZjMp4hikhCxfUwmegQPi9LOL7LKMSibjCIjuduRB0GiL9er9lryfMcWVloij3oNZKRCtrk6AhTCrt3dnchKJ0wW8431oRZl6tkBcuykFKhJivzFp6z4cMsZb2BwminHEDXtVqtkGXZBraTxeiKAr7X4e+2iy+ge1+v17yGDX6zvd5cr8FpNiKOTVrK9Nab0V7HjuNsvIvPwmy28atCCI7qsizb8PQ1H6hJ5VkQLQG4Z1Hg1XX9IY/4ecYnMZ4OgJ8E8PeVUt8QQvwT6BD9uYYQ4tcA/BqgoRnmoiUEK/K1yXF1Lk7/3Ov14BMkyLEsznnKqsBqPuO8o6pqrhSi/WCkhPgriFPFhTCHr7nFd9huJeNDtCSJdTfFswlXkeecC6rrkglEBoNek/ttVVJ934eL6kO5XXONTcdIU3EMgoBTCEEQsOSrbdtQsnUtytoIz82LUtc1dx5ZloWSyCzyrCRwuke3UsAzbER5zmTIQbyHZKF/7vUGeOUndcU3mcxwTNIkDx4e4ld+5T/GCcF4LMtClRNoPclY6wjQrbN6YnzkM8odezauX9f5uL09LcnxS7/07wMAbtx5Ae+/rTuZ5rMZOh1t7Mui5u6dsqxxRPCxPM8Rd0yrZzO3Zi5yMn4VJKrKQLsUhNOqtlNrqeO5GyTEQRDws4y7HURRQyoThEZdNcaIWJyUACYzCr2lhGU14W1Z5ugEjWFzaO6F1ZBatGsCtm2zc1FV1cZ6cd2G1DpJEg7b0zTdAKybtbpcLi+se6shqGnVC4Kg4ZINgmADYtcQK4uNfwPVBrD/Wc6BBsY07xOzSFXVhwxvs5EIqFYjgxkbfKAb7ZzPLz38SdyuJwCeKKW+Qf/+bWhjeiKEOAAA+v/ps76slPp1pdSXlFJf2iE84uW4HJfjcvy4jI/teSqljoUQj4UQLyul3gXwNwG8Rf/9PQD/iP7/L37YsYRlcZVLCQvKNDJDIKTNIo5jThZblgBB6KAqsFCYrArIskkaX9RdNy2gSimOgi+2ctV1/cy/tVszxUZhabNF7WL7lzlGGIaNx9IKrzbDGmtjZ2/35VuWhKobUgPzN9sJ2GsvldrwGKqWx9EmagC0zrY5P7fMod02Ci6gVFXFns96vYYfuMxTulwusbWlvXvH91BRAeTk9BxxTNSCfsDNDlFvgB71ubuuj3WSMglG+zqFVKxzb9uNpyyLDK6rf58mKeMk67rG48eP4fskzZAVODykdlhhMflJnmXshfp+gPFYe8fduM+piaPTI7RHu2FBh+KNnj2TwpRlg+MlhVIzZ2masofnRX7jMdUF84wKIVqEHU2b4GwywWK9wPnMCAPOgdinZ7FERoXTJEn42bafaZZlfO66rjfW6nA45PnudruMC3Zdd8NbNMiKi2QaaZpukHG0iy1m3bfZ6ssW3aP5fBQ0wPaN0Fl82AO82DhiriXP8w3vsd2D7zjuM0lK2imAdkH0WQWsjxqftNr+9wH8c6q03wfwX0B7s/+HEOJXATwC8CvPdSSTx7FsJgdWqkWRaFtcfW1T7tV107srcIFIVSmeDFVVuBiGA5vktgLimZ+5OESLoEDnNRtjaPrTyzLXuS86fzukLYqCDaZSivNmx8fH/POHDJ7VhCxtSFMbnF1Wm7kusxiLotjMLbkWptQhlKYpk0t4fg3rGeGSEIIByWEYotPpcGpkMZ9uvLQZhd1ZoZBP9f3O5ktskRStZTl49FgrQxalNvDmpUvTrCEnDgK4rJgpAZrXLElQkyTqarVi6Yyz8xPcv39pFVYlAAAgAElEQVQf3/nOdwAAX/zi5zlsfvLoMc/90dEJruxpBEav12PwfxiGOCddp/YLbu6fQ/iq5nu/qM/zLLkKM8z3T46OuKMsKwq4xBmwTptUjutvYUCohdn0XKdteFNuSWwEDX9sFDWhshCCjcF0OuU1dZGrUtcRtGFtvwd1XfO6XS6Xjcx2i43MPDfLbb6Tcmqh5PUZRdHGcduhclGUiIk5q00MYs51cV5Vi0u1fS8GVrYpO2M0nHzk6sM8wBfJT9rvyvOOT2Q8lVLfA/ClZ/zpb36S416Oy3E5LsenfXwq2jN1REy7g6xh+MeEZXOwLCuAIkJ4TUckHFioK/2p2WSJ+XgFmVFoUjqwS+OmO2AIqWw8Rdu2WS5BASw6Buhdz5y/Lgr2iF3Pg0fn3x3uQpEee7ZOAeJnLCwHhWUjMP3Rkzk8qaf79P5jeLTBdd0Y85X2RIY7+/DI4ygjD6GlvYdidY7O9hYyorSrAwdLqmoHIbAsdHHBdXys5ro98+q+j/0tI7qWIyXPLbdslKVEbVPRwo9QEvjYjwLk1JWwKlP4keGwzNmjTjOgzGNm8+lGXYyPtRc7DIcQisLrrAnROr0YgWUaAVyAUiuL8zFiz8ec0i5dP2A2nXKxgmuY+G0BEPtRnebIEj0vO1tD9tbKLMN8MgOBG+C5HZwcE+oiBxT0vSjl48137vHzNR717pXrOJvqApUIIkyWSyxJ234w3OamAte14Yb6Gff8AbZj0kQPU8xO9Dy8fOslCCXRCfSztISP8bl+xq99roe61Pe4fXWHe6nPT8/RIa+7Wq/xxre/reeuE2J6fIrdofbce70Rjp5qz73f30NKapTr3EZGntvZfI6K1nRpWVgZjlMhUEAxH0A0GOCcmki8uIclcQzkSgGevsd7jw6ZVjFFzgJutQDccMRsV2kZwOvo2kWBh6hoTX3rje/CIW14UTlIlgl9xkPkd1FAr0PLnSAg2j7pWAip532Vpig9ijSKpElt+MCiIDz36hyD/hYmc+1F26JCttbPokgtlKJhRlskJs2RoiaD4AQhTg3Sovhx4/NsDykZIiKshhhkA1GkwC/Jer6EJKuaFykC34PtmO+IHwl6AHwYFmSGZVmwWwB+YxiWyxmGA/0CBp2Qq/tKKZyensKnRTToDTe6nYzqoeM4HK6Mx2PMZvoz4/MpaiKEtRwfvh9yDlLWFrKcaMZKICRKt/kyhSA2VFlbGE/mdI0pZE0hSi2QpSV3KFV1jU5IXJOOa/DjG+mAIAg4DDKpEFMVD0KvlWZpQv4wDDmPHXd6HKqGYQf93pA/P5lMOTcqpcRi0XADiPOmt93wn8ZxzCQned7Advb29hDHMYeoSinO4WVZxmGs7/vcoLBarfDkiSbjKMuaoV1GbredGmmqwoqPNR6PmfDj9PQU+/vakD59+hTXr11hSWXf9zlE/Na3vtXkM2czTpns7+/j/fffBwAcHR3xOvJ9H/fu3QPZQiwXK0YLrNdrzMngjwZDXuu+7/O9Syn5Gp88Od0gxJjP5wznGo/HiEL9jKMo4pTHer1mhVPX9mC8ljLXPK5mjUoIhhiWZcmEKVVV8TPJ0gS5SWNlGSyheO0UhURKm9V8vkRBC1HPtT6nJRyEgZHoGSMlXZsir1EUFZQ0yAePoXS+H+K8Rerdzt0zzKssN9RGn3dc9rZfjstxOS7HxxifHs/TJNhFq7K90VLZFI8A8E5cVQV8CneEquB5FopMVweXqzHKct98EHA/fLvPy6KiK+HN9ZhiThz3uEoLAGdnuip6ePgUltxh1cPT4zFXf9995z2ck1d4PpuzJ9D2pJbLJaYT7Qk9eniMyXiFlOi8Hj46Qk277Hiy2tCWP6IQem+vxGRssKSNGuN4ssLZ2RlkqanFZrMFRlTM6Q+G8EgqxELDyjQYDDi8nc/niOMY3QP9b8+xcPhYe2+nZ8fsbQbdPtYraqG1A25wiDsDDIe6/z4IQgwGo1Yx55i9tSRJOFwEJCt0xnGMstDPrNvtbmBZlVLs4dq2zR5ir9fbYNg3o40PbAuVGa/beF9V1dDrARL9Xpe/Y7zIJElweKjD6dPTU4zPT/navvvd72JN3AC90TbTutXqDUzG2ivb2tnFCenJy1qzDgHAow8e4Pvf+0uUFFKvFxMMaL2dnpxhbTgGFgs8eKw91/lyjUcP9bUMhjvY2tPHmkzXOJ/MmWmsLMsNwH9V6mc0OTtndq4sWWM2n9Cz9nF8YhiZXAjLwcykTSrNUgUA9+/fw0svafLpdvW6qiqu3Ot0hYRLkVlW5DzHZVazwGBRFBsFPAInYNDdBohqz3NCoHZASwTpqsJiZtj+cyiv+f5HFYQ3JECec3yKjCddtP0RF9+S4ZiNJ+hEtLDrHC4ZqDRdQkBiudIPe7Gc8uJWVQVhjOdHGExJYFomAGkxXV8M582iGI8T3LrZEFu0e33DsAObDjGfLtjI2rbNRBVKgqE6s9mCoTa27cJ1tfFynBi+34dF0sVBOITnUw970GU9orpWCANtPIoSmM2oSmpFKCk/JJWP/mAfRWLCKskGz/O8pmIMAdtuQPlGD+j+/fsYDod48UUNEbp+4wZ6FHbnecovdnfYYWPi+wVr9biu15J+ENja2tqo+Jp5nc8XCEPzjAvcu6f5JY+OjvCL/54Gwvd2tzl2spbLjVSD67ocOgZB0PRX2zYba6UUbwpRFPGz29nZ2fib69otoHZDGDKZTNjAXrlyBSsC9b/yyivoxhFefFFzWk6nU9y4oUlC9q/dgOs2XK7jiTaei9USox5xVUKxnEg36mDYHyAm5MH0PIZD1X6hFLYJWB93I3z2C9pgnZ9N4DoB/X6IvQNNeDLaSuEfHrNi6OnpKc9LGIawLck/mzWxs7ODK1e1AzI5nzYIDMvBwcEBRtTBl2YFJL3Dw7PhxntQEcTO8zzmXtjZ2YLnNFpJ48kCUA6fM6R8e5Zl3HmV5zkCXz+Tp4fHePCBXl+rZQ7P6SMMejQvBWRteB0cTLIxP/uw1WnYBtmb+/q3Vm3//2woNHoCluKCEdCQQhRFwTeWpAuERvs7ECgL/fJl+RKWUBgMKYfn7W6SNTxj17noeV4kJuHrkJI13OvWDjoZL3B8RKS/e13sbGuSjps3XsBotA2HsKk7oz1Y0B7a1tYOuj296CpYGBOkZzFftrRUbPQG+jM7e9ewt7fHi2i5zrCzq/Nre3u7nB9bJynm85TuPYbt6sWxd3ATWa69nSjsYzQaYTXR96LZbUY0lx1YJDtSSwseEQX3ejHnPH3fheNY7L1c2d/HNZL7rYqSPyc8AZ8kJhwv4JdpMp/h/2XvzWJtS87zsK+q1rync/aZ7tTDZVNsjrEoUbZEwYFBB4EcBPBLEtgJAidwoJckAvKUvCkPeUiAAEGeDAtIECdIIkVWAiVIHiKJtmyClp1m0yIlsslusvv2Hc89wz57WPOqqjxU1V+1T5/bfbspCd3WKYDsffdZew211vrrH77/+ypb/MlHE5R1i++98UMzZy+9hKk9l/nBPg4ODPvQ/v4+bluGorfeegvcLoJdWSGxL/mq3GA8m0LaBe/49ASlPeZLd+9i387X/iFHMTGL0maz8c8HZ0RKUlWVyUfa521//wa99JwDF/Z+nZyckHc7mUwwmZjfHx4eoshTypNOJhPPnAVB9yuOUuKdjOMUCUlQC+zZeTBGjeHIzkUaxVgtjTGQUlJ76Y3DI8rbzWYzIpzO8gkZibYDpqMxXYvbPwCM8gIRYacHWhDjOEZuu8lu375JntvF0nQbufZnpRlqK5f8eDbD2M6lYIH4opJIrHNUFAWSKCYj2fWcpMVHI8/uBR3IcCBGmhT2vAusVuYdHHqgaVoo6aBaMbWaRlGMRHlmJ/d89n1/pbb9hxnXOc/rcT2ux/X4CONj4XmGnQOaCXDuPUTilBxa6tC5uDiHkmaVG7oaP7AhzoN7P0bf1JhaDyCOBaYHLwOwq4tbYfR2OM6uKq/Dherv7XMPQcTz+R6++c1vAgC+8+0/wCOXd1o8wWpxitqujuNiigf3Tb7o6fGS6LtaqXDHhnTz+RyHByZEWpZLHN83fdfrVQ0uQPIPx8fHVNkFQDIWRVHg1IaBv/iLB/jMHdP3/Zd+nqOqjRd1/PQUT47PMJT3ABgvazY3K3OS5ohseK1FhE1lfrMpK7z9ttl+b28P4/EYX//61wEA//P/8j8h5gFfop1KIxts1mZTBV/aSeWEKHjy5Cl++7f/L5IL2d8/pHl+994D/BPLPh9FgjzdJ08e4ctf/lkAwBtvvEGhddd1KMuScnXf+MY3yKts2xa/8zu/AwC4f/8h5T2jKKIIoixrX13PYjRNg5XNnwKKUhDjcYG5lR25efMmXn/9NXP8RpKQ3e/+7u9iZzahtMF6vcah5f0c5HcoJF4slxgsZ8Dh0Q2cWbhMno/wuc99jo79jX/0j/GHlgdzdzbBjvXq1ss13n3H3JfF2Tm++U9NTn08meFiZdnXRzMUj8xzV1YDlPb8C3du3SbP+dGDhxDMNmWMRpTueuvNNykdMRtPDAUhjLpq13WQltKv7SUmM8sjoRTm1rs+Vwrcvl9t02JhSVmGvkXbVEhszpPHU4JtnZ2dIY5991DoGM7sMY6OblL6YRgGLM6X6Hun6Kow9E5SOkWW+9y182IdmYj7Pkz3PO/4WBhPMA9z0EoR36HpGjCbJEmC2EKQvvQvfRHEkNrV+OH3vwvAUIJeVBe4c8u8jMUo8655mAj+gKTxVSNMJIckCOv1mgxLU57j0X0TgqqhxO2jfaxsfk2wGENv9r9ZdxAWZymyDDdvmZxU0/jk+Gq1wvnCPGiL1bmRTrYck8vlgkL4st5QDm8236Pf13WJjc0ljkYjCoMW50ucn5/jaGYWq67rPEnJcg1loSeaCawtz+h4skMFjNlsZqA+1kqenJz41sW29V1QSYw49pLKTod7GBS4xXzevHELpydn2JubEFMOitQsT0/P8YM33rQ3RgWaT2O88cYbAEzOzoWgSimUpZdbLssSd182ednFYkGQpAcPHtLCVxQFvUxlWZMhPj093YIqhbr1o1GOwr6MIcxMML/AKmXyyO7cdnd3ifTj0eNzyn1PJzuIbEhcjMZYr8392lQlvvtd80z/7Jd/xjJ3mXktshERXg99i9zOyzAMxFk6ne5gcbG29zEGtwsi4z0Yj5Fbg+0WJMCSgttU2HQywWw2sfekw8jmW8vVmq5pNJogTjKs7DkPtdcNOjzcJ9jVer3G6alJayXCt40msYCSMRKbKxikJPYjwTUiG95Lsd3x5XhNz06PCa+9Wi6QpQWSxJxnEqVguecpPWvP6L48i43sclfZ84zrsP16XI/rcT0+wvhYeJ6MMa92JwPFSs4CcLKCO1099GAOJS8Yqo0JVdXQYr06xyBdAUN56rXngCAwsC25jXCEnmfYF/vuu++SYuPnPvMS3vhjE8Y9fXIPn/30XTCX7NYCb71pPNQbRy8iz80K/vaDBwQifnz6BJvKAumHBi+/bDzST336FRwcHBBQ/Pvf/x4VHXb3dujzcl1S6CMijW+9bgivhkFhY7uYbt85wgsv3sSwNp5YlmUYT8y5MJEicb3S4x0Mdh529/ZR2uLR93/wPfSyw8mJOc5f+Omfxo0jk0JYLj3s6ux8EYStJfb2jOd1fn6BUwvMPjyMUC7OMbIFnDhNcO/eO/b3Jzg+MR5LmqbY2zP3fnc+R5y4Z2WgEPjdd9+F4BFSW5xYXFzghg0xv/2H/xxf+tKXAAA//9VfJEXVs7MzX4XnMYHnF8tzLJdLbKxHfufOLQr1peyxWZt79K1vfYu89qODPTCL+P7qV7+Kg/05hYKvv/46ettV9XM/+xW631Gcorfe0+npGT71iqnOz+dzSjN8/etfR5ok+NLnfxoAoNWAxZmZ+81mgxu2EFakGWxDEziPqEFCQaIYWeC3TtAPmpoM3nzzTfKC1xdLdE45VUniy93ZneLIyotsZitUpeVurS4wme7g6IbhCai7Dm1joqEnT08oUuiaht7h3d0ZOMyzeuPoAEPb0hydX6wRxeaYRzcOAq5Or1pQ1zWKwnxfliVEZGzFbKdAkY+Q2GJS2/SobdTUtP0WXMrZg5Cy0aUuzP3dVqZ9v/GxMJ6A1xVKhEDoOFMIrzWY+xxF6G0lNc4isotcAEWeQg3mQY3jwk+MEB7rFAkom9PhsWddAWdb1XYpJXUrKaXAbSjBOKcOnTw/xS/90r8KADjcG2M+Mw/Db/7GWxiNC+yOzcO5XKzpZu3u7mI0tsQP5RpPT42RuXPnFn78jrnRr7z6CtYP3gYATCYpDg93SF7k4HBGEsf7e1PkIwsDShhOTk3e6+jGPhbfNymETVVhuTLH2NkdI8tz6N6mDcDQ9ebhPDg4pNxoXqQAsyHVMBDm8/Of/zwWiwUa2/L36PFDPDk2x5xNxhRSTqdTyh/dv/+QDMbe3h6RcaxWa8znc3pRnj59ip/5mZ8BALz+7ddw7PY7m+Hnfs7kOcfjMU5sGDifz0li9+DgAD/+0dtkzF588UUKw8fjMeFHv/vdP6ZQO45jvyhqTvvikSGZuGmNad/3ZDzLco1RwMcZwl3c/Tk6OoJSin4TcrMqpSj07eWAi2MzL3meY3d3RvvyCq8K8/kuysqShgiOI0v4vFqco7dk4aIYIbOLigKDtk7IoD2WNUki1E1Ji9re/IBC9/F4jK61IXhA/lykGRm/cTGiFFEaCWRpjMTeY84F4XrbusEtK1X9sHqIW0dmHqtyjY3VlZpPJ5hOJ5RCU7qFZubZZ3wgQ5poeIalpqMW7eksR9+b+b11ex/lpoZU5vdRzKgte7W6wEAaSN7pCcleQral67D9elyP63E9/pTHx8bzfH57b0ZMoDQNHlTNwv7VpqqRTBVt96cxhsF3aYgIVCUUwngvrksmSSKS5JCyp8+hNIAR63KM1gMsSTgEG6DRgXHzG8E1BLdLMBsAbckMdIfBYl7L9TnaxoZuUiLLzDHyTCDPIhSx8RDbrkdtu48mxQht57kAnNBYkqUYWRmLR4+fIM9zfPGLRiUzyzICbYda2FXdUog1Ho9x86ZJpZyfXeC3fuv/AGA6ir72ta/h3j2TzphMJvj5r/4CAOALX/o8nhw/ssdI8Oqrr9o5YhQSRmmC0vbCv/322/i7f/fX6F58+tOfxtrKeOzt7eGluy8DMEzyLmx/8uQJeappmhNBTBQJ1HVN3UpZ5ruNOAeUvXchFjQW23SGIX3beDxG5BjnBSOxFjaAiFDkoNA7PkspvSSHVpBdT5y1UcKpwq2UhLJ0axoS2pKycBYoGmhBXTxSGa6H3vISbDYb8o67tvWIl0uFFTe01iA5W/ou4MjVLuT1Xndb1eDwUh2eZtHy5tpUx6gQaGpb5ImByD7fkg0QzHJzconIFozq8gLSeteyV4iEQpR48hm3HVSOavP+HJ0fxtsMx8fGeHp2iecErNIFc+rWESxCnuRI7L+zOA1UC68m/Ng6hQ8BlqXQLxFIbZWSRV5VcJAdVqsLcCuhWq4btJ3TuKkRJY7HsAdRRDFJbYhd1yCmyE1C9jW0hWcx3RPgX8kOcnChpzekcmiQxA40DEwtY00sNJgeyGBJKel90IyjtKwzu/MDCi935vvYs6Hiw0ePkKYJvvzlLwMwRsIxLo3HYyIZ6YaeoCSGpMN8XxQFjo4OaA5fffUzeOMNI5eRpgkBzY9enOPluybnOww9sqllWNJ+uvQgMdo1ofn0bIrZbIbPfvazAIAvfOEL+M3f/C26xhetfG6ejShUvXnzps8/RgkZ0h//+K0twumu67YgLGEOLgwDwxbQ5XK51YkkrGGejXe8bIwa6GKYBkHxACCxaZmmqaC017aSkkNr1ymnvPGSA/rWyrFESSDNwj2HJfOct4Axkgi2I95MZuRt3NBEILzN8RoOFnwXStNwASLU4dzXDsy2vr7RthXlYqtqY1YWbBvcfmhJLbRtm4CsW4IhBhcOpaNpUZGq3dJDelaofpVm0geN67D9elyP63E9PsL4WHiegTPhPVDzD7LumnH/J6V8C6eUhBvsuwFaMzS26NFmkqrdCADvlwetppdc02d6osFKdXFxjtXKeC+70xhrW4l9+vQY90YRFrZFsa0HPH1qQO9ZOsLIMoifnJ5gU5kVN8o5zs5MMp/FGqltw1NDBzV06DoTfjw5eeK1t/uelEGbpsGJJVdI44z04FfrEudnJlRtHTh4Y2m6lAa3YZ1gwJ4l7Xjllbt44e6nAQBHN2+jt+7p8Pu/DwiOF142mMJBdujscZIkolB1Gs9oZX/7x/fwne/8IQBgf/8Ad14wFdrd3V0cHu4TuHwYOnQWDF4gRWQp0uRmoLzO0DQE5G+aBqoyxzg9PcVsNsPdu3cBALdv36Z7tF6vfXukEDi0FeqXX36ZvMuyrPF9Kxj3R3/0nS0FSVMMMveo71sSSouiyOMe85SiBof/DFnP3aNUlmsqxrRDj97e00Fq1I25J5FIyHPr+gZtW6J1TGk6ooikqys0tfXWsgSt9cREnGJj0xksSpHYAl0/cPR9vyVX4by6YRgw9E4FwWN/L84XqK1URpHFaC2CYRgk+qZGY5s9BuWp+oau85GR8koPfdehteH8Zr0GtARs6M15tI27ZE4mRtF94IFcT1N3XjRSAowpovfr+4YaMZbLJaQwxc4tOZVLMjXu+fgwAnAfC+P5fsNdypaLzBhgbxq6GszmgNbLCsuLDXRnOQebHi/MX7U7UiCsz/sM/RzZ1y2pD3i9FZEIZLmZ0iyPEMcRUmsYIiEorNAYKNxiTFOeNM1iCksADdjrkr3C0EkoFwb3ivicVSehEysR0UvE8D3UiZ0j2Vy4KAiyV8jSAjv7jnihw2Af4KIokI0dccMB9vdt5Xw+p7BRW52kudUt6roOyuaVhWDUn91WFdKJ2eYv7OzgwT0DjarrhnKpe/u7GI1zFCPfAeI0fczkmP+keUIPQFRkZEjz2Yg4tJMkwWc+8xmCbSmlqO+6aRrKWbaNZ65y+Vk3Dy5X7rSnPIDeywprLQGrkgkA9+4ZRMRsMqJFdBgGlJsdOs7Tp0/JeMq+JYYrKSWWNi/by8Eb3zTBfYu0WF8sUa+nmNi0SxIJIgm5d+9tNLX5/WJxinxsrlHwGG/b+daIsHtqzqvXEdZlg0cPzSJ+58WXfM6z66ja3jcN5S+TSFAqSvaN5z+VCqt1iWxkDNMgNRYXznE4oa6xuq6hBi9dXFpO2/Eoh+xamuOLzSmhAKpNg5G9Xiex4ebVoRuiKIa2HLVaAhoM0qbI6rpHU1otr1ZDpj4ve5XxDBeRDwNVug7br8f1uB7X4yOMj43nqQMf872paAAa0HBCbUGgr0D0W4wJpFEBbvGJsUg9/ZlSYOyDL1dr/YGFozDZPJ2OqRgCpqmVrSgypGlMXmXEBSlOCsGoygqmyBOLY0FVWcY0RpY1e5RPMC6mUNbdLNcV4V/HxQw7Vo1yOhrQlpJ+o61EwzIpcbBnzms628Hu7i7qxSN7LYCymE2tfaK97z24uClXyKxHl40zE4ba64p1DG7PX0sJ2PMXifD4vJhjfmi82EcPnxAwPI4YumHA4HTj9UB/gwacmKdmygvutS2G3qMTHO6w6Tt87otfoJC8rmt0jp8zTXFoMZur1Yauq2obqrwDnFiVDg8PsVwuAzVHL6CXJBF9LsuSPKy93RkKS5N448YN7O5MKRRcLpekHX77xj5K4hTl2Ck9ddv+wdweI8F6aa9jNsHOdIqx3XeaRJja85R9g0MLYN+ZjrFzYD4zCMCphXYK05nZby8Fxk1HKqlJknjmdKUBbRm9lEJmI4g0TZHasH12YHvXAXSDxHzvAGnhlEA1qZImSeqRGpFHHaRpAmVTTHmeI89z8hbz8UvgzFzjfL5DmOi+7700S98TQ/zFxQXxuhr6OUEFSjkAsU3tTMYpWpsKCgtDobf5UXGeP5HxZIz9JwD+A5hH/bsw6pk3Afw6gDmA1wH8u1rr5yfJg4ctGSP5XkMmuwHCdR5pTrRcRT5CEafIbQ/44cERZEhJ96Gu7n3OL7gJXdegsjlLyAIbC5Rer9e4WCaQNkekJcd6baEv6QRR7KUcnCHMpzkRzw7okLTmAUhEgnbck2Ery4Zudj1tMBo5uItGY8k8tFpTeNiULbiV/ZC9+Z8bcSzAhDP4BURAkEAyHHlOEJXp1Epq2JskpQS3i0JbVchssi7KE8A2KyjpYU+jcY6XXjKV7/F4DC48QiHWnNQzTdrCVk85yBBL1SMdGdjU0HgexjzPcXR0hNmeJaY+BRnG3d1dAvkLEZNRVEpROJ4kvuNkNBqZXB2FeD6kH4aBjI8J7QfalxtSyq0qcVVVVElfpAxV5cDgHLWFIFVlgzj1c+9y53VdgzMFLc25DVmCmCrOdYDgEBSCMwjK0dbNAG3Ptxs4yqolhMHd3T2CLTENqnCzANSfZRm9T2VZEpFKLxWSNEfnwPhS09+qqgrUKxOClsmhhx48f2hepJDS3PtNKQOpGEF8nFIOBMEaeom+t88EEnBLZKKZhpIMfWfleBpNiIQsS8AGL+/sxmWF02ehCN5vfOSwnTF2G8CvAPiK1vqLMH7C3wDwXwH4b7TWPwVgAeBvf9RjXI/rcT2ux8d1/KRhewQgZ4z1AAoAjwF8DcC/bf/+9wD85wD+zvPvUsHb9MurwBVU+dxrmHMemdY6FtF2/Udwx59nEDBeCH8+QlBhYjwZYXd3FzOb+IYUePLYJMTH4wLceXt1TdDW8dinAEajHPHgKo4pkiSjgkIqcgwwHkMS5yhS41Utmgui5WLoCV3AWYTYhnF906Nc1mhtoWFQCjxyTPQS2noidV0TaFsrhdZ6MlFkmXEcd7XwRbg4jk0bLADZlh78n6Swzik45xSeTic7WK1WaBrjPTHG0LSuGusrzmkaQ7MtHSkAACAASURBVEQBVRiJhnUUNrdta+j1do3nubPvCYHPzs7Ic5TSMzS5fQCm2u5kIFxhwrUebjYrqj43TY+p7cXP8xz37zt0g0BtK99FUSCOOHlfbevpFI0YnZUniVMQzjOgYWSMUbHJVe1DDXk3L+YYTvQsRmdbNRmPfCU6CEmV2v530zQ+hVFVqK18Td80JOgwGuUYOnMdWR62N257bxwBzhMMDalUVoQlraoKtau2bzaA8hRxdcNJHbbrFKLIRVOAu+FKavJO03QEZquFPQa0vaTnqKpqig44S97DiObmcRuX+uFZlT6y8dRaP2SM/dcA3gVQA/h/AXwLwIXWpDL/AMDtZ+yCBgMQU9TDyZhopqGswTSFZwfFiNDU5mHO0gyt62BQHSKlwWwo0csOsGQHrZAo7Pun1ABm23ca2SISVhkSprKnnFqf4Oisy2+os8z3USKoWl6vFFJmQ8UuQqzMy5yzI+TsELf2TK6trSvsTY3xnBYFdnYtoUM+waPHBpJUX3BEg+kJvjH9FJLcVFzrYYni8A7BL25+ZoTTU3Net16ZQ9kHMB0KjKwyZRRlBN3IRht6MbRcoZgp7MZWJnaQaAaXU9KorAFYlRU6+xyxPIdtUMJivQKSiCgBecwNOB+AyGK48jdPC3dDIZXCYMPbyd7MP8wJsHO0g90btiupqjDdt7nVovALVABQ52lBTy3LBM4tKYwoYoyKkcskG4o426WydzjHdM/k5lSncWEVJ+/fv4/G9lo/evSIQvhyc4GyLPGCZa/PswSppdeLs5yW9khzHO0YA91VNaQ1XvPJCPPZiBa73UkMbSn59g72fcpnUJRaSNIUR7fMvWeM4e13TRNDmqbgQmBqOUSFVjR/URIT7InHEXEcMBFjbJsNkkFjbMk/ut7wtGY2JZDmCdLOpnN0R/LMQgDTHfP72c7Ih+BiwHRiFv3VusTuzoTy1fG4wNqqbIrIolBg+syzzGmMpdQ0Mi4SjAuf82SywjS3ZCQjhjw311hVAwabB9e8Rxab/a42awgHsRMAeIcxMwuhSAb0Vo9JqhWkNNcVxz5lUxQFLSJFUWxV3p93/CRh+y6Avw7gLoBbAEYA/toVm15pyhljv8wYe40x9pqDKFyP63E9rscnZfwkYfu/AuBtrfUJADDG/ncAXwWwwxiLrPd5B8Cjq36stf41AL8GAF/5ylc+dEztqeq8RkoURYiUBrQD3nLIj9B29WHGVuKZ+bCAcxOKhaGBY/kJ9W5aqSk5H4YPcRwjYdbbSRhmsxmkbc9su3qrzcyVpfM8p5CUsYjYtDnnAdBYGKCx1bwOwzjGGJ1LqF8t+x4i8brtz2Lev2pu3PFFEN5fTs6H1/JB9+lyQj8EUBsBO9h9+jbKJEm3ClxhSBvON/V2a426rqmwwuALQlHqW37ruiZ0QBJnRM5rAPYpRrawtb+/TwDy8XjsafB6SfdLw1fxwjmo6xpR5HV84qB6XRQFFcLG4zEJAWomfDsp9zpFccIxKE7/bprGCyRqHdwjXyx0VXHAeJ6u2KU0w2QyofcrTnOMl2t7zu0WnjIsprn3Ns9zg9lkDpM9bDUyuM9pmoIHRTlCXQQE0fqS8qUQwlfVtUI8+OKVuy4hxNZ5EYl38Jx+0PhJjOe7AH6eMVbAhO1/FcBrAP4BgH8DpuL+twD89k9wjCuHhgepQ2xT5zPGIIf3gmJdle/yuKq6poN6/zNOwHdpqN6TOHAT0gOW+T6OPYmF0AHph7p04xx4XlI6AMxvI0SEOPI3vh+2H06XdjDAX7dfL4sbAoKFMPmzyPZOR0ojghMhi+mSGWPo7Au/vlhixwqQaa0RpOcMtdf7z9ZWDu/K+b7CeF6uhm4dz+VbrcEETLU4TVOPbFOXjKedVifXAQBtXXujGEUBW32xlSfl8MZoMpmQIWzrKqB7S8gAMsYBa0ABII4S2leSePVQcIXcdqBx0ZGRChda1Q9bBiyLBLLM8hTEMYTwi4czpIPyi5/Q3NPmSY5u8H/bej4jDmmNTNc1geBfSl09fbPc6khSStG9D9+1ruuIJ7RpGi9Ax0EICofmcDCk8XhMaZNQvTNOE9ov55wQCVJq/65wvvWMRVEEbfvpWfCevV9v+58pVElr/U8ZY38fBo40APg2jCf5fwP4dcbYf2G/++8+6jGeNcyq4y8yLAAwxrZW0+fJZbhXVFki5PCVfRZ0wRMvgFSTEUgxtH2LzWaFxcqQUGjp2ZearkbZeLld59VlWYIkcw+2QCRju41rqfMrq1uZoyhCLMz1923vPakop8JZ3RTgrfPAzdysbKeH1IwKRlEUbc1r6Dnq4OF65gPG4Fl3Lk3b+63sIfYu9IKvPARj1K3DOSfSCSC4DzDr1FXn2fc9FX8WiwW9sFHkW0tXFwszv8Q16T2eOOR/BSeGpXaQRFTBOAdjAr39Wy8HOjkpJUUEUvnrHYaB8nGc863n9TI+kdo7mx6xMEa5rmsile4H5VslFfN4VcnRNE3Qairp+jkHRWx932+RorhzzLLMd2p1g3nvKP+a0XsYevHhvtq29djhpjF1BOd5Di3BrprGG+8hmKO+70lkF7jcfcjBnB5SpMCUR0dexeH5LDKQPzOcp9b6VwH86qWvfwzgL/4k+70e1+N6XI+P+/jYdBh9mBGJCEw4LWhNq6GUEhJsq193y/N0ISG8YyQCF8lmUOjfHAHzHcJ/sGA1TiESvw8SZitLHOuWRK207CmHpjTDauOqgRHWa/N5AMNyZSrvZ2czZNIqO1YrvPPufaw353SMJ8eWDXzvKSJhPKmuZVgszTGK3IfAddsQgLnt1pDoUZ0bzzNLC4ynVoaDMbrGiHGa1+lsx6cZpCI40pUjCPufZ4Qh02XP81lhu7tFERdbYZjZod8v/Sa4h8MwoLJzsdlsyMNL05RC47qut3J1fdeT95bnI0gLbG+6lvq2+6Gje68U0A+SxNGqukViq/V5NkLHLTBdDl6uovfRlJKaKHEMNMkLp0VBzjOUknDdPVvzhO0ohQuTmnD3dRg8aQdjnKBZgAq6gvy8rBZLereqqkJVVZRvjAIvtm3boDtr2KLHcx5llmUoioIgWl3AOcBjBu7IV5R/16IkDWCJHNqRA4EBHGAE0+HE/TD0irqNQlG/8PkKn5UtGOQHjE+k8XzWqOsaEoxIbMuyhM4D4+n0kXhgMIMX9ANbM7X/4GQOetVgGHyIEFPOM9rq0uGIsLQPhOy8kVCQWy2RDgPYDhUSG0Y1dYtyU5N+jFQ9KS2uVitEwr60MqaQTEm+xSrkOlbabg0uGAr3cuQZktRBVASkCwnbliQeVN/TnGmtwUJC3CAHaRga7YsSTtv7zOuz8lDPc1/MV8H3g+9IU0pRCsHMq8WvbspAj0iSemMaJ4gscUxT14DWlPbQeqBurbZt6TnSikFYoxhxhtoaovOLFTZ1BWFD0idPTkn5VEQRGRbNBaVP6qbD2OpEhamBvh8shtXc+w4a2lqG8/NzYmWKoghpZaU+wGm/4DHy0cZOWGIxp+Z5y/MRnQtj26kBZwjdgg8AUVAQdXjfIcgpOsOUZdkW0Ua4OLpjO1yuy3nWbUPSLiGXqpSSnqmQ/cgbThhoo+Zbno6y976TEkr741/Fvxq2al7zeV6P63E9rsef8vhEep5KKzC7+vLBryZSSrAo3kruO29AyxAGc6nH1X6mMkCw2ZbH436v/QrVNBU6R6PGQF7ceDzGbJxhbokbYuHXKakZxpaubZAMcWYhMSLFviV3uH37JvLeVCmLosBLL72EqjZg8rarKPF+69ZtZKmpbPYd0DYWnmS9DMBCVZgFJ+sEB4f7iGynRhQliKz3hCChPgwDdaxUmxK5hVbh8srM8Awk73YVPSw+PWu7y4XADxohRasgj9Puq/ciZm3b4fzEgNGPj4/JK+NgFJIC8Pr11kMJoTNhJZdxRp/d9/O9HZyfm2OcnJ1j6Frs7Zv71Q0SjfM2Hz6k84KIKJpo+w5xask/0pTOxaQWBmTWc8XQo1yb7R49ekJUdVJKFGN7LTwitnwFAW2JcpSOsC5bnFn10oODiCKVYeiIp7RpKlTOMmhJKR/ZrXF6alJHm7LGoIDWXkuc5nh6Yva7Wm1oXtbrNRX12rpEaSn40lhgna4IJN80nqSFMUaeb9f7wtkwKIwcCkEpTxSkt6MQxRiU/ZtWDP3gC8jh83WV5/lhxifSeALBSyg8zjPPc8yKETrbpnVwcIB3Sg8PciPMgbGAe4RrgAWWIMyNbhmIS+1y9AYz32YnodFLSUwvHBorG5ZFUYJi5EIJoLaVd4kWLYVRjLSFJBjiLEfq9G6giOgjShOkVs1RxAzcSTj3EqWdh01VYbAPaZJwxFkMWCMrtYIcPL+kMxhFltO8ZklCITDXzw5t1DPYUC+3F14Owa+qgL7vcHKIWsP1EdJ9CKrXLkQsVxsyGKenp/QCOzgZgC3NIvcyefgKCzCEMZSDnDFOOjqT8YwWq+PjR+iHFndnVmG1KChV8Om7d3yrKDRWS3Mu67LE3LaaRlGC2cwYvzSOkec5DvYNNynXPbEqcWjszszCefPmTaK4ZSImMo1eApOZ2W8/MCRZi8amMNI0DWBLglRBp9Mx8tT8/vBgj2BTslsTtGpT1rh15w5qe81JViCzf6uqhuYrxKIWWUJsTQcHByiynCRcQtnq2Y5nVWrbnp4XBY6ZndPV5m16Jxnj0NyjURhE8Ix5jHGIozb31S/uHybX6cZ12H49rsf1uB4fYXwiPU+jrW69gr6niuVoNELbeMGnqqqwMzE95F3XgTkmea2oH5xxTv6SuMQ0v9lsaNU07Hje2x1ltjLb1jg6OrLbaPI00zRH09QGMA0gjlMCNCupMbZ67g+fnCKzfeADfKhYtTVy6/d27QCtQDjCvveECtAcS9vzrmQUVFIb8oTSNIXuHOFHBa01Wuv9rMvay5gMCrdcP3eeY2RX//Pzc8wtyYaUEqr3hBpJloLZVVvB8GoCQBE0LlzGdl7GkjrvZ7PZeHB44A2EHnFYCOKxgB4csQYHOMjDXC6XyK2X04gap08NOiFPsy0GeSdXURQFqUyaufTnmaYpmsZc1/HxMbgtVsznc5zZUJ1FMW7dMVR7Tdfh8ZMH+PYffheAofFzzPvhSJMcWjv1zpSeidVqRXNyftJgOvXcoONshFGR0DwmSUafJ1bhVMGrZw5K+t70NEXbe3TDdjoips9VVWNqz2VnZ4feLxUrbFz01PbI8xyJfd7iNMf5whdq3XM4m83oHTo/fUoeYVEUGOUFlLb3qGtQWFKco6MjenYnkxk2tTlm30nib+Us8rSUwlTXfYNIgPkUitQG8jynCCB8JpVS5OlWxLX6weMTaTyVVhABJCbMR0kxXOmaU6Xd/Aic0w48AJybF9W9RGQ4AdSbDVXYizTbgke5CY+jMZjNG3ERQWqG0lZJ27bH0DuQfIuLpWPpadFZMHXXa7SD7wpyzDAAQ9t6cmLDW2jOv+97DD0xqYAgw7brws2RmxOlTSVVBq2ESebBzS4Hdvz4CWZWz2i+f0ghShLFEFmCxD64Ukr4wqeX4fgwWtIuBxjmPJ8VSjHGKOcIbTScwu1dfq6rfevhjcMjejnW6zXlcgH4LiLOPbym7SD7nlQudZD75mw7/5nYLqKyqpHa7pfRZIpJtYuTk2MAwHK9wXg6oWt090gpRSiAflBbRi1cON5L3GvOXclnqz5ede+ZbZO9KowNn5dwfyEC4vL2nHtEx+W/Xd7PB42wMUBK6dMxkSDYUd/3RBICAIOtoqM32ZrBOhdSUacsAPaexTr8r/v8YXg86Zw/9C+ux/W4HtfjenxCPU+lIDhli7dWPAlfHDLeW/hD1xS9VQryq/egEAeEI0a6w+w7L0Zbv3EeT1GM0Pa+yJNbsPJ0uoNWRIisRAgHw8zSl/H1mqRCimIMLczvO1l6QobRCNK1UCrgYrmmwlI/1LTKbqoafecq7Blh5eq2IVXOvm+oSiaVQtXUyLg5r7KuULsCQpJj31Z8i6IgT3uzXBFNYN92yEcFAeWZVugsODwS8XOThoSjD7zHqzyp93gF4r33ru9NYUH1A/0tBESTV9n35Hk5oTfAFmZseDpYL1Ar56XowMNiYNbVVmCIrKddljV5TnkxxnS2i8fHRmitXq2xO7cUgN0QFJ+2Qf7ufJMk2+pZ5ywC5+/1FkMAfBz7a9HQz/S2Qi8r9HAvRyrh+CikOlsF1eA8nuXhRVGE3mFb1UB0c1priuyarqdoTAJQrs1VSigdIkUkoS60ZnASKFfNxeXxYTzQT6Tx5JxTTyyumISwyZ8eNM59Vfx9RggQFpwjszAeFuRDh7KkyuzN27fhjSojMHma5OBSQ3BbzYw4Cqv3kiYF9SHHuQRWJtRcbRqMrBrhbDbDzGoTleUM8/k+2s6GxMyz8RweHkIOrsqYoMgduHmF0kqCiGiE2cz1PVfYnU9QXZhwNc9HxE4zKiZEyDCdTqkyWtU15TLX67WHLcH2l8MZE4Xe9s4X2M5zvt8IiaVDg/esbUMDHRJViKDzizFm7jlMHsvluLMsw2RsritJEgrNL7/kIQxJKRMiAwBn/hh9J8nA9sMA4cirE4DHCSEi+qZBWZtFbbFYEFHGOEkD46Up96x1RwsKY5fn0Rs5Y0i9USXDgO3uGTKqNgT35MhXL1bhfGwRBcttAo3LDQ7PCvWv2u/l+8sCQx72oNd1TV1zSgGFzcVqrdHbhbIbpDWqZp/DoMi50Ni2B+F1XcWq9GGM53XYfj2ux/W4Hh9hfCI9z63V4VIYo4SnD4uiCE1QjNgabtXh3o9hdl+FowYTggofqu3AY8+7+corrwAAkr2bSBOzvVR+NVpvGnRlhba2PdFpilFuAc0a6Gx0qZVALx0/ZANhvZUkzjCz1GNFYfqAk9ReZ+R7j6eTHXiZyRhxZIXCBoU0NZ/HkwR3775or0liOitQrlq77zF5nk8ePMFmY0L9cr3G0ZFhNp+MxySkx7Q2RRY3n5EAt1ct8aHqRDRCTs2Qn/OqoZSi46lhQFfbtsW2BeecqrR9QD1X5CPyqDn3fc9qGCjKUEoReN55KFRkuwzyZ6EAnPVoi5y2KesWfTeQMOGgJBrbD39ycoLe3vwky8nbZEyRt1nXNRWynBe3Deh2TQXbniDR/gXYRiGC1tZLXtUweNQG54Bju78sUeE9cLblHYYNJqHnGxaSLqcPnunhMRWkIGLyKjdlSfclSTJMgiq5e2/6TiKKOEWHSnuuT8YEQv3J8PyvGv/C97ZrrRHcta3qIbAdyrmuhc1m41/42NONQXpot9vP/fv3AQDjvKDwWDCO3BnPPMfdz3wGADBvNca57VvmIFhEVdVYL9dQ9qXJYg8QTvMMcWarvCIiKdqmG6jyLaWkvuIo5lit1tBWtyiOfchRVRWERUcLzrbyvU1j9luMIpKPdbm0HSslLKUmeY/FYkEP7dbLKAT2DwxIezweQ0uvOsniyMpvAABDbHO5H8aKhhVb6l1+Rs5Ta00rFNceMtW2rQnDA/oyZ4AiHtEz0bYtqrUnjnHXkWUZHScks7h8DqbDyHUexVAwx0jTnNawplyjlwNiku/Naa0Oj9n3fRC2Rx51MGhDrgzfxXSV9s725+d76cPfhEZZCPbMEN6N8Dyoah/cO2+wxZZRf79zIedEKUSxlxdxHVlb/egiAL/r7ep8FMWB4eMI+gWvDM8vowuuw/brcT2ux/X4MxqfSM9TSgkRvXeFcES3TgUxSyI8rsx2Z2dnhh0IMC2MbqXW2/3Ub735Jr75zW8CMJ7nC7fvAABu37iJ3BZzEAC1x+PEt3tr0HIURQkAhtriPGU04OLCFJmm0ylRecVphgG+MugKBBfrDTHiTyYFdKPAhWPOFoRT7YYemaXnk0pBWIb4OEkoBSCiiFQu277GuqpwcWaKVPfvP8TizHi4WZTh1i2j1yeEIPZ9rbf7vHUQlintQXUuBP2w44Oq7e/3OxeaN02zhfmN45jO+eTkhHq9h7bDwoK5Q1mGyWSCyqYsnBflgfkDtsN277kRk70QcDVFESUQg5fVGJSGEK6Yw8nzXK/XaBonrTIQRnUYFKUZHK7TherD4Hv2+77fUhRwVWkVHKPtfTqAWSzlVX3cz2K32mK6Cj5TC6v9vbr0t6vG+4Xtfd97RYJguzRNKUoCj7xHy7ZbrrkIWfU9ljYsPoXH/XNbbTeT8d6Ka13XOD8/x6NHRjZJyx4X2jyEq9XKyzJcuT8AWuPi4oJCwenRDepGEUKgsw+3EAIi9+qQq5XdPk9gMfImfxelW9VS96ILHhMYPk5rRJnLU3o28bOzM4IQDcMMItKIYnOeSeqNmZQSo8LmwAaA2bC5qipUVl44XmsyHouLU1wsT/HOjx4AMOQSqQ0RP3X30/TwLBYLrPZMOH9w4yahC9q2RToqyGhI4dkAFDQGW21PPkS1PQTJX4WUCAdjjBLGy+WSOk56C0EKq7zOkJZlSSH80Hb0OY5janZI44TOI42TrRSC71yxRoJgOD0SC4w3+T9zvmmaYpAdNT/0fU+QtdDIiSSlc2m7AdoRjoiEjl2WJcqyRGq1m3UfQ1tVTkM1OKZj9srlMzzhRzdojOwxRGQgW76Sv21AwoXrKho5yPdKu5BGGBNbRv2q9Mv7jSFokAir4kVRYLpr03C9QtcNV/yabS2czwL8u2sO//uTjI+R8bRJePo/A00MqDeJ7FSpCLAPSl/1SDODn6z7Ec42EfLdTwEABlEgiozxG9Q+4sSQ/qIB4JQ7+g4xdy0MLRb338LRyEzLSzd38aM3vgMAuHXrRRzdtirKzE+bhIGmAABLAJtmhOYpeDRBmptt1xdLFMUtAMBitcZsbs7lbHGCO58y2NCEAfefvAkA2J3PMBcmz9gv1iiKIP/aCfLyhBCoO7dK5+RxrCqF8Y5ptWz6Hv/sW8ZYnpyc4OnTpxisPnqazsG5XWDWHPW+zbVle1DCEj00GvnUXGTbAXERobPXWewktI5VlULsimdMk3fMLz2nhAEEAxhI66dpe/KQm87/nnHASVCJKEJkn49yscT5ExNljMdjyKpHbheix48fQ8AsJPsHN/H4sTGycRwjHVt548kUg30FztYtBot9bQaNPB9DO2nbFBRRVE1JeelNXYE3ZpvZfILK4mq1ZoijFFxZ3CbPgMFcV81yRIm532Udg3Ozryzn6O2cNrLFIA3MLBYZNqsSE9u6uGhKlLU5mY712AyuXfICmbQLOmNY2CJL20swx5olImzKCuvKtLDuHU4waEtMsqoR2bnv+xZNt7RzUWNmiUgYY7h37x4AoJhM8aP779LEdL3E2YVZoDmPKLCrmg36E+MEVOWaPPB3nrwL1Xf0TJfLC1qkfvDHf0TPRN8NEDZ3nKUF6W0xOSBz2l1aAXLA0JpFQg/SCb5j6D1We7VabwlH+ly7oELpn4n08PW4Htfjevx5Hh8jz/P5R+hyhzmoqwDWW1yfQQs48zsAuAPcc/zUZ1/FN77xDQDAa6+9hiQ2q3mW56hs6FqMZ9A251krtVVZtlEgIsFxfnaCrjGhTJ76/JpGisyGYcUoo1B9sViAWw+8rlpcSJOLTNMUbdtSiGnyeUnw2cm5embw5cWKkAar1WorN9j3EtKGYlEUQeK9dHFKKdpX3dUQjTmv09NTaGbkR+zFwAIK0Pc98tySSCjQvGwFbmFeE9vdPzccwQqAJGFbv3OR4zAAvSX5WK/XdL55npv+dAtd6vueYE+iH7aejRAG5NjisyyjbVyKJ75CEpoxHxJqrQmpEaYGimIMBMdpmoZ4EhYXS8pnJoki6YudnR3M53M3Sag2xnOsqg2mkwJ37tyx56JhHx3kRYp9yxm6u7uLg7mJVLq+R+fklcFx46aJQAal8eTpCZYr460eH59QWmk+3wd3Kq5a4tBS4N2+c4tIcABFEKAoTTCd7ZCS5yA10ocmXbbZbCh/WxRj8ly1GsjzPDw8RMS404/Dw6bFyEZ88/k+RhbmVXc9utalPyR12XEeQduIUTEASsGp0DLOEVvClCjWiEr/rLtn4v1SFs87PtB4Msb+ewD/OoCnWusv2u/mAH4DwMsA3gHwb2mtF8yczX8L4F8DUAH497TWrz/32Tzn4Pxq45ll2VauK5ygtm0JShJyeBrj6XBwEV7+7OeQ2odFSokbN8xDG40mgCX2QBTh/LEhfRC7Mzx414TEq4sLcJtOOD19CrAesbA5OCHx+NE75udphEGbB7jtasxgHq6XX3oJO5Y8+Uc/ehOLh8Z4tn2Htu+QWH7OJMm29NUjC1V6/OSpl3jQMG2UMOqNSyvDUdYNlFKY2A6niHEMNlRZVyUWK7NArNfrgEw5pf1GnCMW0RYnqnuZq6EHg4N2se1CGq7WJtJaU6HmpZdewnJhXrp8NCKJhywTKLxAKjr7wpXrFWEA9/f3MZ1O6Txx4mFMfduRPMpkPKMwTjNHsrKtbzMajRDHMUJ4kMc6emxn0zS4eeO2PceM8oSj0QhDALFx9wkAxgf7BFkzuUW3kDDKpQ79gOXahZEaSjN49hWJwbWkSg1FTF8RcmvIpCoNyw0AEXl5YaEYOPMKqZtNRUY9TVO0buEZBrreIh8hdUUx5mW+hYiR5yPMprv2XBTYo8cAgNVyQ9c7m82wt2NJoZuWimrz3T2ksS8ArS7W/pjjCVJHvANmrh+ARoQksRyt9ZoMv4i4YS3jtmA0+CKZgt4qdl7VxRTmWD+MbvvzhO3/A4BfuvTdfwbg97TWPwXg9+y/AeCvAfgp+79fBvB3nvtMrsf1uB7X4xM0PtDz1Fr/I8bYy5e+/usA/or9/PcA/EMA/6n9/n/UxqT/AWNshzF2U2v9+E/qhAEgLMKyiJGAswtrwyqtW/yrauO9zXBxEdx/wSRU0+Dm3ZfNvxUAgt8wXCxNQjyKEvzG3/9N820xwrkNj3/4xg+QaJfRFQAAIABJREFU2iLD2ZNjFGkGbmE8fdMSoHi+t4eVJfNouhaHNwzn6IsvvIyX7LF/9MMf4eTkxF4D2+p4ESLe6sZwK+7+/j4RKsznc+xbDs627TEe/xiAKaR0XQcny6GUgrLVmPVmgwcPHwIwXvfDJ+ZznqREEba6WOLWrRt46wdvAADqrsXOngk367rGg3eNZ7AzK7bIIUJxsLCLSGmGpjRe+M7OHHXlPo8RK1tElIBD/iyXSzidSMYYuJNeGCSWyyWFi01ZkcdluDKtpx15MHofaKBrrcnTHo1GW91DWmuqODPGPSUefIGBMS8ottlsMARVaqW8J9Q3LarKaaVzOsem7QnKZppAzLVPd+aIU47OFlO09F608Ujt88k4ats/3/e+wwaKobN5lUFxRFGCnR1zv+Io98B2HoNze76yRV2b31RVQ9wFg+womojjFJFIyPtjYER2w7mg7aqyRcKd1IdCbLdv2x6y9yzxTAgw5/UxAW1Nk9KMZEREAsSpgyqVBFfM4gx5MaZ91XULVdrLDxoRwqYAxtgWcsD9Ng54aD9ofNSc55EziFrrx4yxQ/v9bQD3g+0e2O+e33i+H4Ig7DLbVrwHYMJLMBUYV0UbltX6aj+bbX/mAQQJTEFaQgwR59g52KeDru1Lev+td/G1r/0VAMAXXv0c9GAe4De/9z109ZomWPYdERDHSUZSCFUbo7dVwrff+jEa+9AePzohAgkDFwlxdJ1XPQxWgtu3b9OLYsJZi0gI8JDugVnbEC0RPp+nAFT2XB4+eoRHj0w6QnY9vvSlLwEAZpMRkijGt/7Z/wcA+If/+PdJJrZtW9p/MYq88ZBAbCE9IWoA4Bi0wuGheXwuzs7xD37392hfj4+f0rW4az8+PsZNm46oqoqM8tHRTWw2G7QWynLr1m3kNtZv6o7IkJ8cn+D42KRchsGTLM92d4jIeuhaSCnRBYbVzXeW5fSC5XmOd99919yHyCthdt0ABGFhmqaecSkryEhzHiFxOUMNnFh9IM45RlaP6HyxhIZE75K+esB4YpyE5XJF/LGbqsETaV6zJM2xtHyxPEqhtM0RlzXKusFqaZ6FJElIK0kIgTRxbc0ZSiuN/fTpKdqxU7VssFpa5VEtMMhTnJ5a/S0uKDc5Gc/IkamqCrV71pIMWWbJUnqJuu3o3+cXG58SiHNIKyNStxKD9C+7dEgcHvl3lzFTcbcps26QxPWpgvc7hGCFLaRSyq3uqOcdf9LV9qtM35UZWMbYLzPGXmOMveY8rOtxPa7H9fikjI/qeR67cJwxdhPAU/v9AwAvBNvdAfDoqh1orX8NwK8BwFe+8pWPwifxnuE8mu1qqFnxHT2bG47oQghQ5ZwxjmFogwq9pmLMMPSEQ8uyEXIS4VriX/7LfxkAsL87wWZhvIdRArz74zcBq+nOme8VX602SFITOikVYV2bFfuP/vh7ePzILCTT6RzJju+1DrtJlFKe3CLo7HjwwCszChEjTc2++r4nMPlms4EcNOKJk2lgRI9ZpBl2bQj+qRdewk2bThjnBU7PzC3+9j//Fspyg1/4hV8AAHzh1c9id9dgVpngxNjetCtShqzrmjyBKEpoNe26AU3X4uzY4A4364q87bquvaZ5XVOXSRZFWNme/01VBRyOA+q6pS6T8XhM2L2q6YgkZbVckOcXEpFAaTS12T5NjAKrq7aHHktYaJBS0nnduHGDJESapkOaZbh586a9F74ne763g9YiMDjnVFhp2xbLQCN9Ymn/5vM5tFa4cWRVWGOB+Z6Z74vlKcYW/5lEMYQVDNyZz/Ep29mWZAWpch6fnGG9KbG0AnhnZ2eE2kiShMTklPKigGmSUQogy8YYWb7aNBmh7yUGJ7synmB3151jTOmTzaaidIKWvjuq2tTYrC7IQ63bFsvB/Ga58ve1rhqq6O/O9wn/WbcdvY9at2Cb2mu1dx29H+Hch40XcRxvFfSc7ZhOp3je8VGN5/8J4G8B+C/tf387+P4/Yoz9OoC/BGD5J53vdIO0ayLvPMdxvMWAo6QCtDE4TV15H5j7XJWIRZAB4L56CRNeU1FeMFL6A3z1dH9/H/t7NgungfHIvKSH+zs4fSTQNeY4acyJtCLiAyY2LFuXAwoL+0miFMuFMfIvvPgynhybDMhWlwew1bVkunK03VeJIje5vTxNCXCu+x6JNR6ZNPk7aVEAcpBU1Y6igR7m2y/exk9/0YTqt24cUkX8rR/+EADwpS9+HoCppu5afZ62bcl4Foc7QGlCv6qp6ZzTrAC3LaRdL9E0Hf7jX/kVAEa75t/5G38TAHD37l0kYwtaX5bIrDE5fvAAzYVZCN5++208eGDW5qwoIERML916XeKb/+QPAJgc5t6eqfgeHh7SC1jY3CZgQnjX1nvvnbeRJAm9SEIICm/73neBlWVJC0Q+Hvn2SAVEcUwLVtjG2f/Ac7FGUeShP4xvfe86ut5664dgWuLGDQPjimJgOjVzcbE4w3Rqq+VZjJHdV16MsViahScfTVBYg3e6WGC1LrFcuTZQzyoVxzEWZ8H5xuZ+ZVlGhDqcc8rDZ6MRlPZENHmxQd35NIcbm80Gic2X19XGQ8uyBNV6jSgyczaZ71AnxNBLIhiv6obyn1OpIeIgr0naYzEi7kN0xbxEh5R6y0i6EdYQQjSFu0/PM54HqvS/whSH9hljDwD8KozR/N8YY38bwLsA/k27+f8DA1N6Cwaq9O8/95lcj+txPa7HJ2g8T7X9bz7jT3/1im01gP/wo53KMyJ3dtUmDMp6lAIJYFcZU33z6GwNCeaq3X27VWTypAKC8HUAIESK0oZvIk/R2JUZ4BjlXhDu9NyEmouzEnVlfp9nDLCecJJEqJsSbWXVGec76KznmiQxAXofPbiP8ewGAGBv7wBvv2Mq3PfvPULdWVVMZcDJnvQCl0Db1nMUicf0CYHKhm6r1WqrnzlJEiwHc14sYPdTSmFlPax79+5BW3q6H40Lkqg4OX6KyXSExZlBGDx59JCOKWVPYT/7oQc3gzPMLNbv8OYtzPYMADsZjZAUI7xq6f2GYcDMenvr1Qr9ifEE79+/jxuHplh3cnKCB++8TZ+dR3jjxi1MdkdIrXZ4FCXIA3o/EeD4qKCoNcmpdL3v23769Cmm0ynGNgwviiKoyjfkFQ3DgLt37wIADg4PKVQVIsYgJXlpoSLjdHeH+BKk1LSNZAzT6YzO9/ipmd+bN29DqQG71nNWQ4vYtltGcYqRVcycTqc4tPjkbpC4WLk0lVcw2OcxRuMOeWH+9vjxY4zHDrcpMPQt/eZg33i6h0f7kNaj3GzWVEWfzXeRZgWlSaI4xQOL81wsFnTNRT6idEC5yalAdOf2TUAqwmx//0dv0TNycBAI9q1KUjEAOFqrYqoZkMZmm8lkgmIypXNbr9dUIB16hbar7b3b7tl397TrOnq33HfPMz6RHUZKKQjnXmugtRN1584dvPLKKwTg1lKikmZSDg/3oSwgmgsRVHwBbvOaEgMYGHL7AmowehnFJc0jLX3+MS9c6xIgbT5NKYXj42NMrEzso0eP6IEoNy0ePDLGdxg4HlvA/bqSiCNbIW5aYl7iPLrU5cLgTB5jvkLIIOgFllIHgGZBeT6Ao+878MxaEKWp26isG8ozXlxcYOxexqrEjgthmQbXCme2er1cLSjvp7VEY3vmp0WCzoZhVdMRPEdzQWEjjzKMpxOcBVVmx2F6dnKKxw9N2iLiDD/8vpHxVf2AU6tKOd/dpy6eN974HmazXbrmqunomuumxeuvvwYAGI0mkE52ZDSCq5k+efKEwjvHBeqq8ovFYiu8dzpRQghK/zx+/JhCPiEUNqXXowpB2FJKImm5rBAakjFT/h4CaRrTvOzt7mAgxibmZUA6Cdh7qvWAwer7dJ1HZvR9j6qq6Pgh56kQglRjucCWUqtbOPu+9/ypTY/ZTkG8o2Vd00JWVQ0Z1b29PSj7fPWdhHttm7pDlkQYBscn6lmRAND5G20n303nyFfyPKdOrTQxTRwutRXO9yA7+pwkyTNB8u56nXT184zr3vbrcT2ux/X4COPj43k6QbfnGFqrrXDeLd5RxCFEIA/GODJbAIoEv8TQ5NhTBKT9PEiFJEqoX9kc5Ip0gvLfdUNLAO4oAhUAOI8geEws75DAwwcmDN2sG5S16z1OoWELIz1H29rWu0ECsQNmM3DNweR7dbHtDNCn3q7kfOgpgd4NCo5VjXPzf3Jwipu+XTKJYozsar4znWJ/34Tgu5MJdneM57mzs4M8T3F0w4Tek2lOFfK+78i73p1mWG0sJlAuyVuSXQ9WGE85z3NMJzPCgCZRjNnMVu61Qt+W9i4oCGauq7OM8QDw5PgRzk6M17q3t4fZbEJeipIrKobkeY7blhErihLynuSgsVgZj64OPCfAeDwlFYACTkvm23m11lTV1ZzReXEeoQr2J6Ukj7hTne+vhqdxg0TQcptSmqGuayQ9R9cZz2gdCUirVrpZrxHZfse2aQB7vEH5lEE+niCyYX7d9liXFXm4YUsp55waDqTsKey+uLhAFRRlnTdfliXOzs6IG2AI5ijPc/KU67omyRuDGLHz0HWAGrzyQdejs8dfL1dw0M6u6zC1QohpHkPGNuzuO0hpeRT0AKY5lHKep08HxHGEsvRpk9DzvAok/y+8DMfl4S6Y+pOps4WbijsMhZWjqYLafgE4abeoIGPq+o7cZG5X7JijsxJB2zEzVVYASPMJivEuRoUNfaMGm9KEgatNj8pqG0VRhCj1chfMEh4rKSncYTB5zatvrP8ulHIwIY6VaZXbhM8AqPKvwehFTaOYXuCiKDC34fjB3h5ym6uKIg4RMcxsb3yee+7JqtYoRmYhyLKUwqh1LKDwXrgIjwR4JHzFOYkJ7pNEAtrmurRsIewCV21KdJZAY7lcYjwxxv7u3buYTqcEoo6iCIU1ygeHh/iLX/k5O0kMfW/ha5uajIz6lMK9ByZN8OjREyRJAsZ9k4GnKmNU5Q2VVlkUSk8wlFUVVN8VzUVZLYNOuIh666WUyCyd32g08lRt6yX6JEFvjWckQPn+pmloIRCco7TbaMbR22aNeMi3cnsh5O3i4mIrbHfEIH3fU+OGVD0i5hZtRgiCduhRtw3JiyjNqMLPGMNmYwz5apVRimu5PEfTmpRN31UQYJD2b1XdQRXegXK8nVprTO0zoZRCXXqkgLILspYRpEbwb0mtI4ng2DyD9OMqqZCQYPmDxnXYfj2ux/W4Hh9hfCI9TyMc5UPry61VITO8tquR6loiS41SL8PBwCC4L7hoYCtsZ9qDoz1Js6bQnQlsO6c2RErSAkkypbCdMY5xYcmN+xWkau3vM8RpYffL0UkrDDdIaLW9tm2vnK44oILP3sNk8AwyocdqWIEUAeMZA5FMQ2lo6cIiL4IWi4gkOZqmQRQbfCwARIggle3bVhLciniVmxWBmIVg5JEneWZkUGAq3MvNGq31jDJktJ1gBcYWz4ghQWNZ8bUaIJ9a5IAG0bjNdibYWCYid82kjNkPOLDVeq286mKarukap9MpfV6tNtjd3aVqexjiNU2LC8s8tVwuMR6ZdEacpRSO970EC3TBu67z0RGPIAKSaG1vhOACaexiHQVpK99d00JwUKhu9Oe13ZcgSrs4jjDObYGKgXr5kyxBbHG1kRyQJBHRBta17+WOY4E4kB2ZBiD92J5713XY2TFplenuLorRhORBul6itoW0ru0pghiNC6jeten2VG2fTMZbFBOrzWNKQWRJChHgrZ2nrtWApcX4qqEnj1bLAVIqDIFoHA3tWZUue5Wh3fhzE7ZzzkFJEcaI/UMIsU3ioDRiZyTk4NkllDStRW44o0RgWhb8vx1BnhNKg9l/98pX+XgcQRHvpEAvBZrWSkFsGJLEvOhJEkHY8MX06JoHWOoB0hrrQQ0Q0Ta1ngf7+hustSb6MaUUuHD9wREi16ucJGCBTlAvB8SWVEGrgLEdoAe9qxt0Vl9HSgltZUE1TB+we+kkkxg6C1aOOdHgLVdn4JE1mElCUiN5nhITe68Zul6CWRA1FzEi+xvNA5IGroMHnVFedTabYsfCW4osR121lH9VysNOooh7w9YNaGsTTpdlia53/J+ehd9BV5wBiOOYwuP1ekPGs6oqoqQrJmM6r7btKeR327kX+mC+E3S8MGpwMNXuhObbdSHlWYI8zcCtweTah+1MS1rUhrZDF3k57d4aX80YXVfTtlTdBiwbo1Pu4J5bMyRyiSJBRk1DksKlEKa+QDLfsd7qlnIOyDAMcC+FEIyMZ1HkyBLPr/n06Qlx3OZp7BB/YEwgjb3kDDkzUCRHIocOWikyprikp8QtcU4IVQrH+0oiv8/4mBhPDQJhPgcxCMAM1Q5g7IgT3hIMjGtKHDOlMbaeoGDwBjB04KQifkREwngD4SF1sBL5BA/tS8Tcy6bD5JvMecX/f3vvHW1Zdtd3fvY+6YZ3X6jU1dVV3Wq1GgVAiUYCbIIRQSQlWAMMQzYsMBh7jT2AEGNYNvYYWIwxYQizCIZhEMmMmbEwQcYSgxAoq5M65+oKL993wwl77/ljh7Pvrfe6At1VT7Pub61a79a595yzzz77/M4vfH/fH9BBOWagskrRuuN2LxGOwcYI0e5jZOhjI7PUExm5m5vsf4Oj8dnAt5+LZObNGhMeSClJwwPckDplnIq2CqqqKmpHXqJNg/YL051fy3YReiXdkYbctSHu9gpSV8mTFAbpSaV7UYLJCLRMArlFlmWkvo2xTlqLoxGBSShNJUeP2jJASxDtWjR0Otx08jjHjtqS0p2dYXjQO52OZbXCEgKHWGSj6LrSxbjF7fwczzdNi62TGBfY9pUyM8S7WdZWPvX6nda6VyZAjWyLYbv/dKxQrqx3ub9Et1cwlk55CkNTOuxyWVE6jteqFDRjVwqcpiFhkxVdhDvueFrRKM1o3LY+9gmgRmXUsoVqNQHLWoZXdZYlIeY5nk7JO11S97LOig6TiSfcbl8WeZ5inNU8HY9Q2h23npIlCZmztvM0Q7kX92Q0nmG7KooWcpd5WJ7REVzQtkBOZJsErUML7gojWuUb38e4yZ2XRevhhSxkIQt5geWQWJ5XLwFikSTBBbdv79bKsh02nLWmtHXdwZmI7kCCAKqXbnPsHIfqIxOZpNq0Gf1UBLfT0NJ/ZlmXNOmCo9Yyekqj/VuzQ+JbCEiBEW07Vd+mIM2TtvcE8pJa3CCR5Wlru1vwvlKt6xLzFQohSI3PTLaxn1QmIRxSTqZt+9rxhDRtQwN13QLQjdDBFauaFnjc6/XouAKDjhYI1xZhdXWVZMm6w0mtqJVh4qpGyqZuX+eJpOcy6aZJQgxPNzXrF20li88Ug7VQsqTtGrm1tRF4Sjc3N3nggQcAKHpdNjcsSDzPO8E139vbDbFbTxgSx9Dj+fOZ8Bjqc1DrXpjt5NlUJf4iLZeqywRrHax5Y1RwW7M8ochyVOYsXKFD1VwiDEuOQlEIESy3osjpO46Foten13PWtRFQ1e0aS7sRuqJD4by0uqnI07a23ThrrdPJQy19tz+wUBPTAtA9SUmWZeHeLC31gsdWZCmFR21I4axr+12vU7Tz19Qhc142NbuO57QoCoxpr92HL4y28f3MM/QLwu9kNXtfYstzv9Ybz2sbjsMq+12khyop5z5JA42DBGnaWGiiW55PhGzDn3Mu+z4nveT8jara+JIsEI102zXKgGicK9RItPKxoyQQvEJ7Q+u6oY4ql0IiBzPzcNo2t544th2elLOMP3FL3/k5Ei5OqYVtreGPG7eY8NVKo9GII0dW3W8MtW6JSvJOFuKcYjpFC0/W0BJdFGlB6iu1BoMwZikldVUGEoylfjfgJmUKmW8IZdLg6jdVGc6dZVkg7zh69CiTyYSNTce4tLcXMKN1XYd+Tmtra20L6CSbjdOpFo84D+/az52LCT/yPJ8JjcQKN1aeRuugvKRMqB1+VesmQIKKLCP3IYC6wXRamFqRZRgXAxSyH7hQpQTVeMKTAV1Xkln0+oEYZHN7l9FkGl72o9EohAoGgwFL/bZXfJb4MuM8JK+klCFBt7x6BGVa3KdMUqZVS0a+6/CzSvVDIixb6oX7mEqBqss2kWaycF/TNA3rcDQaBeumUXUoxQZC3kFog0wleRF1tXXdSktJBEXcPyxzrW2IF277QhaykIVcgxwSy1ME2qnY8jsIriqMQbiaWksW76AbWReZdihdU3HR5nVY6vW44BIFZ7qd9g3WJusBkMbMbnCjMIkMiY3aKIaO5GMlX6XvCApUrUlcxnNlVZLkO0xcM27ZnVJXrvZX7wT6rqLTp+fo4hJRIB30o5EaXbo3uVBksiZzGe9ENAjpYBkCaofSnxhJ7jK+ZHnI3GeZJHFJtMyUdLOUtHGkI2iUnz+dUxhrfaSUGNW600OXZJjUmrXeCtvbrl94JgID+8rKCrVLWhTFgD2XMR6s9Om4yiXKEbjMe1KkFEbRH9h3+PGTKyjhoFoyJ+CpdELvyDH3MefUsnXBj/eWGaxYS0iNR0z3SqTr1b47nDBp7LGK1S4rJx3sKa1ZLZxVlnfYcaDrWids7rgacClIel2Mc2O11qTOJayFpFKubtokaJeJnpaK2vVQF0KwtLTCnmNjn0za/uSapIWgGYl2veKTtEC4BFulWub6vCNRnQ6lrw9XFRj3ndBMamvh1U3JspuucTkhdeEitTdir/T3N8VMJMoV3HREv612qgS1sfPVyRMyF0IogLTrrnG6ydFVnx3dReqUxKEjtBH03fhNaei460p1imwC2QRJ7XkBDMLU5L4j3GQX44oXpMoRbnuRGhJPYagNpSsqMDoB4yxwMjJRQN3yByS1neN+0kEoV2lWGJRDmVRVxdTxn0ptAkoljegeLyeHRHlenczgPIUIbuAlkJ6omgWurnrgSsW6d9GGK8SJta6Cmcn6hc9G0ziXLkXbOI70bFEm9BQSgrDQcpGgQh8YE5E8C1Kn+HPpICa9lvTVLyKNRDjMqRY5E7eYlRb0HeNP0em5qiBfjdIENzjNZIC1rE+qoHCK5ZSey7aTZhjjs5+CYWnAvXxM2kEJ99AJ2hekAT11yoOU1SM2276xtRsyx0klKGsw0mNeDXXT3m+f1S2Kgsm47ao5ndhrnEymgT3IQ1o8agMIeN0kSUKsLXTqnBMbW2tm7msIzZSq7dVjZKhWMrSA4abRVL7yp1vY2K0LKWh0ePHPZI+VRjuOVqPbTpwIifShICxywscwlTEOJwxaSxrXHbYuIUnt50kmQ5jBmBGE3kKgTYaQHkGSMHL8rbu7oyieqAJIBROtb2FsnNflJHTTUCufB0gCAYjWOsRMtWpDUEopKnddSa0Qoplly4rce19BZ1ujeCKShLzlwQ6hjOQqcJ4Lt30hC1nIQq5BPjktT1pr06bHZwPzMlgfmiRtLzFYnleRUbuc1HUdgM5xFZKU8pKg9H5JrlmOwRptfALBoAJuzX5OEpeMERLhrQwZAXwTGaZFKx2OlaSC3Fc+CUUmYDp1iIQsZc+58KrRgbRDTWrSbWtRnphU3OJdMpHS1JrGZXbSRATO00QSsrx7laTrLeW0g3B120iB4zehMaBlQeVQCNNGMK48Z4AIRC6pgKxjkx7dAcgVm7waTVXA0eZFn36xFLClu+NJSBhlWdbSlxVFqIoZ7VXBwlN1E2q7MRphCFUuUsoA1NZNGrLSedYSFSYyOAM0tUE3Klh4RrWflXKhIay1GZwknaC1tzybQASS5xKl2gSKlAbp1psyTdthQGu0iC1PNzChguVmjALVBMvZ4UncAEzbNz6qYmpEGqxAhEBr740YEAlp6sH7MiIA8fSHNmkbV/yF6xAOYeA7pIp27UqZhi4ICUn4rGkxtrVWGJcUmooKY9pCCkFr4RohZxJ5caGJP5bSNnkHrmjlCuWTUnkCM655XGEUQ5UMImSSIco6a92udH8Me9CrHocxLadibPF75Rkr0Fnl2boVcTVEaHeLQDiQtxYKLUQA0CtpwsvDQp1aKEZbaWkCbCmR0PUkzcIgtaLu2cqcJEmQU3fcpEHkFopiUolJnQvd67PnW9FWNel4QunjRZ2UydjGDXe3NoOSEnkPU9tjlaM9tIcVZVkAbUtjkLqm4+5XJ0nouJhUBmiPP08IFVGrgz6bHRuz7PYqjPDthQcokYZSz53tXc6ft6Qfd6zcNlMqWblujk1ZBfC/sNFIez6lkZgQcjVahS6qqq6R7t51shw3LNeF1D/kDcKo8LtEiBiBFaqPhBDhYU2yNFR6VUQhA2OVnwjHavMCSrWKUYi2lBjZKjKEDsTbQhgse5luj228YpGhXDJNJblbe0WRhZYcdaNCya02tqS04+PC5G21kZBBkdv20F6pm5Zr17QFAmBhVKEFjpAYH3sUYHyFkzZofIVT1iIHtaZsatKorbCIni/fusN+5162QO2NLs1MmOFKZeG2L2QhC1nINcgnreUZMI9zlmeWZS0RACqQHTQRLRjzGfWIZORqxZIKXHpYKS2eUkZuQAzKnbVIvaseJ7QMZM4lwiCkiapTTbA2CdaEbcPh2eeF0YEhXjaa1Fl3BQqjKrzjVjdNW7UqJCNnlQkBS8uO+qzSTEpPZJIiswzpeDP7S0sBT7qxs8PUAd47yRZZY61bWR5DOnQASQrCW8SSJaFodq2FmJTH6LnyPUxKUnqiD0kAgFY1tbNYkqJHlnsCjD5laaid6d1bGrDmyjirqmHXsdcLrRg5/ComI3H2VmoMxociUkmWJSFRMp22jOvj8ZipK4nUpkG40ESWZcENrBwwW4R1KYJXYteLszxlgvR4yiwJVpUUJtRt20O0TQ3TNEXjk0QEkHoiE6QrvDBC4rxpy77oTUpj3f72ukqMtzxFEsIktrDEcZNGxRmoFqRilEZH7rGmaa02odvS4FQQiGXjMJaWGBRSt65z5dcbqQVwAAAgAElEQVR/o4O1WimQ7nqrBhrlkTX5XLEING4fqdvCF4Qmzz13RGt1CyFI3b2rjQmhN63iZ/C55f8nytNu88rTuw9ayFZ5lmXrtj+PMc9OpxtA9k3dkmzYsRRIeWn/lFiENBE+q3WxpEjQLtsusC5XIHEQJjDzGERwuNJOHtySipLJ1Ll6TUXhSBf6WUIiEio3B+OyYs11qSSRbG3b+GdZV5QTGzPc3Fyn59qJdLp9VlbX6DmC2rWjR0Nr2DTJQw36k/d+EOn87r2tm7hpz/bEYTVrn+amph4N0VOLnUlUDc5dRCso2lYroZJKQumgL5NaMalcPfXGkIsbO1QOIXD23IXQw2lltT/zoPn10cv7SFzbk7xha8PCflbTFQZLS3QdSF81DdoThUa8BsK0bmgSkWwIAKNCDDWOh7qD4C/G/0ZKGXhNtVZtqw3nZsecBcLHRk2rmJI8RQqHFhCyPYOQYU0abSz/rIulp9lsNZ5fe8bM1n3758byyvrxpoAI0QEjWmRLnuftPhFxj4Fwjfb5FX62kHkH6dALJkloPBetbkK4CtFOcpLms2Ewo6JImAkoBqIOn0brQFgiRBvzTLVB4ebuuctkZmThti9kIQtZyDXIlbQe/lXgK4ELxphPc9t+EvgqoAIeAb7VGLPtvns78O1Yp+L7jDF/8kIMPLRFaA1PkHKGzUZFXJ/xPpdYnn8HS9Qz/8BM5RhJkoRae3sKc6Db3sLQIhcpEW1DK2kdOt8lM0+Slo8zkaHUM5Vt0gKgdvyKmapZSew4T62s0M8TTqTWctzZ2eHICWsVJkWHj95zDwDrW2N6LmxQ7m1z9knH+D3eYzrtc84lY6bTKbVzaff2RoH1+/jpTwlIh7Ep2BrbsQ8KTerKAJGgs5piYM9fiz7TXVc8kOX43iEikdZnAyZ7Y044Grgk22HPYTa3htts7+yF8MJoNAn0a91uv6WXkyIwR/XzPigHqs9GrLjf7O5OMUbRNC2O09PNAeQbbWM3z4Q+y0bezHgZ86iLwFEQlW0miYiiR7qt257zWCyiw1moqrXkLCNXC77fr9DYhxhCCCCPOF8xoSjBGouRq+2TN0lK6ujdEAZtLFbUbWi7uxYFddQx1HcRaLRBRQkutKQJjGQpjXPPVQPacS9Mq4bE4YKN0VRNy9bvn/zEo288usNoBCbaJ+4n7xNObeZepC0SpjqwNOdSuRK3/deBnwN+I9r2Z8DbjTGNEOLHgbcDPyCEeAXwdcCnAqeAPxdCfIq5mhTWFYghVkSzyjPuMmniz/EifB7ddt89ELxybomVY5LVWHlCG6ecIVmWps2MSsDFD0ViEKkgde5LilWg9pJThFvQTdOQud80dUPqFE5Bw5p7oZxZXebIyhJnXZdAqbY53bVVOkkn5xMTu73ePs9kw+5zvtwNtekbF87T1DVlRDw7Hnkqsmmgi9vam7LrqneSNGfJ8W52ByusHrXVQkW3z3ha8tiOHfPmwxv8p/feC8B4uEvteDczmVC7OONwOKTathVG41FF4rqNGp0xKRsGrs1t01QYH0NMEgpHTLLUK8L976ZdmtKeuxxVIVY+HA7Z3t6OQPCyJReOOjDG7Tn2IwbZD5pmoXS+Nl2G6hnbPsadLYK5+eO2x5KBwlAhaEN0aQhtWKCRW/dCBkWijXXnvUs737sn8cfKJKlu9wngfdUqLKWhVia0R0GEd507phuLaV9WWkPjiXqEBKNQbszDyZSpow3USBp3/rJqSDIP8hcMXV+sTqfXzpHQJLTQNhNBsAwy6jZqY77hXvgXgQTlCaavopfaZd12Y8x7gc25bX9qTACLvR847T6/GXinMaY0xjwGPAy87opHs5CFLGQhnyTyfCSMvg34Hff5Fqwy9fK023aJCCG+E/hOgFtvvfWqTihoXR8pkxDAb5zl88iDDwGwurwSWF/6/X5g7yHq2W4xn44urGmQUqKd/53IWcvRu9FllHxqohJArVtsYppZMHnLZp62JM0iYuBOZQBtK6Uscwy2Xjd145DKuu3eZVrqdei5Vgp1o5lOPVDaMPaZ4OmU44767UiR8Pde+xoAzj36IBc3LnCk5wPku8iNxwG47WWv4MXH7XHPPrlNT54EYGfjLJU795lbTjKuGjYde1GjTchkSykZTW2H0KFcQQubcNK14f4HzgKQdXZYPmIt1d29EWlWUBTWWtVNxs/+2h8AkEtB7rIsnSwncXOxs7PDqfRJd+22bhwgLwbUtQmA6uMn1oKFt7p6JFjERZayt2s5BqZlHSzPWredMAeDFcqyJstclreatLR9SR7uab/fZ8UB9pumCRR+IOn1emHtVVUV2JcaZShSDwwnsGNlnYLKJbjKqmqLO4SgUk0ID1W1opp4RELC2PEHdDqCytlCWZaFNYWQpM47Go4mDEfj0LdeRUkTosKThBSkS9bJHJm4mvt6Qtd5ILWu0CgSh7qoasXQdamsmyZgM5UmWJEaEZKFygjKyYS9kesKWtfBMyyrJnA/qKYFros0QzqMsJEygPqrsgZt6DrS5F63CIm8ui5xnN6WqcxjopEoT8sYMfpfNyZ5IcQ7gAb4Lb9pn5/t6yMbY34Z+GWAu+6666r96JmLdJOeJAndbstU3u12ET5jOp/t9m1HtSIt8nBMKeXMRRxUG+8/TyYT6ujmyKyllV9bWwtdD88+/cxMj5vZdgg+DiNpmlAjFBRGIROWipy1gWtlUWQ0jrtxOhoxcgD26aSmdA/wWr/P1LWYzY6tsn3edu7sSUne7ZBNrDJbVhXVplVmk/NdVqQ91um1Lmtd565pOHPzKQAeO3uR3WlDr28VY6+/HNr9DoejQBJST/dCijnLCxoHpB/vjVhxMc/jKwOKohuo7zJFC/ivSkrfE8dA373wetB25dwdhy6k/aUUITJWXMfP5ZU1tnZsCKKqmtbVNYQa6jztMnCVT+NRzZabr+2dHYSULK/YUEOnm1E4RIExJsDBNAQ6vkRmGBz4Xk2tW+terFWtbKUPcOzYkaCIy6YO1VbatEUQIk3CmtTCfhdaRwsRCEQymZJmdq0L2SXN2qy2J8fRaIzDLWmZkXa6FKmLLY7HbTxTtnFSZSSlIz9Japu7BsiKAcop6KquqJQh67iXSpZC6q6/buFvSgjn+vs2IK4ddVVbTgTvngsdrjlNssD7WSsTYqZaGaraPetpqzIaY2xPI3wVliRL27CFB99HmHyEanGFtljhyglBvFyz8hRCfDM2kfQG0wZkngbORD87DZy91nNcsfjAr1uUnqiinEzpu0B/rRR91y4XrVvIg2D283NIzJXpH+DTx2/Ct9rJsiy8Ks4/c4Ht7W0Kx5i0uroaxmWMoHJvVpmkwUqwcKQAFOWIixNKrSlySeKYX6bTaWizsLc3DnGk6aRib8cqomPLy0xcImd1eYmtDctn+ZJTR1kucpqLTwOwvNTl7EVLDjzaukjmIBtrSwWnXW/2F60c5fVf8MUA/Obv/CHPru8wdSQS25ubIUlVjsasOpaj49kOA9cs7JbTt/CYw4w+9NjjLDeWzLjZMqyvb3D8mE0YNXXNsm9DokyI6+qqJJt6y0+wfPpmdx/OBoaiTp5jRMbNN9vvbjlzimfOWgtVyCTEpotORlU5At58icIpn62tic9JsXLkKMurqwycVVnXdaiKauo6YFy7/QFDR4aRJK3lWU5te99p5ZmQDImz9qZ1g3EvvtFoFGJt46qtLpvWTWihvDeeIAyhkimRMvQtQhtKp0wmZUM3tS+S6XTK+qa9p8poVtas1S3zlOFoEl78WZEjnfJMjET7l0JbuIRSTSgLxqhgTW9sbaKN4PhJOy9ZXjB2GOHt4SgYMDLNAmOayEwg6K6UotFRexhZh/i1SPOQfU0TgW/WWDWa2lW2NcoExJuQKVo0NG4uqqQKELQklSAv5c5VyoQEVZqmgUv1auSaoEpCiDcCPwC8yRgzjr76I+DrhBCFEOJ24E7gb6/lHAtZyEIWcpjlSqBKvw18AXBMCPE08CPY7HoB/Jlzn99vjPkuY8y9QojfBe7DuvPf83xn2g8YZPg7mUw4e9Yau3u7w2B5iiQJtFNUFXQ7bpdZ9m8g8GBKKdtMeBQm0FG10ubm5r6l8TedPMGpU6fYcRbiiRMnQisIS2Lg4SqW1s1v96593u2QOQjSZLTHeDxh6DKB5WQcXF2RpPQH1kL69Fd8OmeffgaA2267jbOujujEqZtZf/wT9pqym6hpKEvHO3r0CEXPcX0WfTLH/TialCG29+Jbbw0tHnY2N1nqdFhyMdeLF9fpuDEfvekYr371qwF4efJksHCKjoYn7D1Z37qfF63dAdj2tefKMYPcWsWjco+TR6y1289zbjnpODyrmmpsrXbdKMYv/RTAuspbW47URGdMpqpllj9yJIKpybbdsMjInTdQN7CzbV378xvblM433p7sMS0bdnbtOXd2dlpAdZKHJmidTofHn7DznaZpxNyvSdOUqQd9CxHaLW8NR2HtbO/sBIKVlWmFdJn3uq7D+ZaWl21HU+2LJwQhLV4rNL7uvC2WGE0NOyOHhtCavG/PUSQFiBTlQgjLS2vhPFnSVuwIbex5sDFZzw+hdcXErZtxqZFpQurCGf3BgKkL2Uw1wdpLO30KHy8uuh5NRF1WLNdNy+SfNGH+RqMJpQtFJVlBr2s9xtRoED40UNP158gSEiFDozkjEgjtnVNk7lx4pdCOC7Wu64AoQAhMEuInXKlcVnkaY75+n82/8hy//9fAv77iEVyj7BvYdfhJb5pPJhOmHm8mJcdvsi0LptMpna4nU9ZhohvVBLjKfueJewh5RdspukFpjvdAO2zg0nIOCJ544gkA6nLatiiWbStcgwgljUopsqjj4+6WfXjH07GF7bjSRd00GJd0GKyssOI6Ru6phm2XMHp64wI7Uxe+kIbSV4b0clQzYatxWNg6Zde1bzjSXSPDKpbNyQPUTjFkx57hiQvWDXzyqce5486Xceom6woO8jS0Q9CNYs3lGU6KcehSqYZb9EbnADidT/n0U/aBu/nUcc4vw+OPWfe6T8Orbr7NzkutOO3YfZupQrie5EWR83HXU3x1sBQesr1RzXi8x8Sd07rOdh0MRyPOnrOJrF5vD+8Tr1/c5qEHHgPg4oVt1s/ba3x2+KztMOrWQhx+WVlZCfe+v7zK+XWXCMuy4DbacRbUtYcxSbR71BQ1nhu4VprKjbFUmsK3g3YlsAAyyVwiy0PbJD61YIzCF+0q0pCM0aLCCBfHzwRJ7lpfdHokpIHhqapN6E2FABk5or6KSUqJdvHPTrePcQme2kikkQiXWErSDvi20SIlcUoxLXp0/Oek5UfNco1RKiTCOnLKros5b+7uhZDHUqdtI1KphqlPlglB4vhiu0VOUWRoFyOXOHff/c63HiZJkL6vV1mhnNsutG5DFnU7xsvJosJoIQtZyEKuQT5pa9uDGIP2yRchGQwGIWkw6C/Z2ndgNJmEt1ycQQeCv52mqc24e+KGOfBAXC0UundGx7I9t9p67K2tLba2rDWz1Oty8qSF/th97X5lVVP5TMXeMLguZTkh990I+wVGVaGXN0YFKEun1yd1bo3MCrprrnKorugetZ+T5R63fMqLATh26y1QjagbO85RWfHk0I5xvKtRmTvW0nEaaa2tcxs7nDxt3eHV1VUSo8id63d80Alg9nE5ZnTOWpHPFnvhWoRMaVJ7rLWTt9Ffs/enVDnDSjJxTfMGS0c4edtLAXj84Yd45oINeZSjcaj+uWVljY0L1oqcjveYuCTceFxRVxXDoYUheSvGft7jiSfsuJACj1B+9uw699z9oD3WqEa4Fh46k5YS0Ft4MgnVOy3Tpd2eFr6NRkvYYYzByATlrEWlFZWzeJK8E6w60oyA7ZBpaOlhVKjMZmc0RjcqsKFnSU7iLH2jREh0SJOG6qqqhjqk8UXInIsGprUOVUHSJC2Tu0qCqy6NDByeSVS5VCuDM6apG4NRDXvOEhR5yXBiz783LcldAzolJLW73tqAcOera01d1SHZ2aRTJi7MUdUqJMxkmocsfDMlzCNJy/mZpjkkSUAuyIjcw+gmWP1I0I48pTYS4SKKChHq4uvn020/rBKIQYhIhhOLr1tbc9UsRYeug7hsbm/PVIkE2aeL3rzS9NIqtjK4pBsbG7znPR8C4PbbbuOUi9NtbWxSVRWrDjpTl9OgcC2Bsj2mNpA70o5utxtcP2MMqWsZ2+t3SKWkdixDQhpyD51BMvbtIzod8jWrZB67/z5WC7ua3vu3f82qg6ecP/sI0+EmL7vzCwGY1AkXS3v+0UZJsuTCBms3s+Q6Zo5qw5NPt+7p7vYmQwclOTpYoud63NzUX+PEEQedWX4VlVOq6xtbPDZxGfZkwHJjM/KmkeylJ9E3WcWcrKxSvOgue7+emtrYNDBRu2xNrfId7uQ8dvZhAPaGE7Y3rbKslCTLiuB27e3thRfb1tYWiQuHDIfD4E5PJ4rKd2zMOyFzn2W2c6ZHEfgOk/be16HyaHt7O1T1CJKWgMMYF0t37U10m72uyzac0GgCkxIyablYEQEb2evlkInQ3iRPckTThkmyxIczClTlqpVyQV5M3Dl0cK2NyJCJDoDCotsPWFgpJdINQBgZritNEqTw/cWmSIdayIs+WmgSx+cp05zMVXF1e0stTKtRgW1JNTqEBjTChi9864+mRhtf7ZSisXPcNE0ge1Fah5BkIltSkko1JEYHflAjREREbaijHIY/hzaiJXmWaWC6gitP0Szc9oUsZCELuQb5pLQ8q7pqWyQkLfmGtyJjC88Hq5VS+zeAUyoQLTQYWwkU94aOsu0e4zaZTILl+cY3vpH3ve99APzSL/xCqHKYjkcYVXPiuLVEn37yiUBOUVVVAJYPVpbpuGTE0tJSeHsmecYzWzare0wcoVOk1K5CqZN36HnMapJSDx2lW5Gz7Jqj1cKQ9+xxd0a7HDlmzz2uS8qm4l1/YQvBbrrlFGPtrAeZo30/96SDckmH8+fPMdqzLvSgW5AISDyPpdRUe84i7nYwDpx997mCjgPS6+VVlm732dcOHLUZ9bNnz7E90QhprehJ3eHJsR3zQ9uCpWzZjRnGm9YNb554nB2HEy1rzdaWRR2keZ/BylLwQsaTvXC/t7Z2MA6p8OyF81QuY7zcWwu41CIfMHLJkLGw1WSe8V2mOZnvQd/pIBzettNbYnPbWuR53gnnllIikiyyKltg/WQyDthOpQyt4ZmQJi3hiLeay2mNFCIw8pmmovHVN5Uic0mYptEYZdfntKwYuyRkoxUdh0WtGk2tmlC8MBpfDBaXRLQkI8pZnzhqRWedFl0TsMo7e0OElAHnKrI0WOSNVujau+d1SyeICBwDaWLZ4H19uVHTkLhN8xzjjjuelPQcflaINolnlJ55zhvVBM7XVBLCdVopKt9RgbZxoTEm4EeFSFqQ9/WqMHo+RTfeZA/XhBRtlYbW2hKrAnmWt/E/oVsEsa4g1aFVqh4rUpeBO9br0nVKsd7bJet4191QNr7Na88a7W4ABlCNr0aRpNI+QNKkLBVWGf3cv/tJXvnKVwJwx52nubBuK3maasJwuEm2bY99fLVg4pQh45LUVbZIldA/aZXErlacvv12ALZHI9INW05aTaYs94/RVD5TmEFtxzLcHKJczPRTX/li3vOe9wJwy4k7Qg+fPOtQOcV9wRjSm1JWLdqHnemUnoNzadrQRbK7S8eFHMZbiqprx/jkaMQdd9zBQw6sfL5YJl2yFbidTof7S9+mwaC3nFJPEnqnbAnueDxm5DTGM1tbTCaTsKBPrQ74v9/3HgCe3V4PL6gYGmaMQRmr8FaWl9kZW7B/J88Qiea2o1YRl/UIHL/loNdFuLjqseWT7A7tw7gznGIcnCvLpqHKZEmssrLSB2kVxYtf8woabcMD9z/wYU7dbkH96+v38ZIzdu4uXjzHTSdudp/XWekvc3Fi18LxIwNqt8aO3/QSPvEJG2ftiIwjaxYp8ewjT3D77XfasaQrjNwYq6piOBriIwdFkVDVdlxFJwlP8CMPPU63sPPyottvxSgLwcoSxfp5i/hYO9Kn001Ycvd7a3uDixctO9bJm05x/ryNJfd7K3jq2+XBKjuubHT69E2hvLGfJSg9Zrpp0QrPPHyWEyfteusKxeaWhZ9lzSqDJRtGO/fsRc6ctjA1o1PG44quCz9lvYzNTTtfu+vr9N325aWMAvviliJhYmx83iDopDZElOcdmkaF1jBx11RtNIUDzKuqQblaTanbghRdN0jjCVqikN5lZOG2L2QhC1nINcihsTyjmHxbGqZVyDralhaXOch833aYMdNjdux4n+c+5KUJpZj27iu+4it429veBsCxm1dDQHtj4zwf+pv38/B99wMwvHiRcsVhEPcmwS0qaxEy8k+ubzB0JZWbw2EAfGutGY9b3GSnaOu743DEaDQKWeYYaJ2lVUh2SSnpdrszvcf9HHkmfn+t3kWKsa9VVc002Ttx4kQoxet0OlHf+ZZGLcuygHTY2dkJ+y4vL5NlWdjHW8r+Wvw1TiZtSaEQLc/pdDoN19jv98kz0bqO5ZTCu9p5N5S2ykoxdthQeyyfIa+C5bk9mTDcW6foujLGTsk3fONb7HkG8N/e824Ajh8/zld/jb33x4+d5D//5z8GYGnQ44u+6ItYXrbW0xNPPs6jj9okV1VnfNt3vMOORaQ887S1/O7++H1sbVnr9sL5db78q2w57IMPPohSNW9561cB8NhjD/Enf/ouALa2z4d5/Ymf+mH+8Pf+X7fPJzhzqyU6G0+2+cI3fKXd9/FPcO99H+MzX2cLGV7/+s/kXe+yx3rqqWd42css0uHzPu8f0O/Ze/H7v/8HoSDjjjtuZ3PLjncy3aFb9LjrM63Xtbl1E5tb1nLsdFM++3Msmdqtt97Kn/yXPwfgzK2nefqpJ92152gluOXT7Fg+9w2v54Mf/KAbP9x/ny0oedObv4NXvcqS2vzb/+UnyJ3bX5ZVWAdJogBJ5qxGSwXZImP8/fb3HC6l/YubMF6pHArlqZVu8R+ipdvUWpN6sLBsKfIvyYZHvImzrYdNiF/Grl9d1wRepZiA+DLSEni0ymNjYyMoHD9OgKNHj9LpdNhwvJnj7W302GVfqyZkSYVIWyUXtcjVERdoXdcRt6TNrHrEQJq2tfG2ZW1bQREqXppLFVlLwjt7Hr/P3t5eUJqbm5uBDLiubT8ff/7BYMCRI9Zd7HQ64ViT6TQsxDRNw++n0+nMfSjLMiiAuP/UYDAIvyuKoq1WKgq8w5SmkiNr9gWzstRHqzLM37Bqj9vvLQXlmVZ1yLZrJUI9u0jSUOfdGwj2RpssDew+n/f5n81wz4Zc3vLWr+BDH/krAD7lpbdz6pR1u48dO4ZSPiY+5MytJ7l40SqTEzet8ufvtsrg5jNHWT5iXfL3vud9fPSjlnw6TboMd10c/au+hDtfYmPX//W9H+KOl9zO8Zvt/Tt284tIup8BwCOPPOBx6bzytSe5+6O2wODc+Se45bSNK0/LHl/0xV8AwB/8x3Pc/uJb+eIv/gcA3HvfPXzfP/keAN7+gz/ES19mXerP//y/T1naiTl37rO57z5bnba7OSJ31To3nTzDLWeO8bVfa18ed9/7QX7nd3/TroPuMl/9NW8G4C//8i/5h9/xrQD8zz/8oxw7akMbnc4SFy9s8T3f+x0AvP8jf8Y3fOObAPju7/4e7nrdywH4yjd9IRfO22fom77la3nnb/8eAMY01E3pPgsEafuClHlACGhtX4wwaxDEBpSU8pqU58JtX8hCFrKQa5BDYXnWdc3QZYwHy7220yDJjKvuraoiL/YvzxRixpLSWqNMixHzVlVVVW1sIJEzlqdx8Oj2kJeWZ8Zue5qmLC/3w2+8FZgkktXV1ZBhP7G8zNlHn7LnV9MWiG/EzHHFHGIALK40bmzX6XSCJRePRSnV4l+jcceM4d4yzzx1XnRdZVkGa288HgfrdGtrK2yvqoppZFXOIxi8qzyeTALLkIrK8Pb2WvD81tYWOzs7YZ/4PmxsbMzs76WuazJHyWZMGr7bHW4jjObkCWuxTcsxwx0bwjhzy+nAO6mUtXoABstTlPGUal0Sl1XOGZOmJ6mV3X95peBjH7f8NnfceRMvvsMmv770jW/g6WdswuTss0/zyld9KgD33nsva2sDfu3XfwmA7//+f8ax4zb5RrLF2jF7L26/c4UnbQUsz559ipErrX3r13w+P/3TPwPAqVs7fNlXvp6777OJwCwXTCqLNlDiIm9581vtvPfGZI6S7kW3n2ZvZJONL3/FHVSVS5DtbHLs2BH2RjY88Bd/8W4++7Nfb+fo1tPcdddrAfjAB/+GXcfOlReS5RVrzQ96J9jdtckbIyqePfcUGy7JMx7vhQTM5/y914UOnZ1Ozvv+2iUxT9/M6VteBMCtZ27nAx/4CIOBPfafvvv3efVrXwLAp376bbzi5dbyvOe+D/CX77XIkNe+5nVs79iwQacYoF12vVIVRmvSxNewa4TwfLtNWMdxC5R4rcUl3aHD7hXIoVCexsz2gDlIDiQq9ftKMeNS2x4zblKUCu0HyrIkpBPnlWfUX2imxQcx/0gbVx2NRmF7XenQRwXXltXHM6cRAXLFNCiQWulQk2yMCdsnkwnHjlmYU1VVM10MvesMVnl55bO9vR3gVFLKNv5X65m45nQ6pfSQpKhdRBwaSJIkKOgsy8J3cQsK/9fHYuu6nomT+n3G4/FMi4r5FhNxSMBDYba2tsL+SqkZUmn/gur3u4G6rC5HHDuyFqq4yuk4kB4/9NBDIYvaKNhxmey90f7KM2OL5eU+65v2ZafFNm9+65cAcO99d/Pww9aN/dCHPhCOuzecItzj9OijD5PlCb7ZQn+pG4iwV48O+C9/ZuOMVdnwuZ//OQB89KP3sLNtFdZ9D3ycC5pZawcAAB2TSURBVK5mfjKZIDPNWZcxv+X0SY4cs/HI7WGfJafYPnbPh1l1HAedCznDsT3fp7/q0/n4PR+zc1JP2dje5pFHHwXg5/63n+c3f9O62kJKOg7a9tTH7+bTPtXGMj/2sXtoHMP3+sazKEe+0e3ltu+SW+8KRePj6Krh4ua6u94j9JZsaOWxJ57h/gdtDuDxJ59he3uXmz29oB7TaHvvh6N1kHYdD5Y7DJbti9cq8Za71xsgmBRtElpHWmK0Q9woHTq6xs953NsM2vV8Ncpz4bYvZCELWcg1yKGwPPMsY2mpdX1bIlaF9NRtwuI7vRxkhV7itkctLjzVXFVVreVJ1v5+H9L71iJuqfrjhlxJkvieb2RCRq8jQa/XC2843TQzYQNP1GeEJPd9xHu9kLmeKsWJEyfCdfhrAGs5e8tTShnKUR9//PHwG9uKwbeRqIN1CjZpE3dS9Naib0PijxuzSMXJm9gS9OOYnSvIiyLsE7/NY8+g0+lQ13UIbaRpGo4XJ4/mG5U1jf2N0dp3UKFpGnr9LmfOWC7u0d4uFy6cc+fphWRCWSmSpArjDfhRPaX22fbROjJXLK1Y9/6u19/Flmvh8rcf/CBZx1poZ150G5sb1rV/9Wtez4c+ZC28WhseeewJTjj2/b/5wAconFWn64w91w1mPG6oHBb08Ucv8I3/g02s/OEf/DF16cIMteHBTzzDy19qy1aFVDz4oE0+ba5X3H+PtY4/4zPuYrpp5+WRRx7ita+1Lvipm2/hXe/6f9x9TKgrwxd+4RsA+NEf+Vc8/fTT4T6+9KWvAOB1n/lZdB1fwtlnzgXi7cHgToZDO/jRaIRMFBsbW+G+nDplM/zltMY1FeWDH/gwn/mZNjTQ1Iq3vMUmmNKk4H1/9bc8+KBFIZw8eTIk+6bTKU89Za/r9a/7XI4ft8mvjfUtbrvNJsUuXtgN/A6JzDE6DQTIWVaEhFGaZtRm113/pSE4v90/K1eaPIZDojxlKolZ8P01JkkSmKcDdRZt1j38P6pzvyTbrlt30X+Oux4m8QnnxNh4wiXn8d0RwU22U/Zl01B0XZ34aESSJEEZirKk8EBcI2kqV19dtcplNBrRC0QX4zBGr+DmIUN+jnw80S9ysEouHm8WUAuSsiwpOi0kyUvswsfXGCsvYwzT6XTGpfahgvF4HOa+6HQCxCV+2SilZuKlaZoGoHZRFEF5xgq3aZqZxV34fkBNTeY5HWVCKmQontje3mToYFtSCFvTjXWVfc19NS3xDGS1VKHO+/jx4+wNd1latsd+61u/mu0dq+Re89pX8xM/8W8B+KVf/DV+6/94JwDnnl3nvntt76xuZ5ml/hrf9I3fDsD73vfeAElq6tv44R/+QTsvWvCzP/vzADxw7xa5tMUGzzxR8cQT9nyDwYCH7t/mbW+yWemt7XU++P7HAXj0gRHPPGGLCrrZbTz6yLqbYygcDd1HPnI3G+uu35Qq6RQDBA7e9OM/HaBt//gffx/vf99HAPiyL30bYweMf8lLXsZfvtdCoDYuPkVe2DlaWVliZbUfqrWGu1MqxwX7X9/9l3zHP/xHANz5kleE+G2W9vm93/2/7P1KOgwGK7z7z/8bAG//gR/jPe+x1yJ0nwc/YZVnv3uEb/uW7wbgR/7Fj/HUk+fdPS1IHGA/zSVCytClU6k6hBNAzhRYxOvYixBifxjjZWThti9kIQtZyDXIobA8MVCVzhJMkgCYl0KGvtRKmZDBey6JkznW4rHbtdbBLY+z0jPDuMy2/awypVRwUeZNfill2Gc6mTDdtlZlPS4DSL6uRWA5964wWOanZ56xqdjRaMTa2lrLBmUI1h60rvPu7u4lFps/bjz2siwDSD62aJVSwaWOyYCzLJvJ1sfXH7vXsRU6mU5DtjzPW5Zyj+0EZqxXf2xvRccu9bzbnrsQRDkeB4s6W16yCSQnddX2YR+Px2SOVapuWutCCALqIE2L0ANrc+Mit952C2VlrbIfevuPkLpOmssrfR58wCVvTt3KP/quf2bHUjZkjnavKLr8yx/9SfpLDr+aG46uWRd+NFzhB/6nnwbg2WfP0ymsq3ryxGv4mX9vm9Bubaa8/KVfANhQzp/9yft5/LEfdfdPUdd2/o4eewXPPmvXyG//1ntYX7fW7YkTJ3jiqb8GYHd3mxOOuPrJRx6i3+/yjh/+N/YeTUYhoXnq1GkublhP4Yfe8a8458ijs6wgyxz3wuBISHytb+zy+JNPctH1xqrrKd1e5uYb3vKW/97NsaDjSi23t/Y4c8YiFfaGUzY2RvzV+ywj2Tt//9dYW7N44YcffpY7X2Kz7T/2L3+G8+fsdb34xXcGq3k6aUgThyNOFFobGjcvQpQBswuguNTy1FrPhKWuxfI8FMrTmHYRCznjKUdQJTEDkq/dg5WlKcK7s7pBax1o4CaTSXCV66YJynN3d5c0pqULVUggZYJy7n0iBXUcx8tbyIN3x2NlH9q9YpVKHDcsioJsYD+f39ljqWfjfGUUQuj3+0F5KaVmMtc+o23H1Vbl5HkeWiobY8K4JpO2Xe7S0lLIYmdZRlEU4Xj9fn8mc+8lTdMQD4uLAPxC84twY2MjKPVutxsUZpKmM62a/ecsy4I73+/32dzcnFFyfgxVVQUlq5SagWN53srjx48znQzdNfYZDAbhmi1CwP7u5MmbQ1vhaVVTVFb5TkoVwOC1KUmNvY68WGJ7e8zK2pIbvwxQp/X1MbfcYmvQd3dGCB9nS5eRjv+0aQSdzpE27NLAcGjPkycrlK5RWr9zcyDNkEJQT+3ve50OGxcduuH4CidP3Mn2hgr3Uhp7no0LNZ3Mogu2Nxqy1I53Z3uMx4lk6RIXztmXQLc4gtGG8Z5dp8vLJ2ncXOxu12SZVXLrF0fkqc3oJzIJbP0iYjMV5Az6x9jbddcoJbUjLOl1j86gPlTtWkCvnGS44xVZQSpzNtddnX5yisnQ3rvTJ1/NeOh4eI1CYp/nhx98FqPsePu9pUDoU5b1TAdMIVTopAm26yZcCuWLQ1ZXA473ciiUJ7QWomBWecbhSBP9KHBvzsUr5yfFP4zGmKB8Ywtvft8rGm0Uw3sumS8T3Q+DGf8/hlbFmDRv+YU4q2jP3TTNvrHF+ZhOPF9CiJBA8krey36tRuIEkceb7hcPLYpiXxxd0zRBQZdlGcY7Go2YTCYhUTA/7oPm0o+92y0QzqpQdcXxY8foOw7UPM/afjnTaWizYFQgFaLIkjYJSBKNOUNrQTl1/XpG9YxlUjv+U90U5K77JrqDqlurPZEF0jEeJbJl52pqQ+OWn1YSHzkzxkQPefty0spYJWH8GhFoxzuqdcu7qZUILwgp2/nSRqKVe/kZOdN/16gOaKuIjdaQOKtfNYEA2Yi0ZUWSaeDmtO0/dIBjoSRCxq25/XkkCK9morJJnaBjiKLqhofd+UjtuJSfsDpA0zBJmNTWovSKmVaEAUdyPf/c7ve8X8lz7WUR81zIQhaykGuQK+me+avY/uwXjDGfNvfdPwd+EjhujFkXVpX/e+DLgTHwLcaYD1/uHMYQLACZzFprgV6b1oqM4UjzB4ottnif+PNkMjk4wz6XyT/o7TTLC3jpcfw4ZmFTrVUZ7+/bCcT197GlmUTfAxhpZuKM+1me82Oft9T97yyr/Wydr/8+trbmIUzxd/tVG8Wx1DgOG8dLPYpgv7jyc1mgocNoloGx1tLm+g6nTp0MYYtuXoRxjcfjwFupSWfOH9aKkYFuDZOhlQ6Z5PGoDa0YY6hKd0+bAiPt+RuTBJB8kiSkmQgM9EZptLueRk+otQtHoCILUaMchV5jVKhya8wYLaYYF99rDIGvwWDAWXKKhqZpr8vfemMk2vh7aluLeM5YpTO0C1UYDNqFuLQh/EbIJJwvQYZ5NLqxxS1BhTQBdWK/98cSYYyYlGBpazuecJt1H0M7/mDhmiaMBS3B+FY0SWuFCr/unWcno/VjNMbsr+b2W3dXI1fitv868HPAb8QbhRBngC8Gnow2fxm2V/udwOuBX3B/n1tmHnoR4pzaiBkdt58yQAiCvnMksrP4RGfyRw/83t5eqzyj7plCCAyz2M65Ybq/ZiYcsN/47CkPVp6x8knyVjkG9qMkCQkVryxCXMa03Tc949L8WGLZL3wwmbZ8kfPhAT/2WBnGUKfYjY8VY1y2abg0IeTHGx/XJ6Di8e13LbHyN7pllPJwlfF4zIkTJ4JLn6ZpII5oGtvJFECZBh+1aRqF8O1QhAr9dUglSNlWzxgRevdo3fbxUUhq5bVUgvBkFNgGnT4RmGSqXW7soLyrKwmEy0JojCe6kE1Yn4oORo7C4tMoGt3OuVfYytQY07qn8XzG+GQi40CrVkkSKVWt2sfDSNG67RApNfsMeIVnj+2P1bbEQCQhUmCNIf/7SHHiVapX8vo51kFbjRcMK6OtGvD7KNo4CbOGykHPyOVe2vvJZd12Y8x7gc19vvp3wPfDjKn2ZuA3jJX3A6tCiJuveDQLWchCFvJJIteUMBJCvAl4xhjzsTlr6xbgqej/T7ttz+5zjO8EvhPg9OnTbWVMpM8tDV0rie9LbfSslRdZcbErFlfGJFGSYzgctml8rfElQraZ3OWhCpdYngfkmeLwQgwOn3fb08gt99Za3u+HjKU/X7D26tZ6q6oquO0WGtWef75m359DKTXDB7pfzW9cdRHPdVVVM9R1cfKtLMu2nj6yTo2ZDTPEySNPejI/zvnPXmKrfTodUziURpZKVpdXKDxCIZOhM2WnyGhcMkZXCh0seI3vGiClDLXSRhiSVIbGfHkxS1AjfEmZMbT0eDmJb7SGRusquNHaqNAFQVOFNSaljOB3GiF9t9E2Caf0xG4P949QXx5D4bSuQvjHJpX8uXUIRVl6ttlwTBzCiNeIlySJW1e0kDeDQpu2uZsxs/C/Njyk8M9X/GzZj+34pZi030XJXUMT2P4RmlCaJyRBOxh/HA9P0sSP8QtleV618hRC9IB3AF+y39f7jWu/4xhjfhn4ZYBXvfJVxj9onU52oDKK9g1tUt2GdruU+yqAJCpXHI1GrV+iWuW5n8y6vPZvXInzXJMdu+3PpTyTfZRnZzAIv/EKKzAblU1QrHE4wCqo1kXeD4oxU1Y69zuPAfWfYwLl/Uhk/fH2e2ji48f3xJMp+/FmWXbZmOd8OMQr27Is6bhKGs+f6pl9EiFnykB9e2elQDp3XEpCPM6IVnk21AiZhu6ZUppQAaeUwfv6QradWKVII4xshjESpR0EzOiAj2x063pKmUXzJCOlrPEPgVZWWbcxzLZrpBAJxvi1I0lzr/xUq2QwYV8hQauWYFybJkB6hJDhurRpCWIMImxvaHMC2mg0TRR/VTPPbSDn0TYr768x9EkS2HCA/2+6F8UpTZtU1zr0n0Ka9iEkm82q63iNzPYqMuLyyjNc7wupPIE7gNsBb3WeBj4shHgd1tI8E/32NHD2Gs6xkIUsZCGHWq5aeRpj7gZO+P8LIR4H7nLZ9j8CvlcI8U5somjHGHOJyz4vWpvW3Wu6wcWJY9DzSe9568f/PQj8Gr914my71nom8Dsb+D5wDvatRLiahJHRs9ay/+yty3hf7ybHmfKYqGPJUX5ZgLq45LhazbYZ0FoHYpAWIzdrbcaA4jgjXhQFSZLMtMLwwPh+vx+O5Wn0/LXEdHrxPOR5Hvaft8j3m9s4215PJ4hlCww/ceIE2jQo1YLpvcSegh+P/RslTLQJ2W4lGpTSNC7hI5sEETCYJlpTSSjuaGpF4/qp53lOt1eEkMBoXIdacWU6keWdAd7VrzAOcO9yxu5zBiIP1mpMdiNlBn4fA0Y4rwGD9h5IEofB5ExPc2UqNL4lSdJW4JkmjEIZGbn9KrjexpiZkIAx7Xz749mTxl6abZfR/ij6LMetB6lprUUR0fWIFtdqn1+/f2ItWhPrhAhVkrQVRvuHFvbHR19OrgSq9NvAFwDHhBBPAz9ijPmVA37+LixM6WEsVOlbr2QQxsw+tAFUK3SUjbySI3GJ8tzPJTwIJH8tcqWTPX/j5hV++M0+MSivyLzSSJM8KIDBYMDami2/e+qpp2ZCC+08XNq/qXJxxzhGPB8jjat1QuWQY0XyynN7ezvEMAeDQch2N1FvJSHETOWURwfE/KH7zdFB4uOE46jsdDAY2DLUSHl7JWdRAK3yi0/h92+ahsYrhlTRqIa6dlVoonU9bcyxfbn7l1DdVAH8niSCLOsERrDxBEpHSCxlP3LPM/sPwIBxvJlG6xYwrjMERbSPal3XaH+jGwwTd6hWyQmhA+GJCArHrz0999krpih+KTQ+FGQz5JELTNNC++afT+EgdzPns8dud4gMEFlG10WbxYcW6oSOPsehtjb0MT9OTIIx+z/vLzhUyRjz9Zf5/kXRZwN8z1WPYiELWchCPsnkUJRnqsZwfNly9gkNlSvjzrsSDyMULVSPRCbBlG8qSF2Ws6kl5aSi07P1voZlam3reoebw8CUbXRG7Ug6skFbIys05DIJL2CtIfduWaMDLV5Ng/YJ4k4P1xKcVIrwMs0aCeOSM8dtj+9zjzyKcM2zxnXFuLRWQtbrsVva+uxukaDdRXaBsSOakKIh76SBNKOqqgBWTpKW5X1lZSVYgVtbW8HCzvM8lM4l0tKJDffseUajEamzcrI0DfsIIQJfYlXXHDnq2ltMp5RVxbLrdDktSyrfVmN7O4wxBt8XRds2pSzLkHnP85y9vb3ARaCUmmlgF1uuccO7pcLR6XUzcmF/f8dtxzh2pJ2LvDCh+2iWDRi7eRmNa5Rb9iKB2rl0tSiD65lrQWpSMlfW15GdqI2HYqpcH3PdoI0jOWmGwe0dV2PK9Z1Qdlr0llj1YPZaR4QnCmitb+msMoG2TRGB6WQ0k2y01+OTdw3KsdLkOejKEaMYE2wxo9uyT29deVIaoxLytOfG0lC5ctRU9ILVbBoIIHOtQ6LWe3it2z7r3WRpJ4w3/EYcXMRh6iKyFg3Ch3wiNIsxJjybs16SxgYr6nC+GYvYfUxkC/K3SIN2TvPM80i0vLeXk0OhPI0xAbgsJYHD05gWehNb1VfjwscSx/0CUUUEVbraMbef3V9CYtIugMgljl3d/ca233HjDHdcsRNDhUajUciQx8TEcRvhOK44Ho8ZDoekjlg6z/MZtz1uYRIetggeND/22CWPiY7nY8L7xxzlzLzESmL+93GG3pMnj3Z3Ah/lysoKSZKwtGRjoLu7uxGr0/Il8xyuYx8Xft4HnQ8F7XddFuo0izSIryFsU5cS8T7XZx8vno9Z++PPFFtEKJN4/xi6F38XQ5XimHx8/vl1MI+62G9e4vVyULhqv33ikMB+RSjza2L+u8tBkua3xdd1LTHPRW37QhaykIVcgxwOy1MbqsrXcYtQfqZUjo4sT/9SOIgp379x4rdjLDGw3Ftu3eewPA+ycC99m9q/jYLEWyJuHDGt3H6g8/njxtny2AqLLbz4rVtVVXBV5wHncYfPeZajouO5J1s3ZR7U7z/HY4+POy8et+mvMU4IxW/5OBGVRqGC2BKav4+x5enp9eq6ZtC17uGpU6dmrkdrzYoLLcxb8+IyaIp5C+0gideBlDKA1G2rkFlLLiTMRJvIiz2T+Hrj83qmKr8tZtV/Lu7J+FgHWYvz13gQgiX+vN9499s/vvYrsQLntx1kRT7X9stZnvPNB/fb92qo6Q6F8tSmBWdnWRJqf5XK0SHL2QJqtZ5VoK1r3z6gMFsdYfdrlad/sGegSsb9u0xYYP4hD2tYGTw4WRhzyUMfExhfTmwoo63iieFCMVFxvD1WkjHpcPyQ5HlOnudhn5heLo4tNk0TfhPzdMYPvB9nICSO2iPH8KQYKjT/QomVpz+e/3uQC7WxsWHH1enw6le/GnDcnlF7ECFaztXhcDbb2ioPgts+455KcYmSmd/Xy34vFe+2+nBE/NDGbvRBx47dSL+G4nmN58r/LiZvOcjVnXdN51toHwTjiUMG8TXOv0QPOu/l0C/7yX4vrkuQKVepPJ/rnNeiPBdu+0IWspCFXIMcCsvTGBNRsZlQjmVMlKkz0OLFZhlZ4uPErsV+QWVwmL6oKVT0Aw4yO+ffnrNUd267UogIuxZbnrHrdSUJCL+P3zZf3hlnrL3UdT2TNIgtn5g5KU1TpqUrA+10Zqzo+Hj+fN1u1/IBuP1jJqTYDU/TdOZ6fQJr3r2d/31soe43L3EyIw4nLC8v85rXvCb8bjKZBAxpWZacP2+bhfV6R54zUeFlv8TI5eSgxMY8f8CVuMr7iXfT50M4MLu+Y69hPpEUf5630OJxxM9NPK7Y8py3xvez2OJncP5a563D+P/7WfrxOZ7LorwSuSR8c0CY4kpF/F0G83yJEOIiMALWb/RYIjnG4RoPHL4xHbbxwOEb02EbDxy+MR228dxmjDl+uR8dCuUJIIT4oDHmrhs9Di+HbTxw+MZ02MYDh29Mh208cPjGdNjGc6WyiHkuZCELWcg1yEJ5LmQhC1nINchhUp6/fKMHMCeHbTxw+MZ02MYDh29Mh208cPjGdNjGc0VyaGKeC1nIQhbyySSHyfJcyEIWspBPGrnhylMI8UYhxANCiIeFED94g8ZwRgjxF0KI+4UQ9woh/onb/qNCiGeEEB91/778Oo7pcSHE3e68H3Tbjggh/kwI8ZD7u3Ydx/PSaB4+KoTYFUL80+s9R0KIXxVCXBBC3BNt23dehJWfcWvr40KI116n8fykEOIT7px/KIRYddtfJISYRHP1i9dpPAfeIyHE2938PCCE+NLnezzPMabficbzuBDio277Cz5Hz5vEYNXr/Q9bVP4I8GIspfbHgFfcgHHcDLzWfR4ADwKvAH4U+Oc3aG4eB47NbfsJ4Afd5x8EfvwG3rdzwG3Xe46AzwNeC9xzuXnBEnP/Mbby4bOAv7lO4/kSIHWffzwaz4vi313H+dn3Hrk1/jEsHf3t7llMrseY5r7/KeBfXK85er7+3WjL83XAw8aYR40xFfBObPvi6yrGmGeNMR92n4fA/diun4dN3gz8B/f5PwBvuUHjeAPwiDHmiet9YrN/K+yD5uUFb4W933iMMX9qjG/OzvuxvbyuixwwPwfJm4F3GmNKY8xj2A4Qr7ueYxK2zOe/A377+T7vCy03Wnke1Kr4hokQ4kXAa4C/cZu+17lfv3o93WRsLeqfCiE+JGybZoCbjOsJ5f6eOHDvF1a+jtnFfqPmyMtB83IY1te3Ya1fL7cLIT4ihHiPEOJzr+M49rtHh2F+Phc4b4x5KNp2o+boquRGK8/9CntvWPpfCLEE/AHwT40xu8AvYLuFvhrbe/6nruNw/p4x5rXAlwHfI4T4vOt47gNFCJEDbwJ+z226kXN0Obmh60sI8Q5sx97fcpueBW41xrwG+B+B/1MIsT9T8/MrB92jw/D8fT2zL+IbNUdXLTdaeR6aVsVCiAyrOH/LGPMfAYwx540xylie//+dF8ClOUiMMWfd3wvAH7pzn/dup/t74XqNJ5IvAz5sjDnvxnfD5iiSg+blhq0vIcQ3A18JfINxwTznHm+4zx/Cxhg/5YUey3Pcoxv6/AkhUuBtwO9EY70hc3QtcqOV5weAO4UQtzuL5uuAP7reg3Bxl18B7jfG/K/R9jg+9lbgnvl9X6Dx9IUQA/8Zm4C4Bzs33+x+9s3Af7oe45mTGUvhRs3RnBw0L38EfJPLun8WV9gK++8qQog3Aj8AvMkYM462HxeuJ68Q4sXAncCj12E8B92jPwK+TghRCCFud+P52xd6PJF8EfAJY8zTfsONmqNrkhudscJmRB/EvmHecYPG8Pex7srHgY+6f18O/CZwt9v+R8DN12k8L8ZmQT8G3OvnBTgKvBt4yP09cp3nqQdsACvRtus6R1jF/SxQYy2nbz9oXrBu6c+7tXU3cNd1Gs/D2FiiX0u/6H771e5+fgz4MPBV12k8B94j4B1ufh4Avux63TO3/deB75r77Qs+R8/Xv0WF0UIWspCFXIPcaLd9IQtZyEI+KWWhPBeykIUs5BpkoTwXspCFLOQaZKE8F7KQhSzkGmShPBeykIUs5BpkoTwXspCFLOQaZKE8F7KQhSzkGmShPBeykIUs5Brk/wN10y9qOqoUdwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sample = random.choice(filenames)\n", - "image = load_img(DATA_PATH+\"/cats_n_dogs/\"+sample)\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "b244e6b7715a04fc6df92dd6dfa3d35c473ca600" - }, - "source": [ - "# Build Model\n", - "\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "_uuid": "8c9f833c1441b657c779844912d0b8028218d454" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From /User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "WARNING:tensorflow:From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3702: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n", - "Model: \"sequential_1\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "conv2d_1 (Conv2D) (None, 126, 126, 32) 896 \n", - "_________________________________________________________________\n", - "batch_normalization_1 (Batch (None, 126, 126, 32) 128 \n", - "_________________________________________________________________\n", - "max_pooling2d_1 (MaxPooling2 (None, 63, 63, 32) 0 \n", - "_________________________________________________________________\n", - "dropout_1 (Dropout) (None, 63, 63, 32) 0 \n", - "_________________________________________________________________\n", - "conv2d_2 (Conv2D) (None, 61, 61, 64) 18496 \n", - "_________________________________________________________________\n", - "batch_normalization_2 (Batch (None, 61, 61, 64) 256 \n", - "_________________________________________________________________\n", - "max_pooling2d_2 (MaxPooling2 (None, 30, 30, 64) 0 \n", - "_________________________________________________________________\n", - "dropout_2 (Dropout) (None, 30, 30, 64) 0 \n", - "_________________________________________________________________\n", - "conv2d_3 (Conv2D) (None, 28, 28, 128) 73856 \n", - "_________________________________________________________________\n", - "batch_normalization_3 (Batch (None, 28, 28, 128) 512 \n", - "_________________________________________________________________\n", - "max_pooling2d_3 (MaxPooling2 (None, 14, 14, 128) 0 \n", - "_________________________________________________________________\n", - "dropout_3 (Dropout) (None, 14, 14, 128) 0 \n", - "_________________________________________________________________\n", - "flatten_1 (Flatten) (None, 25088) 0 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 512) 12845568 \n", - "_________________________________________________________________\n", - "batch_normalization_4 (Batch (None, 512) 2048 \n", - "_________________________________________________________________\n", - "dropout_4 (Dropout) (None, 512) 0 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 1) 513 \n", - "=================================================================\n", - "Total params: 12,942,273\n", - "Trainable params: 12,940,801\n", - "Non-trainable params: 1,472\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "from keras.models import Sequential\n", - "from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization\n", - "\n", - "model = Sequential()\n", - "\n", - "model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS)))\n", - "model.add(BatchNormalization())\n", - "model.add(MaxPooling2D(pool_size=(2, 2)))\n", - "model.add(Dropout(0.25))\n", - "\n", - "model.add(Conv2D(64, (3, 3), activation='relu'))\n", - "model.add(BatchNormalization())\n", - "model.add(MaxPooling2D(pool_size=(2, 2)))\n", - "model.add(Dropout(0.25))\n", - "\n", - "model.add(Conv2D(128, (3, 3), activation='relu'))\n", - "model.add(BatchNormalization())\n", - "model.add(MaxPooling2D(pool_size=(2, 2)))\n", - "model.add(Dropout(0.25))\n", - "\n", - "model.add(Flatten())\n", - "model.add(Dense(512, activation='relu'))\n", - "model.add(BatchNormalization())\n", - "model.add(Dropout(0.5))\n", - "model.add(Dense(1, activation='sigmoid'))\n", - "\n", - "model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])\n", - "\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "bd496f6c65888a969be3703135b0b03a8a1190c8" - }, - "source": [ - "# Callbacks" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "_uuid": "9aa032f0f6da539d23918890d2d131cc3aac8c7a" - }, - "outputs": [], - "source": [ - "from keras.callbacks import EarlyStopping, ReduceLROnPlateau" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "76c9ba4fb7f930c96b2c3e0d6b68ed9fa6a4227b" - }, - "source": [ - "**Early Stop**\n", - "\n", - "To prevent over fitting we will stop the learning after 10 epochs and val_loss value not decreased" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "_uuid": "3421c5ec428da6c0d8cc1184179a9caff1e01d1c" - }, - "outputs": [], - "source": [ - "earlystop = EarlyStopping(patience=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "51d3fe52e911286433cedf6e47332948a253361e" - }, - "source": [ - "**Learning Rate Reduction**\n", - "\n", - "We will reduce the learning rate when then accuracy not increase for 2 steps" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "_uuid": "8010a5661ad8924d2db24af0f3c00b1593b38901" - }, - "outputs": [], - "source": [ - "learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', \n", - " patience=2, \n", - " verbose=1, \n", - " factor=0.5, \n", - " min_lr=0.00001)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "_uuid": "a79cc604199469789f183096d863f7248e5f6aab" - }, - "outputs": [], - "source": [ - "callbacks = [earlystop, learning_rate_reduction]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "a29ebfd697dd7183a1a1345ea41ec138874340b7" - }, - "source": [ - "### Prepare Test and Train Data" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "_uuid": "4eeb7af8dcf02c4ef5ca744c8305c51a2f5cedef" - }, - "outputs": [], - "source": [ - "train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42)\n", - "train_df = train_df.reset_index(drop=True)\n", - "validate_df = validate_df.reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "_uuid": "b84836337441705eda9d2e655665ffa14d9feead" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEI1JREFUeJzt3W+MpWV5x/HvT1bwX2X5MxC6u3RpWf+1iUgnhNbEtKxtBRuXNJJgTNnQTaYvsNXSpNK+UZu+gKQpLUlDuhHtYi2KVLMbS61kgTRNAzogRRHtjlTZ6VJ2FFirSBW9+mLuLePusPPM7pk5eO/3k0ye57me65xzneTkN0/uOWdOqgpJUr9eNO4BJEkry6CXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdW7NuAcAOP3002vjxo3jHkOSfqLcd99936yqiaX6XhBBv3HjRqanp8c9hiT9REnyjSF9Lt1IUucMeknqnEEvSZ0z6CWpcwa9JHVuUNAn+YMkDyX5UpJbkrwkyTlJ7k2yJ8nHk5zYek9qxzPt/MaVfAKSpCNbMuiTrAN+H5isql8ATgAuB64Drq+qTcCTwLZ2k23Ak1V1LnB965MkjcnQpZs1wEuTrAFeBjwGXATc1s7vAC5t+1vaMe385iQZzbiSpOVa8gNTVfVfSf4ceBT4HvBZ4D7gqap6trXNAuva/jpgb7vts0kOAKcB3xzx7Ktu4zX/OO4RuvL1a9867hGk48KSQZ/kFOav0s8BngI+AVy8SOvBbxlf7Or9sG8gTzIFTAGcffbZA8eVtKj3nzzuCfry/gPjnmCkhizdvBn4z6qaq6ofAJ8EfhlY25ZyANYD+9r+LLABoJ0/GXji0Dutqu1VNVlVkxMTS/6rBknSURoS9I8CFyZ5WVtr3wx8GbgLeHvr2QrsbPu72jHt/J1VddgVvSRpdSwZ9FV1L/N/VL0f+GK7zXbgvcDVSWaYX4O/qd3kJuC0Vr8auGYF5pYkDTTov1dW1fuA9x1SfgS4YJHeZ4DLjn00SdIo+MlYSeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6tySQZ/k1UkeWPDz7STvSXJqkjuS7GnbU1p/ktyQZCbJg0nOX/mnIUl6PkO+M/arVXVeVZ0H/CLwNPAp5r8LdndVbQJ289x3w14MbGo/U8CNKzG4JGmY5S7dbAa+VlXfALYAO1p9B3Bp298C3Fzz7gHWJjlrJNNKkpZtuUF/OXBL2z+zqh4DaNszWn0dsHfBbWZbTZI0BoODPsmJwNuATyzVukitFrm/qSTTSabn5uaGjiFJWqblXNFfDNxfVY+348cPLsm07f5WnwU2LLjdemDfoXdWVdurarKqJicmJpY/uSRpkOUE/Tt4btkGYBewte1vBXYuqF/R3n1zIXDg4BKPJGn1rRnSlORlwK8Bv7ugfC1wa5JtwKPAZa1+O3AJMMP8O3SuHNm0kqRlGxT0VfU0cNohtW8x/y6cQ3sLuGok00mSjpmfjJWkzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TODQr6JGuT3JbkK0keTvJLSU5NckeSPW17SutNkhuSzCR5MMn5K/sUJElHMvSK/q+Az1TVa4DXAw8D1wC7q2oTsLsdA1wMbGo/U8CNI51YkrQsSwZ9klcCbwJuAqiq71fVU8AWYEdr2wFc2va3ADfXvHuAtUnOGvnkkqRBhlzR/ywwB3w4yReSfDDJy4Ezq+oxgLY9o/WvA/YuuP1sq/2YJFNJppNMz83NHdOTkCQ9vyFBvwY4H7ixqt4AfJfnlmkWk0VqdVihantVTVbV5MTExKBhJUnLNyToZ4HZqrq3Hd/GfPA/fnBJpm33L+jfsOD264F9oxlXkrRcSwZ9Vf03sDfJq1tpM/BlYBewtdW2Ajvb/i7givbumwuBAweXeCRJq2/NwL7fAz6a5ETgEeBK5n9J3JpkG/AocFnrvR24BJgBnm69kqQxGRT0VfUAMLnIqc2L9BZw1THOJUkaET8ZK0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0bFPRJvp7ki0keSDLdaqcmuSPJnrY9pdWT5IYkM0keTHL+Sj4BSdKRLeeK/ler6ryqOviVgtcAu6tqE7C7HQNcDGxqP1PAjaMaVpK0fMeydLMF2NH2dwCXLqjfXPPuAdYmOesYHkeSdAyGBn0Bn01yX5KpVjuzqh4DaNszWn0dsHfBbWdb7cckmUoynWR6bm7u6KaXJC1pzcC+N1bVviRnAHck+coRerNIrQ4rVG0HtgNMTk4edl6SNBqDruiral/b7gc+BVwAPH5wSaZt97f2WWDDgpuvB/aNamBJ0vIsGfRJXp7kpw7uA78OfAnYBWxtbVuBnW1/F3BFe/fNhcCBg0s8kqTVN2Tp5kzgU0kO9v99VX0myeeBW5NsAx4FLmv9twOXADPA08CVI59akjTYkkFfVY8Ar1+k/i1g8yL1Aq4ayXSSpGPmJ2MlqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpc4ODPskJSb6Q5NPt+Jwk9ybZk+TjSU5s9ZPa8Uw7v3FlRpckDbGcK/p3Aw8vOL4OuL6qNgFPAttafRvwZFWdC1zf+iRJYzIo6JOsB94KfLAdB7gIuK217AAubftb2jHt/ObWL0kag6FX9H8J/BHwo3Z8GvBUVT3bjmeBdW1/HbAXoJ0/0Pp/TJKpJNNJpufm5o5yfEnSUpYM+iS/CeyvqvsWlhdprQHnnitUba+qyaqanJiYGDSsJGn51gzoeSPwtiSXAC8BXsn8Ff7aJGvaVft6YF/rnwU2ALNJ1gAnA0+MfHJJ0iBLXtFX1R9X1fqq2ghcDtxZVe8E7gLe3tq2Ajvb/q52TDt/Z1UddkUvSVodx/I++vcCVyeZYX4N/qZWvwk4rdWvBq45thElScdiyNLN/6uqu4G72/4jwAWL9DwDXDaC2SRJI+AnYyWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzSwZ9kpck+VySf0/yUJIPtPo5Se5NsifJx5Oc2OonteOZdn7jyj4FSdKRDLmi/1/goqp6PXAe8JYkFwLXAddX1SbgSWBb698GPFlV5wLXtz5J0pgsGfQ17zvt8MXtp4CLgNtafQdwadvf0o5p5zcnycgmliQty6A1+iQnJHkA2A/cAXwNeKqqnm0ts8C6tr8O2AvQzh8ATlvkPqeSTCeZnpubO7ZnIUl6XoOCvqp+WFXnAeuBC4DXLtbWtotdvddhhartVTVZVZMTExND55UkLdOy3nVTVU8BdwMXAmuTrGmn1gP72v4ssAGgnT8ZeGIUw0qSlm/Iu24mkqxt+y8F3gw8DNwFvL21bQV2tv1d7Zh2/s6qOuyKXpK0OtYs3cJZwI4kJzD/i+HWqvp0ki8DH0vyZ8AXgJta/03AR5LMMH8lf/kKzC1JGmjJoK+qB4E3LFJ/hPn1+kPrzwCXjWQ6SdIx85OxktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TODfkqwQ1J7krycJKHkry71U9NckeSPW17SqsnyQ1JZpI8mOT8lX4SkqTnN+SK/lngD6vqtcx/KfhVSV4HXAPsrqpNwO52DHAxsKn9TAE3jnxqSdJgSwZ9VT1WVfe3/f9h/ovB1wFbgB2tbQdwadvfAtxc8+4B1iY5a+STS5IGWdYafZKNzH9/7L3AmVX1GMz/MgDOaG3rgL0LbjbbapKkMRgc9EleAfwD8J6q+vaRWhep1SL3N5VkOsn03Nzc0DEkScs0KOiTvJj5kP9oVX2ylR8/uCTTtvtbfRbYsODm64F9h95nVW2vqsmqmpyYmDja+SVJSxjyrpsANwEPV9VfLDi1C9ja9rcCOxfUr2jvvrkQOHBwiUeStPrWDOh5I/DbwBeTPNBqfwJcC9yaZBvwKHBZO3c7cAkwAzwNXDnSiSVJy7Jk0FfVv7L4ujvA5kX6C7jqGOeSJI2In4yVpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzg35ztgPJdmf5EsLaqcmuSPJnrY9pdWT5IYkM0keTHL+Sg4vSVrakCv6vwXeckjtGmB3VW0CdrdjgIuBTe1nCrhxNGNKko7WkkFfVf8CPHFIeQuwo+3vAC5dUL+55t0DrE1y1qiGlSQt39Gu0Z9ZVY8BtO0Zrb4O2Lugb7bVJEljMuo/xmaRWi3amEwlmU4yPTc3N+IxJEkHHW3QP35wSaZt97f6LLBhQd96YN9id1BV26tqsqomJyYmjnIMSdJSjjbodwFb2/5WYOeC+hXt3TcXAgcOLvFIksZjzVINSW4BfgU4Pcks8D7gWuDWJNuAR4HLWvvtwCXADPA0cOUKzCxJWoYlg76q3vE8pzYv0lvAVcc6lCRpdPxkrCR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHVuRYI+yVuSfDXJTJJrVuIxJEnDjDzok5wA/DVwMfA64B1JXjfqx5EkDbMSV/QXADNV9UhVfR/4GLBlBR5HkjTASgT9OmDvguPZVpMkjcGaFbjPLFKrw5qSKWCqHX4nyVdXYJbj1enAN8c9xFJy3bgn0Bj8RLw2+cBiMfaC9DNDmlYi6GeBDQuO1wP7Dm2qqu3A9hV4/ONekumqmhz3HNKhfG2Ox0os3Xwe2JTknCQnApcDu1bgcSRJA4z8ir6qnk3yLuCfgROAD1XVQ6N+HEnSMCuxdENV3Q7cvhL3rUFcEtMLla/NMUjVYX8nlSR1xH+BIEmdM+glqXMGvSR1bkX+GKvVleS3BrQ90/5ILq2aJFcPaPtuVf3Nig9zHPOPsR1I8i1gJ4t/KvmgN1XVz63SSBIASR4DbuTIr813VtWrVmmk45JX9H34p6r6nSM1JPm71RpGWuAjVfWnR2pI8vLVGuZ45RW9JHXOK/pOJHkN8/8Oeh3z/0RuH7Crqh4e62DS80hyZVV9eNxzHA98100HkryX+f/7H+BzzP+/oQC3+A1fegH7wLgHOF64dNOBJP8B/HxV/eCQ+onAQ1W1aTyT6XiX5MHnOwW8qqpOWs15jlcu3fThR8BPA984pH5WOyeNy5nAbwBPHlIP8G+rP87xyaDvw3uA3Un28Ny3e50NnAu8a2xTSfBp4BVV9cChJ5LcvfrjHJ9cuulEkhcx/32965i/WpoFPl9VPxzrYJLGzqDvQJL7q+r8Y+2RRs3X5guDQd+BJN8D9hypBTi5qs5epZEkwNfmC4Vr9H14zYAel3A0Dr42XwC8opekzvmBKUnqnEEvSZ0z6CWpcwa9JHXOoJekzv0ffVs2n6U8p1IAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "train_df['category'] = train_df['category'].astype('str');\n", - "train_df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "_uuid": "19cf03f9a3c39532d6e2d06bd30be49a5afd9d57" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADvdJREFUeJzt3XGsnXddx/H3hw1IBGXD3i21W+2YHTiMFrxZSAhkOpVtGgYk4BoCFRYvJFsCgT8YmMggIUFlkBB1WLK6oVA2HXOLFmVpgIXogFuopbOMdXOwS5v2MgigQ7Td1z/uc+Fwub339D7n3Lv9+n4lJ+c53+f3nOfb5OSTp7/7nPNLVSFJateT1roBSdJ4GfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxp2+1g0ArFu3rjZt2rTWbUjSE8qePXu+VVUTy417XAT9pk2bmJ6eXus2JOkJJcnXhxnn1I0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklq3LJBn+TcJJ9OciDJvUne1NWfmeSuJPd3z2d29ST5YJKDSfYlef64/xGSpBMb5or+GPDWqvpl4AXA1UkuBK4FdlfVZmB39xrgMmBz95gCbhh515KkoS37hamqOgwc7ra/n+QAsAG4Ari4G3Yz8BngbV39IzW3GO09Sc5Isr57nye0Tdf+01q30JSH3vu7a92CdEo4qTn6JJuA5wGfB86eD+/u+axu2Abg4YHDZrrawveaSjKdZHp2dvbkO5ckDWXooE/ydOA24M1V9b2lhi5Sq58qVG2vqsmqmpyYWPanGiRJKzTUb90keTJzIf/RqvpEVz4yPyWTZD1wtKvPAOcOHH4OcGhUDUs6geuesdYdtOO67651ByM1zF03AW4EDlTV+wd23Qls67a3AXcM1F/b3X3zAuC7LczPS9IT1TBX9C8EXgN8JcnervYO4L3ArUmuAr4BvLLbtwu4HDgIPAq8bqQdS5JOyjB33XyOxefdAS5ZZHwBV/fsS5I0In4zVpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekho3zJqxO5IcTbJ/oHZLkr3d46H5JQaTbEryg4F9Hxpn85Kk5Q2zZuxNwJ8DH5kvVNXvz28nuR4YXDL9garaMqoGJUn9DLNm7N1JNi22L0mAVwG/Odq2JEmj0neO/kXAkaq6f6B2XpIvJ/lskhed6MAkU0mmk0zPzs72bEOSdCJ9g34rsHPg9WFgY1U9D3gL8LEkP7fYgVW1vaomq2pyYmKiZxuSpBNZcdAnOR14BXDLfK2qflhVj3Tbe4AHgAv6NilJWrk+V/S/BXy1qmbmC0kmkpzWbT8L2Aw82K9FSVIfw9xeuRP4N+DZSWaSXNXtupKfnLYBeDGwL8m/A38PvLGqvj3KhiVJJ2eYu262nqD+B4vUbgNu69+WJGlU/GasJDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW6YpQR3JDmaZP9A7bok30yyt3tcPrDv7UkOJrkvyUvG1bgkaTjDXNHfBFy6SP0DVbWle+wCSHIhc2vJPrc75i/nFwuXJK2NZYO+qu4Ghl3g+wrg41X1w6r6T+AgcFGP/iRJPfWZo78myb5uaufMrrYBeHhgzExX+ylJppJMJ5menZ3t0YYkaSkrDfobgPOBLcBh4PqunkXG1mJvUFXbq2qyqiYnJiZW2IYkaTkrCvqqOlJVx6vqMeDD/Hh6ZgY4d2DoOcChfi1KkvpYUdAnWT/w8uXA/B05dwJXJnlqkvOAzcAX+rUoSerj9OUGJNkJXAysSzIDvBO4OMkW5qZlHgLeAFBV9ya5FfgP4BhwdVUdH0/rkqRhLBv0VbV1kfKNS4x/D/CePk1JkkbHb8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhq3bNAn2ZHkaJL9A7U/S/LVJPuS3J7kjK6+KckPkuztHh8aZ/OSpOUNc0V/E3DpgtpdwK9U1a8CXwPePrDvgara0j3eOJo2JUkrtWzQV9XdwLcX1D5VVce6l/cA54yhN0nSCIxijv71wCcHXp+X5MtJPpvkRSN4f0lSD8suDr6UJH8EHAM+2pUOAxur6pEkvw78Q5LnVtX3Fjl2CpgC2LhxY582JElLWPEVfZJtwO8Br66qAqiqH1bVI932HuAB4ILFjq+q7VU1WVWTExMTK21DkrSMFQV9kkuBtwEvrapHB+oTSU7rtp8FbAYeHEWjkqSVWXbqJslO4GJgXZIZ4J3M3WXzVOCuJAD3dHfYvBh4d5JjwHHgjVX17UXfWJK0KpYN+qraukj5xhOMvQ24rW9TkqTR8ZuxktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1Lihgj7JjiRHk+wfqD0zyV1J7u+ez+zqSfLBJAeT7Evy/HE1L0la3rBX9DcBly6oXQvsrqrNwO7uNcBlzC0KvhmYAm7o36YkaaWGCvqquhtYuMj3FcDN3fbNwMsG6h+pOfcAZyRZP4pmJUknr88c/dlVdRigez6rq28AHh4YN9PVJElrYBx/jM0itfqpQclUkukk07Ozs2NoQ5IE/YL+yPyUTPd8tKvPAOcOjDsHOLTw4KraXlWTVTU5MTHRow1J0lL6BP2dwLZuextwx0D9td3dNy8Avjs/xSNJWn2nDzMoyU7gYmBdkhngncB7gVuTXAV8A3hlN3wXcDlwEHgUeN2Ie5YknYShgr6qtp5g1yWLjC3g6j5NSZJGx2/GSlLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOGWmFqMUmeDdwyUHoW8MfAGcAfArNd/R1VtWvFHUqSellx0FfVfcAWgCSnAd8EbmdujdgPVNX7RtKhJKmXUU3dXAI8UFVfH9H7SZJGZFRBfyWwc+D1NUn2JdmR5MzFDkgylWQ6yfTs7OxiQyRJI9A76JM8BXgp8Hdd6QbgfOamdQ4D1y92XFVtr6rJqpqcmJjo24Yk6QRGcUV/GfClqjoCUFVHqup4VT0GfBi4aATnkCSt0CiCfisD0zZJ1g/sezmwfwTnkCSt0IrvugFI8jPAbwNvGCj/aZItQAEPLdgnSVplvYK+qh4Ffn5B7TW9OpIkjZTfjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG9VphCiDJQ8D3gePAsaqaTPJM4BZgE3PLCb6qqr7T91ySpJM3qiv636iqLVU12b2+FthdVZuB3d1rSdIaGNfUzRXAzd32zcDLxnQeSdIyRhH0BXwqyZ4kU13t7Ko6DNA9n7XwoCRTSaaTTM/Ozo6gDUnSYnrP0QMvrKpDSc4C7kry1WEOqqrtwHaAycnJGkEfkqRF9L6ir6pD3fNR4HbgIuBIkvUA3fPRvueRJK1Mr6BP8rQkPzu/DfwOsB+4E9jWDdsG3NHnPJKkles7dXM2cHuS+ff6WFX9c5IvArcmuQr4BvDKnueRJK1Qr6CvqgeBX1uk/ghwSZ/3liSNht+MlaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1bsVBn+TcJJ9OciDJvUne1NWvS/LNJHu7x+Wja1eSdLL6rDB1DHhrVX2pWzd2T5K7un0fqKr39W9PktTXioO+qg4Dh7vt7yc5AGwYVWOSpNEYyRx9kk3A84DPd6VrkuxLsiPJmaM4hyRpZXoHfZKnA7cBb66q7wE3AOcDW5i74r/+BMdNJZlOMj07O9u3DUnSCfQK+iRPZi7kP1pVnwCoqiNVdbyqHgM+DFy02LFVtb2qJqtqcmJiok8bkqQl9LnrJsCNwIGqev9Aff3AsJcD+1feniSprz533bwQeA3wlSR7u9o7gK1JtgAFPAS8oVeHkqRe+tx18zkgi+zatfJ2JEmj5jdjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXFjC/oklya5L8nBJNeO6zySpKWNJeiTnAb8BXAZcCFz68heOI5zSZKWNq4r+ouAg1X1YFX9L/Bx4IoxnUuStIRxBf0G4OGB1zNdTZK0yk4f0/tmkVr9xIBkCpjqXv5XkvvG1MupaB3wrbVuYjn5k7XuQGvgCfHZ5F2LRdjj0i8OM2hcQT8DnDvw+hzg0OCAqtoObB/T+U9pSaaranKt+5AW8rO5NsY1dfNFYHOS85I8BbgSuHNM55IkLWEsV/RVdSzJNcC/AKcBO6rq3nGcS5K0tHFN3VBVu4Bd43p/LckpMT1e+dlcA6mq5UdJkp6w/AkESWqcQS9JjTPoJalxY/tjrFZPkrcMMey/q+qvxt6MNCDJK4YY9j/dzRsaE/8Y24Akh4EbWPwbyfNeXVUXrFJLEgBJHgHuYOnP5our6vxVaumU5BV9G/6mqt691IAkT1utZqQBn6yq1y81IMnfrlYzpyqv6CWpcV7RNy7J66rqr9e6D526kjyHuZ8p38DcjxseAu6sqgNr2tgpxLtu2veutW5Ap64kb2NuPYoAX2Dud7AC7HTludXj1E0Dkuw70S7ggqp66mr2I81L8jXguVX1fwvqTwHurarNa9PZqcWpmzacDbwE+M6CeoB/Xf12pB95DPgF4OsL6uu7fVoFBn0b/hF4elXtXbgjyWdWvx3pR94M7E5yPz9edW4j8EvANWvW1SnGqRtJY5XkScytI72Buf9lzgBfrKrja9rYKcSgb0CSL1XV8/uOkUbNz+bjg0HfgCQ/AO5fagjwjKrauEotSYCfzccL5+jb8JwhxvjfZK0FP5uPA17RS1Lj/MKUJDXOoJekxhn0ktQ4g16SGmfQS1Lj/h+chsMCJuKlVAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "validate_df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "_uuid": "ae3dec0361f0443132d0309d3b883ee80070cf9f" - }, - "outputs": [], - "source": [ - "total_train = train_df.shape[0]\n", - "total_validate = validate_df.shape[0]\n", - "batch_size=15" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "ff760be9104f7d9492467b8d9d3405011aa77d11" - }, - "source": [ - "# Traning Generator" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "_uuid": "4d1c7818703a8a4bac5c036fdea45972aa9e5e9e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 1600 images belonging to 2 classes.\n" - ] - } - ], - "source": [ - "train_datagen = ImageDataGenerator(\n", - " rotation_range=15,\n", - " rescale=1./255,\n", - " shear_range=0.1,\n", - " zoom_range=0.2,\n", - " horizontal_flip=True,\n", - " width_shift_range=0.1,\n", - " height_shift_range=0.1\n", - ")\n", - "\n", - "train_generator = train_datagen.flow_from_dataframe(\n", - " train_df, \n", - " DATA_PATH + \"/cats_n_dogs/\", \n", - " x_col = 'filename',\n", - " y_col = 'category',\n", - " target_size = IMAGE_SIZE,\n", - " class_mode = 'binary',\n", - " batch_size = batch_size\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "859c7b2857939c19fd2e3bb32839c9f7deb5aa3f" - }, - "source": [ - "### Validation Generator" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "_uuid": "7925e16bcacc89f4484fb6fe47e54d6420af732e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 400 images belonging to 2 classes.\n" - ] - } - ], - "source": [ - "validation_datagen = ImageDataGenerator(rescale=1./255)\n", - "validation_generator = validation_datagen.flow_from_dataframe(\n", - " validate_df, \n", - " DATA_PATH + \"/cats_n_dogs/\", \n", - " x_col = 'filename',\n", - " y_col = 'category',\n", - " target_size = IMAGE_SIZE,\n", - " class_mode = 'binary',\n", - " batch_size = batch_size\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "6e17fc1f002fedd60febb78fee5e81770640b909" - }, - "source": [ - "# See how our generator work" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "_uuid": "4252cce168ab65f88e44a8ebc2672607bc852af4" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 1 images belonging to 1 classes.\n" - ] - } - ], - "source": [ - "example_df = train_df.sample(n=1).reset_index(drop=True)\n", - "\n", - "example_generator = train_datagen.flow_from_dataframe(\n", - " example_df, \n", - " DATA_PATH + \"/cats_n_dogs/\", \n", - " x_col='filename',\n", - " y_col='category',\n", - " target_size=IMAGE_SIZE,\n", - " class_mode='categorical'\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "_uuid": "23d923dba747f8b47dc75569244cecc6f70df321" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAANYCAYAAAAyjaCCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvUusNUuW3/VbEZGZe+/z+h63blV1uy0DagMyAiEQHjEBITFjCp5ZMh4xY4IYMWKEhBAWAw+QQEj0kFEjHmIAErJkbKmRjUXTbtOu6nrc53e+c/YjMyNiMVgRkbnPd777KOqq7627V9W53zl7586MzB2xYq3/+q+1RFW5yEUucpGLXOQiF7nIRS7yrrg/6wFc5CIXuchFLnKRi1zkIt9WuRjLF7nIRS5ykYtc5CIXuch75GIsX+QiF7nIRS5ykYtc5CLvkYuxfJGLXOQiF7nIRS5ykYu8Ry7G8kUucpGLXOQiF7nIRS7yHrkYyxe5yEUucpGLXOQiF7nIe+QbM5ZF5N8Ukf9bRP5IRP6Db+o6F7nIRb67ctETF7nIRb5MLnriIn/WIt9EnWUR8cAfAv8G8FPgbwP/jqr+X7/2i13kIhf5TspFT1zkIhf5MrnoiYt8G+SbQpb/FeCPVPWPVXUCfg/4t76ha13kIhf5bspFT1zkIhf5MrnoiYv8mUv4hs7728BPVn//FPjL7zv45d2N/tYPfwAICjjvSTkBIOJB4P7+LY/7AzknQEAELcdzho4vvwsgIjgniEh5W9sRUv8tv4ja+VQVVQUtv5dPCII4aa+fifCMCIh75xARnnlNbOxnpz2/hj55Rdo16iPQ9ija/Z4NTHkaR9B2xHJ2OTtIqN9LPbcTgZzoO5s+t9dX7DY9XoTsA9r1BB/suJTIKULKaPlONWVcfeZiY1XN5JzBCc45tLyfc+ap/MEf/qNPVPUH77xxke+afC098frFnf75H3949pquflG0zCVIKbc1LIBmhZzbulWUnBMpZ7x3hODxwSM+cBpHfvnxJ2jBElQcNgvLilNbK7bEbAWJTWQ7/jn9wHtUBHbs8l5Zw0UdiNi5n65cQc6vIfXVJ8/lfQNYKUFZX311Tl3pI+c8IufYimoGBFfGmDWTUmqXemcMCsiynoN3/PCHP6QLHs3ZzpHzs/q8vqSq5PJtqKrpGGCeZ46HAyllBMgp8/Hb/UVP/GbIr6YnnNi89X616cqzayPFGZLpAoDxeAAgzjObzYasMMfI4Xji8XBkjhmcf36dASJads6zF81m0fWc/up6wmRl34iUtatVC53ZFpoV1bwsJzk/t6wuVtfw0x/qNZ4ZVNMbK6XzroWx/mg9zzLes4NWH612GKzWfvlD2099XZudJkj7u+8CH7z+gKHvFr2mRW/rctk/+Ad/+JX0xDdlLD/3fZ+bYCJ/HfjrAD/+8AP+2//8PwaBhLC9uWF/Gu240EPo+Vv/x9/hf/yf/xc+e3NvBnDoOMkGVSWleWVUZVwZgBOlD57tZsPQdYgoKU7twXmpxrQtEK8BSY55nokxtp+6ATjnGIaBlBIppXbN9Tlss64bMmi4ArENxTnBi+CcrV0HzWgMzgG5bMTlgWnZeIqlmoB0/gxxziHiSGgZq01D5+1153wbS1YlN4PBlnL0iiMjOeHK9ZxmnCqoQ9WjeFQ65jkCsPEBpiM/fnENwL/6L/8L/OV//p/hg5sNU79l/+d+lw9fv+J6u4O3Dxw/+5T89oH0+AjA/PiWoIk+eLwTus4xp5n96RH1sLu7gaK0DuPpHYP5B//6X/mTZ+bXRb578rX0xO/86EP+1//mb5CfbgLLsWx314R+w+EYOYwzGYeTAApxnMgH2wRdnJiOj3iJZCZ+8pN/xKsPf8D1b/2Yv/0Hf5//6vf+O6awA2ByG6Yk4ByCIhoJJLwkNEZwDj9sEN8DEJOS5sxT99a12zvfSLMmpBjM1ckVEeYp0XUdzkvTQfWhuaeGZdVl4nHeN32kwJzmspmA1NcV00vOEULX1tg8z01/xRjJxYjd7W7puw4RhxZPNsWIc0Lf9wTn2R/27B8fi7eQcSKEEPDetwegempgw49/9AP++l/7q/zog9dM4wE0EccjOS16T1Fy2RiTKjnBMT+gmklzoivn/tlPf8rf/4O/x+HhEY2J0+HEf/Hf/62LnvjNkK+nJ378If/b7/0NfNfT7a7wu2vwnX0oK3PKbQ4DMEfG/SM6n+iDcNw/8rM//iMAxv0jP/rRD9F+w0dv3vK3/s7/yf/+d/8eH709IZsbThFydZIBhyKaCE7pnCIkyGZYSz8Anli2szgnc+Kf1RPAmYte7UlzBr2Yg1/XeUq2FkJZD6qZeZqZx5EYbd/2QQjeN7sjeEcIZgL2XWDoO/qhZ+h6+q6sW++L3nvW/S26wtbnAnw9cewFs0VkATmrlVZBuJwzKeV2L3PKpJyJKRNjImVIOdvrKRGTkrO2MWSJqMw458g5Mx72fPj6BX/tr/5V/tm/+E+RJ7MnSZHOOzSm8hyED//Ff+0r6Ylvylj+KfA7q7//HPCz9QGq+jeBvwnwl373n1yeNoYKVAUbc8YDr1+9ogtd/SyiGZEF8z07N4ujknNGm7El7xizUs9X0JuKVMCC6qylbh4N8XkOQVqj2JpB/GpsCrp4ak/xIhVWBvPaa3xXY1QPS2RB0Ytf1V5/bmzrMUsdjggNzn1nYdSNvExsFC+OsRjPbx8fmWIEEcJ8MqM9Z7KqGe0+gHdIMYDFeXL5bC6GuysLUlXJKeHKsU5cQ5Iu8hsnX0tP/Ev/3D+tw6YviIk5flVh2rp0be31fY/rBotM4chZkast6Xpr550nBnmN5JG3n3zEbrjmdIq4KfPxJ58yxUQORR+dL9kzUc32ZlayW5T3++Vd1FREzja/6tD63iGuGMVrh/HJwrZ7zhXSRnMkl00UZ2OTunhTalvzovPC6uaKzjq/ArbqYzGW67gzznkzDIIiOhNcRnAInqcSvCB0LYr24vaWznucMzAhpYxzrulgzUrWcu+rZ+pEUBzql9dyTM2JSJqf1X0X+c7K19MTf+kvqveK5pk8HXHikN4cX3EdfRig6y3qq5AfHwihJ6nyeP8Zv/jpT9jvzane9T3zHOkGc/ycK/N/ZSC39S6rSPdzOkD1y2Djds6zINDKIa7rIzjXDOVpmjgejwwhsOm7cp+gOSEoXbDjumIQd94zDB1D3xPKPhu8ow+B0JnBHZxHnCwAXUNulzEudoG96r3DeQ+qDdAA2+M1J4qqJqsjayBn0yoGeKYC9BVjOZuTnJIZzCmbvk8KKekTlSBUs+rp444xvvN9/aryTRnLfxv4XRH5J4A/Bf5t4K98lQ9aCC01Y7mima9evWph/yqu+Flro9Y8xpUSVW0/fhUqfU6Uc0P4LBzBYpzWSfrVJAN+oTE884XWf79MwX/RyKFM2rJvrl+vn33W6zOs7MnR9U0jutRwUf28qoLzjPMMwNuHPdOcDKmaJ2SeGirlnMcFT3LmoQI470jTeYjFUHJPJpJTxrXwrzuH0y/ymyRfS0+ICH3vbQ5mJasvyExxeENH2O5QCbgZfFI0Gy3DOUcfFscr5gmXZkgzoplt1zOFLfenjn/8i7cFiarrPlFVpS1htYjQmVMrywLSZ5zSJ/eiWZsPLfV/Rdc450CVvu9QTUzj1GhpqiBeQBwe7H5Wa6htZuX4usF47/HeN4c0ZSXFGUUMna0bnkCMMzElnPPtc96v47v1ghnvHMErISh3N1uuBm+OCYYmee8anSVrZp6VVAz/u7tbuq4zIxfT1T6Edv6sCjlBFuZooIdKbsi0EyEXmG6e5hZizfl5oOAi31n5evaEVBAsk1NCc8JVZ9PVA2RBf1bY7Xqvr1J/d8VAbUDUF8yxXAxG0UI/VHA+g1tHxL6a6bayxS0S5APBmXMNtsZ9MVKlGKjBBXwIyAY6HxARhqFn6Du8d2yGjk3fN8d0RWot2kwNAFDTmA0AbMevnrUswKIrDoPI8lxFnyNnLM9Wi1FckWVDkk1v5WzPMSuGqSs4FxAnjRYmzqEyk2VsMF+aRmJKjON4/l1mRfxCxXkXGHi/fCPGsqpGEfn3gP8B8MB/qap//73Hr38RyDkRuho2sbDDyxd33Nzc0H3yCfMcC88vIxJ436xVlSWMV0MhTxeEnCPLrL7499wbwNn7C8L77mdE8zNYUnE+V2jVM3Y0ZwivSAvVnj0zqqFdw7fra+iz411fURSy1GuVdwrvU86Orfdnz1OcY5onAO4f95ymmTlluoYuF5qKd7iKLBdKiDhvaJ0uBjgieOeIqfKUFwV1kd9M+bp6ooqIIF7OspNVFbw3xe3ADYHOdeSYyXMiZyyycaYcLYqR0ww5ElX52c9+xs9/+VGBZmrehOJFl/ChOzeOK7fv6YYgq3UlNsiz8VaKVAgBjxRDLzPPcwunUj9XN/uyMI1aojjNFiIVMX2IO/O6FWnXdcUQd87RdV0zmkMIDaHvvGc7DHa+tvFB19vmC5ArAhQjQuUsw7DpuNr2Rq/yDk2ZrEvIOyXlNHXMMTKNJ26vb+hCMCO4bKh+td4FhVR8f1cUpgMvvqELqXjS8zyRkqHLlf98kd8M+dp6QtXyZMSVYP+yBnQyB1k5gSpxijx89hn7h3vidOLnP/spf/LHf8jLQjG8+fO/vTiMXQAHc5xtbQiruO87YyZrRmoujgqSyr72TgT3HOCT1W9Vn0EFlCzaZPQpo0o0EGueFpTXebrO3uuDGctdF/A+4L0ZmlJoZTbgd8dPfXZfYNSv11mNiNWfSu2yCODyE5Mwz44YU0N+xzgTY0WizQZBzGYQF8jYa+IWo/zMfhdPSh3TNIHC4DboqBzfHkhjwhe+a04ZDfbdzHmGrxG1/qaQZVT194Hf/6bOf5GLXOS7Lxc9cZGLXOTL5KInLvJnLd+Ysfy1pSAFT2kYWjlrzvH61Sv+5Cc/bciy09zCAGen4hypzYU/qxUmWR13JiuUGRaEuf5dPaf1+19ap/oJzK8KT4ZRxvKuh7keV0OxnozdxqNniPny+vp85/e0eI7l+DVF5eyedMXrruFUBR+Yo6E6p3Hk7cMj0/ySrhPCdGJOkaQFzS9JApWGIc6BuEaNKaC/ec0JNKU2bHdBiC5SRYBQUMV8zgsUEUN8NcM8QZ6g3+B8jxMHrdJN4cpPR2Ka0PlEnGdSSmg38PjJR7x586Zx8+tlrQqOgibUecZsiYPeF5RjHYl5j0qQGrstkZkaNXHOEZxxd8dxZL/f03uP32XEyfOhwjIWh3GBQwj44PDOFa6erc2EsikUKOeNIlHjU957+t6z2WyavrV/V7rCOZBE1pmC9eIKfyR4R07Z0JpcUnaqnnJi4d/Vw0hZwHn8PBOnkevdjuC8VThSxXtDzdbUmvY4q35y4NSRC887Y99nismih/p8BZ2LfH9ENaNpIvger4rEyDzuARgfRw4PR8ajJb4dHg58+sknHI+POAefffYxx8cDP3j1ErB51XRNiYZO4whuKBER3t3MG0djvZ9mVHNZDyvsuO3R5+cose9n7u1c53nvGYYBgDwHQvnMZjPQF8pFpWH0XSCU6JvRyDIt60tZcZJrFMt0k68R4VUkvNoE9VjNxjVOOeODUdiOR4s8H04nYjb7zlS3oGpJy7Gs1eQcDGaOWhKy0bcyNZ/JSMqODJqMblL1BIrD4ZInHU3vdSFAipwOIylmunruotN+FbPiW2Isn08KXbG3vXOWLY7j1etXdF2AYzHeVobg+zjLtkG+n47wlD6x5i3X458aoc+d533nq8Zyy0aXp8ulfu7dF2sZrLPXnr3qcvy5gfzuZ995R9fvrJfo+ug1DWNxRiiLaJwjbx/3TDFy1feEeWSsNIyux4VgFIyWdORx3pKuvDPj22GZ/KiFSqrUkjbfRPOci3zHRMt/nCxzaU36P3utxi6xyiqa4XQiTbZppumRHGd0PBJPD+TpwJQz9/dv2O/3+M22mGF2kjr3nUAXulIO0biLTiGk3KrJzCEQs1VuqBSj9crScp52TsQ2ta7DOWfZ6/Nk3Gisqk/wi34LnStGpljlCBG8E4a+Y+gHhr7HlbBjQmwsRS/ZZhYQcSj2t20eiwHddV1LZrLPHEkVbNDFqRYUvJCzQLJwb84JTbnwFJ2BGe3uXfF3PKTE1XZL5z0526YaQjCuY7G4jZ5sPDFdPT0pXLMQPLECGVXfFKraRVt8f8U5x9V2A0kgRtL4wPHR5tinH93z6af37B8P5JzZP+x58/nnpBTZ7gYOh0czGgswVJOJax6COZP6hRPs/K1nkLz6zsIO+UJZlz1TFaMZ+cBut+P169fsdju8cxwf75kOD4AlOHvv8GJrDqGVvLT7yqXyzTpx2NaO864k6zl6nenmx3LOwRL4yl2dxpE5JlKp8DHPBiRsrm8QF9gfLafpMM5M0fKXENMJ3pVynBUwYAHTEIeKL0a1lfis41QysqoeVG6GLOBct7LbTO/EOJsjvy7h+2WE8/fIt8RYLlKJ80grH+RLdrh4eP3qpXkM2ATypYzKl/HTKrJs8n4Sf+Ut16z657jLa37y80juuViCXF6IR+0DPOEsr4zVwk+uZ1i/+9ydritf2LhsYzt3Ep57MnbWd33bWpWjHmP/rk+RdUl0HKfI/SrJL0wn9iXBT4sn54In1WoYhb+c07yMnwVp06yGLgPibNNel866yPdY9BxRPiOuOYGcVlGTinyYcUWOpGibZo4jLk5IOuF0wuvEMUY+/fhj5mmi313h63p01VhbNtGGHakhWSlmag3hWZM5hCKW5JMzrqypGr2qTnw9mS/l3lpZS2dlnvo+sN0MLcKSUsIXZMRhGeiquWzkhgK1JEGg7zfNGK7GMpW77D3iXEtGguo7u7O17rwiuoytIbeFP+1dQcwkImJJTKK1wJE03ZeztOhczpmbmxu89+RZraymd6WO/uq7rUiQL9GzPJviRFvlELCKAJozmvUSjfrei5xteJb4uuy0orQyZn3XcbXboZrZXW3pe0/ohbvbGwDiNPP27QPXfY8Wu2CeI7lfGbDSrtoAsRbp1dUuW/ZTtyQ7WAUdlWIIl7HVcasYvlouEES57gK3Vzte3Oz48Ad3/PAHd7y43dEHYUpX3J9OAHz+2ec8Pu4RvPF+kVJuDUQcY8qM07RgDVaf1tahOpw6JAvOZW46b5VqUNK8QAjjaWJOGdcJoevZXN3w8vUPGDY7pqzUDOakyuP+wJz1XHW7mndS0gvXunxtG/0Knm+1Z+bZKnO10r6lmsgSYf/q5/zWGMtn9AZoStN7T0oWbjRkuVt/yJAInhrM0kIKSildsjJy12bhU0A3kwni34ss17G2K30B6tneWxnLqnVivqvQ2+byRYT6dz5z/tzaLw2qfuLnPoPUWvm4RcHoGdpMMb4XdNmSF7SFY6d5tvJxcwJxhPlELhn1NVNXfGhINM6SC3Ksm6+Wlx1OPImlhrVXKx+XLiUxLkJdI09esF/sHxfAZ8CBKIpFpYgTaTw1B63VgNEMOSEkjvPM52/eMAydLYpiEwolwU+NIhZ1QlRxrUaq/ZML+nE4HHEu0IeOzgeCs4oPmrMl+Sh0nWMoZZ5C37O9vuLuhYV+37x5w9uPf1mSd2xj74vec8PAZugJpUKFdwYsCEZjsIoXroVXo/i2nkVKndViPDvnDFnOudR5LyFQEWvYEqNtYj5CO2N1QspN1+9CcmsIIqJFZ+TylO3cMXfN6b262hXd4JgmbfQRoBkfNuxiLKsZGU4EVaNrVEfBpkFpanKJQH3vRTVzfHxg/3Dg8f7AcT9xOti8G48JkmPrAs47Xmxv8B/+CBccm+3AHE9c3WzM6QM++uXP2d8/4ne3xN01Y7RIjXeOGGebj6suXoolzEcRslqVGQmeTsFlIcwJX47PwTMHozJpLMExxShZYj0ZOufoivXcB8fd9ZaXd1fc3Wx5dXPNzbZn23mcU06zJc5CKRM3bDgdx0ax2l1dIXge9wcOxyOn05IQiBTj1ZUynMmS6frO4bpA1nju4Jffc0N4F2ekyjmAV8vaLnL+uXWFigXkq3bH+jMiRstY7B1vDeXWa7+YP6fTiThHQqmk1sUOHzwpmjPwdRDmb42x/FQastz15DkSsFrLQ9/ji5LXwmFJrQ3J88ZrzufNOM4RYRrasyDL56jyU45yLR/3ZZSO5Y0aQnjXfNXVL8/Xcj3/xPu/2oW33GzlZ8b23FZiefTvGvDmJevZINfPoDY4GOe50TCyglPFT2MrH+cLsrxwlo3HnPJ64dHCMzHOzKMhgFYQ3cZ4wYu+36LAhDT0ZSl6SKEdFCTSW21lVNGCnqTTkTgeyMnmVSdK3wspO6MC+Y7D4cg0jVaKaKWwS+0kNCZiStQC+5Y3Ye+tV+m6hJsXR991Rm1wYgo3JYYO7q6Na/jiZsvLV7fcvnqFhI7PH+/4k81Sci3NMykVrnWt9CDQdR1DF5BWPi4bd1pWNVhrpC4vzT3OIIKC1NdITv0XMdTHSs8taBJy3iWs0R5U0eZdSEHdS1RMaxk7ayyQc2YYBpw3o96J0PUd8zyePTt5ulFKyYZXR+c8DiGXhgtWSs545hdg+fstKSmPR2VKPalzpE1qls7u1YZhc8UwbIyO5BxOHMFB74Wtd4hGxsd7AOJp4vNPPyFFz2HueDgkUnb0IswpWuR77dwBSKkApUoJtJjjmJOVQysHTmPmqAknVte494G+qzQqR3COTfB0JSLbe8fV1YbdbkM/9IVOVeJnet7Yw5zh1cDc+aKQ9tbiAqM1Ig1oyR9TLQ1B1Bxqt6xH3/VsemHYXbHZXhP6ge12R9cPBIUPXr2243zHm7f3PDweOB5PxHWDJbEombKKXGluuRWL5bQ+XvG4pQswNt6cXXMMxGWceE7jyGkaG+/aB38Wffs6+Q3fDmNZizFnsCsii7HcDa7UKVSGvuf161f8/KOPSaV+njUn8c8aqbYvGJ+g1VqGNlPkOdKQLAjqc0ZzDSG2rlT1Wu8zlOGd8nF2vA1w/ZH3VyOERjxqIeYVQaJugkLbSJfXKzr85HTNqZB34HUVM0MWh7kMVldJfujCWT4dedwfeNwfmWJkU9DludRL7Gr5uDq7nW2OPm8RyQV1U8Z5Yr8/cBxPhNGm5hUQhv4SWr2IJan1WzSXkmTZkj0APL7w82RBJJXW0GKaRtI0NSTSeyGIlaDbDA7pOj76k5/x5s3nQE3mXcKCFRlOKeIQgg90XaAXISA4zW0TvNleW41ijDO4JMgYr7cbeq6vBl7dWqOE66uOF7dXfHC7Ybfp+K0Xng9u/wJ/+vOPOZ4i6EDSGvURco6kOFs5JF1TtKQsMW3GdarUERG81IhvRjWRU/3UWvMsRrQrxqniz/VD5T2uOoyZq+5apK++YZtvGbsT8KbPw9CZgRxnQtetdC3NLTZ6o5Y25QVlWoEVqDJP5vxoTlTyyJrOcpHvn6gKmS2bm57tXeAqluRSwHUdfdjgfShOpRAENE7oPIFGJM9I1SuiBKecjnvup8zhsGeeJ/qSK7BO7BXnWkMc71wre1uPMGR2TS+wevHq1nP1iRVQ93TAlRJ2ztXOfUJMmXGaETLjODEWkMl7TwgduytPCEMpNdcTY0bzgXlO9nu7arL15+tnwflAVuE0zUbfcoKrvS5EGHyH7waub27YXd2AeKJaIxDxnpvrK8CSDa+utnzy6Wd89tln7PcHphRL4zHTQUpqXkTOajkSONYN3ap+cCUI7laUOKO7LABmhS9iSuZALN5Bcfi/vj3x7TCWn5Ga5FURXCO1e169siS/UzGWG//nDHdcaBhQQiOtBuCijOt771x7ZSwDZw/2abLgc0j2O0mAKxK9ff5ZCLl9kU/RlOf0/lOEum5Xy3XfMc+pd/4ODaP8t3KGlv1Ozo7RFWqTV/FwxZL8HvYHUgbXe640Efqe3ns0JdI0EcvG5lD6obe6t9PJNkO00DAsLDWd7NhhmBm6gU23fYdCc5HvmwjiQ9OfjeJUxVlSiEEVlm1dawEvyV82uZ2jOJ5GBThl5aOPPuJ4POBEiCk1DeJd3xSsd644uSVMGjwb39F7h6u14fvO1riCZMGLNVLpvKf3jlDOU5GfEIIZjE6IOfN4HDmdjmwHj8aZtTc7zZEk0PuBeZ5QrUZiNWA5+7f9VdarrX/7T1ZDi7LoKsrTvG6ARmsQpOnidc5H1lSSB7FwqIBz1cC1SkZZl+ONKpHph55+GAxl7oM5zeU2qk9tZJrFiM4pMU4jvmTop5yZinEQK5dS380nucj3S5wTttuBYbOj6zfE7Kg549bErESekNINT0nZkZ7ZNts0UksSc96/Y3Gs7YwaZcnZqrNI+TmLVBXpvIOhowsdfQj0viP4jt5bnk7nPUPfsy10rZvdjqtdz3bj6TtHVtgfR47HRMozx/HEoVSg6PqevhiyXRgQcUxz5Pj4wPE0YYnCfUNWUyp5SNnhQkff92w2A0GUh/tHc1Z9z26zAYpBLY5hs2W3u2az3RGzMu6PKAkvlhAIELqOmBKbvm/VOBbw7at9p2fOtNSa8Yu9Iyo4H+iH3ugskhGNxDkyjeOZPsiFw2xO9Vfv4/CtMZbPjbfl91wSWlQTguf161ctyc+OXcIO9d/nUIXKrykHvfPeuxUx3k3yW28S77vG80o6LwjQysBcr81qjDYvVNZJfu/K++bYmoO0Xvj63olpaP7Ts5dITMlq1zK6J/dXPd7QkRVO0wziraFMnPA1pCqCD4F+Z0iaHwb8PJIeHpCuoxt6NCf0KIgLFlIpBcrTmGBQfPCticNFvr+i4qGUYLIoyoLaqvPMsRQSEnN6p6SGPouDEPBach50MlQnG0L9OGfe3L9BNVsmuVjJJYBht2uJcVd+iyp4EYITOpFm0PmCuoRhaJVdrDKEGc593zOEwM1ux3bwbIeahFcQkYKezqWyQ8vIF2kG5G63ZZoiOSv7Q+FfG2BLEIcTSxJqWeZPE4uLiEBwjq4LqGorNZcLiivOgIqkjqTVQFhKTdVnLmrccPG1xbU5ICoZlQSSG51Ei5GuqgzDwPX1FZoT3g+l21n5asr5vbhWfMMy6WPhVdozT1NsRvI8TQ11/qIA3UW+RyLBe/1MAAAgAElEQVTAqomFveYsEq01CiEFYYaYIjGecHEixxEATROSZ+IIp+iZTkd8i9I4S/5dMvJAIabEHI3n77JVs/FYi+rgTG8A+NAh2w2h5DY4EVyJRjmsHGQ/dPTFWO6Gkuxe9tpjmojxRIoTKUUyGfU9ANN8wt103A1bQhgQEcbpkeNpZJpmwJ115UxPPAVZOalVnoPfql2VSktqcc4aPeXc8s5C5xmGnt1uw3Y7MI4npjiWE+R6tUYdC2JOMmLVM2olH18MZOco38H6OxScDG1sOc9oEuY4czgeVxSZxViuNt5XlW+JsVxQkUrFOPMCrOZyzBmP8ZZrskulYTjRVfrXOWpcp0Aum+L6mMa/rceteMs1Y3Itz1W/eB+6fPYZrRUxFmNPq5H67GR86uI+NaXPjeUleZGGHEsxbr8KDUOKYV6fTt3yzvnytfX1YjDXII53nnGOPB4OJAW8Y368R9/cM59OdOLwMTJUznJOiPe42xskJWtpK+bRWoehgK44mikla4FdeKgX+b6KkF2Ho1AAVshyWWZt1WSEJB66AUEJobNuknVjmzMxnphzIqlyzMLheMCJM0dVpLWTvd7tUFW2mwzeWmw7VYI4+uAJxalszN5sx9mIpdEZLOmmZxg6y7rvFsd2jomH/QHvlLf7PbF0+7LcgAXpHYYNyszHn3zC4XCy2sRe8F7IXaDvOrwX+ljpCZnsOiLubOk81W2N31hQeM3Z8kLEIxIKEmN6qLarztlQZYsK1ayCUkM1Y2FehTHWNrZWFz+jeO/Z7XY4XyKHNUJwtkHbvftSnzl5QTU0CgZOrIQfEOfZTPJ8KR33fRdxwrAd6Hcb2GzpcJBbGzybHEnbHFJV5BTJ8UQe97g0o/EIgNeJIBFJmTEGxtOJLhS6kWaIy1rHOUiZPM/EnBoFK4RA7z1D+elqTfOuI1ztSh3hUj8+adMZzi26w4b+BOSzV9ttPZ30lTKaUkIxekSthWzD9Y0iFULZ40t+kYoj5ZIj0A3M08w4KeJrlTK1vCMi6kdOhdZxfXPDNE1M09TAPu8d26Hjxe01aT7hNHGa5jPahK7oap0rpWbFGyW0OPzeFTBAChWj3Kerz0Y6+mTVkFJUkprTcjqdzuyGnK2/w1Nn4MvkW2EsVw9lLfUecjJ+8FwQhFevzpFlO3YxIxfj9Xz2VM5ybYRRDn7PeJZ2qU+R5adJfl/9JjPgFyP0mUtXcv1X+QLfN/L2vnCGGJunp805QJZFZsb1Osd9Saezr0VXvMblvlupF+85zROfPzwyxkjKPeP+ke7tG1y+hS5ATNYsAtAUEWzSGkVjJOfEPJ6YVPF9TygIoHcBnUHnwjt6D1J2kd98yShjjM2RdeIacprLDE1W2qWVdAMMOfKC6wdcSxnJpPlEwpNd4ITndDpx9+KOhDAmtR0EWx+5oCYhGALkMafSFSqYL4gKQE6xXNtb8pBfzuMKMipO2qa1P07s9xPeZbyHY0z4rmPoNlxdB5wLrYqEc56UTm0tp2StdHMujmXOdH3gypm+dPlECAPqe6IKh8nqouaii6ZpesfZX363UlOaM1FTcUgWBZWLg60Ic1ZEUguTVl2UFauSA8zFaD7NIzEnrq6v6JxtavX5rGXdqhuMvkXhbZIyLmj7jnOK9mxrJ+yLtfy9FSdSWj0rxNEM45qF5wN4c5ytpb01MdI0mrGcRkgRKUmtXjLBKb6s6ZzS0oq+zs1VHtHa6ljqI69Ht8xx26OLQ9ySdLU0AnGldGRH3xlanHJmLnSJnGem6ch4OjQ6lveemzuL3uaciXPm7eOBlPaklNnvD7x9+0icUwGmOpy3wYUSqZOFRsw0J2ZRbjY3jHnPpJCnGs1yIJEuWYGFzTCQUmKbEtM08fDwwP2bNwDc3Nxwd3fLpvO8urvFqfLZ/Z64YB1kEaNlYtxs8cFqLdsrIFKMYotynwW4nz7e1fNOuaL8CxgghWhu4OJ3DllmNWlgZfva5Oy6RpZ/cXfL7e0t/SefMs0ztSKGSL2Vd29e1TbSrBZ2rYlpNdSghXW/RpapRuT7DOqnvGTWCO+7nxHOk/yWBVX+lQU/fu7TxaVYbu8ZlChnXbqOlV1rtQU2zrauPrcQ4p8Js1R3tRjYmboLmXfeMkmd4zieeHP/luM4EfMG3wWObz6FOXF1d0vYDGiyxXD4/J794RGKJ6spkVFimpEusNnc0dUbjaWGq8pSeu4i30sRBE/tApXPigl6CbjQlTBgJibjEkiokHM6h1+0kouELJ7ZeWJOvLq5YoyKiwmCOWzbTc88J+ZUGha18dD0RsoLH1o0Q1K8F+Mj9j3eeXbbrXWs1EzOgmsWnSXkjeNEShMaenRM+LuB29uXwFJ/OMbMPL1lmuZiwK+QFWxzyGOmvykdUOkRcWiyikJ+HnHOMRM4TQn1gdD1LYveDOS80oWu0UFy1oJO2bjnZNn9FN0qrmbm1256VkJujNUYdsXxMIPeEpaUFGd7ZjzVudqoGIg5QrpSgSLSnAij6uVLct9FzLCqRl/p6vjUsF2srSVqs2BoC5pbG3T4ORmgM0922prToNKqQjkR8MJAwPkB74zKNYTApusYQmAIns4v1z6lCc3WqU4wdLXvLDmvDx1X222LpB+Oe6uTrJmUJo6nI6fjkZQiPji2YaDfbAEIoUdVub9/5LA/GdgoQtdvGIZAjNkiPGXsPgRcsJhdSok5jszRapffvbxFwmQIda72RdEX0ZUSsdoc+CrvW4XipPTP0ObDrCP5BiaUZ6JL1a0a/UeVqLk5yrHoq5gnxtNowGCa0TQxPHrePrxtZT2dc4gzXe3ErQvQfalcYLqLXOQiF7nIRS5ykYtc5D3y7UCWdRVtW2Vtw8JZrpnVOMfrV6/4f//xTxqyLJob3PCUkL5mPNROfrpAq+24MxEL4T5N7Kuoxxp5qa9/KZqxztpn4VfW8Va6Q0rWEUipvc9XIR554hA/QYnX4UfnHd51rabhHGdSqvULQZw7b/BSUCrgmdJxYK0wtaT4VJS63H/omXLm4XDg5x99xMvrnpvdlofPP+X+Z79g2G4I/SpRYbuh2/QcTyeOp4PVTC3tL71zSAiEGgKPmTxHKzsVVuO9yPdSFmR3TROiLA5vocXO2byJEXJn/HfJOC/GjwckJdw8gOyJWdkfj3Qh4EPAa0aStshJnCbmmOz8ashIzUMQLbqARQdUreIdbPqOYQgE37EdBqshHiPkyFhCvfN8JMcRcRkvioRCM3GeYdgg4jkcrdnAJ599zOP+UCriiZVpSuCDo+usXiti5bAAai2NigqP44TrB3wnbDcD0g2oC3z62VsA7h8ecN4xdB3eFZ6xWsTLe18qBa1yLwoVZI5GAYl5lSuhGTRzSsb/rBSWjLLd7ljHvdBCU2nB7ILkSEmgqvxSKZ0OkxLnyFzCwrDUoL5UwrgIztHC1LoqA2nZDMtxmmE8EOOIaqQr9ZZ9oU6F3CNzzzEdObx54M3nn9kmWxJwvZOl4cVgCWYpK/0wtFrJXfnxrrQLaih3xmutQy54p/Q+sOkDfW/5O30XWu5EztFoTykSU2SaI1NMJbpuXXF92Tf7fmCeZ0OJ55kYk5Wz9F+8PpaKE4WaWW2BUte8obxS6tirkNVsBuc90zwTY2SaJk4nW/enw555PHB7e4v3nquh5/WrFxzHeSlLx0KxdF0AF5hTIqaMl7xEE0uFoxRnYmkwlVOCnBlnLRG3jOaIIxGC8PDw2J65857gFHKqvV2/snw7jGVoNIx3Xi7hPIPtE+Icr16/pOsCHOG8fBzQqBXnxAILD55f47mEveX4d0sQPS2b9PQc796Sro5PLWQo5XORpTWrNc6yOtC+Ttg28rPHtIwFM3prSafKS0ZKw4J+yxRLS+mTWoi3hp+bwV/OqTSOs1SqhdjGtRgnZkBn5ayweNaO0PUcxolffvwpv/Oj19xdv2K77bn/+B6NkW7bM0226AdN7G6vefHBK14EX7iPhQupyuBCSwac9wceP78np4iP0zv1rS/y/RGBQmNY1WRYh06xEkKUEk8iwRLVGAtdwaO1iUVK+G1CxhOPb/ccDgd8CMQ5knMtPbm0X5/GiRA6kqoZ1FKMOdWSia5sSgjUKktIq4cqIqV2qWeaT8Q0E+dMzrY2j8c983hCnDL0gZebm7IWhBgTIThiGfc0TUxzxLlA6IQ8Wfk2c5yNh+kFTlNt1mFVL5CiG2pCrzju7l5we/eaCOSS0v9wOHIcJ6YkJIUhKLk6DlrurebiBY/zoTRxWb4ny4yvgICQK0VElZgiThNdH1r77/cFbC3xmKXec9FtaEZc6fKaK5fbSmk9Rye7yPdMhPMMMGHVQxogo8lao2tKzKcjcZ4tNO+tkk7NhfDB0fUdfRgZx0f2+wf6EJAQUOchBIatrfvNdkdWJabcDGdf8hsci75YjOVz5/odec4eqvu3rmmVpmt86BtlyuydgreJw3nwPtB1A+I8WWecuMUp6Dw+WD31lGJLsEtpZsYj3ZbOuaUilZiRmuPMFJU+qVUUydnoVU5aqdjT/hGNE+TEZrNhnibubq/pThNufzRql2or7ydAypE0R6YxIn42ozwnUrIKOHGeiaXBlBnLyhhLVZ9Cu/OSmeeZqYzDTr6eFF/Pqf7WGMtnpbh1TeC2dq7ee7Iaw+T1q1d0YVURY8U8+aJavFqQ5UXerWSxcPWWZidPEeZ6XEt2EWlZtUt11nqF5d5SspItlulqnm/l0pCgNk+ZNRdqcDWmlVr+pi4GKVCz6DMdB1dPtXKSal3B2pI2rzJlqyaphrs4h1NLXpLyryKF+y1LRYEiSa1d7jhHPvn8cz57c8/rF1f84MMPuLt7zZ/+w/+HP/lHf4TbmgL50V/481wNL+heXOOGHtd3+NCTY2I+HiHGVtpH5gmCI8dk3CT39Sb4RX5zRFB6Z1zk6vwW+myr5FIdPCcOvFC6EFnCuiYIRcG6EVyPG65heyKr8fbGeWacEoTAZjOUU7qW3wCA6pKpLt7WQ1akZpmLJeINXVcy523suTQ1sVPkkngCp3FinhOboaPbXNEPtvlOc+LTz+8RcRwOB8BaaVeHeNFbxubuQsd2uyGQ2Z8suSb4YEh78DiFbejptzsUR9f1BSW31tFgbXJjtgYrrnCRE5ks5Rl3oWk4zaAx48Q2bGt4Yq2oHVW3rEnGlqQkApvtFpGCBlPAAV2V+KIG1rREHvPi2FO69SVDmOozZwU+XGjL32NRzIly3n6CX/bEGj5NCZJx6+cYl0pZC0ZkfxZHzZc92xWu7fnlVgAc5/bCGfxWoi3tWqp0fdccUWscYoamK0b9NJ+owZOKFOeciXFmmhMpW83jfrji6voO70xnxZgZx0hWoRuszrITjzhPTOZYbzY7axZWHku9b/Ee33dsuEIQDqc9+IF+u2nFFUSEeRo57B8ZY6KbZpzAdrOh73v6vm8VduIcjV992uCckOZIN+wIIeC9I2dX+mqcP9fnqlVYqbpcgMFSXjZbFL6WmDNFkVtXwznODdwbOk+Mp5Yj8XWKNHxrjGVTiO8myAlLreWUrLH1q9fWmGT5rC6Ec9YPeGlOskaWz1Hhxa9bfy9JrTxU0kwqDzZp2TTKx3IxWNH6xxfcnipaSi1lESTnstna+64iVWipHWpVO7yTtr6tdEo5vpRP0kLIX8rEZAuJpIJkN+TatXqE9ZmllJ4Y2U1DYIu7Ph9tyUxOQFzAZW1JQQnblI/zxE9+8Qt+8PKKu+ueD16+oAvCb/34h1zdXDGVwXe317jgmpecs21+BCvSLsGTS1IQm57hxTU6z+RC0bjI91RUYTqAlJDjqhrGnLW0UlbE94jrzvWIc0hWq9MMZAmoBFy/g+EKFaHfbthurujmWEqmlRJP3nO12/Gw3/PyxYuSQBKboq2Rojpns2YkWIRGANFMTDPpmBjHsUV14qpVs23KZsD2mw2C4/7+gcPhHieOVHTWNEYUIfgeq64jpBwbgu2cQ1JqFSgynt4FuhDow0DoOq5vbnG+w3U9zvdIzK2BQNd1HEujD1npDilRJRXXSjllHDmBulJVIGckgxdv9ZtFyDoyl01NVWGeCN7x8sULfPCkcaZ3AuldrMcVel5tF7xMA0P952liGq0erlRaTDGoL0yMi8Cyr+uTF/MqkbUUFbeGR8pZKn4uPy54uq6j6yxZz3c9WRwqnjBYo47NZkBRxjHiV6CWlKS02qinzWXNBNe3FtiGaFtSrGpCFU6n2PTEPE+WmJez1XKeo4FfPuD6gX57RSxr7e39W06nE103sNtdW1QsJY7HibFY3yH0uELxsDEtvRSqPjGR8v+nFI76ewUO7ff6+aqbVTOp0kWcRdRjjCXJrgAJKfL4uAfgNCcUR0I4TZHTZNSOaiCbLVW/mSXin9T0Z/DefKHZuvdN88xcjOXdpidHixbWikpfVb41lscXcX5zTjY5Z8vofv3qFZthwHvfDMVKxUiVLvAMj7iFLSqVoSAyaCZnOINMC28xrdDoNT+4Su0vvq7ZvBxYgJFCPxbkjEaw9pwqE6I2W2iGJNoMcS3lmezDqVwrLV0OVQvqJMRkCymE/uwZrI3lamDXwuyNcCEgOJxXnAouAzhDlkWsOgmudc8CEOeZZ+X+Yc/920f2xyPH8cSOjkxiShO5VCzZ7rZsb6/QzYC/vmb/uGfrzSRPavz0uTg/rg84NjAJmhOTRi7yPRfN1JhdXYlePCIdOVvA0xBfW2t9COY253NUB6zr04RjnC3qY23bDwy7q0bDcM7xyaef0w8bpnFCRInzRPaBnAxRCeKo+JU10pAWFVLNTKOhQjGmljU+l1KKc7Q60MNmx7DZWpZ2cUancSJnpSsb8u7qlmmOWEfAgO86oyO4bE6mOlzODf1tNC3ncC5wdX3N7d0LkgqH44gSCaHj1cuXAIzTBAj7w7GVtjvTe6volnnx1Wk2Q9UF65wlWhofiIAruQYC2c+Io/EXp5RwvjP+oLyrt6Why+bYa0Xhgmt8zDYtGgjyq02ri/xmiAKTCqFWchHXKIaKra151laOlhAQ2Vgr6TxBFlKtPiOO7AKu6xg2Pf3Qs9lu8aFnzjCnjJZj02x82eP+yGa7bRHkGoVywVsTn1IqEfWWj5OsMoUTFh1VqrrEmJqxnFrViWo0riiUT6QCgU+w2mbIeh9w3jWkWMXOH5Oh7Et1CsV3PaEzuklfkWWEvo+IOMbTgdMUCQ6c7+iDZ9hsCbXkXUrsp5Gbmx3XVzsgM52ORJUWHZqnE8f9IwCPp4lkNc6Y5oIQr+7COWfod+U4+4J0J2vR7XzpFKERFWWcJqa5lrzb4Z1vaP7XyW/4FhnLK2RZlYU/a8hyt/E2KVXpu47Xr1/xs19+1IxlaRNQTJmKLRRXQhpmCuaCFi0ekxHVXfPkqiuas6Kx8GPi2kCT9mOUhFD2jILirviUrVZxe0XPzrI2rEWsZqmomJfbyt0t3lyW1Qdq+DklpNBUpG3OJfwwT6RS2zQXBDqlTOtmWDYm76Hr/Jk3bGrFAVbfuI5XAC0GuiuhW+tiJIS+59P7T9HgmRU+vb/H7XbMeeIUj/SbGwDCpuOzN58zyT1/7u4v0u+2ULoW9Z3Dd0P7PnUeiY/KcT6S5tOziuEi3w/JKTI9vkFCZ8hoWNBjKQ6zSIkyZavlTeENk1MJ1dm5tKxfEMYY2e8P5KyM08wvfvERLnS8fPkasMS0zXaHZuXt/QNZreaqrRmrUO4zbSMJIVg9V5ZuUap1/VnptZgSsSjwnJVh27O7vmW7vUZ8R5xG5rl0HpR8ptSlUB58CAzdFkSZ55GULenHO0cqjumchGm20GXoapjSNUc5q9KHjpd3tzYWNQN9nkbGyTA2L649r0KssGfYqJemOBWFnOxIreWZevLRdNAcZ7x3OFVudtd0PvAYI/Td8+u67AkotJZJagZ0cN746EU3t5D3MyDJRb5nIgLdBkKHiiOqRUHKm6iHHAaqHdBvPC5FJI24eYRpcRRxI/geFzJ9P9H3vSUCd12jBlZahhm62pr6aCtjKOchk+ekzfVaP90c4pyeFhpY4d4idP3A7Ys77u5eAI7TaEl1GWXYbBmGDSEMZKxUZejgdrNjd3Vj9I0SURIvHE8nDsdDyQ2T9nM93OG7YM75qkyey5ltGds8HVHNfPLp5wydY9N3vHhlDvjjwz2//MXPSX86M48zL1/dEVNmnBPjaWScJlJM+Bp59o405+IoZHzoS5LjQjetRr+Npeg1L1AanUgBEFPOHI5WYg8gv7j58u/iPfIrG8si8jvAfw38CDP8/6aq/mci8h8B/y7wcTn0P1TV3/+ic7Uv/1klp83Tcc7ZJBTh7vYW76TxkGv/rJSXBBZZzVFrbatkp0hX6iwXFNOKjctZl5+clRQTMZnBWsW+oEqypyAty89zdZYb+owujTzaLZeFpstmUNvnVvrD+7wfmzABzbElD4KhSUbJSmhJIko5lxDLUjd1QZarAV2QpFQrjKgFeku4wuGYklojA9cVD84GPaVkiFvO/OyXH/E7P37Ny7srbjY9WSP3+wc+ePUCgM2Pf8j80cecDidizmw2Gxt/cVYM/WteBD5YcfZofciefRYX+XbKr1NPkBNxf1+yYR0SOvrBivC7YWeb4/raJawjKHkeYZ7alqniSBilIIrj8/t77h8e8L4jdJ0luKxkM2wsqzwlQgjM02hd9rwjzhM33aZVl6mGm9VOPpVEv0CtWFOrRawjVqHr2eyuQRyff37PPEUQRz9syDmz2VzZI1BIuSQjrSJhIqZjxmlmd3OFdrbup5w4zgmflF48xzkhj3t7fiLmoLtlVQVvFIrghJNWznFtHy5NZ9Rxn8fc6sOtOm2JktXDvHiIMxvfI0mgNUqqVTTc2XmafqwVDMrf3vsz3mJNotTVtS/y3ZFfq54o3WCrntB0ziouF/xqIYhC5q2RohCsQZD4TC7VpfzaSVZag46+7+34UgHHi1iC2mTUIe89eZzpQumQCSQfmeTU9vOcle3uqg1HscpfNt8D/WbD1fUNfbdhHMdGS4rR9mOdJmROFhVWiwB3oafrFsChntcHizw5VykfM5vdlt3NLXPKzOO46uNgnUOHzZYUk9VWT9FQ3DEi11dsSjTs9u6O42GPF+Ht4wOh7+j6re3z2ai1nXPsSqKk8wE9jsSS3+AcxdZYnIanuWRSaCLK+j1LCo4xrihvqznwNeX/D7IcgX9fVf+uiNwAf0dE/qfy3n+qqv/J1zrbavIqcEa4D9aWKThDgAXPq5cvrZNOoVa4EraXbEWtfSlC5LQY1AV2Vye40h1OszMeUcqgqT1otAQwGtIqT4a6lI+rG0JFj54SxtdfaG0N+94vq1zXQF9nEMrquZjhvBj0giBeIC/jqQ9tvSnXk7/P6LbJlJZxeeg7j3QeL+X7UIN0lNoNUFYonZZ22YmUlY8//YzPPr/n9KMPOM0zN33HNI5MB+MkaYx0XUfvZ06ffE7abO2eKckUruRlAaSIlg5LTjLBX0qDf8fk16gnFIm2Gag4NI7NwfPeGQe38P1ygiwZV0KBNWbZZo844y0m+NOPPubt44HH45Hrq47f+u3fIWdlKmFaRRpnjsrnc6a81cGYEh9cbaylNoCoGdxlvcU447ziQ4ey6I26rodhoC+0MoDxNDLNkevru1YCahwrGGBhUWvoYesla7LnEM0wDd5xKreZEU4xAYlJoes3qJ4IXUcIwe4rzgwle78LnpqMWHmUphILjzLmQnUD8EvjImiOvVT+WXHO1watA66urwkhtLKgYBU9Yo7WAKI4KjVBR1VY17EU7PXxdFoZ4ue692Isf+fk12pPqDi0UAczSwmAGiFREfCFJiCla1wOJabv8K7QDUJPEkeerXPosNlwf39PjyNl0ymbsnaCDw0dnqfZ/k6JaRqZS7UNkcW20XliKK3kfelMWdu/A42q5abaFGiZ1z44Bt8zbHd47zmdRvb7PTmXfANndpBWg1M84hx9PzBsN4i3JkxpXpzLlBL9puPqasfpdOR4OnB1dcXu+obDaeR0OqG1k2hnsfrgAyF0BtqVnK55Nj71brDn23Vdo3ukZHS0ji82WUUWo/ipU/O0Etn5UtfFzhKIOXE4HtnvLUE6xogvjrlFor50KjX5lY1lVf058PPy+4OI/APgt3+Vc8nqv+XkC/UAU9iqmS50pILy3lxdmZFbuIt1AgbpEVWrV1o8DlXrjqNoybpcrmimq1V6EPGFxG7HOsk4Ny+d6qChF+sJvTaInytN1zyhQi/R1WaybALVL6J1rFrn0jZD98k5Nbu2edSQrxT+UVZtvE3n/OoRf/EMceJaGKM+28zCy7aSNKu6H/V1gBB4ezjy6f09c0pMmpkVQt9Zj3bgo3/4x+yubrjtd4RZCb3DX9/YF52t/Six8KFL6cBKcUnxwln+LsmvU0+spXbJqy3UOR1AHXQJlZ6s3ohEag6cpoTXVcSi1Ec+ThOffv45U7TEueNpRMRawdaU2xgjj/sjwzDgvGOeIyWoZGMBvPPNyMMJsspNqGuxobJSMt/LMS9ff8CHH35Izonj6RERRxfWCYpiKDYwx8T11Q3dMBgtTRQnpv5rHfUs3lr6Ak7WxAlDquaYrPLHOPL4+Mg0TQ0V3256bq+3vN317E/WrWxBiqU4zhVZlvaMqiEsIji15GOyNHpdFUV5cXfL0FvCUfD+TM+pgDo7PmlmDhZxkhlqhzPBon5mgLw/6naR7478evWEkF1v9X+B7MxwtnOLRYqlRJ6wnCj1YhQuZ3pDGyjlCFvYEnh5DNy+uOM0z2w2O0LXM6fcDPFDMcge3j4QQsfh8VC2WiVn6wAYOt+oDMdxtuo1obfkfW/VKtZOX86ZuZQ+c41qaXbIMPRsNxtEhNPpxPF4RMT2x37orAyec4AvJeKkVKDwVooxLTkcLd+KunYKMvvk9fpXTehTrCPp/8fem18KTFoAACAASURBVDxZkuR5Xh/dbHmLP48lMzIru5bu6qoW6W6YYYAZROav4MgBjnDhwJn/Aa6IDMKRI5z4E7gw04ggw9AIXd1V1bVkZWYsvrzFFt3m8FO19zxyqSoqZSSzw1UkwiOePze3Z6am+lu+S4WbGGOJapYkvPyca1rW2yvImcP+Hu8DbSsqOkYrstFgFW0va9AqKfT+BOqEdUkIkJyLdgunK1/GTmrplKWLmCHGzGkYOBQ8dIwR0UaQpOaBl8RvGV8LZlkp9QPgPwD+D+CfA/+1Uuq/AP4KyRZvfssBMM4Kv06fK6dQsDFK2nXOGkxWZO14ciUe48veV7MNI1JoC/a5/LxkbhZrLCadf0Xt+IscvhCDFgiEPsukvPV5l5tVq8mXrYFLFvnlz+cshLkqMHp5w/MSOF8G0gUrnGuQfz6WLucQgqexLG2bmqXmGIlFIBzAGC5gE+dE4StuimyOuuKoEkrFQnrPxHyB/yyYlKwy1lhO08AnL1+RlJABj6cj6/WaYzFW+OyXv+a9D77Dk+c9BkU4DaAdigQ+ooKXFgGgjAQDrTKEC7jN4/j2jT90ndAKWnvWD70MWCvZjBgKVKFUdVMQYmxWGHMx62Mgh8BpHAsR9rwUxpSJ0V9IRGmurnZ88OEH3N7fcXP7RpjvWRbe611bNtlyKjxMnOvirYr2q0LjGottKou+Y54D8zwS/IQyhs16hTFN0UlNZ3yezudNU5dNTSmarsc2Da3vmeOMaQo8pSSgKcxiKFAgF8aYxTwgpcRqvwdgs1mx26w57a643Q9Fc1oKDMIBEVlJgJQfEogqXMvqQlxOmRAuO1ry7u12i7VSiTJGLxuXbL0XgfPFX7rcX2MNKkfG44Hk5wVmxnKs8t/HyvK3dvyh60QiM4WAwqCtFf3hBValRQM8seh25xCgdGmUMgLXrEU4nVFtptUN7WqmX6/Rb245DgPHV2+4ub1f5NfW6y05Z3Y7werO8yyW0lbgnvM8gz4LZ8UsnRddjHa+DBZS4Vpf3FP9fHEO6vw/V2WlA6fwwZNOx7JG5qUbprRARGJqWK17mr4hqYRxlnmaOZ1OnIZhCa6Xc1ISjAYfcFbRtB3Be6bZLwl+2/VcXT8hxcg4T4QkeutkKWKQRd2mdo2V0TSNxc2WRCL5ouyVhavxue69PkNv82WHXWuIELxnLPCUmBLuYp34fVLqP7inrZTaAP8L8N/knO+B/wH4IfCPkUzxv/uSn/svlVJ/pZT6q9v7/R96Go/jcTyOb/D4OtaJlzeP68TjeBz/kMfXsU68fv3VtbnH8Tj+/4w/qLKslHLIxP6fc87/K0DO+dOL7/+PwP/2RT+bc/4XwL8A+PMf/UnWzi7wXL20AVhKoDkljLGknGmdY3d1xW6zZTiNpQJUqjhV77Ni6Sq7FNEDnrWiuX4KgLFuqVynWpYvbRM5BWkjXsIwvqyCfInLe+safe51KaLU91e83yWZz5xJbrlmhVKhqeYB1lpSjOSkHpD7lnPNNQOr53hJWPoK3HT9djnRGBM5hGIZLKSoGDIh60WztsJKVAZnDPOc2O+P3B+O+BBxRaMy7QWz/IuPf8bP/vbnfPid77NZb9nfn7jaXGGdYRpHUoz0pSXz5OmW3fWKptU0Ri/t5cfx7Rlf1zrxH/7Fj3JyK1SO2BQhR0LBMI/HjPIJ3SB63QX1nlMkhYhV8izEwhYfD3v8NOJz4vmLD/iP/9l/wq9/9Wt++YuPiSEDeiHLALim4cWLD0BrxnGkW7fc3t6Ayjy/uoagFi1kXSpGqSq6PMDTyrrRuJb1elM+v+Z0PDFNA0oLdyCmAWsjxlhyZiH5XLd9cesyzH5mnicq4UeqRIpTDLSdVK1bJ9jg8XQkpSDQFGvwSSpd8zw/wPtWLVRrbIG9SQUuURwJ0ZgChYtJqmMLb0MogFSCI6VtW7HYoo4RWa9XQjBSYJtG3L3OmLjLe385h1BUswZRAYphFoUcQOcZa81CZLokZT+Ob8f4utaJf/KP/jIbpAqpsmJpgQJoLTCIi+pkUEZ4fLqYfGnRYAfIKqCMwyBW0pWLEGNinj3TOGGbC2iC/ItlIn9Bg6PGAkIk1uU5oYYrwkuqMYZWi7lHlXiV0CAJfCQl4uwJ3mO1EPDlvME6izUO75PAzHJmnGbm2XMaJrS2bLaiUNV2rXArJs1q03N1vUUb6Y7t9/fcH44E75dz8d7L8YYj+9tbFJnNuhc4iTbitlert5XjkQWSITrRQTpeUda7rC5irPpZtZb4SNrrZ9jnVw1VoBqcl5SUM746GefavardrN99/CFqGAr4n4D/N+f831+8/mHBHwH8p8C/+d0OWNp4ugpan/GwQo4TH3VnijOW1jy7fsL93V7K7wucQZGTIca86JoKRECC4kwmJ2nl2xJ4JX3GPGuCQCLEnurC5e4cKH8Via/eKDmZVO7Hmfkuv8NcdFzKeackzjS5Bvgsv8soaS0psuC0gUQihlyMENIDLNHSYlBn0W1rLSHFC4z1F6H9KkZZlEMElVxwTQVrWaEhFMzS5UgARqOt5fZw4PXtHSEnOusw2mALrMVkzaeffMrdp7es1zvubu9Zr7c8ff5UrEUbh0aCg+NeEcKA1gF0ols9BsvfpvF1rhM5Z+YsesHaihFGLPJrfvbE4z1q9LjVFdp2S7K7JME5k6pt9DQyDSc273/AP/vu9zkejvz61x/zb/71X/PLX36MWE3Le589fU7TNnzw4Qe8vnmDLtCB2XuyEqiBTkI+BrBWFGeUyqKtqkEbSXRzlCev6q/WzzWOI/M80rQG17SCt0uRECNaO/pG5n3Xi8xi27aYMDPdeGKUjVKQD9JuXWAbxghsw4yEGJiK4VHTNOScmcaR+7sbGivn8t777y8KQ6rA3+q6Z6ylsW4JJEJKhFRc+IqqkFa5wDSy1AP8BWxKyX1YrXrargGlcNYyR/+5AsTyI/AQV6gkKRdpTL/gp401CzStzJbfNp0exzdofN3xxBl3W4tRMr5oVlzOuCXMqrHuBX7XGoNSmmmeGacJ6xzXT5/SFDhVFQQYhknWjoJDDpMnq4RrWlkTSvjw3u4aGwRHHXKGmDAGMVyyArVyyS7JprUWpTQhRLyPBD8T/ARocspsVht0Jwl404uL3uwjw3TgdDrJ8z7PjKNnHCaxqjclEDey3s3jzOF4xe7JFc45pmlimsZzUl0LZLUIWczPtDpDPy6xzfVeLDGSLqIKS5yUl1AiVQWQcttMiQfle0mSH13lbs/YbmMEBx4R58J6n621wlkJkXGUwsfZE0PinLeVqL9q/CGV5X8O/OfA/62U+r/Ka/8t8J8ppf5xOd+fA//Vbz2SUuICZTTGColjuRBlAs5BdFJ1wR02ruHp0yf8/S9+KbgfU4HvFleMOHKKhfSSWHQotKJpSwDpEkYlkV5LXjAxmCU4V6S3Fu9csrlYqrwGrTJGw5zCElQ+WNvL17ONa8ZpVQLStGQ3ibOxCoVgKCTDEpeeI+ByGHno6sZcN3D5Vi6QZ8lMgS+sfH8VbjkVuT6yGJ0IhiuCrvJObyF4lHi3hygGDcM08ulnL5lmz3a9whQrT4C+79huNrS258nuGc92T2jbntY5WZYax+zlfF/dHdGDpl21bDZron8Mlr9l42tbJ3JmMaGQSqpdpI80ivl0YhpeY8Y91q2wrsM2K5wVo48YPOMgJJx5kg6GaVqapuHqwx3Pnr3Pn/3oz0lR8bOf/T23t2IZ7ZqG3dUV/94/+vf5j/7pP+Unf/f/8ctf/ZK/+j//FfvD/WLNXjHOKcum4IwiJU1sRUJKuA2S5IpLV3l/kApRLRio4n6liwth26xo+4JBLsYjdatZrVeEMBOTSEUpY1ltr+gLE92AGCxcYPQqEdg5i7Oa08Gzv7+T4/UdbdPSNg27qw3HYSKEUiXSNcmuG6yhKc+0UUKUIsezYxkGpc5OhynOED2r1YpVvyKGAa3dsgbWivTbBZ9qkCCQbyFCpyhuiDWh6Zx9sCk/Ypa/deNrWycUYHUpjOVEjvNiMpJVFAfa8gfAOCe7WUk0qzOfHMwBqdCMNDHDcRw5DSNtu2K1XtM0Inl2Oo1LAGmM48mzp/SrFfvDntNwpF/3HA8HXt8ITCRpzcb05KSoErbGJjqtaJoSw+S4BMvVS0F0nCMh165yBAzWGppOfs62TuKTmJZq63J9Lgp1D5QlSlddyIipdGrEmC3njNG68D7O8UTtThmtCCFi1ob2ast40kyTL+etME1D0/e4xvHm9Rvm6YTVZ2JgzmpZ2xMRUsJqjTWglZe1RWVQ5gFfTK6RFCNjOdcQI0qBw4BShBgXcYGQIpl8TvD/XQTLOef/nS/u5X+1BuIXHQuq1+O5/XAZ1F3AD3KpDlmt2W02NNqw2myXBbltGlpXiIFGFveYMyEmQkiElJZ2acqQtcI5i3a6qEBIgJmTiGK3jSKG9vJzy2peyIPkTPIeixxLF2hHfW+tfFzaNSrli+HHZeBaoCQZchFn0kj1rDL/a4sUQGuHaxxaN9JmiOeHKpVzf2ARW45dH4gvvnVnilJOmaQkSJfzrgTCs+RKDeCzOn+ClBEN25T59LOXjNPE2DV88vFvmE8yYf/0T37Mn//ZX5KyRTcdyThy06KbZiE61CpdSh6roW8tXWuIfuZxfHvG17lOvE1gkQW9uEIWd6nD4cAwDPjxtJBdnetxtsX7yOFOcM/D8UROmd0PFI0xUoWZJfDSWvP8+XOePRNTkrFIuQ3DxIsPPuTJe0/5k9c/IuTET37yN0yvD8SUFiMDp4xUkZFF21orsAOtSWnGpyDOVYspSe00RpRuCsTq/Lm1MYuWa0bMPVJOxBTp+o6cG4bhhDaazXVPiJGyp0mgmUVF5nh/R4iiKqRgqQpVLVKAcTjhpxHbrtmsV4QoxDkfsyQmpsGXpEBVM4Z6nlqhlS1rF2QMKZ3vWQyQQ8ZaQ993HPans0QoZ6hFNSCpsDRVq9wFWqe1JmtJzutm92Xwt8fx7Rhf6zoBOGIJ9Io+eAl+Fwt6SuwFKGNkLwueHDw6Q1NNhWIiKJFJvdsfOE0TMUtXJU+jHD9V1ZzagdY0bcvV1Y7t1ZaYEtM0CakVCKWCGmKkyornL4UNXcZB9askAookyg6pQrvcom2snHhFBO+ZppFxGmR/jhljLNtdIyFMFSEwmsY2zIeZ/WHPHGaabsMc5Odzlm5UVW4dTgOQGYaB2XsaJ9ALrTW73RWrfsX97U35bAmtDdY41k9WDOPEfh6w2mAavcA1pmrrHTMZKZw6pTCzdOKzugiO09tmLbIOiXpHflAcgPP6VuU/6/t/n/HNcPBTEmgubO0LrUFVxPOdMaQk+JNYguWr9YYcI21ztnQWaRRpBy46wzmhdaZpoNV2mSBzCPKgqF7OgXoxL6EUBsVZqzVXHDQCnfBedAPneV4C4grbEHtKJCMrAXjOCV0ryvnMcl/w0bFkdpXNmnTBYdcJUCZ3CZy11qQio5RSwjm3tChMZsmoRTj8sj118RguG8vDrwvSov5MCb61mIoRHzzf0tJIpbKeteUXv3nDL19OvP9Hf4GZf8qLpx8A0LuOzW6HbjqiNmTbiJ2vcfi4iMSUo0ZUTlgNSmeM+2ZM2cfx735oZ9m+/z7Rewk009udnzK/S3VHF6vnGEbiPHA4HHj18pUcS2m2myvS5OmUoet7hmHGNRqj7KIVCnA6DTRNI+tQ07DuN6zWK/74h3/K3/7dT0WrtHRgQDYe4yw5C8O8quVA1Q2WJNr7iok2bLc7Ot3Qtg3GOMbTjI9iJ6umcZGnahpR3kiF0+CaBqVE9aPvWvqra+73e3zBW+tSHWq6FfM0EqZB4A9NK3jolEkxLAm+6MWz6L6agvFMOUh1nrzY++ascdYsn0cS7CwW16oYQ8FZaSR7EgKXiKU7J1Xuop5R2t+LP9NbmGUoab7Sy05Xj32JuX4c7/jICfyIAgxF4aLubVp8GijzT5Ixhcosnd7znvdwvzRFDUa9tV8uGGQrsUXbdlxd7fjwww958cEHvP/iBXf7O66ur3j16hU//fnfLT+nPcQpLbykjHCp1ILhlS4UiJa8UooYEEdSLTCmFKWjvl73tCupco9xZJ4nTuPANE9nzG6SSq+1Tv5UIyUtEC9tJIgXlZxIjB4QLemubUkFwlrdR8X8RGG0WTpCXd/Ttx2H+3v5nTV0URrrGqwr5lElOZZCwVc8t1+QR1xWliXOErO6Gn8pIGXx4SCdK8ven4uWRT/pdx7fiMhDoRZsHUUGpDrdFUnEBc+cg0ysVb9iteppGkcMYQmAY4xkE0GHJctQSvAvWWlxqyvQjsZmsi7lfZCbZ8tiTMXaaFR+WFmOMZJiJCkwygGOdd+iVJF0S+dqcvAeUwxLZFJptOjWEGNaWg/jPDHPM36OzCGJi15JIHRWKCUaqgsKIwXCLMcMXjA5681GsIzGCK4pBi6Nr3I+Z1X1yn/pZKnF56zQaJIqfyh/jCLnYjWbBS6idEalJFVhpfnNpy/525/+lOfPnrNqG3KUqnAMMzl6VHaoUj2HjLYaq4oUX5WRsVrIF5WiGR9NSd7ZkTKmmHLkpqVgjeR7OUMIuJyxs8fPftnYcsql4rGjK/aux+MRpTV28rRzhBnW7YZJJ9CGa9cuAeSL73yHeZpp26bGc8RCkDsNgwTJCnQJ3Jq2GpSYUsU6y5pVaSP9lkNg27R065au6/Hesz8MRfNZcTwNeP8aAGsbrp88xTlbNs+NVFhzwjpH0/Xk/WHZHAVnKWQi51pSFHLPy5ev6FvZLKd5JkZ5lp01JfGvnal8TrIL1CKUCvwc04UzVpXqFEVbrSAr0Yg1F4Fs1zas1itS2dDeNhgoNxOQtTSBrCnUynNetGfTRTcNLRujqp2zx5j5nR4PE63MA+B7zkAi50DOCPwxZ1LwEENxry2BcBaXuRwCjXN89N3vstpcMU8zr1694bNPX2MK7POD5+/jnOO73/0eH330R/zwhz/k+3/8A+Z55vb+hm694tcf/4p/+a/+JQA//dnP2H96Q0xxgYgqI12oGiDHVMj1XEAj5cxwzrHbXkkhLEJr7eIOeHe4Y5xmMRLhTOANUQyM6mvWnvdTayzJuRLfnEUFLsdv+38NRPu2W0jGwU/M00gMga5raNse5xq0CmhtJNYBxrkG4IGkLEpZKu/KGkMqFf5aWb7kkgHFjVURU02NNCGKXO9plNhj9hFlGkzTkaP/vZLrb0SwLEM9+OeDyjJlMUax2W559eYN7713TcqJ9WbD6H0R3QaUwtiM0hXbCChdoALFoKBeSm1QysiDVIuZlSSSa4MvouKwnJjRikbrEpzrB7hj81Z1IzfN2Rr2AmeTU4QYcMbQFOvtrpVJGlMBvBcMUD3feGE6AudWzjwHckys+v5hVdlkQny4AUnromTGWV47e6KoBfctQavCTYL1CjmjlRVXJKVRxuCMWTbYWj0jl2C5VomA27s77u/vaLUhesGL+nHPfLKiZWssuu3pWgOuwzTn+yinHWCaIQUBYD52V9/hkYsEQyowKb88y65tsW3L9lnL5uqK6TQwHQ6onAk+LOSRWolsmoaEoe9avJ/J+z26XdN0K6asSCYtlWVFxvYtzllCCgzjwHZ3xfX1NVppAjIt67NpSyALGh9mUk6S8CLPCjnTOEuK54pUv+oItj5PkkhXZ81hnJhGWc9c09J0LdYXQ5OnO5q+wadGNFFnT4rxYlMtxYjy3Gojz93heGTdP6Xre6Z54tUrqbhvViu6vmMehiVfjsFz2J/ANmjXLuICStVzDYQgjPwYg6hcaEPCLsYjACrPdM2WrmuFE1If8bL4LioaF3QsIWXX/1aN10Qo1uMPaMqXFb/HdeKdHSl6xtvP0FrIsrpdidEAgBL1hRQysUAbCbbAKYMUshRUHJSfR+bTET/PPHv6jH/y7D1yzljbcDwOTMNMWzDLKUlM0TQN0zQzjBPHw8Bmt+H9VU+/7lhv19yWiusnn73kJr8RCEaJeZSu1etyukotFtO5xCdvJ5ZV3SGlhLKXzz1UbpVztrxSk/aapFZ3QIkt2rbFB08suGUQeJVYciu8P2OVa0fJOUfTtlhrGSfPMEz80UcfCQ8MuL99w2/2dwynE+vNmq7radoeHY7knIjh3ImHSthzzFE+W9u27I8noBRS8+eDeBDUQcgGY6UgYlzPOIxYbRiKA+rkE8a1oiLiz/f5dxnfkGD5vPrqSm4pN1GXBVQpCu5FZMjGeUI7i+0a4uwX8ljWqlhdXmY9ddk/t1TKLyzl+vL7c4Zw0VopL+uCn9WIyHWO8YsLF7oW9s+YO1O0xlXFQwMqWxwtOadlQpbaCVU2JqOYvGecfLHe9cyzf9Dy0cawWkkrpN9ecf3sPZqmIUwDh/tbjvfizgUwDZnTFMUSV2mSlvPJSpyyYo6ESd7rT4GUAjsjredULptaIuu8tIHr/yukUBmFyQZDom0crz79hE9+8zHX720wscg8hRMqOJJOxGhIRMLssKGFpmUxmCi3LisgJ8FI2sdd8F0dFVtrSmKWYlpkoc4sdoWK0DUdNJ62ackxcHNzwzSMy/OjtUbb7gyPCAHdQtt3pCBV6tMgSbLSYmvdmYwOJ9brlvnmY/Jww7q1TMh6sQTirqG0ZR5gckEwkE3Tcn21YxzkeXNNy3a7xtvIMAwMp4FxHAgxFOe/c3KsYpDqbsgchgNPT095cbWiX/WkDPu7Ow7H49IzMkauV46FmAyQM/Ps0UrTtg2b9XoJRG/v7nneOEY/MM6eaZ6ZJs9+f8/oE9q15EKMihmMcdjC3CdLMuBjZIiJycvnr2YDzmSuNr0ocaQkAXxtN38JjUKaW8URsATUGRasdd3sH8fjWEZK5PFA1oYUZ3QMqMJ1yaYBLDGpav5b5hcF1lVk5QpEah4HpnHAzzNXHzxh9/S5YJJdyzhO+CmgShi13x9lXuZMCJGU8hdWLi9VHB50egWbcLH/VZhBOVF9VqJSKtM4w6rvSBGmUdwsbSkadl1H2/c8KUZsx6N8npubO+7u7uX8cl46uAK7yFxdX0t8kBQ5G9p2zbpPGKU53u9pnASicRTYVThkrnfXvHj+Hs+fXbPZNEzTPZ998nPWG3lv8IrVSjOOgXmesLZFa1H5mKZ5iVHSomzTgJEYIhtTVUAvcuBSSf4tVeFzUJ2XDr4vnbCKGkClrzjCw/GNCJYV0i6s+DijdWlglstSg9aiZyw4ncBms6bvOm5u7x8cLCkL2pJ1tXvUVDPpz19fhVN6mcBwZnpWfOECd6p3K9eJXLOzgvVLoheqz4fm/COZHM+BuaEyvM/VkLrt51L1tcbQdwbrrFR2yYvOqASuicZprncbPnh+zbNVS8qKw3Hi1ZuGNzdrDieZiIfTxHEI+JTxMTGGKGTHGJn8TA5xmXySsJgCgSkXLJXWhwqkINlufb9RZ/1T6gavpcJ2PB65vb3Fv7+T6jCQUkAhluQoyDkQ5gF9shiVyU2zbN6KLBfU6pIYPwbL7+pIOXE6HhcsMpy7Oeri+a0PuVYGmpbpduDm5pYwezYbkVbq+x7d7RYVmVyPoRQpCw5vLhvs1dUVXavQJmGw2Oz57Nc/4f7v/zUfbjyv3D1Ns6btpMJkG4c2RhjrMZBqgI+sA846rDE0BS+46ntS8rx5c8PsA4fjkWE8MfsAWZxHVwWLmJGgPFYIQll7rLXc3u25vT8+CFBn71Fk0ZSeZ6wSS9qpkCNDCFhjyLm+fy4sdkPwnhSkakyWRCX6RChLQsxCIko5LRhnrYrbXmbhjPgaqESpRK1XK4HGWY0q8k2V7lylM+GLi8N1uZRO25nw/Dgex3lkVBLJWLQRZqkpFUSdkGLWJcH+As5VX1mUFmSPjCFA8OX5KXvy7KWS7KpyRcXgG66fPsNYR9e1WOMIOTCcBtbbK/70Rz8C4O9+9lM+/vtfM518Ub+R5FMbC1WjHVG/AXkpJYVSDSEplGmZi7PderfG9ZahBIXRa5xrGPYDb24+IwQJbo21rFfbBeNbFSumaeL2/p4PP/oI41rGcSZli2scXRfRYeZ2GHGFvzWfZmKI6GxpXc90mvn53c/pV4bn72+ZJ0/XS3i5WvWs1ys+++w1Nzdv2O2e0TQtaTzStT3jXIqRS3CWF+ic1ZYcvzoofnssRdJFhOFctRZ4ybmS/+3DLCuF1aZM32IdfbFULsFmzsQcsc6RsmK1WqGtJpKIpeoZYmAeE6mV6rTRZlnIJZuobT8WxQVZn6WqrVAYW3+/ZCULsS3HAqNIS8vE6DPofwGaX0iaXH7GS3OCB9rFZeSsiGSWYpTSXG02BD+hdcDZsz5zyuKt3q8czsLhcGDbiByOdZau61mtE7GwbH0EHxWEBCaDMUVipaFLDVmlJbOL5TNr7yFGEhByZoqRKQrxKcSwtIeUNiQj10ISkkiMshwdjnt+/atf8sM/esGPNxIcbFaibGFaTUAxk/DzREBhU6JdrZbrohbhdsMjEPHdHjkLQaM+x0pp+r6wv62FgiNOIZ6rNoWEezqeCD6w2YgI/3q9IZiuBG3CldBG5Ct16RBdsq1lNchoo4l+5Hg84X1gmCfaVtP1mqaXEkhUkUAjUKpkIBuxfk0RYxTrtUCmQtkknHP4GOR4w8js50XnOMYoG1wvuuPeR5HYNGBSfSZkbQwxEkJ4oDccQmAcThz391gFu+2Kpuu4v71hmEYhBm22i6Se+BjpRZ5KAc5Y1quekGA/enw977YTDel85otUPKSYmDiMNUubFTJt03B9vZMgv1Z2LkwjLosjyxq84EdlzY05MU8TIZw7bUvY80jwe+eHQqQMUeKp4Oex+BFAVhNZN6AdaIEm1K6UzqI3TAqMpau0v71lfy+Jdr/Zsn0v0XYNXdcTvShStG1JktsylZVCaYsykFNEW9B+xnYGPb7m8Ku/BuA6vuajp5m/PYpl9vr6GtPAR4T/cwAAIABJREFUEEacbQFN0h2UjlUMkckHNqsVIZ1IuuEwzjhr2PYNWDjdy3mfjh5rA3f398yz58MPP6JtW548fQJK8cknn/D6zRtM0W+PUQoE0zShjaHrGrwX7sI0TbQq03c9VWFrnkTQwDlRsBrGgVcvP6FfGa6frjAqLlAPXfSm63p2vkvntbX01eUeXdzJB6pov4WKsJQda7ewVpYzTKVrPs3TQhI2xlCVd36X8Y0IliEXpqnCKI2BBYZRmpnlbYXlbgxKG9bbDSFJZVRf6K8SI94YrJb3q5BRSkhn51sDJM76zIiChuLMzJaHTqF0uaDqQmC/vKOCzeGh0189F4UURY3KkjnFCZ0jqe2YTUsouEg/B6ncxESKEkynJOf/9Pqa1aonxJkQinRaVMvEzTkzTCKUrlTAB7libdehjLRCmi6xngKnceY4TswhMM+zxBO1elsDeUQqLk4zYRhEEitnkcYzBmcd7cUkSykJxtkaslHEOWFSkopV9Pz873/Kj3/0x/jdDijuPMXtS2tZpFLRmYwp4uO5ym2UQdsK9n/cCB8HS5szFq1dgKYRKaLoPd57kY7UGo5H7m9uCCEWpRwJaLU2ZCVJdLfqwfWyzsSEs4YYI10hqNQAria7IUaG4YT3njlIhbZxdsH/pySYWpQiJIuzHeM8ie6yijSt6I1GLz/QuoaZiHUWFxxKjUsLMZfgs24A2+1aMISuKao5woqf/MzxJBulEP/O1yvGyDSOZCeqADEE2rYlJpGD215fL+8dx2HhbJyv9xkvmRcSHRhn0PkcmC8OeyrjY0Yp4U9U7GJKmcY5NtuNKGzEWQhUZSxNu4uhkIp/TgmFxmhL0rrI3oXz51yQfI+V5nd9KKWwTmTaYulshEouz4qEBi0GI+fETMJmgyKEmdubNwDcvnlTHGU71HiA17c0qkU3im23ZTKRqKXaGjmvTfPs0Qa6RoPJmJhonCUcD8wHOTbzgd5l+pWFrHBWAcIBkO1VMY8Dw0nWuJyLgECWzpi1Dm0c1pli0pOWLs5YyMGnYcA5x/X1jtVqzfXTJ6SURENeqQcddSh7uXlIPq6QVpHULderdHTatmW73ZJz5Pb2FdM0cnd3x7q3S2dOKek+CTJAwuK26zgNsLnasD+eiClJRR3IyhKSPPfONQzTablDXMZvb58keakY189SA/C6TwzDAJlSGDVLgfB3GY+Ar8fxOB7H43gcj+NxPI7H8Ti+ZHwjKstKgdMWrUuFWamlYqByqXyqmlFIy9FoxW4nmMOUE8fTcTlYjJHDwWB1s6g/KC2M8HO9GoyWaqjWCqsVVmuMkT8KwR+FmrEARk8PWKoZ0Te0xpBiwE8DnbO0rpCIokeTWXWtZDtKGpRaaY4pcn88nCEbMRdCgKAzKOSAECI+RJTSrFebRedQVWxlTgzDJHa5pxMK8Y5PGFCSecrJGJy1tG1mLhCKUMmMFX8ca+VcWsbOKq6e7Ig5EVLGp0xIiQSkC1ZuTsVxx2iC9xwPmex9kcjTpBQ5HI/sg1SWr1Mq1eMk7W/dYG1HajpwHVNWBXYBBotRttwyqf4/jndzxBDYHw64omda4VkAfp4Fj190z3NKApFSmsPxCAqePnvG9ZMngJBrhL1eCD2qVC1SwjYNxhp2uys5tp8Ljlmji+LMZnuFdY5QlDlEWedc1RQSXmAaBmalcdaRssbYFT5rbg573n/+fDmX6TTRtj2r9YZnz57x8uUNwzByc3N3VrBBqi3GaKlCR7kOOael0t24lraxi64owHA6EkKga8UwJEWpsp/1Tw25SNlp64QpHkTVwlktcIspcJojWnsuOXWLVm2pUqnCc0gFJlPlMqFgqxtL07YYoxlHjy0oiwpT+zKb3CwHFljHbKTbVRQ+qPOgrtWZz5eoH8c7M7LShGazQDeVSVA6z3hP9JNAhgpPR9wsnfy7dJAaJ3P2+vqKVDqdRoFTCj+exNjMdtjVdtE2Hry4x4lpUGTVrWmcGHnhxKky5Ywpe3L1gGicLa6eSAe3PAeXHS0Z6guEC/LyL3XxvQoNFSWMBl3gqPlCVattmqWbvFr1PH36dLkOwXvGcURrzWazYdc1rFdrPvlEVHOMs8Sc+c5HH/GXf/EXTNPA3f1rPv3kF/zqV7/mB9//YIE+eD8xjmIPTjaFDO1IOdP3a5Q2Igta5WKNI2eI2YDSDKfxdwJgXvaU6nqCEp5HldKcizydgAfOcebvMr4RwTKAWkD31Gp6eb3obV7ocY7B061X5NOIcZaQRGINRE80aSUBY5AAWykwWuyhnT4vwCkJK1wsMeOCI9ZWdP0yDz3IYw6klPEhkFNk03d88P5znj27ptEaPw/sb2/QhWE5e5GI00rcdVTB6WUyrkA9FmHtlAkxEEO1li6qID5yOA5in/lkx/X1s3IdNJB49fpTjqeJlBL304SmkAS0E/ZsdQbK4jqUcuZqs8XHwMlZkYYLM/M8FQHygrNCZJvqJBNjGLHVLsbXyz3JRd7bWSNQjOgxXUujFUbB4XDPNE+cVMFHaYfHoLTFNj2uWUmgbFqSbZgvLMMzZxwYZ0Pwx/EuDiXtxUM4Mhc9UXdBkuvc2ZwohADGYlvH1XZHXm/YXe3O2p/zTFJZ7OKdkIGXaQYPNiWlNDkFsCIzqZuO5x98h6ZbCel1mvDjCGWDtdqB0guLvRpvAHR9h2taXKMXa9phGLi/H9ntrtm/2bM/HtDG0Hc908pzGsYzblerZSPMOS/OgNM0orVh1fdoDfv7ffndkePpJLrEXYMxGtf3KISjUNU6ajtSaUlu52kiZYlkXWMEl9229CGhQ4F/8XmCTN2wtVGoup6Xa2qNYb3ZLO8xRos5RGmWVtLe5cHyWwQ+MWUIhBgXjVZ5vW6M54LK43g3R8p5SRare2bbFq+ElBjHkdPpxBjCgtXVWi/yklpr+l4C4LZpmSfxQFAllshJ4gV0eitAK18v9nWQtUQvz69Z1qC27TDaSEGwOHpqXdwGjTC4BHp4hjmZInLQtq1wuGLCugaUZo4BVaAM222LL3yj1WqDUooQRBXoNAwcTyeaplncjDebhuvdFWKW5IkhMBT5yFXXLhbYdU10zpJzZp4nDoc9TeN4/vw5IRx5c/MJ7kI2d78/cDoNWGuxpi0QCIm/zvHVmaemtEJnUSu5DHp/l83/wXXPJYVQLHDXeZ5ljVDFiOb3iJa/McGyzgmdtLCp9UVluXwolHwwcZgKgnHRiuvra4zWhLKAC1lQo6zBqdVyUYRhmQictYW11FSFjOJsqVpK5uVJpXqcFpZmXcidszjtWK9XrNcrNpstjVaMg8KPA7rgeY1WxHmW6oexgmGMkWmeQCXadr1sqHMOhECpHBuMNiIPpw3zFDgcT/SrnppQhBiLBXVRrgAm7zns9yLKrQyu6eg6IQYZ40QSJmfarsW5FoVkwV5ncvSkuvEsKh+KnGKBT0llvEquWHVWFkkofIxoZ0oGrgTX7CyN1eQcOQ0njsX6Nil9MakFP6aNI7lGlEyMXjbaVGXujLggPgKH3t2hteHq+lqE72NkniemUYLmw+HAUSnWfV9IvVLBrHjX5f9lQQ4J2l70fk3w0DRQsXXIdK98Bps1wVfJp4Aymt31E1zX0xixZCUEtC06oSWMTCGcA0MtOGghBMumVzeeYRg4nQbm2YtcndK0rWOcA23To5RdDE98ISqt1ivmMGGMHE/4B00h0YQlCJ6niRgCjRO8dtM0rPuOuyQuXdYY2r6nn1ZyHfd7lMrLs105HjmLSZLRphaj8PGiqgFnVZFCmtIFc13f4qwTmbqyFl8WRC4p1RcHrPU1tFI4Y4khMPsZP8/wQG9VLX9f4qofxzs4cp0DXz0JHuoaK4y1wp9JF5KuJUC01i4SicKtSSIpq87PgFjcQ9MIYVcqx4bgZ7q2QdmIbTvee/EhAK9fv+RXn77EqlvGecabEWszjTYY6zBaE60hFC8Goy3aWHHTNApf+RlaY6wl5lRiBFivn3J7dyfGSacjf/O3PyHnzPF45HQ60a9WvHjxYik22KbBGsPkZ0Lwi+mHD6JuVYUL6iWt12xxzNONSEFWHlc+94iW+1C+pJRELSjX61sKFVVismmwyqJ8Aq0JpeP9pbHyBe68ErOl856WNWUq8nSn01E6CEZDfigk8dvGNyZYzllkksT66WFleVmAS3tNwyKddH19jTYal2VCOd1Agta1qCxVY1QmK0XWutDK5OgRqRoZrQrRrMqKqIvF+2FbkJxxxtD3Lde7K65316y6HmcUjTNsNytxskIEzU/HYwHdy4YzHo6cBo9S0F5f43WpLBcSoph7KLSxaOPQWiAe9/d7vA+cTsNyPlorrNF0/Uba0vbIYfD4ccR7j4sI6xfpAgmAXomroLVUVQFnDalpFrmaECSjNVqL4w0lUFD12uViRlDVRDLTOOHMWR0kJYGQqCwP2WkYOBbNKa8s/WaH2z4B10OzQvUbtG0hye9QVs5bK1EpEFJgXuTnHse7O4wxtG3L7vqapljdO9cwR3Gt9OOISolt36Ot4/DmRghu+aLiWOFZAFHmqXGGbLTMWaWKkD9lk4wYY0nzhMpwGkfGaSLGtBynwg3axmG0E+m1xpIRWSit7bKQW9cIlACIJUmdvceHwPvvv+B73/s+/apnfzjwdz/9KVNpI5+GkcNx4Lvf/wEiM12VYhR926K1yEHVZzMEMUHRpYLTNg273Y5pGBiHiFKyuT95Kh2r25tb5imSSeSsQEuCLRumVGRq0SCnJM/qRbeOXNYIJfrtXOixW2u43l0VN8P0YPdboBwXXUQUBWYiyb/SmlSqgZcGBsADovUjye/dHtpo+t1umVPGmLO0pNb0V1d0IZBDFBOtGPHDQN925JS5u7vldBR1mJwSTdPQdR2m7VEqixCA0WgrawXLXLRFP1ihrSFGWUdChFzUIHS34umHHwHw3eHEz3/5Kz7+7DWjOol7oLFYo2icxZoC3ajH1xaMXTSDL58DEUQ4Fxld0ywKYPmt5wy+QDUmswTfUm2X6u88TxwPB2znmKewrLfb7Za29YzzyN/85Cd0bcM4HbHO8b3vfZ/r3TWZAn0ox7S2wSjDMA6s+rWoGwUhKKMVthx7vd5iXIsZJgYflnVyCQo/FzXnUvYEEOKm1mpRQFFK4Qv84ng8FkW53082Dr5JwTJJMHSpWE3milUT/E7KmazO2LQ4BUzSXNkVZtJoVSove7kone5IzKWEr0p1NBfDEr381qp4nbMQUFUuusGiqizvudD8dVax3ax48eJ9PnzxHqt+hfcjwzhCSjSNo2trgGqLK18iRi86jEibRRl5mFK5Bco2tL2lzUr0YdEL9s7ZDucMKQVu3oimdErCnt9u17SdYACbpqFpWkJIeD8RYmYolTcfsuANlcL7WXzs1aI+LeYppSKeoi/WtRduQgXTmahGA27JSvf7Pau+Z9X1WGPwzjFPA4qMbRwhOlmkrgWj2T55huk3BN2hTIdxPcqtUE2HKZfb2Lenpuhj/j6Z4OP4hzWca3j63vsE75eK5YLRM5pV35cKsQJjyYcDcb8XBZe2Lc9hcfJrGqKRxDhXTLCqKXJFAMrwMWOsEyiTjzSNYTYN/fqK6+2GMHuUNgvmTpfnRitVKkruQhRfvrZ9x1AwfRFF3/cM04RzbmkBr1YrUsFU1jbyNPtS5bKs1ltizBiz5umTF6Rp5HQQyMV8IZVUK8o1kdVKuAW1RWmNoykSUsrIhmuNIRYNZT97ipb/Uk2CqpBxvj+1UldfTDFCPkOqUpb2sSoBQF6AHBedrAL/groFapQ6V7SU0sLjmGe0MdJtKuOBS+ojDOOdHUpr2raTBCpGgg/Lbm6qIo62RbM/kZIimQaajjScuLvb8/qlYHOttTx//pyuW2GaljF47GqFW7Uo44RPVSqf2khXVBvplg6DQEFqv1YSdLN0iZyrAe3D85e5e34m6vNQC1bnD6qWdQuthTdRhCyePHlKznA6Ddzc3uG9X6rtbdvinCOlxHYrUpqH4cQnn3zCsbjs7XY7IHG4v4MYyLsN3ie2W1HOefr0CTFmbm9vefX6Fc4a1psOYy0ffuc9Uk4cDgdAYDFd30E2DCfP8TCyWV+hTcMUAsY2uKxoG4Gn9P0K1/UEpTndHS5gZ192w+uFuyiyLkmBvKEG3GGRsaz35EuO+QXjGxIsK7JKBONBgTEJZ6uIP0RfPNy1RSNBaIiRtu24fnJNnS9wvkgpJalKUDMvcaJ7G/oimsC16R/PCmrFA4OcqHrMtX1gjaZ1DmOs/G5UkSkReMTt3Vg/FYNP7EdPmMWJb/KZaFrarmcOcBiFmOiso3Et1hbXvAixZGQ1UDXWXeinymY3zYHZJxptaJs1T545MLeM/ka0EKMEy9aK7azWmhDUguWy5oI8VFuZWVyDfPSEFEnFets07YLZdq5ZJu88zeynkWkY6LuWlDN+HgnzzO5qK1UhYzkVV6To1ijXCTardAxU2TqNYrlP5YYKFCR6kZpK8x800x7Ht3dkwLQtrusKMc8s9YQK1WKBAsgIPuCDrBXdarVgh32i6CoXaI/RUNqB9RjnRmIu3RJPzICSavFme8Vuu8GPEzGfsYjVwr7+3CV6sZJrnGsYR+kS9asNtlGkuzu6bsWTJ08lOFYCrwghLHqoOWesEzMRYwzWKm5vb0gxkXwgToH56MlSGGM6BJ48fcLV1Qpr4Xg88Wd/9mP293fc3b7BTyN0Z2klrVjwxEpL5WcOMzEZdHk9lMA/UeBRPCQ3LvchC6ztvJnJpqm1IhXb77dv8IP1WZ3tbWs/tXatvA8PHdBKi1iRz0S/x/FuDilZQkpE7+VZqXCetkU5SkEuL9NkCTr5PNH0bfzxw3+dEzN18T6twTqDVhARolpOZc5bqaA22x1X10958fy5VKezRtuGrrG01mCNQmPJSRJl1zT4OTKVczLGYBu3JKjaWHRxMt5eXdF1ffEo0BwL/MBagaPlnIQjVTq1xoqVtVKZ4GeOxz2n04kYPdM8MvmG42HAlYB2s7rGGkeMiePxKKRhY0g50Pcrpul+IdOlLAZrIncr5kZKFym6C7hMvXyZmhyrc0JQL/kXBbd5eesDzXZ5WdaOWBKaoUhjKmUk0fk9lolvRLCsEPxw1AKDEOenyzeoi4VVJsk0e/q+Y7Nec3W15W5/Km+V4CvGSGOs4A7LQxAV0lrkfHPOZicJhUAOxP7y7bBafqrrGnbbFde7NZtVi59nDvd3DMMgFpNty/4gAbDWhsNp5DBMZweZAipPsGCg5Lw12lhsYa6qDNG14l8fg1RctKJbyYNmbQ18Z16+fE3TOHa7HbZpcW2HtZZ5mpcHOS8BQAIM1hrG4bQkAsaYBXKilRLYitLEGDiMJ1zTMY0DIUSca/EhLhhnZx3r1VreezgRQuD+/pYcpW3TthbvA/u9ZJpDCGwlLSFnLQSHJK5L2jhadyZbkBI5BUwOZBWB393L/XH8wxsxZ7FZzgmrDLp0N1AKQhT3HSD7AMZIt6gsuErrpR2byVINXq2g6wvcoBoKZVJUpBJYxxhxxpBirXpK8mi1ojGGxllmXxwpAVvgTY112KZhmgJzPkMRKjmmwg36fo2Liv1+zzRN/Prjj8Wd9G7FPM+s1qsFhnG123JddJErk3+eZyEoZ6mE3d+9ZCxVLZ0115tnXK17fvxn3+fTl7/g7uYzNlctx6Pi5Wd3WGuW9mrrGrSKZytgKldDcH7mQleZC2WaiuvUWhNzJodwxjhekLOvtltxDhwnVD5TBOWq1mpGWbMuWqWXxZAQg1SWLzViL9vLj82nd35UjO0SyF4SRQtkJ86eWCquwXuxab+/53g8LvNpvV6zvbqi7TpCTIIXJkly7Qxk6cQCqGQxiKum0Zqub8hJ1DCEmOohIoQ8oN0+4en73+HF65fMw4lxmslJoXNG5YjKGk2i1A3pmoZpOtBYTcrQrXuutldobfEFlmqKFf3sPU+fPUVbwzhNmBuzEIL7lawrd/c3VK8GSRZqqJUeBLGS+NbvPUwShHAs1XFrxWU4pbTYaYPEB845gk8oNeO9JyVwbUvK0uXDGFwjSYExlqyks3V/dyfV4C+Jx94e5/XiHOOpUuwDIYiHEKCzAhr4PaLlb0SwDA9xZpeZnVaSgVwuuG3bEqIEj5nM9fWO/UGqNNYUmIVS6LJ454tjSjiuHvxehVjjKmXQCEFN54RWpdVbcHHGGd57es2H7z2ld4bxeOD+fs/t3Z2YpSws2gXAUTZoi0LaL6YoOqSSCW6Kf7p1jYiMa4PKF06CSjOPI4fjHq0VK1MxmrXSZGnaDqUy4zTh0Ox2T1itNrx69Yq7u1v5nDlTCUwxwTSPzH4Ul8Pl8xWwfwKtE84qtLK8Ho7oJkurx+iCfzRLoB2Lc1rORUrPNlxfX5NSYJon7m9u2Po1n758DcCbw4n3ttdopXGm3KMQyUwoh7j21Ul8QRTQy1+P450cCjCmroC1DFq+p8prCE42A0aTtca2He16jTJnYmlCiMBo6XrkpIQ3YRxSpRHzEahdqoaYFco14qCnDbk45qVcPcDqaYqijbUKZy3TOEsCilSHmlI1rufe9Wv2+2NxAM3c3d9xe3fLq1evaLuO73znOzQFw9+tV0uwHLwvxD5N1zhO0wQo5mlekvO27bHW8Nd//f/wm09/xg//9CNOx4l+1eJcxNiItmeCdOOsbNZKgt44zeI+qGWzDTFeflDgjBeuZKjE2aDJaL0kHQrY7a6wxhBqq7lcu6UydLE2S1FB3mPy2VUxhiCuYqXa/mCKfBkm83G8MyPFxOl4XOZA7UKBxFzBB8I8MQ6DwJVyLqZFhmkUVZn1egPAZrul76VCm0PAOlGLMdMIWaNciymVYuFbydqTjUGh8IVcrBSEJG1TW6Cfru24un7Kuu/p25YQAiFRjlGx/nlJSs/SjIpqZ/d2sFeD3zMh7yKJjZFMwTonkcObC/Gt6TpWqxXGGGIsrp/HE9ZorDWcTgfm2fP69UsAxmGmaTpygufPnwGZftXQNpJMi0FaSTg2G9qm5Xg44VzA+8jpNNK0HSgJmi0SdEMBXAZxM33z5pZhGqWL9WVZ8GXSXv5a1oGyZtT1aJ5nvA/nN3/bKssgKhdmQc1eFJJVhVCoQvKSC1ExN13XcbXdotQnQLVQNUu1RJz7ShVZySa5RFyqBNVKIR1Zhcql5R88Kp0vvhxb4AlVhzSEwP7+ltubG3RVr3AO7SpzPeETJGVxfUu3WqOKIsXheMKnxNWVaA8vOqPlGVFatFmNtjhrabqW4OczJIRCfNEG48Sa8jRN6DliTItrHJsi0wTgp5EQ51JZT3gvRJmspFJ/acWN1qgopEilDVfbK8GLIwoBIWbiPNF3wqDv2o772ztSSgW3mRingA8T3o/ElJl84LPXEiy/urvnxy8+lAWhuAOqFEleMGY62OWhD8GjSOKAqCIqTV/ftHsc385REmhViCHL0ACSYKI0YZ6JCWzTotuWHM7kUGUsMWVMlG6SbHRF51PJcZMvNveF5Z6VwpiGmBOb7RO2fU/XtDTGMobIOb/LD56njEjUNV3LZnuFcU4gRwW7+OGHf0TX3fD69Q3H0w0xpYcbPcWSG+i7jhRFESKExHEY2O127HZbVm3Lxx9/JrJqJQG+utpKJScnpmkk+JnUuMUF0Jc2dfRyHa3RzGNgnCT5Fza8WhKUFP1yTlXPolbua9AccpHXzBln7YK5tFa03pctPkkg8HCr+3yjO6aEVhQitpY2rn3oMvb5KfJYXn5XR8q5QACEiC6BknR7K0k/x1Qcc0USbRpGNpsNrmnZbs/FubbtJIgrHftKTs0xoFJc2vxfNc6wooexmdaGpmlxrsFZh9WGpIqTbQyQBWu7dFkLnr/rG0LKrFYrur4npMh4mnnvvffoe9mTP/30E9q2XYjQp2FY5PSGccD7qUhOyn662qxpTYOzlnE8cToeGYYTXdeKq6eBzWZH5Xh5PzPPARFIMKSYWG86vveD7/Hys1/RtS1XOzmXq+2WnBLT5Gn7nqzgcBp4fuVIxXdCAuVzNTglcfOdvSdWyTr9uzzT+UFhlQLzrNKY3nvRwa6ts99jnfhGBMuqZAIa2ZAUnD/wg1KiTMyckgTQKYr256o/W9PaBm3Er7xbrVCI8kSqWOYsR5V/qwWjqAp5TKuMxshNzBKgu7KprfuW7bqH6BkOnv1+z6effMo0e548fUrXtThrF1Ld9G/Ze5MeybIsv+93pzfZ5O4xZmVmVfXIarZIgugGN9pIaklbraQtFwL4FcS1VvwK4k4bAdKGkFaCBAHaCyBIQER3s1tkVbGqsiIywicze+MdtDj3PTP3jKrKYqaEzE4/QER4uJvb8IZzzz3nP4yTwCjyx9FaWLlWG6qYWaLzeFbr5aRqbSnqhqZusNowThNNEmxQ1wncpO16ZA+W++VaEaZAN/akKDd+UVqaSshCbQzE6IWhTj7eedFTuUOn8wgnxYkxRBEL10Ikujnc0fcDF7tL1mXFNHhevxYJnGeXV/zlX/4lh/v7LGc3j2UdRem4vNrx8tVLnj0TQ4gBRRh6kteoKGMmbWVHHmLEq7SMzRYLcZ1Htmr6ClfaU3ybQ2kto7tZduxDiW7pPstGKxqNrURCzidORJ+iJObNMlrUV1TInOp5Qc0rmzanHKSVYRonimbNq2fPuLq8ou8GvD/gs70rSRQdtK2IMeSkLYoUhSuY26jOlfnhilevX3Nze8f+eMBnNZt5sTvXerfWElNcOrmHw4HdbrdgM733GGdoapGM/JM/+RNCmHj79mfEODGOA9uNvK7YhY+iWjMTjVOgcCVtd8DnTlRTNww+MU7xQd5InCBv55HUGVTj7DRt1utsBiMNh1kpZzFF4rTRmJ9HXucUPkvezZ36x6f+KZ4CTtfRuUoK5O7sowvnXNpMa700j4AFVmCMyfBE+S6LDT1JWlGrAAAgAElEQVSnCQspSzaK5GwywjkoCwtKTMKSOWGWndJ879Pf4e7f/TV3NzdEHzmmjskHpnHAq9nXISvbTCPOGqqmYfQxa7YXtPf3tF3Hx9/7lKtnQqJ/F29FSzoXw+v1GueEaHxz+55pmthutwsJT6VECgGVElYbtEqkJGo5w9BjSkdVlaTcUOjaWTUjZc7WbPBicsPytDOYu7tyrPNGO2b5vdzggJNvg5Aygyh6OUeNyBCEOJ/LhxbVMX/fKMW62WIK4X0ZrfCjYuqPFFkGtO97hr5n8ivsWS77MvGNKJZhxpplbOEDQP1JN2+RFlo0EANVVYpmaT4YxugHsmhaCVwgxXgqlPOJ02fPO40DyggQXSdIOjv2GE2R4QmbzYqqchz3dxhnGcdBbo40d5zlYjF5ZDpNLTFBWa1YbXbUq80yprS1FKNqHg/0PSkmirKicCLTMowT0cHoPYUz1OvVsnAPvcKHKY9b/NLJmpVJ/TTJBc9cHMvRtEbjnAES0YkiR1HODoP5ogV8SKgo49gUxLVvGEeqquL73/8BhS35ox/9bQA++eQT/uiP/pibmxvevn2D956yLKibihcvn/GDH37K69evFt3aqqo4/Os/R/uJsm5ogKJZS0I5WywBcQfMmLJx7Anj8Wu75p7iWxZKoYtC7pkZRDcvdPGsQ6kUau7IaCXOUQhxlCzaH61olipXLCPac4IgQJlVbWKaX06fXs5LYVyVFVVVUbQD3SAbuSHINKWqLVppmqZmmAKbzSa7/nmKrIkMskBXdc3Vsyue3z0X5joi+zaOA2VZLMvD+/fv8TGw3W4RZQif3fiE9CbjZEtVzQWxF/hWU3Nzd8v19TXbbYnuE8MwME0eZx3jsMz0QAm2W8WENmrJm84VMPgTLpCTYNPcpVNKEW0mIGq9jKUBLi52lKXLC+sJH34O53h8vkX9SP6IisfI0PdL1+gUvw368Cn+JkeMgcPhkO+JSZpS/qTVa9Ssm2wxuXjb7LZcXlxS1DVhmuiOss4EL1rDSmtc4UhaMVOalJGN9rzGphiyiY5aisKFK6QUyhi0EidPAB8U9e6K73/6A/q2FR3l9zccDkf6cWKKUiwPY4ZUDR1FWVHWJWn0i6RqCJFhGJZONQhMM2QTMmDZcOtH3dlz2NKpoFUCtcybfJHqLMSY5BFmWY53RBuL94Hj8YiPUaTrcnU5ZaiYtY4Qeq6unnNzc4tVNbvdBmusTPkzOW8YRu73Ldc3t6AUZVWLaMDks6qHynCU/E6U6NYbrQkxEL0YwSnIn1kvBL9xHOVYZaTCb4Pr/MrFslLqx8AeYV75lNKfKqWugP8R+CHwY+C/SindfNXXeoqneIpvZzzliad4iqf4TfGUJ57imxpfV2f5P04pvTv7/z8G/o+U0j9RSv3j/P//5lf9cu4vALLrO+8QqNxA+lC7PMbIdrvFWHMCcPcd6Cw117VYAykJcUYaJGYZ8Qtg3ghRMASSM5jCioFAtpNWigVakGLAB4FoSFtfujM+RKx1WOfo+p5jJ6OPiMI4S1mvqZo1GPH28t6jjGOz2S4klePdDV3XUVc1ZVkxTneEMWTHwkTX9wTvmbL8mvfTIvvijMWVJdNkwSgKKqZxYug6ZvUIPw0EP2GdFvc+pfL4dFpgMPPO0hgjRAgf0Fq65R9/8n1evHjBf/qf/Gf87u/+nmCUsjvg2I/EoHjx8hV/+qd/miEYhvV6RcJTVI66LumyVFZKCa8N/njDMI6EGNmgcVUFfmIaO0LIGrS+J/iJEAZiEI3Zp/jWxlfKEzInzdi2lE6QLSCpuOQR7RxhbPFZ6nGRHwPSDCHQmmTMYhYwYxJnWJb8M3da5DWMdfgwESJoIqZuAOnsnMMHRJvYY52nKiuazZq4P7Ld7RinwO3dLbvLqwzJkNFg0zTC0kbuv7quMdZyv78TakX+nGM/cDgeWa0anCsYuiPv3/4SvdsQPKTcnZmnYcYYxrFntWq4u1fUTYVSitvbW7p+QClDCIk6W28fj6fRZCRPlhKgNdYWBL9/cDoek25iSoz+pKAcQkDlrs5mvcZZceH7VW3geGZ1/zhmS+Jh/BBv4QmE8TcovlKeiDHma1uuxxm+BVmitSwp65qiqrBFIdDIsqJQitQPjIOoNYCQ8MqmEfJ7EmMeazS6KlFlKSTiWXdc+ZyfRHwg5un23F0+TcJO2FxtLK4ocdYtesIPYoZ9PPp8MgST9+OcpWlWqKyMM//GOE0UZUFCnPtub28XxZ95vd9shMiotUYbRVGUhGjxYcM0DozjwLqpeP7iOcMwLW562hhMlPvcx0BhNMM40nW9TPKUI2WZ13EKpCiw1beff053HGiaFW3bYozh+ast6812yZ/7w5FfvPmcX3z2htEHqqbBuYrTkCk9uNtnxIHRmsFL7WdzZ9xqESQIuW4ahoGu72Wd0HrJ8V8m/r+qPP4L4D/KX//3wP/Jr10EkTb8ByIhBbPOX6OyfJNWhCRSbomUXfLg5v6ADzI6VFqKtsIoYbAbg7MlJhPwRLPTE6MnxUCvFPsUCFMPYWK3XvH86oIxM8WHXhOGjtImrt/f8ObNW/bHI5vtBevNGm0Mbz9/z2x6YqsGpUUdwuRCeR7ppmxWMo9rrHPoacQ4Q4yBtm1p2xatLV3XcXd7Q/ATrpCRsTU6kw0Su92GTbNm4zaM40DsIsf7I60f5qOW1SsSwQdxK9Szq5jGugJjLIuVdgTdT4yTJ0ZFGhNxmPid3/sDPv3hD7i8uiJMgehnkPxE0zRM00TTrDBG45xjtarphw5rDXWzwubPeri9wYeRtrulv+5488vAJktiWWsJZxinWWfWOkfd1DRN85uvvqf4tsRvmSfOHfjUg3+TUoJBJoG1QjBTopyDtUTvQetTscy8QTyZaKSzxezm5nbBzG43G4wRYu4wTsQQmLojtlpRlI2MVbUBlbG7SYyV5kJdRpKyiNzdH0QOrlktmGVxAgyUZUlRFAzjSILF1ttaw3wfxxjQCoa+Y7/fE6OnbQ/cESnLFdvdjhjVYkry9u1btE6yuQ6eqipRCm5v7+j7iWfPn2OtY3bvtNYJPEwplDILIVllQ4TZXOXBWTmDT0QUMSm0KSgKR4wTKcnvNOsN1hZZQSSKLtBsrZ2+eG5nFrtSksu1NcQo5C39VBx/l+K3yhPGWLZZMUa0yO2iHlUUBc45jCvE1naWnjQWhgHfD6fillMTad5wP6xdP7StS5zhih646KksPjBf5jHJn/r5S3bP3vL28/eC+bUOFZK4impYb2XNM06MVNq2k/efEuM0CoTr6gVKi/wkQJcVcVZKYA13+3tu7+5QWlFWos2sjV7gKcPQE1PI9tUTfvJUpWO7bjJ3osgkPKk/VHJM08ybaOmHDogM48hqJVKaY84VzhjGccokw4H7/ZFnVw2TDxzajs0wsdmcOgK2EMOmw34PxuGKgHVI/l54DOct1rOjn/kcSeuMuBVzqJnaHUJgHKd/L7Wcr6NYTsD/ppRKwH+XUvqnwKuU0mfy5tNnSqmXj39JKfWPgH8E8PHrFw/wMg8uyAVLI90fFUG7LDOSNT+3m/XinhWCJ0aRawMlJJUYiWPWVowP3kN+PSUqVESsEqxyXRiCH+naw8Lm7lKgrkrSlLjf70nAdrOlrEq00dhsRblIyeTFfZxG1NCjrSNkwP4wTvTjRL8WB51NY1lvNjjnuLm+5eb+hmmcKF3JMHQcjgf8OFI3ssCWZUGpHDFFxnFgGAasNTRNg60NpXWEtwOz+6CuCob+KE6CUQiBMUaRZlLSNZqjLJLcmBmfmEJCJZUX8zLLzwVZZBG8V7PZgDIM4yideqVRSrMpagoNqp8wueNe9AOlcYTSstk8o67rRUx9WRzPrgcQNQBblpjsbvYU37r4ynni+598xBR9hrlKJ0E/TphKkWLCx4SyDltWC+FMKYXPJFafNAqTMYsnc/v5jXZ9v0yrqqqmVJZhEI5CjHDz889YhZHv/+B3+cWbz2mHCTWrZxBoNjUuGwYM2ZkvxphJK4VIuuXO8jhM3N3fi9FSVUlRmovbyYtRU9nIdW9nBzJYGgSkSNt1JAyb1RXPnjl+8pOfAvDnf/HnrFYVxnhevX7JerNm8qfFwhqL0YYpT31cUTJOAbJCkTLCn6jqmnbyTJNfmgEfWm/mUkG6PSK/Z7KtWN2sKes1zsKUEkRPTEIqUhHhiqRT9385pUiHbsYkjsMoxfs5t+FJKu5vSnz1euLV8/PvZ/nWXOTNMnKz02QuCFIYQWm0K1DmxCWyZYlyxcKp0sYQUkKNI8Z5lKtQueBWUc/o5eXxVVmccR4M2qjlvvU+EfGMY+Ti8gXf+15LN3gGn4jKEjM5rx9ExaJZb0BrVus1m82OiGJ/bGmPLcPoGaZxwSwfu1H0ilOibY8cjkdGP6G1wkYjReMwLMZIw9CLfvk0EDLfoCwLvAbfegY/ZrKv1CvrVUNKKquNwP39PV3fcTjs0bqi73t81p+21iyymMYYISIHT4wwZVLyecxKPvOUT27ts03Ir4kHLIbTjmfJDz4EhmHIE6xfr6jzOL6OYvk/TCn9Il/A/7tS6i++zC/lm+CfAvy9v/0H6XwEIXuGhUp5RqyUnwipDbRxTDFycXmx2LWmlFBGLWOXYRxxNisbptzZfbTAKgXEwDR4rDPUVcG6LqkKt8BAQJQaUpQ296xssVpvKKoSoy3DNBJCpF7nhc0VdMPE/vYWfThQr0SaJqWESom2bRfpFqMuWK/EYcwYg7FGNFS1whWOsixZrxrmIzFNIssmE2kPKjJOoj26KmsuNxuOd3fM605ROo6HPW3nhfSTu9IpRmLwDwgzZd1QFiODnZhiJKqJV9st9vALDj//V7z4wx9RNg1jn23CbE0/RKZJ2PW7zQZrDHVVYuKEP+wJ3ZGUx6daa4qqoeXUPUpe1ALquqasKuZhrLKWsmnkJJjZovQpvoXxlfPEn/z9/yAlrURJAVDqUQLV0imO/kR4VTOsKxuSKJvvTVOK7Wx2kcRYTFZ3GDKRZIb8CKk4u+/lDXYYA/XuktXVC17+u59zf2g59LIIamPo+57VektUmhBjduwbqJuGqqox1iyLxHIPJDENsNby5u1nmSgr+qt1VvsxRmy1j8cDXd9nYotaGPvWWsqiWkxGxnGgqgpQ8L3vvcRYxf7+jnGcMMaK8k9Ki5JHUzgOxw6QIsMUDqaILUsON/cZ1LWAX754vjgxb7QWlrzL9+xqtaKuagi9WAOTyOIBKCVsfLnvs204hpChcOIeKMes77ovqKE81ld+Kp6/tfHV88Tf+VF6/vojZuUWZebmGWBtniYlMTGa7Y+nCVYrVFHIY/LlY0sphuM4AgptHclYMlYz55x5MsVSocUQZKKVU9QMLg0xMWad35gSYz/y9ic/49Xljt/5gx8RTcEU/zWfv/uc2A8yYcqfse07rCupkrjr9qOn7TpCSHT9wH6/Z7PZyoONyzJtiq4faNs2K+iIfFrf92hYYJ3TNMrmfBS4puQhg86ue0mD0ieVEKUVKp106+fu+QwDU7Ne73J+pGabO/spJZHOTIFj23J3f8cMrohKhAdcUWBcicu/I8zKRFAKCEsjMIVZk1o21EnpZToQH0Hkpmmiy+ZqFL9d+fuVi+WU0i/yv2+VUv8M+AfAG6XUR3kX+BHw9ss9F0A60c+RwtaniEKfRhoxEFXC2QJjNBcXFxSlLA7GGqIyywi01ApnsldBEpmRLybUU0tf5aRcliV1VWC1jEMAjEqk6EnK4GPCuIL19gLjLElrppAoq2qRUjJZQmocB9I0YYty6SZZK7jgWSD7fr+nrAps4fBxIqVAVVdUVU1sBWrhvc/jjjyOzTCKECPDOGGMjBwmO1EUBUabBbbRNBW77ZrJd0yTR2kneUI5pmiI2i1L3xQGio1mV1fc72+JwVPpjuH2M27ePOOTTz+lqlbYDGdJxlIp0CMZwx2yxFXKmCGNJz1g0pbNiqtnL0gx0HUdh8MBbQzPnj+n2eyWQiWMY4ZdJxkVP8Z0PcW3Ir6WPCEV8gkuMX+9hCYpsYmPRgkmeMYUqhnnnOUSjZE/2krXKU+YUIoQRxlLxnnaEkUCMgnrO3iPH3rK6hnldsvzlx/x53/xlwzZ3lUJDZspBKpVzYsXrxhHz/2xw1jHZrvFe88w5mSfIuvVWpj747hIV825CKSQBCAErNZ0Xcs0CaxCFjjRV6+KDc7yoBBXCspKJDZvbt7QdZ10sKOm7zzWyiIJoOs1Q1bjUEZgGCnzG4bhN1jNJ5HoPFcZiiEupk4iHacJQSS3zuGCSSmi1vio0bMJQ5rQSJ5TSnJmDGGR4/tQQfx4IvUU3674euoJ2fwmZOnQUS09Fh2TIAlmA6N8z6s8ufYxkbRB23wdZUv1SC6KrUUZJ42bD1xj59f0/n5P2/c4V7Bar7BGL+sjQJmnTcrWKFNx9fIF0Vbc7Y+8+fydmAEBxkgjsBsGSsRcZPIT0zRllYdsOJLSqfYwJ8OeX3UvPJZ8zHioM+gJpLyJH4eekEDlbmxVriis8B+apiGEwPEgUI+kRmBcmpIhRq7v7pimiefPn9P3AZLJGs5H3r+/ph/Hhf/gqoZ+GDHWileG1iQkr5CbH3Ouzmdwef9KKWKK+FH084MGkl9qD++lsxxmbsRvsaf+SsWyUmoF6JTSPn/9nwP/LfC/AP8Q+Cf53//51z+PmAikNO9I/HIAFKCTGBCce7hoVO4eKTbr9cnOMu/i5lGg2NvO871f+Q5QWos2sVHUdUVd11SFIfmRkC10PWLjWtclylg0SkhEKesBa0VRFOjZ+71wtH3POA4cu4EpBF4Y2dk2q4aiKOn1rMk80rYHee7cBavKksI5+l4MDGZpJhAnsKau2GzX1HXFdrcSyTgfiD4w+IEXHz1nfxQdxfu2ZVIFQW3wAaxacewPOGcJw4gr+lMHHZFr00pRFQU+KPpJLrKua8XHXqsF+jLFAMmCSgLVcJaqdHJxJ5GfKusKVWZM9DFyvGtZbS4IY0fX9QzDSIyRZrVi6/3yOcecXEIIWGeXicFTfHvia8sTGRrwoSJJ+AxyH47TJPyEwolVs1LYwhGCx2b9YTXrgc7wi7PJirOOq8uLRQLSWccwSCemKkq0Urz+5FOKshJY1Tg+WHjE0l5z7FrKpqHtW/osBZnGCaUNPgS6QX6nKArqpuHu7o7PPvtMsL4pnpw18zh1+awp4iexe27bI01h2W4vGfqeu/s7jDGLy980DVSlpqqkyysuXmIW4ifY74/U9eaMpKSyY5/o1JfVGo9jDBEf/G9cW1LK3Tz5D0pBkyEkhXPMUnJnTbgHobV+QF9RmaOiUiD6kegHXGEJk0z5Ynz4JE8d5W9vfF15AnI39qyIWOrF2chIzQ/IPygdJMTZzugFFqhz0yaqPCmRDhVKS5XxoAxdnhNAjHnGUeAdKRfpH7o8lRZeAJkbYKzNHCKV0aen5p7S0oDr+p7DscP7SNOs0cbTtULIA1hVzaLRHpNIyNll+g5d19IeDjR1tpi2mhA9KUWcc1R1SVk4keI1hnYaGLqethVJPWfvKYsJkkzpVqsV3g+5Q11Q1aWYGeXo2p7joceVa+q6oa5WuELj34/c3t3TDuOy5leNwEqXhkjeBMwb5BN9+APHUrHUeR8uhhN+8mf8iA8+zQfjq3aWXwH/LH9IC/wPKaX/VSn1fwH/k1LqvwZ+CvyXv+mJRMM07xTiqa2uyIWymscdp+5kSgFjCi4udmfsb40PEFJYRikp5RHB2UU3/xvjnLyl7X9ujy3v67yDMfueTwQf2V5cCpFAafGNnyLNasPF1TNA8DE3d/cURcE4yY3TtR1lWRJDEPeeMHdQp6yVKPaS2mjqpkHPI0lrUF5w0QBFVeOcoz0M3N8c+exnb3l+dcVqtaLrBnS44fJiS5lvhilGihJWK0/bDijUshuFhPcelxOEIpFikA6d98RpJMSSsl7zw9/9fWzdgNKYXLj2nUdcyixVVVGVhbzrGGGSTYo2ZtmVLuSCSchPl1dXoBRvP3/L27dvCTHSZLvRYejRxizs1bmAeIpvVXxNeUKMbh6oWyzJMC33d4xRnOOsZRoGuWaqEjUI6RbI15SGKIXtqTsh49EEQg6EvClMi2anMYaLlx+T+o6I5+rFS+rNDrWXjWmKARH01xk6EOi6Hh8S4+jp+4GUYIqzO5/j/fv3vL+9EShXihSFXe4n6fbI23OFRfWnzyhFurhs3ichBVtrsUY27FVdcXHR4EzgcLgVWEZZoVD4ccL7IJv6zHIPSd6P04bVaktRr+ij4nB9mwk7v351SbBwPILPGs+ZZ+CcXRocM1nny5S2SrFopfppxFqDUvbBeFUcgrMRxdn08Cm+VfH15AkFmAc7rgeF80MphUe/+psmEulhJfZQmeEckiGbUymWVVbUEuzufH/MpMOPf+f3KVIkact6d8n3f/h7/PzN51wfstZzhkiF5LFFSdKa/X7P++sbnHVsNjucsxxTXGCdpRfTkBACfd+TSAs5XqtE15V07fHBfaJQVFXFbrdlt9lSFFYm7HXN7eGez968pW3l+feHPb2T97VbXVIUFc45+jCKGoU1TH6e8ugT8S7FpWs9NzTP5/uPz0OKkajiUizPnymRlgnU3BFP+fEhKoKXhqvKyIL5+WZN6vi4q/4l4isVyymlfwP8vQ98/z3wZ1/6idTpi9kcYz4Oj6/t/AoIP8RjCyH1lRmGoZQCne0NA3mnJoB9lT7ceZCkGzO0QfBKfvT0KaAJZ/edSJHIWBfWux2b7Y627QjRy2RHG9a50OvHYSHkOOvwKTGMIqivO0NZVYt0nLOGkDyuWBHCnmfPX3O5u+DNmzcc2x5FoihK1o10xj795BNevXrF3c0txhj+1b/6v7m+vaXve4wxdCayasbMpGcR4dZZRQNkDCSLbYIYsLODX5JRxjiNKO8xMeCModnuuHr5Gls3KPSyXddG44N0kJcGnayacpGTxJ42t4y0UVirSV4e3DQrYQFrwSSWdb106oZhRFuzGC/MtpVP8e2JrytPpJRQUWOjEjiUVmfMckmWIQRRWjiTjFM5Myvr0PN4UhuIiajm/lBOzoCzltK5ZQOukCQ8E0+00ihb4C3cv/slqqh59vIjbnOxfDjc40fPuq7xMdHe3zNOAecq6SAFsXE1RS4iC8fd3S37/V4MEIwiJDFBGIZeOuJOXrsoHEVRsGoqxmmirkpW61W2l87HIiammJnoVvP8xXOmYU833NKsVuy2G47HjqETCBRJLV2nkDGcWmucK6TLZa0wyOeDsZyQD3x9NhpNSVxR50W6rirJBeqsWD4rTk5Tgy/ijsV8wdMPw7JxOJe7PPcWeCqWv53xtdUTsNQR89dqJu+cfT8jLxbIUfLZdEPrpaOMtQJFMEIK9DM2N4kziT27zJQxi8lJRGW+UIS5QARI8WRhrw04MNtLdEj4oafvOly94W/98d/l7tCCgh//+N8C0DQbNrsL6qZGac39fs/QD4QgsMuiKBb4Vd8PdMOAgkVObi7OIWKMzcv0qSk40w0+tGFQqNNnkHOyNNsmP1EU5VLrJE7up/PrbjYbpjHRHjvGMdKsRPJXaYN1BeeqROMwMXrPOHkmnzDWoY1frO5jjBRWLyZnSsuJnCdaC6oAmdqVTjFmtZ+EqA/NUBj9K1TYPhTfDNHauYjVou1plEbNznPk8etZYpRWfCAlLQWu0VzsdgAYrcSqeWakpghKujTzYjpfUD4TgWIUsHiKEVdYKeQIjFOg0NIRgUwyUQARrUVjWSmRcvExcnFxyfbyihcvXwDwF3/5V6ybNXW1oWsmbq7v6G9G7KpgHEaCmzgc7wD44e98yt0QOB4HXMY2hxix1spYNgTRTMwY59VqxW63o287YozsdjtSSlhrqMoS4wzdONE0solo1mva/lqIS84Q08RqXaNJxOAzdEIeG6InRsOQLzilFNYYIprWB9bays4sF67OVSidMLZEa/H1IsqoxDiDUgbGCfKulyDydcFY4jQuRAzrLK4oqLdCEAQo64q2bQkpoZ17hFF9iu9SKKVkWhECapYem0ke40BE4fsJgxEeARkeNU8jtD3VdJwtlMt3ZAyrlKYoCmzeVCoysU7Lb6kMAYtBWN3GFjTrNVfPhaR/c39Hs96y2e1ICX75859DUnzyyQ/ps720dF9O6XccxrN8JNb2Rin8NBKTON6BcBWMMZSFoyycwLFWDfu7AymaZSFXudtgrKEoCrp2QivF9nLH5e6CrvsM40qMdfR9T1lJ4R4SVKsVxlisE/UeHyLj+ejycSS512MWdNNaQ7bj1gqaTE5cr1acJoZfPLdL9yfN7PiThKTWQtwc+v60AfrgW5FR9WP956f47oTSGlfXH8S1JzVDKIAUiCpXzNpIB1NuTOwM9zOGiGi3ozXaFCRboZ0T7HKGkMoLL7s4FIrteoNUoJqyKFAqYc4IgZA33lqK+TiKAydas93uhOge4wIxPd+szoT88+mKVopwNl3z2ckunEmACeeLPL02J13mFLDGsNvtePniBRe7bX6MrP3NuqZaN3z2C4GLv39/y/X1rRTLY6TMTqbiJiyEwaWxpRS73Y5xiBz2/QySJSZpLjZNI6Ik+bONo6gCNSESkxIicoaizV3pwhqczfk5ztrRQFQMZ6dCNhGaOCsHkRjHkTgfk/8fYRhfSySQizTKrispTp3lsyQq3Yo5Mc/fiJTOscvFskIEqdGaYYoQRWXB5I5wzH/grHORAXQ+hAUNk5IA030SOBNkzUajUESMsxgji8317TtWTUWzumK7UfzyF/8PAE1lcHrHu8/vUcFwsXnG2+4td7d3aK25fHbBKneKu64nRkXXdcsOKqXEarXi4vKS4/5eOtSZINi2LZ999hlD39P3gu+RC8Px7PlzVquau9s3y1VTVZVIuiW5KpdFyBhMJva6vBljycMAACAASURBVFNzxmJUhYoTVAZrFR+9esnV81fgGpQt8WNcNh3VqhGL7JhwmTShyHa2uYuEUdkKVI63NgpVOApVZLC9oqxF9cJqS7GS41K9/ogr5yDbXvMBnden+A5FTFkNI/MQ8gZsbI9SpPUD682FkPa0wxYrknIkoYotklAavajqnLLgvPiIGdCsKWyNFiMCJRtBFRIpRJQyGFeS+pau75e3OAwDl5cXVLV0VJ1zDP2UJ1cZ/gRsNiLDpJQSCSfZmbKoY8RI1wuLfRzl+WMQhYxV01BVJXXTZFWeFX5UjGpimuKSJ1BiYDQMA8bqrC0v0LPggygK+Yky22P7bNOtlEZZyzRF7u73mU0vkKpzNSG5x+dTc1IgiadMuky36rpexq/nOqkPcvxcvOSYj7nRGp+nXb8unoh9T4FSYmMPqLmYnOE687WWhMiXFjUWIfFFlOiMz17NWaJwuT5n6TmVJ6uPTS0+AOs4EdvVg4fM985c8GpjsK7C+AmlB+rVCu8966xwMfmJ/eGAMprtbsfLYeSnP/0Z19fXPHv2gqZuaI+iUNV1Hen2DqXgmK2058/gg5daxjm69pDfTODyxXNevnzB5cWOuq5EWz7KBjUgm/s5Z01TZH/foZRor0+54aa0pu9bxsnjpBjAWYOxlqapGYdICPKZfQgorSmKkukMFjF5KdytsSIBeqaUdn5/Pzyqy6k/IyiqrBBklhxE9JkYGX7tpvtD8eV70E/xFE/xFE/xFE/xFE/xFN+x+EZ0ludYyBo8HJ/MGn5iWCHd0ZQUSQuswjnHdis7nhiDEMkUyxggxpjHLekLnWXZXWi0PcfjAEra/zFOdJ10dSatMEbR1CWuMEyTgOe7ruPiYk1dl0BaLCG7buTt2zt++pM3rFaXvHz5Ec4VTH4SN7Bh4Nlz6YhvtxtqFPdtxzAMgpd0Ah/56PUrPtdCyJkdd/7Fv/yXdG3LarWiaRqBSujZ9lvRNGvu79+dsENKi8VnWTL0WSaKROms2Gv3LYbT7i7EgFWA0VSFo8hj6BAiKHH/OykACB6670eUcqJXG6OYDSQhaypjIBN9tI6YNDH4CcpK5OW8J7aKYRjEuGEekyRIPqBSyDPzp/3ddzaSEE8562bOkmph8iITpQWKoIMwwJUpCTiSKtBVjdInw6CYSScqLTYbSz6A0ygP0gMYmDYa72U0W6223NzfoowVYx7E2CNmTN+cbxbuQMZSD+O4OFxN4yjdn6wHr5R0htzsNviAyCaufj54uj4y+AlXFKybC8rCURSBu7s9Q+5EF4VA1ZRR1GUt7qBdB0ozZi1po88IzVoLlhJNiHA8HHn7+TuObSfs9jyFe3heyPhPIWPLqDcf0yRdYYD1eiUYwbNmzuPOzgMN/LMfGSPZaRrHD3aEnjDKT3GKh5BN+dbD6+WD0oN5qKEUD6APSbHkBGMtFAXaOjFG04YTxe8hptc6y3q1IoQg8AukO6vme42IVlo03ENEG0e92RGN5nZ/T9msMNPE9vIKgHfv3oo0G4m6rtnstmy2G8ZxoutajHZLbROTYJVTioQYKcvyDDbaIlDSE07YGMN2t2V3sVtMRLSRdXwcRjwJCrdAxwrnFuz1DB1T50cgLX/NBwQQ7gEYgWuqmbSvH3SWQeATKyU5SFyQZbwfoyhlVYU9weQyhFaR6H1k6sIiFbjbbqgKA7kmG7uWbpjoZ3Ml9eU5UN+QYlnGJMuhfXQhxxjzQX54AwhuMFBVJc+u5IKKQQpjtSwqWX8wf+9DMYPbxRSgwOgk+CKjBcQXT37oSmsKJ9gco7VYT2Y7x2EYKcpywRce9nvu7u4IwfPi5Qv+7M/+jL/6q7/mn/+Lf07bdUx+esD6nEcatzc3PLu6YkKUNzarNUVREH3GWCFM/Wma8ohWRpPROl6+eskPfvhD1usNbX+/6KdOIVBVDS9evOB+f0ffdmgUMXoKJwYj8402M1RlBKopbEFZlOxWa66uXpGURZcWFeW5Q0IIO/lcFYWDEElesJYpBoxSqBmjGSxowUzFrFqirKNcb0jaMPppUdqgKOH+nlS4TAx6UsP4roaQSjyaJKY6cVoIaSFIjlBaMIIkWYACGmMsxpZgSsHP53DWyb2qAGE5oNVJz325HzLz5QQHk5+5yrDe7Nj/dcsU4jK63VxccOiOFG3J82fPWa3WHA8tIUbRHZbVeMl3+/2evu+5vBS5t+BHYgzs9/dstish18UT8c4YLRPgnAd9bhgUtiZVMAzTYns7TSM+eFarhsPhGqNhGnvatmOaxFXreDxSXAgpeT4+go9UTN5zOIj7lzlz+ZzjDE0p+EI1L6Axn4a0QDy2mw1KkcfSaeEqyEvNOf9hk0RlqJ3Rmpjdtx4yC0+PfXytPMV3NRI+3y/LRvOsaDYLxhiUme/DTPLXAptSmacUMoZYO0eKEVOU6LoRg45cXcd8F4hmzozHzcZpWpGSxs/ueebkPLlgjZ0UhSEmynWDcY5/8+N/i1IWdKLKcpcoLZtqoxnHkcIV1E3NNIoLnrIn05CUN/7L538MN0hn9xec1nulFggoSja8WiuGvmcYOsgKPlVdL8RdhV3gJt5nrXgbF1LlL9/8kmmcMNqxXm9ZrS5IUXE8HqiqCmMMw+Q5h2XVdU3V6GywKETAFCMxq1wUVmPnjxQCIAWy1p6WlnGYgETpdoQEXmU+VqG5nxR3QwRXE6fjl76qvhHF8sy0THFmrs9KyZzwQnmncr5hiSkyTSN1taLIxdVmd8Hb97cU1uIKR/KekCR5P071H8KrhBCEkBImUpIF+FyAIcYo3dmhpSotMUJZ1Ezec3t3iw9+sY5OKnF3f8vLlx+x3W64vn5PCJ6qqhinEZ/tY+V1I1FJMdD3XXa/irx794436Q2Fc6zqOpOMYHex48WLF8KAnTtExvAHf/iHvHr9mrZtqcoGn7tXMRcF1jnqqsaPE5VzeWH2pOg5HnPHWSEFroamXvH82RUfv/4en75+TbneMo4eV6hltzfL5xitF9MXraT4QCu0ciQDymfcpffCFnalWN4GD0rcwlyC8Xikz++78h7V1Kdk9+Tg992OXIQBECJTnrQMkzDCy6JCGbsgZgUgr7Ld7RenEupsUqEQtZiYtYBniae5qPNZCi3FkxJMiNmsQ82JXaTX7u7vKQrH5cUlVV1x2B/x00ThSsZhZPInovEwjgtxDxIpauFdpLAs9LNDaeGcdGpjJJHoo0cZ++BzyHGSTx9C4Hg8kFLHMA6URUHbtrx9+46b6z11tWEYe0LMHIGqJHhPN4z4buJ+L2ZB+lduUs+aGoCbMcshoK2Qo2aC31JYp7T82uMc/KCA1pJHCHJs5k79l4kn7PJ3NxIQ1alojGebsLnlNisozPWEjwEfBUNrncsOkyxOnqpwQiye3QC1iCaLCs/5xiy/Qq45lo1kdv/U6otyiWr5K/9f6aw3rs8fgcruviklmb46J7VENWXhgg6f64mkHSrEpXFnrSUEn393xBqddZhlsn2xXfP69UfUdc3PfvoTjscjz64us3CA5u5uz5ubay520pS8unjBdrcjxYSfZJodfMT7RPAaoiIqOYbDsWMYPOumgDgxdtcUznJ1UeLjhnefX5PiiYtgjSIqTUKj0MQkHXBR4DLSLEkKNWusB+GmKQUmJXTyxDAtJOyAYX5oSinbbYffOkd8I4rl3LjJoZfiGZgV/kmzjSGQtBZ7WmWwZY2y5TJevbh4xpvre0KMGFOgsjRafAzEh4fjvPzzfhjYrle4wjC0B5qyWAr3mWEuZgSB4CeKpuLi8pJ+OHJ/f8T7wMuXwopvVjXGKGIKtMcjP/7Jj7m5kTHKixcvaFb1ouX65u0btEl8fnNP1x65v78RF7x80lVpicRFLqWqSnbbC6y13N3eAizyat572rYlodjspFt1c3PD+9tbnl9esVo3hDCxWa8YupZx6LL2YJaYsQadYR0661+HbEUbpoGEleM7F8vKEKOMTuRwPkxQIuKexPUIUEWJzscvei1jFER/tagr+ujxeVEM04gti5x8nrpF3+2YOw9kSEZcFh7rSlxZocsKZRwxGSIyJtU629N+ieSYckdaui7ZdGeapKObpRUDUFSKrg0M/YGqrnIx5/Pjs+21lsLbZgvrcZwAg588cfTc5vv25uYG54oFbhaCJ6aIMyZDz1i6OFcXFxSFWzrLP3v7GcfDkbZr2a5KYhS987ngdM6iFAsxLqXI0I/4EGnbgabe0bUdQzZeen31jOA96e6eH//0Z7y/uaMqK1xZ0w9jJj2eE6TPCH55s3HqyosSxyqTdeW8kWF0v+JeVic5JzFZSyIxlxf5p3iK3xgKmAvNlIB4Bkc8KzbmC1KR5QY/8JhHMTeGluv3jPCa5upbna5trTToU0F9bqo0K3FprBTCCvo+MPYtL16+5t37txzbA/7d54CYE11ePWMaBxEJUJrd7gKi5v31LV3bMu8ltVNgRnHZjZHD/T6rRyhSUIw+4JymaaRYruotg7ccPm/5+S8PHNuWbio5DiUhJt6+n/jszR37veSJprqkLOtcQ0ljK8REDAqVLMFH2rkROEJTrajKknHoOe57Vk1FUTzD2ZKiLCjLcjkucfAEHwlJNJNjElLlqsqSssFLK2SG055RhmVCcDo/McaH0M0kk7gvu+k+j29GsYzsJpRKqDiilMbPH3A2AjjrbJwzU6U2i6yyS9TFxTbLpXgKVy6Pn3VYf/VyKTu+th/YH1pevXzGMHQiAp6VjJKXkzR5T1GUDGNPUW8gyegmxIm2bemGPr+XC/7u3/u7XL8/cjje8/76lmH0XFxe8vHHH4OCbrgH4O7+jtW6ls5ZxiyuVquMEUoiZWUN7UGeO4TAsd1jjMhHGWNYr9ckWPRam/WGzVoWqr4bub6+ZrveUNUVRVWCUlhr8aPGFQV+OitGlIJsBZyS4dXrT6FccdgfUOUaFcAVco7EJCAt5guKxKqucmcundRN5mLFWDAyVkk6YlS2Ic/n1BXFooPopwldlihniePTYvldjgWqPBdcUVzcQO5x6wq0KcA6JLU50Pn/6sulunlsOUMxQO7tma3uvSeZRNIKXURMgMurCy4uL3j//t3yPM1qhYjxJ4I/JecYTjjpw0GY6CFGyrpasH8piaLP5Ee0Ere9Rb4ymxZVVcVqtWI/dnh/y939PcFD4UrJFfnxw9hzPB4IcaCsLCHELOwfmaYJpTWT9/TZqjtljCDKcH1zyy/ffI4rqzwKPnXaQXo9IQrUSisleqi5UNYynqIsHLutsPnF0fNkhHTe2YnxiwX0vCkyRkwNZpfPc7jYw8c/dZOf4lGccQ0gQ+7l23KvA5xDFma8cv6deA5jyEoyMeN5YyLzk+b7QqAHKslUVSmF0Rato0hS8qhTnP+OJJLJ8rhEkgk8e3nFj/hb+GmkylOl4/6e6/fvxTJ+Mrx7c09Se6wpsG6FcpqYC9QYEqlrqYod0Qdur29Yr9dLZ1rUIBRNI3XVNEW6bhTjtH7k5uaOw0EmUDFGuqHLamCzsZjK9yUo5TNm+bTJSCnRZbc/TaKu1xSFoe+PdH2PNaJOZqzC5Brv3AjuC1Crx3vrBx39XCDnFv25uk7KjTh19jTTNDFN4kYa0+Mn/tXxjSiWpTY7uVTBDATPyfsDSVCpGVMrJ6auZdS3ahq0EhtqUlo6LCEmUsoawL8mp/oQcgcIyrKiKCtUNgQY+5YwTbT9wGbVMI2ir3x7d8/F5YaydCQdef/+BpBd4m73nBgM7z6/xxWa0YcHPu59Jg/GFGmPR4yGsnDs7+/o2iNXV5ds1huMsRTOcX8rusybzYa2bVFq5GJ3SV03OOfw3jNOgoWexrAQFVbrFZ9++n2U0XRdR1GUjGMvN76zVKpmfy/FqCkKUIrVZkPdNPydv/8P+P7v/h7X727w4zsuP12jgD7LZVkrBIJ+mLi9lY54YS2le4QjnAexShMx+OQJStMUMgGIRnDMhVmRcmE8hgBedBeT/+1dd57ib1JkXKFPYkPv/dI1EEMgK9JQzGYXGmUcSVm+rPDPuZHJuVzR/P2Ytc9B5JurpuSlfcF6XdPm4vfNZz/Hasc0+YxFvqRvB/p+JOgoWq/qRJCdoQfTNNH3HSkFUELQqUvHs2fPeP1KplWrVSPjVISgKKY/gjM8djLZ2qx2i0lT3w1Esl28rXj3+ed0bc9mveWdu8s69YbCFecHgW4QG9qu69G2IOaRc4ynPK2ZC1qFVprNZoNCRp8xT8XKcrVgsZXOnZ4MLXmgm5+PrbaC/IQMB0ti3pBipO+67ITG8nsPro4PEP+e4rsXSmlcWc4VMSm7vgEnvHD+Ws0a5sGDn3CzS2xuzllbkbQhRJcl5SrQJaBFbtW6s9edQR5glF1yRvAxm27JPT5foyejrZRvJrCFpoiWsizYbDaMQ59dPGVzmmIkJOimDu89tihoGrtAVefPmWLEE+n7nmEYFknac213ccWczb+GhQM1T6fn/4N4UpjyZAIlTQopapdG/aPCap7MSSNUjoXWmsI5rJXGQ0hjzmGnenjmogmh2MhpVJFhGvHTKBLDJPRcXKeAImJQYMSEbv6cXzQyS4zDyDAMknd+iw7zN6dY5tQBPrWQWCxmH+wOVd6NGI3KVrR1FtUvnFuwcbN6Bstzq2xkcPbCZ5GQg9sOPZMP7C4u2a0bVCb47e9uGfoWny1yYwxY6+j7kXH00tnKihlA3qV11E3D5ZUmJst2lPf09t1bYgz4jONdNQ3j1NHe34vlrDFMY49KEaNEkF85t7jwzN2vEAKH44HjUWxuX71+TbNZ8/nn74gx4TO0YppG6rqhbY8ko9hsNhR2x+Gw5/rd54zTJEQ9WEayg0/86Ie/z/d++Pusdld0neem7/MCppfur1hRAknIhl3XsmpKmnrLrLVKiiwvoB2qrLG2QE0TyYM2stNLSmU7bElWPgQZbyue8MpPsdjN+2HIm+FcuCrRTY1JozEobdHKkh7ljt8U54VxOLu+l05z/jPnK20Mh65lHIZFZWbsR1JIaFNw+/5IWQeMKemHI346YosaHSIhyKb8vIudkhSTksgDz5894+NPPqbOxW9VlZk0JPjKjz/+GD/9nPY4ktJIXTbArKcueaIqS3o1UhSO/f7A2Hsudms2my2QqOpmUfy5vbujqmu6rsvE4QxHUWLUJHEqUsWwSMakfd/l/CtdJz8EnDVs1kIeTDGecIaPIi2dopPbmkCzQyZzJvrsZvhYKenx8zzFdzvEKEPWHDESM6dCZxpARUQIIZCmAbzHTxNp8pTNJqu45ILWVfioidGibYW2NUqfF8i/4k2oGWYRl7UaBKp43kE9qeXYpRyRQk+gj9M0LdOzeYM5Q8VCCOi8+Tyr0x8ch9P7PBmYPK6lYCYOS0Ff1/WiniE8DflZ01Q0q5N2PFmrPlgxWUIprLEE5fF+WOBXu02DNtD3B5RSbDZbysLS9wMhBYL3GXqVNfAz30k6+mKw5EPieLwj+AkyRG1WC7K55tLOYo3BjR3enT57Sg8L4nEcZUolreVfcQK/GN+IYnnGDimlpbg6e//zDuH8ZOdfkoUNQavssnRc09Q4ZwhTJASfiT0y4hAY+jkc/3TRzGOTeSTTDyMXuy3GWmxmiJuMBUwAWuxo/Tii0EzjhLvcst40S1f8cGzx00hdbfnRH/8ef/1XP+H29jrbQ3tSitgs3F0UDqUT1hzELEAplDXCci8Fo+inifVmNX96EuC7jm7os2ybYorC3h2niePxyH22eezaA13XoZTs9IaxZ72q0SoRYhQb2XxDy2hFCgFjRSYn2ZKLl9/joqrxRSXqHPOuM/hFleTy8iLDMJpHmeSMsKDkaz2fe1WgQlo2S0opXCO76aBh9B43DrlL/lQwf6cj49FCNtaYN1VoxeATRoExGqMLtK0EhqHNb4BgPYx5ATnvupTlyc71PGsoxdKBmbkD3k+kRJZogslHrC0xbsUYDD4qiuAXFyljDSnFLEU50NTl8grOOZyzi0V9jEJMaQ9HvBJ8ctM0XF/v6do7YlCs6s3yeK0V1hnSIDCpafL4kKQZsLukqh3X12+5P4h6RvzsF6w3O969v8bHRFnXWGdPZibz5pcTSlAp8EmUA3wunueGhdZ6kfWcF3UxZnl4rOevzxn689TQGEOKMoWb7W7nxz8c3X7xOZ/iuxgKlfJaMS/2+V4T1alM/50mfNeLYlSSTmiMEe0DZLv4kDQRh1Yarc0Z6e7f412dXa+/7jHzZjdk9ZeZxOwznGvuJ87PFUJg9AKrmr9nrCGG9KAIPp9kWSuytHPzzWVehbWWy8tL2rbl5uZmaTiWVcF6vWa1ko2vTOzDkov95LHGZgWcSNseiFE2+M5I026/v8UaePZMuFb7/YGQQt5wG1KaO9FS/4RMtJaNR2QYetkgkETuc4amoZkzzpJDODU/H2f+kFXS4Ivojl8X34hi+Tw5nqGKAEnIC+HjrEs8t/+1ArSmykS5Gc83+k4WVKUxedwxBTgH38tF+Wh0l0RL+P5+T1NXrJqGopHnrlcrrJORh49QNWvavhfyobY4V+KcY7cTjJ5xjsO+ZZoGIa8VDlc4Ju8zySUQgrz2sfNYB5/+4BNur29zt1bRtUfa9kBKKhfhubh2BdpYjl2LNXZxG7u+vmaz27Feb7DO0bfS7fKZfS/4Ys1hv6dt92zWa+r1imPXitUmUFU1db3i+Uef8uLj7zMFzbGNrJ69kgtXyePm3fLsNmaspSgKST7LODufUwVplu1yBaYosHmsnnpgjChrSXk3W5YyKXAx4oMs8rJoPy2E39WQbq9YoCrEinVevGSNUKSkiGi0dihXgrKLDfOXfY3HxfIDFQYlqj1zmvJ+yjhCs2CQ55jhVkUmD8nzJCHQVWGRsrx9d8tmuxF9Uy9YwrqueX6549WrV2glzp4AdVOjlSx8XgtxuSwrrJGFznuPMmpZBENV4P20YBWLohCGeBDtZ5tx2MfcWe6GiXaYuL65IaZEs24wRgg4IQSmdGLYk8JyXEMmNgkBSp0wFCS2s/60s8QpLLCTc7iLtTaPS886QsgiabQmeVEJ8v7DMIzzovmpu/zdDikJ5qJWKsv0oQ7i3Hw7/1EuQr+uVeYxhOu8oJ2JuPM6ev47fhy4u73l/ft33NxcA7A/7JcconhYBHddL1rLRu77pqkJXi+KGU3TLDCI+X6bcwJIt/VwOGSnX+ku933POI64rKBVFMWDyfbcFZcJuVhra4R7FmIg5vw5Py7FJColvwEutRwzIEXJvSHI64TgxR1Ug1423IakEipI3gkhiCtwEmvrkDyTP72XYRjo+u7B9PDLxDejWM5oF5UTaFq8rPPPHwC2c1KU/8kFoE4F92a9oa4q7g8tSrEscsJMZ67bluf64klTTCHw7uaGcRpp6orCXcpPtKUo5fEx+IybllGw9yGf0MRw5kO+3W7oR7i+fi9kAJUI0WOsoaqbxaygrAzH7o6YRKfYe5hGsbcchiET36pFrm0wA3W9Ek3D2vy/7L1LjyVZlu/12y8zOy93D4+oqszKrtbte4F7kZBoif4GiAETJGYwAAkkLhNmjLgDJneGQAyRLh8AMWKC+BSIUQsJiYZuurOq8hER/jjn2Gs/GKy9t9nxiMiMrErdzqrwJWW6h/txO3bMbO+99lr/R5XCiSnSn3uurq45HA5VZ7k8IC9eXGOt5e3dW1xjubm5YbO9wriW3/7mt3LW2nL76udsdju2+yum2dMWM4AI0vlOVcYu5WqbVYrdpmO2BmctIQbQpt6bRbtA7rjSSkxLXEuagNyOXncQtDVoa/BBkoDLzc5zfEqRMgFaG4duDdrolXwhRAwpk1LROmOXdWVLf1+USf2duWY1/6BEIslaWYyH85mvv/6aaRx5/fo1QJaEU8SYqgRUzBWYggcUSTchwDw+Pi5Va6V5fDjz6tVLrq73GLfh8XjkzbdfA/Di5sDPXr0kpcjp3KNNkxdhT1HT4Ml8eX9/T9OKWct+d+B8esvDw5FXtz8nIfJ7T8l2fT9kIpTGx7jYw2pdTRWIS2Ia1aIeohWEjAfUSlXFH0mS1QUPZd0GJkmtuuCSYww4a9FKMQafK/bxOxfa50T5OYCKTQapJr8L3UnVOGicZ4w2dJtWOlVJVVWJiECQUGaxuf7IKPPG2gStjP0STdMsvwsxa6iL38Lj8ZHXr1/z8CAiAH3fy9gKnsZ1tRrsQ2AcBZvcdZJPOOvQSgpaLsM3SwFuuQbry5Xec41Wv2dJkIH8OUT61nsZm0LUk/fvuo55ltzj3J9xTtN1LSktf9M0jmESlY9mdV1jgnHyjONMP/VMc2COiWEYhCipFFG0ueRckkEFxRg01lvGaWKexPgtoAhJMxUIqFIM40h/7n+wfNxPIllG5cky41WjXton76Syqw9XxcbTkixfXx1onEU0ksVn3CmVd2/CYNV13XsPeFlBSqKmMU0z577neJQH2qgk+Bit0VYqqPcP98yzmJj89rdfE7mtdvHSohjZbK9I2WCkH84opdntd7x4IZhBed/E/fE143EkTFPd9RbMtgzsue6YjTF88/XX4uDlHJvNBqU14zhyd39H03VstlvOmYTn/Yw10naJwdfjlHZETBGXB67Whs1uR1QKn+B6f8Pm8IIYEiqBtjLZFGcuZcm4ognvZTELGeddmMRq6d4SakIiePM5aiwKtCOZICSfrF5grWbnZsLpgdhnGbnn+HRDib63aR3auSpHmBLopIhRgW1Rpq3wi48/9OUGfW2YURa9dRs2pcjj4yMPDw+8/vZbzpn9nXKrVGXoUUowZAywJJTpoi1ayDSlOyQySgCWx+PMV1/d8faNwCRCanGtZ548f/13f8vLl6+42t+y2WzwPuCsYCJjWvDF8zxjrBNt1sbRNi1jCri2YxweSGiMWRbteQ55IRHIWYFgxCiuiNVOJRfYhQVvnszNkii/DsYEDwAAIABJREFUePGiOm3xJJFdV93KvV0Drcp7p5QY+h7nmrrgP130n6EXz7FEcY7NCV4IpGIsBjVZkHEi631SGttspBtlTO2CKixJyzyTlHmHxPaDz2yVlF50RrgcHuX7S3lbKmF//Xdynpcb/LUpidK5u15eK4QLYorVRVQbnY3SfOUINW2bdactrmkyr0Hex08z0yj6ztMoZGtFotluSQR2uw3H41zPyVpL1zqUSrSNXNtxnBiGAGjWyr4+iBtfTIGx7zlPExGBZRQNfLVCCczR51xJ8jw1Tbl7D1GJTnOIeVOeiYWzl3O3P+B+PnsHP8dzPMdzPMdzPMdzPMdzfCB+GpXllHVFYyH5Pd1l5Zb8U3B9ZoyTYi3/v7i5oXGOFCLGaTHayLsrbTQxqrrrhFzdyNgMlatWTeNw1uKnkb/78reVqPOrX37Oy9uXtE1D3/d8+bf/H6fjic3+Fb/57ZfcvDjQdA6ToRWb3YZxGvH+ge1WV6knbVR1uisx+4lxmjifHzGA01IFdrstm03HNE0iPZWND9q2IyZpZTSN2F4WDPY4Dgx9z3a3W4RdUm75RDidzoDixc0LXtzecu7PfPXN16S8vfv5z3+G63ZE4Ns39/zyi39Eu9swTaIBbZQicckwLa0trRVGC560tm5T0cTIu3Wlswaz6OU07YaoHWEeBF9qpsXeNxUGvSKGyHgefuDD9Rx/LKGUQlsn1VmVXfkyDEMZC8qhI4ADI2ztpIoz6EceP1dRz+dzxSArpSqh1a2kl1KMFUt8Pp+rDJFgHnXWO3YEH8TSevJcXV0Rw3xRCS3YwfIzk81IvPeM48jpdOJtloxMKHyUqvTfffmWcw//6j+8Yb8/yNyiHDFXewC8n1hPmzEWvKRUksdpYrvdVp3lGCLnYWScPdPs0f2IbRYi0aX/2AKJS0rj50k6YSmSgrgdXu339XVrpY/3Xfun8/76Os+z2Oh+qF38VObvudL86UaKiSkr08izF2s3RGWJNjLUU6quTlwqrROoxQpuoYo6iyo9j9/9uSrzS5V3W8EalNZL5VcXm3cyxrkegKZpLjpSAu1anv3yu3kWyOccCuSzq+OnvDYBY4Zp7nY7fJCKa4yREKNotatyXE8/LWvvEFOFncYQMs1M0TQtvT4BqoouWCOkX2MUjTM4q5mniWkamcdIQqGMqVXzmDkhquDNPxJaVV+Vc7pU/p7VMZJhngXiMU0zjf34evFPIllOCOPZR4EHZGnu+vswh/dKyEkiJg+cycDzly9f0rYNKUVi8HRdK0B4Y7i+uib0R+Ig7dKYsc5aKZISPGQIkRDBDwPn05FpGBizycjLl69wzSbj5gz9NDPNE00MkKVevF8WKtc6jLEMw0BSJ47HEyHOXF3fsN1uOfc9PstHnYcj0zSz2W744rPPuL26oe/FWW+aPPePD4Rwj49l4VqgFDEGSGKa0LYtp/PAb776ijkEzucCw4hYYypof7Pd0m03xCRajI/HY50gfq6U2Ha7hkSiHwaaboMyRmy4A6AWAL8QKGViESW/BFHjzCVkwnzHc6ltI05+IWQXoLxBUqC0QVuLDrbei+f49EJrQ7s7oK2FTJSu0j+mtPBVXexixvC+hxD9wSiTqve+YoqttRwOB9q2y+qHsvWLMXI6HYUc83isRJ0CRVIZVhZmz/F0AiXj02hJiMvrCzGvkH2cc1UTtZBUiqb527dvOZ/PjOOIaSwKwzxHcRX1Qf49eabJ13OxVnF3d8ddjFjT4poWG8WdMyWBlhTVoaAiiZFusxFohTHEmOj7XmAcRmGzNKZsYmVhK7N1jBE/B1KYabXi6upq1UYuN+Ny8asJ8JN7VFKTIhf4Pge/97W0nxPl5/i+eApf4Mk2sPxcKSP6ysrwUTvu9XtkjHKJMqbDivhWYEWGMg6om8aFgLacmc0k+uBlTIaUcLbBOcum2zDmTe/Dwz3dpq0bfWvtBX66jJFyftbaukGvRa4VETfGlAl2WVEjLRvv1Qf+wJXIEJFSIMznMY4TPmQeSoqV86C0zkZMTc4HsyJOCFXcXRtxC5ULm/km+RwcCwdiuc6FA2WZplH0p6eRq6blY+MnkSxDlk+appy4Kp5I49W4lAsqGJ4kYtXAzfUVbdPQNg1jCDSuI6XINAkBjxDYZMmRUC5wtcOsqsC5IqvwPshCB5zOZ3yMzMNZQOqzuOTFGDkcrnh5e41zhm/fiCnJnDyvXv2McfI0jWUYzpmZuiHGwPH8yOTlvEOYqW+uFW3j0Fqx2+3Q2nA73vLm9Vu++VZcwu7u7xknz2a7J8bE8XSs9pNt13E6nTidTnXXmZQYFyidrXBVQmtT8ZLb3Y7NRmRhHh4e+OUXv+Lzzz/n819+TrdrmdNE12xQGuYYMVGk8+TcZXAVvdiwEoF/pxvwoVAaZSzKOPCzKJkAOoHWDtNu0MYy/wBdxOf44wqlNdq2CPcgZonFvGHT5J2VWFunNf74h7xHHifTNNVnWGzcZWddqscxBqZx4Hg8VrLewhSPkKSCpFZjoSSkzrmaFAOL6UBmqbdtS9u2bLdbjDGVoV6iaBIbrem6ThZbI0oaWmuRVyseDKEhzYa5HxnHM4crx/XVDdvNDXd3d0Is9Cu2+KraZazF5Eq+91m1QgupWc7Di7pHks27VLYVGFkYjbO8eHFTMcuFY1IWzTWZ973Jcq5qkSLzNGfd5++PZ5Lfpx0p5Xyg5Alakiv5pYI5EP2MnwJJGYwrHSXJPZTSqDxWtW1QtgHtQBmxdP8B51KS4xAC0zTx+PjIOEo1t+s6rq+vaZoWzzKuYxDHv/JZLjab5Zh+FmJdCGhtcMblzXeWvAvxnS7M03haeCyV7qL+U867qgGtxmfKyjVKScdeK4UyCmM1IXiOp0duX4iV9mbTMvQnzuPAQe3YdA3jOPL27R3Obggx4ZqmkrUb6+jalpjg4fERO8n8lpC5RhtD07aVHKmsEYWMPA/qvmcevcxlKNIcmXNHvhg4TdPINE6oq83H38uPfuW7F/ofA//z6kf/EPivgRvgPwO+yT//Zyml/+07D5aStO5zi6K4b5Vo2gaFqpXlcmN1IeEosVoFUEwc9nuMkXag1qKvXAgqIUS29ilIPgG67qSMkUqmyKEZfG5VfPX1t1wdvuT48JZ5njkdj7x69ZKbm1eMg8fHiTlEjidpzbrGYD8T33etFU3bEIJoKPoQeHw88ngSpqvW8PLVDZ//8ud89vkr4nGg65pMaolZEq+ly7be8a8T/Tff1od2miaaRixzTf4M0zRhMgFqDpHz4wMo6DYbbm9fQDK8+faBaQw41TI8ynn//Bef8ad/8if843/yT2jajv3VBu+zha0STcR5HOsC/pQI9buRbrRMSDZJxSrkBRZZIFUQSarSPn6OP4z4UecJpVGuI4VImCf60VNkzG62VzlRFqtmoAKFdF1rvluyaJ7nOscUjVMQwp20LdMC6chVnz5DtIa+r0mhc45p9JzPZ1zplNQWrMc5845t81pCzTlXCX/GGDabDZuNjPtSYXbO0m1aNl1XF8QYE7ZouK82lY+PR1IItM0Wpy1hemRME/tti1JdJh4uBCHXNOx3e/pxIiFSmoWU6JzB5cQj5TlyTsBUCFMJ4dLIPHRzc10Vf1iVIsp7lQU6kTJfJ9WkQK4NEBPzPH10svwcf3jxY84TQupbVXQTxDwnhAQpeOapkNIU2jgSitGLDb0i1eTaaIe2DUk7EppI+uhkeb0Orp/1WDfc76sIyvxS8h1YtOQXNIYS2UdrpeAXItEESbTzMcVISVVTlKZp6txWKtxKqTqfzLMQ3vphYJ6mnBwrSIkpQ6C6bVM/UxBmJFpT8zCRwp059yeMUVXrPWWY7G63Y7vdMk4zfd9ze3uLwjHNHmMdLruINm1Dt9mQEDfjvtdi8Z2ELF26cjYXG3ROloHqvqh0QJX8fj3lK4HAhiA52A/ZV//OyXJK6f8C/lzeXxngS+B/Af4T4L9PKf23P+BYKBLOWqY5kLReKVYIhlkr/U4idvm9vF5ruL19gbOGfvKZlZ13iVrhlSFRdhkIilYp+UP0kvhlqbnGNUy59f/w8MBvfvtbYpjFjjGKY50CXNNwuj/ikqrWsYfDlRh7GCMW060jJSt43jkwjAuGSGvH1dUV1ljO/YA/n9ilbU12Cz7pcJDq72ef/YLRexKipfh4PKGVVI1nHwjTjFUaMit+6EeUEa1F43b4WfH4eMc4DPmhVxUz1Pc933z9Df/gz/6MGCNXL17U65uhVBcajeU6wJJY/E64wWxWorRB5UdTJZESTIgutXEf3zZ5jr//+DHnCSBLEVp0MjiWVhvKkDIgsdR+ykSp86S/loV72vFYV2HatuX29rb+rjzr9TUpMntJZgtmue97rophUE62h2HAx0TXbWnalhgT0zxhbIfRqqrPhCQapIoF1wjUapRSqlafi9tXt+s4XO+5vrnBaps/t2xgL6WyJNFsrOLm5ho/D7x5/Yab6z23rzaE6EhxJsWpXrOmabBNR+sjWtus43oSy1sleOR6O7SGpNAm4ZSjcZbOasazbK6v85xWzuXiOr43VmoBq81EqfY/xx9n/OjzxHLkCmkALgpnIu0olWRRo3gfTCg9+ZrhuT/gDMp8ULq4ZRNeYFb1HJGKcPSzSKWuOAwlQghiVOakw5aOR2YfSNOEj4tusPee49ljRoMPgW1OmAtWWVsralZ5TCVA5QQ0poSKcYG9ZrdegUkUYzGV84aV5FuIVUau65qaM5QihTGSX5Xp40P5QZ3SlcoKF+KWLPBXyeO0LplI9nlQi3KOUgo/z4zTjGtauq5jGIV/Mmdexfl8YpqmqkD0MfFjwTD+beCvUkp/87vgxWT9iXVxK4sG9euHLmqqwIk6sQIvrq9RlNaghyhwCoEKaPEcZ0n8yv8SooVq8oJUrLfLzZu859wPbDJEwhhLTAofA9vtgTd3b5gmz82NmJJ03Ybj41E0EAdPjAZj5IZa52rboITWhnEaufvyNVvr2G02TMPI19++4Ztv39Jtdnz2+RcAXN9+zs8ny/l85vXrN5AM/XnIGqmCL7y6uqoap8PQ45plwY0ZyBmzXSZKVyvavj/z5Zdf8mfffksIgf3hiqbbSMKRB7V6ggkqnvclWf7hoYgolHaY1qBibmn7gTAmvJ9IPlFcfp7jDzJ+r3ki465qslVagBJ5Ii96nWlJliv+vbrQyaKz5kAUmcZSBSq/hwXPJxJIBtCEeSTm6nOxe18TkQtsQ44hC3IIM9M4Ym2pjGRYRnT1+EorxmmiaRqBTeWFtkIjjKFpGna7DdvtFmct85TNU+JSAV4wiYHGNTROUJhFNinGWNd/s3Ly8sGj83VsjJXNSVLsNju0hqYxRC8LzDQMeD8zDV5s6wGjNc5ZvJGCx9Vh5SaYQq46L7FAMDJe84Lll01LcnX7fZjl5/ijjN9vnrgIWeUvTIVQuTAD2liMa+R1ppHulHHS5YRVp0rzNI3+mFgT6srYXUMUC05YGdFZ1yqRlEYrjWvEDKjkNuvq8G63Z7vdoY3h9Zu39H2fk+Xl/cZxlPlPa6xzAqsy2c00z0/1PHm3M1yOU7+uPryIIixueSDys+M01mPUuVYJzHa73QCJt3fiDKi1Zp4Tm80O69wF/+B0OhG85+bqCucsf/t3f8ucHUWdMxgtHTR5Y11FFaTzJ/PFNE1o62izfThIQq+UYp79hUHMx8SPlSz/B8D/tPr3f6GU+o+B/x34L1NKb5/+gVLqnwL/FOBPPvtZtqGUCx8zdgfyR0yJmOI7uD2liptWlP+QXcfNzY0ky7NntjNkrAtIhTrm3ZFB5TZuJIWEj4HZC/jbuUZ2MzGidK5MG2l7aOdoG7Ggbp1jnEa6LtG1HT6M5ayztWwBzIud7TyBtS3tZst2u6Npr/J5i+vY19+85je//Yr95sCpFwzy69dv+fbbb9nvB2wjr2+aRgDyeRNQ2imwVKTmeWa73a6OL5uG0/mMRsxcZKfnxTmMQjxI/D9/9Vf8yZ/+CmMML1/9jM9++QXGyYIWWVrb+V6+d4CVtvZTh6IPRQLQFk1cdqXRk5TORhP24n2f4w8ufq954k//9E/FvlolTGNB+0rLWTy31Or/TztwC9+hbO5KtaVAIEoUG+n135bEDVXIN17G4TDi8uYXEOhUlzj3PSmKm9Xa1KNEGRdrVyylhFzrcBzPp9wpmmsr1qQo3IA8noV3MJJSYhonseVNEGMh+E1cHXbsdx1+7kkpsum6fL5aWrgxrsaozFeBSIyiK6uVlgUpJcyUKIbf1rbQOPo0sdVierDfdDgL/WNi03UZV1hKRbLIru9DiZjKHVwqyypD7VKITHkRXsczNvmPNn6veeJXX3xex7JSCj/N1fnR5HGsTYMxSpLIbiPj2jQklfWUTTbSMYJVRglZOEb4IaIYZcNbiHnFSKREIQG67MaHkg2zyprBOmskl8+yxJIUf+hUJCFe3mMcxwvXXaCSmL33dR4qFdryusKbCHHp7nRNQ9c2+bOIK2nfn3jz5gREjFGk3NUOPtBsOjabjtPxyOPjkcZarDW4xrLZbrHOZrhXbvQbnTkQoI3i5e0L7h8exQil75nVRCrzZ+MwZoOKihATOq2uVYoXm4LyfYiBaZp/0Obn906WlVIN8O8B/1X+0f8A/HPkbv5z4L8D/tOnf5dS+hfAvwD4N//1f5RkuVOU8oJaXidf42LSsa4GUarL+VM7a/nZq1e55A+kSEgB76WaakzEuYwt1MU2V1jfNoKxpTqUDTxiIAa5KdooSeTrJL080CHM/OIXn6N04HgUe8qvv/oGP3vabkfT7JjHgFaa82nEuI7NZoNxi8mIYOgtoHn95i2vv7mjbVtx3+t7nHM1KS4EIXHCaRiGoYLyy/mVcwPYbrdoY/H+zP3dPfM48OL6iq7r8BkfOeXKjckWuA/391zf3HA6HaurVsEQJqWY88ApbdIyMbRtu2C/P5bgV+43+UkoGxS3kd2i1qh2i/64vPs5fmLxY8wTf/EXf5FkypIJ0LjlYZA+SdGFen+sk6tCRv0Qvt5a+86iNqeEVSm7YiaGYcwVnKEeD4S40zYdwzhyOg2ESTa14zhirLQQ18l1ibJIGSN4xCL15EOoVWhtNN1mk2EJM0PuItXPkuenUoUdp4FpNDzGkaE/0TSK6+srtILHxxPDNFdnweUaFRURwRE3TUPUGhW9yG76XJiIEWsUTRoZ/YxWmqvDHq0ifdNwfX0tVeW0JMtLV2A1hyO4xpREyKS6rubKcshqGE/jfVXH5wT6Dzt+jHni3/rzfyMVshgoZhWq6kPS0DgnxkbGiopWm0letgFMlsnKY1+bC7Lwqh/9g2OtMFGiqHzlUbciy4tzpff+omNV1tVhGBiGsSa7m64jKsOQlbhOp5PgkrUc4+Hh4aJwVRR3nkZJ6NdduDK3+GExTrJZJSfV+UYgafM4oFLk6nqHaxYopVLSse77XqrbMaGVoeu2tF0rcFu9VNw3m1ZgHfNETIEXV1cYrZm8EPfmsIjXWmVojEFriybkivfqmpfbtrp70qn6l19Z/neB/yOl9FU+ua/KL5RS/yPwv37vEcpOIEkpPyUymDj/sn7EdysSRYuvVJics2w3HS9e3HD3eMZ2Hco0DFNgysmcLhbT1lTlKWVMblmA0oamabFWqselmtm1FqMgFb3RFGmc4fb2im1rGPs3nI59VfLYuC1jDAzHwKDPNO2Govnn5yz9Vire2emrbTsB7jeB+RyqlMtms+Hm5oarK6kst21LCIF5nquP+5qg5Jyjbdu64MvOMFV4ScFAq0jFchZ8dNM0pGnm7u6OzXbL/f098zTRdAGlLTFEjHF0nUwy4zhUeauy2Bem6g+KXLUW7HROYrTDtluwOu/oPyCT8hw/9fj95wl5NSkpQu2qLsnue6ssqyTw6dzxVIry+95XctHINE+01tL3Z+Z55nw6Cxu8YAz1ws723jONE3NOME/nMyGKW2aXIVLrKpgQcxaM9FppZv2a0fdYa3gzzcyzvMZPHmt0djLMCWfG/c3TxOPjAzc3e7q243h8JKRl7Jeqjg9B3K5WPI+CqyxzdE1wkQUr+Jk4jxnOoTmeZoLt2N38TIhV5R5l8tJ6IX73dq0gdXnI++CrtF55zfr1F3fp927bP8ffc/wo80SRIct/t/wivffbXHhbFSE/8BitUaFPZdiePnulKrv+uXOOm5ub+vryuylElFbMs3CgCmwihFDJujpvoo0xFUZQIFoxJUGhqdL1sbjW0W26WlQ7Ho/VM8I6x+2LFzWfSCmhzUL8W18jMVQW2FuxsJ7GkYe7O0AKdEN/ZhjPbNuGFzfXSIdIkt+u69i0LefzmdNJnEi992w2G5q2wWSY2/p+OefASHHUaE27mi/nEAgxLLkboJ7kvOvN+PumhBhjdfn72PgxkuX/kFXLRCn1eUrpN/mf/z7wl993gJgEr6y1wCqSEtgFAEllzL2qlYbVe+W/06unXHDJL29v+dtffyWLhTE4pwhJ5NKKLMzhYFG5gmycIyXFPEd8KHjIXHXON13pmCECYm9tjLA0nTGQEufzidev32CdYINfvvwFrkkMwx3Bz1jXVvyeYHZMvctN02CMZrvbMs6TmCKYE9M44Zyjy63T0gYpu7lC+DHG1IFT2j5Kr/SqtSLkXaHK2E8/e87nAT/PdG1L12Vbb2MwJnI6HkkpcXx8ZJ4mgaTkTUyKkaQvJ4mSsJeqXFnYPzYpWcMV6zOsBO+JdpACNUt6jj+0+L3niURms8sR+L4KT8Eqi4Z6rJ0p+KGJsrydzpv1xjXErM4QY+Tcn6uKBcg4GMepWsmuk8txmkhANww1AS5dImct4yiQCtFXXwjA66QwxFB1SnsvGu/C+VDSSYuJppU5bhw9w9DTOI1SYK1opYcgHTeAxlhSwTqWgkQuHIQYRDUgRZy0leoglSaTvF/Kc6ufA9PsScrQHa5RzWbBf/qTVKdjkGu5ykgq+XL1Ocu8Ps8+K/uYi+vxvgr10++f4w8ufu95AqjPpBxEYzMx3BiDbVts26K0FfL4VPhOKVMf7PLMqqLKJCmGyVCi923C1x3dfO4XX8v375t3jBEhg8Y1hOBJPrDdbqSIlYt7WimMtTmBlMRZK0WIgXkKJG0oC7Qxhtl7mhTpNhspnm06Hh8lWR2GgYfjI30WLyhKFSp3kNcd6vL5tTZ1Uz30Z/w0EZMnxcg49IQoOuxlWK9H4fs+d0qLYUji3c1H3aQjXJFt1+GsYw6BYZqZMrQGLdAzleR+JaVzYSNlg5Mn74sk68M4Vom+j4nfK1lWSm2Bfwf4z1c//m+UUn+ez+mvn/zug2GszYxwwfipUFiXhkrWWd734m9TWsm5ZBLOy9tbrNG0mw2Hm1umOfD2zWuIkcbKBdqaDTYZwhjBe5KxWLTIxhiLNobzcK7H1jpiVcLo7PxjDDElgg9YLQvebrslZALhNI103Y5ffvFLHh/PHM8DKYnnegwzfiXy7RrLPMPBWbYbMT4JU1yEvJEKy5iT5RAD0zzhg2eaZ5TR2Kx7XMgE1rl6fIFyDPTnAa1NZdd77/HzjDcGWJQmtFZ1F3o+n6Vy3Pc0akkyysCJMVYFgaIdWapiRXT9Qy3T8p+QG6SADMtAU+UZKL2UHwjreI6///gx54ncqMvtnhVSuSxi78l/y/O3JsqtTY689+9UgN4XMUiiGEOQiucsnapxGDL5pmwaJx4eHpinWSBJDk7nntnPdWyW1iv5AoiGtCWNoxiB5K7RtII6QXbR06DtslkoY81ZR9O0zGNfN+Vd16JJNK1jv99V5RpjDDGoaiwQa0K/+rwxce4fiSFitaJzDqeEqAeC/wwpVn6JddK1KnPOYb9nu+mqY6pKEVJAx0k2PSonJUrLxiYFUma9yz2SDbdfKQg8TUDelyQ/J8t/mPHjzRMKrKgxSJVyBb/Kjn3KSL7hvWBXATrbirKMEoWXfFLliKsm9wKLKAQ9WEjDTyVVP+qzI2RcOXxi9p7dbv8OXEsrnd8jVe5CjPJ6VMzzgrz3NAvEShvxRGhCUxU4Cm/guzaZa9zyMneW40v3WBvhfLSNY5x6XOPQCryf8b5ATLdsNpuaR2ithfektSTgCeZpqrBOrTW73UY2/iGgUmLTNGzaVop8PnDqR45nUSIaZtlckBRaGYFx1vlBNuG6/ls+W/CBcRhrDvMx8XslyymlM/Dyyc/+o9/nmM/xHM/xxxXP88RzPMdzfF88zxPP8VOOn4SDX9lJ6WxMgl9aAEot0m3rqpFAMJKoOqRIBQrrlmA36P1LUnvD2UPnE9vO8XYeREpOCdxgnme0yWjnDAQvUk9krIxSulZGSFLRJUEIGmcN8zTz+PjI2WiMCrx8+ZK7B9H0+/rrr7CuY7+7YvZRiEDWs9luLoDx5VxiLAYj4luujWa732GnDLhP4tRXP79StF1HPwwV+rCWqrnAHuWWRszW3N4HVNaatM5xOBzY7oT9H4KcS6mMKaWkJUw2gjEWlPjFl2MLQTHWHStctrqftkxLm+epWoZK0ja5xCCprKFr3sEmPcenEwkoxWOlpI1fnoeFxJGWuSAhjlzl79NiP1uki8ozuibzffD9kzz/IXhaZ8Xqvmk4n868uLmqxy6a8DFFwuxJOletVeYDpFSJOSA/KxKPMY+JGKNooeZ5qVTE/TgSU2DXbIkh5iqsrlhgYwzDSk96u93QOoMxiq51GC2C/NKd1FirQCnG2S/XLHNIUoJpmrK+ciLFluQMLlfMjM3nqYpNtxgohSwDejjs2W42y/0oB2ftlAooi7aOlAIpLsofSme4WHbcel88bXGv79VzfJqhrKG7vmEFLhar5PJ7pZFedCJpLY6T8odkWumqoqze6Ww/jXUFuXInfgfsfFkjS3XZ2Mtu11qlohLWyvxWIA15nkhKVUnXcRzrHHNzc4NSott+PB4SR6HtAAAgAElEQVQ5HiWfGIahuoGWv6sd30I8VkvVfNNt2G07NtsWBczTyOPxLSpF2k6URtadL0jMWTN+u90yWyFZJkTy0ofAmHMhrcQsJUXRnDarbpwxltgqrLHEfE/nyTN5j44yJ4nizsJvUKzvx1Itn1fkyY+Jn0ayHEVDs91sc3syUmyaQexrix0yRFKcUSlIomyMJNTVRU7wN4erA5DwmfXoDFmexNeFZ46RxlJ9z/GKoAJzFCcqjJExs1iA5SRXFsQ2EwBLm8IoT9dRnbxkwYn44JnnAESaxuL9hGsMp9NjhTqM0yCSMQrQMM0zfg40tr14YEtyXVx4UhLSXsEKC05nSVr7rJ7xcH/POE0EL4vb8RgwGhpnOFxf8+LFi2pf/fBwl9s4gaHv2Wy3nM9nbpNoV/sQca6pTfC1w9g61pNGOa/yffWYz+dZXve0caUuvlNPmMnP8SmGKgnz++a5lP8XZYJOKEiLDXsZP2sJpY+RNiyYOmNlU2i05pwT3jG7WV5ABJRsSIuGalmg2k6S4r7vub+/r+cy5A1vCKHi/eumM7dbAZQxaLLGu/eZWAhGW1xjaRrL3TRV6bhtfj+FkIuc05weHzk+HAlRoFt6vVkFxnkkjCMh6QwDSVhjllZ0RcgJ58JYi0tgrVvatQk22428vz/mi/j0hqmKWyzjWymD0ouSAdHgvaY/T6SkLjdF3xHPRL9POTLHpTwDKqKKukUGHyulISZ0CphiYqSKms7ls1PSvn8ZT5SshXkD7xz7/X45D62zxJu92OgXf4hIpLLeUPgw0/eJhwdxCd7v91xdXZFSYrfbVdUqkE1xWZOLgUopIpT5qG2aarhmjWG369huZX7xc4+xiRRmNpuGNsMxAGIKYi89yzzZti06qUXgQF0aFRXjGFVJxU9IvHABrVgTuxf953pBMxyn/DvD2WJgnqesTf9x8ZNIlmOCeYSmsaA2WJsgKzMkFDrLiMUkKhSmPNDrp7cywyL77ZbrbMgxn3tm7/FB0zQtwfu6OEQNyRoCIS9sgdF7hlnccJTS7HY7NnXByQlbirUCJFIwsoA616wqxHB1dZBzV0YSbGdoGgcEcclaMU+naaznVaw2YwyV5CMM2EXqRCmRaOu6TvDT1tJ2HT47h6WMpTrlZPx4PudNg0PpTLzL5zUOA4+PjzXhreS8mLi/v8dYS38+C1abfOkVi50l3z+RPE2c17vk9WeqB3z69wDKEJ8XwU86QoCk4f3LGiz1SqkwJ3TtGE3TxFdfCblea83t7e0FMe+7QtZYWWS1UmhrZX6ZZ9ECTksHLMYoDp/ZUrVUOqZ5Yrvfst/v0Vrz+vXr5fgpsd2Kw+bj4yNd1y2yUk9IRMV1TJJ3mxedBESmaaAfTnWh2r28YRp7hnGgafakGIVAlJbqigqhmhnEFBj7nmH2RHQlJCbnMFZhElVnmUwuKuNZW8M0BdlYBF8XzFIBkir4spgnSqG5aC/n7/MrREdaLMK9j6RUcN5peZ0qcwd8XwL9HJ9QfGCduFirlHCP6mZRaSnGqA8nzOURK8WfNWn4KbGvJJwf6zOwFixwzmG04uXLBZWy6TpOx0eaxqG4rGZrpYhJsLggqja2lbnh8VGKcjc3N/ziF78A4HA4XMx9Dw8PVX52Xbwq67bOXfbF4VjVpHW5QuriGtX1PsbqN1GqwzTCAZm9J6wdFPPXcRyze2+UpDgKn0EbQ9N2tE1bzImZxkgMPQpNo40oaq1yjVJdpp6hEszyNP3Lwyz/WBGzjqbWBqMDPqRaQay3QolkVOnk1RZeabvmKxf9jGs3NM6y32059UPeKQVc2xL8XHckaIVxDp8SKYi3emFnlgXldEr4LJeiVcIZxb7rcJmZHWPkNM1EPzOYxOGw4/rqWs5MacZRKrHWJiYfc4UqEaOncbZqEYZYXMAi3idc2xLTyPl8ouu66vhXiDjGGLSVqrtWShY9rdH54Sgi5E8raWSpuO1+R+ssKcwM44g5HusD1nVNlqZL9H2Pzjtaa0XneX91wzhMNN3HycOV67SeTMogLSTA0kIuLaV3Jru6w3xOlj/V0AlM8KSoSEYWtvcuQ6ucKa0Wt7UEG1Bl2j42WdaZZb3ZbJj6npcvX3I+nWrrUq8m6JAtdVMSFQ2llCTOWrPb73FNI6QcEEe9ELDOcXU45I23q+dcFjCQ6nCIuUW6IhOVBbPvz3g/8fL2BYCw1bORidYaP498/fU3BK9AG1rVVtlKyF0y75nmiYiqUp4+KKYgpgnlouvoGecJH0IeshrRS05stxs2bUsMHlXhWrHCrKT4L6pHlb97oY8h7dgYA+PYvyMbV7/GsgrI3KByy+F5T/1pR1qJHKS0aH0rZUTMOz8gxuQ5ZJVXKKVR71lnlrWJusFbE/yeJpoppY+aW/Lbi5dAkkZ64xwpeA6HQ33W267j4eEur6W6Jte1EJVSnfrWm3cufrbkB+tztXnzXzrVpWDWVQMjhbMOo0tHznM+95x7UcwKfiTGma61OGfY7ba4rA1/enzkN795y/HxxPXVjZg9xcjD/ZG+PxOto7HuYm6e5xmdO3jOGuI84+eZTdvRWYdtGuIsH3Dop2z+JATOQBIjpdVnvlSIEOjHPPtFde0j4ieRLKcY8fNcYQhl4pRYfegoGD2l8gKUXxFTIhVGqtJgZ7abjv1+x1ffvCZGwelZLQ93uTzTNDG0E1OYGePM5Gem2TMWK0QScxgZxgwRSJFd27JppF06jKNM6CEKLipbTW82gv11rWWeJ07nnuvrG7qN47dffyOJeyOC6DbLP6hQPrHBj6NsHIxF21B3wEop1KptEGPMMlUjb968qbjLdUulYCGvr69FbmoY8ZMnhMjZ96TgaRqZPJZdo87GCIb+fMY5R9+fcc5yPJ9ra6MsVN9nq6eUumD2x5xIwAInqWoES3bz5CDly/Mq+KlGSglT1FVSko5awQuWTkUiKysUrd5FqrHKk1EgCe6j7dnX+zeFsL23223W/1X56wLtKJtAHxIRqTDNK2ONEMJi0Upi8J6HxwcSif1un7s3C9Qq1OpsYupFovF6v6vQjeAlgZ6yS1ft+mT71/1uj9aK+9Mpb0o1/SiqGCiFa7t8Gc2FSgf1DBNz8MxhZvBSPBj9DNPElFVBxCjBk6JUybdbwSur9xxRJpCFLwJx9aulquW9ZxzG9/6uXI/lHi0J9HON+VMOBWqB8lwM74JzLBu2uMADl+7n968y605pGZslaV7jln8n7PwqGRdjNDm/3XbLt6rIsRZc/1Lx1UT0Sn++bLSLm+/5fOZ8PpNS4ubmhsPhUP0QivZzCKKyNY4TSpEr3EY2zeESSklaSpaucVjT4KyYCPV9D0lyj2kWXpdCbLzHcUAhnb7z+YTZ7NjvdujVqA3zSCJircZZWwsKCjBK44zF5XzH5u5arNf6sou93hSUDblsGMK7yLDviJ9EshxTysS5UhGIpFweT5r8c1UlihIsPdiUX18e7xRIIbDLOFrvxdJwnga6RlcdU4DgNed5Zo5xVY6XakrZcaQnVc6y8zTGkEJkyDue4D3OaobxjMu4nheu5XDYo7SRSrVSHA5b3t498Hh85ObF7XIRcmWotF1D3vk1eVEvN9yuHpCiray15le/+hUPj4+8ffNGFm4ju7ubF1JhMsbw5s0bTv2ZbbPJFaQZYsAYdZHAljDGcHw8cjgcpB0aoxCUMjmqLk4fObmUSaUQCIqMTMFPlcGtU1jaTHniIC0T3HN8olGqQwXTG/zSeVpVYI3OJJ3cfis42qZp2O128vpaWfoIvHIuTBijBQWdK0rWWh7uHxbsYH421xJ1IItozAfp+55hGGjblutr6UAdj0emTH4pRMCYu1uVf1CRDyrPD0EKAFbgCj5FhqFsfsWCFiB4j7WSPMdclGiaBpIDLQ5a2mhc3lQf+0EgVjonE6q4jhVTloVsOM4TahqZ5iCwkNOJyQNK07VNrSxTxj0Rk2fxZZkFKItwyvesJC+G8B0ay+v7+PT7Z4LfpxxqhXv/UOi8rH+kzu7FpgzWT29Z14ZButhN01SY5EfLxyV5fo2Wrak2huDnijEG+Ozzz/nNb36dbaslDzBa5/FtCKjqQIxSRJXwwctWV8E4jdzd3wEydu8fH7B5/rPO5XlBtNMLATpU06IgRmp5Itp0LV3r0MZlSCZYA4pAmGUz32QOFHnOkHm5JK/v3/CWENy2Rmslc1c+z5KOKaXQuSBgjcEojU+e6ANRxcsN0gWsBKB0BOZ3cp7vip9EskxKjH2Pn8d8kQq+DUjLBYbSCi2TZiQRiHEx34hKQZjZ77Y0jZh4WBR+HCBafAj1wS8EQaAmZaV8H9GSFJJoSwUoJqzRbDYdN9fXKGA49+KoNfZ0bQMsmqDjNNF1HU3jmOdACB6lBJs9DAN3d6+FJANsuq0MACXkndNZbGyNtpeV13LJVFlwEmjF199+Q9/3+BhwrcAobE60YVGmiClWaEaMoogRfMCvFniFrlCU4/HI7e0t+/2eeRjYbneVpV4Kyx+zLDVNU9/3nPHTx+Ox4q5hSQTSasFcnvpnCMYnH6pUbQCtSP6ybV/GR6llKhRMgTiNqMax3WwrLr9sND8KT6gW4mmea7HGcn19Xc1/gMpEjzFmGEaBdMnmu911nM9nXr9+zc9//vOaLO92O1JKfPPNNzVh3mw2F9CDhfySAM3Dwz3n4yObbUdjLTF65mlEp8h+d1uHjQ8zn//yC/w08zd/8zdZFUDgXKUi1TRtrTA5a7FG02CZgpCGlDEYm2EcKxH/i0VOKfwcxDNIycZku+nk/dKCWU4qQiZSKaVzfrzGzSyV6FLBL8ny+lq8A8dY/Wz9LDzHpxlP16SLf6el1xFRJGWg4ODV08LPaltXSMMKoOgd67rev379Gu89Nzc3tWv1scny0lFfvpp8jPJcf/EnX/D//tX/za9//WXOJdRFbqCVQpUE0jpGPzLO0okralVzxlGXzXmwhRu2OIl+cKO5GquxFCfKOp3EudQYjXKO4OeqtCHQEl273MfjEYWuJmbtRrHb72DT1Ysxnc+kMLFxlq5xnBWcj6fcMUyolGr3zFoxh8NDSOLsl5RFKQsKhr5Hl+q81WAMNowMj3errtf3x08jWc4tvHma0a55UuVcEUEAbaVNGDNOOZGWFSy/OsbAzfUVh/2OmCXKRLhbqrDEpUWrBSCEQWU3PisV42FgnkZSXG6K0lkdI2XJM6VXD+yOeZqwdrFy/fWvv+TVq5/xs5//jGEYubu/R2vNdrfh/v6OU3/Kkmjg3BGUxofANM74TBjcbptcN0/LRQBUKNV2qVzNs/i2b7fb2mKx1tbW0OvXrxf3nmmAKNUjq+UYpW0MUBi5BRv1cH/P9fU1PnjaspBpMIVZmsTZ6LtvsaqDZZ5njDH0fX/Rsl42BCs4hqD18wR1WeV/jk8rlFIoZy+egXeSorwhnKYJHRJMnv58ptnv2Bz2TFE2bNPkK1GvbMO+88mSgY8qHR4n1dvDfk/wstFMcamUKArbO0PHcicm5hblsHLw2263vHr1imEQ2/hC/CsLTNd1F9J2hbzbjwMPj3fM00gMnqvDjpc31zSty9JNgDaM48hw7un7M62zKGXQxnK13RGjVHl8kWGaZ2Jc5kljDK5tZZOhFWO22AVqxbgk+D5GQCrA+92Ww2FPiqEuSJUPEuNKvUhVRnopkpRTV0oR/Mw4DhdJx/sS5Kc/e64sf9oR0jKal63Xewo7Stfp5GL81xrNklaXzgeJC/faMo7FhVfMOpxzP8glVEHmaa2gZKpIoMn4KInxxd+pgluuP6g/L1K8a0hI+b4cp4zlvu9rp7cQ+tZ463me8bNfKYcIVCLGGUh0ncPZHa5pSCoxDYNAMRBXQpQlKcuxnwgBrGvwyuBti8Lym2/vuH1xna85HG5vieNAmgfhREQPaSaGnuAbvIWUMqxNBTCRpBMpqZwtWYyVAoCYxslLG6NJMUDwzMPwg6RofxLJsgLGqcf7idaJ3mbJlZUxLDJyqoLwY93wpWyDnZNOo/FacdhtaZuGTdcxxZCrP4q27epkrJUSktpuWx8ajSIijl7RGEKcGQZRlOic5eb6lsZZhr7HOZvVKBRt09L3PWEe8F6wuUYnzuczd2/f0m46rq73nPoz0Sf2hx1ff/MNr9+KfFQICddkIh8aYxu0kWQ39LESCcoutuB/1xXn/X7PL37xCw6HA6fT6YL9f3d3VxPSEAT2orWRJDQv4iXJDyGgg+w+X96+rO58rmlq5V/KfHIdTRmI33Ofy4K/2WwwxrDf7xcJLx9Ik8BHlLGkwnJfJRlKqYpBfY5PMPJEH8uztn4WyjO5SpYUME2C1ZtTxLYO28oEmpQkuEHVaUScblnWyXVPo6yyCy520Wkehp7dbluT5YpZ1DpjCGX+KfCjgrErYYw4at7e3nJ/f09hgxeCbhnzAM46VP5qtKjoTEnarTEGmrZBqVST5cNuzzD0PD4+oJVBYXBNi2s2mCw5GUJgnmRhc86y2255c38vS/Rq8dTOyn/l3KeZKQHKE1H4MaCswc+iz77fblFpWl3PVOfvlDHnpUKFkgRBhSDQu/x67z3TeKmx/BS3XOI5UX4OkNxgDJe49XUbXtV1a6nollrM9xca3+1wfheO/gfF6s/mDJ9aw7uurq64urpaiktaSHHG2npOZT1t2w4XHXGQjXuKEWuMkJCVwupFjlbOOaKCSM9Jt9pQpPRSjMR5Is4TRkueZJsdD2/esttuUUqx3TuaFEjjiJ9n5vPEYXsFwJu7O5Sx9FNkmDy2adk1G+mINTMezWM/cvsyq4FpjWs7xmmiHwZ0mEleOB5tK1K6PopzMcA8ixZ8ijHDQi4dFI2xSwU5FxhjyjrLP+D2/CSSZRQMQ0/wszC8cwKXfyVrIECuGicSMQVMCiSkamNcfmCNRhnNFDxXhz273Zbh7qHKu6E0c1a3UEDTLvaPVag6BEmotQIiZfux33bcXB/Yb6R666xlGCepzhjN7rDHT5bToyTAwzgyTSOn0xHXOjabDcM4MhMwRtM2DbtsBGJsw9XVDZvtDqU0Qz8xTFIVHrJWcqnClihM/rLjPBwOtQoVsoRc+dsiC9M0TSXk6ZXxitb6ggxVFtH9fkfjGsFhacEQvfOAfbhrczn/lMlEK8aMN3VaQ4ThdGQ+9zRtS7fbcY6yGagSe1p/f/XvOf7ooxJ9AW00af1A5CKM955+GNibhtpeNeUZlz+wemk/AoITXr5Frx/cELPWuxDo2raRpC8u2L5ybvUcQSBV1tJpwxgmZu8Zp5Hz+YzWukJCvvjii4uKUYWcZfJrwUCCwCQUCms6NpuGGAPHh3vevP2GxrnaBSt4Pq018zQKnjlvONtuQ9NuSEmscI3RFSIVYmA67PjNb3+Nbjq6TSvVIlLFXddLljtszjkCCqaMcwyBpnFsuxYbPNoXTMhybVLebNfEIiVQeX4vVTtEgm6ap0tDBt6fkKxJV8/xacdHJ0FPoITvPD1KrbSL08WLCkeiQJhevnyJUqpWmD8EwXh6bqrsxlPZmCdSBD97lDaYPFe9+tlnfPbFr/jLv/w/GfqJplGcTmfmYWK/7RjGkb6Xwl5SgavDAWcUQ99zHkd0Xv8VCpvnlnWiX/KGohpUfj+HACGiYsSYJRci7enaFq00Nhf2PEkEc7SuySzkop42NI2maVt2uy1N2+GGkfvTiDKx4rCtNWgl8FvvRU1H50q7rp4XrKr+67v2/jt/uVlSdZ34IRub5zLdczzHczzHczzHczzHczzHB+InUVlWSuFnyfJlV6HQOleWCyEkSV2xVJZUEmRKQSIVQmAKgZBmlNIc9ls2m47w7WuiNmxaR7fZ8O392/re+92GMAWUMaikIAT8OELwWCUuVG3G7twcDrTWohU01uHaBh8i0ySyTUprVCbkyclI27Hve/b+wH6/px8Hjucj1iluXlzRbqW65JqO6+sXNK0YE5yOA6d+rO3KUlEuOKJSVd5uhbTknKtOYF999RXffPttxkBKFT2EiHWWyc8oFFf7fd6ZFdWPhaAksjCqHq/qUueq0DgMuKaj7rWK2YDWlXgY1btdrbL/s87hCtYqJsbhzOl0ZM6fd7vZXkBCZFe66p89xycbtRKgLp+HdfciJnG6DEljnaPbbjBOHL1W5tfvHPsp/KIe20eM04Rxomk6xnOPtQ3zNLLdSRsyBrGdhixlGTP2kEwm9ELys84RY+Lh+Mg5Y/qss9y+EBJt27YMw8DxeKyYvwKDgNxpMZZt17Dbd4QQaJ0B5WtbeZoHrg+i+mGMwfsgZEOkEmydQxuN9zLGttsNwcu8cj6f6BrHzfUVx34geU8wM1GJ1XeRu5MLI1qlCUjGikJI7gBtNxtiDPLvSpoWfdOAJioxjJH7uboXKziXSE5OGKMQqVxVSUYpvSvL9Qy/eA5AID0rOdMLTC952Uvg8+/WS4smezyk9OQPEDgDiFJThDBPJFJ1tWubVghmMeFjQCvQF4Jol9yIi05pSAI1cAY/TriuYzidaNoWY2VsXt10fPb5n7DfXXF3d0dKYyXqOWtlrc95kFbQOodtWrq2rTKX6zFSYGQlpmmqttgFKlY6zGtzEpB5qAsdztosuiBmbRfKE+t78kRNZK1mU7hXMZOHY6CqcGhtUClgUPmcTEkFFzUMl6vgPhEkkakdv6IbbeoDECEGAv7CQO5j4qeRLKOYplGkPIJHGy34GahPdkoLBiVVJnWU9mCMxFkgC0QIGqLR3Fxd0XVtbW/42V/gBQUHHHBNZoYbg4+RNPs80SvB+azIKKSYtQhHjBVGfd/3KK1p2g5rHW3WLO26ke1hzzCcOT4+8LZr0FpMP0KM2Rs9p/tZ0H8cx2rLq7XC2pZus0FpWRxKu3ScpkrEGaaRU3/m8fGxkv2GYbgcHOqyTWmsQaEIfpLFvWiyIA+y94HgEwnNP/hX/jVce0ApTf94pN1sSJNfLHiVzpuFekPrl/cuX0+SXp1JEUZp2qbF+5l+lEQhRMEqaSOD5Hk9/HQjpcSU9c+tteiLxljGEirBo4UYmIaBm9uX2N1WCMFPiIExZlOMj8HB5w2roUGhsW6DdR27wwuMaZmmgNaLGkbMUBGTJ3jG8p6Cz/Xe1w3wt69fczqf2e/37LY7rLMcrg4cDod6rmXcN9ZV/L60ehWxc1xdHWisomsbjF5MfwT/PFQLaoE0LcoSQJXBhGWRfXF9jTaGOUTmcULFiNMGlSwxu/3ZJMo2IUZ+9vkX3B9lDt/ttlwd9sIlYc1lyCYrKRKUMOlTvrblS2KZ52MIFa9dVVDyK8uGvjbIcwJNek6aP/VQgFvDOFOqpH5QWYFKCmMpBoo0Yp1CnpBpU4YbpZIQBkhzYD7Js99ciSW1bRygSCpR9JyU+sAaWM/t6Q9knrEZ3qG1viBP7HY7bm5uuL+/q46+1phlDK3mOK0VyiwKF2u99g/FOol9H2l2LQIgeu4CmSja7SkFTP73XAp81tJ0Hdo49BwzDy3zkIDWOkY/M/YCGfVaY0loEA5GVJgUSdHLdU2itdxkwYDNJtKPgWEKjOOED6nCSSqHIW+ejNIY54SZ5kPlfn1M/CSS5cKSnsaBEPzFTi/EwBw9KWm6LpPB8n/lYYuIu54cLOXBIYoYXddSnsiQEvPssXkhmcaR2XtKyqoSWG3AOVzjOGy3XO13tNllTyE3N8bA+XQkJRinmSHv7oy1KGOqPXfXdRn746oMm2tEzm3bNJz7vhoVPJ4GXr+e0KbJToaWFJVosM4zpjEXjPhpnhbSW16E10S4p3baouEoGGVrLIdtR386kqLncNjhrOPx/iFflyk7+MGm22FtGbTi6CPqFKra2BpnalWafB3VMvfU+WCRpssLYn6BdY7rly8lqZhnjvcPpGzbGVy8wEo+2w182mEbJ52l9eKFVCJ0UavJobV0JJxzJKSyG+vzo0Ctqpjve7OnGNl8cOtcfbD97GmbjnEcmGeZePvzmd2mI4QTIXh2+x2P0+JYWWI9NsMqMQSqjnPXthhrakW3tR3jKGoaMc1Ya4hhrhVsazMPIX/Oh4c7gg/sdnsGzjRNizKOcR6Zx7FquBfVnKp1roVTobwHH0EZGiOJv89jU2VlC9lsSNXezzNXu2s2XUuKAZ9mTFwW2IXghximZA6EEK0SWlM7WTGG7Oz6roRe0aO+rB9+uOr8HJ9OqJRo/KV515zHVowR7ZwQyZEcqvB1Fp3//5+9NweyLcvStL49nOGO7v6mmLMyIjPJyhroNLpo1GpQAMMMCcyQAMOsFdBBQ0VFwgwBK1AYNBCwUtoMSqIRaBS6K6uHGjIyszIi3uDudzjDHhDW3vuce5+/iPeqMqtf5vMV5uH+rl+/99xz9tl77X/96/9nYycDSMQCYuEClRcJtK7vWXhZwzdXl1RtjVZ3Gft800Gfv9/09/O5yVqbGvooG2aploXCO4YsjRnwSf0n9z/kz3h+f2QDoJw3ZP5ybjB2zsnm1ct5zI3K+f2VUlijCT6mKtvU0N8ulyyWKwKaw7GnGxz7/Z7b3Z5xdLSLNbvdDW4QvrVWcLlZ82C7YrVaY1UQ5Q034oJH+YCtVNKTh3YRqY89Wh+SHrT/mv6GCcl+U87yW5EsS0Rp8vNie53LCaTuvhBcgelz6S5G0R3V8mB5HZWUVh9eXbFIDW8u/do5X8oaMaGvJoIOihg8YRyp0FysFzy4uGC5aEohJZsEuOhxCcLXatIG9iEwdkdMunmWiyXr7Zqub3j67Cu++PIL6rpie3WJsYbd7S11LbujR4s1IShGN22EY7rowQeimy0SJKedYaDve5HHCzFJwWn5fEa60nPZ2TlHpQ2rpDVbG00YDGN/ZBwG2qZBUZXnmrT71lrz/Plz2sWyNDQFJ0YB4yCf8+LyCmvs1CyhXk4+FBQL85kppzx3pnKRG390egVtDGgtwj0xmdfcx+ImkPwAACAASURBVDsbWmuUMVnIqTTleSJKCdqoraWyFb4Xzc3ka/RSyEKkyoZOkdQwIieSQtpIaTQvEHM3qGNq1vPelYTTGktVWVT0uL6jtRc8WIkSTu89bV0XlYn8mfLCNJeHCiHgvGdM1SIAHfYsFjUaUdrxfiSGkeWioq5sMQ0y6X6SBSGwWLRE50VhJ6RFcBhQWhLcfhBUJwYvWvJtI/OZ84KQK6myKaWJ5HJp6oxPEpW5T6ltG7ZJNs67gZjmQ5H6hFTmKl+qXDuRsctNiiEd57khSf5+l/LFhEDfU7buQyKGcKIiZa2laoVqUFWVUDaypOwd4wleTnpLo9j8l3kneEL5mDbZXxcK8XiIPnA4HAgJMVbe42fNaRfrNd/5znf403/+z1Eqsl6vhba53xWDL5B7suuOjFGVZsN8v5TK1wwpnlMyctVrGIYiKZdBOO8mqbmqtviELBMtRguynv++XUqFfbFa0SyWOB/pRw+DyNw6LwpfTbtKJmmJHZAMlCZq3QxcL7lfLHN0PncgdNM5qjx91ux4qNKmocJ7X6hwrxNvUbIMx+6IcyO2MTPPbk0p3+XOc2FDFIRi5t8nA14FVPBYY7jYbmjbht2hI+sY27l+oHMQAypKWTaGUGBRnReIJKrvR090DmsMwzhyuL0laC0Lo9JoYzke9gx7EeOOq6VwFBGP+HiIHI5HVptNQY50kTlROOc5Hjv63qVjETvO/rgndlrc/PLOMUas8xht0Ge+6vlcNYlLJa8vXetFAzLG4vmeB1adZLV0Wpwiig8//JBKKYbDnj5xs0MI3O5uOSaljcVyRbNsT+aEWeXojsRZJfRZvgeSQUpC++pFi27lWEJTJboKhQ99H+9mnCxcaRE6QRAAlFAflqslVS1Zb0h0LaV02Tyej0s1+5oey8+VBazvj1KdsRadNMj9LJGd0xqyck3TNBhrWa8sROElhhBEpm5mWTt4xyHxlJtGTELqup4SwvQxM52ibmpaU6dir0PjURpR/zke+fKrLwDY3e6pbYO1VakOxcTp8+mr6zr6LvGjIzTWUm+3rJZrmpsdL3Y7HNO5ywlF1mY2Jpk9pV+3Tc12sxHy4bxz4Y4di9aaEJIUlooF6QMI48iYtF/n5/f8e/75Lt3l+7gPZvTDE4yx6Mapk+fK95MXgDhZR0fnqW1D07ZgdNJcn1EYyrwh6i7a2PKS53PMybFoqVTd7nb0w8CibSfqFrKJrOqKTz/9FGMtlTWs1yu6ruPmRhLErLATY+TZ8+eE1EM1ryDlBDInwPLapsjQzvuFTlHoU2rGXYvxvPKbcxIxOjJpjack6ePoEnJ9xDvHkFI+reBoNH1bs7C60GYikiOFOBKUABJy7mQTL9enp+sGqOvZ5/TkVFdMmERKLgTP8fArlizLeBWJk+B92qmkZrP0jBiDWEZHI80zIZ8+kTTKDYFEnQS9IzE4rhIVY7c/IlxBz7Kdi20L8lIbg4sBhaG1lu1izdVmy7KtGXtJCsfjgeF45OHjx3TVyDB6iIrK1smjXRbqnOYXrVQ/oJVmvV5zOO45Hg88e/6CtmmoF5IUmih2sK0KHI43QOTYdTx88Ijx0DM4Q1SCmgG0iwU2Jd0ZYc5llFchLnl3mdFoozWPHj1iHEeOxyPtQmTsLi4uRNN5EL3ULHnXdbI7N9ZM+qgIJaQONZgZ9zPzv5juqXxjunEU7UOly2Tlx7FoQVZ1TS5kHVVKdMjl2nvE6F0OH2MaUwlZKOPhdFzUtqK2mhAjru/QxgincNZ8EjLCOY87OIQhBPb7PcfugNZG7FWNYdk2vPfkCaNzJ1JwbnSMY1+aS7TWVMawWq2w1jIMQ2magWQ+Yi31Zsuh6xi9I4yOaAzjMOK8K4hObSpJdmNAJxcxa2tUHOm7YzE2ef48NTFHxcXmktVqRRgd+34kGqGtxBgTAh1xqefDaFVKtm0tjdXOeQ6DQwehQ2Wd+t4lmSlrCzUDolh5bzeQ5udyahNDbtr0SiKdNeS1UaU0DuCCp+87srTnXfrKr0qg75PldzlUWotUyU6zs11UUoWqE21SW3va0HeXNGqSpIxIZXMcB5qoWSyXNHpVXHiVmex3JsBNv5Qc3zljpYEfQqAfBpxPpkl6Mjmz1shGdLtNSPDUdFcS9DlNaRavuh/y4xm8y/fiOeosrwmGyRHYGMM4OrxzdAr2Ok2nQeaAhw8fArDebgnAixe3RSPajSNdJ/1Zh90OraJQYJkqS+M4MIwWozK9VN5AUOmIMjJnjUFAyG4Y02bAocJEVRHqxSSlaa0leof3gWH8FeMsAyiVaBhBPmxRt4gRCsQudtExQUhT//l8V5cNCWRRvdhuaeo6vZ5NYt+L8r65mU0raE1FqKGpLXVVU9mKpqqJLi8kphxDWzdo7fFKU7VLmrYV4vrtjhe3gixfdz30jkPX03ediIxTMdwMLNoGvKLbCU+naaSxra1rri4vAViOA23T0jQNo3cnSXDe8WVVjHEcT5LlPNDnN80wDOQmQTeOmOj58MMPyfaXuYwMeafpud3tMFWFH/ry3raqCh97Oo/p5p8lyK9Ka6XJJ7mhIaURbQwesSvXlS3XVeMLPz0Q75Pldzgi0CU3N2Mt1tipFKem+SAq0fmUrCxMpdCzJGscR6qkkXrXqIrz57oxNfjGmSGQ4vHjxxgjfQCZo7fb7eg6z2q1oqoqnAtJzSGWxG/ef5BLoOM40lQVdfqd9oHoe7wbS4kytoGuC4yDdIMvlzVVtShkkqwslNHutllKE/Cxo+9HDocj1XJV7mXnRvoYCD7NcTM+pFKayhoqY8APuDBgak3GJQqybC3DEFKlL9I2NZfbrczBOUOenVMBpRKgETPyI7+IKpTLFFOynCuLnF2pb0qg7+MdDcWJYZE2mibb3CfVKFMLbxkoTXwgDsHzKCMpN1Kl/oIxDCxWK9RsAx4Szehk9KlXr4N3vg9TcpoT/RPqEbBcr7m8vGS/vy1rtjaa0TkOh0N5jXEYqFdC83TJ5hqYuM6JpwzCQc55xHmVZm41z+w12lZ6NYL3+OBxo6OqDLWtePjwYamCK0RB6/rmmtvbW8bcTJzmPTf0LJcLVgs5VjFPSQi083ijikZ8roQLBcyl867KuTk59epVvQuqVCe9e31a52sly0qp/w74d4AvYoy/kx57APzPwLeBPwP+/RjjcyVX5L8G/m3gAPxHMcb/53XexzlRcajbRUEXxAo1UdjToI4I8KxURpoiKs3gOkSUCqgY0CguNmuaupoWBz+RNmxViduMEz60JsH9gZRwq8Q/zHJtmspajFbUbYuNYNoVVC3XhyND3/OXT2+oVlcAtNvIYrOGw57ItRyTingnC7VJYv8gN0sIgaqa2WeqejrusUeFqUQyjiNt2xZBdCkv1HRdV8onc1vLeTMgSOnXDQO73Q6Xdnt50XLO4bxjuVrz+PFj2tUS7x3biy06Ib+r1aokDVqbuyeEWQI9D43QLqYGZIWprFiZx0ifPOMB9LIhWkX+L6r7hfBtjb+peSLEWPoIsilJ3qzJPlolqUFNGKUBLcsMnSOP51SM8n1WEpF5J5TmGt/35T66ubkpttT5XnNOFpzlcsk4jhyOR2zqbBcpt6mZLp2jsjhZa4t00zAMdF1HdB7lpbpVK8X+9gVtu0Bri24NVivquiF4sco2SmESSpN5xrkC1Q0jzUaQcaM1BIcbhoIAGwVuHFDWigqN1oWKSaJPTXPpxFn2xyO5XC3ydhriWDiGIAnyKdacS7IOpWSejzGWPCdzlk/jlHpxPrncG5O8/fE3Mk+cwbZFZkzZkqTlze/XRyqFqGlsKa2lj6jcv+mZeeM+m0ky7eDOMfkKGoPkG1Kx0UpLJX32odaXl3z2ne/wox/9Y7quo6oq2nbBbrdjt98DIjErahExVc/lGHIDXz4HGVQbx7FUvOQzqamBL20QQggzgxZ5j5CS5JgoXUQ9gQHzDezXfWhO6RvlnMY0Y6gkKJBzP0gW2HmTosTMKISTOTVztauqpmmnRNzMKuAvzy+vjtc1JfkD4N88e+y/AP5+jPF7wN9P/wb4t4Dvpa+/B/w3r300kKgYrgBBeaECsXTNSZ0gElmKKJYS38SPC1ituLq6SPJx0+Vw3gt32U4NbcMoDltBCec54vBxYHSH1NW+x2pPVSmOhz37w57D4YAbRxbLBcvlku1mU9y2lFIslsvEF6oFsVGicdo0jexQgy+dp2a24NrMGQ6RfugL7yajYVka7ng8Fqm5+SKRE+q5L3zeRc6fb6taulJvb0EpVqtVQcO6vgci281GGv6yi17iPRpradqWpm2pmqY07+WYc7Nyw5ROX01VU9tK5qEQXzpenbhZVV2lMtYMTXqtffp9/AuKP+CXPE/UVV24/icT7GxYRKTxbuj75O45Q5HSf1nHc/7nrxpZRguFYr1eUzX5/pbf9eNY7vnMkXOJlpE3r7e7XbGfLxv+V3BsyyLOhJZKAinyVtvtls16xaptaKxi3VQw9Iz7juHQM/aOvh+pm0a+6obD4cjxIHNFVBNSZIxJk2ZguWhZLloqYwjjiNWaRd2wbpcsqgartMguZYpcDIV6YWyFn3XAb9YrUehIuqvTZ82o8vy7oMtKLk56vsz52X306yOefOW/vUeX3+r4A37J80Thq3pf1HNk02wKbSKEgAt+aqL1k/1xFjZ0IeJjkOqmNlRNg61rhnHEe+l3Cukr83i1UmiUVLmSPFqOOykZs126NZarq0sePnzIxcUFm4tt+VptVsne2vD973+fzWZT1LSWyyVVVTEMQ6kSN01DjJPzb557yjp7lh+8SeTXyTTN9XrNxcUF24uLAi7mY+m6juPhyOFwYOgHtFI0TVO8Icaxp9KKpqrSl+RDwXtIAAJAN46i1R5hcJ5hHBlGUcg4v90VlB6tpqlpm5a2EV3oOTjxTVJ683gtZDnG+EdKqW+fPfzvAr+ffv7vgf8D+M/T4/9DlNnq/1JKXSqlPogx/uyVb6CmhaHrOrzzJSkKwUtjjoIYfdkhTdOjSstfPlaZyBURazRX2w3L2nKxrMWqOSq63S69tsLYBS5YHJq6kh1j7wYO3YHdvsKaFbXOfutNSqpHlK/wQXYmGkVwnhADtc0KgbKm5M5Mayu0tWzWC+rK4Iaeoevokz1lCIG6qUtZ0vtppyTJQXzJPjNrPM8jhIBJusVVVZ3sFI/HY9lJGWNoKouKU1dskYRK77Ner3nvg/fRQNM2KCMarblzvyy61uBGXxKSs0tbYr6A5Rt0rnldkubKyqKMmJv4eVJ0vwi+tfFLnyegyB+V+z19f2kTlTbSOtlcnze0KMAqhY4TOv0K0AOAxWJREF+TkJachC9XS+HdpbHsnS+bW0GRVfl5zgk8vx/y58v3rXOuPFelikqVNttNlRN0j3dpQQ4KjeXY9WgjC9Zx6DDasGxgfzgSmpbNZoMbevzo6N2AChN/OiTUu9KWRd0AmrZpqc0Rj3CmnZc5KyPkeT4mUTAuNpvSTyI74kQdywlz+llpQZNDUe8Q45MsPdXPEHx5+Te59+/nibc1ftnzhJTv3cljOeFSqZwZgi9IJVqV6miEJEk5r4aIWYnSWmhbChbLdZJnc/hhWjfNTDwg2zWLxbTE123KISOiVsDCub8D0wYTJs5wTvyUOlW0yA39vR9euofO0ddyzmYayoXukObM8/kKZE5cLpel/6muhEf9s5/8VHwe/CTrKdKaIyhF2y6wdc3oRaVkHDq6wx6b61dKrk+lFdv1krZtGfuBw6GjrutEu6A0N2ht0EaS4Izk53OQc4xCGT0zIXG/6GT5FfFeHrAxxp8ppZ6kxz8Cfjx73ufpsZPBrZT6e8hOkfceXpQL2ncdIYZJ3i0kioWaqBgyIBJqocRxxyk5GV7XKFuhtAVV0RjNtq1YWBm8Slt8Wh2NiQzDWHZeWrfEtEsJPuB9Qq8TbG+spW0WMI7UVYVSGms0u9trXjx/wfHYcbs/YpMKxdDtGYaOuqqwWtHUgjK3bcWAKG+4RDB3ozTyhBjpB8foZJCuNmsUiqqyUg1KiXtZmNOiOucXzUstOQGd3wA5bFWxXS2TZmtgdHIsz188p2kanrz/HvVyITtxRXFFiom3mSkgxtp5xaU8J39praVpMz0nhEAMITVyxjRZJa3LVKoNaqKnmNlUE79uprmPtzF+YfPEt771rVRJCoW+c77yZPpU3bZpg/3yJA/Cac5J3pzZU15uTj5UFMm4EGPZFBpjxIBju+X582dsVmJOoI1mf9hjjOFwPNKut3ciyXNKlbUi+5bpErnpdmoGTPy81ASrlJpkK5EqlFIwDmPSl5Zj7LqRZtEy1kv6pqNabHh6s+PhxYaqDujoMLGmreT5u5ubUr5USihpisQjTDJU836S7BCYo65rNpv1TM5zSpaZJcpRykqIJnKA9F3ZqTQ8DN3JRbgL/bpHkH9t4hc3T3zyrfnj8oOeqjU+ocl5/GprUqVqGm13fVeFijHRul61HBWK0F3j8+uGrFZUdV36eFCKKoNkMYoMYwj8xqff5tt/9m1ubq7p+x6tFIvFokjHNU3DarWi97cnihbzBDgDefnx3KCcm/DmEnNKiV59bdfl9du25dGjh9RVTV1VbDcrnBv46osvefr0Kct1mg+tJYRY1MWapsZU9Zk5nOQ/+VLFEPBRlfeeA6plGpjP24U3Hk82DKbIXeb8SFNVhqZpOOxu3whZfl0axpvEXePnpeERY/xvY4y/F2P8vWzNeh/3cR/vTLzxPPH48eO/gcO6j/u4j7co3nieePT40d/AYd3HuxZ/HWT557kcopT6APgiPf458MnseR8DP329lxRrVhUnFx2jpJnHjyOV1liTEZVQrCqjmuweY4yokIxJdMBYw6OHDzFaM4wea6qCJFlrGJJ28JAa/VRMTlh1Lfykqio2zs6NRK1ompr1doOyNaNX7I4HjscDh6N0hmbKeF3XSYEiEFNjoHOedrHl8mKLGwZePHsKwLOnT9nt94xOJE2ahWwgNpsNwQvaMzhXdJlznHeE5/JLKVfnEujM2a+ua5bLJU1do6Pn4uKCwY2TcHtCuoRzlEuhsSBFRosM3hxONlZ2wYKWxROKhZTEJ8F3rTVDdySmYxeHstwQIO/1qs33PbD8Kxe/sHkiglR+Zv8uoaYGUI0qTn8ZPcklynkJEr5+PBVM0xraWu7HGEJuA0ZrTd91HI+HUm4FQV2++OILFLBYLIvMYkZJXsURzI9lVPl4PCakPJaqjnOOqq6pjMwnikAMCh+E7hFCELqUmqphq/WazcUl2hh2nWfXDaw3ouizuXqAO9xSlapRSLxIW5oEs/680jaVlic0Zs5XjjFQ1xWb1VIoGDE3ZE/oVTyrBhQlDGLS1lf4ZGLS9x1TD9ZdM8I92vxrFL/QfOJ1OLgZsQQKjWhGjCrPmdM8USrJ0Ml6Fz2i+AIooxPNI1V7Eklf5fv+Dl7tyT8SGG3rGphoEXPrerRU21fbLe99+AEXf/Hn/OTzzzkeD3jn2V5eANIX5Jzj4mLLODq61DQ/pzvOEecQAsvlMnGIx8I3Pj9fekYNEbRdl3MEp1SQ+WvnnCCfa60n/4ymrtFK4RP/WihaiqoRQ7njUWRrJa+pUMqgTU1MZeaAhm4Uec/jkdVqRUwScU3TSMUt0U+VrQrVZRjHE9fUb4q/TrL8vwH/IfBfpe//6+zx/0wp9T8B/xpw/U08REWk0onfMhzQUZz0QJJlEgs4pOaPnL3OG2BKuUPlLhKZ4LXWPHr4MC2UTgjeWfzaGrSWpptxHLm5uaG2hvWyxVY1dSLz6+CmI01vE7zHWjm2cRgYuo797Q4UhHR849CXph4NHL1nHHqIjiePH1FbwyqVboe+53A8lFJPXcvAaOq6cCX7NNjLeUtl2KqqCpexrmtubm4Ykpj/OS9yznPKLkG5JDWpflg2F1u+/4Mf8PHHH6dJZap9FI7idAFnEQtvWjHjfp3b/CqRg0FLt2+MQrXJE1P+lIFIFWc9EG/YiHAf/8LjFzZPfF39Mm8hi96oQug9Skg8501zMKd0TTSlEoqpCz1GfHKbqqqKqq4JWqaa9957Txp2mRprs0xTRKhO3ehK019u4p1vZDOlac5nnt/n2coWRNM8Eogm0DY1xij59MbQj2INXTU1ITtWuVAoFVVVo/uO1VJ4gIu6wh93uNEVnXo3dEJRiQPgickSXKNwIeCHvpRLQZJx570kwTFKsrxeYzQpYT7lLEvjVHJezSXhCelAqymB7pOu+123/Jsm0Pfx1scvLp9QauqfuWvsEBOtUGOSYUgoYzSUBFD+XKX1KCZXWVHaGUePTo2+OpljZCBrfu+2dSOv9Tr7t7QxVFEMM8ZhEBpGWpeVAowhhhFtjOg8t03ph4gxUun83On4vy7O84PM7Z73I8z7i6pE11qv18W5U9x/FcPQ8/nnwpgRJSB5jefPn6ONRRuDMTIfZDvuGCPr5QKjAjHlWTFErBLVihACh8ORYRjRxlLVjZi8jK5s0hXSTN22LXUl/RTei5jBNM+mBmSl6RtLDK44FL5uvK503P+IkO8fKaU+B/5LZFD/L0qp/wT4C+DfS0//3xGZl3+KSL38x9/8BqeLWNd1NIvEd1FKBPi1xoc57296/imBPSHOEeEzx8DFpXRoDqPHWoMfJ86d1oqQGvGC1rjUZemcxweIQYlFI9D1Ay69hnMetGP0kegd60VD2zSEENmn3crudj+TbotoI9/3hwP7wx7atohiN03D1eUVj997grU1KCODywr/cL/fo/SRwaXd1FwbMnFzJqmUqjQTzc9RFuSeE999aog0xhTh9uVqxb/8t/4WP/zhDxmHnmbximFy53142hwxT8xLwjy6QrTX+dpFJCkhnDb0paRjSobu422NX/Y8kRt3sjEPnK5B03YuJs1lVZo+gNSZPt0/Kon5ZxRojvymN8yfi5CE9MvCZQzROZabDZdXl9Q/qemHZNpjjFjK13WxaT+/V7MKTn5sbjGbP2tJ5JNqTv6MKmYnP7kzRidOd3Xd0CxlQelT01FAo7VJiJJs7nNHuDWGbhg4Hg+EXD0LntWyRWtwoce5jqAcwUDwoiLi3DSvWGtLI0+MIht3sd0knetznnamgst/ISnhRGKpPimliLMGv1fFmyXQ9/E2xS89nwCUmVDMeaQ7uqhjRJVccpOPgLaGylTTHHBGkJVEWzH0sqmsmhqbTUlSZbXMI8w0k9808jw0lVam40jH9ODhQx49fsznP/5c+o7CxEEencNWtuQuuedinhec83XrWgxPxnHEe0/XdSWfAJnXlgv5+eLigrqqxNm0k96CymgOh4NU3Poen8AGW4tpm9UKl3qxpvlLcjarKepkAsiJO+rhsKe2FT5ElDapF03MpsY0DyktZm1N02CNJPBR25NNRK5WDRG802kzr34pahj/wSt+9W/c8dwI/KevfQR3RNd1tImGoFCEmAa/F6vXnEzZ2cJWhlNME68WPWWjDQ+urrDGYK1Ba4VJJcfRT1JPAH2MDN4Ro+O2bVje7vBjX0xJCIMgOYkcr7xDkeVXJPEzVtMGuei76FNznuj8Wa0Z+iM317c0tRhv7JKBydOvvuTy4oKPP/qI7cUlu0NH34uc3XK5kBKE6XDh9ObLi1HbtlxeXhbUyjlXEmMQ9EopxeFwQCnFer1msVjQdx0xeraXlwUhW61WfPTRR1Rty9h1pbkhn967opSslSoUEGaPGa3TYi27d2MMBiYEYP7CkdLIl3f2xPtE+W2PX/Y8oaJCRZWUE3Li9XV/UP4HMTIO40kiXDXNlMSWsuJsE56beOJUlTlf/AY30i7F+fLZ82cA+BjYbDZUVcWhG4hxQjjOm2yBsrjkx6uqOu3gVpq2bYGM5DqUV4S6QuqysSSqy/UaW7fc3ArC0o2BfujxMRIxGKXRqRpGU+GdS0nqhLBXSeWjTxrR/dALRcIYvI+4kJqMTYP3kRBGaqPxQ0aWV+LyF3JqzMn1ykltTAhaqlwn4wFw2Rl0eP0SKdydQN/H2xd/E/nE3Uny6RqS15ZCmbjrD18RSquThvf593Oa1Tn16xzEmj9XW8GvTdSYdM+ffwptDET44MMP+c0f/ICnT58WymTMDf3EJI9riaji8juvIOeGPuCkopW/e++p65rFYlHmpO0m6RUnVPl4PNAdReLRaqgqIw6EzhUGwFzXWhosQ3LhS02E3qGMoaknQAAEHR66I6qORKUnd+QkvpCVLHSUpstSNfcB9Lyxe6puSaErga3q5Q3D18Xb4eAXYS5z0B97uEq/Sp2RRlkyDUKVkj13ZG8JV4qKSBDhfg0PHz4gPnuepF/SzqofsNYyjrLbisYQvGMYNF0/0g8jdTWz3g7yvjpG4jhi65q6smjVMXQdaCM8yVR+cP2RMBrqpqWqa9aLBZ3R7G5fyHvOSr9VSjC//PJLUJqqknJtHvCfffYZf/qnf8bNPnfFTyXcfCPknWCWXMqlCZjKKsaY0mEvKJbwqOeDxhjDw8eP2d3csFguxT5SZY3lCdV/eV7Ju14F0ZcOfbRON84kY6eTxmvWbYZUCpMLzPm0lh19zqVf7uMdCpWQWSX0osk2mYlzqFRxfJTH44mRRphPjkmVhazBmqpY3vsk3zS9ipkhwZlaoJRm6HvRhk8LACSVjPWK4AOLpSEA+/3+TkpU/jkn0fk9M4XKe0/wrrz3crng+vkLUcEZOpqmQiO6pU3botNmOcwWiuOxY7i5pV2s6boOEwfc0LNuKhTZklue3TZN2sAqQhB+snPioqm1IfiZxKOWRdvEyKa11EFR+YHa6KK7LpuEly9l8nmQjXNOOpImbXErnJ2Pex7yffwiIlc7hTIRyzpa2apQM+Yc3BznWv/tainj14cTysJLG+p5xSpVXctrqYlKGdN8ojKSfGdPRSY2y49+GPn0298mhMCzZ894+tVXhT/tKYdEMAAAIABJREFUg2e/27NcbcnKF9nSWni8MmfkOcs5J+56qV8phMBiseDq6oonT54ULfnKyPx5PNzy4sVzYgxJ6jEyEGm8peuOpWpfjlxRNuSc0cxi2kHPqZbz+31OJIgxJtrm2TZcSUKujSa66byV5D9vWKIkyNZWZdPwuvF2JMuJC5Sj67sZ54a0W1KpIhFEEx+F0i/LecTELiKEUrNUSnN5ccHzF9copLEPQI8iydb3uiRwPpUIhqEX5y2t0ConywnT9oHD7Z7Fcs1qteJ2f2DsO1yQ5C+PA+HlyCB1o8OsE7XCWEKMfPHFFwW1VmlxvL6+FhqIj+wPsmNbrJYYbXn//fe4HNJiakTQ+3A48MUXXxSTEqCgx3PuY74hiwlKpmw0NU/efywe7ckq8/d///d59OQxdSXE+xAiUcezG/eOS3i2nklDD+XmGIfMQ1eouhHTghkfWiYxuYInTUBpApHP9HUHcR+/7nHOPZ4nxWWsAdnuPssOzs1AgIJOk/5mHi8lZi+N7ZTEacXVgwd88NFH/PE//uPT5Jec9Joijp8lmZRSJ85RmUJ1fgzleONEw1gsFuxubuU1+gNGi1HLer3h8ePHKGO52e3L5teHyTBBay3zGoIIrVrLtmloKwi9zDXBt8IJ1Iro84ZkKkmf6KFrLZKWXkqqRiu2qwWV0URlGE1DjIoYBCEOKslyRuEQRnJCLPO1Stdi6DNXeUqU7xv57uON467hoab7M8RQ+prm0pAiazh7/uylpnGYgLvc1MfpfZ+pRLLxnvqEmI3leVIu/ROZejEd/zlsdPJRjLh3vv/hh/zu7/4uf/RH/yfLVOW6vr5mdC7RS6aKb+5tAl5yEx3H8WWkO1W48ub95fMwnViVKnmKyfAkvXi6V2MBFXQCAvK9rUFcP6Fs+Mv7aJLmtCDkw+gQM8G8BojoQ+7dGoaxNFVP836asxAqSF3bQn973XhLkuVZKEXf9xMyEmc6olozK2DgQ7ZGjdOEniD3jFygInVlubjYlgvQpK71gGKh1AkHb1oQolQRZxfde48PkSYZc/TDQNf1abFa8eLF9Ynr1KqtWFDTO+lGRUkXZt00Mgi1xqVjGrqBvXNoo+n6nq4fyeYmx75Dobi4uGSzXqRjn1yI1knPMHfj397eJveeWBLgvPBqLSXd7XbLZrMRJ51auEZ5gV2v16IKYi1xNqBfN3IHvEpIYIiR4XjkkCgndV2zbJrJdjLtpBUymA0Zg5brnEu36n5xfKejoLET52r2y/kTZay7tNRYVOlILyXTEPDDKE2Ad5npqJd3fy8tXAr8OPIbv/EbXD14wDEZDHnnGNxIU9cMvXvp/sk0qZx0LhYLFosFXdeVhuB5ORQmF6spgQzlIFarFReXF9LJ7h37/YG+z/rtjv2xSyoaLeM40NiGpq4xKrll2oYxNe251HhjK42tDLaq5fyM4ow3zjTd56dd+koUV5eXGKOJRQlDETPFQwUUHhM9ShvpRVBzPXa5Pv0dXfjncZ9A38fXxh37XfmupMk03V8meQBIb8FcveUM0531PuQ+B1Sihp2Nw5x4gpj8qLrGQKFIZAdBMto8p4GcH/QrEv75r/Nm+/w1ZAqbEOuinZ7R55nO8jy5NcaUivR2u5V8QEmiOg6S31xfX7Pb73jw4GrKSdyAUpGhk0bm3B/tpSkMpUWVIowetMGNI0pr6qqiqUVlDESnnii5QFVJY6BUuZxwl5UWk7SipyyVsMViwXKxYBxG+mScVsCRGYc9pKo3WpUmxNeJtyNZViSEUf7pvKNPSIfSlQyKKCYWIRQhIvl/GSAZQZVJmSiws0KSs4uLCzEB8Y6mlYtbVzXKaJqmllJjCGhtiN7R9Z0kuNsNdd2k51dYa7CVYbPZcjx2gpwkTm5lDVrNJncV2R+ORCsyJfv9Hq1y+VKhrUb7JPFkrKhn9ANVXUtHurFS+oyB6+tb+n7gwcP3AKiadUGsVNpVZTWMq6urYjO5S26FXdeVZLmqqtkgMhxTQv2v/O2/DcAHH30IMdAdDmIF6h2Xlw9mF+xsMnlFHp2vjEZukn16n67rUFqzXC7RlaHUgBPdQgNVeSRTNGQDc9/p/m5H9J6g1AmaI78QGCYmdCOmraaglTKOKmPKBB5JaM6s8z0vWlrrkzVK5f/dkaTHGPjkW9/i0eNHfPHlz8uxxBgZkwLGvEnmvNIDlIa/qqqKKUlOBsVkqKVtZQ7abreoKLJqQ3fAOymb5oal4dhxc3PDIVWlPBnRguN+j4qB7nBEhSC85bYGFWcSbsgirjXWVDRJvml0B8LgThBxqVJVBOWI3mO04erqcrLRniFK81AqlsbeSmuiG7FGJ3vgpBj0DfEmCfR9vFsRY0xUyAkhNqmarIwpkpIKsKYCpYhpszi7s9N3VdDl+cgqz1OnFI2XqlSvecznvVd3vtfsdyFRQrPZx/d/8AP+yT/5E376U1HVq6qKR4+fMI6OYXAip5bux4ym5ioXUIzM6rpmtVoVJLltW0IIJZfoDjeA0DCquuJie1GOtfcj6/UKqw0vXrxgf5BKd8zVYy1mZi4ACXCsraWpG9oG6npS8ogxEnzAaEHlA7E4gILMT3qWNxRE/A6++EkfihIX50zH+dVEls8gm74TdKFd1QiKHESiJU3qeQoO8ZweoKbfRgRZrisuLy4IIVCnkgtAIDB6z3K5JEZJ4vrgQUF37BkGsXTO0jAxKExy4YsoxnGg63tCEP6gUZGmrU92eIe4RwVPQDGMI01KVJ1zVHZ6bk4eQZDvulYYW4uNY+L8/vwvf86LF7cA6GrFer3m8vISoPisz/mPuekHpm5YY8S9JvOW+r7nxfU1H3z4Pr/5278FwKPHj+m7Dq0Mz549wzb1WbL8zRGiSO1khN80NYuLdbpEGtqK2FiYoXrqjp9yaKWJ+hU78Pt4ZyKGIDSLMOsWB9AviyRlZPOukARYuIsqJcdZKu7rOtjLNnH2slXT8N3vfpd/9I/+P0BoU7vbHeM4slpfFP3PnDjPqQwgyLL0Town41tKp5r1cs16swHg8uKSzWpNDB7vBp5+9ZVUqEZJZLte5q3C5svIkdFEP3J1scEqjVKR4D0xeojgvTzP+YBSQebVKKiQTw01w+hP0Kh86q3RjF6oLZeXl6mcHUrC/HKyPKHjmcOpED19FTzRJVURlaka80Ti1cnwfaJ8Hzni7P6Cl3LYUs3kG8bMKbh7ChJNjNk8Mk8lVTPtwjtRf4oxolJj+3noWe/O/LXvOjy5JyYqVN00fPDhh/ze7/0ef/iHf5j+TokVdYBxEJm0w+EgCe8MOMs5x2q1KnlB5jLn3qbb21t2u51wmvt9+qwjy+WCpm1wQ95Ai224sbnfY0ImpIqkTh9X6Rwp6RcpyljpecYYmbcgNRyKxpE2mTaTpPrSywl4KHmQ9r5s1jP9NJ+vVKx7iQ73TfHWJMuZcpAHSZfQhXa9KSfLJFL+fFDKTXC6wGip/wv6lIjsV1eX6fkxSZ3AcRg59kO6CLLLGJ3DBtH7NMbioqLvc1Odkx1dVCJjYozcCOnE51KHnjWs1EbjCAwhcH19w7JtiF6QlMrq0tHpxpGg4MGDB6zXa/phxAcKX2i1WqbzM2m57na7wjPKna45Kc4Nf5kLuVgs2Gw2KKVo2/ZEfNyNjqEfBGmSk4hSirppqNuGw/HI9YvnrNabqcnp9OJN5z/RL4qTC4DWtMsFJm06cqPBOU/za+NVJan7eHci0RKiern0CfNk6WTJEuQnSZllPeGIoElzeaYYpTR3MnY5W7hmPMIQJBV3zknVSE+cu9E5nBP5pUxvyvdy27bEGItMXNM0SZd0ZLfbnZREZR4yhTrWNDXVasVmtaSqDPvbW549e0ZAoazl+fPn3N7eUreiJmSsQY8O76TjXCvhGZu0NrvRSeKcEe8QGUaHHjx1I7KazvtSAp0n+dlYIFPKrNVsNhtIZW7y10uZyrSZJ8bUvBtKcTGrYJT+IJWriBn9zyoG8HXJ8328mxFDONPYRRr7gYY6cWRPseLgPCHGkqCVPhomzX8l2R0gNMGo4onRyEklK9E2lJauibIRZ6bglZO53APxhkM5xojVGrtYEELg008/LQoX2SRJKYPRY0mO89993WvOf57LzBWZx/Q5vfe4caJlaS15x/F4LIk2QFQaHQLKJipIthrXAtxttksuWgqXOm/cralQ2tANI+PocCFgbV1Q5TwVZQ17k5oX67piDIEQJ2Q55y1GabzLn/NXNlk+jSJIj+xInPd4JwoS3oublNIKFyI6+rLL0GIsLtsNFYGASULdm82ar54+RxspD/SjZ3QBZTTG5BKAxocR4rRIWFOno5Lj6PoerRU2aSCjFVWsgEhTVye+8VqB7QMvBuTvFBA8wSh8mKRbQNDY4/HI7e0txlZEBIUaU6dqjLGQ4E1d03VD4Uhnge0QAnUtvuve+zIA67ouAyObIzjnuLm5QRvFd/+l7/Fbv/XbgPCRvA+YakHTrugGT8SgtWXeUvl19/Y5Ojfv/v+rlEsjX3+T38evf4QQ6fteJj4jzbLzRQ1SyY9YFkSDks1tBi3yGEwTeCo+zRDQO8blfKNWWB9J9sxa9rsdT957j9VKEtTD4UB2wstIrLW2OGQZY4piDQhFyTlXHLbyRjLGSNtoHj58WBbB0jhoJFEdhoHdbkezWCZ9eIetKhZLeb6PMIwON/TYytBUViheBEFzdELhMpcb2bi73R4zOA6Ho/RQdD1jiLg4OYuRTptOfR5aWy620n0fvZN5+Azbl6am9LeJ9pJdz6SCBkPiW79cTs2o/mnynI87J9H3CfS7Hc57nj17doIs5vtnu92KaoyelCdUTDSLNJbNfLM8y2HjHd8joSTThpyEg03rX5gl2JCmq9mcVRDw83LV2cb8VSEVoISeVhUffPghAF99+aUoWxiK70Kmas4Vd/KaPG/uG8dR9JN7cc3LmsshiB6y/DEMw8jzF8/ZJGM1W1V03ZHb2xt5ftZfT/drVVW0bYPSHg8oY1ksFqzXK9b1ZDYXY3Iu1IaIIoRBjJCUwdiaGEUPfkxa8uM4Ss6TkmJjxdDExFPHwfxdMeUS/g3Utf6Kitn3cR/3cR/3cR/3cR/3cR+//vFWIMsKVegD+Stbqh6PHaaqU3lwICorCELaEWpyOWNq8MuycSpWGFuhVKRtGh4+eMDPv/hyKrPGmdKGym4wGg8YPZVLTHGWsbl3lX4Y8Ik/XVcGU9dSMtWnCGpdVzR+pFHVqSNV4vXlPacPgZj4QX3fc/ngigcPHnOzE33Wzz//HK1M2SE3dSV8pMRzzCXevu8LOlVVVWnw2+33bDYbbFVhrE08yZp97/jOdz7j/Y++TUjDwdZLDjc3LENksVyhjT0xOPkrXeN5KWQmpfMmCPO5/uJ9vFvhvefnX37J1eUlq9XqpQ51SPy1MyWL03YI+Zd3ju5wQFtDq7VIpcXXwSRn4y+hoovlkkePH5X+gd1ux+XVVep7cEW3dO6cOW+0efr0aUGW67ouCHQIgdXC8uDBgzKn5GpRDIGf/OxnRRc1a6l6HxKCI93sQ3LwGrojrdFCPdEWYkAjbn6ud2fi/ILQDsPIoes4dgPOjURlTpxD8zmoqgrvBLFeLM6MFM5RNcRkSlBlOZ1KK6JTpTA+jqdqGPK3p1fmBGkuT5r0V+9niXc33Oh49tVXJ49limFdVdKoX1WJfiW/V6m5XIDfU+7w/F/536+7aqkZYhxTg5o6G5wxU8XeILQxjMFzPBxZr1b0hwOr9Yq/+6//XQD+73/wD/jRH/+IIY6s19tC/wJKhTnTMIEiO5vl5LJnQ6aMgVhYN3UyOetuORwO7P/8lu9+57tiWLJecTzs6boumZLM5mRIOUmNjyMEQeUn9+GZFNz5+Vd3szCLslHMFSpdpHG11tlOIz0nfU+UM+c9PluKv2a8FckyShWP9pgm6izn5rwDI84t0UdUMXwLKMysyDedOHnNqTyhiLSLlidPHvMn//SflU56ca1RBIRfWPhN2tBYS5XKoZnKIBdFuDuMQ+IvB7yWhLk1rdAu0sKmtcKslqw3Ht1XjONIZQ1W1zS1dIGGpIYx9j0+BlQQ3o+UQGzRZrXWYk1VOER9fyQETZ9sN+tkkNL14PwARI59N7n1tEsCimM/UEdoWrjd3fLpp5/y2WffEamX9NpN07BYLArP6U6e8jfEiU4sp9I0OVl4k7hLKP4+3q3IesE+WVVnYxuYypnaZAtrjQgKpTjvUk/21TpKs501lqDycni2eN2RRJdxrRS6rtlutmy3W0CaZRaLBfvdkf3+UNyu5lrP8/Gf9T5DCKxWK95//30WiwXDMGD1KL9P4MGPf/xjmqbhYrPi9vZaegvqmtvdjmocE+9yan7xQZQ13DhAXMhipuTzX66XVFVFfzjQZ713FIPzqOAISjMmG+7M555vcK01aX6sCb7mYrOWpDtdJ9LcO1E8YslP5q0mWil8DKCMSDmdUV7uilerYdyTMO7j5ZgnVpDHX0p+T0CbKYFmeuZL/8xJcJyN7xAjQWmhfmXNda1RCdyL4yg9TpkaUKRT03Gpu5PmV90OIURud7fsb2+5vLyk6zqevP8+AN/53vf46U9/yud/8RO6bqCua3EBtpbjUUxDfJJXAwqFM89FwzCIrGzKH6aN/qQlnz9zPLm/J4m6cDbnaq2Sk3IUfliiZiqdxGLLNZqAy2woFRHjtsWi5Xjs8S4WCuo4jiVPE/m4pXCc+4Gia5TWh4AmKMMQFHGI3Ha/gmoYkbtnudE5tJVBFGa8QuEMyuRuTvYdGbGYJmyIVJVlvV6d7By9d6AskZia/FJSlo6jNLOUZhuFtXVKmD1u7HGjw3uHNQsWixatTjl6TS02jjtdsVgsRHdRiz2jOPUlbcHEMQ4x8sknn/DkyWNqq3H9ge54oNEBH49FmcM7x831SPQebWoqq7GrJcYaRjcSfIRkcZ3Pi/cel+Ri6rpmt9uxXC65urpisViWQd80TVn455JW3vtTsfE3ub7nyUpqHphzmb8p7rvd3/GI02QMnHS85ySuzpM4SKPqPCsLgZA24d3xSNd1LFbLsnnO7wFQiIzpz8+5g0opfPCodL9773jx4gUg90zbtljTUNcN19fXYjY0DCe2r3kTmtGQsilO95y1lsY6vvzyi4mn6wN919Ef91SVSV3uR5rlstxP8+bZcZRkt7LZ+CQWBN0ag9GaYXR0iSdcVTUuRIgeFzx91zO6sSA38+pOVvcgvdZmu0m9kmnejQIm5HOqMvIbX0aJcoghSSaGl4syO/Gv+EPu54f7kJDN4ViGTQQGI+N76Hu881It9p7RCVfXJot3SR2miu95v8IEFM9qWmp6qozBWcqbJg7vPMf9nnEcWaylt6FZJ4m23Dh3Xmk9J0ufRWmyc748b6qGi+zsOcCUN+o+N+3mJrzM4T17XKV+BOecPG5Ved5yueTFtTQUa61ZrxY8ePCAyhq++vIrnj59KsdSN6mxuKZtFVENKBfQQN02mLpJuUmyuXdJOUSDD3KsTW2xlaE73HDYH1mtVmyWksjHUAGKOAwoF7FotA/Y/pYmffyENeBtDdUCh6IfHc2vYrL8qknQOy+DKYIPoIPo8oZIauKDalaOLaXUlCTnQdg2LRfbbZJokedmPVXRb5YSptYaZSuM1YkobsrA6ftepFpqC0pjbJ0GUi+qFrPmn/QTPmiMhlVjWa/XDH0ndA0VscAyJcvVYkXnRr73nc/4+KOPWG83/OyrL1haGAlcbtd4pXhxIzqHP/3Ln9Id06JcZOE01lt8kHNWWVtuFSHnGy4uLpKT18Djx4/5O3/nX+U3f/M3qdumOBsCJUGeNxzlxf61LqdSJwvrHE2b023eBGG+x5Xf8UibvEzjOf2VOhmbudGG3FATAaVLgj26kf3xQCCyvtgWJEjmg7Oi3101QKXo+p5Ki+xR27b89u/8DgD/7z/8h3KvqKpsCvMilNVosu4pTLKPbdtyeXnJgwcPCKmj33vRi83PlXvSE8NIdwwcDge00amcaVEqoO1k1Z1NTi7XK4IfGJyUWjfrlSDeCV0qMkzJjMkYkwAK8D4UqpdN6C2IxKVJihiRyHaT1XISqHGGoOdkIGvlq+LaN5VapSx8vhic7VpeM3m+j3czjNasl6tpnUGV6nBbNdJ8FyL7/Z7dbocxhu3lBU3bijTlLFk+aQxL6lqKSQJNvuXn5D/iFA5OXILzitI3du99TWQnPKFl1WhrqWJdlL7ef+89fvBbP+DLL7/iy59/xeXlJZvNBudkUz+OI7e3twWdzTTOYRgYnWw0dJLjjEGq231/xOiURGuP0orKRMJwQBlN7A88ePSI99Yr3l+v+TI1PH/51TM2TUs1OvbHAze3OwZgub2kWS+JdcOwd/jU2Ne7gRjFSMR7n+b9CmM0h/0t3o0EX0FB5nPFS9xSpSq3ZBxu8aUBeFJbU7PNjHO/gmoYr+LseOfwwRPQgv6aIAuh1E8ARSZknL1gQTciwh3WWnOx3XKdeLxaK0JU1FWFuNz4ssvMHnLnmqiy6CWZOGOoVytursVMxC0XGK1wY7aajYxBeDq0DZvHFddPn7F78Zwqesww4PPCQ+Txg0d8+MEHfPbZZ9i6phsHmqZF7w9ykyZ5FMjdq7Z4vUv3vEwUVVWhlfifZ7m2/X5PCIYnT55greUnP/kJn3zyCVdXV1xcXBKiLxzsjNJlHmRGrPKi/ya0jJzAzLmO89d/MzrGaSf+fbxbYZIuaFVVb86fV7LQkTaEdtmy0Q9omwZT2VJN+ubxOP2+Ox65Phx4/Pgxzo/81u9KsvyjH/2In//lz/ng/Y8YhqGYjmSqRaY25QU8J87H47FszsUtq+f28Jxnz5/z6KHonFeNxbsRheiOhpCS40xLkQ9b7uVhHCGKc15TWYITp73FQrrib292Yg6QpLW8T/bTSiWAIpzY0mbEG6Bp2+wjChHW6xWVtSccz/NdhiTKkkFENTl85nn6pK/j5Yt49v0cor5Pou9DqFhZoSFHqeIYUzbSISGsSqki7fbaURLd8530WZUqxOQWKjrHx+MxKfZA1dToZCqWLeBPZCvvPCR5vxBikqcMrDctMULXj4WutVyu+Phbn/LRJ3/Bs2e3PL+5xTYtX3zxZaFe1O2ivMWxO+J7jzUGpSJVXSWTtYDREHygO+xxg+gsr9agQ2C7WmC1oMQEx3a15IPHTxj7gXXiSLt+YBh6rrueIQTqxCmurKa2lmXbQtdN/hfRFwqo95q5BPVcAi8bKYWgUWiUmhQ+BDiYUP+7zqXkN6+vhvGWJMuvpsz7VGJQiIi+CgGlA8QJoXAqlAY9ebIpXJUQAjGRzeuqYr1ecZ1sl0XM32OoizYyCHm+sdIkUzfNJJYdAyoGVIg419MdDyyXDY8eXrLf79kfOppmgVJVPgyMrbFVI+hsVdHvdgx1hXHC0xvc1CQoSa5YPRIi0YuMUt8Nkiw3LX2SSzFVS9MsWK/XRQau73ucD2hrMNYQ/GSBfTgcUEpxPBxEWmqx4Orqiu3FFtIgy+XoYRhKQpKT5bzAvxESfIYk35Usv1Gj332Z9Z0ObQybzUZKjGpqmoHXL8FnekJVVSiVEKekwQwZkZ7Vb18RUlGapBj9GIp03OXVJX/+Z3/Os2fPynusVivqui6L83zzOL8HYoxcX1/z7NkzuuMeowbaRVteWyudkJWB3e2YOH+6lIBDEAylT0YBzjlU8ECgsZZoEsDgA92xI3gHSlM3srB5H1G6IirNMHYck2SU0qZ81jynVNaiATd2xBjYrMVVVIiG6T6fzRdJUXZ2FqVBMgZfEOZ+6F++z18559yFQH/ztbuPX+/INMOyxswk0mxdlyqSSwmsMYZ2sZjohsGXMZj/XifucUGayWY6M+oDCfSbVz8yR19FsAbdVOg6pV25oxBmTX/fNH4lV9IammYhxmW6YvSR2/2xJJwRw3pzwbe+/SnPn9/ys5/9jBfX12hjcKkBT0HZYOeG4rquaVRF3dQs20WqKIt28uFwwHuhs/Q9fPLxJ6wXC3AT37iuay4vL/Gj4/r6GoCmbuh3O9zoCVrsxbXW09Y3AxlnkbWQ88/zHCIDd0CSqNNJVlde2xrJp8bghG0Qcu4RiCiiElXsX0md5fPIY8V5QWMCyRXK+8lYIABa4SKYOHGOVS5bxlgoGRFBT9q2KYucWMuOmKqFEKnwqAC6u8UsN5igCN0AAgDRmEzhCBA9MUqpdLPZJP1CI9rLRS9QlocQAgwDuq5o6oplW+O7gB5Htsls5Dc++ICP3n+Pxw8f4QbHT37yU/70T/+M42FAaVmcdrsjY0KtF8sVBPvSAArBY5TYVioMQ/qsFxcXWFvz/Plz9ocDn376KT/84Q958OABz54+4+GjB+WmPylnz5rx3pQTmBOCu6x+58ny68ac53kf714oZtqgZyVNaZD55p7y+d9kzeMcRZPz/G/ueJ1dKmFuN5tkDW2KnfvxcJDEr++LI1aMseiXDsNQTANAqj7ZRKE0zoRA8I6IY7vZFBWc4APeDSyXK8Z+wDvH6ENBybwPKO/xbgIPVAwYo7BGT9UiNxbzD6UNTSvzUD8Owh1UgnAfD0fhWa7WmMKnTgtyFCAsBFksN5tNuten+Tc3UeUzGcnraiwQSYyhmDUMw8BZPv0GyfNdV+8+3rWoqponH3xw9y8VRK2JqbzfLhbYSuiKx65jHEeO3bFUfRaLBU1VlQ1pzE58WtGe9dqU2SdTvwrfU6FVzWK7pvaLci9raxNFbLYevuZnzBuC9XrNYiFJbbapBklaFwvhEH/88cd0XcePf/znbLdbDocDzrmktz69nsyviWqi8vfp9zDNhaWxL38PEe+E0hV8xBrLciFzyna7JSqF3x+IzhGIVFpRGY2OATcOxFnSmgG6DNjlOQuypnKbmhOToZsLaGVpasS0RClMsu7uXRAhhtyuU2HMAAAgAElEQVTgF0JKlIVCU/jerxFvTeZRpvbzeZEovD1dpXJJkG5JbcuFClDKjqVrU4EKTl5ZW7S1rLaXmNUlf3krpYq6XULb4iJoH6iU7Ngqo2nbOvGB5UYBUjkyoE2cOj5DnHF5TxHSQpSPilorht0tm7aiDRtu+h5bWT7+QLpXv/vZp1xtLwQxC5GxHwguYFJyIPtYRwhyg9b1iuDjiYufONmYglwFH4okzOXVJZvNmq7vubm54cWLF6WRSI4zYBIHaJ6Q5mQ5I2Jv5LrHrEmS0yT8hAt2jxjfx2uEUnOqwV8vMoo0H3uvGoenj8r9oE2FNhV1syBEWTwWqez48Sef8E/+5J/hnDtR0snozX6/LyZCcIrqHI/HooCj8BiFLObzjUGILBYt3aHhxYsXeBQqBMIwMo4jY4ilYhVCwEZp8NNJHi+rRsS0cNiqYkxqGOMgybf0cyiqylJXlahspPNWnAq1omkqoh/YHY9stxsqayDmhS+efSfJxk19JcoY/BiFfpiT5Vef/LuT5/Ra93EfgIwZO601d40MHwPNasn68gJjjPCXD/tiC73OSGna6E4SteeJ7TevXbkqW9d16QGCv94aeBfYdCK5FifnurZtWa/XpTJsEupKlGp9PkbZ6CqMma/zqlTEnHO4vdyf1zd7jl3PolkSR0/wnt3uwPXzG/aPD1xeXPDowSMAPv105MX1NT//6iu+ePac275HGc2yqah0ZDgeWFbVyb2fNwNC+9J0nVDUrq6u8D4mDnUCPb2XZDwEMZoqn71C6Z6532cGMGOi0GTayuvE25Esv5qFAQgVw1TChQvJbUrHQEyLnSLii79KxEQHLgK9cCFsQ9QiO7LdbPAzUncZsKkUq5SgHyH40pwTErG473uGoUObiDE6lXLldaQJziYVCXnw+fPn5X3qqubQH9Ba0GdbWaz3VOnG2axWolO4F6vI509fcHuzIziIwTCGgA+aEORz3h47SdIT8p6deXT6HHlxLTygxL1erVZ8//vf5+rqih/84AcopVguF9LYoE/PyXxyyOfiTZLlzNXMr/mmifZ93MddEVPF6CVK0BusN+eo8puGMYbFYoXSlqf/P3vvFqvJkuX1/VZEZOZ32XtX1alz+vTp23TP0INnGMYDjMASMmCQ7cGyPH4wEvBgsC2PeODdIFtC8pMRsmVhW7bmYTQg2WC/gC8aGTCyxEVgDZj2MBgG9wzMdE+f7lP3qr2/S2ZGLD+siMz8vr33qarT53TtU5V/qWp/l/wyIyMjVqxY67/WevSEFCN37twC4Nbtu4gLXGw2rFYrYs6fXir3lXaXxaHkSi/HgmWkEY1oMmtN3+XUbjmwqESnD1DjJ+/bFqWnnSyCjXMsm5q6rgZl2QKdzVNWNv3AEJXuNBG10ClMfrhcyavIvNh1eJbZ8tOzWq0oAVUqOavQ0SMa3wq5+G/ON2+/s831sWl5guvM/vOGe0ZB5tpft4GyUsnpwFq53+8PStNPvbXHwelwfYzVdfgkjELOOdbr9bCBXa1Ww3eFZvbee+9x59ZbfO5zn+ODD77Nfr9nuVyyWCzY73ZcnD8bzrVYLIhdP8jFvu/QlAjBD/mWS1q3LgmbXUdwGxbe4yXQdYn3v/0d6BNf/NznePedzwDw7t23efedd7h9+zbp619n9+3voKosq4rKOba7PfXqdKBETD3cVkEwDLqN5ay/RsE9eN5XW+qNhpGV54nF+kVwM5RlisyTwTk3ctuEfTSTvWoWsUlxJAt0KWTvCWdZcnCfZFO7SxFSZL1acnZ2yionzk8pWYdpsmOdBQDYvzEwrfRn2V05ZVCWQ/BDNLtNKB1yRhd3QonWXHlHt98ibcdZE7h7dpcf+OIXAHjnrTssQk3jPN/89W+xaBasFivO909o245ejdc0WnUcmneO5TPLi1iDCH2y7BzrTPNYrlZcXJwTo/If/tE/OkS+FveN+adK5OhoIS+T/FixeGXW4HlNfGOhJW7hioXno4zHwQNTcjS/RKYXsCT9i8ViUHp9MFrF6uSM22+9zQf3/ylnfeTBg/u0+z0pRh4/ejTM2bI4xBgvFepZrVZor1xc7Hn/W++z+v7l0Maqqnj44AFPnzy1LDzOgzCWl2V0Ly6WNeugnJyeDMF0KeZNrxNcLjTSdUbJsPRNJn+Lx8kWSBk8TGWxil0HqUNTT9PUWX7ooICLcyQ1TjIUq44/mMMjjcyx71rS5Es5+H+6EL5AIN9saH6DoS/saTiOlzm22H6c61xd1y8en/McFAW+ruvB+1uyYgGDcnl2dsadW5533nmHb37zG/ztv/23qKqKs7Mznj55wkVOdiAiLJdL9uxw3s7fdj3eRZxrBst4XZunzKGWwKDraZzPc93kTsnScYzSJpFMyCo6WpYZBUUmp8wiiDEN3nuzjsvBBh8cTgJVXRO8JWtIKdG1ppdNc0HHGElu5KG/DA3juauDiPyMiHwgIr84+ezPiMg/EZFfEJG/JCK38+dfFpGtiHwt//vvXrglM2bM+NRilhMzZsx4HmY5MePTihexLP8s8F8Df37y2V8D/qSq9iLyp4E/CfxH+btfVtUfe5lGKEKU5trv+5jwk91GFcZAsSuLXUCu3pcAJWmLEtAQaOqKs9NTAB4+vcD7QIqJXhPBJaRyKAmRcYdTMmUMuUzdWKax5H1t25bz83NCqGiaHIyTk3k7ZyUkte/ZPHpE6ntOVkvunJ1xdmIpblwm+nvnrBJN07BoFqT+Ec+enrPpelQEv7So+NXJAtf0rFwk5vKwlqu1QZyj7S0KtCrWrtWKzWbDbrfj/Pycz3zmM5PE46X3CiXl8q56plDMeA5+lk9YTkwx5Q7C9RHVx7+5Klh16nJ9mZR0Q3EU1YNqV3Vd833f92UeP37Co8eP2bcdMSnOeZrlkt1ui4sy0CiMwrAeCpOUYh99rhYaJ9ZvEaGuAt959syqbqllyBC5XDELMj2M/XBOUUujWdU1iRzsp5bm0vrA4ke8ZFmaYqYJj5lr0uCqjuwkISQ+8967hMpyLGtSNEULokppsACpJtQFQOj6jspB7M2H6ESGgMPhuRy8PrQzyyXT8Uen5Mz4nuJn+R7KiSuRPbLTOVWKAQEH5eKvy+k+5ml4mcte9ogN1TE5rHL7IogxDnSLEn9x/HvvPZWvqSrTAQoFpXh+Cg71qJE/ZZbdOPyu9Fmoa1AxuSEO58NgqX369Jwnj5/w9m1Ldxm8Z52rhW63W/Z7S7kp3Q7xQqX9ELcB0LYdKVn6zBAC+71l4ygxVqpyQAlVNcuy5YoWVN3A1a63FyiK91Ju1H6bgzSnMVXPw3OVZVX9GyLy5aPP/urk7d8F/p0XvuJLogjsglEBdWMgTOHHARJMlIqknLZI0RhR15PoWDYNZ2emoN5/9AQfqoH+3afRjSkOQnAH0d8hOLx3pNRbwu4jqkLXdTx9+oSTk3HwA0Oic+c9KbYEJ9w5O+GLn/8sn/3MXQCWobJy3i5w5+w2bZd49GyDJtjve2JOKbesbBKvlivWzpG2T2g1DTlcU0rUVc0qp86J/Uhsf/r0Kb/39/4+3nvvPd5+++1houWbmF2XMz4yvldy4jgd4cugyIry+2n6tvLZi7ahBO7BWIGv/L4UAgkhWCaJ5ZJ79+7lHKb5ughk6lgInroKOIG274h5sdrtdkbz6PaDYl1XYeAwD8UTRKjrhj4JbZ/oow752E9PT7hb1TSLhj7mhS+nTVItuWZ1oJDUTTV8Z/JLBo5zmshHyJmvBDQmbt26RV3noKEUSX0kB1xMFiQlZaOAKkS1EsAOk+u77e4g+85VaSrHkMHj8KpjusYszG4ivjdy4vmywXlPqKqD1G/l7xAAB1SZ5gAMBY1KzMTLqMsj3Wi8zssoaldhuvm/ymg4xiaYav/lL38fX/jCF/jVX/1VHj16RN91A00zJaOYLhYLnLOiTbuuo2v7oSx2KYMNcLI+o+86uojFUqknJui6xF5adts9mwvLyfz23bdoQiB4zxff+ywpdnzj29/i4dOn7C8u8FWgX90eucoiJIxLvt1u2G43Bynejo2k7oq1oBgzzUhw+fths/MSa8jHwVn+94H/cfL+KyLyD4CnwH+iqn/zRU7yYfl7pyR749e1hFANn0+r8qEOFdAcXZKDHrE8c4nVsuHs1JTlGCM1Fhkb+x7ocW6B95ZLtK7CgaVJpORrNC6NtUcHcr3xm8fCGScnJ5lT5HHieHj/Hvunj/j8V77Cb/2RH+YrX/l+FtkKTdeTdj19F2nqitu3brFerahDsEIjocrXzsGGbQvO43KauLJY2y7QUuIA7LY2uDXZAv/48WNLbZXv/+pncYPjZW5sw2Y8B9+1nBAm6d0m/F7IPPvnLF7ThPbl/UdJizjlGKeUWC6XQ6Q7wO1bt/nc5z7HN77xazx86EdBnzfvIkIdLJsG2OK8youUE/OIPX3ygLpShIhDeZYrdy6amuViwXq9stK9SS2LT25PCBU4ZRXs3LdO1pzVFcbriyQX8F7pk9Lvu5xRSSjpLm0T4oc4hSpnyuhy9UHnJMtSSAKoLUZ37tzOqfBKSevEWOo6y3Y5qmKmRe4LKQcyFiUFDuV+kf2Xnuml9y+epWDGjcR3r0/I5fiDY/1CRKz6ZObRTlOcToN/B0UsL4ofpqdch2M5cynlJaP8eRlOc9/3BwH8hRMMo8W63Ee73/OFL3yBH/3RH+XBgwd8/etfp65r3rp9O19fuXfvHtIs8N7aGHywlOlqnGFLcGD6xIOHT2nqispV7NseknmjXB1wy4Dgcul6CM5ZKK8T1sslt05PufeoscqAXcR5NyRrsMYc9k3ZsI99VfprUPqAUUaUY41nXRFTGhIpONchOsZUFFn2IviulGUR+Y+BHvjv80fvA19S1Qci8tuAvywiv0lVn17x258Cfgrg3bffOv7u0rVURzdD0sNqcJqjtu0DS0/knSB4061kFJ+r5YJ1jhqNfYd4gS4/DExxrpzlGFWKVWQ8+UgqHwPf6rrh9u1brNdr3n//fR48uA/A6ekt7t69m1PfBR4/fYYkGzzeuTENHuWxJ8TBYrmGesH7779P23Z87rOfZZNst7WPpVyvuU8r58chM2TvSGgyN0OhkBRr2KNHj65Rlj+KY2nGjOfj45ITX/rSly4pu4MrdZIz9DltufT+ZasBHijpk0W2yKTbd27z1a9+lW9849f49V//JmAu0K5tSX1/iUJS1zVNUw+CfrPZ0HUb3rq7oBLHqnL4ZGnmanrunNxG3nmHJ48eE2NvRZSahu2uQySi6FhlLzjqKtBHq8UgThEV2u2OfWtlrn2oqbOlXHLAX/HgqSo6scKLkEtcQ5GLzjlu376dre3jwkX5Nxw99ln5eUqWNi7lPK2KG6zDznngULE4XhA/zPo849OFj1NOXIdh7h5ZZYfCI3lNH1JUfkzGmUJlmCrLx16yl9mwF+rIsXd7sM7mDUDZOl6cb1ivV3z/D/wAX/va13j69Cmr1Yp333kHMK/54KnPBYjEFerVVcbMw3so+pMmncjHSbChCCrKoq65dXbK23duc37+jEePH9NtL+i7dqS+5LaICH3f4Zzj7t27vPfee3Rdx+PHT+m6fnw0eS/T9z1W/8KuuVjULJcLkiptzjvv/Z4+jY9VX0JafGRlWUT+CPBvAr9Pc4+p6h7Y59d/X0R+GfhB4O8d/15Vfxr4aYB/4Td8nz5voBifMBdXjZHkxiTT00GiyVx9xuXLbbVvEFVOVqvBsoxaKUrnHJqVTueDJSJfNCwXFfs20fejG9F5CKEiVI66DjSNRbjGGFksFngfBkvSsNio8vjRA2KMfO6997h9tubi2WMe319w9y0brHVeaFQtTd66ajg7PaWuHrDTZFHrylC5zIll8cCNlpjcr8Ni550f+Mclj+vjx4/Z5Pyu4wJ41Pez3jzjY8LHKSd+/Md//EMk24cLvessNgey4wWsRmWuG3fusoUIYLlYcrI65Stf+Qpf+9o/GEpb3/vgA1SV5XKJqC1QUBa2MUai6zq6vuW09dx9+x2cZgsA0AThc2+9xbvrE+q+55d++Z+xahZ4rEKpSkC6jlBlWkU4XOzK/fa9uV2X61PATeSEWvR4OdbZolc8aQd9qBbbgSrLRWPX125iwNADbrFmescY/K6ZZ20GkK5kzTgQPiO9wtp+yBU/NpocU2tmfDrwicuJQn2IcdjsDetfVjrLptdN6isfekIuUx1eVsE9RoklKOf7uFE8bsaytI39er1msVjkYkmFt21eJKXoVNnCLo4Ye7quO8i8ddEpiMmbza5l03U4gb6puXt6RrNYUGdqV1M1ObtYojlZsli9S9MEvFO+Hvd8cO8eT5885vZdSzXXNIuBs3xxsWG32/D223dZrVY8efJkkL0l61jXRvpeiXGMjxDxVHVF09S0XU9V5WqrXsyyPORfe4nn9yIPKHOM/jdV/ZH8/ieA/wL43ap6b3LcO8BDVY0i8v3A3wR+s6o+fM757wEXwP0XbvmnB2/zet4XvLp7+z5VfecVXHfGh2CWE98VZjnx8WOWEzcQs5z4rjDLiY8fLyQnnmtZFpG/APwe4G0R+Sbwp7Bo1Qb4a3m39HdV9Y8Bvwv4T0WkByLwx543sAFU9R0R+Xuq+uPPO/bThtf1vuD1vrcZL4dZTnx3eF3vC17ve5vxcpjlxHeH1/W+4Obf2wtZlr8XuOkd9VHxut4XvN73NuNm4nUdc6/rfcHrfW8zbiZe1zH3ut4X3Px7e7nIlhkzZsyYMWPGjBkz3iDcJGX5p191Az4hvK73Ba/3vc24mXhdx9zrel/wet/bjJuJ13XMva73BTf83m4MDWPGjBkzZsyYMWPGjJuGm2RZnjFjxowZM2bMmDHjRmFWlmfMmDFjxowZM2bMuAavXFkWkZ8QkV8Ska+LyJ941e35biEi/1xE/qGIfE1E/l7+7C0R+Wsi8v/lv3dedTufBxH5GRH5QER+cfLZlfchhj+bn+EviMhvfXUtn/E6YpYTNxOznJhxkzDLiZuJ10FOvFJlWUQ88N8Avx/4YeAPicgPv8o2fUz4V1T1xyZpUP4E8NdV9avAX8/vbzp+FviJo8+uu4/fD3w1//sp4L/9HrVxxhuAWU7caPwss5yYcQMwy4kbjZ/lUy4nXrVl+bcDX1fVX1HVFviLwE++4jZ9EvhJ4M/l138O+LdfYVteCKr6N4DjBPDX3cdPAn9eDX8XuC0i731vWjrjDcAsJ24oZjkx4wZhlhM3FK+DnHjVyvLngW9M3n8zf/ZphgJ/VUT+voj8VP7sXVV9HyD//cwra913h+vu43V8jjNuDl7H8TXLidfjOc64OXgdx9csJ27Ic3xuuetPGHLFZ5/2XHa/U1W/JSKfwcp3/pNX3aDvAV7H5zjj5uB1HF+znDB82p/jjJuD13F8zXLC8Mqf46u2LH8T+OLk/ReAb72itnwsUNVv5b8fAH8Jcw19p7gR8t8PXl0Lvytcdx+v3XOccaPw2o2vWU4Ar8FznHGj8NqNr1lOADfkOb5qZfnnga+KyFdEpAb+IPC/vOI2fWSIyFpETstr4F8DfhG7pz+SD/sjwP/8alr4XeO6+/hfgH83R7H+S8CT4l6ZMeNjwCwnPl2Y5cSMV4FZTny68KmSE6+UhqGqvYj8ceCvAB74GVX9R6+yTd8l3gX+koiA9e3/oKr/u4j8PPA/ich/APwa8AdeYRtfCCLyF4DfA7wtIt8E/hTwn3H1ffwc8G8AXwc2wL/3PW/wjNcWs5y4uZjlxIybgllO3Fy8DnJiLnc9Y8aMGTNmzJgxY8Y1eNU0jBkzZsyYMWPGjBkzbixmZXnGjBkzZsyYMWPGjGswK8szZsyYMWPGjBkzZlyDWVmeMWPGjBkzZsyYMeMazMryjBkzZsyYMWPGjBnXYFaWZ8yYMWPGjBkzZsy4BrOyPGPGjBkzZsyYMWPGNZiV5RkzZsyYMWPGjBkzrsGsLM+YMWPGjBkzZsyYcQ1mZXnGjBkzZsyYMWPGjGswK8szZsyYMWPGjBkzZlyDWVmeMWPGjBkzZsyYMeMafGLKsoj8hIj8koh8XUT+xCd1nRkzZnx6McuJGTNmPA+znJjxqiGq+vGfVMQD/xT4V4FvAj8P/CFV/X8/9ovNmDHjU4lZTsyYMeN5mOXEjJuAT8qy/NuBr6vqr6hqC/xF4Cc/oWvNmDHj04lZTsyYMeN5mOXEjFeO8Amd9/PANybvvwn8jukBIvJTwE8BVN79tjsny0+oKSOKDV1Ehr/OOxaLJVVTo6rDd06lHIyUl9gLFXvtvKdPCRHHbr/n4aNHxBgpP9C8FzHr/WjBl3JtJ8P1UEXzd/myoHbFpIrmf5PTIE4ufTacYICbnLBc+/Dw4f2Bk0EPXg19hwzXKF4JzQ231pZ7P/RY2CGTPtDjRgvlVpwIpAjAetFw+9YptXckH6Bu+IVf+If3VfWd4zud8anD91xOjOMYnHPgHIvFgnrRwGQGOtw4lSZzR/ML5xyaR7QC9+7dZ9+2k+sIyihnhlNhMqb8s4M1y57JfSOgDPN+mGsoTqZyZXJDB3jevBdEjmTHQQ9BOji1zXtry/jFi815+1yGr8vxNudd7oOm8rx1+xaLOuTrC9osqUJAUiL1PcSIxh5NCTfpQxElxoSK4r1HgX/wS788y4nXAy8lJ9ar5W/7wS9/ka7tiH0HKN7ZfBDvSapcbHY8Pb+giwnEH61xDO9EjiyKMh27yvM98zqc0w7VQY8oAkXRUfQoiDhELs+nYZk+uqRMvxw+u35OXp7zDPJoOP54jktel8t8c0UqyPGl8/kut3vUHbJk0FGepBhZLBoAzs5OqaoK1TSeSw/vRZnoHwf/6UEH9V3Hbruj67r8Q0VTOrjFD55cvJCc+KSU5av671AVU/1p4KcBPnv7RP/w7/4XJ9+92EUOOuuqi1yDurGH4urA2Z3b/Ohv+THeee+z7No93nscnkYWOMC5iXINIEISCHVDtVpzvt0j9YK/9Xf+L37ur/4fbLZbfLBu3WqDikM1oUREky3SoizqivViQQgegBRbUkqEPAidczj1uOjZ7/f0fU/XdfR9D4D3nrqu6fueGCOqinPuYBFWVVJ1Ym0XwYngHXgRuy8gOIcTG2QyKL8KJJu4qvSMC6dzDuc8vaahLSmCePvcOU8CUkqklKzXROhdwpfBn3q8RpwC6kgaQCrazhTklQ/UcQfA7/yxH+b3/67fwTunC56+9R6rL3yFz7z3+V99gcc84+bjpeTEu7dP9A/+yz969YEvCecczXrJYr3ih37kN/HFr3yZNvZUVYXDU7slrszFvEZ4xOaBE5rlmoiAr3h0vuHP/Jd/lgcPHpWTo66hl9rmpCvrYEJUaerActFQeTt/13Wk2OG9HzsmCn1nc7v8y/1B0zSgSt/3pJRswXJi6r0IqJLCys7j/JXzvnIOkTSZ82WGqym1qhTVX0Tw3uZ11/fEPisA1855u4jN+YhLWWaliCBoCiiBqJ4YI433yH7DD37+M/zhf+tf5yufvQPAdnGKfPk38vZbb1Ftd2w++A7p8RP6J49gv6OpPHWV+8wlnl48gcqxPDuhTT23ftcfmOXE64GXkhO/5Yd+o/6v/9Wf5v1f/zXa3TnLpuL0ZA1Ac3rGk+2ev/P3/x/+z7/zf3PvooXqhF2ElLUyASSZctUECKJ5kRMkVOArkgpdn0h9mjRlbNKoYNu8Cs6jGuljD8mOc4M9Toafp4RtDr3YnJ8oQy4r0THGweBWzi/IEU1AURKdljXbEbJe4rzPm4exW30IBO9NfyjH+2Cfh4D3Dlw73KM428w754b7KIqow/QK1SyzUoKUsqHA7kFE2Lc1+9Zk2G5zwQ/9xq8C8Pt+7+/h3Xffpu/3pg+JohpRlJiNin2KZJ2XLkbbdGuLEOnbFofJw2+//z6/9I/+Mfe+/R3AlOd2uzvoqf/8L/+tF5ITn5Sy/E3gi5P3XwC+de3RWRjrgbI2Yvr+wJgyVWKPcKxIH9gx3fiLqqpoFg2aLT7OOTwBKQNn3Ezh1IamEwhVBWoDu42Je/fu0XfdQQOTmmXFiRsGlaCIJoKvcM5fuVsc78tdu3MVef7O9tpvrtr1fZTzHG7FDyxoV15ssss+tjKN9iuzKjeVDc3TkzVV5UGVWDXD5mLGa4GXkxNk68ZzcEl+XPG6CPuqqlkuV/gQkBjznHc26SfjWrL5xuSBGz73oaLvevp9N5482kbTO/CAqAPUPlbFV4EgDZoXzRQjmgJRs65Lgj4OyvB0npfNcNJ8sIz+mpStNorSdX0+Ppqy7B3BCd4JTtQ24k4nduGjPpy8Hjbfz+35w99bc/Tw/HqVPDAFv64qgneDMEwhUHmXPU1pWHQ16SVF4+C5yuUxMONTjZeSE/vdjn/8tV/km9/4Fe7cOeXLX/4iIVSAKYX4js1uT9v3OOeJcjTedbROjnbTwX06vHv+hBgPiCkOXiXnTX54J4OBq3iIJRu9kqbJ5jPDWxu8AJqKgpFFlQwr6PjHFOhRsZ4YzbwflGgwPaiqKkJWjquqwnuPz3oQKFHjFdZccl8pyOhrU+JwgIiCT3ac9llmCTEF+mzoM/PcqIgr1g91U7HbbQ688DEl66NJ36hCjD1kBV1E0KSkGO24Ig8m7IGXxSelLP888FUR+Qrw68AfBP7wh/5CDx/opa8PFObLSvUl18Q1irSq4osbU4T1es2iWSAIPg8eh8+D0FyVhwMN22HmczT1gu3Fhu98+zt0+w402WKHLezlIQ8LR17svA+2UyztSjZjE8VFa8q5ThbL6f1O++iqhUFVQQ73mmVSHX92edaPSu1xn06t1pPWXHpmB89m8L5Mty7DcgqMC74TQTVSVzUAZydr6mDKcl8vCH5Wll8jvJScyFPvSly12Zz+7hhebJFq6prVekUdAl3fE0JACHahvJC44MwDk8+UdVy887NjPXkAACAASURBVDRVzcX5OaQ0yhXzI2UL7WDsxdnWGe8qUDe6A6PHpqszl2RK9O3GPDeDcB89Tt77w0V06INRLh5SNGwxtp8oKorL70ufyngow+UmMrnMd6NcvcBic6VcOTygNLEoC4tFk63rWVn2Ff5AmbB/qmkik+0cSYu1zuVzz8rya4SXkhP77Y5v/PKvEOlYL9c2jvN3Io6YEucX57RtB66ZrGWXx3WMCSSiMYIzig+iaPpoGzLTBcpc9nhv4ztlWlHlA5Dou84U5thPf4xz3nQMtQ2jcy7rLVnxntAvFMB7nPcEHwhVhapmRThkpT23xTvTR5wb2nQwzeWwd7IuPs7L3MnisoKqaVjVi/5T3lt/KyojSatPkZi9WwklpkTlrE1FJmg+h4ggKoOiLylli3uPpkgVAqhZ4DWpKc1ZXhaZ/FHwiSjLqtqLyB8H/gpmXPkZVf1HH/Yb4bLCe/D9lPf3IYriVUo1k3PLxFRcVRXr9Zqqrm23FYLtpAimaDqH9zJYs0QlD0JTlpMq3nn6ruf+vfvD4peiXSx4+41LAiokjfSph5Q4XQUET8rcXHuAeUjl8dfF3qxWvXH0Ull5YeArf/iEHZVlOfprffEhP5326XXvjyzL5cXVlr2paj35Tss9l8VOII6W5bOTNXUVIHZIqIYJMuPTj5eWE9kikn973Tlf6DPnjLpQVcFoDTDhwJpluXignHd4ly0xCH2mF4W8CD17/JQgjpOF8amjJvroiVGNZyt2rA8VzntqH3AKfRoXj2IDGj1NhRtssmagSYjP/0zTPb4zs0RPP1diNJelZtHnBSKKF7M0S/5b+mW6Mg5cRiUvgOUYu4ZRRLJNaOg/MVlVzE+DlW6yDZeDd3jvWDZNtizbtaOvRstbMkuaqlmWj0VXKhQvVzY0s7L8uuCjyIkC5/yBgooIKSYuNltiSqjLXhqVw4VpoPxnq2depyWqffYSw0vVFLZQZeVPRstyUZT7vifkGIoyr6+UcVkxNY+1UDlHVQeapqap68HI5L1HvEN8deCVUjWF33mPD2HQbZSJMSx/llIixpaUlERCXc/YScXYNTGA6bQLr+mgwSMuqDhw9myUyZwV88Q5HyBvCDTG7HXLz8mNXvfgPBGT0yo6eKckZS+aKJnxRpSR/vKyEuKTsiyjqj8H/Nwndf4ZM2Z8+jHLiRkzZjwPs5yY8arxiSnLLwMBnD/00h9bL6/byV1yuV5jddbRtFy8qzSLhvV6RQieqDrhxXgLyvEuu2DNmlXcsH00C0vwnkXTsNts6dsOLw5FSTIJ1NFiLzYrs6jH+YpAjagQsxU6RQ8ImmxjpZqQfuQsJVWS6hiFml2x6mSwQA0JPMo9y9VW2OJ2vd6wrFe8Gn5t1nWd7K4nVqirHpPZ4g/PZl7aCQ1jsCwb9aSecJaDE6JrCN4PmQBmvKEo05ijwZ7xYXy0qTxw3hNyJozlosE7oaoDVfAkAip+4BaKMwtIsTw7ddkjYgFvFxcXiMjAp/eqVCHQd2bV7fueFDtSZ+dZL5fmDsyWZdEcVCMeo+dm+kdxM07oT9dT1YpXx6wvxfpbvhEx+eCyizP2HV6E4AstrFi7zK2Lc2ZRz7EkRQ75EIZ528V+COJVmXjgRDIV7WrhbfJj/Ng5oa4qzk5PWC6aoe31ckVTVeZ2jj3Z9w2aDuJOAON/CzNneQbLZsFv/k0/Qt046mXFw4cfUMbi7ZMT+hjZbLaDJbN4YqZW0YPRpdNxbP8OM90cLYQHC2OmURXKRJY7YDQuULbbLRcXF1QisFzgvKAxWYyTd8NpQ/BU3mgY3ps24p0jBD/QlaYoFIbj7DtFrkyzyfR9f9kbU+gTqkAipqkTeeKrluxtH77KXrJyPSmZd0pGr2S000lzFcVn+VnXFaiO8SlDszI9NX9URIAXC6ImeMB41sSEauZmTz2SKeH85Em/hJy4EcoywiX36uW/+diJd+/g86tOewV1wzmHy9daLhpOTk+p64p931HVFgQQMV7SwDeeLAKCIKqZ4+xRhPv37uMQVk1DTIm2t8HYdxFxyVwr3oL5xgdnirHGvMglN/CgNUGKPX27JfYjUf74PkqEfBm4ZRqXvzEm0ByJ7uz8KiNPSQ7cKEcwP9DBt4XHdOwiOkiDVX6uo/gpHq4SRHgpbZzIEOzkssu1yc9ikSdOXy+ogp9pGG843JR6cMQ/e57Ym/L1y9yu6pEXG1wWtJmGVZRfcSDO5qwd5+g7Ux73my1PHz1mWS+oaqNzlOwRbduz27fsdi1t3xOTqZDBOWKazB9sgZFhI5iG81w1t4bfXfG9BQeNrtRD6HGXFWbjsFBKKm7eQ4U0qeK8Y7lYDJztuE20bUdKCs5ZJhF3fUzBoGsMikZ+nTcX69WSpq5w+f5PTk9ZNwu06+k2G+J+Tx0ci9u30N0GVAcZuN1t2bV7pPa4On34wjDjtUZoGn7gh34Ypx3bzVPOnzxh8+QCgNMvNZzvIk+ebYhZl0iTtQrIm8qJMjzovoPZ68MbICNzuIxvJnO1GHzq+iiIrmsJ3lFXAall2OQWVJUnONtQLxd11ifMaFdVHu/DoEc5EZIICTPgHRggJ8arcR9wNeVj2gbFcUnhnqzHKSWippz9Z6I3Za3ENsmJRCQh9JrAZ4qMyDCXfaaIFMqGDH0/JW4x4USbUfJoyzKhfBzFnX1EHeJmKMsTvEiQ35WKdHnoTF5f8fxlsgOr6prVaknwY3CPqoB447p4l48/HBhObTA452j3LQ8fPcKJUFeWq7mpbcDGXuj63tLFaMKFQKhq6maBVyGqkmIaGi4TMk1KGOdR80IKKAnncvoX5xGZkP+v6KeEUPKrCND3SpKI7826XjmHegtavG74XGdZvqJnL13/4NsrF69huI+8qmwVO8upfobgvmpB8GFWlt9giIAPV2eIuTbYVw/+DC+82GZzlXnGJcin6zokNEyH2RCgm4e48WhNOu93e86fnVNXNYvFAoCmaWhCJKkS44p9F9ntW7b7ln0XaWql65WuLxkrEs5mKwBJuzEg5UM8Z9P300VM9bKHR3NgXLEAifMjr1jBl8wcEnEuDhHpY9adlC3fY7YKszhnaTDwIsmfaV7Ejq3K+d+gOFi/VnXg9OSEuq7odqbYuDbSPzvHY7Eh9WKB3yW0bQeLXuGS7vctu/0e3wR8U88eqDcYzgvr9RLtHXEfOF2e8PjRQwA6OeHbD7Y83XSEUNOniCPhnUNxeZs4zqc+JyHDBRySvcOag3Wfv0GHojIfZrQpf4fgVUaPr8tBdt6bJbmseU1dm8HICyerZVbbUzY0WVWH6blzYleK9best5oDBDWN2S2Cd9nbM1E5i4LPJDHdcP5rbn743h8YJzRn9uj7REpCGyMXW0tOqaq0sWfb7gEsW1AVTLGeBDKXPM+DHXuS6zmRSGWj4JzFNWTr+1RZ/m420TdCWRYEX3YOx4vbRDW7TpH+sEwZxxZp78Yo9EWzYLlYUHIUp5QQV5mpP2fGEOcOrDQiQlVV9L09souLCx7cu09dNVjQXxrcqLvYDxbVlPrB/VlXFU4qo1EMFiaHk5DbnEC7o04SyO5aux1T6pHjMWvBBKpqu7xhd5d7uiSNZXStlnR4BcMhcvXY+rDAwkufyvipHBw1ceNMlGXUKBiDslzSxtUNi9my/Mbjwyytx7gu2BcgBIerAuv1kqrySHAQIzEly03sZChkUKgJJda873vW6xPOc7L7zcXmIPVltlcN1AzxDh8cdVPTpZSV6IjLm10hIs4EeoyJ1LeDleUqy/FxfxxbdwQ5mrfjsl4sNdMMGyIypG2CnOKua+m6LifzN4FQZeuPThRzs7yNMjqlbK1yhzN8bPBo1yrX1hRxrqKqAylFdtsNALcvLnBqSrfvWuvLpqHd76gWp2iKtOdPAcuf2u97YhvxSfChZsabjASpR1OPaMRn1/vjp0+5d/8eT589Q6qa5EGw9IQqOYhVXPYkWbCuEHA4nCouKkF7vDi6RU2flJxGnBQjJB3kBHKw/FGJBfVV2WN1enrKnTt3CCGw3+95cv87llY2VAe5i8v0D5lS4OTw8zHbxGSuabHiHinnZKXcHc7OqqoskC/LJx0CCc2z5vA4qZimzcwXMr0mGU3D9B+Tf4yHoCRSTMP5p8l89IACC3Vd47w7yGE9BmlOsovl/LPJ5QwaOl5QxGguPh9bKB3uCl3zRXEjlGW47DWUK14dKtKXlejj1/abQ+U5BEcJjTw5WdE0NUoihEDbtuAdoR4XqYMqUZPFpeysNs/OeXT/IevF0niQIZDpf3Rdz2bXstns2bYtfZ+I5EjVo7szt0WhokieDDIo7WV3NE3lNP07ns34ggmyS7T0li1k5B2lE4uIDzntTOFkTh/GdOdcFuSUEkOtwUlXX63ATC1c49kuV/LK1zCzFE0VhiTylgZmtCz7K68z403AVZvqgg/bXB+/BuMsN4sFq9WKuqqQ4InOMtxY1hUd0hT6XPCjLHx1XedzOh4/e8rTi3OSKn1WcGPqQfaFXgsIVWVR61EDbRfNpVrbnNq3PX1KebEaLT/TuX5sjZre1/F3om5YjMxalFCxtkh2CZNl2LiYT/unuEzH7BqIIH3Pvm0HqkXMealHRTkXJKEUVTLe4RBnYRVdEISYbJENzqMovrifBST3e9/uYbmw3XzXDlU96/UaoqXVGyPoPc4HJAk+eWq3YMYbClVit0f7jtRbOrHiKur6bijw1dRlQzUxwmXD2UALjSCieQOaSBqJESLwbL9FnB9imrxY1pyQ6yc4LHWH00SQxK3lgttna26dWcGgu2/f4q27b9E0FW3fc/+zK548O2e/71DNWSImXiLTkROpj0CWEVNX+rHPd6CDXI1jOeJ9lgmDLLIttEZI6knKxMCWFdV8bNREb8KGPpaMPHZMzMaBGCOxt7zHferpNZpeoYrGfpLRxqiysWs/tP2TOym3yzSVnXmtFDSaJxCKEBqOfxncDGX5QOl60cMvK9FwvSJd/oYQkLyzOzs7o2lq8NkliUdDlVNFuSHvckn14jCF09yREe88m+2OJ0+eEOoFzjkWi4baZy7xMnDrbMmu7bnY7Nhs92z2LeulJyWl6+OoTrqsfRcFUkc37NTFepUb9mpF1eW+HHtLhtXRJv6+6+mduWCsWIHLfWSWNZcXwtFdlJfRYp2amKP7PiKSBqvT9GHJ8UO6ZFkeWowmy7F8aFlO9FVjQUhX5Jed8ebgaD83DKurNtfHmA5BJ8JisWCxsHk7KJBMLTAyHOsGF44SQiAlRZzj0ZMnXOy2VtmruP6dknKsgHhbNhUQ1xHE4xyo8yyz+E0qtJ1xf3e7jqYSzi9gt9vR7rfmjq1LSijJnqd0cKfWfCmXH2WCWMCgouALR3Factcm6FjsJcsLjaQUhyqd4nx+vR9iPoaiKVz2KNlpS0BkPqezPNMlODIli+cobe97yy3bNKbofuef/hJ86Uus7r5Fanc8fnCf4IRl01jAX0pDiXEzDrghd/2Leh9mvH5QTXS7c+j2pPYC7TdWsAJ48ughjx8+QGO0KnNi3N7pWmbu/5LS1fjvx8Qm8w71SFIKTT8ER/CWe917T+UcTfBU3rGoPKfrZvgHlhb1bFmxWFSkJChL6hB5+jTS7qNZuEXoM1Wz6yPeB5ILbDbmfbHiHdli6sfAXgdU5IoPYiSvD7Okdl03oVzpQUGUkcJw+BtLLReJ0QwFXfZod300K3P+fZ/s+5SyZqZWQClJwuX4LFI/0NL62BPCim1MLIKzmCedGPPUYqPd1JGnpbqFyfkiA1IuTDJ61l5eSS64EcqywAtV8LvuJvOGcDjXh1mjJS+SYNkwCtVCUKSqwDfDzrKUiB3OpiaQq7pm322oqpp79+6x37es6mLJiPkfhUVEVXnWqwV1U7NOiaQW/OekQ6S4WwOOfrDmxGi8xeusSNcVKBmPc9d02HQ7UaxH9jrl3Zd2ORejk1zS1g00lRKY5H0Y80oPGTsut6EnZvOaTizKxXqeLeFTLpdajuUDznJUywnpZmX5jcYVw/llBN/0WOdgtWxYrRY4Zy7Y4D2I4HyhYRRlORsoMEmrlIA3z8VmQ9t1LJbNZGOuwyaztFvVFgsRRXywjaWWTbAQfACU1TKgt86InbDb79luN2y3u2Eh0Zxdo+/7UR6oLfjDSpDnVbn4NChyuuxPg3AY2j7JCBQnHiwxCkbf7cZKW6UASP593/c50MjnjUcyGTIo4Hne5zzWYx9pzsxheVJ91j7aZ0/54J/9MquHH7A8WVM1FefbCx5vL6hDgBSRbFSo12uafkkQoAfaWU68sdCE9jsk7vG6p5KIdzYeLi7Oefb0KXUdTEHOlAGXeUOiidj1VsoeG7OiSjgINDPawKJq8C4MluXggv0bykaPlIHiJQ7ej1lzvAWxmRVXOb+4QBVCqGjbaEqiE5a1WaKXODabLRcX5+x2e5tjeZm3Cp2BquRAD4Gz7hnS7/FVjQs1iqPtI/s+ERGiOrqsiPdRqZoGBdq2yzQwU2xVE30fiEmIpZBSpl7F7HlKkA1lMlCxprps+avZizXQvsRkqahxjMGoLyqW29q5QEqWiXno/2xRHxIGlKDk/F3KnPLCDAAGQ2AJfPwouBHKMjKm9oBDRXDKjz3myh4qjNeeetxpZMrByckJAGenp6akOzdaanK0qQ3uqUUJbJJ4y4KhShL44MF9emzn5AG0QzMX0TalNoB85YxwHoW2T9nRmSiR70jEaqAnNEX63jjL036Z8hOPNxTHvEZVd8naU3hISSxQoSxYipJ0UlteSl9PdiGTa1ZVRRUadpmQv9/v6breNh2DCytP2un1yyKbP89DfDivF8lp46qBhuGd0Psm01uclRKe8UZCEEIovP6rN9RXfTf9rHD+RYS6rqgqU1KhFNvwBDEOY6F8FIdMr3GwVoj3OHXcf/iAfd/TuPHceIHQHMxJyUU1rtvsFi+QF8FJDXVgtVrQn64n3GGzAG2327yg9XTZrVmqYqGYIslovY0HPETJm35P0kSflcoiZyQrvXXQwapshoxBRZ60PSHis8F9lM2uWIsx+Tm1Wgu2GQl4uj7iQoDUsmv3PHj8kP3+Pe7cfQeAt9/Z841vfIOHTx/y2S99kVtvvUXDAs0Ul6Q6pOGqQsAFxcWE8xX46tIYmPGmYZKqLCtL7b6l7dq8jmZPi0ZIufhN3ogWVM6U29oHaucI4ghinpb1ssGJP0gtK7hMwxCqEKirwLKuWS9qVovAYuEJOS1qQmm7HtVIjB1t143ZZGwnCYweXMFoYrZZNlmEs2D9EgzX5lAnEeHuaZULETlSTKgmYtsSu4iEgHdhWJ9DU9Gs1nR94tHjDfcfPwbnjaoignfJsnRNUtlq5h5ndmf2V7kcPDymskVzpo4gwz1ZWGX2CsWI4AZajJNJFowBoxl0oo5N/o4caac52xHj5n+avWMqlz99qeNgcAGU19PPp7hKcb4q4OwqRdpKQlqkLMB6tbTvRE0RU3Au5OJ9Qk4WxWiNHTtfgfPzDY+ePDG3pHdG73Adml2wSF5A1aw7IQhBHSEJq3XNWVqx29noLpzmttWBs3h8b9OHHnNN9elgGLJgpAR6FAinxZJsAYAOm/CikzK2ucs6TThNSBIC/pKC7nKaqLYvQYi5nG6MxtPyFjWvaqV1rYt12Ale4ptmt7H35i6+dXrCrawsB++J9YpVYxZ/uqszgMx4AyCXA9yuw7WbaleoRoHVes1yabIgqRq/UByOkvGmnGB0600toqrCoydP6DWx6zqgy+fypNosrFUIJnc8qBvdgSaT8nzt0yTADgsmkohznuDE5IoWi06iCiF7nez4GE0emKsz0ccWk15Dt2X7ryAKUc3C7RHwdi9VNS7SabIomlfJ0/cdfYxU1WKw/Fp7xgUspUSXy/R6dVRjlsrJPVuQsqgbSvVqUnbtjqdPn3Cx3Q6277dur+nauzzrO/yyorl9wslqRYzRNhDbHT7nqV+LozvfELdbJASYtHHGmwVBWdZiHpw+0C8CD3M8wdMnj608PTnA3SLgRlpX/n/K9i0Zmrz31JleEeqasF7lEtN5rOXzlbRzdV3RVBXLRcNiUVPXlsmiVO7cbHbs91ucJGLsefZsw2q1pAoNp7cWeF+BZgs0sNt19H3JKKEgYztNJ9GDLDCO7OMWyUH/Rpfso9E5vPOcrMxqffutt6maJZu2M8+3Jrb7Fs2WYvOWmYEQGOgd5Ixh4FEVkuY0tYzpG52a9V609LUjSKCPajxlF7A8y6M6eqDT6YEYGUzUBzL+yDQomNU7lfS65fOJd/5lcSOUZSdQB7NuFkL7AQ95oji+aEaMq5TNUrJ2ubIFsl40QydbWhKfA95KIm3r9ANbpghdilR1wwf3H3Ox2eCy28V2LeOyVzjCKoCOkfbBO3AJjyPk8pR154gxsdt1eKfEvqLrO1LqkWzR/jAaxnGgDzjipCMHZqFOFs58P+U3OoiKHK2qPTEXHjBlHFzwVww2nfw/WsqGCX2lpQ/KMl5+48Q2HGenJzRNVbqban3Kcr2mdp5+8/TSuWa8GRDM3XiVMeB4/l+34S58W+89y+WSpmlo+35IuyQqVtLWy8CJE2ceFmfaOr0qVVWxudjxwf377NsW8bthwRWtEK2oK8GZmSPLF1N2HaaUD3NZRp6gqhJUsrUrZoVSqPN8oKmQ0zVJlf1+z3a3Y7/f07Ydu/3e6Bp9P5F/EwUge5McFvxi7kozC2nmdMZeiW1LctamYXOS5UuKERcOvV3ZXm2/j5GYIgGPrxzBTSLRXSD20Hc9eCHUFYhtXIgdq5UViNK8wGlKVHXF2XrJ6nSNVJ4UHNV6SeMD+4sNZM6yRCW2e/ZbtawDcsUgmfFmIBteBKiCo6kD8dzG98OH93n27Kl5kaIpdC5TJ1SVOngrjDNx31dZSa69oxJHcAI+V1Eru8VLTShGLGuLZdYxGkPf25jd9HtivyfGzugMoaZ/tuHk5JQ7t+/iXEBVudhsAbjY7NjtWmK0TFwpRjRaPnSfHEEh5HYH74w7HBOVWN54xEpIVy5QNQtcqKmy/jEYxLIX6kCf0Ok92Wuf0+ypJaFHxSFqinVMEZ3EVKjkGIssjFQTXhrarW2uvROjkHTZELjtYT1m9VKUPlm5a5cLkJhnvxgQoGxwBh0kUzYv3csV+tOL4kYoyzaorRMLyr2YAm10hoQbxqcdc1mJhusV6VAFqipwenoGwHq1Ytt36GBVKlkqZBgY02jTsjCklAh1zb2HD3hyfo5UwSgWIVMtjpVJLSm5TVE1qp8iGgdL17LxqDqWjfF1375zl/Pzc84vLtjv9yg28V3hFad+IDpItuweBANK5ioOfWVp7YqrtlBNyBsCBuV1vF/LlzqS/FVBktWVV3UHC3LhC02f3+GAPHKriOTMstNdfWLZ1Lx1+xbLxoIgUowkX5kC4B30hzvFGW8ORGBRjc9/VATJ+8AShCplX3hp8z1UqvOOpmkIVcW+78dNYyYjTcdqsZzafLH8zBI8m/2ex0+f0KWIm0Rzdy1cuETwPXXdUtcVdbBNclWNOVSLFUgkV+cUCyxyg8zTIS5gCh+Cze+6ZlFV6MkJmt2zXd+z35zTdTn/cLtn33a0XSSmPlMXKlRjJhqaMj8SJXIaJyeDdXnqUTosOnK1haZwM70zpV8n8iRi0fEaI4IZHgIJ1UhoAlEj7d6Clzbbpzx49pDP/4Yf5OTtO7A+oRdH74SQK3ZJyrSc2NpV3Ee3HM14fVAMXSLmJS7c3PPzZ/R9S1PVEIxv7OuG9cmpbUC7Hl9VE4stBKwQUeVs8+dF7NjYoskDJQWkzeu6WgDKcrFg0dSImJXTxRI4Z3MzDRQqhqlU1tIQKkTMMNW2z6ztFxu6rjeLszj6XrJiCiKBqqppFqb8Vt5xvn1ISspq1VA1NQ6oXcWqqlmfnlI3yyHFoqtqkID4irfvmjx6/OQZ292eTvtRBl5JrzzEaBAuuopCSWNnH4w5kicUtDHLkGQvvxuMeFEt9sl789T1JDopQZi2WSYZTUYqxYnS7lucRpwoqTfKaBgcaG5YI14Uc9LaGTNmzJgxY8aMGTOuwY2wLCOXuSSDNWN4f2h1HizOCEndxIJ6+Pup1dnlMorrEjwWApJTpoiIJd7Om54pZ3G0t04oCyLcf/CA882GqEJs97iuxZ0Eo1mQCx+IJY5KlkvFuLxD+9xgVS27qxAEJwtYVqzXS27tTtlstmy3W/b7ln1OGVNSvVjRFMuaMdbqk8mWaWpxt3/FbcG0z2XcNQ6hfnnXOmTlkJxOThnyJh708YQzbX2UnyuYe3v0y4zPMv91ImiMVI3PnHK7m91uR90n5Nk5sg34l9oLznidYFaiq/f3x16My58Zdq25NL1rWC8aNEbqEHL0u83rRMIzZnE4bAQDLenZs2dmMXK5ONDgDXNotFzCfezpWmWf0zPWlVHBau8GnnBVWfCqE+MRBomDZblElg9zRwRNnc3d3J4CixUAt1hQhVI61oKaRVv2ljAVtAMVtDerVgiBymc6WPCEaLmPVcf8qAhUVY3g6NNzvDtulOdTD5OiOc1U9rOJ4DRBvyf4yG63pe17LKUFfPvhPar1Ccu3b3P/8SMWItSnp6gX1EGsHBJz/ncPsqqpZUWv0Kc5tuFNhUAuMGK5vBXo8tzs+h4rOjJ12WcKpVrZ9VBVw7roxRjJFr9k8UTG3lC8Kqp2PrC0jsZRrlCU9XLBomnYbjfsu5a+h5Q69tlzst9tiH2HOGWxWLA+Nf5wjMpmu7cqdM6x2ZrM6rpuYoU+lE2FBloCdb0T2s7kSKdKE+yemiawWq04PbuFCzX7HBHY7lvEJ6qq4u237lBVgSpU3H/wgM0m5gJnYzVjM/46eh090GOw/pE3TLIH+UgeD/I5ewGa7E32Of5qDBQ+vE/IVu7Bgm26i0jWtwREo3mvVBEi89xTXwAAIABJREFUsbM+XC6aozbwwrgZyjKXuSRXpUMrUNUrlWh7P1GmkUw6N6HtvaeqKpqcOm76sOwDi5AVneRZ1QmJ3rmhqEjXJ7717fc531xQL1aQBB9K4m47PkaHhGAD2Svqeju/WEMtwThDG0q6NRtbVhRh0TT5b30QFb/b7Wi7jr7rc/oWq9yFFKVYJxHw5LQuNqwShyWrj/k8w+ZBPCkycCnBcquq7vBhLJUZ46G7tryWnCHAJUsh5Up0gDOFAnVDUvPaB1Qtx/LpyXrYcLTbjqUEQt9ZJNNue2nszHhzcB3n7CrX+1WfFepD01ipe1BzearpkdEnkvTglVJdKEYLFHGuJuDpux5JwoN7D4ltoqkWVFWDC3mTLGdWrSr2pBStulSmPPREnE949UNquuTSQINyXu36GVWuWlk2CeaWbSnBs9MtrskOT7WsB4XW0s/VbJo9u33Hvutou54+JqJMM1hk5cAHFFscy+LbdT0xc5sT03SWMrn+0OuZj22pn+i6gzRRMUJK3tquFs+QNFIFn1NugcuL7ZNnT/n8u5/BnayR7Ra/WLA6OSX2EVQJlRsKmCSvaLcnJfvMzQF+by6cI/mKyJ4eITlP8mN13PXJkmaxIqqVhHZVTVNXtl62Vp3vwIhVRM0VG3KZfO7EuMIhy4G6CoTgSckoWl3s6WPHdrsDrES7oNR1ha8WLJYrBEeMcP/BI9q2y5tyK/++27YgDh9qnAfnjU6lYkV9cJ6iGVkO85A5yDKkrXSTjaxt8LOBSxXRZJzsuuJUT9hutpw/e8p+u6GLCef0YO5rLrWdUso6xaEpa9AnyFzjotvpcWlt68+S6chS7llw/4F0+RB2VdHXiu4zKNLZkFdiVY6TFbwMY+uGKMuSy0seV6S5rIDB4SJ4HT/Zc9kavd+fc/reOyybOn+WI8rLbkmNBF+4TgdcRQBnQXgheLabHf/8G7/G+XbLUiw4wCl0u+UQnLZY1DSNGH/Pl0yBgkdwfjKoKWUiE0oipRZxPd57muCskAEVgg4p5ZxzuWy2ZAXWOIuxj1ZJyI/168v5o6bMcJZhJxZjyoGH466UTKB3x/0tlrqma23BHfu+lOA2i/OwuLtxqB88JXGUmmjFcp3z7hmvMzhKxR0fAo++9essvvhFqtXyIxHzZ7wuKHKCcWQfDIer5cb0s+LUCFUwzxI5xVHxfFwlPbM5xzK2eMDRt4nH9x/hoiMlod21nJ6e2uHyCEsh5Ui+pHEUIlZ8RNrIJqVBKawyv7euauo6sGjigZXooAcGb1Ah3BUrum06HaDihlwYy6ZhUTec3TKr7q5tubjYs2tbNtvdEB2fctBR3+55ttkh3nNycpLTxoGmOJaynnTRdbNRU6LXHu26sY2itBF6lIm5A6dW2RQvhKpiszdlItSVWfm6DodD+kS/s7RxUqoqlpLk3tGK0sZ2zrH8hkMQxFeo86irSL4mhZJTzWKV6uWKtk/QR1uXrXQmGqNVgpxwloUcO5AsSB9N1HVN8J4UR2Na8GEILBSRvKZHixUaibwHXm/EDEo+VFRVjXOBzWbLk8fPLJcyUC8sIcHJ6W36Pg7rdVUvsupilQWVxL7NfGgHVb2i3+/YtYp44x2HWnBVDxdblB2hGlMsxr4nhR6pq6z0m1y6LqkCJThYS9WGNOpSOWYKsqdeLCVn0fFiGrNsOVFKAZbht94ybh0q95eZB/mRjh7swRLtcnxZHPW86Rj5CHENN0RZZjDVH+8eRtP9oSJ9fb7lqxXplBJV5Tk9XVPnPIei0NQL+uxWiUFRjTm/8lHeo3y+lFK2LEeePHtmblExx0NSz/lO2eX0Zpt9oql7FnVFVbk8AEv6t6kqmy1eeadXlTRwfY+K5V5dVp5lveL2qVFI+hjZbDZcbLZD0YJSpUg1knq93P5sNU9gyoHzNqCdFWkYLF1Jads9ldeB7mEWpzHX6rRgSgl8LPSSEqRg7uk4WJVLhLEVRsjPm5KiSpCY3cbCUCClaZY8+LX3eUDi9N3P4Gdl+c3GgVWTS/ICjj4+EKpjeqLV+oR6scD5iiSWq7Qks788c4owzmmPglWzOz+/yHNADigiXUwgOVpdSrolQcTjmzqP/Gglm7H8zZ0m+rhnu+94tLXUjWjkbL3izu1TYjRlNnadbZJz9TGdtK9scA+8bYU+hcNVzjxfS1NKSyGofdcN3qH9vmW5aGhWa1Y5Tdt+36JR6Np+CFO+uvNl6HPzxibSNCqenLudzMTSwnUzibBcLlguFzw7t4CmZrHgO9/6NiGsOLv7Dn4fYWGX0S6SiPhy8pSogqBNgIknbMYbCBEzyDg3rEt9Hg9d11vRIRkNMqilPe36nq7thqIiAB5bI12u0aAa0WRERYk5d7ovRUnEUj2KhbK1raWG2+/3g3e271varB/EBE1d0TRLmmaJ/P/svTmPLFmW5/e7qy3usbx4Sy5dVVO9EwM0ppszBIVRSH4DihRIjUOFwgDURuIH4AJKBIagQoAiKRFUqFCgQoDTMz3T6AYbaHZXVWZlvj0ifDOzu1E418w93pL5MivRnV0ZB3iZER7u5rbee+45/0WbmuDNcgDvSurkeZ4X7sbqCm+KTGEk1EUvztA0PSVlxlKIo1hH6xjJ2oISF9L1+ujGOQwDKUQhP3vP5fmKw34tx3Gzl9abqWNLkbOjtK7GbbM757HAeILwXHKdN/tQs4KYVmoxJZmJfdYaNLIw0EW2f1qem0c5pY65xQxnFZlgI0pEFX777vP54fH9SZbfF6eT42lF/j1JNLw7kc6l4HxD3/WLdayqFs+6vi/pLDaMJpN0IYZJdBO1rL4sFfOkDc+fP2cKUVaY1lYohIWiiOm02pOIk7Q0vdX4xtJYQ+N11WGcMTSCD8w5osvRBWdeuc0xtyqM1tiuo3WOqWuZQmC/33MYBuI0yUI531UfVPV86lJqglzloRQo8lFpg4yp1WVx8hMW/BRF4sa79i34y91LVjFgGlSpetUVYiIhlWVjHSEFSspoYyGNspI9qTuFMZDDxOblC1IY6db9e7/3Pu7jrbgzOB4rkW3bimySqgs3Jbj5VCsUWt35FNTJyVpL1/UchpHrm5vT4i5Hi/rajnyjGiIv1cS6KFmhcpxM5nGIUlBa4V3L5eUDPvroEaVOgjevXlDiiE4RQ+Z81aGUIoaJKQSCXxFwpFg7VqkucItC6YJ3Dt+2lKzkeU6JKUSGUba/2+3waKwXIyDBKx8rO/MYwrLnd46uTpYi+5RjJMV4XCRrTcr6Lq1cKBfknOj7Duss01J5E5xmDBGrLboorG/l4qQEYYSKRUzDlnDYoMi4NwWe7+OHFUqjmjXeWGKG/RQIS45XC0DaEiqm13qLMUY6MzoteNllc8utVBfM4gJSpc3yCQVnNhWTLs8QpXMj8qsshiKzUk0pYFxDt76gaVfkrAghMoVMqc+gUpq27et+GHKZlvnVWNFtLlQY5kl1VivN3dmfJRFPdf/SiQZxCIHdbsdutyOlyMXFOa0zPH5wSQqRwxgFqz1vq4BSuhbRqlIZSpRu6hp4HkOVKhhVTVtqF88WgbOJ+UhElSgOqkiOU+bCxckAW8sSby0k5jFJLe8syzmatdxnGIZa4Fnv6kx+dXw/kuVvM669J4mG9yTSpdD2HauzsyVZRs1Oc2XZnqoXdElUOWlDVDH9sI98/lefwwBONaioab3HNr0YElSoRM4id3J6wVPMTLlQksAZXG2DKATvZLQWtxwtN3ael2pLNXapJaGUwluLM4a+bbmoElKH3YZxnDgMI8NYXfZCrPqMCaXEjnYGeM8tjFnfNIVUq9T5mPguRaPCFMLiQjTvy1xvKqUwjhMxJkw2OCO61acd7lL1XkUeJ2GsrZgrRcqR2+3Ngrl88vFHhMPEL37xGbf7DZ/85Mcffo/cx69XqPdXBj60kuisLE67boV1tlY7T56qOhGCaC4vX12fA7lvLbvDhs12K46eVpKzGVpltBf8c6kenRWrX0qqbVvB81t1TJZljJIqrNEaaxTeOZrG07UtBhmz0nRgv4nEYSTGQKhjmTGatmnYh8w2DpQ6DwonAMQYSbFerfBGUXTirPNSJCgJbcTVtO1+g/XqDLTj5fWWn3/2BV++eMUwJSEp6zdrQ29cogUmkqtkVKl8iRqak9+PDmuHw4Gub+d0BIA4RX72lz/j6Wcv+K3fvgZt+e3f+X2adScynU6hzHEi1aW2XRWL69l9/ABDaYptpFPUntGcQbeW+8R6jxonkV/M4LXBNY14MCgtWP6UFkhVjoHDYY8zllgSKUySfOVqACIg+zvxJhZ3JupKkpqXLo5SCm0drmlBG7bbLbvdDq0t67MLcdlMiakm19MUAEXXr6XopUolKpbaxdVLMUAbRdYa06wlaVUCjSopSQVYSdKfF96REHmP3eLT46h8CEGpylEpGSu1NeKYqSxZIUv+eVE9Fw9Eo5LaxJZXijlCUNNIiWqR1NPVIE4MzeQ8n1pUv0k1QynpJnF3fpiN0mat5eW9p5/+BsPEt06WlVI/Bv4n4GOkIv7PSyn/nVLqvwT+U+B5fes/K6X87x+wvff+7Ru31N6RSKtS6Fcr1ufneC8Ev1yVKbRWRw3At773rhGI855xHHnx4qVUSpMihkhnOkreoNURi5OU4BVTgRILYRhQuuC0sGab1i2EI2tNrQRnctUP1EphF91mabMubZY6qUhrSBLQXIRJa41Bt23FPcq+22FinAIhxqUalkqh5DrBGbM8CQpxNMwn5z3XKrVUmr/utpFVa4kZq6xU7SjHz9Xqu6r4LSFS5vpgQAjTollbUuTyrOf2Ys3tNDKk8euu/n18j+K7HSeUlCuW2/KY5X5Ie60AbSPP/mq9lkVzhS/MvYy77bxj6FqdyCmjtWO32zMMg7hrVcOBxZa2srJLXSjPEAmAlCKKhMoK7Pydc0VZNDlWXcvV1RWPH11xcXZO4wyz1o3Vj5hWHTevXzJst6ANilIVOiBmmZhznZBzLscuU5ZO0fnZI9rWsz9sKCnjjWa1lvPStp4fP+ywxvGkU1yqiSde8/TFDc9e3jJGCPXkZARikmsZSelaga/Fifn6LOm1UlCO0JEjCqMIjMI5gW7MhOEs49Orp88Ju8TN9S1/+W/+Xy6uLmjbhiefPOajHz2S63nmcQiBMqVACd9wzriPv9X4TscJpUjaUXRC+R6PxXaiQGGdFx1lY1A6g9aEEBjTyG6/Z38YaXzLy/CybiwTY0ArMNZAEnMMm8FXKBNL0pcYhv2SzGkjFesYWaqhpZSlo9Q0LW3byTYqrnkeL2aYhTwaFa6VBALqfVPn5louVwVrDa5tWdW9HsYDMU64rsU7qdSmGBgPe2IqhFSwRon6DNIxHw4HdrsNw25DCo85OzvDKGgbx3rVMU5x0asWUxAlbn1a82afWXFcsCqOqhZ1xEMVwSSXUoglkI1exAu01rU7lWtz7qSAyTFPu5MYLz/UccfM47GMOV+9xP+w+FUqyxH4L0opf6yUOgP+hVLq/6h/+29LKf/Vh25IoRbm+bHMcyyT/6rVpHmzznnatlvgAPN6R9Wyp4z5R3m0GTowE22K0nhvubnd8+r1a9nvBZ+rF6zibORRhLIqK11lyFYmvZAjcZoYwsh+Vx9ibWgaT9uAc0cZmNN2gqzEzHLss7vNcYLXKG+w7TnjFNgPR1x0TnnBSsmKT1FyEj9MpbDu6FlvjamSOzM0pGIP1VGt41jPec8V1QprbLUDrf2bubIMpFzIIWC9q20Uefi7rmG9PsGVZ3EZO7s446x7RP/40Qdf8/v4XsR3Ok4IJGputr35/L8DinXaxitSWQJw3tfKyrzxY0uvLpGPmLv5GVSamDPaKl6/fs0wBdq+RZsWpWVsAMh5EtvpnIkZdCq1PVld9Eq5y4goUkHJpWC04BgfXT3g44+eoIDDfkupk1rbdpyt1zjnuPHXUATqcNjtKSWSzQqIhArDCCHUCq8sulNKaCWqQD41NRHIixqGtGZVbbkqrG9YnZ1xmQ3FdIScOcyGJ9UEZZgGYfrnglEKXwTeGNFE2xLUTABWFAMlz46JBZVlcptCIOXCZrvh2WefA3C+vuDf+t3f5/rVBm87Ot/Rth1WiUV2nCZylb5SUWEUGO+Oc8l9/F2K72yckKhNe20o2oqaC/JslwK3t1u+fPqMEDPrs3O8b/C+4eK8E6J87bLKAlAzxQlbi0jjeOBBe1YJeeoIjTSmkvmkOq1yAnw1A5PcQCmFrwv2h48fc3V1BcD+sCHmRNv1eN9irKMUJY7SdfutcTjrxKpaISZDKZ1OrcfCHvK8GWsXl2CUgnEkpMw4BZKBvtpd913HofXsbjPbza0s0KsijjOGy4tztrsDQ3XMzPUZ19aCcbJIT3mBUpw6J5fKozjCKzWp6BMYSFnsxAGcd5Drc70UPGelC5bcbM6eRaZ27gjOVXt9hJAqfccG/NvGt06WSylfAF/UnzdKqT8HfuNbbUwptKq7osobk+CpR/hJIv0VSXTdpze+wrBen+ObZvE3L/lkwj3Fv8huMBPb5ps1Y7C24fb2KS9fvqo35Fw5yryjHyOUuFoltVajlBUsTtaUFBln16+SiSGzj+CNwmhovaVt/HLR3ymPBQtWMucke6AEH236ltYLzGO96hjGwDAFtts9U0yUaV69zcn5kVk+hAlrLM656gyWgILRthIEj2Sdd4VsswLvi6hxzCc+ljoZF3FO0yhiKZRppGkcXd8w1VVmyrdshg2HMPDgyRVN1733O+/j+xff7TgxP/N3n9X3vXdmm9c9AaVouzo5rFY41zJFsWGd25fy0bmNuGzqBG8vP293O6YQ0FpwzNqYRTcZFDJNioRlLmJzWyosixzFXrrCtVStKmngfNXy+OEljx5e0njHYbcjhXDsVqVErMemjaZkQyYxVXywv1pR9ESoDahSt22NxVpLToqbzY5+veLh1RNSCgyHLeM4y1lt6bXGu5aYNVpbmrajD4oxKHbjiKkrDJP1gvHOORNiIJVMY/1ScdbKLBWmYmWhE8IkhJ6cIUXhKfgVz28KD7zn3EsL/ONHn3L28DEhKQ4hMQxVKnMaGQ97bm433PzZCwCapnBx1fP4yUOaroHvYHK8j7+5+C7HiTlRlCdKtIBjTcymKp2YZxLqCbRrVoQSOEKdC61Bl9pl1ZAoTCnjXYOzHtSR4KeNJs9cgfl5X3I6wUG7tsU1Mod57wlTYhgGYhpl/laFzIiO1ZOhgKnJ7qrpaNoObQxN0zDFwPX1NTGM1VreLPmMNrZ2rxtcJfJKZ8lCSbWje/cZKaVIYp+z6MMHIQUq39F1rXSl5w5ZzoQkXeGUIzEkxilirCy2Z74WVN5EjswW2KUoYhJSoVJAmmicZphmlz1DyqHyJI553DImv79GsrxvrkjPBcVjlfvbx3eCWVZK/RT4I+D/Bv4x8J8rpf4T4P9BVouv3/GZfwL8E4Crs/4kEXxHwXyZ+E4T6Xcl0fL6m4l0AbquFQhG05xUOAuLCbMS4tvMep9Z31LNqlqeGax1vLq+5nazQSmRhJvJbFZbciknLYm3B+z5+gv0QYhucojyjSEmYlLkFNkfJh4+cKydYTzspGrTzBhnRalEotM2rz6BNmitaXzVfPSe9VoqYzfdlnEMbPd7hmGShyBFYm1dlqzYDwN93y+rvQXXXI5XYMEgv3XNFMrMKUeV3SkZZk3UUurKtKoGlIJKiXjYS5talcVUIHYN1/sNzfkF/qxn0veyUH9X41cdJx6e94sl6h35pRpvVjNOn4s6Ky58habp0NZQUgZz1DGecXTHlFyIKaZ2d+ZezS+/+ILb21swHuMSzjlytV4WsRvRPC5zx6oC9zVaFGmU6AuDPLMoMMry408+4snjR3gNr5495frmBq01FxcXANzcbrBGs9sP7HcT5EwMkTGCcx0xK1JRywRurBMCrTYLFjDWapT3DaU49octm+2+HnfmZ599gbUOa1uM71HG0/crsrKw3aNq8cCHQEyefi0T934ciOOAmiKz9XjOaSlOUCfPpbVax/SUMq0xDMOBYaNY1TWH1QWrMrptsOsVF74lFkXMmZQih2FHGIXgZ1XG6cLrw0TZJbT+GuOU+/jexq86Tvzk008x2pCUoZAIuTCMsjDdHwaev3rJanXBk48/wbmGcQqy2JsiwxBkXquFI+HxlEX7F6QLvHRz67hS92HZH0k8BR4lUql1Pm4a+pWAJbTWomi126F0xDkLRhbWuURAobXFW5nznW+wzqOMrR3rWLcliWzOEVv9nP1qhVIiW2urnb11DQUYdluGMaK1WyCpIRes9ZSqhJVTrh32vMBDT7t0d8qZNecoWVQ5SlGkFIi1G5ZCJMRJ/pYSMRWmIFJ9IiuXOFt1xFogA1l4GCWFhBm+oZY+eVlyqHr1T5IR6XxrZer+z3PC/N5vD8/6lZffSqk18L8A/7SUcgv898BvA3+IrBT/63d9rpTyz0sp/6iU8o/WffOut9zHfdzHr0l8N+NE+ze2v/dxH/fxNx/fxTjx+OGDv7H9vY8fTvxKlWWllENu7P+5lPK/ApRSnp78/X8A/rcP2A7e+yMO9y28y8xmfKOCeVJxnmOWxz6tOivAty1t26K1oZQ3NjLjlLm7OhR5luMpykVYp9fXN8JorVItIuGiUcpRgFhhESmDKkcLyJIrF0AXLNSq8rGSNf9fKcEtPrg450effszFume3ueb6xXNMkdVXiRON1fRdR8gwxUTIkJWtkjYwC3MDi65pzrlirORvXSuyc7kcV9+HaViOWXDTGmVS1XKee1ene/3G+Zz/W9moKYhTUeUGELIm5Vmyq2pWUsgp4qyuOGfZ89ubV2yGPVe//7voruX6dvuO77yP73N8V+OElGZnU5L6yjt5C290mmpMMS7unU3TVIMhx5TS0io9+aaTX4+SUbpaiTx7/pzb7YYpAspirKFr5gqQWOZ61+KaBmtdxTMWjFU47ckqk6iV1iIQKGc0XdVhjmFiHAbGcVyq6SCM+Kg1m/2BfXUCSymhXMvq7JKnr2/FpbSR6lXbqOomWKAUUprY7Q48e/aCYRhpW884RGb9q1wU0zhhIzSNozH5KAGlRfFj1mOnSld5bVnpnouyIo4jYbdnjIl9DAwxLkZKKUygRcHHaGlru6wxJBrniNNEOpSjwkWpLojaoRSLIYwuBZylbQwagWw4UyhpZL/fktN9VfnvYnx34wQYJYoPEdgdBr54JvzAISaK0hyGQeYjZYlRoEqpwgrW5+dL236334nDpG8oZJw1XF48QE2FojQpR2yeu8N6bpssxU5Vfy4nrsBLjbPMKhRR9ITVrDwlJHqlNM76BTpmG08qmTSNxGSIMWCcZdWvORwODOOBfiXv7c7OGYaRaRpFfUYrrPK03YqcEnE6MMXMs3peusaxXq/xTcPN9Wu22w1n6x5jNHEaScoAR830MBx4dbNhSgVtPUUZpphJC7zjJIfLRTpMOS/HXa+twNNUhXiao6ybQDiN6FjLS8e04837BoHQlEoUXuzLtehAK60Wd9X5e79N/CpqGAr4H4E/L6X8Nyevf1LxRwD/IfCnH7A1YXWXGRTx9mT3ZiL9ZhJ9sqXlhyWRVmpRwnCuISysntqqvbsnC8ln1uibVSFKgXGaePb8Oa5pcMZDMRhrMEZuCHH4eWtvgLtMeGVNlVSr7Z4sFq7eaLz39F3DxdkZTeMxWmShFrIcME0RFRXOWLRWtERaXbgxjowlxUQKabkxNQqtC85Y7NqTcsGPnmkKqGEQibkTwHzf94uD1zRN5Ag6Z7Ga/YB+hFwXSc5LkmOL9XMhKWIxMj9X+Is1BWMF3zg7BwHsDgeMszTrtbR1f4U2yn38zcd3OU4odTT+eFe8axA8fU3pQlcx77ZpZQKzBjUje1Jaku+EEOFAnLkUQpazTccYUjUaKMuCOZdyNAWacsUoK1LJWCtunCUldGMlmdYKX/kERmu6ruF83aNS5LDbcHt7y7PnL0Ebrh4+5FAlII13hJBIWaGMl+dMi0tVqsNmKUfomLWOnMTMJKVEa1doDZvNnpvrDW3X8PjxA84vHwKw2dywOSTCtMH5kbN1pvWJrIRvcXG2Xs7nFALjdCDlSqwpwpkwxoi01uz+NRcPUh37qhRliaEWKMS5cxoPmHakqRhNlfdMB0uuhQHbnOGMFb6E1hS88B4ARaJMCTPKQvvbToj38bcT320+AZJDyL+Q0rJgOyZsVc4t3ZVya/ueTz/9jcUg4+nTp0xxBFV49foVMUc+fugxxVCSKFTMiztm7eMiSbRSVFiEEtnWUtWuZizvVEgxCmSkBJQWQl7JM7J0Lv0t52LJRWaTE6011jlsjJg0LeNbt1ozhkSMe9kvDEYbrPNY58WCO05sq8BAjJaHlxesztY8e1q4vd1gtOHRoytiyYwhsxuGyl2CYRiYxoHDlEgcyGhCKsQke/0mPE4xCwQIllxrh3VWoBk5VoiKX47NGi3Pdr2Gc7Z8mlEdXRZP4C91zFFVoUhkKvXCiZOc8eQe+Qbxq1SW/zHwHwP/Rin1r+pr/wz4j5RSf1j35K+B/+zrNjRPgm+e4DvveSuRfjuJfvP3JZFWmrbr6VdrjPdMVYBfabW4/MCcKCvBPJf6d3VkzGutub654fZ2gzbCMlXa4hqPIooBScro+kDGlImprp7mi57Vchxz9VV+lYl61bU8fPSQRw+vWK/WNM5iNTgDT5485rATd6scwl0ndqVxzrLZTPJ9qRzvMyQpN1pxtvYYLQ/dqu1Fbi5fMKWy4BZjAe1bYozs93vGcTp+zbxyXs7Ym9fq+JpIP8VKPFTLvuR6CfOMLy8FSqJpHN4Z2q5dBpT9OGCsw2tDihmr3rYAvo/vdXxn48TXxTsJsG90itq+VlzbjmwMuVArIUfnLUpdXC7WrVU7tE5M427LME3irmkdxnrGaVqY4qVx6fFGAAAgAElEQVRUC3llMEaUJ6x1dI2H7MnB4Ax0/ohxdtbQtg3T7SumMHJzc8NwGDh/cMnZ+qgNf/vqhikmpqxo1heSDGfRKZ4wrNeXGGPxNeHU2lJSZlIWFYMoRmiIcRKVDGRymUX7Z2JUSIUSEmOIFEaUsTSNwTvPqpMkv/EKVSYO44EchO3eWEN33tNl6GJmmEb2VYVnqsYppk6aKWdQQioyVVXAlBGjBZanyeQcyElDHqEEMFYWKKWg4rC4IGIVOE3X+TvzwX38nYnvbpwoRUi0caKEiZQyDx4+BuCP/uE/ZHO75dmz57x+dYuxjsv+jJQTXdvTdh2PHj1mqFh4XbHKM/54lncTTH6pZiPytUodlTFKyRhzVNKSKm8kholgZglVUWlYr1cEDF2/wjnPeAiLC3CIkc1uV3/OaG3FfdQ7mSN1oZQeYzXW2YWoLNXcmne8MV/P+6pg8TOo8GLapuHi/JxSCrv9jm7f4ZuenCopueY2RinaxpPKxH6MomZTlCTiJ98xh6iMyS6EhOjTG4MYqqgl6QeEJGws437CKhl/tTZH6/A5gZhN1Ga96/m4tGZWJMlV25p37NO769Tvj19FDeP/es+3fa2m8vvi9EDeNfG9i9RzJ4le/nc3cQ4p0XZdlY07qSTXQfuUuKZPSv1a6ZrEz68Ynr94yfXNLTEllBU4hTEiCaeNRjtwS1KoSLkIoSYlSk7kJKQckVPLpz2JRYZm3fdcPXhA6z37w5ZpmLDG8ODhI/qurfumiNOIUkKgizGCzuSTpai0luqu50goBWMOPHn0COcM47ir5yhx2Vj+/u/8PQB635CK4dXtwF99/pSfjSOH6WjZqe7Qn+p5PP5yvF45k2Mix1QrQTNTWIEWIArzSq9kvDWcn62lRR7Tsr3tbs9f/smf8ZPf/h0u+/O37ov7+P7GdzlOnFZZPiTe+lKlaKpskzZGpCNPuinyGVUX0SevnUDAlNK8ev2a/XAQ6JV1GGvxCnx1+pSKlSSBOWdxoZsCw+6WvbNYXeid4ckjwVbavsMoOGw3OCWqOoe9kF29b3D+qO6Qq/uWqon6LAt1mCJozXk1JloMNrPIO/W2I0wju/0GbQyr9XnthAX2Q2BtZN+79pyunzgcXhFiqUYIUil21pG0sNrn8yJd5rJ0vMTiWoHWNM5gXc+MNM+lEKYJXTtOmxIpMaBiZr/bsNtcc/XojMvzqoXdN0SjGREyZIkTqm2XO0EKEHVfBGdWdeW/2SR4H3/78Z3mE6UwbG457DaEaeL88oJ/56N/F5grooEvvnjKl188Z5oiWhmmaeTjjz/l8vKSP/y3/4imkQXbZ5//gs1+w9Nnz/hXf/Iv+cUvfo7JQlqj5gynahplrmhzHFeWxVv9l08k07xznK1XqG5N07SklNgfJvb7PaUUYkyL5Os4BIx1PKhulzFGUomsz9c0XYOyR7jB7WbH7e0t4zjSt752yWEaB1GaKjIGLsl1ocrF1rFxls5Tc/FrnvsltNI46/CuMMYMMaGVwjiDeaP1rCrMda6zFS3j6LxIL8Wgrcb6o3iBqcok5FQJe3PXjCPqds5z1PwphTUKoxQxTszQjpgS7YmJ2rvyyA+J74WD351Ww1e87+7kdfL5Nw56mQDrxS0pc3Z+jvMNIUR8tZieYpTK0nwzqzdgGEpzR2c5a7744guevXjOzWaHGQLWOlYp0jhZLWEEczTvp9YKpzVYjcahsiWnQJrG+r3zOdBcnnU8fvSAJ0+uWK86wjiR65JvTqRznRybrq83emG33XLYTxgPzvWM48gYgiScZU4CZl/1WbdZ7tySM6aydIdBMJBXfUvfeNZO4+M5Zznw5XPNl69u2eVEUiLPXOa79s2FzbLgOFHCOHmAilZ3XL2Umie/xNn5mrZtUMNh2VgMccFOe3PEb97HDzE+PBEqb/yktF50RbU2lJhE77s+8ZZjAqg5mhHNX1mQZHWz2TAFUXww+jjoazUnkZLbLpUdADLjbgSraJ1UmUutig77HXsluMFYAk+fPufl69c8+egTHj16zBgmxkN14owZtOP8wRWr9Tlaa1LJBGWI44SkrmWppmhlsdZBgTDNrqDgmwalFOOwZ3O7WU5W26/QviUVJdJOw1QNDAw5S/KuT06Ls4ZkDTkrjNUcDgcKGlWM6MyfLKTnsdUaQ6K2qIsUDmII5JJZtw5Xsd/ayDZ1UcQYGPZbWu8qh0IBmSOGRskQM0+K94XlH3SUWgnOKeHalqsrgRkZbTDG8ZOf/CYxCFTq9na7PKdffPmM3fZA2wqc4dMf/RjjND/+exu0NcScefrzX1buTs0ZZptm51CqyrSVvChllSJzYClpSRwlFM5a8Tcwx/0+7YyknAlzsjxN2FyIMRCjY5xGspLuzfp8hdaKXYVVPHt5Q4wRq3WVaFMcwsh+uyXHQOctjffE2g2LKRBiou1WPPn4E6Zh5PnzpwxjoGl7KeYptUzjzjuKNkwpo3UQl703xuY7+dpJsqyNknxEKVHKqR+bz0vOiVLsW5ALPWOhVa3mz+OQ0ovRS1FzEmdk0V6hKtqcdKTvjA0fPlB8L5JliSW9+pp3vON19e6LBFRcj6FfnaGNpWjDQv9QNYHMsUIBjlhFrU2FYJTj+VSK5y9esNlu2e0OFCU4qM32lr51OO/xTbuIjnsvNppANQNQC+5I7ju93HzGGn7jo0c8fvSQ3jt2tzdsbjfEFOn7nnEKgpNM8p3DFMlJHG5SzhU3qOvqtDCNtf1Q991UoHtKBa0sq9UK56wQAIo8THnWT61mDTkXjPWs1mc8zI6iWzb7gcMU2VcMJEBIiTyD6LUSCMsJZmw+d9yZNpcrJP9yIqSRs7M13jnyQR76nDIvn77gs599ybBPSzvtPu7jw+OY3c2tvlKfw1ilnbQ6mhKpk3/yZoEMlZyZQuDLp0/ZbncLlGjRD52Lq7XidGcRX2bSikyQjXcLLl8DpSRKNtxsNsSUeHD5gMdPntC0HX/92efoatNtfINrVvRn5yjrKApK1Fw9fEJJkf3thlJA+5kIqen7Fbog3bWuZRz3aCtEwrbryRU2AmIW1DQtzvvl+S45kxWEIGPrbBgkFexEioGcEioZrLGVi6Cr6VMRaTykIpQpdI0XaFbqMVl0pzc316xXKzBmBqiR1byoln+5FEiJojJKW8GV1oo4CjEyyPfkvh965JzZ3Fyz39ySYqR7nGjqs+y8r4maRmvp/s6GX3PbXlr59f3G03QebTQPHj7ENy0xVo8BJbrFM0TKOdERL6UwTgcRBKgdqZJFiq1t/AKRKhnW647LywuiER7Efr9nu92wP+xqMYtFDq7rOlkTmqpdrrgzTs1ydfM5mKGo8zEN4ygydSXj7YpTn4SZgIxSKONQNuGalgykGEgxoChUQ2C8d/jWUpQlVKJkqIWHpfD7VuX2OP8LAOC4KJhl9WDO396dB86Jtz75e1HV+K2OwyhOfCmquZs+mqV828bT9yhZnuP9R/K+RPrrjr3vBYukjOiezpPaglUkUe99mTBPKkYpJayVmzuExPMXL9kfBjIz2UgSwhCCOHbFk5WgG7HWY624y7jGYZ3BYCjGQZ7bhmC1om+b5cHd73Zc31wvN9E0BUrJQsQDWUHmjCowDoliHNp2lUigmHVO57qOMXUiy/D6dsPqbMX5+QNiDOx2N4zTgakaE1w3wuRPRZJmpWc9Z41vGoqxFGuXG/0wDoxhJE4RNHTKYEohIUYu0ShyvaHlOuo7D5QkCxly4uHVpcx7cyI+RVRR7G+2/Pkf/2usvZcZ/KHGrFX6vvg6gp/3nqYaApy2R2f3utO26tsoMJl4Qoi8ur4mxIgyekngnHeoJU8TYf+FO4F0hs7Wa9at49HlOX1rSeNh2bZRULK0XGfjAeu8KNDkjFlavQZjHc55YpbFZMiZdb/Ga8gxYo2nq5Wx6+tbQiURGWtxTcs4jWw2G2mtkiglEedEn5GuX3P16DEvnj+HkmoHqeC9YzjsCVNN8rW4cJWUKSkTUqY4U6tA9Rzm47NcSmE4DDTWkGJEo+i6lsZpxsOOs7OO7DtS7R4l41C+w5qGaDzFOLajmCV54xYTJTkxUmrK334uvI9fkwjTwJe//P8opdD4BjcM9BXW164F0hRDoViFdw19v5K5Uht+9NPfgpxwtfucSMQYMc7Rd52Q0LlTP1ugDKpmaqXMnVKW578UgQSsup6mahvHkOmblpwCL69fMU2B3X4gROmyUCDFgqvvX62bWsAyWG9xxZFyZAoDRYkB2rbim2OMlSthqvaxQKBCCFgzJ9onXXgza1JJlArTQElXJ4Y49+eWN8xVYsktCrHECp/USyI/xwJ/LYKpOMUR5yIOnvNrKSVyMndgHws58CttFo747Hl8zzlXhMC7UQnfJL4XyfKH7/673/lV1egC9GfrBa8sN/N8xvWCWT5iFdUCvwDuAM/jcODl9WsyYkFpvSfGyDCNhCAuYM4lfL3oLQprnVSVS4Fcpea0wlmxee57mdRWXYNTEMeB65cvePn6mpgyZ+cXoI4311iFuw+VdJdzpihD160ZYiHGiFaWpu1xpjmu3BY5F6lGW2MwVUnj5iax3e4X3OFf/fxz2ranaXq0afBty8WlR9mO17cbyjhVV6TKRFdyDVKKxCkKY11pkhLIhdaOrDV5dvLKGfJUK3lUeZgjxmu/2/G6Stqooln3a/bdiEJx8/r6Q26U+/g1jdMqyvv+9r7X2nZFU5NIwRcebe3nbc5VDZF6OmLbkipYqwkhcnNzI1UjY6kO98v4AaDy0QylzCQCJQYBzllx8ix5sbCGQlSFXDtf5+eXNF2Hbzsh9yhDU4mJY0gchgHbjoIUzoWY5bm3Voguxpg3oCNFDAuM4AKbpqEg2OOcRQ5yrBCs/V5+985xfnbGcNiRcqSUxDDuGcdhqQCVUpYCA8DhMBBGSVqtbwBF168Wub7nz59ztlrReE8Axii24ClKItFajdJWSHwAxqFdi2p6tOtIxhFyJhtLMJaojt/tjFShU+VB8I774z5+GKEUtK2VQpcDEwJ2L0Um3QZMu2LdnjFlRURT2oZShIyvjahTGlfHhCAus621XKwaHqw7jNVEZE61xi2wTm0cpZpp5SzdUlMFBHIpOK1x1qJO8hhjTOUhpGqzHWvn+biYn82LlBJzNWtFMct7yzAOJ58PjCcueF3ToDWLO+d2u2W/39M1kpN0XYevrqPjYc8YhADsmgallRByx0PtMM2OvXcBswtkZE68y9E47s1kWWm9jJOz0+GMzUoxLp/LJS+24ZST3AAWid/Tzl3Sx8Hu2Mg+JssLbuxXjO9FsswbFaP3YZC/6vPvi6JgtT6j7ToKQrhLecYwSpJnTragmEv9x+3OifOr16/ZbHfVFtOhjcEAzoqkW4xZWPG1+ntzcwNA2zacrXri5GidoXGGphXMYFvlUrrGs9/dkneFly9fsd0d6NdnWGuJOVO0WESHOK8EnexnqmoTxjIeBgrQ+o6mYhLjVNmuIVByouTIbnfg6fMXdG1braXFLajkOTmAECKFqcq5+VpVFvvMamhJqo5lvrF0oWE/DgzjgA2Jk0emnmuFrZNgLKK3qgCdEipHtIJufcXt0HLVWlQV4Lh69JAfffqb/ORHB1RSvHzx6mvuhfv4dQ2lFb51lUQzD9T1j/PP5VjReTPathV8IPWznBB0TiSl3hxPcsUggmIYJ169ei2cBm0YY6otPxa5NvmbYAVTTpAzVlus0ZjKE8gcW5DznCKTpEZbJ5hqpYkpY60X/B0ipbg/3DCmxGp9Ls9qyrx8+ZJHV+eszlZY63j9QhaVL14+xxrHNE6Mw4G+a7FGkWfijFbkfFyM56zqglpja7u3Fm1FQvKkIjSTn631aF2ICa531/im4bDbAYr9YVx4EzknrscR9/AK5x2alsZZ9tsbHlxd0bUtdGuaC8GX2nZNcS2qXYF2lTiYq3PpPHHPEBslcBp7z2n4oYfWmqurK1GImSbapl0Srmm3RU0J25/R9mtC0ZQQCCEwxAGvLY0zUOXgdAx0q5bw4jM++5P/k8flOQ/WB3453NJ2a7pVJ772QCiiVpFzIWNRaMap4J0kxE3vubg4R1WA8m57wGpD1grfNBjrabqOvp/Ybg/EGNltD8sAcVzY1yprOR4vUGXY5Pm0rsU5R0qBFCRHGMcRozXOOam6tw2r7hKA61cvOex3FArOedq2oxR49uWOpBLHFLUea5jIZHIUeInWdVxLWQrLJ1baC6yt/n5nZF6G2lJhLPVwl7H9ZEGu1N2E/bRwour4maVApyoyIFPuKJ699bXfIL4nyfLd+DoM8rt+/qroux7ftFIhqpUYAKtBlXy0rlTqpGRfLwQQawvn5cuXTBUQP9vHFgV+xstoSf5OtRxLKYRh4DaMDFZjVeFi1XH26ccYo9GVJBenQSTdQqzWldL2nC2nb253IhlVW72uO6uyUYlpHCnGonTAGpGp0sbUlsWR1aq1xfqGXALPnr5Ea83lgzP6vqFpVmxuJbm/vdmglaFfrVmvNd4ZUq6Ywdq+sdagywwhMfSrjnXqGMeJ6eaWKQSGJASLWNtSs4ZtziIVpRDLW6XEhMGfn7Hbb9nlPauKAztbrTm/esjlk5ZDhtVPf/ODrvl9/PqFQmxQvwmL+fhexfn5msbPQ16uyWLlDgAqF1G4KIA6Id8WwTiXmjButttlvF6qPykx14lP8Y/zdzlraLzDakUYB5RZHHUrpjEyhsTjjz+lX6/FwnoKFKU5O18t2vAhRGKMJ0Qg6dQMw0BOK/puRYyJl69lUbnb72h9y4sXL7h5fc163dGvOhrvaBrPxcWKpnhC5UK0yRPGEbIh5SCJvtFoLTJZxp7KNAlkTFLWSiyUP6AW+TpNmmTb6/UZOSdevbpmGPbkGPj0k4/QzvPooyc8fvIx3YMrqNX/5DtMe4bqerHxzrKYKAqSFmm5RXe+JDFykKvCNyHu3MevVyzt92pRr046LcBcEZO/lZmEJwti7z3egdZVIs07qCS7gigzKa3oOk/TGqxVlDrHCtzJEmIhZo9RmnEcadoLDtOWle54td1ha3L76MlDjDHsdgO6eIxVUALFaS7Om4o1vmW3F/7ONE2cP7hkmiaRpPQNqaSloyVEPtm2NQapAeR3yqcpRD/e+8qFqCYoqIJShqZtmcK0nKfGa0I+9vCnGJlygiKLalvN13LJosBzkrPN18FaW2EdcRmXrdHkev69m3XnzQJlmQfhD3macxHysiwq9ELIvuvF8eHbezO+F8my0grnLYs2b3l/Uvw+ebn3KmIozfrsnKbtGMa7lRFgSeBOST3z2iUXkUk71Bblz3/xGTebLbli8vIC56jThToFls+RCTGI6oTStF50k/fb6rRVSZraibTaZrvj5voa61q6fl0fiLJIRs2YfOub5UafsmJIiYePP13wgbP7jdEVbz1NlBSxzhBj1ZNF2kXOeayzbLaCd0pY9sNEKHuK8jQeUAalXZWmglGJKYGc6zqwaE3rHaZtsNaiU+QQoywAwkiu1u+CcRIyhDIKUytbq76n8Q1MG0xNaqzRKFUoJLxv6M867uOHHd8Ed6ZOErt+1S1kmZAiWhWsBkqUBNeI057Wuo64dSNaHLW0abjdHnj9+pYpJrTOTNOEtZYJUCdjy1HrnQUaoWuemYuo1MxVbg0oJc/3x59+yn431A6S4uHDK9q+4+ef/xIQPN84Tex2O5pGOkjaWCEdH3ZcXF6w3e2O7VhrF3cr55xUYHIipfpaTZrnfQm3keubl4xpZBz2pDSx7oVpb4xZXA9BJthpGplCwhiH63oe9Q2Hw4BSMIVYjV3kRI7jJNKcFVZ2OByYQqBrPav1mrbrMb4nVwk+pRuc7yjNGpULthwrVkpLory0vcMo4yx3x/f7+OFFzokQIk0jrr2+aTg1xtG1sCVkdLWQ382JYsKxnV9/yZkYg+gNczQsUydvzjlBLtLFORyo4CxSSvR9j28atHHomafkLeM4st3tycWQqtJOiGl5xtqmx1YMf6xJ++EwsN3t+cmjn6CtJLlKOfQJV8EoQ8mJUIUBUk4ooGkbGu9RynA4DHz0RAjzh/WKmCaG/Z4pT3RdU/G+x+XnDG2QQy5HQqCekQEz5IzlPfM5X86rUsSURHpXiZqOrtwwU8dm4SJILqhqB/BdRkPHOshJhXlW/6oLhbRA3eb49pCMD/Biu4/7uI/7uI/7uI/7uI/7+GHG96OyDBh315ntiJ+dq81fXXV+L3RDGc4uLvHec5jC4rZzsoETYk996QSho7XmUMkBv/ziC6ZpQhlDKlJJMsZQsqqg9Hc7RwlEQ+GtYdW1dN5JNankRUc5FHh1e8Pr62s22z2/8/s/5uLykv1hYEpiN1mUYX0mphz9ai3A+JzQplrh1qpYKUCqGM+KiW58y/X1K3QB7xpKJ6QfEKKTtGDma6AWjkxMGRUiyhRa53DW0bUWY4BqNTtMkZKnBf9tuxYdAnEEVa2uc86kurrXgMpG8FUpVjWCgtWKFEbK/jXaXciupEAMIwWNcs3CPL6PH2Co91eVvw6aoZQSjeCKfShTvMMBm+WijuPG8WdlLNo1aNdyu92zHQJjhPWqxzhRYIgx3nXUrKGVaDB775fthWmibT22VrKMlg5P03Z43/D8+UuK0jjX0LatCOuHuOynKOYUYoh0XUfjW7GeHg8UErvdTsh+wKrvGYaRrmtpW89UeQUibRU4HztWq47zOq7sw47NrZgriFrG0bZ6diibXcpAE1MiRGnPBgXPNq9RRfHk8RN2tzuePPl4UXj//LNfkErGGM/HH/8G03RgP+7ZDTv+vm9ofFNloGw9Vi3uXEUuvlbq5PkXLOPpgC7yf/fjww89YkxMU+Dy8hLfdOxipJ8rrn2Lcr4SyzPGWJS35NLcqZ7OHWjfNlACxjd89Mmn/PLzzyQXiZEcI1nFxUqZxS/gpBOuZXsLJETrRQFLuEGBYZwIQZSuUs588smnfPrpb9B2Hb7x/OxnPwPg5599hnOiMx5TwjlPvzpnHCeU9ji35vJM9uX21Sv22xGKpuwhhoQaHR89/pTzi57zs44Q98wwzYuLFSWPbG+v2Ww3dH1H0/T0fY9Og0ivxbJwO2abcGXMEeBQMdVv4YNPKr8zNGLmncx/zzkt44rWmpxmFECWcfUE27xA0N5x7SsLperea44mar96fC+SZXjHJLjg+dQi2D3HkjgvSfRxsnwzkZ4nqlxEWgWOgHilFOpksFXqje0r+fxYccovXr4UcqA5Xny9YG+1aICeJMwidQWr1Qpv4Hzds+48hrxgpec2R4yBzXaL9y0ffXTOgwdXTCHx8voGZR3aOVzTszqTJNJUTK9JmTNlGQ+HJclPKYkXfPWZB8E15lIIMdH0DZerK2IMHPYbrq83nJ+f0a9k25vtgXwIxFgq1EILCXJpwxSc1Sc6sYmcE4bqemg12raYpsFPDbspcJjGI2wj50VOR9BEsudGa6zV9CbQLuPPQBi2lJzpmgZbrXbv4z5O4+ugGcYY+r5b2ptpEAMPWRjWAfZNCNVJ4jwnz4fDwDiO1XmqcNqafOf+KJkUVqse4oj3DmUL0zQumsDeG1Z9R9ZrYsq8un7Jw4cP+eiTRzy4eshf/+xzVJ2QvW9wQcaZaZrqgl5hjDw7uSpjzCL81jpKGWgaz2E4kHIEZPIuFG5ub0kp8qAmy6vGs+patFEMw5YYUpWaUoCVNvKiWXokTKucUV6zWq25OLvg6sEVJT6XybZOVs5Jsh5j4jCMHIYDIYw0rWM3BSEjK720nbUVIpLKGWf9ol+dciTFkZIDuk72hlJ9CdQdpvx9/PBCMc/xtQhUyrLIst6ijBWwTs5oq9BG09sO4ywhBDKRvCyUHSVl3PqcH//0d/iLv/gLnPkSlRJ5mkjF4PSc5DmUKuI6JyUonDGUkmkaf8TpzjrLFGISaTNjjmPMDAcxxogFfP19JtIZYxYVDa013jumSTSUbcU6Gi15z/XrDdvNFqUUfbvCm4bdzR5nYLV2vH75JQCXD9Z0PTQtbLYRVCGEhNEWsmKaJmI86jinLBwBlHAVVF0MGBCt5SLjEFToS/170Vp8IVISUmCtypWSBYJZjzvFr35+S4WAwF14iJITtcDPcuEIq3vz898wvjfJ8pvxdZOfMm8n0fBmJRrW5+dVCQPmgVSfMDUp+e0VSimkkiur0iwA+y+/fIqqQPUQ62pRzQ9kejthr9Vm37a03rDqW/rWiWd9AqvA1wrQzc0AStP1PdZ5jLEM00TKGacN2jiapl+kr0KSGyyhuLi8opxFttfXlRioIStW6zWuHut+L8SE4bCrmCA5vyklxP1SoeeHWIkkVokJNU6kVASDrBXO+aXuPhd5RM5FLfoXMzvVGY3qWnzXsoq9JAhIZY1SxNI3TmStyCmSU8SkCWftoqEqGM8IeYIyQpm+8r64j/t4V2htaKt+MRwxeKr+YmolAo7P72wopJ0TjXbgepaNq4P+LDX3dj3lbjjnUFqINroUIffWfenbFUoVVqsVX375BTlHHlyt6HvDi2ef07Wen/7opwDcXA98Hp5ye3tLTAl9objZvuTxR4/JRhEToDQPH4qiRBgj4zhinSVsAs57ztc92miaxmKMwlqDObHTtsbgG7tU2+fXU8l46xbdeQBlPVklQhIM8x/8gz/iP/j3/n1+8zd/i2F34Oriii+/kAn5X/7xH/Onf/qv2W42vHz1nN6sODt/XImGFzQzhruO/Vpp6TCmhLIZlZNwTHJAE6FMqJoc6JIWfLj8cF9h/qGGtoaHDx/S9T0xFVAnWurmyKw91fGdf5cfuLNQVkqhnaNbrfBth1FiiqGq+6Src3jXeFlI5izd0zmZrJ3lEAKlFLrqIhpSIZXC+uycYQqU2v26vHxA27ZorYW4W6u5TdtSlMjHrdfro875QvY9eujNC/kYorAdy3QAACAASURBVBTPatFwnEZ++cuf88svEn/wD34Po+YC1oqu62jblmEYuL3dYHWDtZqSDZCIKS77opT4P8SsSdNAvzrnxcvX8jfUW9DghWioRHZPyLqS5KaY8N4sc36hiHpXyWikaFlXwHdg0eXNL+GUo6IqZjm9c3++jd7y9yNZ/obt1Q9KpJEL+uDqgq6xpDiiyBhdjuoXaFSWiqaayZcVTr60/oxhtxfzgOvbW5QSaZiQEm5uF2qFRi9yUcsNVaQCq5WA1o3RaGTFVXImpMhQbZ1DLnSrMy4eXOHblqI1t9sbfNNjrCMWoa6cno6UC0UpsajNkWk4YI2jaVq2tztyyuQ6AbmmJedMCBMxR8gF5xtW63NCkGqZqoYfMrHPk2epAP3Mfp/xPuCsqe5ENalQcs6tc9XuVslAodUy6BijF7ZrY414v6tM1EVW6dkyHnaowy2XD3vW5zKguNYxoYh3JsL7+EFG4S2C7ml8lc6yMYau6+6amii1PFCL6P3p7/W9RmvQhlzg5atXlFqtyPOAD+JS965bs2hADEpa3xGGLUbpJREH8I0nhBFjDIdxjzGapm1RSjGOI8M08Sd//C8AuLz8GOc7UkrcXN/w5OPHtM7L5GxaQoDV+pJ1nZD/7M/+jMNhpO8EaqGVLEwpiuI0Z+fnUq2aq2Mms1qvWK87nr/4ghBlQZ1yFsOPk0KD2MnCDNvKwEcff8Lv/t7vcXF+ydCOTIeB29stAL/7u7/HH/zBH5BSQqnMbn+LaywxTkDB5Uw87BeHM2goUQoGlkxKInGpdUGpTFGSsMh5Tksb+D5+2GGNpe16UWshia75XC4rIm1G1R43daGrtaJpHS5bUpzQanavhJJESjEqg7aOxvuqEKOXcUM2fjreaLQ24oBXE1rhuR0l0sYwoY3h8UefcH19QwiBcZz47PPPefb8mTiMnpDjnBPZzPV6zaPHj6WQFCPjNIl+ctdx2a8BiF3H61e3ZDJKi8jBJ598glKFZ88sSiUxKJk9vuoh5JxF/WuGpwJKm6r+lRb6rCqzU2mh63rQeqk6zwoJ79LET0WAFcaapfo7xgMPLs85jHKsrllRYiZOB0qRrvVcqZ8JvOVkQaMxcpwnY/1cjRc1jLcKy98qvh/J8lfEN8Uonr5fa81qtcI6V286YafPckMlJ4IyWG1qIguzskVGnKdSFg1TEJxOMSw3RUEgBbNaxZwoHw0JEkYZnDN4oykpEUiUui/GnChqKIXzjeAjrSMVsabufUtCcTgciGwolTGqlCFE0VdOKUFJ5CL2m6ZWwUJMpDzOm8c2Hh8aDvuJYQjsciCXKDXhYaLr5ck5v3jA/jBw2G1rMlD1X2efewRvnGsbOaUIVa3DzHa1qmocAkZpNEct7flGVvM/JdfKOUunohiqzGoYzpCLIZKJccIOuw+4a+7j1zHebK+/OTZ8lYOfwDD65dmdsb/yngofqqoRs9zQXI0SPL9iipHd9v9n701+LMvyPK/Pme70Bns2+RRDRlbkUFVJza1mgdSihcSWFWxZIPW/AGtW/AvUjg0SbFr0AiFQq0rFBgkkFq1SNersJKsyMjzcbXzTHc/A4px73zMP94ioTG8UUWE/yQcze/aGO5zzG77DfsLFxfXk65OzAOx3NfPLU4IzZDKA7acN/PTsjFevX1MUBdvdPSbLYjdYN2w2Gz5/eT91oT/48AOkNNyv7+h7j5QCnZnILUj3pNZ6GoFC1HnPM8PZ6RN+//d+j/u7O+p9zV//9b/Cdo6qLHFlnNg8f3rO9tWOL27v6CkZPPR+hg8uKgjonDAW0s6hc43sBMPgmC0q/vRP/5TT8wvq7Q4pFSbLOL+8iMfBRiOUEALzecmFPKOscqzrY2Hwr/5vGjsgE3axUhqkxvkWb5t4XqSICjoyIBgIfZz6Dc2eYehSQS1BPHaWv68x3tsjvCryilLS2XUgNDLTSKMTdtYTQoJgiehcpybt4p5gU4JbVCxPL3jx5BLfdzH5lYZy5AXp6HhndFLUQdEPB5lHpVSEbz18txGbnx7jvaeua/Z1YLvd0nYdJycRHnl+fo4xJnWdBbvdNmo6W8ft3R0ffPABIxBYSjklwMpoTs9O+fTTT7G254tXv+L1qzv+9m9/yUcfPAFg0ZY4ZxmS0VgIMTm3BJTWiP6hqsRYNMda+aDTHr5mPUy19VRkjAYs0TJ8xMEKpNZIb8CNDeXYTg5B4vGRMzZ+vjDExqQMUZI2OIIfUDJKgyqjJg7c+OFCejN/HzjGtz5Zfld81SY1udZJSVXNUFrTdW8Z36fxq5BxcZ2qpiQVlRcVdef57PPXAAw+rsG9tVEWSUqGvn9LQylM/xqjyYxGK4EdOpQX0W0qRFBI08ZkNi/mLFeryWLSe5/kVWK3umk7WuuRCXOZ5UXEC/YDd3f3XJzOmC3mGG2otw27/Q6jDqSizOhU7cqoJSsjXtsH6NuWvmvwPm7IJtNUZQne4b0l6khKvLf03UAroiSVSxhkn0h8AoHQ46IzdqaJEAvv6ZJZy3wWO3xlFiWrZPA09Y6TkyWLQkfSwNh5E4mAmMhEoyTWY3wfI7yzs/x17n3xuleHqQ8C0kTpIUz5gBmcuqiJpLe9u+f27o5DCzmJ8U/dzenbb7yRhx1ugZtgYePriNTZLcqCwbVcXV2TZTlCa/b7mhcvPgHgo48+ousGsl9mBBFQWvDs6ROcFFzdb2jbQJnnqDLCtc7Pz7m7uUHJw2RnXPcAur5HCkGeXMistUipEAq0MZRllIDr+x4hkuPoSFT0PVkFxg+EruXPPnrKr/+v/5k/+nhBtXjC0FqcUSwv44YsfNRGlgQkHutaZvOKtmuo6z279RpTFJjk+FdUnqh3nSSkggef2lbegmshFc++3SOSVvRjPMaI5xVpPz3Kw9JYfpwuv/F7KXkb71fnk3Od0EiZcXJ6wcl8zn1VUTct3oOciOsRBqFl5BZYF5L2MQgpyfIMk2XT3iaEoqgqnj//ACkVu92epr2Pk2cORf5hPToiIYdDjjHqukc76JGAZyfJtiiXGaKTnwicnZ3RdRuc6yKBEei6jru7+ziFqmYopaMoQggUVUk3WEQnDw0GJM7HfT7LcjZp+k74OkDa4YjHjxE7v5nJJoLfAzuzdO6mpvUIizkqBsbjEAfPIR0TG5EESqDNl/G6DyA33zC+Hcny0Xj1qwxJvmmMv6O1ZrFYRCebpo0XPeJL3akvvaaUSKURUrHZbXl9HbE4LkiMim5AMlh6C5JRa/ioYzXeiAnfLEds5NhpVTp1XANDsn08f/qUoihp2w7rPM47nr74AKUz1tfRDMWIgyFASPgd5xz7/Y7VIqeqSpq644urVzT7hjwr2Cft5Kbes5hXlEVOwCWstYBEjnTOT92oLNOUeYHtO7pUUTpvGYao1ai1fnDMRIhd9/2+RmQRp5XlcVMV6vDY8fmD9wzWIkIgyzIKowiu5+z8jEVV4JXGjpWrjAuVEIagNBNQ+jEe4yi+qqsMJMx9hE4AEyEljhuZeA4PCX4Pn2+/31M3DUIIXAAlRgtXIixgeuQx1CM9pxRUVcW8WNE3O7Z319Om0A8DQupIJBYRs+sTIRdi1yXPi/Q5DPf3G5x3kSwoBIMdsEKyXq+pioJBQkgWuSeLOUPb4AbL1dUVfd8zn80RAk5Pz3FuoMhzlE7GCt5jspx9s0vdMDm5gI5d4bE4iBtz7OZUVUnftswWJzgPRoDONd4b+jY+flfvOV2tYnKOp7QGOTiKbcP9rz8jyIabmyv2dTRUedJvqeZLnIgwmOjKJen9QLAtKvToNC7XIqDkQ2jjY3w/QwhBSImylhqniJsUEPBR9ElGe/SRYOYBlMRah1GHnGDsnMYGlpsaP+mVOHpUitipNlpjXdQVN1ph8pzl8oQ8L+nTPii1ItMFUik++PBDrPd0Q9JFdi7mLd5jzEjuzVBGs9lsuL27BSE4PT1FCOi7ls39Hdkiwq9GC/moXuOmpcwns6QQPFrLSR3IWkfTRPJtWVVoHdcW6xxZVhBCdOQck2WpTRIPiPC0pm4Z6frvvPtCLFbG3EMQk3spBMYc5RQJ/hHdRb/qPH/F+fdhmny/bQJ5DJ35pvGtSJYfXGpfw1o8BnB/XUipmM/nhypyTFrD+HOZRPMPrxUFvuW0MO92e+7W0TrWJ3UNb4dphHD8vqb3Nr6+kJRlAbgkE9NRlAVKRhxzCC5KIwFVVRF8UkISktl8xpOnz3h1fY21FmsdNrQsk5uglI6iKHEhELzDhzg6HoZhIgU4Z7lfx0R/t9nStHvm82py71rMSpwX7PbbaF6SPo/3ESc0boqC2D2z1h5cdpRiGBnG2iCEAjlQdx1SKuquR0pFVc3Ji5LtdsvJYgFAkRuGYcANXbwxBDjvOVktqYocdEFInS6RzdFZiZAGKw32Pfm8P8Z3L0IYXarevga8y7AIiPbviZQ3/vyQPAfckePXsetffN0AQrJebyJRVgiCC5MslAgj4+TtC7AUkZ1tTMZiMWcfHG2WTx2jphtQpmC92aCNoKoKbBjY7PasTlZ88IGacL9/8Zd/Sd00fPyDjyO2Oc/Y7bY0zlHvdywX8wkSBkRYl5DYEPji1St+9atfcXl5GZn6WrFcLnj27BnbTZyeBSRZXtB11zhnEVKSZxolAi5EjKcb4VddwzA02LalrHKKas6TZ8+RWZ7gWwlTOHWjIjHSaIURgaHdYustrmsojaLXmhcvnqOzZEpCT7O7js1kSCokEpXk63SWIU0sIrxWE+lKxurnm11Uj/EPLoSQmLKKZhdRDgGZphViNgOTEQh4P0wTUCEivngYBrTOGWVUPRJlclCKslxwcfGU1/MFVVHiBk8/uMkIbOwi+2QAwpiUvdGtPqwvEqWiUdB8seDy8pKrq6vp3p2n/XK7XacPFoA4ben7DiEFXdfS9z1913B3e43xUdXGDoHV6QUXF5dYa/n885dcXV0zn5cIYVksF5ysCvIEIWmb/dSdlkqnhDpCSeM6ecBOQ2w24ANCKpwP9MOb5h/vgDiEQ64UITBhgrxNRXj6nlIKEVzsYB99/7Ce+IevM+0LTMTBt18fv1kO8a1Ilt8cr37VJvg2ibh3/U6eRyc556Jj3YhTGUPKAwN+xCmqtBiTrBnv7u+5vb1n/FUpFSEpMnzZcXx88eljMasqhmZHkRuCiizPjkCea7SSzIuIR1qdnvPXf/3XZHnBanXKfLkkEKKUTbKZHJU+AGw/kC2X+ABtV+NDJLzcb+7oh56qqOLFno5TlpvJv30kHJgiY1kuqOYVduO4u4vY7K6xeG9xbkBLgVQRPy0EUyV6/EGlUNGZJwRcBCDjrEeISI7cbWu899zdxo7RxfkZWiuMji5+u+0WgMVigdIGlRfIkXEvZYTFZDlaF/TvA6n/GN/ROGhsfpN4c8LkvY+k0/jDB8Xu237vwSuHwGa7pW27mHQPbrK5HxeVwwDyKJkPEHwk6g3WJjfA2C2eSCjBI1XGMLSYLEfpKEvXNh3zmSTPCzITn3svB07Pznjx4gXOD9zdv2awLdu2Y7fd4S7OaPue+3XcYOfVjHk1p++62JmSkr7vk4WtYbFYslgs2WxepXcucN5hrUubUyDLDUYBQlEWeSLkwdB7wtAjnWVZrfjod37Mj3/2R5hqgTAFdrAE5NTlns9n5JlBKYGwA8HbyHcYVQWM+dJkblyXJwvjRNSczWbII2x21/fTY+OfxwnU9zamZCwxkI4bWZONJrGgUgmyqQ4Y3PHHkIpNmfwGVM7q9IxnT5+x3ezAw2a3P1yDrgYE/WApqzkSmM1KBheYLRYUVUU/2Kn4O6lmaJNR1zWz2SzmH0fX9HTdT+o8Y8YRP5lAMAw9bdtEZSxn6YZ4b+53LbPFktPTFSHAbrdnu40TKaNhdXrKyaqIOH+gbhpI8EopDHXTJCJxnJgNLpL7dJKsLao5cnBYJN2+jTnFNzg1Y/d5WhvHxFiqN2BzAkjEamGnxx3/caMXxxFsQ3BYv0d96/cV35Jk+WHy+1WJ8Lv+/7bfmc8X6CybJJ7kBKSPj5Fv2RRFwjYiIwLp9esr7u/v03PGMc3UkQrvqFzSC5gkt5ZlJi7kqbPiQ0CKJEGnYge1aWr6oWF5UnJ6vmB5suLufsd+30ydFBsORUW0px2T1ci+7fuBum44OVmQmYL1ehP1XYFQFfR9S9u3DFZET/vgj45hmC46Z6M9tbOR9GeMSTdwSEB8CEHg7IGZGoRAGo1y4/GXcYzkYjU8m80Y0o28Xm8IwaMkXJ6f0ktPtZjx7PKSbLnCzBfoYhafyOSQlwiVRbTjV81lHuMxjuLAXVDkqbN03C32ziFFHP/p3BwR/h5CMoSM9/16s6EfhrR+HAgqU9H8toaFgMFbbu/ueXJxzsXZCqEM8+Vq6qRIPC4odvuG07Ml5WyOlHB3d0/X9eR5ziyZDfQ2SjZ1fYf3A/0QlSRsIs+1bYOzdqoJlJYEHNpIfvaznyGEYLNeE0Lg6dOnfPKDT1BKcnXzWXy7ShOcRxsDXU8IgUwrVKbw3qKlICS1ISUFWkmcUlRFwWJ5QjFbIHQGUmF96kznSSKvKqPap7WEoSPLNIacbl1jNJycrNjtdtzfxUR/cbLgyZOnBBHovecsy/ACpNbR0CVNAyCpiA5D7Ig9rhHf6xg5SASPkBqHmPC7wjmEEaAVIshEHBMT6SsiLo5u5BAQyAMRTSnKoqQqS/K8wDT9oXi08X5pO0veNpi8YLZcUDct5axESMVuvWZWxb1tNl8gpaaua9q2xRjDcrnk1sbksG1bnLdYG6Ge1kI1n1FVFULETnbfd/R9l6ZiB6LdaCQEB6IyRGtvKT1lWaKUZLuNMM2+H+Ia6SX7Xcd6vWN1coqUisHF46gMFGXMJ5YnJ2SDY98O3G32WO8eNAkfxDG37gEpOkw/VEphtP7y772F0H1Ilo9P+vjzmFuNYJC3wWx/0/itk2UhxC+BLdEKxoYQ/pEQ4gz4H4BPgF8C/1kI4e6dT3JUYbz1x+9IpL9q7KqUoppVKKXpUoIbpOKhc4ycqrcJizNWnmmMeL9e0/VJy1OqCe4AIcpFwYNNMgI94nONEjEy6TATwoTXiW5VIcE04LPPPiMEx+nZktnMsN1cQ9D8yR/8CZ9/fstnn3/Oy9df0NfxxtQqdmW1VgxDxDN13cBgB8q8mLBYWRppNk2NtQNxehIY7EDT1JRlzmq5ovMNm008RT6EBMMIkzyOTPjr8TP1naMfxmIhQlaKxYJ+u0EKhZDQdn38fwhY66Yb2TnPZnPP0LUYrShyw+WTp6xWK4rlBcJk+DRelcUMWVY4oouZ0G8R136Mb328l3XiNwxjTHLQO8AwIrLigJ2T4qEhyUQOil9gB8ft7S19P2CdY7E4AaVQSuODY2i20xhQKx2JREIgpUIrhZZJjzzh8ZTW02hTIdnXDucds8WSojCsTk/QWY4bJC8+/oRf/V3s/O73A0orrq5f4/yAdQ3OdUipMVpxc33F2dkZp6enQISfdHUzwbJGVRspJavVitXpitvbG4wei+BIaFosFzg7ROWeYKnKGX3n0MJN489cScwspzhf8KMf/YiLjz9FlDOcjR1grU00YEiHNRl1xmQ2mTKFtJYqQJiMYbDc3MQJlAcunjxD6AzjXDQrURKUIrgITRs7yOV8MZGjJ4mdx/jOxftaJ3zah4UxSKknAi1CgIrTSvzBkGiEWs1nJT4ccjSlMwIO56KvgCoKstkcpU18zJt42PQaY5Km0jWptcY66NqOWZJ3K4qIDd7vG7a7HdZGR87lchknsXc3DHYgSw2qqJATuRdKCvb7Pbd3t7RtG8nABHa7DQDWBr744hWrk8hPKsuooFEWBild1F0fukMRkWCngThljwoiUTJvNANSKkLJAPKiJChHM/hpTX13HFwYAirlFJH4P2K+wwPYVMoFU6v4wWRAPEi2jg764csxp3Opwfe+4n31qP9pCOGPQwj/KH39XwH/MoTwY+Bfpq8f4zEe4/sdj+vEYzzGY3xdPK4Tj/Gti39XMIz/BPgP0///O+Avgf/yXQ8OhIm482YF8VWEvq+CbkipmFUzpJK4rp+qpne5uRxeZyT4Keq259Xr1wdtVnVg04fj8es73p8fadlCooQGPErE0WFRFrS9neRSdvuIKSyKEiEkbdPSW8Vf/eW/YDG/ZHV6gfKGdpPk14oFm1e3PH1+gTFnzOan3N9/xmKxYFbO2Ky3HGPBfQLqSxGmiq3tOtbrNcoHjFTM0qhaSujbPQRHlulUCQaEyKJOpAfvh4OyQBr3dM7y6uaG50+eM59V2N6xXCxZ392x3WwpitiVNlnB06fP2O820ezAe+bzOVWeI3VGUAYv42O1KRD5IhEB3KHb9xj/EOLvtU78pmGMmfCwxx2Mw33/5TVmhG0BkcRiO66vr+n6Hp0VIKIFrHOezFsybRj1MEa8JIjERtf4oePV1TW50ZyezMm0np6/a2tubtfMZovktlUyDHbC32VZnngXYJ0jiIC1A9oIzs5OefXqM9bbHUVRELylMIZ8NADKMjZ39xRFwW6/pcgrirKkqipOT0/puo7PX75kvozcidubG3pryfNIQBzv/RD8BO0YMch4j1aS5WzGxcUTVhfPAEM3DJS5jEZISMzoxul9MjOIsk6xneyjDByOoixZrVZJng/atmW72ZBX1TTxk8LEjvRgcV0/YdBVANQj/OIfaPz91gkRxRmFFARlQBtIihIoPXWDJxBACHHaoSQ+CI455ELIqDZjPUJ4XGepFqesVhe8vrpF6RaRrjuRYErZcoYy8XWappncPn2AsqqoZrP03CJ2Zd+Ak44kY+fdpIoBsbOshIgwKwQqdWcjDKtn6BtO5rFrvVqtaJuB7XYT4SM6J8syqnnF6qQCOtbr+8n0ZD6bY0xGvW/wvsa5uC9nRY51HpNFu26lR2tvSQgW5w4cqLfj0I6+neBrI0RkGDxaRuyyP4JUjeveNLg/IvWNXeP4uAOhWsh03kK00RYJ6/2+IBjwfpLlAPyvIgrc/bchhD8HnoYQXgKEEF4KIZ58oyf6CvLOm4n016liRBjGDCEV1rnEsE46hOHwel/6/aMRyu3NLTe3d0cXc8IIS4kP9p0EvxH7Gz3fFc73ZHlG6B34qMFosowhaFSCFVhrqeYZzkdN0/2+YbMbgIihdkksvG3b6VXKskjYJeg6C8JwefmCtmm4ub0/6BQSE4b5bMaTpxdAwBjBYHskkOmMrm4mIfYs1xxdh3GE6z3a5BiTEwLs9x19wiwrGaEpusp4+vQZq5NT2qalLEsuL58QfKDr+iOjBI8qMpTJ2DUNg+sp53NmZUUQCjjSWU6khkBk6ao3cU2P8V2J97BOfDP82ZtrSJZlFHkRscf9qMUrDottiHj9h5JC4nDfC4H1jvVmi3Mu4mUTdMw6S560PQ+v6onarBE7OQw9m/WG9f0dz55ccvHkKVpJbq6uAPji9RVVdcF6c8vrqyuKShNEQCqN1Dnb7Y4m3ffaaPq+ja+BpG72nKxOaIcI8xpJzYcjBqMhQtd1qCoaNc1mM/Z1TdO2nJysKMs4Xv27v/sV3louLs7YbtbMq4J6u6Fva4a+wfaKEBIsDc+8KDldrbh48pxqvgShCMIS1QTetj5GqTkk0Hb4tiHK68XEZDZf8ORJvAyGpC+/r5uogiEl5ayiTOQ+qRV9H2FpI5NfSBmhbo8Sk9/VeA/rxIg/FngpYvdnvB7G4njM7dLX/TCwvr0jIFienJAnU6zBWvp+gKSucPW3v+KszPidH/2Uzb6l7iwuOfn6psE5R28H5tkJNkSL6iwvGFzAOs/Z2TknJ6v03EOEZvRDhIQhWK/X3N3dHZR2jhLFUSpyIrBxyGFG2OVoGW20oRfuSKUirn1LMePZi+dcvfoVJjMsTpIpyXxG23QMvUcqgw8tbTeQFyUeQTmbE4iuvwBBKgYP680mJdgcjunbzqjgQfIbvx+mB2ilyBPc5G1r/JvfCyEcSJkhIFUyZkxuiyJBO45FDn7beB+Zx38QQvg8XcD/mxDiX3+TXxJC/DPgnwGcn8y+9vHvSqTfBHCPX2utIxA+VWkTNlFKvHsoOXIsFxUvPCAIbm5vJ6koiFaNUh7cgYTw6Xwf66oe/utc7NB44SnLjMZ2BO+ip7p1KFNMj61mFT5Yrq5uePJE03Qtn/3qC2azJX/6Z39GZgr29f/BZhMxSVlu0EYnhQ6RcEvxZorvGYo8xyYPjxfPniEQfPHyJYMdWJ3MOTtbAR4tFV0IzOfxPBRlhnoVSYMhHJIAqTRKJeFwKSfZOxci5ml1es4/+Sf/lD/54z+hMBlDO2AHy//+V3+FFJLrq4i7tDZiq/shJtBFmdM7j/DELrzKkCpW0wGFQKCVBsmkzvUY37l4D+vE/BvxGt58TJ7nZEkiacIsJ2moqDADgoPqAjDKsgLR8r1tO25uriftYzfKKgqJIOH+jl5fjIl9IgE66whYpIqGR8F7NtsoB9c0HdJYNrsdy1VF07To3NA0LednS/Z1zS7ppVvnKGclWWbIcknbbZnNCwiCtmvROiPgEYlQ0bQN5+dnccMHttstdd3w/PlzVqenNE2DUgKbinHnXLSiVwqlJTqLJOW6bXC2wytJljap5WLOs2dP+dGnn/LJp7+LyecElYEKeKHwwTLYASWSGYpzCUkaiGYjjhAcQoSpm+ecQ6ZC2ZiIrW6aBqWj+5nf17RdTxAPu1FKqbT2xzPxCFn+zsZvvU58/MGziIVPJH0RRhUGEhcpFZFHm7XzfiLvuiPmWN8POOfIjYkdVK/IyiUnF+f81Eu2Tce//bf/FoDBxu5xAOquxWQF1azCZDndZkfXtnS9nbq5VVPRD7HodYsZ1lru1vdsdttoIlQYlD6YkpRlyTAMmExjjCZQsZjP2O93hACz5Yw8caCarolY4xDlcCeTFjHqF4+O1VqWNAAAIABJREFUxmkyoxQQi8yxOeW8Q2Ua76MiTjx+8b30g2W/3/P66obNfpeO5cMC9ahfnv4+NDgndRutovxtONiACwEk3ftvAjk+NDjSq0gBbrQZ99+eZDmE8Hn697UQ4p8D/xh4JYR4nqrA58Drt/zenwN/DvDDDy5+40/zriR6tTqNXV1r0Unce9RUnGT5+DLMI4RUkRJ4fXXFZrubupzeevQ4mo077DsnDxAvQG0Mi+WM0kjc0NHuLdpEAwIzWyQ2e3ye8anijevQ2vDixQfMqhmbzRaPR6eK12SKp08vUZlh2OzYbrcYrTFKMUrMGaPxyWXvo48+4uzsjOfPnvHq1St+/etfoUQcs+YSnv7gKT//+S8A2A8tTmQgHdYJrIss37JM8i5CPRALDwiQgtXpGX/4R3/ET376U/wQ8NZSb2t+9/d+xscf/4B/82/+HwBevvyc11evuDiZM6typITlcsk8LyZSxLhhBh/lqUQmUIGHtpWP8Z2J97FO/M6HT8Lk8vTGPf9VXxdFOZl6TNePGteBMN3zx53lN4jY9P3Afl+nKUmHw+JDJL3IRHmTR0w2hUKbjLIsaevAcnXC0DV0/cDrqytEiOoaEN04rbUUY1d47Hb1PdZ6drv95FyZFyUnJ0uKIgPhud9d0d7W+NRZ3m1jB9ukz5tlBWVRkuUFQQr2bYuzDpPnzJZLNpsNxmiKLN5vT55EeNR+vyfPc/a7HUiBybNYUBAm622pNFobytmMrKxiN51o6BRIuvRJMQPAuyERb9rYXS5zxKCgA5PnhODxQJX0ZWeLOToz3N/estlscM7RDn0qPOJIeOxGPYSNPDx3j/HdifexTvzZH/5+EMZEYq7USKGQY/c3iEjMVxKJSsmzwLmOtm2TNKyb1o/jJhpA8G7q3o479liAj0S4IAR107I0OYPtqbuOzXYPSPqmY7+Phe9yuUSagqqaY53n/n7NdrdjsBavFcqr2JRKhflms8aHg6lIJAt7FvMZWmnKWTkdj66NJL7gHd4HnHOUZYF1lu12S2d7yqpCyvjcfd9PeUMs9KM7scuzaUrzZuPYe89gh6g2JtVbCtSHzLux2z9+KybwUeUrTrvHZDmWMm8e+/F8TGpFR3gZKVNnmQOR2iX5y69SV/v7xG+VLAshZoAMIWzT//9j4L8G/gXwnwP/Tfr3f/ptXuc3iTzPYyciVVajfJwQMun7xjiWi5qwi1LifODq6po6YY4AnBsmY4MJlRje0u1M52ZkrpZFgRYBow0+LxDa0NcDhcm5evUFAKdncwYbMUoIwayaMZu5adTSti3DMEzqFkoprB3og2e73RK8Zz6fYbTi8uKCronaxqtVHPkIIaI1txD0fWTBdsmq2zlN0zSTvFbdDCAMyhjaAaQqEFqAKfEi4p9jp2d0/4GsyPjkk0949uw5AoEPDoFgv68xJuPHP/4xP/nJTwAoipyur9ls7+KGf3+LUTra1Todj+2EcwpjBQPeTbJ8j/HdiX8X68SbC95XLYBVVWKKAptweABChkl4P26a8bHTtOmNQrjv+9gRknHy5EPsIikdbePTm5ge72Hq7PTWItN7vL29pW32EDx9Gy1iP/nBJ3QdlFWOziS393fMT+b0vWO93XB7vZ/utaqq0EmHebAdwxChVMF7vA8MQx+x1OlzjBsldew0WesJPnB7f8d5/QTrPbu7W4YuwjyGoUfgmc9Knjy5ZL2+p91t2W0GlIl44XI2ykct+fgHn3LxwSf4PKpgCA0mK6MNsFLJfGnCvRG7WRLEwV0rjlEVSIO2ji6NjvtuQM8XnP3kdznzjuAcw35Pu92y228TryM91u6j66H3eOffYNc/xnch3ts6IUAaE6eUpkRqg0xFtlAmdkeF4qDFHf0VTBQTj8lWuqeds2RaRRiXEHz6sz9ADQNBGZarU5arc7Ly1wA0fR+TWO/jBFoprPMMk2Y5k9oExHtThBB11YE2GYx47xEuQi69c4R0je/rbYR+2R43DCilKIo8Gi6JpGCV1qCyKlEyZ+gdfW/Z7/Y0TY0xcVq8XC6p6/upi971A23bsdnu6PtY1O7rPUUuKKs5gShL13axaO82NfebDVob5rMFNvk3OOdTsXrYp6fCgwPENUrpTg9ACjkZpIg0jTusF29Llv3E+YA4BSdBbEe8s0tui296ePymnebftrP8FPjn6cNo4L8PIfwvQoj/E/gfhRD/BfB3wH/61U/zNneb3zyyLEs6giodrJhsRWvaA1ZxlEWbKpgkFxVCYBgsr6+uaNsOlZeHn4tk0XhUNT3YpgMIxuTa0TQN4uyE4IcJf6SVprYOhKRLFx/MKauKwVm225qT1Rm7fWC3q/mLv/hLejvw/MVzZNI4zbJsMizp+57cGIJ3tG3DYjanLAr6tmO3i6Pev/mbv+HJ5SWzakZZViwWC7Isi5u4lDEROMJyQ7Sg3Dc1vuuIGOlkgel7dBnI0ui23+/48QcLzuWWsxKc75BCoU3OxZNLqlnF0HWTzrIxhrxYcn55SlUV7Osdylp2P//X5H2HVAqT4B5eeLwbMMFj3cCj2cB3Mt7POhFI3ct0z72rk/FGZFmWnDfdhCwWbzz6S5wIKafphiNwe3sbrWCLEnSObfujhTgl3oyboMQ6i9URR2vtAD52foWUOOseOGJlWY6UksG17OsdUvkII5vPUFLTDwMnJ6MUXMb95i7CrdotTdOwmJVkOqPvLVkeNdH9aC1vPMMw0PUNZVXFzyiZRrshxGR6XCe8dxS5YV/vUSrQtQ0393d4wFmPlpKT1QUAf/KP/31+9Du/w8vPPsMta8rFCW0/UBQ6QiuITqWT7Ww6PjLTESfe9Ax9j9QGfA8IVFEiEw5ZGYPIc8IwREwzkeyo5iFit6t+wiwf+BCP8R2O95ZPHHMOHhbS4jARnhYRgTGGxTwmhUWacgDRlOsI6mPKFWSWdrfBobl88RFnr2Kj2wbBfr9j6FvyrEBlGdc3t9zc3pJlBU+fvmBwlv0+FsllWZFXc4oiTpaGIzOS40nXcZd7vF+tHeIkxpu41riBIbhpCp4tSqqqhFLStj3DYGmahrZt2Nd7tHbs9juqKjlgDpbtds/t7R33dztmZTRx2mz3zE7OWJ6scNZxn6ZhX1z9is+/eE03WIpihlAQwhBdEYlTthGqFhNjQZZnFOUMKWJBkhc5NrkhC8E0JYqf8+svlgfwW47AHun7x3K1Y/w2+eVvlSyHEH4B/NFbvn8D/Ee/yXN+VYfom37QPC+O7G0jeSdiC+NFOLHc38A7S6niyEEqBtvy8osvUiUXF/vFYoFQ0QxEDC1h8h5/+N7HE7Sra3ZprGIE5FWFybPIip3Paep2GiUopVBKTDdMnhcJSmEQWvL04hnPnz/HpYuxaTc07YZN03K/2fLppz/Ce89uu5vwPiGEaeSzvr9nvV6TZRlaKrSOOqt5rhn6HS6IuGkBw1BPIudx1BMTakLAhXGj96iUuJ8sZ1TK4+p7ZHtHcTKn3fUMQtCEgJ4tyWcBmVj0Rgn29ZYsk2RFTtu12M06HrdxhjpaX3qPs57gh2gj+kjc+c7Fe1snhECgDzj6d5I3HhayeT4nBEmECqYk8Yjsq5R+mCinCdQEi3KezXZLgGjKozPUEHHBWklyk2MSbh/ABmh7lzY2j5QKay1aabwHlemoQzwapciIx99t9mgNq9UJSmuiCZJFScUx/KTtWnzw9H1DWZV8+MGHlFlOXdd03cDt3R336810NCKcw1EUBUJGhzDn49SqKAo2dzcTF2K1WiCl5O7uGud6sjSdGzs2UqnJmODiyVPKao7zApUVaK3pBouUAwjBzc0NhMDzy4sH52Pa2ZRE5EUkMLfJatdoZNJyJcvjn90+qRkIyHJUXlB5R+nsBDOz1uJdnMyN/z7Gdyve3zoBKo8mVsVsiVBHXeQgQajY5Tw8/yEvkDJhBI44EOPEGRGTUanoe0vXW05Ozzg5PQdgcJ5926JMzun5eRQYUIr7zTp1jF3STB6NQDp8iBOYbr+PMJARoxw8TVPT1Hv6PJLqstzQ9x0hkVmVVslYzSestTviWohp5H082Yn5zEAIlq7rmM3jvWyHniFhttuuxxiLCAMeQd9bBBKl5aRXvd5sub6+RWqDUAals6kxKUSY+GEAUmhGZoe1Dq3i2qq1pm/aSJhOXwOTqZKQUZ3kGB43Pqd/Y5w/dqKPC43RqOl9xbdCWkAQk8U3cUJjvA278rafj1GWJWVZJcknG0etY2L8JvBmfA9CREaqVAilWK83bHcRuD5iaXwI+GHAh4CRYF3sWCupJiiGlGqSMJIhJDOEuDEbkxG0IbgBaUpu7jYUZexa52XJYjnj7u6Wum5YrTyz2YKu8+R5Tp5nUYIqufns6z1SBuq2xtqe/X5DCIHNeoMdemZVhT9ixY/vwzmXkmUdiU+ZxDuNVgebzf1+n0YhjqrIU/eHmMAGhxt6nBtwaVyqM4WRgmo2J0gNLkRbTJGRhcBu10SlC3mAuZxIRWYEwfaormd785r69pquazFZiUkOfgIx3eTxJDyOV7/P8WaB+644XhOyvCR4ifMaZSIeNkiFECpNewIEC36IkxalkKhppNkOjqvbe4TULFcrpCnxYpPuJUFViDgBTI/vrcf6g/2yUgq0pkik3KzIEUJQJEhVHNNGx8vFsmC1OqGuG7q2w3tHNavI04b5+RdfcHXzEqUkz56f8+FHz7g8WaX1xdC2PU3XstvV8XOSZCOVjGtA2uzatqOua5z37HabCd5VViW7zZq6rlmdnlAu5pRNw+3NLU+fPGe5WPDTf++PATi9fI6Xhk9+/w/pyxlam8S+D3jnGfoepeQROuWNfn6AICVeCpSMo1OtJLKIn9UCwjmoipi8JNJWqpKw1uPGp1M6qoekDvQjwe/7G0IIRGaQXiJMjpBquupCEsOKegmHZFJrzawqQQi0ENh0/UQcPBGrL8D1DqklSmfRmGTo8CPZVx4T6Y7gnWHsAYXJ3Atigdf1/STh2nUdVVXGhDp4vHe0TY3zY8fZEELETFezMnIclEKI2G1e17vJKEzrnEwXGB2x/JEc2GPdQF3XZDmp+RBjsHaCZASfnIatB/ShQSUENu2/bdfRdR251NHERIhp/QsBgjhAoSSRVNj7gB0GCAolY3dZSokILhmtyPTeFThPkALpBX5qYBwSZxHENMkLRAMSEQJFUeCdi9P2PEtmTF8unH8T3PK3IllGHKoQeAfe5S2J9LuS6LKsppHjMFgCsas8XrjjxT2OIo/eSEwovef16yuaNtpIjgoQ1gec93T9wIkiOklxuECEkGhtyJKmo8TRdB3r+w1VYShMlFMSQmAd9EPP4iTqm5rMsFqtMLnh/m6H9/DRDz7ms1+95lRmSCW4vr2iaWNV2jRbyionhDDBTewwIKWIFaAIIDyffPIDIHbH1vf3WGsx2vD06XM+/vgj7tfXDEMzWfpCvIljgRDIc4PRkGWassjph5a+6bFdjU2Yy0W15OT8CT/80U/QZRU3NK/SKEXgnMWYQ/euKnPcrqffrmFoEfsa0WzwNLx6dUU3bHg6fAhAVszwUiN0htIZ8Jgsf19jVLl52xrw5v/HkEqhtP6ybJFImypE1nfwyBAVbiQCETwuVcCNE7y8b7BmxhA0J7mG5h4jJavZnFVWxaQtTWa8lLRDxA8qreNiHSwSjwx+ctAbnbmUjBhKY0xMLqWk73v6YcDZQJEXUzHetA3GGMqq4Pz8nLzI2W43LKoZy5MFVeUwmZm6YX/7d5/RO89qdZ6KfAkIrPPs9nuc89jBTu8leM8wxCQ3z3OMyciLEhfg9PyCDz/8kNPLZwBstx1nzy/j5i8jjEumTRAZ7/vM5BN0TBLhF/ghToyCwHoSZvGgHjJluuEgAcaoDy/TyZMClAB5WMPD0e88xmMgU0dZSMa5fngg8RghGN5bAjbygxJpbbwEjRqdPWMW4QM4G8hnC5yAzX6PTmTaxWrFYn3KbrfmfrNGZ4b5Ys58MWez3tJ1LXlRHU2JRrfcUavYT0khCZogxGHNGte3LDMslwuW8wVZFptes9mMv335a15fXQPQNA3X4RajDbkpyDJDURQ09YbdfsdC5YzufADXt7cMzcDl5RPqfYQ75mXJMHRsNlGrWWc5+30swq31KB2lXCcC4NdM/n0Y5dyirNW4VghiM9OlSb2UkuAPa4E4+nN85o6IJpMT6FhIj+vA26AYv2l8O5LlN+LBQXkjEX5X8nx8omaziiKNOENgEq6fvmYkv/jp+eO/sbvRdT2ff/FFxBMfVYmjCYf3flRQSbfeqKsKCEGXcHT77Zr7uztO5jOeP3uCliJihrb3vL5eo3QxbVJaa0LCPkopyfICbTL6YaDr+zg2DZ5xQrk8WXB3fwMoBIHbm2tOT89YrU4wJsOni2RUATjYVwouLy/58Y9/TPCe+/U12mRRYicVDyolJNGvXeFwGK2mRSMER3B2kpC6WK34ye//AZ/89PfR1RKhc2zv8CEC+bXWGK0P3Z7gCYmw4+2ACIFgO5bLJc+ePUMoiRviTdnYOuIlnUtSM9/KS/Yx/n+IcXQ3xrsmUA+VMOI9Nn1rugjHToWPsCUxYpkTmFEIRvWctuup63rkm+DTtRhzt0BwI7Hk8BxGKLxQEETCPQqUDGB7gu/ROudkGacnZZFDEFTFkvX2nl/8/BeUswqtc7rOolU1vW+tNVKVzGYlUgq6vsPYcTOI60eeZczni/Rxo+W2UortdstsFtn7zkdisPfg+p6qXAJQ7/e0XcfzFy84uzjnl7/8JX03cPnsOdViQTVfopPkZZ7PkgxeQCiBD+mYSIEUkXx0ulo9XMMFcRSOAhM5E6GHUX4PrRlLm65to0Z+XuK7bhrNQuxIC2OQ40Y4Tp/Cl9nvj/E9i5RkhRAbX1LI6f6P/KX4/0jNOU6fD/+Ko/ViIqEKiVCCofcUVcbSnPHzX/wcOzYuhaaaL7i9v2Vf7yjKgrOzM+aLBft9Q9O0ZFlBnjbx3b5mt6uR8obr21t8OIgCuKQXLKWcZB2HXqCVoihKiqLAmNEw7CiZPuIdDUMfpRhRmDLHGE03aTZnQDElkvW+oal7ytmKoqiYz5cI0fPq1Suub27Z7PYUZcUmTax6aylmFVU1w5icrCjia0JM+nGELzV0jxJeMRYusYtdFMWXcr0x/X1rF/ioKw7icL7CiHn2ifT8/uBYjwDQx3iMx3iMx3iMx3iMx3iMd8S3o02XWO4T+eMrBmlv6iJPT3HUTZjPF+RlSTe41O0YSSoewldjHkOIneWXL1/Sth1BqElEfGxiGCUZLV/f7IJHtnvsLPe9xWJBSMrZHElgX9dc39yRmTnb/ZbXV4k8uCzY7fd4HyirGdYH2vUG75N2Y9JVHKEjWaYZhoEhEf6U1FR5hsly8qLg1csvUEpR15HlrnXUSzTGMJvN0FrTtm1io0r6YaAsIth/tVpQ72qUFBS5wWvIM4VWAhEkndHIYBAyVsjL5ZL5YonOyyjNIxWDt+n1FMvFPNlapnPkBoK38bXdgBABrSIRIBASaSGGD9GpZxgGrI0yPo/xPY03Ow9f8zVAManiRNLXiJsPafyaZq/xO0cjT59GpAB107Db7aYO1DiRGnF207DqwPSNjnPaMDib4FEeRCDTkqLIKfI8YiQBLR1fvHyJC4KimNOFkqHO8SZ2nPve4xI4N5ocLCiKnLv1lutfvOanP/iE5ULy6uVrbu/uePrsOWdnUT3j9OyMzS4SdvthmOTy3uzCu8RX6LqOoiiYL+Zst1u+ePWKLC958eEP0VlJkBmL1SUAs+USawNKBZSIa5RWCpW6XavlMkJIJrgcjIcKkchSiXg9OaxJORGNgxxwQqKEJEiFl3IiZwdtkEQkRjro8ZnHk/HYXf7eRkDgRUFQOaAJQUz3cswDBF4dLElCCGilkVJFkhxMxHuRCGYhBMJIeZLxd6yzUS5tTAxSF9q6iEUe0v1mjIlGZIOjadqRux7Nipxjv9/TdR1lWcbnspauayFpmjd1hDsqEbg4P+fJk0suL86pqhIfPCE4JIKPf/Aho1rQ/f2Wuq4BgURT5NWUn0SzMY+Q4g2DttRBlyq9lwhRa7qeuu3I2o5tUvIYhiFytQIMzqHStO2wDB45pI4KRPIAhz3u/gZ5gJLG9/LQNO4dJ/mt3LPx9yYZyffIcfp2JMtCQFBp33pjJCJGBnVIJ+HtB/B4oyzLkpAwMN4HpIxi2yGEB5qqcIR7lnIa3wyD5er6Omp4akXXJXmidCXkSoJPKhFCgNQoodBZRp7nuCSRpnWUQKuqcqoBtrsdddNSzRfc3a8pZzHhrJuWvMrxPmKui6Li89vr6HLnLPElAzaB/bveMpvP2e2jj3tmTIRPeJ8A9ZKyLI8E0A3zeZSpWZ6cYK3ll7/8JbP5nM1mQ9vuHiSpI17KaEXv2rhheYu3PZmEclayOo0azj/84aecf/wpmAJvPUJHrFh01YrHQUIUZAbC0GOUIFtWdOuOoe45XZ1S1zVt05DlOcuTOBZWWtMNfYTDdN0DbPtjfL9CANokq+kpMYpxIHw/XB/yLD9ISAZ/4BgkPnzAHylJJZgREfbjkgvedrtjvd5EjJ93OBvHmFoplDE4AYN3hHTfe2vxCJT3hBGCG0IqsJOhR7JlhkjAq+uaIDTL5TllAetNQ4ZE67g+DEn1QSsV5dOU5v5+z91dzc/9Ndd30Wxgv9/T+/lkGb08eYYPd2y3u+iGV7cRO+g8dnBRVq7e03ZxvLpYzLm4PAMh2G13ZFlOUZQIEbHUSmuKVFRLoxhqj8lHW5ZI0Ave0tsIv/LBJtgFBzgbUXlHZwZVFPi9QwweZy2OJC0HiEFHrHZIKjnjiQpH41l5UDZ6jMcAIAhQM6Qpp4bOWFSNfiIT9CKAVgYpZIQsiJTkvZFmhBCd9pACnUnq2tK1ey4uLvns178cn4p9XSclq5g8WmsTyVfjnZ1gAjEiLnkkoI1QSRcCXddO68P4+KqqePr0Cefnpyglcc4ilcB2A/uuQ84Llsu4b3ad5f7uKvKQgmI+X5BlhrIsUDpKxUopMYlftTpZcWPXbNY7rHdkecF+Xyde7UGPekpoiffcmLNOCXDUGfpSsSoCION7tjbghEAJj7cWbSQm5S7j5x19LCYDEnFIsqNq1tfgo314r4kyfFuSZfhSEvQl4k44YIYjQPDNJDpGVZVkCa88sjvjgT485rg7PbErhZxOftN2fPHqNc55tDkwQKNjl0JxpAOYcLwuePT4XtPz52WBFtA0Pb/+/HO0FNzf3ccbx/tkKaumpwkB2r5DiIy+33Fzc0c3WKqqZD6v4oUoRz3RaFAiiDfbarVisZjFbvMwRFboESZbaz3pT/d9z9o5FsslJyczrm9u2e33XF5Eiaeqm5EpRd9Fpy079HgdJXUiCQGM1qyS09bTFx+zPHuCwFAPA1WhyIsSqbPIeJ2wnum9exc/L7G6FMFGnLXfc3t7j1SSWcJcVidzaGpOLi7jQcoPhjKP8T0LEfGw0xdfEeP6UZRRw9hai7UOkcwwgogY24gllmlxjn+89zgRpsS6bhrq1N0R6R5QSqF1dOkLAZx1kxtnOwzRWENIlsslRabBB3xwKGlQIgror5O8m1GOJ0+esG+i8UlVzbBeMtgwFZ0Tszx1baWMzQAhBNfX12w2G+q6Js9zvPepqwSbzZZhcOz3dSxem5b9fs9sNmNeVdxv1khVopPij9Iz1usWsa5xzlKYkiqvuLy85PmLD/jkkx9Rd/FYBJWRlxJPwDsb8cpJak7Kt03wxmIkRLqUGBWIBCLPkIRovJQw0dpoXPBRr1XFRMWl8+aDIwSQHMmAptd4TJu/5yEEQmmEePcU8s2rZEzCRtv0Y93uSdLMB1ABJQS6iGX2k+eX/F7/uwD0w8Df/b+/wChDyEr6zrLf1cznc87Ozrh6fc3d/e2UOyhdIFycGo2qOWOCZ60lz8w0wQJi91u90SwKIalqdOhBT++1qiqkVGgdFbB8CFOx2TQNw+ApSjPlTmVVUtY9+103KX0M1qJNhpCj5JynadMa1w+ARHuBNrGDOwwD3jm0TPyN8DBfG1fY8XtTIowgz7PDGQmHn705AZu6xfJ4B0iP8Yk8OD3HP8BkOZJC5IMD841Jfg+SaMjzBXm+wDmB84LYyTlURKOyxfFzHxZtiSdujjc3N+RFgSkrXBMvkKisEU/NNHKQhxHNKM32QEQcuF/fs1nfopSkbxtePH9BXTueP3/GMpF82q5jHnzc0EuF94Gu75FKU5Yli8UcCKx3NwA0XY1wnjw3DD3c3V6z3W4oihKjM/K8jA596djd3Nyy0Vs++ugjTlYr+r5H6XhzNnXzAOIhFCxPl+zuHV3X0LUNEpcqyIFCK+ZVxWlyB1xdPCErSsIQjVai/XXaNIWA4BEhWnPGF/BxlIUHPyCCi2TCLEJFRrhIPGHRrhRPrCb7R/3U72u8qYbxVQS/8bo3mUkkmfG+HBfW8ZdG0mpMwBBxE/TiMOe7X29YbzZ4Ian3e5yJm6kUgcFH16reWYZUnA9pPBuF+qeWd3z/SqGTLfNoqOGlZbFYcn275vZ2y2p1jrWe/b7l7KxEKjE9VumomlGWBScnK7wP3F9F2SkpY3I+n8+nTXOU5BzNDOAAtWjbNm6ISISI95sUIk546joW4xKUUHz84Uf84IefcPnsKW0Xu9xZldZCF1DS4L2LOqo66kZHU5eHTY9AXOOkAC1U1Kr3DmHUBM+YziNMm6wQTETtIMCPyfiRrFVIx/kRgPEYf99JQ4QnhakYHfefcS2x1kZ1m9GgREvyIkMQOD+POst931OVFS9//Vl8faHY3DVs1h3GZAhVInTAJslV70F2HSYz4ANtXUdreCHou54izymKnEWysf74ow84Pzujrvfsd9u4BiwX0/vb3d0hUko3Nv/GP8cmRCH4NHVXEwyUAgQIAAAgAElEQVRDSoUxGVp7jCnoukiunc/ndIP9/9h7lx5Lsizf67dfZnZe/oqIfHRlFf1C1V3dV7q3aSZMEQMmSMxgABJIXCbMGMGAyZ0hEEOkywdAjJggPgVixIQBUlffqsrKzPBwP34e9toPBmtvM3OPiMzIyqTJ7PQlZUbE8eN27JjZ3nvttf4PRN99lHNFiNM+lJxBuvGywcg9u+VcmzciPgXGYZT3aIUzc9GySNs+jnfng++KMrfPJQ7J1Z8qiXyX+GEky+9YBJ9Wlt+1EL7rAm63W6q6IURFShWmWpGURhuNIuZuXq44k6b2olaiehFD4n6/z8xUJ/+5vKtBmOXrKmVptEQA+jEwenlYjDGkvCiN44CpK6w1DN3AOCYqa1lvtjgHPvYcMkxC68BHn3wklrXe88XntyRihk7UeaEJjBkPHULEdx1KKYZetBNjSqzWW6qq5mIXGUMk5geu7TuRsTs8sL284HA4sl41GANX19doM28oYsZtAYxDTwiecQSjFeu64urqglevXvDnf/rnAPz8z/4SsETnUCkAuaVl8u4y37u5KJig70jnIykFrBZs1na7Zbvdcnd/x+effw7AjfciK5MStq6wzzCMn2wo5kkf3p8sL/+9Wq0En+/7RfWx5Mh5go1QKh35g2TCz8/aw+FI27bYqsb7Ad9Hoh8Jo6HLlY60EMkfB5kPZKMYaK1h01RcbbesVyLjZLSemNrOOYZxEOyks7mKE/DB50p2mqrWta7EgCOK/vpmvSbsIm3bUlUVNzc3NE0zJ9c5MTfGTBhKYJpvrZE/gy+8jPhWMUJrg3XCkVBaTwumVoLXjiliMGgt/ymlSAFimCt18z3U1NUiEdGJ5C4IcSCqgLEGlatnWgv+MyapEuqUIBc1DMVlcaln+5woPwdIC8q+xXH42t9YvPdp/lFeK5jkggbSWuPH2UXyeDzSdd30/rbtRIa1qjDaAhpR6MjHDB6teoxWDF3Hw/09l5eXeVNdc/fmwM2LGzYbKahpu+PhGPjyyz37/R2XF1sSFVrBm/2JL+5e8+ql8AkutjdcX1+TUmIcJKn1g2gjpzRQ1Yq+7xiyg3DMnIiqqrHWTfK6j+V55665yF2CsS7D0yS30kpROY3VasqDREkETqPBWplfaueonMJ3An0pUrWPL/qT67+8N2nu7ivN9O8yw4sc39wd+D5gWj+IZBnehmGUeJooP/370yrTar0W848CaSwW15lIklSc3XmiaJ8qY9FGERK0Q+Q3n38BSnFxeYGtN/gkJDlB0iic9oTcRtRKk5QkhrJQwLjEJGmNHyNaXD2omxqtHSF0oGcsYlWLHaTrRpSShe3i4pL1ek0/9oy+ZwwdX3z5ezn15NlWTb5u8wNd2iFd33M8nakzJGUcBTt1OJ44HI+cTmfOpwPWKLq2lTZ1XqR2ux2Hh70MBmflGDGgs5SNc5btZsurj0Rv1dZrfIiiaessUWnGMFAbLfItIeSBNLdlUgqZnBBRKcpiqE2WoqmoM/npeDgSY8BVFXVTs83Qj+f46UXi7UWsxPvMSuq6xljpWilDUYND5fkhpiglnuSxRNlUG9FLL+P4fr+XzV+MUpKeFhA5RsikuVKJLjKP4n7VEUdorELpxND3+HEghTjjKC9qVrbi4uKSEKE9D7Rty83NDZHAMHYcj7KpHkPNMA4oJTb3IcSpKybQEIF49XkRfISHzOdtrWW3201VoYfDkf1+D8CqslNy7b1HaXh4eODNmzeEGPnok09nhz14xLMpsK8PXZiKXKeqNoQuEXE4rdCZl9GkSHfe42InRjHrDSmJHB+2Am2FR1Luv0hI53P4oFN4jn+Mkau63wTVmt+uJrhDqYK2bSbVGUNdC5SLpzlKkvFcxtr5fM6ucfOoKN3lAkGKi5xFbKsVfd/Tti19308dobKWk2AYJEfoMgTi7v7I7e0Dx9NI20sB4c39gdv7A+Mgv+9+vmO13opcLGIlP/Se4CFFRTSGU9vStTKvWGPZbi+4enWF1jWHw2Gq9o5ZWzklJklelGEMcYK6CMyNyRTo6fWdTduKdJ2jqQx9kLls6iTn0EpJ9yiqd875j15Lcl1FgWHuDsD756I/pNL8w0iWFxPs0y/xvsn3fUn0brfD1VVuFRbKTnHvy4sdc9JWGKKgSEpz6Ad+/eU93l2QTNYzPAi2UDmNMpYXl5eEVAh3iVPb0/XDtNMpD0Sp/GiraeoGRaLJLlpjDJyPB5qV3IJPPnkl7oFaMwxjbos4lEqc2xM+jAxDK+42wCeffMKL3RX7/cMkFH4+t8Qo+N/j4UjvR6qss1xCa4FJJAXduWV/fydQ4MpO5Iebqwsgctzfy+4sL55V5ajqCmNqfvaLP2H72R8DZDawym2PokkdsUZjgBhGUojEOORzIDMuAloLaask+doY6kU1ynsvmEXvie1sPf4cP9V49yT3vslPJnydCT168b48J8QkWDeiaC3nlqWyljaXgPb7/bTIGa1xToM1VFYz1pWM98SE7ShW0iplR7oki4GzLi/GSTaQM7xOIEjG0Q8BYypcsyJhqJwlKoXPzp3+5GnblnN7Iinwg8c6xyq3Mvtx4Kvb1xPmchxHhnEELQodKUHlxEhAKrvSBRrz8WOMVE6wj/0ghKTz+czDwwOj93Rtx6ZacEIWSUZJMFbZlfRpVfm9kYtWM86wVLnF6KRvO9FitQ7lamJUQE7MS1IyqQY9RkY+x081vt1u6WknOyyqos4JlCspJYIB+dAhePZ3d3zxxRcA3L5+LZvKDPlKceZExRgnhYxlZ7yMnadQg5lLpaZzKV2fcZRO8vl8FpWelPDJUzVucvosG96oNFoLvt+HAFGTomNoE37UJJ+5CsaiYqBv31BXFTdXK/pxx+vXb0hJ5gGt5rFdN2t8SCht8/cLpBgxRkkeEQMhFwJDCPgQOCZPNPJ967qmcpqhFSPspq4nPPaMXWa6Tu+6RyzeJ3jlKPOBLsl5elQk+Lp7/iHxg0iWlQLrdO7YS8lnhvq9+wK9L4lerzeyK8lM9HJ8eXgjgkouMIxCss7Wl8pwPJ+5u9tn5jyQIsP5MH3m5WZNE6SVEo0lVQZrGrabhHEu70plt6aSxy6ILkYbtDE5qYS6rri5EfZqs2o4Hk8M/UCMifV2w3q94vbujtu71+Ko1Zj5Ya3qicTnnENbwTmPQTCD9/e3VM1qIhDWq2ZKRquqom1bUgx4P04t2dLqPbcn2vbE/cOe4AeMlGtYbXZ89OoVf/s3f8PFxY7b17KJ2Lqb7FzoAE2I0BTAflm8FhU5tEI5izKGkI1TUkqCwV6tWG02VNny9uHujv3DPqsZpEkC6Dme40Oiqhwh+kkJo7RMnROVjBAFLqGSkgpFjGKWo4Js0pBNqMouYNqI9JJCU1WWarvNclMK8qLWmpauPaMS1NZiSFxd7Li+uqQ9HvHecz6dpk6LDz0Xl1eM48jhcOTq6pqI4uFwoqrrd7SExa0zKklYbbbQLTjoEMJkdjSOIwlZnMqi7JwDhSzeQ4aP5Q2+VMb8ZGDknCTN2hisc1LFzvNq3iNPbPgQwpQgfwjOcAplctvciJvaVHSQzzydTrjKzQoYy1/9Gkjec/xUY7ay/kOeimXx7amiQoxxkpXz3nN/f8/trfCIvvzyS06nIwqBNVlbYa1sPMvY7vqB9TrDKpSd1t7y/JZk2uR1unSLgKn6WpL3WWptxukuYWoFOrGsUstnwfl8gui5upJObbNyHA/3dO2RywuRpnQ2k5iNJsYkknMlcUVhtYzbGAJpFCMXkxAsclS4rPyjrGHQgZX1hChE3avLC6xRDN2ZNLTyHUvxk9nR82miLFhwFqpp8167/FxRiIDhW3W6vil+EMkyLFtnj7/YXD1+nEg/TaJLNddVVZYNSTBpJEaUyrp+i4+YLjzkFFpakvf396RE1hGMixslOL0Qo0iqJANRZQ89IIB1Fbu1fIDWEaLIvimlWK1X2clO8Lltl6bqEnkh73tpra6aC5JSPBwODEOPtYZXH73i009FEurjl9ckH2mamq4bCDFxf7eHINaZSimx/c7JNWj2+z1d3+ODYCqPxyN937FeXxFj4P7+kN9Z3G9kNYzSr6ZZbfln/+a/xZ/+8pd8+ZvfMvpSRYbRB7SVnaVWwkaGlHGZCW0VkFstoSeNgzDo845FKSUbCZTY72YJnMs/+3NW5xND23J+2LPPE9Nz/PRCHpUPn/hSEiy8D54UE5EwE/syFEgqknkjpzK0K0TG5HlopTJyOBwASQZvLi95ePMVMQZWH7+a9VtjmITYtVIzsTVXN5qmYbVa4fshS0QF6lqmX60TfT+w3e4YvbjraQOjHxjHHozBVbLwlAp3iAG0pj23KHqRrAxBtMiralpgiyPosnpljOjJDsPAKTtyFckp7z37/YPoQG/XVJWj60eGYWCnVMYsTshvadP2w1QlKwt5wVV/s9SjzNNRG5RxaC3zhVyXFZaE6npJpBOYPGcLHlGjCyl5Orfn+KmHUkr4RR/4/mI3vYRjPCbEydifn+U5gVuqZgzDMCWjKY+NMh6G3nM6nQgxcXkpxHijRQUixpjVK2YMfkmWl+eitaaqKi4vL9nv9zw8PND3PcYYVtsVm92GXYYpWusyKsGjtZpk2cp5l+s06Ukjc1iMuSqea1w6b8RDjDDEidsQgBg0gcC6WWONheDRuTCmYoKMg9YKdArY1OOHEWMsTW1pO09PhasrzskRbM5VlIXQoZOH5PMcK/NOUgKpla9QckP5fipfe5TO9+wfoxpGnsDfBauYKwfwrkS6JM5lt+asE/xMCERMXgRZlPRnqblyzJhEFiVZeHN3z5s3d6DECncc5kEiusmZtZ3yAfLgqoy0I07dGTvZ3grawBoFaaR2mo8/fkEYPCFajG7Y398DcHd/y3a3IwaF94pVI8cOwUsLctUIztDJwLl9fcumblhtBONrjMWHwN//+u+5u3uDq1dUdfXompUJIabE+XxmGHrW6zXOWd7c3tN1UhG/vNzRNA0BIeRYV1HXFR9/+kdcXF2RUhJ81e4mXxfL4D3DMNI0mofDkb5rudhuWbnFTreANCOkEAhJYW1FikIcMnUDfY+tKlTBMGlNvV5Tr1bstltevXj5bR+v5/hHFMVS+kMaDEqr3GUqcmXZ3lqOkDeDmSwy1ybkp0rxkOFXXT9Mr2szj8mkFMFLVccPw9R21ClhVGIcemxl+fTjVzitOB4OOYm1mRzUTefadT3b3QXOWTnfvMkX8p2f5sHSNRPzVU1SmqoSu1nvPT5GTEoLI6XIar2GPGZB5oHz+UzXdXRd/4hcHYKf5uOnygDWuYzBLBsEgXHUtWAc7+7uWK/XXF5efrAeuqzJYo+djEUFAxmznHInqdj+zjhE0c2PfpwW77fu/XPi/JOOJZb+m2Ip2+a9p+/7iahXXp+ep6nrIZ2oru+mblXf9dmoaCbLhyiciCVxdh4bcZHfqEewpWVFucAw2radCoNN00zjua5r1tsVm+1mxhQvrkPK84HRGq0VbTuwXq/ZbVaTeMHQtxOXoaoqMQELYQFHmYuVctx5fGuliEohBkMxG7nMF6vwOorsmzYiYjDmDXUyGmUtdsGFgCRcpuhRUTSukzJgHEo7tKrn40ePcQ7CSEwWkiZFTfCJx2Z3T+PHCMPgsbTJ8s/y9/cl0iXhXWd5FWvN5KwTtYYo6gwAzmoy3S9/bt5BKTKOV3O/f+B0PmOqClIkhji1NJ01wohPEIgQBMyfVFb71LostdO5KiWtYK0Vm/UaZzTdcOT+fo+tVrI4AL5XBNcwBk9M4H3AeM96vWatara7Ndoo2lYqQQ0K1ZQqS8A6w83NNa9fv+HUvaGqKmKI0+7KGENCsz8cWL2+pc06rM45UooMQz9BNnYXF1hruby64csvX/PZL37Oi5sb/vwv/wmbyxck1fDZL/+as85ugnXNOLHpZbc9DINU21Q2e+HJ/dQaXVeoIREHL0x6CxiLaRrYbOXNd3dQVXl7asA96yw/x4cVEZ1zoMH7cYJlza1LgGxWVDRB1UzGSQgZFqRiRJ5r5sqPqOdU2qDz/FFc8IwSXLBrLrm5vuZqt+X6+lpwwP2IQhFD4HzKMIyx536/58XLl1xeXfLll18RAGs1D8c9rq6p6/X0xUMI9OPIMAqEpJzTUiaqKHlExNhHsP9pSpTfvHnDOI7UVuAZ51Mh+oii0PXVFQmpPheScOWqXIXLqjlRhDlL5a0kBG8nBe+PQprWrgYNqQv4rPiTMhnJVg1JwdiNOCzk5D6EGbJRKssFx5yek+WfbHxboN5yY+W9n7DAkBPR9Zq6bvCQtZgVwWdDn76fEsphGDKnwZKijIlxHDG5yiu8qRkPXagOymisEwWKGJ84icY4jeVCcH46xowxuMwzMHlNDjnRHQtOGtCIa+npfIDU0FSacyubgtNxz2pVcXmxgZQ4nVpCVJOjYTlvn6vFkrRqUXP1o3SJY8QAuiS6JWfLBboZXiVffAmprJzD2ZKOhqkasiySJopkr8rcqFLY0DP/JGnAkJLG+0SK+h3Pw+PCyIfGsw7XczzHczzHczzHczzHczzHe+IHUVku+B54d/vsabX5XX+uV1J5sc5lTLHAL0oFaTpsyhhFsmwUQtYblfir3755Q0wJkyvOMfqFg44YZ3ifdZWHnjEkfEpYV1HVdYZc5Dal90QrrY+CR0ox0HUtx/OZS7fi4vISgNvXD+z3R5rVBq0tIcA4BlbrNcZqVquKr16/Yf8gmN1f/cmfUlUVD/d77vcHdhcXImOXYt5tWoZxpMq7WKk+O3Hv2+8Z2pZaa5wx3N/dMY4Df/wn/xoA6+2G29ev6YdBdGqd46NPPmW9vaBrA6urHdo6nMptZyXfUSEs/8PDnmHoefXiWjBRUrRjAoxm7HhUWqpyWmXHL4tyDq8ULgu3U9WyBVcKjEbb58ryc3xYFPjAmCvLUasFxtjnYrLKXIZZvxOEOHef5dRKuxOk5VhaoapgkxHyzESy0YraOdZ1zWa1whrNZrVGGS2VZa1wtmIVpRt2155RSnF//4bd5SWrdU3vPTEFDocjtm948UIIr66qSQlCEMmqul7l7pBgo40xDMMwVcb2+z3b7XbCEaeUJmxliUIYBHDGcXFxIbjIhzu01mx2O1arFZvNRjpAhbUuAqdStc6V5fLfUymor41p7hf6tc/knRREA1sZh/cjox8JSmMyHDL6QPqW1aHn+GnEBHP9Vr+TsgSaf0TsK0S5tChIlm5KkX4FmWcK5lkbQ9e1tG2LcRWb9ZbNZsvxdM4cCFita4wVuIWr3NQlLp8ZUqQbeqpcCX04HDhnmVdtDa6u0EoLTyufT4GEkEQudjZjkjxrMnBLwicqc5vYdEt1euh7hiGAMmgUlXWkiIz7fH4zxwMeDg+kIEZDlTFYrdDM0phWK5KWblyBl4QiKYugAYyxk9IXScxNHnWjn9yrQiKWv+f8Inf/lFIk4uTIWO7t++75h8YPIlkGeNuacH7S35dIL5PlzVba9tZVDP0wvV9y5SRw/4JaX+AWJy8BLRCML796LQ/sONC1ARXGyabZGZUn85CVGcSta/CefhzRRmONmxbclCLWWEzG3HVdB3HAGMtmvckYpVlUP6W5laqyj7oxhelueH27Z7+Xdulv1x2dP/Kwv+fh4Y7PfmZ59eolL199TMRQ1TX3+wOrVRl8elpQQwik4EEb2q5lGAZevHrJZXbke3h44PMvvqByDZ9+9nN2V1dsL65w9Zq62aCzkUEhB8QY5aHPOsu73RZrLmiaGlO0lSPymYhZgU8QUqKIesm9Sihrcgs136PaQYgZhjFvRJ7jJxjq3Zvpp1HmhWKeEUJJhp9stNMSHiR4PCEHibVtsaPuM4FtKeNktMYoAyGRgqfRhuurawB2mzWrRmBcZsIYzwtxUa4oEWNEWZM5BeCcpRsGjNG05yOvf/dbfvPb3wJQ1Q1aW+pmzXq9wVhJXlXesFrrcIsx8otf/IIvv/yS+/t7kXO0ViQtNxuGYcD3nt1uS525BSmMPDw8TC6DSmlRFAlB3BAXc5bSmpjCRH66vLzk5uZmSsxDCN+YNE+3QRkwkEyFNgJ7U1VCGUXKG5uUxow7lyT6eSZ4jvfGt0iWnxrxjOM4JZ0Fgll+JtKPEe/HiVBbIvjwdq6S540E0/y1lIIrCjKFs2UWhNVCyC3n4L3IRhbibFG40UZL0qsg5CJT8IEYRQc6xQRpQ2UtSiVWTU3Xt1gjToQgMAi1VJmYVC8WHJF3DDhR/zrLOZEIVUVtDdYodNGMrio0MZudqEw+FCKzUipDRxI2f/fYF017uYkqi+IXDkNSs3xfPllKQbTwGtIHmpJ8G27DH5wsK6V+Cfwvi5f+FPhvgCvgPwO+yq//1yml//3bf8JjjOuTT1+eR1Z+mDHLsS1C/UzmA4lEDBFFQKVi8ZhIygrWWFvu93v2+wfZpfUDKkAcuxk/Q+T2uCeGSIoJHyJ97/HZqSoETwyagpLRSmXpFYMxGj+OnH3gYremH4V1fn0jeMCXr16xP5wJIeIqkZgLccQ6M+1WY4xi/Qz83d/9Hb/5zW8m69rLq5fUq5GYGprmitevX+Oco89C5ihJABJiTTn2HckrrDMYKxrKZWA8PDxwOp1Yvbpgs7tCmYqoLDcvP5VdrE9AxDq5D2Jfq7KklrBqq6bGTE90yoMvJwjagqtllxsHUjSkPFCMc0KuXD7EZRAonhnvP7L4fueJD5MBKu8pFVepqGqSjnNXKUZIIhmnCfLsZz5wQuFj5JCrs0OWc9JKTRtnYwwKTfSRMI5UxnCRnbZuLi9wmQgYY6Tre85tyxgCp7alrmsaYx8tjM5ZRj+yWq1o+46ub0kpYqwo59SVdM6UMZm4EsVOOi/EKUVSVBOPosje/f1v/hXDMODqiso5ttst682Gw8MD/ZsB54QQHUepMFmrp6pT5RzWJmwmTa9WK5pVM1XGdrsLUhKjgqqqHqlflHn5myTk4iKpUWhc1UBewJOO4HsII6Y9MfY9MQWGUXRjnaumDTu8m+/yHD+O+P8+n3h/lOTVWstF5uuUfEJPOuQebSzKivZVjKIYleKc4JZqdCHgpYiQ2ELAjz6rdMXpfeNoJrWJ5RhZ/n25qS6J+vJzSoW7H3pUdgKETNVCkmabk3FjNNqQbboDWivqurhxXmBMygRfnddug9IGYyKhSMcNRb99ICbF4OM0zy2LWcsRn+vy0zlrU8xf5DWZS5dmLR6dAjoJo4HCQyjqZszk53xlHt3PKcGHr60s/4PpLKeU/m/gnwIosXH5LfC/Av8J8D+klP67Dz2W5EDvdmp5z6cvzwOYxbKnDdDThy8mQgqQPMXuOqnswGcc2lq+fH3L3d0dkFnhbtb+A2F0nto2Dy4lg2H0mempORwfGDrNJhNiLjZrVk2dgffSslSIALj3ucXq5L3G1ByPJ6pqhTEbYgx4H1hvV7l1Ie52Y58f1vyAlp2ttZZhGDgcDgzDQNd1eG8n95/iDvTy5UsOxyMxSBKwVppXL19xeb2dXLzObctmu8Mai6sqUKJasVptCCrhh0i9MsRUmOgJa01uUUd2mw2b9YaYwtSKSYu2SiKB0jL5BIWpa2JpX1W1TAgm70qzwYNWUsl6riz/uOL7nCcet+a+OWm2eeMVY5pE6hfnBXGeyNOTUpT3gYcHSQqHYZRFQ+tJfcEYTW0qfBohKdZVzW4tCW1TVyQ/MoYwbfRiinnBnElwhWi82+1wTUXbnWnbE2Pw1LUTi+lwzY12bLYC19Lacjq27A9nhnHkIRsilKS0ruupewTQdR1VVU0uZHVObEM2AVq5Bj+OpJAhVbrCOYe1TvRhfaBuGpxzvHjxkvbcsllLFy9GMWmROc080nh9qm60PMey2IvixpOGaybqlTucUNlh1WJcIvlBqmdKyWuLz3x0b5/rzj+q+H7nCSaDrZJgLjdxTz73a19b6vwaYfgy+TQokV4rlV/p7Ehxa73esGrWJGC/f+DctoS8cS8298dToB+ka9WsVtOzXDpP4zhOlW6QNby8tkycS1dWTvSt65qvR3EyVjhrqXYbKmsweYFerxqaxhK9582bW7rWk9CyOVBKnEKBkOeJc9sx+oiPiT7DuozWoBNJOQKWOIl+aMbcaQpBSIzj6CeZOpvJidPa/o1r/DuS5RggBSmKxJy8p/RI6efpNfm28X3BMP5t4P9JKf36D5fs+foKxNd9waXMig8+YxA1Q99jXZ1d61JR6pt/McMdlLEkNF9+9Zq7+71g50IAymScJ3ulCElqUzrjmGJ2BEwkxqEDr1jZwphfk3JCK4xNWG0cXdcxjp7NZjMtmMMwEJPowiqtsmNfTwir3GpRbLdbfE6WHwZJipum4eOPP+b6+lrMBRYLZWHEgrhwFbmZ4+FAVa8wxlHVG86t5+HhC0yeYZLXWOWoXM1nn/2ccRz52We/4HhuqZtadphPEg9JlAOjlyq7D0PeiBQmb9FeBmM36GokdBoVDhS8Z1niklKw3K1rqTwrpUS54Dl+rPGd5gkFOP24mrCcFh79JAluWKWsgWzEtGemLkhyPOlfqLLJlmc1xMgxK8aM44irBe4QYkmWLc5YdIg0qxUvrq746FqkFCurORzuGc4nthcXeB04H46MuZWYUJzaM03ebG53O1J26uz7nqikPRpHwf7aqlm44jmRRUp6MkgIIUwLKTDNhSCJ+IsXL1iv1yglWu53d3fc3d0xDgMmaciW8+Uqa62z+Ygcu25kDt1st+wPxwmGEUKc2PfvvF9PCiCzIYx7VFUv91b+YpkgWDHiOw9EbLXBrkD3HVGdBCOdVC5Nz88HUwPqmbv+I47vnE8U5Ymn8Knys2U1eGmkk5IY+CzHkM6cmZgSKiV8GNFZHs7n5BXAj57yJButSaqoUAme2YeUZSHluOe2xQyDmP2Y4tircMZgrM2b7WqQeUAAACAASURBVAXPIokEXPCyWUwxMgwDwziw3jZZz7m45Mp3slbn7rHkNOM4YIyiqQR2MWGzzRIOGicTsAJtCFnOsij+DH0vvAqkECDQqIj2mqQi3dhjxwzxGCviODD0o3wX3ROHwJCvR7lXkwNq8KKxTMwwTsncCsRCEHOLDXFGD2jU9J2W2O8fminJfwD8z4t//xdKqf8Y+D+A/zKldPdNB1C58vO+nFiVmfBJpJRYrVYLVx25IZFsHJILFTGJMmAu6E+/G3I7JWi4u99zPB6pVhuM1gKhsM0EJzCrhlGLaYaKCT+O+OgJXsDtJuu6loEmbRKp4PRe4B8Kx83NS25uxJJ7yMnv8XwWMp3VKJWkMhw84zjSNDUxhrxzlWOX3exut+Pi4mIi7pSBr5R6jKfKzn5FYkkSXJ31XkdOp1PeAICx8vOXNy/5J3/9V1R1Q7PZ4n1CO5Vb1WkiBZl83JDPccZrlf/JpkJNE4kBpTFuhIIrHb1gL50h+JlUGZbMqSmjeY4faXy3eeIdmOXlPx9tqFViXTuiH9EIns57T5OtmrUWmITKB4laE5RFK0tSBh/GiSQnb1GinzrBMHTG98k4ctZO0kcmS9H5UWAOVUqMIWJtTVU32Kbh959/Tsyb6u1uS0geHzy//+L3XL+84eLyivv7e7RR7PcPPDyIlbSxDmtqrHWgZEEeFwt2qfCWeeLm5oarq6spmf7tb3/Lfr/P0C5D13U4q3F5jitkZJNhX33f88nHn3B9cw1aY7Nld7kf3xTLhPld1T2dlhX9gu0streWPoi8X63AKYOp1qxtRVKQtJ7MFtLUFg8ZJvf9GhI8xz9ofKd5QlKJxSZq8Qz6vLYs9YyX7yuvPe1YhNz+jzEwDCOr2k2b1BI++JwzWLquo+8H2rZFIdXcpCJxDNOGe+InPUnolv9Whdye/65z8l2+QwRCiihlUMpMye+01muT1+RE17e03YnNesVqtWXoO45H4WVc7LbS3X544IsvvsKaFRGRhdU6d3cW5/LO655/VrpnYQzTtVPjKNXklIgoxjQS0ywrK/lyEQCQ+TPlvCGipyKZyp3CGOMCviWVZZUCKRois8mMHO77SRq+c7KslKqAfw/4r/JL/yPwL5C05l8A/z3wn77j9/458M8BPnpxuXj9/Z/1ri+tlGDmdK5wFPZnYt41Ta40C6cuOZ7szvwYCA5+89vfETIovq4cWin8OGILrsdZXLGWRRGG3CZRPVYZDInKWi4uxEVnu1rTtydQMA4jldWk5PKOz+IiKCW34Mo6UtLEJJWXfn/PMI5wJzrN1lm6oZ8qJtoI9sdaqX577+m6bvKlL8Sacs3qup6qU5UTaIXP+ojF153FBGGtpVmt6LoO45zgnaxBaSnmCLZaEg9ZrKOwXTPrtUwISZD5GW89P7wyoQXRTI2RSMJYi3GOwXu8l0RcFcyRUvjcfnmOH198H/PEx4t54j2f8ejfYqIBcxL2+OfFbhqlicoIuUw70A7imfvPfwPAq43FWE03Dgwhok2F0rWw31OkchVN7XCFzZ3bgM45tps1GIMaA7pqUEoE+JeRENyhVIp6UkqczyfarmOz2bJaX1JI9wkYx0TbSSfKVpZ15XBVRYqRpmkmyAXIHHh7e8ubN28AuLu7m1z+5oRyXpynRCIn4TFGPvv5Z+x2O1IIrDcbJivhb6jYDMNAVVVvYciftsblDN4VGuNEBcRUDmUNkJ26NLklPl9F+eMZgvFjju9jnvjFL37x6Hla5g3FbOdDTXMWx8/lS01dOfzo3zINCT6w3uYOTj/Stu3UTbHOgQHv20drckqJ4/FI13U0TYNSanLl63sxDSuFsVn9YeYD5Bfm6uzifOfxWfTVT2itaJqKkI1/Li9kTl2vG/qu53w+y/yhHN0wSIErQV3VKGM5nM7lI7Fa1GtiHo/aKLQRaMpk+ETWemc5KvO550TZWUfl3KPzL+cthbkouVouLBcX0+n90j4kEnNVPImK2YQBVYsjspgq/oEwy4v4d4H/M6X0RT6BL8oPlFL/E/C/veuXUkr/EviXAL/84z/6oLN+39zcrJq5sjwECvN98VlA2a28rbqRUHR9z/F0kjpoSmJDGQZOpxN1JQ9UWiR70qaQB0KhsFqjUqSpK26uRVXiarfjzWsBzfthxHvP6XTm5qUsRKfTmXXG/1kU53agqprJ7SYlqewMQ4+2hn7oadwskWedw1aOU3umG3qpdAefoSiPYS1N09A0DcYYNpsNh+OJrj2zbiqqahYyBybXLIDT6cT24pKU5oVUKxiHME0W5c9SzU4RrM6EwQQkjcJOiW5MkGIAn61/s+zUvJtWi3a3kZVUywAL309H5Tn+4eM7zxN/8Sc/S8uJL7/jvR9orWBzUTo/04tJ862JUk1HUxkusXSvQonVrBBcFAmNdlrkIVUgMRKCkGuS70nhjDUiT1k1DevrHWcvc8b9/khQhnPOgL98fYsxsFqvGLy4hx2OR9abHUpbhs4zjAtVm2wWMAZP0okQBd8YQmDwIxwPU8VLKlw9bSuV6RACzlpG77HKYJ3GGjUl+sWeN8VI13Xsdjs++uijR1Xh+dJ9/WAMIXA6nR5hlk1uN09zxmOoOApN0qVFrqjXWyaInkqQNCn56d3T7z3qZj3Hjzi+8zzxt3/7t2nxevndR//+QyIEMctIESmiOYtzbnbrC0H4ACGIxGIm4I3jSCSIeZnW1I1sAJuVcAGKUdDDwwNKKbquo65rlFKcz+fp+Ev4Utl0GmOo8jn4ECYHv7IxJUMkYpSKtp4Sa/lORQZSa03vZR1erVaQHBFomhVKKXa7HWMQnhXAwUrF2ieISpw8XVVlCTyNj35S1lBaY7KDYEl0/RhQVuYZpTJsJecHRmtUVFmRM02J8pzovn0PS46nFLm7FCZY6buiwPC+TXwfyfJ/yKJlopT6NKX0ef7nvw/8X994BPXdHua6qSfs4TAOJGWJyCInrFXETWYaOOUzRHUhKcVXt284n1rEslFk0Po+a49mbd8xCNQihcA4jGgSlTWkoed83PPqxQu26w22QAiypFKMQrxxTmGMYhxG1usNbTeIbSbgtOb4+oHrypGUuATFNOOIigZjNDMTtgycruumCnPX9wI5sQa0mh4H5yqMNeK+pVS2s/SQlvaZ3XTe4zhyPp/53e9+x+XVNZvtDmxh3qe3CDwlkS6D+FGyroQg+ChMTaw8wbeCJ9de2so635NybGYiFPB2rvQcP5b47vOE/OY3/HsOY8yUZGYgAHMtNRN25GQkmY4JpSIgShghL1IFv1t4CnPVplQu8mKUMchWK6q6pg+Rh8OBaByvrl5hTCD5wP2ppdpe0RQ1mXHk9u6WurKQKk6HgXVdEbuRqjaY6Dne3wNSpYkZs9yPHh+ryZ5WXDPL4jirfiznVpV5GiEGVlWNNRZSmJLhKieyPgTatuWf/c2/weXlpVTEs/rG3CHKF/Y9t8AYgXks54m6rvMlV++9c8VKV+ZweZ/W0tXKwsvyXcokzxLD+FxV/pHH9zJPKJi0h2GGWyyxyGVDbO2Hp0GFrIuSSrLWhd8kMalWFV+FlBjGkRATyjiU0pMD5ug9u4sLXCWFr/1+T0qRYRRVnKurK+lQZaiis7O6z5LcF1NkHHuC96zWuXucq9EheNrzkTd3Z1Lw1Ks6Q0kC282adX7/+XQSveQk6N+YElVVTd+hrO1lTpzXd/mzdLmrqkZbQ1xw0KaNts5KPSg6H9FaMfqYIWFzZdxYI9jnKPCqEMVOO+qQk+a3YWCKxxX3pU72++7jt43vlCwrpdbAvwP854uX/1ul1D9FZq2/e/Kz9x1prioq9bUJ87t+VnY/kKEXJlGuVYyeFBUqlaUyPqk6i8D969s3nNs2J+4iQXfKlZ+y+3IqJ6hBMfqR0XtUDOBHLrZrPnr5gu1qPd3DrusEs1hVdG0LDNNnFpJBLKB2wDkjCWuuphprMhZZoCAxxEm2qaqqiRAwmaZYK/aaudW0jCIEPowDwQuOuhgs+Cxvs9yFxxgx1k64zWK5GXxEGTWxdWFutxboxxIT9nWhbU3wnpAqqtqgVKQhocYOraR6pFMNrpo2NYb3E4qe44cZ39s8ITPi/O9v2FhL6iSTv+w3H7fjpiQyHzyllLscnvu7++m9lasEOqEU0IucVIYKWSVseFdVWfFGKhtKafk9pVBapCDTGCYSb107LrbSJWpPJ86uwhpFIkhlJEZSiHTnE9ZWbBoZW957MecIkX4Q+JNKYEJADaPYzRqDL61GJVa6er2e4Gk6b3S36x3Be8YhTJv2mewki/HFxeVksqB11hHKl1ErNVnaviustYScdIN0qa6vr1ln1ZAQAoYkGOVCLnl0v3MVe3pZ5/lZf2NN6PvCKT7HP1x8f/mEREn0vPcTHGJZ2Pm25K8UZ28BowU7vFqtOGcisMAG5ucuJdEFXj7EZWzld2Osoa5FAaqYJ53PZ47nE/04cHV1hY55zQtSrY1ZIQolkAdF0TtuSTkRb5oxJ/Ji3+2HDg1cXW1FWzkKbLKc7/l85nw+U2VPB5Tl8vKSvhdY2OkkpNpVLUn45cWOr25vGUNAO5eNRfR8DR7jYJ5U+FWZgHPhTT/asBidoRxK8M4xJTEhSllSNh+i3DoNJJWmKaTM++WY75oL/pD54TslyymlM/DiyWv/0Xc5Jnz7rL+0PoDp4RRyX34YJvOBt1uvCYUPiS+++orT+Uy5y9YKDtgaIaNBXhyQbqBKUGlFXTe47YaLzYbdZs1mveYi44C8F/k3k73LxyERwsjnv/89v/qrX3Hz4prb2yxVl7IUU15gltdBvoe0fgveWhkj8k+ZUbterabEuSxSS1xgSW6HYeB4OE+tFcE6n7BZng7AVRX9MFI3Nd57aQlpnfFDTAtkIRCW95Rz/lb3T0rVxODRwRPHUTCfbdaHHnvcdofSiRSUaDQ/x48qvtd5YvloPUqcH7/NWIOPkRBShvDkrkipFitF0jLrJh6jO0IIHI7HKRcvjHap6sqk7MeRjsTlds3l1SXX11dYJcfu2h6yeoSuGwKWtmt5uDsQYsIqgzMzGSdmvH9VOYKPxDHXwbVmDB7D7EaojaFuGo7HE0pJZctl/eRdJuR1XUe1WChCCDjUVI2qXMVqtWLtDL/93Zfsdrtp/I4ZLibKOo5f/dVfo7TorQ6jl4V2qsh/w2Yld6DKfGCtnWAe5eeTfh9a5mml5vaRAmXk1vp8jxVCgC636/FMk+bX/oDK0XP8/xvf5zyx3GOlRbJWxsCywPTBx9PZqdaayZHuxYsXnHJBqYw1Scbnzk4IAR9z3qCiQKUAZTXDMEzqG03TTMWuqQv05DmOKU7qGOW8yKS34+nIm+F1fl+Wlh16EoGr3Y6XL67RWvwlmqYBlTid5Nz7vkejUWiqqhEDsrpGGZFrNVYzjn5R1U08HO4ZzwMag81VZh+8gNQW4z5Fcew9Ho8opbi8ecnxPBBDnDrblbMUNYyU5PW3Ecz5o/N3nl7JSZlSkqNFZojK95Uow+QS8RzP8RzP8RzP8RzP8RzP8RxP4wdRppOa6VI57/1Vgac7LZO1e8ds85hiAp2yfqLgh4gqyzlF0NKWBTL+ReFD5PXtG9q2E93lRTvFWjMpbSilUTFhUKxchTOKykrrwVqL1Zq6qmhyleYceyCgjGa1WaPSwLHvqetadllao7JurE4i73I47KlWK1YrYZ2LniiZLS87NjmvYtoRqaoKm40GrHPUdS2En4V03DCIjE0hAllr0UoTwkjXdayahmYl5+2co+0EWiEEO4WaSFIIRmuBC1pCQT68qizt11TsvmEmJGRyI0AcIpX3YB0kSOG5vfrTjqle9O6Xc4jE2YLIMXFaJreCBS4+wzVS4T2M3N/dT7g/YyvO3WxvW7TMx0woKbb1MTPMJ/mmylGtVgxBc7e/58uvXjP6gHENfXei6AlX1tA0DVeXW1Tacjo8ELNrYFVVWOuoc7U1psjoQ1a+AZXF/pe4wtJqLudS8JNKKZxzNNlkJA3dZCriJmZ/5HxuSUnxy7/8FZ/98Z8BmqHvBL4xeEzBQw4eKjuTb5gregq5LldXV2y3QmIehmHCdBai8KOG3wxbnG6pWpiWBCBGSLFA9RYV5rk7+7V46Of4KUR69Nx773l4EIm04k1QYIMfqoqRUQMTrIokJhyXl5eiLgVopbOj7uoJbla6V8GLi1+mIk3nZYzh4uKC7XZLjJH9fs/vf/97vvzyS3HfzF2lZcX5EdkvOwmW85tOmCJEEBC1KjsNkqYRCGTXFS35gRADDismRE0zQdWU1mw2a4IPDIXXVFdcX+YOeozEQaQplXW4uhaYSsyV5ZwviJybEAFB4UOgwDassZMCFr7HxAFiWMwHs+jvBAnNMp5LSXURBZmtrt+Vj/wheGX4gSTLAEbPs2R60maYWqjA01WxbgQi4MuDqRb2ryXpTaKCMf89vzXJdDv4wO2bO7q2Q7kKm62pIbvpZJxsGiPj2GGV4nKz4WK3oakc8lAGkTTKSSXM0kvLZDLEiE6Rtj1xeXVF3chA64aRGD3H04kqBGmFVMKIVaN4wssAeXzLlvjg2dREE2IkpNn953Q6cXh4yBdUrKlFpUMUKYpSxnQ/8t9Fbi63cJOCTCwcs0sgzCzdMkEsv+/XRcrMd2UchAAEtLHYqubhQdwEnRWy5nS05/bqTzrikwb8+54G6yrZZCYwSljXSc3ZmPx1TqTLpJAQc4Hj6TjDkuqKbgiTh6xSCj8OqKAYRk8Ika7tCaNgc/3YZ9a5QSuBPx0ejvRth0+JSlti8LMJkNEYI3AKowx+qDkPvUi8NQ3DONJ1om4RYmAcBQec1Dqr6pxQSk0M+hDCtMAu285FfzmlxDgMkCXktF5ggFWBT1g+/vjj6TVrDCrLWZVkeRklYV7SaqIP+HGYxu56tUahGI4nkYmsnSAvWGCTFwlz4e8V+NeUepR8IC2S9OXe6Rmv/NOONOcQZQO5VIcp8IalKsuHHHMm+M7PnTGGscAqFh4DBa+8zGViFPx0va6n9xwOhylPuLi4wDnHy5cvJ8vtYRgmWOYwDAzZ8c9aO5270QYFrFcbmqzEZa3G+5Hz6cj5/EBdVxgjcrGVEwWNLogmeTmXcr2errFl7lA5AQeZD7arFTEKIXH0gSGI8lCVDZvitMGHEAu0rOgkz9elzH3T3Ly46EvViqWBVLkegOjE5yS5/F7I5nRvxx+eP/wwkmX1ONufF7KCT3k0E06TZALWTV4gfAHNzw+qzZOwmqpGj1AvklgrTT/23L65I8SEQx4EPxa3KYvJONkQZYeklDjgbNdrameIwROCZhgl4S0D83g6yedojXuCQ1pKy0CuABnN8XTk/vPf87vPP2e3u6SuG0kmFaxX9VTteso03e/FUMUYw3q9FvLMAhc5jqNYa6KobCXAfT+wWlW8uHnJbrulH2Sx7/uBzWYDwCo7fxU5vqIKUIgI5VyWCfeH7tzSBIJWKKMAg6JCVxFj87EzXrTgy4tV6HM8B7zNQihhrCMm2UAarTMcbuHfmYrFdd5A67kqWSQeS91SlBg0Ss0V2hRFCirmDenpfCJ5GfdaJUzlCDHS9T1t26NU4mK3oRtG2r5j9OM0do2C6ETN5sX1Ndv1ml+fjpxOQvIJUbpfkMnGeX4seqZFvaYkBsaYaWwWcf6ymS24yhgC68pOhiUuzyuXmw1t27LdXfCXf/EXhGEQk7xMfuz7nmolBL1vGufWaKxppmQ5joG7r14znFquLq+wrMBqYflH0U/WgM5zlvwpFSitDclm+ckYxZBEz/ezwJzn+/u1p/YcP4F4qgIDktyWqnIhyH9oaC3roEKkzJq6xlxdsduJr8J6vZZKsHWT3fJMJIQp+ZvOK07r87Izq7XIVK5yMvpUdQoe4/+bWlRtnNWsS3e4sgQ/cl7VHI8WZ6CuHTF5ySXWa9q2nXKVlNLUDTLGEpMYvPlxnDTZQ5akzb+AzrnAlB8AOuOGldITt0kDYyrKQno2FCmcEK1xbmF3vZiX80ctiqVLq+v5ugjvJIFKubL8vjzhD58YfhjJ8jvi6x/iuf22WTeoECCX3Z12dN5jtUGrDMtIchFLm+7xURTnc5chGAty35irptZRZ9mzcegBza5Zcb27YNM0xDA+klMBNVWlhzEzUmMiqojWonE8hgFIXF1dcZcrqG17JsQgXvNZI/Hcnum6Adc07LaXKKNnIlKuyJjs3V6nmvV6zcPDA7e3t6J2ofWjh8Y5UdRQSkmlSCW0Nmw3G1ar1ZQsK624vrmhrmuZCLSaKjwqM13HcZyq1stJ50MJfhEFSqONg+TR3kP0pCQwj6LzXFrcIBNOis+r4E81lNITEQ14RNx5+m9j7WQtq94a+fA2cGD6FHwInM7nqTJhjGG1WqGtpe+lshP6MHVSxnGgI0DW/21qJ92lPBZiXoictYSYOJ+7R8YIKcnG83B44HK3xhrDq1ev+PXf/1qS9qTQWb5ytVlDn506FyS+vu8nchHM5NunXZ6SLPtxJFqp6JzP5wnetdvtSCnx0Ucf8dnPf85+v8f7kKFZLcM4stldAGCdfQdlmolImZQSC9r8sxClLyAbjpzIa6kYLTtkU6Ekd8kcUkXy7Rk/iIrParN5y2Xt0d197kD9pKMoOpUEs8wbhRD7bYjoJQmkwHvyhtTlrsz11TUAlxcXfPHF7zO8gDzGRQlHI3KwAquUecV76RifTqfJgGS323F1dSUFuaaZYCTAo8R2WZRSWU3M6Nm5UxJpqENFjCsqo1itayBhtKLvWw6H/fQdLy4uGXtJ9JOSzvQwDLLGK8ll/DhM0E6rYLtds91u6ceR46nl2HaMURxNRX0sV5Yhz8VyL5YERRAobVNXPJqT55x8hsnllDylYjT3uHKcBKMlBQT//RfVfhjJclLMihU5vuY5Xj7kTdOQElPCarS48jnrMEqRdCTFAaUMUWm8NmK3DGhl8DFxe3dH14s7nkKS5bYtiaCd3p+Upl6teHF1xcvrayqrOR5Hzl2Lq2tIibHv6XXGT5cdrWLaZa43a46nwDD2nNvTVDWvakuIFVdXl7x4+RFNsyXEyPFwphv9tMgtF4jErHvoQ+B1TpIHP2KMLFNXV1f5e8iieD6ec4unxuR2xf39PSnFR9d1vV6jtWa93mCNlbZp0iTi5BRYWr2TADrftMmZIwJaWbQDVCSGgRSAIEomJuPA0IoQEiq3eJ5T5Z92pCUnedExVE+eDIXOC1Oi7TuiMtJtyouJqFokgUoYDblynBD91PP5/Gg6Msag8zMfYxTYlzY4a9HGEVKc8PQJzcPpzHonbVU/7rOJgaN2hqE70ewuJ5ywtQbfd5IQej+Z9Mi8M0KuDAOsmoahH+X8Y5y+j/dzR0v0TmX8LOEYpQJdktWu66QynuEYIEmp0pqPPv5YNudjmqAc/TBMm+Zy/UtoBFNctiVRla7gskuo2Ox2pGaNUYr9+URVumX6aWl4ec/lODFEfFYL+Kb4Okm75/jHHyoqgh9IiPtc/XJWa/r2/BpYkB4WidzMEyj/Xv6pikQdkjhXuaq9bw/TIW12AzydT3R9R9u1dH3ParWiqpzoJufPW61XWfJVP4JcGS1V5BAEPgZgOg1Egu+lCpyT61kvfq7IgsxB0etJ+SdlkxMfAiYEhr6XYmHu7LqqwiGJ7rppqG2NVg8czp0kqklPG3BQj1WIFhrIOiuMGGPmiWXZ9SuJc4FnqVIUeXJ7JnitmnKlr7u//+DScd9vPKn+vNVPe3ciXdervFOZcbuPcDeLFkxSiqAdyRQZJsc4Jm6/+Bx/emBXiz6pQnCLIHigMHnNJow2OGepnMMgLcGha0W432gG74l5PXfOoY2l7XvGGNitG1abNef2JFifoZ8eEGvluNvtltV6x2q1IwGVO7I/iMbh3d3d1LYpu0sZVEWAfCYgrddrIQ3lZPl8PnN3fzdVcPq+R6dI3bjp4SoL7zh6kY/Lg7bO2KnK1Y+qd0Uv9fLykqqqJj3L6h2YxqdR0oq8jyDGRAiR6CMkhTJyDB88oRuoMZiqeq4s/9TjPfPf1GuawIQ6Y+WkU1K6SKFUnrMEU6l06FydQWl8CNy+vuXi+gaAqm7wsc+bxzWn04nKiaZ5THF2xZoyd8UwjJnAqxn6ntPxgDaGEOF42NPsLqfxs17VPNx5hqGnPbf07Zmha/n000+5vL7m3A6MuaJTNTV3d3v5Pk8q69O1WGwKSnKvtZ4qRcYY6spB8Oz3ez755BMuM1nn9Ztb/uiPfsav/vqvMdaitcc6+VzbtQJJeUde+7WjsrRjjWG12YIPHO/vGfxIY9aSlOe3KSX3DqSLlEJAW4NVFd4HMBrtLLpyPAKPTtWo9A0n8xz/2CMBqR8ZTifQmubqYvJKaIcuu3oqMdB4Yrn+tAdVcLrT/lBB33cyfnIUYw+ddYufrlGPxskiQVXTnCPFvpgSdB0JOJ1P1HU9OfJNv5vHdswzWggRokBHjU5TFXocIyl6IFA5ReUsq1VD09QcHh74zW/+FYfDkXUjcMvtdkurDOMgspGJmSysps+Oj6+NymYiSnIXl3HN0QdUUphc2FAwVZNVnm8LXa9I1uoFn6RAMAqcNk6ctUSKMcNAZ18IUiKSso9GgWF43j8RfEt52xw/oGT5faGe/Mk8KSKs995L1REgssQEPak2PblAKTEtjGHoWVeWwSeGtkXpisppIg6fWe5GJWonO6nKOoLvBTqhxMEm5Zx6whUZi3GON/f3qO7M5faPBENpDA+HPejE1Y0syCEmhmFPiBHvBdphjLRwiv5iZHYk6rpuqvAWDeXz+cwnn3wiQuYLRz2QytMwjtS6ksqYHzAa1rqmrmtMTtYBTuf2USJcJoAyxAubvgzMQhp61zV+X6SkMmvPgJb/tLYoY0lxJKl5UxBjwsdACmEiCjzHc7wzSr6qtWDcU8KUVp567AbCkgAAIABJREFUPJtMjPUEES966Aa6ruXu/p6osu0yB/oxZFiFJJ2NMfhc5bHOUVmNMTJmnNFst4Hj6UxSRuAKMUrCq800tooRiMrgBS0WdfR9z+l45Gef/Yw/+/N/nYfDeUqWT+2Zqqpy+1NPm+diI13GfUmWCxSrfNdSDausJar595ab8MuLC25e3IBSNGvRb6+yFiyoRcWIR9PysjeoEhilHkFgYtZUFgexAVM5UdhAfjFz3ReE5UUFylqazRpX5e9YrGyn6eAZdvEcEikmfN9zPB4Zg2cdPReZ+FZVFaEkgdn4osQyWV7oDaBigjGgK0voByrX0J1bqqoGAx998hkAq9WWFBXeh2ntneYbpanqGm00bezza+oth82lnfVTTejp+y3Gsvee0AeapsI1Fc5Kcq2kWYazoAgE33M6HUlJtNgf9veIpnJW8tCGylWcjifaOFBnYr9S4vb7/7L3JrG2Xel932+ttdtzzm1eRz4WWXwkrepFyS6VIFmSjdhGjCQIkFECZJQEATxJ5sks00wzCpBB4GSSZpYMMjMQZJSRASeIZFmuxCqXiizy3f40u1lNBt9aa+9z3n2PjxRLfhLPR1y+e0+zzz67+dbX/L//f+sdwdlclVbBC6TTaMqyBrQUEJVG4aZEIJ6PFCznOa3oLJJcd/B+BtjKXzTCMILwS8c3+SjMMmGaI4EDPsMzvLd7c4r7oeBXiyHejGA54oHutZeWy2WaNUCsFqn8cqWMLJQETOoFKj2v8mdz1nFxcYF1jrqsImm3xlofsU2auBFR5io8unBAjx03ONvR1JXAFsqK7WAxVcwGlSJoqVRVkC88HzOffhjo40RnwkzXdcV2u+Nu3RN8oK6XlGUli7/axy2lwZ2yLFksFjx79oyzs7Pccu26jusok3t9fc12s0U3cdjAewqjs9rfXD57GEZOTk9YLJaxqjxSN23EFqoIVSlemCROOKrDG3w+YAEyHTu1chXKlBR1SzAa5WvCWBIiBj1s1jjvJG+M0uVH+6aaetGhvuyVykQGlzDhaIGpAzhrmSqVX6OQzoo2hiEO+Q6jx/qANuWsM9NRVxWL5QKUZnSOIkKHyrqhHwes9azv1ozDQKEFpoDynK4WjLN7QkFkqjB8+umnqOBFGSziGQNTEtr3PUVRoJRh7vTTgG1d1/R9nwf80uIUQqAsS+kU1TVNVaIJ1I0s4OutDCM/fPiQ3/wbf4PHjx6BlntTAgtJCnL194Uzs2/DOFLWzexII2qd40hhClYPzjAmUNa1YBpj1aqYVej7MU7+B1H5Ukqhi0IqVS4lL9Mnf1VKqKP91bNcKLvnGtGzv18nbJLwQsUhN4epKpHvMKLQ+eDRYwBWqzPA0PcCp9puthRKc3ay4Pb2DtdbTs4f4JZCpdgPPcMwRlyznuBWSuaedrsdt7e3e5CqpAic1tlxHMFF1hvnsLHIpIOKybeafQkyntdaR10WeZ0ehoHgA9vtjg5Nu1pRNJrSCXNP8FaC7+jjgnWMw4CpG5qyoqkNYz+yueux1qO0oY4d/M4PMxiGnjFhBLTRcUbLQ1LnDWF2XpJXVrO/DwuhIb5fYKUu0mnO7etwDW9GsAyvKAy8PIiumwbnE11ZxCKGyWnOF5m0WBLm/IdCe/L584s4bGIwhqlVa0zmIZW3eoJ3IhFrB5QKGA2+MHR9RyhqHr79hNtdDGi9Z7PZ4YKiH0eub64lZVUhTp1OOJ1xHDFFxWLRUlVgnSzswyBBry4Mi+Uyc5Ym9b25pGNRyES9jRfLxcUFl5eX+ZC1bUu360SaMuI1E53UXPrSxED49PQ0B74TxvPVV11anOfa9fP9A7lw9WwzKgUOVQ2qgNJkbJTWBePQY93IMFqOOjrfdHvdYFkxeulEJIrIBP2R52ePReesFBL4jpa6mgYJpYoztUFTizBNjocQcN5JSxQYrUMZwRGOQ8fY72jrMj5n2fYDXk2T8M67OBFegnf02x6NBIQ/+9nP8EFjUmKqFU+ePOFu0+MZcmKslMpKfOM4voifjEFDwjMbLa1ZtGK722UYy7MPP+Dtb31LhusKg1ImJ95VXTMdqP0zkuoV+RnvYwB8cL6UJOtFWVCoabo/ngH87Ay3UaLbOcdobVYnJYQMkzva0Q4tBI/W0hUpvIs43FjZzH2cqdp53/V8aIfLXlFMnMUZUxwhkdvtmnEcM7xgGAeCl3mHqiw4K2QN77qCLds91b7SSAAbipLCmMy2A7PBd22jPLbAHnUI+FKxGbus2wDQNCVnZyvapsIb2G1lkBDvBfZZTR0lgWXGLlRMTBOEVclBRWshBgDxYwSP0UIVZ8qStmlpm4bROlDTbJhS5AA5s2Egx83Eezp4xx4HfmQTyX5XRd+rY5c75IiOhOGSxlzIA5Zft705wfLeJXo/Pvnw9WVdC5+wD+hiIuiGWM0kZKyi9PnmMqvSHuj7ntvbW5GcNIXcRAfg8CwyEClO5q2SoEAZLVLZpefkSYWJgz6jdXx2/RlFu0JVFbco+rs7mlITlGEcHT//+Z8B8OSttyiqhq6XNokPOlbHIkekVVhv834Nw5A/vyortJKA+9NPP+Xy8hJjTJxkjywhsdWRFnsB1WtM4lBUivVaqksPHjzgyZMnPHn77ThsJ8wCRfH6gQqQ278vVKGV2g95tYFQgpfsFjcvPcsNhhP6rNcZ7jnaX107rAS97IqUKrLg30nDOS+riB7ABa6vr9BGM8SJamsdHoV1Q148jNY0sUrrAeuhj4uaC9K1EUqlhO0TiMV8AUiW/E3CPqcO1M3tLd7f4DE5qGzalrKsePutp5x0I33fc3l5meFY6V4WfnSxFDzP4RlVXdF1OxI/8zIm4R98+BFn5+dT4BsXLj9bvO5DxinIDJ8BaOsmQrdmtF1VSXAerwWjrA0JZQhqmp7P/nlWed/nzT1WkY/2cktY19XpmcwPqf2iGQpUUPjg0BFqNa9dHlrCFY/DSN+JOI+K98U8d3RxMHf2zlwBBnKBTJsJIlUUBcMwvDCLlDu0SrGI9/KcQcdaSxhGGAe0Gqh1yfOLzzlZncR91qxOG8rg0FYx7Hr86AQb7T1Kl6AK1tsoMmI31GXNdrdDr0pWqxUaiaf63QY/aiqjqJN40TiilI4/kS3L7w/e7XNOx4q30jgfSNGZjjHVy2YvQpACaJKwTrhp591U/gixoKGUxIP2V5NIH8t0Rzva0Y52tKMd7WhHO9pL7I2pLM/nLA9bd/u0UKl1AnVdC3jcC3cgIJhWreLASGrvzd45q4wERMxDpuLjoIkSgH5quXabDVUlh+nkdMnq5IS6qSSb1ApjhFpuDDL4UhQlSsW2ibcUZUHbNJytHjD0HRd9hw0eFQybdc+j80cArC/vePCwQFnHsNuy60cCBahSuF1LGSKcuFll/xLf8XYr7Zw0+KeVYhxtrsRqrVF+qnKZSNcyz2JTu+fZ07d5+PAh52fn1FWFMiXD6KaWzGuamlXK9iwIoXmuRIVY2VMGNw7YbqSIw4ZmeUrpRsJ2g/GikHi0b6gpJp7xaPfNbSgl09fWBTx6GhDxKleBgk64gdkPgtffbLYyqz2rEgVChlkUWlEWJcvlgsViIdVlP+HkxmFH8BpjIuyhLKlqweV5ZymMYXCOPipgOq3Q+Fz10VqjVZK3lQHERBHZdR1FUXJ6dsbJmUCukkTudrvl8vKSYZiJCrUtfd9nuXtrLWdnZ9xcXwikSynqtuH3/uD3AfjJb/+ENtJGJiuKIsNAUmVubglule/zsC+9PReE8EqJkqH3FKs2H1vpNYmnt078UPAig1sUBh3b5gFAS7eLMPPv0bmHvX+P9o202HkwsQvsgwx/yVNy36eqpp5XnLm/epiu5W634+7uFu+94IajEFAd16oPP/iA/+uf/BO01rStSF4neei6rinLMs7f7HdQ7sPdpzU5wSRBhhONMXsVbK0UVVVxcnKCNooq8rGHECiLuJ56z9gPaCVsPMNgUbpgtxkYo5hbuzzBmQq3PEO3J/zslxc8ffIQow2r8we43QYTPFWc3+q2Cq0jpDIqFxpjKIxBIxVeO8T7OPh9GEbiQA6i3ldXlcQD+SzMYrYUtKV7PfoAobpN976aqtCR8u5X0Xl6Y4LluR36ufCSQLqqW1ws008C4W5q06WpSzKsJf4hvwzjwKe//Eyo1paV4ISDzQtQOuDphqrrWqjd2ho/9AyjFULt5ZIxKLyp2Wy39FsR9+j6QYjCY0s2wRKM0QSvMp0TIPKTuw6UotIKpzw3d885PTlj3d2CXWBBdOmR4Zc+QTHCRPgtXy9goyKgifCU0VkWVUtZFxBcxCyWkcnC03VjXhDff/8ZdT2pBRID7NdZf/q+zxyQc5aMuamD3wMQlEYFjQ+awSu8lffVOqB1RdkqVFHtTcgf7Wh7Fi8spTUECZillT+TU47Xj4v4PxlYFV/hQ2C323Jze5sl40Eoz1JiKnAJTVEWAt1KkrPGyNBZtBQkaqMpC0MVW42+qWl8yWbdsdtFEaDgaeuCcSix44gi0LYLTk9PRZSobrOk7i9+8QnWOh48XrJcyoKc5hfSvMBc4CPdh2nhhajm2feszk5ZLpd8+9vv8+Pf/m0AlsulHL+Z5TtYzfDJgHM2DwinBxUqD+slfzRXEQXhlhUW2BfPneC/Y2Dj4rwEOs5NTCqtU99835ukv44p9TfXUnIc9iIHsRnE+IXH7/s9PeCDp+s7gVuiaOJckFKK1UrYbT744AOUEkq6xUKS1O1mg9aa1WqFCI11gj+CPGOUcPlATpbnwXK6b9O/aR4ofdsE8ZoP6YPELaN1wlChhBnIWotSGmNkXqHMhcBTmsWCqmlZd1bYskoZJFyslmzsgO22qDRnMQ5oHPgO57YQKjwDaAcGvAuIcAK4oAkIrDR4ga8YLSqIiQ1jXhCdz5HI32m2JBZLIpR0HhCLvxU/dAij/brsjQiWlRIKk3ngl4KsfQzQ/oVeNQ2DFayKn3t0YtamUoUhyjEmZ8+E+0343qJs2HYDiogHCjJZuel7qlJwQEUhVeTgZaAnBC+Ke01DZSq2g+eTT37B5Y2QjjsPVbNk6Dt2KuCspSwKmrrEjUkCMg4eaIP3Dh0FQJbLJUVVUlcNN7drQgDtA4WevmfwQjaO1vSDDBVWUZ0oHbdMw+Q9pSkyNjMpGRVFIY6g63j/2QcA/Np3fo2zszOhooqcjsIhyT2eZHZu4k2/iTLfcwwlsI83DvNNzcD6SlHW7UR9VRrJg1xJWTZRFvto30QLKCwV0x08XTcqvyKgtAzGeO9FamrmE6YxvxAH+oSDOVePup5tTHZTJbmsahQB5wRPWJcFi0Uj1VulGMaRqiqnuYlRRZGjkpNlS2k0RZSp1gQqH1CbflaJFSxfkr9VwdM0sv2uH6U6HRXIVqsVz59fcHHVcXZ+zsOotPnw4cO9RTYFpuv1Oi+4p6en+Tg8fPwoB7pPnz59kRv9MKpQ0y+HylmKWNlJDBXAOAxoYzDFhLdOSqAoFZt/U4CdcMkKRVPG4cpSsInOOmHu0dOg1hfZsbD8zTWjDUVVxkFzWctTAqjT3NKrNhBe/DPNQMwTUZiqziDXr8hdSzwzjiM2ytrXdc16veZuvUEVk5hXqhSn2aJUNU6FpkMRlSQ+1HWdzCJ4i7UygF9XdR7AA+K2Z8qYs33OY1ypIBiZsaQz7kRLIvqEwhjGYaDbrKnirWy9o27qrIw4jAN93zPaQQSatM6KyHZUKFWgjaHvenQInNcFzmgq11EGSfQTVWfQJSHm3167mFUnZunJf+/VPoP483ni8XXbGxEsA6AMWs2v0v0rNvEKzn+MMfjRC61afrmZ8smcnYQ9+dP5kNz19Y00ZrQAz1M7Vmstwyje5ulKEd0YCW7ADTucHanqmkTgPdqRfgbW7wdL1Sy5vblhty0ojaZtG85OlgTXsrm7xc+5ipXwRo9uwAeP8UWsPKt806SLc7FYZH135xxl00b+ZEuhPGOQ4YOySgIshvPlKdttxzA4jBEqqFSNstZm2c6HDx9KIF1VsWmlpoGfV9hhgpPOWWof5fcfBN0KRVAGr8FUNcq5iYNWKcDHKWCdBQuO9g21VCk+eHgvrlMlgxOfUCtD4T0hBlzJIzgVUMGDt7HiIdWPzWbDen2Hcy53fYqqzf5FKYVJLce4oIkqnlynAMaUDGEX2WoMutBxKFCxaEp2peFqvZMAGtBo6lqKBXYcUUFgFWUt9433Pldb+172ycdFIQ3vlWUpsLS4P7e3twDsdrt8Dz548IDz83OqukLrwO3tLR999BG/+3u/R50WxqqSinGa9p8d2MNj/gLEanb/O+fkNjdTqxulQYW47CnM/DymwUd8HvRTSlNqg/NJ0VDvVbZfasd8+htt2miKSrqQdnBCe3iwbjjvsd5RRIXLwwE/Nf8lBmNa6TysrrQi2P3CnooMUtvt3V6lOAXUPoqhzO0wpklrZgqYE086TB2hvu9zcC0JtsQyRWkIIfoUrfIAoUL8lR1G0W2oG7QphTs+MVaQCmwh8qNrXKxCp+8xx2ClSq5SKg7WuczCFUJAGZUTlDmVbFVVEAcXrRd56roqRWgktwYNPrFeqEBQHhUshQKt4/kyOsdO2ogiqfJeCmveoufB9AtXyFdzEG9QsCzY1b0HZqbnXGMEjCnYbHYEXSCc4fHiTNPvLwR3Ki+06ZlhGIWHOEiwWpZlxCHHamiUgJ4yOxjHnrGz4AfKUrIl6xzOCkfh5m7DLlameu+p6zZOnbeUpswKgKpQuLFheyeL2jiOVE2dqfDSd17fbRkGiyndXsZ02IKYK3YlidtUPU6PKztwvbni5PSUsijxEW5inQTZ3/3e9wCBm6jEz5pKwEp9oYRscgqbzYa7uzu01jx69CirEOXM9p73Ss1PE1SJLkp0qiDH1nnACs+1P66E32T7IqGhZClgS0GldxaFwavUyQkE70TlyllM2aCaGqtKPrnpueg1oZKOkvWg7EgZHCWKtmo5OxEIg3WO3W6HUuSqTl3X9Du1t69pcTFaoUyReZUBSqNo2gY/DiJGRGC9XrNYrXj48DHbruezzz8H4G69liBdl1xdXQkPcywcJBU+2R85Lm3b5oU3tX3LokBpqVq99957nJydisACEKxlukMnJ7qXjGRp6oluUjpyLjIEJFxhLFXkytYkYjv7BHndDCc34ZBlMS+0ERluI37aWRun4lUOPlSEZKRuwWFQcrRvmGlFcGkNuX/FgXsC5JcscVobTk5WLFcLYZYKMA69wJ7ifV9UFc+ePeOP/un/w3a3oypLUFqoGYPc00EXmBhPzLHHc9jUHOs/D8bznu/NAoS8LaXIc0BaK7yXYHvsBxFSalvqVqAW1gVYb+kiBeN2t2PX94SgUEHh7Mjmbk1RGPpa9rmoCsrUqa4rwW1rM8UHWu2xY8wZPvIxVlPMnTtJdS0+ZVahPzwPh34++w0S5CpIvBZABYfR95/IjIF++al+qb05wTJ8QYt//7I2hQiSiBwieRjHeZGOJoDzVgi/tVQpSO2HFCyPA9c3sbKsRJlOjWOu0PgIbci+23vG0YIbKcxUWZFqjsU5y2q5YLkUDNPtdsd2fYsPnnEYqGIG1DQNTVmggU0MllMg7JwExS7yKG63W1Aaay273S4Hxcvlcg/HJ8doOv2pCp0q0YXWbPtdHmooTIEdLV3XM46OBw/f5jd/8jvyXmXw3jKOTpSAiteja0sXdF3XbLfbnFUnXFbCdBoCqOkmm/Y//gAqpARFg/KgDUpNsJWjHQ1eDJ5hWnCyOt+sK5VWk7D3/si56gPb3Y71RnCJieIp4DFAYRSlciyqirZqCIPFKM/j8yXej9zcXABgm5qz0yXb7ZZdN0gQHRJG2lC1C9q2yTRMVaFpmoqtFfJ+FzyrkxPatslwkvVmDYiIUtss0GXDbrej67osQvLZZ5/lanfiYz89PRVcYFWJUqcxjOPIMHb8wd/6W/yN3/oxbhgJsTW863uadvHigd6rMqd7Vqo/Skt1yWiNSxU4rXOsnc6REw0/gcOFuMgphYnKhbGPmqmffICiLqK617StRIH5upCMo32zLCBiYBKMCRQoVTnTdeP9HqnsXqB8fxiSkmzhPJdruhL55Zg8aud5+vQp/+xP/imbzYaz01NOT0/4sz+7xTkn6oHoXBVOFdeUxKbtC3zDUtc11toMqco+jUkALCgTK9AR8pA71QbnPDJOEBMDpXOyHGK3Nklzd2PHaC3GlCht2G7usMOWojAUWFZNzaotwaZ9SfdooFCaohSFwrLqUYPFO/FjaZ9SrFSWJQ4ROElQuLqppbucgthUaX/J/Z19/ixR97MUPKkqv/B69vOmL5tOvzHBchrNeKkDPPhmujB4FKPzBFWgQmoPJHRLOvCeECRAVFFWOZAyO8/t7ZrV6VkOyhKoPrU+Rc5RDlNRVFjn8HZEmxIbAkUIVNrgw5CnMOcYphCibLVWOGe5vb3ldNVw8tYTVsslNzGYvbq6Yr3dSmVcaYpqhj1WVV70U2s4YafSa7quyxWkxJ2aBEpAFqj5wICKVXZrLWVZ8esff0xRJL17nTkecR6tA2606NrswVnuOzUJp3w4nCDZ4gzrqCIJeYhVoPhviF4rt2RyYVtJgH20b7S9zuBGghbNsYA5YI6XUIGKDlYC6OA8OM+uk8BT6SoL4yQ8nHSZFHUt/MpaK/EHg3Q+0r7ZcaCuzyOfaUFQBucVVtUoSsyypj1Zcf35ZwAsjOKsfMh5UREihvitp09RVcmfffJLrm9u6TvpVj158jY3t2vKUEvrNd7viWf5UOY+dZeapkFrgZl03Zb3P3ifH/3Gx6Th3Z//7GcAtCcr2qgwluxlIWkIQQSFIo5ZhgslCc7V59ki6PdQysx+5N6XwCVM8yc+iNQwSgQOAmzXG64uL/N+p65f+n3+c7RvpgUvTDNVU0uhZzbDkyxzmoeXwC8OTWuqtgXCJNkcP2t+pSeM/lycK9+bxux1jg91CFIXuyzLzF4zD/TSjEEqPqXqcuqKe+/Y7bq8L7vNmrKQYee2bXn48CHtcklQmvF2ExmC0r4IsYHSRpbm2XGCFGhPUDOdChKBOHNW0DSBqu5hvaPrdoxuCpbTvioiPMRIcq2UpioFMpPcLcHLXEQO8tOvya8dVNtjuTr5E2cP1fu+ni7TawXLSqn/Fvi3gc9CCL8eH3sI/E/AB8C/AP69EMKVkj37r4B/C9gC/2EI4R9/wSeQLtNXfa15IG1MAcTJa/UihpGMA5LQKziPUh6tdJ7C/vzzzxnGISr8SGCttWGxWLDZbDCxcmsi3kkWgDhjqzTbXU9ZNbRty91mx2a9pm7arFxjEA3zqqoEBpGC56KQizCELB5wfXPN2A8oXWAKw6Jt6bohZmPT8GO6uOfT7wlzPLVmhGJqPuing2fZNpycSGu5bpu8yC6XS956662906GVQhlpf5o8/BMTEiW3zFw5WCGVIlMWlFXFhx9+mDPKVDW/99zGlo38mgZ/pvMpTWG54fcx7Ud70+xX7ydeez/yNTVPXL33WToyeClvCh0RWOcJ1rLZbtlst7SrKlddPA6jBWbRNlVmexlHyzD2oCShTJY+Ky1s0t2SRUFpTV2UGK1o64gT9o7riwtWhebZO+/w4x//dR48esi/+Pm/5OfDljIMnC3ltdvdJUprbq6eTzjK6Jf62BZWSuWk2lpLUZa8+61vURSFCDA1Fd//wffz95jDFu6lZjy4cX2YkgittQwI363xo6VdreKkPXJvM/msQCBohUbLHT4BlvMHCTPJdB7TxxutsePI+vaWzz/77N7znoIJbcwxWH6D7S/CT+QAadb9nT9nDgb1XmozP2IKYbyxzlEYQ1nXAuWK69tiseDbz97n8ePH0vEZRJq+aRrKsmSxWHC72d27ryGEF67ZQwhGKkCljrL3oiistRYYl3M5ULTjiLUDWhc0Vc2DBw9YLBY0bctm17Hd7RiGIRcTuq6nHwbpnCOiI2EcCE1Nt9uxrApUYTIFnA/gnceYJHSmYoc/7Pnc+b8S005Di/ITWbOiuBwQZ0mkzZw8QIrxfPYb95eIA/zKBvxe16P8Q+DfOHjsPwf+UQjhO8A/in8D/JvAd+LPPwD+6y+3S+qlP/P/tCkEj2gnOiE5horgmeFrJSj1s4xuGHqGoefi4hLvPbe3tzx/fsHV1RXb7SYO8gkm2Y4jdrTYyFlclhVN3eQqbOIgHa2l7zo2mzW3tzfc3t5wc3WJc5ayLDlZraiqku1mw+3NDeu7O3bdLl/0TdNSVXVeWJsYRFvr9to1Caax3W7Z7XZ7VeX51CxMlehhGCTTrgRntNvtaJpGGC+qivefPeM73/kOY9cxdh3DbieS3oNMuO6BDOHFxERNAbQLgcFZnPfUVY1x4LadcDzH/1KAMifNTX/mdTv+eAVjgMFD56B3x4D5DbZ/yK/YTxwOxMx/JlMZgjEfmpHXTIn53r9KWDH6fhCnHRPbJHGvJD+mrqu8WI3jIItivP/S/ZVgXFLxqXKFexgGRudwQ0ehA4VRFEahCRRGYFPLxZLlcslquQKFqJNqw9n5OWfn5wQPv/izT7i6usI7R1UK3/PpmcA2Qgi44GkWC5rFAq80ow/87BefcHl7R2c93/nBj/jBj34TawPrzQ6Ppqhqiqpm6Ifc9oX7q8p7Q01K+KidlcrU4TomWEY9/cRFz6Reopeqvnc+Yzirssy0lkPXYXtR9vTO03c9zlqcdfj4egkaQm5Z913Hbrt9ncvpaP9q7B/yK/QT2hhMlHJO19S84zAfTL0PxrVnqcGZoETOMfT9hDXWShJwLcWlZrHgwSNhprm8uqQfBk7Pzjg9PaWua5qmyX7iUDMBJlW/BM2Y7+98n+dQBIFW6hzIxieQshM5YE+f13Udt7e37HadsM3Ekm5RFATnKI3m/OyEs9MT2qYmOIcdR/Fj8QcUznn6YWQA2Ge4AAAgAElEQVTXjzgXAI0PgSHqPQzjyDCO08BviLCt3KWTynJdV/cn6ekUqBTTqPitJDhPCoL5mGT8tjx//w8v/rymvVZlOYTwfyilPjh4+N8B/rX4+38H/O/AfxYf/++DnM3/Uyl1rpR6J4TwySs/I/776lxvetZok6WugQzD8HGBNEwAeZ8qn/GAp4nyq+trlNYM40g/ODxgigqlHEQc8qJtOT2VamxVVVJhKiqqQqjedn3H7e06Uq9I9SNxPjtnMWWdScoNgaESQZPtdsv69jZDEz788EOUNqy3QglT1hXPP78g5TPzABjIC4NSisVikbHMyTmk5xIMYoiBubRuywzFMNrw7NkzTk5PuLm5iZ8h0/Nd32GtY7k6lRvpledGLuWyLCUc8YH1zQ3bmzsqU3D2sGSMV1sakPDey7eLPK0CoYkZ6j3bvwf3f7Q3yH7lfuIgKD6sDB1WYdJw3/y1e8VMpVDKAIqgRBRjs93mhM77NNFu0XWVW54ZVuXJOGitVR6mbZoqB8qr1QlXV9dAgkQUjP2Os6bGy+1GWRg+/Na7vPv2Wzx68ICzk3Pubjd89svnbDY7YcaJ3arNrmO0nrqS1uschiCwq9QJix2mvscYw1tvvYVznt/4jd/khz/8Eadn50JDNVhQmqqW5FwW6iq/X5G7odOBm2EgAewgsx9utDRNg1EtqjTyOvWixNTBSd1LeLTsBABjP3D5/DllWXL+4AGF0rRVzYOTs+j7pwEp5zzeu+z/vjAIOtq/MvuLiCeU0eD9Xtfy0OZaCunv9NoXBspm7Ew6Jn4HNwZKgXU2X8tD1EGom5qqKBnGkeVymfUMiqLIiWkKJhO7TaJ6TKJjaf/m7BqT79GsTlYYrRlibOOs0MrJYHMU+7EWYvFsSogP/GKMm8rCUBWFNOIUMeEnV9FTR2oYBoYxoHtL11vW2x1d3zOOAy4xaYQU4Eugq7WhLEvats388+IHYq86xKpyenwKkQk5wA3cc0oFhhGD+fvtq0My/jyY5bfTBRtC+EQplfr47wL/cva6n8fH9i5updQ/QDJFnj5+kIuMIf8vvo77fw9KSSYVcTDTdaviOhhbAKmSNGs3DpmDdCP4oNHPBAziTYQMpFVtS93EKq+TobulqdGmRJmS4APr9YbdbicXlrN5O2erJTvKnNk65yhKmSx1ztF1cWIWeO+991idnHJxdYO1lourS1mcy0qEVw4wV5kfMWaeKShWSmV6GSBzJdZNzfX1NdY5zs7O8+vaxYL33n8/ti+mz7CxJV0UpVyms8RPsV9slotYhqSMivRO3uOdY+gHdAXKe7p4I6MaCiOTuihh2VDWUsQtWucgDVcZ4VYNSlq4L9LMH+0Nt6/NT7z9+EFuG76wmB0semnxiZ+bF5j7rh41C5rX602GW6VgOXhHWRqM1iwWy6zGZYImhBaUo66rPExrjBIVTW3yopk+J0SQkVYqLzx1VfL+e+/y3tOnGKW5fP6cP/7pT/nkk8/wweCD4vpaBvz60dO2J6yWp6xWq0wXKfMBnqbRE8c0wsucKuGPHj3m6dOnLJdLyrLEWptpHVOgX1XVi8f24HilwB0Q9qC64uzJI/FziwZVlbNAQqj25DfRUQsBwSPH351zeWjPQ/b/Q99Fv5rwpXLc0nE+2l8p+9r8xPvvv0+I2NjUk07mnUzDeO/RxkzdznhtSewwnztKiagsgEVZUsSCkNi+OMbjJ0/41nvv8dN//tM45L4vNmJfkcPNoZZVVUniOYMUJdhE8mdlWVKXK9q25eTkhJPVKkPHysJgNFxePOfzzz4XitkAZhi4urpmvV5Tt0vqyFTlApHDuaNoG6qiELq9JDCk5Dj6A2jFfN+d91g7JawZ8hZSkqEy/V5ZFgRfUkXKTDUBkyOsI8RCYqyQq9QljBFemEUgQfYr+Y+5ONTXab8KYNd969ELl0gI4b8JIfwkhPCT87PVPW852tGO9lfYvrSfODs9+omjHe0bZl/aTzx+8uQvYLeO9k2zP09l+ZepHaKUegdIUxc/B749e917wC++1JZfgo9NVWfRew+MzuHRubwPgnFVQYbBpJKkcvU5zWBv1qIwd3V9jVKaYejwGIKaqb/ELCcN5+V9iO0E6yzKGJwdGXcb+t2O0iiKts7Z12a3BSPYpBAJv+u6YrfrWN/eUmidK7+b7YZ2IcGAUgprhVmjrGqwU2U5wS3ycA6TbGbKOlMbcp7xFkXBdrulrmsePXqIdY5A4Dd++EPe//BDxr7LraYQgmCwlKKu6hcGKO9BfE5YxfiHDEtqFosFdVkyeouLg0F7rfTZcVWl1JaN97hRqnFhAHyk7qqELeBof6ns6/MTgVnF5+Ulmql1qfZgGCEEUmmnMMRO09R9GkbppgjnJzO4ARRGy1BPhj6IN5HfU9t/qqbKPAEUhbBWJMiC9ha124C1nDXiVz56730+/Pa3acuSzWbH3e0dd3drobeKWESbqyUipytsHDpiAy26MJSFCAnd3d3le/9b3/oW2+2Wsiz5u3/37/LDH/4IU+oMDUv+bQ7n+CI7rDwf8rnng8Z+pGNQGGJjNcEu4nu32y2Xl5cMw8Cjhw/l9cZw9uCB+E6lUHXJo9kgcprfAKkmpb+92+ekP9pfCvt64wkFuRY4g2/ZBHuwlrqRIXef1spIq7o3lBory3tt1MOPmt0PdV3z0Ucf8fOf/Ut2u23GN1vvKMuKbjcpd6YuTuqCzbvHRTEp6M2p4w4/U8euclmWNHWTO8yrpUAcut2Ovv85m+2O84cGkyvXNaenpxSRX320MlfRdztC2+DtgAuG4D2lnthm+iSOFAVLBjviQo/xMI4yt+Bd9IfR56nZUF/GH0dobF1VaK2mGCKduhzRyfsFtpn+khclpo5AmjGJXUXvsv95qX0FmNafJ1j+X4H/APgv47//y+zx/1Qp9T8CvwPcvA5eWcIhgT+88msqAfCHICo8QSdqmLiIRl5BYfQUomwyx7IsirtIw3RzIxzH3nuC0sJtPMYgFairmuVqldt+ITich34YRQJapVaitGzThG3GFY+OoEPEP0f8UlmhlSdYxd3tLedRSODi4gIQajvrpK3ati2361Ew1NHSzZA4lBPH6nyRS4uQTODL4rVoZNCobVtMHJwpy5J3v/UuzaIlOMtphJskknXhZKwyR2Xuetx7DkNudwVkSv/k7AHhxGM3W+62W2wRn29CbtHkDSacWJq2TcOYXc/Q95Rlyaos0Ucs4l82+9r8BOrFQO0waJ7j+fR8+CPiZ0P2EypyrSqUkK2w63vWm00cHBEoPUBpRH6+KmVQxjqRuifyfot7maBQZVnE/dwXGNJaM3Q7ttfXlEbx3Q8+BODj7/2AB6slysOdveXudsN209EPHo/BhUBCMJlySdcLv7K1wpOujaYoalJwoLWmnMlXe+9ZLpc8e/aM8/NzUQidDQSnYUQgDjZPxYHXsdQSvg/ree/r5U175ya1bq21XMfZidPTU5YnK4ZBJHS1gmBUfr8uNJpJgU02GP93dBN/2ezr8xOk5n3IeN0XXzBr/YdwOMP+hfay1wfneOedd/jeD77PLz75My4vLghR9Gu323F6ei5CaMBms8mQi+Q/5jCMxWJBXdc5WO66LsMy5J41NI3i8ePHGeowv/+Eg12o5HJA6lOSqoRMIMljR79pxwFnR7ootOStpVAnlKXMSNwMScSkp2kanA+4ACrOhrlIuRtCwGSct4nJeSPMIIkjOs04xdhsTnYV9jDL9x/x6Z6PRY0I6fIhvPxk5gj8y8M5X5c67n9AwPePlVI/B/4L5KL+n5VS/zHwM+DfjS//3xCal3+OUL38R6/xCXg125VZlUaRiMQCSRBRLhYhxE4TlXPvqEhAeAHhax0rSBFXe30tzthamxX/VGTRSBVZrYh0L22mdwshEBrHOPSM40hhItBfyT5VVYH3gb6L3MZxMUq8w8QLXGjsZPHc7uLUttZc3/y/BBTL1ZKTqBBW342ghj1sIsDJyQnGGLqumx22SQa8aRoWiwVVXASNClEWUjHEqu2HH37I93/0Q4KLsp9qWmxDiBK6VVTXObi25pkggEbka/O+zJ6TLsCIqQUfJdyXM3y6QhQDUwWpLFBZkTHK4x65U994+9X7iVdjlUFcR8Lre2TQNd1/AQWpuxEpvkGS7YCi63p2u06uszANkBSFpqpKFm1DWVWMW4e1Dh0V5YqypK7LnFQ/evQQYwwXF1eEEHj69GkM3BUXV5+g/cijR0945y1pF68WrVRJFJHlweMD9KOld4HeWlHcAm7vtvi+I3ifq8tpYEih2G63PHnyRAb3gD/90z/lrbfe4u/8nb/D20/fBiX+yM044efT9V80GHf42uTHkl/6qpa2k4L29NjesF6IgiSvt8E/1/4c7Vdnv2o/IZD4SXQEyKJl82vXW5sAtVPQyP49EIug08oWF769q2v+hxLBtCdPnvDkyRPWa5k12F1dMQwj5UyqGshrdQgyVJ+G8EMIWT56zhWfZO1l2Nhwflbz6NEjRjuw2Wym+8c7rq4uuLm5paoq+jiEa8oSlKIoytRYA6YBwyw9PRP2OOSNno7TFKXJxg6LExHnHfepbVthyFIQ/EjwgbIq0UrvHcJ8jjI2ecIsp2f2Eu54hoLan7u61/4cbuF12TD+/Zc89ffueW0A/pOvvkvkCjCkDHHvAyh1jfUy1GdiQBzy0wEdPEGF2cUg25PMyXJ5eZU+SBYNrdGFwXqhilJKYRRUs6GdtFshRnipsl2VRloJwVPGYDk4ubjLsmKIFFO7bUBUvBqcl8ntuQJf13WMTk76MI7c3q45PT3F0dL3PXd3d1xdXe21cOZDfYeiBInkPOXVxhhKVdF1HdfXN7zzzjt8/0c/4vTBAyBQNo2ItjBNCWtjIh/twenhxTyvHwbaSpR4CElZ0YH3dLsdwZhc7dJ6EirJwxdq9rlaUzb19BoT4Shl8ZXaJ0f7i7G/cD/xhbZ/4fqpl0fwGk/AK0VZGSwCy9rtOoqyYLSSDANUlVA5lUURoRFCW6RjRbkozB6UIVVLbm5uhOe0afAELp4/Z3vxOd//zkf89o9/i3feeReAxpT4XgaD26qlXSwYrefi8pohgCorQhTkcUHRRNqpdK+kCrr3nmEcadsFu534uM8//5zf/d3f5eOPP+bm+obHTx5LNX1WhTpkEfky9lVYJ8IMTqOUUMs1bcs5kuikfaibJqqT6S9d7T76iTfX/iL8hI+SQwZFkSGYomQbAGUMRDrZVESSdU2um9x1SfvBvjcJs//vQQlTUBeD3bQ2p873fPA4JYdZZbco6GMwfX19nUWH0utXqxXn5+esVqu4dnqWrWa322HdyOXFZb7uJS4pMVqz3W6xzlHWDSAc0yk+SJBRay3Be85PligcYz9AgOVqwXLZCk1c12Wauaqq0MZQljUuJLiYzQG++JfpeE0wDHncxyC4Kku02S92xoO5d7RDSLiDCIALU1ziQ8hxoiTTU1HtJX2FF87k69gbo+B3Xzv1XosZjHWe4MGg0c5RJGyiMYR4q6io3pfwhSEIA8btrcAvAsK8oLWJHKCaolC0TUOtPCcnq9hqmCQmq6rAuZHBDnjnKQstNIs6XQxSPQaomgV3646hH3BDT1VorG1ippgo36YpdOOVtDGisk5ZVpydifRs27bYyGUKsJuRiq9WK5SSqlLmKo0LalFFGqYZJU1ZVZw/OOfk9DRe0GqCWgC77RZjDHXTZMnK/ZM1Zdz3nbMQhEnEW0thDKsHZ+hgKVPioRUuZqmFFokC5z0hkq4HyPtTlAXaLKR6pjhWjI72peyllegIk1AqJdKKXeQGlS6TRxt5bRlnAoyRjpbwltbUTck4duy6DbvdFp3bjmS5d1HW8jg70vc9hYbVcsnDcxEJAGAU3zWMlrPzM8ynn7HbDfRjwCpN3dScxuHGcvkA3V1nuETbLnAI44azgbOzM5xzmaf92bNn/OAHP6BpW7bbbu843Odjv6hCfBhkJzqreeL/xVXmeeVOqlLGmKw6mtaCtmkEYhepusIMOvLCFo/B8dHuMQV7C1WqkKbCkHSRNTHzJTgX1x+Vn0/2sg5+etw5hylL7m5uePfb3+Y73/0uz58/5+7ujpOTFePosNbvJX7pvnmhi8I+pAzE7ywWC05OTiLTh0OFnouL54KzninX9Z1nqEqGTqhodWSfMkaKBNpIgGlntHQQUF6w3MHFLjNgR0u367B2JETasqpuozS2xTmPCwrvOtbrDdvtVuBe8UAtFotcYBDIlkErz9hLEpyLfgfHVL3ynp75Ie9y2mKdYz/Mvj9eUPf89kX2xgTLh/Yq5ydZjGCS53g3kJPrdUCpAMGjXI8OIyq0UK3Ydj2fX0uw3I+CIyqrBSpMbcWEH0oBZ8IMjeNIVZd4D6Yo6bZrmrqkbmvqMqryETIllHGBEHZoLYuvUnEoxVqCcyxPT3j8+DEAu66nKSWYvL2745NPPmW5OqVuzzHGsNvtcnYGsp27u7sJmxwrzV3Xsd1uCUHUAde3UmFaLBbS6qlr3vnWt/jd3/99fvTxb8wOeP6fHGOtZ95hduxJF/IsoyYI4tw7gb7MglqpHAk1V5a+ZpK+DSh8rC75ELDeo0OgiM5MFwUqnttDXsyjHe3LWAgTVH7uLJND3XV9DpZhem0Rr9sE/4K0iE4coECmiUoc6EAO/p4/f852u+Ov/7VnPDhZcndzySrOCJSmwDtL2bboYPjss8+xUaio9x5tiqhYCk1R4sa77AuqqsSFWKUyFYvVks8++5wf/+S3Afj1X/91Pv74Y0laT1bZx6X9ShCVwwHiV5ma3duHg8Rf1uYV5rKq9oJuYtKSqKRSde++zzv6haPNLUSMgFcCEczDYCpWmVPzej4Iem/Icc/i9+KHTZ/pHKvTU5RSfPe73+Wf/fEfMwwDbdviXGC37TKVZOI7TgWwvpfhvyQclob8UnCdAuW6ruMgq41KfQ5TpCRyP1RMlWyl1RSwxnku7zxD/GxrLcp7vLM0hYGiEO/mA2Pf0Svp5KckwxRSWQ7O4WPgagpDU9fUZUUIMM62rbWm70Xt0KgajehQiN8q8r5BAhZIHOXjfEgIgaDK2IGWqnoK3EOktwNy5fuL7Kuk1m9MsPxFgzuHJlzIL2q+p/dKlV8qzCGA1nJAN93Ip1eCI7oeDLo6w2gI40AZHEob6kJzdnrC6ekppijY7WQgUALVcrZvEjGawqAROEhZGKpSLqhboylv1/H7SYUqJGJxQgzI5UbYbHfURQFKsTpZoT5V/OnPfs7pWcfjx4+ztntahNMNl26k+XFIQWkaKgBoV0sWiyUnJyf8wd/+2/z6j36EdxZTpCx3ajQtlsu8LV1MlZz5wjY3haKKktwJXmLKguA8IYL59UFD5HCR1UaCaecdbrQMs8VbFwZvpVJ9tKO9rh3KYcwfS/lcugQDSGV5GEHvVzqmYFkRfFp04vtmlZ/8GUrYbOYcqYnNwsTk1miTq1cEIeQ3ZUXXjVxeXqK04fzBQ8YAW+u5i4p0dS1KXKkKq5SmbdPiKQl9Xdc8iUn46ekpbdsSArRNu3cPp0Hgue/4IrjDfUqh8yLD61gKVuYYyPkxnFePx1nyIou+3i/tHSvKR7vPVOK+UnsJljKTWE5AiXqk95i4/ElQdr/veF3T0bGkWackwKGUoa4atvFevr29Zbvd5hmLopBB4qSuu1wuUUrlNb9t2wzZGMeRod+yvr3k+vqKp+885XR1Mon0jH3u/lZVBUpn6EgawJuLNhGfS/dx6rhZb0XsxzqYzUcEhP1iGCzWepQ2BKWz2NkwDigjviQlAyE4ejrGYYeJ3TcI+MinnH1A7DJn7vXkI2IX3HqLVgHG6Le8pdCidjx004DyfXMYh499mY7UGxMsH9rLHO8caK6UzlXlORg9FGAy+DwO6ihptd5tNlxfyYCf0glYHmI1EzSWOjhqXVKgUc5RpF1RHjeOGCOYn2G3FsL8uA0AoxVGR4We0tDUjQTQRrFoK4KTTFIFkdmuIjZXa2nXEuEUAM76XCk2xlAUBauVtGPTBPs4jux2uzzIVFXVhEfyPrdj00X85MlbfPvZM6nY7rVLD9A9MYtWB2D/tFimxfZl505rjQP6rsMGT7FsZ/gvcVYaWfh88GilJwzzBA7fW4SP1aOjva7dd60EpjgrP51gGEyVZVObvUA6JZ9Ga8bESnTQIt37nLgIJel6kME9pWQbJg3EJYlXH+L6LZRzNvqBOV4yh+5hUhlL/9Z1jfeBYRi5W6/58MOP+K3f+i0Azh88yBRUcSomb2ruM1/XEh4xvX9i+9gPoF9lh8dsfhwPWX2897nafe+Wjz7haPdYvrZTuPwiZhBvHdvNBmsti9MTqkUr61ZIfU/gns7JIX45XYPaGNbrO1arFWPfU1UVzz54Jip3wyCQzYN77fBeSF1irTXL5XIvmFVKsdkIzOH29pahW6MYOTs759HDhzgbWXqAwVuWy5ax79l6j41y8trJ0HM/WJR17PpJQbBSgUIxERcQcE5lqFT2H6SZpEliGtiDkcyLYekxa62wXXlLUcT4pGkwCR+eOsjOydyXd7NhQRUFi0KKmkkpvqACpMLsvM8zUdPZ+nrsjQmWX1a1PLS5FrhWarYwTY8rowle4ZVHhUAICm89GM/desNVpIyrFyfgRdpa5N01pVEslyvRcq8qvLdURboZYLu9pu97zs5PadtaWCqcR+FkyjMY/OyGKIoCo6USVRRFxDrLa3e7Xa78Pnlyxrbr2e62WR7XOs/d3V0OghMWOR2nJqrvzLPTxWLB2dmZ0NFoMOYsv+bk5IQf/+QnGQuY21EvOJL9f50TCV2jDcqoWFCfYbmCJC6pUja/aZTWLyjfBPYd0BiHC4qYEGhjcks771Lkvj1iE4/2ZS07bfb9S0rEgpKK8a7rxJeE/Un6NOino/ZrGgaSjb4Y6CWflBJUiItRXCy1MfuVZTdd07vdLsu1+rxez+6X2QzBHJaVXmOtFRacGXXc7EjE9+0fl1dBLw7vt/l3+qoQjOSv0/E/LHbMP9uYid4q+fyjHe2LTd2vuHZQZUwMCyHMGBbCPB55YbMvjb9C8Gy2G+w40kSmmh//5Ces1xv+6A//kOVCU1VNrg43TYP3Ps8TJRuGgaZpMl/8XAEU5utrxDKXMlMRfMC7KY5K9LJ3d3dY5zFKhg2HvqfrR4IyGYahtaatClZG0zTCtuFjh74oCpEPnx3R7W6H9wHnBNqSwtMUWAvkbdpfpdjbZ4X8mjpkzAJvgV34Pd+6f5wjBjS6QueDfLcgVep9nPLL/cUXD//t2xsTLCd7NVZZ5bah9x6j76nuKPYWsrRNHwLeeW5u73JLtI7PBRxaE6UYNWVZT9VTP7UBfMTOaB0nSo3Be7BeM8YhHa9LVC0LlWk8VVNjgmfV1iwXNf1uExk4FO2ipYqk4Emi9vLykvV6y3K55HT5iOfPL7i6usqiI6myvFqt8uRsURRZ4jdNjq9WK5q2xvsJN/QHf/AHfO/73wfkBnDe5Sr4veeCdCznizWzIYjYYh7tNJ1fSDVNsEOKsqkxKszjgYNAe5L49GlSed7STRU282LQfbSjvcpeDxowBdLdrstdDfH5MZjMrDNT9TRjlmeSrHOWFwmWi73grzTCbWrioE3aHsHFKnOsLDufF5y0mM+D5cMhoPSZMAXL5SypzvZCSeyL7fD4HQ7vHVK9fZVtvnRoj+lYO+cyjjMf/4OuU263fwlIyNH+6pkCCoT+Vaeq8nxQ3Xm88/TbLXd3d3KvVqXoDcwS67St1zUXq7a2H1i0LdvdjsdPnvD2O0/5oz/8Qy4uLqnrJsME2rbNM1HCmd7lAto4jmw2G7qYwIPAKUIImVrOKI/RIuHd9b1AHWdFx64TfHQOrlPwGoPgufiKNiJvXddV5on33oMvxZcozTA68U2AdwFTVhSVIRUQhtGKHHhRRGaxEI/LJPmtEEG3uqozNa+JVLKzYv5LguT5mZk/nhxbENaRLzpp6XO+pDN8I4LltLjAiwvc3jRqPCgpMCzMPu8fxPsipK5BpCSJrdZxdFzf3O4tasF7fLDoSrTL26bJuMBxHOj6HSD7VpRT27EoCtmHosgTnVobqqomxMGdSg+gYXN3R+lGHtQl50VJUdecPTjj4ZMnVHEi/vOLa+7u1my3O+q6nnDXyMWWbp6bSNifqKrquma5XLJcLgkhZHxU0zTYcRD6NqTi/OTJE6q6lssqVq/kIB+cj4Nzc+90++xituOYsUxVkdgs5F+v5KI8XLsUKZtXMhBQSFbovd8LipVSU8b54l4c7Wh79urGw16aJo8olSmJ+sSEkSrFBzCMtO3oTvKCk+ywspyS7uQzykIgGLmyPK/Qxg/bbjth30nBMuwtdIr9ae8piN6vLKcF+YWg8V91DPkSfzL/jskUE+xurnL2ZfDRR/vmmQKqw8G8uQiWNgQFoTSYpkZ5L9z/6bXMgrVUAn2Fpdil7zq899RllXUBUoyRGLDmlvjJ03WdZozSWm+tZRiGXIlOlHEJoqFCzzjsuLu7paoKTk9O8y2ktebq6oq721vGcZQhPOcoqllHGfI9V1UVbVPQ1Ioiir6hXqTQY7YWK50wyuLLjDGicloUuHFkOFAeNEZhlMKOFtoarRVFKijsBcKxABpEY0Oq3Cr731yfzsXQOOwXyFR4r7Sv6DqOxbqjHe1oRzva0Y52tKMd7SX2RlSWCexVluf/3vfYvorMPZlEzDJyO05pvNKsN1uur2+mtl/wEATXrKPEbVkWOSMcrROZ6lhZVjpig4LLUJCyLPI+mRndGQBdhyLQVjU4y/NPf8lZU/HX3nuX73zn12gWC37x2acA/GJ9Seh78D113bLrRkJsyZRlmasr8+OSFP0SfjlxlYYQWK/XbLd3vPf+ewD863//7/Pee+/R73aUVYW1VoQ+5Ju95MQoULgBru4AACAASURBVFEyNGKKFFFS0jq0SQIPPme8QU5UPK3pPfuE71NGCAEZ7tNao4PKuu6FKfI2jna0L2/713SCue2h2WZDK9Y6hmFEpUHTWfGlSPKsYdbyVwKau4/FYYJEmVztBShNYsLQe9hfL2UagAjDcKCmqfNDGMb886bqtNx21lradvHCPiUs5ptqc9jV/LHARMXnnMv4zfveP8dBHyvPR9uzQ+hPYSjrikXkL6+bBqHFiqqUubA8wy69DKschwsEHgHNYoE2hqIoub685Hf/5t/kT/7kT/gn//j/xlrL6elp3CUVJal7hmHIkIvU3bpvjis9VpYlOMsQAtvtVhR72wV1ZNdShYkxwDYOLQbKhGNuLB6NDeCj31kul5yfVJzWAjdzTqCrRVkR0Oz6QaAeKcYxJWVZobWRau7BsXmpqzl4oihMHPCbrfT3IClCxCSndluYVZGd9/ig43zaTOgsb+7rcXxvRrA8s1dReiQcTXKc88GQ6fVqb1GUAR6DUgXrzR1X1zfTwIj3ODeig6UwZZxErbNqVP6MeOdorSIeeBFFQhwnJ6cMg4DwE2aJ2H7AW0otnMIKYcrQWvPgwQPeffddqrbhk+e/BOSEG6159OCMdbdlGC13dwNaKbTyse3rGUebv29d15kpwxjDMlK+JcnMXdfxwYcfAvDBRx9xd3ODVobrm2tWp2dUh5O5+UDv/yGyk/FxpTBKE5TPQW8ZKe9UxHsGpUQdLV6m90oUJLwM8r08kmwUWgtbSHyTUSbjNo92tFfZocs4DJj2mFXSY/G3XddnmrIQRAMqvd0YnQVH8rsSDGP2ocYcYpYlIHZRLCAFywmGMe1wQCnB/smAnycU03faG4j1+wN+Cb6RaNWstXuqo38VJOJfh+ZpDuU72tG+yFJyldb6OfY+FcvS616xFUChY2HHFBVF2YAquL7dcHl5yYMH57hgeP+DX+NP/uRn3N3eUkWYZtd1bDcbRjvS7zq2uy1KgdEmC44leEPar6RwGUIQ+OMs6bbWUsdZBe/3Z7kSpEl+DKaIQWf0f23bslqUtEVgtDKHoYOQGgyxkOCck+8HoETILQTBaie/JsOGGmXVxG7hvYi2KWEZItJvBsjw1S959mS7IRXrwjQQ6OeDGfEcfk3YszcjWFbcmz0dWsL2OOfy4N186A8goCW41DovaGhNiJXlm7s7AZQjIHVRhQpUVUFVlCwWS+q6piwLRBGzAZXkq8uMT06URmVZMsYBt4QlutgK28ayqrBVxXa347SteXx2xluPHvH+e++xaJds+x13d8LDbK0M/ZVFxXB3x+efXRBCzcnJScQ1K9q2Ydft4veE9XYjCl4hcLte47ynrCq2mw0XFxf86OPv853vfheAoe/jTTgyDuMLF+grlqEUFcz+3H+11kYkK2M5zgWHm9WU89RphkhPZbuETUrBdvBywQcV36OFdiukxEh/PRf+0b45Jpg32Bv+ZRoGC0zqfdlpHLzWaE0IU9VSobJka7JDzPIhx3JZqEwdNxf9CYE4bT6xYeRgOT6fI/fZgJ8IAE3Bso77NmfCOAyW/7IWXI8sOEf7ui3FDvcllF+mM5HeX0cGjMRksVqtaJoWpTSPHj/hgw8/4qc//SmbyIC12+3oY6fEVBWVd2y3GwY/RK7mQFkWlGY2CBwcznr6bkfwHXVdMQwwDh13t7e0kYr29GTF22+/zed8xvX1NTpWgVPMYj3gA84nPLFBq2mZl4NA7ionEbiUGEhl1zMOMk+V6O7KsqSsSspAVhQcM91ulBiPjq+qykyYEOYxRq52xuJbkPekAUGVinf3JNGpyj9t6OuzNyNY5n7YRbJ51dhaG9uk+uA5MR8gBBVVXmKWKHUibu7uuL6+wVSS2QU3oIiVUQSCURTV1N5UCmN0bpEaYyjLkqLQbDYb6lqoX7ooKWn0/vS7BnQIVAq+/c47fPy979HWDXVVcfn8kl989imffX4BwNCP6KLA6cDdeoN1ou+eqsagqOoqL83j6EBJAO98wA0jQXWUmy3Pn1/x/rff5ye/83s8feddQGS+T1Yrgta4zTpKVzbxWOco9gXzMWNLXIhj3+NHKwtyHtTxeRX28ZyEtNlZS0XPPkeeEofQd6JcVJgivj4BN9gjJw8hTOSKRzvaK+0eONfe88kxJ45lESRRWmgmlZpYMCAKkkxvET9OmC0uYU9dM1Vb0t8AlZkJkqjZyhQCczaMeQie4E96FizP92kOwwD2mDAOv/9fRpu3o48B89G+TkuiQV/XPXLY6S6KIg/wlUXJo0ePuLy85E//9P8D4OTkhO12yzAMGeqltcQbVVmgNNRVRV2n+1kobsdx4OryOWfnGmtHKuOo1YjxW4wVjYYHzTlP3nmHh1XFz41hvd2xrCoKVBZGKoxCxeC3XSwozADBRtYvLz5JSSzlg8cUJlfgrXUSMM8lumNQfUgpOVW0dSQckOeKoiTxQrtI4Zu2o0j3vmzPJShoINI2TKqjGfYWu++/KntjguVX2XxBSPg/1CSjOG+vBuX/f/beNda2LLvr+40551pr730e99StW7e6qHK1u5u2cRvbmBhDIGlACGRCpE6UhyBK4pBIFor4HlCQkPIpUUiUoESJLMUySAmPLxCSoBgLiUDiWDEERNz4Qbtxu6vrdevWvee9915rzpEPY8611t5nn/uorup77q31L906Z6+zHnPNPeeYY47xH2MMylZvDLVcqscnZxyfnHD77l6+heK9sFjMmM/n3Do8wPdp2OwLAd1S5O1LtJQsyvn5BcscBau1LXNNTtemyw4fW47293nl9m3ms5mV3nSOex/c49e/8RtcXFh+ZHE1y3XH2XrJulOaes7BwWFfB77t4hUuXnHBdDlS/LXXXuPhw4d86Utf4rd832/hje/6LJpJEJerDtwqV8kTqqrJG45HL0A91zNTYFYXl7SrFXJ4SN1HEI8tXIlYaBOS8y8Wz0ivbNi5ZSfrc814yWlfwsgNdnF+yfHxce8q25mZY8KEx6Dwfof5o/1G0ZTlodR1EfZ+Q1l2G5xlu8Vuy7LJpc2CJDCmYeS0cSPufjl3uVqZAj84crLjZfzM4V3GRoMYI/P54pGW5WeOp9B3NyxGk6I84RPAeD3tS0OP6VpPoUjPZjNK9qgxtzjGyGw24+joiMPDww2KR/87A7fWZbqmDy6Xuw4b7TOe85LlKvLmG29wePsWEs2oVWWZ9fLREa+89DKvHB0RFN761juIKu3FBavzS04uL5F6xu27dwEI+3PaFbSdsFx2FoPlTQdaZ8twVdX4TEldx46u9b2hsGka6qZhNrM80mtdI91mQRWFTM3QvIEIeB+utf/2ebB1XPxE+/8XI3Kp0qyatnIF0fftx4HnQll+FMpgLu6EJJEUxfL6erFyzs6REhyfnGT359DxwcN81tA0Nbdu7dO2nrbtiBGcN3pAWXBKdZ26rjg7O7MvWoak+lVVsVpecPngQ2sbyp2jIz772ht8zxe+wMu3bvHgwTGnxye8//49Li6W2eoNZAJ721kJ6trP+nKX5+fnxGTFVkrgm59XtF1LjIn9/f2+dGUpqLK/v8disegX/Lqu2d/f7wOOLL/zYFW2ndx279rOzslgVT4/P0OyW3iw9+ezs9vGiVXvEyRXUMpuk9FA7nlE28IJQZyjze6p4wcPeO+993plOTymHO+ECQWb1C6yf2kTpoyOaRiu94aUYiSwbVkerEe7OMu20AwWqxgzjStYYF9fkKQoy2i/2Sw5lot9RPPfd5bulk2r2K6CJIOy/HxamK/k0Z8w4WPAdq7y66rPPQnGyQmKolw8wuXznVfusL93wN7eHr/6q7/cP2dvb4+UEpcXF6RkqV8FECcbfORy//HmVyRbbaVwxoYN/nw+59bRLQRLOVdXFacXl1zGhHrP3nxOqiqarIgfLBa4tkU9iG8BS6kZo3ny57lQycnDDwD6eK3bh3PatrES1THhcQTx+NTis9EQEqKCJmfyTdWMnoKV0k4RR9pQQEqcUokLySo2UkTliIbR6x/Fqrz11V0rPZ5SrDzXyvLGYliOUfrKqBpWOMNxenbOB/c/ZG9vj64zRUw1EYJn1tS9srtc2rXFmlNXFXWTcwjXFXVdc+fOy7Rty/HxKSLCyy+/nHdKNcuLYzSV7BnCwWLB66++ytHBPpKUpgq89fCY5eWay1VLrmWC8zXrbsW6FWbzA1Znq1Fu0RLlSR+cWDcN6+M13js+89prXF5eklLih3/4h/ndv/v3sH+w11ulgUwfCZYFI+dovtKfW58t0KlkFAF1QnJWJjR1nUUPA1Sh5x3330OevKUcuKqiJaH5aGftRKhCoGtb1sslwVsZ7mKNa3MC9hK0eF00/IQJY+xWLoej0sdJZMvy5arPhlH+PrYsexksy3YTZdvlNyjHsXfxls8AoViMSqnrkflYnGO5XvfV+8YMjWwGuPIs54YAP0To2pbDw1t9juVxm553TErzhI8TxStd4p12Ffp5UvR52bOXe5wLvCje+/v7HB2+xHw+5wd+4AcA+Lmf+zlef/11VJW333qLVtWs00kRyfnIdcj+5b1nPp/ndXDJ2dmStosojm69BqzkPWAVi5MFC1bB9Ba3Wg/mWOizUMGIcpYV/NI3XSeAbf6t0uDQFks40JKiIKI4sbivOlSE1FGpKcseiBEiHg0zIsKHy45ZCoT5ASFU0LVoZ152TZ3xs3PgnuWdH7x4OuIyj74EK0jyNHhK0fhcKsslwGaM0m/eSeb3bXISj8/OuLxcWgRnHnzGS3QsZjOqKmSLkCmVITiQBBL7oBhbPLUvU3lycoL3FXfu3ME7z+XlkpMP3mOe16rvev1Nvv97v5fXXnmFygmkkgaps8wZMXG5zIMbWHewXEe6yzXSdVxcXCAitG1HPbOKN5pGAT3OUzeWvUNV2d/f50d/9Ef5/Oc/TxeNf1kmw97eXl/EpHpC6+yGK1qEUFXsHR4AEBYzJIxC9u0knAh+tLyXOL1ts3VZ/CQLmLOTU05PTzk6OmL/8DAXTclBAjHRRksp96Is/hO+szBaUG/ANWzQMMyyLJUV7XE7OMtdl3nCjKrr7aAKdN2mstzljZ9zftOynIbrRByXl2d0pSBJvmevIu/g4hXLctlIP9qyzPNqXJ6U5AkfK65LyfZR0w6WzXCxIu+mWdg9S0W9gjJXy3V1XZO6aLmkVFmtV3StXTubzQghmDVaI1ErLpct52FFlXXJy0zrvH//AS8dHDFrZrz2mddICv6dd0gfPuQidhAc1azqgwe71arP4lU2D5tW7GJ9t88lO5AWQ16WRd576rq2DEKl8qliqd3GlJekOB/wWXeRFCFmZTm25alGtxDBqxIyT7k3QuQ+jSp0SdAkJExHG66m/2zHPjqeK2V5l8zsXaKjz8ax3bQcnZyecbFcYjkEcxU+Z4ui5VYWUirEc89s3uCcslxdcH5upPmLiwvqOjCbzVjmexXFUxUePnzI+vyE7/utXwLgX/znfxdHt+/g1PjLSZXKBaqqJibl5PScs3aYaJYvUGnXLQGlbVtCCNR1hfchT7xh0t2+/RJdVN59912apuH7v//7uXv3bh98NN5QlIlc0uKMB92TokwG7/1Gqp2igRSrvkOo8neSum7gM+fTY9cNG5ZgVunVajW4v5L2wYCL2ZzqTgkq6GgLZ33ChGtwXbCwbJ0jiKVkT5JTx3VUoaZ4NTdpGEbisMUUbIYN1o7xwlhyLI8ty8EPkffmXnVXFOCSCWOsLPdzYkv4bcRp6Gb1vrGy/LxjCu6b8J1AoThcTUX7eGxvmItnqfw+Njot9uZ88YtfBOCXfumXOD4+HimZQ9VNy/eeSrDFlbaaDKnpYmK1aqmbBgTWa1sf3/7W21QIb77+Bod7+8w/9zmOjo74la9/nW+88w5RhP35jCbYvdvLc5pcerso/yarHG1Ln+N8/K5t26EaQR1VJeQIpWs3G7keXy/P6rqyaoEp9oH8kJV1uxNJxLJlpoiQKyiP9ATrc1O+U4IkO1Taje9yW5F+cjw3yvLm2L26Axy7/8thEYdipRJPTkeW5WzpsQXRvuC+xCObFptCSLc22OA/OTnh/PyiT5USY+Te/Q+4uLjg7uEe+7mEtStKZZuw7zsym82Zzfe4uFzx8OSCZW63cw43X6BSE0Ki8YNi6pzVTle10tLWRmF//4B33n2Pex98wFe+8hW+/OUv50ljkbglb+zQhwNh/kkU5e0dcuFsP/HOO19juaodvvAygePTUy7Oz7n90m2C96zblrOzMw729mFf8HkTMl8skOWSLm8cNpT0CROeELbmbI3b0WZ6uVza59GY91uW5XLJVc7ysAmFgYYxPq/OlmZfsmGM8zTl80qOZWQzwM/alfp7DW0aZQTKyvJ8vpkN47nC9vczKcoTPiFsbzbHeFpFuczDMQVjfMwyXFj6VlX4/Oc/D8AXvvAFfv7nf57gPYcHB6jOuLg4Z9ZYKei2XdOu1v2aD0bNKFTEqmrQXAa6pKLss0jldpV2GB3DAuSdNYwmVIQs19r1mqZZ0LZtf83BwUHmLGcvb0o9TS0lpesibZtAjepalGXTEypW3TB/284ybGh276kmqpzjOqWEpLhFqwDdoWaMN89pJBMLXXUnNt2J5fZPjcdqTCLyUyLyvoj84ujYfy4ivywi/1hE/pqIHOXj3y0ilyLyj/K///4jtGnChAnPGSY5MWHChMdhkhMTnlc8iZnup4H/BviLo2M/C/xpVe1E5D8D/jTwH+W//Zqq/raPtZVPBNsxlHykIhb8otlKc3J6xuVyibjQWyycSJ+WxfutogPZmpq2XKXFvdK2HSEMgXKnp6cIyhtv/CYO9iyP8+XpMe18j8oFUuxwIeCS4+LyksvlyjJ25J2aCw3zvUPmR3dozx+wPLPCJvP5nBAqlu3aciPn/c1isSDG1AfLvfnmm7xy9y4f3n/A3t7CcrNuuZXKrqzNlX+eBIVfVe71NJbdwhwvbpc0srx1XcdyteL0/Iy6rnntjdd5Nb1mLhgnhJJcvak5zFFOpXrjhBuJn+YGyYmr3MOrIX8ikIpleb0eBeRsep3K9eW+5uXRK1besWW5rquNY5U3q7JV73OUstp2z5JjeUmXy72nwokugcrZurPpYCu8Qft1TMO44jlSnsA08gnjI1iIJxrGC4ef5gbIiV185fHnXec9yb2uPYdc9l6VgwOL+7l9+zYPHz6krmtevXuXEBwffHAPhxCCyQcL8iuxEFb2fbVaoSLUeS1O6hBX52q/1pbjByd8uPiQV2/fYbFYsL83Rxy8dHjAvfmMVVKTKYVvPZJpm/xta3/JRlVVpg9YJeGYaRFmaU6p5D42zzaS0+KK1WuImlCxHFmqdo5glQil6/q2aCpUNEdSo1cQrSHjXNZ9Ibr++9pdIvzjwmM1H1X9uyLy3VvH/tbo488D//rH26zHYTMPYvZC5r8ADF/2Bg1juaKeh2EACNRZWQ7e95xlS/a/lXA7I+Q8zG3bMpstNkj988YTvB+oHaEy90hKaIqEvQO8BP7pP/0al6uWO6/c5TxHr8YSAa+KG/EgQ6iomxq8I0U1mgW29p2fn/Ol7/s+LpdLvvzlLwObJXd38RrLOR9lMI15mU+C684snOnCs/Te92U8SxBlGgssZ64bh6OpJxrGTcRNkBPDkNk9tscOuBLPQJ53lgljCJaTrQC/8b3t2s1sGOPcqmPOcuH/VUFwWWG2bBijNmbF9qKnYbi+peZiHWgYfSu23cgjzvLYDZxP/mh+xxuCSVF+cXAT5ARsUqm2qRNlTRqf96j7FAPSONCvYLzWppTzt4eSXatmsVj01xflT0YxC5vz3PSOtm3pFDqFvVlDjHBxsTL5Vtmzb+8t8C6wXi65fesW87rBB88br77K2dkZ9x5+iK4ue4pFXVlquPV6zWq97OVZ13VcXl721QnLu8WY+0wExPVKuulCaYNqrdlQViI8BNBkmcicCCl2SIzIKPCxGAqSSqa/DnzmgjiquVGuGV//cePj0Dz+feCvjD5/TkT+IXAC/BlV/Xu7LhKRnwB+AuDVOy99pAf3g2j0u8jIgiRWvU+Bs/PzvBim/u+mLBs31ntHirJx3zTiK5OfVEpdt23bp2ArHKJZtRn8Vjg5xNjzih4en7DuOnBC8BVzb89fxsT5uiWIx2miaZrBylWKdjhoZlab/ezsjPPzc/7gH/pD1HVN0zSglvViFye5WLmelK9c+mEcENj3gm5ara+Fbu30pARQBubzeX9a6cexgr/9vAnPPT5ROfGoIdJvpmXTulzG72VOrN8rlWKywfvC99ssSJJV5Udalssi2SvLfUGSnA2DcQpFq9B5eXlpeUhLvmZlyMGcNpXlba+ROEfXdcyyfPgkLCvPEpMM+NTg25YTb7755lM/9DrL8tOglLgvOsLYQw3GG3ZOWCxs7fvc5z7HD/7gD3Jxfs7y8pKq8jnvspXWKBWDS3bIrutM2fbe6krIZuxW2f6Tr/XOk1Spq2BedO+5fXTEZ165w/nlGR8+fIhmXWD/1m2in23IlOXykstLS3DgvadpGopjOSUlRgX1OBeoqxkiFvcVQsjes0E/SymRJKHies9cndPZ0p+1iRwOYv2X+7AkJhjrJM7vrub8cePbUpZF5D/G4rX+x3zoHeBNVb0vIv8c8NdF5PtV9WT7WlX9SeAnAb73C28+1VsKV4P73GjAwJDKRBHOzi+56NPG6ciyPLgygnesOsH7TcvRLsvyarXqF0SANluHZ5Un+DBSlivEe3TV9taik5MTy+ggbpzykKRWiaZQFoqiKuJoZg171T6r5bovO/3w4UN+6Id+mP39/T4jh4jlik46lMcd0yi6zirzPCmVYltxLX1ehMJjMXq/8aSum4ZD55jP53Rdlydh6AMmecEW+k87noWcGG+eUw58uaIoZ/kwVO8zIewyDaPcoxQk6d2SOyy1u5Rl2Kze53OAn8uFkXrR4sYBfhHNG+jesiyPsywbw8KKDdV9e672yZP23s3BNt1lwouLj0tO/MiP/MgjB8w2RWu8fgL9WvRxoWSxso3s4JF6/fXX+SN/5I/w1V/8Rf6Pv/N32N9f8PLtlzk7PSWpWbdrH2jbElSXemNcWkdwAfE1y1XL6vySygluYZtlf3TEbNZQ+4qmtgw/DiF4R/BuoEj29DLXW3NLX7Rty3K5pOvakazZpEWZt8wClgXyGh6o6qo3NhATMUUi0hsGSvlsO8e8eYMpuuTCyhZ2vfpcO7z9NT9dMZnt+z0OH1lZFpEfB/5l4A9ofqKqroBV/v0fiMivAd8D/P2P+pwdz71yTLVfb3bmWD45MwqGOEfSNDp3sCwPxQhcrheguUb6Zmd674kxbhT2KDzaWeWMhtEr4CFbkEC8DZLj4xPWbdfzEvt3sKeDbpaIHEe0pqR9RgkRx+/4Hb+Du3fvjjiKG1yUrT56ukXncdyfb9dyVQSWpcarcdkS50Yp7rbbsv37hJuPZyMnro5NkU0aRjmo5BzLmYZhFqFNZXO71LUZesfzacj6ApZXucyPbkzDKGnjShXRMsfysy4vL42j19/VFgTHoCyPec6lIEmhYczn8z4Txo0rc/0RMM31Tw9ukj7xJPE8u3jNIYRND/fo9100qGJ0ijH2ssPKW1ckNQty5QMpDTpBqZWwd/sI8RW0a9bnp7SxJcXEep3Tvolnb7HPrYND6lCRUkcdHK/euY0PsG6XtOtLHhw/BKBd7TFbHHJwcNCnsCs6QylhLWPdys5AyF7vUUzHkCIz6y055kizUiwuK/7OZaqb9FbyoX/JSvLgNSx9fpWrPLrmKfE0eow8iUDKHKP/VVV/a/78Y8B/CfxeVb03Ou8V4ENVjSLyeeDvAT+gqh8+5v73gHPggydu+fODO7yY7wXP7t0+q6qvPIPnTngEJjnxbWGSEx8/JjlxAzHJiW8Lk5z4+PFEcuKxlmUR+UvA7wPuiMhbwJ/FolUb4GezZv7zqvongC8D/4mIWKgk/InHDWwAVX1FRP6+qv7I48593vCivhe82O824ekwyYlvDy/qe8GL/W4Tng6TnPj28KK+F9z8d3siy/J3Aje9oz4qXtT3ghf73SbcTLyoY+5FfS94sd9tws3EizrmXtT3gpv/bs8/sW3ChAkTJkyYMGHChE8IN0lZ/sln3YBPCC/qe8GL/W4TbiZe1DH3or4XvNjvNuFm4kUdcy/qe8ENf7cbQ8OYMGHChAkTJkyYMOGm4SZZlidMmDBhwoQJEyZMuFGYlOUJEyZMmDBhwoQJE67BM1eWReTHRORXRORrIvKnnnV7vl2IyK+LyP8nIv9IRP5+PnZbRH5WRP5p/vnR6nt/ByEiPyUi74vIL46O7XwPMfz5/B3+YxH57c+u5RNeRExy4mZikhMTbhImOXEz8SLIiWeqLIvVPvxvgT8MfAn4YyLypWfZpo8Jv19Vf9soDcqfAv62qn4R+Nv5803HTwM/tnXsuvf4w8AX87+fAP6771AbJ3wKMMmJG42fZpITE24AJjlxo/HTPOdy4llbln8U+Jqqfl1V18BfBr7yjNv0SeArwF/Iv/8F4F95hm15Iqjq3wW2E8Bf9x5fAf6iGn4eOBKR174zLZ3wKcAkJ24oJjkx4QZhkhM3FC+CnHjWyvLrwDdHn9/Kx55nKPC3ROQfiMhP5GOvquo7APnn3WfWum8P173Hi/g9Trg5eBHH1yQnXozvccLNwYs4viY5cUO+x8eWu/6EITuOPe+57H6Pqr4tInex8p2//Kwb9B3Ai/g9Trg5eBHH1yQnDM/79zjh5uBFHF+TnDA88+/xWVuW3wK+a/T5DeDtZ9SWjwWq+nb++T7w1zDX0HvFjZB/vv/sWvht4br3eOG+xwk3Ci/c+JrkBPACfI8TbhReuPE1yQnghnyPz1pZ/gXgiyLyORGpgT8K/I1n3KaPDBHZE5GD8jvwh4Bfo3C1DgAAIABJREFUxN7px/NpPw78z8+mhd82rnuPvwH8uzmK9XcBx8W9MmHCx4BJTjxfmOTEhGeBSU48X3iu5MQzpWGoaicifxL4GcADP6WqX32Wbfo28Srw10QErG//J1X930XkF4C/KiL/AfAbwL/xDNv4RBCRvwT8PuCOiLwF/FngP2X3e/xN4F8CvgZcAH/8O97gCS8sJjlxczHJiQk3BZOcuLl4EeTEVO56woQJEyZMmDBhwoRr8KxpGBMmTJgwYcKECRMm3FhMyvKECRMmTJgwYcKECddgUpYnTJgwYcKECRMmTLgGk7I8YcKECRMmTJgwYcI1mJTlCRMmTJgwYcKECROuwaQsT5gwYcKECRMmTJhwDSZlecKECRMmTJgwYcKEazApyxMmTJgwYcKECRMmXINJWZ4wYcKECRMmTJgw4RpMyvKECRMmTJgwYcKECddgUpYnTJgwYcKECRMmTLgGk7I8YcKECRMmTJgwYcI1+MSUZRH5MRH5FRH5moj8qU/qORMmTHh+McmJCRMmPA6TnJjwrCGq+vHfVMQDvwr8QeAt4BeAP6aq/+Rjf9iECROeS0xyYsKECY/DJCcm3ASET+i+Pwp8TVW/DiAifxn4CrBzcN+5dahv3r2LqoI4xHvwHgAXAgRPSol121GtL1GEy9WahyenrNoOnCNlnV8AEQDN/wxqB1EE2dGG4ahdUzYRIiD5WvuT9neV/G98l/EPu4+MrgDVcasATRvPHY6P7lraPt7Y5HaVf3ZMKadoaYYMjUlJSSltPUmu/CZYm7zzvPTSLeazOWjCOYemhGoCHV0pfdf0z1YSqorkdq+WK9arVW5HQlPio+L94/MPVPWVj3yDCTcFTyUnXr51qJ/9TP7aZXMeqyqxi6SYcE7wocJ5T54oG/PArncggmqiW69wAuuYuP/gmOW6BXGk0XwTARnLFJH821g2lF81j30BAZfnqGoiJaWfpBszcUcbx++3eeaV3+yjXj15C87JINsQnHM473CSnYySRnLjqqSwa3Xj2BhJXS/jNEUO9g84PNgfXhFMfjCWub3UzX8bd6ZJssuLC5aXl6gqmvTqg3e05+0PTyc58WLgKfWJW/rmXfvakyoiDvF5fDuPeIf4AN6RUqLtIq5d4lKiS8rlcsXJ+QUA67YD523cUeQADGN0c448Xs8Y/j++fqxvgIymn16Z+1fvKzt/3dY97NhWq3tZtGM93pYjI11Ix4pM0UUY9BElDaJxQzZu6iWalKTa9+/O98qyXiiy077TWdMAcOfO7XyvhBMBLfJ3eNn+7mo60vh5v/rPfuOJ5MQnpSy/Dnxz9Pkt4HeOTxCRnwB+AuDNu6/wf/3Xf462S3TOUx3ewh3eAqB5+TbhpdtcpI53733A4a9/FY/y9bc/5K/8bz/LL3/jbWRxyGXXlvtSBQfa4qQDMeUwOk9yniQel2zi2NqSEMmLRu7olDpSSpCUUDlCUdwxRS9lRc/nf9rPIDcorvm4qqPNCmpS0407VVNcVSGu7d5pnRdU+wpTysqmCN57QgisVqv+2SEEqqrqf7pK6KS1QaBKTAoieF9ZW3Cs246L5Yqkkhd7ISZTolUVlyfMjBWpi8xmDb/3X/jd/Ngf+P00XqicQGxpl0tA+7U5ZeVA1d5NE6z13I7FhBfH29/8Jr/y1V8C4PThQ7rlmth1jx1I/T4g/yIi/Bd//f/8xmMvnPA84OnkxKuv8P/8D/8VRXSOF552ueTBhw84P7+kaRpu377D/NZLSKhs4+0rm7tZKQx7+0RVHr77LpfH77LYq/nmB6f85f/lZ/nqN95GZvucLS8BcM5RBcG7iJOIkIjOE8WhLqBRICplwem6jq7r8HnMhuAQIMZISt0gCIZ3xPuA+hqgn8Pj38cb5Y2FabxoS+pXpn7rr4qmZLJGlb29Paqqomlq5vMZ89mcpqnxIS8Fck5Ksb+W8k9ANBG72G+mnfOIs+9BsdOWbcXl0uTn+ekJv/NHfph/81/7VwHwkiC2kCKo4hHUCaomg6IqKS5Jav1eZPC8qvmlX/wq//j//YesLpd060HWj/tk+9if+Ys/M8mJFwNPrU/83J//c6jCqo0kH6j2DwBw+/u4gwNmL91GDg+4WC354MFD/Du/zuL0Pudt4p98/W1+5u/+3wB87VvvIbM9lnkOOecIHtAOJxEkUrTGJC7LBG9yRh0+9bNjU89g2DimFPux7ryt7V5cVuwGfaOgzj8HvUOQLNe0H/8mI9uUbH5hIicpNs+K/lHObs+R3EYY5E55dtFDfNaFUkq0rc3DEAIhBJOTVUVVVUTXkSRu3EtViZrvFSpUHeu25XK1YtV2ppfk3uq30+LwPuCcp6LDxxUxRrxzvP6ZVwH44//ev8Ptw0O61QWNdwRgdXmBR7OsVWK0tsQuErtIFxMxJjpN/IF/+z98IjnxSSnLuzZVmwZV1Z8EfhLgR773iwpm9UgxojFBfrnUdRAj3jvqqqJtFvjlKU0duH3rkDq8Tzf60lX7vcvoZ7aGqJr1NWt5ojv2aDLeHW3veDbPH1uYtT+yZWsuBiPTXa/unsRtnS8bC+P4vZxz/eAdD0BTdH1eJ/P1KqREPzGdc3gXCN4GSgJQwQNOHKoJjeVhEVKiXa741m+8RddGDmZ7aLdCxBZITYq4fO9sZYsJJCVUwGtABNZxRdPUHB4e9jvB02zRKo8bG9R2LXq7Pk94IfB0cuK3fFE9YedYKMpjvoYuRtbrFdqZ52nVdqzalsMD24SzmLE8PuH0/ffwPiLe0bZrvHd479gUDYptlTdtuv0nJ2i0BQiGjW5ZjNbrLntiTP7YnNxS9GRz7hcLqggb5zvngKIUD393zhNjGsmh3DQn+KomeE9VhV5ZrqqKuq77RW6QlJuLZXmOtd8WLxFbNsR5RISkagtPF7lYrVitbWa3sePk9LS3LIkT0tjiJmaw6D8nADda8O3Rzjnm8zkhBKIPqP/oXqkJzyWeWp9wIkS1+aFjT2bSrGNEJCXEObz3dFUDqlTBc7C3YD6ztaoOnjZbLFPvVRmt2SqDR4fBkyoCaTzQx97lR7xUfpfe0bSLJXtVy9h5F4pBoZyvW86iDV1DHIMCsPucKxt2kV7WbW/uZUu+XdFpdPib2/ISFmnX92pR3MURsmyIKdFmY9uDBw+5fXiIE0dMiSqM1NqtTixMgfI89wQ9WfBJKctvAd81+vwG8PbjLvJO0HVnloeyE2izslw1VFVg1cyZXZwwqwMvHR0yayrOutgrham4SxBUZbBMAv1g3uifXcrpyDo8tupsLdKP8HZu3W1wh5TNYPnCVPzua/IAGz9/TLmwxTjRxUgCIkrq13NnrdM0utbhncNpR3u5RpzHOztu1vRhoUzZExpj4t333qNtW6pQ0cYWIeG8J1TV0A8CURMaEyliO2T1FKu9iLC3v8dsMQfABYckT+w2FeNrFeIioya8aHhKOTGiHG3zmRI48VRVDc5zvlqxEkF8IIoQNRFCxWpt7tXjr9/n7MExy7NzDo72cM7jnNDUNd5lC1G+tYK5bkmmLJI3iM6RxBRIdRCjCe9eWcamY7HUepENETK22jjnaFdrnPeZUmL38s4hDlJM+ZoOxGaqF4dDcDZZSfn53jtCXjBEhKqq8N5nRXvT5SsopEjKlu6kHYmu71snYkpx7nLnA5JllojL8illS9WIzJbl8OnZGTG/Z1MHYrvGiUM09hsc1eylUjUDxobMNlRVtUk52x4Zj5MhE55nPLU+IdlC5UTM+FaMTCmZQSdFiAknjhA8q6IsV56mqTjYWwBQV4F1m3De5tNgjNvULwZsLVRbCmrxFm+ewMg4V+5yHZFjl7I8UgaL0tpbrzcbYLrHDgV2h7K8S8kd6yLbx8rv28ry+H7lBXW00Zcsl0SKwr1973LN5j27LCMfPnyIfvZNxDli12X6HbkHt9qbZbA4h9PRPucJ8Ekpy78AfFFEPgd8C/ijwL/1qAucE1JSnIDG2O8EU9dCjDjnqEPgrFmApt6yPKsrTtcrfB7MKbsYfL+oCiKKZA7LdXqXqqKFGzPSsAu/Jd9qsDrv5NjsvPMV+t+mrj5S469MpOGuCUWCt0me35OU8CJoApdctpgLmmwip2RLqbU94ESoA6yktYVK6RdBgX4gCyG7nIW4arl/7z6ffe01NARSu8Y5Twi+3wCkTL0QsfaLs3s4OrQ2C3PTNNy6dQjA/fca1kn7xfuR3Vf6S4afE14YPKWcUOjS7s1TEoKrmC8CVIEVsE4REaGLEXFCVdeD61HNMyJZWItA27UoxnmOG+uZGE0hxp4CgUhvX9KyAl0zOKW4lESIsUNFcEjvGgSy10gJwVt7MC+Sk+JK7N0+ZammUDnK/80iJWwnOfLO0dQVTdMwbxqqOlCFgM8xCHEkb8E8TWZtlt7tqqpEsuV6S0alpKzbyHrdcrFqWa7XRslYr3lwcsyyNarZwX7DUhOV96imDeu8kPtow3o/ePdCFaibhvVytSE3RmsgguIkDZuACS8KnlpOiBOIeVObRuM7mdc0xYhPCVcFgvfEqqaolnXw7I+UZdYrRDKdUcc2Wxj7mKRMv9E2e6w2XlWUN/WJcuK2grods3TVo/0IXLEm775I5dE21m3r8vbavW1ddlxjBCz36K3n2bK8s11Zn8nHE2LtzP3VW5YfPjR7v1hsW6G1pdj2MrL0oXMO9YrL38XThE59IsqyqnYi8ieBn8FovT+lql99xBXm5kB7KoYvC0lMpK7DYdyYrlmAKrPKlOV5U6MnF7hQmDx50XCurGIbTxIdbSdErvomynkivQK7OXi3FgrAld3mNaOt7O6KVVt2PVMcmhfEhKICmmkOKqaQBu/7L71Yr8ruqus6fFXjQ00/gVVJMSvLHsQJwZsb2zuXjc8JjRGnwwajqmqqoHjncaK8++67rL73e6hCQLtug6piN1eSgBfQvAALzvpFrc+rENjbt0Cfpmlo86JXLGZ9120pxcNiOFmOXjQ8tZxQhjktmwPFhUSoKrN2BmHVdXmpsjETqgpfBZYXxof91lvf4Oz+Az77xuu8/tnv4nx9xsXFOet21Vs9/MidF6qKLq0x6zb9vQtSCXzdARGzDpMDbJ23zWYZymUuF3ekEzVZmC3IzjHayF61FhV4Z0p9U1fMZjMAKu/Z21swn82oijcob7Rj19mmAQb3JoUqMbL6lo2ASg4Szl6/BG0XWa3XLC872q6jjR0dHSKOhHJ+ecGD42MA7t45IiVFgsnWTQuZ7YBE3UiDlv4vdVUzmzWcPmgJvvSNbijLm30+yYkXBU+vT0BeOnFOeioGjCzL0ZRm54TgPRpquqohaNdTMQDqENB02Xuuc3uKerzdUjvaK4MyUlavztlh/I8U7+JNLkd2WXd399GOMa8bsqIYdsdq/nCvx2cR3m5HoYVeS8MYa/X9+wwGyCKbXfasFV2g9MvIXm16ChYtUeIwVivbhN97/x6x6/LG3ugyPnhS7K5a4fOzCKZTuR1U3OvwSVmWUdW/CfzNT+r+EyZMeP4xyYkJEyY8DpOcmPCs8Ykpy08Ll90mXoQudrbzAyRFsyzHiHeeKgRi1RBQbh3uM6sriN2VnR/G5Bvt3LJld4toP3aRFCrGYNZkHLSOYjSRDdL71nuMd3iiZiHe4O9kmkhKKUdk2ns6FC+6Y/85wHvf83FijnJVZAgmcorzQ0aO3uWB8Y8rHAHH/mxOt17TxRaJHUHEInDzvX1QhNhbj99/9z3Oz8956ZZZhqtQsUG1VsUhJLH3KPxDGHaSAAfZsjybNZwdK967kZskd/kWL3GyEE3oIQJut8jqM0Q4wdc1TV3jHNSzGaGu2d/fJ3Ud55dnAMTUsb8/59bBAtFE0sjl8pKubc1CrLoRB2HR5mUsOgSbc13XsWqXxPU45Zn2MQmDbdS8P7rD3FIy7GgyeoZUNi+Ga7e52ilbVRWHWdGMZlLRzGbMZrM+mDZ43wfyeZGckeN636PgLCjQGcfZeMkQk9LFjrbtWOcAvi4mVm1k3Xas20RKguJIzrxMRjtJnJ2d9f04UEVGPTCi1STRnjomohbfoIngYDGriN2SWTXwsXeNgwkTxuOgUDEA4y5nGgYp4sQC/AoVI6xa6rFluQr9XCxrs2ZK1SYdIz+3H9+DvrF9zi7er4igor2+MZ4n29DtD48Y8rutyJvrcjmg9uCr7driJI//th1b1f9dR/SRLA83LdMjy7LzBB96XUD7tJ5SklmgyWIjOlFCfpfiVf/wwUNiSkj+HlUVHwKxbYkxZgdk9kA6h2aKmahu9sFjcLOUZUYZMcrgjrHnLXvvqKpAW8/xqzNmdcVLtw6pwvtEtr9QGf0b0S9UByK5sJPgvSsjBvTOjI1zr14+jN6UlVhTjCNRFU1Cm3Kuv9GilTQH6mzdNzsbEfF2Tq8sxHx8NAhVQV1/ThId9WNCnOKdI8WOdr0q/hDECXXl+wjg+ayyRT0P/vfeeY+T4xOODvczxzO7tsaKrpaBD5LsfVYry187q2pSShwc7AFwcLjPg/sf4BgmyKMWubK0TsvghB5lU1vGTahwVUeYNVQHezgvtE6YHezjMr9e13Drzkt2uibS+QWzpgZNOQWjcXmLiC+bR8GU4pgiVXB4p8Q0pIy6Tt5ur2MhBGIydbm4Lx+JnFnGVNhybkQ0ByZ5YVbXzJqGpqlpZjOa2Xxjw1mCB3dJrcJiMeU4n+8CSbxRLlTpukTbRtZty6qNdF1k3dmcjdHy0nYxjRYd6Z9p75s4OT2114njd7ZUcaCIF6IkWmebCde6vn3BC0IkhMCsp5LsiHeYMGELZW10IsMGMSvLmrNuSf67KcsNLM+otjjLDkAtI0YsCqETtjIF7CRa6Na6dh1veSwKtvWN6zjLPdWjP7pr83hVMd5J4xJHTo670XfbbX/Ue5TjMSUkxp5GmkRRlaxuSE5l6fDODBzOBbxLJNflN3E5ONrkXqFsqTLKgZdok9EwPrh3j3vv3eO733idpm6w2AXbBFlsx9AziaJ9g+juzGPX4UYoy+P2eufQddtnwyicZWLEhYY6VKyaBbPLU5qqBPnVnBcLrcgTZcQA+oA4eHxGjP7n9uBnWDKNCqgoJb3baCeaP5h1JZFSsQ4PO7GUI+5sIRgnFC+DZRigZbEoC5M9LwGeEq3uXLKABkZcIjEB0C2V4IWmbtjfm7O3aJjVNhxCcCQqlksrIvLBvXucn53jxNGBkedT27fFi2XfkCR0JIKHKODrBtFo/MzkaI6OADi8dcu+Zw/deBeb/5+NUjsxGY4+zRDwYWsQlPkjdKKIg2rWUM0sB3m9bxu0bnUJbshHirP51caOZr0iushiMWe+N6OLLa6RfnsmJZhkYz5nQ7cz/n+SNFo8rxHAW16TArPgCjgxLq7av5TMgowfgglt0Ya68jSNKZCzuukzXowe1f8swYApRgQleAbeZdlvlHgJSxJAjLawxBjpOstJmnLu9isz1nmCs2JS3geinJpcUkG7NQ/vP7TvYB1BB09YTGvjhvuAutEi5gZlWZwtaj4E6rrGe2/pAHd27+SRmjDoE04s/bkT+owsagvvkD4upryx87Rb6eMAFrPGMmLkwLF+8pfAeR3kRHap9h5dkXGpj12q9PVG4e9k+rjhebJTdO3ypCtYMIUT61tNpNjh1OFRoiZcyH3UC6/88NyFppuZ7OiIXFwu7TTncBLyBr5k3ClJDcyYam2w1rSrNfc/uM+bv+k3UVcBja3J+SJvZZQiToqxIrcj7Xjha3AjlOXSeyUjhgg9DUOj0TDoIn5uluXzxirKNTl93LypODszxc758EQZMcpTN1qh12fE6P/OkFx8oG6Uvw/nQU60n6sCmUUpB7bk87YpBylJtnQPVqFdpPryU1U32mHPjpAdFXbrsj9NOPHUwVHv1ew1h+zNaxazhhCcpbUa9UgbS7RooqoqvvX22/z2H/4hTk4fcHR4yPnFaW+hB/CUrAKCw5FEScwgrSgZMkob9/f2aGYz2uXySo7Fgmmtm7AbOlqwNo/HrGQC/YKlqpZSCAiLOVUuXrTfHXLv5CFnqzWztmIJ+GBZILq2xaWOmMpCYvcXtaT6jlxpTnzOHLF7rg6wRcKU4kBK0dyDxSje5zoWKp8D3GLXB6hoMQ+V9y9CKa9vIXiaOliAY/AblDSTd6nP2SxZMbBuTAMFpNxd2VicSxDxat2y7qIZ5rLA69Tkmc9p92xdWuNTzfnpOSSl8oGT+xbg1606vPOjTcN2Ss2rFcfKW3jve0pNm7Oc2HWycV6/A5jwKUZep51AyhSAOFiWS5BfihGXipfGs8zKcl1Z9hiAg7096hBYXZM+bhtmf9u22rIhrq7SMLY92cNbPC593HDrzWeKDlbtR6WP26jb0Ftyc1dlk6ypJCaDiqQodNQil4qsHd/PFS3ZD3Qu1KHqUXWkbP11WMEzzyq3PetgadgsJC3d6vpNS6/ox8SD+x+SYqRZzGnVgq1FLANS6dfSS0lNJ7OAwidPh3EjlOWihJaMGF6G3YPPO8AULSNGFQJtyYgxSh+nyfKn+lDRMbYCXx3UZUHtc71sjW3VocCAJeEfjkeS8Qq3dltWHSdbYuIwYGJMtCkBLkfXy2iEjx9suyxhNy2hdymNLMq78hvGuCL4TIdA0VxFB7FUcE4coXa4ZkZwJR9zZJxUT1xCxIqcdDGC97z73nu8d+8es6bpFeiYU0LZ4jdydQiIaKaDtENOw2zVu3XrkFuHB3y4XuG9FTh5FKZMGBMG7B4rPT3IGXdeQkCaihQEHKxSot5bsPzQlGVfeWYHC87v3ycGT1yvUZSua1m3a0LbEbP1yAr4KA6TC+pG03dY767FePxK9sJ4xJRWTFkult4qmDLdje4nWOl5MA5yU9fMmprFvGFvPmM2a6h9QEVosxV5W+l0brBg+7zBHmWu6xe5lBKrtZX5Xa/XtG3LctUSEdR72yD0OZzLwmvUEHJGkODmaMybdRHOzs4BaNuOpglZyd+yMOzqr9J2CYSqYT6f0zQN3WqVrc/jTppkwwRDWZUHL6ygbTa+ZStooWKQIpK9Ml3VFDcLVZ6b+3uLnD5uiXtk+rjhp5TnZ+rnk6SP66dBMb5eMy+ui5XadW/zgqVcHTMVBgpd/3vqU2lqNiQGeaQo27h/yd2eSpXAZHpcyV/tinyjxrnB62UxIZbiNmvdG9UBYbAE62hz49IgI4MfKiEGHA/uf0i7WlPfrtG4JrUJ5zzeD5sQGKe5jb0R70lxM5Tl/K8E+Tk35CA1V0kktSXIzxGqQAw1lcDR4YHxDnsahgNiVpZtNzMM4d1BfqWCXbGySOHSZT17NNRH7hHbFcUYexdlSpEubZanHCw1RR0dZsWVSYPDydUchnafvKMbKctjDGW4l1TBFmVxDnFlMpjlrKodIQizOlA5SGrlZ7Nzon+W4lHXGK87eD54+ID37t3jC9/9XXQx4pwnXZn0FvgkXkiSUPEkWRUSSd+Le3sL9vb3eHD/vlUeS93GO21zLrePTfi0woR+Sa1UyqzbXxRpKtysIuY0iUlyfnIEKkvVdnxm/NmjxYz57SM+eO9tzs6OSaG2+du1dG2L1ziM2LH3Jy9kKUZzL2ahPa6uOV5uysJp1yYLgJUhNdvG22XLjKVetOIighXzmOeAvVlT9Qt4EwKhylWt1KzHia3FWDYXajBZUQL9jGbR9fJ23UVWa5/TwOU4i6ZCfADxqFpqObuf8bYlJSTlQBq1QMexwnt+kZXlrmOxmKPEUfBgX9h26K8i47LBI6HGWZ4vqOuGczORP3a0TPiUQsu6npVlGaiYY+Ur9enjchGfUFn6uNRRZ0XvYG9BVXm7ZqyIalGBt9ekbHAaeZwH49iWiZnxfnvz5O30ceWZ4+t6yadFzxgit3oKKKYgR6xo0BVFfKQsqypJhkJi45b2/rp+3jnbOPvKuC7WUCj3QZGk40cMbyoOTRbz4MTooA7H/syoL127JsaO1EVEoxkWvMPXAR+KUXEs55SHDx+yXq+zd9soGM4shrnSsPTfi0gugCcWVP2kuBHKcnGrFkXQO6EtynIm0fW8ZeepQ0XXzPGrc2Z14Ohwn+BHViA2XSX9sC7u2/7bSzkZdz6v0CpK3lNnVp95YzlLu7im6zornuKGQVyivLdvn5R+8VKx4iFGdldssG0tlpaM9Ym4d9s5DgcaRrIsALVVIqorm/R78yYT6hNoJLiEEu15LlPoB34IIhEfAl2MeB84Ozvng/v3+Z7f/Hmi5kyshSudUt4J2i7RIcRsfet0NHHz/Rd7exzeOqSqAqmLvUvlSSzIk8L86UVCWaXOqul5jwuuzw4j3hFSZO0cqXhWvNEkRBx7e/tQhX4B8FXA14cosFytqOsG7zxNXaFaylWPi34UZTfhnFq1PJfnsT654qbYGC6FPwqWyyXLy0tuLeb4YMF7TTUjBM9iMWNvZtUvmyawv7ewgD8txC7DeGY8SoYsl5e5PLZycnbB+XKNZit6qxBcImmywizizCrkHCre5nQ3bKrNgra56BcPWKF3FMvycrnklTtHaFwhCi46o57lxptncfD8jRds55zxsoO/xrcwYULByNiVURRnzUVJiNmyHC1wzzvXB/mFZdtblg/2FtQhQNqVEWPbwmx4kowYcNUSXDJiFC3bYhauzuOiSG+nCB6vsSa/MhVUTVFOqNVkQYcsE31bzFiXNBcrc6PAwpGBb3P7PxixdmX4GBomCNXofolENIqMavY6C6kzT/V6dVmsEibfRnphHQLeB0oBtNL44wcPOTs5ZbVc9o8NPmAG7bFuAw5PShHHJmXtcbgZyjJWEraY6q1E5ZANY8iIkfBNZRkxmgXN8ixX8rvFvDEXyXmKfZBfyrs/GczLjPdkYytzcYXEGG3HqUpVBQsSqq3giXT297FyapkuOmIsrojBhmrZKuit071CLbkdtnL2bXHiCf7qANz31RBtAAAgAElEQVSlFBeXqvEfrbhAFTzz+YxbhzNms4qmriw9G5g7Qo2jI4CmjpS6vFBt2HWA7NL2WQnxNWenx3zz7bfB+2z57wZrUNnBM1rc8vh0ElAx61UZr3v7e9w6OqKqa2K3WT2sYFuIiFixhklX/vRCvGf28iHiLbtF4f4CpNSahyI0zBcNbm+BSjBFV4aMEP0GLyaq+QwXPKv1ihpLu9iljlD5nlIFZA+KIhrpSDaPYhb23qhV1w3LQYks1ijwwVIllQVZRMy623U4gaaq+swc3rk+9ZudXO7FMNs0MwlV+0IqPp/nxdpdSmGv28jF+QVHd+7igiOeXhhtbJv60AcZZ3kmcl39pl6+CRh9a8u6fXFphWBOz84sQ4a2lvLOWQB26aS+n3rFZhRU5YRmNqOu54zCHa/FtKn+9GI8RMcZMYDec2Pp47psZda+7HVXNTSXp1TVJg3D2aL5xBkxhqmSVeWeaqEbnudC8SrKvW2k6S2049Sz25btwaJsG/s+CJdMCU2alWWTOeD61LibKm+Z/pkaMdqAj/uQHcdK/FbKFnqRzcqkw/luc01nSDwA1pVFHq5RvDeaRxM8TVMzn9U0dWXUNRFiHOSzqvLwww+4f+8DLt94nfm8HnQGZzpS7yRkaLeIXiu3d+FmKMsCMUWC08G6UNK7Fc5ytix7N6OuKtrFPu74fQ72Frx29xX2F2bCvzi9JDhPm3k0Zp2Qflxsl0EtqeHGCmpSs7MUt2gZ3OXLjrEjdnaftm1p2xbxdf8uJVJW4Oog0zJ58kDrranFXTRwpPsBWdqqqU8FVwWPJnOJzus5i8WCw4MDZrMGHzqcT1vup5zqKs9ie5ccMepcdlVYu2MyrvWyXbFsO1SVVdfx3r33abuOahZI3UAJ0ZiGxZLc1Zrz06pHJWbL87DrnS8W1HVNu1rTjazKRmGyCl1Dv6SNPpnw6YSiXK4vevrAlYp5AqGuNhcCVVKXSGryo85pFYM4QraArruOqImqrnFOqKpAh6U3gp6chFO1fJ8jxY6xu3XckM0lG4p1SWzemOvXNvhVzhscu46xeq1q6evqqqJp8oY9L6SF7lD+Eyc4H9iPF0jqmOU0kN451m3LebcGVxG854033uCl26+wTkoXc77krnjyBnnYtxkzPqAlRdy4301mObEc+U4E1BNCyDI19Vl1Li7Mot31RoLBUrW9XS/oZbEITdMwm81wPmffmWTBhF3I67ZzfiMjBuSsGCV9XOYtS4p9Jb825CC/kWV5bz67khHDrLt5VRvRDCSnpy1passcHesX27FGvUsakw3eByD2nGLfr32uV0wtNqpk1rJUlml0b1VIUYmUTBIu98Fo+y47NvniEAYqxsafHnFs2zO84e1OHaoxU2RNB9N+82HU2royoxzAvN6nqQKzpmI2q6m8fY9Fd0sqrDthvV737fA+8PD4hOVqzWJvjsaWuq5ZtysLPh5tOEQTokLMJL0nxY1QlhXjr2go5a7HmSws/VlcrWjPzwmLGbf3D/DdXeSdr7OYN7x8+4j5LCurJ+d4X9P1A9IEsuaMGDBy86Go2K4sOCuVuLl7s59dsTDFzpTj1TpTB0b5UvsFZtT5ki1Zxd8hZBeH/VGQq0qgZpL8mNORB17qUr9M+fmMvZkFvSwWcxbzOVVVZVfOCtX1Fj2DQYvFLEDOOcQF4xBhBQSAnFPWErn3GwaUBycnfPNb3+JL3/MFWlY5QBDIWTx6K1B+O3OjBGDNNsl+sVhweOuQ89PjXFo79QJtoz8wITFhgqbEer3a/cc811yxgkRFk9GmNJmnhHXLXm10htS2fOub/4yLiyV7s5rUReq6oqlrvHd0ukuMSp9ph2RBdC5GoyhcQw4wa+uwjdy853BN0zQW5NKtODg4YG8xp64rC2ZxbiS7YL1ektSoEohxm723ktoH+b5FxrVtR7uOtKsOPwv44JnPZoQQ6DpbqLz3hHx+HCnCPqegVMyaFlPHOJsPDIulc4KXojxkilbctB5dXF4OBoBc+CSlbuNe45k+LtEkYuXHq6axZ+7s7XzipEN/6pFSQt1mRgyA1A2K8kZGDOcIPrCsG0SN7gSwmM84Ojxk1tyjXSe883TFMqybM3qkOeT1vtiWe/vyhpV27MUGqCoLcps1DUqibdfErrticAP6tX2sqBfqRWmDKaR5PqjFcChkI8PuNVWcy16f3X/fVvTHSvKYVjLOjAFrvA+ZEpenqHQgCZGUYz6q3po/bxZ4scxAdrusY41K3KtWG5k3ZrMZ9+/f5+TkhLt3X2a9SjTNLMdDpZGxtFi5S+zIbrm9CzdCWQZo2zWVr3Bikan7B2YZoZ7RoTZw1it824FzSIJOHPPgee3uHfbmxitOqRvylmIWCR057sbqrGQXR1HWN7Ii5kFdAmCA3qqLDBaYlHebToxHmVXwK+/XK8C9O0CzG6Av2VPU+mG3mY85J4Tsmm0yJWQ+n+O9p6oqqqqywa2KpkjSSNQuXz/sqLwLWaHNJU28Kc3FNREzUX+5iixXay5Xay7Wqz6d1ocPH/L1b/w6X/jCdyM5oh7yhqBwjEYKsy3a9l2I8z3NRjTRBMdLt/Z5/21F6Ya2PQKTJWlCKYjjXLFmDMeNX6sQW2hbRAJVaKCqceKI8QxfmZxYXbYsLy77XOeqyRaqWZMLJA1zdTxvey5zzqcuMQ2K7GPGZ6FKlOw/xbL88ssvc3R0RF15zj98j6YOOJSQlf+Uhqp7vqo5O7eAvJRliHMCa+uDl/YCfiSBincN7BWauiZUwbjQoebVV+8SqsCD4xMAzs8vaNtMmcq0p5RpJ5a/3rMruE6LMcAJHk8zM7e2iOKSZSA5Pj7OG3OTh2ZhH2+KZXPBleIR1PweRkkR50FjWfk2rqd/0wmfZqQSfFo8lqXoWaHyaSKt13SXl7hZQ7W34OWDA5qU4P1fp8p0pr3FnJdyLYfT1UVW+Abf1UaQX9aR6S249BkxzEK8aUxTtdSy49kk2dPrRIjR6hqkXgOOPc3BgnKL7DKbolJIltYIZTDMqZoHePCCWdkPrsiskSI5mo87LeIMdNBtJXmz6FKHaofqOPjO9JGmCcxqU5SLN7mpQ7amR0i5omox4bvBulwyeaSUiMCHxw+5d/8DvvCbP0+xDVZVTWzXaK/bXc3c9aSYTHYTJkyYMGHChAkTJlyDG2FZjjFyfHKKE8/erNqwTqoqVV0T9g/wdY07PSOq4i8vWUpgubxERDnMpZS9bO7coOz+yo6JfndVOMO2M9vt6uhGbpDURbrYmpUn8xoK/1C8A+ezVXi43u5bAgxyOhM1vqVT7Xe83ll4XEqJNnbmdsy5B0tqG+99v4ML3jFrjPRuu2AlduucmcISkrtMtSgov6fcxhiN69R1yirnUwVYrSJtF0nJkUrSDu9Yrte8/c47rNuWeRWI2SVeZUuc2doS4iFKZJ3LV7rW2h1KSV0SzWzGwcFhLk5yuUW7uMqLgrIdnKxGn1aIE5rZZo7fwVNjFtDUrYhLT5AKqXw/L1GLqu5yoNvy4pIHH3zIxfk5t/YWOBHquqae1cZpdAOPkLG1Zjw2s0W6UC2uo2L07RchxYRHOagrPnPL4iw+95lDXr97i72ZY/25Q95+9z2Oj0/RpDgfcK7BObNCH5+cslqtzaPlXc6yppnHC53qKGICcIKvHLM9x/6tlzg8uk2oZ30BodtHt5jPm95j9W58j+N2TdKS63SggPR3HXETnXMEZwHElRgdxDlPSJ52vQaN5voGjo9PekqbKqNcyVcDisi9b2uBQ8QTqor5fE49a+iy7NkkZMjG9RM+nUiqnF9cwkyoq9kQHAvUiwaqihbLqR7XK7TtKDmxcA6tmt6T09QVR7cOmc1q9PQcHzwuDQFs2zN+w3OtQ3xDX0tilGXi6jgtf9ORt9fS5tr5dlaxLKtKDjCmF4ab80F7hnLxam0IzC0SiWSdwbuBXrWLArLRYhkC/Ep2nPLsotsEL9S10NSBpqkIlacKnroKOUOXmcYlx6B4b7+rJnA5FWU+p6hXLoBLuUhMjLjkObu44MOHDyFb563wU7aej2gY5V0le9efFDdCWRYk5ziNSOUJs0U/Mto2EqqAdmvSyRqaGc4Hqlz+Oq5OCN5xdMvYerNZzUXqLDo0GRfZOYfLQWOl+AnkodS78gZaharS5VQxKY04Q7mMjMiQiqZAUyRGNurQl2hNnydIipFI6nk7iFhuNYYgIiXZQpVdMXUVaOqKvcWCvcViCPSBnqqR+oVj4OSkMvj7DCOWRisptLFlte5YrzuW6462TbQx9QtZTMY7BHJib0vbdHl2wjfeeovLiyUHt484X1tKqGpW06WOpB3OS59cXLJrSJzbXNLEKuvsHx4wXyw4PXk4Uuq3taBp4ZtgECDH3exUiDSXMNXil0wJXa7QyzW6bjm5d58H994D4MH9e/zar36NWwdz9JWXEdU+dVzXtWio2VSWy4Ywfy4rUB+gs2OcZskugFMhoLgEd0LgM0f/P3tv0mNLlq5pPauzbjfufk6ciIybefuqWxQFUpVUEqD6FQwZwIxiwgCJWY34ATRihFSICRJDGCEmTJkgAUICqSYUde+N7jTh7W6sWR2Db5nZ9hORNzMrQygyw5cUcbzZe7tt22Zrfev93mbLz15tAfhs37JvLVrD7cMjWmvquuZ8GtBWFdHPHGG/toHnMICcBQAwyjB4oZPN9YF2FVop2say21+x2e6YQmIcR4xztG2DsYbD07G8vpqnwwUQgIt7WluWhmSx27JGYYxwlq2WhSolC1mCT3KSx4/TSN/3BdBYOZyX5+lysV/mhCRuHcY6qqalqpqlgHgZL+PjkZJc37WrqSyleCr3TKEVVG1L1XaoukbHAPcPxBjRfc+QFdnLmmq0YbvtsNaQQkDnlUk/b+byWoKVf9fpYd7UZzVzeC+CRea6onDw5+J4nAT08n7Ee08Oa3Eut8tK5Vr/Yvn3+UJ7wQhRpfbJy89FmPu8cJe6ZOYWf1TjfFQMpxRRyP2fIvjgyTlLcFLb0TZCeWuahrqRjAdnzUKfUwpUjsvr6YVWEQoIMfOKmflk84GgSELHAkigrWUYB+7u7zkcj2zahpjzd5IGF4C0vNnfhFrxoyiWyZkUMyFGQso4rZcTUVVywlWMKxVWZcaHex5v77naGXKOtEX9XVeOfhD7uLDwbJYyEkVeTlBW4iahrPB9Q1iDSUCWhFRSqSjP1vPFikzy0zShi71TShl7YfMUQlHlIulfSpdFQSmEdH65yMoHKwWyo3KWTdeJcM9a6rrGmtUXcFbEzs8Fea42xTNSteSsF15PjJlhGpmmSIgRnwq3KM67T1US90Abgyl+himf8dNI7COt6rj76o6HDw/84tOf8VTQeG2MeKZGVbjcLDebWOzoZ/Z9Smm00XTbHfv9nttv34P+DbZ4L+OnOT6awGdPdPk6EVME9Hp/DyPDw4nj45Hz8cRXf/WFXGvANPUMxzOvrrb4KUDKGKPpupYSSn9xZ0phl5RC5xn9UZSmESonKiAWgUrOWfiBMYmhvhYkpXWW2hpurjZcXe1pioOPMmatuT8SzRhtSldpTg+TzXgIxasUQY5ra6mqmkjgNPS4ulhfNVbuT+OwVvQgKq6Ldc4Jaw27rRzLfrdhmgYO57EcS5KNtrXUxqKMY+YsK2NLKugqvFlmWq0W8GHehB9PZw7HI6+uNizCHqWLRdzFc5d5voAaWhY3rY10GS+Qwu9aTD5X5r+Mn+DImWmciG1CVRZbN6gCIcaUwYqlavaTAE2ugqrG5ozznhGD9yXpsxJf87qgoDlFKLxhpaVGWApOZjerAsipMmcovViypbQWnJeo7eLENWsoUl50UfMWPT/jARdArVhXQtnKz13tMn/lsu4qlWe676rz+OicrWBAvOiQr5sDdcFbTlFARJ0iuli8bds9dV3RNA1NXeNKt8pag9YelH++UbjQNl0ejJyLUq8pceqaz/CMkGcUpUkogSsKBj/x7cM9t/f37K9+ATkVdPmjeeLZLub7L6HvGz+OYlmJACzGRIwBEwJx9uFTntF7+nFk022xKnM+HHj84iv64xM///xPOD8e2bSlWLYW8oTREkCQlZIQg5xXGsYsKpl3LUqR9fdPsDLxyuKgZ3Q4BSori89MuI8xSoKW9yhbXifFVVhYFliJepSUQK0yphxL7RxNU9M0Fd1mS1XVzyZ+XaKp87wTywlz0Spe2tJZ/CNTNqRkiPPFCSVlMDFNnjFEYszkrIlKkZXGLKhdRGcPPmKwRK/xk0dbmQi+/uYtf/G3/2yNsFTzJLG2opdjzxe7w7nQLzvGqqrZbHfUdSO79l9jgXtZBH/CI2e8H8uikZZ/YW0HWu3QwRMe7rl//8TXf/2O+7sHcs68/+Y9w3AGoG6k+AwhLkhUc6Xo2obgPUnPVAwEtlXS9claEdBk7dBYNArjE0YlgpZ706eESuC0oXGNiOq0pnUGN6eFsQp3UrFqjDERvGeaAs5W7K9qmmaD1oZhCMvxKmUwVpGDIpEgG4wu81Gi+KtepHFmWaR9CAzjiA8iSvbjiDOGrtqy30mx/MmrK1QKTP6eRXKsJbpWW0fWdpVBL/eiWgrvFOUzmbzn3J+JwRO9+Cw/PD7y+PTE65u9zHtJqB5S8n8Xm19FQ+VjYBYouqXj9fFjv9OZehk/waFAabFATRmLZl7cjFVgXOlmxKUgRIlDTv/4QH8608zYjcpYq6mcxdWOqRSVMYkdqrZm8W6fm8Vq6R6r9VKUYGGAZwXjbFUr67PkTYzjKALiHJf1FC7RX7V2mIqweS5u197Xc9tZYPGan4vE2et4PXYR3s0ppVwUx7MN7eLjbowgyE1NU9dYK5kUrkSHX1JGBdlNkhY8o+Llb6i5UM6wWO6WjrhSpnSlSwZGSoQQiYWqeh6e+zknBf0wcv/4wJ/kXyx5G1rpReA3v88Zcf8NauUfR7GslMIYSwQeTidMCFC4OCEnQs7UdY2PI/27J86HE+PQFz6wwmgWJWXOARQY51AhoLTGVTXJzzGsz/NoQBDt6CPBh8XdYv39OlISaoc8a90Fzs+RrzUmm+X5ufCbs5khf7lJrVbUlfgIglhHNZXYR80qeG3UcpEq9TxGWyuo6qpQRVZEfA0yiYxTYhxLKs40yUKZssRQG0PWFm0timLUTlyeO0NdSoWSmFMso5Tim2/ecjr3tAUZ0wqUtaQcSSmXnRuLP+rHTep5D+uqiv3VNV235fj0+J1r4mW8jMuRcyJHv2gEtLZLq35ZCEKGGAlTIHq/ILUAbdNQF/T36nqPMq/55M01/Xjk7Tdv+YOb12jTEKLYGM4uDkbPDg6ANkQ0OskCkFMiZnGPGKI8PqJwxq5tQgrSo4TOVNcNddPgnNz7IWYOp54QRg7HM4OPVFXDbndDXbdkFB9uvwFgGD1aWzIRVXhOlzZSWVuyMvhC7+rHKBxEq1DDRMhSRNR1zfF45Onpif1+v2g+rndbkp94d/skDLGLBeVZt6ic8xmRSkmsrsI0EYLnPESGvpfApCgt7ceu5vHxqfClAbXOZ/nyi7mYKIiyUuJJncJEXTcSElXoHh9BUr/5RfUyfm9HTEJpiFqT/WyDCFlr+n7Ax8h2u8OxJfYnzvcPPL3/QAwjr//sMwCOk2caB6pKur3eXwaczEDUCtXO7hgzsjyjy0oZ0Kl0hEsy6Fw/5DXXYbZJ0yiKccQzatJMw5hDQFIIZPQaxPaRXaM1Rp5TrC7n1VdsGp/nG5ARU+oUSTmVuswsm/u5CJ6/nikNYrsnFAtnNMYoIJLjSkdNOZB1WKhXuqDGS9GfWRNT1YzWL0zyAoooUsqEEPE+Moyzjaicw3GauH2444uvvuJf+3t/l7qtGccB5yy5eOarsoH4dfjYH48fR7GMZrO7QlWWPiXGtKKMMYmfaE1NzJHbu1veffkl27rm7/y9f5W6aRi+/cDhKNZHIQYyCVOEdzlliXZlRjsNuuwyYkm9mUIk+PTcax8WesKK3koMbcphaW8AiwhvptevJuLi0Ty3T2TxnIt2uUDmmO62rti0DU1dScx0ab/MAiJgId4zv5f5OOd2Zwjlv8jgE5NXTKVXEVIiGQ3OoLUs5HNLNxXBwmquMn9RbqQ5fCQDWvHN23fc3T/wZ3/8c/l5mtDKoqMn55KYhF6QZZQqN+v8+nLburrm6vqazXbH6XiYmywfXRxzf/Zil/oyfpJDa0236X75A8o9M40jx6eBw+MTYRxprcOgef2LK3TxT93uN1inaBrLw9233N/dEvKGx7MiZE2rWPh0uqCrMx9vhkKkVr1oi86HUYJNqspJx6hyWGtpm5p917HdtrjaLV2fw/GE9z3j2DOFQDYOlC3zirnoLK31oNYGa8FgBd0yllgWBFO1TIXTm6eAUok8BQKaHSJCrqqKEMQ3Pvi1PaqUKqmlFp1KQaAlVtw4R8jg/TxTxCI2mpjGkXEYmPxIDpEhZKIX+8oZyPAhcDqJziHlDGmOxZb5IaXEhZZQ6FxzR00pUAZb1TRNi1QS+jvzwcv88DK01lRNS1Cap2mAGIqtq8iOhuhx1tLWDSFOjB/eMZx7htOJ6TwIF/eiiNQaqsqWLnBCG7twXk1VoXMR4C2FGMuadYkuZ6OfFWgf27HNgJQ8R0EWBHtZ/5XcC9775T7NyK1grMUqTVArWAZIrZMzc4iRno+vpH6qPEOGy1FJBy3PASm6CPG0UCxq6eA3Tb1QQ7lAsMXjXuqj2evdKEVWlrDQRVe7uUsx76yTSoWGIpaZ4GNk8gHvg9BIg4ByYxYgUGmp0yKZ4/nMV2+/YZg8+/2m0FhYJ84813XlnP8G2PK/dLGslPpD4L8FfobUWf805/xfKqX+E+DfBz6Uh/6TnPP/9CteC2sdWSsJujCaqqCWprLsr67QWnO4v8O2js8+f8Pr7ZZaI7xAY5bEna6peBiFIO6cJSvFOHlSTFgnbYYZHVYUQ3/ZTC0E/F8KzivhEKpSnMYYMUavaVVA7SrmstOPJUGnfEJaa7lJm4quaWibirYI9qrK4kriUA5efJAXctH3LwDTVFTxStMPI7cPT/Q+CQoDOGOWq0IXvnNGiFZZfWdvwPxg2fEVDjSKjC27y4zSidu7Ox4eHjB//scAjMOI0xqjTaGJrAuvLjdEvvBmzVlCTpwxdF1H27VlUUzLBHOJGM279ZeF8Hdv/JDzxNILmluElxy+Qsk43D/x/u0tp0MgpArXbdntrqjaDts0uEroF63TNDqTxjO+P3E2Mr+cTkeJwr3o4shipxbO3ixKk83swiikLRw91dR0TUPjKqyyVEZ4w65y2ErQGRHalk1q8PhpWhAngJwyk/fEqPAhcjhIkTkOk/CPjcPYjDaFZqYQFC1GPtntGNIBgCkmZp1cLBvWy+7ZOAzc392iyoLfti1d5Xh1c00/TAyToOUJSb7KMUkoE4D2pAQxekKMCzJU3kHxxNakIK8xTRNPhwOZIoIuRYnRmhgKulbOdbl2lsojA8po6rqhabsFlXoZvx/jh5wntDF0+ys8mTFGYo7ovF4rKYkzjjaGEAMPj/fcvn1LGEY+f/MJv/hbf4eqk9Lo7njk8emRYejFSaegrbogq9baZSHNUQhFCx1RFWAoS+EXQyL6uNznz5BNtYruQO7/FCUzYUZznXPMa+ultiqnTKLMBXnWW11s4lXxEy6F+NwNUmp93Fzka6WotME1NVVVUVfVUhQ7a5+jzAVACCH8ypJTK4VRtriHGdb4a0UMUgCPfkaiE5OP+CDaDDEfEGAzprnUFfoJQC60F601MQa+vb1l8n75nFNKFy5phUZTkPNnu/NfMX4bZDkA/3HO+f9QSu2A/10p9T+X3/0XOef/9Nd9IaUUdddS7bdM1uCtpt6JUtw2NTkFYojU2w3Xb14x6PkEjzBqnDO8+uQGgO22Jd49gRMifs5ZLvIMIQlHJqcVQ9XlQ48mLxZH33d86zfrzsigsHZtTcSCIq9laMJoWQzqyrHddHRtw3bTsu1aQVzy/LLftU+63Hk5LTs20trC6c8DzWbH7uqKqvZMEdS5JyRBbS6PfaXIK+m0pLigwPOYFx+j1BJdKzQPuTlQ4kbQ9wPfvH1XYjnlZs1aYawl5VBUsnKDLFZby01KQeAVWlnazZbd/grjKnl/v6Ioflkgf+fGDzZPkBNh6OWaTalwEuVXMUJIMOWG+ubnxA1kU7HZXtG1G6yxOGswBS3OfkDFgCZhtDjWjEOPMZqmadaimBV90Api8KVdGdG5CPiMobEaV9Tf1XZD5WpBgmJpqS4UBpbN8zxL+BDph4lxGkFBt22JMXM69Uz+xDhOTKVorZtONrxKRH2mkk1sCBMpeGJMPEu8VKp0tBQxSZfVOstQCuu+P3N8msiFQnJ9vSeFyM3VDmt78uEkHMEEl5vg+bsYhWM5jiPTOBKLtWZIirqq0VozFhqGD4Gn41EQeuuKIDNdtGbXwJJy8KDmDbi8F2utCId+wxbqy/jRjx9unkDclowzKCAqlnvTWEPTdTjniH7ieP+AqhTdrqXdb3jz+ganIrM7XIgB70dBOWMgZwGdjBbxfIxr8qygscK3zVmojAGhDUwhEcPcvX6OJv+StyCaoIvrPMS4FN952biX9dd8JJCfBXQF1tZKkO+cvICEhTpRVbKG11VFU9XUdYW1GlO1z2qQBWm/4GfPrkNrjHb5txTdi/BxNs/JlpzEOSOWoCUJV8lljpmptMXsIRZBpPA/S+KwmD9oY6DYaWYlSHv0jul85vbDHe++fsebq2s0Bh88utDvYo6k5IGMcfZZKNKvGv/SxXLO+Rvgm/L1QSn1z4Cf/0u9loJJiwWZaxtJrCtwv3GO4BPKKXTbsFPXqBh4+y/+OWjPJ10lFnFFVGeNZuzPGFPhcyFcZHGjiCljL1BLWbTmuMXvb/M//27lFwGgV6L9MAw8Pj5ys9nQFBUNbmQAACAASURBVPFQUzlMKyiTUkoUohfFtVzLmeUbaYCgtKZTAZNGGmtx1pJz5vF8wpdWhWtaXt284vWnn2HrlqfTmWPfM04eFZPE1hYKBEgBrJTkBc6CxIRmNhqU3fD8poUPaEobxphKoiNjhBxIceKbt+94KKlfzs67twsOYblPZ/7yEvtdfgdSYNuqZrPb07Ud/em4HMszuslFG/rjT+Rl/LjHDzlPxJQ5HAMhir1hiMueUDZ2WlPXG15fdVxjUNphXY1Sohi3RkMQVDSE9frShUObxoGcIk1VMaa0xj1rhVKyOEUvXStbNsq1s7S2ojYaW7pE1jmM1utGuMwvrtzLPkRJ2oxyLMfzkdPxSMqRpmm4aVusreiHibvbR0KI2Ermw6qq8V7S+8pthCoLtDUyTyRl0VXpzFmL1oZUnIbGKZCspm4aNpsNp+MTD8cjx6Mg0U3tMEpj6jX1TAF+mhjDwBQi50EK62PfMwwTMYblPjVaClqdJdFUX3AeQ4w8HsRruXHPHS20Fi61tHQvOgjlCOapzDpH3TTMFcpLyfz7MX7IeUJpRX21x3QtVmVwjnpbchgqRwye5CeystS7juv0ikZr1ORBITzgUns6Z9lsO/a7Df3Q43Y3BBKurqRYTpE4i4yz1BcreCviMmMUNss1fNmx+iVHj7CgFSsHejlHzBTOmfqptSZMEWtm3rHcEQtwpwqQpUVhqBBTAWsUzonXMUBVUj3n1zRaoU2xlrtgQs4b18s8CefmdN7S8cuznqsg34uw0RTjAZauXIyRaYr4EJZOWxQPBBJigZuLxZ0yqljfZRQTqkz+0VvO5yLcdg15DLz/+h3jn/wpTe2YprACezGWlMO1CP91xw/CWVZK/QnwD4D/FfhHwH+olPr3gP8N2S3ef89z/jHwjwF+8ekbgfILaZ3KklwpjgxMUS6OaewZhjOb6y3dq2s+3N1y9fqGRFq4v5CYxoG6i+S5FM1Ch/AhisA9Scsx5Qw2k5WVi0GrpZD7ZUMI+eAqWficsYWfWCyN/Lhc4HJBq8VarutaqspKAVmsrmZrt4yEDBgrrP6aTFcKxDl+Nsb0LPtdKfkbtau4uaqoq4bHpycenw48Pj5y7ofStqBYzEijc0ax5wIDNTsJyN+zVuOsFMtWi5AqWoWfJlKEnALH44kP394C8Is/+HRxvTDGolKk2DmKZLDsuOfC/VKhb5Rmu9tRdx1D3+NWI935Snn2/QsV43d3/LbzxM8//YTztN5Ttb1wqiluNlXd0LQtCYOP6iLeVS4htcBACe8H1NRDGFFpIg2RME1UzjKO49LSxCdwDpUSOYqHey42i7Im5oVyNL92TtLNkrATEe52rVgqnfsjISRCKdz7YaKfAtZqsjIY63CuYhj8dzfvWqON3AfOVbjKoYySgtVYXIpMWaFKrHfbdWhtCMHTn46M3gO2oLurQDJeCIOUgTCNxcpSFqen+1ue+pGsLFPpwE1Blp2ZhmaKH7TWstBlVTxVCzgQkpdgkhBQqip1wQpeqLIir/6zq/98SsIdVQX5R+vvmaVf5obfh/FD1BPZaFTlsKqgriuGI5axWmM2HeTEzih0Ttx+/RXx3IOJWFoAfAzUdUVVO7TK+GkkGPBZLR2i+SpVJExSqMwFVzaXcLCM1hLatV6n31dnzHwJqFxFTEItAHlNXTajK+CWaXcNRktWhZ8L1CBUA9EZlWJXa1zhIFfO0dTVYrnbNEK5cMUO0hdgEC4QbJY9qhTQC5ClxIovr6YHsG4MZsqID4ppknpm8hMZmGIU9w1lyLM2ShmwQpNRBfRTOUEWoII0e0zPdVa9zpOFanJ3/8A4jmw2V6Th9AwMlbyJXxUh9d3xW/e0lVJb4L8H/qOc8xPwXwF/Dvx9ZKf4n33f83LO/zTn/A9zzv/wk6v9b3sYL+NlvIwf8fgh5olX1y/zxMt4Gb/P44eYJ15fX/3/drwv46czfitkWSnlkAv7v8s5/w8AOed3F7//r4H/8dd4Idy2IVpF0pmoxGgaxFlCVyUC2zmJc93v2Xz2hrsP7zgcHqlcTeWE+tA1Nc5pSQRMs/eE7PpSDqiUWfwFC1lcWQ3FveFjO5HyiOW7Wcg3i0/WNq5iu91i2NAWfsx+v2PTdRIHKwknQKKuGm7v7kUUs+xvVpK6MgrrNNvaiBhRyc64blvaYjd188kb2m5H1pYYPdpa3rx+xfX1nrdv3zONA8MwCH8ZpK9R3ospZubaOnHGKAKkGVlWFyEDctiRkBT9OBCCJ0xnvnn3jr/6678G4I9+8bmgUCRM1AtPeeYi5lQ8cdVKpTDaSOhJ8GxKOMnj3d0STvKicv/9GT/UPKG1pmubv/lBORdbMYuzGowVZ5ac0daQp/nenwjTGe1HjAo0NmOHgTmkQ41zm64cI+v1bLQRZKaq2DQ1m6qmrWxxyoCzH5ntnKxx1JWIY+ZWp+gFLm0oVz7zwtmf/9MabR2VKzSMuiZnj3Y1tgQloAW9rVrhGR5Ph4UoaMt8oVIUpHZGfxBRdV03pJQ4HUVAGG+usUbjx4GQIPiRUGgjOUWmGBdkGWXFovNiHjRGCz8SRcyzG8B6755OJ0IQIdRKqSyofJZOwDIj5rldCzknid+2GldVizjoZfz+jB9qnlBA0sJVVnUNlV0DgwxEpRgj7LqGuw/vUH6i27VsX13x8P4dnA98eiWaqXCMZBLD0KMVnIceak2krHN56V/L38156WaJF7wCnZeu1mWN8f2Uz5UaEGJAkZ/xhNfuTYm3D0G6SnnOcFj1FbPwt6osXdNQOUvXNrSN0EGtWbvJErBSRLyFQjLnIcxHd3m0l8e+xm/nhW88jBPTVJy4RGKCTBuKEMPq8GwNSst/q2BvFg6KpkGelRaBtS6nafZO1mat3YRZobi9u+N4OvH5558yjRXWFn5zlM+T2eL2N4CXfxs3DAX8N8A/yzn/5xc//7zwjwD+beD//lWvZazBdbXYmtUWWzWLifgs5TbWwCbzWII/ms0GV1c8HA9sbyqq2VWitjRNRZ8CZBGzUQpcUiYbFgFkShGiUBGe01cKb2gujLn8+UojmNsTu92OP/j8Z3yyb6lUIIQBgHE448cJpUT9qW2NVpbHp0NRrqelLSy8Q6EmaA1DzIw+Cs+6qjDO0TSGthXu1W53hWta+mEihlAsmCKVs9xc7xn6IyoHPjyUGNtLor61GFehtCOXaGyeuVUg/rEpkkPA+4ljHzifToTgiX7ATwN//cWX5bT8myzlhBL+ZErCiyYV4WLOqAtPvayK/6QxdJsd++sblP7iRcD3ezZ+yHni48l6pl5cfu/qCt3WKO2EA6Q15NlnIUES6kOOIylOqBwwWhYkkyNVLXSqVCKW5cGy+BijodgnVc7ROkfjHJWR149BFgeTM8IP1IXKUGhIefVjzxfBITEVapep2Gz3GF0RU8b7hKtqWlMtdJN+8IQQud62KKOZgwsuF6/FxxgwVgI8nKshwzT0DFMkhIQ2iu12T9t1vHv7NQBfffUVn755g6lrpjESvSdFSUjN2nDsJ3yc3TDKOfmlRWsueIQce8qZw/HI6Xzmk5v9WjTIB1jewzoRz9ZTM9UllwLbGlHlX8YAv4zf7fGDzhNGk6xmUpGcA2R9keupUMZStwaMIZVMA3t9RWcUtx/e8uHuls8/F59lXfi+VSW0hafDgM5Ch/zYJVzniCdLmNEcmqQjyjrAFGri5b3yN9AwWCm1i5e8WnVEAH3fcz6fqa1hU9dYZ2hrKQp1oVUYIxTQyjmMVrjK0Na1SGmfgQEz5UKOS8PqgUyZ/xQrAXlOGsyZcfL048T26oaqbpkOZ059YJjKXKs0qgSnLIEly18tpFC1mgEsLCx1eYiqbKpLwNzsqy9HjbW2pPXJ7+4fHvn29o6/+6/8RXERKe+jpA3nMteoXzp3fXf8NsjyPwL+XeD/Ukr9n+Vn/wT4d5RSfx/5xP8S+A9+1QvFFJnSRGs7rLNysc+/C2JuHfuRNE4YNMpH+ocDISa8igTv2RT/1eurHbWznMeI1o4LwwlyRhYJNRPPJXXPKrlxZs7c5fg+CrhKGZcyN5XlZ6/2/Pkf3vCHP79i19X44PniThZNZxpOZMbBY1xR0RqzhHzEeGkintBG4ypHa2qqtuXx8R0pZba2ZmPlA585zpP3JDQhygI8ns/EaaLtOrra8vPP3nC1afDhCwB6H8lpXXg0QuCPWS03xsxb9H5kHEaG4cw0iW/qFLPEApdx7ge+eftWHh8TXWWZ+qO4aGhTUHS13vuK1e9Did90zoVHVVVsNtvvoPqXn8HL+J0dP9g8oZSirlckUxUxDayojbYKlTyEINYPrgZbIxfgKnjVhauvlDjiNLWlGzJhHBn7M8n7ZXY0xtDNRXSGpm3FlUEpxGcif++1O3uxzxvuEAPn/rT6G5fi2vtIjIC22LolJHh8eKDvB3b7a5yr8cU3mUlsmlJOGITXF2NcQgoUIpqtikC6brdr+idytmMYuL17oHKK11d7rm6uubsVZ64QEw9PT1xd3SyomQKcdbiYi0OOnMP0Pe85zdZOAhQL2rWAU4pzP/Dw+Mif/OLzVbDEAk/MZ24+gRfnkgWcqOqGum4Ywuk718fL+J0dP9g8gQLbWuy2Q9c1WV2kTuq5aJIYZVfX+HEghYirG4xzjNPE8SzXljEKY43s93QJzshJnBqWP1g2fSlIO8Qg3esk6ZozajqXF88KwIvV7eNaIyPo51wsWyv2slXxba9rsXeL0yj6JW1wF8JZbXQJFZFOmLFaLNSyeClf8q2lMBe7R200VsPGHyEE6roumicYim1kP3pQRnym65o//MM/ot3siFlxvzmgjOauGABMPlxoreZ3voJrGU3MefGGzlmMCGaBIMi9bZRBq4ydu8/ldylpTDFBkETAxOFw4Hg60Q9DAe/mpFeNNpqU9SJW/HXHb+OG8b/w/LOdx6/wSv3+ochidhwjGb/YuGUM2hSqQBh5s3vFcH7i/v23TD7gtIIUaQri+vr1jUD2CKDxzPpTa5J4QJTXRi6cnArtYI1rLm9SLtbyI50VFmhsxb6r+ezVNW9e72marphnz7GV8iEoVfyja0GEratQWB4ejuSsRaFZHhsy5KxRiLJUa02yFXmaGKeANnLBKV+K5WyoXCDlTNM0HA4HpnFkv99zc3ONc4K+zMlc6jwSYl6KVuM0aEX0gX6YUBcXVAi+CC5L2EmMUpRbibgMPpGIPJWAgdu7e3a/+FyiMIsyfkGIcypJi8sZL+0rtTiLKKXYbLdsr64Yz+eP9isvC+Dv8vgh5wkR8LnCUFjt2J4NicK6/PslGAcgLxZpOQeshlorjHGktiKOlhBOTNNAXVkorTvlHJu2wVrHFOIiaFv/CIuJPkBVOUnAQhKtpC7PhCCUhmka8T4Q5s1pkA6SdCmfd1bmIny+n5yraNpK/JA3G9CKh8dHSNJd0kZxtd1iiuczGTAAirrtSgBJJOWJ07ln23Z0mw3brbSdU4xM0yRz4kXoh7OGVrf4JHMVQMhrsuGz1vJMq9CK5CMXOxpCCDwdD98ptC+/+3jjoZQqghx5bVfXNE3H2Pcvs8Pvyfgh54ml6ztvYnMkxbUonFN1UwjoMeKUgXGiPx3xPtB0LQ8H6cjazZZ209F1TakR1k6psKYusMlynaac0bkAYbnQKLQi5b85AkOK6bWXXaas78xxuRTQXdfRdZ34O/uBzWZD14kwsXZuoUTNd6lC7OhO55OI7uaiWQ69AAerV/NVU5GjAaWEipVZPKKDF8eQGpmHU5bXt9ay3WxIKS8Jpcfzmb4f8d7LZuMC6Jg3/jle0tIUGbPMGzKnwOIaQLHoK1/b4vgTvCsBJZEYPe/ff+Dx8Ynrqw2xdMOMQuifxbruNxk/jgQ/rbAWsu/JvUG5DmsLN9FVsmilTLSO4fGJx9sHvvyrLxjPT2z+6BeojESgAp988oqxPyMfY9k9KbOwilYcg2ctUZ0SFYrkjAR2eKEQWKWX1BprDZuqoraG2hpcVYOSkBNJzEqEMNKfekAWFWsqbm521HWHMYavvnnPqR9QymCsJvmVY6SLh2DKmimAqbZkenoPYx7LZV08S7Piaiuo0mazET/TceTD+3eM/Ynrqz1WwSdXO0BU8afzUDwf43KRqmIBM44DwyCvPQw94zgSghef6NI6yUpSvFCZHEYOR5lQvvjyS/7gZ59IKmBajdmVUsU6rmyny0wx89FToaEYa2i7Dfv9nvf9+TdqjbyMn86QeeLXoOmIHH1ZKFFB7vsUCZNQpGJKwtNTGo3CVrag1gitybpnThpzkIfRJaqVYieXMjmFEpAyp2aV+Sp7cjKF76uK2b4nxpXfB+tiqEu7MsQEWtF2G9mIs+76rdO03Ya6aTG2IuZI23UYq/Deg0rs9vvFreN4eMLkQlFxFdZV+KmXv5mFb6iVdHdAColx7PE+UNU1Voumw7iaBkNIMPgCBkRF7yW1c3EZgXnV/17dQUqJw+EoXSylSDF/1BL+aKMjT1yLciiR4fXfOEu8oMw/3aG0wugs5ute6JiqQGTaWHCF1pQHnG1IyjCcHvnwxdcMw4TTeun62JSonGW/26LVjFyuCbywXrGqdH5TiZYWrU4mq4i2BtT3d6+/5x0wd4JySqR4Ua9ow7Zr+fzT13z6yQ37rsKqxDANjGNPXxDxHGMpgLXoJ7Qlpczx3HM+D0JZuHCo0rr8F/VClwyVwTA35DRZrRqIGk3Vbbi+eUVVd5KToC0ojXUb9rs9P/tMgImHxwPv37/n/v6e0zAuzjbSYV6pWJf8aL1kfavF11prsKa47hT6jBy7JWfDNI7SsQ8DUWXuHx+5f3jg5nq/INtZrZTU33T8OIrlwoWJPmFdjbaJXFKfGDzJJ1I/8O6Lr/n6y7/i6fGeb776it2+ZRom4iZgi71KXTmur3b0D4NccvmiuaeEPxNm7rHR6Aw6gZ48OsOYI2OMGG2orSRlzT6hM2pinaPrWrbbLd2mAQUPTye8H+iHE30JEMja0jSw3ZrF5w/WpEBna4ytl58bZ6VFkCKH44naGTbNln44L23WGXkKMeNTxjnHaRhk4UmRh7s7jk8P+PEVXdstd3LXbpgmicMmy4J1HibGkBgmz3mYnu16tZa0LKsNxsr7DrmkZhlLiBP9IIXHN+/eMU2BxunVGGdGly4Wuo9bTmIdp8gpUzctu92e9+/e8X3jkpv6Mn7iY0Ea1o3v8v3yO0RVWzpPefKQc7FOk0XoUkg3o6hNERPXdY0uCwPG0tQVdVMxjmJofymk0cYUDl3h5kahjmXyc/RCrYuCpE6VeShnXN3w+s0b2rajPx+lmEdx6s+kpAq9AVzVYKxDGUNIaUkV2+33DEPP5Efquiaq1YLxOVIrvF9tLNpYzsPAtmv45FPhaCYf+Prrrxi9F15wDELf0kE6S271iU8CKZfXzM/u0dm7+vLnxgqi8/j4iA8BXYrnROay1n52vIWfKF/L76y1VHVTeNzfRaGV4nnx/jJ+WiMn/PmASgldb1G2XsS3GCd6qJyJWTH0PWmauP1wx5d//SV+PPH61Q1mL4/XCpqmYX+1k9CiYtEmLayL+QeAIlDNK2pKKZopFKLn3evnNIx5TlFZXt1khUqwK9f/q23HJzc73rze8+aTK17dbGhqR4yebx4mNBajhI56Pg+EIOnGWinapi2Cu36p1VMSyoJ8LaWFNhmD0DeOU8Rlea+udlhXLQWq21i2ux27/XWhrgTGcSKXzk9dNdhiVl33A3VdUdcVPgSGSWoQSsNPIwJoN9/n2qC1LV6RUnM4Y7g0HlBcWrkJEq19sa8rG5bD4cC3t3f8+Z/+MbPmQ6ksQKU2kiD6G3A8fxTFMlnao1Y7dIY0TpzvxUrx9usPfPv+W57uH3j39Tv6/kS3afCTZxwNKSaeng5sihuGtZZX13u+ujtC9FgFiYRSmZghW7cGGaSIiomU4wpbFOK6NYa6qmjrmqYEAjhjxJuwrtnuNriqIqSMHzwpDAQ/EKNfEgKVlvbF8XTmeJ7o+4HHpyMKS1UZMkoiqZHwFWNl0ZmmQczGY0aZCl2JUMcYu7y2j4FjP1JZw24r7Zihbzk8GmnxhoA2Cl/Q4qwdlTP0fST6kdPhkVMpln3IKG2WXSNqdfiYF735BhMepuz6DicxAv9//vn/y+Hf+jdobvalBbUWBc8WtLz+O7dWY0okrdhstlzdvJKLOK+FxMt4Gc+Gu5yy8sVak+fqTRxVjJV95XOS4Dq0hqTJKhNRYtdvDJvaYZ3har8llYLTJ0FqwuQZ+h5jxOdUW1vafkoQp2frXhEBp0gIHu8lMW+mWIFfHmuMwTUNShmGfqLvR2KKi0LdaCcCZ6BpWmyheaQg/qUzc0MpCQcSYdG8qRbupM2JEDLnYSDERFM7cqqZ/EBWrSBDSCBA3W1IKEnji2X7W9razwOcLkIWZi7opVo/Rin6y61srXThHh8fGb2nnQW/Hxe8M5hR+oB5+V7+qHPiWW+chY/ayEqpl0L5ZZRiLMu/3pP7skn2B7KPTP3A7ftv+au//BcYnfn2w3tub9+x27Wk/RWhAF5Nk7CNZbPp2GxansbTQlHKFxpgEDBOZTWjRVIYz8VGyhgkzCi62fUhk5MmhwRJNAjOGLSRdM7GGlnfO+myX+87dtuaum1QxpJRRRxc5h9WMMlah9aZqmoL8NWS4kCKmRgzIYpX8SUvWFtDbYQL3TQNcTwz9WeUNnSuorIXQUIXUdcyV0S01qKlihGnDW3RkZnX1ziT6SrD3cMj7+8eKbmmch60EZrtTHvTthgPwByaBvM0LiYIOcU1zThnJi+CxxgjwY/kOOGc5quvvybzD9Dl2K1GKGtKyLo5//pUjB9HsUymMkUscz4y9o88vH8E4PbtHYcnaffvt1s2XcPPPvsUdOTTz14Rs+fb9+9ISgq3+Opzqu2nkL9GpYApFy3FLcIovW4Gc7po78n/G2voNlu6tqNxNVYbbFmN1kQ7LahRlrjdFCPn88jpeGCYhgWJfvPZ9RIucHd3yzCMaGNwVQNZS3zljLpog7WuEOwtNgpiPSnQtWO3EzpFKIj76fCEDxFn5HWaqqVrN9R1zd3tE3d3qgQiyAU4nI8MhZdFhk0jQQnHYSImv2TLy7h0xhBFuypIsRidZzCGaZJC/F/85V9yOJ347JObpX6R2/d5S3VpO+e0BBZkJLfe1TW7/dUvRYuWr18Wwp/2SLMZ5K8eS2M/K3xMkmo1d3hcJUYZ2QuNwliyq9m0gd1ux2bTMRVybpw8IUaMSUu3ajmcKLSjGL1EYQME0UUYYwRhzgnv/bK4aGsW8R8IhaxtWpSSCb/ve4yF2lWluDYXqC3lX0WKURLEimDQ1Y5IA1qQJUDmHCUiGD+NPD49kqOnqvYYbQmpIGEXlo1a61IQyFmck7ZABExVOYcxRxFJF7RmfZwUzcLfTOsHoUQOeTyd8D7QuYoZnJ7nihlVo/xcZZlLjJb0rhQ9VWXZbluq2i488ZfxMpaRMy5ntPeE4ZHTY8/duwK+fbjjeDiSUuLuwx2HwyPdpiXGiVhAphTTEi8/9D1112GNYbfd8OWHR7KJKHUZRV1ohYhAzislRbORMBKXQYeIKYZpYynQfOkeWW2orKOyNXWhQ9VGCmV3QZUQEEvuoRAz535kGCTq/vB05Dx5rJXnN01L3WxwViLnnw4n7p8ODGPAmAqlZT70Zc6SgJW50yWoszYOtCXExDBG0J5l0tKZKY2MUQTSOcF2t2UcR47HI7ff3rLfS82y3+/YNDX65gqtMvePJyILs6x0gigpgyJMjMhGY/7ZHI0dvAAP3gsHGqQbdh6DWM0V6p1RiSen+fDhw/pH4IKjrYqD2K8PLf8oimWltKg4g8SqHp6OHB4fAAjDwMZW1E1L/fM/wnUNm92GbddQ6cT54ZZwGngqjz83NxJ5PYzUriq8cJmKtVIEPy0XeY4RkxNWaxpX0TpBk6urfVGWF1eH5UOVpJqmqdHGMEwTakp4P3I8nTidBuFLlQveVk6EKOP4rN1buRq0Qfm0xNjaOadcgakqmoKUHE8H2QEC1jiqqnC5s2Iaes5jIDOilMa4ik8//5zz+cTDwwPee65K4EvdbCBFrFIkMpVzYhZgIs4lYr7Y6bEWt0see2mHhBgXdHkuXIdh5Pbunr/1x39UeIjChV7lDOV8L8VyZuY0zt6IKSXatmO733M+PK6WegUp0voFMXoZ8HGhvDQrLv4zuSRTIny9mDMhKyIa0xS0o6oxcUL7QeJqzQDaUTtD2zYLVWoe4plsaOqaYfLCm3WOp6cH2USGtVjWGbqqXhLyLukW3nusKr7xzCiQzDszpzfGjDbr/TK3FgGGceA0DJz7UTjIlSPECVdZXr95RWdbvPfc398B4L2nskYSTL3He48uTjRS0CbRLszt1ari6vqG+/s7/DSVxUVBjpI4mCTeHiCgMEYRLo7zciMxn70Zfc7ZkFPi8fGJYejZNY7ZEm7Bd5QhFkV1yEoQNy32fqpQzYwW+765qH8ZL+NyaC1CfPxEGiP+3OPHolUIQTQKxnJzdcV+u2G76ahqh60U1zc70ImvvpQMgcPDgTeb1wzBYZsr4C1WQYwjTmvShSA3zfQmbVApSZJtFC1DBCjGMLGIjEPOGCNzhC2uFc4asapzjraq2LQNuyLa61pHXWmyzhzPA49PI94PTJPkKWTj0FoK8u3WcFU34gh20SmehzEOpQrdAUAV9wwn+PfopZDvuium/kwfM2M/ki/mRDd5tgm6piHGSLfc5yJ27nvRblmjaZoKoxS7tuXTT24YpsDoJQ2VoiXTxRIvFeOBafRk5G+KFa1sZqIP+DCuXa0oAMpCq0O0GOd+4P7hgXff3vIHn31SPn9x99KUjccvceD6vvGjKJbJCT+cuftwx8PDwDBpopELZPenn7F79YaqqnDW4BSo5DFhjp3eZgAAIABJREFUghgwWlE5gy4XYFNX7Hc7copYhTgvaASiSJlpWk+yVWI5YpxcqMYUtDMGci5Z6kl8PQE2XYO1hq6Rifp46sWPOIZioF+4NHMOeZKLIGUpOLvNVtwxsubcTxhjaVtZvGUxLMKAnAvCqnB1g61r2s0Wa1aEyVQV/fHI2B/xKXJ7e4/R8LM3r/n0s894X9Se8wVb1e2CjKuc2NYtO72nOvaopyNTgHNBilMW9F2XVgvIG5v9YkMsvrSldTuFwBdffsm//nf/AqNktyaGMM/HfJupmMBqjLakJBzQmAJdV/Ppp6/5Jg7fuwi+UDNeRsxzUXzJhQchBAtEoY0laxGjZTTZKLIDYlg9S6MHIgTZCCqtJdjDiMr88emAKZHR59OJ/c1rKleR0kiYPOd0pifTDz3ej9R1tVyfKiWMqcQi8hkqLDQEnZIguQsrSdqhOQkXWmtNzAFjDdZaJp8W54x+GDn3A4fDmc1ux/X1FcM4cPdwz9WrK5qmIoR+ESiR51CPFSGOWUIErl9do1RmGP1SALu6oe06juczaTrSuKo49ch9nlmdbkQUpCGsUdkppQXxiUoJUreo3B0hJh4PJ47nic9/tgGUIPtFc1Kge/lynlCXX1D41oaqql7mg5fxvSOnzMP9Lcenvvw3MJ7l+qrqLa9ff4Kpa1yhNFVNRVM7utqhc6B/uieP8viHu1tOTz2HcyBlxTCOEgymxB3rkqOYS9dLq5m7PLtyzICdrIldAdO6pqKuhObpjMFghIah5sCgCldZrJu7PpqYIYVIip4YJGMhFtcqbdXi+hG86J5iFOu24/HI09ORGHJBli3WCSoMAtapOTLbjwyj0MY2N3t0ECpZTmtAimikIJSwMW0V53HEh8A0jhwPTwt4sN10vHp1Q1PX+HHi9fWOMWYOxzPjOBFTwseVriVuHHLeQgz4EPHeFxchT/BB6K55RYln1zTnHDknwhQJKXIaB27v7/j809eAWGCGFCCppVv+644fRbEcYub9fUJVn/LqFzURiynthKrpcMUndTbGjmMiB/FnzjlgVMQgF/fh27ek4Nl1rexXotjRKVctqus0n2QjvoRt07BtGja1w2nNFANpRom0ppqPxeklCGEOLkgpyocZEjEptHHU7a68fsPheObx4YmqamjaDq0NfT+WnZxZkmXqpiYrOBwPQBLzbK25udpTtx3TNBFzFpUoIvShQwr1MBLVxDAOGGNp2o7Nbo8Gng7idTgMg6AxZVFWKaKNpaoszlliistrp5QXdFlrQZRnakkuVnI6Q10W2BgDX331NcfzmZtdR5yEC5TVPFEI9zKwtlR0jmgSSssmIYSJqq7YX+15//4tMf4GzPuX8ZMYGQiqeJYW3vzl5M1sdVaEIYvn78VI5XvxOq8hCWWi0oYxQV2P7K6uuH860Jago+vrK+q24Xzq6YdBKBUFcHVVJd1LrRb3jBASRptF0Z3z5UZPEBCj1arQzomUAmGaiMHT1g1Ukc1uQ0pwOh8XMe04efp+5HweMM6Ss3SOYoyLw0RMafFvN8bgnFlQ5WEYsFrhi3/q9mef8+HdW1bXWE3TdjRtyzCdmIOZ5sXrY+TYWisLOJT5cEWpo9Kg3ZwrhXUbjocTx37ieB7RpkJbEXB/V4j4sRjqeU+hquvSkvbfec7L+GmPmBLHSTHqjrjdUO0s+06sETfdjqqqhPZY/ISJAcKEjh6VA1rldfNoNePxCa0dbduSYlzEZUlJ72oO09BKkOupUK50ypJArBWVcdSmuGg1RQNVXKwUBeGMEpIhBVwu+3+1WKr5GArtc2IYz5zPR8ZhIJNwlePNp9dLPaG04e7+icPhzNCPJc+gpq4dISRiTmVtXwtxQaAFdbY5AxqfFLrqcC5jrF3FtoAfBoYpos0kWmprxMouRfw08HgWauxjeBQrzlyS86wrASvyPjVwPh459TLHTVHEl1OIDJPHX4QPzQi5c9USzqLLXBqzgJ+QyclDDpyOJ969e89f/Nmfyjlv1oCSubv9646XuLSX8TJexst4GS/jZbyMl/Eyfsn4USDLoGnbjrppaNoNCUso3oKJNdZW0nQs2p85TSfycESFntokuloef5ieqJxl03WcpnHZtSkyTmuyc1wX5HfmBTXWUhlJlQsxPOfb5stmr9iWTNPAMJ6ZpkkQmxCYpoAPCXQmzzwmbWSnWHZDShvQBltVXFUN3Wa/+JvWTYuPnu1uT9U4vPfEOHG1v8J1W26//UDwI1WhPmQQNAtB1Jp2w9M4cvf4RN10XL/6hBAC5xI5OcWEDdMiSMoxkW3CAJU1Qq2YiqAp+CVuXJIG44Iyy9/ORYi6ItFffPUVj08HrrcbslJkZYRUkgEj6TppTk5UqQiI1EIZijHRtg3b7a6kCT6/Ql4Qo5eB0ui6+5XXgoimi3i08OGSrkC79U7WCkWNwpCKMrveZG5eWV5/8oa37z8sPOHD4cS3d0+LeOZqf800TYQUMdago0ROz5T6mC6Ew4WfpY0hlZROYxTOmaV7MrcYxclCcXX9Cr1VNE3LULpQyykoaJNdRIIKVzm8nzj3J3ZXWyY/Ld2ztmpx1tCfzsRwIb4r4uLNZsu3aqVbiUI/U9cNYwk5Makgxf2ID0k8Y8vrOGuZQlz0DpdDkPM1ejuVNu75LCLGyyTGfOFa8swmslBIVPHFmGlqdV0vtLmX8TKeDWW4ev0zqqoha6E9zh0lpQyz7ZtWCqshTokQSrBGjJATc4awJhJPj0S3R8WA0xpNwipDQGKv1eJ4kfCTJ6TCiS2uOaaEednSLV7sypbArjJHIC4WlatEULjZ0DYNfS/eyWH04hUfPf3QF3u4IN1hXaG0oW7aciiZPPhn1pXi4mPJCB9ZaAvFJcJJxy6TcCnS5CyhZTEQUxRnsGa1uRVKl9RL3gdwhhgTysnxV1W9zCnjMNH3PZuuRRvFOJyJWFQWZ66UM348MxRkefQRnzI+itPHnGcxzxVzt3u+9SV4RZHz/BmXzmNWjJPn9vaWsdRBm6aSz1ldZED8muNHUSzPCwAA1mBcjSnEc62tzLqzejxHSAMpDOQ4YchYu9IEmnHEOYsiEaaJbAzWWNq6omkaMmqJglVa4h8tK1UulzjLuqqErqAUZpFnR0gwhIlpkpS7UOyb5jfiXLXwkDOKcZowlUMby+Q9IYgpd9ttJaKxFNbDNBFCQGnxdTTGcDp7cpJFLcREP65eyDknpqHneDphtRL+U90yTh5XObG1SmlJ0ZHEmsgcM51jJI6ZGMEZTV07fOE7DeNU+EB64SEufEdYeIhNJemAg098/faWtx8e+Nt/6++gtCVOA6SwJBTOF/r8NYsCXgrmmBLaWK6urrDWLa4fL+NlLOPiGipl1cVkVyTVKJKStlwyhpxF5IeWcmsugJOimO8rcoxSyNWZzVax3e/QxnIs1oh3d3dM/x97b9IjWZam5z1nupNNPsQcmVVZWdXVVT2o2U2qSZBaSJDQW62krRYC+BektVb6C+JOGwHShpBWggQC4kqkJoAUya4easjKyMyY3dzGO5xBi+/ca+6RQ1ehU0RWp59EZISbm5tfs3vvOd95v3fwkfPzyxPtg9w5DVH4zpqpLXj5YAnBEJJsSmMSuoIUeuVU6I3c3r4T+oXRBjB5DpIAg0TC+4F2DFPxEecszWzGMATQUBUVXXekbdsceBKwuaAtnMMYdaJHZLpDTND3A9ZZ8WjOC/L66i1+GFitzjlu3qLTgPdCvYoxUNc1PuZiOUWKomTfdvk0nISM8tXt4jcm+ayGYRDRM6PVm4Z4kgNPugxjsg9zuPV4SuIvP/o93427cXMoFM4JfzUkLZthPW7wBMBS5Ja+NZjY4fctXbtDDx1pOOKUFFeVCfTDAYo53nsWsxo/crBynavs6OGbKZq5MC6tiIDrosh/BJQbN9XHoZ8EcwrhKdeFoa5H2qcVjVGecvwQJKRkojqNFC+DcyVKW0artST+VqAMZV2gjcbZEp8pDkVZUdfNDWqT6KWU0lI75Jqs6zt8L/QuncWIIAFKaZHo25bBD/h2wBhDU88wruDs4nLSS7347FM+/fQzdtsdF+dnlE1NN/R03cDQd5ASdVFMlJBjL7a4IUpCsbGf97Q+baBv07NiptqK+xlsD3t++ezZFKB2sVrI8+OJF/2rjm9EsSzRjRXGWQnAwEPeCaAN2HJCOgkpW7IoMJrKWrSdoaMsJul6SwoDfXekypG1yVhKZymLQtKxxt+bCd6jelPlQlm4zpHgB5JS2LwIplgwEvBUFsChAuPpckXJ8uxsQqB22yNdL0T0kEApKyEnhaWsypOFFKcYyb7vhV/cVMzMAu0M66sr9vs9MQS6nOCXUmK327Hd7akr2fW5siT6nmHwKGOp5wX1TAraVy9f0rdbCmeJWZjQDl6KBGUwimnDoZUiaTVZXcn7lctqQIMuMEaBkU1HVC1t73n56jUhplw86Gmnd/M8j6+VxpsTle+BJDvYqmI+n9N1x+l93o27MY6kM+dsXCzy4zGdePYpJpS2mLyAxKSIcVzcToWcsoLyBNOR1IAyVgQ3VXWDqyuJccZq0REozW63Z/AeWxT4IeAKcbLZ54KzbBpCRmNjlBhXZwog3SrwRqP8SR+QF9umrqhWDSFKNHbXtwyDzIcpqYkDPJ83xBioqgUoEdbFKEEE47HHlDCM3aGMSjuH1obNdsd3vvM+9x9ccvVGCtI3b3r2x8hiuUKbgth39EM/zU9Gn1C6oijo45cvN+9+R5BlQdg32604FGmDMoYYzcmf/pZq30z86+l1kswxRVGw33/pr78b39KhtKKsC1Rdo1HZzWrc5I6M4wy+xYEYWlJoib4jxR5NwGYbVWs0LvY4lSgKCSjruw6MdI2UMVgtPGGtxCe5LEucczhrKIzBaY3VGp0iPvoJWdZwQ6QmKZ0317sQPH1/smPs+z5rEzx939P7SEoa7Sqq2RJjK9FDAZvNFu8Ds/lCCmmlaNtedBE3Cu5pTdYG7wMhynpvrOgtjHXUZUXT1FSuOLlUobBlRVcc6Y57/NByaHv2+09xRnH/4oLL+/cB8EPPYb9j8IE3V1dcKC1hbEk62xEBGswYvGQNhXMMEXRMIo5UN0GKDHgwfo4q+79nt66YI7W1ZE68ePGSQ9Z8+JxYGvn1AkngG1IsKwVlNR5KvLVVSDGiOE2WKYd/oARRNjmytqxyi7R3zJpMxLdiyaKcxVlDXRXEmHKSjZwIiGgtlnAaLehxVqeTLc3CIM/3rqfNaXoJWXTEmTziCktR1DjnpnbCbrcnhJaykp2dyot8jEEsoI7HCb3S2lLWFX3fcmj3PHryiMVyTt937PdbhmGQtLubHq8xCkKTAotZw8MHD/B9z357LYi4MsyyMbgPgRfPdhQ3igyFCBKiAqMtZZH9pI0h5J2ceud3jj850jMgi3ziwKvXb1hfX3O2aAQ1R8SU78b6gtD6fbiJHiuCD1jrWCyXrNdifeW9v2WhdTe+zUNEolIQC9UhvnNNyFWbA6kTkBRamWxLpKaCjBhIoyBwRFyV0ArqpqHtO7ZZoLJYndE0c47tIAtKGJjNF7z3/vtcra/oh44hDOxb2eA1fU9JjcrIj7jDyKZQrKJkvplK/eghWQrnUGjKwuH7ns1+x26/F4rH6DcaYu70xKlDA9mbNIv8JJ5enm/NKTwgDOL+cX55j8cP77NcVGzWr5g1lmYuRXzTOF6/vubexQPZ9MeCwkHHgInvWMNlFG3syn3+bElBMh17ioJIpch6vT4JiDEQNPHdueYLW6SSZmisparqE2p9MymRu7ni2zy0ygDr0JK5WBPiii0k2XPcyqUkYSJaNqEWhTOWpMUJR8cKpwZ+ubniuN8SfI/Jz7fWYsqS5eoMkOt1CCGnY4qrhRhY5s71+Pvytaq1EsAsSrHsrMFZjUKcIbpeQjb6DBwKNVO6PHKv56Ixydw1dtZujlEIjdIY56iVwRYlTTPHGENdC21jyFZvIQZQidFnfb5a0SxWtG3L0PeYG1QHYwvqJm/4UyRFsXY7tB1d30+e0VVd0x4PKJXdLQbxgzZaBJQxJcqyYJ5Bxn6I2N0Bdgd8gM6H3DFTt+aT2+LuPPervJlWwhyIIfB2veb16zcAfPfpYwpjCL6XzfuvcV19I4plbixYqJR3WLlAVqKiTCGQBo/vO/pcvKYRLJKcxvx0y2XjODtbYosSYwuGJAbgvhOE5JhT7eq6zvYhRpCplPBDLw4TvccZg3NuWglGSgJA1x6FF6iYeMnOWgk9udF+FI9AUccrZem9x4fAsN+z3x+5vpb2QFGVPHnyBO89x82Rs4szlqtFviCk4HRlwejkLQmG/eQH23UdRVFwcXbOR/u9eDuGk9fh2dk5V69foVOH0Ya+D2KvZzS6KNm3A1XmO5VlwbHrGZX8N4e+oU8fVbrGWHwY+Oz5c169fsP5ai6JOSrhk4Qm3D7d6saGSE0tHx8CdVlwtjrj02y/N04Ud+NuRBJDVqNDvu+mNmZ+TJ3QZlI6LVI3vg+CpExabGVIygERY0BbS+8jbb72QtLEJDz6ER0ty4rVcsX+sKftJHGzzvePNobogRQn/rJxbjTpkPQp0pSEB1C4gtViwdCLZ0yfg0ZuxkXDGBmdi0PFhBAtlyuut9cMQ6CsZswbuedC1xE96E7ju0A4KubViv3myNDvmc2kPTtSx2azhl/84hn90KONE7rKDc9zYEols6VFDbf9qG+Od5GbkWOdkgAJx7ZlXkrIwk3u4BcVyaPfukIWcmssVVVNv/uuOL4b0xj57+oGyJIvD5VEsyNbuUTqD/j+SIxeimWtcQqSkvUnViXJ9xTXUuzJmmnByOYOTil4xlgchqQURgnZQ6ts3RiFC52/kGNBo+No55gwKpFiQcwWlyHGvDnP9U4Gnk5zmKYoS5bLFU0zx0exsgRQxlAVldCe8gZfbBclq6EoS8SDXl7Lh4i2lrpscIWl6zp86FnM59SLJT4mAeZygW6tzp2hcSMsXSdXlfjdwHZ/YDmXOeX88h5V3RC95+XLFxy7AWM7ovdE7ydAYbTotVbjnERgS9EebuzG1fQZ3KRrSX0FYZDPKAGFtaQU6PuBFy9fAnBsW4pZLU5JmUXwq45vSLFM3u1lEpCxwr+5+f2Rt6yNUDJcgYqKmAZiCgQjrZBUVFwsEw8fPWS722OLkjR4hm7IXDeLzcV23/ecn5+Tgmezuc58IOHmmQR1WeVUvVyIM6a+jBxen9uqYpUm8bAesjhRk6irmmLmmC8WDENg9/aaruvpB0/Xd1MCVRrbtaWj3bW8efuai/vn2MLSD50EIlQVQyeF/nE4MCUTpkiIie12z/n5OU/ff5/t9ZpPnn1Em+kMf/i3/gjjZrgUORyENjHdeClSFo6UW8RVWUmxPH78NxAfnSFpCTSQ75u8o3356jUvX77ih9//3rSjHS1p4B0aRkroNCb2yA7chwFjGxbL5cmq7sYieLcgfruHQp0SOb/yeWTxTCCmHpTMJ2LEnydYpSD4jG4aXN7wRQ+7Y0tSahLJee+xJgIGSBRFwdnZGT/68Y/5wW//kESkmtX85M9+AsCzTz/h8OKa5IV+hdI45wT1iJEhDKjILY/PmE4+o957XC3im+Vqyfn5OW070qE0r1+9oes9CRi8Z7vbcf/h91GmoO1gdXZOt5euTdcPtN7T9wO73Y66rgkh8tNf/CXLVcEPfvCUEAJFRt7EUk+KAOsKhk5RVRVdP2CMJaInwKAuK9bb44k//s7CMz5y4hqf3vPheORwODCvVox+p6Ov+01tQ0pJuNwq+zonibvVhbS7xw3HTabG3TzxLR8K8ZhVSRC1G5uxpEGFgTh4SIkhg28po5HyP32rIFXGMC8Ny+UCaw2zxRxtnEQya0ORRXLGWBHrDj0miaVk0gqrJHBDOteR0WNSSWtsFEtNmQ1S60sRHZPQnQDaNpJUEDGgVhS2pJnNKaua4BOHw37q1o7WdX2I0lnTRorhqqFsatCKvh8kkIls+5h1YdZavPcMQQDEvu/wXkJERg2Syxv+GDzb7ZYw9FSlpbAlrhjoBy+hQiBWcTmeu2waUowM3qOIuYsP3LC7FLa1wlkjRbhXHIcBlEEZPc0T4zw0zhMR6aD78Riz1V1MnjdvpVPddh1nS7ERJL07Y331+GYUy4lpt0WMJJ1uTLCahCIERdsPJBSmnqOrGhs92nfEdofKYhnVe1blwNnZGW/evAVlGLoBrQ11KX7N+yjt1b4feP3iNTHJzeKDxxUWlPiQnmsnQsNJoJKmGFfrbL6wxKuw7z193+Kcnd6KVpaL1TmqUZRliSTtwTD0OT7XcHHvIr9P8Y1uypqL4ozeD+z3ey4vz8W0H5dFALKoee+lFWIMZVExny1xruB42FJVCmMsh2PDJ8/EZ/n5i+c0szlht2PWzOj9FpUSPsSRMjwtZK5wuYX8+QUQkAS+Ww/I/uzt1ZrnL17Ipl5riKL+TTeK5JtDCP3jlj+3q7VmsVhMfpHvtlfvxrd73Io+h0ksIwWXFNRKkWOgg0ywOk6t0AntdFb8VYMo19OYcKWgdI6iKFhN7VVLDIpmtmQ+m/PBBx/yox//mL//7/0DYozsjnu008yX4nm8/af/lO3zzeRUk25xAz/PvdNajn02azCql0hpK4JdlOawP9IeZPPqfaAsG4pC/F2HEGnbDu8DVSWF8OGGL7OzBq1FzBKzqMVk7nXbthwOR8pyasyRVKIsStq2Zzlfst49p64brjc7CSIqHMMouNOaof8SIW66/R7HEzbqtLfbHdvdjoeXZxMV5pYA+OY5n5Bt+VrQdJ2DScY2cLorku+GjITsnqy4T727t86QXBaPKgGJcucnJY9PAzE36L0yRFuwmEUuLs9xznK2WhLR0n0aBvwILLlE8IG+6wUlTUjXipSj36W49Fl/oJXCH6UjbIwhqkAMniHFyYFqGAZSvt9GNBSlcE4Q4pFGsd/v2e12KJ3DVwo3ZTVI+m4W/qVI33eEEOn6YQpQUwr6oaftHGX5gGbZ4AaLMprN9TXrzY5h6AVk4IRyHw47dpsNioTWDS47bnRDd4t+aaxFW8tqdcZ+t6frjzgVmRJCUSL2Y0zuTBRWHDpCSuyPx+yipaZ7feIux3gLiJvATK9kcx0CL14IsrzZ7nh4/x4px4anX6Nc/mYUy8gHJJwehcUQ88kNWc0erIUSCRHQGhM8+CNEi3IVrknT69St5/6D+/z05z8nkVidrUjKcGx7uq6b8sCrssZ7yUo3VkPXZX5gFrgpRUQRfeYYmURROtAqKzTTtOsLITD0kl1uzPixJkpX4BpJ/On7jrY9ZGW7JOCYrCyvqmYS7jjnCDHkRVDCA4zXuaUjTxoOA3iF3yqePP0eRaHwXc9+vyN4xWJRc3a24sVzyUZfr6+Y1UuiKbAq4ayVgj1pca/wnll2CfFX26+8hE5xuSOqEzHG0nYdv3z2DB8ChTVE5XNU9ueRwEnNqk7FQtJaUDznaBpp4Sh1O9L2bkH89g4FOK2yEG5EkMeqLIrCObc6Tb6+hF6hUSmgopqKq9Mr3vgqJVIIzOsZf/i3/zbOyf3w9u2avos8eviEi4tL7t27T0zw+tVbHjy6z1l1gSstDx8+BJBr9wbFYlSspxRkgfSBqMJJ7KckzMinSLKK2cWM7aEldHI/vHp5xWIhhfhqOeO977zP69ev+ezFc4xzxJTo+56yridkdhK/ZPs36yxoxcOHj/id3/kdttsrPvrln/Hpp4q6fsool2nbjvlC+IxKi73dSHcY6VInOobMxV91R6obfGv5GTm+3X7PdrNlFGp+WaEsr6GyUj87msQ4taDHOehuU303bo6QRPg1uUYwiml1ToyTMDSlHXbm0DGg44AJA6lvJ/QX78FHmjKyXC0lIS5ffyf6hbx2kW3TtNIc25az1RlKwfGwp+/H4jFlJwYYfM/c1ljrJos5KWz1pAfy3kPe+BprT/eJlg24UTcs1G50ewXYE151CNB56awf2pau69nvW2JKzOaCss4Xc4Zh4PXVAQw8ffqYqqpESNh3cvwx5tCPGyK7zKGOwVM4w6ypuLh3j+Ohps1dcKPBWEdhLYvFkrLe8umzX1JZjTUOn4+5H5NAo1BltNI5JEX43zFP+pMz1+f9ZfHaSPo1mqQdIWp88Ly6Errrq6sdPyrmlGhC15LibYroV41vRLGclCK6KrsoGJIx4tgAmcSeV0ZlQGuC1mjjMGWJ6jvoyymatjAl94s53ws1//Jf/yldN/D2as2zZ59RVDWLxXKyU5MLSegPcQgobbIKNHG2XBEHjY+Kvs8nUXmqpkJnKybv8w4xC3b62EMKFFaOxWhHXRV0w8B6u2G3P5DUKUZ6tIGR9xnQWtP3PYvlJVVT40OkHxSXl09h6Hn52WdocnHeRg6HA3VVE2PkT//NX5BUyx/+0Y8ZVCTGCmNNXujgsD+yWlxCNcOknqaZsdlucc6gC0cX0pTNrtWXMHkyB1SPxjQjXylf3Eoprq7WvHj5kg/efzyhRWOb5Kb10/hH28zt0oqkDYP3OG1YZpTOOcfxeLj1c3fj2zkUYJPPrct4+vNlz1b6RmMkkXLiJ4BJkdB1pKHHKuGuhaFjOB74ztOnPPjOd7k4l4hUpS0qafwA+/2BlBJv365FfBpT5ibB6kyQ6AcPHvCXxZ/jO+EeamVRJnecTEHSlURxR+meBBIDjuv9AWcNtrB0Vy2bTcexbUkp8fjxEwDm8zlPnz6lbVvS8yQRteH2PLLf76lrue8vZxVbd+DN6zXGWmbzhrquuf/gIfv9Ww7tNcqYbOUmxbItHCjxNA4hZNs7KWSdc8ydoFnJ2Ik+IkDHzc9fvOoVtzfLIYHRorHYHw55I5HP2JfME3BK7tIq4b08RyLG73K17sbtkZQimAJlnMTeh1NyJ2ipL5wICEberQ4eFTKP1Vh0ridsSvjMxVlnAAAgAElEQVQIhQ80peP84pzNZktR1YCZ6JEgto4pJa6urlBo3vRvRtA00zQ91plpg9eFyLwwWJPT6LLG6SZK+u5m1Bg1caBDHIjRM7QJP3hK59C5I+sax2w2BxSbzZ79fi+UimGg6wbaYy9CuLzmN9kIAMgOPB2unIOSot57T1WVVDnVtD0exZ2rEzGfRrrUfvAsVyse3H/AZ59+Iu+zPTLaxBpjmc3nI/VZaqfErXkgeM8QQZlCtGBOukhDCNOs8oV1QEpIM9FlCpiZklLX19Jh32y2HI9HCqvRRk915q8yvhHFMkpPJzkBKampDRKU2D5FDMoVKNGKElTCWoMyFVFZQkZcVWmobMNifuTs/JwXL17lNoDJ/sV22n1dXV1jrOXi3iX9INxnZRSvXr+iC4HLaoWNJ7RjjM81Jueq64QxgnQ5a2gVlEXBeS70hiEQhgFbyrGVZUFZVZydyaKzud6yzW4YwhmC7XqDLUq+/4MfsNvv6XuhWxwOB2ZNQ3vMTh5Wdp/WFTTNjAcPH/Ls2U/5sz/7C54+uaCsLNvtbgoQqGcNSoMtaob9kbpp2Gxlt2WNYT6bnbjZWuJ4w4jOjRdm5muIBc5toUHyHq006+trPvn0M7773hOEy83nUKObQSeCHI+CpRNKNLbAm6Zhv999LZfZ3fgNHymC77782ykXxMHLps46cEYEIhH8cMMTXRtC36NjBA2hO3Dc7+iOB84fvwers0mw17YDfTtMse/WWh4/bVgslljniCSObcuD+1JcP7m35GJpeX5YUzYltlEchiPO1kSl8NEQfSTmIrssK6y1gnLl+zrFID7M+d4bfceVUvhBjqUsS5LSLFdL5vM5MQb8kOlb9+7d/GRwOdb+eDyy3++ZNVI07968JqWEnUKImJAt8X23E81KGU3TzKZCYt/5jIZ9weI1FsDp5FhipM+NUpq269hstrd/5J15YiqWbxTTKj+ulKK44c06Pv/m33fjWzqURrts86qEu3zzkogoEfAZof8EFMoWGCqU70l9N13jqmwobEUsGh77mifvvcfwy4/R2ZJyu75ms5M13GhHSpHFfIUxRqzeYsi+xYmuO1FAINsiqjQZdqQYUSGhS4u2wgl2pZuKSOeE4hBj5Hjs6I4Bo1S+BzRNPWe2FKtYXWuKoszuOII+j/kIWivqppZ1Ox9L0oqyrEg6cmyPbHdb6lmN0oq+b7HW0tRNjqiGNh7ww8mpisSNYrynqWtWqxUAO6M57ne8vVpTFI7vfe97XFw8ILVrFJE0RHw4uY4BNE1NwrLZH2maOfv9keF4ZBRCfOGcwwjkqYmO4ZzY8+6zx+TVes12t+fe+SLbVv5bpGEopX4BbEHyKlJKf0cpdQH898AHwC+A/zSldPVVr5NMATk3x8c0keh0UWCNm7xSx/9SjCgnFAI1DKAzb0h5koos65rFcsmf//Rn+AAPHj2mKCoOh46YPUOL7Iv84Yc/4PmL57y9ekNVVTx69Ig+iFfxcBgIubpWNoHSFBnRGLxwj60xOVEr0g89Rd59KeXx/cByccZsPqAwHA4d6+2G63bHbD7n/aeyqG13O5Q14uPY9/hhwFq5MYrCktA0swaVzdLrpmKz3fHo8SM+/PB7rM4WxNTx5s0nRGAYPMdje+OCEvuowlXsuo6zZk5E0PX5YoGrZmyyR2NVV+iNnrxV83kWIA9R7YacAAaIR2NIuEK8Wz/55FNC/EOczjlI6na+lySQ5XZOTvULMUC2ptLGUGcaxsjJuhu/2eNrmyduFMQx/w3kYBFPCgFSwBpHUdVCrdADMWrJyBnvB62JIaKSEl4zJ4pG7DuM1pgRpXGJ4GG5mLNYLKUDVdZEIhjQoWOxsAwvfwZA++xf8d6F5vXVgC0KlJakK8KRlBLdUWhY4+xbOJs1PhIEBOL8UBQF2hhcWVKWsnhXVcV2t2O73VK4gghUZUmKga5rSTFwOB5ZZQeaEGShHCkfPnj2+z1d36O04fLyHk3TcDgI8uJ9wNoSP3hBjGxBN4intDGOqqwpmhxGFHZS5CsF7y5cU0Mw3fqeeCQbuq7nenOdv3Vy3bnFSf8CYaA8nm3xrJtQvaurcFcs/w0YX888oUi6EKAtCeCWprAOoWSkG37BIReQGI1yHvQR344cX4OuDXUxZzkYzi8v+eSz5xwOLce258WLl6hMu1wuJVArRvE0DyESgegDMQWMdWijpuJ32cyobEEchJLpvSeiKZNYqYFQPEa6h7U2GwyoSQQolBCbUWjFPOcqqFq618fjkcNhx6HdS9JeEmTWOUtZVuL2BaToKYqaolzS9dLREgqoy44UWizvbti1SQaDmjpORVFgbcluf+BsteD8QpKSqxquTMd+P3C92eL9e1hXk2JLHFpSCvgQpk2xzgVxTIGqrlDGiD7heLyFst/cVN8489P3RjRbGzNRb1++fMV6vebexQpt7Of47F81vq4e1n+QUvpbKaW/k7/+L4F/klL6LeCf5K/vxt24G9/ucTdP3I27cTf+qnE3T9yNb9z4/4uG8R8D/37+938L/G/Af/FlT04oWj8qI0GjJyTBoFDvBAsA+OwvnLQBY0nZai7pAiIUxmGriqg0bXfEB+GzpBtAR1mVPHjwkL/7x3+X1dkZUUUuH9zjFx/9gn/2f/xzfvbnP8VHz5g3GREC/dj6M8Yw9KINV+SwQWMwhRzLECPnj87ZHQ4crj1aR96+XVM3M37nd36f1dlqoh786U9+wna/w1ojoSCZvN51HdvtluViwbIp0UpaPlVdUpYF+/2Wq6sr5vM5i/mSzfa1RHAzfVSAILSb3Zbzs0LSxbQW5E1pjLE0TU2bCfZlISIFso/0OG4ymTUnPqExhjZGlC7Y7w98+vwzvI9Yp1DGiDwnnsj4I/9wtHshcxsTUdBsayeBX5NRrLvxN3L8evNE9LTXr+RamsR8ufuR0i2BX9K9zCdJgUuQHDct6EetTX5hhmFgv92w21zjbMHq4WOKjCwbLCoFtKsZrIQAbNsOrRPLxuEsGJUYfSFMURK9p64r9OgN/I7LjxzDGE6QKWchYouSbvAkpVgulxy7jq7rePVahLovXr3k9evXXG82fOc736Esy6wLuOmuoemzsrw3glgtFguGXjpf//s//2eUhaUo4fHjJ6Sk2B/EYrKsSzSO3XYHWPGp9x5jcshQjLfcKYQaoTK94tQaVac3eQs1HrnPfS/zWkwJOwkAb7vvjHqH8bVitvZ0hZs0HmPn6U7g9zd6/Jr1BLRRfMG0sWjrMNlaVnjKihRv2JjGhEpREj1jFCcNnS3YtIdoUBpq54RvG0Uoh7Lcf/CQOq9RMYl4dxgCw9BRVBVPnzyh6zuur68p64LBD7y5epOPBR5c3EcnO+n+YoyTYB4l4Tsxd89Mtk3TGuHux4DWUFclJEVpDauMLD/fvuJwFLebIfs2CyqdBOm24XPC+RACVV2i9Jge2NM0FdYaSl2iFfgu08E89LuB5BPDBj74wXe5OF8xmxfE1LLbXlE4uXNn85KLixWH/Y6Xr17x7JNPhIPsHSoOFIWi9+Ed5DZBUphMFTE2+7F/Fcc4SV0S1Ig6qzxPGHJFxPr6mvX1NZOo+NeAlr+OYjkB/4tSKgH/TUrpHwEPU0qfAaSUPlNKPXj3h5RS/xD4hwDvP318Q7kqpdP04sJmzxNuQueWQ12UEk8dehSKMov2QkwMYaBxBVXdYK1lNp9hbUlKhsXijPNzsWv74Q9/mydP3+OD732fy3uXaGeoZhVnF+e8fPOGv/zpz8ajlWOJiRhFuZ5SQJuCkAJ+UFhbEpWii463G+HHVKUlEun7lt1OrJfarsMVQlwfhoEytxFnsxn9MOCKgvOLC7SSXPboPev1mqIo6NxJ+VoUbjIu/8uf/RRnDMd2z+Xlfe7dO2cYekJME3E/ekV77GirFlvWkqKT278g/M6xmNjtdlOL5fZJO/3zZrGslKJuGoahhRj55JNP6fqeqqgme7j4jhBr9Ksec8zEuSAnnqU0qW6bppGLPb6jfL0bv2njrz9PPLpHandTYfxVhvJpvD5DIKSOmAIRy9hMS8DoWjT0PdfrV7x985wYPa6t4e0G7WThMUWDrgqiqxjyjju0gdlshnGgUw4cyK1eay0u8wRH33atQv6+QqmEygtBfo+QHS20NqAkHfTe/Se8ePGC4/EozhFASJE2q+NHKpT3nv1uz/54kE1mDDzP4pqwWpAirFaXaOWyXdwBYzTOauaLJV23o2uF3uUKg4pybN4HqsyRdEUhYiijJ23D4ANd2+WQkhs0idMnLC43N+YJle/xwXt2+/3k7Yo6baBvcpedc5ICSpRzygh4CF1rpHPdjb8x4+upJ2RXJvzWlG7YnYrwVywcRzL8if6U1AjAZRqGd7lGGyiLirJuaAfPZr/HmAJrC9pu9DZWE3XRjVqi+w/Y7LYiyE2Js7MzXHbQ2h522LLAb3NCcBRvZLTGlWXeAEe6bhS4Sx2kEP5/MuLAsZzN6HsvqcXjep43ns45CSipmqkI3252tH1P23VZqChr7vHYUjcNDx7eZ7vbsT8ELu8tuP/gAxha9us17U7mHoJif70nxkhTz0gJfvrTn7HZvOHegyXf+e6jqbaYUVFWJUVRSB3TthSLGltUeH9kvpizP7bTfW+tQSlDQDY7SRvhR+fzJ+/si+d+0TScvhbal54cSNbra16/ecOYHvrrkCu+jpnmH6SUPs0X8P+qlPrJr/JD+Sb4RwB/9Ae/l0YEQatsI0bm3PWeqBRaO/mTpMBSxqDS6B2qJvRXKYVKiblzPHz0mP/oT/6Es7MLQkjM6iVPnrxPUVTjMbDd7bi+3rA6W1E6ix88dTPjd3/39/hX/+Zf8/H1TyefQ1cXJJdo44DRJUkn+tATfcSHgbpuUDpNxb5kk4uVXF0VxKSYzWbM50u01rx9e8XrN68BePP2LavVirJw02ITY0ApMdder69QQ4vKN+NqtcSaEqU0H3/8DD/0XF4sUcozmy1Yr18QQkS7HGFtNc5Zdrs9Z/MZIQ008wUojbFWglKyIn6z3dH7AZPjJ09DorpJ0FSViCjysVrrCMnjfc/1ZssvP/6Y3/vxb2WuZCR9ARdRzkE+fXmzFGKYFPgg6v/5fMZ2e1sMdDd+48Zff5748YdJhS+3+tGjaY4CpSK+O9AfjngMSYuZ8Bg1G8MA0aNiYOiObDYbQjgKNy4OmBjod/macx43X+Gqgv7YozLCeaLjCoph8iL48NFjPv3kGYa3tMeOAYMpFMYWGG1oKofGTM8fxa59f0rsGy0TjREB3ci1HuOsi6IghEDTNOyOB7bbLUMYsNYQwkCXw4iOnWPoBupmzmJxhnOOV69eZZFz5h3esIMri4oYJIWwPbTMzxek1FPVtdzD+qRlaNuW7W4nyJW5sZTcvNenfuGp+A1xQCnFen2NHzxBiTI9JQ3xdrEMZF65ynxLmbdHz/vRuvNu/I0ZX1s9QZbOSThR5rMzeq9bQZ2VBmNySFEQq7gINneqjZNrzUePRdN5j3EOY21OptUYLai1tUVOxyt4+PAxT997j7/79/4e9+/fJ6RISJ4IfPzslwD8X//P/83Pf/4Luu1e8iWUIWmL0ubEJU6Jrpd7OaYoRb8S9y3vRQRYNzXWerp2mERyTVln73iD94Hd9sDR9/Stp6oaqiqj4fkeCyHRdUfK+sjDRyXzuYBZm801XdcSuiPWiUgYwJNt7ZBb0znH+fkFx3bL1dWaslScn0khXlWOGAcikbppcgqqxlYN3e4tq9U5r99cT910azXKOqIBn8QXftRATAXD5y4A+UtAvIhSDq2VbCA4IcjXmw2ffvacmMj2f/8WkeWU0qf575dKqX8M/DHwQin1OO8CHwMvv+o1tILaakmHSR5CPOWnK0XCIeWUhhxSkrxcOLHvUMFPKFOKA/3xwHG/5+//8R+jqppZM+d47OjbAZJhl9WrRVGwOjtntliKDZGGGDsKHTHXH/EH9yLdg8Cr6/z8pgAl7QmTk3SGrkeKyEhVVoQwnC4iXeOjXJBn5yuScqj1mt1ux7/4l/+CBLx5Iy2ZmBKLxUI8Go9HWYj2O+7du4fR8OrVC3w7p8hoVFF0nK/uY03BZrPl6uotMUGZ43Dbrkcpzb17sgnf74/M5pHPnr+hripmVYHKbaqxCB6t45qmFqsdbfD+ZJGnEigl+LOKgUO2dHPWopXC2oJoxBLq44+f8aPf+hDr5HzdbNGOBYEIFNJkvaWUOHB4L61WgLppaJpTsfxXpbfdjW/m+DrmCXi3ID5Nm3p6UJOUISotbc0UGPqevt/K9RZOqU9FUUCejC8uLjhfnXE4HKYUrbGbobMBPylhtJ7S5mJKpCihBtpqbI6Mfv97P+AXH31E/clLuniE4NEqUlgjorTSEYOaAkrGRSKlOAVuGGuzYEgEM9u90DC01sznc8pK2qMhelxh6PpIDJ6+a6fXARHOnhBuoVVVVY0xisWiRCvDfhQcgoQG7I9U1cB6vRfbLGdROQUMToU7fDH9QSHzmbhsOGymVGkFuqzoW09Csd8fcjiTI4WQ07biF7rnCFA4os9j7K+eNtVfpo6/G79Z4+urJ6RbE+MgUc8jgJXTPBVBqFW5G4RzqBRupMKdhGxj4T1zjtV8wY9+/GM+/P4P6AfPm9dX5OWeB/cf8ujRE2azmVg9Kk1VzWhmc6qmRlmNKyznl+cArLdbPnv+glYfRptzUkyEKEAb070gxz4MA0EpoZRoh4+epAytH/DRc/+9e0QjL7S/ajm2EaUi6+tr2q7ju9/9Hk3T8OTpUwY/8POf/5yXrwWsM86y2wX6XrIo1CgI9jIXWlewKC1F9p5fr7eUTcUweL77wQf8+Ec/IoSemAZevvyYTz/7jNXZ9wFJSr6+XrPd7iUzwmTxoi0nh46iKDgcc1R33lSXruTYB0xR4oOf5gH5oD535UgNqDglA2tNiIEYwebzeTgcuVqvub7eUF6u4IsK7y8Zf61iWSk1A3RKaZv//SfAfwX8T8B/BvzX+e//8StfKEbobtuDjW9BRfKJi+gUiIOXYjQltFKErsMqNXEXQ98x9D3BD5i+RzUztBEHixQ1s3rObCm2ZEkZfNIck8fHnmVhMCliGKicLIbLumTXnbLZhRIibRuFwuica67zMRrNPtvBNU0t9i0pYZXFFTMOhwNdJx6HIQTKHASCUgzDwPn5Ge3QsT8caY979rsC7we8H+j6jjJz9NruyP6ww+iCuqkoy8cUpeHifA4MVGXNvfvnXJzJjTkML1msVvzy48/ofaJJ44SgCDGxu97w5koU8X3fS8t1xLiT4qZTJWSOZt7FWmOIJEH7taHtej76+GOObUdp66mySTcW1lspPNkKhtyiDSGAkhtqMV+wXK549erl1Ma9G79Z4+uaJ7SCwo4FsRTFY0cp5MdQeirU0OBMwhUFfe9kE5pRmonDl6kMSqnJAz1mo/qRZy8ocrZycpaUEk3ToJS4vYQEaIeuxOD/4Xvf5f6jJ9R/9hdcM9LIEqcQAzHZH4vl/kTqJSmF0gbrClzheHx2jrFmoiUBlGVJVddsdxvpPumTVdKIvI53yeA9yXtevXpFOxcEe7lckFJkebZgNrP0fsf9B7KpPjs7o+899WyGDy/wIVEWNyymOCFKKSbKssSWmhDFbSelmFOGpQVulMwnANYI6coYQwSO7ZH94cDFqiElTYpffH+PvOibxXBK4jE9euY756bfczd+M8fXW08IFTKXTSc3DCVhYirfl2MqnkGsy+LQi+eyGgEcSL5jOBzo+57f/v4P+PDHv8OsmTOfL/FDwA850RLL9fV2WtfW6w1t24rrTuZGhxBYLMVS7Yc//G1+8dFH7N5s6LcebRTGaZTReEBrAbKw8/z6M3Gp6TxN3RB2kagKjr2nKGx23JGPoO9attsOpRT7wwHnxDmmaRpSBgjKspw2m9oYZrOG+w8eSPcnBHzfs+s6Qoxcnp+LK1dewo3RNE3N8diy329Zr6+4uLxgdXbO8XjNqzdbupzuOXaB4DTvHtsjerZEm5K2y97uubNti4LZfMF8uWJzaNm1vQQQdd2tjfo7Fw9jT19NtE8JeYkxoQv5/V17ZL1e8/rNG+5fnt1y2fmrxl8XWX4I/OM8wVngv0sp/c9Kqf8T+B+UUv858EvgP/mrXigMHdEP8icME5PEuRJdVGIwHiWdJcb8BrXYtd0U7gQfOOx2ItQxltV8iUuaqqqpLASKW5Gzx91OzLYrg7ZJUGrrWC5XNM2cWVWikUK+PxzQPlEWEVPPsKZgOa9JEbRz0hZJElEJIs5TWmdxDLz33ncoy5pnnzxjs91ijOHx48cALJZLdrstg+8zkT/TEkKg77rJyHy3l4JWKYsfotBBUub8JkfdPMDawP6wJsZEn6M1i7LgeNhzeXmPFy9fkS4qVmcXLM/OMcZSHI784uNPAXjx8jW2KGnmC9moeJ8j7W8vVlar6d+CTkuL6Hhs+eijX3I4HFnN67wLvH1R3lr4YhTefvacHHyYFud6Pme1Wp3Szu7Gb+L4WuaJpAy+WNwqiG8mSaUcWy/orKATzgmtaXxseq08gVtjUSnRdR1h8BRFQVVVYtGar0JjtSyefsA6oXNcXJxJh0rFbLB/Q3OhFFVVMatrqrLAOeEwF1bjrCKVhXjF54VNRCyJ2XyGMQ4fI9ZK8Xf/wZxz7ymePQNOXqn5NzL4gbKuWC6lO9a2RzbX62kTPvQdhbUYqzkeD7KxtwXRe5y7ZDafsdm8wpgT01hrPdE/jm1HXRYoK9aevffssibjOifwWeNIPuTPX+50EfHKHLHPRawqnHSgjMVrTdf1bK6v4fF9Mhfri8/7TWsorUleihyn9WTT6Vxxq1i+21T/Ro6vqZ5IhL6dNrva2BOlMId/ECMx+/umlIhKiyWlz237XCKkvuV4PNAeD/hhYHV+iTq/QCtNUThiTKgcQVcWBWdnglY6V/DBhz+grGva9ohzhsEfZV7ymfd79TO+U26I7xn+359fo4ylObtAmUDbtxgl5dlIjzzsTx2gWaOme3wUzYYQJakTEcQVRQFK0TQNdT2b5rbdbst2t2N9fU050piUoq5rZnXFMHTiER0iwXuut1tWqxU+nOwZjTEUpdQ8gx/45ccf8+bNGzZbCTn64IMPuX/vPL92YAhe7DCtJQbN69dvca7Clg1tP2RwoMynyGJzMV/6yLH3uXutBbR4V0o1ijSRj0eTpqRQrTVdCJTq9D73+wNv3r4hxg+n9MVfZfy1iuWU0s+AP/iCx98A/+Gv+jrR93RXLzINI0IMeQcI0ZXoGKCoQRcQNcSs3vSjN2/k2MsE/urlM14+/xit4exo4O2aiCEVNdo1FIsSk++EfvASvhECKUkh7qxDucTFw8f8O3/073K92/P8bU5/OW5J2qAKhzWawlli6WjbPnOtFT5G9FjYaY0PEWMlvtqVBb/7+7/H+eUFP/nJT25xc5USb9Wu6yirisvLS1arJbvtlt1ug1aK3W5DZeXY33//EftdN4WUWFvgQ2Sz2XF2XuOKEmPSpHIfBs/bqyvevn0rnObNBo9hdfEArS3L5dnE62mPByplSDFgC+FnyTWaMg1MJpgiF8t9XsCDAoV4Jj5/8SLvLMd++TuizVvXC5lnlL8mnYQS1mWRn75TvP+Gjq9rnkgpiVPEpFX46ucKuqxRxuCMYVlVLM+zZ6lzDPs9Td1w3B+4envF0A+sVmfM5wu6vqPKKveiKkT4EwLKMV3LMhkbiF68W/MhqbJm9fAp7z19j6Fr6bshu2JEdIoYFbG6oMsItjOakFHrm3SCEDzDMEhqXo6lvd5sRO3ftgy+ZxgGqlyUG60ZuhbvB5yTOejQdszvXVJVNfttL4Yh+fMbvMTRa2MmJK3rO5xzeH9ktTrn7dsrymLOctVQz2aUETb75wC8fPWK6/2B+WKFNi53jxJJpVvo9olmkpMAMxDgQ2Cz3YnwSKlbwu53z+PNjXpMkRDE8ajMC2xROA6HuwL5N3l8ffXEQLd+kbvPGmsdOtMHlC1JtgAkyGwE3mKmO6QUc+2RH48R3/ccDwe6tsXVb5ldXFJWNbPZHK2ODGacU2psrSd/53Xvid2aujJYo3BISEbYyZrskFrHpMByISK9E+ItHSONvlXQne4pL6FESTq8dV2hrJOMCkBbw6PH92i7Hr3Z0PcDf/4Xf0HMzj/r9RqlNU+fPgWkW6Vzd0oh5gNaG4rCcTzs+ezTTzg25ciYxNqKJ08e0x4HYox8/PEzSJHlcoa1knQ4dsOurze0bY8rCwyGLnfA+r7HuoIYWox1k/BRG4MyOaNBG3a7Pcf2iA+RL9tRK3UjE4JEyOCIGjUfY1ZGDkR6/fqNuPz8Ggmg3wwpcYqoob31kBpNxaKnO2zxux0+CQE+xkTwHdH3pNBjRsNswOiBx48fCiLbt1itCH2HxqB1Aem0+4rRMGsaumEgJsUQIsY5rAK7vOSDHzp+9vOf89OPRVm+WW8YVT1GJ5xRmKrEKI1xjuOhAxJlLTfmfD6nHzyucBhjadsDISyzyG/OdrudFsbDYc8w9Bhj8MPArKmFg1w4nDX0g4hixkL82B6zSEcM0IehB+dYX284v1ywWK24unqJy8V11/eEEBhCwO92lM5wOBw5HA8s7ZK+76fgg7ppqGaNhBBUlYiPYgQCk3VLEiqGDDFADwlsPsa263n27BOePLpHaTUq6Vsiv+k8K3Ur5UvlicZnIVekoGoWzGYrrq+vv4CrdDe+LWOi6HzB0MagrT39ba3QHYwBrSmVghAhtwaJiWh6sAXeb9lsdsQQWC6li6EY6VaQJfVCp4gRZQxaQTMrBd3thZYVMsLkCsfZvUfcf/CQ9euXXK2vJQo3CpVj5N2OrclR4OqcFJyHY8u9e/fo/cDV1RVnZ2dTlHafu1a7/YaUhAYhVnoiUhpDDE7OQvkzS9Oase0AACAASURBVPIeUhK6hHOOw+HA8VjL56XlvXadqOTfXl1xdXXNannO27evaOZn1M2MENPUmTscjwy9CHJNLkbG33lz3Lzr041mad/3XF1dMfgBbW/a+p20DdPGaAxjG4uYDGGPc7lzJ6HfHar8LR8pooac9JkjrceQs6gtceiJMRDQuSude0hJEOdEostJoZv1G968es5xvxVb163Ff7KgfPCIhKNSjqLOgFdRM6AZgqCt/aFjuVxSOFAGtHKMcdoAzWxGWVZUhZsEhn3b4mxEmYRxoLSlyPeGM2C0wTpHIqI0DH4gHSJNU1MWJV3uJFtrJcRMm4n6Caeum81z5dgFXy6XaGN49eoVXdcxhIH7OQU0Rc/1+i0qzKYevtFHLi8ecH5+nikn1+z3O0F0jcIPIWvNRl2DYj5bEEMixh4F7HZ7zlcLjI4kbZgtJPlYKY02lq4faNuW/f7Abn+Q4jbbeX5eo6AyTRas1ti6nrpji+WSvs1JySlxOLY8f/GCwXuqouRXHd+IYlkBVmfxjpIPK+WLO2DwMdEFjx8OgmB6jx881lqKoiCF08JTVRUxRPquk+/FnhRKvO+xsRelez6JZWkpK8cQIm3bkVQihATOSGHnKu4//Q4fflfoCYVWdG2PUgZDRBPQOqFVoCpmtG2LSeoW6uV9ICq4uLhkvV6jtaXKyLHNileAl69e0Pc9q9WK7XYrbUytqKuas9WK6+s1kLi4FNs756S1WlUO0LRtR3vs8NcdV1dzqgq22y0XWUygtcI6Q1UVHPYDtpkTY8dHH30kPGhlpjZmUZZorRi8x3lB8iYNqsqLGAkVR8sbQ/AeawxFVaILER599PHH/P7v/jblYpbFOdm2K2WOV+aKjsp/iUOzGFfigyx4ftBU1YLF4oztZjd5vN6Nb+FQwmcbi+GxMAbka6UgprFVge97+v0RozS2yPG3Y9Z9Qtp6OcJ6sjLMEyxJBEAAyWiwmhQ9RI9GhG567By5AkgMIRfLSVM1c+pmhrNjSpR0wEIIxOCJxEno0tQVAeHnR6VZv73mydP3mM0WDN5zvdlMHajZbEaMkevNFSGE7IoRp3vJOUdTV5OGo6lrZos5h/0BlMUYEdH5IAmfwlWcs9u9lc9RQduKt/PhcKRulrRdz2a74/4DmZtvzluj2A6EIqGiRqnI6L0sIr/xvpevQxYJDsPA+voaPwSKkQbyZZzEJIX2GF08LsA3kw31DXrdXcH87R0KcHlzhUqk2HHcCxg3RE1AE5OeIqZjCKQ4oPJGVnPS1/R9T1VqSreQazN01IWj7w7omFBFha0lqc4YDdoKjcpYyLqkZK04U2mDtgaVhcAPnrzP73rPsetZbY4MhyOhO2JiQlWG0tWURXXqNA0DCo0yjhDjVPiGkBNCx04XYKxjvphz795DiqLis88+Y725xmYQ4eLyUuaOUZ+BINmuMPRDIvZeEkGR2sF70YqVeR7qupbtbosvpQBfLObMZg1l5WhqR9NYvB8LVDi/OOfy4pL9/oBSHbPlkvXVhqqqOJuV9FnoC6d7d6yjrLWURYF1JSm/X7HNzPNOynHhKaLV/8fem/xYluV5Xp8z3XvffZOZ+RhTDpVVmTV0tSjR/wErNqxZIYFEr9ixggWb3oJYIjV/AGLFBrEHCVYI1DTdTdJUdWVFhLubu9v0hjuegcXv3PueRWVWRVUlKKLDfpKHWdgze8MdzvkN30F4En0IjMg1oBXz+umDCCi8efuOvh/YLKtvfV19N5JlpdDlQrrGyhDPxqwpJWxhqGoLMXI8Hjkej6RhnGWUXFHO3QsZl/Sir7xcoZOA9etVhS4Koh9RRi4QXcjBt5mlarSFNJKSIniwxYLXP/09fpoVK0LXcP3+A8MQiWEkRbG9TjHISdKa5VIUMCDjkI8Nh/2Ozz77McvViuOhnXWEnRPSETw26ri8vMgXahSt5ehZLxeUVTmPZEISz/fteotCczy2eB8Y+o62abG2QGubNVBhfxTt5C9+9CO+/NVbNtsLfGj58quvRNLKWrGcRhRIQhB1jC7bXnZdh1aJ0olpitZ67lq3o8VogaFYV2DQ+HbkzZs3NG3HdiUwikltQ6WQ5XyE9atMgZnGYdGjTJLEJJ//sipZb9aoN08b4A85jLWsnj+XZHhKiqfkd/BkP/Y50ugJ3ssGMmGb42njGb3H7/fc39/T9Z0Y/6w3IikV00nbu+8Ak7kTan4uJpUGTuTU/ABFVbHZXrFerTkejjShxw890cvaFpJiUcvmUNUVEYV2Bj8EKaqVWL7vHg6zeoy8pMoMdfl/m5NxpaCqCmJasFkt546R4BVLSBprFnifpHvc9rRtpG07lPKzss1yWUvRkJUpvB9J6UTqi1nkH4RUVwQwxs7Yx5FcDJ8VLUaf2PwCqZAkxafIfr8Xq1tOG+V5s+HUZX4MuxESsKLIuM3zZPkpUf6Bh9ZQLTMJWIzEJp1dHQKEgAqBOI6Mw5AVraQQnRSapmtpsViQqkQYfd4LR2IYSLGUvSr4ea9SRIzVlMmhFIQk+OWEygoXmsLaueGzeP6K310ueXt9zZsPN+wf9vT9SEohN5RSTvbk98tC8g2lDcPo6fOUzViLdYUYe+R7sygXpASbiwtevn7Ny9ev+OUvfzlP5urlEmMMTSPw1X7oSEnu6bqucc4SghfPhXHAOcfoR0JGADhXst8/0Bzl77Q2AsEicnW15dPPX/Grf/VLQNR3FnWFzZbYbTNkO2/F/thSOUmEZwUSFEMIdO2Bu/s9dw8P+GzYlFDE6PMxypCT6RhpaWMYo2WtzYWBMsJNAYjG0g8dNzc3fLy54XK7+vaX1bf+zad4iqd4iqd4iqd4iqd4ih9YfCc6yxFNGxRxHEnpsfzPJDUCoJyj2m4pNxuMUjjraO4fWNRL+qNUSF/dvuGw2/PixQs2mwuUzqOQMLEoEyHrBmtnRWdRS1dm9FEqFJXofcJazWpzyXIjUIa6rimLghQG4jjSxSMpKYZhpDV7qqpgc7Fhd5D34gqH6Qz39/f4cRQ8cgjgR7Q13N3dzTa2xmiMM6CEvHM47hmGjrY5kmKgqipC9HM1ZasKa4QUl2KiKIQEtE+B6w/v8XGNsW7GAnsf2B2OGLeY2bEhTl2yiU0qx9nHSNcOlBXYzPQvikIY/c7MurNTA8dqRVRSxa1Wa+rK8vHa8xdv3/Ph/sir15+gQ4PJFXiMQ+4eiVxUVAGFyIDNWMvcpYspUVYLthOW9Klr9MONBHQD/KZR/VnEeNIaVtM0pu9pDlnZpuvnLosPkeVyxXK1nkkpRp/kKNM4oF0e1/0aPK3SkNBEPWm2llRK8/qzH3H75Z8xdD2kB9puYBi6TK6DMo9jrTGZjR/RWom0WoxAwoeADid1mLu7Ox4eHjD21Fnuh46ub/F+oO87FLBeLfPjhsGPRBVZLmtA07Y94+jph56maajryeAAJniJsN0F4lHVS3b7PV+/fSNWv02fj6ulKKWtPamThJTQJ9AWcOrIPEIYKkWIkd3cWebR33wzZhKwPiNvwgwJKYriaW14CkCulXaMc/fRmJPJx6SO4/PkxY+TlbTJ6jgGc2Ze1HcdfS8Y27quMcZiVUQRsUZjSzfBoUmjQDSLzD3Ybjf0/SCSioiN9Tl5EKWhKLl48YpXr14zDgP73Q6lrPCFrMbpNHeWQyHSrEpbgh8pnUgwrjYryrLC+4DNFtNaa0Y/zLbwdV2zXq85HA6EGEV7nsSQsd3eC5n4xauXlM4RQkXTHolhxPsBraFpOlaVTJBevnxF13q61mfSsMDaQoi0XYf3YYbIVWaBApq2EepEno5ZaxmHwIebezbbDc9fvAJgud4QY+LuYcdffP2Or79+Q9KGermirBYyOcjSlMDk65m/z0pHSsxkDHmamKfgSmtCCLRtx7t37/jRZ6+/9XX1nUiWU8b2ACgjAPbJ3cpmt5yEYFNKla0LR9EUdLYAY7H28RjPWosrCmLyDL6H6AWHSMBMlE7RQ4OoTm4H00hVGZJxLJaO3/ujPwHA378neQGzH44NXT/go5hodF1L7Rwh+Bkf07Ut2mh+73d/jnGW3e6Bh/0BpRRVVbA7iu0k5GQ5CuxBk/LmNzIM/Sx9lWKa8b77/QPj6HGuonJLRj9SFCWXl1fc3X1g6Eeu1itilEWhrCqcs3RtJ4xZbUjRsNpcEEKShCLrRa7Xa4ztQctxjTGJVqG1VIuK0hqM1jMWUTcDTd9D8CxKS8Tg7ZLr+5Y3tzv+2Bak0GXniIxtTClbc8qoNuWRk5pugmmBCFIQ1KuVYNC/RaL0FP+6RnqUKKcY52JwSo7lPjl9r5RiVIphDPi+p20EbjCMI33XURYlRVmyDHEe1eUnZ7JUTdluWWVpwzTpGSNwJYUhWY2xk5STJUTP5ctP+ezTz9g97Giajr4fIUMqYvTzYh9CQFmd1SksP/3pz3BlQdM0dMPIGMIsg3VsG7qhpzRFhm7BYb9n9D191zKOA4Vz8zqRSFgv5iPGGkjCrp8Sy67rcYU7I04mDo2YBzx//py2GanrDR8+vOftu/cCIZlIdrPKReIvES9zHZ4yu38+RyGAVhRGE33i4eGBYRghqwEJt+FUkMza6ml+e/PakDKcDR4T/J7ihx0nTLvsNdpadE6WdbZ/LrTGXV2xTQmdJV+HpkUlgTU02V7+9u6B+9s7NpsNL1++ZLlcMmZXQGsEwjlz3mPIil5W8MMKisJinUFREHwPWPwgUAajNLpc8eKL3+HH9zuUH3ibEk3XC0wxDCQjPB4Q1buYk3+UWNIrxNLaGEM/jIz5cz/LmOQvv/ySH//4xzNO2VjLOI6M48DD7n4+Tuv1mt1uR8weFgop4q21831ojKFeShHe9S0+y8nK/R+JylIYzeFw5P7+gXopEIdhODCOHT4E/Oi5vb/j480tu4cjV5cv6PqAv99RZux3vdwAinq5ngnKKZ6cTmeN/FkUQJJjMZyS9+O0Ysi5YExJcjwgBYF/tl3Hu+v3siZ/y/hOJMvaGFYvXmCcQ8VEtt4C5MMNmanujMVWFWhxhfPjwDCOdH3P7v4egMPhwHK1YrPd4lxB13XYUhGGFmMdqjJwvgkmLTcXET9mYXDrMMWCqAzBj6yfS/Xxuz/7Ocf9Ee89bdejVQAizjlsln1q21ZspMnA+GGkG0aGL7/EuYJ+jGy2W7ph5HA4zBerkIucSEHl55ovWisSLqvlYpaQ6vzAzd09t7c3FEWDUpqL1RVFUWGMZRgDoLLcitw80SdubnagYBh6QLFareiHMZukZIKStZQlGFeyWCxzNS684dIadAgo77HZuSjqxBA6+mGk7xpsUWMy5vHm5pa2H6nPK2pkIYmSeZCSaJ8oJmxiEltPIES5EYuiYLlacXiyvf7BRsp6yOfJ8DfxrfKPkzxa7iCZTO7zZwnexBHQWotskWJWinDGEOekzcP0ffTZ/ERhjEKHrPkMJ8lIZMM2rpCNzFoh92iD0oKrrlfLuePtg7ym0ZoxeNCW29tbnCu4vT+wWq2IOfltu47Re/QgGssqRg7HPSlF+r4jei+6zTOuWj7r4Ae8HzG6wFrLarXiwQ/c3t6i7ZrZvsEYjk1DGMEVNYWrKSvLx5sP7A9S6LtSjJHO8cUhiCqG9x5NRCMGTjGpWdloKnScc9SVo0+eh4fdTCxWZ5Ol6fln8iCPnQOnhGjSZi3LiskOe/76FD/IMM6y/fRT2W1iIsUw20AHH9BemmlMXIaQIIm+b0oJZeys63++voi8q0aTCXUEsBpls+FJiIQwoKMRQ5EEOhvxjD7OijE+TcWeokia5fqC9faSqhROkjUanxLRe0YGgspE+hAIUa71whrq1ZLeB5bLJUVZcLi/p9vJvfTZp1/w6pPXvL/+yG6/n5PdkzZzenT/ppRYLBbEGDFGU5SWorSIGZmss9vVlotLUeWRLrZmWZf4rAJ0ODQi8eZ77h8eWK/ltbp+oOsalquaEOOMjY4x0vUdRhv86Gk7KSL6vscHT9KiIraoa5LSVFWFcwXWOWmCTLrqSfIwpWBqMpv8/ehl/Z8Kmsnlz4fAzc3NrC70beI7kSwrpbAhQpZrefRYflzkXySBDH3Pcb+na1pG74khzt3c168/zd0bfepMpOwPH0Y0YbZXnvQMpUpzGCvjSNn4bBa2FncqgMWLT3j16Qc+fLynLFt80oReuiJd37G5vCKgWeURaDd4ur5jHAO73V6MUeoVIXe+y6qaSXUqjxbu7++wSuyxBxJVVfLs2TPWqxVVVbDIDn7HvmXfNAx9pG3bTNoZ+eyTz9hsNhybHQ8PO2KGtYjUVU3XeYJvhdlaiYNPTIlh9DPcZbvdstWGGIV5G30geWGaqqhQSdjCOVfGKD1DMoa+w5U1xmjGIXD9XqSzqotFNm/IzoBKyTRlMpg5H6Wc7XTTBuxcwXq9pm2Pf9vL7Cm+5xFjpGvbRwnxr7tmpjifQoQYxf1zSpZjxDrHer1hfbElDCOH/V4al9ahtWH2PioLKEtJPOOYOz0q6yzngjSByi5hMfMOjS15/tOfcfHmPe+ub7BFiYmyQQ3es82GGgHN8+fPiUlxc3dPP/a0bcdiURMxuLLgcJAicRiGuZOT0qQnekqOpRN7RoiLif3unmGMrJYX1OWaECNF4aiXS9p2j9aGqpZ1xRgjROEhUJYr4phQiNTU4AfkIJyOadf1hKjQwzh3mEtncK5A5/U3ZOJOP8pxn5oLg9IcjofHMAyl+CacYv5MERldKyeyV0FTBDnmZbkmxhPB7wmQ8QOOlFDtKZdIIRByUhRCwCpptikrxVgYPX4cCeNI8J6YEg+3og6z3+8pFxWXV1es1muMMQQf0ToRh5503KPKTIwvFpnEnn7tgjRNo7SZJNUA46hXW37yu3/IcPsOP4zc3z1wPDb0o2fsuzn/kORyRBtLWVaUiwrlPYkkykD6RNibYBVKG/pxmA1K9vs919fXudA0J9K9UjhnadsGH0bGccyQsYAzGrcos/PeSeGicBWb7RrSiZi32+0ZxpHjoaGqslJRhj6ItvpITJH1Zo33MA4RVyxQauTNm7cAHJqG4AO2XMyKPUlJU7MfBkEapHTqLDO14SRDTiSBiqpTN3pKlp0RMuLoJTeZEvRvE9+JZJlsdiGySkE2tryAhiB+7SlLDYV4JPQixu+9J+bW/pQsF1VJChEfxOfcWosySILsNKlwqGks6DuwC6aNzxgt7nFpsppMhDESsubvQMGzF5/wD/7Biv/jn/0z3n/8yHB7yzCOJKV59+E9q9VmxgGNQZJxrTUJT9s2lIt6ru7U1NFC2NxGK/rNhsPufj4yMYqt63JZs1wuqCr526urCzaXF3z91TveX9/mDlrLsW2oK+ku932LEdAx/TAw9j0xBp49e8ZmfcXhsMNu1+z3e/q+xZqpiNC5nhRsV1mU6EKT/EjOCph1DRHcpLUW40XWDwRnlUi8fXvN+5sbXm6/mKcFp4v7JO2SkpovbNSpsxyzQ5BzjvVmxc3NEyf1hxqiyvDrdZaniCmJtGQIjMNA07Z0rRSHxhgur0R6sV6tKOuaer1BxUQ/NGjjKBY1piznNWeKU69yal/IG7JGo7TOybHcyzGO4jQ6Bvb3B372s5/T9p5/+Wd/hqeh63vCOHLIkBDjCvqho+1lSuZDYhxbkWkr66yLepJrO0GUAruHB1xhiFF4GdZaFouKOhfVdb2gHXtu7h64f7incT1aaS7WzyjLkrbdy+afMX0x8x/6LtD3A5oCYwtcUWHGlDF/WVnAiA23sQLXSilhbZTN1Wkmi8LzoyhvX+NsgSsKSQr6XjpaWVHn8eQvw7a0Y1aGSwGlQi6YMnbb2VlR6CmeYtpLpulT8H5+TBcWtCaMI33b0jVtdqwL9F3PYlHNfIJPPvkUknRzRWlCQfJzQZomIzWmrqUkaxPmOSbAiFtlUcg+qfI6kYIi4Ygpsn31Gb/3i7+HivCl/Qqlboi7AyGMnOu9a52NU0ji7Kfl3h+GgXpZ8/vP/1Dei9Hc3d1xbAeGYaQsBcJ4t3vg2IkCF6bMttAC70rBc2xENavvW/zQY4wRRZAUQZ2mZ9o5lMrvLd+DZVlS14GmEXfAqVFXryzjGFBKszsc2B+OVOWSzXZLGBOb7Yau2/Hho6iO9R8lsS7KgZiERzbGQELW9mEYMpQkd4VTxCixMFd5Umg0qNzsVCrNaj115VDJM7YN7z98pG2/Z8lyDJHdw8PZGDXNEk+QXXTyxa61EGH8lEQDq82aFy9f5t/WHHbiuOcWNSbrMIck7fepDQ+yaM+4xCguUouqzLA4gRH0PpMDgWPjiT389A/+PvWLT/hf/qf/kQ93YiutsgUvitk17/rDR7qu54svfkpSid3DgcN+hykXVN/YkCXZF7iBsY7dfofV8PzlS370+edsNmuM1YzZ+vL99TVuu2S9XtG2A/t9Q0pRbpqFaE13/UBZyoe9OdzRHhsWVU1lOw73v2K73WCKLdGPtF07b2qhGWXzjYqUREvWahldqCj/Ugoz8aCwNn8eZqyWUgqU5ub2ltu7B9A/IUwOZzFmEtAkrJPx+hNxJ53O0dStquvsmKSfkuUfekzGGiGEuSs5JcjTV0mcNFobtpdXLJeyOFebLQBmIUUyQDgzu5nWFHWWHgfvUX5ELSq0srlDlF3qlBZbg7McbQxioxuC58PX1/zhH/4Rf2ArmiHwL375fzGMAW0cx0muLW94c+8pP5f3I0WtRW4pS0yGFHGFQ2sFY6JpG9Z2BSSstVw9u+Tq4iJLM4kc1sPxwO5wFGOUlIikLLtpca4gxIg5LYq8evWKcXhH27RUlSUhEm21vDu6jPNbLBYiiZXJUTGPWBMiJyeydmo2Mem0bHzLesF6uSCMPWHsudm3JFuRQodOI8RhPhdgSFpwoSdpqThDNKb1e9LcH/8GY9Wn+NczQggyJcqcmGkSMz22z7whhUAnprUkpSTcn1BQFLn5VpaZGxFnN83CWrwGVCCec6AMpCQTbDIiy1pD1NKIizH7FUyMwKyNnJIU+cV6y/bqOTe39xizw7oCHRI6nSYvi3IhhaExoJXY3FcVh6YTicqc/N3vHiiKkpR1mY1zDH3P/f39zC/oh2GWx/TjSGGNkBEfTalytzYJi28yPWn396SkAUNdrvKx1iyXNc4Z9rt7mpwHvXj1CTHlDrgSbgZ0LKoVfhBpz2nSLucIUJqQbe0HH+j6gRgFf95lcvZJPtNROos1as7VtALnNQmTG3DTIZRCfexaHnY7Pnz8+K2vq+9GspzEsvHXhfeefhhojkeOTUPXdayWK66eP+fi5SvK1Ypys0XnJHK8vcP7MGOOEqLB5wHf9VjXolfSndXZDTABMXgCimPXY62jqor5pJSZPFKsNtx9/aWwzTdbPv38C968/8Dw8SMxRaIfKRYLXD7pZVWy3x9omj1VvcKYlqHvROi8qvKGmrs0WhOjiImX1YLj4YHlZsXLly8oqzLrHp/Gi1qpTOyJPH/+jK6Vi04STkUIiuRLhnyf+THhNCzKmv1+R9eK8cnFZUVRFMLIn5n+UcDyymI0+DDQtCNj30GSzlFh9Gypm7TGWYc2IyEI0zbkm+79+w+8eXcN2szjJD2NzzPWcxq9Tgkz6nRtk4H8SmlWq9U8QXiKH16EELi5vZ2hOSqrNoA4W2ljcUUpHc/8z2Vtz6IoKMrqMa44T7SUc2hrSUpjqkUmkYHWJweqFONs0yza5YoYAmMK9KOnLIuJv8o4ehkdpoQp17hywYtPP2ez/ZdnCR+PNqV+GPl4e4f3ic32grbtRKlifUFMiS6PC2OMs/27VohajuAT5qT0BFGRJH5ZL7i4vODh/shuJ4S64OHTV6+pqirrH0/d4oSxhs12Q/AH4R7ENB/PEE/JvM44SOMcVbXIhWyiKgsWlUOFQPJhLjsOw57gR0w0oGqCKYnJcn23Fxvi0DFN+U6RcidNoeYSG+aR65SnWBlNn2+iT/HDjF83gTrnBk34ejEjOU07QbwRLi4vqXJn2Y8j7VHM0LQr0FUlcIIMCdKFQ+WuJcZkfXHhHZALOpUSzhomOta0BhhXEVIgREUYArFas33+mp+bElcs+b//9P/BVjW7oxTV3geZwqAolaYwFnTi2B653x1ISc2a0d4fKMuKernC6qz04cRSOsQ4f97puBwPe6w21MuKvm9JMVCWBfWyZlXXMq2qa6o8sfr6wztub+7Y7R5obCda665iuVhTFCUoNTcyxsHnJidsLy4Yx8ju4cjt3T0Ky+tqSdcdWa7EwW8YPWSOQhEjm80a2/agZJJ1MjebJlXyn2nKpZQS3PcIxks3vihkLb9YLTFa1uhI5M/ffs+SZRB2+jiJhGfDAMiC29ZSLBZcPHvOdruV7mtRQlGAMSJyP40HqgrVNJTVAr1ckYYBlMa4cvYJP+OZnUHwEk3T8rDbs6iXFM6itUKh5g25Xm+4/OM/Eam2quKL3/k5Xhf80//zn3I8Hrh+/xZXSPIJ0nlxheN4PGJdyXq15HhouL+9Y8gj4mk8MI0iu64TQp2W0c10c9/f3eGsYbsR8qDSln/1p7+iHwOfvf6C9WZLStA1fe7VCqFuOo5d17Go5Fg65/CjKHccj8fsA68zm1SUOYYxmzzkivhw2BNjwGqFUQVeReaC1w+EPP4eRk/Y7ejGSEATvOf6+pq2H3BTojBDTWVclRQzw/5UDeT/NRlXFgPOFSwzG/cpfniRkmDzXFHMCfEkwv+bfj8lgQ5o51DOCeYVRE0nJRg9qq7R7kBSAWUtMUgXZVLkwbqTc6SSqeOUtE0kkecvXlJk6+VzWUXjHN4H3HLJ1bMXrDYXHLqelCIhd2lMWdCPIw+7B1JUbC8uqBYVbdNxOByoj0e6/oTBlIIxzVKK3nvxYShLLi8uef3qxbwGOScuhcpZYrhmvxPMd9u2RCUY5bY7niZ3RkaW1hiUgpiiHD+tSzSlLgAAIABJREFUMcYS08kQZb1es95e4qOYFKQopCSnFGYExoiJaZa5Kxg5jj1+sKfkJSWOk5VtxixPB+9cBeNRd2hSLIJTZ9k5FotKpPOekuUfdMQYRSItT55CkCQTxBhHKZnWLJc1q+2WxXpNsVxiywpbVhACMUtMhqabm2/aGIEEgSjjpEjMUycA5UpUYdFJZeRsghRISWVu0HRpn67vfhgYg8A59jd7hrsDP/npL3j1k59z8fIz/sk/+d+52wkOeRg9aMMYAr5tUMYSs7kXWaxgMi0bx5G2bSjKinotfJ+PHz+CEshSURRorQhe1s+2bWi7I3V2tJvgXJv1mnpRUxSWsiypMoR0WdcM/UjfefqhY+ilWTdsAq9fvOTi4oK2k/d9OB4BT0qRwlkuLrYoLLuHBqUcTXMkwgxPRWlCjBAjRmuccyzQoA1FUeJcMTfXQFQ7SmcwQBpH+TvA6p67cGTsB5LPMnbPtjSdl0lWilzf7r71dfWdSJbHceThYYd1FuMKlot6TlCnmJK8hAJrwVip4vwoffvc/VWLBbasSMbKeGPqtlhDymQ2c45FnC/eJJqkQ08IkWVdoZATMo3+y7LEuAUaTXf9loTl088+55//i3/Oar3h3ft37A8HQmZ/f/rZZ2htuL5+z363oyprGSGP4nk+Exc5OYt571mvlqxWay63a7YXzzi2HX/2q/eA4eqZ/F7bttzfDYxx4HLbUy+Ws/PWpK143qUpCknWtZGxz3q9wbmC4+GAj4rSOryS7Ld0jn7whJhmCEwInn4cUCnhk8dZTRryu28FxhL6TrSqs4xMJAkU4+aO6/cf+fFLGYHrEMAnIV6EIEm1ApTJScn5+ZFk2QePdeJ3/xQ/zBDpot/suDR1Oa21GCtfbVFgiwJlnehzTligIJbMSRsZchiTO8pa5JDUae0Q9Z0TbllyOLlOdVaeiGcd1ympt2XJj37xB7K56oJPv/gxn//kLcdhzMmqPH+9XLOoF9R3d9ze3An5ME9QYgyzBJ68lYmQI46YRVnRHPcUVvPy+TOeXV2xWCwwGYM8dK1go50oYFTVDu/DPH5VWaVmWhKlYdHT9yObzYb16oqm6anytGzMmquASNRpgwli8xv9iMZInTtxDkgnl0UmCI1wHyZ8ctuKlm1pz7sYZ9yGGbt8Bs/ihEedzn1ZVX9p33iKH16kFPGT1GmeNF3k62LKI6aJk3WFFNFZG1kwyAmVVVZsURCahkW1wORusyhGWIJxhJjQmdOEEn6REOATCSHCh+g5th3dMLCshagPZGnYEa2UTMUWKw5jwljHsixZbzas1huKUsiGQ+6WhxiIPuCqkvvdno83N3T9wGZ9wSbDzGJKHPZHDvsHknHYomC/32cpVpXv50TMybUxBq8UYy7gnXOs12ueP3/O5cUW56woe+T77ccradDdfLzn5uM9h32D1prdbsfl5eWsWw3QNC1aB2Kyok1tDcZoXOFwdpH1rd1c4CutadoOawxaKy4uLgAtvhDKiOjC6E+Qi7wsqBRRQdYbpcQTVKUwTxJAdLNT0oI2iImH3fcsWbbWsrm4ePyzSUS8KHBZC9VVFWiDMjLikI0vCgYod35CVNJxtjnxSoKlm3RTY0qSrAHohNIWqw0JqLRmvVoSYqIsyqygcZJXcdZJNyMminpFHSPDPvLy08/ouo4XhwPv3n/Nx1tp7VdVxfZyy/5wpGs6nCtFrsUPeO8eSSWN3hO9J0XF7uHIarXBFVv2x0jTeO4fGm5ubnjz9hqQi3vwA64ys1Wv9+AKsam0zuGcZ7+X6k7yBM/Nxz13dx/45JMXOOdompaUhBwzbTNVWdAPnt2xyTe5ZxiH3H1KqBFCOpN1UnIOJwyzjHSjCJMbw/WHD3z99h0/fi3kKq0cpECIPu99MqoSORvZvLvMunVW4RAJmMqZp87yDzx01v40VhQVpqRySo6V1hk3m2b8bIwJE5NMK84x70mIMCklolaoIneQc+s4nRVt85MBcxGq1Dyd2Ww66kUm7sSIUbIhq/UlOsLx/o7Ww89//4949/4DSd3T5Gt87pDkEeI4jhTlAmctQ9cLUSebLiVOyheis25BQVkWPHv+jLIqBI+cE88UZeKjM87ZTcVENj6JWdHCuZNBy3F/wGrHdl2SwpHtyoDZ8vZtB0mmSwBjzGPtCCEMrBa14Lujn6Qrzo/gvD7EXLCojNc8HA+0Xcdq5R6TKidViwlPnoIUOEk02lPWngcy5OZJa/kpRO1gUT9uqsx63EWJKyWn0GUpTTcUIhqcZlts8j6juh5bVpJQa0MkF8ZGC/zCWNJUwKaUr3uTJ6P5xo6JY9MwDAPOFRTlyRNi+lo4BxeXrH7xh0RdoLXjsx//jM4nopHE/S+++gtSSnz95itevHxJvd7IlDhG3l+/p22PrDcCZSjLkubYSqLoR5lcT7DHSSVMKWKW/FmuVsToedjtqKuCl89f8cknr1mvVpLcWo3vB/ZZujU6gcDV9YJuNXB/Lz+fhBjsmXzlMHiMDSQC9/e39G1HWSzZrjeURYVWCVWXhCjH5e72nuNRkvYiG6+EJKtJyOZydV2ftN2Dl5UmnpoYMWUd62+o64zjiMoa9cnD/d1JTOGvi+9EsqyUYrneSGJcFplZLY/FLBGSAD8GjNMok3JyfBrZMcEwMrYwCDho7gpFYIyKAjMrx2mYzUgUgnNZr1bcPTxkkkqGbUy+8pnpGr3CljXbquLYDxTlkm7wrLcXvL+5phtk5NO2Lc45nj9/xv3tAzc3t/iQ0KbEoSmLgod8srz3lGWJ9z672xQYc8zjEj2Lg08XiNYajWa9XrNY1FRVRdNIt7ptGpyxaMMZgN8zFjJGKsqSYRDYS1kWtF3K68RJD9UajUpRMNbjSDxTAZCk1pCy9mxAbr7KOZKSijIoQzf2aGO5u73j+v0H4ik1FrzyufTLGRzmfIoaYyKqyDAm6tJR10/J8g81rHO8+OTTrC4zwSzksUTCJ0g+nOe0gocHZhbe+Sg/JTAGFSat0TPNZk6435SkOFQxokxmhGf5qUVV0i8qyrKck0GjFZOOKdpmLLGex79MnZ38+8empahKXr1+zeFw5Pb2ltevP8VZx6HpaDJbH+S1h2FEa0XXiUbp5IZ3riCUJ8OSFIfA++u3VMWSq2eXGOMIYZJljKRo8INs+NZoQt/jSsM4tPTNA8+eXVJVW6qqoui6Wbt9bEVmK82b1OngzeS7JGhjeW47Q0imE5dI7Hd7jk3LVW3QMc2Of7LCn8vAZTD52fmZ1iytNUVZPEpAnuKHGcZanr16hTF2TpJP60QuwkxuumlNHlvItTopQk14W8AsKlRRSGEdo3iYkSdPSs3XK3PDB1Q6FdTWGLwfOB4PaK1Z5M6y1hpSRCtL4fI+Xy5RaNrdPYfGs7l6we/9vlzLDxka8vXbN3Lth0CyluVqxerY8PCwZ587pduLS7brDcfjkf1uz+CFcNz3w5xnpJRmSUqtEtY6BiW8gWqxoFosBIoVkxS46gRJPR6PHIYeawqePbuiawWeFTyzcZEf87R81MRRocsSfxyJY8AWlqFraPa3lIXj6uqKKuu3D8uadphgqSN9dmOMSQQHYgq58ZnX7UzAVCnkKZQQiY01FK7IdVCedAWP1nbOMW5u7771dfUkLfAUT/EUT/EUT/EUT/EUT/Eb4jvRWbbOUW+3uYOTCD6ckfDU3BGKSmEeGcGdjflm9YuRqJR0cIoCQkAlwQFFt0C54vQEv0ambLFY5K6tYBqdnUWVBItoNTEq/BApK8dyuWa13tC0R7QxrFfb2Tjk/n7H2EeUMmhdUa+ezazV7uEBc3Exs9yPxyPr9Xo+JkJEyCOS5ZLPP/+cGCMPDw/AiRW/rJdiYwszEzyEIFaYWs2g+bbz3Nzest0uubq8oijEZeh4PHLYdeK0lZ9n0px2hcNmQoPTGlIAo3GFpVosMJnQpK10k1XbodouT6yl4k4psdsf+NWXXwmDGGiHETdhw5jG28J4T2HiYKX5c8aMY04wH9un+AGGUoTMdH/UPZ6+EXDw47UDZogW32g2TkosIlqfuybGZKhVnDHFSRmSNlmR4WyapWC1XIqj3jckDU+EtESKCVtWVIsV3Tiw2myolktu7qWrcb97QFvN1dUVl1dX3N89cDgc0EoIPOfM/pNcWu5iG+me1HUtbpx9z8cPH7jYylqyWV8weviLX73l4uIZl9vnVIs668eLa6fCETPusuk6nBVN8+b4QHPcsVrVVIuUSX/nY82sJqJAJRj8iB8GUgyYFEVmUiVUXptdhobNZjJJPsfh2GS90/Uj2MbUSVZ58pcS2cQpd6VDwAd5L5UzlGWBsSeDpKf4YYZSGowTBazp3jm7Z40SyKFSnOASioytV5JLTFAh0UGVLmaWQUw5H/FZ2nB2vAgZ7mWkc23y+hFRPL+6YlFVWFfM2FxiZJyhi2nuRJOYtc3H6FnkaepyvSEpeP3Z5zTNkbfv37Pdbnj+/DnWWnz8iibLUWptMNplmNSYzYziPHGfcoXpXo5JzIKqxYLlouLy4pLFYsG7t294eHhgs9qw2W4ZvXym29uGP/vqS6qq5idf/ITVeisQjMELTAWytByoZIgpcntzh0qB7XbLoi5omz2H45FxsGy3W1yZXUS1zio84sqXYsiytCaj6BKHpsHnCX4IHpVSFh8QW3BrDa4sKcOIj2LeBLKu62nAqNQsyflt4juRLKcEATIk4jc3u5XWgg/K/2QMq8VpL7PiR6XAOnRRziMWwRIJfta4IifMgLJ5fHi6YCe7x3EcMUY/so6VTVV2B1tomi6gjOHnv/h9Li7WfN58xv/8sOP6nTjRWOu4b/c5yVtm0LvC+5BtH9OMuZxA6CmlkxyWMdlJR0Yn2+121hH1eYOOUTRnj00zK1vc39+xrGsuNlusk+O5dkvMdimsUaMoC5GFM5lR248RlW8EBVT1ksuLLW3T0o89RelIo8BfJoKEzsl1nLY4Ywjeczg2bC+fUS0qjp2Mjz/e3HJsuvxepornfNNNkH3mFWpOPmKYzAciwzjO5glP8QOMhLjqnSkmfKvMaC64zwb6GYWhjCEOgyTLRSnk4TxaNdkIJBaVEASzdJlsMKdx/wQtmJ5da7G4FSG1RPQRWy5YKcXtwz2uqlGjp14LvvDjrz6gtWK73VItKvSD2FcrLQShcxwvyPue1oVFVbKol2y3F2iz4O7ujrfXew6t3CcXfcXd3cjdfUtMe64uXmKMJUUh7Sqt5o0DxCGwdMKlmO7BEALDODyCTUEmGgXAyO83bcPQdaToccbgjMJZPTcyrHUY089k5mmjbtuWpmtJKJGmm2Fv+fRNGPEJdqFAIaS/yTBKl45i0p9+ih92KEhG/8a1YUp2TyQENfMTErImzKYigLIWU5bgHGmSJtQabQtw1ZxPKGMBPcM/p+dWgMuqXimdZNuU0fNaIVwATRwjKShsUbG+fE45rLnbCfyiXm/p+56r569p3/yK24/v6fuO5XLJYrEQC/tRYBjee7DiFRFCQIWYIRVRyHxZOm/KJ2KMFM6xWV+xWq1AL7n+0PLlmwN3dzuca1mvmxn2dHd/R9d5lBLlMuccIUSiEbiHte6sqJ7cTqWA0JlUrbVwkOqqpO87mlbu5X70QnpUGmctnfKk6OWYKoF9HY+HWeGEFLFaUzqHskb4DFlBC8TE5aQt3RO1EaWxxJl76F8ff+tkWSn1C+C/PfvR7wD/GXAB/IfAh/zz/zSl9D/81U/GI+LNJNECzLJFSp9sLKLKTk9q4t2cgPk6k2QiiaggaSVd5ZQo6yXKVXNCHqPIv4joiEZuDcG7kDeRc1eokKvUqBVGK0qnSNpyuXiFYqRpmhPOGblgg5dU0hUelf3i4eSNPrHM67pm8m+fNqmUEn3fiwqHMbNO4nRcXFkwjp7dbkdzODL0o+hHJqmkJg91OWqydSul6NoORUFdVxyPDU3bYEyJyQVHVVUsV2uSErvPY3vMbFP5eykgAuM4HXMj5yHjs6TC7ClcSdsNRKXY7fd8/e4dAL/44iUpkxvVXNFHQM8V/BQhyvlIKdIPPe5pM/xexf+X68Svea3ZNl7p6fqSJDlNa8iEXVSChdcoPJqkDdplxYx45sgFMwY3Z5WnF0zSwVivVnMyB7IxTtg5ZTRJQ0qKxXKFNi5jhiPuzJVv4ioURcFqtaI5dhyGBj8GVLWaiWwxhHz/glaW+7sDFxeXGLvi2AZ2h4G7hyN3D0IIfP/hVrrU+d7W03qaLbJV7sSfiHKWqirQk6HL9gKtNYf9gXH0stkZNT8XPuTPnei6lq7r0CR0WQpxWsDF0wmSgidG+r5nHEdiSuyzq1dCyNSzjW1Kgk+cJgbzcU+Pa21k450kpaZr4Sm+P/FbXSfkCeek9ryDqs5+nh7lFVkiGTHOCPl+CUqfmm956jTtzzpPux8X7tlmK51+nFLCFY6t2TCMA5xxIwpnZ/5OSglTaMKgGIdIVZe4opydQZ0r6bMrsbMFZVURU2KXccrPnj1jUQmx8ebmjvv7h8yRsvh4ZLVaUWjDx3fXsyrIlPx67+magRcvXtD3gfuHPZMS1fF4pOs67u/vcVl4oes6lJMPOI4jZVGRksjS9X6QJkKePEcf6LpG1KyqAusMx+OB/f6ezaamXi5pjkc5NgDKYLM6kUKkbBmR4xTFm0ImbtnCPAa8UgQCPmlpisYR7cUpdRh6+mHy8VCYMdB0I9oVM9n428TfOllOKf0S+DcAlFIG+Br474B/H/gvU0r/+bd+MqVwVTVvcDJKPbsApwv8vMuiZDQvm2dkykKVViSr0U5YqokEhUOnhErhNOpgmrzIpjZBPVIS1YsYw0yOnboX04WSiDISUFpUM6TdRFEUlGU1X4CTpNREzAuDp2mOWFewXq9w1swjmcm+cdKBjinSDT3WGO4f7sVmNgbKbHdtvCSlQz8S8RTWEYN0W3T+3CH6MyD7Rz7/9BOshq6TJN17OR6bzZoYdB4ryRjL+xGlNatFzctnz3h7/ZY4jBSmIo497dijc1e80jVGawJ6PkbDMLCslkwkq+Ox4e279wD87ueviDNMQ46oLBiRhCaq06g1xkTKm7MPUYTYn+J7E7/VdUKeZE6K1Vkh+83kmAyXmIxH5BaVghGQCdX088ls5GxtUVrPBiamrtGuQCkj/eI8rU1kHWJF7lzkhFMLESWlJMuTmqSkEmVRUVULmeZkA4GLy2cEP/Dw8MDF9pLlck3begY/gnK0+z0Xl6IWdLvfccimRjGKq5j3nsPhcJJ3G8d5vDgl4RhmaUmVyS9hjFm2ydLmkWZVVaxWS4bxSNM0bDc1IGTChMblwlg+pwbCfDymYxhSZAwerSMpGJKfJneBEDzeB9qmoes9SVsOhwP7/V4S+Ed0vqlYOS9UTl32R+cM5qbC9NhTfH/it7lOKK0pl8tH68CjIaa8IGlaS4Coc0GcVZ4m6NCUE6CVCMJqNReeyhXo1Rad96SkNMSp7ZPybGnyCZAcYlK7AbBW1BoekYmRt2usYhgjQ9dz9ew5AIdmj/7wDlc4rt+9ZblYMQ4j7WFkaB9yHjJNcVa4ytIfG2JUdIc91mj6vudwOJBSov6GYsikZDG9x6oSI5LlcjnnJ+dGSqvVks12Q1UtKIqCGHvJSTIZeQKwag3D2DMOPSpVpORou2y6VJfEIN3uSaUsJiEDg0yxBx/xY+DYtbT9QD96Rh9kfYQZrhFwjDGfP8Ws8JV8OIkXkEUgYJ4efNv4bWUe/xbwpymlX/1tFimlNbqsfuMCl5IwH2OKsx3t1G1WGhIn22ofQ94AtXR1hJ4pZgO+B1fPCaSPEZImZfMRhaKY8L9eMDxTt/f8vaQYSdZmiKQmeNmcPrx/T9f382YyjiNGO6qqEmjHMMgYII8gQgzidgPCPNXiWqPzRt11neCYlZpNS046q+rke58COJfHHxZdCLanHzqGUTbBonCE5FFRGPkqd9Cm7m5McHn5TD571mnWRnOxXeMKgzZwe3tHSFFq5wQ6Y7Ws0hilSUrP0Ixx6HHOziPe3f7A128EnjL4P6QwZ62hKWHO/86nznLuxfVvGDx1+ZQsf4/j77xOFIvFNxLi6cHTxvjouWM8jVi/AWfIwDr5WyvGHUEBRmOKgpgxd7ooUTrrtqeUJRbVr3/Os5jwxUoptIGmHanqJS9evuR4rHjz5isAjocdKhmGNvG+vZPOil2gjOCVfdcyDrKxdV3H8Xh8BA0L4bQZWHuymQZms5FFVbFebyjLUnDKyjN0Q1brUAw5WR4JFBaads9hf2CzXsxa0t9MWE127BvGXixpu45uaCUhUZGEAQ967KYDIh1lH/AJxhF0oWn7gWPT5sbHWbKcO/qRRIqB6chPiTlnmuyJJNCwswLqKb638XdaJ1D6BLX8RqTcATtPUKeGztxlntYFICiwpUMXjugDKCWufVluVhsnbn35z2S1SXPCJhdrmuGV1p4VeOk06RGJN4+xlqA0plLEmNAxcfFc4FqXz/8+h4cfcTgc+Pjumj+/vyfFROd7vBescpXxzWW5wJgJqipNu2EYsrmQYRiGbE8v72V6HwBFUYgRyGIhWGjviTHOk3PIRXW9PFP1OSl1Qc4hpsI1QzdDECO2FMXxdLvdyvO27dxhBxj6ITci8nFMCWMUMXj6rqX3npjhFdOBnNYKUR3K50E6h1itzuBZKjdCRT1I/RWw32/Gbyvz+HeB/+bs//8jpdS/B/yvwH+cUvpL+hxKqX8I/EOAH33x6dwlmLSQpy1o/k6RjQKYL2ijMv4oE0XyE8sYTyl0xuYYNEqXQIlSJZMIiLO//kaMc4dVPfr/mM0CTMZCT/jFEAJ913N9LRrI4aximW6cCWtntWYcB6m+VJwvqKIs0EY/eu1pI5w0UafRJcjFOOMWVxXaWGLsHkE4xnGYtUeb5jBbBC+XNXVd86s//3OGQbRaratmDeMxd9JXq5oYstf9eo1OiUPbZk3ocNrWYkSnJGNXbUQfNlvoTpjv47HhTT4+g48kk4kSQt1hsumeFzF1dgVEsXlJMfI3LAaf4rsVf7d14vNPBTv8zYT4N4QkWtL9JZ06yPmJM5ZWkjFlDNqKzJo2GsoC1WdnLqWZpKXyHT3njdI9NhmZeNp4lFL4USTegtIYq9AJlpuKP/iDX+DHgfsbMRt499VXsum1vUhILmqMLVCcFcThMcnv7PjM3AdrLZeXl7x48WLu7ozjSFEULBYLFosFPluFT65mZXEa4gEzl+JkBiSva40mJn0iJwHV4Gnanr5vaLtBNrFM3B09JBXy8clFtT7r7Oc1OiUxPdofDiRE9ktNJg/eZ1koCErNWFNZNpKcklntUtbSObF/iu9z/J3ziZBO091Tz/YkRSvGFYKL1VPxrYT/FM8wrklNUpFSnE1wJYyGweeuZn4tFCE39KJKGDUJH06vY1DqDGakJCEex1HuX+dE0s1Mr6soyoLJKjcEacoZY3JCW9D33ZxUJk5SsaQ0J7kT5AJkOi4Fc5jv8+m9TL8TQuCQZeqKoqCqKhaLxaPOMpANy0b6voMYORyO8rfHAwpY5cTdGYNzBmuXDF1LWRWUpWO9EmdAo6FrG7pMTux60WhX9uS4LDrqknspwBktE35yv8NobGGkwZldnae/0W2LHcP8uwFFTJ7eR1nrv2X8nZNlpVQB/DvAf5J/9F8B/wi5Ov8R8F8A/8E3/y6l9I+Bfwzwb/7J30tDnFxweDw2+SZWLap5LHdKp5irjDQOFCphFKAt9fKKIWh0LDFVjVJ/vcPT1E2eKq9zxuS0ESak+2ytdIHrWtz5Vus1kzJoURQEHxmGAd+2KC0uWsdWjAbqZfXIHVBnBuikqzyNQ5QSS1sfwryzFVWFcU6SgUh2EJNkwOaud9e3jBkEP60HSUV8EHy11pqYRLdiuaxnRo3Kowyt9clX3hiWecMFRdePtHmMPIZEiANaO5SyFIUT+/LcXfbDSIyR26wpfWhaLsr6NBKbvpmMDFJiEsOWbnvE5A/wNwHkP8V3J34b68Q/+JM/ThOX4exx+cqpMGX6ntNUCsBgZi1kDKQgibJAKdR8k5w6P6cFlrzJCsYtk9/UlAQaAnFeg2KU9cjaQpYskzBa4QpN1JYRT/PQzJ/BGEsIPd6P+BBwMWI5dUOUOhXRJnMCpo7xtE5orbM+u6Wu63nE2rYtVVXhXIG15i8V4ynDSCZ8Ydf17A97FgvHarUSXHGUz9b3npg46ZumiNYJ3/cyMcsFw/l5OD9HMb/uBKmLAZSS97Tb7QkxiT58ysTh/B4nqFxSCmVOCfd5lzvGlDdHJ5v3U3wv47eVT0h7RZ2J4546iyoJX2GCPJx/TSo9el6ldMbMyy+FEERJwzqST8SQ8oQFQKOV+Bsopec8QAF6Mj86c7M8J/JPcYJKZVttrYh+muQY2rZjHKUr7IPPCbGQ3s4VebquY7/f0XUDq9Wa5XKJPlPHmlxBv4nxn3Ien4tpH4IQ+ArHol7Mif7kprzPXAZCZMjFgx9HTO68A5RVyTB0gDjwukwInrrBsr4ldnvBXsdg8SFg86SorBZs1+s8be8Z/TCbMQFEIsY6yqqiKEtpekzTL2NgGFE5WR69R2lRzunG9v8fgt9Z/NvA/5ZSugaYvgIopf5r4L//Vs/yV2T4Ez5RZ+hADBFiEAwyERUGUp8T2q7HKIMaK5QaGJMhUcwwi3ns+lfEdBFNldcjwl4Is4LFFM45llm26fyCqsuKUXuOh4a26yjLBbYoBTsUBLM4bV4hBMHczU5DBdoYjscj2lpsSvhsPX3+Pp1zxCQj0GVdU+WkexwGuq6jPYroeOkMxl5ijWK5rGmOR7wfzjbe00hmwi51XU9ZSOJttWK9rHHWYmxB1w98vJXk9353FHiGMxhtxI0IGIcBZwu6wYPSHA5COnrz9pqXmx9jJgfDeTowwTDU3DKS7loiajCsTofwAAAgAElEQVRK4ScSwFN83+K3sE6kb3SMHnnsnWIef56+ipINpz0zj0dJp8Tx9Cqcqktg8B7nJjytzv9k1OWMSFFOuLvpqafO6TRaRWWso/ZM5Lpq4h/kBHj+XEkY5VN3+BxWUZblI7jB9FgIYe46TQ598+dJIl/nJ6hEJxOq43FPjAvqoqQoJntth04xd6NLlnVBCoGmuafvI2hz6sYkSQpOSf3JAEabaaydCNOo1xpctKTsumqJZNNtjseGcfTU7kSQno6/Op2V/GPNOHbYM5XAEEUu0znLRJJ/iu9l/N3XCcVvJAIrpWai+vSrTLjhTPhXKZIGKbhcCjjl0NqgTYUxS4ak0UOBqdYYu0Ape/b8v/lt/aaJx9TlPb9vp1n5fE8BQ9dxe3sjpPvmSNf1M+GtcLIuTH8/DqJ2EfIkSWlNjMJRss5SLqrZxGh+41rRjwOpFcGBpmvnqVYCityRnj6L955u6B4Vv9MxFoTA/8veu8RalqV3Xr/12nuf171xIzIiq8qVWW5jl7tot7BRC9pm0hMGIKQWA5AYIEBIzYQ5PWPaYoaEhMQAmZ7wmIFQiwkScrdaiAGCcoPL7pZdzsrKrMx43cd57Md6MPjWWnvfmxGRka4qk1VxPyke99xz9tlnn7XX+tb3/R/ygLGGEALH056L8zNW647jYU8/jRgj3K1hGDAZ+924Fh8Tzkn13DWO1UYkci8vL+kHI6erS4K/KAamKH4yWtUukzIanzvyh8ORpm05f3jG9b6/hQL4svhZJMv/DouWiVLqmymlT/OP/ybwT770CHnXVnHIGT8EGbcWUpZISzhlBDg+jdL+UJF4OtEf50qN0pCCl4EvEO/FAriAbLwhSqVG65m0FnOymlLCOIcQ8RIE2cd0XfeFFqnWmrZtGaeJcRoz1ikno0NfWwlt23J2Li5ZpeJrckW57/uKeSpRdqBy7JFh6EkxcjwcGIae6+srrq5esFnJgvytb7zPNI0Y7dBGY52tLWTvvTCAMwZ5mCaGvpd2VNdCThOszvaRQOMc26x53J8mjsOAU4rWdQxNSZYH1mdrFD1Kaw4H2dB89vQZ0z/3AV2TCRD1q0mIKuW8W1faiq6u91irqx7sffzCxU89TySoyfLthHgRd1er1yxQJdVO+R6OClHASYaUFCEYVCNYQWtWkKvSxt05vpqrMXWhK1i7fC5LUkypUt/c3DAsoBLee1KcP844jpxOJ6xr2G7WdQ7SWrMquO0cS5iY9+KqZ0vbtWmwjUMpzel0IvrAOMj7CYu9zY6ecm9u1qusU6pxVou0ZMFfpuwaVj6P1nRti7MOzQljNEMKoEWjve06sQU2MxYyXV2jtNT9dFSCn9aKfhg4nk7sbFM3ymlRhdNKESgLpMhvaqvRxUU0Bqneu1lh5D5+IeOnnicUCpP5RnMxRn4nS0ySMRYC+CnnEaCiJ56OgmXNXVOjDTY41ORJGqaogUYqvwsnuLeJssFdJpziUifre9u2Ii+X4RkhSOe65ELei9JVmRdiFJhjSbZLUgu506IlqRzHkWEYUToxTGPthC+5Dkusf4GFFAjYkhy3LO6FELIEZ6obDVHzkrkyJp9f4+mHEypDp0KUDljbONbrdS5CzspgKWnSNHfAYkxM4wgp8eBsh3OGz59+znCSDU3TdVgNxMDQC4zOuAZtNSElTNK3Cpx+8hijJJ/wf0nJslJqDfyrwH+0ePg/U0r9NjI8f3jnd685jsa6ViqIvlz4UN6j/quL4YCPdQ1USgTAQ5YAiSmxWrciJh7JusyWpAwRjX6LRBmo2OBly/P6+rriAo02THmwaaUwxrLd7TidTuzOxBBgGgfapmG72bFarXj2QmScphCrSkZhdGoju6sy8K+urmpivtlsWK/XtYUCZExw1oVOFgbNixcvmYaemDzBT/NEgQxusceVpH7Mrcqz8x1T1kKOi+pNiKJr3LUiIxUy5jrGwMo1tJsNnc3nEzWX1zfEpDFZwkk+/ygyWsjNeMxwls8+f8rgA5u2AZMIGILypODRKWQC4aJapZRUp5Su3/N9/OLEz2qeALIW+5ffw3XDrRQ6xsp8riM8JlT0qBjgtGftOjERaFqCV4RgsZ1sBpU2fBUiCMxtziVco8Q0jjx79ozDQTb4hWyjlKHLig5jJgNrY9GLynM5Zk3GlcIHzziNRGQxjDFWWEXTNnXjP40jkx0JU7kWAnGQJH95jqnOe0oJjvL58+coWnyM1RioW61xm46b9YHD6YBxFp8CykiBoWkaMAvjKJbwjyRV4Nwp2mf5uPMGmrIhjqJyJHm6aNynPA+VCnzpLQi3g1vycffxixU/q3kiAWGSbuXdaq5SCqOU5AEhkUJE6cyRGUemfiAsurcxE8J0ipBSBRpV4tRXHGqvG5ulgmttJrotJFLL3KONoW1axnGkyQWpsnFOUSBXBVZgrKNtG9CG46nn6upK8iIlql2vwvYXkp/3c1drGAb6vpcEX6kKY5u8ZxgGXGtJSebamIUBSszaxiOijzxD4pQSeIYxhmfPnjH5qb528tB2a7a7bVXsMkazXnVoBauuwWgqrHOcJnQMpLHwyFoaJSo/0pWOWLssNAb85LHGMP1lSMcBpJSOwKM7j/27X/k4MeGHjBvMeMA3KWNAwRnJ0A0xURoKMYFpVqKnbB1yW+jb7Ne3CGFvhirPBGQXHElQlfQgiT7UZuL52TlXl5c8ylIvn2dzkq6THePN4cDQy64tEfGDrwmwUiLPtHy/9XrN2fm5tGmVKH3UnV3tecyDXBvDZrNlu1vROIefBoZBoA/dqqVbOYzV7PfXeC+mK1qLfnMMAc+Uj6kzFMMLDCQGnLM4rTjc7NmuNrTGYdYyfPbdif3hxDgFwjRhlEAxxmki+AmnoOscMVevfvRPf0Dwf4ugHZAyaS/jsVPWXq5EIKkUoFRO5u9NSX7R4mc1T1Q+Q/lxsRlcSsctq0liWCS64PiROXULMJ2I04Qae4x1qBCIcSJEKxXRBcv9jaeV33NZ4T2dTtW8J+XHdE7gvfdcXl4y5URxKovzYn4qRJayYa64a2NZbdZ1MdOZwe9DoGnbWSouR9FSjbny5KytqCddF+FZzmryPe8/fsRwOjL5ke12xThN0g61K6YQWK+3ALRdh2sbLq8EWlZ6oQWLmFKaAaHIY9oYDvuXJODi8Te4OYh6kGCl9/Bwm4m/+bqnclkEohVjysqiqcLdyjVX1txXln+B42c2TzAX1l6dRwjBr1IT0lx8TgnGaXbkXLUdWhtSrD1PMJaUC3Dqp1yPSue65BWFlOe6TuaNlG7NP66RvKTtuop/bpqGcZT7fsz3sUNhbSOdmIpBnkUDmqa55ekAArPQWsMw4LN5ibYW2zSQu+z1+Vrjq2FYmiUpq8sntQt8fX1JjEEULaJnHEXhYrNdMw0j0zQJ/yvDMNarlqbb0HUrJl9yoQ6jDQejhUtydiauwsDN8ZiLe54xyrFl7kkizafmynKZp72fJIEep7f/rr7yt3sf93Ef93Ef93Ef93Ef9/GOxNdCtPaulnHersy/XwCOUoxE73NlV36rzNz691mAWpedhdZgLBiHUqaaYbzteRWAPAjDtFRufCHuWAfKYBvH2fkZxhjOzgXr+Nmnn9SK8fF4Ysrtk6QMSvu8Q5TK8na7ZbVa0Q/CRtdaMIYvXr6QCrM9E9hGrigdj0fZkWUJua5pWXVrzrZrHlzsRMx7OHB9nWXyDLminRjGQRi1KdJ1LasHD7h8ccnNzRUA3XrLerNBAWEaSCS00TSu4cq/FJOWFGnyNV+vOrqmYfJHfJiIGJp2S0g9x/2R1mparejzd/ry8lIMGcrXrFQR45rJVqWDoKQRq5Umpte3se7jXYg3YRGFES7M8Nyizx22xmhUBErLFSB4xlOPH0cU2QY2xqzCku7MQW/uSC2hESXKnFH5Dnm6UqgqF7mEVRljiCFrJo8jIcQ6/4zjSMpTtdJZJ30BTyvPM8bUSvQyCu6wQBZiDOJ4l/XTxSBFuj46q2QZY1h120ym81ldw+H7WN87ZXF/Zy1d13FzOEAIuFVL46y47wVVScsp5hKeIhMidYWej+PIzf5AofXmD7e4/ss/Kv+ZCZ4CY7G4xn7p93Ufv9xRiHF38wj5nXQ7Yoik6LPihBibiX+vrDepmHu0G3Atysg6rzFEZUiqZCUyDud3fnMs789yX4pyxQ3GGC4uLui6LsubJZm3VOEIKFYZGtZ1Hd1qVe/7tmlgA+kgneRxHNHKyHFyt3qcRhIRl11CV6vVrU5MytdCZyUwa22tGC/hU0DlS4WYJSjbhs1mU70pvJ8YeplTTscDYRpYr1q67gGkSNc4+v7E8XAgxkCIEZU79JtG3AlvX06BYhQuhjUCWQORm0zA5CPD6PExklAoL0RirW11ZLTGMGbFDmubWR3pLeJrkSwDGQ80J8XVBS/mBLmCzIUEZvJ/pXWiquOORpKqILbgwt62DbgWtCWgWA7z15+OPMcYw/n5OSAD9Hg81gTaGcEyhpho2o7NZss4jvJFAyghnKRMANJa0/cnJp+IuTVwPMqAcm3D+cUDXNswLNy0pmni6dOn3Nzc3BqsBd9UNBDbpqFxTR6sui6yBTfUWJF0Ozvb8fLFCy6fv0AlceobR8H2jL3gmE3Tsu460U9uGnTUbLqWzarl8oXF+4EQeqzLiXgDtkmkXryLDKIZaaapiqCnRGXRT97z6aef8ujhA6wuLdvyfRT1kYy1zteRLJ9lvyJ29D5+eUIWQP3KhPjWcxCcX7FlRkEKGXN4axO+jBk2kCoeUZeDvv35sYCK3XmvlNuCOrcCZxk8wRGOg7hk+b7HWlnQ9ocTNzd7tjuRgiv3093kfKnHPAxDTdbLPDAMA+vdKsMkRPtYkW3kh54hs//Pz3eIkcqcApQFM4bEarVeMPaFbNQ2jocPHnA87iF4VLDCnUBhmwaT4SyS6ooqSAi3P/84juIsxmLjXC59gWEUeEecr2/5+n30JBqsc1+JdHUfv5yhYqhFl+W6merPEZ3iLREumTNMdeQrz1dlfSocBG2zEYm+lUm8zbArxDmYccqFbLuEYaA1hTwMBXoZabIaTgiB3XbLfn+D05qma3nw4IJdFjr47OlTTscjU0gVlxtjZAqTYLrz+y7PZcgyMn3fM00T6/W6JtRLKV2YoZ/TNHE8ib6ycJ8ikx85HY7sD0UKbuLB2Zazsw2TH2mcoevaBXlwzmnyRa/QtaJAprXC6BWkSAyexmiarcyJxliUMoQYOZ4Grm727A89Pnm0bXJSrOv1HzOhetWu3uIbW3x3X+nZP6dIKRFHqXQuGdB3I2aijlJRsDhRiff3MBJixt9Zg4+ZLU1Em4hKS4+/t98HFt3SgneJUSSVisNNTAmtEuM40FjDdrujXShihCDP915k4Zq+Z58Oop1sHNrMklCn04nDQfzbv/3tb1egfbGCLYLgS+JhCZGLcjjXMPmJzz/7nETEGkXbSuLetIbr6xu0lsVyGAaskZuu4IJCxlCGGDm/eJDtsxOWCH5g8pNITKWJFEcmX1i6EzHON7nL8lUlXHbnsWkWPf/xJ5/wG7/+a6jGUNnv5EoZajG5lb8UMSGlr/t4JyPFhB/jrYR4zmffZFSSTTbkmfkRCDExjJNonFuHWN0qUAa0EftaMmb+S2IpP1c6ZUuGurZ2gd9Vt/CCRUnD2kjfD/TDwHpjsRn/t1zsiwpOSZaL3NSy6zUtFkFjLY1S2cpeoZWZyYHIrSUkv5zQprkwsdmsOR2P7Pd7jNZMPvHw7LwuakorjBW5NqXhvYcXPH/5Ui5xELlIg6KpKiGCHzRaM4FIV+XS8jhO7A9HCsy5fEflgaJeUjDLBb+c9LzQphQrofg+3t1IUWyiv+RZdQ9GKcj5SEKL0lUp1kRQhRClDEo3mKYD05CUFN9up8xfHst5qmxm9/s9bdvWbrEiO2QuuqnGSHHs/Pycw+HA2fk5x8O+HqtwJOS5Rja1WqFMYhwlfyhdqcPhwCFXoYE6JzRNw9nZGY8fP6Yf+optLs7J1TUvIfJs1uBsw/5ww9j3BC/V6+Cn6gqqlMjbxSif1ehG5iWtubm+YZo8zjX4BQ+jcCxERWzCRyH+xxhIIUgRr1yXXA3XUeOs8DKM1gQf0IjDcMgb9kL089P0lQxJ4GuSLJNmq8SUoRbVZCTG7MC1qNIoxMo6IsnyNOsFGutyUUhnFrssfGhbySclH9dfMrrNYrECaqJcz0NOnbZpxYCjafjG+9/g008/AWCz3RCjVHGK/qlWmhQjPo7gAz6D4Kcw8dlnn3F5ecn5+TlnZ2esVisePnyI1prLy0u01lVepSTuxXVvHEf6fsAaxXqzJd8nlLVDqwDRczyeSDHQtA2t6xinieeXe7rVllEXiTzLD374CR9++5t0TUvnNM8/vYSpl0W/OufIdbEZotHYiSHk7y+WNnK26M7Vd4Bp7Pn0058wjhNtMye/KikS806zjoeSZKTEXVOK+3iHYkEgeWPcab1KZ0p6SvWmj3OlUxmHtq3cLNqgsKAM6S2Xv5IUl4prqcSO41jloEStKoISst6t9mea9dyrOUAQVQmlhJFe9ojTNLHZbHIFVSAd1jnUOIKWhd4uoGPamLoJLffRkohDiuz3N1WWVikYxwGdEm3XctjvCSFitGOzXtG2LT7O8+163TGNI+PY82C3QyuRgesnXwsf9SoqlZ3JskFDCCIJlxLDOHJ9c4OPkaVRcaLMM4lEzJuZvJFeFEDKe9h7gt87H1KVvFtZrlaP9X6zVhO1JqVImEbGfswb16auM2OQTrYmonTEpsXG/C/QwShEPpDjFAOh9VpIu0oJ2dYC1jWZfTjPK9oY2rbl+vpaIJzlXgaeP39enfemaUJpjUWDzhtLEt26Y71e0zRSWDvmSnQVMZhGXly+5Hp/w/n5uUAyctdNzIFuz61FBKHkJk2zpetEbSP6rHRzuKJ1BusMqEjK1eekDZMfaBrH+fkFp/0iec/JeemEBS9QDfJ7segqxhhojGGzXrFbb2htgwqaw6kHpbPkbXEwlIQo+AmjtRCT3zK+FslySolp7Ku809s8P6WinazRxtUqjes2aOdQbk0yLUo7lG3nliqLtVTNx7pbmVoyPF8XCvIOKOsVjxMPLi54+vRzAM4fPODqxQvW6xXG5N1etnBMUeyoS7K8PttU2ERx89vv96xWK5qm4cmTJ/jgF62SgSl4Dqd5sIchsF53xCCmBjEGulZutN1uRWs111eXhJCYvGb0kX7c067WrNdbHmeW+2EI+CljKpXCNXL9ItC4huBHBC4h16FpG3ZnO8aQGC737Pc3VfBcbjJJOwp20U+Kzz77nMPxyHbTVSiiQDEKLjFf4yQJDSplbPN9vKtRsYjwhYRYfr94bNF+jSHIJKuWI0uqs7K51lVmrhznNXYnr43ivgmS3F5eXhKzzFrbdnmxApTAEJab7qZpSCnhGsdms2HyIgWno2ArY4yiFEFOfvMiazNWr5g2sbw+9TLI3CaMe2m1bjYb2raVDlN/4pAxhQA7uxaVHJJAxooJUBKpJ9GinuEmTdOgkeqOFAMES260xpLEviVfSkkwTNVQlw2GxifBVF7f7PE+QNWyXn5hX/xG7sLKRZd2Zr3fx7sZKUb8+ObKckpROAIIzCLEWA0qNPP40doIxFNLqz9pIyo5GbfMVyi+yfvOhcFlflE2z8WaWmuNjwGnNVfXwiXarFa0GavsvafJmN0yl1hr6/+HcWSYBiYfiUqjlMEay81+j20cu/MzNnaLy8/f7/cCzTidKLKRx+OxKoAVKFftKi023G3T0LUr2kYsrNebTgplXqBd3XWDSp6ua2kag1YC32jX88bWGM0qu44GHxj6Hi+yN3LNYhTX4RSxxtA6S8iV6LEfWLcdnXE03YoUxPshhMgUIirJ91iuEcxW3be4cl8SX5tk+csS5VuVl5TwkwdEeLtZtVgnA8euNlIhMg6Une2xUxK7VHilBsiMjdEV2P5lIeQAlau8jmk48fj997m6FOv64+HI//HjT8SfXJuFu5bcCGpJUMr4nKurKy4vL1lvZOCsVquKfS76pjDruJbBO00TfvKoU2I4erQSEt75k4dy/NNJrGpHabnGOGGdpussxlqss7UVO/ie4DWn4wlnLVNjBV5ioTOa/rhn9J7GyGDvupakLcd+wu6P5UsF5jZT41wlYWqVuL654ebmhifvPbyFI5WXKiAufi7XW/EGlM59vAOhliDlV2ER45wkz1WQiEKS5ZqGLTbHtXuRQGmDMQ3JNtKVyq9+02xQsIzL7lj5uWLylMBIQoY5uAVJr+s6weE1lgcPtiitefHikuPxwJhF86dJNtUqmwGUKBjl0+kkpOPcfl1el9JeHYaTbKqzVFWKkdPpyH5/jTMFEiIkyLPtFu8nTqeTdOOiQN++mIyTpfkSzhjOdlu22y3jFDj2A6NP4PP5aiHqlmQ5Ztc9pSJ+ChwOB0JMtyv6SqFKRZmUSb6xVujS4jtcLuT3cR9vilKwCkSE3qcxVopUruswTZZ01RZsR1JWTEhsJ5XeBYxpWXxbxhLutIxXbeiKPf38WjK5HTYbKWJFP2KM4dGj9/jRRx+x224Zxznhs26RdBtDzEnvLddNqPPFZrNhu5Vj73a7qu/+/PlzLi8vubm5ueUQOk3TrTmr5EmNa2ibBpP5FAW2UeYsMYeTXKnrOtqm4Xg88PLjZxz2B86251jraKzkB9dXN9zcXJNcy8OHD7Flc+1HUkxYo9FGo/J1PB0PFTJKEsJx2zY0NvOrpklMpwBrXc5/Ev3xhHlF0eV18bVIlpdxtx25/FnEueXxyQsuRjf2FvY3pVgdepSYuN/CuUp1aa5OLTVSq17xV2z1l9esNxuSn7i4uMiHT/zjf/SPcgVFsIXOWtFKTJBUmoW4J09MkXbVMY4jx9OJwvhv27ZWnZduOtZauqZBJfB9TxwPWNMSose1HW3T1kT0dOrpmrZWflLMraiCrfS+JsvOKEbg6dOnaBKH645Huw2rTYcKI9NwEne/IoAeRCOxacRWvO97Ru8hY48FijJX7pxriH7k6bNnfPDtb9E6wXEmlgzmuYWbio6AMq8qKN7HuxIpETObfJkUf+nLyNVNASoDEEZPTArjGpQ2hJhE6ltrlHEo6yojXmirb47lwhdjZBxHxnFcsN8lUy9mKevVulaBNtst+1w9Wq/XjNOE0vJz4bephaV0qfAsMc8xRtbrNZvNpuIMYSbN+BBQk2YcRp73PSFMjMPA9dVLUvJ848l7+ViimjHrVrMgGjEvwJCJSSNGK2IIOKtp3BqtLT5EnDnw8uogyjeAcRmrnc8tBnHbKvLu+8MxV/dmXHnZyEgbXcv/8wZEzrVYb6f6WmvtrQ3FfbxbobhdtV3em0vy+DiMBD9htcW5BtM6jHUY10AzK9VgO3lNnF9b8+NX7MuWm7YyR+lF5+dtNnNKyZwzTb5ic1OS+/ji4kLUatZrVus13osPglazqphUfcmW1zEbuSV8FO+EEAI3NzcVxnlxcYH3nrOzMzabDRcXF1xfX+fN8tx9L5/DWkubyYbOyp8QJq6vb3jx8pk8N7eUnFM0bQMkjscjxkgh4WZ/g0qi+jGOA8409RpF7/HId2idE1K00RAmGiuCAzrP/ddXl4Q4EeNEihPWQNtobKPAiw9HgbLE2NC0GyFUhoT9RassC37I1oT49oB69eDSWpOsxTQddrNB5cpyHCPTaQKd6DZdJukIaUylyid55TncjWma3krkXjB4SBVE6zoAd7sdT5484ennP+Hi4iEmy530/cA0ZROODA/pp6FiC0sbplSiRRHEY4EmPz+GQGugQRGTSOUlJc8/354TQ5DdZS7FlpvIOccwTVUZA2W5OYp0zfD8hRw7gXMt+8MNXWNxVjOuOlqrMRn20p9OTF6UPAYfQTuRp/EC/4jBo11bd6VK6ZroamsIXvH06TOGYaRthOUKOTFYXtxFLhRTwt+Xlt/ZSLWj9PrfS3UhLqrLAk62VpOUkD4ApmHEB9DGEZVi8BFNEpVJpe8475WU9e2iWFIXEt44jti2zRJHsimvBgBA2zbs8/G99/iMH2ybFuvgcDxVwf7izLdsia5WK9577706ZyitKl44FskgEsZYTv7I8XDA5xapOHPNpL7CUBcpu1Cr1TEbNYQ0m6iIJXePNYoUPK5t61xuDDg7ZHvq+fvRSmPMDMPQ1lYC5TAMjJMnrZao5XztE5nPoPPnUbeAGaXgYfLiep8sv7sha2jDMnd4JTxJe1IgY3ELTEhLcSYsOzPiromyIkN7K/m+c+yUamW1qE2Uzs6rzuNtPsuszGUZE2zPznj48CExRrbbDYf9HmPWYvNceBOZQKyNJoaEDz5bxJtKCC6QTqBWmI/HY51HtlvpEhWI2TiO1QjIGIFTFaff/tRjreQ3a9tJsp/3sdaA1pHoxwrrkMdtnVZPpxN7nzHLEfrjEbaOkBTdeiPnpBVOge+PJBUqDt1ZBXEghhM+KHxMhDjJnxBQSuCvADrPZyHLpX2VwujXJll2rn3l70plslQZYk5KbbehLeQW3YCXQegDTEmjMXk3sRjY1HXjzvHlohdZl2I/m1L60mRZ5TYkKknlO2nOzx/kY0f+5u/+Lv/LP/ifmaYRrW2VYSlnVY7vWgf9AaMUYRL9R2s0jTZVu3C5iVidndXXDsMgGKdc1d2d7dBa0VhX2Z9aWVK20m6bloe7HavNlmGK9MNEv0hCxqHHaMvQ98RREcaRldU0ekNjqFqMs+tXRFmp9rgCYcmTRvm8680ak8/dGBhT4umz5/TDwNluTS67oZIGQr2hYowygSlRODFvAwy7j1/auEvameEGsf7uVSH4RNFoBxh9IMWYZaJUKWNSyGRLBPTbpMnTNNu1bjYbrLVcX1/XJC6lhMqVEpOd5kqF1lqH0rLRvbq64vr6Or7SCUAAACAASURBVC+yGpWVM2xmc292gjc+nU5Vj32cJp6/fMFqtZKNelAVf1kr77mjpHKy6uwK1zi26xXDeKiLiQ8T06RzkptQWrFbbxhPsrDGBbYzZP1Wrewd4q3MA+uuY9X0TGPGaKJoTUNfMcueppllNodxEinNs7IW3CZRqXp06merny+JxrZYXlvG/n5T/c5G5gWUKLwZ+WHuWChtca0oSbVdh25aQBOmwHiStS3GSLdpsE0rhbeUO9xJKr9531beaHEKX0zE/iLwIJk/cnLppJpLgg8+/BA/TfzKr3yb/+cPv8/oLG3b1fcskAitNSqGyvcoc5H3nr7vub4WebcXL16IXnPXstlsMMaSksDFSke7JP5AVeEpCl1xFJhWCKVQEeoM2raG9bpl1VimyfDxjz4WngYalOEweIZxQOe5oF1tSOePMO2aT55fcfFgx8X5GU3j6Jzl2fVLpuOezuUqunPoRd4BVIlOrUS9uZIqmbsOSpWK99vF1yJZhrndFlNJjOVxpQ3aWbSVFom2eWJO5OqJFgB+yoPEBOxY5NV4dRV5BsHmBUTd0jpcJqYFnvG6KO2Sgj/WWgxKQJQ6Hlw84OLiIZeXL2lbWSRd48TbfZqYTjcAvP/kMevWiUaq8fVmW9pILm1sS1ukDHyRnEnc3Nxw/uBcJOJCxE95AV+3goHKlTfZoIhxgDGGcOqr5rO0KCLrVceD7VqqwzEwjh7bmZkMlW+cafKEKTIF0WctmERSpM3VJudcZUIYI699+vRpZgBrlBH9yuSFkFUmCCFyxows+6Kf/X28O5FSwo/9X2AMFEKwqUUh6cbKpk9pIyRg04j5gLZkT2V5dVbOeNNadxcSsuwMWWvld1ruz7OtQCVK9dM6W+91Y3R+/olpnIjKZLJPUc3xXGwfstltSRkeUYg4hSgIsynKMAyznus0EWNivd5wfralaR3Rj1zfvKRrcjK+WeGsYRj6vMEXO94w+gxQnpOAlMRGV08FKJUIw0ijNatVizOO4TTVZDmic6s4k2yyUo5C5jI/TRxOJyK52JCvZWl+p8ICzhhwBZXrYhWk4DHasG4sg76fJ97VSEkKOJLIqlrcgZxPGCMkW5WLXSpD/JSRTZdSpKzRrowiKUde5Ws+8WVpb1mfa8KaJ48llPKtrNm1pgzleR0VEYDgPY+fPMZYm+//2yZHzjka5ykKMkrLHDXk6q51Fp/noGMvsM9jf+LU93XdLpXlct53RRAKZyJOEVJgGo4QJ7ROuLwB3zZnqHEAY9i/uGbTbsWaevJoo0hKEdBs1tKRP794yNn5OTfHgVM/APlz566R0jJnl3CNeEtITpKLjF0jkLYAh35kzFAwnyV4q6znV1hL7nW47uM+7uM+7uM+7uM+7uM+XhNfi8pyShCUQTuHtQ7trEg6AaU9X/8tEnApoYpYKnOVU1tHY5wwtBEYhirEMXXHXiAJcabs/ArovWgYb7fbL22dKMgSMrmiE3xtAQUmPvjwO/zV7/01/uEf/AExiDPOdBrYbVbs94FQWpQKznY7/HotBLkMBZGPOgPs75IH+r7ndDpVpmpC0Z962q5BG8WYoRLqKM43fpo4Oz/nvffewzjH/viC4/GAD75WhJO1xOBRjVTETN5ZhuCxtmOYJk7DWKXgpjARAWMb0ZV1gj9PIaBcg7WWafK0blbP0Crx6Y8/ztVsVYk7xXhmyeaHmCt9r+2y38c7EG9L6LsbgpcXYfwie6a0kypuu0Zbh3Irkm7ANGgzmxLIGwsz/XUzQcqQo6W6hjGGBw8e1Md8Pu+mafDTVF1By2OQLa9Nqmz5YRxBG4xt6rgvhMG5Em2qmcHl5WWtJPf9jEkuZgUmY6nbxrHbbelWLX7qiWlCZ6tZaw0ogVjIvCjdsq7r8JPoqC+vxDiOJC9Scc4Y+nHPuuvorGPVWA7rgf1RzmWcQm2DQib4LQSep8lXRQwAl+ezqESfWaWEVl4qhUoMEYqRgWlsnjc0rrnXWn6XQ1tD9+i9BRRjzg/m0rCq3WlV+EZKQVJoFTAUJYeFTG3pn6Q7KheLRnViduYrEM+l8x3c5g+9KYrkYnEiTSSUMaQUOdudseo6fuO73+XP/+zP+OMf/FEm2Ot67LZtxRXUB0yGfwEM/biQsbxtjFTmlZBVd/b7PS53x6zW1fRHu4akgyhN9D3EHms7jDaE5Fm5VZ3HjIL+dCJkWbxa0U0I3EtpvJoV0WIQpTBrNNYYpnESk5mU6IymbTusirh8gRpn8dOIDxFlEk3rOG860JYpwmmY8F5gZCHMAgnle3rb+Foky9pZVhfvLZLh5eC+HRVSmBQpaWnha1eTaJWyJExcCP2/8gBAioSgqlzcNE0cDgestZWk91Y4o5SEn5YiJEN/ksVhvX1AuzrnX/yXfpd/8of/L8+efi4JpxNSy7I9M44jyjUZd2ey1NNQfd3LZykDsCya5d/5920m6Fj6oSfmwXE6TFiraazjwfn5rFmbZJAqqDdCIpN4ghfR7hjohxOd1Th3QZgajqees7Oz+RLEiHYKZwwhExu6Ii3TNEIoOAnM43hQkESq75NPPuVXv/MhrRPMYQwiPL7MiRQpt8Jvk3ru4z6W8SoFnfLzNExMweOK4ku7wliHXW1Q4tcOmMp4T8v7fvHfJUyrxKs02e/OGzpjD5119Mc9Z+fnNUlerdYVkrC0sy6L7xKLLaS6E7vdjvfffx/nHKfTiZ/85Cfc3NxUY4P6vnluK6Thtm0xRubN+cPNOwFJjBv64cRxfyCEyGrVQQvPnj7nEEfO833fpU7uyDDhXHbtrCTLVGEluhY4QnYny1J7RToOcEbjx57DzTUhb2iCbQkYAp7EADGgUsyEwPJn/pIKhM9Z9xfCh97HL0kog3ZvY2WccgEmwzmVBqUxzqKd4GeLekYscA3UnVHHbayynt07ixztUsEK5iT5ddJyy9BKsP7z+yW0sTRdh9aKJ48f88GH3+GHf/anWZBgJhJac1syrswDQcfsiMfshxCTzAtAa2VjrZzDbXe1SFfW8nKsEALR+0yGloT67PyMcRhoXmG6lBL5vpd8w1pD161Q2qLNDDHte5G5HUcPSXH58pLxdEMIgePFORfbDdvdGSZv8P1wIgYv80k1tMswuKyUNmZo7jBOpEzwE7z16wnjd+NrkSyDFl3kRdTxlxZ/ynPzoFZGLbCFur4gpbDAuy0m1ZQ1T2Na/KwEF5QHQhkErxvEd1M1lYDRo4whTB7jXB1QKWPxvvmtb3FxccGzp5/LIuhcHiy2JpzGGPY3N4Q0GxwUi+sq0bbQTy07v/KcoiaSguyWVl1H4xyn7NAzBF93uNM0MQwDDjidjtzcXLPZPaDNOs7X+wPj0HP54jlOLg8xBPreMU4eFNlJUK7RZrPLVtQWH7KOpGyxa4UrxkDIttoaaJzgyD5/+pRTf6J1QvJL+aZaTg+aRMiY9iqYeB/vZNxNiJePl4XtNgNefh6Vx3uxgAfQ5rbk5Hxjf3GjvtRnXmo4LyvKb9OBijHWpFktkuumbQhZd71yFZRsDL33EBIhu+YFH7m6uiLGyNnZGUopzs/Padu2OngtKyZ3KydaG0gi4bQ/eKaxJ4SB3SbryqpE17W8PIodbutahmHAKMFFjiHVjlLyfnbaysmEtWYmTBuZU5tSKc9SXSkpqZb7QH88sjKKVWPQU8/+6rLyFQL6tuZy+W7TjFleRknS71387uNW/rD8d/H/lJVVlBa+jOQWUmyrnJniQlnnkte9UZ4b4iyxFmOsvgml06QXallfOmeUMV6flwR/nGIl1LZdx7e//W0uLi548eJFraaXOcRoxWbV0Q89U79n0+x4cnbGkHMAX+4iMzsWl836UtWjaZrqRlrOfZnsxyj8CIXCunlzDkK4tdaQYhA9GyVyuOfrNevtDh8S1/sjx0wi7q+vmbzwljbbcyY/MYwyd47jyOQbWquq+57ShpQU3k+E0DMF0LYh+CgKWsFXc6VpHFBNV7+fr9Kp/Joky3MeO8MqSvKbk2G9rIYsXofooNa2PYqozBftdEqZhjT3Nxat/qJ88eTJk1x9MeLqw2yPUU6tqD1X4H2WiOIOITCFPDhS4nd+53f46KOPCH5ks9lwOp24vr5it9vJMZTi+PKSlPWKS6WqLMjF3KMcu+xagaqWEUIgIgPKh8Bms67VYvfwgvWqJeUk/OrqktV6Q0pJ5F7WHe1KhNEPpx5jHafsAhh9EOKe1QzDxDQOGOuqgol2jlM/EIIsVGdnZ9xc7xmHHpouD8r5O5IifMJax4sXL0WH9Wxbd+5JzXI5i/pdnjTuK8vvasydlbJofVFi8nUL0PJ5AMoY0VJOmuSjVCx1MTO6y2LPr8v3YiHUlqrt23+AXIXOds9nZwLF6LqOYRjr77TWNZkW+IivhL1229UKsnPi+LckA5dzWjpTrVarKmXX2Jb+dGAcB1AxH6Olya55h8OBtm3qZt1Z+b+xeTENszFB0zQorQgDtEazXXcMp4MsinFC0Yo/lM3zrElZAt9ibUtKkyS3WmZU7yf2+8NciUuvTyZm7erSopYLHBNY29xPE+9yJCCUItqyoEZ97AsdZ/ll/l2CXLUs42q5Ga9vkhZ/AEUkJl2Lb+VebLPTXlmny/h+W9myZeKfYiR4L66ZtkMpzXe/99f5sx/+iH/8B/+Q/Y10b43RHA5HVITNqsNPA54IKbJetXTrNd57xgxjEoGAcOd9Uz3fkocsO9ul6Obzpvl4HOj7XuCfaZyPEx1tM78uhEDXdjmhVpikZlEAZiMzkbbT+GnkOEacNRyUzDVOgW6LG18S4YcsYzdMAcwoVlQhFARu/vpV7Xq9TWV/GV+bZBnyInWnnbmMucA8yzrFdNsgWSGtkLoru2sMeKtKLbucFBNhnLBK0643TMHTTyMohWV263ldKK2k+hMCx6urXHWV8N5jtOKvfu97fP/73+ejP/+h4P8yVKEugm0rAulOWPLe+5oclJ2e97PddXld2SHN2CPxlifBN7/xzSq6vVmvefzeBc+ePuUPv/99YkxY1+CsEVas95SzLon6excPSMmjk+ijDqeem5trjNKgDaHsKn1kmgI+RFAyOTSN4zQMwpDPN2GV74mJIXp2mxXPnj/n+vqa9588ypsihYqaavxernGK0p69By2/syFVD1f//6YoOMNZVcfStGuaTrondrMBZQhDYPIe29rM3lY1SavvoLg17kr15W0qyrfOH0l+jRGb6vceixHImOFWwzDQuOZW8ivudbO85ZJVfzqd6hzinGO9XtfN9ylDnsZxxFhDTJGhH7nub2gakXUrkrGNA5UxmoF5wy+3o2y+h37MxkipWuQ6KyZBumthGkTvXYEPPcGf8MGSkieWxCNFtHboFGsBQOYtUdGJKbI/zMlywt6e23PXSX63rPiJnrSwWGQTfs9df4dDaXHae00sx9Qyn8gwWhljek6NvnCH1/mglOrKwcrPRZnLVAvqZef6bpJ8t/hdt/UJlI9zddtq4uhp2o7xeMR1HVobVtby67/xXf70n/4zPv7RRwBV1tVaS2KGiVUZuHzflE11KRiWxLjKXS4KVyVBBqki931fO9tKafwk+UnTNuhFIUPykUCMgWkQF8LzszMePHyIto6r6xtC8LXzHLyv+c/pcMO6a9isOhprZZ6IgXHyNLZ0BWcYKkoRfCBG6RykmkfchrIUHsdbKZLk+Jokyxl3zCtQF4uBHMu/KVcoKO3XOZ/VSgZZGfiK2w5cKVExdEkbUkgwBY6X10zB0243rHYbjLNzQn7nbOvgru+pwChiH3n67Fm1rlx1XSbYWBpn+fYHH/Dxxz9iGAbZcXYd1zciHedOJ5xz2c1mrCTDppkXz+XObkn6K1CNIi2zagTa0XYt2/Xc8jFGbK2bpuHU97x8+RK0pmtbwmJBLgl2iIGVs7jWoZUm+pH+dKBt17MMHdTrH2NCm0TXdaw3G8bJE0JkjGNeGOV6GSV4xZgSl5dXHA5HGQNKNCzTLdmuRIxBsJCY+2T5HY+7WOF6L6bFY2mx8GTHuMa1tUUoT7SkEBl9ZPIJ7QTKVbDKX8Alfkl8mcRkPnmUkkVTxcDD7PR5Op1o2za3O9vaQtV35rby+aZp4ubmhv1+z2q1Yr1ZV1OBQqApxiEpJWy0tSLug8eleYGMMRK0qpUf3bY8e/aMJuujCwm4JySNNw3RaP78J88BePLeBdZavvnwES8/+zGnvgcFNr/Wh0DIVafyfnDbXU0ui0Jrgafsb/ZVzirGwl+YE2OV14OimlqNyBfff+O+Jsvaffz/FrOq7h0ERlrkGHWeUHNDG25p+ddacpzziflg+beLwk4l9GYu0W634/z8POcsAguYFpXl8r7L99LMzW/UvDHUSonTbtPMUCMl53FxcZE3yqoee7VaoaB2ocqf0+HIEG/zLMqm+66m8rJ7dhd7veSGaK0xqpX5xhiRmh1KdTlB9FgrRiYPHjyona5pGjkcDuz3eyZfCgKZ+IcmhVh5V1pLN0DOMaBUhrtqzRQCY4gkpRn9REgB27TZ28LWnGZAqvNGf3Wn5reaVZRS/zXwbwCfp5R+Kz/2EPjvgV8Ffgj82ymll0qu/n8O/OvAEfj3U0r/55e9RygDO0OKy9dSEuPXnxulQyrHifIaQ8TkA0qFZt4hReYdzzAM7FTDOAz0w4BpHMS14KHr+2fFCm1eSS1JeUEzxuYkMH+5ZYHynqZt+K3f/hf4+OMf8ed//mdYY3ny5H0++ujPATgcj6xWK3ziVgJcBm3Rai0Dt+CeymdYVp4SsmM8nU5sMrTCWsvhcODTTz+laRpevHhBt95grKW1lmM/VucwyItoTKQQMDlhT2m27xSckFzP68MebRyubbG2wbqGw+FAf+o5juNCMzkfXkv1LoSIM5pPf/ITfvO7v55tr6kLorwmvx/CdP8Khbz7+EuOv5R5othcc3vfpLJ2qs7JsSTJVuAWUrYkhVgzT6UtJIVVERUCqpiTAGVZrD8t3mdpYLRUvyi4vi+5QChVWoCh6g0DnJ2fczrcUJZvY8R1yoRISLHe95P3Uikymil4/GHPaeg59T3W2qqLeltNhjqfFJ7DMQVCHIHEg7M161xxDxOoqDkdR3y0XB0mDqeJs4sLmk1H8pEpuyAaa+m6Luu8TsShX5CRJCUpakPy8VV2S5sXWWNM3hjIq/b7fa1exZi12WtGkdumy/WgwjDkO4spVZvy+/h6xs97nkjAGNWteeJNJZZacMuvjenO+g6SSJfjzDtzeX3t6ua1a4yEw4EQI3azQjmdN71a3AKqAsyXXqrb4z0T0uLhIMlfCPUcHl084Pd+7/f4+OOPARj6E+v1SuBUL1/ivWe73dI0DZ988glBGUwm/L36esweDqULtIR+LrWiZ8UQ6XJ3XYe1hqvLq3zakf44SB6jFxv1fP4xRsZhqNV817QkND4EBn9kGibMZkWcplyd7sVN2EpRUGO5DjccTz2r1XpeG5J0/e1CqQhKIi7wt5+Hg9/vA/8F8PcXj/1d4H9NKf09pdTfzT//J8C/BvxG/vMvA/9l/ve1EYHBpy9UcO+GJMYzyF4n0CHDBEp7NiXiJIxwnavDKQTUcnGrx8sDIgXZ6VhTYQ0WqlxUWQDuXla1uAMT8sWc7c5q9Wq1FpcsYwzEwDe+9S2++xvf5eOPP2KcRjYZSwiyW+q6joAixGMdsKUdsZSiATg/P79lp7nELLZdw/n5OVobfvLZZwAc9nux8zWqLkYkoc84Z+E0SAWXxQ2gLTFMFaoRQ8yi7rIoDWPZOSqMzc6E2Sq4azuBkEwTUz7vYnNrjAElN6KzDc+ePefq6pr3Hp0vv+j52qZEigGUWaTR9/E1jN/n5zhPJCAZt0iG5V+Qjan6gpKOmseSBqXifPNrjUoFn7isUt/dCt85h1e0Kt8G+3arVpXnsdVa7n1jNN/5zof84ff/77lDZC3WWLQKOGeq4cB1L8bY2hhCkYtMM+Gw7/tbrdMl72EcRsI44HTgcOpprFjIrs2G1Gd41zBiMIwhgNJi3tAq1us1m+2Om2NPOJzytWBOzJXIvBlriD7UdpNgNjOD/jhymuK84UmJECLG2mrGcjge8D7U49+u5KVaZYt3KigpFxmkKpbuOArex9csfp+f5zyRwL+xwkYlzuVbMb8uiZpWilUEQJGkw1Oqu3m+qZBCpWoxz/uJMHm6ZLi5uRFzj9OK7cU57XolNvS3znM+xq3zZwHFUHM3zHvP/nBgmga6tqvdIqVgs1nz4Ycf8o1vfAOAjz/+SDbcuRtd3DYL7KIcf2l0BjMso+RBhSy8lLItzyuQknkelHwlxMh2tcVPxaHUoh+c03UtMYgCTn860Y8jxjlOpyMxBtYrKQCKs/DE9c2eGAPH/TXbVSeoASVmb9M4Y6xrgSTPN91qTYxC4k6TFByHsUjHBdquo88Y7Z+5dFxK6Q+UUr965+G/Dfyt/P//BvjfkMH9t4G/n2Qk/O9KqQdKqW+mlD59/RssoA6LgVz+UeTEOCV0iKj8fxC83zHj8wBs21ScEFrsD0sbsN4Z+bUhRoZpJPiBTbtiffEAbS0h+ox1WbCvXxOq/JVkUDx69B4l7W8yUTBGQdQ5Y/jN732PP/6TP+JP//RPmbyv+GZjLV3bEhO03ap6ty8rQ0vmpnOOR48ecXl5yfEoyfVqtaJtW7abNc45ri4vK3ZRqsYJZ2RA10Geb4gYI6fTMX8dmmmaaNdrOiWuXqK9KFq1Oi+MBQ9U2ibONRUms95u2O42eD+htM2LuJy7NiI1M/mBjoYXL15yeXXFw4szcVdM4gYEoLKySVSKNn41x537+MuNn/c8oY1l9eCCLyTEMCfFr0tay31UCH45sTauQdtGSLpKEu67R1DyQpK6rVTzKhm5LwtjROVCK12JP0Zrfu3Xfo0/+eMfCIk3yzBpkytSiyGvlRJN87yolQVRZWzx6XiicRaTKzjOWnG7CgGGAaYjtk2Ap3WrqrAz5JapIleN0m3pzZQ/q1GqwtimccK7ibGR+XYMA40R9HNMYBBN9V1W/DmcPDenK4bR3658q1Js0AzDWBfwtPh7Cex81ZRcEoyUE3F7D8X42sbPPZ8obfwlvCEt/y/ayiolVEzgJ6kaG5NvgALUkLVKPBsU0XtShi5oNXOlynofU8KniFJSsfUhoLQiBllntba3CoI+zp4M6s4fmGGey2Q+keiHQWAWZlVhZyEEXNvynb/yVwB49vwp/TDgrGW1XqNevuDq+prj8VgJxD5Xi0tYawW6oWb5u2maKi75Fd/j7cJB4TsozePHj3n/8ZN63LPthvW64/mzp/zxD/6Y5y9ecPHwEWsj0AyRe5Tjaj1zQox1NM4S/CiKWDHStQ2ucVX2bewHJu9p246mXWGaJJ2upHBodtsd281enjvkDroyDPk6vm38NDPK+2XAppQ+VUo9yY//CvCjxfM+zo+9eXAbVbE6OiZ0wfXkQf26WEqrAZgYZQenldwMucJR59qa3SJtTmMY+hOdbWiWC28i7yjVYmJOdeS+6hIrrURWSc3tGdd1Ut0JHlLkybe+yV//nd/m8uqKH3/8MT6D2qV1IeYdZbA2C1/28liJQvaLMdb26wcffMBqtSKlSGMmnj17OuOdtAh8Gy0oiNVqJTe39yQ1EoPnkKVbpI2ZpPq2aKE6Z9FapKOGfmAYMomgaUlJWsTDkC1y8413OBzw/jZRQGAViuOpx7UdP/78BdeHXog5Y0/0R7lelAlCkaJgqF/FYb6Pr3X8DOcJBdq9PiFeRFokV6WPmpIW+AWAMnl8S4IVUwFevH6E3cVLlyqu1rpiht8Uerl454UAJBHd7c7o2o5h6NE2Sz/pktgrmpxYB53E+jolwS8ag1GKxhiUsTQbkaUsi6BzjjbjmJVSKC3zyna3QTNDJAp0THSos/yV0lhrCAv4lc5tTRCjAYKHMNK4hnX7AJ0Ch6tLfPDY1GKbudVrrKnJ9xJqlpJUqFZdh9Kaw+EAwHuPLu6AS7PS+mtgGErp/PRC8ruPX6D4mc0TOkGXi2pvyh1KHI4nUXHQGtc02MbNEmmSec8FvNxFKVUy8QCQ95imif1hj23WdF1Hs16hrMU4gXhVhkXJIfJxX7k5X8SyE942LUd9AKVwbVO7WgkwzvLXfuu35DPtb/j+9/8vbg573n/8hL4/8cknn1Qra601Ps5505LgV+aEkrCWjvWtc1o8H8hCBI6ukbO1xrLLc6IxhvWqY9U1dCsxK1FA3/eEnGw3jVvkB6KVLnOW5my7wSghAStt0ApOxyMmX0ebpeO0a4gZ3jlOAe8DSltc29bChFaa4D3K6S8UIL8sfh7b71etNV84I6XU3wH+DsCHH37Ienz7cnh9F6UwjUMNpi4OKpNS1KI9oIxebNfmQxhjcE3DNE4cDwdplZgM21jgXArAHD0nrLWSsfzAGfpR4AaF5b5ar8V5JyS0gocPH/Hw0UNevHhOn4viKSX6caBtW1KguucUrFGplhfd4qKpWrQPl6oYMYr49uefP+XxE2HcX2QykR9PbLcPePHsOS9evhQyndayg2Y+F2uEFLQ7f8husyLlba7oKRuu9wdCTmhbsyXEgM4OQcU1bHd2Jg5f+yN+GkmlYjRCsA16/ZAbr3n6k+dcHk6EqIRIEeebMMlYQZGIpKLocx+/+PEXmCc+uJUo35rn5mLQ4ijLavNClx2Q7a4WacRbWqrLYy5xVpEYZzLL4XDg+fPnrNdr1uv1W1WXlx0z0u332+127M527D+5wRpXVXCs0fgQ0UnunQfrFadhoD8eST7QWtEzddrc2kyX5L1tW5RSNbEnV3+ksp6+sBhWFQ4VabqWpl2BnvDec3V1xel0QmmBVVzeXNI1luB3PHlwhnUNKow1EY4pSuFjof0qeu09Ueu8GEJCFm9jWwiB6+ubV38Hd2IJ00j52grfRYl83H38MsRXnyc+xTyr6gAAIABJREFU+BD9JhjGndDGSL6QEjEnn2Utw5oM/yF3n+aKddKg0vxcyTMUh9OR3XrLar0Ba0jMJPXl/KVfAyosOcWya13Oc7vd4nInp21bxq6T7nDG/55fPADg0cNHt6rDzjWs12vGcWS1Wknec3VT54ylLvsyCS6b7EePHlU4Bghp8IsVZ1U73OM4Vm14KfpFLi8v+fGPf1zVQYa+x4eAcQ1N2zD50kWKc/6GbPy7ztE2jVT0U8KPPUNxNnRd/l4UYdHtLtdxKd/XtA39MKByonwXhvLGcfLWz/xifKaU+qacmPom8Hl+/GPgg8Xzvg18cvfFKaX/KqX0N1JKf+Pxe49/itO4j/u4j69x/OzmiSy1dh/3cR+/dHE/T9zH1zp+msry/wT8e8Dfy//+j4vH/2Ol1H+HAPGv3ogvAl6xUbwdeddQMceL3ZnRiu3Zru5wjLXobLsKGRMXEypjBX2Mt6AFbdeBVmzPRTDcT5OwWCvDdelSEyuhaImBqv9RkHwG67GAiNwB8v/m9/55tNE45/iTP/kTQJxlSLA/7FmtRSu1yL+UylWx5C7nXiq4TdOw2+24uLggpcTl5SXXl5+jlLh7wUzaGwfZ6RkjO+YQfJbWclgju8aQFF0nrYvt2TmrJjH6TJyBjJmc91ld23DqR4JPTNOAVhptLa2xrGxLn27wjITcVi4mMjq3TZXSPH/+kn6caJXAXm5htUlEFCEmCPeY5V+w+BnOE9wxL4L5DpwryIJ3KD+/GVM8k36/gBic3yQmIKs4LNytim7qV9HqLNXQYRyrxJlSiouHj/jWtz7gRx/9mHGcOJ1O+H7k4YMznj9/Tpyko7Q5E0b7KkvNLeenQrZbVnvuch5iTAzDwHa7yVJOQo5xZEhIEK2g7WbD5uwMbVvi1Q2H08A0iFHAZtveOnbwgRAiYIoGBn4SeFer3Aw7TgKl8n6CbMubCtxNaaxRhBg5ZtdR7wNOL7p3lYRZYBmqYtCF9ahFPCORW9/38QsUP9N5okYpzy4X6pJHIP+atsGlAgdocF1b13mYq65KK/FUYNHEUjNwq8isRT8xjiPNqkMjOOiUEuaOZ0PI3Zfle70KllF/p0T+tRoWQVXJwllUSpxlnfW/+a/8Hs9ePOUHf/RH7I8HRj/RrVesNxsa5wgx8uTxY/rs2zAMQ80t7pKWS5V5tVrdsuouShkFrmGtZbtruLi4QBvD8+cvAIFrheCxWmGtzFGi/+6wSmQjG+2Y/OwhsdRpjkkchHXhUKhZ8EC+C1HnAsUwDozjRMKANmhrsdrUTttud4QEQwi3OGFvE28rHfffIuD795RSHwP/KTKo/wel1H8IfAT8W/np/wCReflniNTLf/DWZ1OT4sXgftVCp5Yv0RWCUJ6fosgtee9lQGUaZUqZSJhL9f8fe28aa1l23ff91t5nuNObauzqkaRFUmyRtkTRsiNblmVLsmzEUBInQOwAMZIAgoEMQL45yAcDAQwECJAPAQIH+qDIASIbNgIlymRLthTLgEVIlCxRFCWSTXY3u9ldXVVvvO9O55y9dz7s4Zx733tVr3pgva4+f/Tr9+oO5+5z7j5rr73Wf/2XFr9Q6CzD2qCvGGSNlA7FgUFoH0CJ9jyoh5xCtxd7WZbeGQdiyhP85HvxhRcY/aW/lM7vlVe+gXOO0/mM5WKOiF4TEo/KGPHLnUwmOOfY29tLac+TkxPquubo6IjlfIngmJ16/l++m4WueRn7+wccHx97ORhj0XnOzs6YyDZZVoYmpGJqp3DON8V0zktvSUq3+EWzqefMT08YDkp2xhOa2uFMQ5kXbG9v0zQ1VTX3GwnC3sE5RDwfWWnNO/cfsH94yM3tMtwdG9ooLnC++gK/K4sP3E44wIXGIeqs8sXDnOJNhoZLzYwEp3x3DkdItfnJ3nm173zlaDfZcYFIdKFHzcvAufVT2KJVznLuHeDBYMJOuc3Hv+fT/PaX/nVYuJq0MHklmbZgT6uWInZeGjHWOIBfTGOnLl+U6LnWdeOLmBsalLjUOrYxPlgwCDSQSNPwxzVBCtMvqnVVgWkQa9gaFIzLYB+VxrrGFynXjjpQp6pQFOlcW0AYVUh8+ttvnqOzbIwh175BUbQZ7SZGwv+7m6U2la57zvKVxQduJ0TgMpulMHW8YpVK91mXghnva2stQttpzjkfeOtqFWdFwRAwWUXuPPWzqSuapkYHp7ZbERGDaV36lH/i4vFKppmU237ja7zqTBYCYTiDC479cGuLj3/P93D//n1ef+01T58SyPIsiQ5Y3Bo/GVhzQmPToBgcGA6HyaGODZGyLGNra4vBwHfk29nym/iDgwPfJRRoKi8uIHgN9NVisSZvifN+UxRiaJrGF15Gp10pxBrK3PO/RaCqmsQrV9rbjbqugw+jKAfD4Fj77zLSMMqiYKYUykTFnffZWXbO/fULnvqL57zWAf/ppUcA50/uC9Y951yqeHadNowxkuCs84L8AnlZpOhllySf5Ifwk1cFZ9lHoBV5niUnNb4Hzran7O7AJDjj0clO5wUdo+4fjy1tb9+5w/PPPw/A17/+NU+EH4/BQdM4dnd38ZXqq+Qox4YnW1tbqWtX7OZVVRXL5ZLFYoGxjlzBwcEhAMY0bE22KPIC03S0mWMlq7XtrlE0mfPyO2owwtoZtTHMlg02djcTYTjwr2+axnOKrfUcZav8JFWxUNF39Gts6DooQtU03mERr3Jw7/4+h0cnXJ/cJLjj8Sp3pkOrwNHj6uGDtxMK0eXDx3Dm765md4wgr9uDtDd3nSjm2uf657oMwzzP2dnZ8VHeULTS/Vy38XYBpPEKO9Y0qDxHRedb+YLaGzdusLu7yzt33wrFdGpt4fLHbm1OWvTCT1y4uwtAXdcsl0tfTBMKZpqmoalrBO94uyhdkU7AUZQlo+GQJgQPjDUs5gtfiS9RiUMxGpSURYYxDcvlily5FAGyTQOuSfqpsRFAKkgKC3RZlmRB/gkcs/miPWdpX/9wSHpdXBN6XE184HYCHh7RIjhJnQymBIcwql/F4rdY9wS+OMyG5634DZ5zFi2tfGVeFmilGKT0sl2fvy7U3hB4tcZ4IYKNAZ87fPEbbWd9rUVVVSmi65NorcOJczxz5w4vvPQi+/v7QWbW94BYViuKosDZ9h4UkaTwExuhjUaj5H9E/fNux7+yLLl+/Tq3bt1KGvNaWZpqxmq5TH6W33BrlDi0VuhMh9cHH0tqMqXaTfiywobxOOcYjiZsZQ2j8TAdTzrFyUoE41qb62ij8NFqxwLp0XjEbD7DWIMJql+XxdXJVZ2prQlRyI6W6YW7AGkdWhsan8YbweFw4sXwBV/hbaLUC86H+xGqpkKqhrwo0FkbQdqMVsWdYHR+JUVdbNhp5Wdn+sbK6ULkY7lc8Gd/9EcB2N9/wG//9m+zt7fHaDTGGp8aOQryb1FvOUay6rpOhUbz+ZzpdJp0F621XL9+k2pxkCrLl6sF49EYYy3D4ZCt7W2mJyes5guy0NFmFPRQl6spK2PZunYdOyypZwbJLDpzvupehKpqHVdfYEgQLq9pGoezQlH4Rb0oCsajMZWZtt9tZbCiU2R5/+CQk9NTnDzji49CIZZ0r9+5nkyPjxrOOsRw1inu/nZtR682+4qI9xFT6rNDFzgz7yDdf9ZayrL0ijLWYvBRHhW7a3Y+ar0bV0sxctamLlwuuPCj8Tg43RLknQRrm1TEC16urXb1mmMcGwZEScgsy1rnOqRLu7bTP+fHUlUVpqlREikVDWVRsLe7y3Ay4eh46h3txkeZ8jynXvmI+GRrzHg48NSsENFN0X7xWuymaXASo3Nt1Cq2nAWvBCQOn2lyLklYNqYBivYLS99PuqBtcSaWqgrFSW5DMaPHRw7JyY3UnS4tcwNemSYDaTvZRSit0DpbD7oFhzk6uMn5JXSgzRREykXT+KY7Ot7PnW5/wLAcnHGUzw6w82enEDc1QXKtoYo60Dh47rnnKYucvd09fvXXfpXZ7BQXNNDn8zl5MTjTnS9SOuNmPF6LxWJBXdeJzhB9oxh1LsvSNzyqFqH52V2efe4OAFtb2159o67ItDAcDDk5PmZ6eoqx4X7t+DZVXQeL6EJrbg3U/jpG6b5CEVsCO1FUy5rFcuW16bMydUesqyowtPxrJ5MJs9nMO+Loi33Kc3BlnOUY/o8T/DxcpuI8rnxae4WIxhjfPlUgz4qwKwkXuaN6qDKNdoIEHWJopVOi6rgNaQkcvkkGgGod6odd+DY+6ieAKPEdZMJk/Ymf/EneeOON0JykpK68GHhZloxGXoomVreC73QVqRTT6RQRYTwep8nrjYUkHeeT6THHx8eICJ/+Yx/jxvaE6nTO4YMHTKcziqrmtAq7LNN4NQyBUml0WUJdez5WSFUppanC61WobC+K3Kd8Vw3OKZRk6XvIsiJJTtVN45v4mQanQGclD/Z9ZBnx8l5iY+OUtnGpIKkdcY+PJkxn5bAdU9F1iqOTfB7W2F0b0QgIzm14QUxiCN4gCwq7arBVRT4eIcp30bMESfdzpubaOCQMOji5UdbKGd/6fWs85sUXX+St73wn3e8nJ8cpeg1wfHxCTeh8p1TaHK918NzgLHcj0UopEK+gobSvSK+dRUlsdZ+xvb2dZK1iVNo5G3zg9e6aQruJIHAHG2txIhgLq7pC50G2SemUxsa51AXRN23ytCwQFgvvjJvGO/UiEuS7vJpG1HR1SrfV7y7Y8zAnRNazgD0+OnBhk3YRzvUjOgG3ThKYKCfZdhSO/RcUSnlHOTrLUQhOlGI2X6BcoHjk2bn1BN1gXJcjHNUoNtvCQzdz7SkhF66G4jfhOzs7/Mk//aewzvLrv/4vMEGNxjiLWSwoQ4ff7ljiZ0fZWq21141uWmpYrKPa3t4mz3OWyyXHx8ecnBxRL4/Jsoxr1675MYt4hSvToJRQloWXnewEQb0CV4jQS4OxPhPlEMbbO1wfbjEchD4O1kFOosU11tI0c7/RL0cgURbPJmm6uCnI89zTY8sS21iax8hAXQlnOfFvAh5VkCOBgywdbnM3wiTKS7hYfOMRY4yXfUkho/RKH9URH93MVJZ4sTHU76xNnWhM6D6T57lPd0iHMRd2Pf4zNigEG6cj4oXKM63TuIuy5E/+0J/kG1//Bnfv3mV35zpF4eVeiqJIKZejoyPA8/pidBnanbSPzCwoywJxDXkWyPmFwi6PybTCLqZ85uXPMh4MefPNN/ny732Fo9NTKhMXTI0FrGmoqxWZA1fXGGOx1jvw4/GE2Eom7nBXKy8xhfjv0+HSjTYYjBisAhfRWrQCV9VYBI1FKc2Dg0NWdcNQ6zNGQJyn2JjHkATq8XTBAbWJHNeLHeJzEQKeqmMvnPUzWPkYQ3L8EPHzN6Zftd8kusZiVjWnJyfIcsFkd4eiLNJCuul4p3ELIXIaeMZ1Q7VaJh4dMf2Zaz71qU/xpd/6LYZD39Do+OhwLYpU1xWNtFziLkUsNkvJ8zxJPMUOXNEp9TbCv3d7a4umqn3nsajLrDtd+Qhp2pCVy7IM60hcxFx57XWco66W4Ea+CLkx1HWDE1+AF6NhUeIS1gMLxviC6qLIqYuC6dRnoKzzlA5E+c6ssOZwbGYYYpzFy1v2zvJHGQ8NrMV1O1Cw1hbo8O9YyKcyHTIwK585CbQHLd0WynE+dtqxdzbjMfuzec9GeOpEpBF5O9SlO7TR6LCx7Lw9MT67449/htqGYjBgd3eX3b099h88QCnFeDwOvQv8a6OQQMxERQqEiA+4xeK+KBhgrU1Uzhh1ns1mrJYVLmSqY+3BaDgE5zfLdV2xWi05OTkJ3f78Nc2LMgUELIrG+GhzbXz77MEISg11Y8OVbk9WJ3sogeKqfSMYR6Kf7YZxD8oBW5MtTNVgp8dYu7p4nmzgSjjLsDG5O7u8tOM5xzFeX5Rafkz8t7UutV7u8tnO244pBBubicS2ua6NAoVh+ciGUlhj/RcTo72BY3jWy+ukdbvnKsLpbEYRBfuV4vs//3mu3bjB//erv8p3vvMmg9J35CuKIvGB4yIYHeXlcklVV57zJw6tHFYsx4f7aN0wGvlFY3d3izLLwTpWdY3ONFtbW4zHY7a2tnBK4WZ+cs+bhoHSjHKFMjWNg0GeB06RC5rPOXWo0I+7z6KIUSawmVAkcXeB0ZjGeC5i1dQUJoNlEzhYDp1pHuwfcHQ8ZXhtAhKmpq3CDjQanfNmT4+PApyDxj3iRdFMpAUxPYyyDkkRWE/AoqnBxo2r8x26wma7/VxLVVfYukEbw6qqUHhtU03eeV3ia5wdu4ByAgrquuHo+DjVHwh+Iz4eD3nxxRdTtbuP/mrqqlprvNSlX3SjxrHOInIPoY0SxchKV0dVZ60aR3w+cvuq1crbqNMps9mM4WSbPC8wdpH01RfzGdr56JOpVtzY2yXPPRexaUwnuhs2HUHL1jmHDmMaDAZJZSgWEx0eHoUxVCmFHjuNJmdZ2uJAIFBdgs6yWy+07vHRghAK9EPAq+VZreMiOtdaUWtwfK2LGWGV6J3dz+tCochHI5TztiNShXT0ZRLF1KW6IZ3nuM79HDPW3c/xtMeNSOhahqxty+0CnzorS6bHx3zms59Fac0Xf+Nf8eqrr3Lt+nUGgyFN3dqJ+XzOyckJVdV20czzPNmPmMmKr4+vE5HEa3bOUWh/je7duw/A9taEyXiCUj77/dZbbyZ6qHWtTS5Kb0ur2mCdCRm7YOskoxUaiG2ug01r/AajLAu0WKrVjKqqGI2GXN8Z+L5JTVT6EAZZzng4wtRLbN12f34UroSzLIG3Kp0WlRGJJ3T5g5HpECGOEnCiwgJhYk7VvzQ45ev7wzj//M4mpgriG5yxOOMnuIpOfOTIydkb58zg8IZeZxmHR4e+6hO4ceMGIsKzzz3H7u4eb791N7Wx9unYE2bzOfOQomyMoVou0KLIMsVgUDIoS5QS6qoKDU1WWOcjUrvbOyliNj055Z137rM72eXOrTvIZxWz+ZyD42MAvv7qq+yfTBllOYNMMV8smZRjCIvxcrkkzzPqUOa+XM5Dm0yFtQ6tbSjy8WftF0HfzhtiR5+S43kVGS7oLPNUjONjnrm2RWpLjEo3R2sKenyksekQh8fiL3GgIkXAgjjnFy5jMFEeSSnQPmKptfbNA8LC5Q/dcZbDvyP3LdMaJCjwdCLGNhaw6iytz11r4AQIxn+58vcQ+G5V4Be4vCi8iL81aOezMtPpNNmguq7JhnniKcfMTbfl9Wq1WnOuz7R0FRUoXgNu3LhBlmnKvG27u1wsfBEMbUX8eDxGZzmLZSu3VK2WNKE6PTrv8fMi9QrJUeH86mblaR91TTEYJJ51XVcsgeVcY01FvfIL2KpaARIySibZ3fZb4Yztbp3onq71kYUAOlItL48YGe7e+57y4/n1sc17N+jWYWy0Hx8Dc4LPrOh1ukTThOJBY1qRgih3G/i73Yz1pi2Knxo/u7s3794H1lq0wPb2NijFH/ue72F2OuX111+nKAoGg5JGe0d1tao6WeBBuu9jNmo2m5HnOYuFvzcXi0WKHBdFkeol9vb2wC5ZLjxNFHxUfjQc4Sxkk7xtqFJVnoJmLYJjOBiGwWuKxrCqDQbIygKbFVT1iqppmC8M1kGWhUxdU6MzxSCogtTVHGsc1uQ++m0kbdy1ysnzgsFgwHI5SF1SL4Mr4Sz7yf0uHKHOG7qLpnVRkkWhkFAo0nnPQ66Pwbe+jbeFAopOpbvtvNlZ1xbvBIc58u7OG+rmo1meYwLvV2cZ2jYY4N/+a3+NZfUP+fLv/gGLqqEoCw6nvrd55DgXlH5BVZo892oTonyL3Kj9Wtc1+wc+SnNt7zrZMMPUlpPpnK9/45ucHp7w8RdfZG97h+3JVuIjvX3vHqeLBbZa4qqCLBQZHR0dpd1klul046xWS1+kI1EH0Rseay21rfA+iGNr22tAni4WWGc5mM78ztZZsrzg4PCIw6MT31UwRqUkFE8az1V6GBetx1MOAaXljEMM607xRS1uG2NSRMM5RzEYkMfsR5i7qZo8fF58bdM0zJYLBsWI4WiE0yH6FGlX3WxY+9YzDrOIb/u8dlrBwWuahq2dXV544QVee/1bVHXFaDTm6OiI0zDuwWBAA4mr3I2CxWOdWWA7vEAbUr4Aw+GAa7u75HnO9b1tAOazU37/y7+PWyzQua/x8FmrTnFNShEbjGlw1lKGttbz+ZLGNOR5QV4MEG2Sgk6e54xHI2anc09vc02IghusMTSVoBUsY0CgiQogG1+I//DgW0h6jY3ZJ+vnQY8el0YKdoFWOrV/F3w/gOQAh3UtBd068b1u4A1C4V96PszTDW4yeKfZ1E2wPQ4VorhR+SYiqsWkY53nqXcQI9PWE31RWvGxj3+Mf+PP/DDfeuWb7O/vs7PjO/sOh8M12kWMGC8WC6bTaeocHFHXdaqpauldQXs5RMUHpa+XWiwWnJycYK1ld2eLF557nvr6daZHRxwfHbNaVWzrnCLY3tPFguPTU4zOGO/sUIwG6NEQpi7Q3vz5R7vXNJqmUeubhpgJEINvdRGumQYRHbJaQ08RuSSuhrP8KJw3IeICYNcFtLM8A+el0FC+QYHgebIpvRkna7y63YIYIVH2I7m/+y0orf0uJVTNWip04VMVxlnf4lXOT5V0/xErzHUQ568ay8HRKVmeMxgP+fwX/hRNo3jzzTe5f/8d9vb2ePvtt9N56qAv3d0N+yKcjNFolHaFtfNf8dHJHFMLO4MBjXGczubMxwtmszmT4ZhhUfCxIGMHMPrWKxydTlkcPMABy3Ls222vFiEdSluhXyu2trYwxlLXTeBbuRARavDyzMorhQDj8ZD5YklZ5CyaCmsbsnzAfLrkje+8xRf++GfQKjZ/8ZWwcSf9ODvBHk8XxEHZ2OQoP/b7O3/7RSho/XYi1U46C1G8761fJOumZuVWjLe2kLIgaO0QF7Cus5w+B9oNdfi3Vt5Y6w71weu9exrXD3z+87x99ztMp1Ou7e5RFEVy8vM8P3MeXSoGtC1qu4i0DK01een5h3mWs7u7i1KKra3tcECb6BzW+HJKnfmC4TKobBRF0CylwTS136SIj+JgfGGx1jl5WVKbZWhYAijtN9Uh+yXlsJW+MwYjymvdEyNGDd1cXaRkRBtqO8R156LD7GiMJZPeW+7B5ULLYfJ46oaXWbVhzirl56QlSNWuHbfjYZ+DdtudFNrpmpWYmRatCREln5UR1Wasz9ToXCJzHaCzjOVywWqxIM8ylAjjyYQ//xf+Atvb23zxN77I22/5ZohlsAllWa5FkLsc6272KGaFooBAlKZTShiUGlENOvpkqxq7PEYroZru8/wLL3HzpRcwdcPdu3d55ZVXWa6W7IeAYC3CsCholBfXVM6RFyUoH8mOBcWppkRFCpqPbldVRZ6XoT13E6gm/hsoCkeRxwy3d5gvi6vlLF80sZNTbJNzfAbxCw3i4RLJwvgIsGsMOldtNbZ/k38+pBHjUhd3dMb5XeWaZmcwwqtVzXw6JS8LhnorFMKwxmfyk8ydc15CUQwYT3bajnxKMxyN0dovpNevX+fFF19kOp3y4MG91N88jmW1mPsFL8+JBYnL5YoVS4bDYUqlUIWUj4PGWJxotM6wVnjrO+8wzEp2RmN2bt1MkeVPvPA8WuAPv/l13r5/H0RRrRaU5YgdtZsc1rgA7+zscuPGDR48eMBkMmG1WrFa1dSVTQZGRGgC4bQsC+rGMBmNmNeWRWWxpkHrjKOTE9/Jb9DqP/rraMMO/4I50uOph+DQ77bAUwTJNKLbBhsOX8AjWrfzVEnYMHfeqtoitbquGQdOc6vcEy3H2ehRO3bSWpblvlI8cpazPKeuKl/k7ByTIPJ/fHyc+ILxvi+KAuOgqptUvNddxLyaziDdy5E21e38GSPZdUdSLt7L0+kpeejwdXR4CFlGEdKbm0obSix5nvloPo7FfA7lwBftKkVdG+qmoa6js5yR5TlaaU+r2CjWs8b6zwsSllVVhai9d6C7xUxxLK3zIhCq59eLrHt8JOG5EmzqKRPWZxee7yIXn53tvj7OJXG0tCut1rI3LX1T1o7pqRg+siuARsiibwJJ/cF2DpJsSjdjHaayXDCv288/H9PTKRjLrVu3MJVhMBqxu7fHzs42h6EPQ4wcR9nJk5MTVqsV0+kpq9WSSDFtneXKb/AVXkhAQ20t0+NDphiGQ8Pu7i4AN2/eIAvXxhgvmXnr1m0U3sl++613qI6Pk3Nt8EXXmRIyBdjGS8A1jafSBaGBaBNHoyF1nTGfn1IUBbdu3fJOctNgbb3GG4/yla3s3eVd4L4KokePHj169OjRo0ePC3B1IssOiNXOnejxRdrFdV2nVED8AU9mH41GZEr5infr0KI8D9Z1pF02ji1hM6cQTGf3JqI2wkyElI32Yf7TU1SeMRqPfcMTZ87kXc+JMaXK0JhejcLeMQK0s7PD937me7lz5w5ZpnjjjTe4ceNGSnu88frrNE3NaDRitVgiAlYctvGSLlprXwwUO56JYlVbFpUhE0cjNdfHI5rGMpvNEG6mcZZ5zu2b16mbFxHX8Nbdtzi+X7Nz+6XQMbAJmorTMHaVWl9WVZOiVIPBgGxS0tSG5XLlCyyBPPOV72VZhEJAn1IVrTidzTk4PGb7zrU07siDVpAoND16nAuRNozbzXmKoKyQxyLTPKPs6JzHOauy83U3I62paXxBiiJlStHEyGcUZj7LXd48VrfjX5J/C1Hv6zeu89xzz3N4eEhjjZd1Go8Bzy00DlCaqqpSdDmeQ7wPu80GNpWFlPKta3WQm/M0D5/i3D/YJ8syVicn5OWATCmyQP0wplmL5rqmYTAcoEJatK6WZEp7+lvnM7sGNI6tWZn0Puf8j3EOa1WiYJ1Mp6H4h5YTvlGn0uqut09Y687VvO7x0YBzjmZVXep1UUsqAjTcAAAgAElEQVTYWq/JWxQ5vhNDmy1q9dCDcoXqZKhTyshTtVLGiXVShA8W++K9tIaFY+iQOcGBrSqq5QpduqTPHPnT8bfqaoifnf5r54fz2aWyKBClGA5HLGYzPvGJTzAajfnlf/orAPzB7/8h09mC69eF/YMDlqsVIkIxHKIyzWIxZ7laMQq0hbzIKMuC8XBEnnlfI3YQrqoVdWPY2vI1SqkA2lgWixVHR8csF0uu7e7xzM1nMC87HhwccHjkCwIPTk44nM0wzrI1KJgUmuX0kO3BAFub4Ee02TuvSa9YLufhsiq0VjinybJQ22AjDaMgL/KW3uLGj5wnEVfCWX7Y5I4ddTZ/6qryDnNdr0klNVVFfvs25WDQTtZQ8R6N7bojHnN7ktq0JrkZ2gkOJOUKVzfYpqYyDU6Jr7xVfuVUtJWvj7LXkSMU/86yLLWUHI/HjIYjPvHxT5Blmn/8j/8R8/k86a0OhkOM8deiKAp0JmGyrhJ3Z7lcsgxSc7osmQyHVLVBZUKDo6objLXgBC2KPNArSp0xuXObGzev8cKd2/zm73yJL3/lq9R6zHPPP5fGG9Mgs9mMe/fuMZvNwqLrOYtF7ietaWzgGYXjl/59gyJHhyyrl7jS3lk+OuLFZ66H6y+Ja47rneUenHWI42Pd3+dBCeXA329ROk1ikR4kR1DC39GeKiWoLKMcDmlWp37RsgZjQ5OimD6MahChIC6M8NzxF2XZSrdpTTEcegKYMexdu8ZLH/84r7/+GoeHhyxWS7ZDcWye5dSNgeBQrlarc2kfcVMdbUp09kUk6bfnec7BwYHnGgfFmUz741SriqIcoESRaa93Wlf1mtKENU1rMxMtwiV1jFW1ojE2yf3poCpQDkqquvZFfU1DbHgCvghT561daZqGIrtg2+FsKh6UVPDnHaBM9e2uP7JwbQFs1xkG0r+NMYmXH/8eDofsbG93Omm2GzTB1wnF2b9epLfhHEe7IV4QINY1WBcd6rZDcDiId2qDfFtVVQzHY8rJKNA7O6/bLIA4c1u03rOv63NYK6isZFUbTqZTqqpmd3eXazee4U98/gvh1Tlvv/02R8dHZHlObm1qYpZrFQJhVTp8tCU2yNnFYF/TNL5R2umco2PPQR4UIwpR2Npwahd85zt30U7xzI2bXN+7xrO3bnP7xk1OQ+fOb3372yy/+U1OFku0a2lXxtqwwXapwBDA2u1EN/NBuBKts9Q0zX9FOoy7vfZZllGEIsTL4Eo4yxBbJZ+NFNfBGW46v8+LNscq9tXSyxPlRYFysFgtcdYymkw8bza0P4Q20tJtbqIcmOAwK4k8pPCGuJkcFuhcsSV7PjJTlp7XBGcWrYfBWpsWtUhaj1zD1HwFeObOHV5++WV+8zd/k3feeSc9f+3anhcEbxocKi2EMQIErXPZWC/2vawaTo+n3kndmlDfdownW4DgmlABHNp7DodDr8M8mXB9b5u3FwvefONNbj9zK2gte8d9Oj1OEzXewZ4n5DMFKnU5jNfGj7UsCpR4o2KMRbI8RZZTowfxGYLwr8e6vj2eMohAph/NR73g6W6tetQ6d9b6blamwVpHkfnIaIx0emiU1pSDAZObpefcmgbTNEjg16ZjspENOy8xpoSiHKRIUbVaUQ4G3unVXpLyxq2bTLa2uHfvXqi+38hPBc5d7KoJrbMOrBXenJycJNvgZZu8dNJqVXF6OvWaymEseSacnp76uoRgF5XvZY/DR9WiHo0Ni5cvAGwjbSIa6xzLVYXOCgYDf420znEOxqMRy8WShTWpyZDW7bWL13E+X1BVFUXovEqn8MmGTX661IE77lA+Qv0uqe09Pvyom5p33nlnzRFOjlXn701YYxgOBgxDLQGwpiQTi93OD7oFpISWrPkZkfe8Zpy6ZiLwmpumYbFYYHCoXKOHw+QHRF3mNQ3xc+qh4m+loBwM2d7xijd5UbK1JSyXy9S/4fp1H5R68cUXqSpvD5qmTsEwpZSvAxPxXfvC8XWSlSMU9StGo1GquapNiXF+nIfHp4zLAeOiwFiYL5Y8eLDPqCjZnkzIygFaKXZCK+1nb9/m8PAQDvZR9RIWijxcR63LMy3JT09PWa0WLJcrskxTFMWan3BGGSh0N44BusviSjjLTV1z75131hzj7sXoIk1eGyexL+iLWqXK+QiwsrCqKk6Owu6oKCjKEqFNufq5G9rAuhgZdpRa4UtFYrQqfnp70aOzGMd5XgHMo7BWLNMpPIyyJ95xdkwmE378x38cay2/8Au/AMDWZMLHXnoR5xzHR8dk2i9IWZ6ThbRIt03uSg2YTLZQ1lAtKqx1nM5XzOZz3xVHVNoMOGPAKJp6xeL0mJ3xkBeff5aj1/eZLxZBOi4LDQi8RmNM566dgwvpEiWpfSaAtUKeaaq6oSxy5nXlr5/yNIz9o6MUMXIiydmWVFXc4yML2bwnL0Z3oYvFPlH2LN5vxhgsDtHa63aGRa7bJ6rt8qmSU5mGEwpXLLHYrx1eDAKdGWqIYEcZxKqqfCZM4iEcZTlgPBmHzW/bTbAxDVmRs5qvUjFOtD1lWabFvNs8AKAsS27dusXW1hZZljEqLfv7D7DO68bHhr5a6VTMSFhYQHmbbFmT4dQiFHlGlmfBZvmIk3WWpvatqnXWZqCiZJMKUakYwffPqRQwiJvj09MZy+WK0bBIzoRn64Vi71A2Baw5Jo9jg3s8fWjqhqODgwufb21CGxl2zrF0MJ/NmIzGZLHhRV2zWC4wxlIOBgxHXmJtM+gWf8fuwhADVSlX1QoPrA+GEAIOijAgRYbKMyTTSc0rHl+FwsTLBo1ixDfaiNhiPmqhxyK8T3/6U9y6dYvJZMJXvvJlAG7evInWmgf37uFcoFXGokRjEPEbk6oxFEWeuvzleY5xNfGuNKHzrtJZuLc1JyenfMe+TaFynn/2DluTCaOR3+BPxiMGecYbb3+Ht965y9H+A5wo3GSbYne4LrgAgboqwcFXoROhd+L9eXrpWSBsnBwuZLnPaNA/BFfCWa7rhoP9/bXH0q4tGsbgIMd203nppY+K0GEmQoVqVsJO0BrLfDEnL3K2EZbVKvGC86JgMBymLnxxBxVlXh6FSJ3YbDl90a5mE63uaRtZjpO4ewPOZ3Ou37jBJz/5yTRRlNbUtZdumRdzmsaQ5drzgBFgvubAjrd2ybISs1ygs5xMK8oi5/7+Id945RU++32fwRrf+tHMp2gbItV5Ec4zZ1xkzFeGalWt8SKV0jRNkxxzf262cz1UJ7oMzglZcpYL1LzyjkLYAB2fTKlCw5NBKWkhjYoYPT7COLPWdKI70Tnu/PvM21XrbJvG0JgmyLZplKiU0VirbSBGi5T3zUSDCXSLzHf+i1xGf2i52FH2B0oKMcBa9Abx8/35F17g5c9+jnfuvoN1fiGNY6mrivF4zOHhIfP5PEWJoj7qfD7n3r17gOc4x3bZ4/E4tbRVqlXH0FmW2oBr7ZUsRqNRy4dWPvBgqTGNSRuO8dYW5aDwDrK1NE1Ik25cduncs3HxzvIMFYMWwVZrpTB1ky7afD5nPp+zuzOOB9q4lG1ti3e82znRO8wfZThMY8KmdF35IkosZlqTKU8f8D9e2nQyGJErTZzEVV2zmC+S7vBwFNa47hzrcpCdr3tCQtBOPMfY6zWH55KX7RJvWTKNGMV4d5syNBvK8jxlUvzh393aF+/5eJ+q4EM551L76t2dXT7xiU/w7LPP0jQVX/ziF3nppZfQWjM9OaGqluk+BZ/JT931QuvreN/5vwUd+M2rukErx7JyCAYjhklRgGiqVcVyseDmtb1kM4ssY3d7m+OTYw7Kkjz3FJDV/ISt3Zu+Lm08bLnQ1nJ6OiXLcvb2drh9+zYHBweMRqMQgG2oq6ji4TBNlJ0T3GMUN1wJZxlc6GbTRoKiI1ZmeditZORZfq7zGbtegdcsHZQl5DnKObIiZ298ncFwxFFo3Rqd5d3dXU/XiBM2pVjco1O9nddHR7ft4d4+/zB0o61dKZouBxDxUlN13fD9P/AD/NW/+lcBP0F+93d+hyxTPPfccxwfHmGdl1/TMVrejVY3DUsjiIXdvetkShhqaKolx9NTVlVNWfhr3jgHxiJlnpzlPMsYlRqmnic5Go/W5KxWq4rx2BcX+WYCkoj43lFuxxIjyxB4y0pQEjYruuUtA0xu76E7RX69fOpHGzZEUmMtwmWcorU0XPitOtSr+Gg6pn9Xa4yjuyw+/to0DaKErMjDmCyp1oHzF7XuJlpCfUO0cTHa4z8Vn+3KNN/76U9xeLDPb/zGv6Ja+o2stYbjo2N2S58qjtmjKCsZN6jRxvnOmiF1GlKkTdOwXK64d+8+zzxzi63JViq+FWcQHNMTz210IogW6rrCuFjEGCLFSnubrbzEphKfRbKNoa4NorKw0Q4ZqMrLTQ2HAy8faR02dBNUytur2pp4FXyxUIganXc9nTN+4xK/veCoKFEY29O1PqoQESbDUccR1huSsQ9/b6vKC1jHcrHkdHZK0zSMwyZysVpiwz0cW8TnSvl22NYmSmOZaTp3Nut/rs/R2EHvooDbu9kARr8kHjf6VtG/SFkffOHvzu4OL7zwAl/72tdS+2qtNVtb256aljJVA5BQeKg11pjUOXS18p32qHwWaljklDmsqppca0TA2Fiv4O2nFtXqMivFnRt77GyPuHlzl9e//W1ef+N17t69y10GXL95C51lxILq5XLJ8fExTVOzs+Obq/lNkcKY4NuFaECea/JcY42XsXuca3pFnGVhUJQUQSi/WynehVIqOcZFWZIXRei+RSc96xdBz+kWhiGVWYUW0F2nNpLRu4vVu8HmBe86vQ9Dt9d6fH18T7wGzjnGo1FyFn/iJ34CgKOjI9749re5f++dVAGvdKCGrKrEUUxjsA1OF1hnMU6RIRjnuUerumb/4IBnn7kRB5Z2kevOsh/TKhQNxjHG6xvHkTpvOReEyrO1yLK1QhGK/CJvWYS06428ZYDnb11LRX7+Gl36a+nxlKGrJ3weHvcedqFyR2uvfmqd8zxikRANUulz47pmrMGErprSyQCdN9ZU9NaJal1qnAI430Dg05/5DK+99mqqVZjP52sczC7tIP5OxTj47Fcs6IsNSE5PTzk9PvQdtfZ8RCdeVoWiyHNmp7M0dh1Twa6lSwCUwyGDQYFW3n42mcUpzXwRbYHCWEMdNFxXq1WKgvuMXOWzf6FzGfiufbH+ZL5YsJj7DFnqyugcOBui+UIeChM9hc5fPIVOXOgeHz1orZmM11UOdGdjGjeNOvxkWvti3xQhbvnGKs/YvrbLzTteNODo6GitDmBra2vt2NK51yPV6HHH3q1jWtMi7264H8PWnXeMmNVONiP37bbLsuDP/siPAPBrv/ZrvPbaa4xHI+48cxtrDW+88Yb//PEEpeMmXIU6ApMi97lzrELs0InGOOF0scJWFQpHNRiwO5pQDAZsTbZx1qFC200tClXkFOMRk+0Je1sTbFNxtL/P7PSY5dY2k8nYdyYkfqcZp6dT5vMFd+/e5fj4mNlsHuKeijw0IhkMhijlVbtWy+qh68kmroSznGWandhBCj+xU6S4KMiDgU2V59E5jk5xJ+UaDa0KDl9cYCO1IaliQKJQrFVzBy7TZSZj97hx0nWPf5ldSzzPyD3spkrAy8V44WzPrdrebq/Tj//4j/PPfuWXmU5PGA1H5LlPJ7nGrEWt/YEaVK6oXVv8Yh0gilVVc3BwwLPP3PTXTmc4axBrEaWTwzwsvINbrdad5TwvOD09wRhDnudB4Lwt8ou85faaSmowMigLtJwt8tsPkWWL5y2nRbpPr37kcamFImwuY4RYOjYDaKPHocunCelDxM/ntQ04baOh7m6t2256c0zOuZYyJO3C5zfn+XpQybVUj/T6cL/s7O4ymWxx9+5doJWw60aIdJCxjKpAZVmme3MymaTxTadTFosFBwcH1MsTtPbFME1Vp8yPNbXvJEhLpZLwuYTUayxCHk+2GA001gZaidIYF2xZiFRZ587csjGClmmNiguq8933jDFUoXva0XTOsvZRZ2mWuGYBpk4ynxaHDvbeWoshRAYvoOD0+Ggg0xk3b9/2znBcj9durvjnuj2ImSX/K8wfFdq7i2/9vFgsqIPIQFd6LuLMmr92Y18OXYd4M2PdpUJcFnVdrwXf1oQN4meG6zI9OWWyNeHll1/mq1/9Kn/4h3+IVgrn2o03BMopXikoLwrKwnfQi81NRqMRtfZO/2AwIldCs5hjXIN1jtmyYj5fYoxLHUFTl1EnQUZYBS53w9Z4xEsvPs8b+zPu3r3LcDTk1q3grwQFDGsty+WCxaJIkpQQ/cCW8hWvrVKtQtdlcCWcZa00e9evt3SKtUgxiePXdYydtRcfMLyu63SLCJPJBOdcMvaDwSAV/T2ygv0R6E7wd5MuWStGYmNS+wODIznLIsLzL7zArVu3uH//HpPx2MthaYXSKlR5tsohEuSZ/CLj4fVavbO8v39AvKtFZ9i6QVlfEJWiy8FhXlQ+stWlYcTIcry28RysM8FxkNT5zxgfXc60pm6M551vFPnFyLJ1ghPVkfXrF8GPMtac0uQQQ6JNBMf0DLd58zjhf0rUGtfVb/I6zvEGdJaRj/OUklTBWY11EuAloKJDS7yPaTuDnj2pcwYYaB9FnvPSx17izTd9RKeua24+c5vFvEpcRN8x03MGi6Jge3s7SVJubW3RNE26P+M19HKYjsViQaZ0ulyNMSwWM5bLpd9si7cng8EAqQ2WVqt6MBxR5Jaq8R2yPLvEfycuUFOcdanddV37KvvhaMRkMmG5WvlOhFgwDYYcNdzlpA7FVfMZKxsoXGHRdNZ6CS4RnF2329GR6Iv8PtpQmaaceJrSmt8QEalWD/EhzigouLZArmmalOrv1ixtImakHj++3Hn/Q8Z1GVyk6d6ljwJBEi9uvBtuP/MMP/zDP8yDBw8oioLD/X0Gg1Y9o6lqL1GrhTzLyJT2rbVDjwd/n3t1C1UMkabB6ipt9kutWFY1b999hxeevcPtZ27hjA/CmdUcpR3iFM1iQV2tKIucrcmY8aziYNYkmlk8x3iedehsul4E2PWrfPAu+hOPg6vhLGcZ453tFClmzWnkoZP6PMRCGRWoCI424lvX9Xoqw3mS/RmH+ZKfs8kv6v47aiZf5kuJi2uMVK19RgoQu7VJMJlMuHHjJsvlEhGFi7xD5SPMZxYN2yBKhXSznzBOFKtqyf7BhrO8chA4xEVwlPMsY1x6Z3m1WrXtekOE62yRX5vqkTCh4zl53nJG3RjKIkctQpGf8wUDxycngG/RjepoLfN4c6HH0wMhKFJI6xhvIkWILnm8qIGKC5kmUa0aRBt/9r9F0iMEjq5KEdk2wmTqGj0cpg29dLSYIdqI88ceju4j0EUB8zkvf/ZzvP7aawB84xvfYHt7m71d3yBlOp0yn8+TXdssbovRr8gnjNExcZ5rfHh4yO72TrJRRVFwdHRAVVWe8eAcSvnCYeNqGttpre2C/SM6BhLoVA6tvfRkbHYCkGtBnIUGctFkFrJmHpkVNMoXTcY7fLXyuvE2ZPta9YI2kBKbC3SLpR9F1+nxlOO9fv/S0v66wTYRYTQeJx50VMSKnOXoT6zVLj2GS+Gco2ma5Px1nXRgbf18HF8lbdw75xGPt6nC5WscfLb/c5/7HONAZ/mff+7nmE6nST2jyAsWiznOdWuuvMOaqB7BH6mqGlNXDIshO6PQXEmDrSuOjo85Oj4O971O43DWIcH25EFMINOaMmiwN3WTvuP2+8iTvnbrJ7UBEPCZ+mh/H3vj8agXiMjPicg9EflK57H/TkT+SES+LCK/KCK74fGPichCRH43/PxPjzWaHj16fCjR24kePXo8Cr2d6PFhxWXILz8P/NTGY78CfNY598eBrwP/Vee5bzrnvj/8/K3LDsTYtqNOjEZ2ucib6PJu4g6p26VK4mtCh65Iy0i7waIg7/BvuilK4FKcty5XcZMwHx972A5w8xwujEKf81Dk6Vy/ft1HilSbUlH67LGcc563LDGy7B+PpTXT01PqpqFuGl/l7nxkeY2G0SnyqzodFyP3MaZ6/a7Oh4LWFTHWi/yyqIhRFkERw6dvYye/tkGJpGjiY24Ge3z38PN80HZCQEK3TCe0KdbOz2XhcMlmGGuxzpJ3NIFjxHRzuikEKyFpKSp9ZrQhaxzDc+xXkl7aPLK0PyFWCtYy2dlhb2+PT33qU3zqU59K91pZlsn+dNOQviV3kzTrZ7MZR0dHHB4ecnR0xHQ6RUQYjsaICG+/fTdV+sfMUORhxoixC/e011bPW3sbKFee22wwzncFVQpGo5LTkwcsTg8odEOhG8bDAuXJyQzKAZPxhKIjvxni9+2lEBWKiSVekZauZq1vKLPReMKPvZeOu8L4eb4L/sRl0F1/u+tw986UILsY+zQMh0OGw2GnSFWdWefPq194nPFcdJz4/OPO7WjTUofRUFR7nq8S5XAh0FSDrfm+7/s+RqNxknPMsozRcMT169fZ3dtbK3JMggnW+B+RlM2ORXm+XkqoG99V0NePaER5frhnFPiMdKZDEabOGORt0XW0cfGcIg0j1nOsw68Q/pzdmWt9GTyShuGc+3UR+djGY7/c+ecXgX/3sT717Kc89NnzJtDDTlREfPFdcJqrqvKC1WExiYhNAc475rvg5Z+5adYkod6rl3dOkYy1lvFkwrVr1/ykSWlTz1k+c7PZBtEFtqnDpA2KGKHIbz8IuT9z67pXxLCtIkZUKhkVsc1u6yzHBiWxOUme55ig2Rw3EUqtS2pZKxRFVMTI1xQxRHveMsD+0RHP3tzFdyjsNZavKr47duJdlROc/+a0J/YqCrGTkwNPnxCIbWZjyk46hxFZO0gw8O0HWGN8c5/IaQ5YS3ueHQ5rBOZYzKN1SocOBgO/6Gm/WS7LkvF4nBqSWGtZLBbM5/N0flECahzqGvwiWNJUM5y1XoGik6YdDYfUq4rZbB4WKUUxKHGsWNYGHRpAUZTUq4ZF7Vgsazy12JDnGcNByez0FHBJHUekBqdax7so0uZXiPzutp22iHA6m3kqlrE4E5QyRIiFO9a218oYk1LhvbN8NfHdsRMPdzof9fj6kUKdTyjm1cEpi3xl6d7Poehtc4P8OCv/w8YU6Q0pKPYYhX7nUbTOPB/HKn7Hnuc5zz//PMYYfuiHfoiT4yO++tU/AEj6zBFKydnxuBiAjAEC7yQrCc6yUtRNw3Q6XTt3CRsQAn0zy/KkWlJkmjJTrBpLXXv/bTBoZTFns9P0XW0qc/kh2cC8PVvk+Ci8H97Hfwz8v51/f1xE/rWI/AsR+ZGL3iQiPyMiXxKRL91/8CA+diZSvPnzyBOUNgrZnbTNhmMMrXPb3WV1IxePQvdYUfh/c2F8NzuYsx+UPjA91K12T7xlJWnxODdK3eEsR0ZXnLSr2hf5xUI/pTLPBwxFfnHHmeTjVqt02G5kOUrxpfiYW+/kJ+mmam+uQdEqYrjQgnI6mzPttL52IhuKGj0+ZHjvduL+/ct90nkh52gKghEOVQpeI5mwKFqbeHYP88pDjCIVAbpz3mDrpj12XKiiY3eZRVqE2hiss9SrFS99/GO89PGP8SM/+ucwxjCfzZJU49bWFqPRiNFoRNM0nJ6ecnJywsnJCdPplNVqtWbjfITJ30tZnjM7PWU6naao8507d3jumWfYHQ8ZKcXAdyVhenLM6WLOYDxkMB6ihgOs5Ois9Pr2gwGDwSB19uzagE37KmETkedFyKopnDPri7kIp6dz5osF5oyNXv82Nq9d7yx/aPE++BP3z/UZNn8ugg1Zi+gDOOd8B8u6BmmL+qy1mKZJP7bznjAm//7HOPnu2CL3flMRIzULeszjxmh4vPfOuzZtissj+jODwYCdnR2qqqKqqrUx+uOvN1PzTxoIuu0SMtopE+ffRN0YTk9nTE9P02eL0t5OW4doRZ4iy3qDtxy+E2JkOU8Zss0iv+TruVam0jv4l/cn3lOBn4j810AD/K/hobeBF51z+yLyg8D/LiLf55w72Xyvc+5ngZ8F+MIXvuA2Wxg+4oMvM7a0U0pi/R1JNmjTEt3J0tI/iNr7D8W77arzXhGd5fFkwo0bN3jw4D6j4cjfrNoXKcWULIRdqbMogZqWhtFVxDhILULFF/k1DapDxSgCFWOQK5Z1e8PGyPL5ihhtJz+VCgskKWLkmVfEyPMMCZI8URED4CC2vhYfWe6d5Q8f3k870T7xiA8NTnEsUovRxmjci0HpMzHWgpxPf5IL/naERiXORxuE0KUr6IS6PO908Aspk+jobRwrHXzjfJTWzBczVqulV6sI4/vMyy/z6quv8vu/9/sMV3XSLY7Sk5sLVlxYo32t65qmadiajHHOUGQKUy9wobi8mZ/wsWefQ+/u8s5oyGuvvwnViqo25FohOkOHBWZYlKl1tbHNGTsaYUKL7Lo2WANFDrH19WAwYBFSp642WNEgsZBJMV/MWa5WFCVrDYlkc4uy8f32zvKHDx+InTj/gx7+9Maa3o3m6izzwTjOZpI33xPG5eftJdet7r1zHp0jOrqbDdDOe/37gRTQGg7Z3t5J+u0xi+OsN4KbnYf9eUeupwnRYpsy2i74HcZa6qbhZDplKyiYiNI4U4OziMoStSPSzAa54mRBiixDG1mOPs86HbSrRW/Xru/jXLN37SyLyN8E/k3gL7rw6c65FbAKf/+2iHwT+BTwpXf7OZedZOe9z1mLE9/OlaZJky3iPAf9fYkEv8+QxGNsV9U49hhZXix+B3X9Yt6y605cWVfEICpi7HedZY2tXVDEyDq85ZxxmbGsq8RbHo6GoQrW01/OKmKY5AT781HBAHnect0YH11e1MGvcDTBET86PsE4gm5r7yx/2PC+24nu2tThBJ9xioMze+FhOrag62AZ06QGBXG+dpBLrVUAACAASURBVB2y9KdAg0UjqKjlHLXRje2+q7334ib8nCl83sPGWE4OD7m2t5c2prvXriXJuO6x67pmuVxydHTEarVKm+nVakXTNBRFjm+56+/Hk+NDJlsOU9WUWU7UoDBNzd7uLrev32A4HPLgwSFH01Mq69t5W2mr3K0xyWnY1JyOC1aWtQt7XRmMEZTKk8Od5b5ewW/eQ5Q4LmZKWCyWrKoayiIYQi/DJy25ew0+CufOdSZ6XF2873biPawTcU7H48TAE34gYc2UVumpQ7XcjAw753DGXbqDYDxORFTj6GJTxeL9gpxzS8XzHg4GbG9vM5l4ObiqqiiyHOscGjoZ43Pggs9hXVK6seFHiaIOqj7cecaPQ2lvD2zoDKq60eUsRZbPl4/LE295Uz4O4ncSej88pq8nl9mBi+cY/V/Ouc+Gf/8U8N8DP+qcu9953U3gwDlnROQTwL8EPuecOzh71LXj3wdmwINLj/zDgxs8necFT+7cXnLO3XwCn9vjIejtxHtCbyfef/R24gqitxPvCb2deP9xKTvxyMiyiPwD4M8DN0TkTeDv4KtVS+BXgmf+RecrVf8c8N+ISAMY4G89amIDOOduisiXnHNfeNRrP2x4Ws8Lnu5z6/F46O3Ee8PTel7wdJ9bj8dDbyfeG57W84Krf26Xiix/N3DVL9S7xdN6XvB0n1uPq4mndc49recFT/e59biaeFrn3NN6XnD1z63X4urRo0ePHj169OjR4wJcJWf5Z5/0AD4gPK3nBU/3ufW4mnha59zTel7wdJ9bj6uJp3XOPa3nBVf83K4MDaNHjx49evTo0aNHj6uGqxRZ7tGjR48ePXr06NHjSuGJO8si8lMi8jUReUVE/vaTHs97hYi8JiK/LyK/KyJfCo9dE5FfEZFvhN97T3qcj4KI/JyI3BORr3QeO/c8xON/CN/hl0Xk809u5D2eRvR24mqitxM9rhJ6O3E18TTYiSfqLIuIBv5H4C8DLwN/XURefpJjep/wY8657+9Udv5t4J875z4J/PPw76uOnwd+auOxi87jLwOfDD8/A/y979IYe3wE0NuJK42fp7cTPa4AejtxpfHzfMjtxJOOLP8Q8Ipz7lvOuQr4h8BPP+ExfRD4aeDvh7//PvBvPcGxXArOuV8HNjUtLzqPnwb+F+fxRWBXRO58d0ba4yOA3k5cUfR2oscVQm8nriieBjvxpJ3l54A3Ov9+Mzz2YYYDfllEfltEfiY8dts59zZA+H3riY3uveGi83gav8ceVwdP4/zq7cTT8T32uDp4GudXbyeuyPf4yA5+HzDOa8z9YZfn+DPOubdE5Ba+I9EfPekBfRfwNH6PPa4Onsb51dsJjw/799jj6uBpnF+9nfB44t/jk44svwm80Pn388BbT2gs7wucc2+F3/eAX8Snht6JaYTw+96TG+F7wkXn8dR9jz2uFJ66+dXbCeAp+B57XCk8dfOrtxPAFfken7Sz/FvAJ0Xk4yJSAP8+8EtPeEzvGiIyFpGt+Dfwk8BX8Of0N8PL/ibwfzyZEb5nXHQevwT8h6GK9U8DxzG90qPH+4DeTny40NuJHk8CvZ34cOFDZSeeKA3DOdeIyH8G/FNAAz/nnPuDJzmm94jbwC+KCPhr+wvOuX8iIr8F/CMR+U+AbwP/3hMc46UgIv8A+PPADRF5E/g7wH/L+efx/wB/BXgFmAP/0Xd9wD2eWvR24uqitxM9rgp6O3F18TTYib6DX48ePXr06NGjR48eF+BJ0zB69OjRo0ePHj169Liy6J3lHj169OjRo0ePHj0uQO8s9+jRo0ePHj169OhxAXpnuUePHj169OjRo0ePC9A7yz169OjRo0ePHj16XIDeWe7Ro0ePHj169OjR4wL0znKPHj169OjRo0ePHhegd5Z79OjRo0ePHj169LgAvbPco0ePHj169OjRo8cF6J3lHj169OjRo0ePHj0uQO8s9+jRo0ePHj169OhxAXpnuUePHj169OjRo0ePC/CBOcsi8lMi8jUReUVE/vYH9Tk9evT48KK3Ez169HgUejvR40lDnHPv/0FFNPB14CeAN4HfAv66c+6r7/uH9ejR40OJ3k706NHjUejtRI+rgA8qsvxDwCvOuW855yrgHwI//QF9Vo8ePT6c6O1Ejx49HoXeTvR44sg+oOM+B7zR+febwJ/qvkBEfgb4GYDRoPzBT774bPc5FAKAcw5rLQqFUoJz+B/8b9E6/QBIpnGiMMZgmpqsXmGB5arm6GTKqm5A+dfaEFVXAv6I3d/gJIwhjEU2TnL9UYfDdd+OiCASD+nSU3LOsdYeCX86J513+fNNf689aNcPdV6yQPx4nPXjFCSMT0BAiWo/SxxnEg7S/T4czrlzPkbCfxJOwYJzKKUYj0bs7u60Y3YOJYK1FolHcuEquvY6xs9x4tK/X3n1zQfOuZvnnGWPDxcey07kmf7BZ2/uMRwN0Tqjc3P5+SrKz2fCvXfOB6pw7zdNg1IZx8fHnM5mKKUAQak01dfuo2hv/PwMjzmHscEgyfqnOeewzqZjyMbzSiliVu9h2T3/zMaZPOT1551zuC3TOCRct3gUpRQiPm5ircU6i7Mufb4K7/F2sGvH0oXofG58nX+ziCBhvLlWbG+NmQwHKAGXl6iiQBCcMbimBmuRZIptOFdvrxwWYwwoQWuNA3+NL8Dvff3V3k48HXgsO1Fk+gdv7IzPP5JL/+usoY83mPNWvvM+R5Rf6YejIeVgEO4hOrZCtetl9x5FWl9CWoM0nZ5yfHzceiodX4i14/onldbJ7ri1+8Stva791do2pcSvx11bc65xaccnG0OIFljEbVzj9h82vbbzARLW/TXb2fWz1uFobZGs2Ub/Puu61xa0wM5kzGQ8RAv87je+dSk78UE5y+dd1vXL5dzPAj8L8P2f/oT7Z3/v76bnBkVJprzxrk4XmFXNIB9S5gNM42iMZVUbrM7Jt7dRW1vku7sAFNeuUWcZByfHLN56g50HbzJrHP/6j17ln/zLL/LG/SMoRwAsTYMI5FkGrkKJATE4HFZpjCicyrDhdDKrwllY79Ar5RcSwNoGay3O2OiLo7UmUxqc9c+FL1KHH9e9Q5C0YLkwOYwDY11YFMBaMOEY1jrv7NsGZZadm8KlDQYQnAA/Fq01q9UKay1aa/I8T7+LoqCSVRhK+/7GOkQEneU4p1jVNfPFgspYnEsusV/ORKGURuuM3NUo4z9rezLmx370z/FjP/Jn/BjrCuUaSq2o5nMUDqzDWYtpGkxjqJvw+Y3BOMsqq4MT7fgrf+O/fP2hs6/HhwWPZSeeu7nr/u5//h/wfX/ic4wmY0QrmjBPnXOQbaNE0FqRaSET1Xq5QFaUaJUDcHw6Y1lZfun//L/5yle/xnA4QinFaKgoiyosRK2JdaIQ0YjKqBpLYx3GwKpuWFUNtTHY4GA2jaGqDIvFzG8GRciyLN2jWZZRFAV1XQNgjEm2Id6v8Zz8Pa87i1bYTIbFVNLGt3Wr1x3zdpF0pibLNFmWheODyjNGoxGDYBMXqyWLxYLlsvKvESHPc7IsB4TGGqwKtsUZlDNoaxHncCisy0AynPPXvsgypFoA8NLNPf6dn/wx/sSnX8ItZ/DC9zK+dpM8z7DzOcujI1jMKWr/2VQVVEvAIc4ynZ9wfHqCyhRb17bRZUFjzcbEaf9/8y/+jd5OPB14LDvxws0d91/89A9jrXeUug7f5sY0rpfdn/Ne177+7N9ubea1GIxGjLe3+OOf/wGeee4OZJqqbjDBZunBHlpBnmm0UmgRtPhQk1IZVWXQecHR8QyA/+0Xf4lvfOs1rIO6qTFWe3+oaWiMAVHovAAgKwoGwyGI0JiGpqkBl2yDtYZmNfObz87oXQhuDQYDqqpKfku0Kyr4KIIPNrp8Eh4XMuWDDSq4NYWOtswmJ9Y77Q4J30sdXiHiN8D+1VA3DaZxiP7/2XuTX0uyLN3rt/be1pzmdt5E87KyKqvygRAMeDBlwgjGCAaIATMYvQESM0b8AQ8QI6RCMEBi+BihkhB/AaJg9JLKqpdNRWZG5x7ufpvTmdluGKy9zeyce93DMzOqKiLjLpff5lw71h3ba6/9rW99S2MKYyyRvJiPkYz+AeBNxKaAiQEbgz4syRKTI0nFMPgxnqz8wA+u1vyH//6/yz/51/4EYuTZv/cfvZef+LsKln8D/HD2+x8Bn73vmyWvakBvDkmRz/IBgd5oMUZXXsaMyDLGEJMiENb3IMLgPZvdjmHwiDHEo8d6QqfecUb6bbYqnRCad7wrB9L3QNqvOdq4VXp4EB7b+y+L5w6gnP8cXZ4gnbecDwUxeweyNa4yJ8fjnOPi4nx2HhFrDCkeo0IjijwLcGBClef7f7Q/CPut/IQA6/WC5WKhyIcRrNjp78YpMmwMdg4lJEB0MRdmi8i7zQ2b3RbjDOIsxlowgZh0eazIECQMQtSMiyScFYwTEENLQ4gNXe/HBebhMNB1PSE4/OA1yxW8Lq5NQXseyMvMfIqI5ElKkCQzNDsvTqeZWs9zmjtOdj1H3yNlbhxRGxKHQze9jmaORhSMErTnCYrJfylqPPdnZfE/+W8BUt65tYamrUgxsD/sWfceu92AqzB+YNk0SF0R724B6PY72tVSF9GHHSFEYoiYqkzC6cgfPJz/e7Q/APut/UTt0oim6oIzZ06SIcb7c2Gxh4Lm+c9HyGmeok9zWCmBsQYROL845/LqkqqqEKe+KpF9lrMYkxf3RgNRU9DikpURy/WbawB+/cmvuTg7J6ak82dKbHYHNts9u30gxIgvC00Bt1zhYyT6SIqi2TidYYmhJ8REHNFbkz1FxOaF/dF9yd/jLKhOGFIIWGsRIyOyLJRs/UOWRgBjPvvP0eOY4ls/n9k7KFiGKASe0eUEyWSgQ0afbAsQGTyrRcOTy3NMSuyX5w/s+2H7uwqW/2/gXxGRPwU+Bf5j4D953zcbMVOgeISQyngTYwJrzBgwi5kFyyHgQ6AaOg2WQ2C729N7XX3F2WQyTVzlPxyD9u92v8L9ATaf8N72nvd59SjhkDhOAZd3vSMNeXou8/M7SlfLMd1jPOTR9ci963zLEQEwTIPBWcvF+fmUSIkR4xxx8NPFzKOB2fXpz7OB8zgZ/iHZb+0n2ralaSqGGICENdNYtdYiohPJmLRJiSg6GaTZM2mriru7DftDp0EyGnSK5C2O84l57GnmyFqXaUtRUSBncNaNz+ly4QhhwdX5FfvDgd1ux+FwwIeAMYKzAimSos+7nyNf88TkPL1ZAvfsc8r6vWS6mPkcmXuwPEmkNPoARZNkoqqU2Zlpopr7i6Mxb2VEv02mUk0TnSAYnYSz3xapCPmaKmtZtC3W6L6NGEyMiPekw4E4dFjAZOS7vbxEgofgiSIaLMdEHBIMiaatETtbxKML+UR6Jz3j0b5z9tv5CTmd4xJ2tmCEkqkVYhJCnJ4h3f7+HFMQ1ncFz3NzzmKd5dnTp1xeXpLy+tEYA6YByFlYzYKZMoLz/pq6oeu3rNslX3zxJQB937NYn1FZS1sbrEmcrSp265bbzY7r263GOMCiqTJLTTO2BjBGg2UFIO/HKno9BmMcMYkGw0TSbFE6v/aQg+UUIykaghGqpIG/dZZTQOAeqj//yO4tWMgAx+QHT2OPErgXzyhpTphVMCMG3cbm/VsrfPT8Kcu2hhjpF2cPf4AP2N9JsJxS8iLyT4H/A2Uc/M8ppZ+8z3tHvusYLCuuM31Y4zE0UM7/zRxZ9gMhBNoRWdZgefAeZlxBYHygTp/5NP/+/uDtg3b6Ib9vuPdeh30gxfS2QX/vPI5Wju+BKlOcBiifen6ecvKOaXWoyPLFFCyngJWKPsSjdxWu8rFDgjgCSfkzf7Q/CPtt/YQxhnaxUL5vDPo8jJkMOwaVgiiyMaImgOQslVGXZ5zlq+vX3O22JGNIBpIRxDnNVJ0M0hQjpAldJaOq+nNSpLu4apcpG4slZ35FP5zRHTr2hwNd1zEMA113YOj6vCtBTOZby4iPZOhqCkT1OmUOFo/B8/0A4XgxTIpYqWaUD61cCCFwOBzo+mG8rhhzXcJ48yaTEwS71GXoglsRHREhzOgR1hYqmDAMHT54jKv48uc/449+9COaqwuSgO97fIq47MuNwmtATr+SAwxjsVgcDlMyC1J82NuS4o/2XbXfJZ6YB3dH2YcyLlLCmoeD53iUyUkjNeHknI4C6PnrIkp7rJzl6sklzgpe0+M4cWOwLGLGxaYp2ZiUsM7hXEWIievbW375yScAVG2rGXNrMUYX2sZYlsuGunVcXKw49Pq6TzqOBx80K2ZK8FoQ13DPXxTK2HE9BagOhAJqYy1DSviUEIlI2T7pOPUpQQiEQkfNNI3yMZRPY4QFZkDAdM858mnzv43xSN6RSSnTPGafg+LbpOR166D3Zb1o+fj5M1ZtBTHS/UMHywAppb8A/uLvav+P9miP9t23Rz/xaI/2aF9nj37i0f6h7e8sWP5drfAEY5jSaDKrcofCl0HRmMwon3OWU4z4EDNnGQYf2ez2usoy9RHnVverpPO897HArkBSX5/6P4Z5JrTrXRcqRxuMq6t3cHIfxkreL91YVo7l53fRMMZV5fjm6fV3UTBGDrRuPL7urD3mLMc4ooP3Ef37ShxHNIxHFsb31rQAT5FlmfH6AAwWm0AyiFK4tOPoEBlRTwCScH1zw747EDDEYYBhQHBU1uCszalE5d8Zk4gSISmVa+IMJ1Io3P9yLDP6MWsNjdQ4a6nrimFo8d7T9/1Y4Oe9zwUtQWkEUROMkqCqKkiMXOuiVBFzatSKJWb0LMaoiK7MqBK2UNqmIp3RRIgp4UMgJkVeNFVsGckhouiziKaMlfYWx/tSVHXmCPjIh84Ut7rSaaaqKrwfSEZo6oZXn73gs6Hj7NlTmkVL6DsO3WHkF1bGQAyQIv5wUK6mVWRZa1iOeZWPFK1HUxPEOkYe64Po73EGxgDJTDznsnlIMiLOaZb1nBekzfdb/tvKcfnkirPzc6ULiI4o5SjX+dj6ewkFSlxjjCWEQN00/OKT3/DZixe6vbWElMkHciDlc0uomo2xgnWZdhXJ82uPiAoZGCAlQwieGP0RYl7mbq2rMHjvj+5Pua9lLo4UDvSUcSbqPbTZ/42xXIIkxf88zGcWEcKMDz3WYsyy2veVOaaYTUg50zf5oUK3tcao0g6wWqz56AOlYcSUqJvm/sm8xb51wbLJFezz4q+S4ixBbkxMFAwRlUjJH3pCJ5boPcYPUNV4XzjLHpp25ApCfhjGz2DMqx5RDE4SMMdBIccf4v3n4Djyez93fl8ib0YrPNn9+3GWy3mWgX4/WA5v28U4CZXivneEy/nrdE7OaaBsjRnPtUzaKSkr6vh6pnMdX5oX+D1OiN9bExGqup5G6RGHRzJNR+kRJntmk3TxK8bQh0hbqRrGYd/zxYsXbHY7XL0gZg5tSiVQ1DSeHsjkySaRko6TimmROaZjs3cOeN1fihjrcuBtsOKwAr2gdRW+pFKNOnQTMQg+RWLQgh0JPYIdL3ZkYKSUK/0HUsp8bXQChsmDSUp4H0jRI+gxNY1rSSlq0J3TrPlGUtgP5TgltWxMXgTk/OdYuS+C1oIIRlR1px+0oBGZK/LIuEAOXnmTw+HA/vYa4gpTVWCE24OqZxgBa6wq/ghUyyWVb5CYkCjg0eqt8QGZXcbjqvrRRtBrNu/OAmj99bjW6JS6aFIimSmALhzn0+B5/n5jDHVd8ezZMy6uLvV9lFqKajwXI6qAIaILY0/IcYwwxIhzNZ9+9hnX11rg1yxUecJWcSpCtuoRDNA6S91oIN75iPcQJRJiJEki4YlJiwC99+O5Hl3vPZrqw+NIxFKkJEfPlJ2Tjx4/RJzXvzir/s1Zm/1KLs5Lk2/QWGcWLL/z+Pr++9KViXlxX1n4ODGkoMHyetHy5PwMSYnD4oy2rh+8vofsWxcsT9Im2QnmGyowrhTuKWEYq4Fzfl8oqDLCECK7w4FD3xOjFqTcD/beFv7Ju/8830PhzBwhy8IpEnv/o3/4YXzbIY94yekBtOgt9iBva85XeuiuFORO7juGh4+h3zWo0O2cnfjK82LNOOM0lgn5+P/sz3z94H20P3wzxtA0zTQ5zcaOzJa0c25cyotaYyxh6DEZLd73PZ9+/hnbw4HWOMQnYoj4bqFocFPRNBpY15UGvKPLGRNPGixKLlgbMzclaJTCrY6YzNurmoplU8F6OS7+u67LhYB7QowcDh39AN6nCUA5Gnc6OZKLFpMkrCmV7TnML3F+RnKSAZJK2GmwbOi9zxxIM02aApNkXj5aSpnHHLHJTIF4+Z9Re0QzfE4cxhaJukTMi+euO3Bzd0uIgWcffYCJ8Dc//Rv2nw988MM/4qMf/IBmtSBk6Cl4DyHmhYzgqgrrgMHjrENcNX3Yc85iQRke7dFObRZAA7korDwv9wvYTwNokxLO5mLfHDzHXCAYcgBt8xi7uLxktVqx2e1GbrJNFTaVfeXleB7fkhedISWMc4Qg/OwXv2TI59PmoNMYf7QYVJzAE1JEjG5bV0JVW9rliouLFdvDga7z7Pc9KYV78/gpWv62gLX8PURDKZYoiHHuNKH1DjEiaQLZgmjWzFmrBb4y3Vu9j3GW8Z9Q6en2nBT3ybzO7N3FfUZkrIOYF/d1y3Mumu9wsGxyZU4JrNTxZ4J5LMhyQozKlYyycSVYThE/ysbB4MNIwcAYTnHRsiIRSSClAYY8sM27LI3fHorlHkKev96Xp3f8Vl68jyq/a6X80AD4OhqGPno6PcZ0LBt3hPcWyopkSfW8XeVUCUP3m2VcjCGFBxDxBy6ypLCmtPdDN+LRvg9mjMEZRRQqVxGzs1bTphWC1WKPBwZijHHMQB0OB3b7PSVzFxNEMXTegIfD4KkO+ozWlad2FucMtbNUtQXnlA5Q5OVSVJoGqrlukpme1QcWmc65UfvT1jWtc6yahhAjfd/T9T1919Hv1XfFkYZRdlmyQVmfPZW7ADk1p9uHSBg8iUBK8wKe6fRiiCqFp3vLt+44c9b3PX3fIwM0mVbROqOYtGgaOMRpUS15caABSDn3QD90hBRI3nO2bPjRj37Abd/TXKypzxYsLy45y/f0cDgQBk+/2+MSLMUQ9x1D3GkjKjOpJo1B0PyReLTvp80AK+De2Dve9l3BMzCbyx6kb6REiX5LAH0YetrFBReXl9MCOj/TBjcOYmNMXvTKSLsSYxhSwhrLiy9f8Prmesz57vpOCwdrgzUNJqvqSNSMVyJhZD4eVCWnbgyuavGLwL7R7NbNbWAYPCHTE6zVBa4CWfOsvpmhv2nUZU5yrAdfwMKxGE8mabeyjI0xEVBFG1UQ0uOFEI/iCiOGkDNc3gf1cxPHbdynKXHOuFAeozmm4j6BLBcH8PHzZywXkxJGnTON72PfvmD5lIaR1BnD9NDHgixnvrKxBe7JH0gM2CErYYQZBeOtsnH3LYlM3OXZwPlaO0KWj1HR8tr77OTd8mzFfjt5pNMgeh5Mv1MNI+dkNdX8EAY9bqhfZ0G8IsvnR8iyzQNyfi+Ur5XGyXZ8/YSCEYLn0b6fZoyhqirlqzqDn+mlhioSSEQTqZ2DCMEHBM08lSrqkBdpr9+8oR88dV1TVZXSi4IgQekJJKYmI0MkhYT3hmAjfR9wZsBZS1Vp1buxZtR8NsbgZErdhhBHPqIU5CNF5tiIiFBXFSklmqpivVwqFWPoCCFy6LRh0O6wpzsMGRWOsy6jKZMDUQBh3LEuIzR7dD+A0MnQnTimh7Jvui9rtIFC/hWdII2mVhP4oFX2VVNnND0ScoX+om1ZLhdYY0khEEPAWMtqvaK5OKNqG0JlRvR/ffEBKSW6uy30PVVI9NwS+45oHdgHpq8ycT4uqr+3Jvqg5vFwrIZR7K3z60nwDIwNNUpQ9lDwrG/Veds5w7NnV6wWDSlG6qrOAW+CJExx5uQRUn6/WEvygQj85Kd/xYtXr/AZuTZ5bIVo6AfBJYdzBrEJI16ztSVWml2OSMI6oXKWtnGcrS55dnXg5u6Ou80G0LoJZ4XKGfaH4cg/HC8Q8qiPNgfVBU/O9yQqnW1+/0qTU/0SJ/9RfFc+Vp0pEdZU7A57hsFrdvvoHEwGz8K4UJ74ylDgvRLnOSMkP7DOqhcfffCMVVMREjRNPSLO72PfmmB5fGRSUj5f1uA1STIN41iYX8SMAfMcWU4ZWXZeNZYLX3kYlA90v7gvzf4fn9H09eQvM87ynDrwftf59a8wO5uUv4yB5NFGX3/M0wdy/tr0Qrp3Gg/JzxXO8tuPlb/PaRjOcp5pGEX71FhL8g9pLB99yz/Pz1sDoEf7fpoxRUs5p/xnC9NjGaKiuRsQASdO0QwMw16fuxe//hIOUNOQDlDVFa6pEWpFmUNUCgX63ErU59rnFKZYg8vFxDGajJ5mn2EgyDCOh6IHXwrSUkoqYzlDg63N7P2kfOkUc6pxnJSmfVkr2CAkKeNR9DyCOgjrHC6jv9plFBDRVGcs/wNIkWIzoxbyu0zy/Z94jrnYUCIRIaSkmrVS0CfBmcjQHQCoakfT1vRDTzBbtodbvrp9zQc//BPOn1xC22AXLT4XPjrRyVcExGrNQ0AlqyK52PLhM31El7/PJoIRB3YK5OYFucT7AfTXo8/Td8n7OQ2eAXyItIsFl5dXo8wlmDxOYKgHbKaMWeO0M2h5WI0W07q6Ztf1/OSnP+X67o5msQZg2O+QBKFfsGhrVkszdQa1FmPCGNhbUS8YQsy+UkFFayucqWnqivV6yW6nQeTd3Ybtbs9ht8MPQ65PMDkrJiOXugCXTgBrRknHmO/rKQKst01/DqiP8sFj4xQwx5iQWWdR7dhnRkothYJl9VoDseS6p8+UhHYNzf6zZLEzX3m9bAG4Ol9DivTLC5q6xj204H6LfSuC5bFIBCH6QL/bc3t9NurFMAAAIABJREFUp39LopXuC6eduYB2UUNdEzPfRRBSoWEMQStJh0ljeVM0luW4e5/Oq/eD5NNA9be6lgeoD+8bSB/bewTCswnuiMs8O5fT8zhdCZ9SMN5ypCMu8Vxj+XS7vPUYVM+7943ddEyFf0AJY0xXp1nzFXN8PVN7zkf7vpkxhqpuQbQBiMyTPjPaADBDHdTRJ9ThDllP+Pr6BjBIMoQuUEml6AydItdGSCN/TwPZkGAYPPQ9EiMSI1VlWNQNxhqajIxUlaWu/IjKaAJsqjRPJ5Osos7aOEALVwSxOnZM45SaMaizPxx6docD+0NPPwwcuoEQYQhpds2TtrFylB2dH6hzFb73pbgwjUDE8d0THYPz3yn+4tRDarAeUyLEpMVEmY8mKWEI9DlY7vuOlAJD9LjlOV/95g22bTh7esm2PxBFuHpyxZCzR9ai+1k2SGcJ8QDOYJuKhBZCmvEM5373EVb+vttIC8y/j0+zpDynTHMNKZ16j6+fs/OCHWZhYUpgImcXFzx59oymXZLEZHBPJhmI/NAmlwjREwaPkQpna/res1qt2d+84ZNf/1pX3vltEZDo2Ozh0A/su8hiEVjUFa4SrJ013xCDiMOJ1hrEFIlDIMYea0CsQ8hqO8B6vaJpavq+Z78/0PU9Qz+MlIqYVXZIZcRNRcEiOTjXVYTey3kcNEP5EhBCIEaN00yuOautGQPxUh8RcxZ7LkqQki7Oj7zVyf7BjFlBZwy2cnz8/BkAy5m+8mVd31M0eZd9K4JlI4aVWyjfuO8ZDsOIIFamokjHlQe6ahpwjo5E8IMqX+TAcVnXPF2fEYnYukFsR9cP+BgR445i44JCzULKB2Tjvs7mO3wAtT0x0QOPA+Bt258O1YeH7rtQXjn6PkenTmkYD1WhTlmN/P4HUOWjQGWGth/TMKbufWW1V1aN92kY969qfDVTbx6D5e+viTFY68g5pyOygBHJKVf9fUxr5gA1RqhcxW6/A+D29o6SWCo83phR4yS5JK1MUjLti7pCpMYQIGnQuQ09EoQ+B3muNzgXswSdoamrEZE9rT4fr638kANpVZ1RP2SBJk9qlXMsly0+aMOB282WvvfsDgd2+07HuSRSPpdAwvtE7weappkV8hWJR8YCvOMTOi6fBFGZKyY/EYKHGDBiCSRCYMR81A8kPZeM0GuHcv2c9ts73tzd8vGP/wz3/Cnx5VeKbjtL1bb5M9TC45AiJI9IhMbRsMAkXbz4TKtJwZNCLng+Cpwf7ftmIkJd1yPAUwKv/NfjAFpO0Oe3BM/wfgF0EuH8/IKz8wuMtYSReJUoFIkjECu3kVc/ZRmGAyZW/OynP2fYeRbNinqh4yGEgHiVngwxcegCwfccrKeuLItFRdNoSOfqKosZBJVtS4LB4IyDFCEojaxZ5AV0bTl0lrsYGJxFpMaaLEcZQqavCU2l24csU1kiqJS/R0Uvj0HD0Zdkim1Q8QXIVLfsRw97pZoZW3jTWv800TAUMU6oiMBIjxk/n3yMfFY2S09erJf86R//AEDbXPsOuXhKXVXIb5Gp/lYEy4JQm5rgPUN/IHSBXL2DWF15SNtSVTUxRrp9T3t+jixWRGN0dZAvOhIIg0f6A2a5IiVh33V4HzG18oGOHtYRzp8qzydiuqZumW19Khs3+9P42nzvx9f5bkvjAzEtxt45Pn9L2bjy2j2e1Tu4z3PZuLmc30Nb6tfphK0xrFYr2qYZnRDohJlOguV8kHuc5XjCWY6PNIzvrU38+ikYTid/LzipQYiiE5BzjhTA1Q3bL74C4PrmmsKzLe8VmIp7j4KtKdPhXJaRS5qilCpPPmjxCkAIid2gnLrgB2preP70ktWypTvskRSp63pEgZIIpZ5iTpuS3C1Tz0e/GVENWeeEuhFCguUClqslXdcTY+TQ96Mu89B7hr6n94GqqpTzbQwmWHwMWkCT7qdP35o5SrMin35QWTfrCFiGIRHNiC1hSFjxVHWVrzNhnOo17w4HrHNUTat1EAlc02CdGxGmFBMWQ9M6aGrSfkcXeoLX81XNZZ28S+o2xaQteB8qIH6074kJGDsu2Iyd5p77AfRsLhdyMFY8DLMA+v78fV9RAtp2yeXVU+q6yQtHOQoehbxgZJoStRhWZXDrumWz2fCzn/0CSRY6oTtoEHl+cUasoK5a1X72XglnSesihj4QhjzuraepHU1TUbkF4iCEHhNFsz8pEb2HoqcMLJxl9fQKHwKb3Y7bu41msrwnpahqQWPNUCluVvoVgBGbr9NMGSay1vv8+qlyAJ4LlK3N6He+5/mzEdHguyzQyzYFbJ+C5dGJj4t1YwyVtSTfc7465wcffQjAsqkYrOH5xQWrpiVst+/9VH0rgmWFN1SnNIZcLWkUHreuwlinnQaswzhhsViDMdj+gLEVxnakG71hPgTY3tH7AYcSvQ/9wBCjimiHcDITPIyWlmBVmGsB6kALQadFAURmNIuviYbfF+u4hyqPC95j7tXbyBBHx5xNvg+JkP82snHv0lgeY4x7ba4nVHm8j6PSSaJQL95GVzmVjXtElr+/JmKIokHUaeZjzGpktHiuyGCMKmQ467i5VXrX3War+saZYmGdSsPFGT0ipinJD3kiTZIX1FNGal7Qq9vlemxrWNQLnlxd8PEHz1ktGvbbO+7evIY0IIVuQGS9aLHWMoRA1/cksfTVYvSJBTxAxmmclBS1jlqPiM9NTebotRfVoV+3C1arFc45LZxhyBrLkbeP6lNTtLtMUilrvcakvO5QfJT+MWedE1XmT4ugTQAE7nY7XKWpYOkHrFjER/rb7Vh/Mi7scyau+BEfB9JbFs2SP++3IfiP9odvIhx9/kcKUdwPoMeUf1LM8mielvJM52K2dwTPCFxcXPH0+XPqxYKQJhiqLMKLhCT5SCEljNH21kkMy+WKz774ir/9219R5DALpYoUib5DRJVgbG2J0RAixC4wdD11pXGTNDWVMwxDwPuIE0EVdgPGzFraF3k3dNlgcwbtcrWirSr6vmez3bLZ7uj7nhSKb5x8kkrFFtBN9TXVL0zbGmuJCcwYzk4qZ5FE3w/4QYsNxZpRPj2mhJsDCAbESJbdm3y/XofS7Yo7MyKEoeNsveDqUrnZwQ+Eek3d9STnSLlw+n3s2xEsJ4EAqQ8kD87WiORTs5a996TDHhcjxrkssWIx1oIEDYBFuYgyDLC9I4TAvut5c3fLvus0lTpDhnVjxrQneYV2OgK+Lh2TUhHsn7acp3ygfJhlitOveqxJ+ug4bfhwAH9sUze++bk8VJh3es6nFI0ypB8KVots3GkwO0+AzKtkT4v7Li4udPs4VcHGdyDUIy96XC0en9djsPz9tTFwGp8OGVObM5Xl8SdjjPoINMAWY9lkJGG321MiMEGLX3IPjelZH3VCyzOYCMFrIx3RSms3ypelWaYn4XIXwLauqKsaVznqusakJYftHXEI9J0Gyz54GudUH94KjQHnhM9DPiaMKjCa5VQkqnKiqhkpslotSFwQk1IT9gflCW+3WzwGU6l0UukceIrIHyPLx3SLo1xZTsuC6iBLioiFgGXiM07vSini8mS/XLTUtXIGtWsgfPmbz5HouHz2IUKFCQJix2Ol6HVhYvUcnBWiM9pkYZaFSikvopJ+Ro9u4vtrp7PYaTYVjuczIyYHz/ruKXCe5iolQzGbj4p6U5whbLBar7m4uMA6hx/CzE9pkDwu6Mk+SQzWWFzlGKLQtks+/exzXrz8alysl8K3mAJawJbPUbR7n3GG5Gog0uXmG91my2Zzx7JpaZqadtHQmAmo0iYhE+84JQUaYxhhQGrnqKxl2bY8f/KE3eaOzVZpbLvdni5zmlOSMU5QEFnvbR6ySkGzlmHQzoHBD1pXVtfjzUgpMeRzTx5dEIi2NyvcZlMEHUTv+UQB15q1kAv8fB78C6moa8fHHzyjztKY+92Oqrmi2m3Be2x8f0fxuPx+tEd7tEd7tEd7tEd7tEd7i307kGUBjAMZMLZisa5JGY3oUmQXA4dujxn6qdBPhKZuWV09oa4dfqctUm++fMF+d60pBO+5udvQDQMi5gHkNOXq8+k8ir7yyB+OaRQULzQA772Kl4tgrcE5S2UdMWm/dZkBMnNUWWS2CE3HCGuhfSBKHSks6lTaanLKHnl/CoZuPiHO9znLD9Ef8n2ZpbW/rtW1iIxC4XCisZzixNF8D77yQ/rUMQT6vv+aq360P1grz2L5ZfYsp5w10iYZ5TlX1KZUVYsIX32lnOUYI4vVEkS1jdu2IaZ+rMSWFCc9utmjmGIkllSi2HIapBhmqA0s24aLy0ueXF5wcX7OctHiBLyFeHXF0O24zUh0OOyP0sZiDNFYDttOEbCQxuruGBXAFqCpK0WNqgohZkQnElPg2cUSgOXqAxZNC6bmbtfz2YtX/ObzF7mjqVLeMA/lz+b+Y/bXpJzgci+0riO7o9OiOkP2hXqd7aKhbuq8mTAMHh8O+tkY7XhoXY1kjjMi0HfgezgcCIc7fLfFmIRzdvKZzJ+LCWF+tO+v3UOXT38/mQfnyjRm1nDDZhS5oM33CgXFTs+aMVw+ecJivUZxyIzSluLgNKnP6Dnq79ZVWrw+BHwI/ObTz7SoLRksQlX0h20Y52Jm2dwYwTlFY02Gc5MzxODZhJ5u7+n8QFtH2tppQ6T8v6hBiAgyTHxuRHBGiFlZIoRIXVkuzlTGbtHU7LsDu92BQ+8JccBklaKUOG4MlSKh7/H9oAg+0DQNzjl67xkGT+WasfsgqcQl888mdxd0AjEe0Vk0iFOJPpIqd1hjSNGzXLRcXZ6TpdtJfSBEVVWTvid2+7c/RCf27QiWEbBO+XDW4KpqDJZ7P2jqD+Wv9EOPs45l24Ikbr78nMMvfsb+TtOrQz9w+fycar3i1Zs7Xr56xb4fwDl8jAzBj123bBKmrop5Jp6fVWEClM+kBI0xyzylRF1renXRtPTDQXk9Y4ceGeWjQghHFAMtmDs5Yo6mY9LUa4rKaYopt5BMkyKFwWMljamBOW1h2t3bm5tMfEDueZLj9+QB+RZO8fzUdesphVW69wkanBTuVTxJfZT7Mrd5YV853xACffcYLH9fTQXprU42ZQFbBnCcqdqk4/eE7Hx3+z3XNzf6unNYV2GdKkRUTUWKWoXtY8LGiM/8PB/iWDAnKZJSKOy4MXWrHL2s9oKhbWqeP7niww8/oKkq9oct+67HClw9eUoK56Mg/vbuTpkHKRF8wAdPiCUgnVpNAyPHMGaZNhAWiwUh9ng/EH2krhzLpdIumtrw4UXLom7oziqu7MAT8bx4Zfny1Q2v956IwZdxLtmXjHHyRFnT602Tr6GU8k1du0Yr3M4YGIKO2bZtqJzDRJ30D9s9n3zyM65fb/mzH+8QW/GP/uRPac5X+TOyuvAxualLyisF0js5yepjHwr/H+37Yye0iwdgnvkW96iJJ1TLEkCX4Pm+ygYsVmsurp5Q1QttQiJTh0+d29PRdBsLX9kqBcu5ik8//4JPP/ucqm6QoH0iXFWaHSkYoHzhhE8FfYuQSufNEh+g4gioPnkfPbttgE2HJXF5tuRstdDW2XAkoTbtRxUnnDFU1nDeXNBlsOpuB4MfFOeUlOuePEQzcqHFTk2aSlOWsuhQutQUK3jvsbPahtGnzKhg87oUw0TDwFhiMohYlLfs1bfGwKJecL5qsU4/v8osePnLn7OoDKvnzwmb4d5z8Tb7lgTLkIh0WbZkfXGOWy0AMMFThYB1lhSjOtsk+MOBm1evuX31mtANOEpXqUTTVCQR9oeO69sNQwgYY+nHD2oaGMo1VhmqlNGoIlVHkqPVpBb4HHN/i+zU2OnmAW5w2UcKaXT6cdzvPBjNa1GxSpdMkgW/H+ANS0FgT9DYckwjJDNxEWNGzaOgPeSTydqogWTug0LT+U8aywXdethkvP/HGssX470zRhGj0mIzn/z4BBxpOZ8Ey5RguX9/Qv6j/WHZmOmwcoT+jH/NfF5JYNHCtoIym2R5c3vHZqOL6hjj1C7VGp3UxCLW5gkJmuxTYlKpJGKAlHm0Qf9LVL3iebZkvWq4OF9xdraiaSoIWUkmJRCjDUOM0C4U/Q1RG6B479nsDgxdj2kWNM2Cw6FTOc1hQnNBZaCsjQiGqqqxcUK4i1weTBz/mANI42qW6zVPkiOZBVWzpfeBfW4C1XlPyKBCFDDOINZgE0gIxBRnIjxGQR0RSnHNbDSPwbVkZPn8bK2TmB8IflDJuSHw2S9/xd3LO7bbPf/oj37GR3/0MQCLxYLzq3POnp7TnDXYpMHK4A90XhdCU8Fy9tsm+/Df4zl7tD9Eu/9EPJS9HH8+yb7CMfosgDUJm9KoELE+O+Py8lJRYh+0u/BMHAAyb7kA0aiKCyLECMZVfPLJr3j56hV129AYXfDWtYZpPnRZRSIvZtME8IXgSRFsjiCdmLF+qIBmReu9do7FYsX5xTnbjYIHu9trlssFxjriacfkGLBAEg2aAS7WS9q6Zr1asN11bHZ71X73QeOaxFirUFeORK7bFQ2MpyLqlAty56HoSeY7Jbquo+s7qsaxqE+1kTXOsa4iDpqZc1UFwx5nhbqyuHxfDncH+u2Gz//lX7N68Tmrs7N7z8Xb7FsSLCcVqSYRjYXaIbmXt6PGVRXNWtEG3+2JQwAHZmPphj39ZsNHT58C8PGP/jHVquLTL7/g8xcvePnmNb0PYCti9PlDKw6W8bs+ezIGyto8QCirIdCHpugDz4Nk1XEN00ozTlOGydrAQUVI835UO7QUCoDOwz73lreVpmAmKkYOIpkP2Kji3A8ULxxpKM8h2xGEy9qlwRPNHNU9Vv0YUTyFjVTyrQTuE1Hj6BzmCh3O2qNW1+W++4c0lqcMjH6fB8tJCyEekeVHm3OZTp/vQsMoNA1LDqZEi89evX7Fy1dKw7jbbhDbY12nmaG2wlnRApL8nvmw0v2olKQkIRntSCWiElW4hM1H/uOPP+Ti4oKL9QKCZ7vZsN/vqSrVW765ucMaOOQ20INXxDSEOCLJkivkrQmAHxf4YHHWjZ27dvuOMx+5OL8AEv1wIAyKMgN03Y7dosFXkRAlL3gnfKtyDqwlFp/onPqqHnrfc9h1RCKtMbT5WsdMm60Jkuvbc/GQijeJBshJ/dQhFxuulgswwlcvXrLbbFkvVzy9ekK39xgxBO+5u7nBZRTIGMPdmzUf7K548vycxcJRG6iampibLRTqSwx+AiXSwy2OH+37YcJpkHqaLZ22nNvvij6XZ/DJs2esz68IManM7eBVDnKWjbFMcpVGDM7YqbunMfz8F7/k9m5L3apyja0cVS5Oc1HwIWKCpx8iErRQVqUXtfGILUBgZSZfmHQZa63FOUNVOS4vL3j+9AnPr7Rh2OuXX9LtN9DfURlhsVzSReEQYEgWGwLzLqVGDG3T0LYNV5eG69sNm+2O282WzXavyhc5QDVGELFZg1mossqG91q4Z63LLbFnaP5Dn5Yt4GbCzNpmJyzea0bPhx5jTF6UJ4xJ7PfbMQP50R/9gMPtlpevvsK1DW2OK9/HvhXBchLoTEJWrSIxTUUsXBpnwDlVKSk0hPwE123N86dPkPNznqz0oitnCNHz4vUrfvWbT/niq6/oY0DqljR4xBiqNmtzpoCkmCVIjAaDGZl4KI13qjahQHLCD56+6+j7g3YIi6X5RpZmy9xAyXJ4Oo+MGhR53zl1OEtBjAkImQn9j7xfRZwVYcuvlRRMbgVujB3TuSUNNLW7zSi76D0+zaDqW8x4LiIWaysMGsS7NK0JYkxEHzACSXS/xhiapmG1WmnqNs3UMEK4X1laAubigB6iYfhHZPn7bAmoqpowDLpoi6pFPJqQuzvlLM/8P8KbN9fc3qk80Wa7JcS9pkqtZdFW1JXD1RV11VA1DVVVuIIOY0x27qLtswkQchV4Hpx1TiMuFy2LtiGFwPX1Da9evyalxMXFBSnBfr8npcR2p5XlfdchmYLRDwlbNSTT4KOiOcY6rC0T81zRRyu/+8HTNC3GGNq25csXn3GXr9NI4leffkFbL3BVg5gaV7eszxukWlLd7bjb7UgmL0KHAS+Cjx4f1cdFHzTrZTQzNbUWN1gjGKvdVfv+kCv+E5JUpahyln3S+3J7aEjVE3Zv/orFasVHH/+Ajz/8Y7abAwRhc7sh+EDIbaxTSoRhYLfZslharF1QtTYrl7w7GH6X4s6j/eFbWUifBrjwrgD6IfR5+nq6xSmn/8nT59RNQyjUL2N1Pgt+BJGCaBMffb/JqKrFiHB7e8cvPvmE280drg/UdctytWIuIWcrh3GOuhF8hGHQpmwhDKQwqFIPOfEsICkSgqd1hsurM549fcrZes1quaCyhv6QM08xYgS63iNWiMNAa4U69ZAid8unhN6Pko2SCv3KkEhYZ1iv1lR1zdl6zb7TZnAAYejwPnGz33N2dqadSY1BbKaRzsAPtdxm++Suu8rhrMWIApIlRtNsufpP6xzOASlgiJyvFrSt1nYAMAw8vVpzd9jw6uYlzdV3LFjGCPaswSSIzuErgy9kb2uQ2oJFRbGtYbFcEH3PxdU5frPh7u4NZ7kTTTXs2eXuVkOI7A4dEYcRM6LKdSbM+2GPxJy6ldzEIBPFxRhtdENpDaupjrHzXKZzeC/jyi6EkIO9KQAuHXASMg4S3YGiNHNaheTUikoYTlwdDVZl3Gd59SFUWf8omd9pKF3zUtI0MyV4DxquJxHVOJ1xtgudI0WHGIeVSPI9oY8oM750VDzmdZEiSTTdbEVYrZYk71UTe8YxNMZohzFdTh6devntVPtZJBf4PSLL32MTArpwU8rBrCslGcGJIEY5eIJOJqbSYrA3N9d0ebEVE7kNNkAiBk9PxMdA8JEhBJzTZ83aCmOEFALLRY2p3DhxWeMAYdFUnGWecFs5oh+42+24vrnlcNhT101eOGvg2XvPPj/LfZ5UYozgaprlmrt9T0gBZxxNW9HUJd2aZZMQvO847Du2WQdVuwSWTNiEeh0GzzAknPPYKmJsTcRiraVpa/oYxgDYWkOIgbp1rGLLoe/Ydx1y6CBG5o1ciu50mbayCrNCDykhkvDDMEpf3dxe8+rLlzRGuFydsVosqdcXXHzk6KJwnoTBe0LWPu33e3abW24Od9z96jPaFs7PG548u6Ru6snPgRYpFvrcOzolPtofvokRqsYRQ8k+HM9Tb0WI31qTMwu0Z1/zmzi7VKrhar3ODYYkj0GjvFrxFCUBSTIhrtaRUmLwHnEtP//l3/L6+prdbk/YDiC3LFdLzla5/qBtqZsWmxenImgXuspiUk2KA0PRDQ69js8cBC/ahvVqxfNnTzk/W9P3B3zXjWPzhz/8Idu7a16/fIGJfrw8MRZxLde3Gx1TcXYfMbgMyq2Xa0JK2L0jpR2997SNXmfXDXjfsVgsxuyaiCGJx2f6yOk6Jcm86Fg1PbWoL+XYawqmtRYtkaKnaOtHA8Nhx4cfPuPZ00tippl57/Ex8uT5U+qrS9aZkfA+9jsHyyLyQ+B/AT5Cb+Gfp5T+exH5r4H/DHiZN/2vUkp/8a59xRjZHTaYuqFtF9Tna6TWFo+R3IhAwFihWVgO2y1vXn3Funa0Zwuuv0psB0VpGrPmzd0tnff0MbLZ72mvntPHSNXUaBFNDn69xxpFgKcgVL/MP6oScB7pL2aC+jD02oe9LJHivNPdNKiMsaNjfzgjVMJVOVGdSFPek4nmMOdJP8SjfoiG8XBgbRg1JMsRY9RzjZYUs35qsEjUalPld5pxFWsy4m+SVy3IGDGVsF6uMmQesdYe35fTm2A0DeVcpfuSiXifAGu06ngY3p+Q/2j/8PZN+onZem4MmKexoSioOlTNEpGpUs45hj7w5vpmRDsQcHWNiFEd9q4fqVXWeqphGBfVda2FvAYNyMnNOKwVGudUT/x8TZvpA9u7WxDh5vaW65tbjK1wVxWD95hMe/DdQChdSl2dU6UekhYTDT6oT7CGqpraVAevaGuMkcZWGJM4HAZ+/ZvPqSrHatmq7LxofcDQH9hsdlhjaZoFi6Wlri3M6F0lSwbKMxQDzlgwLWsWhBjpb27p+56DD3SZo9mFiB8iMf+u904zWGIEEwViZLnQ+pO6aYjdgcoarNXJXpLWk7RtzbpZEBC9diDEQN8f6A47YhioTERS4NWmx+4C1qjyCDD+bG35+ZGG8V2yb9JPCNoQSBO5OrfFUObwRMqNz+DdwfPpz8dHUIsCT589B+Ds/FID5UTOJAvE3PBaNIg3IyBHpnsJrqoZIvzLX/yc6+tbfEpY50hJ44tNLkLb7vdUVcNisaBdLKmqemwNbUQpViaDbErtMIhLnC9bPvrgCc+ef8Dl1QU+d/VMMWJzsLxYtBhJeO8ZDntSCoRhIERP32fVniHMKKkQg/Kg27bhYtHiw8Dycsnl+QofYbNX+tWbN9ewtUhILJdap9F1PRYtUg4pjpmyt1npY5FixPsBSUF9DeCTkJLRwkfR+MnjCX2n98NAyAuAzX7LV3dvuPjwY86fXSFt+9Zjntrvgyx74L9MKf2/InIG/D8i8n/mv/13KaV/9r47EgFXKz/HOkU/x2dUZgGg1clse3ODc5b2/IyDgS723O30Q1yFCzb7PW9ubvji5Ut8iHSDp88BqIjQZz6fKU7dyPgQhJTo+p5u8EgsadZj9Yb5OlMVKgqPObejNfMJPPOnjHboKauiUgQ3BuXKw5hREQolIx0fVab3zQf5NOlNChy624k2coq26CqswmT5LI6Q4vzwjlSLwkUUJJWmBePGOkHGQMq0D4mJVdtiElTWIlKN980Yg5/YNJSuW8lGIFNWZudfCidDCMTHbgPfNfvG/ISuRXVsJDRwnS9q54tERuerz303HHj1+vU09q3DVhUgVDHSuEqzQD4y+IGu707GjrBatGwrhzPQVpbz9QKcVrwbTX3oaab++tvAAAAgAElEQVTIMHh22x19N3B2sWC1WtK0LZvdnq737LqBmItatNBPUee+7wmmwtgeZyvqusFlOojuPI+BmDBGpSuHwbO52+aK9sTFxRltnpSu37zBxx27Q8+ui/ReWCzA2IqYhLZttd1sBgS8D6Sh0/ucxqoJjAiVcwSEkH2QB8LgCb0nkqhdpaBB9gVWQCTRVhq497st3e1r2jggaSD5Hj9ot0KbgwmijJX51hqqSlgvG5wBZyJ9v2e/3YzUtvG8QyIOuXj6UTruu2jfnJ/gPjBk8qrKWKCaAmgNnudF/Md89/dBn6+urgBYrs/o+oE+ajdLixYAFhWHKZaZdQYVwVrH7W7P3/zs5xyGAZfH/DAM9ENXOlIrfUEcIUa6rsN7LThua4trtJGbS6V5kYzz8pPLM549uWLV1rx5+VIpWgJnZ2f0Q87UJu0AGGPCOIf3cHfY4vselguMCey7TgsXQTG8TMEoSh4XF+fsdre6CI+By7Ui4n/2x38G0rALjpevb/jyyy85HLJ/LdxmKV343v55Ss4ApqGHlMidvRmiwSeXs/MK/YXYc3G2ZNlWmTqnG//8i0+p12dcfPycu/7AIkvhvY/9zsFySulz4PP8852I/BXwg99lX2IEa1FkJXrwAWLmu+QJckylCPjNjtqqLuew2xFDoM6V5UMIDMPA3XbHzd1GJUu8x2e1i0J2B3W+MU2tH5lNtkZM1medUprA9ODD+NAbhMH3ipSMHb0yD2gWuM61A8s+TgvwxMzZ0jrZj6sumR1T3NFAnqNE47EeQJzLz+W7MRUquTLbNhWZLFCqpNC6itrYsVhRqSXjReiEmvMpKU+u52dnOGOxWXFkDKQRVQTICwNFpfVgEjWdUqXcxSvL5EiCGD3y9vH0aN9C+yb9BCgNQTXQkzKC8uuTrNBsvEBeICvf+Pr6miGn48Q4XaClRNVUuNx1ylgwWebxSAfde7a3twyVpbZCrB2tg6aySGUIfceA7rutLYfOs9vtiDFSVXVGgWyWS1LUtHQfrNvlOF77uKVLiQ8++oGOsUITyxOJNRFra/wwYCTlivOsDW0K/Woa+yHErHqjtKshBEw/qKy9CMvlCmME77NSTbSwHej6Q86kAUQuztcMIVD1HlO0zvteM2GS8CGq/yOP2QIgkKhKcJIC1m9ZuEglA9HvCZ3ym+u2xrYVjgkFVL17p6ojRISA5ENrZg04yYo92nfTvlE/IQ/Pf6c2os9Z1nuOOpdnMJ/PW9FnI5YnTz/Qn43Jrd/TNE8nRX2lBMrGzDTPFBQ01vHV69dcX9+MSLOxFkuirc3oh4YhcHN3y5uba+q6ZrlcslouWTarXHuVcFk5w4qhrh2LtubDyzOswHajijO73VbVIoC7LLnrnGN/2NHtO2xKhDDQDwEBXLvCHTqMRPoyNmNU7nBG0auqzkXQQooqd7fKimZVZfnR83Oscby5svyEPT/3HS9ueqWuGjP6bmAmHcAUQEumqQWvaL2YEazzXsUOYvY/RhJ+6GnXSy4v1rRNM3YT3HUdz378Y+Rsjf/qNfbvCVkeTUR+BPxbwP8F/DvAPxWR/xT4S3S1+Obr96KrEYIH75GcHqhcA1WtuiMx4d+84czUeALXn33B6xdfaKCYH8C9H/Ap8frmjtvtlmQMPiYCcaQ6lJC1ALdp/AeFByfydQUi00qzHwZi8jjnqFw10ja6rhtbNQ6HDut0leOzvqAwV+bIOeaTQV0Q5HGwmnLP71MwZp/Hw5SLcuZllYwAWhCFzPnQanPh7/1uM3GMU8TJ1EpY8spQxCFYEolaLBerNW1d44wiQGPr0LKoiPMiR1EnInoPXA6WQ0Bb3QYNmh/Tq99d+339REIzPyD5UTmexDSzY462j1GDxevra15fX+f3K5oxZXfGM9R9GG1gNGViEiF6YhIqZ1i1NYu6wgr0hz2WiE2BZaPP7Kuvbnj56hW3txuefvAhF1dPsK4iJZPllRKuamkXWlzSLtYqHRcD1vU5e5KzLTpERwRdK9obYM92u6GuLO1iSbNY4P2AD4mu87StojqL5QXt3nPorglBg1obAjbLrokRCJPbsUby4jYiMYyTmA+6UK2bCpMLGZu2YeE9vfda3T4MWCOEoL48CaQQRh9SVxUuekxlVHmESAwDEnqIPaQeXD2igOqUVJpPoWdHTQ2pHcGBeTp9/v/dMpeP9m22byaeeDhAflcAbQxg7NHyK2WN8ximAHoePF8+ecr6XBUlIqiiV0xYNyG7JctVFvTlFCIJjLDZ7fgXP/kJr29ulfVvtNWzsQabs66gC3ybgaoYI5u7Dd1uy/7umsrCxWrB1eX5eC3LRcvF2ZK722tkI9zcbri52+CqmmfPPxh9IUA/DGx2+1G5RhsPOdrFGb1PaKnE/H4J1lZUroIk7A89FxfntG3D/rAlhWG8R0ZUjCCGREB4enFG6CJVSHyxv2FIwmBkrNNKDyD7esOUGpKCz3zvIotpxviPlPIiOuBM4vnzpyyami++UhZPu1qyOj8ndj0+RBb5s3sf+72rIERkDfxz4L9IKd0C/wPwY+CfoCvF/+Yt7/vPReQvReQvv3p98/uexqM92qN9i+2b8BOv31z/vZ3voz3ao/392zfhJ24379+V7dEe7X3t90KWRatI/jnwv6aU/jeAlNKXs7//j8D//tB7U0p/Dvw5wL/9r//jxHCgrldYW2nKvsuFOIdAqjxYVTH1hwPOGHyIXH/1ips319S2lJoBYsEIb25u2A8D4iqGGPGZs2wEiki+pIRFiGjbVnFCjFmd8D2BCUFwTnUCRSQ3AZi4jilzbUUszhqsM4gkRV9SGovkCh3BZrm5wswcaSBFqqUgJob82r3P5OjYp78XdQ590ZDSkIuKZg0FJGEErCScVX1pk+JIA5Vc2VsWc9YarJORl6wr6MjZekVT10gc8H6SnKqrGtDrjUm7o/kQSSGOlbEFSVPNTMH7yJBb9D7ad8u+KT/xb/4b/2oqYwSmDNHsSGWHiiqnhBjl9H7x4gWb7Xbaxqjqg4hgRbI6THp7p8rMWzYiOGtVZs6YLH2k8pP7naIyL1+9IiXVKn367Bnn5xd88fIlvU+Iq6haR9OuWaxVEN9VWjNgQ+LM1vSHw5j7iiFAEppcbOisI/pIL904tq3VIkNjDLvtrRbAyKVu3ywwdUuI6pukG4jJ4HzAOcvd3Y1SGgowQ8JaUfWaozqGrHUhjJ04a2uwdcUiadG0ZOrFdruh2yVMUC7zbnsHwGG35fzZmouzFatlg9SWLimiNApBTV/0+DFou2sVF0AEmtYxarOPXFLG1+a67Y/23bFvyk/8+IcfvPXTP0WTv46qIVZrkGyOlOZIc0rC02fPWK2U9+pDKKVHmrUZu/aq0lXK8+Y0onTsXt9u+f9++tfs9gewVe7aG1WTOR6rP0+0Ti309X1HnwaShYMEOFc6qrGavRn2O6wRur7n9vaWofdcPXnC2Znyq0POxHW9ZryMa0jRE0KgahYMUnF3t6WuGtrFmsopbUFFEkTHvAFE23I3dc1iseTFy8/Y36nowqKyXLsaVzX0vTZVcVXFen3BR3bBwXvudge6XLzf+YFotLg5s0DVPxVd9YzWxxL/GDu7R+q/RBLPnlxqcXEMHIry0BD48pNP+cGf/hmresn+y9dve1Tu2e+jhiHA/wT8VUrpv529/nHmHwH8B8C/+Lp9GSMsmwZCIlxfs9m85OaNcml2O+XF1U1Df+i5vn3DxeUZL7/6kr/9xV/z4YdP+eEP/9EogWKcI8TEzd2d8uicyZrE5QZr8QloGmTwWROUHAQ6IWnP17dTGUoBHlogKAgpTFzmeTFASQmmGIjG522zzrAwBcuFhlLi9MxPtsbmdGlp6FF0ESf5lDEgJgeZKWUesu5XzyWOE0k5N90+6EQ1k5kTlDpSOUvtlKLx4fNz5Q7nVLcxZgxarNUOPV2vRQcpRYb+wHq1pnaOvuuOJt6xHz0JiaKqOmXiy9QPyY9mihFnHcmEsSDg0b479k36CSiPSOa2xTjyB4yZaYWPz5o+17333Nze4kMcV3hj/cLYkp7REY8T3Hiu0NQ1tak5Xy24PFtRO0heC02sKH2hHybNUmsrmqqibRf4ENjuDlq44yqMa2iXK6paqRLKMIokI1xcPoEY2N7e4IdA0ywgyf/P3ps2R5Kd936/s+VWVUAB6HXImeEmhRbqhnaHdf1F/MKv/R38+e61Q2FZlu0QeUkONaLIWXoBGqgtt7P4xXMyq9DTQ1L30o5hNE5ENxroQlVWZeY5z/k//0XanUBVVvjRU5QFVVWKt7EVgEC40SUpHROyFBw1Bplf6L0nxUiMnhiD0CPsxCuWDbzOG2NtDDFGumEQRx9tskpKzsOUmxqn79W0odBilZksQ59buymwqixVXeIKiyoMIWoGJap/3e7Q9uxk3hX9wsR/ZqKqcaTdnJJoHsbv7/idzhMpC9Lf4hl/zet+9dff2mndE/ydFM/GOJ4/f0LdSAF5t9vLptcYFBoVx3vPoZQUv5MtajIJ6wo2uxd88vN/IeTN/TT3mCx4PTpQ3AeKUhTf96pwrJc1lbP4fK+p6Gm3YCoRBN5tNtzd3nK2vqSuF2hr6dqOLoOSu7YDW9IslgQ/MvQ9Gmi7XnzmlaYoKlS2g/NjJAyDhMn5gbu7DevzM8ZqRBEZhpE+P/dw2LPb7GmaJWW5wJU1zdLRjpo+7OhDxDhHnWs4ekU/9njv0dawQJN8Ypzef0btJrrGPWFgSqQQcCSePLlitVreOw9d28kakjRn1RJd1F97bbw9/luQ5f8I/E/A/6OU+qf8s/8F+B+VUn+OzGr/CvzPv+mJUkzstluiV5As/SHS7mVX8ub6jq7rGceRm1fXHNo9q9WC3f4OTKQpGxGiTRO4MYwx8PmXL4STYwxhTq2aXvCI5oqATMxZp7n4tKh8uzqbkNMcTJ2/z9zj/HzTzVUUxfEGCVFsjiYe0/R8c2z1VIhOC0KSXVuIpDAV0KKyld87sY4jL/BRrFgEsZZjcpOnI1r8oFGonP5VlAVlabHO5uPMB5UvyslGSmtF0VRYI3GX1hqMuu+zHBP0Y5VVup7krFjKhaPdzGTFNb1nNRU7p38SoE5cDhJYrQkoYl7kH8bv1fidzRPM1766dw/BfR7h5DYTVcJozdiPXN/cEELAZIhosmhkEt+k4+9OX48c/oi1JdYqisJSFharIuMQBSkKAVJgl5FlY0uePH2KMgZXFBzalgTZ1UIxhREc5yRRlCtjKOsGS8IPPWWpqKqaru0Zc9qfD4mIwjqHdQVt1zLsD+KMoSFpRYyKfSut6MZUPHv2ASkprl+/ujevzb7E9z9ISSMNnhiC2EVqRVk46UShmfxoJHwEdBKZXVWJyCeOPaWSwJhoDe1eFqtF01BaffK6cs8rhBPN0FN17bwIameFq4ykJ5JtoHAny1Y6+ce0mb6HiD+M35Pxu6snpq8n9/I0fhcF9LGjYzg/P8eHySc9oLVsNlUKpBCEc5zh5Kl/MhfLScC9X/7qc9qux7qCqLQ4UuSuVXjrGFKuH5SCuqpwOnG2qKlLizlhFRsFVikOhwM31zfsDweMK3j6/Lk45SjDbt8x5oJCG5lPpj8ewzAMLNdLwii6A2MsMbthRD/gAaMt1aJk9D2ffvpLVqsFy2WFHyNayX16aLeURcU4eiID2ihQhmbR0IdI1AZlOoZs++HjSO/BDyOhbyltKbe1VqAdXpUi/s3vdbJpTilhVILoUcnz0befU5cFadPSt4Is37y64cvPbwiD5vzqEY+/+/+DwC+l9J9497b+13ulvmP4kLjdBva7A4ddx9h6Ut4MuAhFURNdxeJ5xTD2KJMoS4OyiaJwzCpTYPSe27sNbdeRVJ2dLsjs/Wn1O95EMcZjcEawQFaO/3v6eHmh1koL1cIckZfJA9HmHeM4jsfYbKVmo1CtFJopvlUd68eM/8K0DkzIitwwEyIkwh87+y+XZSmL0lQsz6l+glaLKndEKRETyXYiTwITWp4E7TZKYZQmRi+FdJKie4Ly5EKV45BNQ2S1WGC1yW1ksbma0avoj6JMNcUI5/ccwaYjld4b+b1Ry4L6QMP4/Rq/y3kCJoqPZt5BvuuZ54UpgRYf5evX14QY0Vo2bGPeWOpkMDr7pAe5v7z392LrlYqSVDd1VeSCn/9EEl3fz4hrtViiXYkrCpI2tIdOxDBlxTAGhq5HuQPFidB2HMWDOYSAVmlu5ZpMPwtZXBSMuP1UpaOoKxbRc2hlgzyGkSkcafIq9mFLXdeUZUnTLAh+AJU3zcoQo2e/b+egBGMMwXtSCMSQ3YCyibF4V5+U+FGCglJKtIcDRtVC5wqBuiwpjIZUYXPA1FlTkpzDK8XIZLFpUdqRjAWlCTGKfejJ+cboPMmEef55x5UxIRlwMjc9jN+P8budJ45ONl/nYnFqC3n69evGV/9fcXF5SVFVc2jZtEWTtTMStcXnQC5FduFKpwmYitu7DT//l08FVTaaYfSkBA6HNgal1b1sgWN3NVLYgro0QmsqLdH3M5hk83zV9j0+eOq64erJU9YXl3zx6jUxbVC2wBTSsWrqBVWzwBrL6Ae6MWBCpCgqkpOwJyKzuFfpAq0dxBFjJCApxkjX96zOGs4vHrHbbQDY93C33VCUA+tzqCt7QpNTGKOoSod1su670lA3Jdv2QH84gJftRc5FxmhFsu54LschNwwTJoGKgb498OzpY8I40h3EwhNg6Ab2m45//t//L0JM/NEP/+zXnvfT8Y1I8NPGcPnkWyyvoO09Y0jzomatQ2XuXhwG9Dii4wi+B0Y2d9e8ePkFfb5I6sePub6+oR89sRCD8HtrakrzN+okDYYkCLfS0+UuiO1Et5jG27dMDBFjJYvcKH3PrSEESf8rrEVlD1QlvdCMZjMX7gIoR2npGoM1Fus0RtuZTxxTIp0m4VkrHMaUpL1rJtsooUag1ExPcc5J1rwxx5aQyglcJ1w/+YyO4SGCAkfAo3WSavZtXqdSxFQw+szZTpJmJIW7PH/hHDH5e79zRAenzYHG6ITBzM/vtMEZy6AFGeehWH5/hwKrQaU4U5B0viN1RhSly3JcuFCKvu+522w4LaJCdsmYNAWkI5//uKBO9KyEKwyl0eiUpEWZBE2WofHezwuqmzooWpMQ9xtxw1B0w8Bu39GOI2fn4s9qncOHSBw9t7e3XJwvqBpJuwq9WN5N/qZ1bGgPLUMvPOWJdw1TuJLGpzQvDn4UrnVhHcum4dBGQhiBhA+jcI0BpY5LgZSbsnXuuh6vBKl3VYWzDp/vwapusNay3W6xxkgHKCecTmEwKSZWZ8LNXjYFydXgaqIrscVijuAOxhGUxvs4b5YLrdBmmhuka5eQE3tKkZExFRFp/vZhvL/j63yR37ZQ/a8tnq21PH70mKquOXTvSJVNx+Aw0VBkQMpajMm1TVHx+S9/xY9/8lO8j2ijCEECvNTJpn3SGM3/DpGyMFijcNbgrEGRiIPc1wBJJbq+Y9/2XFw+RlvD8uyMhKIfRlxZY6yjqOXeXKxWwv1VoFXF2aWjPxxI3s+gosYc5zhnhBGw66iUpWoWOUglgDLElI7JpAl6nwiM2HbAx4P43JuCRbNgyO9zsqwtCkdRFiwWFf2+ot3uOAyjpO+RQFlZAyZKls5goPeo6NEKzh59QBdXbN+0bF/ccPVYgmP++A/+iC8+f804Jl69uuaXn376my6l4zn/rR/5/+FQKMqqpMBSVYqQUQ8ZGlBYo1AhMPYtahwwyePbA6FrOatWJCUn/fXe8cmv7oi6wGiN9wNambnwTWoKmn67nTsJ69RJu/d4hPeP9+RvLWlU1lqsNjhrZ5SmbVv2+z1pHFHZIziFnBqoNDpf7NNnoPISr5HdVuGccCVdIYWuNRhXzsc+XbhxQrb10c4tTY85Ka7j1GLNooGoT4rX0/d7siIpPSUeTsErx8jJ6bOLKWezx0RIkd6Pwu0yggY7K1SPYTgmfaXpM4wRjbSwAFIMjGE8otyZMzlkG74HvOj9HnKNxhm5mTaPKV/3Ew85KZ0tmCyb3Z7Xr69zQStT3jiOQo2wdrZQett+bJoIps2rswpUYBxGSiv3vEJ8PUfvqVdS/F5eXeUiOdD1I8Y66qphDPK4ucA9RbuSRLFut1tWjaNpGrQ2fPH5C16+fklT5eSrYRCU3A8slw1VVWAy6usyCp36oyhIn74GJzOZknvO+zELbvPjtSZqI5G6yuAc3O1vKYqS4XBgGEaszej8GNDaMvQDdVVQFiWQiH6kbQ8YKvzQcXl5CSAUDG1QxqBU5j/bAuMqlC0ZczcrZn62N2amZFktc4+fvO9TvDcHqXt/Hirl93kIHhXvrZHH/7sP9Ny3nvxq8Xz6uNPnstZyeXmJK0p8pl9Bphcl7tMk50Jcrn+dASzjSj778jX/+qsXtF7RVAUhjkCk77psG3f0WZ7nJBWpq4aqdJTGEMeB0cdMAc1HokWroa2jXKxwzuHKmuvbW4wtKaoaH4/1gbWOMSSCD0SlWF88wtd7bm9uUBgoQKFZNGJ3OfY9uxRzN1vRNA2xqmnbHbe3G9brc4pShI+u2LPb99hcW4UYiQSqyuJQ1KXDWs1uL5sO7yNo6Q7qlCgLJ/N80MTRM4wD0Y9zreOsyY0l0VoMfc/6+TOGYaTdvOFytebJ1XMAqu9d8Oyjlv1mz/7Nhna/+62vq29EsayNxqyWJGXQHkE7M5dG0nUS2mgxp08pc+UiKY7i0xk9fS62PvvsMz7//DNBKFwAxKsw6YzMKk3IhXhIwp8z1uFSQgfQBKLSeKOk43fKMVZTCXdyQ53eeGRniHwSi6Kgqips9DhjKAqHbhTFJEY0WmJlkRPtCovJnGWjhH5grBHaBIqoFDFLalJGUhJqvqkmgY2odcM7lwyF8Asjx1ju6YY+3alNb3Oigag8EUwIeJ4R8uMSEQM6ojBEEsoabOGIKVJkTvTkWytx2pOhRxb0aY1OWbgY48lNbAneE8YRQnxI8HvPx0kkkLhTvJVKiVJgDFo7TFGii5qbuz13+4H9kFgvZQJP/Q6IjD5KEBL30SWtVO4GgXN2pkVNnalJpyBC8EiMcLYWB4pmseJwOMhkrzVXjx+hreWLFy8Zh5HDoSUqzWJ59PgsilI2nEGKaa0FrfYZ2ZmOre879vsd4zgQ4kg/lBTOUpYF9XpFWTYYq+nzwhOGiB96tFaEKDQNKa4TR1OcYxGgcmdKujyiBelDwGpFwmALk4tiZIEOHUYburaXOctZzs/PISxIUeJyrx4/AmC5XGEW55Src2y1INkSVVZgSpLS2eknHScgJX9NHQK0QVPeO933umGZqz4X0g/jPR1pRmOnIvftonh+5G9Alk/pG6cFdFGUnK3XkqJ3WhXkh1hj7xXKIB10baxsEpG1+7MvviDEJEV3TGjjCAm5d+Bep2uel5TojazRaJ3wY491oiWausIxDLSD4urqClcUAjolRdePVJXUWrvDnjHm9+kKlDZ4Hyiqiqqu6cYOVxQsmhUxJrpDN9+btqg4O5d/hzCAtugcyhQzlVQX2TlDWUJUDD5x6AaKKJ3ulBIhSmx1jAmbT0tMI9ELzfRsUePrEt31+AO0o6DQPgVszNRPU0qiKYlCKfrguVqfc7Zcou8+ozw/y77uoFNgsV5RXV5y9h3N4H/7euIbUSyjgLFDBURoU5SQuTRHIpAijSPDsCd0e7Qf8d2B0O+IY8uYL6jN5o7dboe5ZyenZhTZ6ElcA8QoxXemICQv6YFJgTeS4a6TYsonkUJdhlZKNCdEKq1xzlKWJav1uSjakYt7v9/z5svPMgUi57gjN4FzltJNLVtY1CXWiJmdFKoninxgJFNHuI91SwdauE4h5NL2Leen05JeeJ8JnQvgqeA4LTym1kskZQ6hWN5lLFva3RMlIkVSNKAkRSyRcM7KLjR/5kJBuX/SBV3LplFJiQgxeWLhjscEiE280EGmi/5hvL9jEvOdRr7fH9MCKV2p3W7PoW2z0vzYEQItC9X0W6eLKsfCvCiK+b6Uidqji0qoV1qYQc7Z2UJqGIZ5EVVKs1gsCVEQafL95r3HT2mCIbBcLkFp9vsdXd9xYS84bLdsdxtc4bB5PhzGQb63QnESSpSgaMYairJAG0VlZBHYvLmjH1og0bcHQvQ0TZXtGD0pReFW5/lTa0sMYtivtSFpOX75bLL7z2TdFxXaGMqyxPuR3e5A17Uc9lvW52dcXpxTVhWPnkjC2dXVE8qzFRQVwVXoskFXDUFb/BjASvt5Wr5CEjmhzpxPnSb3kwmkOIqpURPo8DAexnG8XeTC/QL6NxXP0+NPvxpjcxFaMvjxWE/cQ5HvX4laa6xzaOvmmPsvvvyST//132QOKgv6UTpOkwXj6e/Ox4IASKWzaAXBjxiTMMrmWOfsmpUCy/U5Tz/4Fm3XMXrPoRuwRUXV1GwOHf0wEPJ8aA8HnCvwITH4wHazxRlFVdcYaxjbXqgiuRs9jqMInYuCbiv3vbUabSR2uu17XA5pmoKiUhJNmdBJRu6UFM1aCd1TqdMqRTrsPniSgroq0dbiqopD39H2/QycCX4negZlwKqE05rx7hVOe6w6UuZCjGAVZVlQFaWAJb/l+GYUywCTIGciScyTILIghJE0tvh+SxwOEAM67DGhw6aONmecv/jyC9rDHuesILFK6AAyteZs8QlRTQmdC2Y5BDmCIXj6QSzLnHEUuS1YuhLnHEYp8RhFbKNWjeN8VbFe1Tx+dM6jq3MAmspx6Ae+uLvk1fUb2nYATOYJw9EzTS4+owQVmXwZjzw85uM/skZOdsr5W3Ui0lE5rjuctnDSxO9RJOUIOI674mNlLSjzJOLL7SPM/H8xRrz3MzIVEmwP+xlsHoKXtnRT40ojMZQTGs1xspre/rF9qkjELELMplRJqCApeyxOricP4/0eRpt7C8tK0bEAACAASURBVN3p4maMQRmLUpq+79lstqSUMNoQ0/1uyte27I+3JlVZ4qzFECitJQwH+q4jjCNlaanKAsyCJhfLn/z8E2KIfOvbH3J2ccXT58/40Y9+nAtQPf+Zjlnei0armD2MBRk7tC3WWZaLpbQmkc7Vctngx5Fh6OiHjn5MxORZLksWi4qqqubn3t7eSdGvsugpJUGWpy5PSrNLDYit8eAj3iesUSRjKZuG9nDAuRLvA4e2z8dtSSHgfcAYnSlpZu5yiYWeET4k0DRi1RSNQ5kSWzRQrfIMFKQ9naYELtFkayX2ccEPhChpflOHa5r78ulC5svJl/4BWX4Y7x7vomJ8XfE8Pf70a1U5Li+vMM4ybveoXPwqFNKMOj7PqdBQoug1UxT2v/3qM/7tl7/MWKCGHB+teXcBJ9hSYtEsKAuHSZ6yKPC9eCmLS5Ucow+ay8srUDrrtgx1XXL15Alv7u7Yv7pht9uzWE3CfDN/Ln4c2W7e8OhqzfJsxfZux+dffIHRhqoUqzWVEoVb5E2AxVihvMbopRMcFQstj12drdnu9oShP3anAe9HEU1rJRNPLmiNAussow+E4GUu19K1WjpL3VQM/cAw9Pl5PPttBzGQkqapa87PzymHDYvSUBeJ6MUdaGzBGYMrz4jGYP4d88Q3p1ieK6apLBzzj8VdgXbHOHQQvXyYOhEm0UeKDJmesNlsGMcBU9cSdJFjrrVSxHFkPIlftVrUpho1q0d1SlRFSWktRhusNpiMWlgtfoNGK4wxOK2onGW5rFguK5plTVFV880whsjgR/zYsWoKdAqMQ8hEeKEcTCr3si652245FpQpR0pPxyUWavEd2MmpbdZ0k2p9LEFBXismCf0IBGIyxCiUiTRtSDhykGNK0g7K/C+U+DTHFLJHq3zu8vgpeEVlkaRc2EVVYi3EcRCU/GQSyvh5biuBNgqjEgFNSnY+R4QogTQxEnz4ykT2MN7P8TYfcBrGGIy1aCOo6Haz4/rmhpikDXrank1w3Ch/ZRx/7gqHsQadr3kFmEylKotSEB1XMwyyYd9ub3ny5JKzteVspXn14t9YLhZ896NzXrx6TYo37LuWrhWuY6VqIGUKl3ChZUM6zpHU6aTI11oTU8h0jaMGYHfYo61m0dQ8Xkp3640xJGvRBjZhBJWwdlqwEylZQdnngiBKEEIScbQHtu2B9tDy5NGKsjQUWTdxdXnFm5sbXr96RQgJYxwXl0vWF2v6vuPm7hbjjKDmiFd1IhcMM5fFCM/cKKydMP7ps4/igS88DDEnSVNQE1/Z5iiORcnDLPEwftvxLvR52ky+q4B2ruDy6gptJNPBugwkxckcTn31efTkRmUY80v94hf/xstXr3NAUsxzUsTOtM+3EOoMLDWLBqM1JomFj1bQ9T3Oa5pG7k1XLnn85Ck/+tGPqKqGq0ePWSxXWGtpuz6DaBJWAsze7UXhOLQdWjNvfK9vbthsNzRVw+2tpKjutjuWTc1q1chtnG9npaR4bQfPVF4WpWW1WNBpqR9AYW3BOPSk6MWSLoYZKU7BE6POHvg5mi0GmACSJK+3rKv5HOk4Evte9GFJ6LRrOppmQVEUJ3Z9Hs0IjBhX3HPe+U3jm1Msa5N3HNkmKJ/EGIKgKPsdsW/RKlI4hUMTkmG1sAxDzYsvPgfgiy8+k92I97Nl3Fx4MRXXU2EpnOHCGirjKI24WthFg3GSeZ5imvnTOmvvpQ3iaKqSZV1Rl4aqVKIQTcxJNCFA1x9T5+bLXuUUsKLmkMUBr2/ecDi0cjEYuUiMUVgszhmsM1x6SecCKKoFSVsiikM/4qMiKiOvOfQzL2oaMfsvT5PC5BIiWfQqBxfIcfogiXrCoYyMIUphnx0EYkp5YpiKZY9PsrDHEDAqoowmxoDRDp+Ej3SfhSFFcsp0k4mLlVT2rj2aPucWeBJx5MMq+N6OyZtX8WsQoOnnSlTou92Ou7u7Gb2Jsx2cXHx67tS89WInRvdaaZyxhCxcnZZDpZQE5hBwRcnd3R0Aw9CzWq1YLpcMw8Bms6Xt4Pa6xZiahTtn/6bHq4ykGE37ZkfVFKzPzlksl4xjIqFZr9eQFIf9tRyLNfhDIMRI4RxVVRBiwNrMH/Sevu8oVllEpDXLpsZYze2dI4QxN+uESmVdQVGUMxDrQ4+PKQMNAV1ZVmfnPH3yjKvLK7Z3W2JGueu6YWu3mPzZeB/ouoFhbBmGlpgCY0wMeV5xxoEyKF2gjCUpK9097ShcEu/Ue4XLJOJDCuqTa+DtcUT/cvfrQeT3Ho/7Yr3/mvEui9Jpo9o0C5qmYRxFZDYVxDEltE5En8Bw7ximYlkZw9DKGv7zf/k0b+ItMaaMRCfMVBW/432BEo1CUTK2YgNpcqeqaRomnbOpz9hsNsQ0sL644PHTMxbLSz77/BX7XTu/lyLrD2IIWGMpyop+GOmHFls43ty8YbvdzJkRu50I4jZ3d3jf048tdVXS1BWLpqLrAqMf0bo6zs8p4axlMFo86VViGDuGrqcsS0LwpBAJ2T1jEgCqQkAPlMlUiwQxSo9ba+paOmJ9P2C1IigFWqgpdV3ydFVQny2omhKfAc8u1zsYw5y89FsO/Zsf8jAexsN4GA/jYTyMh/EwHsb7Ob4hyLICNeV7C/oTMxqRQm75ZzN6gfwncV2SmFmlefFKEjHvbm+oqxKMQVmFso6ibghRbE7sSfqTUUKlcMZQKI1VzK4Twp0zeeMxHZnsWJ2zFKWjqkqKwqKtxsfIvu04tHuMmlqmkT54fFKUZUWzOGOxNJmfpAg+MXqJ9ZaY6CNBeaJp+FHU8aVXuEU1Bx8kIIwjKSXGw4GkDa6qiUHoG1XT4CN8+UIQqdvtBm3sMcQlDaQoefakhA/haGGsFOjJeks4T5EkFnExEUJWnc9yP0hawLiQ5PmMswQiKaPEWhv5XBFKiZ5RJGYRZzxRJJ5aXWml8OPIOPTwgBi910OcZr7KL5ysooSeMSVbKu42G7YZDZGfnSLLfD1nmeNj+37gan3GrjtQW0tMIkoxRrNcLdnudlRVxf4gyHJRSHtPaFZyX23uNvzqVy+4uHyGcxVa6xmlqRc1C1PjrOgZlC4Z+o7F4pzVYsGnn37K7a0Y/FdVFhbWDc5aVivxOl5fLElExqHHaT2LB43WuMKKJVU6toUnBFdoH25+113vwdiclqkw2vD973+Pv/3rv+EP/+APSTFxvjjLn6Hmf/vP/ys//cl/4dNP/4Wu6+j7A8oLTS16j3XuyB9OQpFwxqKNEx3CMKAK0Sik6LO9ZVbVh5EYRxQh+8/LeYlpApzfoeE4OX8P4/0e76Ls/begzSklrLU8e/ZU7CaDuDbFk3X79DVOX18pERcnFJ/+4hcAvLq+RmlNSHKfypwUZeZJ6t2XsFaMg0c1lZgGoHJmT2K5XNJ20ql2zvLy5ZcUhePx08dUleP1y8+pqyV//ed/y09/9i/03S/n5NK+71lfXEzvlKqq8H7k9vaWonS4Rcnh0M3zx8XlWjr4aqJpKppVzdnFirKq6Dc9fhROsUqG0Q8iwsvPPwzjiWBSUpYnoWRKiUPbEYYObSxl1Yi+KScIxhgZh4GcYULyI8uqxtYVyQ+0hz3PVhXGiTBaGcMshIjgg8d2e0xpheb7W45vRrGsFL0yub0pi5RPkw1JkjdUlLJAjZDigB8jPgRCShyCeBqD8BKVMUQtE72rShZNTUyJJiZsbieAWKiJz4NwF0329OzD5IrhURzdM6qyISVo6oqyKIQHnSkJUUcIgeA7vM+2TWEkGUNShoTh6nJNXS8AxWa7427zhu1Wjtv7REoaHwLJh5w/Ly4bwpuGwYd5cZhYeTEKRSKrIimrkqsnT6mqBZ0PxGzwH0i0Xc/ghbtsjVyUPrd8ojFMV1/KN3aMQj0RWoRwm42RpJ1TmodPB0IS3mPw4iN9fn6O0SaHFGShIBP95f48oBKiEiQcW1dTu1xe/OiA8MBZfq/H17XhTzmGQHa+gOvra+7uNqCkyFInz3NP4Jfe+bTyX9m6Uhvh4kuSZcC5AutK0D3GmrnsbpoF/TCw3e4Y+pHPP3/Fy5d3lNWS73znO3if2Gw3c0yuc9mvWWs6H2TeSBHn3GwfN9lRNk1FGwMfffghdV3z+a8+Y7dpefXiNc+fPqVuasa+YyxlDjq/Oqfve5KXZLwQ87wZAjGBKyabtqmVnNudiAg5Knj67Dl//Cd/wgfPv8XQjfO9eXdzR7NY8nf/8X/g+z/4A/b7HS9efsnt7WvO10tWqyUxelZZ+JiCR2Vv6pMzmvGImN2JAibP/WJF5VFxEIcAJUWHyWBDVivfO/40vYcHgd97O5SSAuyU0vN1LhX/3utkuVyxWp1hrGOc1t7s36KVlQrG6q/MRyBzUoyJn33ycwBevb6RAnBMWC1rvyFytI1S958jO0tVVUEMnqKwKB9RQVEWkhjqOYaQ7XZ7Hj9dU5aFZBUMnhef/ZL/9It/5Fvf+i5qtKRMoI4hkYZIMD1NVdA0DX0/iMg4h5nF6Fkuxe+9bQ+M3tMPA/3QUpZTkFiitAUDvaSFAsEnusMOpaGuHN6PBJ8weZNujGEcA9a4/K4NIy1jCBAT2/1rXFFxfn6Oc472cGDR1DO9NnhPaQ114Uhe8ejqgufrhlSUBJWPPRsUkHVfPkZ028LvG2c5oeZdFygiijSFkliF0VqKXF+gx4LUt4QY8MoSTEFnRsbM5V2dLanqBT6CT2DKElcVeB9EjX568Z58VWQeboroCeFMCWMUdSncmMVCuH2LuqEsSzabW2JSDH0ixIG23TP0LVMwozWKs/U6717kRhlGj9FGSPBdzzhOQR0GYyF58HmDYLSjLEuqqkCPHXe7nSA1QG0tpjSkEFkVFdViQd0sUcriqhplHDapWeleFIWkGoajHR1KzRZ7GglykJ8bIlpsnIIILlFI5j2DWOhF5vdZUtD1mhADLllMiiyqRjYTXnafE+fw9HOXk38yoU0q4HS0mTNGE7K/sjnhhz2M92/MVnHpvqj1/oOOiHOKcHt7J7Zx2cdX26NNYmJkksxK/PPpAne8XiPiwrJslpSFoRsFJXHOEYLH2CLPFdmXuSw4HFrKco8rKrqhpyhKnj75gG99+0MO+5ZffvZL+uzgYwvD02ePqJuK17uWw+EAQOHcVxB0hdzLjx8/5tGjR9RlxW635ac//QkvXr1i2TRUpWFcChfRlJZ2v6VtB4ZYovWC3mebRwOYCrQ9IrPaiOBPCXewbmq+//3vc/Xo8ax7mO5AsZ6TjfF6vUZrzdnZElSgrB3WGu42t5Bjb9u7N6JjsA7jLGnsZXMdvWzY42RNNwmc8tzD5K2feHfU9enpF1/9o1n8w3j/xn3/9beL5tN//3uL59XqjOVqJYjw6BHzgGxbmMWl2hzFx9LxElGrNpbeRz7JxfJmu8XWi1nIF6ZiGaTrpd+a35QUy03TsKwKVnXB7fULfPAslgu6rqNYXMmvq8TqfElMiTdvblHK8tkXL3j5YktZLqnrhhiv6XsB66yzxNHTlAWqWvDo8bf5xS8+5exsTeEcb67fALkTDYToiSHgCiM2lNGz2++4WJ/z+OKK3c3dDI7FlC0qrXS2rTW5Q1/k9HpFOLFwSynRjgOuKokRTFGhrePubkuKib5vaZ4+psi1UAwFw2FPoaHvOr7//e/xaFmCq6GsScVCvJgRNkFQmqAUYwgU7rcvgb8xxXK0VRaRAUSUzebzk/pZif8gXrxKp4Z9RNElRZ9tRJpaHCl6H/CDJ/pA6AeGcSQlhS5OfIWVIMri7hCIMWCNpizKHIGrcnrXcfdhsj1SSoLQBi/Cs9EP7PYHxnHEZXWsKWrqxQrn5Ple32wYhxuUVuz3B/a7w7wkW1ugdASlUVHoH5N4QGkDMQcoTEFl2qBdgS40ZVlxdnZOUTcMg6cfRpSK1FXJtz54BkBdV3z58hW3t3f0Ob2MkwIh5k3K8ZxMH/+RGhGRSMrZbzpbvTijiWMkhijRmyHR2AqbjLRLjKBVPuaM+xTnwjelRFATXSMw5RhOQ2vNMAziNJCFPg/jPR1KrgeZWDM16oRWIA+Rbo9Rcm1dv7mhbTuUVsSQcugP+XcErTwSft56ufzczjmMc6xXC6yKxDDQH8TqbBhG0I6u72fahjE6U4/y9nIYcbahboQ6sdttGf2Ic0cUyPuA97L4vnz5kov1Wlx/jOaD589nYWuKifV6QUqJoR8kUnoq1KfFmaMtndi3OZSW4t4YS9t1hBjRWuhho5HNPkBygeWV5dXrFyQLf/Hxt7C7z1mani5FjFKYPDc/efaMZx98wG5zlylSYJ14Vxsjqal1XZMOQjUbh0EcBKoe4wqS0sTYk0Iv93/+7OYAAR1RyZOGA75vGf2YhVIWPSUBTqFOWgIfJJAEmN2aH8b7Pr5ODHw/rfPrN+CnBfT5+TlVXYsILaaZ8jW/zglFLCUJJZLr1BJiZLM78MWLF/J4YyTe2sqm2PtAQZpdL756IGCNoaor1ucrSqNodxXRe8q6YvPmDRdrcYg4HLa5u5bwPqCN4fXrN9TVGR9/5w/5D3/2lyQUn/z8ZwAsVgtJFHaWTdez2dxSVRVuueTm+prXr28oimK23bXWcvnsGWXlGMeBlALBB/b7HY8v11TOUjpJ+9vu70jRUxQVxkjHSmuNMRZjFF070A0emy34UIbHz5+z3W7B54ATrYlE6rpiuVyy2WxnJ4umLnn89AntfoPSmg8+eE5d1bhmiSkFONTZ8q4oaqIt6YNQvlT8PUOWURL9aJTBJAghkcIRZQxjT+E0OmbOrtIUxhGVYT94Wr87WqB4jxq9LGIqR9Iq2bkorYUnN72sERs4rY0QbpOWgJLRC3dIG5zVuAmNyru+ttsTY5T2ZkoS0ewHQm5fTu0F5xzG2ryD6tlsNrTZ/cKVFcvVxeyfGvJCVJoFqGzzljwhQT8kSu0I2kHIHKMhEVPAWLCFcIm9D4QofGKVIs5oFmWZP8ZE33X07YFx7PExZk7yZKHFfCOEFGDe485l86xG10wTyBErPsaLynOdna0oioKh3wsaHo7R2oko/tcaPBFPIGlQQS5epw0675VUCvi+J/kR0ijQ+8N4P8ev2SfNfsvI9ScxsSPX1zdiq1QviHE8Ktez53CGlfOT3H+tqQvlrM3tzwoVRqxxxKJEW8fgPbZecrfZUGRKQ1lLbG03Dlwu13z3O9/j5csNb27v+Kd/+id2h4MEneTJviwL4f6lNNMuSAnvR5TKC2S+j8d+4M2bN7x88YLLy0uWiyXBe5bLFUoJGu1MJMzvKesjQpwdQUJGiEMQHUjwI2EqLmNAq0RdldSVw8We2N7id9fUV8/poyfkRW3TDoSgKMsFZb3AkNDJk6KjagpSCvjg2d3eAOA3G0KMlPUCV8siOLNgprj7FGCa+9UIvod+T+gOpOBJGTUOJ44np+8TbeZC+mG8pyNBDFouDXWSWXAy3hVG8nbxPP18elxV1Zyv1xhr6bwXnq2T4KPpdeXJj68BzNdjRPGTn/yUmzd3+eGKwpWYsiIlBOUc++M1/ZWh8ia5x9oL/NhJZ8ZatLFoW7HPXalDe2CxcAxjhzIGV5RoZTg/v+TRo8e8fPmCu80tLocdLZYVz58/wZYFw92Ow+Ewz5Xb7RalFE1d0eQu+8V6zetXr9jcHlid1VxdPQIVKZShzb87OfTc7QTcKJxlypCo6kYs4wKMY0sI6UirUInXt7f0Xc/VxRXdvmUcJfehbTuKwhJCZLORjtUX7Z5nT5+wXJQ8fvqU7330EcvHa4qqxhQVuBKVi+WkjMyNSoMxBPt7hiwrFCoJDUArLa3SfGQpJYKxaKtQMUKIkvYUQVfnNJeWxcFgchKeKQL1oiGolsqVKCUFYayENF4ulzNS3HctYtAEMYpfoUGhs3jkmKA37TwjIXjG0edFLYgYMYd0+BBxrmCxlNjbi4s11pb4CP0Q5eaywmsq8rFNvMVp96SNxVi5KcYR+rGj7Tqa9YoxRnovxaLvR/QoYQAjhqRa2Hc0dS1hJON4b5Gt65K6KigLKzdBzDhytttK6ZjIF1P2XL7XXhIfZI3KfOk0sTBmMWY+Y2KtVxRUVcl+J8XGGDynE9aRh3X8sUbQPK0kjABABRE9pOiJfsgeiQ/jfRxS7Cmcde9c7Mj/n8mt9MPA/nA4NiROfkeoRyeYsnqbtKzmjn+fO1PKaFLMkfaZxzeOA8Y6+r6nyBOyteITvt+1FG7P4ydPub4+oIAvXnyJdQUff/zRfMxVbbi+fk1UiZvtHhB6VN/3DH1P4Yp74qGu67h984au68QuSok/83p9zpMnT9jvbmafo8IWhLCj73uctUDCGaGBRaLoXvL9BRC9J0QvdA8rwETTSDwuMYmlppLJuWksu32HT5GiqHHGYKNHe4sOgXjoSC9ek/bSwj10b9gd3uBjzyNGimpBQEGwubBRhORngZ9mRCePznOHmpTPv4aKkYB4WkQ/jPdvKIUxdi58YzxZZBSodxTQvy7Jb/r3xcUFZ2fnoCSAY9JYTSMmiVz+au6BdIf7buSff/zjnKcA1jqMdQLsAYUSwWpM0g16+xqOKdL2PW3bzaLCerkkxcAwjBTNku1eRMPGavGHLzV3d1sePVry8Xe+x81Ny09+8lOMcfRDj5384suCEAJD37PZ3OGsZdE01GXJ+fk5Q9cRY+DqQvzb//iP/oi75x/gx5F//Md/QEXN2WqFcQndaJpFzXIp8+HL6y9yt016byElaldirRMTgyTUU3L0tG4cRSwpnQQshSHy0Ucfo1F88rOfMQwBV1Q8y2FHt7fXGCtI9fMPPuBqvcYt1kTjwJXYZoWawAYvFrjKynXh/x2GAd+IYjmliB86MAXafHUhNLnVoVQiKimqExpsgSoUfXoxIwkhKW5uN7x69ZqybqiqBq11Ntq23Ly6YaryJM0r4pyVhTMl4fnmhVDQ1kDfCxo8i4tO+HAJQXKntoyxlqIWErwtREEqCWKwXJ2jtSX4wOgDPiT0lA5YVLO3MloRo5xGQYFAaUviRFiXxYXRB8bshZxipK5ruq5js9nw5s0bLrPC9exsxcXZguQvGYaRzb7NdWoURF3pOWhBJUhMyT+Z062OX/Vk+p9PUYwp33QJrSNnZ8uZ21SWJdYa/HB6Tu8XLcyvoYSvrNS9siWGwDD02bf5gYv4vg6ljouaVkde4OkDtLjp03U91zc3tNm7PIRAUZT35hV9vBzf8WIwZB3Em7s7Hu0vGP0ag6JsGlxZopR0iMCy2+25vBKXCFeWGKO4GzYyN/gJNU0orVkul6xWq5xIB5vdNdv9FozmcNhRliVdu+dwOND3A01ds8hzSszhP2VV5datJxlDUThxyrBW6EzqVDwz0nUdLnP8lquG5EdC8lSFE5Fw5i76vmUYWwgjTbHi6vFTvvXRx9iqFkV51JO+T+rWdEwELAqLCYmxG/Dtjji0FFajMv1quWzyvd2z33xJtzcEjgWNNqJcn86R1fKnMAmnhVqd5te9z8qahH2zWPCBrfXejnktOfk6jfsFNBl5fnfx/PbvX1094my9JiHcXaVtvv7y70VFUtPzT45YeqaN7g8tP/npT+l76YKXy1qcpmJkGEcaJeBXQNbYmH+/zGiu0Qqip2nqHEwkCG2MAR0DPjiub4Ti8Z3vfkBZVYx+ICoR5qckFNPrNxuKouTDDz9kqoVcoTi0e0Zl2O12PL66IoSR9rCXPIlFAzHRNM3xc0mJw2EvHOO2JXjP5brCXq7o4sjda5lT2uBQdsngFSH0KK1xrsiAYHbhUgYf5bM21vK3f/F3/N1/999zsb7gX3/+KYf9gX/8h/9DgM+UGAY/z/3aWDb7PZHI0+fPuFgspFZSBmVLSQ0tMrKsAyYj9EoltPo9i7tWKeGylRnkjtrERVMa7RykkG3kJoxBRHN9jLRtNwvlvA/0g+dwaOnHgNayQJydrQkh0HUdOidQFUbRdS0+iQVd13VcNWe5LSrKd2MsPlMIUm6TFmUpbhEpzAsGSnN2cc7V1RVNIyfGh8mgW6Mzz074zhD6kWEMsyl4XTd5tyhhAcYZmsJRLRYE7+l8j65WVJnnONE/hvYgjhdaOMA+RsZxZBgG2c2dmKsbrajKQtIHnZut4qLS0mo2Rf7ezAl+U2rWFBiuEfGdzCFTOlGcj4fkWS4XVFVJSjm+N1fcp8WyFkml8J9zcawzIijfH28ElUWISfEQd/2eD6EBTZvn+wvhlJCF1sSkub6+Yd/KplBrgyuLGa0pigIXPWO7y1xo+xYapCAdv5cYarnvrHVgHcEPlK7m5d2WBCyWgnRUlePsbEmIYpHkQ+T5B9/i0HpcucA6y26/nRHUw+Egm+6cjKmUYvRjTvATlGhSvCqd+Pjjj9BK57RSsY98/uw5H374IRfrNf/37pUgUyAFrrq/6E88bWdFjxEm1BaE5hQ8dWF5+ugRP/jjP+Nb3/tDTL1E2TJbN+WHorDWUtcVzloRNgWZB6aEz5TSrIp31tI0DdpOmo8s6FOKrjug9UhRlRQZBXJOiuekNX4OlxKKGSmik2go5GDi/HNSmgv6h/H+DaXUzOV/F7XiXfSLuXgmofRUPMv30zg/P8c6x6Hr8+ZuirPO80Q68pdndDkXyiR4fX3Dy5evZ7BNKFGykY4x4WzCz68q4WlKH8G5EAN+GLi+eUNTOJZNiTPiQmWMYbcbcFnQvzw75+ysxoeR6+tbQkgURYX3Huf6jJKfMXihbXz54jPquuDV3TaDX49lXqqk46yVYvAjf//3fw/Aj/75n/nw2x9ijeH8fJ3pl4misDmsxc6CfaMttmjY7Xc0iwswELVDEQlpKpb1XP+VTcWf/OkP+dM/+yFWFzx/+gFjN3JxfskPfvAH/J//+A9stxsOe6FhjH7Eh4C2jqgNpS1R2onuzTqSsfM5SklJd2w+t7+9tuGbUSznvwS9nElOUgAAIABJREFUlMlwKviVCLdJ40Aae0yShc1rjw+au0PPi+sbbrNn6d3dlrpe8vF3v4e1BftDS4yJ3U52QMocxS8Tx3haPHyMlLbAGuEQKmMw1szFMiCLkzpmqSutKIyjcSWL1QpnC7qc0DP6lhgk5UcspiwRDRqqpmFhC1ymj1jrBM0aenkNIlpp4TUqRTf2FK6kyoU4IJQQH+h8xLY9hdUIAKTx48DN61u6rET/4IMPWC6XlNbILlFp2mHM1nwqq+Azxyofo0J2xZrcuiLNCLOE5WYhowmztUz0HVVVZc6ooGAx32zHCWi6cN+6Dk4nsdP/mAp2pWYk/mG8j0Nu1MRXhTinrhFKG8IQePnqVU7FnCKkk/gNIxvZInpKZwlJhDqSICfzS1kWFFaKX03g0Hbc3W2oC0vlzMz/9UGoWa4s5s6Mc466rjk7P6c7jFR1zfpyzc9++q/iZ06kv+2ImX8fQocPPUlpCmdpD3us0RkpFkec6KdFNWKMpSxLhmGgLEuMMfzgD37AkydPePnyJWVxnCO6fqSqFzSLjnEYMEpTFRZdihiuMAqPmkV1hTUQLVVZUFUVy9UKW1YoY0EbfAwzOU1rw+XlBS7PGyoEUhjROpFytK3RifOz1Xzs3ntUjJRVSWEtIcnP8kkUClculsuqknnZ+1kfIq87bZYEPQJyNK4+brQfhMDv9TAnnPXJxQXezU1+N3f5+D0klqsFy7M1ERhH6frqPF9Mq9WUQntvZG59N4z87GefcOj6eW3ruh7P5D2uSZNlojoSQFFqXpfbfcd+u6EuHH/8hz/gyaNL/Dhwe/2aV29u2ew8l1dCAdVa0TQNwzjQNCPGOD7+7od88sm/8eiRQ1vN7eaWYRTx7TD0GKcYhn52+tptd+ytdKyaumFzt5k/1xgjr16/Eltbo3j69CllYRn6DUMQ8HCil4QQKUuDD4HdbkdVF/SDJamE1wPNlaF9KTaUAH/+H/6Ev/jLv8QYR/ABrQ3b7RtQir/5m7/hhz/8Uz7//DN+/F/+GYBDe0ddlYxjz9P1WuoEY3FWEkNTCKg8v1VFmbtZkZjCW3YCv358I4pliLg0kpKW2MM4zBeLdYXwePyIjoGZ5Jp7cZvDgeubNwx5MQkp0fU9MWmMDviJB6MNq/MVZ2dn3NxmDl27p2waYvBYq1mfX6CHJCrtFLDwlVbv8Sab4FWFc47FQjLIu65jt5MLUGlPUTjQhn4cUV4cNrS2FFVD0yxwGVk2mcYgSEonsbST6bbS1Msz6qqitFMOfWQYBhEPhnHeySrkRtFakUKcbai2m1uCHwhj4PHjK9zdFrXZiWDAR7S1pIwsjzERfJzju48TiBD1pVBW90Q0osYPJCWfR1EUWZmfMo3kxP7qLVsnnVs6MaXMhk6z+j/mxTROfs0P4z0emUuf7vMCj0PNyLEPgdu7O7z3ubMjLg3Tvey9p9Jp5tGRr9O5vY/i0Ekbcbe9Y7PZsKhKnnz3Ywqr8ePIbnPH3d0dm63n8ZMrYkaJrLV0fYfKYl+tDX0/EEJgUqfHGHBOjnV1cc7t7TU3d3e4QiZ9lRYs6gbrLGVZ8fJLaa9qrWm7PSEEQdIRxGsqnvu+nTeoQPZUN5Sly3HxCqMVzihiCGgCenZnhaZ0rBrH48eP+PZH3+Psg4/BlWI5aYQGZjPFI0SZa5hoUyFACBTWkuqCflCMY896LTzHzeaOV69eE2LgydMnrC8ukVDtxJNvf5sAJK1mFxKVEsl7tFKYlOYQpndFEb89HvzY3+Oh7sddv8tudLqOflPxPD328vIJi8WaYVD4KHTRhMpap+OG7bTjNTk+JKXZ7bb8+Cc/oR8GdF5npXMrEdlOQ5psXbVsAq22QvfKxzFpkcqy4OLqEQoxQ3h1fcM4CPVoqj1iuqAfe7z3lGVNWTd0XU/X9oQYGdtB6gSTkVUV2B/2UqjnEDjvxzl4bfQ9FxfrmYax3Wzo+x5VlpyfX9A0DSn2WFdQuIKu69nv5VjKsmAce6wxxBQoCgspZfs5D8nTLA0fPZLP5cq/xN18Qrn+If0YMa7mybNnEnbS7tFa81d/9Vf81V//uTx/XZCS54svPmPRHohDjynKnGKUa47JriBGTBREW6VACMNvfVl9M4rlGKHdgxrwSRPiycU6CAlcp+mij8ShJ/QHwjAyhMjT5x/wF1Y+6FcvX/Hq5TXjGLHGoY1YmimtOT9fs75Y049ZJKbEd/X6ZsfgB54/KtHJih1cimgru0KbFaMxRlxpsdZkJFXhfZyRrjl58GQXK7sckcVpLXzsoqipmyXWiZoeQE+LgFKcr8+JMdB2LcZoLpYLEpJiN9MTFHJBKEW729CPA0XhcEVFGD1aaVlQZ05Obi1p4W8mxAYv5ZtVKT0v9mHw9L1nGAahm0QpVmMIpCmhTylCkknC+5Db1h6dJHGw+n/Ze5Mn2bMrz+tzp9/kQ3hEvDmVUqoGqVRVqqEpaGtjA4YZzY4VbFlg1v8CvWbV/wK9Y4MZLGiDFQbWZiwbAwzaeqhBJSmlnN4Uk0+/6Q4szv39PF5mSiWZZEWqMk5a5At/z8Pdw/3+zj33nO9QlaRc4CreHYNBrmliegennLLcl7rXOTzpy0rieYivd8iU/cuLpSlrpCSOVG9ev6Hve9BWNrZ31qBCq/sTjOm7yfBCzR3PsffshoGQBGqhScR45Ha743gcKIualy9fElOGG1SWSEkCirIixMR2e5dHsomQCWtTQ2D0I8ZqkUXLha61BmctMcR76jOwWCxmFvj55hKlFGebDTFGbm5u2B8OnJ1f8Pr1awCObUddlZRdRfQBlSJGa2L0s6mVuKPKtW80NGXB5WbD829+m+XZJQpLO3jq0mCdOAwClEaubZ0PIcEPohhkFMmnfP2funohCERs9F7UObIaj00JQsZkYmbTk8k4xZYVxXKZu/+C244hEL1ovQKke7djCF/INw/x9QmlRMIwJbJ3wruEPbmPeqf7fIJjxHcK55ncd3FB3SzoRg/KoI2DTKydcK8K6VTqDL1Q2swwjN3+wF/+1Q8wrqBoZNKyO/T4UeQUNSlzqHKhj6CJZUos9UpZVQx1hXMlx8MBbxSH/Z7D8YhzS95ev+HpM+EoHY8tdSMqG2W9RGvHZ59dQX48gY5Cs5ApVNx3vLm+paprdrs7VssFL148xxjL0Mm0e73acHEh135T1yilWK1WvPfiBcvlih//+N+CKgCVa4epDRGxzrCxDf3QsaiETBjHDj/2jGOPMYZlkcmGdUOz2mBUwhaKIXru+gG3WLFZrlDRY3Sk7aQYL8oC7+HFe99g/Ks/Z393C0qxcCXJJHwMc6EbAZQWvHKuV37R+JWrD6XUh8AOAX/4lNKfKaUugP8e+AD4EPjPU0o3v+pzPcRDPMRvZjzkiYd4iIf4m+IhTzzEVzV+Xa26/zCl9Pbe7X8M/POU0j9RSv3jfPu/+lk/HGPguN+ibUOypWBhZ6B8JIXAhC1m7OkOW467LeMw8Nvf+x7f/pM/nQH6t9e3fPLxZ1xd3XI8dHRdR1XVXFxc8r3f/x6L5YKf/ORDAF6/fcWrt6/5V//qX/L6zWu0MjMGaYIOkGEF0+tUqsI5Jyc+7xnHgTAq/Njjx5EYFYs8qmj9HlcWlGXNOATGGARmMPTiB2/sTGSsKpF800ZRlKXgkcMoItxn5xy7nrbrZ7krayzGFpRVTfAjY584HDv69hPO1gvWmw1v375meyeajlXhxJDBWPx+LzgeAqP33Fzd0oeIcSJonrQVA5RJs1RlebxhZPS9dMBDpPO5A5TJlaSRwmra9iiatAqMNagU0PHkwq6YsF5A+iL26z6bWRizIyEGwSQ+0Nx/k+NXyhMzU4YvwQbevwuJfhh5e3XFMI5gNbHvkeV6GpHq5BFFcZWJcAbQ2Hx9T6G0yNUVRcFkv951HcdjS4iKY3/MGDh59mEYcIVjGEcWixqlDYfDgf1+TyTRNBUoYaADDOORy0eX+BBpj0fOz9as12vKqiB4zziOVFW+NqdpVSYLT1a0x7YlhMDZZoMicTh8CEB7bFktl5R1iTWKMPSoFOm6FkXEa0NMI+SpUmEtVVmyaBqa5RpbFOAnwpx0v0P+PU3GkJOJdcYo6Qr7EfxASh5FmLHcZ5sNh+OB65sbDocDh+xIaoyQMo12MhbI3eLY9YwxiBRfKGa4hyF3oa2DzPlAqewyJV+/CFTjIb6y8avlCSYOA7PkzalT/OXd5lll53MmR1OX+eLiUrSSey9+DerEk5gmXYkEMa95bVBWnPt8iLx685bD8UhRlkJCRkzHiqJAG8vCeYZR1K/G0ROTwropP0hn2aiEs5ZhHPjhD3+E0dAdDywWDSEYqqqgLE8qOBE4HA9Yt6BPnpubG4bB4won3gc6cGhFxq5uKszWEGOkLJwIAaAorWXb3WKNneFfIGRqawyPHj3i+YsX3N3dZb6HoRuE4Hd/D3fGZGMSS1k4vE/0vSf0R8buyOpsyaNHjwH4ne9+D9ssSBG0cWhlqWvH3d0d1fmF5IDg2eRr3xWK43HLbuzZX72lXi4y1DMRgyf4gZRNl2J+351zKAtJ/f9P8PtPgf8gf//fAv87P69YTon99prELdqWGFvJmAMwpsBoJ+LS0dO1R/Z3d7THPSkmAXEj40kAawrWqw0kw253nHGCb6+uGQbPZVXz+9//PgB/aP+I3X7H46dP+Rf/x7/g6uNXIrWSAtYqjLVYl12hmHJ4zESS00Un/xaAiLPlTGjZNGtxyBo97dUdu90epRQ+RMYx0LUDy5XITT16/BjvB4wxLJY1rnQUqZARQ4h0XSdKHPakhiGvI5PwtMEziiZzXeKsZb1ekzI58di23NzesVitGcLAsevpsn5s37cceo+PE95J42MiJBkb38dpa5ULDaXxSefPSMiOKch9rDXyHmiR+CJG2USnNyuTBiepJzUdhIyR0W1S2Ay5iOk0FtNGz5/FQ/ydiF8qTySENa4/xyOAfLiamMIo/Oi5vbvFhyg28uGeUQdI3rgvmTCPTvXsLmkztKtZLtAk+n7k5atXkAL73U6cAm1B7FtcYWdZw4kF3/cDVRk4jkdub+/wIbBar7m4WOf1LM9/ddMyhpH1akFTCfb49vaGtj3iXIHWlqqS8WeIEaUVx+OR46Fls9mwXK2IKTF6jyusHJ6zSZMxZtY4reqSgUB/PHA47HFGuA2F0dSZRb9eL7m8vOCDb32bb377uyhVEJ0CLwpEJxgJJOtO+PGUmO2p/UgaeyAiIiKZf2Idq9UZKYFxjsP+QEpRNKu1pmpqmtUKncfjyhoYAiEEtPdZ7SQrDtzXzv2SeBCY/DsVv1Se+DI1jNO/8U4BPXNy4heL5+mxFosldVOLl0IMoGzes/Rp7ZPFCTKEUGmRV/Vo7obI//XnPybYBev1ClfIwXdMt6IcASgVcU5TaI1L0PYjIQT2+wNDlq5NMWCNoixLDoe9QEbCyPvvf4u29TSLkqKU133oDpzpM/p+RCnDzc0dXd9T1Q2Xl5v8GiOHozToq6rg0bnUD+v1htVymR0K5UDsnKNtW5pa6qy6rmmahmfPntF1HVdXbwVW2otSSFWVdLlwVzHhnMbZCpVJxTEk8U4IHqsVzx9f8kd/9vcB+N3v/z3s4gxlSrpDIGZd67Io0VpTFQ4bFMOdiDqM7YA6bBk+/ZDB7zi8uUNbQ7VcS8MzirJI/nBJKZBCh1J/yzAMJGP9r0qpBPw3KaV/CjxNKX0mry19ppR68vkfUkr9I+AfAXzz+RNWqyWHw4HucEvIpBxg7urqjEPcbnccdkecdTSLFeOxZX1+wXJ1Jg8cd8SgaaoG50QqJSbRQ63rRvSA82MXZUGTIovVioRiHLMMjNKYwlE1dZZ2k4uhH1pSCtKEUkrwuzFgixJrNCTNYtGwOhNWZ7CivTwOA+M4CiYpislB1w303YjJUnDD0BFC4G5/x2K94P1vvodxmnEcefP6DW17FOD9tACVoleJ7njE9wNOK3HM644ngk/uXgMEP4guc3ZHFHIPWG1YLRZoM7A9imXt0I8kJaevd1CeSmXGr3SacjMqy9AFxl7k9pbLJUlJl6pv95i54XPqBsYvJLGcwHLRM22YRJNdCUWC5gGL+Bsbv3Ke+Mbzp/PU4dTVOWEQJ+3lALRdx+3tlqkLPXjPGNMpr0wi+SnNbPP7IXnj5CKaUuT27pZx7CAG/DiwOTvDuYYQFU+fXRCCbGp3uy3NaiEW1iHSd62Ymmibi3Ah84aUVXPCyLjr8f0AKIZ+oOs6lNaUVUPhSppGNiljHSElkaUcPHpv2B8P2GEQEmEcsUbz3je+CQg5se8HlJKOdwhBri8lhfL03s0azMslTx4/4cU3voVrVoxjwLgC66pMfPanrm0SvHPM2GStpGBOSQiM9zj9+W2Uz8q5ApcVL/b7A2VVorRm8F6mZzknKmSyqJSef4eT4onOv8MkXym3p4L6y0hdD/EbEb9ynnhyeTbjkT9fMH+RzAegYNpuMv7+dOknNufnlFWND0Gw9jbzbKLPxbLcWavAVIsLB8eAtry5esVPP/oErwxoR2HzdKvfUtuC9WLBsjojpMQYI4djRzfkhp2xaJ2laMeewhq0kmmvVop6VaO1IyVPURVc3whXYbkSRaqirHl7dcPV1R5XFNR1PTuGDr7lmPXVD8cdWilKZ9nvt3g/0DRLvPecn5+z3+/niRbInt80DXfbLSEEmmWDNolPPv1LNuszqrrC3E3XYMRZgyZgTJI/8dTOUJ0tKOuKb7z3Pk9fvA+ArRuUKYjaMSaR0izLgmXTYI0R4YFRlHcA4tASxgHtjywyBrvvrnn9cYsra5SrMYVM+125yIf6gLUJ87dcLP/7KaVP8wL+35RSf/GL/FC+CP4pwJ/94XfSvPllvdEp2RljZhJHXdfUVU2/7mjbFm0dRTfguoGwkw994RY4q/A4jG0wKeJ95NH5JSp5YWZ6KQq7rmW92fDBBx+IBmtMecgrRaZYZcPUGUkpzp1WYaKKjNNmfcaiXuB95Gy1wuaLYd8e6YeR/e7Abr+j7fosouFoFgvqOqEn0poWKpy19p3Nexw9h8NeTBWsnccgAIf9lrvra5zVXGzOKLIjTkhijrI+v2CR5VjevHnFMAYWssOhyaNM7XBo9OBnhlQiK2qYk5XnaUwlxKiIQmUi5qR/KrJPBc2ykanotGllCTk96UWGQExB3ov8jFEbJj1YZ+xptJXE9ncYpJB4ILn/xsavnCf+5A++myam+xcIoLlQEnctz9X1tSTxpqFcrji0I7HrmZRYxC1S1nBMiTB6cVlWJ7H7GE7a7YWVjvMwDMQQCH6gqmuWi41MnLTi6kogT8tVKdABIxJzb99egRJHz8ViIWS46NnubwE4HPZYrQXWwElvmQxBEkiYvG4fjnLQjJJ/9ocDh+ORul6wP+zpuwN+HGYjpeAHVouGR5ePOBx2bIcO6xxFXaFyLtHO4ibt+aLi8skzyvNHAm1Tk4B/Jh3dy81aq5wzI8kPxOTR1kDhUIOGEbHTze/j0LYoazi/vMQ1Nb7vGMYho2tORcxEaJqKcumOf1FffR61y6359oMSxm90/Mp54jsfvEjpHlnuy9Qt7hfM90l9coA8Fc8AFxcbiqJk33aEmMRJeJaqivOBMPuJ5SmVErULZXj55i0ff/IpE6n4kGVuQwhY41lpjRsTESH/F+uaxfKMBAzDyPEo908ZlmmdoSoLtIKqLCnKBfs3bzFjmg1MNpsNow/UzYKr1zu0Njx+/ISYAl3fobXi7c1rulwsWxRRKcbBczgc2N7dsliuqcqay8vHhBRJCj797DMAFk3D+uyMmMR74uJsw3G/5+rqis16jSsK1huZsId+wBnNYb+jqUtihOBHtEpUVcU33/8Gv/P7f8yT3/k9eSPHQAyiFmKsI0ZF01Q4Y6SLP/Qk36OyRrIfe0gBFYQoWFXVrOUewoBKnuPu7fzZayv5zlmN+9s0JUkpfZr/fK2U+mfAvwe8Uko9z6fA58Drn/sgWlM9fkL1KHIxjviuZ2jlQ0zeoxJzdzZl0X6tNcYVOGsJ3pOyTImuFOXqjMJVpE6kU46HLY1tRLLERmzGryxXJcNn/5p/+8//R/7wfOBje0cEVsszqqrAFMJ4nXCy3gfGYaBwjqSU6Ks6R9PUGCPjz8IV9Nn5q+97jm1P14tci9ZaTqYpgErUTS2YQATbW9oCpROj7wkpkBRc390yDIMI/xs9M/RjFIOVEDyFK7L82gTPMLmno0gTPsoVKGAcB/q+J0aBP1Slo6hqkrKMU/FrpAt3z6rgNJrKf5GYYeU5GU1YaiMyMrkbd0pTJ+/3pBXE3NnLh5H7MnTaaKJ/1wa86zqqwj2Ix/2Gxq8lTygtLm/yiHL4moplffq+H0Zubm5FlskaSGpmv0/FcmEVhSnmQjQk6MbcOcobZ8g27qMPaCPKN4U1MlmyhRidFBWjHwnRMV0Dk4GJdQUkhfeBxaKhrmsOxx2Hdg8qMQzH/HvBYlFTaJuvTTkgeh9IMaBUwZBdvwbvKauayKlTprTowcckTlo311dzgVCVju1+h7UKbRRjCCQ/0mVnQOcsq6aZnT5/7/d+n8tHz+ijIY0epQ2FtWiriVEkLueebZqgVfIll7ISiTklzQVtLTrnOGUs4w7GEKmNpbh8BMsV7W7H2Hcc9jvuXr9izDnOZvx0XdcURTEXzRNMZhqj5xfziy3Eh/hKx68lT5we7UsmkSfOwhTTWsrPy6SKMd1erta5KAzEpFEZGqhQWKMxk2HQ/OhKoPshkdD85Kcf03Zd9lRI9FmSUnKSxmmZnqI0KglE0SQ5aC+XFfXk4PfoXOQf815p87XgQ6QsC6xNnF9Ic2xzccYwjjhb0A8iH6cUtO2Rtj8wjj2jP1LVeaLkKna7fZ7kkNW0Im3Xst1uud3tZkgpgBkth/bIoW0BRVHK633+7DnGGNrjkcUic7eipz8eaI97iGM+ZI9U1tBUFavVistnL9C5HB1DIlmDUpayMmij0Sjx3oiRFDyaSFVl1MFo2B86NmcrDoc9fd9TKMkbYzZImuompTV1WVBV5Ttuob9I/ErFslJqAeiU0i5//x8D/zXwPwP/BfBP8p//0899oJig7SXRhoTTDmWzHEtZo2Kia99yd3uHQtzu1us1uj7DWPUOuUaaS5o4ybklwfiJFBNoHVBZoiQNA9vdHmUMb6+uWa4q+t7TLB1GK3o/4Ex52oRjiSsX7A5HzlZLuqFnvV6gncs6zhVF6Rhyx6ZZLGiWS1KE3e5I23bsdge6rs+YJzXjHI3RWGew0WXDk0jfi5HAomlo6opxHBi6DJUYB3bbLWEcKAtLAs42ZyiV6PqBwopTzQRnqKuaY3tk6lyd3MlOUM+po22Npc9EvoSa9SOluFWkpEj6RNLzMTC5dUXktKhIxBiYpODu72XTKJ383AK9yCYv+aQ3vW7vx9zBNyer74f4jYpfW57Io82UAip4IAhpFSleSYagNYch8PLtDZiC5WLJYnWG2R8xbTcTgZtCUWpx7oqcSKo6uwDeT6K1rmjqCutslmNKWK2IyLqNRO5ut2w2AgV7/uIJKbsMDuOIKxxFURJjZPSj4H79OGN/66bi2dNn1EVJ27b0/cBuv+f6+oZhFGLrbpe7UQnqZoGxlhijaJ0qMSC4u7tjOI5ZW7WY3jIAfPCkMGbr6yPGOobRo7Xh0dP3+Hf+7N8F4P1vvMfNmzfc3uzZLB6hjUIZkbJTSgyLpsFXmhzzSGiXycpDS+w7/Ohl81fxdOBmOmTLIVxXNcuzM5aXl8JrGEdi39O2cojY7/fisDp6+lEmAyGGedJ4v+N8v5C2P6MT/RBf7fh15YmfX/6ciuL7975fPE98IBAuVN00YiaUD9ai9S4NIukTnVZ4IhKTIqpIMOIi+knuKptpKpvXb1EU1GVJUOIPofQE4dCziMChPZKtFQR2ZDVWCzdgtTrDGIdSsFg0JAaqWiZE3nu22z3BHymrmkWzYrvb8urNZygNde3QWvH48hEAT84vhXR7aHl7dcXd3TZDTi23d4IBnvwOAGnUyeCJ3d0N3fFO8NfWiBSm1hxzAzPFiA8+T+M9OmmauubycsOTJ4/5zvf/hG988LugpC7zBApbEBEZYYPgjlVK4ikRBpRVM1Qm+hGLF5m7wfPq1Rua5YLvfOcRuigYhp71I/k9p4lbYQzGuXcm9X9T/Kqd5afAP8sbiwX+u5TS/6KU+j+B/0Ep9V8CPwX+s5/7KHnBhXEULdB7bGbrHCmMHI8tt7d3FK5gsVixXK4ZtSguVIsaPXl/WyHkyYjCoVQSUow8BTEmyozPS96TUFRVjc9dWWPetawMfjwtkMORDpXHNgpX1JT1gjEqkgo8fvKY/X7P9bUk+7pZ0HUdb6+vRC/UGOpqgdYO7718WBPeSWvpyGZNQhCMoVLCOlVKvaMfOg5D1mO1WCPaz6v1mkXT8OqzTzNJ0VLlrk5Rlvzor3/AOPb5d4v5OUaiEn3oyfRDqYmwmFm/n4NiTCPvOJ5swKdjdfAe52zuzEkRPRMg1D3Yxlx4iwlMTmFfWBree4ZhRGc774f4jYxfT54gQ6HSpGt6creaCrCkDLvO8+ruSLANQRWCEw49ZjxQZgb1ebWkMJaoFdo5Aopu9NnESDTK+zyiTGGkcOaec5zCOQto+ux4ZUxifSZjR6U1u92W9jgQo6coS6q64nA88PL1K7ruyHIlmwXA02eXnK/WwiWIMdtJq/m6komUXGuurFkul6BER7brOrbbLc1yyTAO7PcZspW14VMKvHz5Gdttw8X5BmW0kCTzwdM6cepbbeS1lFXD6MEuG6x1hBjp+wGtNcMY2G7vZpLx2XIhuspTKEjCVgJrsQrS2DEVJKZZUAZpAthmIVOvtpshJiAH5+k6r6oKY8xs6f3uOkiz9jtkK+AQGcZRYDLhgQj8Gxi/tjyO4kr7AAAgAElEQVRxHz4JfGH9nOLnF89nm3PKsqT3noSQzMNUKGuxmlbzY+SGUeZNoC0fffITfvLTj4iQ9czjfIAtnKOuGpKxjGEg+pGU9cetS3namuZ8l4IU1FVVYLTmbNWwWlYcD0dMY9kdOn76058AsN6cobUjRnEFVcZwt9viw4hOirPNBc9fPOHRmQgM+GHMOW/AOisTJK0ZhoGuH9mcX2SX38nCWvLhOMqh//XNLd576qpAlY7HF+fscx2zv71BG01Z16QQ0NZQFIJ5fu/Fe7z49u+hbEUiq47piDIlwQdBDRg31xBaJSGwdUdiJw2E6HsMnrKqqOqamKKoXWRDGOdKTBaCKKsGCkvSWuBhff83LaU5fqViOaX0I+CPv+Tvr4D/6Bd9HO8Dd9c3mcUt4/eUO0DWGnZ3d1xdXaG05vz8nNV6LXbKKFzuBE2LO+ZCTOWf1bZGmXwqSqMI4bspOQfOHj/lvW9+m7/+8KfYeIXvBwZ1wLmIy0e9yWpWRo0qW+fG00jQGJzTxBhp25b9QYrlY9txt9vhnOMP/+D7xBg5O9/w5s0bfvrRRyStOeT7og88e/EezWpDe2yxdoF1gc1KCD9hGGkPgtUGgXgYranKQnDO+T+bsdZ+FItpmzc2H8aMN1YUTs/uQd04MMQBMBSZWBMIRB9IKjsKpnTq2uTnCuldC9Gp26SUYr1aYa0h5c7yBOhQ99/FLO0CckiPeWSmE0SVcJOETxRMlDYPhfJvavy68gTkDWfqUX5+Q8zk3Lbr2e3287QpBk/fdwQ/UmY+QQHokMALBlFrg/EKkkU7i64MdSahGZNQRAhemPbGUNc1zjmM1qyWS3zo5k1Nxn7iHhqCEpKw0nR9T8qJfLPZcHEh0Iflakn0XiTbFgtSgs3mDGMsn332GXd3N/MxssivCbJ7WDY+6Puevutm163pwL293ZJSZLFcsFguSSlxOLTYsqYsS56/eMF3/+CPOX/0VF67Mpw/ew/fLHHWEbKqhlKKECJ91xFyTjlfLeX9V9P0SL6S1lnSLRH8qfmgUWAspigJ2mBSOqlaKAWuxBQVdeZZlONAGAb8OOC9J9z78kGmClMH2f0yi+ghvpLx68wTUgZ8TgVDvrv/uF/2Kt75t83ZGa4oOfSH3Pad0o5MtINPKCaSmEi/giJiULbgw59+zEcff4yyBe3YQ+iIGZOvC4fSmjEEkYwLiW7s6EePdQXL5YrC6rlzHaPHWJFkq6uKuqoYh55PP/kI40qa5ow0SH4YDmJpPXqPs1LYxxhEbWtRs16vsc5w/fbt/HtePrrg7GxDUVQiQDCM9MOAtQWr9RrQYvKE8CXI9YUf5JA+wS9D8OyPO/Y7MU+6228Zu5aqKCnLkmVdcbHZ8P77H/DBH/0pbvOIMSRMlsozxomtuA9YK6oiKQSRfUMMlFL08/soDTmPUiVN3XC2OWcYBl69fMlitaIoS4ppgm8N9CNxGBiGHpsncL9IfDUs0VLKid7jvRBsuqMUhev1mnqx5LGSYu3i4oK6rhmGHrTCaFBWQd4cSAkfPDNqVyHuWMoQvMeYEw5XKUVRVdiiRFuHybh+lQLOKOrCYW1Jp2SBLKoClOAeUxKXupjJa1XT0PYDPgoREWAMAedcZqCWpJR4/PgxXdcRY6SqK7oMq5iKWq01VV0xenHRq6ylvdtBsnS3HWMrF2Z38Dx+/Iznzx9zfrEkpg6tI3Vd8ujJOS8//YxXr9/y+LFoF1ZlyaJuMKkHNCnkEXRMTLIqU5cuzp3iUzKZSEeTfbCPkTF3uxTgCkOKmhg8i0VDWRT47vhOcXNKTp/rEnHveeUjnCEXMUbGUTrsD6jEr3lMpByVMutc3dsFBSeYUBwOR3a7nXSCsvZumDDw83RD5wO5EuyW1rjCYDMEoxuHmeOjQAozq0lxwLiS9bKmaWpiCBSuoO08N1ciw3R1/VYK02jwPmJNjUwSYy7uEoWz8zWfSBwPB+nYFolxkOnMe994j67r+fCnH1FlNYzCOfphoCzrfBBV3G23gmQ7tmilKQrRZwaZTpms5ypSmKKm0azWbM42/P73/5Rqdc5uK0Xx5slTFs05o0lY6xj9KHANpegzfnG1kteijIKYR0qZoyCEv2whru59IflFFRa0XOtWa8hTvswIBhKTxl+KkIzB6Bpb5UmCyhMupsmf/J6nIvpUUD/E1zu+DI76xQL65xfPy9VS1lSKJDTjMAoXAWStp0DMRDPBLktXNpmSURl+8tHHIl+pxNegPXbZNwJS9FxbK13TlA+jQ4Z7hJDJhmmWnVIa6RLn9d91PSp1edplKMqSspR1v9sdaRYrlCoJQdF1A8vVkpVacHm5JqSBt1dvuKzytZyn+SF4NudnXG7P+csf/BDjSs7Wa1ISQu+QD89FURFi5Pr6mru7G6yzVJXjsN/x9mrLi2fP5vpgHAa0tow+4FzBB7/9Xf7oj/+EZ5cX/MW//jd86x98A2MdNnOmjCuZBHdERQMiMUvNDWgDqDg7pmqdsMYQQsCHQFM3GOdQWvHm9WsWy+Ws9rPenFFUFeQclX6JCdRXolgehoFPXn7GomlwWcx6sZTuQj2dVkZ/T3YJQkyYQiSYGAbQsoB16dDOCnwghdyGtwRjMAaMVYRMrNEpoeoFsahZrdZsVkv26ojSjsLZE3YxX0POis1lJCs6xMg4yoZclBVd31E1i1k67vrmhpQSdb2g6zvKouTq6oq2bVmtV4whzCD488tLkX4bx7kwHYaR0gl+NwXFbru7t1hLFouGH//ox/z5n2/53e9+k7NVgTUNda2oagVqnAverhtFCm6cJKaEaONDEBwoMCWOFFMWNc+j7XSPoQ+gJihKfmPmrnIm5VSC7+z2I8QoRirqizJS85c6/R0Z9jFNCkLwGZd574ke4msdE+b9PhY+xIhHFFZut1vutlsmA5EJ3GaMwWX1maQhBFl7OkbBH9/DKk/SZwBKCazLFoaydDRVJYRbC7fba45tjysaVMpjxN4QbYPPqhWjlT91noylFHn85DG7gxTXr958zAdPnqGNpu96jscOl/F0MYrU230pLIFFWHyIKK3z9bFn7DtKIwShfcY4j+PI8+fPefLsKW/fvGW322FcwfrsDFcUVHX9DkZb20I0YvWp2HRWrsXlsuHiYsM652alVOYW5A5x8CKVGRU+yeZi9KmzjLrXqJgMRHT+jLTK4sjTn5CMIobTPEo+S+bPUx4yK3MUJaYoKd9RyHiIh3g3Pr82flbxvMxrXFtLn62bAwkfIkWpZckjsICpp6QUGapgUMbx459+xEcffwJK4cdBOqdZoGD6gbbvMuRRCWx/kGah9Ra7UzRlQWFPhL6yKLBGZBL3uy11pdmcX9APIrHoCuks615ua60x1jJkuJg2mhA1/+YvfkhTFZx9TxQoht5z/fINrihYrNbZGCXRlBUx+zyUZcVUW+4OB+7uthz3e0ii4a4U3N7eUDclzWJJN+3h3MwmJav1hidPn/Gt3/5durs76ov3hPeRpB4BcFr4EWVZoBA95qnhphRyanAn1TBFwlY1Q98RSGwuLzBFwWG3JQGj94Rcu4TrG0zhThP3X+JQ/TDbfoiHeIiHeIiHeIiHeIiH+Bnxlegs14sFf/r3/wE4RyARfBAtQ8CMHt91GC2449ELbrAoS0ZrUFoa6rM2sVYk9a5lJeROtDZoBcdMTKusRSvD8uwRTy4vuXv7GgP4oCgLS+k0Ritihng425CS4tgNeQQqnVRXTLiXhHWFWEkyjTYS292Wm7vbbKqypaprnj9/TlUUlGcC2bi4vGAYesZxpB892+2Wy4sLHi1rmqrhs8/e4GOYyTDPnj3j+fPn3Fy/YRwHtFKEIJAQmzVh27bjmDHRztYYrVC2oB8iIQqg31oLtqQbIsZOuJ6QO3cyQ506wFNXOymNV8wuYdZoolEQAqvlOc4aISRN0lK5q/xlwvCigKEzBizL0ymFs9PSVIyjl/v8TJLGQ3xdQusJnZ+hPff+LYkHLbv9QdwyrZunImJVDeWE+bWOELM829ATUEQlVtfK2AxPnOAAkaRBqfvKC5oUPIfDkUPbcVEuODsTNYzrqy23d3fUzSor20jjVSBW8vx325a//IGQcRSJTfOMpD273S1X11c8urzg+YsXPH/xgmM/knJfQ7SP49yNmpj74uYVSNrQD8N8rS5XS1abNfv9nk8+/YTRB549fY/V5jLng5L15jFNvcrvoiIMHl0zy0hNv3cIEWctZXFfaePeWAkN2qLLWgxixghEUbuRNw5DwufPJDlLmjHRmQB87xqXSdMMEv3S9TDnFLnB3PJ7AG19fWNaSzl+Nrnvy6AaIke4zteytY5jL93emKYOcCBFshnJPYHVJPwalMWryE9++jGvX7/BWCeY3bJGR3Na487QhwBKYZSGEGWShOCT97tb0lhR5teyqBcsmnqWzyUFgYkOLS9fvub8IlLn69haSwiRsnIYaxn7I0UlgghtJ6Tb7V3HX/3wJSDQ0bdv33C+WfK93zvn0eMn3O4OqAyfqHL9NZNxQ+Dm5obxeKApC+qy4vr6DYnI2dmZkATH7MKL5vLJC5y1/L0//Xt893vfEzKfrTh/8Q2stYzez7J01lrutju8H9mslrjMidBGo5wjHXeE9jCTeI1WKG2xsUBpiw+JpmqwTUPQWqQpJ838ECiVTNwmOdFfNL4SxbJSMgIFefHGlUygleD3jP2Qxx8V1UJkk3wU0XFTlqimhon9rcRZL0UxuYhBkYzo9K6WYjM5udxqa+ciLfp7Gs5MkF0Bk5NdXupqSdv1GA3JyshjtVrhypKEQtuCJ09esGhkcXsf2e0PHLtu3rSttbJxZ9b3hKWRYrQnhMjY9xzblsuL81lKyo8e6xw2j2Tee+89vvOd3+HN25fc3r3ir3/4Az745lNW65JhiPTDgPdhNj0xxjImP2tKTkWpUsKON9ZgrGzkcd9mzKHK3Jt37YV9Ap8Mxkmh75wjqcjge5rVGTEZYsyf6T1JuVkVI8lII0xj1XuFsChtnBZxiJGhHz6HT32Ir3WkbIRBIkybCwmvLYQ4W0tbY4kx4H0moRqNmeQHlRI4VUqMYaQbRwYfQGmRi6pOzp0piCC/zha2IQT2uwPOROq6FoMeNZFWybCGyTJXzXjAk9azyuYe8lq6tucvf/ATFosFbduK016qsWVHSA2r1SPu7sTwZBhHrLXZ0U5nAmwkJc/Qd/ghYZ3Jah0CY5sUJfq+J6ZJes5htCEExebiMTHPkoc+j5lVzlday1iZROkM7uyM4l7Omi7JOTvMEHKRybqvn44xaArS6BkTYqI0jEyKHyLLxXydG2vRE2kwJTm0TLen7+/nhIf88BDAdM3Ntz63f8HfXECvs0qE0kqMc7QVnfEJDjURU1NgXv2CwyAkxRgVf/GDv+bq+gaMpSwcOsMLXSarm/WKSgnePvpAd2zxQQkMUoues0pphkEpRE5RK401muVCoFpt21OWFUpJnQNwbI8slw5j9WzCVhQF1hpu7m6EdzQOXF1dAaKq471nuVxxfdvS99A0l9zcXMkeXAzZIGSCtIlBWvQDlJbt9g7vPS/ee4+nTx9zfXMzQ8FQmvXZGU3d8Py99+kGqFNJeXmGUsLr2u13c+rwPgiROHhYLkCnrMo1QerEFEZnhQsdBTKiSlG9UApwluLsjGdZP/54fQ3A9auXvHz1irZtOVuvWa2mJsHfHF+JYpmJPR0CDJ7kO8gdIF2WJK3RzlHUjciBZCKP0lqEpa2D2R45kWIALcW0dUZ0j6eFHCMme7NjC7wfePr8fa4fPeLNZy/xvWcfOqIfGZVFqxNZRN/b9KS77aiqat54rXUYW7DJLPffa2ps4Xj16tV8KoshMHovC7dw3N2Ji9erV68oqpLz83NCkI3vuN9hy1KY4FGw0WXGJCklVrF1XXH56ILt/i2L9ZJxHHn58iV9P7Jan+Hygqrrmv3bkYvHT7jbH1FKC0FHW7xP2LLA5+UqiiTqZzZnEvc6QUi3L2TJv8ViiXEFyjhsWRNHTYye7IJyeowQCIg5i85depN9Jaw5nb79PSOan5fgHuLrEynLKU19HSBrdWv2+wPX19e5w6Np/UAclbjCJcOYi+vWj4xhxMcwY/djjNK9mHCv8fSMRltKZ0XDV2natsWbwHK5ZPBSoG/Osyzd+Tl3uyOj91R18Y56jug4qxkHCbLxHg4H2ral67r5AN33PYfDgb4faVvZ8MZxxBiP1gOHw4G6rrm8vOT27o4UNUP01EazbmSzXy4X7PdHbm6uWazWlGVN3w+CV65qlqs1PgS5+EC6cloxOZWKXJ6YGcWcg0LMxgTazF3jhJKOvDWUVYkdR9L2iE4nLdMEMvmD+bCeQYhyYM6H5slISe6eO8tCnpBvUn60ifBJLn7uObGl+IsTdx7i71rkdcK7BfP9+Px+8vm9pW6ESzSMIzE3fEJMaCMT3BTBqgj3z2t5PUc0PsInn77Mg9VE0zSM3YGuPfL08aU8p1akGNE5pwQntUYKgdo5/DiwXC5mXpMiEYN0uP0QMdrTLB5zceGoqoFjO3BzK4fqxWotB2aVSb5WDszOGax1rNdr+v04F9cxRpbLJU3TEGMUzfZhYL8/4pzjsDuK2UdWj1itz+i7nuF4IMaRorCUVcH6bE3X93z44YcoI3nst779OyzWZzx9+oyiWtAsznBVBVqjtTQ8RI4zk/pTYr8XFZ/i+ROIeUqtkGs8RoLWMBGkvSKR3YKtxZUlenNO2u1QZQFKdOgByhfvcXF5mX+3/WwQ84vEV6NYhkz0kISptM6dZhj7gaAMRVVg6xpSEm1N46TQCxEbPLrKyd46VJRkL6oVMlaxRuc8m+buknR7pTP65NETnj19JoX49S1t29OOe1CKYch2280SazSr9Zr9sePp06dENNvdlsePH1PXVdYdDPPjT1AHkWxZzBqsKOmOTeyAmDzBK/b7LdvtjrY9cn0FfVFSuJqLi3PKop47TP/Pv/x/+fDDH6NNxDrLs6dPZoJgCJEYE1VZYXJnebLudUUpxCaUCJ8XFd2ho6wb7t4K4agfPcw09i8WqOlzJ3etFGMU9u5quaSpKkiTGkmGcnzh89YzRANEf9JqMDqhksf7abQ1UjUFfpz2yoeC+escMQR0CjKpOLmxA9IB3W0P7A8HUsodmxSIPhLHAT8q/EQOM8dZDSPGRN/7DGPSpBTxg6PIybtyFufMDA3S+kRw1VrjfWC338+TmbJoOBwPhJBykk50XYs20lkqCgcazs8vALiNt7QHIfpoLZ3tpmlO8IppvIt0taf8st/vZ3fLw35PUdaApigbmewAn336FmKUPDB6MPDtb33AH/7BH2BdweXjRxz7jior+LhSDJ1S8JkBn7taeRr1RccryRExu3WKq6JBW0XUClWWqCx36WPCFA5TiiIHwYPRM8oiTgz1ecpEVsDQPwuFcZKjnCBfUzH9kCe+tqEAp9MMlYzp/v7z5QX0/eJ5uVzO634YRlJW2olRJikxBkgiHce9PTyJyDgRzY9/8hE3t7eQjUjKwnG4beXwOYkUZNWX4D2KyeMhzWoXdVXy5NEFT7KhxvbmhmEY2O22OKMoimWeUBtcUbA0DldKIzChMVYzjD132y3NcoHS0DQVMUWMtjRNMxfLzjmeP3/OixcvCEEk5iYo1ziKmdHd3R3nuVNbVwOH7RZtKkIyFGXN5aMzIHF1fSP67fUiv59r0BZXLHj6/FviNhoVKgVspRhm+EUmSCdYLhouNhu0yu6+SUMcpckWgrizpmmqKKZuSmuBdlmDipFkrPyjSpAbpNq52TFxMn75ReOrUyxPHQSFFMKz1exIcgZXZ73k0YPWpKJAm0K6mEUxF9ey6CWBp9x9mLSQYxL8ncnSL6MfmSZ5bnWGsYUs4DnfilnH5Po1jiNlXVMvG8YUqZqG29stL1+94pvf/DZPnz/j9au3HI+CEzbGsFguafOIox8GYgoM44BSUJfFjKGUjpHIn4zjMCf/tutAWZqF49GjrGsKtG1HN3TUteHi4pyLywU+tOx3O2LMotw42ixNF23AGEfXD7J+lBLNxqxRnVD02VI3xDhjJL8QuatvlD6NYCfscS7Ai0I0VnWW5Irxy5vUk4vfO3+HbNCT2cA4iiHCg87yQ8j16AkpoFQkKTOvC2Us0Vpubm6z+5R0LAxxhnTpe2oMIRtXiNkPhOhzwRfp+gN+gGUlCbbZnFFkfVOtNST5sywtbStFblM3UigCXS/ul8aKfFEk4v2I03l0GbOrZi2P75dLUpBOclmWPHr0iM1mM6v/3E/qn7fiNVkHfbqttTDlJ/b30Pf4DN3QRrrBy+WKzeaMxWpF1dQyFcsapyHnHaOsbDi5SNZaCyRDaUYveUKGT3L/GGNWsclFx2S+cA8+lRD1DpMxiv045O40GQspRfdk1EQSWSiVTaXeMUe6d3v6uwcYxkMAM2ZZIPBJjCxyfLGA/mLxvFqv57XUDQNJ2dkHQNxvtShpqfuzLeau8hASf/XDH3F9fSvTEibRl0RVlXOt4rJT7zgO9G2HUaBjYOw7XLnmYnNOXVWzy6/WBudc9jGYDq6KrmvZH1rW6w39eHKkK8uSfdsyjiPHo3SG+6HFx0gY5VqcfueyLOfieb/fz3s6nPC999XI2rYlxEQi4BY1Rhd89unbLGiTqMsFTS2KIovlirIsefL0OdpYmQgmsJUmZhdQZy1mqidiYL1aZSjZibeQohxIonZ4NZ601TPCIJEnjHkyrUo3kUWYjCBUAFtWNM6y2GyIv4QaxlekWFZTaSu3nCNlebcQhNQ24fukY6yI2ggGzpgZ75zvcM+KWTRX+3GkrCrqqiQlkRIBgRsEP9K+fYkaEt94/9vc3O7ZtwMmQEgjxmqqZTYncPKBtG0nXdzsordcrnBO5EisFR1UYMYoLxZywnr1+iXD0LNardjv91RFIZADRD9xu93y+tVLlFJUVcU4dOJiExLWVJRFODl5OYuzQnSq6wqtFYe7g8jN1RUpKO5uDqSUL8xVg7aOYz9gnID+l+tzXNmgyyPHfuSYRxLT5zB9ImnCFs9//y4MYyLyKSVGMHUmEmij0Unjgyap+3JPJzJfSCfjEj3DOvQsOC4i6IkvdrQe4usYKXcP5zU4HZKNJaG5vrllu93l5BrRVizltbIYo/B5HY0xorQSIhqJyVdgWtfpnjyZzom273tZqz5gdIJVzWp9xmYjNqujz06f+w5jNXVdkYgMfcehbSlDmfMXhHRymUvxVJAWhRygJ4OjyYRowkpOnAORpBT9dqUUrihyl3tkGHo0J1xxfudISXDAVVUJLCx3iq22J0iVUvhhyOYH0mUXkqIQr50zOHNPyD8BSaOwTFa/iogfB8ltSs366agTLXPuUk8NEiVpJCrJ33J3lbWXT4N1+d+XnL6np5hoyQ/54iH4MvjFuwX0lxXPy9V6rjdCiCibpSTzRIk4PU7IB8YJwqRJStOPkR/++ENu77YYV1AVlr5rpVguhIQGWes9RVSEUisKo8Fq3KLh8ePHLBvhTnQ5BzjncM7SxohSQnpPiMxuQqO0YgxSe/Sd5/zikrv9dj7Aeu85HiP9OFCYEmMNzVJqk6quGcYBjgLbmO4/5aQQgnhe5AlU27Y4JzWQyQ6jfdcRQ8iGSIlH74vHw3/yD/8hMSWqes1x6KirGm0hqUjKDQurFWPWwg8hUpbFvXPMPbiVnKDRtsBE6YonXc5wMFOW0mE2BvwoZx59rymnxfRMZD3fher8TfHVKJYVRG0Eu50L4y635qMWm0RdlETvidOIAI1JCq0MhpNhhbBET29O13ccji0oTVkUggeeVBy0ImlDu285cws++M57DDha/3/TvfwMIgx+xOXiulmuMUXJan1GQnPseoyz/NZv/TbaGm5u7vCJueis65rD4cDt7W0eqYZ5U0xJhLSH7IhjtIYUGYeOumnY7e5oCsuzZ+/Rd57tbotWB6yVjWq9XtMsSpaLAmsDd9u39H1H0ywwWtMeB8FM5s51DB5tjDhfGYtzFXXdYKua0idudsdTZ2aebd7/kOQEHZH39n5HS8bH8mOFcywWDYp4D8Txxb7y7Ljow4xhlD0yYowmZg+J+5v6QzyEnkinZKLuvS5rJLHb72nbdi70rDH5UIlYVq+F0BFilPFnkuIwpYgfRzSK0mhiiLNldF1XGCW4Z2maijum1qI6UygDGLTJHWzjCFE20bIsOHa9kHdjoB96uu4IRt8bgRYUlSR5VxbElOj7XohF9zo8wEwSTClRFAVNJvAtFgvBNh9bnFbYtXR1jDHEEDJnAg6HA/vDnrdv37JYrSjT6ZA6xUwAzj8/5SzvfSYmfm7Ko9Scl6awhUzyou9R+X0xKiKmqHJIjjGAnspb5PuoT53AL7vu1fy/dyOdMk06VdUP8XWMlGuA0wnqnXgXfvHF4nnV1LPS0wQhDDFijMsTVGbIj/rceoxojv3Iy1ev8/oVveCu3QGIu6bKZVcQ/G1lDEpXaCV5ZbNasWoaVosFq7Oz2bjM+4DVBu8DCpmM73Y7NufnMpm518A6tkfa/khMAVdYErKXGi020qLuc3L4BTgcjwy5SXU4HAhRus+TNnTTNDP2N+bp836/43g8omopqKcZkrWWs81GXsvxyHqzoawL4TVoGEPCxkRMon4hXfswfz7T54LSmT8hHBRd1RSlQ7dH1CgOgVJ85IO4NnilKauKuPfStNNfzG/Sgf7laoqvRrE8hRIlhBTiPEZUxgpsQmui1piqAqUxbom2TvAsKn8BaCsyLEhht93dcTh0NE2DUlmEOidWY4TdqWKirGrKZsFidYZ1JcPoGX0goekyJCDutpxfXOKDpxs8XSeOfW03sD8csa7AB+YFtT8c+Oz1K7Z3W4zRlJXDOocxhsvLc4ZxoG6ylFWSi6rKLHxrtFxY1jKoQPCRyfARxMt9uW9LSYkAACAASURBVKp4/1vf5M3rjygKx2bznOVyyfZuSwgt3ie8zedlrdCuhJRoViuRuCtKfJSx8eF4nDtd9w8bp89GXqRAWfRc/IPgSK3WlM7MC11rPXsHfL7YvT9SPh1yTk9ltGbMn9HQD+8UCw/x9Y6U5ZomRYQJv+vTSHAlr9+8pW0F9qRJNE1Nu9uiFFRF885CM9aKBXOeABEjRikxH7KKs1xYX27OSTFw3O8Zxp5xGGjjSCKwWp8RQuTYHnBOYBXWWvq2z9eBEampPMJNXuxgtTMzXKsu5Pqo6gprLV3fnbosMdC2LTFfKdqaecN2rsg2tkJmFixfmLvvIGTZZC19L+5+x+OR3X7Py5cvefb8BcuVjDknqFlSJzfRqZM+da9/mQOrUgptS+LoSZwgcjp6yhRR/QETW2xRQFGRlJPxNgoyz0IZizL5FD4R9/IU67705Bef/Bd+mQ/xdzamkQWfw69/sYC+v64ndYQxF43OGPpxxBiL1Tq7swsEY0IZzTAjpRkj/OjHP+HmdptVZASvvLtuZcJl3CzH5ccenSKbRcNquaAqLImcHxBreyEHd6fXajSr1ZLDbiTFSVHLEsLIGPy8J1d1SZdVuFRW8ZE8oQkxcXd3R1EUGTJ5gnBN70UIgaIs0EbPB+S6aea6DKXoux7vR+FDqZIyT9sFtnFS+trtdjx68hQQFY0EaBUzJ8Iwjp7/j703+bE9y/a7Prv7NaeJiNtk3szKrPfKr/FzIT932DQytrEQAyZIzGAAEkiYCTNGMGDiGQIxRDJ/AGLEBPFXIAZgkC258r2qzKxsbhcRp/l1u2Gw9t7nRNybWbdelazMyljSvRFxIs7v/Nq9117r21hrKozNupy/JWExqHTGidCCXzZmgE5ypxSCcFm0FtUia7KMpsAvUr4OcvUVutO4lOr73jW+E8myrAhUTnoVfpmIeTXgnDjyhRhl4ASismhjs9yQAXXmEqUFZC/FBcWz997nur3l8vISozUphIoBapsGYzR/6ad/FcaRaBRP33/GxeP3MJ99jgpCdCk3oLEWbTQ+V6d9CPiQMm4x0q02rDZbTJZtevH8Oa9fvxaSHxbmhLOWcRw4Hg95YjtVxpSCy80apRXONWwvNlxf36JSIy0fTg9x0zbSPopB2q4Z1+ucFda6sXn/ihahQEicttknXRNQHI4DX339gpevXrH4cuO8rXJDbjmpUyWqtldlcu66ls1qdUYNPE3a9/UMyyQnqz6FNrIMSEFUA8oeCH77gdn+EDlKIlgrOqWWoQgRrm9uGadJ/kwp2rbl9fNBiCKX29MiXKnqwgkJZw1xkapxihFjTZVIaxpHWBRNI5b1jXNYC8Yopnmh63qcnWsFwzaWl9evIWkeP3kMOokdfD6EGAOa0/NwrrAD1AWAcyed6MJtKIQ/YY87EonFLyw+MM9z7tAoUbgASNl5M3eDFh9pm6ZyJIpualkoaysTq/e+bq9MqKLk8WtwB9KJNyI7HyD6TB6MLKNnGWe6DeiVEH5jUihVqtQncjUI/LOeJ61yQUnV38lHnpLph/iBxhvTl3rz+9p9uJs8by8uiCnVcUIbR0xSDDJKoVMgKQ9KlGCSOh+DNOMc+Pmnn3F7uzt7VuQzuq6lNW1FOYcoRbG2cWzXK1pniMHjvWb2Hp2LewWKJTBPC0SWZSGSGIYD47Rmte4Z55l4lOdlHAeiUlxcXKG0KGH4EPOYl2i6TmQv8zgxL0vt8KaU7ij4GGOqo+gwy77Ms+d4PKKVeCKUHCnlBHeaZ3x+7dNPP+X3fvKXsO1p7Eh520CV0qUUJYMULxTFKVHkMZXKfhopgh9RRS54DIQUMa7BNE4gGDGc5LXUaQhKOffRWWDA/BrjxHciWQaq5XGIgXlZ0FlPuOm6jCkCk0+qUg1ufYnSRm68BClXls9gLnW11GQ8X0lI9RkmTiuNsj1qs+L6i8+5PSz8yV/963zx4iXH44Gf//yTitPZPnpERPPnv/gF4zTzwbOPMEZzOMyVhNNlUhDAPE93MIPLskhLdJkYx4EQPMucpVtCoG1b+lUvlrwqMs7CUl93l4yjiHbvqo3thPeO43Ck6VpsZonu9geMsYzDntVqK/hN4HKlabu2YgBjEpvOefHsDgeGaaZUrdW9toU6G1SKuULRiq3nPEkVq1/1eaGdMUHp9AC+LcqAojWiw5wnw/L33vuaPJRr9hA/5PimwU1Ibbe7nbQDjcUawfBCXqwpIfNBJtz4wDJPMkiniE4Bv8w03ZZn771Hn2WShuMRowRy0bYdfpkRkPMJiqHPFoOJRNs2vHp1LYlsJqlKUSpVDG/MbPjrww2Nc3UMsdbStm0l/N5n7RdYRIFGTNPE8TDgfWCzXmOtZb+X5z7FSN91WCsyl/PugMrvE9Lfm6L8dw2D/oLPm5AWAJ0J14ILVXkRo5Rcr0LWA1XXQQVag7G1yn3X0AhSKD/fW0jnVvT9MewhfmCh1duHijvz0Hn1Wf7bbi+FuJbv2ZArs6XqyRnePmnDYlpCMSHTlulw5JM/+zN2+wOu62mdYc6wzK7raFxLyhBT4xwXmzXPnj6i7xumaaiwwxRFzvJwc8sxw7W6rsM0LVoJrti2jRTwtMJQlHPkedjvb5lvbkhJ8ejxk2ppfxwGnG1O8IsCt7KWpm0xzjEMA6vVihBChYnG3MUrxbrjYSBGMSDxfmGajqIWpKBrO47DVLlabdvmXMxI0ptVgUD0nY0xNE1T8wm5TKexR2Fom1V+PRCjR0Vfk+WYr1GMkZiSQOZSNm4xigB12ynLXxrUr7fw57uULBegfYyZGJeT3zNlhCJwr20rIHltIKbaogSkjYeQSmIS3OGF3mCUJG7WGky9CALNj0sm++RqdcgrsKZpOQ4j773/PgCrtUjK2JeOZXcgRk/brzFWZFaWEFDGcNjJRLXb7zHO4jIeebe7JXrPatUBIoF3XmEtDlZFGsWnxKrf0HZt1UctLjfHrMt6OOxRKrI/Hui7jsNh4MXzl3z+2dcsU+TRlchTvXj1kg8+/IjL7RUhBg7HgS+/fsHL1zdobXh09bjilebF54e2TFJSIVIZiWzzvhYtU52/d9ay3WwyrlQe3JMM1GnyqpNxHXgyWTUltBGG8FT1H++2SR4qRj/kSPV+5N5cGFHc3EpVGciVVF010iVZ1rg86RmjUVm/nBgwSiq5Td/z5Mljri7WXGxFq9hai/eRmB3srq+vMzIg8Omnn/HTn/6Up+894csvvpK91LKv1to6uZCTwjIJyGScK9HO0WXscfCeCLW65fMiulRhlmWpA39JlJclOxGmky5yddsMgb7rhDCDqpNS13XEQnLRpzOZMpa7tF6bphHcczzvgL1LIqqJGDAOlXWZJcs1aNvg2l64JEAbIjYTd1I4PeMqxloyrhPnr/jsc+3qh/iBx1tvlXsv3kueXdMyLKHedzEllDJ1oXt3G0qwsrUeppnGkS9//ue8v3FEpQgqMWaN9L5rIaSa0Lau4epiy5PLK1QKzMc90/FAv9lgtGEaJyZ/niNkblZMXD16REQUZ7bbLS9evxL4Vh5vxmnk9jBwHEY+/fwz2naVxxjLdrOuvIdz4nAIoYoWKK0Jy0LI+chUVDLK2LNE+r5DkZiXmXkcMJsNq3WHNobLqz6T86Va75omn6tUSbjLsjDPcyU0lzjHUb9x9VRW7+qe1EWI1j3WRhIen6JAkeslyqZzOS+OiqzPLypJv86S+kGP6yEe4iEe4iEe4iEe4iEe4hviO1FZViTcvCclsX512layjDYWv4hZgLKW5D2erHOYEjFmp6nSTcxtvkS2WS5ger9gtMJldjeQZZE0UYlAeH/1CK/gyxfPuXj8mHmeefL++xzzCknd3vDhBx+w3W55/eq6brtg88oq7DZXlqdpFJ/0jDOappHDNAB5JZVittWVVoW1JuMFFw7jAS9gbtb9kuWaTq0DYcULyc4H0XpNJOZpYpoWUoRhnFgvUmEax4XDMPH+BytZENuWf/6zn/MvPvlzolJstpdVFDzD/tBaoTnJu+kkzj21dZuxjGEZpbLcWC4vL1Aqtz0qY/ju+q10D0r1T2UZxBgFT55iqqvSUuUvx/wQP+BISMcCacULLv6E/3v56jXDcRQCCdRKrVRQijPfCW9f8K1aKRorpiObvme7WtFYy3YtihK2cdzeigGIdY7Ndss83DIM4sQ5DANt39UxKMaAMRpU5PnLr+j6FevVioSqeusFIwgnxQkAisqGtdX+2Th3wjPPs1SdQ2AcBm5vb4khELyoY6SUanUIyFXlNhupBNoME2u7TircnMwbQLgNmMh+v+dwOGRitKrQq18PmlG6SvXQUEkLgc80WNcKXEIrweFJe6kaKNXxrly3e5+b3lIXetcK9EP8bkeRczspq79dGeP8hc12KxrEIVb3uRCkxZ+UIpJyVzpXlCuASMKHwCef/Jlg/fWJsDZHRdNuSKplCQuFvbBqhePTNo5xmPHLjDFCjAup4IhPPIGIYhyOtESatmWcjqAQct8yoc2JHLe93HJx9Ri0ZRwnplG6xX2/FtKbkmqyzWRa5xzTNLHb7djv91xfX1czNa01wzhyu9tV5ZrGCu9hGiCEma7rspES+MXz7L1ntSJ+cXEGmS0d9azQA/fGv3cIVYQOChUigVUKQuQieZbjgFZbkmtIKuOW42nclzHnJDLwrvGdSJaJkeH6RlqrMdH2G0y9ERWuWbNEzeIbtGswzUbIgCmBirnln3FxSrCvIgejMTYL9Jfyv76Hn00F5p+JLMqwOwygHUkF+vWWzz//OQDDeOTq6orLqysurm/Y7XY417Hu19zudux2R4x5Wf3WU5KWgkAWUoYlxIxFXFBascpWllcXl3RdU8XBn1+/4ouvvmYYB168fEHTtLSur9aX3s8chwOvXoPWom04ThO3+z0KRdO2NFMU0W9k0VHc/FISl77d/sDhcKTt19KSrSoicmIkIclkImOwxnA7DLQZO140osMix6aAzWpNCB5D1ktOb06wBT9enI9K1ySdwTCKrFYIJ9HwBwjGQxSiablrzpPl19c3jNNYk2JrDSFkaUZjMMqgCjkiRhqlaTsh1nStw2glRB59gmrAm5j7pnWE2YgUU+PY7W4wTrPZCkbvMAygEn6ZOQ4jPiSsa7HWoZSw0ed5ri1QZ5v6GYVQ472vZgLr9boyy0sSHGNkmmcOxyMpJTon7qG3t7e01rDJ+qlPHj+maRzjJJjm7VaS37ZtBerlg9jec8JkFufRQiYskIz7JN1vu0Ti8mmxtpUxGlA+kWIgpUJqFOvvEzsvX5pCevYL4V7zU50lzueLH1VgbA9SGA8BZynyGWSC06hR/+rsdllvtgQf8SFmQwy5B0HgSfbsHiv3eIqRmGfMcVr4Fz/7hHlZcG3P7CUxK3AmZ6w8ZvkZtm2ibRUxjizLgPeLCBE0DZMXl0DnmkzIh8l7xtsbVo8fcfnokucvZg7DnpudSKiJDrNs++rRI7bbK7RpGceJV69uGMZZZOiU+DhEqCS85OV7pRV933N9c808zTV/KZ4RnFEEYvDMc+TycsOPPvyQGAPH4YAPM0+ePK5/t724qJjipMAZy+w9+/0+77O7M77+ygV5Hv8rDJSECp44zwS/kPxMiNc02y1KJ1LU6KxtrdoGlRWFYiV4v1t8N5LlPCDfGQjLr3wUAWlajHGYpgdlT8B0Zd4KJrH5BvNBtFSL7qo633aKpKTFmtUn9ocRH6Kw253jcNgLazxjaApDNKWEa1qmYZKkLhU7zMD19XXFTa4zSB5gHI80TcNBa168+FqA/e+/z7P3RbhbJjd5BJ21NG0jYt9J2O4hRoyy9J1Mgs5ZvAfXOKyzOKe4fvWKV69u6No16/UWa3qaRia4A56vn79g9p627TlOC+M00/QdbS+22CdAfb0wlJqTQla23geclRus6NAaYwhTJIbAerMWoH/0Ui2KKjNQ71Z9lFJ5kBGntRBDTsgtyzzVVee5Y9lDteiHHVIFjfm7YlZRkuXIze2tuFCWscFo5kmeP+naGGJ2uAp+wgIX255HFxd0XQMpEsICqVhly30XloVxHKv6TlnY1YQtV12LSoxg8gORyMvXL5i+/BLXdHR9T+M6bNNgbUPfS1fJOovJBJxSySks+BACL1++PEnkZQJQyHwHa21eiItuu84cgKJg0feZcDsJ/+Pi4oKu69hutvLMZ/JSEfUvcnzTNLHf7zHGsFqtvhVH+LaIqLx9SEs+j34WUqNPpKiqk6pfIkotaCfqAgVvHGIAdZoXZAx/B6UL9TBW/JCjyJaVDuadRIy7CfR58rzZboXcp86MdHJVOYOW72KYayIh3wzDyM8++TNQolSDRnhMSvSMrTEyL3Iixvsw45dEDCPBj7TdE7ANa+NIWszDfJ7/br/6mhQ8zjmGcRDd9mnk9fUrnrz3HnbxHIdSZBLVi7ZzpAjr9Za2C9zud+x2uzqmFBLeZrPBWsvheGQYBhJw+egKpRSrfkWKudt0ewCEbLjqW2ImLyul6nhpjOXJ06es15v6sw8BFRXKWhS5MzaOFbNcRBjeLTRR6eqESNBC3M7txpgS+IAKkZyY1WusomYZswmaMTW3e5f4CyfLSqk/Af7Xs5f+APhvgSvgPwee59f/m5TS//Ft24opMXkxG9lut2jbntioUWWiiBFSXymrv0PEmEk5uY0ZY67eVG/2QFQJY5R0Bglcthv+2P4BT55c8k//n/+bL375GduNEH0UiZvrG64ePeLp06e8+PoF+/1eqtPaYXKlpkIlsuNPCJ55miqJT2vNRx99xMc//ogm74uxIvvm55lpHHn/2XvEqPjyy6/58osXxBh58jjwow+ksuycZVks1hpinDC6wXtptdAJ6WC73eKyje1uf83tfs9+GHFNw3GcGcaRruuFBXvGPHfOZXvOADFSZOtiOknACfmv6DKnbIywoi3KI7EgYk7X6g1W/1n3oFInVJmwJVm+r4bxEN+v+G2OE1CSVChLunLfLD5IZXmcBLIFNekEuW+dtizZ7aYwqE3WKW2sJUWPSrnq4EOVbFpCZJgmaUs2TbV9do3YWYcQxHEz37Mi5bYAKTO9NdpKtTiGEZfAubZKYSYQi+ckMklWZS1So2nahsUvVZPZB49CsdlsaNuWZVkYh5HoY2bbG0gnuambm5vs8CnnpGmbKkVXFDUK1AHAz1M9ntVqxdXVVa16h2wI9Suv0RvXLNavMSZSyPJ3xmVFIM+SoEGBNlXGLryVpHdWUT6vLBf50DyuPHShvl/x2x4ntDbZhS8rz5x1ZM4T6NoFAYxrmaYZpZ3YvsuOSQ6mTrNUTKmqcJ3f7Nc3t9zudjjXyO+VkNiqstM8Yw30WQay7zspLGWiHlozDCOLWrh87wO8btgPA6+upXI8BFDzIgZlVuGDLOh17kS9evWKphHlrpAsN7c7Xry8pm16lHE1qS0L8rIoBjJJ2HNzc8OHH34olecYWa1WbDYbXr9+zc3ullXefoyB4XjAGlXft173aK25uroixsjjx1Jddk0jmvBKrO2XXHw4HA6s1+v6DL9LsixSlLEWVwGUMdlvo8GGnv3+IHmREhipnP7TAql0DFNKhPlfQmU5pfTPgb8BoJQywOfA/wb8p8D/mFL673+d7Vnb4JoW067BOFKxVE0WpRzYDqzAJN5x/97Ar9X2f44QQsUDKmT1Z7Lk0GYjTnhxCfixTLiO3fXE/vZrnGtB9fgkmodaB3RmoNeUMHFiq4dAZxv6rqNvt1xcXIiTVThtm+widjgeaZzGWsdms8WYG4wxkggULVdrMdYwDEdQC6tVy+XlFcfjwu3NgeAVP/74KX4pk2xE1+qxEqvvGNHWCUaZk76rz2oc57W7ooShlMo2mCLPIudRNCHXq7VU6+9JwJxfg/qa4ixVLmPOac1fdGKXZeYhvr/x2x4n1J3vTi18HxZudztRgSiVZa1P9vDW0tqmankqZdh0He9dPeLqYksMC+MwkYI4RVVrW0T383RAVCjVxcVFnrA80zRIwovA4ZrG0a86nqjH9P2WpuuJMbHfHTmOsxiZ5ATYOScybrldm7KSjw/SqVqWpWq3by8vaJqGi4sLgg+8evWKRFbsCJ4YZowGZwWbLE5bCecc8+Kx1rEsC03bslqvGcaBVb+plbQCtyg4wuKuVdz73ilZLtA2rVAY0NKBQjdo41EkkoYUfeYunCa+U/fgzSteLkCRj/u2eKgsf7/itz1O1GowZe4vX08JdOlaxhhZrdfi6hnFfdIXjKsS3oBK8SzpSnWMSVATzp/97GcYY9hsOobZE1NgnhdJUlNinifadc+jx48AePR4S+c00Ytsa9+vpOasNE3X471Y2o9fCazTdWts33G9zMzXOza9Q2up2r58+RLXtNVKu+sajJH980tinAPWWd577z2899ze3nI4HOr5Km6gP/nJT9hsNjUZTSlxe3vLbrdDc2Za4j0+LOi+pWtbWXwbcV++uLpiWZbq4LfebpmXhbYxIomXCxjvv/8+m82mJu/vdF2lDCL5Uu5MqWXJxXqp/FvX0DRZLU1peb24A8aYuRHUhcO7xm8LhvHvAD9LKf38LzZIiWybsU4SMkGh5F9pUKaaj7yrgMf9BDmEwPF4xDlXdZPPKypAbbXM00iMkdvb25P0E7DMsvoyzon1JWKEEKJiWeZamb25uQHgYHeVION9YiZydfU+jx5dstpccbM78PyrLwDoWsfHH32As4ZpHvnlz1+yXV9WfdQYI41rzvY3AYLtNVb0CpXWrPoV0xCgcYCqkJC260GLYcniA8M8M84etUS0CTThtNoOIcj9pBMqayULB0dDFNhECjBnLGL0C51RbLcbmQhTwZGf5KbOoyQDSn8DDjmlajc6zw/J8u9Q/IbjBCe4QMYblnHCh8jtbs+8LHnCEFJfDAGlqDqjNifXTdtyud3y+OKSzarjeNhz9AvJe5q+Jy6e4yEvNNMJdjH5BZsiTmuaruFwPEDuuEyTjBVaa9pW0y0txrVst1c0rVRQGnfA7A6klNgfZbIaR5F8KmNNqfoWXdP1el1NSYwxlXgTQmDxIiVnjRE77uBpW1v5BE3TYI3BOkuMB5F7UorHjx8TQsC5Rsh/+TksxgdFL748nyV5fhue8P5rqeLKAaUx2Qpbdz2psajkSX6E4NHjETWNJCVkqhB8bWsXIvG5xvI73ycPleXvc/zG4wRwZ51V84nzKqMSqJYxia5bsSwhu8a9QQvM89rZ9go0CM0xP8effv45WhuaruU4+ZqIa61ZpglLxNmNQL4QKTkVFuZlIZDYXl4StcUncSSexgNjTrYBVn3Ldt2zv71hOh6YfSIky3QMOKNoOgc5B3n5ese8pEzaF2nb4zTgGnEQts5y9egRmwzDMEaMS5xztG3L7e0tIQQ+//xzjpkXEZfAmN0Epd8vZk6y2JcF9jQvPH3vKcYYPvjgAwBC7rZHOPEl8rkpuY3PROyyL98U0q3WKOuA3PFeBpJPqJAIpShoTCYVynBSTGbSNKGNdB20eXeUAvz2kuX/EPhfzn7+L5VS/wnwfwL/VUrp9f03KKX+EfCPAH78o2do1xKUBS8nw+TKsnYdyrRgHOSDf9fDOx8wy8UpFRLg5F7lI8YI1m84HPjkk0/QWvNnn/wZw3A8DdZRqk0uV2e99+KznpPxwkQvLdCCmyr7Yu0FISSWJXF9M/DixSu++OIVIBPksAh25/nLW56/+ooPngXef/I+jx4/IfiAwtTq7zCMHI9HmibSasPLly9RCWIQ4wSlGpQSt0HIBCcrxrNLiFjnWK1WJIThL8dzmuyNBqsVqFArxUuIzEsgxoA1Gl281TMM4+ry8nSjZ6WBu2YCp5bYqZ1e/i6SooJ8LstxPkx6v1PxG40TH33wPlFrZtOgrej/JpWJb+HAy6++wKSAdS3RhzsayxpFmBc4G5BdMeXI1WKxTJVqqk+icw5nXS/n2B0OMI08fXRJ369Y/MKLV9d89vmnbC4FrnV5dcHhcMzYYnHC06bNVS3BM4YY75D2iuh/NTnJX7fbLY8ePaoL/JIkD8PAzc0Nh8MBFRU+KVIKqMzLOJn96EoyWhbPOldyHj1+zKvrW64eP2GePbb59qngfJtveyaLeYp83r1flu4SoIxA6ZSK4Boaskta9LJo8F66dkDjmnuJ8ptjyTd9fYjvdfxG48QHTx9ViN9J56X84d0fi965axrRN4+KaVmIpSincvKWUk3UqsKCks7WIXeIPv3085x8CY9hWXx9JoKfWfImjS7E+Mg0T6dFctehXMewRH7x6c/ZHyd8Urg2Qy+Nrl0eUfehUpxTiOAjyySmZWuj2F+/5hgVxvYMcwIDxsqi14dAjAUuJhGDuHt+9fVX7HfCVyiJsrWWaRnr6sEahXGmEvTKdodhYLPZ8PTpe9UXI8SIyRVvnRcZBSt9riH9LgujmMAoMVQreUmIYlstfBSNdi0+BPQw4TpNQteFTiIRg8BzWb75c94Wv3GyrMSb9N8H/uv80v8E/GPktP5j4H8A/rP770sp/RPgnwD8rT/9aVJKqsmhuDzlm9XaRjDM2uYb+G2CQW/G+eRTMG4Fn1cHVFXwLKck7ubmhtevXzNNEy9evMAaVaubjevERcc55nnm1fUN0+zFTz4FrLXM8/wG1KPswzlJpgDcSyu2SLaklAjJ0/Sn6nXbdizaQ1TMkyQA8xzRqSPMiTnAYX8g4bm82HJ1saZxPdPsq3qGMYbZ7+tEs1qtQBmWIM46ItEm29Za46z8U1EwnFrB5DUODVi6xtFmmZp5SBgN280mw1jKxHV38rqTOBcZEnUfqiHJcknc31bFeojvX/w2xom/9q/85Qo0lO7EqfIzDkfG3S1rp2mdZoiB/e0ObTqca4hYfPLo3A1x1tG1jsbajM+Xlux6s6btWkKiEs2EPU11vmOZAcWcrdhTSux2O/qs4Tus3QAAIABJREFUQOG953iUKo6PmsPhyG4/kmLCuo6m6aQgkI2XZPI7VVHLWNV1HVdXV1xcXNQJdZomXr16xYsXL06wqWUh+oDWYPP4WLZXqtACx4DVapWNSdIJu/eOY2p5Fs9NUQqO2Z3J270x6VVdzwbCDCkRfTYE0BZMgsyLSDnRgNIyfzNK4nw+dt9/7WGc+H7Gb2Oc+Okf/l6pxNwB+dW/Pf+5FJmNZQmJkBQaUXEC4Q1EQMdAzOpaWpssPSapanHJHYYB23SgNKtVzzjNOCcqEmGZcE4W59Mk1dlX8wBxwZqsxKUNMSWGceJwHJjmhcMw8+SpdHm++OKXrFcrjEoy16rIce8lAUWgiwXvn9BcXVywPx5oHBxuXpDMGq8UwRiGeboDq7LWMgwD1zfCd6hY6wRtNiZSqFqI1UpI0yfnUcV+f+DDH33I06dP+fHv/x7eyzPdrnqWJWDd2wudZbx72zN7nhtIPqFyaqhl7ACUaTBmQadATL4qmqQlEI0Hbeq+FBqE0lKQeJuD6TfFb6Oy/O8B/1dK6at8cF+VXyil/mfgf/9VG9DG0G6uQBlC0iTtULl1h2lyRVn9WlXlqk0YY01Kl2Wh67qTbq/WWTapFDkTx+MR7z373T4vHtWdSaDqDg4z+8MBpQx93+OslgQUquzZedvSOYFTtG3Ler2m6zqOxyOvX8sieb/f1/2yjantkNrijJLUFjfDMpHP08RhHln1LZvtFX4ZefXySzarnidPn7KKwkj98quBFGdiAucMtu3o+jU+iKzcOakOoG0MpICfRJkiRc/tIWATue1rsfnceaXQGi4uLs4eKtFyvC+7VSIlcQ9TKleaY4SshRvPNBjvv/8Bi/i9jd94nKgApELigjo53NzeyvcZqmidLURo0SxW8qxXZzcTUDoQ08Qye/y8gzjj3IVAtZShK2OQbWQRqDVfv3xJzM/EvJ8Rco66UxmRJNLjmp7ttmdZIAgyiXkROFhElGxAICHWWbG6ty4rWKi60D4cDhVfmFJiHMfanbHWMvkJa3LVRiu00XfGrJQSx+PAxcWW999/n77vM465OWnF/xpxXrU+/1qvUx6zVKnmFNmABEpZYggcjzNGa5rWYVYtJrQy7s9TvdJLkIS6KhhlnkPhXXzbUPCQLH9v4zceJ94Mde+nuwm0a1tAnHsFLn3mygcQQ12MxRDQSiQglTaM88Jnn/9Stqt1rlBLpbpADsIyS+6gDUZR53BPwKqIzqoXi/dMfmF/PDIcB4Zxwic47IXgV8QCjDFsN2s264596zjsdtLp1Zo2F+TG2Z8k66xDGwdaY5XCKFHvmpZFKtLA/nDA5w5xKSp6LzryQsrzOb+RE+O0QLxExeKkH/83/vKf8OzZM54+eZqhEmQpzG8n0p3nWTHGWhwoBUbpIp6hJpSqi+mm60l9C8tAmo4sw4E0HjOBWt3pRJV7IWUFruDfvbz820iW/yPOWiZKqQ9TSl/kH/8D4J/+yi0Yg9lcgu0wSWcL1jb/Tsw4klIy8cG7Z8w5ShW3YHLqIG+dSJog1rLTNLLf7ViWhf1+h9GGpnH1wYkxMk4T2geWeanJcwiiTxjzRbnP7tRaVyygVJ2O+bBNTbBr9bppWF+uWG/WXF1eQZKEwC9BsNxnMmqlwuOcEyyS1oxemKZdY7NhC/Wzuq5j8UGIQN6Lhmk0RAUGU9ulOkXMktARbDSifewadvOORcmK7umTJ1grx/liGSHMXGw32NweOr9MlbxzXmXO8ItyXlORDtS6mi6cn8P773+I71385uMEeagumPeoaxvx5vqGEAM6qyJorSox76T4QL3nikSaTD7y3CmjCTGwPx7Rbc/jp2Jz//XNjhgin3zyC5p2TWhmbn1kGg44q3BNR1qkugyweM/l5SO0bZjmyDwvxCT4xhhFMSekSMrZpIkmd1M84zSxPx5QStUJY1kWdrl6RUocDgdijPR9X1vEJWEXDOaJMKNy1dx7z/tP3+Pi4oL1eoNC0fU9CVX1139VlAr4eSL+NmKOyuSqc3aF/ELndrYB20rbGyvEIaNp1pZmtam49EgiBYGBFSODFEOd4JW6OxWUpPphPf29jt98nFAnOWB17+udP8rhXENIidkHIdKmM25EFON2kKEj5nvRaIPWcHu745/9s39et9k0LXOAaZ5pmkYMgkJOXNtGSHx5DFqWGdU6ArkAoA3ez4QQ2G7W9H3Hzf7I8SDPfkKgke16lcUIimFPESuw9bgEu2vo2o7r6xt8AGckX+n7nq7rmKapFva6DBkNMaJDoDGWQKp5RmcakenNHSCjFX0nsNGYIsP+yHaz5U//+l+j6zqxt66+DqkSlN8l7kMyKrRTqcpYU5lDUl5XSoliWr+mVQptG7yfhNORqApoCu4lz+8ev1GyrJRaAf8u8F+cvfzfKaX+BnJt//ze794eSW7KUolQSp8cVjIbtbb033EgPBfUH8eRm5sbtNZst9u7zOuYZAyPkeCDqEsgLRWdV2vlYh2GI+M00TQtTbui73vm2bPf7+j6lsULa329lWpuaWUopVBGM82zSL55wTH6e6LYxhjatqXrM9zDaIbjSIyJ4TjIA2fKRY+M0xGrFZfbDc4pxumI1pqnT57grJGVaS4WL/mbGFPWZc1yUClikUp2LCzRGORmpBD1RCpGh5k4z1jnaJzmkFVCJt2zWT9inxxufUXyR0wK+cESwkRR0pDrq0Q+ioQ2uXKcEiY/JOIZL8TEd9defIjvavzWxgnZmiRcMQrbPMOSXr2+BkSmSLobmhDnWrEonYyiduOsyC4K7l60m8skNk0TzjR1gG3bFu9FTs26hs2PPkIrxbB4bo57WmdIQdehqXMdy3GiX1lU8MzDkWGaSUmDdkzz3WS5cB6KhnJJ7sdxrAv9woNIKZEUtH1HUtLFEhIxGCVdI+dcHbNijCx5uz/+8Y/p+562a6VKW2Bo7zimFmnK82eyfF8Saa31WXb89kgJjBXYhm6cVIBUEqa6oir+6LPFDXVxXRbYkjSnvKiWnyWZDuHEs3iI70/8VseJcz4fZ7cRbybQ1jVCl095wZXOzI5Swqp0ggGUeSx3N/b7Pb/49DNAim/Pnz9nDlJlNkaUZDrXcHt7g8pzXFFmAIU2htvdgfXmgrZteXWzgwTOGnyI+MXXpFDmR4GczXPPe0+u6BrHn+93QvA3GqXlQEMIhGVmWQI3NzdEOuZ5rh3uMiaW/KOo8agQWHd9NUUy2tCs1qzanv3hyLKcdOubPNamFBmGgb/7b/19Pvroo1x1P+kgpySrWvUtY82cFxclCizjPGlWKRvL1atXryCEiTj5PH5YlPaklLtTytBlHoTsT8wJc/y1kubfKFlOKR2BJ/de+49/k20+xEM8xO9WPIwTD/EQD/Gr4mGceIjvcnwnHPxiTExzpLMalJXyvT7tWqkRmNpJPcEdvgnDWiogTdPw9KlImczzXKEQsj2dS/6RZV6Y51lWaEoxjVPFLLuMvbHWorKOawG/p5QE1hAd3nustXWFdDLwkL9f/ELXdxyHI8fhSAgBm3GLq81aSD39aQV42B8YhgmttWg0tl09vpQS8zSBM3g/cRxGbq5fcXm55nL7mGkaGcYDVZc6yqqWJPJMIWkwQm6KKTJOI+QVr1D4Uq4wS/e0VMFTEuy09+Ekq5cSm7UQh7RS0iZIAZUCOi7C1FeGVPRWrUPrNl/HRWQB05L3VciG0/QgGfcQb4nEyTkLVSWBbm9vSUme0WLbXhRqQgiMxyPRWS7Xoiqx3m5Yb9ZYI9qfWtsMa7AiidQ0tRsTyr2uFEZr4RJkubbGOYzJ5klnusxGa+ZxQKFpDAQV2Q87eYangRAcIbc0ddOSUmSZJhbv8SEwTlPVXy4EOjgREeu4V4jDSfo3Ou9TwfrFbB3//vvP+KM//iMuLi4ET6mNtDVLdfkupO/tpz5/9rm7ZiEuF3hb4X6cYyFOWHNN1KAbTZPb3cKTktZi5vXfObZv2h+tE9izqlA5iPNK9EP8IEPuhHOrK+7cR+fVZpVxO/PipfNDhlPq0xt0Jo5mkGKGeomk7fX1SV7WKsPsPT4mtHFoLaYfLZFV37NerWjaBlcbMy3OKrQehQwcIvvdntvDURSqlGW/u+byibj8WmukM5Zk7NFajvDq8pLP9jtev76uxESUpu0lX1gWj3aqdtkLJDPGWOGfxeBI5nchF2+3W+lwa8183OOHWx5l7WQ4GT8ty8xms+Gjjz+WTrxrhF9VTn3m5H3T0FJgYuU8FnhrgbiSP+e8pnx+HeUiGnZH0ZjvVy1m3dBYh2cvxJUCjVWKc/nhu5ru3x7fiWQZpdG2A2VJSvSUKzolZTt1lYH5Kb3RQriPcQkhVE9zyJiZM33Sc4al1tJSkaJ+qtp/KUWRltK6ahE2TStug9NCiCPzIg+DD0st6ReJp7L98q8wT8u+n0vYAdUffZwmljCRUuJwuyMEeeyncSTFQLsVeSofJrYXG16/eolRka53NI3Lx0NVCzgfMGyWrrrDXUiJ/e6GeZ4pSnCNdbTO4JQSgwNjCEmImMZEXNOIgHs1eFCsN2v6rpVEmXT2T935LLkeEaVECzelrHeYFCkZFJYYNOOQYSOhsFULRued7qiH+B2MDAyi4rLgjlOddQ7rGqYl1iS5tvJy281mBYrVasVq1WNSYJwn5uDpVyv67ZY2aRZMJd/eHgZ8iBglSV7ZtlLy3BqVSOGkh5pywudDwBhJJtfrNa5p6LqeL6cvxfo139JWKYxtMAkWpdGtxl5cMoxjJjEGTJPhBymJkoWVZNcZR9/0wrAPEa3VHVyxcB4Cm+2Wq6sr4U44h1YqGyB8+0RWz30mE15fX9fxcxxH+r5ns9m8E/FWSNrCu0hYGavyeCXjhhdMcoaOqfNO672v6s4v3+EAHuIHFIqgiqlZzCDAnCvcS6Cta4ilXW+ECBxCIuW/tzrza0qqliEYSimOxyO/+MUvaHIRa/ER72MltscY0SSWZeHi4oLt5aU4fuZtr9crdEp0ved4HHGtcKfqAn8agVTHlcuLC1Lw3Lx6weGwZxy2+HlimqaaU7jssKeN4fLykudfv6DtVqBd1XyGYocd66K68C3OF+fld0oJNO0ckqqVmKRZO+B95O//w3+bP/6Tn6K1WEjPyyLKIPlE38063oyy/0DVmHdVaeO0CE/n40xJCRL4CM1KZDGVUaATplVsbMlVJBGf5xmVEuKmDPoNnctvju9GsowoMkARiT4dQDk1Bu4AjwpbvDDGz2XZ3iZqvd1u6/dlsJ9DpDGa290tm1WfWeNS8R2HkWKhesLSKPFqP4zMfmYJguc9DgOH4cjsPUkpumwgoLR41Lt886AU4zhWV7/7smrxDLMXQyD6ghc+ea67fJxaC7v22bOnWA3WavquwVoqXi/FhHFyLtpW5KPstKDIVpkhEpPoK4cQ6skOWhGCQluF1hbtHCpL46GkWu/9SaaGlOjaFmctMXjUOWZQkRPh03k/Z7WqjGVSWmVHw8Dip7NjPl3LB4LfQ9T1V5JJrBBUbnd7YWe3HbMfSDGyLAWnHzkcDmzWfZVLM8aSYpFbkqTa6OJc55hncc8DeH27Y14Ctunw88hNCrSNQyWZ8FpnGAfDnBN3mxfmKkWsdfioUEqIMyjypHBazBeuQiEEjePIPM90bStjXGawl2MpC++u6+jbhuN+j/Iz/aqXSvnZc1JsbH//936fi4tLQMYlHwLaFnxxPqHfEufym8WxrBCV1+v1SZ4uRXRC2lHfwLa7iyPNqbpS2bb2/Dk/xymnQlyRSbMuxssOfsPXh/hhh8o6u/lHWWynmkBb64hJtICbRghy59JyKnqiSihlUFpIeCqbo93c3PLp559XjP04TUSkohrTLLjbGFAo+sxDCl4cKwH8EvKC0bAsnnFeCGEh+YV5mVFKs95sa4LbNi1+TjgrecB+t+O426EU/NEf/zG73YFxljFv8TK/T9NEiFL0Km6cx+OxYpTPfSBKkl46V4Uv0ZiTmtdJ4lLm62VZ+ODDj/jb/9q/znp7RQKG3Y52vapEXHFE/ZZLpLKaRh5Xvv76a9brNR988MGJH3G/VpZyyxuI2qAdWCVXT1tdkgqUiIDg6vui8BrmmTBP1fzsXeI7kSxrY9BNLw4v31TnuDeWn4tZ/zp2iUAdwK2RlkvXtYRMgpmmiZBbAjK5Gl69Osm7DeMoE6F1pHEWx7CzCUEqunnfsrqDtpa0LDIR55/JCWWVS8lMeFRite7zpBhkpWYU2jpcY2vr1vsFpaBtxKJba4VrLG1rWaaJ/f7AOMZ6Q2lrKsmJFDke9gyziK/Pi1hfm9K+xoGKJGVFyDwZZr8QssufUpoQ01mlONF3HV3b5GTZo1PMJMFCsDqrLBPRFVwvE3U5V9XE4Z4Bwn2w/0P8MKOiBXIi5nNCfDjs0UrkhEquVTtLMZKiwBvm/PfzNHHQkPxE8BMKcK10tWJKdzTQl3nBh4hrRACfJFCExhjapmWz6egayzFPJMNhL4SVrgVUNeww1jCNE+M0o4y7o3YhEky6dp7O7/Wq5pGPyTl3km2KgePuFkWkaxwkxTiM2EwEXpbAanXBv/pv/F0urp4AiXmcUdaiQ243q3fXrj8fZwv84o5G9PkiGXVnZaySyEmmM5MHef3057V6R67l/QpYSL0jKgwjd7b+ApJ4D/G7E98qN6oUCUPCEE1PDAmtDFqJWk2SDQCihJEoBWWd3ytd26+fP+eLL76k3KQxSRs8hphl6BSdUrR9z+XlZZVjyyJS8vd54bcsC8N4QKfIum8JKTFME6iTMY+1hvGw0HUtSkmV9HZ3y9XlJX/6p3/KskS+/Po5AMM48vnnv2QcRxJNPQ9Flq3MsXfMi8464UD9uzF6fvzxx7LP+bm6vLoU6IQPfPzxx/zo44/lJIVAt1oRfDiRjINHN+YOtOX+Y30OLWvbtibmpcqsiSjMnTefltRauuhWcqXszkZSniLteVq0G5RxWNtg+3UeL94tvhPJsiRSpwt1/0SecHDckRU7ryaftnWCWPyqiDESfUQrzTCKkoRzjinjlgsL/nyCkGo2KCMC43Ga6Pqu4mueP39+B7Pc9z3WWkm+N5tsCHCSf6tJYU6kRQjE1ETaGMEZF2x1kZE5DnvWq57VasMyDez3By62G8Bye3vL9esbtG6rqohTTZ2IQ8YdzstMzLjPlBK+YCi9IhLYTwk3GZqpgXlmyqtW7MC8QCiMYe9pGseq6yRZjoFIxNTkuF7Fs+sUT5Nd9NL2Sobgxfb3/Nq+zdjkIX6IkU4jZOZFFzv3KSegSskznPw5PKtIq50GTe894xBJYUarWJ/ZeV6YQ2KapzqQWq1YfGQcjkzzKNCsVY/rO7RWtE2LVTDnKvcp2VXZ7Ecq10vwDMexDGU1WR4GUbopltbn0kbn/AygTiBV4eNsPFR5sRBSPMP/aX7/Jz/hydP3yOhLmBeccfh5xjYNYQnQZpkndQJQnc60/Cvs9wI1W61Wbxo9nZf+vyHTNQqSUhVWU9ISlWFjtTj8BsriblJ/B4rxsI5+iG+It80Z5xDNEALWOEyCuMy0WhNLEYtQTXISBTeriDHx1Vdfsyye2Rc4qAFjiEuosCWtpPOy3W5F3zw11XDrOAys+halNDEteTGqUEpjUuLmdiS1XbWulypoou87pnHkMM+sVytWqxWHwwFtmuqMp63Bey9SdePpOO/wHaByIcrYE0JgnucT7EJrVJIiovee9Uae/e12yzAMuAh//x/8A/w4npRCtJaxZSOqYISTokdUd+F0UqOHq6urWlmG00JcCnwZRqOQ4l+qAnL5upQFDqR0wpOjDSl6Ebk/L00r6a7J2//lmpL8FkJJybyUF74lSuuglO0LIP08oT2vdnxbnEwxAkZrdnnSmqbpDvnvnHASfGAY55wsS4Unknh0KdIvtze3FesYo0iqFLvaZVnuQEbO/dBLxShEwTJbrbAmJ7gluUYxjMeyK3SdVHJB8ejqirZtOOx3TNNE163wAUKpsERxI1r1LdPiUTe3aMAYTUxyI9ZVpsk465xYL8sC81xlY9I4cRw9NmO1fF6lrle9rCJjEB1cYsYYlYVQMYpJIp9T4YqRYtPuvWcapwfJuId4S5zwgijF4j37/cmsQ+VBsOs61KKrqU8hrkrhsbjPLRAVmkDjcps2P+chCNShcZJAO9dgppnb2/0d3sE8Tez3ex4/uhA8cL5n97c3IlVpDSmJK6k20sYtBNmyz0Adz0rSKYTeWTRaM+TivAKUUqpwjdYottttHQtd15xajoiV9GUh5SggptqOlX/UNvL5aT5nHZTw80z0XojCyISpUIRlwccZ4xzV8KESjU7vv7O9s9fjXYTFnU8tSA75qu7+fLpk9zb5bpXyh/jdjfvFsvsJsySzrj4H0pE6LTyrrKMGQ0LFWaAbSpG04fX1a375xZckTh4JxjaQO91KKVpr6Z3h8uqCLi8w5R5W9ft5WbBG3DydtRgrxbThOFRCfJMTWu8X4S21HfMoie80TRhr+Oqr5/TrbfVtOBwOkmyiUSrV4zzHIsd4KhIU2AVIwrzkTnjrLEprXr58iTaGZzkBls534o/+6I+5urpit9+zLGJiMi8zwQc+6LJ7sP2GXExJ0hxCYJnnTL6DJ0+eiOaz94I6eMva+84TrmSRklKqSbhMEUaIzOfXP4sPJC8q77/OQPHdSJZzi6MOfilRxK+l1JFARSJC/CsXdp5FR7UM/vCOFeWzD9ZaEZMSNy2lePr0KV998aWsVtKJTAgnvOCd7l8mBRprWa3XYuBR2iwxcjwe2R32hBjZbjdoKyYfdbSvXUT5rP1hZJ6hXa/pulYWB8EzDEdev36Rk2Po2oZEZFlmVn1H2zbM01QfXGHTJmxOUJumpe1aXNsyzjNtYwjRgjZCONAKl5OD6tqTSYgeISGVSk4RLy83T0qR1apnu1kTD68ymD/lc5MEHXZWBKrnsLR/Q6hYMqksvwnDoH7WQ2X5hxzy7MjKynvPvjjbcSJraGNQXtdxYRkXFFSSr/y9GJpoIq6xjPOC6zoaa0nTkqtN+rRtrbKBSZMXfjnJXRb8spBSV5PIy8tL4SbMMzEprGux1mCt48AR51rQ7g1sMVDHm6I8U+J8DCo45GVZOOYWqcp8iKtHj2nblkOGkFxdPeZv/c2/Ka6D8TSeLdOEQmHdm/CmdO8r5MqycyRrT/NLSEzDwLQ74IxhffWIaLKFbD4Gpc+3L9lwRJGSqhNbKtWeeqx39+VUtP7mZ7/MHZpTUv0QD1HibXmBtbYuVJ2NlXQvBhf5fSDzUozomDDaovWK14eJf/HZ1+znxGGQiuh221V1HmMM1ij6Vc/FxUVdAHddi7HyN/MkBkXWNqJAZTRtK7CL6Beabs04+eqsOw5eCIcxCnwjBpLW7Pd7dvsj6JMS16Mnj1mv17TdmiWM2f0vVIWwpmk4Ho+VIF3OBVCJdkoprBEI5jiO/OQnP6nJ+G6/48MPP+Lf/Ht/D4xmGaTw54OMyV3bZQALWK3vjCn3xxWtNabrKlMtTAvTYUD7QLfdoprs3pfyO7S602RUKnerEGfCAKik0Tm/UJzGIJUVt0qkqnn9q+M7kSx/+8AW5MZIiagU1qp64z1//pxlWXjy5CTN+PTp03euSqpcTdXKQBAh8GfPnvH//dP/l8LOVOrUYpQ2hlRFQ0woH/DRgxFmbN/3NE3D5aUQaUrrwnufq7cFBhHuVJWBvCpKaGXZ7Xbsrm9wLreUY2RZRoyCJq/Snjy+xFoNIdJ2DQrFy5cvWaYx3/iwWm9qhb3s+zSOxBhyi2hmiaG2b2tLpmvBGNrSvo6RsD9gbCAlmMJp4gZoGkfjxMbWOYvxC3hPSkIgjEqO7e6cl+92JW2Wwu0MweP9jD3p65y1pN/psj7E73JkXCAI/u/m5ib/QnFxeSmE1fEkhzRNU60+aq0rlleS35QTNc3heGB7cclqteJmd+Dm9Wtc7pxorUk+MI1HLlYrnLO0zjGNR8ZpZJxGuqmpCa8kidKqVblD1bYtKMHfhRjRKt3pfpXkt8gmlSrPfT7GHZUPhBdREutSOBCioOzLs2fP+PBHH7I77JkmqRYlEsMwsF5v6Loebe9oBNQ4W8vXz1Pq5KKVUmQ4HDjc3oo01rJwmGfatsVl0xEFmbsg106HgM0L7pgSylpShp2lFElaV2xjgYTID1Qs6b3ic/m1wPnKPfIQP+i4X1R5W7JszElGtiST9b35713m2ygS6KzmkhRfv3jFJ7/4Ja5bY3rp3Cw+osOMBVqrWfcdFxcXtF1Xn/vFe0KRrnUNx/0NrTO0q44ma+PGlPfFdfjDdeVOaCIXm555Fl5VqThrYxinRYpnedvDOHJ5ecWTp89ouz273Y7j8UjTNLz33nvEGM/GzpOJW1H0Kt35bd+x291mHHFfYW9Ka/7kr/wV/uCP/pBlHFlt1nXhoZRitdqIyhX5Oc4LYs2pWJmQ+d4VmeBYFhETu+trDIqu6znEma7r0EqUdHTuLNYCAqIslPJn1U5VVJAiWlEJ0gWJV+BepfL8LvGdSJbPW37q/MXzr2dxzggvTPLyMLwNx/zG+/M2rREMn0KTksdo2dY0joJvzJ9fHqJTtUflG2PBNDaTAF8xTRPvvfcem9yquLi4YLPZ8MUXX/DixQtub2/rPp9PbHW/kyTiMUbmceQ4iGLGNBwJceHx5QVXH34g+6UE3/To6op5XtjdiN5jjGCNo+tX9Ku1JOkUco5UxzahJz6+YhqPHHYHXNfR9W21pAwx1pa2khJaXiRElJbJVpi+su1+1bHqe1KUapxOmhgVYYmECEFBVOqkj6tKFyBPyPkGNnmbyzLfwZSdVoW/8tI+xO9wSOUiYJRGGWGfv3jxAoBxHHj16hUhKpYoVGGlBLLlrOU4jhyPB5QSzVLnGqxWOWm1d3DAvkxoes6fC+M0EzLWsO+Nq++AAAAgAElEQVR6NuseTcQvE/M0s9/tmHKVBuDjj3+MsZZxEmKhaxqur2/yWHIi65XjOp+svfdVHaPwHcrEME1TJdpprQhZtWOa54ohnue5ug8+++ADlDbEvI0YI/OycBwG+n5dJ7HzuP+YJQpUzUoFOI+fPgS0UrTZ9jbcc8S6r4NfkxBr0SGSloUwTbKQ9wKFa9pWKtPlPRnbLBOuOmGqtXx/h55zDml/SJh/sHGuRX7+jJ1H5e+EIMUyTnONLAxLGxQSMRd7ItEkiIovv34uiz2ouYKKCZd1kLs4srKXbLoVVinGeWKaF6w7VXBL4qaNxlkjTpYkrFFo9YSb14skxKnAMBPGaOlmzTOtszx69AjXNrTdmhATwyhj0DjNNE3L48drHj9+zM3NDZ999lmVzr0P7zrXMy7crb7rUESuHl0xjCPjPNHkJ+wP//AP+dt/5+9gjCYYIUfabJndNA1duzrBu84bS+cvZchZRW5VyGiiaRqcPnXpUyZ6VKJzSqhcnGiUJlP5iHmxrZS8JwEhiRPjeRglhQbza+QU34lkWaWEiUFwJ6VKUn5HSbI0OrdeY4ysVqvaZnXOvRP8AmQwNfdYmYqEMpr1ekXfdzx9+pRf/PzP8w100nNO5ARSa9RZNac8dOf/QLDTFxcXeaW1qva1523UO6LbSuGMZdWteXJ1Rds5lnlmv79lv7+ma9v6YIpShuCPRI5urL711lr6tUycYTmRfzabDYpE8J4QOp48ugIFs/csw5FpzBqKzuG6Dus0MSRMSEzTxOE4sLm4pG1bhunIsuQKXnfJqmshBUkyQhBLbUrFJ+WWTE6SMwhJqay8qv9/9t4k1rIkzfP62XCGO73B/fmQHkNmRGdkRmZFpKqL6q7KVGdXV1VLNCUkJLqSFitASL2BPezYsmWFxAIVbBh2xYJdS4gNCHUjIUBN03R1ZmSke/j0xjucycxYfGZ2z33+fMpJXpX3C714z++7795zzzlm9tn3/YdEYBQt3LH+I+xOdHsYxj7Sprrv+xFmGdarNe0g5hbJTrnvewrEJGQ+n+c2oiksaCirAqs1k0nPumnQl6soQVewXsvCo7QmBJ9xh8nSOQRZvNL7pEqNNZpPvvUJd+/d5+ziis1GIBnL5VLu8ziG09hPMcYljxeyxGJPf+OcMM1NYSmrisurK+q65tat24Kh7Ds+eP9DAL757W+jC4tL/A5rRK0mLohKvaiAOq4ov7iobcmHxhjmh4f46QwGx6bd0IQBG/VR8+523FIaQTLSot23HX00jCpGlrcQF8X8Gi8f+ymR9qPkeh+/oRHIFc7rCg9boqzdjqXIg0r+DEFBdI1Gqe26FXzAeTh9dsoXP/0ZxiQoVUxmg5MEWGum0znHx8fMplNwjklhOJhZVqtLhiipNp1OZBxam+GnSikKaygmc6r1mul0gkpEYxUoi4J2syYET1EUzA8WdF1PUZSUSqNj5/nJkx9zebBmcSid9vPz82yadnZ2xtXVFWVZ5vmwjRBO4TvV0aciKl9FYmDTNBwfHwPw+V//bY5OToBANZ1KES0E6HuMtTsbXtjOKdfnFjXKpNNP84NDZvMF/XLF1WaFsyLfmzhtCoGiJOIl1mKGAfpezFqCwbsBHxN5r3ahXCFsE+j+LW6rPYtqH/vYxz72sY997GMf+3hJvBOVZYgkmiAOLbL7iHiUAM4FkXVpO8HkTmrq2QRbFAwR/G4iFjFbLF77/sKb5R9Crnik6u5sNqNpGyaTOmMIQWACCnmeLUTqbcDhemGlLpdLlssldS1Yx5OTEw4PD1FKRStdk9uoCWyfX9sYCltQVxXWGOazmnpS4v3AfF6zXFYURjGZRHkpHIU11HXF2dkZTdMIpkcpqc5oG/G/W7C+1gIe8l7ap3VZsphO6YaBrh/oYhtEa0NtC4wpGJxDhZANSIy14pAGebtWlSWz2RTvBgbXEVwvcnAhIGBkHTsEETcUtRO9c9nCXCuNj6TNvRLGPl4WUp2QmsQwDKxWEc+nNS6IjnhQ2+qnUoqh7VAoUcmI80TX9oC4UaI0yhR4F1itVqybDSoESrsl+CmlmNQ1Sa1CXhusLWiaTdQXjoQWayOmTv6uqqrsvFeWJUNQWbM8RYJcjNukY7JfttIeyU4W0fhkC+mS8Qrw4MEDAO7eu5vnNDFJKmnbhrIsqar6xVYpL5Jwrv06/1IpjS0LMAXtaiW6sJUVrGKCTIyLyYm06z1o+VvvpcXtCULMjOdOnvjmXSQVAipcc2jbx290jCUYU6Qqs7WFwK2cw5pyB+6Hyv+La1OsmmoLyvD87JQvf/YIE/lEPqTurVSmS2uYTufZfc75njC4KNnaZek4oysmdUHTdhhtUDjqQhOCplcFbduKwVHE9E7rEmsM62HAD47NZsPV1RXGFFSFwCeSEVMIgS9++jNmZ0sePHjAbDbj3r17sRu3zLnH1qVPZVnbEILI5vYtysiIqicTJpMpn372WwB8/RsfAyF32kMIrJZL6smEejLlxszr2lQzOEdhTDTOHkGqYpV9GAY2fcd0Mpd5BjLUKnX585+ESH5uW7qNyHvOFgvqBIdO3Tyl8FrhEvTjLeaYdyZZzm0ScrMeEBOAru+ogqZZr7i8usKsCxb+iHo+xRaF6ATHvx+uXSMNcRKNWLtoyiG/jBhZ11NEMHrSQ05sbjMCgPuQXPYURsnNttlcgQJbWLrgWTcbNq3ora6bDYvzM6q6ZjabiS98WTKZTiBsF0iIi2BQ2UCh7VoCLkMTCmupSkNVRVC/EqzU1dUl69WSyWTKdDKl3bRoI+ek6zqazHY19H1H8J6ubTHBM5sKIbHpOq5WG0g6h1pHGRcBCCpCXoSNsQxNszMWqrJgMZ+BT0YkIbc7BDcki+G24SuGK27oUUaL844KOD/Q9y03+7Xv+6r7iIlyJHi0bRstYWUTt1lt8EGoG9kcA5lPisK+CO2JuDbnBYblhoGh2dA1a6yGohZIgA+BddPgvYr65xCC4IYTsXXo+0zcKRcLvvrqKyaTGUppjFGs1isODw95/vw0tjd3F/IEixBt94HLy8vcSh4v+lVVZTvaSVWiEaLgdDoFpXDecXJywkcffwyIFjIhoGISro3OPA+BSnDj0BoTcUDmTpOINfE3QaVzKAodQZGdwW5cK7XCDy6qi2jQmmI6YaY1Xd9RWIsubliSRgTBDMfY+b6PfYxCbSUWb1JTSpKJybk2JYhZL1zpfPvm71oTtCUoy5Nnp/zs4VdMD47xrkPFZNkahdJQ1xVVPYtrbk/TrlDKU5TRYCMmbknasihq0IauDwRd4k2Jm0wpqktMWVBGYG1dWrp2I5JqiHFS07TcuXtM03Y0bZtla0MI+IhFyhrJsxl1XXN6esp6vaZt26yGkRw4U3HQe8/V5QW3Tk6Y1DWT6ZQ/+IM/4PPPPwfg4OgWSm3xxj4W/xQiDWusupn8oLY5nnOOyko+E3zI82eIyiNXyyVmUWdo1g58w2j84PK/tTUYL8VIFzxG7RKjdSoEEkQuA2LS/OZ5xbuRLKdJOFcgVLZK7LqO1WZNUUzygqILm5mW48ovXJvgxz/kPC3kyTcER3BCXOnbnmpyRDUJfO39b1BVc9arlqqCppEkMniPtQY3OMpKcD1r12RM4dhIAGTADs7hNxuMMVnWLRF0XPCoLib5w0AYBJNUFoa+62jbDd73EAaq0jCpSxaLeT6Wtm1ZXl2J+Hg9jW5/0YUsVq+TlI32mrZpGfoOvJPKkhL9V+cV88mG04tLAFZNhxpkQS+UwcddXggBYy1ucDufs6oqDhcLRAzK53Od2OkhAfsz2VDhoxFJSqZRIpE3Fibfjf2quA81KlMq1uvNFlccme1B2WjKEV3zlMJozXQyYTKZ5ErqMARUCDRtS1HYNAUJkSckE5MtmSQ4h0c4FSIZJ4laURT4QZ7fRlOStAD/s3/2z+hdoChL5vM5BwcHLBYH9L7J3Iv0fGsth4eHFEWxw1K/aU4py1LMjpQo+NiyoGkanj57xvHxMV//6Bt8/K1vAbJJQCmU2aovl3WNKUpetgFVcbym3+a57Zpmqet7PANGKWxpKcspxaRCG5v1U00sLKRwfsuhSNdSG02pyjh3veS6yx/deLyjk7VPoveR4zrBFLb3blofk9pVGvPeexg02HgD6e18kyrLDx8/lkJbcDjXo7xUim0UGqjKrZZxP3SxW+rRRu7xYZA8QNRvUndZKruTeoqKRNeyLrh49pRZzG+OJ7fk2IeBoODkzh0ODw8z9vqLn36Bj0pVs9mcIVScn5/TNI1srqNaV1EUTKfT2Jlb5XNV1zXHx8d5XpofLCjKAqUVn376bX77d3+XMh7LuKoL0YAt4p99LES8cD0gq1ZAwKCiH4MkaLlrBihtOHlwj0YFClvgkIQ8zSc7m6DYvjJVRR3f29oCXRYxCdnmfOPQPrxVJ+rdSJYhFTG382JMhj0iwL/pAvPFAjubihqDNbIIxK1KqnySXbt2XjpHYNtuSfqFRil0We7skm7fPuGrRw9ZrVZ0MYEzSrOYTXDn57jNBcd37qDVEcvVimZo0cZiC5tPv7UF3geadpPhGUkUPFWVxwtmGALBGrS2FEUZFSImWAsqDHTd1oJXa8XF2Rld0zKdzJhMppRW3Lgul0uiN+9osZXk2vdR/DuxS5UGo0QHNiUHPjC4HhOUVJJHZEZpK/l4wVLb2TCZ1FH/USSgCF7uUVI7NsH7yVX7VNQKQeyu3dDTte1LJ7h97CMtgKn6mu6VbFObSWjxvtKKwsriMJ1OmUxkQg/BC0ypb+n7AWNEPUNpFSu3NleAXO/AO5QxefPpvYuqMEqY1iN4RtM0aGtou4GARm02NG1DVdbcPrlDUcsCulwuAbi8lE1qUsqBrbNWmh/Sv621mdhsrGxkx+PDGMPB4SHTqMgT3IC2FqKCz3q1oqwqmZvcix2c6wQcIMs1bYnXIT8udH5LNZngcZiiAK220Iq4hY4XjyT5NHiHDtK500UhnYAg1aWxCdR1YtZr7o6dFvo+9nE9VIRHpcJVWn/y71Iikgo+PkR1BU1QhqenZzx89BhblHjnCc7lO3w6EZjEfH6Q5dcYoiqHFjdeSVpFWlY2vhXWVlxdXZH8I3RZ0ncdfuiZFAU2FpmWp6fMi4Jv37/P++8/wE6nLLuO//fHXzA4yZOmE3HwM7bCDSobo52enmKM4datW1FaMhqpxPkmwTXTpl4bRdc1XFxc8N577/G3/vYfRCJiTJLz5DCaEeJjWgkheqxEkvKHLCeJEt12L/OE0Tor+IjOtcFFszilVe5OayXuisF7uigwYLTBFhaNQFHqyUReK8JOd5h5ca7OSfRbxDuTLAdS6yDJkoX8uMiXBWxRZOyK8wNbZLPKFaPxNHlTh9FokxeJ1dUSbbSoTKQ2pVI0m02WRZPdZ6yAaJ1VJyTxLTmopGK12Wyy41aK7CwYW55d19H1veDrtMYBQ6zSNl2L8gGjZ/ihR2lpa0wmBYtiijUG77Q43wEhCAPfB5G+CiHQ9wPr9Zpl0zE/KqnrisJu/dn7rkUHT10W+GHAD56irCirCYW2tGu5+TZrcQqy2qBGx2islU2JUrGqFrFUk0nEHkm1LoQRDAO5pp6AUqmqRDR4SC1mMc523tF2DdfLQmq/AO4jRoj4+dW64ez8PE/e3vnIJzC4qIWutUYjye8Y8pRCxfvYIxNnEV20KItcbQbwhWe9ruhUxWa5ZLNeg3dYTcbehxAyV0G4D1IxSvno0A9Y45jODinrAwDOz8/zZ0pVnuRMmowDuq5jGIa8SVZKcXh4yGQyYei2UnV1XVNWFe9//UO+/7f+1vYzah03tdE2Ni5WabP8UmjhaAhabeTvg2ySE9Ndx6RdWROLuSFfj5zAjyrIAEVZZhy2GwYxN7LSKQze59bqjZEW2via4wT6piriPvbx+lDbTq9zuKCwxchlL/4XlCag+erJM758+IiiKgmDR6nAJEIjE6+hqqYRjiRzT12XGCvwDNmEb+XaJpMpxhRiV60i7tgNBO8oNUDApLHkA6ZSfPTRN/je9z5nCJ7/5R//b/jmimHomVQaEyvi/eC4utrQ932GdjVNk7Xgi6Lg8PCQW7du5WMpiiIX9IrCQHQs/Pt/+qec3BW8c1LbSOcsTxPXhl7iZMFW6YsgknzOu92xGhPplNsNvZighLrAaIOgZ3fNk/Soku28ww2OoAKmKNAjnscL84JSOcF/C6dr4B1KlqWBL4mVAGXlA9myFH/zVSs7DVWQ3PW0MrulkBivTJg1DK3sop6fPUcpxcHiAB1P6qSuuHNywsHhIc+ePc2OOgDNRhas1M4YohNdwjtdNxAAMmGn6zrKssxuPj5iitMOj67D6o6pLXl++oz5dIZDMV/cwfie0hQ0veM8SmXZwhICLOYLjDacnZ1TFRXr9RoX9aKN3lZ/gx+k+mUUpS1Yt63gpo1lVk0oTMVmJgOpaXo2bY82BZ6tFJ6xNifOhEAZb+75fBYhFjpvXyQJHmuhbrfrIYLxjZbnOzfEltZA1zYv6bZu/3Yfv9kRkOrtarXOg9tFKSFjLRa5T6y1lEZRTyqms2m0f5WwRYnIKIoDn3Ne9E2N4PX1WF5SK4y1qLCtHOMdk9LSd504+DlHXQm2br6YU1Y1lQdtC9qu5cnTZ/T9QFHNKcpqx/Y+dWxCELOQtHAlghBsk0/RUo+VpuWSg6NDClugreGTT77Fj370o2gIkg8+fw5jDNPZLLct9WhmfJWJQ5LWkj2F31a/q1KcVPse7xxqWmYdZE+SwlOj1w74hAeVrDcP6CRh97KEN2/AbzjW66GuJej72MdNcZOknAuBAnKxzuFlc6gtHsVXT5/x1eMn3Lr7NYZ+TWkVhxEaOZ1OuHNyixBsTNSI3AaZT5RSFIXNCetqteLo6BZtuxZt9VL0ypfNktmkZrCWFYGTI6lEnxwdcnxwwNc/+IDpdMbTs+esmwZjLNOyJNiCp6fPAWg2K4FlWkvwsoa3sWubulRa67zBH3s+ADz66iEP3nuPf/Xv/b0IX9OU1tL71E2ODKRUPWY3FdvxR4hzgJxTSaLdMGCsyeTAVNlOfzsMA0ZLtz8Zmhkl/hQ++J25K/2NeDxr2Xg7hx+9prqWuP88G+t3IlneTqUhwzHSZ0nklXo6JwBds5EWZFnmKkmqDMEWvpHXirD7fTzZDoOThC+E7Hxjrebg4CAbA8znM1kcgfPzM7TWHB4estlsuLi4xERYRUqWx8586aKkxS0l05lIMAqtBPs7nU4x5i5l1EDVKtCtN6jS0W/a3GY5u7hA24KLtWe5PmcymzGzhpWymHLKuvfcPlowmcXKW9fi2w2TwlJYzWa1lMGkTTyeLb45hKj1qoTJmyAu1tisirGTLE8nEJzsxkPUSg4BHxfXgI6V5XEiPQI2k9bNsN08vCT2a+Bvdsik61kul1xeXuX7URYgEfVPE7UxBqPJxDmU2iG0lJXFB9CmYLO+oiwM8+mM0miMGW16VWBwgeUqYKOVs1KCtd0ShraOfPP5nICiH0QLtZ5MWC5XXFxc0vaKg8NbHB8fZ/OiW7duZd31y8vLvGhdd/mE7ZzSd51UW7Smnk6Yz+f8/ve/Tz2b3QivgFFNIdrFyty0W+UZz12wrSDdtLhk/KdzYhaT3ydhFkUFJ9voOtmwW2PFEMoInCVD72InYLsxFoDjjlLBayLPLftd9T5uiN1bYzdRDnFMbDVw4njTAsHoBs+//PEXzOZz3NARgmywZ1NJOIvCcnAw5+LCRw8FQHkS4TBtfLfcpcByuaLrevq+x5qCoiwoGo9rW4amoTSGjz54H4DvfPObaBS2sPzsy4f8+Gc/5dnTU/puoJiK1fb5uUC6urZkNptFoyJDWVq6Xqqwvgu5C54KYbdv30YpleFhs/mMP/ijP+TDDz7AaEPXNGzahsXiMJ66G+aDdE5DeNEcTipkeQ7q2hbri6jJrEV1I5HwyoJpVdKPxnDK9UIIdENPcJ4ikgMLa/Ba5v5EiB5fV2CLFBh1/lUWMnizeKNkWSn1XwL/OvAkhPBZfOwW8N8B3wB+DPxbIYQzJUf4nwF/AqyBfzeE8L+/wZugYlIlNUqJoFQGwCc7RKJDS4rxRR+T/dJr5EpGLG6m6ucsVpuqSc3qaplfazqTxFzpsWufLF5lTI7btqXpB0ysAqXfj48lHU+qIqVFxzlH0zRsNputRa7rAalip1aN1ioP7NTWyMlkOi/KMJlMODw84uDomHo253zVcbluuHX7VhbdvnP3HpfPn+CHFu8H/NBiywJFj0r+NzGZ1Qrwgb7rGehfhGHEnWJa1A8Wc2HKBz/CBKXdnuCNAtsbVhZPUf/w3qFjdblpmj0++S9x/MrnieAxvoPqgNZrnl5uuOxiBchJgutHZA5rLXURN9uTScY6AzsdIKW3ihNaK3RZ5MInQGk1QRec+Za22WC0wqApy2JbFfEuj83NZiOmKDqZFghEahgGhtWagNnpQllrmc1mO2oYq9WKzWaTq84psU4bbW00t27fypCIe/fvM4sqPuq6GsXYoUPtft+6AcbKS8QbpmRaK2GdC6FaRRvvXYhaUVeYEHCjN02N7JBHf5xLY2tUm3GFZ2QkYra9wBcEJMfzd4R55c5ZJPXtoRjvfvxa8ok3O5ItjlYpXBBXN60UKifLWhwwUTx6/JSzi0u0tVIZ1VAVVpSgSIpTIY95IZoZUcEqDFVVcnx8lNfN8/NLrLWsVmuSxOR6eUl3foYxmqPacu/Bfb77rU8AmNUT2qZltVrzF3/xF/z44UPW7YAPmqt1y9Ozc1YrWfHns4WQgGPeUVYlM+b0vUCfJtMZRVWz6eT5z07PuHNym7PTU+pJxWff+5x7d+/K/GBLvnr0iHo+42Cnc35tXklLd0pYE5RWhwjnHGT8KrZJ7bgDFp1gghrxT158JzSKYfS3HilcJKUyCJjSghe5zi3XYjeC97wC9PVCvKmg7Z8Bf+/aY/8x8I9CCJ8A/yj+G+BfAz6JX/8Q+M/f9GCCUvkE5Ka9EomXru/xCnRhsWUZMcYeH3zWDdYZPP4i7m77Jttd3tHRkbjszOcc3Trm8PiIoixRRvOdTz9Fac1ytcz4QaU0V8slF5eXUd/Q5uR3nFTntxpVUNMiN9ZjbpomY2tSq6TrWtIgLqylKEQ/VSrXW9ehqqqoqlrazrFdm2RvQLSPRUtVvrRWbNZrLi8uWK9WeAKz6QRrNb3raLoN3SBfQxhwJuAt9BhcsGhTMfQO3/dMCk1loDSK0ijm06m0mdhW2cLuKc/QmRArz0RnpBCrdM6JpF26NuNJ7PrXPt7Z+DN+pfOEyLw551lvGk4vl7RO0zqNtzVBF/h+oHQ9k9BTtJeUSjOtJpTGiuumdwTvGPqOoXcYo6mrOmqoj94phJ17LuhkUV9QFqJGkeyl0xjebDbScbq83MElnp2d5+7U4Dzr9ZqrqyvW6zXr9TpXeUKsyKQFzkXd8a7r8nEcHh7y4MEDHrz3gDt371KWJQ8ePOD7P/gBd+7coR8G1OiY5KzdPBWmz/nCYz4QhkG+otTk0A+ZEJ3GqCms4JW1Rllzw9iUBFYrjVaaspA5KZ2zVAl6KfTi+peCoJHdvNFoq9GFQRfiZmhKK98Lm7GV+3gn48/4NeQTrwvFdTt2gRwZpTLUXmnBKvugePT4iSTLxuKdx0TYZrqH67JgGLbOvQcHB6ImocjE/slkksfP5eUlfT9w//597t//mnCflue4vicMPd948B6/+73vce/omHtHx8zKijA4vvzpl/zs4Vd0gwM0gw9crTb0Dm7fvs/t2/e5desWi8VC8pMRdtf7EOcXw3qzoe062q5DGcPZ5ZJyuuB3/ubv88O/88eAoiqlI6etoSyrF87hy+aW3N2J82hA5oGEXTYxX1FKRUv7EC3tt69nBMAhcrQhSJc6SEV5GonaQO6kabXtCQQQYqbVmMLI3FDaXMnm58gn3qiyHEL4n5VS37j28L8B/J34838F/E/AfxQf/6+DzML/q1LqSCn1tRDCo1e+x0um80CIUmUKYwWDkxLUdLILMxay3/37G6bvzLqs7TTj23Sy2kYS2swSjbJOIJiks7NTvPccHB6y6R1DtJEtioIyklfS89NCN51Os10kkI99XN0KSIXHh1iZDgGjFdbIDd53HUprjiMgv6xrgjIsVxvWm45+GFgul/gAZVz4202TCX6dUZlwAGQDBKU1PgT6vqdto6TNMIASwXKXlECMlS/vKa2m8AHTy+c5mlZYaxmMTCwBS6AlBBcHjdvpBIQkFxMTZ7EP9jsQjH1S/Jcvfj3zhGyFN23LcrnaIfamxc8Yg1JQlYaDxQHTeiKJMo6DqUz4SgdWq1PatuHg4ID5fCK4vm4QvdTgt1NKUChTYUxHVZVYrSiMdIuGrpFqKVv7auccdT3haiWQsX/xF/8Co6V6rIsDLi4ueP78+VZeKhoFLBaLPE8oJUZGqXqbnpsUM6qyZHBSdf7444958N571NFad/AeFcf59QrN9VlWztWW0DSWqkvVn0TIU2gMZE37VE7yEbG4s91I+OKYMIOoCSltSZb2KBXNGF4+/7/6Xrgh8qHt5493NX4d88Tr4qYCjODsU6IcuxtaE5TGeaksn19cUk6mKNmvMZvU+TXLsmDoVcQoa6zV+NDTNBuaZkNZWg4PD7JcW+LupILR06dPaZ7+lPv37/PRNz7i4w8/4nA+y1ABjxh/NJuOfgisG4dXls4PNJ3H2jqbkhRFseVAeFEPM8YyXwhpOCCwz4RZds5xcHDIZ599zmeff85stuCsG3h2dsV8Psd5yWR3IQ4JP7V7bn1wOUmWD4pIAcfHNHpnM+uDVHgz30mpFxPT2EWSOUWIxkWUshTCoEAqbppHdh7R8j9jbvrlq+MXwSzfSzdsCOGRUupufPw94Kej530ZH9u5uZVS/xDZKfLBh+1TYxMAACAASURBVB/mD6munXmtNPV8JhIjzjEMw07l8W3wbIKHDqNrrOiHAaO1JJ/RECQ4zzc+/oiT//uEr776KkuUpFZJWZaScPfuRsxiWtiSAkZy7QOya05qw6abzygrjPaiFDiC9/Sdpi9t6ugwqeoM+SiKAheipA0yKLpLcfNBaZrNivXyXPDEgDoRn3pVW3zXQpihTRF3dUCsXMuPGhcH8jDalBijIys1wULkRB4dHUUFE3mukDRVdGMUmIXSdjsBoRn6Do1gsnXw4MEP7YgiKDFCLb3ZNd7Huxa/tHniwb0ThsERtGO5XHG1XFHPRFkiOJluFT5XhYyxsaIjMpPe+YxZU2q8YRVIUd8rfFB0g8I5KOP06HXFMJ1Qzj2bdsPQd0yLmklZMGykStp3Le9F17zD4yPquubJs1Pi547jfQu9SBhlEKLP6elprrpqrZlOp8xms5wcp9btZCL45IvLM7RWfPe3fouP/9rHET4hSW3g5opJTpxHPyitY5EgaZzKfOCdw/VDHn8hhIgI347JMBqrNxUl0gKXwkdeg4mfcRgG0IJhTgvha2M/DfxVjV/aPHHv5PiFF79GkQFerCqr2J1OHQ+QyrKP1dunp6coI2paWoHVimm9TZatMTFZ1nFt9Hg3SCeVgHOOZ8+ecX4uOurWWnH39J6+G1heXnA0qfnt3/oun3/+PapyguoGhk424bqsGAZPNwy0/UDTD7gA63Zg3Qzi2xCT5ZSQO+cyv8to0WRv247Dw0Nm83lW2Qkh8MMf/m1OTm5zcHCQ58ajoyOKQtwE54sDlLohy5TlngTPJIjqRcZobzasr5aiFDKfQ/AZGRYAR8AJhkrOeUjALHJVWilRxAiji5i1nn3AeYe2dqTjnC/zjRFe8/ub4lfhK3wjPOSFB0L4L0IIvxtC+N07d+78Cg5jH/vYxzscbz1PHB8e/BoOax/72Mc7FG89TxwezH8Nh7WP37T4RSrLj1M7RCn1NeBJfPxL4IPR894HHr76paKsiEqsx60xchK1F2FwYaInbEoidFzHBitUxLdsHxtH2jW6qPWpY7VWaQQ0YwymKjm6dYuHDx/y9NlTebsQuH1yW7SaA3ROKjmJNDTGOab3vYlJPlbJyLhCNwjW6fAgV9CbzZqh1xRG3L1OTk5YHAob1QU4O79kGBx9P7BpRcO5quIOzDuc29bpE1TEKEXnB1Hu8B6Dig5jlnUrO9irTcdq1eB8F12GVHZP9ErF6p3K1a7FYr5zHRLl5vr5ZnQsIV1H71FBo0PA9R1GvxRduSe4/+WMX+o8Ie55A1fL1Q6RVjoaUl221mCMZjqdxU6MYuh7+qFDqYhvM1vIwbgjlJ5fFAVVWeff2+mMVdOilJBRh6bBGcWhFuvpjz/9Fse3bgOgSsuTszOa1QWD81KBmk7YNC1FqGgjNn/Lwt92p/J8EKvRqZOVOkpd1/Ho0SOads3n3/uMH/7B32Y+m+GdY7Nes2k23Lp9vfjwsvJJLDOH7blQRuZPEf8XMxKjIsYvajanYZjq0UEFhIK9hcRsr9iL11Bwi0i3MHiI12Lo+ogljEcXW70qPTZu/b4q9tXnv4zxS5wn3iTivXqN3Cf38VYvfIfcd34pVtDOYcTLi6osMtTRuQQD02ijCMFnx0oQ2INzLivyHB7eyt3nn335kJNFyScPPmI+mwp22hgCDhWJcm3fMZsf0LQDT07POVs32MLiikLykaajiPd+13W5myWdqQpvAr0Tla/ZfM50OuXx48cA/Omf/il//Md/RNd3GCvd77quqes6c6TG4glcG+shtpJC8Bn7nRbstmlww7A1J9LbHMkh3b5E+gOp4I6BXkrJa2ltcIMQpccyd2M9ZTc4MTbSMl9prW+GZP0cc8Qvkiz/D8C/A/yn8fufjx7/D5VS/y3we8DF2+CLdgh6MWJjka0XeciTq1IK7xxlaof4EK1at0YlaSFSSjT4MlteC5kmAdHlAGTKL8sCkwdBXGC1wDAUisF5FotFblGkpDklwel9lVLM53P6vs9SUOPfJ5MRrcgEgKUVN592s032F4sFVV3l1sPq6oonT56y3DS4sMVBt5s1xhoKrcE5uoiTbjcNszIZlASckxvbOY/2CHEqq1XIcXW9G2HDya0ZG8/DUdR/TAYDCnE6C94LKP9abMlEW+C/jy0bFHTdi+59O/eGGr/GPv6SxC9xnhBzgE3bslqvR4YbZPy70gGlIws9th9lUzrQtA2o5IiX1GbCCBdcyIQc7/mU6oUQUJHTQAhi+eodVxeXLErLg6894Lvf+Q53790D4Onpcx49foTFgXJMJ4Z+uEJpy+X5c/AObYrRHBfoeyH5JTWMtEmt65qjo6MM7UpqO945Dg4PuXPvHlfn55RFxePHjzHVdhEZx6sIfiGEbUszQSfCdvFSKVFWMk59XPa2IA0VieyRdR5xMApJpNOY7dsOpRU2migljHkIISvlyHVMh/LysZ64JttjZPvv1Lfdx1+m+JXkEy+Lm8h9NmqsK7UdDwGNC4qHI3Lf0LeUZgvBSBKqzu1q+co8klJEgXqJOYjwgO7ckbGakueDScF8OqUwmtB2YEp835EAtlpr1k3D+cUll6sWpwxgKcoZdhDOgGEL9xROknAS+n5gvdlw584dQlA8efKE2WzGb//2bwPw7W9/KrA1tR1zdV3noljarL/8fEroBJvQKnLNYNO1rJcilBCGAVVI0TPotBlO5iZy/gxI/qBUlPyNRUhEB9tEwvA2j4v8sr6naVrZaGAI3pH0LsawGq0V6LcHVbypdNx/g4DvT5RSXwL/CXJT//dKqX8f+AL4UXz6/4jIvPx/iNTLv/fa10dhoxvM9QkykKTkQoTGRJmhUSUmREIcJOwiKGPy7jBEvJC116wa5ZejiTVWPRTcuXOHzz7/nMePvsq7Q6lOxV1N0OK0p9TOjmucDHvvKUvROxQCXUvXdbkiprXGmohFrApmsxm3b9/m6ED83lX0nn/+9BnWWjabRkpiwHK5YrVeR3yiiR9DEZyjLCrmE2H4Zxx98KLNihfHMaDre3qvKAZF76GLMjKbaPgwBOjj4myiDqIxUo0yRvSmIQ6QaHEtC23ChcquMIS4sGbyUNwOqe2OlKAywfCV98p+EXxn41c9T8ibaDZNy+XlVby30j3l8H5AGbk/rNFovVVoyI5OOm18RWlmNpsynU4YhoHZbEFRVFxcXMTNbxqnAb9ZY5VnWlqGoccAk7JkPhMMcWK7y7EEhsGJvqktUEXJ46dPefz0EkXFbDZjMqlzx6uuS3xwBA/rzRpbFEynMxl7mwbPOScnJwCcX1xycXHO3/z9f4U//rt/l/XVlWzgoyHLK3kc1x4KkV0+7oa5YaBvGgwKW9eyQY1zIpDdOCHO1SNyoOSro39HHKOP84FGyD1SKRPsMkDXtCyvrmgisTqdl/Tz9e/pM74xznkf71T8WuaJV7//zhe8SO7LZkBK4yO57+LyiiKS+6yG6UTIwlWRiLpbcl8IgqMdO/oWRcFqtc6kupSAbtax0jwVkYA6qlzhpPBkordCYSr+j//z/+LsasXB0TFXTQvWUtZTbs0WuMsnGYMsttpTfIi6xJFPNJ1Oubhc8vjxY374wx/yb/79vw/A8dExKOlm9X2fc5p0jvq+x1r72vV3fE7ThmN2sKCaTqSgWVxXqUkY8e0j4hcKeI9PUOaopKGVzlJ0mTisNUPfc3Z2xunZGUVZ7nTkxu6twTlSsT8XAd4w3lQN499+ya/++IbnBuA/eOMjiJGY1DkRjo97wKutdbJJsvVRPy9Ve1yXFIVlV7hNf7eVDaUyu2UbNzwEYg/9W599xpdffsnFlQDy202T2yjT2QIfZFc4Jh1erxxPJhMWi0W2rd0eBzHRlvcry4LJpGYymVAfVlhrOFzMubq84NmTp3z5s59x++QOLh7r5eUlbdsxPzjElhUuLOn7ntXykju3DqnLIhZw03vG1ojzkYCXdE8HXGhpesfVSgbaumnp+46g7RYyoTVKQVmUGB0ojGI+k0E8JBJDrtCPvpNct0ZrdRA9WyECCPJlGAa8C5BpRDfFfml8l+NXPk8oBcqw2TRcLpdR+zfey86h/ICpywxfqCdTqkosZpUOOG9zZVmgGiYvbkCcXGXzOtYenkwnnC0vWFQFoShYhRW3FnM+uH+fk+Njbh0fc+voNn0nY+3Zs+dcXS3p+wFbFgzO03QdwQvUKy3GaQIvy0qSUBcYvI/OfYamFck4W5acX14B0A6eb376Xf76734fZSrWywbvO46OCkxRyqa8aalHLP2XRdqnpqoNgOt7Nqs1RmtmVSWSehkCgWxwUwIQH9dBocJYy3RbcR7/c2chReYj5xzr5ZJnT5+yjt2CtFCn6pgxBj36+XrynJ6bJe1ucFLdx7sTv458Yvc1tg0oideT+1QsSnk0vfM8Oz1Fj8h9RqushJHu177fQjDAR2daIfdZa3PuUNdCus/J8qahtJqqLKmrirqs0baAwYvUWyTePzs9ZdO0oDXVpMLUU9aDZ9U0VFWV12nYkgdd8GLUFjTzgwPatqUoCh48eMDv/M7vcD92w87OL5gv5juvkeANWQ3nLQtV4y6wSN3uSs8pkuO0xqFG1ygVQOR/opXs0IiSWd91bNqWMs3V1uKjd8V6tYJIbhR9aXnfMr53kgFODqnBvbnS8jvh4Adcv5uz4952vk0VZjGz0EBpbVSwGFUtCdm6WpLuWKq39mbm9qjlp9TuYZii4M7JSb7o0/mMy8tLNpsNtqhp2za3cKtqa2Gbnt91neCEozxTkolJrHelFHUlN+b9e7c5vnULNzh0rTHasF6veP78OSFsB8wQtU6d8xRlIVaUpkDrNUPf021WNOsVQ7uWyrqX5x9OayaTmvVyydV6TVkUdIOnHxpMEWh7nyvLLjmHaUUYfF7cpVVt0MqjvGE2E61DnSs9sbocNVTTl0ceykj0kGSpYiodAm3Xjq/+S26SfVV5H4r1RjofWptRZVnuucIYrNVMJ7XokMexZ4xg7lHRjTIuJmUpBkPr9ZqDgyOgz3i/FD7InEII4D1WKY4PDvjGhx9y6+AQozWnz57xFz/5CQA/e/qU9abDe0XTOpZdw9VyQ0AMUlIl2vuURe5uoMcazcYYZrMZy2hz/81vfsJ3vvsd7t69i7UFRSmwDZTBFhW2qCjKipGt0/bU7UyxIUveqdHEt1mvWS2XMq/ATpU6MdhTNSZVjlEyH4d4fiKKI/8+jdqyKHDO0XedaC8bTXCCQR/6If/9kBz/+lQAeTHGiTOwm0xHtaF97OPmeBGvLK37LV453eMexcOIV9bR56CIeOWyKCgKg3O7Y1cqy0OGWIIkaZIsNxwdifxrURRZEedwUkRfhIq6qtHWEroGZWw+3ocPH7FuWjAGUWILuAgvDa7LeQhsVbe0Em+QqqzxBE5Pz/nRP/gHAPzRH/1RAk5lDPB13hVsjYteF+NC4bjYkOAcL7sSFpGKG3fk0/PFyCSCNOKYXq/WXF1eslgsADg4PKJvOzbLdYR6bSF2zWZDE2Eu6RqNE+gx9vl18U4kyyGILFzGoTGe11VOqGK3nrQzjPXijGOOv4nYZhUnbkn6klkH7K4Z42uY0u0kt3JxdsbHn3wzt0AfP36M1pp6UmdP8zERJyXLbdQmHoaB58+fZ0/2EAKHh4dZjsU5R1XIux4eztFa8ezZM54+eUJdlVijWK2WGRpycSnuQSnKoow6yZFkGDyTyQTRMVUQd2MQB0+0q16tNtjDkt4FXIitDci21kkuzhhDGROSxWKOUeJaNnQNgZBdxaRCtt0NbumZqYKdrmO+pFHqyuUidNt2L8cZ7nHK+4gRUCyjqYe4wMnjqXNS1yXWiFuWUrsT/E6FlG3lYxgG2rbj6mpJUZQZJpUT2OCxQws9FGHg4OiADx58jZPjI4wSLHPbdnnh67oO5wNKGTZdx3rTUk/nmFCxWBxQliVt22ZN1KBFRzl4x2KxyNyGg4ODjH1MkKcHDx5weHiYJ/mEKUzycvaFRFGN/r8bavxDOi/W4LViCCJ7ZbHRHjv3Q6+9lkJdG54ZIherzWnRVFqzXq1YL1fUdc18cSCVo2HAO4cfdtvWY1zyDiYZsjnTPvbxtnGjGUmsLCslldUQV063Y0ZiGPoBbbZV5aooMlYZEl45raEv4pXbtt1J0NYRgnEwLaiKLXxA+RD1kUt2kuW2JRQ1ASH5u+DRxqLcZiev0VpjrGFS15SFGIs8fPSIjz76mA8++ICiKDKsAeBgcZCT4nE3Wc5P+Lk2n2OhgzeJrCed/i5uPq6urmg2Gw7mC6qy5PmzZzjnODo6kj/0HhVgMZsxrWu6vqNtO5quzf4USeZWaU3bNLSRy/U28U4ky8BWDUMjlYrRiVMo0KKYoNGoIOQ9yZsVoPFxoQohSuSH7aR9fXofYTRePI7YszFKcXTrFl3b8nu/93sA/Pmf/zlHR0fcvn3C1eUqE/KSzXUi+Y13Vy6amqTHqqri8PCQuq4JIVCYqEBxecbZ2Wk2JNEqUJUFLlrf+hCoJiUm+qF7HIUSp6+2FRy01TCbTwiuo289xhqOb4vmZFWWXF4tWW82ETOlsbaQEceuMkeqgCfMp1KK2WwuVTWjaCOWKsEwZODF85lUSLJLX4LWbE+4igPRuyD7GCXkvpcXlNUegbGPGIrVas1qvUabKu3EUDpQWCNa4gqODhesN5K4ak2+F3chUCa75ZkI6ch22GoLB+iaNevzM1QI3L19m4/f/5Cvv/8htw4P6dqO8/MLnj55xqNHQuDvvUdbObZh0zJ4MKYk9Owke/m9imRJK3CDvu+ZTqfcvXeP1WqFMYa/8Tf+BgC///vfZzKtmUzFynY6ncaOj8wx1r75lD7GJaaNQz2dQDQvUlWRyUUygJUQkePfyxmLLJIgp9gnHkkyWxid8xACfnA7c6RBURUlxweH+bjG5i7OO4aYGMuXKAyERADKm6WYyI8S633sA3ZrLW+CV1bRiASIeOUnXF4tKSbTqK8M05gsl4Wl71NSuMUrezfwIl55RV1PdshyW3KfzVVlYwuIrsCmEnUegCdPn+GDYoifx8XKstUGum6nCySbZhmpznlsKcW5P/zDP+K9996jruu4KdhCpQK7uVLqhr9popwq6yl/eFsy/vXnhyBmaU3TcHl1BUpRDRUffvwRl+fnudKMtVSTCTPvcxW5LEoWSDGvH7aGa03X0kWisRpVv98k3o1kOU6wclFe3PWl65epIzulZ/llcsdr1mvKSc1kMUcbg/JbZvubYG7SwjF4SZj9aFFLyXFZVpRFzXq9zrCM9P5FUTCdCjwhqWAkke/FYsGdO3c4OTmh6zqxum3l4p6enjKdTijiohe8tHG6CPUwsYqcb9xBBmLfD6zXgps2rscWSmwpSzlxiZG6Wq7QSuGcZzKZU1QVmEKkVoKiv9pksfSmaZjN5wQlLmLxSuTBkG7qxWIeP7OFHZf1VGWOleWgMjkzXzOlMnYaVMR7qhdeY3thXnvp9vFXPhTOBy6vrmialsnBNLc6FWISUBQWozVFWcBGCGzOgbEiB2dsajvarOgyn8/jpCnqE9IlMjnxXK424B3GWKqi4GC+YDadYFCU1opt/eDROj5/ecXGBZRWdEOg7xXKWNp2xXq9zhvcjC+MhkDeixuVMQYbCYOpqvzpp58CUll2fshcjOTUpbXOuMWXEvzeIFJ3LMHHtqd+O3pN/Cn9VtRzElxLiNVd0wifIyb+ANZYzs7OOD8/596duxwdHYMxlFVF7VyWhRpjll8WPoSd6nJOplNyPeyrzvu4qSn5cryyGuGVfawst4Pj2el5xCu7jFdOShhaS84C7OKVfaosj/HKDXVd7yTLzaahinjlqqqYRAgGg8BLtbE8ffYcgHUreGWXk2Vi9+ZaNwbJVZJLXgiB9XrN++9/wNGxFM/SMYzPhTZbWFvqaL3NBny8ARknvklx6FWKGi9LrMfQjgSP67qOoqowUYUEDaYuOahKDvwRBHE8bppGkucGilhkzDyrYaDtWpo3EBVI8U4ky4F48ZQieI8ffK4MlNaQLG61ShJFkBQXcFIRbSILtGkabFlk0sq2tnlDpO7i+DlK0bQNXdsyqSqUgk+/+x1AmOr/5B//E4bBMZ3MY9VKFpeEVU5VHhCszmKxYDab0XVdlo979OgRZ2dnbDYbDJIst23L1x7cx0bYQ99u0FrRrDdSvfYhV2sgEuLQKO9z+xfvMLqkMCPpGtfH19+gTSEtG1vgfGBwniEy05XRGe/U9wM+CHY5LYLr1Yq6qlCFkBBc3+VE2mhRww5KKv4hrlMZT/pCpitQGWn7KNCKpu/wO89TN/y0j9/0cN7x/PQsTuwu3/t1IdALSfQsw5CwdxqlhI+g9HZsCnQhapmGwHq9oe8FhjGZTLCm4OpKSHXL0yfMJyXf+OABn37r2zy4e1/gSV4IJ8ELMyJhbV2EIPjB4zz0g6NZbTBeCD75ve3WMVOqOC7qm0q36quvvqKuaz7//HPuf+2+nABFLhaMK8Lpdbque6vq8vVFKsE53qbiopXKrdM0RznvWW82XF5ecjRyL/36X/uY951js1rjVcAYy3QxZ7pYEMtbO3Oci1/DKJl2wwBOHLuKt/is+9jHq/DKjPDKaS169PgxZxcXEa/sKbRsysvCUhYW77d66a/HK284Pj7Z0UyHCMEoy0jwexGv/PCRKOUlvPIwwitrbcD1O0kuiHupisUxbTSryxXf/OYnGbrwwkZ01KFJr5E24m8SCcJxfU4CdiAdL41rlegEwSqrKhczvPcZ/7xDOAxh5MwqOUgxrSkmNYujQ/Ah8x9SAt1sNlhrmU1nb/T54B1JlmEX1J0+MNyAuMvljSiQX2iGzjHEazEQGILPFWgZEB7zFhlX13WslktsxLrMIpD8/Q8/5J/+0/+Hrx5+RTvtM/km7XZSdSNVopumQWvN5eWl+LGnFmVsLwxDh/MyYCZTkaDqW3leFwLHx8f4YeDp06eSLCuFiq+92TQMHrTtWa1XQvYJjrqwWfcRtjdp0qhON6FzIo3lfACl5XvaWkQ4iS6reNzSVm3WazalxQ0dt48OR22mkOEr6bt8TlHeCEYsu/tBPqs1ir5zeO9QRpisryLz7BEY+0ix3rS0USUi6X+DJGxlIXjdwsrCpnVsbdYl2kDbbeh74RM411MUlul0EjeyA0pt23IhBM7OzgDw6xUffPx1fu93/jr3HrwnfdumZ2hlUzmbzimKkraNahjPz2i9sLSdtQRl8iZ6Ox7VDqbaOU/btRxNj5jN5vzki59yeXXFj370I77/gx9k5neIHbiu63Knp+/7HVLg6zRR0+cbt0rHx/U2yfbLYgzrShwOpZQoXihFUJE4SdJbjZ2nUaWrKAxFqEhJdDzw/LOLCTRsE+uUVKfH97EPGMGvrlWWfYDiBryyCylZfsr5+S5eOesrFzaT++DleOWqknW06/odvHI2J5kUlGUknRUlyvsdvPLPHkqyvGlaQjRK2sUrr/Pw0FHFI23EZR7ULJdL3n//A2bz+W6inP/w1ectP/0lyXMyCnlZZ+u1na7rjeSYpxitmUwmOXGfTKeSmMfu2/Vjug7/UEqhjMJYKQTO64r54YFYZDu3Q/57XbwTyfL1Gzg99vo/lL+zZcHsQBLayXwmuqN221LQEWuXBelekX2tlkuuri6j9NQE54R8AkRJJyHDJaa6tTZXYjabDcvlMmsdpg1A+i4QjjIvItaMQPBKgOylLQhBFsTVaiUtXu9zddZFBn3f94LEcJ6+H5jN5hxVMw6PDvIxto3OuCVtrcAhAqzWa7yH3nlhpet4k43Y+enc5gTfO4bg0coTXM/R0eFOUu69xw+DVLKDi9hl0cryeYFL1ScYwoAKUtrfrNvcRk6xVTnYfv95cFD7+KsV6/WaNpI2gt/2LJQSOTiQNmkIW/yqDDHZxKW2/TB4uq6hKKRFulqtOD6+nXkGT548zUnevaMF00lkdEcORIhAfOc80+lUZCQb2Qx2AzilUMpSTxaockbfrNCuJYSQSTwuVVCdw3sw2sQqlM9T1L179zg+PuYySsfN5rM8X6ZKzhga9fPCL8aFil8Ua5hepygKmYtHreH0/HG7dtuBeunBZX6K2l5QjNUR0xlRZ2E8v+/niX28CMO4jlcOXMcrm6ytDPDw8RMul6sdvPJskmTILH2nMnlMm5vxytZarq6WL0AwNmuBbqbKskAwitwtT3jlp8+eAaLMsYNX9gFbGuj6F7raKSH2Ea9sbcHxra0KRzwZ44b6G8VN80sIIWswp2Lg+HljhZ83ee2xVJ2KnXs/6k4lvsmOxN3oWK4f2/XHlFJgFNoWzMrXFxZS7MUo97GPfexjH/vYxz72sY+XxLtRWdZqp6KxlYV7M7zqGBOTROlTjHc0r34teV5VT/HBUJRTeg+npxfU0UL2gw+/wSff/pSf/PhLzjYX3L59CwWcn58zDINUvaL1dQofMcWpYpUwlvP5nKrUNGtpF15eXuC948HXvkZZCAb6yZMnrK6W0TtdY0e7JKV1lsYrioK6KplqR1FY6VQG0YZN7RilNUPvcN7jXKCoJlTGoFTULlxvclvDGMOAyvbdUpXzsvtGo7Th+PiYakejUGAcgYDaqRal3aLfFntUiFLMsjvuhyFL9Vy/WPKe+yrRPuT2WW02Qsq4BsNQkLXIpcKzrZSm5ybCzTiSY9UwDLk6EkLg6vIKGytG7z24z2I6YbO6pLtaUE2m0kHRirKa0FwuOTu/yJhlYyyDlxaptSVmUuAstMshq+PU9QQXW7Vd3xOCys5e6/Wa733vezRNww9/+ENpb/otXCKwK+s0jjfFGu+SnHb1UcfSUa+rVF+v3KSu1mQyIcnapWp+Ig6m56e56QYW1vU3icXiVzj2jarPoia6Zzr8psfubTWaD0a/10pjdsh9Go+miQZDgyxJyQAAIABJREFUz8fkPh3JfVEJQysh94mSDlHb92Xkvg1VNdmBODVNQ11oymJXX3lM7nv89KkYkYDoK8fPNATwBFTY5hrjynIm95HIfe+/QO77ZbGBUqVXzsHr54zrcVNn6nonOXX1vfcMfb8zjyjYceLb6Va95LVfOZe8JN6JZBl2239vy+bWWueF5hdhgqfXOjg4YLFYSPvAWOqpqD5oU3Lva+/z9Y8/4Z//83/O5WrD6akwVbVSDM7Tdt0I3K8Y+h7vPbPZFGtt1lAV3PLWiENFuSYByhuGvqdtmoh/VqCD4JIjVGE287S9Y3CBsp5wcnTAnWqK0oa+j4uTKbM99rppabtO2OraZp3FlFSEERZQK9Fudn2y+wWjNC44QmkxWrGYz0aDbotXHktGgWDCosliTmy2ybx8H9zwynEbUNdznH38hsZqvREYhtKygYuPa6UoMgxD54UytVxfBuORCXibiCql6KM5T2mjO5xOhhdWuBQJl6cNtiy5Wq54+vw5NuKK79y9Rx+gGRxNLxtOPRL23xJhtseglWVxcMDTp09ZrTb8yZ/8CTri9YL3WWc5+ECItrQ56bz285vGGOd8Pd7UiOCmSEnHdo6RY7NFQVlVAmtLrfDxxHAt3goOMkqoYT9d7ON67BL7ErlP6yRT63fIfY8ePwaI+sq75L7C7pL7xuP6OrmvqsQ0aLNpuHVLyH3dSIHhYFJsnftuIvc9fMQ6PV+PyX2C28V1O0XGlCxncl/EK3/yybc5vonc9yvYU74tXtmLw8oLG/jx50pzSlIHS/hoEO6DuQb7uP5aN73u28Y7kyy/ED/nRUy7jzF25vrJe1UkTOFYIzndgEne7u7du5ydnfGTn/xLTk5O+OKLLwBxFDTW0K4lCa7KkqI0GFMyndQYFfCIvNF6ecl0CrEYhukDfmi5OD9lVt/n6PAQ7wYePXzEar2mrCfYwuYdlNYGrQN4FyVnLFWpcB68kcWiNJYuJrxN2zIMnno6yZNC8ODiomitjbI32wuQBn3CCeUKfnDMZqNkOSRL67BTBVZK4YMSbKaX5BjABx9NaDweGdSvjX2haB/EZDnqZHrnt5XlHcyyZhjGi6PkUD6M77OQq6jODTvku0TQLYtkpayjqY+R8ZeSZSNyc6vVSgx94sFkao9SIgUXgOCzYk4IkuzODw/y+7VNj3OOruv47LPPqKpqVIVSeay9bJpPye2bJsuvwjiP8ctvEjuFDhLlQeVKfUrGU1I/npfHP7/qON/03/vYx/UQZawX769M7kOG7pjc9/DxUwDOR2Ykxm7NSMpyS+7bkmOJxbBdM5KkhJXIfesRqSwrYVQVZVlFcl/UaY9KGOtYWfYjcp8PIZL72jwnJFv4FM45tNasVivef/99prPZdk5JeOV3AYh7w1yUCofXlTTS3AkjbqLWL264w24ecv3nV1WeXxbvRrI8agPC25FUkt30L3ISUiRQ+Ww2y695fHycFyrnHCe3T/j2t79N2zY8fPglwzBE69oXE77CWlCWqiqZTaZxMPWs12tOT0+ZzQP3790B4HAxkYEbOsrQ8eGtB3x065jHiwX/4l/+hB5FXVR0qQqmFLYo0IVIq9SlJQSXVSjk5pHFGqQiJRUt+XLe0bVCREgtjkSwa6oWH3TWQS6KAo2ia1ppOfmQJbokwktbqfmsBLbJRAh47/A6arQ6RzTMfetrto/fpFA7leXgHRFFhFZQjGEYfSLujGBA1yIly0nb94Vk+cbKstz/0sOV369Wa4bBkVxC01tJsybEKvi22nQ9OdTaoI2n6zqqquYHP/gB9+/fz+PyxdNwM8nmbebNNG+N/373Ld4wUSYN7UgGjonxTdUuMSJy28Qhzvv6FQn+66pUL22z7uM3Psa3wY7S1mvIfS4akQBcjch9RpGVMKqioOs0xii0SZAoL+vaC+S+qx0zks04Wc6V5QjBcB7vA7YSJYxnz0+35P4MwUjkPrtD7jNGinUphNwnAgQvkPvyeflFzvAvJ3Ly+xpIWUgFgUQUTtCxm9R7XpE8y6/friAA70iynKGs4w/whh/iusPMGH/3NhXl9Lew3dUAuRqU4s6dO9w5uUNZlnzxxU949OgR9+7do9lsOH3+HKVU9iwPzlMUZgenNNYidG7IYtnTyYQQ7W+rsuS9Bw84PjjkYLFgvdrw+OkzNheXJOBGOwx0SjM/usXs9hHBe9ZNoGk2UikzBpTPzjVaK+pqgikK+t7TtT1N02Zd1XE7SWkNbnv+tNao0WJcVaITm86si9ASwQxKLiFqGOCCxgeHCmSN7OC9VO3VVllE4h0Yuft4ZyMgSi5t26GM3YH7KKSyLFvE+P/RNOJvaL+lcT4MYjjysmRZjyvLSpJlwTsKZlEqyx5SB2p0vKnSyuj9tdYvYOwS/GM+n+dN6+5isQVnb6vp/z977xZrW7adZ32t9zHGnHNd9q7rOXV8LvY5yXFixwHfSIwcIIiAHIhwHkBKQMIChJWHvPFiLlIQDwgJBOImIj9YTqTgBCElRGCRWHlJXiw7hhCc2E6OnTg+ruO67Pu6zDnH6L3x0Hrvo48559p7r6pdtVetPf7SrrXWvIxrH623/re/tVY73M9PEdXZ5qXazY6M43m3d8gvvcrxFpFU+SPu2+Wr7PQzHN+nMeMzXl3s6pX3F1n7emXnHAHHetNz78FDAFwqbeqSBOMoVcLIZR+dG1spq+pEr9y2bZFg1JUwNokpXra+sMrFWe5Nryze8zvvvV9qKwPTZiQosrMAt+jw6Hhqsk1f+tKXS33lOlp1I3AFA1zern4fGx85hmEodarbxD4/Nap2yCZcc1F9I5zlHCKZ1Md7jpt5FYNQl1V62ud2kZN8YnLmDn3ftu3JYVyA09PT9BkLEeSOVX1qtRuGwOVwyWLRsVwuGYaBfthycXlRZBJRHf2mR0TYbgcE248TR+4Xve17QiXDaJuGRddycnREd3EB3SJ1trLwZ99vS73qk5MjttstD+89wPuG09M7LE+WhKAQAh7HImkuu6ZlO2wsPGU19xh6Cy+FEFgmvXItkS+i+aJbtvJX0d5M4zIxy6nGYXSCc8nA7N7D57pjM141XCRmuTuadqDKzSl2k/tygupVyX0js1w7y/ZMLipmufEe7xKznBeH6fNnSYahlTVVtcYkpsvdZZWnSTA5UbHve9544026XWc5h0zhygfjOjIzEZkwTNclFWrUZZvqfRSd8g7rM5FgPM++n/e4ZjZ5xpUYx9jT9Mo4R0B49733efDoMWBd7Ype2buiVw7BFV9gTLa9uhnJm2++TdM0pRwlwN0jY30XiwWrbon3DbqZNiO5WG9K3tHz6JXzedYSjN/7e7+rJPd90nrla+MZj60RcHagTWMLl9ycKJ97GAYC0DP6fi5FCl+IbUm4Ec5ybpZRknBQ/HOKaXYvyKSixjUN6NiBZ5oNXmvunHPEIfDFL32R3/27fzfvv/8+H374IWEYEiM0ThTeOZTcnIOyzcViwfHxMUfScX6RmF8947htcSKcPb7gG//w1/ld3/FV7p7c5Tu//p289vrr/Po/+S3upa5ijYPFsmXRNaZz6nuIsTysecWbi5Q3TVPCP957Y8/UREveObw4Fk1ylom0YY2ghCAMKgTXEduWh5eRu28s6JZH44WLAaI503UiVVBQSWxadZ3zPRbJq/G49+Dq3i8zXnWoKpebDWStKxQdfHNFch9yVXLfqFkehsBy2ZWJZGSWc9vlfc0yWARm2/ds+x52araYa56S13YkIPZcVjYrJma5T8xyaaX74gWF2Vbmc61lEuV4riHp2EvCkafXVM37053vf2zMbPKMA3iqXtnt65WjmgTjYXaWm4ahX+Mb4Whpi9hF15Q6zN67MvSGoa6vPOqVhyHQJiLq8mJHgpEqYbRdZ/N3iLhmSU7uu1xviItV+c6gpIYlLTKcP0WvbIUCcjOSo6Ojm6lXvgayDR+Ggb7vx87FkGRyvhAgJVot1tjE+Y9erSPjZjjLCeUkrnEy+Tt5kOZmIRmZLb7W/hPqYv/5fUF4/OQJR0cr/unv/V5+4Rd+gW984xt84Z13eOONN6wEXEpY67qWGAOb3kIGMVp3re3WSl817YI8Yp1YtqeItfw+e3LG40eP+Nxbb/P2G2/w2mt3abqO//dXfgWAs/WG109OWa4WbM4eceoa1tttmegXiwUhjKuvGCPr9bpaeVq4x3trM26apzygbMLzgKoQnSUy4RzrbU+7OmJ5dFzcAwlb6C/RmCp3ACF9t9XMGgskA5OrGOSw1dNvynPduhmvAGKMpXsfiY3Nw6Pxo7OcJ7Kc3AeUhVyNLMMIYZdZvkqz7Mu4zfrk8/OLktwXq82nQAu5akfGyCxPZRg4NzrLB2UYnx6uM5n46xxjncynWia8zIjtJmNnezjLKmZcF7t65V2NqoJJMA7qlT/g7Nwai7XLUa9ckvuKXtmVcnFAJcEweO9ZrzcsFstKr7wu75+u2pScv6NXbqwZyYf3H6DOFfkFWDOSqGr2bqcZySG98mq1OlAyLl+Xj3GBPy3syWd0TzoGZrOz3c6+TP4Xauc5wXk/caKfBzfGWZ7qla//vUN/1y1Xnwe5tFv+Pd+M3UEWBnPIu7YtLa3btqXrTKOUa6KGYA+S9w5ak3ecn5+z2WxQ7+h0gUsZ91E94jq8E4Y+8vD+I85fPyPceY1l19GJslwsWGTdU4h4l3TDIeCrCdY5x+npKctlS4ypDFbXWTvtPpTQ0NArXbdktXRpYh9Xy855q5octFRQBnPkT0+OWS46tCQPWutqTZ0GY3IcNILTME6SmhYGEVBHH4QYHQMdMFbSkKL2JL1e/5zxqiLGOCb3qdr6LQ2KXDbOZBhTpnN0lPedZWtPHyYJfiEE69blXfmc362E4apKGIM5y1PeekzuEx0mht00y9NomKuZ5ac4yzdtgnuaI3uIM667bmXb/FzlnHac6T3HenaqZxzEdFyYPTC9sjugV75Yb7j34CHO5wpYtV55mbYx1SuPhFSuhGF65TzP1sl9m82GVWe2aqpXbqEPZlu851u/857VV3a+dO2DWq88tnMvyX1VCcmsV/7iF79U9Movur7yx8Z1o0pXOMr7H9OJ8wxjJC13XY4hWDJyxU4/CzfGWf4oqB+C+mJkOOcmvdifhXwjMlW/W2s0xojDcXx8jHeOL33pS3z/938/X/va1/jHv/EbpbJErtMawpCE582o5037CArOB0jhmRjg8nLL4ITFasFqsbIkO42cHh2BE77yhXc4e2Lhod/8nXeJ2wtUAketTa7b7YZtv2WxWKRmKGNYKCdChqBloooxH4+W3yElSjlrER4Ha2QSEaSxcnKr5ZK28QxJYE/fQwhklzr1GyG3uN6tUBJCGK9DKbkllXv81Jv03Pdzxu1CDLGUjcutrrMNKG1e3Vg7PDPL9twdZpZzyC6XR6xZZe8qA+sb6uS+Xb3yLrMca83yTqWfukoHVAl+fc/JyWlxlsfP3JDJbRfPSr6DPe8+N3jIrHIOpU6SiSsHOP+dGf1nPf27TvSMVx374yFytV75W+99YOXi0uI7DIHWQesdjfcsulqvbMRUTI5rTcyNeuU1b711x/TKKbHv7sqc1tpZ9t6j6x5JrPJvv/stLjbmLOfKqrHolRsk9Ht6ZUSIwyjDPDs747u+6/cVZnmy+L4Jj8e1fWWd/LsOMrOcy3PCSII8L54ZQxORnxKR90Xkl6vX/isR+VUR+bsi8pdF5LX0+neIyKWI/J30789e64xmzJjxmcRsJ2bMmPEszHZixmcVzyM4+2ngR3Ze+znge1T1nwL+AfAfVe/9uqp+b/r3p17MYX40XBW2e1oor23bSfLLLlStdFqm+r/v+76PH/7hH+bhw4c8fvyYd955h9OTE05TODUn861Wq9L84/T0FJoFrlkirkVcy+XFmidn56wvL0FtZdq2DW3TmrZGhNViwRuv3+WN1+9yslywOT/j/MF9YtIqZ7Y2yz0eP37ExcUFFxcXVsViuWS5XNI0bWmx2XVdtbpKwWONZPFF0CnrHEPg6Cgxy8OWYdgSh77Ul4xqjHWIkTCMDFIOiwzDwLCjpb7WanFmjG4qfppP2E4EncowJMkwrMZyneA3MrJFo6h13GJMYNuvhFExyz7/83hXJfcVzXJVNi6VQZzuJYVsd6RguSlQRj407z3L5bKwVrcSB9ihOsrU9z3b7Zbtdstms+Hy8pKLiwvOz8+5uLhgvV6z2WxS4pS1Dw8hTCQdJWI14ybip/mU/ImnJfe5SXKfnyT35a59zjeW11NJMLq2nST3IRZBDmGa3Gc5QzY2s/whNyO5c9Ry56il6xYsu4Ul/wWbt11ilnMljFjNdyEn9zmrhJFRJ/eFEEvnvtyMZLVa7Sf3fcam0Toq/ywZxvOiZpmfB8+UYajq3xSR79h57a9Xf/488G889x6fBy/BIdpNANj9HeyhIkKuxO+c46233uL+/ft89atf5Vvf+u1JDdFc+6/xnkHGDnir1YqTz79FI46QHqDzh/dM+7vpiafK6ckpb9x9g7snp3TeIU5pX79DHz4PwKPHDzg7f8L5ek0Z+dU5bLcbLi4uJoMql2xTVVzS7jRNh3ceVUtIBGi7NnUwjObciiCNhay9dxyvViy7DkLW+9SZTaXSHRrGpEvbv/09DH1VbmfqSLyw7PgZnyo+DTtREvycoKl7X0nwqzTLw0BK3CnHsTeucqfPYQg0Td2QxMbqvgzDV62uQdJ7Y0OSXRlGVVVCw96+83FlPFOv/Bmb3J4H1w2nTrLcr8Asw7jZ+FT8iTKk9gkxe1t2kvtcSe57970POL9c0y5SRRqZNiPpuobtZprcVxp/VXOZc471ej1tRpIqYZxWMoxSXzmOyX2KcP/BA5OG7CT3BY1GDGyHg8l9IfeHSCVsb2xy30cgxj6ODONF4EVolv894C9Vf39VRP4f4DHwn6rq3zr0JRH5ceDHAb7yla+8gMP4FLBzf1SV4+NjNus13/ZtX+A3f/MfoVE5OrJSL4vlXWsWcnZeVpiWHORRlUm1CksKNIfaO8fx0Qlvv/2W6TJDxDctzbLlK1/5MgBd59HQ8/d/9Vc4e/yYt965w5tvvkmMxs6cn5+xWi1Lg5S2bTlPGb4AwljvtTBbKenIeU/bekLSeUYUL4pq4OholTr3KVJppsCX7WTyrWaOROpECMX7abvbKy/57DzfFnxsO/Ha3TtstltjcXVAXF06LtVZToxvPUE+Ta+cmeVDZePcJMFv7N6npca6cH5xTh8CuGZi/0dm2UrH5f1P6r/H8fnZfgpl424KPsnJ7mVNpDNeGD62nfjcW6/Xr09+WnKfHEzuO79cc//ho6SrT93hUnLf8WqRFuf7yX0xDmnbu8l902Yk2+2Wo87TpTylZdYrNy30Q/ENfruqr7yb3KcIEqfJfU0zJvdlJn23GcmNS+67Lp4zue+TxMdylkXkPwEG4C+kl74FfEVV74nIDwB/RUR+n6o+3v2uqv4k8JMAP/iDP/jZsW6WaQKMTOl6vebJkyejM7yTvJMn6zJRimXhbzZrjlIHv89//h0EOHJWUun+/Xuc3vk+iD3arwHL/s+bXnQdbdMQ+p6L80vu9j0+lbp6+PAhDx/e56233uDNN98ELAt3s9mm1tzWOCRGtTCEZqcgJ0ulroPbAZVcvskRY+Dk9JhVqiedH8xEtNs1UYs6145yHT6x6xZQPdzicu9yv/Ql8IyPixdlJ77tC+/oZrPFL1elwkouXeZS4lweTqOznJ2npyf3HZRh7DLL4iwTt1TDIMkwAvh2UjvY9ins11geJRi5nXxO7nvttdf3meWbHDb9GFZ7dmpn7OJF2Ynf87WvZCtw/eS+h49wviGkbrqth7ZxpfrVJLnPO0LoJ41IgCLBqJP71msrGXfnyNpb58+tFktzzqvkvnffHZ3lEEc7EVJreInT5D7vx+S+knh8dsb3fM/vv1XJfbVk82XgI9MXIvJjwB8D/m1NR6+qG1W9l37/JeDXge98EQd6I7Bzj7Lzt9lsps6yk1Ia6mD5OufQqGmFO7JjTqwmhHfWKajtOpq2RTUiBDQGLh884PLBAz58/1ssW8e3f/uXCAoffPBB0e5lzV5uZd11HcMwIOKS9KK11phOUiUMk2YsVy3LVUu36FitVvjErhXDMAwslx2LRZdY5bGoXH2J9IprFWJItSi1OCq7muV5Ar1deJF2wsZQVVkC0njOlTB2u/flCEfNRtgIHWUYQ3oWUtm4KzTLTWaWkwwDcURVLi/XKfoyYpdVrq4Fdfe+Mt7lOcrGCTdjkvsYmJ/xGVfhRfsTT9Mreyd42dcrv1v0yr6MU+9klGC002YkwJirs9OMJM9tuRpXlmDcXZmznCthNG0LIaI7euXLzbbolYPmf1o692V470cJRog2X3tXysZZjtLt0Cvvkm6fNuR5DFfSGP0fqvo96e8fAf4b4F9Q1Q+qz70N3FfVICJfA/4W8PtV9f4ztv8BcA58+BHP4ybjLW7necHLO7dvV9W3X8J+ZzwFs534WJjtxIvHbCduIGY78bEw24kXj+eyE8+UYYjIzwB/GHhLRL4J/BksW3UB/FxiSX5eLVP1nwf+cxEZsCZuf+pZAxtAVd8Wkb+tqj/4rM9+1nBbzwtu97nNuB5mO/HxcFvPC273uc24HmY78fFwW88Lbv65PRez/Gngpl+oj4rbel5wu89txs3EbR1zt/W84Haf24ybids65m7recHNP7fbm3I9Y8aMGTNmzJgxY8bHxE1yln/yZR/AJ4Tbel5wu89txs3EbR1zt/W84Haf24ybids65m7recENP7cbI8OYMWPGjBkzZsyYMeOm4SYxyzNmzJgxY8aMGTNm3CjMzvKMGTNmzJgxY8aMGVfgpTvLIvIjIvJrIvINEfmJl308Hxci8o9F5P8Tkb8jIn87vfaGiPyciPzD9PP1Z23nZUNEfkpE3heRX65eO3geYvjv0z38uyLy/S/vyGfcRsx24mZithMzbhJmO3EzcRvsxEt1lkXEA/8T8EeB7wb+pIh898s8pheEf1FVv7cqg/ITwN9Q1a8DfyP9fdPx08CP7Lx21Xn8UeDr6d+PA//zp3SMM14BzHbiRuOnme3EjBuA2U7caPw0n3E78bKZ5T8AfENVf0NVt8BfBH70JR/TJ4EfBf5c+v3PAX/8JR7Lc0FV/yawWwD+qvP4UeDPq+HngddE5AufzpHOeAUw24kbitlOzLhBmO3EDcVtsBMv21n+IvBb1d/fTK99lqHAXxeRXxKRH0+vfV5VvwWQfn7upR3dx8NV53Eb7+OMm4PbOL5mO3E77uOMm4PbOL5mO3FD7uMz211/wpADr33Wa9n9sKq+KyKfw9p3/urLPqBPAbfxPs64ObiN42u2E4bP+n2ccXNwG8fXbCcML/0+vmxm+ZvAl6u/vwS8+5KO5YVAVd9NP98H/jIWGnovhxHSz/df3hF+LFx1HrfuPs64Ubh142u2E8AtuI8zbhRu3fia7QRwQ+7jy3aWfxH4uoh8VUQ64E8Af/UlH9NHhogci8hp/h34V4Bfxs7px9LHfgz431/OEX5sXHUefxX4d1IW6w8Bj3J4ZcaMF4DZTny2MNuJGS8Ds534bOEzZSdeqgxDVQcR+dPAXwM88FOq+vde5jF9THwe+MsiAnZt/xdV/b9E5BeB/1VE/n3gnwD/5ks8xueCiPwM8IeBt0Tkm8CfAf5LDp/HzwL/KvAN4AL4dz/1A55xazHbiZuL2U7MuCmY7cTNxW2wE3O76xkzZsyYMWPGjBkzrsDLlmHMmDFjxowZM2bMmHFjMTvLM2bMmDFjxowZM2ZcgdlZnjFjxowZM2bMmDHjCszO8owZM2bMmDFjxowZV2B2lmfMmDFjxowZM2bMuAKzszxjxowZM2bMmDFjxhWYneUZM2bMmDFjxowZM67A7CzPmDFjxowZM2bMmHEFZmd5xowZM2bMmDFjxowrMDvLM2bMmDFjxowZM2ZcgdlZnjFjxowZM2bMmDHjCszO8owZM2bMmDFjxowZV+ATc5ZF5EdE5NdE5Bsi8hOf1H5mzJjx2cVsJ2bMmPEszHZixsuGqOqL36iIB/4B8C8D3wR+EfiTqvr3X/jOZsyY8ZnEbCdmzJjxLMx2YsZNwCfFLP8B4Buq+huqugX+IvCjn9C+ZsyY8dnEbCdmzJjxLMx2YsZLR/MJbfeLwG9Vf38T+IP1B0Tkx4EfB1gtFz/wHV/6tvR6+cR0iyKISPUBoR8GPrx3j37bo9QMuaBpHSDVa/mrItWr4srrqkom2uvPZNj74Smnvf+9PeZ+d7N61RuTN8tvhz61vwM7DxEd928vIAjIeK52uLKz4afvRdK9GD+lk29o2p3ubisdiwhoDDROWC0XnB4f0TYN3gnD0BOj4hsbmr5pcc4BDnGCOM8v/d1f/lBV337mpZhx03EtO+Gd/4Hjo+M0ZvMTUT0jeSwjKPujWKr/5+8qNlDzcyCSN7lrUXa3J3u/qh3A5Jvl8au/epUN2dmhIOX4ystiz2r9DKro3r5GMyqgEFWJMbIfR5RkF/JfmjakNE3D66/dZblcQoy2bx1tilDtN72u6QVNx6U6npiIMPQ9lxeXxBAQEWKIu1fnheGDxxeznbgduJ6d8P4HTo6OSTPR3sZU8nO6bxHK9q6YqLWaw2qfIn+kfvb3bcaBvVX+Tnl+6k3qFU+HXvHcHHgp2wytN5ZtSD6A8ve+PcmbtVOuZn1VYtSDxz21jzJaZc33RGjbhtdff41F29lraYfeOWIM47WubWhlY+pji8S9Iwj9wHq9JoQwMY4xTj/7wePz57ITn5Sz/HTPD1DVnwR+EuC7v/41/Qv/w39B9oVFBIeMXxJwvqHpFohviAhtt+Ld997nZ/7S/8av/6N/zDCME1BU0LgsgyTtkDwP5gGiopyc3mW5WBJVGUKg73sAHJYnAAAgAElEQVTA9ifOTw59GHq2m8fEaPtyziGSBrkq3nu6ris3OYRgE1T625y+caKrnXPUjfezTDw2DGqHv/yWBn8M4/a993jvUFX6vqdxWo41H1/TNICw7reEEBAcznvE1UEGG9r7w88+4ztP23pan/4mInFIE6pnUNgGpQ9CxM5LVZF0nK1T3LBmIQPf+ZV3+Nf+yD/Ht3/xC3QxcHn2hPOLS/q089M7b/CFL32Z1cldfNshq2OaL/+e39w7tBmfRVzLTtw5vas/9AP/LG3jQHucBJA0vlGi8wRxIPaziS5tzRw95xxOxgkyxmBGOUZEoGk8jfMI5ljWRtWRjKVIcsrBosN58pXiLPfJKVVsThtUidEcVlVFhgtEY1lY5+c324p8rN778ixnNE1T/rVti289vWwm3w862hrnW1SFy82Gi/WaISqq9mwrgojD+waXbF2nWyRsiTHy2ukpf+Rf+sP8oR/6g2i/wWlg4T2bi3MAvHnhaIyEEAj9wDBE+iEQVVk3Wzu/dB27puX+Bx/yK7/8yzz48D6CsDm/IIanExAfFX/2r/3CbCduB65lJ+7euat/6J/5IYSASACJxYlVcQRxqDjUeSKOJkqxE2DPTpmrGW2FarIJUXHe5luzF4bs4JX5nspmlLOwZ64cd3E+HSEqIS80MdsRVImat6/E7EA+xYbUf2c74r1nGAaGYQAovoD3vvzdti2uEXrZlm3luTsqiHM0TZe2D32IbLY9m+0WxaXjlvQv+fPj/aGTgYahPO+ff+tN/vi//sf4ru/8OhIDcTA7dvf4mM35OUO/MZ+iWoyHEIhhdNLB/L1LtzbqQxWX/MeH9+/zD3/l17j/4YeEbbKhIXJ5cVmOSwT+x//z55/LTnxSzvI3gS9Xf38JePdpX1BGR1mcK84yLjmWCBojzkPjHIu2w4vj9PiIRdPQejuV7AiLdIQIMSRDHmMaaDIOUBFjOMq+MxsLEyc13RQlFIYmw7l9JUsewIfY6f3X8iouFkZL0MmKtTwQ1QARTbxTOm57KOxfDJEgTBx1TccdQihXyTmH4CYP73VQBiuKDgGiGaaoQowQBojiy5XMzrJX8M4TwpYnT864XG8IMYKTtACxhQnA40cPabslJ5cDzjUg9z/Ssc64kbi+ndAdzljzs2aLsfxMwA7D+lSMjKnuREnKbp72bc3PYT4WqAnh/e05OLAUrRfe5ZNpQb47CebP7TJgu+xvvgpOJC0UDjBt1edViuWlHwYe3H9gW3Ce2Pe4tr36OmS2W5J90nJ7yn5807BYLHHeoUPEefeJOcszbg2ubSfG6NKUPc424UXFMsxePJ+VOQSzHSO7+/wH9vz7zLQbFcMcUYLG4tCqgA7g1BFcJuOcfVslLXjdaG8RnIBzPi20hZidZE2E5c7JFMtayMTIer1Go+Kdm3zaeYcMYk56OWXBe484cClaBuBV6BlQAppWFq1v6LqW5bKjaTyxH9KGd6IB18An5Sz/IvB1Efkq8NvAnwD+rSs/LYAT8A7nBO8cLjlw4gQnzpxUtcHlkkH2znFydGyfT6xnMfppEDsRpHF4J6gmxqc4eRHHQNdCjMaABLGBlLlVG2hpRCUW6pCzXK/wagdaqmNBYwlLRp0OJEkrzsKnlxVdJGocQyh5sHqbRL2kCV4DGpSoQhiUOAQglhhGYasTc5UnVQSc2JlOb8g4pU8dfIFojnv+jmqwCS8MkFbtMUpaEbuyos5QBZxj6JVNP3B+uSaqsWBN09A2LY/efR+A99+7x2uvv8+bb34OLw0XF+srh9GMzxyuZycS8iSoepXh03HI1aHEamKyBXJaiJcFcv74/kZ13Ii9nyadgwvi6W73tyWuhBZhdJInn0nP6qHFeP0sF8qq2qDsfDbvo4RZGe2SlrCoISL4dE79MHD/wUMU8OLYhoDzftx2CkMXe7Kzf1GHSqw+r/jGs1gucc4xEA6e3/Ni99ofuhczbgU+kp24PsYnt35u8s/JI/ocTu3EZjzH2BzJuRQpyz5AzKyxluiU08zh2jfLXDyZqgV1FkXyTkCNKIwpyh6NNiZtPLFuMlnoX23NxKLS4ohDtHk/7dNlMi75cJoYaokKGpInrfTbDWdPzogh0LbdGMnXit132RdL7g9qjjIj+YYKbTTFQRTzz7z3tL6hbTu88xN570e1E5+Is6yqg4j8aeCvAR74KVX9e1d/w26SOIc0dgNKGDHralSJYbyLqkrbNBwfHyNIkhfYDXLe0TadrVY0pjChEjVMnVQRfNvQNLbtECNDCGiIoBbOpZpMRBTnhJEI0SRlMKdeJK228gIqDmSmODvKZSLJ/9KNa7zHYQySMcjGhItWDLdQ9EROjH2Oe0+wTeSZjXduOjCy7lo1s9EN3jX0Ydi7J1cxc0U+MnEw8llV7kZ9wtXnogDeIc5xsb7k8dkZQRXnPS45EsfLIwDa5hH3fuc9zu49xvsF52fnB45oxmcR17UTMn6vYnMmrmE93VWsj1zh2E4HZ+2w1g7guAB/Pj4nu6SCTV6ikpjv7Ntez0Gsj7s+xuJQp8XuIafbvm921GzqPotbf0VxZX/9MPDgwQNCjDTOoaSJNju4O9o/EomRqXVHknJV17FpGhbLBc55VPtK6vb0877uBDf7zbcH1/cnnro1ps7fR+eGd5+1g4veai8U3zRM3oskNjZC0GgMbSXBGP3ZkexTFC+7e5kcTDnGfFy7Ni1Hm+u/VRWabAPyAiFLzBwxjLINL+AFYq8gEXE+EZmZkU7Hbe6PnX+MI7O8Hbg8O0djpGs6CH2+sJDIQ+ftuuXFfT5V2Tvl/YWzc46maXAVa/1x7MInxSyjqj8L/Owntf0ZM2Z89jHbiRkzZjwLs52Y8bLxiTnL14Gyv96bIOntXFpRWWLbgANWiwVehJPVUfls27Z0radJ2pss5QgoYYgMwVZTQ4xp9aaTcKJzgvcO15gsJK++vAehxYkxyiEERKIJ311j4csYCImlHbbbktzivTHmJekwC9bzym7YYmu2KeskZSnl9lmjsjRN20jCa+9AGkHx+GbK3IxhnTGrNOyxys9A0XemZVpMgvsYbPXolKimYzrEx5mW2laO682aBw8f0Q9DOnY7/xwpaJuGSzbEGDladehqX+s549WClrDmVB4kilEO6XnWa7IIhVm5gn7YH8m7r+RnlacYM65klqeJv1V+wg6zPNEYqyI7GuhJxClFdyQlN159ZoZoYamy7W3fc//BA955803EOUKMRYoR4xj1KlrloltWZOcGqELTtKxWK5rGsxWhaRxbuV5o9NBHZyZ5xgS1AdCpTCm9eOVX63k2SxZqCSOO8tibb7AfARlzAOrtZlZ457V0NEVV9ZQY1pj8X2bwpz474/M4/ssJh+YHxLJHJ44YFcciJf5Jec+0wB4NSVqBOVceaFxr10ZzHG8nqKyjddq9tpvN1o6jZr3rayliUXtzVkZ5StRyS2PMcliTsWqwxMembVksFjRNM7ma7ooI3LNwI5xlIMkwpOhmxGWtkEkyVKF1kqQYSgwBJ8Ky6yBE2izDSFmeXetoXK2Xs+dFBHIUsRHBJz00nbBcNbzmjsBZ+GE7bC3EmZzRGJUYlmh06e9IDKbXnZSMSTe9axvTFaWbMybYwTAMSXNo34uqSSs4FTWQQw8aQLRos4tKKWWjoyaK92LnL11LVBgOVO4IITCEyKFCUtXVuvL1/NBnLRXRdNUxRkuycs4mSzdKOeo9RR3PVxGenJ0zhAEVYb3ZsL68ZLlYAPC7vuNrDH1EtOHuyWtsqsoAM15NmOZddlU+ZOlDPeXsfzdPYtMJpGTLq17pZBcjfsW2Ke8feo7rD7iyUIWnT3a74dPJOeQJPCsXr9A+Z7mX7ORS5NDmrmOepRhWicOS/N55802c82Z3k3Qi0mctWfmupAWv5UQ4QmWDSdK51dGRlYaUrE0c9aDXdYRnnfKMQ8i2IUX0J44bMBJWkt/PsoNpRQt0tCl5qJn2Pz03V+jma6dYs6OXpvsQx2c0a5BtTrTDi5hsIaolz0ettlkW9EmzvMcbjBbQysQmOWmq3GM/U7JeZS8s6Q+I5vSqjnKs8nAeVHuY3CGm0pKSP797DdWqWnhnimbBkvQ2l5doiCzbDkkyDJOvJploIvtUrd5GVLtQUeIoAxNB1OOx+xFDxDtH17YsFwvappnYCSfyVPt9FW6EsywiiPf2z1Is0cy+FENsmZeaKjxk/dvRaoX3vjC04lw12EPRuRjTojgHvs16aA/O0Q/mqIlzI6uC0HWLJL+r13sOYUl2YjUJkWKMDMNA3/fFud5ufXGKQ5Xx7ZzVGNQYiuONRlzRAGp52m21KSipmkdaTknMS9tQZIh50euc2IQW1d7fgXMOz/jAh2AP9l7CDLvPh5Qfdo3TvSlL4zQ57y4rd39TMwCC0IfI/fv32Wx7BuDBw8dsz9e88cZbALzxxudo2iVRWmg7grs6G3/G7cZou5WR3nmas6QVw1QxQ9Otlh9TP/OwZnlv+4eOc/eYJfuUUlgqxDGprXTo6HX/mOsJs2iW96JRu8eopRqGk1S9Zm9FsMMuJ/RDz/37D4pWOWhkkSawsE3VhHR0xsUrog6Jik9EQdlctAS/5WrB0fGK9cW5fa7xV1bEmJ3hGR8Phxjl0YnLg3N3oVkWj+X3cTHpnMeqZsWJU+xcxd6CFQNIX41KKUc5OsuakvZSHXSVFLVJpR0FUMfEtUvOqc21sRiYUg53b76dst5Zi/ysSyZlwZxMaErSi8G2muoxIAjHi1UqwxkJw0CIYSz5xmj7nPd43+GrRfVmvSH0vTHBKWI1xIBDUO9pUnnaSNJXazRHOZcBy+eW5gMdJwljvhu/TxJ8ppllSQxyot3rOXBq0y3BzgZeYLW0Wsp37txhqITqIQSCh7bpyZNkPWGVChFpheV9GmKuCqlIzrQfB78NNo9oW/aV2eJRqjHeYPtZhXFiYOgHG3yJHc9wIkgcUgapEDUwhMCw7dluB/oQIVSrNXHlAZlcIY2ldmwYAmfnqSZq07BcLq2WonP4qAxaHftk8FTne+hmlbtB+dwu/ZMrkQzlc1U5PFELlQC4hg8eXvKtexve/ra7eI44WThOlicArJYrlsenRNcwiECq8zjj1YVWk9z4Yg7954RaM5ZXxUj2IYUNUdSSwnfs6VPZ5IqRzpKEHBQ6jOcvH1dPwHUlnpFZdnvbKAv8ajsuEwKhkmyk/3LJpRgDA0qDTZCbzYYPPnifGCON88RhwHVt3tHefp33lQzEMTCUCTwGi36tlktOT0958vARw3Zridi7yYLXhFzx+4xXEFr/mkmh9MKBwTGZx5BJBDgnpImYZMh7T9e2iIMQhjFCnDZeL+6iqiXrxzGZLmicPJMxWsQ6JJsmPs/rh0MstXt4CPUCv/Zbdj8zkWXAyAyLJEfZp592XCrTSLjkRboIYdiy3VhNZE0sshOZ1HB23mF/yuiHoWw3G4YQiLE63nJjdqi6THyUKFk+FtKiQnDiCd4amLWtJRN3XYvzmZQMOP8cC4YDuBnOckIduJw4qOnEQoh07QJFOL+45LXX7xJipFt0bM4v7PPBZBU+ClGTq5bDLGINBXIXPgU05FqBzlYlO07jLrGhGuxLCqhlpPrGsWg6RLoxDEHFSKWHzxzm1CBhh7UCGLaXVpUjNUeJMWKhSqGhoRllRMYMieCDY5DsdKsdW5S0CgxFA9x1HavViq7riDHS94OVy1PFSSp8/lwsTnY/9p1jUgg3pN+t7qKiOuAqx8C5HEJRRBwPHj7mm+++x+c/9wFHorQ6oMEKoxN7iH1a0TfPd4gzbimmC7VcPg4ODd3D5eOm3x8njlKLtHz8wEL0wAYOs9X7u93jcT9G+bhdGYbtaCQB9g88ldF0Da1vEaI1ZSDZCc36RYgaCUBjK3z6fuDDD+8RhsBi0RIGwaea9k3TsB36cdIVWwJoZvIjtLElptDXkI67aRuWqyVN0zBstzsNkfZxyBGeGecZV2JvztYr5408XytTuVOpEpF0+bYNa+7RtC3eCVuUMAyV3OJA9OopK+wsz5i+mAnCww745Mgzb1az2ZWcale+tfv6ldVmjMWi7r+QltTTS1udq/WJ0HQtd57ZxCI3PjvKyd7FyGa9od9uGYaeunCXc7ljr73odMwtcyp4YiEnopqkw6WsrzA4KyfsYdktaLuWNknHgtOkUDhst5+Gm+EsTyYN07BlZ7LUW8a0xuIE7xoz6jFY8l7jigzDp9pt6hqCSiqxlimfcV6x/aZVk47s7/jBdONrdigPxHiBF1+YmnolVNcuLF24nDN9ru6XahlvmOn58AraEBYNR6EjhGgNVRLpnSe1vg+2qtNIGCLZM8hyk743LfUisUA+detxbkwULMctFr65ikce2WxJyZJCA/hq9R2jgLT0Toip1jLOOK8w9JPr5JKEJGJM4MXlJQ8fPuDJ2Rkr54sWPG9bYyBiLc3FX11qasZtx1gartbqXvUZ+2taPm4/aW60DcTp4jWjdmQVkszo6YZ2olsWPlb5uEOa5cyAhxjpw0BuVpgbCeS1qdpq2xL8HHjfEGJfWG8pAcyKkdK06A6RIW5571vvsVlveP342EpMJhtkHb1a24va8zwyT5kE8uReoD6xQV3XcXpySrfoWF9cWPh6vBMfyRHe/crsTL/aUEl12BlZTKjGWBUJyrp9K7M6HTe14zfaBi3Pr/m7OSoD+cELIRjrnNtBa+rloNPijVrbA7GFpqZjSkd6pb+daxE/71ifRsif4ixPbOB43XJaYT4q78wnaxwMpK6GztM2jrZtWXTmXnZtS9ua/zGkwgioMgwD2/WGi7Nz+s2WxWKc20UcTeMmxKbZUQcpyTj7iLm+XpajZV10Lh1nzHZylkM4uIh4HtwMZ5nxxue6yvlkypSiY5JadkKHIeAaj2+akqxWsxTGvlY7kVQDcG8sVOmt5bdx5Ta2CrEXvEhxfgnhysGse4PONNOSjqVUx7A/aWiR5FBHtdBEnSkqzpcs9/PLDSj0Q2Dbb4tT3Q8DeTXati1dY87y6vQOJycneO+5vLxE9ZxhE8rk6KJOgrl51as5hFUSMBWIJqMI2fGPRWPl0r7VCTiPiBCScL+sQqtwkvMO5zxnZ084e/KY108WNP2aYWvykeFyyYaIti00He1V7NmM2w81KUFIkw8ycbGAaUUMZD8B55m7yA71AbYmHcJTptPqNZn82MczKmLExNBEUuKvywX+AwGFGHBY+DaiSCPFWNZ6ZE3dNBvxNOIZiPQXl4i3zlsu10TNfZfU9MwxWNKwqrK+XHPv3j3efv0167hXFhxW0z4zTC4db8jZSlFx0hRnWUQsGbtbcHJ6wnKx5Emyg+4p9+l5HOErJ/4Zry6eYxjUHznI9NafTfN1LU80OaUlpIWK/BqGwaLJRvNV25865GbCpgt6y00qR8X0w5MvPvsEJ8d/mG3O55HJuxAHvPYIuSuypv4OiiRX34mjSdKKk6OOVQet93RtQ9c1tI0vGmTvKI3khrhg29u1cSJcnD1hfXHJ0Pd0Xe0sZ5IivzBeiiwA2OHMS8fisc6z0jTeEvzypxIx+jTG/yrcCGdZxFpYezH63Dshd1w3nQpk9kIYC+yrRo6OVnRda2EAKAyrAurapEJ3yYmWSegW6hWm0CCpxNLYDbBmo/IKdH+MVqtWGce0oIRhY68xDpiRS45lMGhUglqFDkeeiACf2CEBZdT22bPiaFvTBilWnk7EId4X3dXx6SkAb731FquuIYaes0ePePKo4eK84+Jizfn5Jed9j4gNB3WOKLmfvdhqMA70/ZY+DIQw0IrgfDue/TgaybRVTowoIZy8MHDWVtMpeJS28Tx++JAH9+/x+dXnONYNPiYZRrhEg0MZiLG/bj+HGbcKWjnLWipiQP1IVtnrHFIFp0+pXlkRw7591RGM+3uavX1WRYxYTcySHP9JFy5JkrH0dw5HIiNDnicHVcWpR7yVT0IrNkqFiEPFI+JovdC4jT2TpkmbnHs+LNMrRntyQ+T+B/fga19j2S7NpmG2uWma0qrWyjrZQjqGCEREPbWmehiC6ZaPTBImLuk03Xgse9fyOo7wSH7NeFWhtugrxFtFvuW5uCyGxcQFGnPUd9qh1z46LppjjGy3PWhk22/YbrepWy5p/I5+QwgBcc04Z5VDmEaJ9t0+rYi+Cbc9frtaZD7L+a3PY/ezk2oYxbfo0digLlRkXgQd/3Z5/85xdNzhsSZwjROaxqcuzOP5TG5O2p+IMAwD6/WakMq95U90bWuJgpjP5JBCgqiOx50RYyRszWfomgZBiFiVtMVigU+a5UFMfRCvv9a4Ic4ytlIpjG71YwotBrltWxDo2s4qYJSHwW7NNgw2b+DM8DuHd43JAdy4J6tmMQZGphJ6SYNyOri9ZGc+tdC2+Kd91knRGIoIYRjKA7oX4q0ZKy1VE8f3JE/5OUEhlmM5Wq7wqTtNOm0L8wIQWCwaXnvtlM+/8RoAry8bRDznlz0PF3C/8zxeLjhfbTk76rlYD8S07T5ENkNgSNm7ubRNHl+1dGRyqxQ0BJONSEj68FS6yjtcaUSfazIr6qHtGi4vL3n0+BH9Fz+HJyA5/BKHlBnUjN+b8cpiyvbWEaGnWD6BuiJGvZ3d7xZDLNPXy/vP9Up2ZgNRLZ9uSFIqixol1qMQAvpMu+2rMKJl1Sf3VEFcxKvQsBj1zdUkqFHIMWfvRsYn26Q4hLIId9HC0a3vaLzppRtx3P/wHn3fc3q0RHOJJwRyaU9S3oNKqotq+xQaHPb5xjtiGGjbhuOjI05Oj1kuFmx1Q+P9QQnMc1zuCWTvlxmvGsqiVxIbzFSy5RIZ5JxVT9BY24YpQZZRJ96OeQIH9l09d3tSr93f06J49A0SZaqJPSUTb2MkJ5+HEYa+MLD1vneP55DDvEcETn6Pxa8RGSuE1dfWIt2pJ4UzB7QRsQCYBFTHiLudR1pI0Ewc+eVyyaPHjxmGYSxJGSOr1RHnF0/IzjKMKgPFoS7ik0ZZiWZnvPmQjU8KBFFYdCwXHd3CiL1hs0G8I/jrG4gb4SyDOaYu3fh6tTReoPRTlSGGJL1wtIuObRjY9ImJ3KzLhBGig4W1ZbSSatNhWxiaMsaStk98koSMDDOQQpURUx0FcnaoE7EblRjvSUKOuoMPH+wzJpKdweKLprAMda1Fe2u1XCEOYuzxTujaBgtFDDgHq2WDF+X8wuQMx81pEs072q5juVzSDxDUsQ3CdlCruEFavDgxIX2qh9qqJ2gwjXQMaAz4bZ8P3kLH6U6pYuHiaI6zE8HTjMy1fYBxjSH0Q89ms6HHgW/IyauNF7pWwEOPEjPjPOPVg+ooiTrAyJBemVbEOPy5g0hkcF0RA8aJEmriMjMcgqol+VTlU1FN7WoBjbI3KcUYCWn7vkSsxsk1c0gi3hb8eYHvIhoHJDUpyqUxczWLHLrMyTkaoyUND5E2laVadQuG7daaEYWA1ziGTNsG35g0Sshsj/LgwQM2m+1k8pQki5OUuINGohNcTPXrJQAOrymcK9B5Y31yveWu6+g3luSnw9MXwrUjfMgpnkapZ2/5VUeWNtRFApQDC9PqhX0+Kyl1E2vc971pbmNkCElqUSUDTqJJknKanB9tyyR+NS5YpWgLdKKwqI/9kM54lCvsl5g8eE3Sd7KOWisCS8QWEo13dJ2jbRva1o+vNfY3kMq/gWrAi0kw0EDUCDFQp0zX1JoqhGjRalTpY+Ts4oKzi3Pe5PV8kClq1ZqEMx2blHtpPRyyx+EQovOgHaCmUcYW883SsVwu6TqrorX2DuKOj/acuBnOskDjfNK2WE5jWUGlj+R1Sqko4RucCKujVWJz8yRq5eBUlWEIbIUUPnCIs5+Znc3aFjTXSIw4FJcYXJFx0rFjSQ69UwtLVMiDtQ5n5NfLaVaD2Qk4rMwKgOiAc0LoFhbCiUo/mLMZQmKvqwQkEcdqteTk+ISm8Ww2F8aq19U9VNmk0ESMEefGToXOO8tKXwqRBt8u2GxNe7UZAl0I9MOAAIO2qFgSoYWGrYaiXq7tHKOx0JsQ2ISAhpCKXeTg7NQISWL/NTFvqHJxcc633v1tHnz7l/nanZbVMiUHdI6ucWjjUBX6Ocb6SmMS5WG0E5rqdk8rQoyyhkNS9+xGF7YlTVhZN1hPqrnwfpZF1FvJk2l+No1NtkV4UNMDh7QoH0mpUQ4WNJMErtqiGfu87TpatXtM5WzUI7QTp5FU8ilr9ZwIGgL9dpMOJmaCC4C28SwWLa2Vw0iTeOT+vfucPX6Cvv3WuGlJ9eJzZE6cZa3neJ7miFgmHQKSj1mEo6MVbWt5Gl4cSkUUMCX3DznCs055xlUwiUUeF1V1LTBWWXIo3qIjuFikGHUp2FxSDcy3GIb09CqQfYDMfFaysEKaOQ+uipokgi1j4tResfCbIH/evGxKTtHu+6QltwCYLEoaj/dirRlimPR+aLyn6xZ0XUfXtSxXTdL7Wtk3J1YH2bmaEYhITLFvGZKfpVaaolgvCjFmBrdJ1yT5VU44v7zk7PKiXIDcCM57VxENUhbJKnbpyyIif1NSOU4Lt6XrKKmcb9ZfT8fCdTArQGfMmDFjxowZM2bMuAI3glkWLMFPBDxSWF3A9DvUIQYtfL44YblaGhObGNp+fWlVI6KtppbNMtH6HuenFShqlXTTpNp8IiZS9z6VWqKwOnkVF4MaC1Lrd64Qzzs06XkU0UCDslo0NE4QDYTUvjnEHu9b7mlDP1hDkTDYKjdFLKy1daW57LoW56w0iojpBnPLcFXTN67XxhY/as9om5YYhe0AzjUsFiZvEB9o2oDfGAstmw1uGGyVCHiSfiVtO6qxVUM+9t7q2nnnaE3DgfeeVtsSJoZI48aV4xAkJWxqakow8N57v8O9+/fo77xG0+Qui4xs+BUM4YxXAxbqv175OPs5zTaHsY5q1sCQd98AACAASURBVA9LKjHpkuzAwq9TBrNo/TBJVo4iDSFObFAIqSmHs+L+EaDkZOTnF9CxUP7kPKuw6q5tyVKv/BNqdipx7TXjyng+YHrkrnX064j3Qte0rJYdq9USgOWioUu5EEMUq66jyqP79zl/clbkHnnbdcZ6ZumdOFRMnjZEK2Npp7kpdhUnnBwfcXy04skDQVqHEc77bPF1WOOPxhnNuG1wbYuXkJhPqSLE0aLQiXE23b1YUruajGI3OpyjTJa/M4b+syJpkuf0tKF3QCcM0zFbpBVkuzUKv9JGyg/r4McOm1zvzljsXL3Gg8kwnaNbLq3BSpInLBYLFouOtm2tUIDfpnk3nZ8kprruOipqnbRLE5dYbEC21fVF0Swzqeon5yS/7XZbPhfLNSqccbHn+dpr8jPsPcUpRN+ADsbqA6pWhni1XLJYLOy7SYbhP0Ik6kY4yzANedZjo1z8NEnlzG3F6hJ3iwU4TAMDDFHxrX0mCqyHrPmJSRQfS7JMm9pTeidkrWKIER2UHuv+57KWKB1XftDaxjpTxeSUghXAvnN6XDy6y7PHeFWaRWPhj2FL1EiUBSF1usp1g71YqbdwvmUbtOr8M70s+W+r4xhAhcViSdP4SotkmuL1ZstmY1KJ94bBQp1RiCqoNBYSkTbVI4Q22rFsB4+rwk/52mdZhTWujyySaN4tWhQIKvRq5esG1al0JgSWqeazc47N+oLt5SUSLJlP+8gw9JxfnHMZ7u5pPG3BZHryGa8mTBIQDpSPgzzxmZGGkjlNBEZZUqnbOQmHpooSYg03NOUj5GnBVw6qlYRKbWpjLLp8yHVWsQRXtUnG+9xDrJxEZetyot1wcLGdsSvlumphHuMA2hadMdh8EqO1B/IidI3QnS44PXqdZdeyWrQ0racpocn83IFEn8pfGe7du08/DKnSBayWS2LoARlrJaumeGWyGaIoqeumDCkk6lFx3Llzh9M7p3z4nkclJUM/BbL3/2c4JzNeTYhp4m1xHJKznEdxthO59Xv50s7PqzZd6YM1JkfavpPLyWZ/wHuPOKUfBpo2VWioHO78WDd+nLtr+UI+0lE2KqW3gxNJtqfMsuk7WbdE+ZwVN3AsFgvatjV5RdvStuYcA7RtM9ZsFrObuZ23HetUPkKWeGSf9oprVY4s22qRQuiZ/+PY9j2Xl+vy+bbrUkfDdJ2TvStOcrouqV0D0UVUhaiOktWSCBA775bFwlxd76Dowq+JG+Isk9onZv6HSXINWNeWXOJNEPoQWDRW87PtuqLzCxrxE1ppXKGUSSZrBVNr9RgiwzYQ40AMeeKiaKGzHhrSa97xeJu7+JnAv2s8d06X3H3tdY6WNjnI22+zvjzn/MkjhMAwRCQGWh8OahBVrdA3iUnOeuUwpOx3HVdaIKzXWy7XG7rlgqPVEW1rHe6Goefho/ucn6/Lg/l4fZ6SHBu8b/GN4BpPTiXSir1fLLpSr1pTQl8/bFOjkNT+k1i6AzrJtVcFJw1t25Q0yJg05kPflzbgmX3KD0LjGsQJw3bLdrtlo1KMWB8DEqPNv77BN8uPMrxm3ALkJBjn/NgRszJ6uQRbndyXGZry/fT8xBgZhsEWgqq0rce3LcvFkhgHtv0WLXXEp5Y1Mx+1Ext13A9ZXIeZdZPvWy7FwfNyV5eAOnQNDjvKEZENsUTP8hciQi7Eb4tN3zhc29HklrFZUwiWjyBqycPDuO12seC9D97nydkZJ8fjM9h2HX2/ISfh+LSfzEh5lJhb1Etvtt051CnL5ZLF0iJ/zo2Z/vXZPe2SzI7yjKuQE/L2OVdzRnNi/xAHyy8YNGmWA3ul49JPt9NiOYRI1Goe9A2qblLSUVTx3hLkLMfAWWItlLlZiKRM4MIWJ1cn2bx8HCPPHMX6KoRE4HnvU4R5dKxzQ44chTIHubUFa2Oa5Nq3GS/emCuRneSRLCsfKv4yOZ1OxohX/WyOiwQlqmPQSMz3ALjYrHl89qRUNGsX1mV4ur+yl0I45AWQiDPC27kkCZ+y8Xb9xwpAhTLf2f6zcGOcZWIAyWzryL6MDIKMixOEmJLPvHecnp6WASshlgGiQOuOcNjqycIgsZQfiznMkL4b1SGLhU0WaOocp5PJViTVcMQmR+c9vvEsFx2roxXL5YLlMk0moWfopzVJNUrqbueqNST0YWCIQwrNOpBIVCEEJaSOH05skAOpKYvy8PETxHuWyyVt201kGnWIVBG2fW+sMz3ODzTtgHcdimfQkcU+PT5ms93iHYQwEKLDMbDd9sSU6QqULOBcmWp3qktLlLKybZpcpNzhWNIINERa53CinD95TD/0bF1DdHbPgjQE55Cmwy+O8O3sLL+qcE5KMtggOfN813Hce2mUbFSOZgm1qk5sjPMOcQ0uDIS66U4q+5Y7c8WYq76Q2roz7jjZFdRZcm45nli9SfmZ5Qx1hvZV2ezeVwsFndZbDmEgl2zKYeecyb5YeFbdgq7ziERWXYvDmh8Rt5WjPyYMqpqtCxqJAvcfPuSDe/e4e/fb7ZOqdK4hOp8aM5gRyLYxFtIhTTM6HpM65ehoxd3TU46OVmwuLq20XOWoXNcZnpP8ZoCNgxAj6AAx0jauVFfKYzpHk0JQtkNAB60o0P2xVHGkgDUdiRqT35VcRudRjWMysGbn24qbSZPcPR2fMUgFMJ1151XqJOa4Y9DqMHNdeUOqed9esfbSnrZtzDH2xiY3bWPFFJpc8Wvcdgx9KksZibKl1jyWShTFWOYLaofnmlSiV6ycZ7a5QJGS5m6j55ej7GzQyKbfcnZxMcos0vWTK+4Fu6ZxZzEBtQJEaNvOFAiY/YzBFji7i6Jn4eY4y0TQscRKRl0SRdLfObQYU1myo6OjooFpfEPjWzQojbfyaegmMacmzchPTgruJxFILrJtJUmEmOqFxuoWwP6dysdkg9P7JoWAbAB5d4fVokNQ1pfnrC8vQC0zFYQ+lV+73NqK1nXHnJycsN1u0bjBFqH74cmyyoxKn8IYzkkaAEqMYoM3PWibYeDJk0tCsILnvu1YLgNtGxHxIFIN1mMWXUuMPf2guABD766cvDQGq1eJpBCHrTC95HYE42oQUhm/FFJqfUvXNhYlGHpzlsUTS2UAl9QfoxxjxqsJq+ebFsPR2NLiiGq2EZnxyBUg0nOvES9T5qWGag6xpmdLlSEzQMEmxcxGhxiRtJizQe2KbcqvZWZo1PjmF7OGcpx4vDRW1rJy5PPPPX1jWQSPEz5YXkTbOJYLq2axXHXpmgnLrqPxFooWjUgUxA1JkqKIq22cMUlRQbzi2oY4gPOes4tzHj1+VMiFMGxBuol9FqR06BQPKrEw8xFP4sUQ0dTQYMnx0Yr+8jLZ28P3fs95OXAfd7XdM15dhFTHP9VHIBdxKGoCIc33indKkFFy8DzwjcdFMblC3mew56leyBrrGYjR4aJQmnaxt6YfXZ/CjOaSaePnjVE129E4jyRGuW0buq4rDGrTNCy6rrDJu6XSzF7F4s6UijlqJTNDelbrRfxuVMuY4ZgpAJv3S+Ub3dlb/m2M7CmpyUtv8ss+5UAt2oX5IzFVGAlpQVH5EDV5nBu2KmM+WtSIU5szukVXNMu+acxZbjwuXq++xY1xlrNCsGhjyhxTOcr2AZssotpqcFCWrsNvs1vm2T60RLVm1SBtIGpfWFxrvGEbjzI2NRAZQxKmkd7x2vPhpH85CbFrW46PV7z5+mu89cYbnBwflUQ2jQNNazWNvcByteTyYsVmsy7s9qa3CXmIJgdxcexdPspAvIU0ncen9tXeeULSJQ8PHjEMgaPzFSGEpD+C5epkJLt8w/llzzas6YfUztKZbrnx9n7G2Mknr5iFJi0CigtbFfW+uLi0Xu3OFgDGLln5u5hYsM16TcgyjEWHppW3OdF2b7z3rNdrNkFTqoAdl+9WuG6FtEvoVs8cSzNuJ0SEGAJNxebo+CaVu1Z9abQdJlWwl+tSj/lnCME6coWBzXZTFrKk7xUWN8aqk2TNJu8yIMlBlfE4cunKiZPnHDnBsCYHNLHeFg2zz7ZdS/TCNgS7Ft6zPDrm+OgoyRqEtnV4X9kyIbFZJk1xLj+XYQxL5uctPZMoVmoy6Qt923JxueGDe/dK8wDaliGVgcvH7DP5YNW4CI5y7CoeGCbmfblccXR0xOOHj6wTaZUrkY9/PI/ZEZ7xbNhCNyAaUYmEKEXWqRpTFMWXphrOJxnGtYiYyrBM9p3eLXO4M2ddKLKB8qFcnznp/Z1g5RYJ5rgmwilHzZvUQtrkFc4Y48Wy5AF474tj61I0t04IrkviHTrT7IhDjpZd9an6fHODk7y4DxaNCrHkkfX9QN8HwhDoQ+CyT/pkEULfsx02fHj/Ho/PzwA4OTFpVkRpMsucJR+VfKKUDY1xlISkw6vd4KZpijbbpaZ0ThxRPiVmWUS+DPx54B1s8faTqvrfich/BvwHwAfpo/+xqv7ss7ZnkvJYe6NpR0qIISWVCN63JOUKcYh4HEeLVbn7Vi95cqRJB5QMfNIypncozXHVGNesZ1Jbpxgbxdhi2lZjNpRaLxyvFnz+rTf53NtvcXpyDKpsNpcAhN40el1nGaZtGNikttvjAEuHJY4oHocjREHxSNPR4mlbKSGOHF4VQFxyJJ2w3vScPbEGJIvlgrt3T1gcr8q16Ie+mnCEGLWElFUFqnaT5xdnVuNQo3XBEasWEgZnDVJiQOOY0dp1KalIrLV4hFI/uRovE0PS+IbgTdohqoTBDNwQApsQuUxDc7U8xi1PkO4Y2iXSHj1rKM24QXiRdsKiEeNDE1ULEylp0WWsbQplpn9RnBGmccrU1mytKiV0mi1umSyyZIPRyXbOl4W8OX91yDIt+pP21/YxvmdfqmqxR0UllDBwnoOznlqDpoQXW4R64M7xMYvFgtVqySoV3W8aj7g1OUGxbL8YGnuWVTM7nZqK1OHYPFmGSAiwjYEhWjOi9cU5v/Xuu6XTZ9e2xGTjDoVKBWP08qE48aWSTr7ux8fHnNw5pf3gQzSEPbbtaTjkVOdTmP3pzxZetD9Rh/Ett2F3QIyRlFzt4TmOsnzPe2NRQxwTXoc0fnON5eykajDdspNpRY3MRIsKFL8lmtTMCY13tE1D29lc2LYti5SU55zDN67IEg8l/u6ywPbn1AGW6heza+aEOmlQMelnSbJjlHvkfKo+JTsPfdJQR5O29GkuBxiGmJKijYUPpMUDJuEMfc+DR494cm7+S9A3yVE5adz0nKoz2L9lB26iWpOSpnKWnVhzNvkUNcsD8B+q6v8tIqfAL4nIz6X3/ltV/a+ff1OCSmRoUtgzd71JSD3sTC6AhU+apkE10rQNJ8fHE+OYFx/2wCS2s7wn1YNTX9yURCcUZ9hlp73W7mgkRhvkDiva3SaxvOSi2BUz5Jyj7weGXhn6wDYo6z4QetvfZmvb7mO6gc2Ci/UmsUou9TW3hyMMSkwZ4yGElL3vEMek+5WmlV2MStPm5h4rTk9fAzljCOf0/YBuBqJu8D5OHrQQBnu4nbNKIXaHsBBTTNdVSshl96FUtUTLxrdI23J5eYl3jqOVscKrRZeujbC9vEiaqv+fvXf5kS3L0rx++3UeZuaP+4iIzMrqrGpVQfWDbjVSgZD6r2CCxACGzYQBY/6HZooEYsiAAYyYMWWChBASSD2B6uKRGRE34sa9/jCzc85+MVh773PM742MiM4QiszwLXlcD3dzs/Pae6/1rW99nyLliDKWcX+NvX4FgB0PZDsQtUMZh7X9dz9Oz+OnNH60dUJrkUtcSpd2TBFNba4pQR+gVJRKklrz7twqSpcLasoZVQLhZUkiYZTyZVC3eX1Db4wkhh9UwlgRYYC12a38P7H8fOUmCscyN6oRrDQl42xDkwD2+11DSqRJR74aPQNNzmF1Fcu1JFo2y1xII8rKNSsJeD3ilHJT/Ig5Mc1zO6+YE6fzmbfffAPALz973QxflNJC8SjHXdcBcuWIgs66bMCr3W4/DOx2u8IVf1Iq/ijVglaa1puudnEbfA6S/4DHj7ZOZKrcW4YsSV/z0siF768LXbAk10r/7gZb1d55TZBbgFkqpoICmxILrAZlXe+wBXwKPrTEtybMsoasVe76/vWr/tRo3ZrVrDVF4k236tHmQOtslnNNoSWszrQU4sn5yUSuAbVGmhFTFkpDjSmq0keIIpkZCgARQiSkVSUo5FUlLCWaAECGC+RAKfldCIF5msrri5zs70D6BdRc/79WqeXtCxUs18TG0Jdgue8d8/mIVhFj2xF9r/GvHCznnD8HPi/fPyil/gXwq3+V96rIxPaw64XSH1kBq8xTTJHOdex2Y+OkTEtohVjJZBRGW1nUlZQIKzKSs7CTt2hTTIWvTCZr/eH2WjelJMGetZqus3TOYa3GTwvL+dzez1rLNM1478lkjtPC43kpDQK5NRElXTpU+xH//oEMONt9UH5cG3cqumxwrsgx5aIBCyw+Mi+h0RmMtoyHa5YEp8kT50BMQa6PkYdzdUGM5Cyb8FaXunKGcunCnctGmo0i1GvtOsiwBI/cEuFlL/PMPMl14Uak4bq+o+sHKY0pjTYWZaRblk4QZN0dyMaSlUFj2NS/n8cfwPhR1wklwbIPudEiVgS1bDa1FqfYzB0lwW3pcwBaSXLb5BGCbKRbDdX6ua3k19De0DhyqaAsdfWuSaxsdqIgk1kDZK3UlroIJGIMRdpSt+C3dq03NzA5E2nWsYbOlQ2TSAqiWpMIoGI7Xl3WDKM3G3hp2NNKFTCBizUwhMTiI4sPnKepKNpkpnnizduv+c0XnwPw2WevS8IgbltUI7+LB2A9z/pZDUxIiX7o2e33WGsJWpw618YeJCD+lkD4Mrj5fmoiz+OnOX7MdYJCqVJI0qtRzYteVUvmQm3MypAT38qVvxwrrpm5rGrV339QYMlVVIBCNV2pYHW/1Vo10M0oqdQ6Z3FG9vZtoFeb9Uyx0F5KNaqed/vc8l9JLGU91ErkaZ82BsNaVWsMkZxFYjatErCyXub1A54is7VaTo0XCrhpqneGrG9RKVCSWEdjmGNkCYHj6dQ+x1rdYqN6vauOvVTDIJaKf1CJpMu1jfKZnbUF55S1dSjo/NBb7uIMKeDcDwt/fxTOslLqz4F/E/ifgH8K/MdKqf8Q+J+RbPHdR/7mnwH/DOBXv/jkInN7SrRX2+VXVYSpI2X5V2vNYS/B1bzcCyellBq1MUVbT25i2nAfUnvnp59ZHvr6VLffbdI94LAbuL3ec7UfcEaxnM+8f/eOx8K9cc61zXRePCjFUng78SPcodphb4whZTBGZN6c60unbSbFUgaJwp0UxQ7hKO4P1yXLFcOQb75510THb25uMNbhuh5TUKqLBqIP7g8sy0xQtLJRilHktFIu2WDhJIVIyJKpx2Vhnhe0NkyzpzYZ2kKfAXh4OJJz4vjFI6fjI0Pf8cknr+iclb9bFnxaN8x6zS+Do+fxhzZ+33Xi5fUVzmjwUeYDodG1tLNiQKBKRYiqflH6FJQYD3y0eY7LAE+Cyk0grSSAE8qSJMBKZ1AW66wEotTAWNAKlVOpQiU5HoUgHfljWEa1aBV+YlfQ5KHvGs2iggGqls3kJCAKiqwRZCthiKy854vmnFofyiL1mEImZkGRa+/E4j3LLBruMWV8FliuAg3H05nPv/wSAB/+Pp2Rihf2Q2Chtk6vc3ZTKjaib69y4mrsOew77r/5gt7ZC8R9+3c/ZDwHzn+44/ddJ7q+J+aEziuyrHQNllNBdFX5V1/GFxeF/t8xCjClzQom2Q1POKXE+XzmdDoxOjH+MQWBrhKqnTOlSm7o+47eOYxR7MaBzlmMLtWlSr3UK32BVLXgV0rTxb8X12YLHNT1be2RWE9p3WNjyoQo8YYvyh8hRDEpAmIQVFkk4JQcnDICMxaAovVNlPOoSLLNHcF7gg+QYVA9+Zx4eHsPgD95hsNILOBFBgH2ckQpMEUiN9U+t4Kgk2nXqlH2UBhrWxzUdT3WOnxa5Xu/7/i9YTql1AH4b4H/JOd8D/znwF8A/wTJFP/5x/4u5/xf5Jz/Ouf81y9vr3/fw3gez+N5/ITHj7FOHMZnvvrzeB5/zOPHWCec6/5/O97n8fMZvxeyrJRyyIP9X+ec/zuAnPOXm9//l8B//73ei0sEeQNGbEqqa1nROYMPmb7viTkz7krZ/u4R6dDUT969HtP6ObqiLXlFl7SyqFL6M0qhc0JTLS6zoExGYxW8vL3h9e0Ng7OksHA6nnl8fGBelnr+giwVRMuU5j6lpCNTGdMst3M5Do/BdQOgca4vIuJW+MGZlp12ShND4P7+PYTI0FvGocdaU3QN44avKGVno8Xe8ur6hpzh8fG4Giwgus4g9tZKwTLPTdJKGgpW7qS8rRzLPJ1YUsQ5Q8oZY0XXUGtDDBGVxU6zZnKn40Mp+8i9kZJ4ZvEe5y3TNOEb6ld0pxFHpvQ9kv7n8dMaP9Y6kXLhzKnCHY6m8Vy7vifMsZTs1TqfkRJe3v49XCAqlQbWLHFTJsVEVeix1uCsK9rmhcucEjkHoTNoKe9u0ZxiCrpSOWq5VOXCq95ylmFwHf0wMPQ9Q98LL7lwk82mAa9qPX/8OoNVGqVcU6yo9AtQUgHygdmLQdKyBJaQGt8QpElJOIZyZbISlySlBKEJKfLm668B8CEwdgNLioj9SG66zNooMOB1JJj1eLWv0lYarRKkSD8M7A8HQc+/B+LzMdR4i0Jv/3kefzjjx4wntmNTDBZEOAmyrFJC6Uod+OEbixSD1Op9oFY+cd0ztdaYLLFE79xF6d9ZW+iPWqgXxqK09PQ4ZyXeuFinqsgtm5/xIT9p+/vN73LO0pPBlnaxUiykmiQVpRAgBE1IUmXKCNpcZ3Iu1LZc0GSlakNjLsoV1ZaMUmUrjsQkDB0xKOIsSLG1YlN9OgpNM/iA0aZI+4k9dVJrnPbtJyvXQj35vroYgkj+Ka2/V/Hg6fh91DAU8F8B/yLn/J9tfv7Lwj8C+HeB//17vFnRUG2y/axnUxpCahmh3HujNUuWksDQ9615DGrpUS6KNMAAKreLXVXPcnHEq64wUvIosiskyJEUPbnoreq8LsRaFV5PWksAMQa8X/DlgdRaMy8LruswzhYmtCYri+4srh82XeiaefH4lBn2Vwz9uHKIyoVp/EvWALZ+rxpnU2OsYtQ7CdbLNTrPEy6D63bc3vYoVcj7wdfiLGuXLsxLIESPxTR7cKMNwToMIq1Xm5WMWQhhEUkvrS/4X8LvLm5pLTgQruXV9Q0vbm+JKbLEyOnhgZgzdw+PPE5LeQokoZHmBrs2ajyPP4jxY64TOSV8WMh5dabKja6ja0FSktFSpEs5s/iFxUdS2K62l/KI5aio2+Z2rqXCgazUjNpZnlMmGyOd7GwC8JybHJRVkHMoHe5iENJ1lqHvGQu1ou87rOvQ1rVyaaNRVH5vU88oCjXyU3lNaU6q9BOyIQf5u7mUa1vTXoz4QqMSKtcWlRADEaWVGBcYizKRxCSc6GzIfubL/1fil+P7Iy/31/g5QN+RgZA8kGSu1tLr5miV1pebmVJY6xjHHa7rWabTB8HwB/eovQG/M1B4Hn8440eNJ8rISqGqmVCd7zmSoyjPaKVR1hRA5uJo2EZTLQ3brAlc/Kx8rwuoVJqAnXPSqxREgrKCV1s6RH392qhLo1oJL/qiuYE19aeAZ2IVvybg9Zhzk2fNCOMkxsi0LLhuwFiHD5H7oqB193gkIX1DQqmgybbFeopmo8alhXZR7aVzhphyk8RVpNV8Jaf1CudUmiufKHegWg9UjBFV4sHSF1gATqHO1Guont6LSvOC9UtZjAXbCe97GAZc3+GX6QfTMH4fZPmfAv8B8L8ppf7X8rP/FPj3lVL/BLnDfwv8R9/1Riuyszn9Sp7fBIft561FNLfmkr6X0kvfdyjbobRsPMMwICBLBPWkG5MidVb30FyaSRAkqGaga4Ba0Btr6J0gP1Ypol84Pdzz5Zdf8u7uvmkhVyUKlGLxAR8zc4gkbXCuZxj3F9fBp0z04YOkpypjGOsa98ZoQwyBfhjwy0yMnqyKtnGSQD/mTKgk+ZjxYcLMgsZ3XcfV4cAyTWJlnUK76JmE91Hch5Q0GuWcW8ewTOb1nlht2wKRMqX5MuFDag/58f6xCaZ3nSBfSmm0NcznI8syk7KYp7x5+46v3r8H4O999ss6d58kUc/jD2T8aOuENhrvF+zQE8m4fi23zvNcxOarLJpsMmuihZjnxG1w+O2cZaWrhfsl6lTloIwxRB8xWraLnDM5VBvbTNYliC38ZTHgUXTO0nWuNAQX8yKlimWtbtKXJZYk50sZOIU0+rTjKgl7SrFVXXJW5Cq4nwUlDyGwzIHFB5Yo6JFwDY2gNmUuGw3C+w6QF5RP6OR4fHxEKWk6fvvlWwCOjyesdShjUMqgVCjXnrbLfRDLFuMROceCqo0jV9fXjPsd3s8XSkjPwfDPZvxo68TF+Iidc6sMpaKEswGdyiv4rtJEjRcuWmiyzPm+70XhpQSbYT6TlolhEIdf28Anme+16bepV8RISqWClTNb9El0oXVTwjj4IzrMMo9cdzF3ztPM7CNZabK25JQ5jCP7qxtsPzAvgSqp61Nm8bH14zZVnhZQVkhN1wMBilhCvuwB+d3jSTzHGs6dixrG4n1T/JEeLEPSoXhffKSqVL+exJBVDckYS6XmDMNI33VM5oeLBfw+ahj/40ePHL5TA/Fb3m+F0Lc/r9hiyepU2UxySsWxLsomY2vnpUYbg3WiJKErslwaa7Yy1E9L+tsg0GiDNpB1pvTtSEMKUibZ7wb6zgkFYVYcj488PNzj56Vtgs7Z5sWeMqWTtDxcJRBv6LDWoh6hPbURR2lDKhubNRrX94yFt2m0kZJKkWs6nxPzfCalsmGRYCO6HWNkDp6cRImj6y1DP6ByWYemzwAAIABJREFUJqVQ9NE/zJovJkC5B822vUzMYdzx6Ysr7u7vIUljo5wjvHjxilcvXvLFF5/zcP8AQPDFNluJBF+MSeggCAowzxNTcfMJMdBpBSmuxgrP4w9m/JjrhEgZgk+BgMypRjNCyn+hNNRVjWJ0FjMfA6kgq98+JICWhLgjJnkGq3KGMbppnOacGfuhWDRHlhRYGpJSN9E1sO6cY+gc49DL19gzdIIsWyPSbT7XCk9BrmFtDtygUZWKlZJom9bO9nqcy7I0ScrFL8SUCEXOSTZOQ3ayWcialzaao7E4jtUScMKZ4WJzW8rcfPf+PfM846wjk8WYKGnSxtVsXbvluqjSLFmBiwx0Xcf+cGAYBu5Lle95/LzGjx1PXCbD2yBr+xGbJFR9mwnH73jfEnRX+crBGq53A69fXvPp65dc7QesUQQ/c5rOLPPMsiyrioaW9sJMLu51CmMdcxEEkAY+SV7lGAW9NkmjkoKgGK1QOHKWeCYuq9vvPHsWH1HO4azGdZqbly/Z769RxnGaF86ToLn9qSOmWehY33IZLq5czmQlH7pCDvni1W3eq1XTWBQyFE8/RCnN6SQ0jNPpJGtm12G0kXUwarKW2KNSV2selDZxo3oSQ5Y6Ibo6GzpbKuU/fJ35STj4tYU1Z6hluie/rIhFzSBE61c2jK3NY0Wca3YopVMlqFKunJu68WhQ+UJWKfggZYLi8qKyadzFzhq0UgxDz243Yo1iPj1gnL3YhKtIeT3GikaJSLei60fG/YH94aYFyxkwfaSLsdY0SDFijMXuVt5yVdHQ2hZqiqYbelBgjGIp7jgxBiCSykSLEUGfqjh43mRildvTpGzKtcmin1UTkaqrLHqKUsYCSFkz+cDbuzt61/PidsRZh58Du92OcRzp+4GjemzXqEpkaaOwXcfh5sCrVy949foVtzfXJCPo2fl8RhfrUqXE0eh5/DxHziLXOJ3PpA48G323WhVSWaohdR0oyIygxU/K+WxKohc/p0hIFrTVGAyqaJvKXKjmAilVDiSt+5ssAe3QO8a+Zxg6DrtROMhWF+mnTXd1yT63ne11ftb/345lWRodJMbEeV6Y5oWYIGRE8qkmETmLE7gRMX6METQZTZWJEwihIEkbgqcE0rKGVpRM1mA5ni+++JLzeWIcdxiVUFoJIhaL41aWjvTGt764wuVSkTHWstvvGYYd37fn/Fnt4nl816hV5MuE7emLhOpgChAnqKpqc6Bk5E0zQwEmF/eGBFfGcLsXCuiLmwMvbg68fn3Nq5d79mOP0XD2lrdHxekEx2NmmSstIwvepDS73S0xZh6PR46nE9M0N9qputiXIWldCuWKVMDBrcxaHds5YqzBKLc6/VnDQM/1tYgrxJRwR/ncZQmEtPZgmOp0rBTVuj5QXUBFMvaptte2B0QrcfaU05E1BdhU1hJKpUbDOJ0nlBLaJaXq1sDStl5/PLlpDIHKIiiUuLpuO9djiyTvlhLzfcZPIlgGLnjDH0jHbZ7dpxco58wwDG3P9CFAzMwhkbNcaOsMGkFLZEOqtloihC9BopDTU4w4ozGdWEqqyr1gRUly0WfNxlI1nykPT/ALXeEiOtsJ/K8EBYspo4ylG0aG3R5lbUuPchKv937nGPqB+fjA+XTGGMs4jCitOT6e8XMh6GcIIWDLZDHOYoJBhbrByjWtjT5SVo4YbUkhEOZahUikLMFoa1Qo8nPRCv2iUj8EDaruf1k2XuoEEKecmCLGGD755BOsdvzlX/7r/OpPfsXd+/d89ZWYMD08PPD111/RdR3zMjGOA3/yq1/wZ3/+d/j0k08wTnN7cyvn+fYNj3fvcf3AeIjsfiDP6Hn88QyloHeWeDyJ9Tm5USVAku2QIzqLrFBKUQyOLKjqVveU/1rGB4XXRvVaXZ90SaqXZeHh4QGnNYdxwDnD0DvsKPO+0iyGvsdZI7KOu7E17Kw9Annz6VKWbWuNEr4zKSJGCvLKGCPn84x2HfvrW+YlsDzOnOZQ1lCZuzUJN0bmbCuhVsrFB/tMRYEUShl0qehpJbJ41trSd9Cq1nz19VvuHx65vvqUFBe0MsVGdoscbVCf8v65OHmpUtTV1rLfHzhcXTMMAyn6J3fnW4baHnf5TzuN52D65zsyEs4BKiNtv6vGt7IGk6UHyYaMUR6tNLMzxEJbWmmgUsV1psi8aU1nDZ0xWK047HpuDhIsXx8G9oce1w3UnqCcRHrtXAJAay3eF7OOuBqYab0myPXZzZWw25rwiv18ztI/pcDHjC+GalbrtSELcIPC9Iphv+f65kXpi+hQxqKUwVjd9vb9bsf94yN37++4u7/ndD7hYyiAooBnuVSEAHKQGEjSbOEv11HFGNS6pLTYqUAUDS2vV1kpVdB1mJdFeMs1oC0VeJXWYJ2Lvy4RXQkUK42kiXSqtQlzGIYiPmCfHMN3j59MsMxHF/AyGpqxOmNppchaUI+uc81pKnjPeTmRsqY+81orrEpkhQSWRk7bWocpxHqtbQmaVXOUSSGR/IIqPAyzGzDaAaJvvEwBRSJG3zQVfQj0o1hQHq6ueDg+8nic8CmjjCu84wHnerJSpFQytRhIGdywY391jaF0vWcpIegiQt4uSSm9npaZnCIxeqL3+FiMFTSlg79cXiNe670eiD7ilwWlRLA7LAuQ0FrQXOdsy7pC4WGqsgFqMbkX1Fyv5ajO9vzpn/6aX/3qV/zb/9a/w1/91V8RlsDrF6+xxvKb3/yG3/7mtwClbJTY7XZ88skndL1FG+h64XOezseWCYb79+ST6DKnGIt74vP4OQ6lFMooYgqoHAkxNYMhEIQoZo/KikiUQLNw4z9G8fpdI+XcqhjGGJyp6hSWcRxxzrFME1oVk5CNPrCrpiLWFK11yiIuC1JGkNdcy6tGo41mnyZMmOisFXMf4DwtTIuHsmY50/Hpp5/w4uVrjBt4PE9kFCFL6bZSUy7PtTb/aUGek1jcb9GgFcXWGCWazbpubknORXSn1w3z/uGB+4d7tPkTgp/EftcYUjalB6I0QteAoHxOLoiToFISEBhrGcaRru+ZTqWUXHRSvz0Q3tYDVPv/50D55z3E3VE4/EpplDFr8JtAJdH3FnOt1BLR49mLFbM2OF3NLQSN7VwniKxSJVjW2EKxeqo4IcY/8lVVICTRrMoXXXmtwrkepRRdNzBPnpwQx9+QSoK77neq8JWdk5jAFnWak/dkoNcOVxrZlNZ0SmOtUJyurm7AGEmu54WspKI7DkLrHIZe9v0YmaYz86TwWRSBamBezrBc4/VHap2YQAUXVpqE0et6oksynrtNTJMj5NDssR/u74WuorXQSnVGa1Pob6kdxtN+tra2tGbolb5SYz7XCYBZq+g/ZKX46QTLbLKqzMppL1xmwUvWC6R1bc5TjMNINQQI0XM+nYh5zXaMsygjfOacV95iSoAv3KDSGKeUZGiGTI4LOQb2Q2nYUwmVe1LQ6JywGkaneP/+nm/evmOaJmwn5H6QTfZ0/8C0LBjbCZVCG3GqKwT5DS5GyrHxDpU2GFuCViNozOl0atIvWlvmaSoP1kTXWazRpWSTxeGr27G/libCa2OY54k8ZY73R05hJufqjKVap24dFW3P2awWv0ojjcSTOPYVU5KMwqB5/eln/P1/+G/wj/7xP+aTTz7FLwGV4Hw8kxLYEgC8fv1qc7/LA1uyaOscLnTEEhT7lJju71FaM5zPlw0Vz+NnNbTW5BRbw2fKedODkNGFK5wLKpxyhhhRJoLWrbO6vPxbRnkma3s5tHJo/d4Yw+FwIO92mLhwOBzY76RxBKQBWMwDBN0wWjNNEyGK1W2dd9UmV5MhRZxVDH3flCpSkbALPjYKlLOQk/QpWGvY73Z88vo11jruH4+cT2dmv7RNZYvyJBI0REiRMSv8szl/ypqgWwOSxboe7728vHC5Hx+PfPnmK/7RP/wHrd/AGEuI/qJceomUXVzpcowik3l1dcXusGdZqsV23rzuhwXCzwHzz3kUda0yT4w2jSolSfMly7YuC5LTrkgmFLpgoS4IfUpc8DpnGbuO/dix30lFaRwdXScKEafJM88LOXmmZeLx8VQs6rtCN4KuG7C2AxTTvHCaZs7TAmhc15c+BKkIgwTXCoPRjq7rRdRgOTOdpaqkXcKqWlEqFIa2d6sP5np1FwQJrp2zDIPQxpbZiWpO7V3I1Qu4XJdiu21QoASQEH51UfhQqlWgjF6dS6v0L8o1JDilQIrgi+rY+7s7ztPEbuiKtO2q+LMGxnz7Gr6lItT7W4Jjay3GWuEw/0Dg7ScRLCs2TlPf8vv1e9mAlJIbkIDDYcfV4QoozWV1Y9OiFxxilMmyFKvXVCfLpauNKkG5yglrZBPrjGqZSvALXkPUCqfBdB3nGDkej8QU2e8PLeMDmgNYSsVNiGozGYkxkJUhpsopjkzzQkqPGOMYOk0/DlTHsMe7Iw+PD40PbYzhfD7z7u4d0+nMuOvpe0ffuZLtSrBwIc+iNMoIrWKadOFMyWYq/KMqBVcfzMKltlYCfSX61babYUk0VlNWZJ9AafaHK/aHPcZoYlmwjNGM48j1zQ0Au91eeKBGMwy9cK2DNEYOwwgxcry/K9fFE+KZ6XTm/V3g7v6LH/p4PY8/kmGMxpX5eJlkgdALBDkKMZGVSERlwHiNskVO8mLDqCl4eYv2XSF7tfmrSEUP9fb2lj/95ae8uBrpdGY6P+K9WLk38TpVOXMG0EylkWZZPJWDqDWoAqDqkuQuSpfEuJRbtaA/vbbsrmR9u33xCtsNKONAabTV/HL3KZ9+8or37+/5zW9/yzfffMOp8CKVrg5jcq513ZTmPkmAK/0NpNnQGuFcG6XFRUwbMg47S4IdvJznaZr4+uu3Zecq9DldA5USCm+AD11CEmWKzmktlSotIMPVNcPugH5/X27DhzxMub7q4uvpz5/ezefxMx2KVpFsiGSMooCRS3INlEiAse/YdQ5nu2Yx7YzFKCNSioWOJW57lv0wsBs6umKljFYsMTE/nkhxIYaZED0heJJxzEuk7+HmWoLl3e5AtYQ+niamecGHCEgj89b5so41BqyNwAU0LI57PpQ1KwvFI+aIWQL5dG5IuzaGeZ4J3rfgetyNXO1HNIkcFzoD6e0d59nDpjekVoWssaKCoy3o4r2gZU1RVFQ5taOv63WL8pRcT1H8kPSlIsshRJbFsyu0tnoNLsG1i9u8fo5WxaBRidwu4p1R6Sl9cUN1XU/wMz9k/CSC5ZoJ1nHBS85tLab2nlQKQlZgTM/sI7tid22NGGOgkJKEUsRlASXyUQa74T+Xf3PV7UMoDSHIpOgs+7FnPwhi5IyRm50yMVVJpyyagNtDzmsALJuImCagNUuIHE8nfM6l1Co3UXjAkfP5jA+Rq/3A1WEsNreK03xm9nPrknm6UTSbypjEfCEF3FkzjDLpd7sdh8Meh2V2Z+bzIylpus7gl5lzacwpb7Zqy8qHbagrNVtVNZaQkaRJYBxGrOvwIUhjkDHs9gfG3Z6/O/5rABwfj9KA2LJQId6PvUN56ObIchQZGRMT1sGgHNaOjPtnF7ef6zBGynbOGmKOEug95bDpihvVRE7WCpPzds3/eIWi/FBnCex0mQ83g+b19Z5fvLzmT375gk8/veKw68k58uV95PEEk4VTeWazkjWh73oUpnW2r7rpiZRWtEMjZiJTyJxyIKZM1zts12OUojOuJZrXNy9ISnE8nokpYJyj73q00XTOsRsHzmOPrxtPzCXozGikJG072eSEu6hRxq4c57LJtRJqvTRKF4m61CxvU5j56u1b3r17z37n0KXB0mhDVmFlUWyuuWycuqzngmwlpJo39LKR1VtjNyXuDwLhdts39/8ZTX4eyGNgVIbS17NkvwZUWZ5xkXIUukVXZBvtMGCGoSDJhc6Qi8lGXhvarRXjEWOFPtUCyQyxBOcxBGKQKnHKK34tVtLVz0D26pwyy+LxPrSYQWuDVUYa+TcEalWUvxKWEKXqY7odyzwx+UwsGbgxoiOmbSKgGROQFdZZ+r5nmiZOpxN3RaJ1v99zdXWg6xyvbq/prWaaAzEdifXwWSlVlRKitCarJ2tuGSuOIQi1yrkokIlx0eyXco0CMcyYouDz/v6Ox+OR25tDoXTkgkpr4UcXsKTd7yeEkLqutiVeK0wJ6LtuwPY9znWkKqbwPcdPJFjekNkLL7kGnDlDRMqQAvEX6D5GEpmhN0w+rMFyaczLyqCrhFvnMAqsrsF2vZhPtQGziHcLKPNB+fAiz6tIcRJtY2Mtr159iu0c/SCE/1AmSkoZYx0xw7ycmZYj9nRi3B8YihRcbRT0MZKWmdlpDnlox2GKeHks6K8yGlO0CIeXPVqJKcq0TKjycBmjsA+y3cUYcM6y70auxj1D16MUdJ1l8TPzfG6TuJ1jOelWwqo0CdthzCLZK9JsaIChM9weemyesaoj6ix6lsbxOC28fSvBhNZy3M4KHaWzBh1m4jLhlxNpOjVO0TjsmJVit9vR9z22ZPzP4+c3lELQhnQndIwnNSeoq8fmq21UgiQ1ZYYSBeYEOSZ0ytjCKeydZbCGrqjAvLje8erFFddXA7YbyFk1iaWaYFZ1FzkUg+t6OteTk0ZxJIREiKtbJoVGAVING8eRzlkevvlc1ijb4UqwqIoSBYD3nlAQopwDyzxjtGZ/OPDy5TVGR8ZO8+btOwDe3R/LBgMoTTYGYzuUcRIAIz/fXkdhr0jjr4/SKDn7I8fjScxNgsxjlSNfvnnDl2/e8Jd/8WeiiJGjqPRQVDTU1jygrLeZoussJXJrLCEsjLsd19fX7VxN17f7+jQQfkqzeKZdPI82suw71KA1xSY35ozBaCv9BEbTaUtntBgGOYtxkjherC0fCA7UxnnxE9Bx+7Eev0zM8xm/TIVOmNhf9bJ/R5jOQqWM6YFpmkkpcTyeOJ9nyLr1KInz3FZeVpLElCMhBKZ5wWrFi8MNCo2P4rYHoKtZUwgoYzFGnEDVxsE0xlXDfauQVc/RWSPUznI5JfFdaRi6IMsRES8welXA2MZV3idS9PJ5hWY6e3ETjDGSYiAnLwkOcHd/x+PxEaV+IceuxexErKZW2szToXgSs224GvXnpigaVSm5HzKepQWex/N4Hs/jeTyP5/E8nsfz+Jbx00GWa66QSulj8xuh32TRPQZqA4pRa+vHMAgKq3Vtciu5oRLZEE1GbyyvoVESL7Ig6WK3WCNE/t0oXB4AZxUEyQpVTuQYEJxIoa1rX/XoE6sYtnTBq7XBUIUPG14KghxTYppmIbnv94QYWPxMJjVXQNc5Uk6CqOdMCAspRHLKGCc5UEyxueKgMkPqcNrgxpu1s1Qp+q7DaI2PG994pISVMhgb14ZErXGDZciOPJ0AmOcTXef4ey8C//f/8j/wi37il3/5D7D9jrAksJp+6Cu1ifN5JkYYB7H77oaePEX8nBtSVzNBbZ00RKpy7cIquv48fl5Dobi9uSb/X5+X5p3VQUv49aWxT2kCimwUSmdcVhifMCxUTOKoSkNvVnTa0HU9Qy+d6b019NZgKxphbDuClDKzD+QsCjSn44nHaca5nv1BNEv7fiemJjHx1dt3PDye0drR9yK/5kOlZazlW0GcNcr1xMUzLwl19oLUmIxH5vEUhdPcDwMpJe7v7/n6zRuurq64vb1hP/Rwcy38aOD+caKaFqqiZGNLKVcYGhlrTGt6DsHj/YKfF5ZlElOTxbPELJJXOUOWOWgNHE8n3n7zDX/5F39W+oAEghIUbaWFwcpdFt62rItZCcqstKUbduwOV/TjuN7zJ3Sz5/E8vs+oEUAr0DfEVLemPWstnbV0VqThlNFFKUZDVaHICo3EEJ0TDu1hNzIOI+SEDwvVYkHlRAgz5/nEdD4TgkdrJeYarmO326O1wXuZP+/efM3pOElPk7E415c1QlQ6aixSYwhtZJ0IQTQyhNLxEYqSnCiUVsZU7O1N6fHyMYrDrvfMJT44PT4wHR+4fXEr1WpreHFzBdoyL14UedgYuSmhoCQlVajoA0EF6hoZo29KWsHLmhKCl/UhZeaQiaEg2zmhkAZnEDfW83kC9VR2cr2/l5FTqVaVf+u5Cx1HA7oJBlgrakZVEtjZ7x8C/zSC5Q28j04iuF2uTCWH69rQ8QEvRhbicVyD5fIbMhJg53oh29/Ufy9pGEpWcfEP1xJEdn1PV+RYDIlQTAgCmTknjC0KF6jCTbrUiRYHmsKJLscRQmBePMpIuRZK2cM5rLIsi2fxnsfjAy9e3pbgWqy8+17O0xrHsswMQ49fFkKd25vzrC44IC5Z1gmHW/jYPUpldvsB6xT3j/ec74s3e7LSJMWIspaAJSpXAugJ5TK9MuRyrZNSGKe4u7tjGHaczxPRL7hhjxaCmDidtcBGNcpHc7ovzZiZXDZXebHre65vX5CDJ8bA+Xz+jofpefyxjqwU/XggplTmopQh5XfSXpdQYK3YrqeIiomco7jXpXW9ncMsdAljyVo4+FqrIgPnGPqOQwnabq727EdH12mWmPjm3T0+TIUn6EnaYkzk5kbm2jjuUMqUkui6XmktPEdV9Jq1LSVNZ/FJE6bA0B1AzUwpMZ+XRj/oizbrddY4a9HFErYm36fTCWc14zhgteb2SlRwTktgWQKTD2glhkJCU8uEEJmnhVnPLXCPMRQ5SY8PoShnFAWPYtRUG6Rj8pzPE2+++oqYMs4ZvJ+F712bB1mbjEsvj9Dsmi5r0Vw2Gp0Vw7hjt5Njn07H7wyUvz/j8Hn8nEajBCjHwe2aaZk1Ehz3xor1fHEFNUrkUJdCm6hDK401lt4ZhsGiUAydo3OGEBNh9ut+nyIheuYlMHuZO1ZkuEAJbVIrU4yA4CkFFNbAt1rBa70aIenKI1UVXNRkEgGDciPO0XwVKO/j54mQFD5mtK0BdpIGe60JBfw7H2f8fCanwDhKIm6U5eWLGx6PJ9TxTM659ULEXBt4k1ArYmyUrqosVulU9TyrUUjt9ZLWA4m5cgotLgshcp7OpCyJvF9q8/SahFdTKLnulRpbrqRZ7ctV8cpodDnb0XU9rutQJ31hD/5d46cRLLM6tMj3W+7s067nFulSm0S0VuzLAis0FWnmyTkRWwOQIsXKPX6Sl2ThHlO2W+e6jQzbx/kx9aZXxQjXddjOYd2KLHsfCDHx4uUrDlcHHk9nchL+jV8Cp+ORcZDjFmkay7gTibl0EtvaEHz7fa7nTeVN6YYW5SSmILtx5OWrF3Sd4+pq13iRMQbpmPWBkz9x+8kNp/OZd8dHFh9IZodPEiwnRnwSPpGOCfxM3zmZaARyEjOBmpVZY9BGMy2hqHpM5BgpyVsJfteH0loLORc9WhCHNeFBGWvQOHKuAuWR3f4awsz9/T3H43Ow/HMdOWsCPd5H+q64Y+bSiV1kIVNOkqDmGh0X6/g6b8p77YcB03WMfU/vetFR1hajJRgdhp6+dGNba8gofExkL13uMUzE6IuUnSPF1NDc4+nMNHlCDLx9+w3zvKCNQxuHdcL1s86Uao2guYuf8MFjxgHrBvx8RuVcgs61mTbEhOs0IWeiF/Tm4eGB+Xzibjfw+vVLhr4nFBvbX3z6mvuHI/cPR7kmPtC4w8gatkwTS0G7lkUseb2X5FRRDE6UAW2xzpEK4Tv5xOQX3rx9S4gRM3ZErUWSqazZortc7h/bACHLJplLz0NBRYZhZHc4AHA+nb4jGH5GnJ/Hh0MrxfV+h3CKM13ftYDTFFkzq4ryVUkEY4KqkPE0BatgndkAcfLzSxarPN/tr8hZNcTYGCfKF0XuFuS5F96vwVrHMOxQxsLs0aiiQiUJtnyeIquMTiLlWC2nlxjIdqBzrgF7FVg8osQUZRYNdmc1u3Gk6zr6XuykAaYQmfLEPE9YaySINaLK05SxNmX5GIJwp1F4H5kXzxIiIYr8bQihVatSTAWxT6v4QdZYK31LOSeW2TeDKR8Cp7MEy8ZawqIa4FjBPrHZ3vSe1RuFauuq/E7+pv5MKSX9JF0vJlM/wOTsJxIsgwTJGsGGvmMR3ATKqcjC1cxxWZamhp1yglRLj2bVas5rxrP9kqOoJdFavkgrClpE9HNBPmNMaJ8IHl6+fM3h6uZCAiUlKeF+8uln2K5j9kHQK+tYvDxY1bVG7GRLJ+wGQffe41yHKR24u70E1zmVYF1LOUSEzXuGYWCZPOfjzLu3d7hyXW5vbhnHkfPjxL165Pbmii53qOmMyY6+79nvD+26kCm6quK2E0OQzynljYvb0ex6NbvixGWcBWNw2nKepHmgdhN3XUfnLM6VBqZC/NdaY4eeHGmUEJCSrSoNjvoHPNzP449r5Cz64d57auvXpnVM5k0Cv0zyDMeEKU1m1hp6szbtdbsd3W7EGifvUiyatdIb9Ya6sGdCaUzxfuF4euR8OkpwazWffnYjCW4xGPriy695uD+yLB7b9eyvbkkxE4rua9VZr5+jjcFmqdxEFNYNWC1yjboYKviiPXxaApiA0XBzfcX19TXLfOb0cM/DwyO7sRdJzbJmqRgwWmG0IsbEMk+8v3/gvAQSgpTPc2gSlpXippSi73qRyyougCHXpp6ySUXDNC988eWXTPMiaHbNkAvI8aFBigyxOyibbxTU2hjNMI4cSrD89uuveA6In8cPHVordsNQkFCp/jbdZPXx6KL4vq1yZu29qnxi0WdWYoo0z2dCjM16HkT9KkbPsgR8lDKKdSPj/grXjcQI83yWRj7AWIfrdqX6DCEkptNEzrDfHYRqlQXAa0NljDNYtVJLHo73EhJps6GMlZfXhrtyfpViqbVuwThQAtaA90FACA0+LGTk/E0BBf0itI1vvnnPcZrJypC1IcTMUsDBpwmuUqokG7ZI1SpCUrKvG4NCY6NDU70VIsfzWeIrLRKzjZ5Z4iP0plKtK722fnJxKt1ITzZap5L4y7qurXVZnjvJAAAgAElEQVTfd/yEguU1Oyi91Mj/rrxkvTmx2lWekgRZri9UCa3RSgmnh0xTrVBVgH9DWn766alIGZko3aNKQcwsxWLaKNFL1qUcabQCEsooxsOB/eHA+TSJXBN131gFzauzl65apIDfIMfLsrDLSVzChoHFJ0JIuCL1tD9cc/viJQBffvGmcH8jrtrF7vdcXV0RygM/zzPv3r0F4M1XX7EbR1JKONMzDl3ROhapPV2Cbii60Bvd66oNrTWQIzl4Ke8EmfTZe0xnsF3PzcvXvP7Fn2CGHWDAOJL2pJBbFueMYtyNJbNHyiiq2PCWLLC+tgJVvbVc39w8B8s/86HJjF2HyYmsLaG64IkkPipFmVM5Y5UpijFSdu2NacmjLfrDOafCpRWXqM6JY9f11YGhUKSm6SiAbArMy8TD44lpmnHOYM2Atpbd7tA60UOYGqqiECqWkhKLIE2dw7rVEES032PjXC9+wQ4Dh2JutJVrW0KkC5G8Ednvuh5jLdPpyOl05uqwb+6a0/GBmBQ5epZ5Jsxn/Dzhl4CPsMRELiYIcsBqrVrVtaoQBlOuFT7dXhuC5+7+nq++/pqXNwcqT7L2i2hVTa0hVf3pnBvgkcr5aTRZQ9f1jOW8fyjF4qnm8vP4uQ5JvCSKCBil2/MgXgp1r8+Qi7xbimgF+92+VGHlnbSS3ijZGqXHIfiFOSXpP/ALMa5ScKEoUoSQCg3AYroBpS3LMvP4eGwVqHHcC5/ZWPnbMFPlJVP++NOfC3y9fb6NdaIqNQ70G1qnAFuG+XwSedg5YDUoLdrRfT+2ufZwd8fjwz13d+8xGuH1ai1/GxPzdMYHjy+maDkFckqiwFE0nhMK67qidMPlNS9xmfijKFSWBLwCaMro1kTmF8/j42OLjWryXW7t5vzqNZG4bo0a17VD4kTV1lpV0GpXKKk/ZPxkgmXRRpZT3GZ/qwPVSomo5YfaGCNmFsVi+nBAv33HKhm8BsfKGAyQ9JoJ1n+bm02SUsFa/lg3KlTGWOEwASXbymgliHYN5KolszGOfhwZx5GsFPPiMdowDAMZLaWLIiNjkoGgyPvE/fEbXr66RV99yjDe4FwHPHK42uHcZlPTCqsMw9ATloVf/1rspk/HE8fHR+7u7nj//htAUOLVJEV4jtY6scwsD2VXZNnqrXDGUDWoNfX/gSRWmKqcp1PgtGy4/bjn6voWjG2kfC01nFWhqiYtmzJKShFNJjuLirFJx2mjSEEmQd8PzyTFn/HIMRC852o/MieRKVtBF1N6ByQQy1k4fs5Z+q4TwwHn6EuDrNKKKcwtkDPa0DvHbifIbO9sMxs4naVxNscVga20MUFyxLVrtTjQaOswndjkoiwpJIx17PaHRrCrrzfGYLVrgaQ48AkCrYsRQi6fO09npiVgVMaHjFGaw9UN8zTxm+MDv/ntbzk+PvLqlSTVputZligyVt7TWcPt1RXdvPBwngmTJ2YxJ5JxKf2UsypmBrIZxU0pVWlNTHB3/8D/85vf8Gd/+kt6o0rwW0T8NhtdK+Wy0mKAZg2cc2YYd2LNS+k/ubjefPD983geT4dW0FlBa73PkFYHTIVqeutaKXQ28gdZ6s5xWYQ2UOey1tjCFc6pGH20oLhw+qvJ2UcC3Fa5Lv+vCrIJFMRbqBnayHzf7RyuG+j7QSqwXUdxO+Dx8ZGwTAIuFZMkFOwO11gne3mtsFdgcSgyafqsCctEzonf/vYLOqc57EZevJR14nw+cX//noeHR1JMXF9fsT8cSEnjl4UUPDnG1vS8H8VP4TQvnOZATAENGCeSetuKUDN802rtQUMRG/2WCzZBTIl5njfXdpOA17/Jef2bKuheK4GbV7Oy8eSlWnpSur4TGtj3e6SAn0ywnAkpY1swxZOg6COLY9HRywWJrXyi3W4skL9A9T6UBzllsskXvLlmbnLBo6vNLLXhbHuUKyepcmxzysU1T8q5X7z5smWlv/yTX3L74pphdMyz5/pw4LPXv+ThYeLh4cxvf/MlpwdRlHAxEvVEupVu0RwiUQsf8XDYMQwdWusWuNtSQqn0iFS6W2OMja6w263NMssyY7uOzjmMU0w+YDrZnKb5vhiQbCxBFRyu9qgUSTnQOUvfOWJSpCQOgduEJsWED57FL1AmbIrFPry4KrqudLlrmSwi+C4Ik9aSbRIWmCdyEbs2WoMxJF+Sih/Qvfo8/shGTsIl7nvOx6NscvWRLeVSZS2dcwx9j3OO3tpGv5BW20KpClmMSlrXe6kEFW5cShFfnrmcs8ytEFj8wuITMSmc6Rn2Nxg7cD7PPDw8AgKQXN/cYm0nzSrnGR8i1tYNTuZXSDVZD6VSJcl5v79iv98z9EPZYFTRHAZ3OjKfj8S48OVXbzEqcXO158XLV8zzmYe7O3wIvCtmA7e3L9FKtyqO6K9r+s6xxEwQB+wNneVy018Nm3Rbf9rvtTTILIvnzVdfMc0Lw2Esf0dpaN7yONf3JIO4batWQk0KhnFkf1VURbpRgoPfMT4WOKsCJDyPn+fIGUJBb5dpXpFE5NkwyjS2kAReteL88Wcml4qzgGviq5CKM63smzVJXimc2jpevnzJq9ev6XtxizvPE2jdQCljHQklKlbCo6BzUllxXY8xFtt15NKEN4xj6aPIhRPsGXYj4+GKrJRUjlp8IMi6dR2KyhtOkCNxmTmdJsiZV7eSmN7c3HB6+ZKwLMQkxmmu6zG2b9X5bXXfGkNIeaWtqQ/n+eU9WdV/tiPl1BgFlVYxzTPfvHvH6XQmXB0+oMm26lcD29av8mmyntQEBwH05KJr8YroOnH7+/ZD/mD8pCKPujDnD6PlEhtXqaga7CZQ1RRArsY4DK1MkTcbkooBoy5tqD/IBEvpItUSTWlAqRzkTMQoizVda+5TRtMZR0oKYw2Ln9jvBOXu+sgwJPx8z+lxxlnH1199zbt3R6zp2e/3zLNQGR4fZaOdpom+F194lRIh+49uCMMwsNvvmU4nlFLs93tCsd4e+n4TMK+Nj33fc3N9Tddb5vMdoOj6rrjxxYa0t+5bLQuJynKtpaSscdbQdx22VAJ2veXqes+rF6+ww4HQjzhliCEBCe06NNKJD2D1pumqXUcji5X0H12UcCokve2wfR4/v6FyYj4fWeYzlACzKxm2Gzr2hytRawBs18nGCMV0moI4lzmfRRVCvi8qGFY645XKzMuZ8yTP2jyLVXVFk3xI0pGdFWhBtHNBmYBmK4sqMpQucdWPHK5usNay2+1YksxVGdIDkXKk60de39wQU2aZ58b1rxUltSt85IXymoXTeeb2as8wjBwfHlDGNEqI955hHMUl00o5et8NhKTQ90eyOuEjnJetbOSTYLNkxgpB5FPp5tdKpDFjSrx58xXTPGNurvBZAgxZyS/hhnXjK8izrkh2AS9ybgo+u/2BB7+w3QtqINwCnbpO1PLuM+r8PFgDqzrH67x3zglNM3hqqpyiJwYv1MgllISy7oGaiCI4S0pzM+8AxTAO5bNqxp7FSVNrtOvoh4GcRSp1nsRxM6WEKmXv2QeUEs4uSuHcgO06jBNahY8JgqjZgGyP/TDQd45pESOx3U7kFkPKzEXBRo7bIHihxhjpf2hVnlLhiTE1TnOV1KuUiZQSMUUsgkkYXRoWq9Nn19El0HYBfUZrT8yqGVw/TbrXe1DpIaqg9FV3T7VeMx8Cd3f3PBwfCfElpv1tXhu1lXoSfG+C6UtguTARVjhAFyOkHzp+GsFyXssVl/Ii6xDkvXZlJikPooBIyrGVH3a7naBHWTfIvy3EqfxFa8BLFy42Wmu23j05A5rmGqeSwi+eUznWzhnGsccYLTJMs6hXaCPoSl+6cINPTNOZROBv/ub/YJ4yL199Rt/veNpRG3xgt+vpug43Djwukfv7+8ZNNmUjubq6wlnL11+9Ec3ZDF98/jl/+y//JSklKd/EiNVr4GuMwXUdw9Azne+E+lI4PNpcliSqo6AbOsgGaxSdVYBBZ0NyttFZrHFc73bcXB24evGaGGVRiimQSXSdZJ+Vh9XuY7vItGwRLUlOK1tpMM7i6OW+//Cn63n8kQyjIKVAWBahU1hD0lUSSlQsMqWigQTIldqQUkSluDZ95MRgpaM8pkjWwsOLwRd5opV+JeXWdZ2oQfC42zGOO2KGaZkxZZ3obS+Iq48l+NT0fbGu15aIlHJrUDjuBjKZeT7TDz37wxWzD0zzDDGird7Mh9LDn8u6lCOPxxOH/Y6b25c41xG856uv3gBwXjzOWaJfBCFDYUwsLpoWa42si2UzyTk1oK0Gn7W3IQJ+iU03GcQyOEXPF198yePxBEaXdaVQMS5i7tp/ohBtVblL0r9Rd7jcZEBvX1wzTw9U2brvCoSfA+XnAbKP78ZdCZYdj6cTsSSPZjSkEJjniRSrRGkWF7mc6RA61jZYNhvbdRCaZYgBZYTSeCnXqrCmox92OOvw3rPMnmk6o3TAOdeqo1rbEqTK//eFdqGL8lWIAaVXmdWaEGpjCqJb+f8l6M00SkhKSWyoM+QY8TEQM1gldMlcvByWSsHsB15/+hnRe86nE3d37zmfZzrXo3ISru+GXWE7R0QTs6gExQQhKc5tnVlfW4NwOQfVQEmlFTnUNXWdvyllzucz0zQTU8SYD+f1t8UB0lC83pHKAV+pYArnOrpePB7UDwgofhrB8tNRH4KLH20uWL78JiehYgAcDntySiQlyGyKkVBKENla1BNTixqgl0+BcqGd6xAJu9zk11SGECUjVVpjXYc1TnjL2nA8HhsfeH1viloFRB+KTWTm6uqKX//67zYFir/52/9TkKsYGHcDNzfXKGtYmPn666+lObDvyKl6vxt248A4jvhpxnvP8XTi3bt3GK15WbhIq6+8RinNMIzc3t7yePxGJpjWdL3oDuppLTsLb1y0U40yxDALR1QuuCB15boZUxQ8UhINau/BycPoc0WQFHFZm57QGpWkYZL6gGvRRaRz6Fz402khRg/FOEU/I8s/26GVJIlKwzD0GNeRS7CsrBMr7Jw5nmd0yigl3ApBRkoD6yZYrgL58r1qlQupsqSW3BljCIWmpJTwm23fc7i6RmvH44MoYzRL6phRixe5OKXohx3DbgSj8cETkgTRdaWuFBIfTEF8AiFElkL9kM1SXhuWmYfHR8iR/djT9TvOp6OURK0VEx8UruixZyTYr0tcff+UpFmyM4ZkQS+F7xcCaFG9qABDLEogWYmWfN28kwJXuKFvv3nLeZoQG26hWVQl9bZyp8IzVKWTPUWUzlgtfR/kQAhz44rfXF/xzVtHCB+vrj2P5/GxoZRmnkQR5/3dPdO8NEOR+TyBKk21MYKS/V1rzbxMdL3D2a4hj0oDJThNG0nbGEQJwxiz4c7SksvO2VKxzUUlI/IhQ3btuwLh6vrgm2lICIl+GFpPUcqyZvRDR7/rwWRs70RqbfI8Ho+iBibvXJQ9EmGZeXx4gBRQvaOzDmMDfp4FvaasQa4nZ4XpIq4fSEquSfBBqCJbOqxNhTe9ChbovI2gLufrh34W6uJ3Yu1dK31CAzmdT9L/YB2BXKpVBbe+iA9ze5+LHrUKALRXAFrjuo5+GDFmjae+z/i9g2Wl1N8CD0hFI+Sc/1op9RL4b4A/B/4W+Pdyzu++/U0u+a9bdP0ymF0du8iyDOciv1Zf0/e9OOCoiDU9SjtIUWSSAvQfHv+m5C/vWaH+YRghrtIwRoknfEZKkGtJV5CslHLJJiUonOeFeRbB//P5xG8/f8vj4wOH/UtevXrFr3/9d9rD/fmbzwV9zqLXOs8LLkuT3LIskBKdsytRfYP6hEL2t9Zi7eZvWB+Y/X7P9c0tn332Cw6HA9+8/5LopWFJG8vtzW1LCk6Px3INKnJsCH5F/pv2dbmGWkkTUucs+90ea/4/9t6lSbbsyvP67cd5unt4hMd9p5SSSiqVRIHRBm1MwHgYZkwZMWbQZsVHgDEjvgI9Y8KASRuMMLA2Yw7V3VbWRVVRJVVLKulm3hs3wsMf57kfDNY+xz1uXimvUNKWqoxllukRcd2Pu59z9t5rr/V/5GAyVJ4RBkfEpIlDBr2DWcc6ps1L9KPsYI1F6YLJJUwPMrnF9H3j46L5exlfxTyhtWKzuaIocq4u16DtPNl3ztE3jThkdR0hkVe11pC6JiFIBQkEJ0wQwK4xBkLE6UGwxAmXO7Hc87IgJrMCbTRZllMtlhhjOB6O7Pd7UCNFIZViYw1KmVRRERJOSKSVrh+YzDrGeRH0bK6vWK6X6Xkdd9sDbdthlGKIJ/jR8bBjv9tJV6ssyLSATJzzWKvQ1pIbw9XmGoD7+3u6voPUVSO1oF10BA95JuZCQ6q8df0giL+08Jwr40x/c2cFh8KKrNP2fs/nb97StAOmqAjjSIwefybfhDl1+AJS1RGoRpJ5UlJFm1xK67r+aGjFYzL99yO+inliHEd2uz0A1uZclot5/AzDgM4smVZpU+rEk0GJRGQkQRimxE0GjaR/59BAOEvK0htHlaBewoMK04Y7Row2uDASVfIZALSxeCc6yQC9O+B293T9QN+P5EXJ+nI9v5Hzjn5oyYqM9dUF2tSE4DkcD2zvDwzDgE2f2ztHUAo3jjTHPYfdDmvFuTAzYo4SYZ7jbJKfZUpa507TWdJ5lqBKx0ww3BNHLCCFS+/j6TjpdRMsdJqTo1JSgEjQK604uR07mSuPhyOj81DkyZ8ipA3Hw47V+5/twTU6uzRTmOTeaG2GSwW8j4mvSofrP4kx/oMY4z9Mv/83wD+NMf4h8E/T74/xGI/xzY7HeeIxHuMxviwe54nH+NrF/18wjP8c+I/Tz/8D8H8A//VvesFpIyDagASpjGqtpLwvMqqCLUQRE6xA2xxtC2yWSCdZhc5K2m7AlhabKXwcpLIUP9Qg+HA450CVnPEJz3ZdpM9mqOqa/f6ei6pg8I4sK4gJrnBsGpRWLBZLsjwnRMHjba43GGsSo1V2lXkm9tV+goxM+N5EUHTeoZSaqzo3Nzfc50IErIpSiHeZMHDzLJuB+hMLeLPZ8IM//AHPnj3j7u6OIq9o/TG1g8HaE05LaZ0c+JTgoZXFu5FhkD228yMEP+9i67xktVyxudywXl9isxIfErbKzIa2JzODKM5AOuozufWztsw5PgxQ2hKjT6/7eHvKx/jax281TyitWS8KLi8vk/KFIUmaz0Y+xog04zjKeKmriqHvaLoWEgQBIHiHCpE6K+Zqh37P9GZIRiBRiQ751EsxVqozIC1HlZjcE2xjsql1CcLQjSO32y3HpmUYPYvlkuVyMXd/dsd7dGZ4/uIp3juGpqFtG1G2SZbWU6XEJ9UborSBL66vyItXDF1HGDzGWDKbcbG+lM+nNffvPqfMLBGBP7gQiKMYICmlBaZiT5JTYTJ1Sp//vJI8aguzVbVC25pjN5Drgr97fcO+Gbi+XOFVS3TDrMc6X0N1Igl9wUkVqXSVpfT/Fstl0qD9+FbpY/y9jN9qnvDe0fc9xoj8o0mQojkmoplSc+VYKUVRiF45auJDSaXUTPKFSf9fK5Gl1CZBENOaFAJ4F/BBlCogMqGtVosF3hRUi4o8Kdt4HzgcWpqmEcUd5+j7ka7r6XtHVVcCC0lr+DAO9GPPsl1xcXmBtYZxTFDT1A2LZ19RTaSt1AWPIRmsKUVeFoxjMROBY4wCUSgKIRkay3Z7xzAMKCZr6dO6PI4jQXmCl457Zq04+yZOWWoHz8eeeBHOuXn8+xhxiQuilMacwVl8CDRti/NODiVH+rX524zfnq8v7z3z9LOxlizPyfMMn7wiPia+imQ5Av+bUioC/32M8R8Dz2OMrwFijK+VUs/ef5FS6k+APwH45OWzeTHQqeXhJwUEFFqZ5PF9TnQx0i6xGUrb+QYsioJFXdMOYzLSkMSRGGdu9q9LlmNkXhDH0QGKoqjoDtLSMZnBmAydsIsRJYztw4HgHdZkrC4u6AeRg2uaFudcMg0wZLnleOhT+2ekbVuG5OBnrBFmayWDab/fwyFwuz+w3+1Em/liKXhgoG2OeDdSlSURj9KwXNWsL67IsozmeHwAT5lA9lNbdXLvCTHSDwN5lrO6EMmmSVPWKEkqiAmHHNLxYsAaTZXazpeXlzx7+ozrzTVVWaJMhveRzJxICMLdS4twPMMcKTnxcn0z2RUNI3FuUSuUzSAowm+BL3qMr138zvPEt55eUWea9eWam5t32CzQJYkoZXOKokChGMJA2zQM3chhdyBGIaXFELB52hCi6MeBy/qCzOZpQj4lcuft/xgCyugEvZINrA8jftC4MZAbQzQl5ULGw2K5xPtAey8mId4Hun6g63rGwYMSicsphmGg7zsiEZtZxnFkHEexpC1z+q4TfCXQtR3OOYzJGMYRrQ3PXr5it91yv707kZXPCM/bdyqNPyEBGcD7gcF5tC1RSlEWxdnrko5FlE3Cw/ZrROnTshFixBhLDI67uy37w4EnVxey4Z7Y9w+vp7xPOu5MuEzP9d7PhOrlcimOpEPPr6f0PMbfs/id54mqKMiyAqVUSkiP84bPZGJNH5wkYZI3SGt/tViQq4zgmZUWvAtEpckC2Mymgk9MWOcEe0z3tHNeNIkHz5AsrEFhdM6iXqBKUe2Z5pi+l7lr1mKelWImOEdMxazTmBn9yDD0OO9my+vRie29tZY8QZgmqTvnxODj2DQUSf5V65r1ei2OvkdR4fKTg66VAtvFxYW46PVHcq0xuZ0LE4CQ+pwjJIUMa7UkzlqjcA/wze9/v/PN/5STzN8bSQ1CFJLfOLo054YEvT0jVE7KGAmUrBPBUSuImFTkSMo58/wRMMZSFhn1osL5f73J8r8fY/xVuoH/d6XUX37Mi9Ig+McA/+CPfxitRjAwUdJVPzvIJUe39wWk1fmCFilSNaIqCsG63e8IIWDtGc4oTn7iv2nildPaDwN9P7C4EjtZAJNbLEYSuRhwzs+yLN6P2Cx/UJmK6eKN44jNS55cX0MUwsqvfvUrfvI3/4p9ulkvry559uyZaEZbw/Z2L5aToyTXTXPkcNjPCafWitl+GxlPJ4JSmPFH06JpM9mhjuPIdrslRMXyYs39/T23d1ueXD+hqmQBd+OIG3uKPKM97OmHLmk4R2xKGjir8Ao+S7DjcarcJRaqSRNGCCdVkUmV6qG+tRIop9YoayBtfkxK3HGKOJ5IV4/xexe/+zzxR9+LV5dXvHz5ivv9gaKsqC9EJ/RwbGmODc55QohU1QKiJKK2qNBaZBlP5AiRlfThZJWqg2iBGmsJMWDzibWuyDIxEBgHJw5erZIFF01Z1KwuV+gqWWnnOV03pDF6SgjzvCAvUgVEK6qkSewOjvvdlk2z4eJiyTCKO2BVluSZpW9b3Hi2UdQn5vswDIQYuVhfyjxxPPDu9o6mlTnrxfMX3N9t0eNetNiHZKTgHcvFioBhbDoWixUA2fZe8MsfSHTTaZu7QTphjKf573Z7x/1uB+pbUsjIMoKCMGndn1XepxBb+7OFlZO0p7GWqqo5HPaz0dN798ZH/e0xfq/id54nnlxdRpvliVgXCSGSJ8Lrq08+IcTIbr+jH3qqumB/2PNue8fKr7iq1xThtLY5H1E6iBykVhjMjMGd8g91tiZP6cXpPpQ/GKNTsU3PdSLvHcMwMIw9zsu8pZSiriuWqyXOCalWjD5AW4VvPcfmSN93lFVOQDgOkNQ0UrI89B3jIEn0MAwYrTGJjBtipK5rNpdXfP7Za0CKb6RSolaGsqrI8hzXH2ee0gep9YnUJ/lGTLnaQwIfMCfE51hir/XsDRGDxupE6vdCst4fjonjYVAmIwYhWYeJ4Dfzt4SnHQj41Me2cURBIg+fPn3wDp0JAbOsCprm4zvVv3OyHGP8VXp8o5T6J8C/B3yulHqZdoEvgTdfdpyUy84nVJ8lyx9+47MfYpyFvrMso6pEiUFEuON8Q4foieEsWT5L2t4HhI/JTCBenqo0cfqg6bO6lCAaY6Q1msluriyrdIyOcRxoupZVVnB5tSbPF3z22R1KyaWd7CZXqws2mw0xRrrxIAzwE+Lj5DKYfs8ySdKldWTojsIcbbsjo8tRKLLk6gNiXzmO49yGWSyW1IuKrh1omoZ+0VFXkz50jvcDNsE5mK/HtGAlIoA6tZ/KasHF81eUm2uxv3QBtJdkWU3y4VNlOV3v8wXwDIaD0rPKQbQmOfJYjB9mJ7PH+P2Kr2Ke0Drj+slznry4If/5Lzg2LYejOFS+eXODzUvW60uUUizKOhkGJDhBCOKIl2SIjFa8+uQKPSISSM6hYyALkSzP4UwFR362cxVEJngnijnI9roqK3R1IrSMY8/xuOfQiJZy8EpY2EWJtTkhePJcxv7V1SVd39G2DctlhbUmzYeigqGUnitjE9Qky3OyLMf7SN/3PLleY+2au9uBw8Gx24spycuXL1GmJKPDjZ4QBJJmjCEGTwCKspjn2zzLGVz7a6/BRMiT66EJQVwEQXF7e8fbtzeQPiMqomKYN9APGPFTZQk1Q1mUVqhwUtvI85zVasXt7Q3eu98qEX5Mmn8/46uYJ6RA5WYZNWMsZSVjbb2+xAdPPwyMbkQbg1ICsRLFly+2+icIgMAtZP2UrrXCmHMCqkbFIEozSgpLMShya1hfLFGlofc9bSvJbdu2DEM3K+mEECFqlDFYayiKgszqk4dEtRCPhGGgH3q89yiFFOqsFWnZCUqZIJQpaUkLLpCIh1NMEI/Ryoa3H0a889SLiqqqce0RrRxGG+JZaVmRNOd9RNkikfwnszRHYPLLOI3Fc4lKgDFAVFZUfIwhKyRv2rXvKGzO7jhw7Bw6r8hBDIq8m8nW59cnIjCSaT4+xXtEvygJvTaazGYPNu5fFr9TsqyUWgA6xrhPP/9nwH8L/C/Afwn8d+nxf/7SY/3m9/nC70opKflPTntxMifR5Hk2/01aiWqGWHzMFBoBH8m/xIcAACAASURBVEVn1YdAkS5iaTVFZujbA0PbgIJuGFHaymLrPbvdkfWlGIGUZQVKWrDObVmvr7naXHF7dyQ4cdKaqi7TYhhjxKfqWHDCns2s+Mq/ffuGxZxcr6hr0XLUSrPf3iclEIcbHVVVcXFxNX+nLMtou+7UNlKSTGdZJprMZ6Ykk5br0PfpxjLUq6VotXovO+xMpLsA1ldPePHi29ig+dmf/wWX3/83AY1Xjgw9V/f71DLf7/YoBatFTZkZwVRNZ34a3DMb+YQrm/BXj/H7FV/VPKGUYlnVrC4uxD0rhFmzdLW6oFqsUFqknLbbHc57Nk+u0cbQtA1lmc8KFDd372i9Y1OuySKEoKQy4QNZftJYBYjRp3aewlpNDI7gFWWeEaMis5qr1Yo3zQ0ATdOx2x8IqaIUo2x2ffDC/NaT9nNyl8ozQsIgj6NosWZGkxuDG0aUh+GQYEk9qD7n02//gNWqoighxo7bm9dcbS7YXF9y2O/4q7/6iXzPmxvKqsIfhA1v7ID3Ye5Qkapk07wom+sJb/jebBlFbs7PFZ1UJVeiUrPb7dkm50DOqm4TK35SGZogYTPMg4jWk7FUmJPlzGYslosvYk75YjL8Zb8/xtc/vsp8wlgrmsI2Y3WxZpPs3//oRz/m4mJF07V0Xct6I5Cuv/7JX3O3vSMOHnd/2iw6H1FGEjEpHkkqLbnFQ1jg1PI3RlOVJRfLC7zzxKgorGXfHrk77hjSOth2PT6G0zghJjt5MT6Z7KzPTtCcCwUf5vEj752c9KaVNKnWxCiQUZtwusZYxtHz7t0dP/rRD+eO/Pb2hrvbd2zvbnFu5HJzRV0v6Y8HtG9EWzrlJUDihIirIMqyb7pk0+1pkjzf6aN/eM2WQ00OgMKfkK8pc0Lfd7Np21RAjVHmpveH9wnu+cV/i/FkSnLe3RLVnY/PJ37XyvJz4J+kC2iB/zHG+L8qpf5P4H9SSv0j4OfAf/Hxh4ycy5XoM2eZ6YvKiVOiWZywcdO/ZdYIwS1VLCYszNRVfKAV+CEceIoQIv044HzgcinJb11mVLnloBKGhkjvXCLETVrLDfVCKrRZnosPfdIpnYwN6qpkHEGbApd2a3mecbe9xYfAbn/L6Fq0jimJlUW36zpCkawylcKg8ONIXlWzHIpz7lRBPgt/JtPikkXnMAwUVckPfvBD+r5jTLaaKrVpxnFAGY1VGc4N9ONIWSaMY7VgmTDO3/rO93n56ffQKN783WtWzlNWBT7GJJ0nltfOTY5onTgjFQVkJ7JQPNWZiDNm3eCjwytFaS34j5d6eYyvTXwl80REURYlm+trutFxc3c7V2fL5ZI8L+k64SoYY1msLvj2tz4lAp99/lo6SzbNExNkyij8MFV1BOaT5QXiFirPHYZW3l0pbHIEs9ZytV4z9GPSLGZ2tgtBTJLqWvgHWhuGwdG2HeMwUJQlIQbaTipMi9UTLi6v6IeRYdRcP/kUzVsYWt7e3mNUzvE+VahDpCwrxtHxz/70n+P8kX/nH/4xVju8D1hrBOucMMhd11GVS3qbkxuoQuB4bCXp11Y4AeZElHRfMr408UEiOrV1ldY0bcvnb95wv9uzWS+kYpdkJeXFp/l7Pt5kSDKjPvS8ac+LnLquhVtxNp89JsJ/b+MrmSeUVjx99pyrqw3L5ZLvfvcPWCUL9R/88A958uQa5z1t31ItK7bbOzbPnvJnf/Zn/Ownf4sLKiXFSLXSWLQ5Ee0ARtfjXUSFkGzqz+AITBtrQ0gDa8IEn28erbWUpQgFTJDNvhsICKE/V8WDrlJmM4pS+BU++IRTTtyEopA5KMnWRhcZ2xEi+C6yWqy4vrzi6vKCzdWKYTyyvf2cPJfPslgqxlGz3yt2u5G2a4XDYTIM8j1kw3+CTuqUh4UQKYocZTOG8ePX52k7PiW4c36nRQ+/H8aZO5YAuZIjpKLZ+/PAxIMIMTz4t/P5ZoJxWmvJ8/zk4voR8TslyzHGnwL/9gf+/g74T3+bYyml0JzxvtL3O28rpGPL7zyAH855b13XiawS59bKdANr9RB3c3J6Ued/fBDD6NCpelWUJWWR07et4Bq9J/hAZi1hGDBGWPVTm0NrQ16KJeZ+f2B7v8XaiqvNFc5pDseO5pgY90QOh4NgJY1ltboi4nnz5jPafqSqqtRymdirJ8vuGCNZJtX0aac5DD1v3ryZB9pms5HPYjSHpiGGiHcD4zgwjKO0hpKKx3JRc7Gs6fuO23eOtjkwJlHyYfQQI0MZePbiEwBefecPuHz6gv5wIPiAHwZIDkrSBo+pkpUmjhDkfcuc5bLkBNLQENLgmBj3VjY+yjvETvQxWf59i69qnhBYnGa7vccWJdpm9ElRwgcQc2uZK6p6wfPnL/jhH/0R3/3e9wgxUFQFeaqk/OVf/QX/8s//nJvP3jImfK9SGoydnfWmMdYPDT6c4GETyUcpMUcZesc4jCwS/EpnltWFwY2e/b6h70Yyo7GrQponiXg0HIQIvFj2XG2eYKy0Y4/HPcemZZlBWRSEcFowp1gul6zXl9y8O/Lzn/+C66sFZWUxRuGjp17IJsJ7L5toW6KUo64WHI+dVMGsaDQPQUh6IMWJD6aiU+7ACYMtyTDiephe9/bmHTe379hcLudO0KSCo6L6wIEn6+pkqcvJ1Elrw6JeCIHwIxPkWUXoMaH+vYuvap54/vwFf/In/xUhnPKHtzfvADgeGunKLhfkVUlZF2R5xovbW376t3/7wK6Zs5+/oOOLmotPJ93lmO5lRWZls2yNY+hGCJE8z6iqirKW52dZhkLTNoNslPuR/f5APwxSQVWiRTzNcXnR8Mm3PqEoF4yjY3SW9eUTNteBZaZ48/oz+j6NHZUxHgW6pEZDYWoMObc3W3bbWzbXS9zoIU4uogJ52i32vH17y7ubGxaLC7IsFz32vKAfvfDKSCCI5JUknSF9BteUgtuXeyLEB/nWVOCbiNRd29K0MkcqNTkXRoKLZy6iZ9dkqi5HhY8n2Np5lXtyATZWIKz/2mAYX2VIp119ofP3PgRjigdF4bP2Q5ZgBjFGtBFskdIWZWTXIanY2Yn+4PFlMZxaGdNuJMSINgabZeRFKUoR2qC0KF0EL3ilafdlbE5VVVJhKgr6QVqxT59eEck4/u0v5zaDzTNcwuUZK5sGm1mM0YJ9ioHMGrKUuOeZ7DJjCDjnWC4XM5mwH6S9c2wOc9uE+60s4qsVTdvStR1tbuj7lrZt8Un9AuBu7BnGjswqQgyCkXLCvA9RavPBh/mzj8MojOG85PrFS/IzrHTfD4zjSFUWnLunQUwWtvrseighDoYgZjKAtpGotFSb44B6dPD7BofMequy4sWLF2R5MYvqH/Yt/eBZr694+eIVr1694tWrT3jy9Bnf+e53yYsMnRmy1Jm5enJN0w989tmbtDCRBPUDqU7MyYpeMY7DzH8QNZkMFwPGaNZP11BE2q20V0encG7gdrslyzJePH/F5dUlm+trfv7zn/OzX/ycIs85HiVJH4YhSTSemOHaWuo6x+iM7XZPUUu3ahwdP/yjH/LjH/2Ioszgrwd29zfUtcU5z35/ZL8/UpbyfGstkYjJClzXUpT1zL2wWUZdLTl2I5iEXXTjvLJMCYFSU1khLWZnxFytTVozpeLTNC23t3eE730HO+GS33sEZhiKfFc1dwsj4CaFE62pF4tUCFBzdflDCfFjkvwYU2TWslyuaJp2vh/Oi26TqVZEII/WZmyur3n+/Dl/WeS0qj8V4pRK3e1MHO78OEOPvA/4CD7Is62xBKxsOLVhDAFH4PLpJSpXoobTMY/N413D23fvaNseazOyPOfq6pqQZNMmkxQ3Gwb1qYpboo0DIk1zpO979BjJi5OZV9eOHI/SjcqyHGMMXdfx+We/xPmGvPw+y0U+b0xBYayZzUN88KmCq1NOkhxQp42smlQmpLJsrCU+SDz1F3K5BxFPOd+UsE6KP2Ld7Wm7jv1ezFZyI8lyVNIBjKlLP8U52TLGiPcfgJHBvPGRLqH9tfnlh+JrkyxDSlE/8B0/iFn+Nb8XpVjeikeWgih6EZOd4mnKP6kynMdM9osn2Zn7+x0Ai6rCR4XNc8pQE6JPLcZIUZbsj0eUMbMWsLR6DavVSsx99g3EgPeOoqyTDXaqmIeQWhGBEETWavCeF69ecnd3T9916MzOVrDD2LPbJVveIFCTIhfbajdpGgaPTwPteDxirKWsF9SLBf0w0LQtbXOg6zph906QiMkxLJ4GT0xKIloLIaJYrLi8fgrA5slTsAV4w6vv/RBnLVgLEUY9yncLgbqeql2XuHGgKqu0P5quX5z6MvMmRnQtp4EwovxjsvyNjRgJfcezqw3/wX/4H5EXJVUp95RShtVyjdEZx6Mskn0/cDg2DP1AWZeclzE2m2u+973v8c//xb9gv+1RaLQWMpBHYbQ9VUbMAs2Cthc5N4zFRcWx91SVISpJMvtOkt/dYZCKUN8L63yzIcsyiqIgLwqsESJOlQi1m81mJgl3fc/d3R0XFxeYLKdA2rl1Spbbtme323J/v2W1XHF5uaHtdnTdQIinpEBP7UUFbdeSaUvfj1QLA0Z0oOvFgqvrp+THlvujQEKyLEMPw6yN/vD8k/Yrp+KBkZMvi5/S7PZ73rx5I/NowmvPhY0PLEwy3+r58ILDlO/gk+3vZnPNu3dvaZrmt79nHuMbF0orLi4uqKp63th+7wc/BESi1Tsn4833jK6nLDIua8uTheHbTyt+urtN7X+StbSBPNK5AaMtKE0wEZK1/JSUXiyXoIXvNATNse+F9FZmCXbVctgPdG3SV9/v8T7wySef8OrVJ+R5zotXL3nz5g0//elP2R0OKGNmeVkQfWMzOZNyUo4RF7wzeNOZbKu1mcjS1iXb7TuG/ZG72y2ECmsEYpoXQvCbHAZd0mFfLFdsD2+oFzWD87M7sVZglEYbC1667z4qhmE8g7rO9dwPX6fpccJhz7AC+V/fD3RtK8lyXcwJ9peltyol8hOcd6Y9TR8lSictL/J5rvmY+Foky9MXmnRAP1Bhf7BrmCNGpgsx3SiLuibL5ET07mElQic4Rjy/iHFeAd5/R5wP7A+H+T2Wi5osMxg0NhPGfIwiwzQxZbXW80ATHFIQYW2kGuy9pmkbIhk++LSIIzAIFbHGYDJDURqc78kyy2ZziRvGpMcqA217d5uq5mZOYBtjKfKS/X4vusxn5ibjONK1p5221hqfzqlI7Jm5Grzfb9kf7imLnLqqKOqa/fFIABblgrKsuH72kuvnrwBo+oC6O7LYPEHnBVp52fSoaWeuEq5RTrIxhnGI8zk6dQcQrLI2qCw9VxdYZCcZugD9o9byNzV88Bx291yvr3j2ybcBRZ5Ipm3T48aAVlYkDq1lsyko6lpwvFnB6Huck6RwVcAFB/7d767508Nn3DdHlutLbAWda7Emn2ED4+hpm27u0hRFQYg+QQwM3nvyPMPaExbRWEsEiqKiLEu01tzd3XG/3VJVFYE4SzUu64q2OUpVNwTapiHPc8YiQ0XhK+RJ09w5qTr99d/8DSTc89Vmw7Pna/Ki4NjsUVqRW6kUu1Fa0J9++ik+iG59liVN5WTJnWV2brAJAVgnyZrTuVdn0+4E1IhhUhrSAsWwglt+e3MjsJUzPsJ5THO5tRO8Qt7LObEgz+yksiPmBlVVkef5Y7L8GB8VSmmyaokqBArgQ2SXuhVx6MmtYpFHtO+o6hzV39G+/n84/vIv+O5a83YZ2bUJJ1xYskKBCoxuwKuAioqx72kOsjmeqrPOiUJOTFq+2mRYM/GFRClrkkoDGCeFG8XseXDugyCwSqmAglSkJ8m6GAJjOl6WWRZlRqaWNKlbdXNzhy0ynPO8+uQV/8aPf8xiUdG0e/rhwM27dyi1ol7IXND3Hbvdnq7rKauazBSzUVNEY22e5o0T+dFag84tJkxQFCVV8A8XdX9NfLE7NOVjwzBwbBq6vmdZlwnLLLCuhxK9p47fKdfTBAIqEYfnjM8nGIYx4n/xW2CWvyq768d4jMd4jMd4jMd4jMd4jL938bWoLAMzS1SgGOeViIftwPdbeTEKmHyqWi4Xi6RPmNG7HqVO+n7n5fn5eB94j+kfRBHDoY9S0ej7QSxojT69Qol83eg9bdsCajbfGMaR5ari2DQi12SkbSHi4GK926XWrQ+iIFFVJcZqytKyO4ziojOO4gwUwly1bptGnLysxWYF1mbEECnyMumfhqRbesIL9sPAMAzUdc1yuWQ79tLq6ETgfNJz7Puevm8p8ozFcpnOh+H168+4LCsuN9fUyxWLlRhCjN4zOjE7MAiRZ5LsEwMT8WU06dpVRYHViqqsEpTl/GpEsbieZWQUINqT2hbE8fAb76PH+HscMco42N1Tf/It8ixnsRQzDSHzQF2tKFcBlMYFRRc9Onqsdpg4UFQy5fn7t/jjO/LYc7Uu8UruT5UqQAqHTrUEsXCNcxdGa6m8Tu5SJisYQ5yJwM+eX9N2HWG7pWka/q9/9qeEELi9FbWbFy9esFgsTo6WIczENqVEV/XdzVtC31BojdY5r169BASL2HU9v3r9K4xRXKwq8qLk8nLD/f1bjseWrMgxiewYvOhChxCZjBrKqiIinIgAoAyHvYyrCRf5xfnwNGlOleUxzata60T7UXR9z5s3bxlHhzNJo15NsI2JGPgQXxjSqzWaoOJcwQ8hoI2hrEqKZCrxGI/xZaG1wZYV3nkUomc8VRzLIifPFdoqjMrRCMdI2wyb5bRtS1nm9P7UgRVuekimIZOV80R0PY2TiewXw8l9T1k7G3RprQVXnEIqxZayrB+o14zjSFkU1PWC0TsuL0XJ48nTpxRFIfAkNzIMI8emYb1eo7WoYZxLyeV5jtaOfujY7e4py5zN5pphOHLz7lc4H9B2gjwFmqZJMA9zgnMlTlYIcVb9eHCulVTB0QoTpbKrgN8IlpzRFvEMKqFOmGVSvtL37HZ7yas2a+FQnKmNnHMh3s8LtdYzuPNcgS+GBB9LRlMnXsqXx9ciWVZJKeGDGnk8nLbP9fQmzEaMAZMyrjzPqcpCJFViRGkIzs+vVUoTZlb21GqME8DlwXsba9CYOfk9Ni3b7Y6qEB3UIkvYIaXZN/dC1Ima3U4Wnr7v8H5gfXUxt1mUgrISfOIwDDgv7SGbiUzSer1Mn0vA/f0wELwjeP/gpjiX0xO4RSBi2G63tH1PWVWUZSWYovTd27ZlvxfrbGHZTuYKGXle4MPJJz5GwQtP390mwfNxHGRz4Ma5gWJsTlZUcm5duh6VXB+jlahdxHhmQiLsWe9HJjFxo8x8tc9vgYkEILON4Qs3yGN8Y8K5kbu7N5R1hX3zjvXmabrP4LK6ZMgjMSvF9RHo9nuyPJkUWTAmR00qMtqyWK5ksbIGrcCNA15bEhAXkq2zNQqjBOeWZZaIbESPxyNFkVGWTxmcLDIA68s1aqc5Ho/0/WQ4EAQP7H1q12aYhJd7/fo1bdeKCcfFihgc+90W/MCiLPAu8vSpJMtXV1cMw8B2u2UYepTSydZedKeVUizqJbNdr++IMbLfHanqJYFIWS+SfrplGBz9MJyMErpuNnB5GJO2bMSm85IvFlijRcPVaPp2D95x8+4dd9stixdPEzwtjVkTZiLj+eKWdJAQzdUwq23IAq0oimImRT3GY3xZKCXcJdcmK+MzXKc2hhNvd9IJ11ibidqCsVh9cmQI3idrbCH6TXwauX0DCoM1J66PsRZjMpxzSbO9SBt3wfVeX1/STdrBWuN94Hg88q9+9jO89+wPe45Ng7WWi4sLcpuRJQhWnlm8EwL/ZLjWti11XSftdJjGmlLi4+C9JKEiXWcw2qCVFnKb1ic4gzqt+xPUYxgGrM1BGYGS6jNpBKUoqorlck3poXeedhjlee9zE6bkeIbRxnR+ZV2f9ewneFeUJHwYR5rmmOamiZQ55YtfTJAfvsd7f58f37vmv49qGMQJ35p2JSfC9VzNmRLE+SUxTsDguUqjgEW9ILOWGENy8jslw1orSNXW85MqVpWnRNTaTHCIxuBHwQm/225xbuTF0ydsXj6jLku0Mdze3HA4tjjvMbbm3e1bAFYXC45NR1EWVIsKHwJNsyPPl4yjVFqmKsokAUf6FjGK+84w9MTg0cn2bvr6smiLG0/wI8HITvJwaBOo3wqh7qxC2/c9+/2eql4kS9/Te4YQ5sqvMQalk2lJnrPd3tH0HWVdUy9XLNdrdJbTJhzY5WZJsViBtvhAwm7KsSdDAUWck/Gp0j9tHib5mal4dX4uIuIMRIy4QHILe4xvYsToyXLQypGPPWN7xL9N1cq8IluuMWVOGL1UTVKHJUaB4BplZlavLSteffs77O7veXt/4O12T9d2uKjQRSQryiRBCbHIid5hdAbGilsnyRkwdVW0Om0sF4sFi8WKEOBXn70mjAFjDE+ePKGsKumCqYA2co/bTKMHsbYf+iyRfOW4ShUMQ8/xsAfAF9KF2myuiDGyWJaslnlyLIP15RVPrjdz8qvIqFdL7g978qsVuZZFSpJhUQuKIcyJfl1WBKUJMTKOnhASrjKKs55GkaDZNH1HSNX0zMj3d35kfzjw+vVrXj67Fj3ntFSpoB4spPPCdl4RUWrObXwIZJlYXlfJge08fhsm+2N8s0IpMS2LyFo464dHAIX3nsxYtI2oWHBxteH7f/hHHI8Nxd0eHaTgNQ4DIwprPJnWmFw2uTqHIbcYbR8UpGLShmnbgTzPZoKhj4Esz7jaXLPbiWCAFMwaDscjfi9/u7+/l470cjlXaTlbo1Wa0yDlLDHSNg1HqymNZhxkvNZ1xeXVJePgcN7zL//vP+cnP/kJ4Alx5MnTp1xfr2bS/eG4xU+uhNrivRAQ80IKbqOTbp1NHBGUoipqFssVldLsm4523KeK7pddnDg/nEi9YoR2ek6SmHVOVLcm4v+ceL+HEJgKh6miP/GlZNNw9uRU+Rd5PzvztD4mvhbJspwDYXPGdBbmXDnG2TP99PyHMI05aUZyw+VqKclkaocURdo1as1isSCOqRV7vJ8F9acKZsq9CSHifWQcu+SbDn4c6duWi4sVZbVMSRwMztEPjmFwFAa6TpLr5arGOS8mIOmGCMHjvUNw8HHe5ebJvnZKEpu+YX88cDgcqKqCzfrywQ0li5mjaRuOxzYZnsgAiuLImRjxp+RSqrnC0i+UgPFjCJRFgVaKtp3gJj1FXnD95BqlFbv9nt1uT1FUFFWN0hnOR3Z7ef63vpVT1BXOB/wYyd7bKZ5f5+n6yaCUyWx6nkDvo1TFpns7SuUeZTBnovCP8c2LzGYsl0vp4Lh+7qgATHJCREmwlA4s6op+HIlRNsxOK3KbEmCtePLt7/FvFSWv37zls5t39MeWGE52qtMsI5tnK0QbpXFOzRABbS0uxEQqFsKe0opnz17y7MULNj/7Ga9fv5bKci5Skm3b0rSH+R7PsiyZAI0MQ8/ufos1GmM0+/0Wa/PZvvrY9MSki+wGR1llPH32nOPxlqIrKAoh6s4GCqqnKku23YHd4cjlRYnNRBkkIC5iN7dbbu/k+P04YPMSpQwxujT3nlqjWp1avVMRwYj9niiJKE3fD7x9e4NznsJmTHPWVBmaYlrcYogPDEt8uqZu9JDZxOT/ojnJ+/GYPD/GFEpLQQkidV2dFCWUIqJx3mEzgzKyiNdXT/iDH2bc3N3x+fZ+7g6HYQTvUMZgNOTWYK0Q9YvcopVFpWQ5xJNGeEwwjRCmeUQKYFor8lzmIFHLEjOwyTTMGEPGKfmr65o+jbO3b9/S9yIL+/TpU6y1eDdw++7A2B25qEvGQd5/vd6wuboiRkXTNLz+1Wvuh3suVjXWWhaLmuXqgt3uDoDt9h5tLGVmiF4gp7vdns3mGm3s3G3S5qQeMamQTUVMrfVclX6fIPwgZk2FhwZH0/NDjGRpw962LcemkWKalgLblDh/KCec5CgVJGnaLz5vlo47k7j9mPhaJMtTOR6SIPXZSY6ptfDr9DMnN5fJxjb4QFWWMoHHiHMjZTXhGsVKdXLaKrNMbKWJaadyagOEGJMzIHP1t+ukynts2kmPGwVzSyMGn1iWsvuadPzatkVbxeriAu8D++OetvF0fTdjg6qqQmvF/f4e5xzd0OKdZ7Goub7e8OmLV/R9T5dcv8bR0XY9QxIsl+/nH9ygE254Ok9ZltO2HTfv3rFcrug6sb5VKMZhnCtmxlqWFyuMtRyPx7S4N2ibiSxeuvkmo4RhGGaco9ay2VAxyudhYtirk6ajmZj4KiFgorBcZeiR2Q8nxUoB2RcrTI/xzYipSpTnOXmmAM9kpKN1ROHBjdhMY3JLUawYnJdxq5IqTYI+qGiIxrJcX7Jar7neXBFGh1YCu6pyQ1JpRCtx77RZwTh6vNf4oCjqkuViOePgJhmiYRyIxDkJzvKcoZfWadd1DGMntvRp/Dx78Tz9u2d7v6XvWsqq5P7+jio3bDZPSII6tI1UkEHMUZzzHI4NKlV9jIGma6eJk5gqwqDoes/NuzuePX/J0xcviBHavufnv3zN69efpS9rWV5o8rIWsJ9PFZszzPKsXXvW8vRRqs4oRdv1/PL1a9quoy5OYzlyPseeqkBzBQ3SHDAVBMRR0Wo9V5ebVLj4kHbzb/r7Y3yDIkboB9kwaoPJLPmkVdwJBCKQtsNKy5qW5RTpHstsNneq47w+pWMruVeN1lhjBNaRKl7OB9xctBMu0+QAaEJEZ4Fnz57PTrZZlhMiDHe32JTU1XU9S8OplPvoZIAQnccHUdNo26MobSVjsX4wDJmetdvLqmZRrUXVRynyoki5g5oLtOZMulbW4hOnYFKWcM5L5TyMKK3FlViehMlsAgRrUQ7b78Vi+zcAltUX0rjTJnka9/HMZ2EYxoQ5Px/T5685O/Y56oCTQho8SIuSRJ2SjclUKf+I+Foky/MpJJXYJAAAIABJREFUiAHec3nSSqHTzfO+7fWEW3n/pNV1BUnWzegMIeulRDmV9gEqo5ig6Ce8TLpgpEGizj3LFc4JweawP5BbzTj0HI5HRudZrFZ471kmUtzF+hJrNfvDAR89l1dXFGVJlmcMvbQKpsS6LEvGsaftWpx3Cc8rrQjnHT6IE9ekzVqWisViKYtxlnN/v+Ow3zE4LxrOWtP3PXOBSamE19K0bYtNMIwQpR0UMafzGk8t5kniyRiLQqrPU6VtuVqli6TZ74/kVU1ZKryXQTGdN9GCDtiUBOso8BGinq/rx98sjzCMb2p4J92T1WqNsgbnPUXKaG2Ri5a5dyibz1VMYzVZbjFa4cdATFNeGBohAq2v+db3f0zXNOTA/nDEOwjjQEzYXIzFaiG2yQKTRPmR7o0LnrHzbDYbQBaeX/ziF3z66adcrNdcHaRDpJRie39L3/es1+u5HRu9YHkFS2gw1sxyjkVZMrqRUxd5MkuKGJMxOsf2/p7r6xVVvaDr9igf50T8brvl9u6O477nyZNn3N/forI7rp++QClFWdZoY084YR+EaJOgXKTqvVapAnwGkcq0ZkA2zcGDjjLH9r3js88+p++HaVlLV/A9CN3Zz3EyT1JnXcUQExQjo14sWC6X9H33mAg/xkfEw6xsKhpprdBGoTAoktmVTwZEZcXi8glPnjylSdrJeerOapNT5sJvsEbkZ8dCSIFTsyP2Q3KhhLKqqOoapWSe0tZSaE0/Dmw2TwBYX12yvrrkJz/5yVxIKssyGZiJnnqI/rQB1GekWO/P8Lvn40keh2HAmh5vpGhVVZVAmmrpPpWlYXSeY5JjDCGyWq3I84KuG7CDVMm7bqDKc0lylaFaTIR/hbUZIYppStd13N5uabpO3FR/3Tp9li1P6fE5yQ+kKD29h/Oeru+lsjy/4sNYZTjhrc+72t57poskuYshJPjclKt9THwtkmVIyaIL+OBAafRkd6xAY+bdznmcs6onv3WtoqgshCCLmtaJzX6qZky2isGkC5T+PqllgEAErLUQNSGRS7RRdG3DsWn57PM3ZEbRdU2q+PZsrq/JbE3bSjs2ohic43hsUXrSYbRSjbZi0xfOSG8hMezbrgECRWFZX17y6Xc+4aKs0A/IbwKpWHQ1ZVlSFDmvP3tDvz/McIemaUhSrlibzecpnOk7krznY/TzeamqivX6Eu89h8MhJSgX5EXJOAxcX2/YXF/z4sVzAFaXtbROSogagoqoEJPzkbSsjfliUnyuUvLx8bhQflNjGh8RMATB08ZTtwKricHhh24eZ2goyxznA1ZX87H6oMgxWCybZy+5vHrCu88/o2nb5MTp8f4Mm+wEkmDziqrIsUUJWrNcLdkfG27v7nj5Uuzfn798yZvP33G/2xGj6CnLGIvzhj+EMJPWhGQrKjlrfYH3A8fjkcyWrC+FHDy5Xdd1gXcTe72laQa0jiwWBRHP/W7H5dWaMJzKO1mW0Xb3SY1CMY4j+73oMUcllbFqIeYEKEtelEJAnKq/bkQcDaeJNJ1yJYSg4D0BsEoMRkY38vbmhn44mSnAab5+H0ox/S0mWNp59dn7QMyhKEuqqvrIueJxjvhmR8S7EW0tKnFeVALaL5aV3FdOyQYwRtwYyKxGZRUXT57z7OUn9AfZyPqhTyRdIHhiGJO6ExgdyYzBTRhcItZoAqLFnmf5zM0xSC4yKT6Qfp/mgzkJnrotaYwMwzAraFRVhbVWhAHcyOFwZBx6MmtQCvb7+9k05N3tO5qyp8hlzqvqCu8yyirn8nLJallwOLybK6uLZcX6YoVCE/wOVpasuGF/bMhsTZXMzjIjz58qwSGZqE1+EjKOT9yqD16deNpCZ9bMFe4ZEpFnabMvc9XxeMSNjlFN2GZNRM/naPo8039aa0IMCT/+YMqSxwTj0Er9VjrLX4tkWbzFEzDuvV3GFO+3185P+ISpA9k5LpcLqdBoMzO4H+Bl064nxICej5ESbqVRypxccuIpEc/zgnHoadqWz9+8Ic8s49ALNinBQLIsm29Y7weyzMw7pwnn6IOXileRUU44RwWH5sj2/p6+b8nzjPXlkmWSxtrt9+gYZ6KLzTK891hrWC4XgjMutsRdmFub8hmmHZU8Wmtp2zaZmyhG52i6I0oxD8rlcoV3kd22oe9HVLD4ceDQ7PmD7/+Aly9e8PzFC4pSPntRFjjnmHJhoxQe2dFl2RcZp+eTw3QtPzphfqwsf2NDacX19TWL5VKqltETncCQ4tDJwpiVmExDENMQougGTVWYadLU2hKUWFuvN095+a3vsL/5HDeMHA8t/egYkqxjiAIhch5Wa01Z1VSrJfvDkSzP0a0QZydZRxIPYhhloXPO8e7dO47HY+payr1eJJZ72zY4L+o4w9BBjNRVQWYtzo3CpFfSlVmvLyBqnPOEEDns97JojiN5fsL0Tt2zEANXV1f0nWccHRdX1xwOe/7mpz9BaYOxGcemOVWCtMKHwDCOs2nIZAAuuEuY26BpQZo2AlEriszgRri9u+P27o5XL55Q2onDIK1pdVZVfp+9fj4XRJKhA5CXJXW9YG7VRh50IU+HeIRhPIagrRQBFb0QTM/WDRciSpu0MXMMPibIpKFcrFiu1lRpI1tkWbq/EV7E+b074ZDPOs/WaHyM2MyKNGOMtF3Hei2mQU3bst0KP+Dq6or1es3m+pr7+/sk8Rho2gbnBpSSZHEyJKrKCmsMRZ6x3+8Yxw7vneQOh44q01xfP0+fzdB1bjbyybIC7xw20xRFwfrqit3uZuY2FEUmiXMkGXnoRM4PXxhbU4QYCaNjcIFhdORZTl1rQpzw2zIXyWc8QS4nYQGrNFVRorLspHoFmKKgbx2RyDCMHA4HgYvqDObZSD9g+L2fH57DuU7zFlKgPIPK2F8D+fxQfC2S5Sm+2KxLidVvKLufImGetWa5WLBY1GitcDMJ6ARMn3DCU6leTS9PP/gYYJZb0fjUF7Ba7J4nKEeRZ+mzCO5pHB16obEJWrG722FHqZpvNtcYk+HDmPCJZr4hgbQTklaDTYn65NjjvBdLSR+hnNqV8lkFQqFYLBY8ub6m60eikuP2wzDrOE83qvNiBa5ixI0j4xiIpiKisGkX6rzmfntkHIckWXdaxJqm4fb2lvXl5XxzL9frtLGQRGBKTKabcpLOOteAnB5/KwjG6Ys/xjcwrJWqJ1FwbVmuZrWGOA4ok6NsSJ0imVSjDwQt8mpaKZFCAlRWEKMnKENRX/Dp939E1h/JTMZnn3/O7d09bSLqTuQb53zC2Yr8mzGGtm0xRvPjH/8xRYJI3SX5xnEcWSxqdocD++ZI13cCCUHT9t0sY3c47hnHga5rCM6J/GVV4r1U0W1RYPRpY0kUOEhVVXjvOR7uef36c9ZXJSCaqIeE7d0fjtT1hUDA8po81/RDz/Z+JzJZWQbxZJU7eoc2GcMwzGRg7xxGI/+p09xrjUKFE6lnWZWUhaFTcs7evHlL/wffobBTQUB9YaM8F0aimtn+s4KPFplPN2rybEFdXxH8uf76+eNjgvwYpzjHq54LBsDU+pcuyZRUTfq9eVGxvLhkkTotVSV6zV0i/rphIHrpqLhxlAQ5k3GfWUO5WNAPomZRVhXHtmV7f8/V1TUX6yvGwc/ScYfjEe89dV3PsMd+6Lm/v2NMihh9388QJRUj0XuM1pjkSjdJsTnnCCabi4ITTAxOHfVp3E0ugkrrOVmeOkJaaeE2NUeWyxW73ZF3t3fozZKyXhA5jc3oA10/sN0duHl3y+BGlBIpPR/C3JmbklUNs0ysjoKZ7oae4APWnFQ0MqPFltyLfN2EhVZqcvELRKUI7xdO35tX5o01p+LrTCpO58OcERa/LL4eyfI5cTJ+iEU5Z7LA+9UIuVnen3zrqkIhuxrGkUBg9LIznKRepqEyD6SEUZYfH8qqgexIperi6LqeqijRkxartaIGEePc2hCQfGCxWGKtpe97hnGg7Xq8U0A2v/vEhJ3eXxQ0RCZqv9+jvOOirOeL3h6OvP78DePouLy6Zrm65PqJpenkBpb3YNaf7jtZ/O7u7mRw5kUSNh8SZvFMri0KJGQYBtmNWiuCFErhnZ9F3vs06Kd2iCT7p0r9JBs3jkIenNoseZ4/LmyP8f8pXLofZazAxDkIfkRFh9KRSBBVC2VkctaiLOGS1SmkyrKXeSVGRb64oKrFyl1rUb7QJhFegmwYV+sFJrOCjY6RzdUVLkirtO2HeRHM8wLnweY5SmsOjZBkJ9tbgXO1VKliNJmGnOa4mDYEnuADd+1+JvhpnbMoV/gQMCZjvV4Dnq5ruVQ1dVrkJw1n5x3D0GNskRZI0VTX2qCUIQQxZRhTFagbRiLJrjvKXJrlOUVmpFV91rXSCjKniCFpKSccY14URDfw5s0b2rZjVScYm9JpEY+E6BNxUKNshqaAMMk/TaTNQPSeEKHMCxbL+swi+8PxSPB7DEC6STGmtUkRk/FN1Fo6QCqS2RzQYDOizYlKUS8uePnJd+jf/h0AfdORact+f6TtB5x3uAQFG0aHC5EqjbWyKlheLODYYjNRjnDOsdvtCAHKosSaQJv0n8WXIc4coBjjXKUG5n87Edqkc26MJLRVWRKCRxEpi5zLzXqWZx28I6TKN8A4DsmKW3FsWpq2nS21JRxDgk0J/viO/aFBiMQZN7d3XOuMJ8+kcl2UJT4Etvd7fvnZGz5/85Z+HMmLiqKsUNqcoA+pGzWJNUzXRynRgHZRodUpFc2toAKCUjjnOByPcz40K6a9lw+e//yQkMl7Od6U28kG4fdQDWMqm384JhmWD/mBT5WWqbUnbi2RxWLBrMCQKjTx4dUjnqsxAIRAIAr2JsrNLEYc4/y6GKWlI2oYiqIsRZPYCjN2GHryQhYskYIb56orcAZ8F1ykS6ugjUJkKYsSsyiTzN2Scey5efeG4AKfvvw2Uctg2B86Pn/bcmw7tgfNixeFmIsUS5xvcGNL3w0odcJdhhCSy+C5QoUTNjAn1Y+YKsRMOKoQZrT0/rDnl3/3SzbX1/O1uLhYU9SL+bqEadORXu9Tlf5DUi+/FQSD92kbj/FNCq2lxekBW5YyaU7EnTJHVSUYwS3HCCS9b6WEg+D8WUtRGxTS0RldJMsrNt//Id/3Ch8Mg/sZZMnUoBWjjmPToG2eNJUtUUWaTiBNow/skwteURRUixUmJctTq29S7gE4HA8MnYy7osxxboDgKcuS1cWSRVVR1xWr1Yqb3R1v3twAsNttadserQ2LcklVLsnzHOd6xsFR1lJZXq8vAei7ke32yND3LBZrsrzCJufDCfEXUFxcCNzLNB3oSX9UEf9f9t7k1/Ysy+/67O7XnHPuva+PbCqKsrEwhShjjJkwRQyYIDGDAUggYSbMGMGAiWcIxBDJ/AGIEROEQPwLCGQBLjCmXJXpqGziNfee5tfuhsHae5/fffEyM6IyZUdm3CU93YjT/M6v3Xvttb5Nyl0gY2gah8lYP0BaznNkDsIV2fc9+13HRWmGYeBHXx758rLy+rPM4VjP6ORJyUPyhAyjEJwjKPXxdKQBSapRIrm13+9ra/lT48lTsvwUkihHgWmVl5Sr75FdIlOGBhgrxiEhRpKyHJ6/4oc/+ByA8SIchhAS3keCXyq3J8Uoxbgq/3B1pCsFNlHHakFJASwm6veXdaXtZBF7Op04nU5ZAvbKbdjv95WcuHqPdRalEtYa+r4FxKWwaVpubm7wWfUj+ITpWpZZuFvTvLKuMzGuOCeV3sPNDafze9n2umKztOz5MjCME+fzBaMb9vsdwzDhTmfunsu83zSglME1HfOyMgwDPoI2DS5lt94r9jVX9xNqM4OnUtn/aPGbNvlDiJFxGKXDFSO/qhC8rRwnKb2TM/P6fojXfNJ9AznaJwDoUzzFUzzFUzzFUzzFUzzFL4hvTWX5uhosL1yrnNKS/AjjxhW/p7aYpCSrudubm6q1XCpIMaSshyqfNkbhKn5Fqr5aaQwJIplZaen7bGISAslZwe7lNrBYRmbcU8YzFg/1vu9JyZFS4ng8kY6BpBTOtZnRGhAoBlgrleG27Wg6m6XfAh/uT3zxkw8oFCrd07ZSGb5cLrx//z7jqgXi4bPbTZGhEZzP4wrL1dUsS0Nl9qj3njHjm40CZ6VlWrVQs7rIOI789Cc/4Qe/98P6O9/73vd51bYY6xBXwYS26tFvfkzkqTIxWRHj62KXf1kH4il+t0Nw9S22FedMHeKjKk+KUmVR1iD9pSQktAxx6o2p40t5tqd5ZPWBaZn52f/x9/n8B9/nb/4r3+f29f/LH//x3wPg+I9+zLx4tG04jQNNCHRLL5CMFIkpYrRmTdIlGseJttvhnKPvex4e7vFRsImizpM4nY5cMq64zzAF6xw3twfubu/o2oa2bQS/3HYVQzmOK9M0siyewU28eiHVJ6UTy+ph9GgT6Toh6949uwMsx4cxd5IEF9y2DYsvcAddJSyVMmAsbdtnBR2p/jijcVqhvKfo2BkFKk58WE4sqyfZhFIdURmCsry7P3I8DxTmb1LFYOgjHkoqxkSlW1johOKuFHP3r2lbbm5uWZblqYL8FL80HneXagOKVDDzJb/Y5BMKudeUsZhiHNLIvKZUVq7QGhXlfrSNw7i2CgAkZF7W2TxnnmeatuOv/jP/LPv9nmma8CExTMUbYeLOaC7jwMPpKHBLpej6BrRCGzExO59lnPBBsMZ+XcRtT0HrLM41GWbmq6GPsY7Dfk/oM/HwMmX1jIXj8cj9/Z62VYyDzPkhrZhdT1iiWGdrMQUJ68KOXeVpFUnKcsDWmgyL03UsVkh+VLlhMWaobQLio0qy1gr1Uc1WHJflfHrvOZ3PnM5nXr98htNfTVk/1m6vLn76Wty+7rJ0FUS/XX2jyvK3J1lOBRusavK6eUv+blr29b8/glagRFlDYBjXC5cyOV5BZaMrY+isInKVnwsovI8Vwyc/dx2YE9SHRvZX5JKMNbRtmzVSZV/evH7Dug5chiPDZWSaZ5zr0XtH9AYVFWGVbS+Lp+0dxhisbWoC3jQtTSNmIj/60Y/qpFYexsKYrThCfZVh2SaoVfx/c2KNETC+c0LouVykvZmC5/awxzWNtK+9Z1mzmHsQeaqtGcqUDRfyBahXrPjXl/0q+KAtqP6bwjCe4jscCrQVy+nSqvQZQrQuC42bUd0O5czVTCMlkvcsMTEtC03mEzSNYylYeufwK9j9M3xQPH/zmu+PEz/+8Y8BMRealajHpBSIJEJKfPnuHT//8i19t+P16+/Viep8unA+n9BNh2tbjsdTlYqTRWEUXPMiz9S6rpKQNg03hxtev3rJfr/HNQarFYfbPTd3dwD87Gfv+PLL95zPAzEIkW+332GNFY12v+IaRePKItxk1zBH1/XImNKIG95lEGcurbi7vQUkoY1RgXakIGx3lWk9KiZUSKQ8NiaVadN5clrmqeIuU0rcPxw5XwZJkoG0GUdRonIrxGaVnVQFP15wlmWxE8JVWWe33/Hhwy9eWD+NJU8BXCf7x6JhkBI2E1Jjdro1VrhDIXp8SChjuPtLfwWA780rp9PAw/GCnT0WTUDm2zLjuUz0D0nR9z37/QG04TJODMOFeVkZ54mmaYkJpjn7POx61PHEw/HEZRhEwUaB8VnONReohiG7CcbIssysWTHHOUfXdYQM3TCLQ+W5tW2EP2CN5BHLIoTkJQlROYRISuaa6K95zs5CA845+q5jmlZA0fU7lmXl3XuBbUzzIpwv41hWj2s7bCufs9bRZmWtcs5jzAZS1XwsVWKxgsfmakqhCEQfSMlzuVy4ZDJk0cn/ZXDMT3Earpy4zWeUxvzjwCwrpf4q8N9tXvrLwH8GPAP+A+DL/Pp/mlL6H3/l9vSGbJc2jlGlspw+JvaVROsKfi8f10qx2/VoJRPDfrfDR4WaF1YfrvgVpWX1sTm3RmtUY9CR7PDSbkDg8nutsyJMniWTSILpbRvL8+c3WJXJMtPPBTQfEo1t8asiLHCOI1qLG97WDCCfV+CqGNG4rI+sqMSizTXIRiU9bdtm2Tp5kAsRquKt8+fL57qsWxqzjeU4asZRbliN4A9NTriviiSSoEzjyOVyqQ/EOI6kWOzKS8X/eo28lxu+JNTLslSlj7+YIsZT/LbEb3acUNiuQ7mGsMygjOgdA8mIm1Sm7MnzssGqHY9HhnHkcCNJobWmbhPESvv5Zz+gIZKU49VnP+QP/+ivA3BePF988QUhRh6O99ztb9nf3tGHwPF04nw+8fLlq2oYNFxG1kXIvKW7Y4zNeuNCqtvteta8AL1/uGfft7x69YbPPnvDYb/LVr2R0/HM5BdUftb2+x3jMHN8uJCyGo6Mi+LqqfWKNpYv/vwLQAhKXSfV6rZp0CpwODzjdDozjmdCWHFWE/LzGlIiRQheFhH9fkf0HpVCGYTr1UgJrDborJMafNiceznn796/Z8yuaV0S/XVVOnkoNEoMjJDO4sdmBgklmtcx5rHuSnJWNSHKfzJpaFPfeIrfkviNjhNKoRqHSldFptKZTiYbVxiz4REZQvCsPuB9YF5X3v/9/xuAg7P84T/312j7G/6vP/57aLcS0lmMgrwnrAttnmOT1mijSCqxLDPDOBBCYpovnE4nmqah2+1RWau47Tp8jMzLnF1ws5CA9/JcJ9Ft3lZza/d9Q8jP70int+Cnk2L1C0Y3KKhzfgyBYTzz/v17bm5bQsz7nn/7/f0H5nGh73do3fDh/ZGmabE7x/v3UhwAcA9HUIq221UelMrj7+I9LoR6PDHzmD41y+us7rA9lkiqr8eYsunJXIuQn4qPE+SUEsR0VZfc5IdFTnjbUfs68RdOllNK/w/w1wGUUgb4AvjvgX8P+K9SSv/F192WUlS94xQTSacrCa/AL9BfqUJ+SjYoIZIkN/uDbFepPAgLwzLoVJMzbSxtZ7IwtsU4h3GOlBTLEjLRzVQbW6WAGDBWCC1ifVmMrw3WiF98WMWS+nI+8XA8Y13L8+ev6fod794+iLNeo2jM1TUvZkhJlWBTIlPX73bc3NzinGM4jqyLPDiFMNd1HbudTCDee0K+Sa21j1oMW8/6cvwV/pAeV3tDlG341ROz0LhU00Ub9nQeuFwu9TvDIDqvIQa00dLqSElgGUEWFEWKCoQAVRKHp/jdjt/sOKGksqwUQYm1eij9Va1JClTtZlxtXVGSnM3zjNbS0tz1bdlB6a5YR/vZ97ER/LIyDBd2d+K09S/8jX+ZaQ0sy8xPv/y5jBPG1IXqcBk5nU7c3gqp7uZwYLgMHO+PeC8JNUoLBEJ5pmnE+1AH6mUeMcaw3+3qAjTmqosxBj+sPJxPAFjtePHyBdPkpbK+lnZlJHiNjw6dGsKQib1rxHaWaThyvp+4u7vh5u45u75nv9uhpgm1eMJ8HR9SklpyjAIx8TFLV6Ykxgyl1avE8rZxjhAkkb6OP4awrLx9+46Ho+x7cxB7X5M1cwrZRysyc5/M5t9UA5MoYvh1pbGW3b7HOs1TBfl3K36T44Rso6QQmVaWFVaiT6xRNICdE1UdIfl6fIhobVjXiI95btItrz57Q//yM2x/w9/9u/87/uHEsmb9Zm3qs9n3O5FfWxfmtUAWdCYCSjV3KyhQksntfFySuhACw7rQFL8HwPtVpFxJaGuwzoiyTJAq9JrmDbTK0jQ9fbvPMAcplGmt8UGcgvu9rXAt7yUHWBfP6TywdorWSZX8+fMX+DCiH+45ZUiIXmSR7uO10MfmuL5S3c1QWZWvSPl/cq5Q5DlBoDFWi3pOTCK4cLlcqhgCFChNQRl82l/7KhEnvwMyrqqYoaVKYf4JwDD+VeD/Syn92V94EFPXA4/xKvRd0RVsk+OvAFHqB5WSi74/7HHO4aJgh127Y1oCwzjWk6sV9G1LZ6woUAWFSomAwgThmW51nmOKqFSE8rMrT2NoW1crpCluq6pkJ7Di2iOVbnLlOcaIzRgcnRm0WpssDSMV5a5tuLu9wzmLTpZpkES8GAGUB6BUmMqNWjScS2W54LS00mgj/0IUy+3ryvV6fr3PK+2sT9u0Dc5dK8HzNJGy3fU0Svs3xUgyKVeJrhjzgpMu+zJNkziE5cryU3xn4tcbJ3LnQvEYjiV/IUQFMaJjQhmNUYLJTyh2fcuy7ERXGFGqIQaCui4gQ0ooZdFOHERNlpjsdwearqPb7bh7/oLT5cIwjfz+P/X7fP77n5MSDMNYF9XWNKKbui6MYzYKycxuHctYkmrHqm07ul6UL7TWfPHFF8zTzPe+9z1c03EZI3/89/8EgK7b8Zd+/y9zuBFYxjwuLItHIHqWkODh4UTMZi13dzf0u5bz6Z5hHGgay/5w96ijo7SqTqIxJNDCywjRc7rMrPNEigGrDTbrLQMoJzJ0zdqwhowVDD4rEkkq/OH+oSbLL29eZ/nOgOHxBKcyc71A2+RFYc/HGMXIyTR0XffJeeBJDeN3Kn79fCJH+uj74zRxfzwRQuDu2Qv2u04KQ3k+NdaKwVZWsIkJjLG0vcnYYFthnPIDVPxzWRCP08T5MjBNCzc3zzA2Ma8L4zjQth2HvcybBcccYiSkSNu1Ml9mZ8FhGFiMFiMiYF1nlIKu79jvdxx2e9pWIA993zOtCz97JwX4h/sTDw8PDG5Ca0PjWg79DX3fMQwN6zKRYqowBB+WPCYoCn9MYFGlWKmy3OS2VKvEHCnJ4sPHQMpP9vl8rnlFgZRYozAa6SyBdAAU1d+6bNsYQ9tYrE7MSeQzL5dLNX2qLn4FTvvInKg4MV+NSD5qiJEoVfmE/iegs/xvAf/t5v//I6XUvwv8r8B/nFL68Mu+XFYcWym4T3/qqwNkWY1tK8taG2zTsb99zvDhSMRgrWOnEsP9scrMtY3DBotFWqNRRVCC8bPOYbVGGVvrHMM0UMwWlUoZciDvid1jYF7WajbQZAxiSDDPE11qKtygAAAgAElEQVS358WL5wzjwukyMi9z1WRWCsEj+ZUQdW1ttq2jaRt8WFlbj99UlktiHEKo7d4QAiEG0SVUXG8GfbWCdM6htIiQ+yC+7tO01ErvbrcDpVimhWWZscbQNM3GTERVjWWgkgq99+KaCLVNpJV6vHKmwFvcIx3mp8T5OxG/1jihlCJZmyWfEklrUpE9NKKVihJyn9hQyYAO0LUt+51nLotHpG2o8rYUCa3BX1ZMYzm8eIOdDgCc//zPuH3+imWZ+d4PPufPfvwnjMOZpm14/fo1d8/uWFdfF4NaC3wpBp9drDIPQ2uWZWFdhYi7yw6Yt7cvBDOs97z9MPEP/vQ90zTx4SwElPv7e+apwLS8YASdJcYki97gs5mHTD5amzrZa20RIo7l5uaOtm05n0+sXo7bKI2yilHndqxf8+wiMlin01FIxCTaxqGVpdgHhBhZg88FYBn/REJKsa4yDr19+5Z3H+Sy/tO/9xlleI8UYnaGyqhPVYsVSklrtxCB27bjcDgwTdNXPv+UKP/OxK81TtRQX/mPq3tvjFWmDfItjyTGzkVevPk+AE0KJGVxjeUHn/8+P3v3juM4sbx/n+eumZC34boWtOYyDLx995YYErvdHusa3GqZpplhvKCza+/5cmEcBsZRyLdF7hakEr3Mk+jHb+5nrTXOWrq2pes6nJO51DmH/wqMKdX8YGVldR7nmixpKzJ2tYOfx6dnz54TPFwuM/f3D4SgaPsdw2WV48iwN0mfhTCMFuxv8CLVV2Qny3xe+FOt1VibHTxzwhyBYdVcsyxw1tI0DmsSfjYkEuM0VjfPX3rJPwHVfXQHJBnXYu4+/mPBLG92rgH+DeA/yS/918DfRvLWvw38l8C//4nv/S3gbwF8/oPPQClZ1aQiJL6FJ1CB6BJyonUKsuKJXCvTpqM5POPkob15QTxOLCHRxYjN3uzlBIagWUOg0Rmsv7kStYXLdvDNqOokVWZIBJ0oihbLPHOG6ralteLm9obTeeD+/gPWjbTtjhhhnkfmZaXPE2ZKEbLHem1QpIJDEgYnSkhA5byYFDHWsviV0+VM1UTWmnWa5MFqrm2GsrgoFa2ifxxym6hElF6pPHg52S2ugmXltsxXQH4xL1mXBW1drrDpiqlMKXE4HOrnd7sdu92uHt8vMxko52FLYHyK3774zYwT30M5J4vrCqXKi0HrqupCaXVuSR1aa25ubnCTdGakOqpw1opuRoqiH9wZ5jHSdA03uUVpfvZTXNOyrCtN21bb+2maGIaBvu95/foN9x/Exvbdu3eSyNqWiOgTT8PMz49HDvuD3PNB8+GDVFzfvHnDNAeOp6FWuO7v7zmfz3RdJ89QObSUWNeFZncABG5VIE3OWSYvSe9utwPAOcvpfGS4HHn+7Iau63h4OBKSFUfDfP6MuT5XKSsHLWsgBM+yLpASIXl8spjsoqe9Qq+asCzM88TqpVgQtWUNwua/v3/g/YcH2bC2OTlGSPEkUkxEpYgEMZHZEEhKV1qbzKNPAdc4drv9Iy7GNrZjxVP89sVvYpz4/c9/L7+mryYf9W9kGM5M00Lbtuz6NsM/A9YanLVorehfi/mGiYnoPfM4gGn5/A/+iuiK/+hPCd7zD/7kH/D6tcC1bm7vaLsO2zQcjydOpzPLsrBvWlzjmOclu+bKvbt6/8jldhtaK+n4rLGS34qC1W635+7ujrvbW1GjcLLfu0NPd5B84qc/+ZIPH47cf3hgmhacbVjvAn3f0/c9SsmcP465Ux3Wek5ubm6IUTMOC9Y6pnlmDUEIyDkXqiZG8yJY7K5DLetHGu1lzmZTSb46D6Z8nGKcZup4baylaRoap1nHkURkGEbW1ZNiQhkxJqm5wOaZr5VlrbPwxuMqszIKpSIpaXxQtP+YYRj/OvC/pZR+lnf2Z+UNpdR/A/wPn/pSSunvAH8H4G/88381SSJXpIUsMWWccE68lDHS/kgBwkpGucnraeMTnsQKtnWOfic3TkkKXSNyJqU9EJNYW5dWQISMyRMoRkiQ1IrOyaXWWZg6CZY6IjbaJjtTgTDb14yPchZu+x1nNYpUXCArXbiagJf2Z4qRpMRpZ/UrCYGjDIMlpMg0z/hMupF9L26EQgAouOKCVS6g+yrf8gkA/NUwRPBV5eYLMbCuqeKi+77ncDgQk6/EwZTiI8ZrOacFBkMSosMWjvGxxEt5vVSYP6WMUWVgeEqUf8vj1x8n/ugPr1grLeOFMXK/2H6HbhqUtnLvUarKpQrq670G0g2xVmONfnzvKZGUDCFJ1RSZBF+9epPdNI90rZCH/Rp5eH/GGJfbtbIgbHeG82UkBJiPDzx//px5nHj//j1+vco5lmegSKEVE6Tdbkff9yzLUifKsqh+9vyOrutpmoZ5lu+N4ySTvFHEFLhcTpCKa17HPM8Mw8jNzS7DszTRSwXaOXkG931uma6B0zAwTDOzDyzrig8+V4MNgVBbmimPtYY8fm0rRjGgjeH+/oEv374DpNtqmwYTIilFsSIPSdRFVDYtyGZI+RdytpzNjWLEGEvXddzfSxv1KX7n4tceJ/7mv/Qvyo2jr8lyWTq3TcOrly+5DAM3Nwecc8QQqtNtyiR2lSXnVDIo7Vnuj6wh0e/33D17RvPTlmCuBaS8D4DMU8aaLMm6EoLHaI2zrlrIg0AV1mVhmpdcES6QRYFHdF3Pui7c34sCxb7vuXt+x5s3b3jx/Bl936EzhGpdFjEtaSVXubm9oXCvvBdIxTTPLH7NibhmWSSnANBG4JFFHatxjll7lNLZlKxI7H3UzUEMn5xzuZsnUnZSMCvnRXKTrrHiArpBDygSy3kVLHH+fOMctzcHjM7iAX7lYVg4TSvJNMS0olNExZxzxJUYAzHlsUM7lLa5+FryrAzhMAmU8CJiVHwTq5HfRLL8b7NpmSilvp9S+kn+338T+D9/1QYE22tINBjjxH6y4mcLTqY4yWXf84SsVGQLVJhGiqiUctt1h0LsXGOUCdE6V5MvpZQM1BpChJAi0a8EFGuILMET4rWy3PUdjTWb26XWnh+59G2B5zHLvzSNA2VIMTKMZ8Zh4ub2ri54Y/SgFUuuWMUM5RhHQIv7z7IsdO7aatzqF3/8r2ASHxH3Ni563nvGrGqxrCveh2qRO40TqxYd1X7X8+rVK3a7HcNwJmRvemHeF1y5EPjKhFkw5zKZmuxidLW43u7TdhtyHq6KGeX1Ch15aq/+NsevPU6gFTSW6EPWQm0quUS3PUrbSl+IJEwBq22SU/0R3rDcfzFbUSscut2SzeDm+YG/9uyPWKa/wk/+/Cf8L//z/8QX/+iI1prLMrGuJ9wGi2iyzirI4rlApHR2yCrP7Xbx1zRZU7nv+eyzzwgh8O7dO0IItG3L4SA6y13X5/kqd51UksnYaEyuFFtnrwz1FAQLeXvLunqGcbxO4vNCzF2yuiA1EINnmSeWEDfI4k3FdgN5CylJG9ZodBL8c1KK4EVO6uH4wJdvhUF/ulx4uXNoPCkGQvTk+vK1D14n5VzkiB6j5FOyUDdZdeQpUf4djV9/nJAvXlsTmxnbGEPXto+kyh7NKwXfWubyKNKwtulwYZUKa9vRZlL9sxcv8bk49uHhgUMMvHnzBmMM//BP/pTLZUApw83NLV3bcjqdmHM1NyEOuvOy0DiXi16SAyzLXOdOn2XddrsdL1++5NnzZ1grRT/XiKLWuiyM84Rz+3qczrkKgSh8AFG/0rW6WyrbGikgzCmyziJhd3NzQ9vuURhiLFBMmbvDMGTyNHRdR7ffk5JiDQljXIahZQnIIAvs1hrxsAgiI6cTGAM3euAyTbW7rVVP4+4YZ0/QDclajnPgOHmUa0mLr9C5ctE0BR2gSDESlZCUCyzlK/yGssD5WjeTxK+VLCuldsC/BvyHm5f/c6XUX8/78acfvfcLIm1aJuHR/a0KHnkLpJd3KkhbgHD5wiSpWjSNlcpn/p4PgRAU1jXEIqqfJWS0awjKE1aPDwEfYq2qRKg3iGscKSfLgsu9QhuMEbtrWWnKHjpn5KFMKStWiF98Am6spWmv3uzaaKxrUOpCSgm/rptWc2klSLsYttbUaVPVFQLh1mqzVH9TSsxZnqasbs/DwPEkGrCtba+J6rpitUJZXZPfgmmSJFw0ntcy4CjBMBsrcjyXy5nbm1tiFKUB/TWS3I8T4ZJQl4r5U2v1tzd+U+OEqGGIHKLTBpxFBZl4SNfRIaYolQolFZEylhgtusUgeFupgMpCWgw4hISntJG8PJNvU0ikaLh//07u8ZzQxZgyLjlg4kYqKV6NUKyVxbkYDrUVe7uFQ4Ekhsfjsd7vRQ5yyrCRogpUjIeIifP5gveeh4d7uq7j+e0dqMTNzYF5lmS5bRxd57i92dO2FlLk+HDPMk34AMpko4W8Hy63QI0eMTFglGZNiWQU1hma7iqlGbM5U+McnM7MazZDysWDstA9nUUn9sP9A3fdC4QgcmXMlwJIKP2ADX7Gh4AyCk3EB09jHV1fcJOP742n+O2O31w+sS1jffWFpmnY7XaigqVkcWeMyZoR10IPQFgD2hra/Q3KOdaYQDvabgcKnr18xdu3PwdEdm2aJ9l22/Di1QvuP4gnwTAMaGXzfCrPybrmimiM1cgEVMVTm7yoLiXBEMuiNlXOEtjKC4oh8PbLL/NhWoy13N7c4FcZc1K8zqnLujKOE9bkBLVveLicmKcRlRS73YF976TzRKBrG1avOWay7oVAilEIe9qAtmLogiZlCEQpBYgee0LFfD1iIgXJ3ZJSYhy1EUJYV6nGxxAqpG6ZF5ZVNJ+vC6FNkshGerhe8Mf54vX1jen2N0grfq1kOaU0AC8/eu3f+ebbKUlnGfTkgPL2Kn44xZSRsBK1HVg2Qm4HBo+zNpNgAhibqxQCjo/2qkBRN1R+X14AZNINMdWLOI6K4Be0ShgNvWtwOUFWuZriQ/aLR9Aih8OBu7tnJDTLIu9bK+5ZqbaLyTeerhXhzdkRTGKGXzwcj/Wgm6apLnwgDmDkh19laEOBkAgWmoz9u64oawuJVB9KrTXWSZK7rp4PHz4wTZOA7vPvjePMkKtXXddJ9Szfrl3XkRLVyfCbxC9jtX8KpvEU3/74TY0Tm+/Kfau1lCaAdZkwrZHuDYUsJhAuErisbVqx+emKd94SomMIUo3hukgOwWOdrUTUsCHWxnB9hq7t1RPTNEo1ab+vVeOUElPmEmyj6qsGz7zMgOAV264lKSHImEzYO51OsjgOkWVZifE6cUo1yeB9YpcTSmtKYh8FR62ka3M+nwhR5PYa19DkRfXdzQ1KG6ZpJI4B4xpSnqOapqHvOrTLY0rp5uXrECdpBbe7A23jmJcFpTXv3wkf68u37/jhqzuSD5js6pWrGQgYQ1UjhnKRUgxEnfkPPqC6hrbtPjEOPC2mf9vjNzZOlKoim/k1vxVjxBpN1zaQK7tKgTMCG6iQrAzDMEkxTZGmd+zbhss44mOSFgyiTlOKWsuy5jlzrQR2pRXJb/HISRaLbObePK/FFAVlGgLr6ukOe7quZ5+f5c8+e8PrN29oGssXP/4xwzByd3fLs7tnoDTTHPjTH/8jAJqm58XzVzRtz+FGzkKRw/UhEbxCp45QFriqIc6RuHisUVilGYcjYwwcDjv2h1uapmPOi/fG2aymFVnWSFilIx+DmLw521xlMEOAKJJ35AVBKX0Kt+Txs1zx25tC6ZyJ0av3tGwaUddLnukOWZUnyeiUL9N1vChQjZyEp28wbjyBQJ/iKZ7iKZ7iKZ7iKZ7iKX5BfEvsrq/aeFqJzUddbajHK7BEcWW5tldJsUIrovJEHWgbR9s2lRUvK0ZqxRWkMhJiEGxyiqwxskTPGjyzFyxRiFfHvxA9y6IxiItfazQhCqTBrxkm4a+i+krpRzhhOQaRd3HWMs0L0zLV927ubnCNpY1uw5LNAuqtEUkqXUTHDU3XYa2tihJaX83Qi7bx9XezJe2ysK4r0zTVFTBA9IJlAmialtYZUvDEGJiXRUD/jas4qmlaWJcr8z7FiDGaZZ7ZHW5Z11WE0/+CpLwCw9himrckxKf4joY22GZHVJa4WHTG6NnmBqWb8pFPxpZYWp6Xj3H+WwnKbXdjGSe+/PJLhmFgHMQmWu5HIZxZ52rV2mecsveermsfmQT5/BmViWsA87qgRlHVOGenyxCCkHxyVbgw6JdF9FAJsRSo8jMhY5nSmmG80LXyXN/e3DAOZ+Z5pWlus/JNpGlbtG4IMYlbV37ebm5uUFrz7p1jGIfMD8m4ZK2lYpNhX0mris82RrOuQlZq+50ogGRzptKBevvuPTH95ax9u60LZRhdbn+Xsb/IxqUkY76QeBLWWbquYZpmnhpNT/GpKC5w6mp3Bsi9FFKgwDgF7iBKXFukX00tSrc/QVIpQxu7+rwI3ErSqN1uT0qR0+mEUordbo9Wlof7I8fjMesNg+1yJ1jbmpsE74leAALeB2JIXC4TTdOz64Xc69pbplnz4WHki5+euQwjDxfNaRSfh4eHmQ8fpLul9ILWPa9edDRNqfDOkhOkfGDSPwOkYxXDQt+13N7t0Srx5ZcfiGFBKej6vcjp5k61tRZCIDxy1dsgAh4BIgQqGzNElg0RGKWEb2FM3ZYie1nkLlNCyIfjNLIsK87k79cLdkUGyHElwS6TKrHvCuNMFfYh/lWfNjT5VHwrkuUKw5D/E+m4TZKk1PbEg5yctH3hMTgpRfquo2tbnLWsebKZiGiu2JiU5IE6m4EQE8sqdtjiGhMJyQvRLv+GJ5KiYOusumIT62VIgrEr+OlC7GnbDtd2zPOZyzBwe3tH17aswbNeZEIJwXNzdyOYKbG0qomvyEmRXfS2Ek8lKb8qTcQoeOJ5nnl4eODh4aF+dlmWqpyRkhiaFBzlOq8VFxljZF4CyXuMvSYMRZdWHpgrVtrlRMFax2U80T9a3MDXmc9EEmutD+P2eLbH+ZQsf3dDASpEtLb4ZFBYdIZXqK95X5RFWHkOQtYGNsbQ931VZokhVjk1pTTLurKsK6fTCWNNJv4oinVqyM8oCDZa2p4LPnTEhOAe+w5lrgvorf74sizc3d1lvF6o2GZgg0+8LnrJfA2tNboVJQwfV7xf8OuM2WfYSRRYSZuhINM0Zm6DJSVDTP4R4WWeZ1KMvHh2R9c1/NmPfwRK42wH0bNMoa5GXCO61ilBQpR4yPJY1nUy0SnNMGyTZYCyqM/WJQWOgUyoxOuIEWMiaiESqhhExk6JVfBW6/0pnuIaG3ym+mqjXSkxx7jmeSVZLsY6gpMHiEnRdBrvE8O8kFD88IefczrfA4nz6YgzsjDt2l7yjGGFeMEYJ3BE02GbxBJmkoZlLQncwO3tLcuoePuzn9M0Al2QZxwu04i9a0hZN3KaVpxbWJaVefE8PBz58OGen/70p2itRXs8K6G1rhFhCG3QeiNoUAzflJygK5R1qz8sYYyGdIWiJeUfiSOUSDEQvEBTVFYMCzEwLfJ8hlXI/7osYFJEIbBTZQzGOpxbK2RG8NUxixxI8jsMA+fzhXme6TojpMFCTqzE43pY1337JdDNnLN/7fhWJMuQCL7oZsa6KpBQmwPeQrjLf6dM6KnfJqiVLjvbOeeYhoEQwC8Rq2EppJmUCF4zhUBUKldoS/L5adJImVgSXPWHUczjVDGJBaurCIxmZBxHbNNxc3NAG0tKcvM1raVtZVJ7eDhlPNAWtH5NEIvSRN12FvHfkvnKRF+qWrvdboO3HsUwwHu0Mdzd3nJze0OMkfP5TEyxqmGEEFjCCsHTYuv5V5ub2RjDPF+r4vM8iTNg3le54ZPARr9GlIR/mqavVADL720JUU/xHYyUIPj86Kusx17f/JVf/wojevO3WMVXqUUeL0aFRS+ax13Xo7WmaRzLIrqp6zhW5rVzjv1+xzgt3H+4Z7cXzGHlGHy0D+W5LZbw0zQxz3NNmEO8aq1qo2hS7sDFbadFvm+UwodQCcBlOGk7GQ/fv/+Qu0CGcYq8fv2ZkOjy54w1NI3FGkU3OmL4Pg/Hk+CTY0BqcvJhpzROG2KCpEI9Nu9Xdv2+ErVrZfn9e9aQcPqjbmEqk7XglkMo5z3DC2MiaRnrfQhopem6jmMuBDzFU2xD5vVAMlk5S13zicKlUTYTdJOQgOV2vOoAl6Qx6IQxCmPAadDO8eL197i9bQkh0LmGh3ci7fbw/oOoV5A4zaIWYV1D03QY2wArIYZK8PPrStM0jKPkCKWY9eg4stkXUN/fFpK8948NvR4lijzqllWfBC1yb0Eb1lUSWmcd7a5n1zdYqxjHM123o21yF3yc8OlqvCSNMZXzkWwnHjVkj4nVC6kRctEwRTE3sxZnNNaIDrskyxZjLCZu9z3W3wHFuqzSFfcelK3vlENWm+GuFl4LLvkRNlnsrlOIBE1FJHyd+FZkH7Ka83WyKXqdUMr5ZUWkassxIYltLKD8sjElydpu3+OsCPUX8pmPHtVcYRj5B0ppu/6vVgptQBcCXlnBqISzmugjRiuaxrHf7emc5YIksMaYmtBaKwLY0zTR73122rEirp2y9XT+rExeQxbbVjjjqrqG954xu+SVe6RpmvqQbJPJqiWbd/tyES93HwLWWXaHPUZrXr56Rdu2DMNATKIpa519fF5QQgaM8dGKsrRyykN8d3eHy2YRAusQdZNaNPqasa2QlygVwEKYeIrvdqQIqRB4lBYjC+Cxc9Wvjm2ybIypWuwpZe12dVW1KV2Vpm3w3tN23SO76nGYGYehkmkP+yZrkc9iG78x0LDW1u8VCJSxVtRlvDjxaWsxMaIzNMTEeJ28g6/7SMiKPkoqtPMySTcoC++DuIISAvvDS6ZhFHhUEinL5892Mo6ka/em71ucdWglEnIv7u6wWjPOM4sPLCFcycGxjIuKqA1248hp7fW6FOODt+/eczyf6W4aktI8LkUkahu3Ng1zUpAT6jLmNEb/ApLfV6/vU3wXQ2FMi9JKYBhps8Az1yJTDLES6stcVp6nqjBldSWaWWfRKl01i+fiuFugkZKMLvOS52rRgldNbaR8VAiK10KUUo/e2752dc69+ijc3d0xTRPH47Eafyml2O8FsnG4veFwOGQYWE5gF0/wUhjURqO0kk4NQIpYC94rzpeB0/EDfd/Qd7cYYzifL4Rk6jhrtZFzmhTGrLDCdrbfqnTFXFW+PuM550tXoQFKxyzHuq74qOqYPE4Tl2Fgmhfioc1KGVk7OSVMRR+omjBrpfAh1sW4vLspsIarMsnXiW9NsiwVT0eKkRASKk+CFYIipVw0GYuSBG5hSB/5vyeIEZUi+11P13cU2bMYxLmltmxzkpxSwgNRKYw1WCOSbsYbkXfJ6hYacfxKKmGtrLj6rqVtGpZ5yTe22eBgdF0dXi4Xbm5u2O/3LMvC6XwBrbCZddu2ltPpiDIG1zRY664asFFwTHLzXVeJSuvqUx+SqIBopUUvOiXO53PVWw0xbCAUV3jDI01TfYWnxKyFaMJjd6GCw4ZUdRRfvXolK+p5pu86wYXnCtFmCvyVYYyc72EYakX83bt3aK159uzZI8vtp/gOhlJgLCiLUg6MI9UkuXSafvmdVu6rUrUtsIZxFDvVw+Eg93JIFU4lQ5ESjWNgt+uJIV4rzl3HsizMufq7LDNRXavFi59RStHvduyzOobWujZdrNYiHZUSLk/e28lTKVUTa6UFsqHalv3+QNM4SVCXmWG4sEwDmkTTvgBEK73re8Zx4Hw6orVinVeBYHWtSMeF7QSeJ+WMw3TWcnPYs9/viTExLZ4pcxV8ArV6ce1SVlyYgJDhZ1aL7Fy5JuM48f79B17uP6u4ZUEox+zolxV7apkoT2xRJniVEuvqaYy0q58S4qf4VMhz+QtSG7WBMsGjheu2UFM7tlwrlSWBLb8h37vOSdvvV64U8lt+9TXxK89WCPIcVT3l3BEGald821Et44K1lsPhwDjK4nee5+plUJw7+76vspWlGr2uK+uyEl3EKsmkinJXDCurVTgjah7r6jNU69MwhsoxKwpeSuGz/JuPAjVZcyIui4mEj2JqFJIcr1ViRhT8yurXeuwpJRhHfFTMawSl8MvM+XzJUpq3dfFMOccp5uKp5IypFl7Ldcnjm3p8jbawk18V35pkOQafIQpBKhZZ6Dvl1UuBY2wrD/I+OektVQ6BO8cQaJsGa4wM3k6L7Eg09UHSCqzRuLah3+9kBaoz3CBG1pwA+y1RjizzkiWbilV0aaXudvv6oM3TQNsKAeZ9TvpevupAOdRFttP1Ar4fhgvTdCEmRdKaxg2gZMW7rJ4QRAau74XQlIWWrrirsiI1jx/mLUxjt9txe3t7JRt5L4SlcWT1K6oqtkilSqvrDVVtqct/Q4VhdJ20mb332CyRJU6M6YoJ+hrz2tZ8pAwQRX7mU1Xnp/iuRZGXzPf3FjdXP/HLY0scFYmmtbZB4TrJKQUxwwFihg2U+3y336OMEeKtk2Ryt9vx7oNIpJ1PA4sP1RJ2XYX7oHNiXVqrpeI8DEMl3O52Uu112Typ3PO1uuQ158tRtjEvgBBwz8cHzpcjfev43pvXUlEG+q6haRup3JSJT2UCTS46bPclpYi1ItWWYqB3lr5tpICgDfOy8v5e4A8fHi74FNC2OJNKddmHILhla/DrtRs2DCM/f/uOP/jBa1p7vVbXVqmM9/Ux16WyLE6pIJUmpTVt91Wt5Wukr7U4f4rvdmwXo9uq7ha6sL2PSnXaryvn05mHh3seHh44ZjnXMkcWDttVUm6pz7i1rso0Bi/zXJFeLeTdkoQ65x4R9cWJc6DNENMiSVmI79baRzyIMiqW43vk1ZBxy6UDtEbRbzeZxCiW2CKH56yhbRvm5VrE1NpiUsTESLd61sUzLSPjvLCsHh8Tqy/JctafT5GkIj4q0pJA5XMdE2ldWNZrlTckCEmzRjBOvCPmaRI5Stc4X00AACAASURBVKX4lZlAzhXLguXxVUw5e/pm+cS3JFmWhNMptR1B5W+dEB+X7ynMStKjFZ/Omp9rDDSNwB5CCDSdqasgl28QjbQQrTFg7aPJCSRxtsaQcvU3rp5puLBrW57d3dJ3Lcs0kYLHWBEHL39l1xWateKK5nnmfD7jmob9vmde15qIN61DD4r3799zPF8w2tFk1q1CY2xDuyHilNVx2kx2lY2fH7zL5VKP5/vf/z5v3rzJ7WEBzH/48KGydHe7HdM5u34hDFWdb8oCw5DfKy0O8OvVDKWrk5doxCYS1mixDOfrVZZLpW4Lt7DWVijGx9fnKb57EZNGGYd1Lcl0oLOaC9LW/6ZJUnl+hmEgpcTd3V3tOD2qIilp/d/d3bEsC8+ePWOZ5HlxTiapJkOetB4zFEqzZHtrZ2VxWjol22qNc47D4cCrV69krGobjDas3gvsAupqQBmNcx3n85H7ccSHBUgs84RfF1pncjKeq79BoGHOWh64z5CmpnIQQkys3jNmHse8rvLcBk8KAZMruCZb5FpraBvhWbRuIS0rGmi0YdECMZFkWay7WUNt3Y7TJLhlH/KYmkl+haaRk9xamsgT3pYoXIwZGmvpWse6XEl+ZZHzFE/xq6JAJsqcUpw2rRUzs0o0rwnmtZo6TzPH45Evv/yS4/GB0+lctyvkXanyWidQymVZGMeBeV5FxaqRMcvnxFTgme6Tak8fV6sLXCxGqbgaa+SfsUI8zh9fFulmBR8YB3HHmyeBjrRty+3+QEqhcqa0SkzTQAiaXdfSNDdYo2icLFKnaWIcxdEYqISC64IjVefPaV2JGcIp+13MmiDGUkS7kgtNwRg/Ou78d0NsnuaZaZxIKMmLsslKMTiKMRFSIqlEVAX0kR5NCiXFVBVc8FtYWU7ZuaoMeNdBTxV7b0EqB4FYpBTFH1ylbOaRJzatQWs8iV3X0TZNPeFK64x/y9CDGIgKmmSrUDg8li1pGgexyDYJi7NrLTeHHfu+4/b2hqZpCCHV1q7Nyd5BHfDzkKEcgl3WBu6ePWO36wlDxM/FTTD7yW/sGZ1zWeLJorIQTmGAD9P46MHZKlOUhPPFixfc3IgF76tXr0Sa6iyW1cuy1GpWPdP5HKZwXahUjZI8sITSavGe29tbgNoWKpjp65oW8aH/BjdkWTGXZOL58+eklB4NKE/x3YyYErMX1yijxDEzlRbo16wUfEwcbZqGFy9ePFLJAHBdhypkPJXQWd6o63vhIPQ96zxhjKlM7aEky0bTGoOP0vlRUdHv++ziqRiGQWTZ8r7Py0I8nximkbu7O5TXRCNScB+3CUtlSOfq6l13Q9s2KGCeLwS/yMK78n0iq19QRLxf6bqOXb9jmWYgy3BuKjWlW5aiOByqlAjrgnGOft9xs9vTFgWSoHk4XYgI5CIaMYKaZsFqW9dJApzHlWma+XD/wBoiSZk6rj+ez0Il64gSphYFkWWhsZakwc8zjVXs+pbTukmWnzLlp/gaUZLej6FYpTJcuptA7sjIX5PxziEEfPBM01QlJEEMgPKXahcWyiKuQCqvBZ9SiFJaYZ3DhULekwVkUrD4FZ07uNZaTpczwzRK4hwDrmno8limM/cCYB0WQogM8YJfQz2+uDnGGAMpd/Bt39H3DY3VQmjUGucMzip8LsQF7wlFqUZrtLk6HZZzWs6A3nSC62JYq/ovZVGGMu5YdVUHSrkYGlLC+4hpEiFGGWeHgZQEHmaKqhmBlI8rRgFzhQpIKEWPzTiqcrK86SZ8nfhWJMsgibDoHWq0CldAtk6QruoUKeY2QsEE5bJLvTApIQC4xG7XV9KaWDMrnGswub33cHxAK8WuawV/qzMpLUb8MuMXUYRQeWXkjKLrdtweDnSNw1pN17a0XceyrEzTnCEIGc/UNKSwbPRchVSwTaq3FrnOGrq+5aWzHA53HG7usE7kZ6ZxZV6uFthr8BWuUCqvIMlmSZattVd2/wanVaTlxnHMrSH7qDpfoCYFF63VFUMZQ6zJ9g9/+ANA2MVN02Q1DHWtJNdFztev+Am2s6+kBJerWCZfm3CZftnXn+J3OWpSlWvIqlQn89vf4Ebbti6dc0zTVKUeS+uzLFznacTk5LRpmqyI0XHK3w8hPuqITPPCus5CYlPy/JwuZ3aHPc9fvGB/c+Dt27d1X87nc51wywK2WNIv2aJ+W+VuXEPX9rSN4/Z2T9+3QGQaz0zjhcbpCu9SwOpX+ralUMS7vocI6zwzLb6q4JTtX4YBEyNN42gbx3kaiUphUeyaVkhTwDiIrvK8eEgJra74Sr+u7DrBT5Yxa55n3r19KxhK1RNMS8QSVCDFBWJEp+z0BWgEq2Gy3nJMGeEcIymJOslZnb7eBX+Kp/gF8THB7is4XVXpCxTSXoFxlbkRhKgLwjEqfAUdQuZgCeFMnmuBJygtxHpjjECl1FVudvuvFLR2u12tgm/lJbeQrYJBXkve4UOtA6a44SaQrg7GkIUNqIsIIfwplJKO++UyMM+BWJJlJYRHEri2o+865tUzjCN6la7yUla9UeUFgRWvBmuJSgZrrbXkfeOE9oUzJRV9AizrXIf0aZoZh5GYhBumsqQeUVMQ4o8OqGQeX5kTHlfrv258K5LlspJQKku9aCoGGfIhP6oaXBuuCR7dJCFB8AlvYNf3KKDrWhbvs+c7j8D/Ma9GCBGUeMUrrYkoDCnLnUjbxFlL6xy7rhP5mbwXW1WLejw5tLGPYAXTNHEIgb7viSnxcMr21Sqy23WZnKfY7W/Y729wjRAUBzczjHOtNKllZuFKVNrKULVtW/FMTU4213Xlcrnw7t07Hh4eWP3K5Xy5DhRKGK4gjHh5kGJOelVdoZVrkVJimuZ8THM5cBJC8NHWPbp3y7X6+P+3/0os61q7AVopsSJNMA8jw8ORp/huhjYG2+7BdigjGr9lYZpS1k39mslyYb3LdxPPnj179H5I13Kncw0xSIv2xYuX/OTP/5zdfldVWpQKtG3LlLs+KV1kgtMGY6VL4leBRi3LgrWWV69e1cRyXVfev3/Pu3fvmOd5I8HmaxWoPMcFUtG1HdZcF8bei9lIiNn0KBMC9/sdw+XMj378Z1zOAy+evZT3evjy519y9pHnL1+yPxxk32Mk+JVEqJU0a8219ZsSTd6/rm1prGNdPH5ZCEqkspSyeB9Zpomdhn0v+z6NF376Z/+QdZ7x6Q6NISlRNtpeuEeLdipInZgSJv+NKdG2/fWCfWXOe6oyP8WnY5sUA4+KTluoA8iYo42txTtJjnmUxJYk2WiDaTTr6vGrVJ7Rmsa1AndQmmleuL+/B6Dfydzetm2FY3xK3rLsy6d4O9sxLFZt4sfHmj+JNgqtDNrkyjWJYShqWQu/94Pvo0kcj/eQIs5plGqYpollWUlR1Qp5AqyR/d3v97U7NQ4X1nXGOltoZ6ioUEYKal3XYZwVEh4F0qlg9TWpjyltbSZK2VQ0rJdZcow64AvMQ3LIelby8clGtrnZNA3CVcsvhfT11TCepAWe4ime4ime4ime4ime4il+QXxrKsuiexiuuNm8IopR2hjOCdFEHPVytSFJ9VOQF2VFFYVFnaXj+tw6XXyWUAuhun6VCDHQcG2vpJQISmd5o21p/7EuYEpCjmliICVxzkspYXMVyLkGbSzONTTNSr/fM00D4zhwPD6gjKLJMBFtpE4tmscJa41oIdb262YVBrStWOwWFY7iClaJBflcFZb/w/GByzBwPp0YR2lloIWQiFb5vFyr05Vcw0cr8XTFe3aZ1VsICyCtnhAiENDKyPmLEay5cjcVGwD+46KQAhp33Z6QJCGtIbNhn1y7vrOhDXZ3kBtI648kIx/fRx+75H1lUx+R7L7yvlKVfJuiVDgX73n16lUl5K2rz9sJWW6taAuLYUqICZ9l2bz33N/fsyxLVaUpv397e8vd3R0vX77k/v6eOWuqb7VKS6W4aRoxEGhagl95uD/y9u2U25mRtnVYa2rFqGmEcCd66zImzPOESvn4M5axqM4AJGfBGzpr2PctVsPDh3tCmIlxQRdZuQZcC2kRxzGlDEq3tZputMZsnuWUxFTk3fv3vH718mpLrrbs9sdj7rb6F0kYpQnR58pyB+mp3vMU3zy28MeUUlWagGt3FkBlSccYi2GOr2NLSsJlKM99yp3oGBPrkhVmtMYagR58ZSyqOU78SMWCKkYA1Ap20VMu8KxSCd+S/EsFvNs1lHxC8NZZF1lLzrSGlWWZWLIl/W7XEZNgmpumpW0cfd+yZGk6gYBoiofH6kO10XbW5gq62+QsV9v6fHLqORLC7kfwCK1YfeGGrRjn2O1uGKc1Q2jluI/Ho5yDZcFmLpmOQUh+nwR8Zljuo9OejZBUvMJKvkZ8O5LlKFp7MYbKiC43UogB7yPWutwCSBRrxnLSBWP7aIuolOjalv2uz8nXCErY1MXXvWATQ4g1+RXYgcZog3YNrZEJA2DfC2FQCEaKlNmfTeNYQ2ReRGquTOJKC6zDuYYuBvquI4SV4EWDsLf9V9ouxmjW4JmmkWXxJEyeODXGNDh3TfR9ChljJKSc1a/M6/JouqmmJFnDcfU+kxzTo9/dPpxNI1ItwS/XJHnT7lkWjzEN+5s7AF68+h6uFem94XSh3+9JIZJUQGkjElzf4E77RUmMNhq7mXyf4jsayoDWqJSIm8VkJdikVJ/t4ghZZJi+iU53bYPGhLPCLzjc3rLLeskF52yMIZqrvJvNZkEhCKlu9Z6mbwghcDweWZYF59wjGEaBUxwOBw6HQ8UOFgxjue8LZvF8vlTOxG7f5eMHa4G4si5j3TbkVnGSluXpdCIFshFKEL3kPPFZazFa0RnNOp7FyElBSiukhRhnyuQTwor3a1UAKAmBzcpC5cIUITetDcEH3r19x/qX/kAW0zHVyUsIQrpuvwA0pK1qSNFTZDtj4lfIxz3FU3w6CuyiLEjXdWWapke29yW00psCWcE360fax4UX5ZcFDFXzWIp0Hh88KEPRXC7PZExi3940DX3fV6MxkG1Y56oCDOWvUo/+FeMy4xxovSHsX9VmIH0FJhqqwtRjQxU5P9eC2BbiSUoVhlFI+EqJgUvK37vdHzBa8fb9e+a8L7ZpadqGtm1IJFHqydrySmlCTFilq5vesiw0SuEaV8dRkBxmnASK+slRPBMxa46YC3Vxk0+IMkckJVnshI8S6V8W345kmcSyLsQ8GKZseS1vysWOMVScjSTJGddS1hObim9xaVEpcjiICQAZ0iInPg/eG+cunUltKoGKiSZrhu77ltuDaBvvuhajIEUhIAYfWOaZpW1r0l5WoWVf2OgmamNwrmFeJh4e7lnWpap4vLh7zjTN+CD6rGGNhCCOXsYYtLL4EDmfhdAyLyumubr2hZwwp3R9MD6WndnqF28xzgW/6fKDuu9bzucTmkjfNbTOMZwu+GXlcDgwzyu7/QHXFN3ZAwXR07WlAyDnoWyTTcINH9ePNvdCXgkXclX5bHFM6/f7r3VPPcXvahhJlpPohOrCIQEh4qSik6woUoTl3v+mhjblGYkxoo3DNQ3OWj7//HNSSrx584bz+VyT260bpyx6o/BLlMpuYaZqrp5Op1q9ss5xd3uLdZYYU57IZWGbclXIbZym1nUlzAGlGmLUJC+kYW9gpxu6tsU52Ze3X77NyqIalOZhWFn8jOv2pN0tKiSOc2S6l3HlB5+9RjtL2zoe3r8lTBdaK1V8a21+bjN+M0trivkIFdNczrkxBqM0OvNPnHPE9P+z9yYxtmXZed63m9PcNl6TL19lZWUyiyoVWSRNErIAAYZtUvDIhiCObMAj2zCgiT23Zp5qasCAAQ8MWhM3M3vgiSnJoixatiyZoCnKZLGtrC6zXr5obnea3Xiw9t7n3Ih4WS/FSuoVMxbwXkTcOHHvafde+1//+v/Ixz94Idxs00jz9KwzU93qDJ5zLmUzg49SvbKVKQ3Ac1Wfh3iI14l5U19OYnOVdoqUfEVRn/CjE8t1PVWRctVn7PtU3a1YLlYYY9jt96I77E64EM/sqk9dx7GLVNbiQmCZ5riiCpYNivTEE9Y5QTYGNetXmjcplj2PuVFxGptyN0A/dHg/TipiCpwbIEQWi5btdo0bRr7zne+gESUQH0EpyR8eP37MMI6kFQSKyKKpYbumqg3D0HOzF0k9Hxy+7+lGR1AabQ22FnlMFVUyN1OTWRxMjs0lZ1CMznM6dXT9wMpMR3M7ogwciETdfbJ0sSzgX7+97w1JlkHUKnzwoC0xhJkzl1AqQpBSZ0acb8vOn7UDRkmUQwwsFwuqyhJjQKGL/BlQEGbvvTTqBU3wjuAGdIxiVtLULFuZ1JqqgujxaYVIQnVjCATyzTpZ047e0Q2eOjg2mw3L9QqtFf3QcbPbcepObB4JOivqFEe8c6yWS1ba4hykBlGk0jBrhIkTfaVQR5KkW/7X931J3Ktks9tUFVbJDRScJzqPQbFs2+L+01aKgx/Ae7SSBEHhC1KnlJbV97zZIDfJpmuktCYkx0GV2favqHjME+fi+Tev4MSIMprFclUGqYf4AkYEmOgXk7Dhq5svbqMjeTLx3peF471/x3RP5smwbRfE4Fiv13Rdx9O3nvLtbx1EWUNNahjWWmxlqQLSOJwW0oOTMmlUcOo7+uRwpZTi1J1o2xatdZF7nE/ck5un0L384IHA2B8hjmgV2SwXmFqjhkB3kJJyRUVA0Q0d2lgZp0zFerNhtd5w6nqu9h253T8fq61qeZbT5CwlV1XkmACqpma1XtG7yHjs6LsTLiUcUhr2mHpqpJRGyYGXL1/inCfTvKYxbRoFcoQwH2Om7UOQxuwqLThyCfchHuJ1I1dvcvNqpmTk10DmM6V0ApRAJcWupp5cJJdLAXD606lUhzebTVkcjlc39MMgUpKz+zmGmCo3qnx2jrm3wWQYFItPwnxxnv8uA2fy99JQ3NY1bVNPzr2pan04HHDjmGyooapMqtDL/Bt8EKdQpYgBFJqmaahqQd2bphHpToQyaq1UjUDkfJ8+uih+Ft0wgBJNdxdl3K6UoTZWqFtBEu4zdY507EpPMno+5TR917NcVbeoW4XkmWi6iTI6N0bLW+TciYj6DA1+b0SyrBDoPfhAEj6YafOqghhNGqlp+omZkRKLday8mG5671i0bXGpySc02zRnVQyfEBE1I9FGknNUpCRoRkupICYdZqOEx3g6HAXqT6huuYkRGabBj9R1hTp1hBCwxhJD5HQ6iXMgciPkizhNFqnD3YsFuHeT6scwDEQXsZUVzlSMBOfww0D0nkpplqv11FHqJ01Jl98+KXU0TVPKQAA6OOq65ng8CmdSCVrmo9zAxmjcONInIwORpHFloInJFKXrOh4/rSb73lvXfSq4Tlcnpgl5zlUsefbr04se4s9hnCVWr94A4ExaKZda52MI8KnJ8vz9RBdUFoAxKrbbC1arFT/zsz/L5cuXHPY7FotlSZZFGWNgHD1WGWxV44On7w9lkrvNU8xSVMMwsN/vpZRbFrg1Oo1ZwXt81xHdSZBZLQuGRdNSW1mgngY/jUEZyYqx6BaPPpaSp9FSURqThXV3PKGAk9G0iwXBKmoNmognMrrJyGC9WhKVpRsD+5NoKzM759klMAMbTdPgxsjLy0v2hwObzUrG+TyQ35Msk6+5kgk1Jwoh6bRmdD5rXE+X7mGweIhXR9FGtpa6rlmv17RtyziO5VkEQCmqugFjBKlUIo9qK1voRpmGMe/vCcFPCXCaP5VRoDxjMvNCTQnu6XQqSjjzqm8GwECccpfLZTFNyeNI/sx57nHqRHnHKLGuN0aeqVzZOp32qBBoG1kci468ojIWaw1dfypVbO891oiLX91KshwnhgdaizNpcJ7DwVIZlyink4qHD4FhdGe68QUzzjztGaARktb7ObIs5knH04mLhT0H2DL9IqZXMvugVLTj9N4xEKMmEorq1uvEG5EsA4zjQAgeixIkeY4VpYE3J60hZppFXh1Eos5TaSqPECF6lotW0JJ8kdTEATIzZBlikY1zSmNipLUNm8WKi1T610T6zjEkd6vFaoXSihA9kWRPaWwpJ6jkZoXzOOepZytCrTUhqvIgHI5HcTGsa+q6wQXF4XDicOhwozQQehdK2REn1tjBVcSqEh1YpbG2AjtJ0OTkQCefd0l2pxJSlqyZS2mBuiOtZaylMnWaCIUv+M6XviTXY+iFOpKbkrzneDxwPB5Zrta0y3NudroM5et9oPO8eJLlo2KID/otX+BQShO0RmG4XVyb9znENDnlJDk/Y3OE+XbCeu/n5a96hmAbQ7tc4seBDz74gD/85u/zO7/zSUGFQTjLWVoSZF/atqWPY2me9d5jCt9aUdtKXDOtpd1eFHQrT+Z5v4c0gUQtFKzNdoMbR2myUYLChBinvoxEiTLWSjVIWU698IyPxwNd16OwdKkR+MNvfwgxcHx8wdPtmvV6g44OgmNMlao8fuoQMVqk7JQS17BucASlypjatg0qjdtt2zJquL6+Yb8/pFLrGSZ05xvF5ASmSItrLVbjIUbqJB8XHpLjh/gMcbtn575/+Xchij+od2Jbb6u6AG05uQYKX98Yw9XVNfv9vjhj1lUNRkPvCgeXCHVbl36KDDDlJNNay8XFBW+//fa0LyFQ1VVKpAMk4E740LGAjFpbeR6Pl3ziHT4k7fbTib4/Ya3i8XbLdiu5jU/SmFVq7jsdT4yp8pWpr0ARYLjvXCo1uXFao4sAgElNkv3ohZISZSzXAUgL+KD02XtnGbz5+JydifeHA/7R6iwXkBw5FqBTaLpS1QvJYC5vmRPp8jevGW9WshxlgCXmzkYgFQrizG2GqKaD5RyHiImzLCw9zWq5TDSCKby/nSynialRgEXrgNWwaBpWiyWrrOcZPGEcUFFI6pW1BW2ZR/6snIS6QZoHpBQ7UFXSyHM8HhgGmchjP8pfesXCtgQ3sqoMwUT2J3HscUPPZvkEgMEE+gGiEpWJ3FCQCfdZ0zXcWhjcjjww5PIugI6haD9mtGu9mWgaQ0Lp3nvvPQC6oed06kuXMEpcyYZxZBxHmnhPI86scHD73OU2H8iJMsREeRn9gxrGFzVkEDSJI/fDIyfENzc3UsVZLMpz8Pjx4zsLuDt/X9om0pIulRC11nhgs93ypXfe4bd+6zfFsS6p7NR1jbGGpq5gHPHDidW6pa4e0/e9NB3eahLKvQNzVKtt27PnECbTAh/FzfNCCde5rmq0UjRNxaj7mQuepjKazcUFq81W1Dmud3R9z/HUMYwjbTv1AYzjiNGKru8ZhobGJlMibfG+YxwHxuTwaaqACwrvA6PzwqUeR1TTlkY8mE+mUtIOwXF9fc0wjizqrCSQL3CA+cgec8qsQImdr1C8Ij5CPVPxyHHWlPQQX8i4Yywyi7xIvs3zzfSn27StMUR0UowS8zBZeGotTb9mxl+u6zqhvGpCfwdphI3aEKMqY5BG+MiL5ZLFomUcXVrAdoBiHCUxzHStpmnEBdTr0hM051fPrZ0zNXMYB8Z+IESpHGUKaowUvXKQKnoMMzqHViV3UKiCXGd6rPOivuGdqIO0bUUMqbcsBpqqosmVap2S5cFxPHUcTj396PD9gDIWrS2au83X4uqsShLuvYwxp1Mnxi8lub7DSuZ2depMn7r8ep5F/vB4rWRZKfXfAH8N+DjG+HPptSfA/wB8APwx8O/FGC+V3GX/BfDvAEfgP4wx/tMf9hnDOCR3OyeHkNFxfY4ulIjTMWd1DBD6Ri47QqBt6tRZapPRgCrJct1M7naClkSstihj0CoJkDPRB4RwrsskbIyhNRptPD4qTN3SLJfTRdcGUzd0pxOH0eNHT9ePjPsj1hhiNMRUkqmT2clpv6e1tXTQolLDnDxUoxtpUxmk73sG15f9v3W9ymBQbvhZM0P+OSPLIOWZwo3yjtpottstXddxOBwIwZdu3RAjx+ORYZCHeBnzYJIOW5uyynbeC03j1vW+jSiX3yux18y6UkWOK23jH+yu39j4sxgnzmM2KApvCpD+AT1z1MuTnNb6TCLttROqPJwQ6fqeylq0qdhePOGv/Gv/Ov/wf/8NdjdHchP9bndDGByb9RJ2O45Dh4qe7XpDWK/LQjYj3vc9v3kSzAl0ftb6vmccR4IPHA4n+v4CbRRDHFJTnUJrk+SW5NjrpkrolUJHkXSLTCoA4zg5gPpxoKksnVYcK0ttACuAhTYGH8aCQtN7sJX0g5QEQwgQc/52NnXKfE/vI5dXV4zDyKKpmNmjveIaZyqWjGdiTJKd0jIfunpIkn9M4vMeJ3IF9TZCnH8H90tH3ldlkjlSqqnWVoQgqhfLlOB23elMqSarbGQHXa11omAN4uhpbKmQ++AZuhOr9Yo6OQErPcm1Ou/wwaPcdI/fd5x5rJh/70ehdVpT0awr6kb2JQbP0J8Yho66tqX5tu9PaBXResNiseDm5kbstCtLZQRslGq4bO+9cKnHccQHz+kkz3FwDg136CRKW2orvWFudAz9iI8BjQYlOd68qT8fz/wauVSh7/ruLB/M2UX+v9BZVbIqZ0KWJxqGSFHGcDszeXW8LrL8q8B/Cfzt2Wt/E/g7Mca/pZT6m+nn/wz4t4G/mP79FeC/Sl8/NcZBaBgxSpnRzydBYiG7A9LhmF5XhMJfzn+gEk1DK8Vi0bJYNFRVhe9HYmryA870lr33wlEufYW3ViJMCJDWUkqta4syFuMCUVvMYslpnOwlv//RD+idQq0eSRP/YoGKCjd6NAqjLSG9uRtHXOIoOueKTIxJLl25yz9fXLnxA1GFgiTrZDuducfDMJwhUln5Y66YkZOIOTcqeEc0ukzUWmu882WBoJAHd5yy47NEvKorGt8k7deZJfH5lzvfz+N2AkGiyKh7BrSHeGPiV/k8xwmlSiWlLLTKfZIQySi1vYwsZZrRMORk8tUNovM76q/9NAAAIABJREFUTsWpbyI4j7EG3480zZLTfi8ULKV5+qzlX/n5X+S3fvM36TppqstSdcRpUSrP1iSRlp9pmPiTRUWHSf81N+tmCcgshaeUxjupBtVNhU7oz9APKBVKskwUF7+3nj3DVDUvr65lHHAu9UlE3Dhg03O1fXTBos6SVcKvrMzMWSw16gB4P6BC6qO4xUXMVa6maWiSLJ3WKvG/EWQ58aRLQ4KSulIsiHTS0Ndyrno3YrTsV16A53NobJ20cB/ixyB+lc9xnMj36jiOZX6bJ5qfWRUHGJ2TqqfSdF3HxXbLYrlkt9sVnwHvQwHSspKFVvPmM4m5wkued8dxpJ41DWqtaduW4/HIPqlKHA4HDodD+Yxse51VrubUSeEe2wTCNazWC4zRxODo+xOn0x6rFeuNVJWs1Vij8X6g647J6U7TNC1GG9wgle8YJ1nHjEx7n5rxSP0E914TMEZT2YrKVlg9Erwk1ia5IupbFI+Q3EgVE/1jHEeOx5PkMUnx56wQlakYmWqRQJSo5mOKF+7BrR6WHxavlSzHGH9dKfXBrZd/Bfjl9P1/C/xvyM39K8DfjrIX/0gp9Ugp9U6M8Xuf9hnjKOLTTSsW1WXi0AqZ/MJU5o/6FrI8q+rng48Ro6Gta9arFXVlOXUJbSnUBIs2RppmvNi8OukmRGlBkiOBGGdoZhxQDBgV6LsTtl0QlcbUNavNlv5mX0jpdV3j40jb1GxXwp1WRPw4QAwoHVEJGQmzB6iUPBB9VB8SWmxNmZPkYRlENH3WOZt1X/N7FFmbW37yt1fat1fhwzBwOp3oepGzy9rMfd8TiLzzzpeK4YCtKirvqZoGozXtcslisUh8rhkX+hXUi9uhoNh25q8ahbEGHqbDNzY+73Hi7rTziu0UpcHMGMOTJ0949uzZWZNpBKR3e7qjMn9WR6ShOn9aSQ49OoQJnU5Z+7O336ZtBWWCCeUMiXO82WykYfZwSHw9Vd4PJrOBPL5lVKo0yc1Kyrm8qrXG0KQFgKUferzznI4HtIpYk5LfzZbVaoVJGqzHw4Hj8YD3MXWayznJ1TaFNP1ldDsEj7ULRu84DQPGWBILg2F0GMQOuK5rrDUMg0yo2Qo3pBJ2jqqq8ePIy8srnHeJmpFsy700MOYxKSe/+RrJBCf85BARSkm+dtYQxtdv1nmIf3nxZ5FPwIQe34cwf9aQvEMWqbmanSlSeTzw3pX5Vefqrk7eEDHgfEhjSZ7zA93QcXNzg1KKzUZQ3dVqRYyRzWbD8Xgs4NfxeLyXa50Bgblddl2JcZFSimVbs1i0Iv/mR5QKeD+IXK7O48qUh5RGwcw/tpbgxLDEMZbtSNVqn1WyoqhoKESNzKXFsEkAnm0b2qpBBYUbAnQ9Son0JGqiYeQqeJh5YuTRPzf5yXiVmAGZllfQY5iVA+/Ev2gG8afhLD/PN2yM8XtKqbfT6+8CH862+3Z67ezmVkr9DeBvADx/KvJpwzgUTs1EH9AoJULSIQZMcoW7o5M3B4ITb9kohVawWixSqSStfLLI9egwxhID+KBwUaGNnGRtIKgR53tGl7iFSmMMtE1NPwx0fYd2nhFNi+YiiZHnxLeua079SIhTUpr1lgki15JNyocoboDNbIUYlUolG1dKLG6cUKgYfVlYzHVG67o+Gyjm5yWd+/I1o1dnE7KxjH3HbrdjTMl32zZUdcXl5SXL1Yp3v/KVsqLWueRkJg3n23ywV0YaO/RsM5PMZ+RAU6KSyP4PpiQ/dvEjGyfef//9e9ZbaRwIiYKV+a0+4roelKJZLQgxMLixoB4yGZjzfof8VVE4v/kjBKmQCphWipCQW63gp7/+db7/3e/ym7/5/wDQ1GI4cnNzQwiB1WqF1pqXH39M0LYYktye+NI5KgvejDjlRS5M9IYYpTM/BJHH9CkZH0ehd5g5ehYngCCEwDiMKFPRtqIP771jd/kJAE8uVrhxIHjP2HcsKktV1wTn6QdHVSnI5VIVCspttJ4qcGkCXywWIimV5e9sUu5R8L3vfi85piWEJ4QzpaF8jHJtkxlDOR7pSgkhFmDCGiv0rYf4cY0f6TjxedBxRANdS3OfUmwvLjilxnyAcXT0/SDKV2nBqc+S9ZiquxMQtFqucM7x4sULbm5uePToEW+99RYAq5V4RGTA6+bmpqDMuXfh9vx+ftx5UZ77kSLej4xDh3OetjFlUb1YLLDG0Hcd3/nud9jd7KhtzWq1YrVcc7IHrq93nIKMe7Zuyryv8v7EgNEKa2qsUhx3NwA0tqJSmkXVEGvpN+i7BBAE4W6LKevUKOnTOKCtmo4k8Zb7YbhDy413ZoRCSqDI0c6vZYwzxbXXi8+jpv0q4tn5CzH+1zHGvxxj/MsXm+XnsBsP8RAP8QbHZx4n3nr27M9gtx7iIR7iDYrPPE48exgnHuJziD8NsvxRLocopd4BPk6vfxt4b7bdV4DvfvpbyQppHEZiJnXf0/RyxjGJajL5Y4YKzZpFolIYrVhUmhbHttY0jaHvBYE47veARRtNiOJQo40R++1Eyj91nTShAJVt0MZibYW1Qt/QRojt0hXqhGaROIhGKXQirocwlVmrqkJFy3JRUyVkeWw7kaZx4sVuqwpbVcToU3knaTfGqWHvvHN8Kj2P41ia+/JKM1M0bOJF51Vpfr1QXJCyy2qzYUyNSCKLZahsBelvutOpoNm55GSSfBVaaCmmku3Lbt4a9gr3NJ6/Zme80jmP8yF+LONHOE4AISSuhNARsl4wSqG1xYeAHx3Wwe7yilPfs9yu2T55LFWf+XvFyZr+08JYQ/TS1Np1J9pGZOLEplpz8fgxP/VTP8Vv//b/CwgNo2kajgl1ylz/4D3a1gU9zpERlaZpyjM8NxXKnETgnJ6BcKFDCCwWi9RYt6EymqbJrmID4zgwXF1h64auO+HcyKPtBe1ySYg3HI++cJz3ux1tXQkrIiHb4yh2tlVdoVA0jajb2CqCMow+ohSlQqWVKHVorem6SMwmUAoaK2oY3fEgXe1RrGtLT8o9YI8iEpKwa7G6jamzPzcRWTvRZh7ixzF+ZONEzhPmHN454lpULT5DlVIpXXTKV6slKka2mw1xZm5kraXvO5GAVOmzMx1DaRRexpxMM0oOn6U9a9awl9Wp5o2IdV0XxY48b+expWmaMxqG1uKeOQw9fd9zPA0kIhNKBWncq8zU2Oud+Cc4x/X1Fd4H6qrBOUfXdYQgNJAu7evSWtrlsshf+uT+p3Tqs5o168UYCsyrFKn3SFB3H0P6vZ4hyyIWEEKgmvVKZGpY3/WpUpavaaaQJB20ZEiikqCkcM3zphq0BpfckT/DkPGnSZb/Z+A/AP5W+vo/zV7/T5VS/z1CxL9+HX4RTNw9rU1JelUMZCdwec2k3miRmYtA0Jox811MjTIVylhIfJh1W6OjxxCwWhGyGYHRKCUdljGR1bPxAIEiz1Igf6UgJjmmqiagJGmOYlgy9D1jP3A8irbi0J0Yh566qri6upILlojwbVOxWCxZtPLADnVFdzzSeY/3Y1ksSK/iJPCfZWqqqhIukzHMCwS5Ieg++kM2HslNhPmc54lq7ggU03FmjmREFhDWGDabDW9/6TlvPX0KSLJcNzXKTtJ1spAQvVkfkkb2PTfm63FQp3LTuRXpQ/wYxI9snFARTJI4ylzbyQBIzImcdwzjQK3qkkxPmsXmbNJ0UVzkShMJ99+PSgt1y/vAbr8nhEjbNBNVrIZ3vvxlVkmPvetOhYbgQ+Dy6kocr5L2cqZW5H3PknZzbei57OM8piZneUadc2hjeOedL6GVNPg+ebTFpFngn/zj/5sPP/yQJ289Y20txkySdSATG1BkIWNwjIOI9TdNha0s3alnHHq0NlhbU6dkeRid8JaVZrVes16tGPoBNw5EW5dxyLup2TBWGmsE+Li8uqIfBpGPU1MynMc+RXLvCjE1fE+0Lp+urbJ5grWvuHoP8WMSP9J8Yu7Gd99c+Fma/CKk/tMpESV4sWtOTaxAko1L9CEVz7jL2mhUSIIEYbpP89iUzYhubm64vLwsnOXNZlPkEZVWLJYLcf7zkux57xJlU5oQM43VjY7oRISgqS2trVOyD9aktCGMYnENdF0v4w+5T2JadERmjoFuGn+01pAWJApJ/CujaOqK2pgCesVEhdCJVlpXFU1V0+kexyCNxkqRlW20tqCCjLnOUSmoKo3HwHDieH0JMRJ0MoNREJUlaE/wIzHlTyp64WXnvoh8PbXC+1h60143Xlc67r9DyPdvKaW+DfznyE39Pyql/mPgW8C/mzb/XxCZl99HpF7+o9fdGTemgyQWSRONNH0YJCG1hYieO6l14qtkzp/8TQwBpQM6WU8KipqaZWYNJ3Pk1Xshscu4nCbRmQKDdGYrVOYmA+1yQaMt6IrDfseLqxuud9kTPdANnrZtkk20oKbWqCR7NMGtdV1LyhsCu5teut9PR8bRMzpBkaqqYrlelX0xxuDmnbepSzYjxfOYS7nk455Pxrc7Q9u2xWhBiDKqv9vv0caw2W5ZbdbUi7b8rUrGBJD0EIehSM1BZpmfT2b5M283HM6NU+5oL/IQb2p87uOEQKfEVNFQMFlfJ06x9yIt1Faa1WpF1TaYup6UMwpSIU2j3Lkr76ZcEZmoci8ACkwlC05ZRAa+/MFP8Jf+0r8KwD/5p/+Ym92Op4+f8Pz5c7797W9zOBxo2xY3n4RmjWzzxr2MeN3uLcjbgjwXdbVk2cr+LlcrlklWcr3eIGCCPMdVVQlKfXMDEZqmTu5Y0ocRY2SRnuVaCe9QGYNRitPhgCZtp4wYgqRhYxwdXT+gdUVVN9TJ2S96D2bmuFo6bwLOeaytaNqW/W6f5OMSKjzv0plfj5llrYqC1qHmYyizRqCHeNPj8x4n5r04cxe5+76+1v6mfEBo+bEoutRNw3a7LYvk999/n+98+0P6vqdt2vI825Q4+iCVrJy4GSMW0T5KhURpaWC7Sc55p77j6uZ6ctbVmuVyed63kJPWGfIKCT13QdyLb/VzhRAF/dbn8pqHxIfWCRk3xtD3PYfDkUrLGJLdf5UxrDcbCLKM9cNAdAOGSGMNVovCBkAMI8H3eF+jNCjlMTagqkj0Iu8mPQgy7hnbYrwiBHnfWisWVuOiAjdwOuwFQMwaECR2wV1q8iuucxpD7it3f0q8rhrGv/+KX/1b92wbgf/ktfcAKbNZFSAMVEqQFaum33kyrH63IeYV+1vmRK01m806lTOAGTpLSoSdm+TVhnHEKLBaYauKdrGgXQjqYq3CudTVqlSygGzAVIxBQT8yy8NLQjoOY0piR0G1K4vVGj/rrF+0NcE5Kmtx48DNzQ3OecbRo/TU7bper2VfR0Gmoveo2WW8PcHOO0xvy8vMw6QFAKQJtq6pkuWt847D8cCpO7Feb9IKlOLMFf1cLSSKLfjsc7TR5w06dy7YbN8T0d+7XLqdlWH0uX/8Q7xZ8XmPE5DvkZQ8zh82LdWgqGSRerPfsV1vuLi4AKOTyyZMo+mrcGTSWDP7dZTSYdsuePz4MYvFguVqRb+QClJwQh/74KtfBeD3f//32O12OOeoqkqSZOfka5hMjApKmlDmvHDMDX7Pnj1jHIWWlXWW526ESUySum7EdKVpsVacuz788E/K4dR1zdB3uCDuY01a6Av1appA5Y09y0UzJRxjz9BrqqoVBOf8YhQEKrsU1nVNN/TotK+C7GWljcjoAtaJxfaLT15yPB7ZbpalVqqUujO5axUnFD9mu+uYjGBy87VK6FQ+jvsv7UP8y48/i3ECUgJ4OOCcK3NbVppp2/aehrhXhzC/VEFZVZJpneckX/va17i6esnN9TXWVmXhm/WWdaKFzuUr9/0xVbQVKmpIVd77muMzkJS/n/8+0yhLxXgYiU5014kOOhEEAGgbw8XFhrqpCF6O/3jYsbs50tQ1McrC+DR4RjeCMjSLmqFeEJICxa6PHD78Hs/ffgulFI+2jzDRcbq5YnAjnlCGZ60jWnliHEVIwQ2iIe3FEVEpg7UVXdr3SaJXGvqjz3J1CYDs+3T8Ybo45VTMhQWmX9xXXZCKwY84Wf6zCKW4t5s5xihWk8nVb7rBz87QjMschcsbJM1WwGa9xmhZSSlUQSEiCtSE8jjnRKrFGlRTJx5uJckeJGvGCQXN9AVj5HO9cwz9wOl4SrsScKNjv7/Bp5sjhoBR0MfA9ZXHJARdPX5E29S0bcujR4/E9rI7weyYs4wUZC93A8N4hlQV6ZrEdbrNdZxruuYSVXYazIm7SOJoWcQYk27o6abKaH25dlrPlnUyGBg73Vpa5wRn6sjP+5eRrTmXSymFT/eCSz8rranq6rU4pg/x5zSi8GiVNWWQmw+B2fRCHPayjnBA/CAVxIA594bEx0lp4ZXpc3oxT7KZLpEXjVoriJH3P/gJAH7u53+e4+nI4XDAx8AqLXDrqiJEWKzWdF2XnLpmfF3OUbEsCaWUmvoD0kQCQsVarWuePHlCCJHvff979F1PDB5rpvMjlt+etpbzU9VazJHSe4pGaqY5TV32wh1MZWwFSslx36Qu96gM2lqMqTDGsl6v2W63qN2Ok3e4MT/Pcv5Msg33PlBby/X1NcfjKV2LNMmp2cI6yhgq7q35tTwJaoKioEtKJdMU/2Ba9BDyHA1DBp1cAZkWi0V5dl//vSbQJleolJIenTC739abNU2d6Vlyn86Voeb7BonOaS0kadhMxcrb33b0zHrrSimqBHxZK7KNKs2h45iT5R4VHKpa0PfiYVFXFq0Um+1jrBuIUTP2sggfDj2PNo+5ur7GR4UyAvQNzrParKiXa0y7pE80jGGU5Luqa0HOrSUOwm923ZG2MsINhuQVYQt4mBfQicZcxte7qH+i280BwCRT570vCj9KT/lDZEbjmi04btuiZVfCzxJvRrKc+EDjKBdVMaGSgUnbUGJuQJLG1QKpJ15z0EQVyPS3tm3ZbDYcTp2UGEy2bDxfWYYQiEa0jIWWEVJjXUKAEGR5HIXnLA9LQFuRPvLOoYmsUklTa83oPX0/4kMoiWuIEec9/RDoE2IUgi9Jbl6RKq1YJzvIKqFG660kqePoErVicgGbu37lh6iZ+bNfXl6ecZNvR7mxZgm58+4soV4sl7z9pS/xF/7i18o5VyprMk4DRP7pvuzjttZz+cx88xsz42zH8rM8XA9EjC9uzBbEibM8lxBSSmFsRbtcMsQjLpkcBS/PnzZTkp1jHMczV7/5J925dY1mud6kMmzEJFpGDCJztNzIhPyTX/863/nOt/mdf/bP2O32KAVt02C0SeYG8pzn8WC+CC4ya2kMWC6XQoHa7coxNk3DarWiaRouNo3wHQ97+q5LzcWRKifLIcnO5cEwVZuCD0TlRDbTe6qE0DKM1NZg65SkD6M4FmqN80EcOdOZMbbC2opsY13XtTQBqsmufj7eqMTZ9t6jtOb65kYm57J/aRLL12AGAiRMrzRzC09yMpiKWpVkWbZ5WFR/kSMvKvNic+4o+VlNSYCzVXmIEXVbzhB49Ogxm+2W7373O3jni6FY/sy05ixc3rZt0JVKUmiSP5iYe4VUSaazs100dnoWU9+DiVBH0MkYhAw4Ooemp7ELoq0IXic3YBEdEKvq6bgy5UJoqhqTXHhjeq6bppHn9ySuwaPvidI2VjwhpNI8LXTLeZ6jEAq0ERDPGoPWHhfPTecgg5IyBgYt3GMdNNEHuq7neDyxTYYq2irI3PR5lXpWOTgnpSpQWkDVH0dkGWTlNA4jptLnTEINuIScFpQjD8jqnIs4g+djat6x1rJZr/n4By+Ey5w5HrMnoBDtAT/0hFCzWS1wPjAMkpB6IuPQ48Yx0eZSM5vqGYMk6tZqlilZBmAcGcbprpwGerFv3O/FmWvRNmil6I5HIqKx2LQNjx4/QRsxJhHbSNn3vuvZrdeEqOhHfVaiIX/GrRvBGHNmTJK3y4NKnrxjnJQJs0i50pq6bXjv/ff4q7/8y/THI81SkoM5B/z8rN6OT78xy0rPh7PXyv4kfvZDfDEjAv04iFJMQnezZ1uIUazojaFdLKisZcHM7jo31MXZcwglgSzPw6dW8SVhC8kx0xiTLGqT8UBaVG82G549f5vFH/0RXXeSsSX9a9uWYzeeOfj51FGvlCoIWEbFsqVsfjaXyyXPnz8vlR2jA2MviXKuAJk02YIkqKKAkxJxN6JtTd93uFMHWvScF8mre9s+ol00E8JFNneQIXZuDytjh0UpscFt2pb1eiXas10khNSAmJ7ZKmmyDp1MuLvdnv1+Rwgptc0fMltsT+NaELvgGCFENDKh54YmUATd4B5y5Idgmv/yczWvsP4LJcsk4AYITqodWiu0qUqu8s677/GV936Cb/7e73M89rStEmOvU0dlNE8erdnvdhz3LwFYN095tFzQp56CPoh2egbM8r+c6BekNIohStZg1loX9ZxpXhfesbWWqq7wbhQ1q9mxZGGC2+dNvqb/PBDFIlpHVeZ6qw3OO8ZhQMWIiZHaiEEZscYoRdtKHiQ9aEb065WmqmvaRaAdPf0Y6PuBYXTFQ2JeJZexQRqRNTUjYox2OB5w7jGANFpmMOCeY3kVvnYbbf5h8WYkyzkzA4ZxpK0mpGdqANMQ1VSFg7Nk8A7yrCiTYIxB/NfrCpTBVHLYg+sTajytbIJS4rBHZH880e726CQ4VRlFdCNE6azP+0dM8mm5vDK74WprGbTiOA609TpxgxtUDAy9S8L8cDw2LNuGru/ZX18DkadvPeUnf/KrgOHy+oYYI8MoSHTd5AktTWKRO8lxRtRz9H1fZOXmA0aWm8u8ru12y3q95uWLj2naVkTWkwrGT3z1q6y2W9wwTGf91tqj4Pyz3Znzg+7jiSmEjxR9lg6knMsi7F7qNg/xRQylFIvlsgwX8zthzlVVKGJy/kwZHsoYtJ11RKcFdW2rM0OcV+ZaefJIyEtpmI3TnujE4X/y9Cn/xi/9ElVV8Q/+/q9zOB6kt0Aprq6vuXj0lP1+f4YiLxaLsmDNE1/eJk+I+TiVkmZf4RR3HA4HfvCDF7zzznNWS0Fb3CAUj+WyRQFXV1e4EAmAVZoQPOMYQAcxWckL7ZTQ2lQ21Y1GaYOPiqETMwOTxmeV0P1hGATl0tJUuVvsxAAm6rMFPEroFs4JMOFj4PLyit1uz3pVC1oXPaQEWAVxDg2AjR6V+ZxBFWTZ+TGdF/h8bAMe4scxspxiVpq5nSvcN4bAGQAqXyPiTDeM6MoSvZfGYF3RH48s1mvJTYDHT1vefe8DLraPefHiBdAxDAOKZCakOGtez1Wiul2wXC4ZhqEo5cwpAnPaxtzR8z5A7OwcpGpzrWpRpjJTY6ExQmnIyXJVVfSjUL9sXVPVLRGNUoNQuYaBiGIccy+RZhwGLi8vsUbR1jUX6yVt22KXNToGxuRoOnQneueotaFpFW3bEND0o+dw7Aknoatms7h5hTsvUEp+kyhqfdfPxpaZuVSMJU+Ym5HkRf7d6vTrjxlvRrKcOGggZdHFDLaPQYTjMtNifrBnk2X5KidITrjwnIMXlytrLUqLIxVAP3hckjVTyY1K0IxQaA3eT9JxkSRtFGQ7FwLKe0wtKy1FhBimskmUAZ/g6U8H6sWSuhZecl0ZTgfF6ZgdeSRhjSHgU1l3SHwipUhWlaFc57quefr0abKflr/PK8+Mks/LT1lXMnfHa61L01BGr/LNNwwDXdczjg5tRxarZenQX69WycZa3+H83MLs7lybHJnrGWMumCrRZtYmG/YV/Ua41en+kCt/oSM///k2yBNVbgTWqdNZWdFTV4hNep0mzJyg5gnHzHRMy2fkQfrW4k6bCZnWWWGj7MeMk4i87y/91b9KiJH/4zf+ITFG9vt96os4nPEmbzfq5N/lBXzbtgVxbpqmfH99fc3V5UuG7oqqsjx7++3CQRx7majatqVPPGvnZXwhRmkEdAMxRmxlCwr06NGCi4VBKY1P1rxRKbohN+QoaiNjgQ8RHUPZT2stddMk6++OEIQ3OlfyiGiituz6iPeOF/ue3kUeaUN0J8J4KsmyjMdibR2DR8+Sb2PMHd7hfWPSQ3zxIvpAOA1UixZlNGOSk4SJtlW3izsV0Zx2ZB1v7vyWQmmyM4rjBBYpttstjx8/5vLy8lZiq0vZat7zpGIsjcrzBPh2wjiPvIDODftZASuDYXkb56U5uF20ifKgS/+BVposE5e3r6uKum1pF0vRZB8cPuzpx4FT1+O8L5TU9eYRfd/hx47KGsamZtFYmkZs71Vw+Jm4QMkOUv6qEoI+JcATB3lOKfXeCdChDZWVPE1rzW6/L8faNrZUCKeb4Hw5lH9VtlDzC/d68YYky1OMQ27yyysCEZ8uA2OUnzNSORG4819JklwcS5L+32LRCuKrJ1RVa41K5ZQcSmcrVbkBh2Gg7xLX2Gq8GzBaoaNKsi8D7WLFYtGyP57oDge6dAw68Z+9d4xDnxqO0opHieZgvvlC6vIUiofGWM3xdOKb3/wm7777XkJkHMPQl31/6623OJ1OqJue0U0Jft/3xSo3I9f5+xBC4SDlpr+ipTyb1MSXXZcmwJx4by629F0nk2s6bd77snKex91UOpcEtOhnp2NXZv5QTYnMWaSS8MNU+MUO55MxjwKjJzlEhSGmxXEui47OYVBoMyVRtxPgPDHFKCo5Ma3I72vktbY6q6KUhD3fmbNb1hiLNoZ3332X7XbL1dUVxhiWyfoaVJGcyvswX7AuFgsePXpE27Zst9syMWR1jK7ruLm54XjqwDtC0HRdh07jZG6wvb6+4ebmhmEYBBVWiloplssFKIOPUEWm5t7lirb2iIJmJrmo1PCrUgk4gQ39SPCB0+mEd67op26Wa8ZTj99d0sahnCg/RLyt0c2KAc3oHJ9c7bjZH3jrYiEgRJh1/MvJKd/PtXNBQI25NJgsPh5GiS96hOAo/Tc2AAAgAElEQVS5/uQlzXpFu1pg6qrc39Mim3ODoh8W+RHPVZjb/TbyDW3bslqvsdYyjsn4JMq9Oo7DWR+RKNcMOMazXiU5hmk+nyfL80pNCIEhGYd1XUff93ek8vq+p+86jDV4nQA0BXUtBmJ5+xACtpKKmbFG+NYpmZXm23j2+SKxG/FeEv4BoVc5Y6iTHXg+RyFKY3aIAwGNrTQKEVyI5DGtw+fTOFv0hhBRVsbwrD6iYuR0PJYxMcbFZF09y2PuT4XPawefZaR485LlZExS0OOM8ugsWD9tG0Lkdk5VNhDcHgBrDatUvhXpIdmkrqyYkJT3yitAlW5U4RlmUxS0EU+YKKhKCJ4wjFxcxLTKm1ZK8/0xWrFoW0iDu5QshetoZy5C+/2e4JygKOkY+q7nW9/6E7p+pB/G0pzYLpZYY7m4uKBuIxHhJ3nvuby85PLyEuccp9OpnNdhGO4kxjlZnowKKKvVzfaCural1PqNb3yDr3zlPblp1cQqD/FT2D+3KBq3r1VMk3tu7MkKGSrvTwySTJdJ82Ei/KJGBIZRkEptDVrPtLtvr61Q1ItWKhRRGmqzQQCkySRIY26MMTl3hvJWKiEv5bPP0Ob4iqRZIoSItpa+6/iJDz7g3/ylX+Yf/Prf5+OPP+bt529jTIV3oSjTZDOCvpeF8FydJu9vntROyTlzHEdubm6E75waDr/73e/y6OIRdVXRJuOQw+GmoDA54YQocnJjILiAnr1/UJZi+JSkppS26SADy0WDH2UBftjdsFwseLJdEnwjShRRs2gaNusNfjwRg59aEOL0jKtEZ7m+vuFwPFKa9+J570VMw6kPkSzyOp/gM9iQxzNjblE/HuILFzFEUZqxGttUmLoq1MjXuTPu1EbzuBEj4zDSnY60iXZUmlMRyuB2teLnfu7n+Na3vsVud02dnuWu6zgc9sXdE+Q+3u12OCYljJwgF0OfmV9C5i/fbgzOetJ373uVqjnpuNIYNqYmYKIvCSfIgnmz2dAsFkQUXb8HlbXre06p2pzP8TgOYvphDI4o7qaVoTJg1FQFV8kLYxgGhjGgzIgHjseeUz8kxNqXqjJ3qn2qVOu81lKpH4aCRN+9dkK9O4dRJyBu+umzJcsPJK+HeIiHeIiHeIiHeIiHeIhXxJuBLOfmGRARbJjRKGZl+ZgRnRnKeA9HLSbkJ1cCrLFFX3G+fV3X6CCoUiauA/jM/Y0JuZh5IipEciTzCjPdoe96rLEsl4siB9efTgUVf7TdMKJTM13yJTemdKgqbcSnPK0UD6cjy+USZTT+cGAYfeIQShyTlvPFxSMu2gU+yGosd+mfIWhwRu4PSatwXorODUYwWWkvly1VbZOLz4Ff+IVfoGkbmnZRxNPl+nCG5L9WKJUu51TeceOIHwaMsdQFcb+/W/chvphhrbi9iQzZ3ITi3CFSKSUVCSknIQWZaQtpjhPaQ/SedrkU5zkQfdBbnOUzOURmyNPtJlYozYNZKeMbP/Mz7Hc3/Nqv/RrL5ZK6bhj6qeojahUTJcpaSwiBw+HAYrHgxYsX3NyItvEwDCKnlBDxi4sLNAOn445PXnyCAp4+eVr2papq6roieM8wjkWecblYoJSlGx2D85hsqbtYMg6RwXl2x54YxWp2HAeapmaxaIuMnVTKHH0/QNSAlG6tlfHDVjVaHcl2MFoByWI8Isoll1dXXN/sGEaPckGUcM64h4E8BsyrYcXJcEaVkfNnHpDlL3ooRZXdNtOcn5/8/Lj6NIdndaVZm9S95fvcXNf3PVfXV7R9T9s2Z7QhozV1U/H1r3+d3/iN36DvTyxSv4BonbvSMwRyHw9DX2ybb89tr+qlyP+y6U9GmOdN+1pr0DXWKowWNPp0OCZNdTH6MUYX9Z/1es1qtWK9XmOsZX88cTjsRTfZTe9f17LvQ9+xaGqWi5amyvufFM1GDWaG4hYedjZG0cSksKNnY+v8uKemRpVUwLKTsmQMfT8IFSR/MFNF/zzPi7e+qPR/vuKvn0+8GckylH2elwWA1IAepBRI1ljOAHumVEzayzG3Ts4AdmslibVGtEKnkp2VhvnEF4JEuteK6MWadRjHUupTWhpYtIKqssWh5nA6gtJEpZK1ZSqdmsky23uHCxCiLd3jEQqtQjh3otmqU7J7PB6L3Ir3MzoIeaEgeom1qVHKlObBnMhn5Qug8K+zbmt+ePODnrVbQR6cxWIhKhh6GgwOh8O9mrBqJklzJ+7UtNJDn7jkuRnSu5H+1DH2PXXTUCUpq4fc+CGmiEWlIcRQuMvpV2kdnYdB+RpSEl3S5FkiVnhxMRK8LzSMojwxG0NumxjcSZpnXNnMazRJLcIYw3vvv8fXv/51PvroI66uLnn72TtnY05+XrUW7vF+v+d4PBYL+9yMa4wplrdZurKyme9Ys98fqGyF9+I6+uXnz7hYLdlf3/Dykxd0p56tsdgQuD7suToc0O2Cp48fAVCvFoTgscqzZKJpaa1wrj87F1rnhmKhlsWgEL8YkaJcLlYMw4nYp6ajGAmjJ6CJSno6rq5v2B0ORT7u3ukrDedRAbMej6zGARDL4v2zmw08xJ+vMFqzudiKZXuam87uiBlz6/a9pu95Lf8i+qm3iMyRP2vAi4DoOrdtCxFCDFhlC4CV52Gg0CeMlR6A3JQ/79nJ1Mq8fW6kzY2z84VhXnBDnmMpucB6vSb6kPSVx5QbWOp0ftbrtWgpp2cq90a40RWaJMz7ikJ6LM+ftbPekLStTxzvEBHfBgJom47HF3AhX6U5d7uupWHY5POtpkVGMSXJyOidxz7e8x2zK6zv/smnxJuTLKcYnZPEMM9tiSM8NfKQ2k7k5Ktb05aKkahiGWBREWtlglkul9zsDmVSNFYRkjFJ5hENwwC2JjKw3+2wRuOfPgFA6xarLVpDVVfUxgqnOUS6ricScW4sKW2buVIKTn4k+JGgKvokETN/KErXLPOVmKyQjDVobdF2kpAaxpFPPvmEw+HA07eekxanguhYy3K5lA7XpPxhrWW73Qr/KDnghDN0+NxKM0ff9xhj+IVf/EWevvUWChi7Dm0tu4MoeVw8ejLLauXa/NCbMD/UpAFKqbIyVUolabqEJGo1AcwP2fMXNlKbryS2+cXy+MtzdnsCnJbV6ed8/8x49lopQuLiZeMMBWd8WKXV+b035cZ391MJ8n21u2a5WOKd4+3nz/lrv/LX+Xt/9+/yf/2j/5Pu9CfUtYw52cZeFCSmxDgn3XlSza+BTNrjMKAULNsKpT1VFUVNYjC4KKh1/eyCb/zkVzFK89FHH/HP//nv0p06Xl7viFqzalu8Nag0YWkU2tqErGtCcGXC9V6fcSPzODEMPeMQCEHR1JEqScsZW9HUNV12H4xIVU7FgtwPo+P6Zs/h1LGuxdyEpI+t5td3DjbP+ePp9RAnm+D5vj3EFy+U1qwvLkBrQsxucfP7YWoWvz2b3H4tKsjpBJCUs2aybUp0l2Hyalis13z53Xf5wYuPOZ2OxCCmXraqSs8BzHKaxAvO92/mJd8n8eqcK+NEfo/59rftsL2fAABtDMq5NI6dq2xkVz0xVmMGpnlREKu0LHazYlboUdHSVlVBlr0bicGjlACRWazh1A9SLQPGBFaayoCSJr+5i28+ptwXlRsi42xRQESMXF5ZQbovRzjPE0OURsHgX78K9cYkyxk19T6Iy5WZVoQxBCya27fyrTVN+no+oSmY3OzqBmM7FktBXYytOBx73DiU0ifIwGu0WDTWdV3QT5SWfvsQsVEmXlPVOD8yOkfwDj8OqNRGYK0pSa/RGhWTuUm66RUzd0DnidZIs1yMQsFID8ti0eI9VE1bHrB2uWAYRy5fXvLhh98iqpbVasXFxcXZgzZX/phbZ87djbTWReQcKBJzAC9fvuQrX/kKP/OzP8Pjp08I3hN84PrFC0I61av1pkz8d+IVue3ZlYxiFb7b77l+eclqvaZOny9Nk+YsGXqIh8i0n3npdMI/UptHFI1elJgZZcQ5vUSdZRWVLgjRlKBNXnIxVa7uW6fdN+GixE1uv99zc3nFs2fPGMeRzcUFz58/Z7lacjpMMk8ZqT2dThwOB3a7HYfDQSQToyzAs/lGpQxGRbSGoCPH/Q3HvWexDDzabllvHqN8KE113nuePH3KZrkihMB3vvM9hk9eYrSMUkYlO9pUjx27EzhHTJ312TClbRdYaxiGjouLC0AW5uOYJC+jI4SpW14m8CpV4CZUKgaPjz2YGo0YRFxeXrE/Hlk3a5Q2orfMhI6dF9A5TwqYjjMj4LcVBB7iixflvknV+fMK0JyQ9Yo/nkfKrLO5yWKxoGkamrYhq1TBBPhoa/jJr32Ny8tP+L3f+10OpyNPHz/h8ePHhdII8vysViv6pDs+T4CzrNq8onWvStQrfif3/6T00zQN1ZMK75wks0qafE9H2ZeqqqQBz3nqpmG/F6OjiKZtaoyt8KkiDeDGgS56usoyaGScGgb0xYZH2zVN09In86FTJwYt0syfh9cpPyng4D3J722jNWssgxuL22D6BVl+toz/UZdqkyyWskiD7INzo4yh7vXHiTcoWZ5iHEeaVJqQylvMudLZdjGVOUBKf0By1dGgsze5wiiNMZqqspyOJ3SCYQOK42lgdI5sj1o8x4NHkbhK6fOcj6joiYRUVklcmqAJTHbVOeRnmaKt0ei0chzHkf3+gDWamLzlg1XUtS1uX5HIom3ZbrYs1ysuL6/Pkl+T0PLLl5fE4EHHQq8IIRT1i4xS1XUtDoXDgHOulHNzYt00zSSvEyNXV1fl77ePLtg+ekTTtvSnjrqqJdm3k0Pa7bgfeMsrR6a2ZIHSsXXF6mKLbmQFrtq0WKoM3CqBP8QXNzSKISEWddvMkmU1b3M4S5ZyuTAn1JBpbvK9TtxmhSKmSUvPkeSYeXABNetfyDd5Ss05K/slNDZn2U3Tctzv+YVf/EWcc/yd//Xv8fLlFQCrtSR3lzc7YozYdsECOB4PeOdp6pomPQLZaCFGQaBPpxN939EPnkfbi6TqMSFA+8ORq6trls2St568xTd+6qf5+MULPrm64sXVNdenE9ZoNomLqF0HUcrIx9ORGHUaH9r0mVOvg/Q/yLFWdcR4RdM21FWdNOEjMaw4JpWP0Tms0fRDIKpJheTq5ob94QhPtkQ1L4RPi5cYIj6AmsnHzSfYPIlXVXXvePQQX5yQBDFMpfmY9NehPNORdA/N5pb7aBnzn7WWefLJkycFgIuAKxJmUebzGNlsN2w2W7K2eySezd/Te2qUyuZpMwrF7Pu5VTdMUpZ3keFztDj3RWmtWS6WrFYrtFJUlWW7XqG14o//6A8B+Oj7H+GTApZKXG9jDVbL4kDbilM/THJtITAOAvolJqnslw9FWWwO1OWvxoiimNYGhU/mSJKT1LP8o2mapAqk8cFT24qmrTFaMQ49h/3hrPKnE2+5MBLSGJE9M2KWvktXH5Iq2GcgYrwxyfI8hmGgbgX9VUoRksOcj4I8k2xtYeKu5YlKfNuFRJ5XligRsG/blr7vkoe5yBF1vRMzA22KA1dGLvLX24NvLm+M4whqctOJaZWUb+qqsuL0F2VdMw4DJyvcxFOapLIAf6gMy0VDSHJWgYnIn1dfcuHlbnBuvk8R50eur6/Z7/fl8+err8xnyslyVVWsVivqur5jd53Pa16tDkn/mbQvVV2zWC45Joee/W6HVpqmbcv+lGHmFfeiVvPmLCn9tssFOqHxmbN0myv6EF/sUBFMSlh15F7780n3VJrKRAgNCBFPpjNMjlYZ7vA+cNjtcN6z2qxpVjIGaaWlIYiJPlDgqlfQMfquw/uIthUuSkNu3w9stxd88Bd+mp9/ued3fvt3ALi8vGQYOuqm4ZNPPpExJPH2BNk1pcd4anzRpUTpnGO/P3C929PWCxgm/vXlyxt+93e/yeFqx7OnT/nSs7d59vQpN4cD/98f/AHdn/xJKb2CnFsfHKaukzyUOIqt12tCCFxfXxdXUOE45mpZJBab7VjGwbpuSlOQDx5rNApfyq7aGK6vb9jtD+lkZq3kdFmioPohRHwQW93zpGCiXUz0DD3jQT7EFy3yXOl74fia6m5PTQyxVCPODYU+9Z1n9AtVKlslAVZTsrbdbnn33Xf5oz/6g2QW4tAJoMr5RDYYCrs9PvUthFuLQZjGs5yLrNfrM4pW/jdHl3WqjLdVKA3E6/WKylYYrbm42BCjPwPIsg8EiXamZvQIrc7PTFVXmOCFWupkm6oSa22U4nA4sU+oddM2WFOhTYWpEvVBG7wXkCEkKqtN43EffKFjjqNI0hmlOR0NBM/pdOT6xpQGae892qb8yKd/QXSgs0NzIeTN6J8q/vArPo83IlmeJ0dKKcZhmMxJjBh3BDcStS3IUKEkI6ucfC1VxvmDRhnQRgS1bWXZrNfpIUkDfJiQ6bOynRLid54Tp6RO+ktcgH50DG7EGp0c6aT0WtcNJvunG42tJEmtrGEcehzycDrvy3Yw0wxNi+EQAn3fc3NzI80wWgtilNZGwziy3yckylqaasEwhjMXn+PxWLRbc0KcjzU3DmUtx3mSn1U1rq+veevtp/zUT/807375yxwPR2xVEVBUbYtK10jWL5bpxrtdOL33ot9B4edakw9l1Ie4L/K9W0r0Z7fJXUF6Sc1SKUPPaBj5QZtFTryHocf2FfWiLa+rqGRC05kOxj1J8nT/182C1XqbqjgVTbNAKdFOfvToEe+//z7H/WQY9NFHuzIJzpGYpmmIiKIPkJz4ROO1bduintG7im4IvLi8YdO0NKlxpx8dn7y8ZFHVbNdroaJpzcVmw7vPn3Nzc83L3Q7Vy8SmlSf6QLXaEuKkBX08HjkcdoXLCJwtrgt/M0S8kma/EAJVXbPdrMvp8lFxHPeMUUZwYwxX19dc3+yIedyd8ZSjyELfy0WeAxlGm0IbUYo7CN5DfIEiV3zmC6ty20zUnttzzBlH/hXvq4xmudmcJdjzZDz4ERUj682a9z74gHf/+A+FVnU8MPQ9aMXFo0RjqmrxM9hsWCxXYoCW6E9zsG7ep5Dn+6zEdZu3e9ZgxzSvhhjxIVCn1533XF9dipINUnmOUVxGT11HVJrKWlxyK85gW/68tm6ocPKAhiCLBiVmJX3X47XGu7wvlqpuqeqafhzpu0H2y4pzaNu09N1QxpWQqC352oUgaP3Ya4xRhBDFHjvti/eBKuUNkniHnLh9ysX87PFGJMskWD6HlPByp2Py/Z4tEGKMRH2LsRxnI2wIoAMiZyR/VKWVVUY95G9k9REhITFTE01ERLBNKh2AyDApBQ2ZZzyKhWxK4Y0x4hYWzLQvKYwRtYo6msT1G87PQEZaY0qcnWdIK8dA5PHjpyijy819PB75/ve/jzVVknqriISCJs+5QEBZhebXpXzbC8JtLU3TsE1cxLYVN8KoDE+ffYn19gkey+Dhoxc/4PlzkYdqZ+i/TJyvv0q7j3uV32deenqIh8gRQ6Q/nbBVRWVtKs2nsmDaptzzWr5qlZFOOONplDdNf+k80TmOpxOnrsO2DT6NQVZp/v/2zi1GsuMswN9fdc7py9z2MjO7XmeNYytWbBJwbOMgWYIgJJQgpPAACrwQAZKVB95JBFIknkBIPCAQJEiREwkCvASiKAJHyUOSh0hxQhSCZOSY3DZ29uqdS1/OrYqHqjrn9OzM7szueqe3U5+029Pdp7urzuU/f/1XBJR1ccwHxzu2r7tcgwGTyaS59vM8J2TKnz59iieeeAKAEydO8PnPfw4RYX19Ha01165cwVrbZLEH3a+ua8q8INHKV6xxIVG1dQnDtbEYC0oH44Nimpe8/vol+knG8OEeqysrDIYDhv0egyzlexd+yI9e/zEA460t0n6PeulkU3kklKkSccr7wFeqGQ6HjMcTL1d8W2rrPG5u1wlZlrK25pTlvCyxAunuiKryynKSsLP1Bju7Ix/LqJpFizW+WYER78mr0FiUdN2srXfqbt8cI/crgosN8OEASdtdNjjeLRYxBmX3v573vcLFea51KAHrK1IMfRUpcBVeTF0jSrG0usLJ06cYDAZsbW2R+4Rc3fGahkoTNyuJulepD7IlKNKh2Vj3fu/upZr+QLOxseEW1L7DpzGGIp9w/fobjR4iIuR5TpL1wBgXgpEkmMopwqGZURseYhBq+r2+757nQk7LImcyGZElWdv/UycYhLKqKYuKvCwRDFY0Ok0bI14IZ5E06yx0fBECY6mxTRhcXhSNLuTyOXRzjFp98UZ50F1bHNX3NCfKchtLCFAZ09yolPH93I2rDRiC1ruf69ZecDvKuxJCYg5u5bS2tuYS9pqSTS6+11UerJp6ggCpuBhn7VdxQMcyWzPrJsEfVEWiNT5PDgHfz9yduFmaoApFyZTRyLjv9tPuZS4GytSupbWrhyhN9qu1hqRjLelagZ2FpQJUs9oM7azbDn6F66+epoi3Kqda45YIwmiac333NQDOnj1LZSyn1jc4c+YBBsMl0jRjOFzCGJcYkKZtZY6ghN/2se+shrvWqvDezQRJ5KeHuqp44+o1VlZXWV5dmY3to7PgFBAr/hGn6OLqeoYlWNsx0r/QS7CJsLx+kn614uREWLDt8YIclrb8UdacxyGJdnNzk3NnzwHw+OOPY0zFiy++yNramosXHo2a1vbOc9V2F4Q2Rlcp5fMSFDrtkRc1ubZkidsvpa2wlWGY9qlKw2h3xObp0ygLw36fk2trXLo6ZOhDqEw9psqn5NOxKyE5HCCCDx0bMxgMOXnyZDM/Fw4mpGlFkVeUpaGu2u5d1ip6WWt562UZWiuUcXWus0STpCk/uXiJN65vcXql34TJQVtGVLrHNxK5CdYrdcqXVwxeVPeeO5cUwqA/OPyXzoRbOf1ixnKNNwDZdtMsy9jY3GRlbbXpqBtiaMHF8OtEY2rbGIh6vV7jIdnrYW3ylfx2QFNCLnjng8wJ8cGrq336/T5JkrC9s8NPXv+Js05rIU3ahP+Q45RkvabTaZIIZW2aXKe66lTCMQZjSjI9bJR0F7NcUZUFCtVUHhIle3TXWaNCszgO79p2MQw0oSAuDKs1qIUIAWtsSEKZ2T780t7ExzCWg+wnBzE3ynJ3Kedq77WWYuXWIYQQkxDDBuKtPS3WBvOz6S4xnLLqe8SX/gSxwWQvypce8kPxsUfW+jJVIWbIx+4olaC1i7ut64qyLDCmBrGkSY/Ml04SXKtrESFNNL1UQ08zsQllUZAmuo0V1C6xRfmW2WH2SZLQ8+XglEiTSRuU9cFwgKkNeT4BMurQ1MXUJFro9XyveVs3rX3zfNrEKtfGUnqL18bGBgBbW1ucPHmKBx54gLW1tSY8IsQ+hZJ0XQXidpTa2TjDNgM43hAjBzGdTpuMdGuNb93qEKXQSYLCJaiY2gnNgV+w3kCT1OAIHhbV8SbdLkHYh5uaMaa5kRljXIlHH1ohKE6fPs36+jo7Oy7UIdRGBYsSReITno2psMZQ+RuYta61b16WSF4y7PUoazvTZCmxbQMDY6yP+4ZEKR46d4bV1QEbp1cB+N73v8ePfnyBKxdf48TGOQaDPsa6JkY7OzukaVvLNVTT0VpTFCWinIIgPeeCbY0PbvuwL3ppSl5XVLWPzVSK8XTK9s6IUyv91nDSJFPaxkvgSyk3N+jmuB7lrhdZaKwPOUizdPYccW92Vsj7f7bLzGfFJQOLD7kM5/PMd7uYIZQoskzxc+96F9vb25RlyWsXfkxRFk0+gSs1WyHKhSOMRiMmE+epCfdarXVTmSok7gcDWohxDvkLa2trTT5BuDaX+k5nuHrtqqvW5XOdBOMKDIRScN467SftQrKVaj35HeNg2CZU7lK+wciMUtrZdyLOI5bXBaZ2Sq+IM366vAZXNadoZHnbdMXtVoNYlxdRizNA1lXVNGZrqpH4/5uY8s6xlPabO4bZo8mMW5pLROQTInJJRL7Tee0vReRlEfm2iHxGRE741x8WkYmIfMv/+/sjjSYSidyXRDkRiURuRZQTkfuVw1iWXwD+BvhU57UvAB+x1lYi8hfAR4A/9u+9aq198k4G1W2WoYwP8rYGJRarQgIcILbjfp39jiaA39vck8RZlYfDAVvbrpmGM//XbiWFtHHS3qQfytAFK5O1zhnqgtld4wFEk2Q98smYsiip0xTdd1ag0B/GuQJ860bjg+X972i/mkuSBJ1otGgm3m00LUrOnDnD2c0zrKwsM5lOKad+7FgGKVTlLjpNEKPYuj7C1JUvB2fpZanPTnel5uq6Busy+2dimfdU+widhpxrqI1bDBa9sOoNIRPBtXwU6/JeF9bez990hR+ZR17gTZYTFuvilXsZu2PXTfLipUuA60B14sQJUl/MvsnibmpvHo5wrXctUm2c3uHP7zCG/T4TrEHt65aff/JJ6rrmS1/6Ei+//DL9fp8zG+vk+ZSrV64wHPj8AGUby3dwQ4q46hlFDYimMnB9y7WkruuanoLltIdOUpaHLn5YWVf5QmUZm2fOsOQrf6Ra2N66zoXLW4zHY2/Bb5OKJpMxW1tbgKsLfenSJUKFnjTtMej3UCqhyCuMyX1csXs/dFDN0gSVu3qv1luWJ5Mp2zu7GLveum+D9RjrGxfdPP+qS3ROzS0vcA/0ib3XXzeWt/sYPLTda9TssaK23k5fljbEGWu9r2xpfgMhH0949tlnybKMr+Rf5sqVy00Zu6qumIzGiDL0+oMZj02/32+8t8Ejlefuetre3mYymbC0tNSpg95neXmZ1VXnIQrx0ImuKct8tpFTd5xqNhEQb0Vu+j/UFca6ZiLdhMJUFMrUJEpIs6QJdakqL9s6pTeNcUl6RVmjk5Ss1/fVxxRKVywtLTEcLiE+ZDQ3pokHB1cBWIlCYahDN2URptOp249VhXM33eyMaCMV2qAFeyTj8i2VZWvtl0Xk4T2vvdh5+jXgtw7/k/wvXXgAAA4HSURBVAfTtqSl6TwjusZaV+YNZRAS5xrwwYhmz2ylzXWlDef37al9vcHtHadwKh9Lo727QcR4L42g0wSlXaZ5E+PsazCHm0eShqB6V2/Z2DamJ4wGX3LKGOdGTLUwHA7dxZDopmW21oJG6Ccaen2yomDj7BnOP3iO06dOYQQujHdIpY3jWV1eorKW0WTC5avXGO1KU+i8if/1rswq1GE0bdk268NKwkXZbSiwubnJ008/zfnzb6E3cO6mUJM5/H43hiqUejmK+7r7Xd3yOPsJrpjwN9/cCzmhtebMuQcwxnDlypXmnIO20U+o7AK3t8DaL26+m0i2t9TUzQiL/nBtheul+bx/mI6nWGN5xzvfyQ9+8ANeeukllyS0ueEWotI24RBcLGaWpBjjunFmWcZwOKRQfZaGSyRY8sItgGtrKSrDaJJTljVJ5hopWBMMCQZbW4xXvNNEc3ZjnQrFD69dY3e0y7lzD/hqOhnXr7/R1G7vttcNuSRunnsXG37BrjVV7cJRlEy9suySdibTKdu7ux3zQvf4uW264Wnd4+U+4W7OTpbc1NMeOUbuhZxQSqFSjalNc3+fyTnwBjRXD9idO25J1ibqt+2NrM8JMq1caE/LmfNRmv+7if0JKtE8/MgjXLl8ma9+9UrTFG00GrmSlEVB4pPagnzZLxRsb+xt2M4l+Lsykv2mfKuLQy7Lkp2dHXZHu5w4scbSytBVE6orwFBVbWOk4XBI6eOlURUW5UpHmhLrcyMahb7fYzldYjDoN+EuxlgqVZFkGaIUVe0VbtPmMGid+Fhy163TWpowz/ZabucY9qz4AOPG+CDCNJ8282y382V8Qwyzzydr9pvxDaqanAoOzd2IWf4D4F86z98qIv8FbAN/aq39yn4fEpHngecBzq6f7GSk+tVIPdvFyT2GLlyuhBvYpotce4KqWUnpY27C3un32zgjJS5mJ0kSlG3rebqDlyDStrEMY5EQyG4MoWB/kmhsllFMx038DDg9ta7cKs1YwZJhk4R0ecDKqRPsbG2R7zrFvacgGQ7Jehk9hP5wiQc3N3nk4YdZ31hnNJ1y8erlxopblhX9NKW0lkmeU9cV1rblU9o5un3RWKOsj6MUX5fQGNZOnJjpQb+0tMQjj7yVt7/97QyHAwxtwfNuLcjOsTyyYrLfyr1rhYuW5IXjjuXE+becbzwegXBDuVkC3u0oT601ab/vO5yFuXuz657X4buDzNOJZjKZsrKywjPPPMM3v/lNMt8at9/POHXqlCs7BYiEUpEZVemaBoVqG8OlNXTawxY54uOhlTFkOqW2cPnqVa5vbXP+/INQF9TFGFWBQWH89yssS8MBK8MeXMubEp4hZ8FaOrGEoQ12t8VuqM+O76YHxrSW5RycZVlcSU9jDUprJtPcW5alsSwrJTM30PBX11oY8xsWjjuWEw899JDzFvucoG5Wk7UW4+N267r293pp8nkaa+sNl3eIvZ+NYW7emhnMzMC8ZztpkuK7CYFpmmJ8Za+QuBeU4HA/bkqqmVZhD38PBgNEnAFueXm5eX8ymbCzs0M+2WY82gUsa2trrVW7dNNcXXUxzlqUS0IsK2fKFQXKxQ1XtcWK2mM0SNCqjQkXfz37nTy750zIN5OmUYq7jl31kDRNyXop06mX5b70W3tt+8WO9WXk/L6b+Jjl6dRZ3NvPhEiBII/acVuf3mmblc7hbwx3pCyLyJ8AFfCP/qXXgYestVdF5Gng30TkZ62123s/a639OPBxgMcffegGe7jxzTrwkw+tC0UZLK1bxFhXRq6bEOhcdzSrCmNqrAGt2mx08JblsCObAHX/XUp8Yo2riAHuwIaGIm4lNPAJN5Y01Sh61HXFtq+fmiRtJ6s0TUAnaJvQ72UMhwOK6QSpfItpaynynOuTCcNEsTIYkIbVYq9PbS29rNckBRVF2WSBWtwJIzIkTdOmpJRT7N1+VN5iJhjXUlYJ4/EEpSyrq6v0fEMEf2wYDpeaZAFr2qx0f9ybgu6d4+kKwB/RAhy+I3x+ryISb4j3P3dLTjz11FM23Ej6/T5FUTRlzLIsa0KEQgeqZgHmRnGosQbLdPem1lXOjrKI23seh+dNWJe/yyba3UjTJOGxxx7jAx/4AIPBgH/42MfY3t5mfX2dycjJlKLMm9CqvVZwa2ryooCqZnnFlYHsaUUikFFzfXuHq9euoXWC6TYGUYrU12UO4Ra9VKOVuATgsvTdtDRpmlCWszfvui6a/WR8YWRRHStPY1l213qWJI0+Yo1FpT4MY49lGQmeu07om9ygsjT7wv1OlBX3K3dLTjz9zDPtUjRcg51rOSihdVU1luQm6U7kQElhOyfeftu0dlBHXRtUoqmKgixN+YV3v5srVy7zyiuvhPly8tQpBGE8zp3i7Eu8hprLYczQtscOyflra2tY27agnkwmjMdOTmxvb7O7u0tdjhEqhsMhg8GAqig791gzY2yYsVwTihkIeAuxEsH4bdIsY5jAoN9z+pGffKJTVJJQVobSW62LokTpBJ1k6MQ1f6tr16lYvGe73+83YRU1FmtlxoOVJBpb1xRl3Rgapn7/5EVQlm8sBndjeO7ty4fbVpZF5IPAbwC/av3RtNbmQO7//oaIvAo8Brx01O8P1grjY5ZrZ6JABeXZ74UaS1XXrV3am+vdKsc2NwQEsqxHv9/r9CBXTbkT0cnMyaKVIksTsiRtVmNiDKkSVod90kxRlRPG4x1yLEtLQ5aWhozHY0ItQLeabEMVgqKulSZLU5JEUwZlsRM3rJQi67m2sYlOEdGUeUmRl42lp8hLV78w0ZS1Rad9EtVrFGWAyWTanHDia0DrxLlAXFkstw+rsnTZ+WFRoJSPh6pceTulqU3drMSDAtvElR/BNX1UooX5/uZuyokmZMi77YqimFFAk8S5+LBHaWK675hveB4UaD/mQ31PiBtsGmd0steh9ViJuOst3MROnjxJWZY8+uijvPrqK0ynU1J/Tfd6GVkvpS4rRrtVcz2KCJgaq1JCbkXAWEApirJka9vpGaK0Myb4G1Yok5don4+gNf1UMcpryrJqlOUkSduWtzbUQw9aRKiPH8Imwjz9/khCCU6vLEvw+glFWTIajRmNp/SWvZxkdnEixMXzonLX9YlZ5/INLzcLYWNdi/vagLSe2L1orWfcUzPfuecjbUisQQmNXNJa89xzz7Gz4/IJLl686AxVWY/SNxQbj8fs7Oy4Os6d8pB+HzXNxUIb671NSQJt+2s3oqp2FTRcMyYnZ+rKsOs927u7u75bZ+UauilNkrougMpUGCtO0fUq43BpidX+gGHmrMSV19d0AlYURZl3LOKW3qCPta5eel2XlL6pyH4dhFVZodlHp+h6oGkXCWVZtsG3wbjdUYu7FnGLciG8Nmx/eFkih9nYxxh9zlr7Dv/8vcBfAb9srb3c2W4DuGatrUXkEeArwDuttddu8f2XgRFw5dAjv39YZzHnBcc3t5+x1m4cw+9GbkKUE3dElBN3nygn5pAoJ+6IKCfuPoeSE7e0LIvIp4H3AOsicgH4KC5btQd8wWv/X7PWfgj4JeDPRKTCtcP70K1ObABr7YaIvGStfeZW295vLOq8YLHnFjkaUU7cGYs6L1jsuUWORpQTd8aizgvmf26HsizfC+Z9R90uizovWOy5ReaTRT3nFnVesNhzi8wni3rOLeq8YP7ndvs9iiORSCQSiUQikQVnnpTljx/3AN4kFnVesNhzi8wni3rOLeq8YLHnFplPFvWcW9R5wZzPbW7CMCKRSCQSiUQikXljnizLkUgkEolEIpHIXBGV5UgkEolEIpFI5ACOXVkWkfeKyP+KyHdF5MPHPZ47RUS+LyL/LSLfEpGX/GunROQLIvKKfzx53OO8FSLyCRG5JCLf6by27zzE8df+GH5bRJ46vpFHFpEoJ+aTKCci80SUE/PJIsiJY1WWRUQDfwu8D3gC+F0ReeI4x3SX+BVr7ZOdMigfBr5orX0b8EX/fN55AXjvntcOmsf7gLf5f88Df3ePxhj5KSDKibnmBaKciMwBUU7MNS9wn8uJ47YsPwt811r7f9baAvhn4P3HPKY3g/cDn/R/fxL4zWMcy6Gw1n4Z2FsA/qB5vB/4lHV8DTghIg/cm5FGfgqIcmJOiXIiMkdEOTGnLIKcOG5l+UHgR53nF/xr9zMWeFFEviEiz/vXzlhrXwfwj5vHNro746B5LOJxjMwPi3h+RTmxGMcxMj8s4vkV5cScHMdbtrt+k5F9Xrvfa9k9Z619TUQ2ce07Xz7uAd0DFvE4RuaHRTy/opxw3O/HMTI/LOL5FeWE49iP43Fbli8A5zvP3wK8dkxjuStYa1/zj5eAz+BcQxeDG8E/Xjq+Ed4RB81j4Y5jZK5YuPMryglgAY5jZK5YuPMryglgTo7jcSvLXwfeJiJvFZEM+B3gs8c8pttGRJZEZCX8Dfwa8B3cnD7oN/sg8O/HM8I75qB5fBb4PZ/F+ovAVnCvRCJ3gSgn7i+inIgcB1FO3F/cV3LiWMMwrLWViPwR8J+ABj5hrf2f4xzTHXIG+IyIgNu3/2St/Q8R+TrwryLyh8APgd8+xjEeChH5NPAeYF1ELgAfBf6c/efxeeDXge8CY+D37/mAIwtLlBPzS5QTkXkhyon5ZRHkRGx3HYlEIpFIJBKJHMBxh2FEIpFIJBKJRCJzS1SWI5FIJBKJRCKRA4jKciQSiUQikUgkcgBRWY5EIpFIJBKJRA4gKsuRSCQSiUQikcgBRGU5EolEIpFIJBI5gKgsRyKRSCQSiUQiB/D/oYWGxkrbeOUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(12, 12))\n", - "for i in range(0, 15):\n", - " plt.subplot(5, 3, i+1)\n", - " for X_batch, Y_batch in example_generator:\n", - " image = X_batch[0]\n", - " plt.imshow(image)\n", - " break\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "810ddf1373d9db470ed48da4f30ca5a6c1274435" - }, - "source": [ - "Seem to be nice " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "5cd8df64e794ed17de326b613a9819e7da977a0e" - }, - "source": [ - "# Fit Model" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "_uuid": "0836a4cc8aa0abf603e0f96573c0c4ff383ad56b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From /User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Epoch 1/6\n", - "106/106 [==============================] - 40s 374ms/step - loss: 1.0895 - acc: 0.5748 - val_loss: 1.3876 - val_acc: 0.5615\n", - "Epoch 2/6\n", - "106/106 [==============================] - 40s 374ms/step - loss: 0.8696 - acc: 0.6053 - val_loss: 0.7657 - val_acc: 0.6156\n", - "Epoch 3/6\n", - "106/106 [==============================] - 40s 374ms/step - loss: 0.7413 - acc: 0.6239 - val_loss: 0.8160 - val_acc: 0.6364\n", - "Epoch 4/6\n", - "106/106 [==============================] - 40s 373ms/step - loss: 0.7276 - acc: 0.6211 - val_loss: 0.7215 - val_acc: 0.6208\n", - "Epoch 5/6\n", - "106/106 [==============================] - 39s 370ms/step - loss: 0.6642 - acc: 0.6726 - val_loss: 0.5701 - val_acc: 0.7221\n", - "Epoch 6/6\n", - "106/106 [==============================] - 40s 374ms/step - loss: 0.6439 - acc: 0.6767 - val_loss: 0.6497 - val_acc: 0.6468\n" - ] - } - ], - "source": [ - "FAST_RUN = True\n", - "epochs=6 if FAST_RUN else 50\n", - "history = model.fit_generator(\n", - " train_generator, \n", - " epochs=epochs,\n", - " validation_data=validation_generator,\n", - " validation_steps=total_validate//batch_size,\n", - " steps_per_epoch=total_train//batch_size,\n", - " callbacks=callbacks\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "aa1fbc4081ae0de2993188b2bf658a0be5bc0687" - }, - "source": [ - "# Save Model" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "_uuid": "67575a4decdaf79a915d23151626b784ffa82642" - }, - "outputs": [], - "source": [ - "model.save(MODEL_PATH + 'cats_dogs.hd5')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "1b76c0a9040bc0babf0a453e567e41e22f8a1e0e" - }, - "source": [ - "# Visualize Training" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "_uuid": "79055f2dc3e2abb47bea758e0464c86ca42ab431" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAANYCAYAAADZn0yoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYlXX9//Hnhx3ZZBkRWUWWxF1Rc8nMJSEL/ZbmkpqV4dfSTLOvlr/MLMuyvWzRtLJyTSsy9w13BXfBQGSREWVRFAVkm8/vj8+MZ2YYBphzz9znzDwf13Uu5pxzn/t+D47XNS/en/v9CTFGJEmSJEnFa5d3AZIkSZLUWhiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMmLAkiRJkqSMdMi7gPr69esXhw0blncZkiRJkvS+J598ckmMsWJjx5VcwBo2bBhTp07NuwxJkiRJel8IYd6mHOcSQUmSJEnKiAFLkiRJkjJiwJIkSZKkjBiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwasjXnmGfj61yHGvCuRJEmSVOIMWBtz223w4x/D976XdyWSJEmSSlyHvAsoeeedBy++CBdcACNGwHHH5V2RJEmSpBJlwNqYEOCKK2DePDj5ZBgyBPbbL++qJEmSJJUglwhuis6d4eabYehQOPJIePnlvCuSJEmSVIIMWJuqb1/4z3+gqgoOPxyWLs27IkmSJEklxoC1OUaOhH/8A2bPhk9+ElavzrsiSZIkSSXEgLW5DjgArroK7r8fTj3V8e2SJEmS3ueQi6Y44QR46SW46KLU1frmN/OuSJIkSVIJMGA11YUXwqxZcP75sN12cMwxeVckSZIkKWcuEWyqEODKK9PI9s9+Fh59NO+KJEmSJOXMgFWMLl3gn/+EQYPgiCPS8AtJkiRJbZYBq1j9+qXx7WvXpvHtb72Vd0WSJEmScmLAysLo0Wkj4pdfhqOOgjVr8q5IkiRJUg4MWFk58EC44gq45x447TTHt0uSJEltkFMEs/TZz6bx7RdfnMa3n3tu3hVJkiRJakEGrKxddFEa337eeWl8+1FH5V2RJEmSpBbiEsGstWsHf/oT7LMPnHgiPP543hVJkiRJaiEGrObQpQv8618wYABMmABz5+ZdkSRJkqQWYMBqLhUVaXz7qlVpfPvbb+ddkSRJkqRmZsBqTttvn8a3z5wJRx/t+HZJkiSplTNgNbeDDoLf/x7uugvOOMPx7ZIkSVIr5hTBlvD5z6fx7Zdcksa3f+1reVckSZIkqRkYsFrKxRfDyy/D17+exrcfeWTeFUmSJEnKmEsEW0q7dvDnP8Nee8Hxx8PUqXlXJEmSJCljBqyW1LVrGt/evz984hPwyit5VyRJkiQpQwaslta/fxrfvmIFfPzjsGxZ3hVJkiRJyogBKw9jxsDf/w7Tp8Mxx8DatXlXJEmSJCkDBqy8HHoo/Pa3cPvtcOaZjm+XJEmSWgGnCObpi19M49svvTSNb//qV/OuSJIkSVIRDFh5u+SSNL797LNh+HCYMCHviiRJkiQ1kUsE89auHfzlLzB2LBx3HDz1VN4VSZIkSWoiA1Yp2GILmDQJ+vVL49srK/OuSJIkSVITGLBKxdZbwy23wDvvpPHt77yTd0WSJEmSNpMBq5TstBPccAO88EJaLuj4dkmSJKmsGLBKzbhx8Ktfpc2Izz4772okSZIkbQanCJai005L49t/9rM0vv2MM/KuSJIkSdImMGCVqksvTePbv/rVNL798MPzrkiSJEnSRrhEsFS1bw/XXAO77grHHAPPPJN3RZIkSZI2woBVyrp1g3//G3r3TpMFX30174okSZIkNcKAVeq22SaNb3/77bRH1rvv5l2RJEmSpA0wYJWDXXaB66+HZ5+F44+HdevyrkiSJElSAwxY5eJjH4Nf/CItGTznnLyrkSRJktQApwiWk9NPT+Pbf/7zNL79S1/KuyJJkiRJtRiwys1PfwqzZ6e9sbbdFsaPz7siSZIkSdVcIlhu2reHa6+FnXeGT38annsu74okSZIkVTNglaPu3dO9WD17pvHtr72Wd0WSJEmSMGCVr0GD0vj2N99M49uXL8+7IkmSJKnNM2CVs912S8sFn34aTjjB8e2SJElSzgxY5e4Tn0iDL/75Tzj33LyrkSRJkto0pwi2Bl/5Shrf/pOfpPHtp56ad0WSJElSm2TAag1CSHtjzZ4NX/4yDBsGhx2Wd1WSJElSm+MSwdaiQwe4/nrYYQc4+mh44YW8K5IkSZLaHANWa9KjR5os2L07HH44vP563hVJkiRJbYoBq7UZPDjtkbVkCUyYACtW5F2RJEmS1GYYsFqjPfaAa66BqVPhpJOgqirviiRJkqQ2wYDVWh1xBPz4x3DTTfDNb+ZdjSRJktQmOEWwNTvrrDS+/Yc/hBEj4JRT8q5IkiRJatUMWK1ZCPCrX8GcOXDaabDttnDwwXlXJUmSJLVaLhFs7Tp0gBtugA98AD71KZg+Pe+KJEmSpFbLgNUW9OyZxrd36ZLGty9alHdFkiRJUqtkwGorhg5N49sXLkwDMFauzLsiSZIkqdUxYLUle+4Jf/0rPP44nHyy49slSZKkjBmw2ppPfjJNFbzhBvjWt/KuRpIkSWpVnCLYFp1zThrf/v3vp/Htn/tc3hVJkiRJrYIBqy0KAS67DObOhYkTYdgw+MhH8q5KkiRJKnsuEWyrOnaEG2+EUaPSssH//jfviiRJkqSyZ8Bqy3r1gv/8Bzp1SuPbFy/OuyJJkiSprBmw2rphw2DSJFiwAI48Et57L++KJEmSpLJlwBLsvTf85S/wyCPw+c9DjHlXJEmSJJUlA5aSo46CH/wArr0Wvv3tvKuRJEmSypJTBFVw7rkwaxZ897tpfPtJJ+VdkSRJklRWDFgqCAF+8xuYMwdOOQWGDoUPfzjvqiRJkqSy4RJB1dWpE/z977DddvA//wMzZ+ZdkSRJklQ2DFhaX+/eaXx7+/ZpfPuSJXlXJEmSJJUFA5YaNnw4/OtfMH9+6mStWpV3RZIkSVLJM2Bpw/bdF/70J3jooXRPluPbJUmSpEY55EKNO/bYNFnwW99KkwUd4S5JkiRtkAFLG3f++SlkXXhhClmf+UzeFUmSJEklyYCljQsBLr8c5s6Fz38ehgyBD30o76okSZKkkuM9WNo0nTrBzTfDsGFp6MWsWXlXJEmSJJUcA5Y2XZ8+aXw7pPHtb76Zbz2SJElSiTFgbcRtt8H//i88/3zelZSIESPgn/9MywU/+UlYvTrviiRJkqSSYcDaiBkz4M9/hp13hgMOgOuvN1Ow//5w1VUweTJ88YuOb5ckSZKqGbA24qtfhcpKuPRSePXVNLV86FC44IL0vM36zGfSVMGrr4aLL867GkmSJKkkGLA2Qd++cM458NJL6Rak3XeH730vBa2jjoL77mujTZwLLoATTkh7ZF17bd7VSJIkSbkzYG2Gdu3gYx9LIWvWLDjrrBSuDjoIdtwRLrsMli3Lu8oWFAL84Q9pZPvnPgePPJJ3RZIkSVKuDFhNNHx4WjZYWQl//CNssQWcfjoMHAhf+hJMm5Z3hS2kc2f4xz9g8GA44gh4+eW8K5IkSZJyY8AqUteucPLJMGUKPP54Gqx31VWpo3XggXDjjbBmTd5VNrO+fVNbr6oKPv5xWLo074okSZKkXBiwMrTXXmniYGUlXHJJmmT+6U+ne7UuvBAWLMi7wmY0alTqZL38croxrc2PWpQkSVJbZMBqBv36wbnnpqzx73/DLrvAd76TgtanP52mm7fKoRgHHJDuybr3XjjttFb6TUqSJEkbZsBqRu3bpxVzt92WJhB+5Stw111p6eBOO8FvfwvvvJN3lRk76aQ0VfCqq+CHP8y7GkmSJKlFGbBayIgR8JOfpL2z/vAH6NQpDcMYODANx5g+Pe8KM/Sd78Bxx8E3vpFuQpMkSZLaCANWC9tiC/jCF+DJJ+HRR9PgvSuugB12SOPeb7oJ1q7Nu8oihZA6WPvtlzpajz2Wd0WSJElSizBg5SQE+OAH4S9/gfnz4fvfL8yHGDYMvvtdeP31vKssQpcuaejFNtukFDl3bt4VSZIkSc3OgFUCttoqraabPRv+9a/UzbrggrS11LHHwoMPlum8iIqKNL599Wo4/HB46628K5IkSZKalQGrhLRvDxMmwB13wIwZ6d6s229Pw/l22QV+/3t49928q9xMH/gA3HwzzJwJRx/dBjYFkyRJUltmwCpRo0bBz36WhmJcfjm0awf/+79pKMaZZ8J//5t3hZvhIx9JN5rdfTd8+ctl2o6TJEmSNs6AVeK6dYMvfhGefhoefjiNff/tb2H77eGQQ9JtTmUxFOPkk+Gb30xB68c/zrsaSZIkqVkYsMpECLDvvvC3v6WhGN/7XlpG+MlPwvDhcPHFsHBh3lVuxHe/C8cck3ZhvvnmvKuRJEmSMmfAKkP9+8P558OcOamDNXo0/L//l4ZiHH986nSV5Cq8du3gj3+EvfeGE06AKVPyrkiSJEnKlAGrjHXoAEceCXfdle7JOu20NLRv//1ht93Sarzly/Ousp6uXdOoxK23hk98AubNy7siSZIkKTMGrFZi9Gj4xS/SUIzf/Q6qqmDixDQU46yz0hC/krHVVikJvvdeuqns7bfzrkiSJEnKhAGrleneHU49FZ59Nu2fNX48/PrXKYB99KOpebRuXd5VkqZ03HRTar0dc0yZTOqQJEmSGmfAaqVCSEsFr702DcW46CKYPj0tKRw+HH7wA1i8OOciDz44tdvuuAPOOKNEbxyTJEmSNp0Bqw3Yemv41rdg7tzUNBoxIk1MHzQITjwRHnssx2zzhS+kqYK/+13a+EuSJEkqYwasNqRDhzTW/Z57Ujdr4sS0ZHCffWCPPeDKK2HFihwK+/734aij4Jxz4J//zKEASZIkKRsGrDZq++3hV79KQzF+8xtYvRpOOSV1tb72NZg1qwWLadcOrr4a9twTPvMZePLJFry4JEmSlB0DVhvXo0ca7/788zB5Mhx6KPzylzByZBqQ8e9/t9BQjK5dYdIkqKhI49vnz2+Bi0qSJEnZMmAJSEMxDjgArr8+bU114YVpEuGECemerR/+EJYsaeYi+vdP49uXL0/j2995p5kvKEmSJGXLgKX1bLMNfPvbKWjdcAMMGwbnnZeWD372s/DEE8148R12gL//HaZNc3y7JEmSyo4BSxvUsSMcfTTcdx+88EIa+HfzzbD33ul2qT/+EVaubIYLH3poujHsttvgq191fLskSZLKhgFLm2SHHeCyy9JQjF//Oq3i+/znU1fr61+H2bMzvuDEiWmq4GWXpZvCJEmSpDJgwNJm6dkTvvzltILvvvvgoIPS9lUjRsDhh8Ott0JVVUYXu+SStDPyWWelaRuSJElSiTNgqUlCgAMPhBtvTPdqfetb8NRTKWSNGAGXXgpvvFHkRdq3h7/+FXbfHY47Dp5+OovSJUmSpGZjwFLRBg6E73wnBa3rroPBg+H//i8tH/zc52Dq1CJO3q1b6l716ZMmC1ZWZla3JEmSlDUDljLTqVMa/Dd5Mjz3HJx8cupw7blnGozx5z/De+814cQDBsAtt6Sx7Z/4BLz7btalS5IkSZkwYKlZ7LQT/Pa3aSjGL38Jy5alwDVoEJx7LsyZs5kn3HnntEnXc8+l5YItsvuxJEmStHkMWGpWvXrBGWfA9Olw993w4Q/DT34C222XmlG3374ZQzHGj4df/Sp1s84+u1nrliRJkprCgKUWEQIcfDDcdBPMnQvnnw9TpqTMNGpUCl1vvrkJJ/rSl9LeWL/8ZZoXL0mSJJUQA5Za3KBB8N3vwiuvwDXXpFuszjknDcv4whfSNMJG/fjHMGECnHkm/Oc/LVKzJEmStCkMWMpNp07pdqoHH4RnnoGTTkpTCPfYA/bZJ01oX7WqgQ+2bw9/+xvssgsceyw8+2yL1y5JkiQ1xIClkrDLLvD736ehGD//eVoueOKJqdv1jW+kEfB1dO+exrf36pXGty9YkEvdkiRJUm0GLJWULbdMK/9efBHuvBP23x9+9CMYPhyOOCK99v5QjIED08CLpUvTxIzly3OtXZIkSTJgqSS1aweHHgr/+Eca6X7eefDoo3DYYfCBD6Qu19KlwK67pvHtzzwDn/mM49slSZKUKwOWSt6QIXDxxTB/frovq6ICzjorNbC++EV4ZuDhKXH961/wf/+Xd7mSJElqwwxYKhudO6cm1cMPp0mDn/lMmnWx226w33VnMOOjZ8BPfwq/+13epUqSJKmNMmCpLO22G1xxRRqK8dOfwqJFMObOn3FXp8NZ96XTWfzXO/IuUZIkSW2QAUtlrXfvtFxwxgy49fb2XHnItTwfd6TziUdz5kHPc/fdEGPeVUqSJKmtMGCpVWjXLg3AuO4/Pej7yC3E7j04Z/LHOeHQ19l+e/jlL+Htt/OuUpIkSa2dAUutzuB9BtFr8r8Z1GUJLwyfQP8eKzjzTNhmGzj1VHjuubwrlCRJUmtlwFLrtPvuhGuvpd+cqUweciJTn6ji2GPh6qvTpsYf+hBcdx2sXp13oZIkSWpNDFhqvSZMSBMwbr6ZPW48jyuvTEMxfvxjWLAAjjsujYC/4AKorMy7WEmSJLUGRQWsEMK4EMKMEMKsEMJ5Dbw/NIRwTwjhuRDC/SGEQcVcT9psZ54JX/oSXHopXHEFffrA174GL70Et94KY8fC974Hw4bBpz4F997rUAxJkiQ1XZMDVgihPXAZMB4YAxwXQhhT77AfA1fHGHcGLgJ+0NTrSU0SAvziFzB+PJx2Gtx1F5CGYowfD7fcAi+/nELX5Mlw8MGwww7w61/DsmU51y5JkqSyU0wHay9gVoxxdoxxNXAdcES9Y8YA91R/fV8D70vNr0OHdMPVmDFw1FEwbVqdt7fdFn74Q5g/H/70J+jeHc44AwYOTM2vF17Ip2xJkiSVn2IC1kBgfq3nldWv1fYs8Knqr/8H6BFC6Fv/RCGEiSGEqSGEqYsXLy6iJGkDevZM7aottoDDD4eFC9c7pGtX+Oxn4Ykn0uOoo+Cqq2CnneDDH4YbboA1a3KoXZIkSWWjmIAVGnit/t0r5wAfDiE8DXwYeBVYu96HYrw8xjg2xji2oqKiiJKkRgwZAv/+NyxaBEccAStXbvDQPfeEP/4xDcX40Y9Sd+uYY2DoULjwwjQkQ5IkSaqvmIBVCQyu9XwQUOfXzhjjghjjJ2OMuwHnV7/mdq/Kz9ixcM01qUV10klQVdXo4X37wte/noZi3HIL7LorXHRRympHHw333+9QDEmSJBUUE7CmACNDCNuGEDoBxwKTah8QQugXQqi5xjeAq4q4npSNI49MUwX//nc4//xN+kj79mll4a23prB11llwzz3wkY+kJYS/+Q28804z1y1JkqSS1+SAFWNcC5wO3AG8CNwQY5wWQrgohDCh+rADgRkhhJlAf+DiIuuVsnH22XDqqXDJJelGq82w3XYpn736avpoly7w5S+noRinnw7TpzdTzZIkSSp5IZbY+qaxY8fGqVOn5l2G2oI1a+DjH0+bX91+e5rR3gQxphWHl10G118Pq1fDgQem0HXEEdCxY7ZlS5IkqeWFEJ6MMY7d2HFFbTQslbWOHdNowNGj0y7DL77YpNOEAHvvDVdfDZWVqSk2Z066R2vYsHTP1muvZVu6JEmSSpMBS21br17wn/+kdX6HH54mDBahogLOPTdtXjxpUro/69vfTkMxjj02DcVYu94cTUmSJLUWBixp6NCUhl5/PQ3AeO+9ok/Zvj184hNp5eHMmWnj4jvuSEMxeveGww6Diy+GBx/M5HKSJEkqEd6DJdW46aa0u/Axx6RR7u2y/feHFSvSqPfJk+GBB+CFF9LrnTunJYYHHJAe++wD3btnemlJkiQVaVPvwTJgSbX96Edpjd/558P3vtesl3rjDXjoodTFeuABeOopWLcudb92370QuPbfH/r0adZSJEmStBEGLKkpYoSJE+EPf4A//hFOPrnFLv3OO/DooylsPfAAPP54mkgI6V6umsD1oQ/BgAEtVpYkSZIwYElNt2YNfOxjaS3fnXemmes5eO89mDKlELgefhiWL0/vjRhRCFwHHJCmFYaQS5mSJEltggFLKsZbb8F++6X56o8+mka552ztWnj66ULgevBBWLo0vTdoUN3A9YEPGLgkSZKyZMCSijVnTpo+0bMnPPYY9OuXd0V1VFXBtGmFe7gmT06DECGV+qEPFQLXLruke7skSZLUNAYsKQuPPZZmq++xB9x9d9ovq0TFmPbfqulwPfBAyoiQMuJ++xXu4Ro7Nk0vlCRJ0qYxYElZufFG+PSn4fjj4a9/Lau1d5WVhQ7XAw/A9Onp9S5d4IMfLHS4PvhB6NYt31olSZJKmQFLytIPfgDf/CZccAF85zt5V9Nkixen0fA1geuZZ9JSww4dUlerJnDttx9suWXe1UqSJJUOA5aUpRjh85+HP/0Jrr4aTjwx74oysWwZPPJIIXA98UQaohgC7Lxz3dHw/fvnXa0kSVJ+DFhS1lavhnHjUgvo7rtT8mhlVq5M+2/VBK5HH4UVK9J7o0fXDVxDh+ZbqyRJUksyYEnNYelS2GeftNbuscdg5Mi8K2pWa9bAU0/VHQ3/9tvpvSFD6o6GHzWqrG5PkyRJ2iwGLKm5vPxymgrRu3dq8fTtm3dFLWbdOnjhhbqTChctSu9ttVXdwLXjjo6GlyRJrYcBS2pODz8MBx2Ugtadd7bZmecxwksv1Q1c8+al93r1gv33LwSuPfaAjh3zrbesxQhvvpk2O3v99dRFHTQIdtop/WVLkqRmZcCSmtu116bR7SeeCH/+s+vjqs2bV3c0/IwZ6fUttkirK2sC1957Q9eu+dZaElauhIUL4bXXCuGp5lH/tTVrGj7HkCFpKslOOxX+HDXKRCtJUoY2NWB1aIlipFbpuONg1qw0un3kSPjWt/KuqCQMHZoeJ5yQni9cWHc0/IUXpmZMx46w556FwLXvvq2oEVNVBUuWbDgo1X6t5qa22kKAigrYemsYMADGjElf1zzfeuu0NHXePHj+eXjuufTn7bfD2rXpHJ06wfbbrx+8BgzwHwMkSWpGRXWwQgjjgF8A7YE/xBgvqff+EODPwJbVx5wXY7y1sXPawVJZiRFOPjmNbr/mmhS61Ki33korLGsC19SpKRO0awe77loIXPvvnzJGSVm+fP2w1FB4Wrgw3bBWX/fu6wel2o+a1yoq0uZkm2vVqtQyrAlcNX+++mrhmL596waunXeGHXZwp2lJkjai2ZcIhhDaAzOBQ4FKYApwXIxxeq1jLgeejjH+NoQwBrg1xjissfMasFR2Vq2Cj340TRW89960S6822fLl64+Gf++99N7229cdnDFoUDMUsHZtup9pU5bovfvu+p9v3z5tEtZQUKr/6N69Gb6BTfDmm3UD13PPpWkly5en90OA7bZbP3gNH+6kEkmSqrVEwNoHuDDGeFj1828AxBh/UOuY3wOzY4w/rD7+JzHGfRs7rwFLZemNN9INRkuXpqC13XZ5V1S2Vq9OXa2awPXww2lDZIBtt627F9eIERtY7RZj+tCmLNFbvDgdX1+vXg2HpfrP+/YtzxBSVQVz5qwfvGbNSu9Bukluxx3XD179+uVbuyRJOWiJgHUUMC7GeEr18xOBvWOMp9c6ZgBwJ9Ab6AYcEmN8soFzTQQmAgwZMmSPeTVjyKRy8tJLaapgRUVqw/TunXdFrcK6den3/gcegEfuX81/Jy+k09LX2ZrXGd3zdfYa/Brb93mdIZ1ep+eK1wk1AWrlyvVP1rFj42Gp5nn//m13AseKFTB9+vrBa/HiwjFbb73+vV3bbw9duuRXtyRJzawlAtbRwGH1AtZeMcYzah1zdvU1flLdwboS2DHGWLWh89rBUll78EE45JA0seGOO9KgATUuxtT525Qlem+80eApltCX19maJR22hv5b033E1my16wAG7r417QfWCk+9ezvgoakWLlz/3q5p09ISWUhdvFGj1g9eQ4f6dy5JahVaYopgJTC41vNBwIJ6x3wBGAcQY3w0hNAF6AcsKuK6Uun60IfgyivT6PZTT4Wrrmq7v1zWjB/f2BK9DY0f79KlEIxGjUrrAhvoOsWKrXj39c48VWsvrpcmA5PT3IZ99y0sK9xrL5ssTda/Pxx6aHrUWLs2LSmsHbyeeAKuv75wTM+eaZlh/eDVakZGSpJUVzEdrA6kIRcHA6+ShlwcH2OcVuuY24DrY4x/CiFsD9wDDIyNXNQOllqFCy+E73wHLr4YvvnNvKvJTv3x442Fp42NH9/Y/U09ezY5nL72Wt29uJ5/Pr3eqVPaf6smcO2zD/ToUcTfhxq2bFnqbtXveL31VuGYIUPWv7fLvbskSSWsRTYaDiF8DPg5aQT7VTHGi0MIFwFTY4yTqicHXgF0ByLwfzHGOxs7pwFLrUKMqYv1t7/BddfBMcfkXVHjGho/3lB42pTx442Fp6aOHy/Sm2/WHQ3/5JPp22jfHnbbre5o+L59W7y8tiFGqKxc/96u//53/b276gcv9+6SJJWAFglYzcGApVZj1ap0P9aUKXDffald0pJqxo9vyhK9DY0f32qrjU/Ry3P8eBO9+26aQ1ITuB5/vHAr0Y471p1UuM02+dba6q1enUJW/eBVe++uPn3WX2K4ww5l93MnSSpvBiypFCxZkiYLLluWxrcPH17c+eqPH28sPG1s/PjGluiV6/jxJli1KuXg2qPhazLndtvV3Ytr221tprSImr27agev55+vu3fX8OHrB6/ttmszP7eSpJZlwJJKxcyZKWT175/aJltuuf4xq1cXBkJsLDxtyvjxxja7bavjxzfD2rXwzDOFwPXgg+n3fYCBA+sGru23N3C1mKoqmDt3/Xu7Xnqp7t5dO+ywfvCqqMi1dElS+TNgSaVk8uQ0fW3PPdNYu/rhaQPjx+nTp+GgVP+13r2hXbuW/Z7akKoqePHFQuCaPDn954O05+7++xcC1y675HKbWdu2cmXau6t28Gpo767693a5d5ckaTPArMfxAAAgAElEQVQYsKRS85e/wCmnpHZHTUBqLDxttRV07px31WpAjDB7diFwPfBAeg5pKuF++xUC19ix/mfMzcKF69/bNX06vPdeer9m7676wcu9uyRJDTBgSaVo9eq0nM9f3lqdV1+tOxp+WvWGFV26rD8avlu3fGtt02r27qofvObMKRzTo0cKW7WD1047Nby8V5LUZhiwJClHS5bAQw8VAtfTT6elhh06wB57FALXfvulFZ7K2TvvwAsvrB+8au/dNXjw+vd2jR7t3l2S1EYYsCSphCxbVnc0/BNPpIZmCOn39Nqj4bfeOu9qBaS1oK++uv5QjRdfLOzd1bFjuperfvDaZhs71ZLUyhiwJKmErVyZQlbNlMJHHilMIB81qu6kwqFD861V9axeDTNmrB+8KisLx/Tps/69Xe7dJUllzYAlSWVkzZq0jLD2aPia1WmDB9cNXKNH2xwpSUuX1t2767nn0rLD2ht5b7fd+sHLvbskqSwYsCSpjFVVpd/Na8LW5MlpKB6kLZ323z9trda5c/YPx8xnqGbvrvqbJs+cuf7eXfWDl3t3SVJJMWBJUisSYxp+V9PhevTR1OFatarwyEq7ds0T3Bp6dOq0ace1um3eVq5M93LVX2ZYk6IhJej693aNGePeXZKUEwOWJLUhMaZlhrUDV3M+Vq/e+DFr1mT3/XXo0HKhb1MezbbbwqJF608ynDatsHdXu3bpJr36wWvo0FaYQiWptBiwJEm5qqratCDWko+aVXlZaLFA12EdWy6ZRa9Xnqf7nOfo9vLzdJ75HB1fmf1+LbFHD8KOO64fvNy7S5IyY8CSJKmetWtbtou3KY+m6s477MA0duJ5dua59//sw9L3j1nQYTCzuuzEy913Zl6PnXhly51Z1Hs0Hbp2rBPiKipgyJA0UGXIkPTo1SuDv3BJakUMWJIklbjMl3a+F+ny5gIqXnuO/oufZ+CS5xi09HkGvvMiHWNas7kmdGR25+2Z0XEnpndIseyuZXuzeF2fOrX17FkIWw09ttnGPZYltS0GLEmSlKxenSYX1h+qMX8+ALFdO9bsuhcLdx/Pf7cdz7Md9uCVyna88grvP954o+4p27VLIauxELbllm4pIKn1MGBJkqTGLV2awtZ998Ftt8GUKamtVlEBhx0G48alP/v1Y/nylMdeeaXwZ/3H6tV1T9+9e+MBbODANElSksqBAUuSJG2exYvhzjtT2LrjDliyJLWg9twTxo9Pj7FjG9wYuaoqfbyh4FXzWLSo7mdCgAED1g9ete8F69vXLpik0tAiASuEMA74BdAe+EOM8ZJ67/8M+Ej10y2ArWKMjY40MmBJklQC1q2DJ5+E229Pgevxx1N3q2/f1NUaPx4++lHYaqtNPuXKlVBZ2XgIq5lIX6Nr18a7YIMGuTWYpJbR7AErhNAemAkcClQCU4DjYozTN3D8GcBuMcbPN3ZeA5YkSSXojTcK3a3bb0/tqhBgjz0K3a299mqwu7WpYkxNs8YC2Ouvr/+5/v0bD2EVFXbBJBWvJQLWPsCFMcbDqp9/AyDG+IMNHP8I8O0Y412NndeAJUlSiauqgqeeKnS3HnssvdanT+pqjR+fulz9+2d+6VWrCl2whu4FmzcPVqyo+5nOnRsPYIMHp06ZJDWmJQLWUcC4GOMp1c9PBPaOMZ7ewLFDgceAQTHGdQ28PxGYCDBkyJA95s2b16SaJElSDt58E+66q9DdWrgwvb777oXu1t57Q4cOzV5KjGl2R2NdsAUL0nG11ewFtqEA1r9/mpwoqe1qiYB1NHBYvYC1V4zxjAaOPZcUrtZ7rz47WJIklbGqKnjmmULYevTRdD/XllvCoYemsDVuXJpukZM1a+DVVzccwObNg3ffrfuZjh3rDt9o6NGtWz7fj6SWsakBq5h/SqoEBtd6PghYsIFjjwW+XMS1JElSOWjXLnWudt8dzj8/tZPuvrsQuG68MR23666F7tY++7RId6tGx44wbFh6NCRGePvtDQew++5LAa2qqu7n+vRpPIBtvXVRt6hJKhPFdLA6kIZcHAy8ShpycXyMcVq940YDdwDbxk24mB0sSZJaqRjh2WcLYevhh1N3q1cvOOSQQndr4MC8K92otWvTUsOa0NXQ/WBvvVX3Mx06pKmHjS1F7Nkzn+9H0sa11Jj2jwE/J41pvyrGeHEI4SJgaoxxUvUxFwJdYoznbco5DViSJLURb79dt7v16qvp9Z13LnS39t03tZzK0LJlG96U+ZVX0rCOtWvrfmbLLRvfF2ybbVq02SepFjcaliRJ5SNGeP75wmTChx5K6aNHj0J3a/z41AJqJdatS2PnGxvI8eabdT/Trl1q8DW2FLFXL8fSS83BgCVJksrXsmVwzz0pbN12W2r3AOy4YyFs7bcfdOqUb53N7N13G++CzZ+fhnbU1qNH4wFs4MCybQpKuTJgSZKk1iFGmDat0N168MGUKrp3h4MPLgSuIUPyrrTFVVWlqfj1Q1ft54sX1/1MCGmpYWMhrHdvu2BSfQYsSZLUOr3zDtx7b6G79cor6fUxYwpha//90w7DYsWKwubMG3qsWlX3M926NX4v2KBB/vWq7TFgSZKk1i9GePHFQnfrgQdg9eqUEA46qBC4NjSTXcSYulyNBbCavaNr23rr9UNY//7QtStssUV6NPR1165u2qzyZMCSJEltz7vvpo2qarpbc+em1z/wgULYOuAA2y+b6b33Nt4FW7ly08/XufOGA1j9MFbM+506udRR2TFgSZKkti1GmDGj0N2aPDmthdtiC/jIRwqBa/jwvCstezHCG2+kTtjKlemxYkV6bOzrTTl2xYr1N3beFO3abXoYKzbYuYl062fAkiRJqm35crj//kJ3a/bs9PqoUXW7W1275lqm1hdjmmuSdXBr6Nj33mtajZ06NS2sbW6w69LFrlxeDFiSJEkbEiPMmlUIW/ffn36z7toVDjywELhGjMi7UrWwqqr0o5B1cKv/9fLlaS+0zRVC+jFt7uWVXbvmNM5/yRKYOTP9A8gJJ+RQwIYZsCRJkjbVypV1u1uzZqXXR4wohK0Pfzj95illpHZXrrm7c03RoUPzdOG6hRX0XDSLLSpn0mX+TDq+PIPw0swUrGrvrv3GG9CnTzZ/2RkwYEmSJDXVrFmFe7fuuy/9ltqlSwpZNYFr5EjXaqksxJi6cs21rLL21zUbX7djHUOZxyhmMoqZjGbG+18P5ZU69VUykFntRjGn42he6TKKV7uN4vWeo7jmseF071U6N7cZsCRJkrKwcmUa/17T3Zo5M70+fHghbB14YBoNL7UlNTP+Z1Z3n2bMoGrGTOKMmbSbPYuwevX7h67t1pPlA0ezbMBollaMYkmfUSzsNYrXuo/k7XXdGwxuN96Y7m0rFQYsSZKk5jB7dqG7de+96TfBzp3TgIyawDV6tN0ttR7Ll8NLL70fot4PVDNnwltvFY7r2DEtqx01Kv0/MGpU4euKirL/f8KAJUmS1Nzeew8efLDQ3frvf9Prw4YVwtZHPgLdu+daprRRa9emfeNqdaPe/7qysu6xgwc3HKKGDEk3brVSBixJkqSWNnduobt1zz3pX/47dYIPfagQuLbfvuz/JV9lKkZYuLDhEPXyy4UbqAC23DKFpvohasSINjvsxYAlSZKUp1Wr4KGHUti6/XaYNi29PmRIClrjxsHBB0OPHvnWqdbnnXc2vKRv2bLCcZ07b3hJX9++/kNAPQYsSZKkUvLKK4Xu1t13w7vvpntW9t+/0N3aYQd/qdWmWbMG5sxpOEQtWFA4LoQU6hsKUYMHQ/vSmdJX6gxYkiRJpWr1anj44UJ36/nn0+uDBhW6W4ccAj175lun8hUjvPZaw0v6Zs9O903V6Nt3/RA1alTqUHXtmt/30IoYsCRJkspFZWWhu3XXXWmJV4cOsN9+he7WTjvZ3Wqtli1rOETNnJk6nTW6dEn7r9UPUaNGpYClZmXAkiRJKkdr1sAjjxS6W88+m14fODB1tsaNg0MPhV698q1Tm2f16tR1qh+iZsxIgydqhJCmUDa0pG/QIGjXLrdvoa1rkYAVQhgH/AJoD/whxnhJA8d8GrgQiMCzMcbjGzunAUuSJKmWBQvqdrfefjvdN7PvvoXu1i672N0qBTHCq6823I2aMwfWrSscW1HRcIgaPjx1qlRymj1ghRDaAzOBQ4FKYApwXIxxeq1jRgI3AAfFGJeGELaKMS5q7LwGLEmSpA1YswYee6zQ3Xr66fT6gAF1u1u9e+dbZ2v31lsbXtK3YkXhuK5dGw5RI0f636gMtUTA2ge4MMZ4WPXzbwDEGH9Q65gfATNjjH/Y1PMasCRJkjbRa6/BHXekwHXnnekX//bt4YMfLHS3dt3VZWVNsWpV2huqoSV9ixcXjmvXDrbddv37okaPhm228e++FWmJgHUUMC7GeEr18xOBvWOMp9c65p+kLtd+pGWEF8YYb2/gXBOBiQBDhgzZY968eU2qSZIkqc1auxYef7zQ3XryyfR6//6F7tZHPwp9+uRbZympqkoDRhrqRM2dm96v0b9/wyFq+PC0mbRavZYIWEcDh9ULWHvFGM+odcwtwBrg08Ag4EFgxxjjWxs6rx0sSZKkDCxcWLe79eabqZuy996F7tbuu7eNDsubbza8pO+ll2DlysJx3bpteEmfQ0XavE0NWB2KuEYlMLjW80HAggaOeSzGuAaYE0KYAYwk3a8lSZKk5tK/P5x0UnqsWwdPPFHobn3723DBBbDVVnDYYYXuVr9+eVfddO+9B7NmNbyk7403Cse1b5+6TqNHp73GageqAQMcFqKiFdPB6kBa/ncw8CopNB0fY5xW65hxpMEXnw0h9AOeBnaNMb7R0DnBDpYkSVKzW7QodbVuuy11ud54IwWLvfYqdLfGji297ta6dTB/fsMh6pVX0hS/GgMGNLykb9ttoWPH/L4Hla2WGtP+MeDnpPurrooxXhxCuAiYGmOcFEIIwE+AccA64OIY43WNndOAJUmS1ILWrYOpUwvdrSeeSEGlX79Cd+uww9JY8ZYQYwp8Dd0X9dJLafhEjR49Gg5RI0em96QMudGwJEmSNt+SJXW7W4sXp+7W2LGF7taee6aldsVYsWLDS/qWLi0c16EDbLfd+vdFjRqVlkG6pE8txIAlSZKk4lRVpWmENd2txx9Pr/Xpk+7ZGj8+dbf692/48+vWwbx5DYeo+fPrHjtwYMMhatiwFLKknBmwJEmSlK033oC77ioErkWL0ut77JHC1tChaRlfTYh6+WVYvbrw+V69Gl7SN2IEdO+ez/ckbSIDliRJkppPVRU8/XQhbD36aHqtU6cUmOqHqFGj0n1cLulTmTJgSZIkqeUsXZoeQ4cWf3+WVIJaYh8sSZIkKendOz2kNq7ENjeQJEmSpPJlwJIkSZKkjBiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMmLAkiRJkqSMGLAkSZIkKSMGLEmSJEnKiAFLkiRJkjJiwJIkSZKkjBQVsEII40IIM0IIs0II5zXw/skhhMUhhGeqH6cUcz1JkiRJKmUdmvrBEEJ74DLgUKASmBJCmBRjnF7v0OtjjKcXUaMkSZIklYViOlh7AbNijLNjjKuB64AjsilLkiRJkspPMQFrIDC/1vPK6tfq+1QI4bkQwt9DCIMbOlEIYWIIYWoIYerixYuLKEmSJEmS8lNMwAoNvBbrPf83MCzGuDNwN/Dnhk4UY7w8xjg2xji2oqKiiJIkSZIkKT/FBKxKoHZHahCwoPYBMcY3Yoyrqp9eAexRxPUkSZIkqaQVE7CmACNDCNuGEDoBxwKTah8QQhhQ6+kE4MUiridJkiRJJa3JUwRjjGtDCKcDdwDtgatijNNCCBcBU2OMk4CvhBAmAGuBN4GTM6hZkiRJkkpSiLH+bVP5Gjt2bJw6dWreZUiSJEnS+0IIT8YYx27suKI2GpYkSZIkFRiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMmLAkiRJkqSMGLAkSZIkKSMGLEmSJEnKiAFLkiRJkjJiwJIkSZKkjBiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpI0UFrBDCuBDCjBDCrBDCeY0cd1QIIYYQxhZzPUmSJEkqZU0OWCGE9sBlwHhgDHBcCGFMA8f1AL4CPN7Ua0mSJElSOSimg7UXMCvGODvGuBq4DjiigeO+C/wIeK+Ia0mSJElSySsmYA0E5td6Xln92vtCCLsBg2OMtxRxHUmSJEkqC8UErNDAa/H9N0NoB/wM+NpGTxTCxBDC1BDC1MWLFxdRkiRJkiTlp5iAVQkMrvV8ELCg1vMewI7A/SGEucAHgUkNDbqIMV4eYxwbYxxbUVFRREmSJEmSlJ9iAtYUYGQIYdsQQifgWGBSzZsxxrdjjP1ijMNijMOAx4AJMcapRVUsSZIkSSWqyQErxrgWOB24A3gRuCHGOC2EcFEIYUJWBUqSJElSuehQzIdjjLcCt9Z77YINHHtgMdeSJEmSpFJX1EbDkiRJkqQCA5YkSZIkZcSAJUmSJEkZMWBJkiRJUkYMWJIkSZKUEQOWJEmSJGXEgCVJkiRJGTFgSZIkSVJGDFiSJEmSlBEDliRJkiRlxIAlSZIkSRkxYEmSJElSRgxYkiRJkpQRA5YkSZIkZcSAJUmSJEkZMWBJkiRJUkYMWJIkSZKUEQOWJEmSJGXEgCVJkiRJGSkqYIUQxoUQZoQQZoUQzmvg/f8NITwfQngmhPBQCGFMMdeTJEmSpFLW5IAVQmgPXAaMB8YAxzUQoK6JMe4UY9wV+BHw0yZXKkmSJEklrpgO1l7ArBjj7BjjauA64IjaB8QYl9V62g2IRVxPkiRJkkpahyI+OxCYX+t5JbB3/YNCCF8GzgY6AQc1dKIQwkRgIsCQIUOKKEmSJEmS8lNMBys08Np6HaoY42Uxxu2Ac4H/19CJYoyXxxjHxhjHVlRUFFGSJEmSJOWnmIBVCQyu9XwQsKCR468DjiziepIkSZJU0ooJWFOAkSGEbUMInYBjgUm1DwghjKz19HDgpSKuJ0mSJEklrcn3YMUY14YQTgfuANoDV8UYp4UQLgKmxhgnAaeHEA4B1gBLgc9mUbQkSZIklaJihlwQY7wVuLXeaxfU+vrMYs4vSZIkSeWkqI2GJUmSJEkFBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMmLAkiRJkqSMGLAkSZIkKSMGLEmSJEnKiAFLkiRJkjJiwJIkSZKkjBiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMlJUwAohjAshzAghzAohnNfA+2eHEKaHEJ4LIdwTQhhazPUkSZIkqZQ1OWCFENoDlwHjgTHAcSGEMfUOexoYG2PcGfg78KOmXk+SJEmSSl0xHay9gFkxxtkxxtXAdcARtQ+IMd4XY1xR/fQxYFAR15MkSZKkklZMwBoIzK/1vLL6tQ35AnBbQ2+EECaGEKaGEKYuXry4iJIkSZIkKT/FBKzQwGuxwQNDOAEYC1za0PsxxstjjGNjjGMrKiqKKEmSJEmS8tOhiM9WAoNrPR8ELKh/UAjhEOB84MMxxlVFXE+SJEmSSloxHawpwMgQwrYhhE7AscCk2geEEHYDfg9MiDEuKuJakiRJklTymhywYoxrgdOBO4AXgRtijNNCCBeFECZUH3Yp0B24MYTwTAhh0gZOJ0mSJEllr5glgsQYbwVurffaBbW+PqSY80uSJElSOSlqo2FJkiRJUoEBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMmLAkiRJkqSMGLAkSZIkKSMGLEmSJEnKiAFLkiRJkjJiwJIkSZKkjBiwJEmSJCkjBixJkiRJyogBS5IkSZIyYsCSJEmSpIwYsCRJkiQpIwYsSZIkScqIAUuSJEmSMlJUwAohjAshzAghzAohnNfA+weEEJ4KIawNIRxVzLUkSZIkqdQ1OWCFENoDlwHjgTHAcSGEMfUOewU4GbimqdeRJEmSpHLRoYjP7gXMijHOBgghXAccAUyvOSDGOLf6vaoiriNJkiRJZaGYJYIDgfm1nldWvyZJkiRJbVIxASs08Fps0olCmBhCmBpCmLp48eIiSpIkSZKk/BQTsCqBwbWeDwIWNOVEMcbLY4xjY4xjKyoqiihJkiRJkvJTTMCaAowMIWwbQugEHAtMyqYsSZIkSSo/TQ5YMca1wOnAHcCLwA0xxmkhhItCCBMAQgh7hhAqgaOB34cQpmVRtCRJkiSVomKmCBJjvBW4td5rF9T6egpp6aAkSZIktXpFbTQsSZIkSSowYEmSJElSRgxYkiRJkpQRA5YkSZIkZcSAJUmSJEkZMWBJkiRJUkYMWJIkSZKUEQOWJEmSJGXEgCVJkiRJGTFgSZIkSVJGDFiSJEmSlBEDliRJkiRlxIAlSZIkSRkxYEmSJElSRgxYkiRJkpQRA5YkSZIkZcSAJUmSJEkZMWBJkiRJUkYMWJIkSZKUkaICVghhXAhhRghhVgjhvAbe7xxCuL76/cdDCMOKuZ4kSZIklbImB6wQQnvgMmA8MAY4LoQwpt5hXwCWxhhHAD8DftjU60mSJElSqSumg7UXMCvGODvGuBq4Djii3jFHAH+u/vrvwMEhhFDENSVJkiSpZHUo4rMDgfm1nlcCe2/omBjj2hDC20BfYEntg0IIE4GJ1U/fDSHMKKIuqZT1o97Pv1QEf56UFX+WlBV/lpSVUvxZGropBxUTsBrqRMUmHEOM8XLg8iJqkcpCCGFqjHFs3nWodfDnSVnxZ0lZ8WdJWSnnn6VilghWAoNrPR8ELNjQMSGEDkAv4M0irilJkiRJJauYgDUFGBlC2DaE0Ak4FphU75hJwGervz4KuDfGuF4HS5IkSZJagyYvEay+p+p04A6gPXBVjHFaCOEiYGqMcRJwJfCXEMIsUufq2CyKlsqYS2GVJX+elBV/lpQVf5aUlbL9WQo2lCRJkiQpG0VtNCxJkiRJKjBgSZIkSVJGDFhSCwghXBVCWBRCeCHvWlTeQgiDQwj3hRBeDCFMCyGcmXdNKk8hhC4hhCdCCM9W/yx9J++aVN5CCO1DCE+HEG7JuxaVtxDC3BDC8yGEZ0IIU/OuZ3N5D5bUAkIIBwDvAlfHGHfMux6VrxDCAGBAjPGpEEIP4EngyBjj9JxLU5kJIQSgW4zx3RBCR+Ah4MwY42M5l6YyFUI4GxgL9IwxfjzvelS+QghzgbExxlLbaHiT2MGSWkCM8QHcA04ZiDG+FmN8qvrrd4AXgYH5VqVyFJN3q592rH74r65qkhDCIOBw4A951yLlzYAlSWUqhDAM2A14PN9KVK6ql3Q9AywC7oox+rOkpvo58H9AVd6FqFWIwJ0hhCdDCBPzLmZzGbAkqQyFELoDNwFfjTEuy7selacY47oY467AIGCvEIJLmLXZQggfBxbFGJ/Muxa1GvvFGHcHxgNfrr7VomwYsCSpzFTfL3MT8LcY481516PyF2N8C7gfGJdzKSpP+wETqu+buQ44KITw13xLUjmLMS6o/nMR8A9gr3wr2jwGLEkqI9WDCa4EXowx/jTvelS+QggVIYQtq7/uChwC/DffqlSOYozfiDEOijEOA44F7o0xnpBzWSpTIYRu1UOcCCF0Az4KlNUUZgOW1AJCCNcCjwKjQwiVIYQv5F2TytZ+wImkfyF+pvrxsbyLUlkaANwXQngOmEK6B8vx2pLy1h94KITwLPAE8J8Y4+0517RZHNMuSZIkSRmxgyVJkiRJGTFgSZIkSVJGDFiSJEmSlBEDliRJkiRlxIAlSZIkSRkxYEmSJElSRgxYkiRJkpQRA5YkSZIkZcSAJUmSJEkZMWBJkiRJUkYMWJIkSZKUEQOWJEmSJGXEgKX/z96dx9lcvn8cf92Wsa8RRSEpwozGIPsSQvYI5ffNnjXaKUWLSigqLSJtCtlb0KbsZYiEJFu2LNl3Y+7fH7dZrHNmzMznnDnv5+NxHpzP+ZzzuY5mepzrXPd9XSIiIiIikkyUYImIiIiIiCSTDF4HcKEGDRrYffv2eR2GiIiIiIhIrOXLl8+11jZI6Dy/S7AAIiMjvQ5BREREREQkljHGp/P8bomgqlciIiIiIuKH8vlykt8lWCIiIiIiIoFKCZaIiIiIiEgy8cs9WCIiIiIiKe306dNs3LiR48ePex2K+JGsWbNSvHhxQkJCkvR8JVgiIiIiEpQ2btxI7ty5ufXWW0mXTgu7BKKjo9m9ezcbN26kVKlSSXoN/SSJiIiISFA6fvw4BQoUUHIlsdKlS0eBAgU4duwYy5Ytw1qb+NdIgbhERERERAKCkiu5ULp06TDGMH/+fDZt2pT456dATCIiIiIiIgEtJCSE3bt3J/p5SrBERERERDzw33//Ua5cOcqVK0fBggUpVKhQ7P3Tp0/79BodO3Zk/fr1Vzxn9OjRTJgwITlCDirGGM6ePZvo56nJhYiIiIiIB6655hpWrlwJwODBg8mePTuPPfbYeedYa7HWXnYp4/jx4xO8Tq9eva4+2FQWFRVFhgyBmaqogiUiIiIi4kf+/vtvypQpQ/fu3QkPD2fXrl1069aNiIgISpcuzfPPPx97brVq1Vi5ciVRUVHkzp2b/v37ExYWRuXKldmzZw8AAwcOZOTIkbHn9+/fn4oVK3LrrbeyePFiAI4dO8Y999xDWFgY7dq1IyIiIjb5i2/QoEFUqFAhNr6YJhB//fUXderUISwsjPDwcLZs2QLASy+9RNmyZQkLC+Ppp58+L2aAf//9l5tvvhmAsWPH0rZtWyZ+/wgAACAASURBVBo3bkzDhg05fPgwderUITw8nNDQUL766qvYOMaPH09oaChhYWF07NiRgwcPctNNNxEVFQXAwYMHKVasWJIqUFcrMNNCEREREZFk1K8fXCKfuCrlysG5vCbR1q5dy/jx43n33XcBeOWVV8ibNy9RUVHUrl2bVq1acdttt533nEOHDlGzZk1eeeUVHnnkET744AP69+9/0Wtba/n111+ZNWsWzz//PHPmzOHNN9+kYMGCTJ06lVWrVhEeHn7JuPr27ctzzz2HtZb77ruPOXPm0LBhQ9q1a8fgwYNp0qQJJ0+eJDo6mi+//JLZs2fz66+/kiVLFvbv35/g+16yZAkrV64kT548nDlzhpkzZ5IjRw727NlD1apVady4MatWrWLo0KEsXryYvHnzsn//fnLnzk3VqlWZM2cOjRs35rPPPuPee+8lffr0SfjXvzqqYImIiIiI+JnixYtToUKF2Puff/454eHhhIeHs27dOtauXXvRc7JkyULDhg0BKF++fGwV6UItW7a86JyFCxfStm1bAMLCwihduvQln/vDDz9QsWJFwsLC+Pnnn1mzZg0HDhxg3759NGnSBIDMmTOTNWtWvv/+ezp16kSWLFkAyJs3b4Lvu379+uTJkwdwieCTTz5JaGgo9evXZ9u2bezbt48ff/yRNm3axL5ezJ9dunSJXTI5fvx4OnbsmOD1UoIqWCIiIiIS9JJaaUop2bJli/37hg0bGDVqFL/++iu5c+emffv2nDx58qLnhISExP49ffr0scvlLpQpU6aLzvFl3tPx48fp3bs3K1asoFChQgwcODA2DmPMRedbay95PEOGDERHRwNc9D7iv++PP/6YQ4cOsWLFCjJkyEDhwoU5efLkZV+3Zs2a9O7dm3nz5pExY0ZKliyZ4HtKCapgiYiIiIj4scOHD5MjRw5y5szJrl27mDt3brJfo1q1akyePBmA1atXX7JCduLECdKlS0e+fPk4cuQIU6dOBSBPnjzky5ePL7/8EnBJ0/Hjx6lfvz7jxo3jxIkTALFLBIsWLcry5csBmDJlymVjOnToENdeey0ZMmTgu+++Y8eOHQDUrVuXiRMnxr5e/KWH7du35/777/esegVKsEREREQkORw6BOc+AEvyCg8P57bbbqNMmTJ07dqVqlWrJvs1+vTpw44dOwgNDWXEiBGUKVOGXLlynXfONddcwwMPPECZMmVo0aIFlSpVin1swoQJjBgxgtDQUKpVq8bevXtp3LgxDRo0ICIignLlyvH6668D8PjjjzNq1CiqVKnCgQMHLhvT//3f/7F48WIiIiL44osvKFGiBAChoaE88cQT1KhRg3LlyvH444/HPuf+++/n0KFDtGnTJjn/eRLF+FIOTE0RERE2MjLS6zBERERExFdnzkDFirBpEyxaBGXKeB2RT5YvX0758uW9DsMvREVFERUVRebMmdmwYQP169dnw4YNAdcqfeLEicydO9en9vVXsnz5cpYsWUJYWBjVq1cHwBiz3FobkdBzA+tfTERERET8z7BhrgVfrlzQqBEsXQrXX+91VJIIR48e5c477yQqKgprLe+9917AJVc9evTg+++/Z86cOZ7G4dO/mjGmATAKSA+Mtda+csHjrwO1z93NClxrrc1tjCkHvAPkBM4CQ6y1k5IreBERERHx2J9/wnPPwb33Qv/+UKMG3H03zJ8POXJ4HZ34KHfu3LH7ogLVO++843UIgA97sIwx6YHRQEPgNqCdMea8pvvW2oetteWsteWAN4Fp5x46DvzPWlsaaACMNMbkTs43ICIiIiIeOXsWOneG7NnhjTfg9tvhiy9g9WqXcF2mi51IWuZLk4uKwN/W2k3W2tPARKDZFc5vB3wOYK39y1q74dzfdwJ7gPxXF7KIiIiI+IW334bFi12P8wIF3LEGDeCdd2DOHOjZE/xsv79ISvNliWAhYFu8+9uBSpc60RhTBCgG/HiJxyoCIcDGSzzWDegGcOONN/oQkoiIiIh4assWGDDAJVTt25//WNeu7vGXXoJixdx5IkHClwrWxVO84HJfRbQFplhrz573AsZcB3wCdLTWRl/0YtaOsdZGWGsj8udXgUtERETEr1kLDz4IxsB777k/L/Tii3DfffDUU/DZZ6kfo4hHfEmwtgM3xLtfGNh5mXPbcm55YAxjTE7ga2CgtXZpUoIUERERET/y8cfw7bcwdChcbvWRMfDBB1CrFnTsCD//nKohBoJatWpdNDR45MiR9OzZ84rPy549OwA7d+6kVatWl33thEYfjRw5kuPHj8feb9SoEQcPHvQldLkCXxKsZUAJY0wxY0wILomadeFJxphbgTzAknjHQoDpwMfW2i+SJ2QRERER8cy//8LDD0O1atC9+5XPzZQJpk2D4sWheXNYty51YgwQ7dq1Y+LEiecdmzhxIu3atfPp+ddffz1TpkxJ8vUvTLC++eYbcucOnH501lqioy9aHOe5BBMsa20U0BuYC6wDJltr1xhjnjfGNI13ajtgoj1/cvG9QA2ggzFm5blbuWSMX0RERERSU+/ecPw4jB0L6Xz4rj5PHvjmG5dsNWzoEjQBoFWrVnz11VecOnUKgC1btrBz506qVasWO5cqPDycsmXLMnPmzIuev2XLFsqcG+p84sQJ2rZtS2hoKG3atOHEiROx5/Xo0YOIiAhKly7NoEGDAHjjjTfYuXMntWvXpnZtN22paNGi7Nu3D4DXXnuNMmXKUKZMGUaOHBl7vVKlStG1a1dKly5N/fr1z7tOjC+//JJKlSpx++23U7duXXbv3g24WVsdO3akbNmyhIaGMnXqVADmzJlDeHg4YWFh3HnnnQAMHjyY4cOHx75mmTJl2LJlS2wMPXv2JDw8nG3btl3y/QEsW7aMKlWqEBYWRsWKFTly5AjVq1dn5cqVsedUrVqV33//PVH/3RLi0xwsa+03wDcXHHv2gvuDL/G8T4FPryI+EREREfEXU6e628svw623+v68okXh66/djKzGjeGnn1xrd3/Sr58blpycypVzHRYv45prrqFixYrMmTOHZs2aMXHiRNq0aYMxhsyZMzN9+nRy5szJvn37uOOOO2jatCnmUvvdcDOgsmbNyu+//87vv/9OeHh47GNDhgwhb968nD17ljvvvJPff/+dhx56iNdee4158+aRL1++815r+fLljB8/nl9++QVrLZUqVaJmzZrkyZOHDRs28Pnnn/P+++9z7733MnXqVNpf0OSkWrVqLF26FGMMY8eO5dVXX2XEiBG88MIL5MqVi9WrVwNw4MAB9u7dS9euXZk/fz7FihVj//79Cf6zrl+/nvHjx/P2229f9v2VLFmSNm3aMGnSJCpUqMDhw4fJkiULXbp04cMPP2TkyJH89ddfnDp1itDQ0ASvmRi+LBEUERERkWB34AD06uVmXT36aOKfX748TJoEv/0G7dppRtY58ZcJxl8eaK3lqaeeIjQ0lLp167Jjx47YStClzJ8/PzbRCQ0NPS9pmDx5MuHh4dx+++2sWbOGtWvXXjGmhQsX0qJFC7Jly0b27Nlp2bIlCxYsAKBYsWKUK+cWpJUvX54tW7Zc9Pzt27dz1113UbZsWYYNG8aaNWsA+P777+nVq1fseXny5GHp0qXUqFGDYsWKAZA3b94rxgZQpEgR7rjjjiu+v/Xr13PddddRoUIFAHLmzEmGDBlo3bo1X331FWfOnOGDDz6gQ4cOCV4vsXyqYImIiIhIkHv0Udi3D2bPhowZk/YajRvD6NHQowc89JD7+2UqMqnuCpWmlNS8eXMeeeQRVqxYwYkTJ2IrTxMmTGDv3r0sX76cjBkzUrRoUU6ePHnF17pUdWvz5s0MHz6cZcuWkSdPHjp06JDg69grzC7LlClT7N/Tp09/ySWCffr04ZFHHqFp06b89NNPDB48OPZ1L4zxUscAMmTIcN7+qvgxZ8uWLcH3d7nXzZo1K/Xq1WPmzJlMnjw5wUYgSaEKloiIiIhc2Xffwfjx8OSTroJ1Nbp3hyeecMOI4+2xCVbZs2enVq1adOrU6bzmFocOHeLaa68lY8aMzJs3j61bt17xdWrUqMGECRMA+OOPP2L3FR0+fJhs2bKRK1cudu/ezezZs2OfkyNHDo4cOXLJ15oxYwbHjx/n2LFjTJ8+nerVq/v8ng4dOkShQoUA+Oijj2KP169fn7feeiv2/oEDB6hcuTI///wzmzdvBohdIli0aFFWrFgBwIoVK2Ifv9Dl3l/JkiXZuXMny5YtA+DIkSNEnauadunShYceeogKFSr4VDFLLCVYIiIiInJ5R4+6wcG33grPPJM8r/nyy9CmjUu0Jk1KntcMYO3atWPVqlW0bds29tj9999PZGQkERERTJgwgZIlS17xNXr06MHRo0cJDQ3l1VdfpWLFigCEhYVx++23U7p0aTp16kTVqlVjn9OtWzcaNmwY2+QiRnh4OB06dKBixYpUqlSJLl26cHsiEuvBgwfTunVrqlevft7+roEDB3LgwAHKlClDWFgY8+bNI3/+/IwZM4aWLVsSFhZGmzZtALjnnnvYv38/5cqV45133uGWW2655LUu9/5CQkKYNGkSffr0ISwsjHr16sVWwcqXL0/OnDnp2LGjz+8pMcyVSoBeiIiIsClRqhMRERGRJOjbF958ExYsgHgfzq/ayZNQrx78+it8/z0kokKSXJYvX0758uVT/brirZ07d1KrVi3+/PNP0l2mE+by5ctZsmQJYWFhsdU7Y8xya21EQq+vCpaIiIiIXNrixS656tUreZMrgMyZYeZMKFYMmjWD9euT9/VFLuHjjz+mUqVKDBky5LLJ1dVSgiUiIiIiFzt5Ejp3hhtugJdeSplr5M3rZmRlyOBmZF2hS55Icvjf//7Htm3baN26dYpdQwmWiIiIiFxsyBD4808YMwZy5Ei569x0E3z1lRtA3LSpG2KciuJ3qhOBq/+ZUIIlIiIiIudbtQpeeQUeeADuuivlr1exInz+OSxbBvfdB2fPpvw1cS27d+/erSRLYkVHR/Pvv/9y5syZJL+G5mCJiIiISJyoKOjUyS3fe+211Ltus2bwxhvQpw88/DCMGpXiM7KKFy/Oxo0b2bFjxyVnJklwOnPmDP/88w/WWtKnT5/o5yvBEhEREZE4r70GK1bAF1+4JCs19e4Nmze7GIoVc4lWCgoJCaFUqVJMmjSJPXv2kCdPnhRrfCCB5cyZM5w+fZoCBQok+rlKsERERETE+esvGDQIWrSAe+7xJoZhw2DrVnj0UbjxxlSJ4+6772b27Nns3LkTfxthJN4ICQmhZs2a3HTTTYl+ruZgiYiIiAhER0Pt2vD777B2LVx3nXexnDgBd94Jv/0GP/wAVap4F4vIOZqDJSIiIiK+e+89mD/fLc/zMrkCyJIFZs2CwoVdZ8ENG7yNRyQRlGCJiIiIBLt//oEnnoC6daFDB6+jcfLlg9mzXaOLRo1g716vIxLxiRIsERERkWBmLXTv7pYIjhmT4p37EuXmm10la/t2V8k6ccLriEQSpARLREREJJh99pmrFL30kuvc528qV4YJE+CXX6B9+1SbkSWSVEqwRERERILVnj3Qt69LYnr39jqay2vZ0u0NmzYNHn/c62hErkht2kVERESC1UMPwZEjMHYsJGGgaqrq18/NyHr9dSha1MUu4oeUYImIiIgEo5kzYdIkeOEFuO02r6PxzWuvuYYc/fq5GVnNm3sdkchFtERQREREJNgcPAg9e0JoqOseGCjSp3f7sSpWhPvuc/uyRPyMEiwRERGRYPPEE/DvvzBuHISEeB1N4mTN6joLXncdNGkCGzd6HZHIeZRgiYiIiASTH3+E99+Hxx6DiAivo0maa691nQ/PnnUzsv77z+uIRGIpwRIREREJFseOQdeubr7U4MFeR3N1brnF7SPbuhWaNYOTJ72OSARQgiUiIiISPJ59FjZtcl0Ds2TxOpqrV60afPIJLFoEDzzghiWLeEwJloiIiEgw+OUXGDkSuneHmjW9jib5tG4Nw4bB5MnQv7/X0YioTbuIiIhImnf6NHTuDNdfD0OHeh1N8nv0UTcja9gwNyOrZ0+vI5IgpgRLREREJK17+WVYswa++gpy5vQ6muRnDIwaBdu2QZ8+cMMNrsOgiAe0RFBEREQkLfvjDxgyBO6/H+6+2+toUk6GDPD55xAeDm3bQmSk1xFJkFKCJSIiIpJWnT0LnTpBrlxu/1Valy0bfPmla+N+991u2aBIKlOCJSIiIpJWjRoFy5bBm29CvnxeR5M6ChaEb75x+84aNYIDB7yOSIKMEiwRERGRtGjjRhg40O1FatPG62hSV6lSbkbWpk3QvDmcOuV1RBJElGCJiIiIpDXWuoHCGTPCO++4JhDBpkYN+PBDmD8fOnbUjCxJNeoiKCIiIpLWjB0L8+bBmDFQqJDX0XinXTvYuhUGDHDt2196yeuIJAgowRIRERFJS3bsgMceg9q1oUsXr6Px3pNPumYXL7/skqxu3byOSNI4JVgiIiIiaYW10KMHnDnjqlfBuDTwQsbA6NGwfbsbQFy4sGt+IZJCfNqDZYxpYIxZb4z52xjT/xKPv26MWXnu9pcx5mC8xx4wxmw4d3sgOYMXERERkXgmT3Ztyl94AW6+2eto/EeGDDBpEoSGwr33wooVXkckaZix1l75BGPSA38B9YDtwDKgnbV27WXO7wPcbq3tZIzJC0QCEYAFlgPlrbWX7ZcZERFhIzUYTkRERCRx9u2D225zy+AWL3ZJhZxv506oXNm1cF+6FIoU8ToiCSDGmOXW2oiEzvOlglUR+Ntau8laexqYCDS7wvntgM/P/f0u4Dtr7f5zSdV3QAMfrikiIiIiidGvHxw8CB98oOTqcq6/3s3IOnHCLRM8eDDh54gkki8JViFgW7z7288du4gxpghQDPgxMc81xnQzxkQaYyL37t3rS9wiIiIiEuPrr2HCBHjqKShTxuto/Fvp0jBtGmzYAC1bumqWSDLyJcG61O7Iy60rbAtMsdaeTcxzrbVjrLUR1tqI/Pnz+xCSiIiIiABw+DB07+4ShwEDvI4mMNSpA+PGuVb2Xbq45iAiycSX+vF24IZ49wsDOy9zblug1wXPrXXBc3/yPTwRERERuaL+/V1r9ilTIFMmr6MJHP/3f25G1jPPuH1rzz/vdUSSRvhSwVoGlDDGFDPGhOCSqFkXnmSMuRXIAyyJd3guUN8Yk8cYkweof+6YiIiIiFyt+fPhnXfc/qtKlbyOJvA8/TR07uy6Ln7wgdfRSBqRYAXLWhtljOmNS4zSAx9Ya9cYY54HIq21MclWO2CijdeW0Fq73xjzAi5JA3jeWrs/ed+CiIiISBA6ccItb7vpJpcgSOIZ4xLUbdvcAOJCheCuu7yOSgJcgm3aU5vatIuIiIj44Mkn4dVX4Ycf3J4iSbrDh6F6ddi0CRYuhLAwryMSP5ScbdpFRERExJ9ERsLw4a6CpeTq6uXM6dq3584Nd98N27d7HZEEMCVYIiIiIoHkzBm3b6hAARg2zOto0o5ChVy7+8OH3YysQ4e8jkgClBIsERERkUDy6qvw++9u71Du3F5Hk7aEhsLUqbBuHbRq5ZJZkURSgiUiIiISKNatc+3E27SBZs28jiZtqlcP3n8fvv/eNb7ws34F4v98mYMlIiIiIl47e9YtDcyeHd54w+to0rYOHWDLFnjuOShWDJ591uuIJIAowRIREREJBKNHw5Il8MkncO21XkeT9g0a5JKsQYOgSBF44AGvI5IAoQRLRERExN9t2QIDBkDDhnD//V5HExyMgTFjXEfBLl2gcGG4806vo5IAoD1YIiIiIv7MWrcXKF06ePdd98FfUkdIiGt6UbIktGwJq1d7HZEEACVYIiIiIv7so4/gu+9c98Abb/Q6muCTK5ebkZU9u2vfvmOH1xGJn1OCJSIiIuKvdu2Chx+G6tXhwQe9jiZ43XCDm5F18KAbRHzkiNcRiR9TgiUiIiLir3r3hhMnYOxYt0RQvFOuHHzxBfzxB7RurRlZcln6TRURERHxR1OnwrRprlX4Lbd4HY0ANGjg9sHNnQs9e2pGllySugiKiIiI+Jv9+6FXLwgPh0cf9Toaia9LF9fVccgQNyPrqae8jkj8jBIsEREREX/z6KPw33+uUpJBH9f8zgsvuCTr6afdjCy1zpd49BsrIiIi4k/mzoUPP3Qf3sPCvI5GLsUYGDfOdRTs2BGuvx5q1/Y6KvET2oMlIiIi4i+OHHEzr0qWhIEDvY5GriRTJrdHrkQJaNEC1q71OiLxE0qwRERERPzF00/Dtm2ua2DmzF5HIwnJk8fNyMqSxc3I2rXL64jEDyjBEhEREfEHixbBW2+51uxVq3odjfiqSBH46ivYtw8aN4ajR72OSDymBEtERETEaydPuu50N94IL73kdTSSWOXLw+TJsHIltG0LUVFeRyQeUoIlIiIi4rUXXoA//4QxYyB7dq+jkaRo1Ajefhu+/hr69NGMrCCmLoIiIiIiXlq5EoYOhQ4doH59r6ORq/Hgg7B5s/vvWawYPPGE1xGJB5RgiYiIiHglKgo6dYJ8+WDECK+jkeTw0kuwdSs8+aRb8tm2rdcRSSpTgiUiIiLilREj4LffYMoUyJvX62gkOaRL5+aY7dgBDzwAhQpB9epeRyWpSHuwRERERLzw118waBDcc4+7SdqRKRPMmOGWCTZr5vbXSdBQgiUiIiKS2qKjoXNnNz/prbe8jkZSQt68MHs2ZMzoGmDs3u11RJJKlGCJiIiIpLZ334WFC+H116FgQa+jkZRSrJibkfXvv9CkCRw75nVEkgqUYImIiIikpn/+cQ0Q6tVze3QkbatQASZOhOXL4b774OxZryOSFKYES0RERCS1WAvdu7s/x4wBY7yOSFJD06bwxhswaxb066cZWWmcugiKiIiIpJYJE9y+nFGjoGhRr6OR1NSrl5uRNWKEWzr4yCNeRyQpRAmWiIiISGrYvRv69oUqVdyHbQk+r77qZmQ9+qibkdWqldcRSQpQgiUiIiKSGh56CI4ehbFjIX16r6MRL6RLB598Ajt3Qvv2cP31LuGWNEV7sERERERS2owZMHkyPPsslCrldTTipcyZYeZMV8Fq2hQ2bPA6IklmSrBEREREUtLBg9CzJ4SGwhNPeB2N+IN8+dxePGOgYUPYu9friCQZKcESERERSUmPPw579sAHH7ihsyIAxYvDl1/Cjh2uknXihNcRSTJRgiUiIiKSUn74we25euwxKF/e62jE39xxB3z2GfzyC9x/v2ZkpRE+JVjGmAbGmPXGmL+NMf0vc869xpi1xpg1xpjP4h1/9dyxdcaYN4zRwAcREREJAseOQdeuUKIEDBrkdTTir1q0gNdfh+nTXSIuAS/BLoLGmPTAaKAesB1YZoyZZa1dG++cEsAAoKq19oAx5tpzx6sAVYHQc6cuBGoCPyXnmxARERHxO8884+Ye/fwzZMnidTTiz/r2dT8rI0e6+Wh9+3odkVwFX9q0VwT+ttZuAjDGTASaAWvjndMVGG2tPQBgrd1z7rgFMgMhgAEyAruTJ3QRERERP7V0qfuw3KMH1KjhdTQSCEaMgH/+gYcfdh0GW7TwOiJJIl+WCBYCtsW7v/3csfhuAW4xxiwyxiw1xjQAsNYuAeYBu87d5lpr11192CIiIiJ+6tQp6NwZCheGV17xOhoJFOnTw6efQsWKcN99LkmXgORLgnWpPVP2gvsZgBJALaAdMNYYk9sYczNQCiiMS8rqGGMu+hrHGNPNGBNpjIncqzaVIiIiEshefhnWroV334WcOb2ORgJJ1qyus2ChQtCkCWzc6HVEkgS+JFjbgRvi3S8M7LzEOTOttWestZuB9biEqwWw1Fp71Fp7FJgN3HHhBay1Y6y1EdbaiPz58yflfYiIiIh4b/VqGDIE2reHRo28jkYCUf788M03EB3tZmTt2+d1RJJIviRYy4ASxphixpgQoC0w64JzZgC1AYwx+XBLBjcB/wA1jTEZjDEZcQ0utERQRERE0p6oKOjUCfLkcV3hRJLqlltg1iy3J6t5czh50uuIJBESTLCstVFAb2AuLjmabK1dY4x53hjT9Nxpc4H/jDFrcXuuHrfW/gdMATYCq4FVwCpr7Zcp8D5EREREvDVqFERGwptvQr58Xkcjga5qVfjkE1i0CP73P1fRkoBgrL1wO5W3IiIibGRkpNdhiIiIiPju778hNBTq1YMZM0BjPyW5jBjh5mM99hgMG+Z1NEHNGLPcWhuR0Hm+tGkXERERkcux1g0UDgmBd95RciXJ65FH3Iys4cPdjKxevbyOSBKgBEtERETkarz/Pvz0k/vz+uu9jkbSGmPc8tN//oGHHnIzspo08ToquQItERQRERFJqu3boXRpKF8efvhB1StJOceOQa1abgTATz9BhQpeR3RF0dEu5EOH4m6HD/t+//Bhl1Nmzuz1O4mjJYIiIiIiKcla6NEDzpxx1SslV5KSsmWDr76CO+6Axo3dIOJixVLkUmfOxCU7iUmK4t8/fNj9ilxJunRuVFyuXO6WMydcdx2ULOn+fvZsiry9FKcES0RERCQpJk1yH3hHjIDixb2ORoJBgQIwezZUqeLmrC1aBHnzxj5sLZw4celqUGKSpBMnEg4lU6a4pCgmQbr55ri/X/jYpe5ny5Y2v5fQEkERERGRxNq3D0qVgptugsWLIX16ryOSABcdDUeOXHnJXMzfC/41nyd/qMeaHHfQrci37DuSKfbxqKiEr5U9u+9J0OXuZ8qU8v8m/kZLBEVERERSSt++7tPsuHFKroTTp33fV3S5x44cSfg66dPHJDk1OFL4I4b+047h+zrwfq0J5MydzqckKUcO/cimNCVYIiIiIonx1Vfw2WcweDCUKeN1NHIVrHWNGJKaFMXcP3ky4Wtlznxx0nPddYmrHGXNGn9JXVsYupUao8bSDgAAIABJREFU/ftT48ai8PLLKfgvJYmhBEtERETEV4cPQ/fuLrEaMMDraILa2bO+J0JXasSQUCMFY1zVJ37Skz+/22/k63K6nDndmLRk98QTbkbWK6+4GVkPPpgCF5HEUoIlIiIi4qsnn4Rdu2DatBT6xBwcTp68uuV0hw65ylNCMmQ4P+HJlcvlIYnZc5Q9u+t255eMgbfegm3boGdPuOEG1/xCPKUES0RERMQXP/8M774Ljz4KFSt6HY3fWb0a5szxLUk6fTrh18ua9eKkp3DhxDViyJw5bXapO0+GDK6jZc2acO+97ue0fHmvowpq6iIoIiIikpDjxyEszLV6W73affoXwO1jev996NPHJU4xs40S053uwsdy5ICMGb1+ZwFm1y43I+v0aTcjq0gRryNKc9RFUERERCS5DB4Mf/8NP/6o5CqeEyfcyrQPP4T69d2fBQsGQdXIH113HXzzDVStGjcjK3dur6MKSv66olRERETEP0RGumHCXbtC7dpeR+M3Nm1y824//BCefdZ9tr/uOiVXnipdGqZPhw0boEULOHXK64iCkhIsERERkcs5fRo6dXJlmWHDvI7Gb3z1ldvms2ULfP01PPecZiv5jdq14YMP4KefoEsXt4ZTUpUSLBEREZHLefVVt+fq3Xfd5qAgd/YsPPMMNGkCxYrBihVqWueX2reHF1+ETz915UVJVdqDJSIiInIpa9fCCy9A27Yuowhy+/bB/ffDt9+6ot5bb0GWLF5HJZf11FOuxPjii67hRZcuXkcUNJRgiYiIiFzo7Fno3Nm1sxs1yutoPLdsGbRqBbt3u46B+qweAIyBt992M7K6d3czsu66y+uogoKWCIqIiIhc6K23XKvrUaPg2mu9jsYz1sJ770G1au7z+qJFSq4CSsaM8MUXUKaMy5BXrvQ6oqCgBEtEREQkvs2b3fKqRo3gvvu8jsYzx49Dx46u+FGnDixfrvm1ASlHDteJJHduuPtuV9GSFKUES0RERCSGtdCtm2uJ9+67QdtzfONG14L9449h0CD3+fyaa7yOSpKsUCHXR//oUffFwaFDXkeUpinBEhEREYkxfjx8/73rHnjDDV5H44kvv3SVqn/+cYnV4MGQTp8YA1/ZsjB1Kvz5p1suePq01xGlWfp1EREREQHYuRMeeQRq1HBVrCBz9iwMHAhNm0Lx4m5JYMOGXkclyapuXRg71n2J0K2bZmSlEHURFBEREbEWevWCU6dcm7wgK9ns3eu2m33/vWue+NZbkDmz11FJinjgAde+ffBgN8xs0CCvI0pzlGCJiIiITJ0KM2bA0KFwyy1eR5Oqfv3VrRjbs8cVNzp39joiSXHPPhuXZBUpAh06eBxQ2hJcX8+IiIiIXGj/fle9Kl/eLREMEtbCO++4Fuzp08PixUqugoYxrv9+3brQtasrXUqyUYIlIiIiwe3hh12SNW4cZAiOxT3Hj7uVYj17Qr16br9VeLjXUUmqCgmBKVOgVCm45x5YvdrriNIMJVgiIiISvObMcb3I+/eHsDCvo0kVf/8NlSvDp5/Cc8+5roF583odlXgiVy7XKjJ7dte+fccOryNKE5RgiYiISHA6cgQefBBKlnTt84LArFkQEQHbt7uxSM8+G3T9PORCN9zgkqyDB90g4sOHvY4o4OlXSkRERILTU0/Btm1uaWCmTF5Hk6KiotzbbdYMbr7ZLQls0MDrqMRvlCvnlgv+8Qfcey+cOeN1RAFNCZaIiIgEn4ULYfRo6NMHqlTxOpoUtWcP3HUXvPyy62ewcCEULep1VOJ37rrLNb6YOxd69NCMrKsQHDs5RURERGKcPAldurj21EOGeB1NivrlF9eCfd8++OAD6NjR64jEr3Xu7Nq3v/iim5H19NNeRxSQlGCJiIhIcHn+eVi/Hr791m3uT4NiWrD36weFC7sW7Lff7nVUEhCef94lWQMHui8h2rf3OqKAowRLREREgsdvv8Grr7pSTr16XkeTIo4dg+7dXZfAu++GTz6BPHm8jkoChjFuX+KOHdCpExQqBLVrex1VQNEeLBEREQkOZ864D4z588OIEV5HkyI2bHAt2CdMgBdecF0DlVxJooWEwLRpUKIEtGgBa9Z4HVFAUYIlIiIiwWHECFi50jW3SINZx4wZrgX7jh0we7Zb4aUW7JJkuXO7Xv5ZsrgZWbt2eR1RwPDp184Y08AYs94Y87cxpv9lzrnXGLPWGLPGGPNZvOM3GmO+NcasO/d40eQJXURERMRH69fD4MGu40PLll5Hk6yiotyc5BYt4JZbYMUK1xBO5KoVKeJmZP33HzRuDEePeh1RQEgwwTLGpAdGAw2B24B2xpjbLjinBDAAqGqtLQ30i/fwx8Awa20poCKwJ5liFxEREUlYdLTrGpg1K7z5ptfRJKs9e6B+fRg61M1MXrjQfSYWSTbh4TB5sqv+tmnjMnq5Il8qWBWBv621m6y1p4GJQLMLzukKjLbWHgCw1u4BOJeIZbDWfnfu+FFr7fFki15EREQkIe+84zKP11+HggW9jibZLFniPvsuWQLjx8O776b5ecnilUaN4O233ZLB3r01IysBviRYhYBt8e5vP3csvluAW4wxi4wxS40xDeIdP2iMmWaM+c0YM+xcRew8xphuxphIY0zk3r17k/I+RERERC62datbP1e/Pvzvf15Hkyyshbfegpo1XUK1ZAl06OB1VJLmPfig+1167z3XiVMuy5cEy1zi2IVpawagBFALaAeMNcbkPne8OvAYUAG4Cehw0YtZO8ZaG2GtjcifP7/PwYuIiIhclrWuX7m17kOhudRHmsBy7JgbS9Snj9tnFRkJ5cp5HZUEjSFDoG1bl2h9/rnX0fgtXxKs7cAN8e4XBnZe4pyZ1toz1trNwHpcwrUd+O3c8sIoYAYQfvVhi4iIiCTg009hzhx45RUoWtTraK7aX3/BHXe4z7UvvggzZ6bJZojiz9Klgw8/hBo1XNl0/nyvI/JLviRYy4ASxphixpgQoC0w64JzZgC1AYwx+XBLAzede24eY0xMWaoOsDY5AhcRERG5rN27oV8/qFoVevb0OpqrNn26a8G+axfMnQtPP60W7OKRTJncD2SxYtC8Ofz5p9cR+Z0EfzXPVZ56A3OBdcBka+0aY8zzxpim506bC/xnjFkLzAMet9b+Z609i1se+IMxZjVuueH7KfFGRERERGL16eNaSo8dG9CZSFQUPPmk6yxfsqRrwV6vntdRSdDLm9cNW8uYERo2dF9oSCxj/awLSEREhI2MjPQ6DBEREQlU06e7jGTIEHjqKa+jSbLdu912l59+clvJRo5Ul0DxM8uWQa1acNtt7gc1WzavI0pRxpjl1tqIhM4L3K90RERERC504IBbEliuHDz+uNfRJNnixa4F+9Kl8NFHrtO8kivxOxUquE2BK1ZAu3Zw9qzXEfkFJVgiIiKSdjz+OOzdC+PGueVLAcZaNwu5Zk3IksUlWGmku7ykVU2bwhtvwJdfQt++mpGFa6MuIiIiEvi+/94lVv37u/JPgDl6FLp1cwWBJk3g448hd26voxLxQa9esGULDB/uml88+qjXEXlKCZaIiIgEvmPHoGtXuOUWePZZr6NJtPXr4Z57YN06t3Wsf/+A7s0hwWjoUDfY+7HH4MYboXVrryPyjBIsERERCXwDB7pv0OfPd2vrAsjUqdCxo9tjNXcu1K3rdUQiSZAunSu77twJ//d/cP31bkxCENJ3IyIiIhLYli6FUaNcc4vq1b2OxmdRUW7LWKtWUKqU6xOg5EoCWubMbgL2jTe6vVl//eV1RJ5QgiUiIiKB69Qp6NwZCheGV17xOhqf/fuvS6aGD3d54fz5cMMNXkclkgyuucbNyEqf3s3I2rPH64hSnRIsERERCVxDhsDatfDee5Ajh9fR+GTRIteD49df3Yqq0aPVgl3SmOLFYdYst1ywaVM4ftzriFKVEiwREREJTL//Di+/7PZ7NGzodTQJstatZKxVy81jXbrUhS6SJt1xB3z2mfsmoX37oJqRpQRLREREAk9UlFsamCcPvP6619Ek6OhRN4e1Xz+4+25YtgxCQ72OSiSFtWjhfj+nTw+q1u3qIigiIiKBZ+RIiIyESZPcng8/9uefrgX7n3+6gtsTT6gFuwSRvn1dh8+RI6FoUfctQxqnBEtEREQCy99/wzPPQPPmfj9rZ8oU14I9Sxb49lu4806vIxLxwPDhbkbWI4+4DoMtW3odUYrS9yciIiISOKKjoUsX1xVi9GgwxuuILunMGTdvtXVrKFPGtWBXciVBK316+PRTqFQJ7r/fbUBMw5RgiYiISOB4/334+WcYMcINMvVD//7rkqkRI6BXLxdu4cJeRyXisaxZXWfBQoWgSRNXiU6jlGCJiIhIYNi+3U3mrVMHOnXyOppLWrAAbr/dbQ/79FN46y0ICfE6KhE/kT+/m5FlLTRqBPv2eR1RilCCJSIiIv7PWuje3XUPfP99v1saaK1rlla7NmTPDr/84lZCicgFSpRwlax//oFmzeDECa8jSnZKsERERMT/TZwIX3/tBgvfdJPX0ZznyBFo29bt32/SxFWvypb1OioRP1aliivxLlkC//uf21uZhijBEhEREf+2dy889JDbIP/QQ15Hc55161xYU6bA0KEwbRrkyuV1VCIBoFUr111wyhQ3uyANUZt2ERER8W99+8KhQzBunOtG5ie++MJtBcuSBb77zm0NE5FEePhh2LzZdYQpWhR69/Y6omShCpaIiIj4ry+/hM8/h4EDoXRpr6MBXAv2Rx6Be+91SwF/+03JlUiSGOMGEDdt6r5ImTXL64iShRIsERER8U+HDkGPHm6QVP/+XkcDwK5dLpl6/XXo0wd++sl1nRaRJEqf3n2JUr6828y4bJnXEV01JVgiIiLin5580mU0H3zgF73O58+H8HA3NHjCBHjjDb8ISyTwZc3qqtUFC0Ljxm7ZYABTgiUiIiL+56ef4L333Fq8ChU8DcVat0WkTh3ImdO1YL/vPk9DEkl7ChRwM7LOnIGGDWH/fq8jSjIlWCIiIuJfjh+HLl2geHF47jlPQzlyxO21euwxt01k2TK3YlFEUsCtt8LMma6C1bw5nDzpdURJogRLRERE/MugQbBxoxsonDWrZ2GsXQsVK7rW66++ClOnugqWiKSg6tXh44/hv/8CtoqlNu0iIiLiP5Ytg9deg27doHZtz8KYNAk6d4Zs2eCHH6BWLc9CEQk+bdpAixYBu8lRFSwRERHxD6dPu6zmuutcycgDZ85Av36umVlYmGtooeRKxAMBmlyBKlgiIiLiL4YOhdWr3SycXLlS/fI7d7r9VosWwUMPwbBhAf0ZT0Q8ogRLREREvLdmDbzwArRrB02apPrlf/7ZrUo6cgQ++8yFISKSFFoiKCIiIt46e9YtDcyZE0aNStVLWwvDh8Odd7qi2a+/KrkSkaujCpaIiIh468033XCpCRMgf/5Uu+zhw9Cpk+sO2LIljB+vLoEicvVUwRIRERHvbNoETz8Nd9+dqqWjNWtcC/YZM1wFa8oUJVcikjxUwRIRERFvWOvasadPD+++C8akymUnTnQrEnPkcC3Ya9ZMlcuKSJBQBUtERES88cEHLsMZNgwKF07xy50+DX37ukLZ7be7FuxKrkQkuSnBEhERkdS3cyc8+qjLcLp2TfHL7djh5ha/8YabczVvHlx/fYpfVkSCkJYIioiISOqyFnr2hFOn4P33IV3Kft87b54bHHzsmFse2KZNil5ORIKcT/9HM8Y0MMasN8b8bYzpf5lz7jXGrDXGrDHGfHbBYzmNMTuMMW8lR9AiIiISwKZMgZkz4fnnoUSJFLuMtfDqq1C3LuTN61qwK7kSkZSWYAXLGJMeGA3UA7YDy4wxs6y1a+OdUwIYAFS11h4wxlx7wcu8APycfGGLiIhIQPrvP+jdGyIi4OGHU+wyhw9Dx44wbRq0auW2e+XIkWKXExGJ5UsFqyLwt7V2k7X2NDARaHbBOV2B0dbaAwDW2j0xDxhjygMFgG+TJ2QREREJWA8/DPv3w7hxkCFldir88YfL32bOhBEjYPJkJVciknp8SbAKAdvi3d9+7lh8twC3GGMWGWOWGmMaABhj0gEjgMevdAFjTDdjTKQxJnLv3r2+Ry8iIiKBY/Zs+OQTGDAAQkNT5BKffQaVKsGRI/Djj/DII6nW/V1EBPAtwbrU/5bsBfczACWAWkA7YKwxJjfQE/jGWruNK7DWjrHWRlhrI/Kn4gR3ERERSSVHjsCDD0KpUm6wcDI7fRr69IH774fwcNeCvUaNZL+MiEiCfKnNbwduiHe/MLDzEucstdaeATYbY9bjEq7KQHVjTE8gOxBijDlqrb1kowwRERFJowYMgO3bYdEiyJQpWV96+3a4915YssStQBw6FDJmTNZLiIj4zJcEaxlQwhhTDNgBtAXuu+CcGbjK1YfGmHy4JYObrLX3x5xgjOkARCi5EhERCTILFsDo0W4AVeXKyfrSP/7oWrAfPw6TJrlES0TESwkuEbTWRgG9gbnAOmCytXaNMeZ5Y0zTc6fNBf4zxqwF5gGPW2v/S6mgRUREJECcOAFdukDRovDii8n2sta6SlW9enDNNbBsmZIrEfEPxtoLt1N5KyIiwkZGRnodhoiIiCSHAQPglVfgu+/cQKpkcOgQdOgAM2ZA69auIaG6BIpISjPGLLfWRiR0Xsr0RxURERFZsQKGDYNOnZItuVq9Glq2hC1b4PXXoW9fdQkUEf+iBEtEJNDs3g0//AA33AAVKkDmzF5HJHKxM2egc2fInx+GD0+Wl5wwAbp2hVy5YN48qFYtWV5WRCRZKcESEQkEGzfC9OnutmSJ24ACEBLikqzq1d2tShXIndvbWEXAJVUrV7qf2Tx5ruqlTp9286xGj3at1ydNgoIFkylOEZFkpj1YIiL+yFpYtSouqVq92h0vVw5atIBGjWDXLtedbcECiIyEqCi3VqpsWZdsVavm/ix04Wx4kRT255/uZ7VpU5g8+apeavt2aNUKfvkFHn0UXn5ZLdhFxBu+7sFSgiUi4i/OnnUzgqZPd7v3t2yBdOlcotSiBTRrBsWKXfq5x4/Dr7+6ZGvhQli8GI4edY8VKxaXbFWvDrfeqk0rknKio93P2bp17lagQJJf6ocfXAv2kydh/HiXaImIeEVNLkREAsHJk+5T5PTpMGsW7N3rlv3VqwcDB0KTJnDttQm/TtasUKuWu4GrZq1a5ZKtBQtg7lz45BP3WL58cQlXtWpw++0qCUjyefttl+B/9FGSk6voaNeCfeBA933AtGlQsmQyxykikkJUwRIRSW2HD8M337ik6ptvXKUpRw64+25XqWrYMPl7TlsLGzbEJVwLFrh9XeCSs8qV45KuO+6AbNmS9/oSHLZuhdKl3c/S7NlJqpQePAgPPOC+b2jTBsaOhezZUyBWEZFE0hJBERF/sns3zJzplv798IPbtV+ggFv217w51KkDmTKlbky7dsUlXAsXuopXdDSkTw/h4XFLCqtWdZ3gRK7EWvflwKJF8McfUKRIol/i999dC/atW12PjIce0mpWEfEfSrBERLy2aVNck4rFi90H0JtuclWqFi1cpSh9eq+jjHPokOtQGJN0/fILnDrlHitZ8vzGGUWL6pOvnO+jj9z037fegl69Ev30Tz6BBx90TTC/+MLl9SIi/kQJlohIarPWfQUfk1T9/rs7HhYWl1SVLRs4icmpU7B8edySwkWL3PotcJ0J4zfOKFPGNeSQ4PTvv3Dbbe42f36ifhZOnYKHH4Z33oGaNWHiRLVgFxH/pARLRCQ1nD3rqlMxnf82b3YJVEznv+bNL9/5L9BER8OaNXFLChcscD20wU1+rVo1rspVoULqL3kU77RuDV9+6ZaZ3nqrz0/bts11Bvz1V3j8cXjpJcig9lsi4qfURVBEJKWcOnV+5789e1znv7p14amn3OwfXzr/BZp06VwFrmxZ6NnTVey2bj2/ccY337hzM2WCihXjqlxVqrgkTNKeadNgyhSXHSUiufr+e2jXzv06TZkC99yTgjGKiKQiVbBERHxx+LDrihbT+e/IEdfpr1GjuM5/OXN6HaX39u1zSwljqlzLl8cNQA4NjVtSWK0aXH+919HK1TpwwC0LLFjQlaF8aPcfHQ2vvALPPOO29k2blqi8TETEM1oiKCJytXbvdhWqGTPc1+2nT7vKVLNmLqnyovNfoDl2zDXLiKlyLVnijoFr+BG/ccYttwTO/jRxOnWCjz+GZcvcPLUEHDwI//ufW03Yrh2MGaMW7CISOLREUEQkKTZvjmtSsWiRWwZXrBj07u2SqsqV/avzn7/Lls0lonXquPtnzrh9OvGXFH70kXssf/7zG2eUK6cNOf7su+9g/HgYMMCn5GrVKteC/Z9/4I033K+U8mkRSYtUwRKR4GYtrF4dl1StWuWOh4bGdf4LDdUnwZRiLfz11/mNMzZtco9ly+YS2pgq1x13uKHI4r2jR91evJAQ9zuTOfMVT//4Y9eCPW9e14K9SpVUilNEJBmpgiUicjlnz7qlajGd/zZtcglU1aowYoTr/HfTTV5HGRyMcRtwbr0VunRxx3buPL9xxuDBLhHLkAHKl4+rclWrBtdc42n4QWvgQNiyxf33uUJydeoU9OsH774LtWq5FuwFCqRalCIinlAFS0SCw6lT8OOPLqmaOTOu89+dd7oqVdOm+uTnrw4dcq3wY6pcv/4aNwC5VKnzG2cUKaJqY0pbssR9GdGzpxsqfBn//ONasC9bBk88AUOGaMWniAQ2NbkQETlyJK7z39dfu/vZs8d1/mvUSJ3/AtHJkxAZGVflWrTIJWEAhQufv4+rdGkNQE5Op065/VbHjsEff7hOmpfw7bdw332uL8xHH7lfNxGRQKclgiISnPbscZ3/pk+P6/yXPz+0aRPX+S+B/SLi5zJndklUtWrQv79b8hkzAHnBApg/361FA8idO24AcvXqbomhOj8m3Ysvwrp17ouLSyRX0dFuHNazz7rcdupU1xxSRCSYqIIlIoFvy5bzO/9FR0PRonFNKqpUUee/YGJt3P6gmCrXn3+6xzJndgOQY5YUVqmiKqavVq2CiAhXmorp/BjPgQOuBftXX7lTxoxxfUpERNIKLREUkbQrpvPfjBkuqVq50h0PDXUNKlq0gLAw7cWROHv3xg1AXrAAVqxwla906S4egHzddV5H63+iolwXx23bYO3ai5qLrFwJ99zjHn7tNejVS79+IpL2aImgiKQt0dHnd/7buNF9gqtSBYYPd4lV8eJeRyn+Kn9+9zPSvLm7f+wYLF0al3CNGwdvvukeK178/ISrRAllC6+/DsuXw+TJFyVXH34IPXq4wz//7Drri4gEM1WwRMR/nT59fue/3bshY8bzO/8VLOh1lJIWnDkDv/0Wt6xw4ULYt889du215zfOCAsLrnZ4Gza4Kl/Dhm5T1blk8+RJ6NvXLQWsXdtte7v2Wo9jFRFJQVoiKCKBKabz34wZrvPf4cOu81/DhnGd/3Ll8jpKSeusdfu2YvZwLVwImze7x7JnP38AcqVKaXcAcnS0y55WrXLNLc4tn9y61bVgj4yEJ590vS+CKecUkeCkJYIiEjj27j2/89+pU25JV+vWLqm68051/pPUZYybsVWqFHTt6o5t3x5X3VqwAAYNcolYxoznD0CuWjXtDEAeM8Z1ZRw3Lja5mjvXNbGIinK/sjGrLkVExFEFS0S8sWVLXJOKhQvdN+VFisR1/qtaVZ3/xL8dOOAGIMckXMuWuWWtALfddvEA5ECzbZvrtV6xInz3HdHWMGSIyytLl4Zp09z2NBGRYKElgiLiX6x1g0ljkqrffnPHy5aN6/xXrpyaCUjgOnnSJVkxjTMWL3ZLXAFuuCEu2ape3SVg/jwA2Vpo0gTmzYM//mB/rmL83//BN99A+/bw7rtqwS4iwUdLBEXEe9HRrlNbzIyqmM5/lSvDsGEusbr5Zq+jFEkemTPHVa3AtYFfvTpuD9e8efDZZ+6xPHkuHoAcEuJd7Bf6/HO3B3LkSH47WIyWdWDHDhg92nUM1PcgIiKXpwqWiCSv06fdB8mYzn///uv2qNSp46pUzZqp899V2L7d7YH5+WfX+C5r1vNvWbL4dizmeObM/l1ISVOshU2b4pYULlgAf/3lHsuc2TXLiKlyVa7s3QDkPXtcha1ECT7sspDuvdKTPz988YUbhSUiEqxUwRKR1HP0qOv8N316XOe/bNniOv/dfbc6/yXRiRPuc/jcuTBnjpvxClCggPv8ffy4u5044VaoJcWFCVhikzRfjimRw5V9ihd3twcecMf27Dm/U+HLL8cNQC5XLm5JYbVqqffFRN++2CNHGFx4HM93SU+dOq4Fe/78qXN5EZFApwqWiCTNvn1xnf+++851/suXz82matEC6tZV578kiOkOHpNQ/fyzS5xCQqBGDbjrLmjQwDUZuHCZVnS0S7TiJ10xf49/u9rjSU3kMme+usTNl4QuS5YAT+SOHHHLamOSrqVL3X8AcMtp4zfOuPnm5F+rN2sWNGvGO9c/T8+dzzBgALzwgvrNiIiAmlyISErYujWuScWCBe4T/Y03nt/5T8NwEu3gQdedfu5cd9u2zR2/9VaXTN11F9Ss6T+jlqKjXZLla5KW1IQuJq9IrJhE7morcVd6jSxZUinpOH06bgByTJVr/373WMGCLtGKqXKFhV1dUIcOcbL4bWw8eA01s0Yy7pMQmjVLnrchIpIWKMESkatnLaxZ4xKqGTNgxQp3vEwZl1A1bw63364d74l09qwb0BqTUP3yizuWM6cr/N11l7sFYmfv5BQ/kUuOatyVzk2KTJlSfmnlRYlcdLQrccYkWwsWuC8+AHLkiBuAXL26a6+eJYvP/9a/VXyQcsvH0v7mX3hhdoT6z4iIXEAJlogkTXS0+8Qf0/nv77/d8cqKoKzRAAAgAElEQVSV45IqDb9JtJ074xKq775zRQhjICIiLqGqVMn1A5HUZe2lK3LJWY2LuSVFSMiVk7H/b+++o7Sq7v2Pv78OYEGxxYIKagwaiZqoSLCggAomMRQ7XgsaJTExWBIb5uZGDdiiV2I0sceQKHbFclGsgA0GxQLEWIiI+lOKIqAIw+zfH3vIIKIM8MycKe/XWs9izpnznPMdfFxrPuy9v7sN77DTJ2P4zqzRtPt/o2k981UAFpU1Z8aWHZjRvjOzd9iLz3bZk+abbPCle1RUwJUHPcFFY7vxYPsz6DruknozWipJ9YkBS1LNLVgATz5Z3fnv/ffzVL8lO/+1bl10lQ3K/Pl5gGFxqHrllXx+002rA9X+++dla2oalgxytRHeFp9rMe8j9uBpOjOavRjDboyjBQsBeIUdGMNejKYzo+nMNNqwJp/yCjuy4Uarse6Ul4iWpitJWpaSBqyIOAAYApQB16eULlrGNYcBvwMS8FJK6ciI+B7wZ6AVsAgYlFK67eueZcCS6sjcubmLwuLOf7Nn53/OXrLz33rrFV1lg5FS7ri9uDnFk09W/bLbIi+RWdycYscdnVGp2pVS7jnzn9A16zNi3FhajB1DyxdG02riMzT/bA4Ac9Zvy7yWG7PptPK8vUKXLsUWL0n1WMkCVkSUAf8C9gemAeOAvimlSUtc0w64HeiWUvooIjZOKX0YEdsCKaX0ekRsBowHtk8pffxVzzNgSbVoxgy4//7qzn/z58OGG36x818N12woZ9LHHqsepVq8FKZdu+pA1aVL7lgv1RsVFdUbII8eDc8+C4cfDpddVnRlklSvlXIfrI7AGymlt6puPAzoBUxa4poTgatSSh8BpJQ+rPrzX4svSCm9FxEfAhsBXxmwJJXY1KnVnf9Gjaru/Ne/fw5Ve+1l578aqqyE8eOrA9Wzz+bmFOusA/vuC2efnYPV1lsXXan0NZo1y81pdt4ZBgwouhpJanRq8lvV5sA7SxxPA76/1DXbAkTE0+RphL9LKY1Y8oKI6Ai0AN5c+gER0R/oD9C2bdua1i5pWVLKu9Eu7vw3fnw+/53vwMCBuUnFLrs4T62G3n8fHnmkujnFjBn5/K67wlln5UC1++42p5AkSVlNAtayfgtbel5hM6Ad0AXYAhgdETssngoYEa2BocCxKaXKL90spWuBayFPEaxx9ZKyykoYO7a689/rr+fznTrBxRfnkSo7/9XI55/D009Xj1K99FI+v8kmeXna4uYUG29cbJ2SJKl+qknAmga0WeJ4C+C9ZVzzXEppITAlIl4jB65xEdEKeBD4TUrpuRLULAly57+nnqru/Pfee3nqT9eucNppufPfZpsVXWW9l1LuRL9kc4p58/KI1J57woUX5rVUO+0Eq61WdLWSJKm+q0nAGge0i4itgXeBI4Ajl7rmXqAv8NeI+AZ5yuBbEdECuAf4W0rpjtKVLTVR8+ZVd/574IHqzn8HHFDd+W/99Yuust6bMwcefzz/VT78MEyZks9vsw3065dHqbp0yWurJEmSVsRyA1ZKqSIiTgYeJq+vujGlNDEizgfKU0rDq77XPSImkduxn5FSmhkRRwF7AxtGRL+qW/ZLKU2ojR9GapRmzqzu/PfII7nz3wYb5EDVp0+er2bnv69VWQkTJlQHqmeeyY3UWrbMzSl+/escqrbZpuhKJUlSQ+dGw1J99M47X+z8t2gRtGmTG1T06QOdO9v5bzk++KC6OcUjj8D06fn8zjtXb/S7xx55nypJkqTlKWWbdkm1LSWYPLm6ScXizn/t2+fe33362PlvORYsyCNTi5tTvPhiPr/RRtC9ew5U3bvnZhWSJEm1xYAlFaWyEsaNqw5V/6raNu7734eLLsqhattti62xnnvzzepA9fjjMHduHtjbYw8YPDiHqu99z+YUkiSp7hiwpLq0cGFuU3fvvfm1uPNfly5wyim589/mmxddZb01dy488UT1Wqo3q3bV23prOProHKi6doVWrYqtU5IkNV0GLKmu3H47nHQSzJpV3fmvd2848EA7/32Fykp4+eXqQPX00zmjrrUWdOsGp56aQ9W3vuXsSUmSVD8YsKTaVlkJ//M/8Pvfw+67w1ln5c5/a61VdGX10vTpX2xO8cEH+fx3v5u39+rRI+9PtfrqxdYpSZK0LAYsqTbNnZvnrt17Lxx/PFx9tclgKQsXwrPPVq+lWtzfY8MNv9iconXrYuuUJEmqCQOWVFumTMlrqiZOhCFD4Je/dB5blSlTqgPVY4/ljX/LyvIA3wUX5NmTu+xicwpJktTwGLCk2vDUU3DIIXk32xEj8pTAJmzevNzb4+GH81/H66/n81tuCX375kDVrRusu26hZUqSJK0yA5ZUatdcAyefnDsvDB8O7doVXVGdSwleeaU6UI0Zk/epWnPN3OXv5JPz1L9tt3VQT5IkNS4GLKlUFi7MXRiuugp+8AO49dYmNSQzYwaMHFndnOL99/P5HXeEAQNyoNprL1hjjWLrlCRJqk0GLKkUZs6EQw/NmzSdcQZceGFeVNSIVVTAc89Vr6UqL88jVxtskGdELm5O4bZekiSpKTFgSatq4kTo2ROmTYObb4Zjjim6olrz9tvVgerRR+GTT3Ijik6d4He/y2updt210WdLSZKkr2TAklbF/ffDkUfC2mvnxhadOhVdUUl9+mn+sRavpXrttXy+TRs47LAcqPbdF9Zbr9g6JUmS6gsDlrQyUoKLL4aBA3M/8XvvhS22KLqqVZZSHpAbMSKHqtGj4fPP87qpLl3gZz/LU/++/W2bU0iSJC2LAUtaUZ99Bj/5SW5i0bcv3HBDbo/XQM2a9cXmFO++m89/5zvwi1/kQNW5c4P+ESVJkuqMAUtaEe++C717w/jxMHgwnH12gxvKqaiAsWOr11KNGweVlbD++rDffjlQ9ejRKAbkJEmS6pwBS6qp55/P4Wru3DwlsGfPoiuqsXfe+WJzio8/zs0pOnaE//7vvJZqt91sTiFJkrSqDFhSTQwdCieemHuOP/ponj9Xj332GYwaVR2qJk3K5zffHA46qLo5xQYbFFunJElSY2PAkr7OokVwzjlw6aXQtSvccQdsuGHRVX1JSjB5cnW3v1GjYP58WH112GefvGSsRw9o377BzWiUJElqUAxY0leZPTu3YH/oIfj5z+GKK6B586Kr+o+PPsqDaYtHqaZNy+e3376629/ee8NaaxVbpyRJUlNiwJKW5fXX8xqrN96AP/85J5aCLVqUG1IsDlTPP5+bU6y7bm5O8dvf5lDVtm3RlUqSJDVdBixpaSNH5l10y8ryENE++xRWyrvvVgeqkSPzqFVEbkhx7rl5LVXHjtDM/5MlSZLqBX8tkxZLCa68Ek4/Pc+zGz4ctt66TkuYPz9v7rt4LdXEifl869a5gWGPHnm0qh4uA5MkSRIGLCn7/PO8q+4NN+Qk87e/wTrr1PpjU4LXXqsOVE89lTsAtmiR10/165dD1Q472JxCkiSpITBgSR9+mHuXP/00/OY3cN55eZOoWjJ7Njz2WA5UDz8MU6fm89ttlzvB9+iRZyW2bFlrJUiSJKmWGLDUtE2YAL16wfTpMGwYHH54rTxm0SK4/Xa4+mp49tl83KpV3otq4MAcqrbaqlYeLUmSpDpkwFLTddddcMwxebfdMWNgl11K/ogFC/IexRddlBsSfvvbcPbZOVB16lSvur5LkiSpBAxYanoqK+H88/NUwN13h7vvhk03LekjPv0Urr8+7088bRrsumt+TK9etTr7UJIkSQUzYKlpmTcPjj02j1716wd/+QusvnrJbv/JJ3ka4OWX51mHnTvnoNW9u00qJEmSmgIDlpqOt9/OQ0ivvJIT0Kmnliz1zJgBQ4bkLu+zZ+f9qQYOzAFLkiRJTYcBS03DmDG5U+CCBfDQQ3kRVAm89x5cdhlcc00eHDvooBysdt21JLeXJElSA+NqEDV+118P3brB+uvD88+XJFxNmQInnZT3IR4yJAeriRPzzEPDlSRJUtPlCJYar4oKOP30PG+vR4/chn299VbplpMnw4UXwi23QFkZHHccnHkmfPObJapZkiRJDZoBS43TrFl5T6tHH80h6+KLodnKf9xfeAEGD86dANdcEwYMgF/9CjbfvIQ1S5IkqcEzYKnxmTwZevaEqVPhpptyt8CVNGYMDBoEI0bAuuvCuefCKafAN75RunIlSZLUeBiw1Lg8+CD07QtrrQVPPAF77LHCt0gJRo7MwWrUKNhoozx69fOf55AlSZIkfZUaNbmIiAMi4rWIeCMizv6Kaw6LiEkRMTEiblni/LER8XrV69hSFS59QUpwySXw4x9Du3YwbtwKh6vKSrjnHujYMS/ZevNNuOIK+Pe/4ZxzDFeSJElavuWOYEVEGXAVsD8wDRgXEcNTSpOWuKYdcA6wZ0rpo4jYuOr8BsD/AB2ABIyveu9Hpf9R1GTNnw8nngh//zscdlieFrjWWjV+e0UF3HZbbl4xcSJssw1cdx0cfXRJ9yCWJElSE1CTEayOwBsppbdSSguAYUCvpa45EbhqcXBKKX1Ydb4HMDKlNKvqeyOBA0pTukTeiGqffXK4+v3vc6fAGoarzz+Ha6+F7baDo47K5/7xD/jnP+GEEwxXkiRJWnE1WYO1OfDOEsfTgO8vdc22ABHxNFAG/C6lNOIr3vulvmsR0R/oD9C2bdua1q6mbtw46N0bZs/Oc/t6967R2+bNyyNUf/gDvPsu7LYbXH55nl24mjvDSZIkaRXUJGDFMs6lZdynHdAF2AIYHRE71PC9pJSuBa4F6NChw5e+L33JLbfA8cdD69bw7LOw447Lfcvs2XDVVfC//wszZuSBr5tugv32g1jWJ1WSJElaQTX59/ppQJsljrcA3lvGNfellBamlKYAr5EDV03eK9XcokW548R//Rd06pRHsZYTrqZPz+3V27bNf+62W26//uSTsP/+hitJkiSVTk0C1jigXURsHREtgCOA4Utdcy/QFSAivkGeMvgW8DDQPSLWj4j1ge5V56QV98kneRrgRRfBT38KjzzytRtSvfsunHYabLVVbmDRvXveMPihh2DPPeuubEmSJDUdy50imFKqiIiTycGoDLgxpTQxIs4HylNKw6kOUpOARcAZKaWZABFxATmkAZyfUppVGz+IGrk338ybB7/2Glx9NZx00tdeeskl8Ne/5gGvo46Cs86C7bevu3IlSZLUNEVK9WvJU4cOHVJ5eXnRZag+efxxOOSQPJfvzjuha9dlXjZxYh6puvVWaN48L9E688w8giVJkiStiogYn1LqsLzr7Jmm+iul3JWie3fYbLO83moZ4Wr8eDjoINhhB7j33jwtcMqUPNBluJIkSVJdqkkXQanuLVgAv/xl3qjqxz/O+1y1avWFS0aNgsGD4eGHYb314Le/hQEDYMMNC6pZkiRJTZ4BS/XP9Ol5SuCoUTBwIFxwwX82qEopB6pBg3InwI03zj0vTjrpS/lLkiRJqnMGLNUvL7+cm1l88EHe66pvXwAqK/NewoMH506AbdrAH/8IJ5wAa65ZcM2SJElSFddgqf645x7YYw+oqIDRo6FvXyoqYOjQvL7qkENgzhy44QZ44408g9BwJUmSpPrEgKXipZSnAS7uVDFuHPN36MA118C228Ixx0CzZrk74OTJuTtgixZFFy1JkiR9mQFLxZo3Dw4/PHeoOPpo5j34JJff2ppvfhN+9rO8xmr4cHjpJTjiCCgrK7pgSZIk6au5BkvFmToVeveGCRP47PxLuYxfccV2wcyZuRv70KHQrVve/kqSJElqCAxYKsYzz0CfPlR+Np+/HfIAAy79IXPmwIEH5saBu+9edIGSJEnSinOKoOreTTeRunRh+uet2HXBcxx/5w/5wQ9gwgS4/37DlSRJkhouA5bqTkUFHx9/Ohx/PI9WdKH93LF8r+/2TJ4Mt90G3/1u0QVKkiRJq8YpgqoTk57+iIpDjmCn//cIV5adwuv9/0D5Wc3YcsuiK5MkSZJKx4ClWjV2LPz1nNc45fGefIsp3NHjeg7960/YdNOiK5MkSZJKz4ClkksJnnoKBg2CskdHcFscQbO1WjD/jsc59Id7FV2eJEmSVGtcg6WSSQkeegj22gu6dk3s+dxlPBQ/Yu0dt6bl5HJaGa4kSZLUyBmwtMoWLYI77oBddoEf/QimvzOfSd8/jt/N/TWrHXwQZc+MgbZtiy5TkiRJqnUGLK20hQvh5pvhO9+Bww6DTz+FYf/7Pv/crCvbP38znHdebg/YsmXRpUqSJEl1wjVYWmHz58ONN8Ill8Dbb+f26rfdBgdvNZ6yg3rBRx/BnXfCwQcXXaokSZJUpxzBUo3NnQt/+ANsvTX84hew2WbwwAPw4otwWOUwyvbZC8rK4JlnDFeSJElqkhzB0nLNmgV/+hMMGZK/3ndfuOUW6NIFIlXCb/4bBg+Gzp3zyNXGGxddsiRJklQIA5a+0gcfwOWXw9VX59Grnj1h4ED4/verLpgzB44+Gu67D044Aa66Clq0KLRmSZIkqUgGLH3J1Klw6aVw/fWwYEFuYHHOObDTTktcNGVKTlyTJ8Mf/wgnnwwRhdUsSZIk1QcGLP3Hv/4FF10EQ4fm42OOgbPPhnbtlrrwySfhkEOgshJGjID99qvrUiVJkqR6ySYX4uWX4YgjYPvt4dZb4aST4M034YYblhGu/vxn2H//vM5q7FjDlSRJkrQER7CasOeey70p7r8f1lkHzjgDTjsNNtlkGRcvXAinnJID1o9+BP/4B6y7bp3XLEmSJNVnBqwmJiV44gkYNAgefxw22ADOPz8voVp//a9404wZcOiheWrgmWfmVFZWVpdlS5IkSQ2CAauJSCnvWTV4cB652nTTvKfVT38Ka6/9NW989dXczOK99/LirKOOqrOaJUmSpIbGgNXILVqUt6YaPDivtdpyy9x2/bjjYI01lvPm++7LgWqddWDUKOjYsU5qliRJkhoqm1w0UgsXwk03Qfv2uYHFggVw883w+uu5icXXhquUciLr0yd3vhg3znAlSZIk1YAjWI3MZ5/l7n+XXpr3s9p5Z7jjjpyVarRs6tNP4Sc/gWHD4Mgj82ZYa65Z63VLkiRJjYEBq5GYMyc3+Lv8cvjgA9hzT/jLX+CAA1Zg/99p06B3b3jhhbwh1plnunmwJEmStAIMWA3czJlw5ZXwxz/CRx/lLarOPRf23nsFs9Fzz+Vw9emnMHw4HHhgrdUsSZIkNVYGrAbq/ffzaNWf/wzz5uVsNHAg7LbbStzs5puhf39o0yb3bm/fvuT1SpIkSU2BAauBefttuOSSvM5q4cLcwOKcc2CHHVbiZosWwVlnwWWXQbducPvtsOGGJa9ZkiRJaioMWA3Ea6/BhRfCP/6Rp/4de2zORt/61kre8OOPoW9fGDECfvnLHLKaNy9pzZIkSVJTU6M27RFxQES8FhFvRMTZy/h+v4iYHhETql4nLPG9SyJiYkRMjog/Rtg1YUVMmACHHZa7pd9+O/ziF/DWW3DddasQrv71L+jUCR59FK69Ni/gMlxJkiRJq2y5I1gRUQZcBewPTAPGRcTwlNKkpS69LaV08lLv3QPYE9ip6tQYYB/gyVWsu9F75hkYNAgeeghatYKzz4ZTT4WNN17FGz/yCBx+ODRrBo89lrthSJIkSSqJmoxgdQTeSCm9lVJaAAwDetXw/glYA2gBrA40Bz5YmUKbgpTyoFLXrrnN+vPPwwUX5HVXgwevYrhKCa64An7wA2jbNm8ebLiSJEmSSqomAWtz4J0ljqdVnVvawRHxckTcGRFtAFJKzwJPAO9XvR5OKU1exZobncpKuO++PGtv//3zDL7LL8/B6je/gfXWW8UHfP45nHACnHYa9OoFTz8NW21VitIlSZIkLaEmAWtZa6bSUsf3A1ullHYCHgVuBoiIbwHbA1uQQ1m3iPjSsElE9I+I8ogonz59+orU36AtWgS33grf/W5usz59OlxzTV5jddpp0LJlCR7ywQe5Q+CNN8Jvfwt33glrr12CG0uSJElaWk0C1jSgzRLHWwDvLXlBSmlmSunzqsPrgF2rvu4DPJdSmptSmgv8H9Bp6QeklK5NKXVIKXXYaKONVvRnaHAWLMht1r/9bTjyyBy0hg7NI1f9+8Pqq5foQS++mDfGevHF3CHjvPNgtRr1NZEkSZK0Emry2/Y4oF1EbB0RLYAjgOFLXhARrZc47AksngY4FdgnIppFRHNyg4smO0Xw009zw75ttskz9lq1grvugldfhaOOyn0nSuaOO/JCLshTAg89tIQ3lyRJkrQsy/2VPqVUEREnAw8DZcCNKaWJEXE+UJ5SGg4MiIieQAUwC+hX9fY7gW7AK+RphSNSSveX/seo3z75BK6+Oq+rmj4dOneG66+H7t3znlYlVVmZR6rOPx/22APuvhs22aTED5EkSZK0LJHS0supitWhQ4dUXl5edBklMWMGDBkCV14Js2dDjx5w7rk5YNWKuXPhmGPgnnvg+ONzqivZfENJkiSp6YqI8SmlDsu7rpST0lTlvffgsstyw4p58+Cgg+Ccc6DDcv9zrIJ//zt3CHz11dyOfcCAWhgekyRJkvR1DFglNGUKXHJJbti3aBH07ZuDVfv2tfzgUaPg4IOhogL+7//y3ENJkiRJdc6WciUweXKemdeuXQ5X/frljoBDh9ZBuLruOth3X9hww7wzseFKkiRJKowjWKvghRdg8ODcR2LNNfOsvF/9CjZf1jbMpbZwIZx+OvzpT3DAATBsGKy7bh08WJIkSdJXMWCthDFjYNAgGDEiZ5qBA+GUU6DOtvCaORMOOwwefxx+/Wu46CIoK6ujh0uSJEn6KgasGkoJRo7MwWrUKPjGN/Lo1c9/XscDR5MmQc+e8M478Ne/wrHH1uHDJUmSJH0dA9ZyVFbCffflMFVenqf/XXEFnHgirLVWHRfzwANw5JHQsiU89RR06lTHBUiSJEn6Oja5WI6zzspt1mfNgmuvhTffzNMB6zRcpQQXX5xHrrbdFsaNM1xJkiRJ9ZAjWMtx3HGw8855yVOzIv62PvsMTjgBbrkFjjgCbrihgKEzSZIkSTVhwFqO9u3roNX6V3n3XejTJ49YDRqUN9Vy82BJkiSp3jJg1Vdjx0Lv3jBnDtx7L/TqVXRFkiRJkpbDNVj10d//DnvvDWusAc8+a7iSJEmSGggDVn2yaFHuqnH00bD77nkUa4cdiq5KkiRJUg05RbC++OST3IL9wQfhpJNgyBBo3rzoqiRJkiStAANWffDGG7kF++uvw9VX54AlSZIkqcExYBXtscfg0ENhtdVg5Ejo0qXoiiRJkiStJNdgFSUluPJK6NEDNt88r7cyXEmSJEkNmgGrCAsWQP/+MGAAHHggPPMMfPObRVclSZIkaRUZsOrahx/CvvvC9dfDuefC3XfDOusUXZUkSZKkEnANVl166aXczOLDD2HYMDj88KIrkiRJklRCjmDVlbvugj32yHtdjRljuJIkSZIaIQNWbaushPPOg0MOgZ12gvJy2HXXoquSJEmSVAucIlib5s2Dfv3gzjvh2GPhL3+BNdYouipJkiRJtcSAVVumToVeveDll+Gyy+C00yCi6KokSZIk1SIDVm0YMwYOOii3Y3/wQTjggKIrkiRJklQHXINVajfcAN26wXrrwfPPG64kSZKkJsSAVSoVFXDqqXDCCdC1aw5X221XdFWSJEmS6pABqxQ++gh++EMYMiSvtXrwQVh//aKrkiRJklTHXIO1qiZPzpsHT50KN94Ixx1XdEWSJEmSCmLAWhUPPQR9++bW6088kTcSliRJktRkOUVwZaQEf/gDHHggbLMNjBtnuJIkSZJkwFph8+fnTYPPOAMOOQRGj4a2bYuuSpIkSVI9YMBaEe+/D126wNChcMEFcNtt0LJl0VVJkiRJqidcg1VT5eXQqxfMng133w19+hRdkSRJkqR6xhGsmrj1VujcGZo3h2eeMVxJkiRJWiYD1vJceikceSR07JibWey0U9EVSZIkSaqnahSwIuKAiHgtIt6IiLOX8f1+ETE9IiZUvU5Y4nttI+KRiJgcEZMiYqvSlV8H9tkHTj4ZRo6EjTYquhpJkiRJ9dhy12BFRBlwFbA/MA0YFxHDU0qTlrr0tpTSycu4xd+AQSmlkRGxNlC5qkXXqY4d80uSJEmSlqMmI1gdgTdSSm+llBYAw4BeNbl5RLQHmqWURgKklOamlD5d6WolSZIkqR6rScDaHHhnieNpVeeWdnBEvBwRd0ZEm6pz2wIfR8TdEfFiRFxaNSL2BRHRPyLKI6J8+vTpK/xDSJIkSVJ9UJOAFcs4l5Y6vh/YKqW0E/AocHPV+WZAZ+DXwG7AN4F+X7pZStemlDqklDps5DonSZIkSQ1UTQLWNKDNEsdbAO8teUFKaWZK6fOqw+uAXZd474tV0wsrgHuBXVatZEmSJEmqn2oSsMYB7SJi64hoARwBDF/ygohovcRhT2DyEu9dPyIWD0t1A5ZujiFJkiRJjcJyuwimlCoi4mTgYaAMuDGlNDEizgfKU0rDgQER0ROoAGZRNQ0wpbQoIn4NPBYRAYwnj3BJkiRJUqMTKS29nKpYHTp0SOXl5UWXIUmSJEn/ERHjU0odlnddjTYaliRJkiQtnwFLkiRJkkrEgCVJkiRJJWLAkiRJkqQSMWBJkiRJUokYsCRJkiSpRAxYkiRJklQiBixJkiRJKhEDliRJkiSVSKSUiq7hCyJiOvB20XVIteQbwIyii1Cj4edJpeJnSaXiZ0mlUh8/S1umlDZa3kX1LmBJjVlElKeUOhRdhxoHP08qFT9LKhU/SyqVhvxZcoqgJEmSJJWIAUuSJEmSSsSAJdWta4suQI2KnyeVip8llYqfJZVKg/0suQZLkiRJkkrEESxJkiRJKhEDliRJkiSViAFLqgMRcWNEfBgRrxZdi3gaVIsAAAJVSURBVBq2iGgTEU9ExOSImBgRpxRdkxqmiFgjIsZGxEtVn6Xziq5JDVtElEXEixHxQNG1qGGLiH9HxCsRMSEiyouuZ0W5BkuqAxGxNzAX+FtKaYei61HDFRGtgdYppRciYh1gPNA7pTSp4NLUwEREAC1TSnMjojkwBjglpfRcwaWpgYqI04EOQKuU0oFF16OGKyL+DXRIKdW3jYZrxBEsqQ6klEYBs4quQw1fSun9lNILVV/PASYDmxdblRqilM2tOmxe9fJfXbVSImIL4EfA9UXXIhXNgCVJDVREbAXsDDxfbCVqqKqmdE0APgRGppT8LGllXQGcCVQWXYgahQQ8EhHjI6J/0cWsKAOWJDVAEbE2cBdwakrpk6LrUcOUUlqUUvoesAXQMSKcwqwVFhEHAh+mlMYXXYsajT1TSrsAPwB+UbXUosEwYElSA1O1XuYu4B8ppbuLrkcNX0rpY+BJ4ICCS1HDtCfQs2rdzDCgW0T8vdiS1JCllN6r+vND4B6gY7EVrRgDliQ1IFWNCW4AJqeULi+6HjVcEbFRRKxX9fWawH7AP4utSg1RSumclNIWKaWtgCOAx1NKRxVclhqoiGhZ1cSJiGgJdAcaVBdmA5ZUByLiVuBZYLuImBYRPym6JjVYewJHk/+FeELV64dFF6UGqTXwRES8DIwjr8Gyvbakom0CjImIl4CxwIMppREF17RCbNMuSZIkSSXiCJYkSZIklYgBS5IkSZJKxIAlSZIkSSViwJIkSZKkEjFgSZIkSVKJGLAkSZIkqUQMWJIkSZJUIv8fGJRhI5LDxcMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12))\n", - "ax1.plot(history.history['loss'], color='b', label=\"Training loss\")\n", - "ax1.plot(history.history['val_loss'], color='r', label=\"validation loss\")\n", - "ax1.set_xticks(np.arange(1, epochs, 1))\n", - "ax1.set_yticks(np.arange(0, 1, 0.1))\n", - "\n", - "ax2.plot(history.history['accuracy'], color='b', label=\"Training accuracy\")\n", - "ax2.plot(history.history['val_accuracy'], color='r',label=\"Validation accuracy\")\n", - "ax2.set_xticks(np.arange(1, epochs, 1))\n", - "\n", - "legend = plt.legend(loc='best', shadow=True)\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "764dc66e4b2bc558f3a0f90b80bb802f5b3d45a8" - }, - "source": [ - "# Prepare Testing Data" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "_uuid": "c35e70d3e1e4834dbbf840fa0ea08c049bfcd915" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "found 1000 samples in:\t/User/demos/cats_dogs/cats_and_dogs_filtered/validation/\n" - ] - } - ], - "source": [ - "test_filenames = [file for file in os.listdir(DATA_PATH + \"validation\") if file.endswith('jpg')]\n", - "test_df = pd.DataFrame({\n", - " 'filename': test_filenames\n", - "})\n", - "nb_samples = test_df.shape[0]\n", - "print(f'found {nb_samples} samples in:\\t{DATA_PATH}validation/')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "291bc3996dce8d05e174b27d64f03996d3e8038e" - }, - "source": [ - "# Create Testing Generator" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "_uuid": "52249ec1c35fb1be3adef386be245de3794e55aa" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 1000 images.\n" - ] - } - ], - "source": [ - "test_gen = ImageDataGenerator(rescale=1./255)\n", - "test_generator = test_gen.flow_from_dataframe(\n", - " test_df, \n", - " DATA_PATH + \"/validation/\", \n", - " x_col='filename',\n", - " y_col=None,\n", - " class_mode=None,\n", - " target_size=IMAGE_SIZE,\n", - " batch_size=batch_size,\n", - " shuffle=False\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "2fa580afca2931ec5ce374e732d8c1789d03f2ed" - }, - "source": [ - "# Predict" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "_uuid": "4782eb23fa7d003f0e2415d995894017edb2d896" - }, - "outputs": [], - "source": [ - "predict = model.predict_generator(test_generator, steps=np.ceil(nb_samples/batch_size))\n", - "# print (predict)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "be7631dc8048d39b38588ce7e31a7273be41449d" - }, - "source": [ - "As predicted of binary classification result return probability that image likely to be a dog. So we will have threshold 0.5 which mean if predicted value more than 50% it is a dog and under 50% will be a cat." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "_uuid": "341457298e1d0b54f61906fdb12c4e609aef8019" - }, - "outputs": [], - "source": [ - "threshold = 0.5\n", - "test_df['probability'] = predict\n", - "test_df['category'] = np.where(test_df['probability'] > threshold, 1,0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "b00add65fe765529e637c3a9904d710bb7eff1d8" - }, - "source": [ - "### Virtaulize Result" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "_uuid": "d0bf6dd5ff344092fa0121f70bdd60fa5a40e29c" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADYVJREFUeJzt3W+snvVdx/H3Z3RsZnOUPweCbbEYGjd8wJ+cYA2JUWoUmLF9MBIWIw1pcp4ws2UmrvrEkfgAnoiSGJJm3SxmbiPo0gbJZlMgxhgYB0E21s0eyaQnRXomUJ1kTsbXB+dXOWsPPdfpuU9v+uv7lZxc1/W9vve5v4ecfM4vv973TaoKSVK/3jPuASRJq8ugl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHVuzbgHALjkkktq48aN4x5Dks4qzzzzzPeramKpvndF0G/cuJHp6elxjyFJZ5Uk/zakz60bSeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUufeFW+YOlts3Pm34x6hK9+756PjHkE6J7iil6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdGxT0SdYmeTjJd5IcTPJLSS5Ksj/JoXa8sPUmyf1JZpI8n+T61f0RJEmnMnRF/2fA16rqw8A1wEFgJ3CgqjYBB9o1wC3ApvY1BTww0oklScuyZNAn+RDwy8BugKr6UVW9DmwF9rS2PcC2dr4VeLDmPQmsTXL5yCeXJA0yZEX/c8Ac8IUkzyb5XJIPAJdV1csA7Xhp618HHF7w+NlW+wlJppJMJ5mem5tb0Q8hSXpnQ4J+DXA98EBVXQf8N29v0ywmi9TqpELVrqqarKrJiYmJQcNKkpZvSNDPArNV9VS7fpj54H/l+JZMOx5d0L9hwePXA0dGM64kabmWDPqq+nfgcJKfb6UtwLeBfcD2VtsO7G3n+4A72qtvNgPHjm/xSJLOvDUD+34X+GKS84EXgTuZ/yPxUJIdwEvAba33UeBWYAZ4o/VKksZkUNBX1XPA5CK3tizSW8BdK5xLkjQivjNWkjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1blDQJ/lekm8meS7JdKtdlGR/kkPteGGrJ8n9SWaSPJ/k+tX8ASRJp7acFf2vVtW1VTXZrncCB6pqE3CgXQPcAmxqX1PAA6MaVpK0fCvZutkK7Gnne4BtC+oP1rwngbVJLl/B80iSVmBo0Bfwd0meSTLVapdV1csA7Xhpq68DDi947GyrSZLGYM3Avhur6kiSS4H9Sb5zit4sUquTmub/YEwBXHHFFQPHkCQt16AVfVUdacejwFeBG4BXjm/JtOPR1j4LbFjw8PXAkUW+566qmqyqyYmJidP/CSRJp7Rk0Cf5QJKfPn4O/DrwLWAfsL21bQf2tvN9wB3t1TebgWPHt3gkSWfekK2by4CvJjne/1dV9bUkTwMPJdkBvATc1vofBW4FZoA3gDtHPrUkabAlg76qXgSuWaT+H8CWReoF3DWS6SRJK+Y7YyWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknq3OCgT3JekmeTPNKur0zyVJJDSb6S5PxWf1+7nmn3N67O6JKkIZazov8kcHDB9b3AfVW1CXgN2NHqO4DXquoq4L7WJ0kak0FBn2Q98FHgc+06wE3Aw61lD7CtnW9t17T7W1q/JGkMhq7o/xT4feCtdn0x8HpVvdmuZ4F17XwdcBig3T/W+n9Ckqkk00mm5+bmTnN8SdJSlgz6JL8JHK2qZxaWF2mtAffeLlTtqqrJqpqcmJgYNKwkafnWDOi5EfitJLcC7wc+xPwKf22SNW3Vvh440vpngQ3AbJI1wAXAqyOfXJI0yJIr+qr6g6paX1UbgduBx6rqt4HHgY+1tu3A3na+r13T7j9WVSet6CVJZ8ZKXkf/GeDTSWaY34Pf3eq7gYtb/dPAzpWNKElaiSFbN/+vqp4AnmjnLwI3LNLzQ+C2EcwmSRoB3xkrSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4t60PNJL1LffaCcU/Ql88eG/cEI+WKXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOrdk0Cd5f5JvJPnnJC8kubvVr0zyVJJDSb6S5PxWf1+7nmn3N67ujyBJOpUhK/r/AW6qqmuAa4Gbk2wG7gXuq6pNwGvAjta/A3itqq4C7mt9kqQxWTLoa94P2uV721cBNwEPt/oeYFs739quafe3JMnIJpYkLcugPfok5yV5DjgK7Af+FXi9qt5sLbPAuna+DjgM0O4fAy4e5dCSpOEGBX1V/biqrgXWAzcAH1msrR0XW73XiYUkU0mmk0zPzc0NnVeStEzLetVNVb0OPAFsBtYmOf4xx+uBI+18FtgA0O5fALy6yPfaVVWTVTU5MTFxetNLkpY05FU3E0nWtvOfAn4NOAg8DnystW0H9rbzfe2adv+xqjppRS9JOjOG/I9HLgf2JDmP+T8MD1XVI0m+DXw5yR8DzwK7W/9u4C+TzDC/kr99FeaWJA20ZNBX1fPAdYvUX2R+v/7E+g+B20YynSRpxXxnrCR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdWzLok2xI8niSg0leSPLJVr8oyf4kh9rxwlZPkvuTzCR5Psn1q/1DSJLe2ZAV/ZvA71XVR4DNwF1JrgZ2AgeqahNwoF0D3AJsal9TwAMjn1qSNNiSQV9VL1fVP7Xz/wIOAuuArcCe1rYH2NbOtwIP1rwngbVJLh/55JKkQZa1R59kI3Ad8BRwWVW9DPN/DIBLW9s64PCCh8222onfayrJdJLpubm55U8uSRpkcNAn+SDw18Cnquo/T9W6SK1OKlTtqqrJqpqcmJgYOoYkaZkGBX2S9zIf8l+sqr9p5VeOb8m049FWnwU2LHj4euDIaMaVJC3XkFfdBNgNHKyqP1lwax+wvZ1vB/YuqN/RXn2zGTh2fItHknTmrRnQcyPwO8A3kzzXan8I3AM8lGQH8BJwW7v3KHArMAO8Adw50oklScuyZNBX1T+w+L47wJZF+gu4a4VzSZJGxHfGSlLnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktS5JYM+yeeTHE3yrQW1i5LsT3KoHS9s9SS5P8lMkueTXL+aw0uSljZkRf8XwM0n1HYCB6pqE3CgXQPcAmxqX1PAA6MZU5J0upYM+qr6e+DVE8pbgT3tfA+wbUH9wZr3JLA2yeWjGlaStHynu0d/WVW9DNCOl7b6OuDwgr7ZVjtJkqkk00mm5+bmTnMMSdJSRv2PsVmkVos1VtWuqpqsqsmJiYkRjyFJOu50g/6V41sy7Xi01WeBDQv61gNHTn88SdJKnW7Q7wO2t/PtwN4F9Tvaq282A8eOb/FIksZjzVINSb4E/ApwSZJZ4I+Ae4CHkuwAXgJua+2PArcCM8AbwJ2rMLMkaRmWDPqq+vg73NqySG8Bd610KEnS6PjOWEnqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1LlVCfokNyf5bpKZJDtX4zkkScOMPOiTnAf8OXALcDXw8SRXj/p5JEnDrMaK/gZgpqperKofAV8Gtq7C80iSBlizCt9zHXB4wfUs8IsnNiWZAqba5Q+SfHcVZjlXXQJ8f9xDLCX3jnsCjcFZ8bvJ3Rn3BEP97JCm1Qj6xf4L1UmFql3ArlV4/nNekumqmhz3HNKJ/N0cj9XYupkFNiy4Xg8cWYXnkSQNsBpB/zSwKcmVSc4Hbgf2rcLzSJIGGPnWTVW9meQTwNeB84DPV9ULo34enZJbYnq38ndzDFJ10va5JKkjvjNWkjpn0EtS5wx6SercaryOXpIASPJh5t8Zv47599McAfZV1cGxDnaOcUUvaVUk+QzzH4ES4BvMv/Q6wJf8sMMzy1fddCzJnVX1hXHPoXNTkn8BfqGq/veE+vnAC1W1aTyTnXtc0fft7nEPoHPaW8DPLFK/vN3TGeIe/VkuyfPvdAu47EzOIp3gU8CBJId4+4MOrwCuAj4xtqnOQW7dnOWSvAL8BvDaibeAf6yqxVZU0hmR5D3Mf3T5OuZ/J2eBp6vqx2Md7Bzjiv7s9wjwwap67sQbSZ448+NIb6uqt4Anxz3Huc4VvSR1zn+MlaTOGfSS1DmDXpI6Z9BLUuf+D1J0GAlezZbhAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "test_df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "ce72a83f80d6e012b12b82c8ee3365d671a3b307" - }, - "source": [ - "### See predicted result with images" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "_uuid": "98b41dc83075e6297137fb45bf703c313dd4ae28" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAa4CAYAAABoHfM9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvenvZsl1HvbUXd79t/cy3T3TM9PkDElRlEiJIiVRMQzJdmQrEgkDhhwJhg0YEAI4iA3kg5XkHzASIN8CJEISR7ANJYFs2ZYga4EiQKJIUVxEDjn71rP09PTy69/27nfLh3Oeurfqvm8v0zPDbqhOf/j1+7731q2qW3Wq6jznPMdUVYUgQYIECRIkSJAgQYIECfLeJPp+VyBIkCBBggQJEiRIkCBBHmYJh6ogQYIECRIkSJAgQYIEuQ8Jh6ogQYIECRIkSJAgQYIEuQ8Jh6ogQYIECRIkSJAgQYIEuQ8Jh6ogQYIECRIkSJAgQYIEuQ8Jh6ogQYIECRIkSJAgQYIEuQ8Jh6ogQYIECRIkSJAgQYIEuQ/5wA5VxpifNca8aIx5xRjzqx/Uc4IECRIk6JsgQYJ8WBL0TZAgQVaJ+SCS/xpjYgAvAfibAN4G8HUA/2VVVc+97w8LEiTIX2kJ+iZIkCAflgR9EyRIkHWSfEDlfg7AK1VVvQYAxpj/G8AXAaxUOsNhv9rZ3oIxRr+Rgx4PfMZEqMrSvcle60qp1zV/NpAPWZYBAHL9ayp7gd4rX8RJLM8v63pULFDv4W9Jwu/luUks4F9k6roXrLv+jbs9AEBnuOG0M9KKlFh/0I1NpNVgRdzfTWSc+jm/tbrM/8LrkMbrsHWM5PklP2uhk/EYAJDEsf41+kyDOLYdrGVosdoWPobvv37vWgZM3V5bQ7fuvId9nWU5ACDtdOw1ccwH63vVMllWxL7zu87UX5QFxyHbPZF7065T5ySVqcVxIP3mju84Mk5ZjcY49Wu2luWX/nywtxZ6XeS0pSxLO4YNv/TeIZ8X6b12GBhj6+xNUds3z7585WZVVadXVuqDl3vSNwBw6tSp6oknnniPj2sNkPdYzvsjrZlerVWPt9Es3txvfFPZ8cj5IWOP+pLjiEMyihsOEFZNuU8ui0If51aUI72s6vFN3V9a/RGvbAF1k4mMrTPvoV6ifvD1GavH6sRxgjyXdSLWazodmdMnxzLn83wOoF5X6rVH9UkcI0pSp131vFz3Jurv7VSrXD1FWa0BXOGbqPvfXVvvZez6+rnVAq8os36wrbr7js/173zj9de/XzrnnvVNv9+tNjaGiHUccp2u54dpvd/GAMCaH+rP616j/57XXCcafvU7MXDfux0HTsn+nsHdn9SvcF0b19S/US/WI89lbbfz3TT2Cv7+aI3c9rGV+x873htrKQBk2RIAUJQFFouFU7fcTk6+Z3f95Pvv6v6k1+vZ/9dtuc3LalbI+c3fS/j/iZzPdt9UlDBc/2Puy7x5t65spzNL5947vQenLHdKWDEr/reqGs3+8Mfq2ntWlFxrSi1Dv7h27eZd6ZsP6lB1AcBbjc9vA/h88wJjzK8A+BUA2N7awD/9J7+MNJUFiB2yXMqg7cZdO2jXDbhSP85mMwCwygsA0kSaefXKOwCAG++8K99XclOsZU2X8oytrS0AcCZKEcmA1z0r8rn8dmpHDkhlOQUA7I76AIBBLAttv9fDrZOZVk7u2fzo0wCAx3/8r0lZmbS3q/VZestlWZa2vRtpz37X/EvpdrtO3Y2pNxjNPln1uSgKew8AgIfLokCZy2/9jpQ/147o6zv72p99GQBwWvtuZ1OuS5MIWyO5Bpn0Q7+rG6e459Qj0fdExZRG9ff+hsXWUd9HpnU/nsgzrl6/AQA4f+5RAKKAN7dG2s6F096OPod9x+8pZbJEYnRDdSSHx1inzl989WvSpjOX5PuetOnM2R0AQC+Rsnr9oT0Qo5KxMRpo+/X7suSGS+7JtZ5xHCOF20eTyUSvdTeHy+xE79G25PL7dDpDrvdGulmM9J2OdLO40ANjT9sQq8Gg00lsndKIyljHSiT3fPxn//kb+P7JHfUN4Oqcixcv4uvf+MZtimxs6j0VHFX+djZ1PlVm/Xa3qlyP63Xr5u3EgHNfyipos9BqRmWJJHEP1ZRc6xbp4lrC1SNG50Kl/4D60JBBdOB8LocJ6hjOl/lUrh8Oh3Z+ci778/f4+BhAPZ4r6mLVBXwGACznolun06ktf5X0BgP52+vZtYP37OzIfByr8Yf16vf7Tv1Yn62tLdy8eVPuHcl8uHhhFwDwx38gc/7mrZcBANevXAUAnExlTiZd6afh5gY2ds/Ld3FH2yfzMs+kzypP1zcPWx1w85Y5dbP9Uq0+XDYlBftf/nK+skx4ZTSfbw+c3mf21cKsOaDy2Q016h8iWY+7Eb/cUo10//iXfvn7pXPuWd+MRgP8vV/8W9jYEEMqdSz7sijSxlxw+7Mocpbn/OW9cRSt3TwW/kHf60tb16hqrXu8p6O6YlnK7xH3BXpdVEWNA4538CncvYdfT35fluVaQ4Ntp167v78PoO7DJEns3pHfLXS8r5OkdWBqPLtiv0t7faMJdcrbV97Uz2O88uqLTt1uTPSwEunaoPqINt5OT/TApSceBwB8/KMfxROPPwYArbb4YqLCqU/zAGHUiFPR+Ft6xiXTde6hnjw5OUFkpM84RlvGjLjjfvYP2VUFU0h59dhdPab8d12Wpd1v+ntallVV7hjiXz6jeR/bxb70xX9GDGPPEIWOjVzX+VTr+j/9j792V/rmgzpUrZrhTi9WVfVrAH4NAB579JEqjmO7kFK5cBIVRWH/z8m67kDAjTGvA+oOHOiiS7GLhN7L59oFp1nfUr4rMt14drXrlvL9mVNymEj1cNXXDelicozYSF1HF2TS/MhPfAEAcHUiL95YK6oOUk/xJVHcGkB+GwqvDbx+Mpm0BpY/sNlXvJfXz3XzncSxnZy8N9bNV0e1xOc+9zkAwJuvvOJcl+c58lzvqbhJ0w1NTzZHdoDrRp0oF1GhLMvsc/huWH6qSqvSNvAds01sY5Ik9iDS78s9o5EcsqDX0vLEPrXjr6o3mFR0laezez3pu1LvmekBujeqESxO9L3dTXkOXMVXj21XaRhj7O54Pp9pn0lfUQFSivHUuZcLcqfTsYe3uRoeOvqes4IbLy3DQxGWyxLdLi3uIrRm8YD6fZY76hvA1Tmf/exn1xgpaRWNnG+da3hoqmpLqSu3CVVtme/fC8qli6ne6iOL82WBWB/jG0riWA/Wqr50yNtDTRnXY5FzLud40HkxGc/0o3yeTXUMVDqessweVqx3gI5tHsSo6+sNohTBA9N8PrdzjfOG1x4eHmpbZK5RXxWNhZrP4wbIN5T5B8LmWsNnsoz5nM+PtEwXocqywvnLfVRVmdq41eV6VTjPKStXnzclr9zNQnNNk9/vbAWODMvQcWBRRh1D3tmmudlZj4Zzw+iuCYV3vVnRNLv23GHT29zQ+e1GeufD5Acs96xvzp07W21tnKmNBlMelHX9QrV2w+kbm5trmn6x9rAU6fPuaLmvKouUcGxaY6zuX7qp/E4vlaJaf6hj3WqPHfdQx8+cQ1EUtfZ0/t7m6OhInqfXcf32jQ1O3eM1Y6VY7aUhlVtdlm903RiJTjk8PMTZM48AAG5cv+m0zyq2mOuxlEW9QN02mUzsPaPRptN+f/wXeeS0uzlejDVisb/1oKJrVgHVZYqUTRcn+ntm25Ok7uHJ7pONO8b8fWOe5/bUmFO/+ONCuyNJ2vv5yo4Nd5zXxhxt45rDVNP4znfFurGfKa3DVlHa916UnlH97u0/Ut97u/yu5W0AjzU+PwrgnQ/oWUGCBPmrLUHfBAkS5MOSoG+CBAmyUj4opOrrAJ4yxjwJ4AqAvw/gl9ZdXFUV8jxvWTFWwcEtVwAP3vaRnGY5tA5YC5xaMSy8WLi+uiwriiJUpdyb6m+jVJ63q6jHUKEL01HrgpqAcxgMtk8BAE594mMAgDeviTVjtPmI1k9dq1J9bunC+5Gp/a1ZJ1qC/RM40ZgmhGzdKD0Uz/9sLb6NdrMevpWMSAXruLsrrjFvaj2s9SIrrDWq0j7qqqWRELyJXYu/fZemtrL5z/cty/Z7tYDEnoWuKAp0uq5lh5avblI57Td0cVNEYLlcIu64VnG6QNSucur6tDFyvi/y2lLPOtF6ntpYM7m30xlo/VzreZZlKEoXPWVbxpNDvVcsROz32cy1rgNAP1G0j37n2s9dRfeihTsuyoqWqLgVV5Mt2jFr30e5J30DiGUyR20BbPmAV7Vq9K2wdJ2DcS1olHK1MVjL8ty97iG2hEIbG62PRNXGimJmRYTExha4juqJDqOZetfRctrR8T2e1i6nVL/jsd4Uu8iNRbT1c7aca5lFHVvgudlRpxBtqpF1eT71V57nVm/xb61HXJcWol4bRM4UiWU7mvdw7vGd8rPvapNlWX0tkVz9jW4hWe4iSNblySJYGToWnVdPB/XVLPTewkNsmmOtLFxU3rdYZ+bOiE3tKqr3Gte667v/NdfPdeiHjSmB6zLpI1tNFMx34apwe6SqiTC0ELNyPbr3Ick96xtAxninI+Ms9WJws2LZcmuK7f5EvV50/+J7o8RR1Nr3rFsvfY8f3pemHdBUT/TMxgcrik39knTk946GAiSNEAN/75DGq/dr/EtkuiiKVhk+msPvm25/LKuF6thQJs/LwMav83q3vvJ/9kPi/KXYUIwNQZR63QHeeON1AMDOzh4A4PimuDcztKN+vvzNMlcv7O/v2/+/o+7Em5tS/vb2NoDmnse9l8rdGAOLh2uIAeP3pxNxez44PnTae+3aNQDA008/jUh101I9hOx+iONtjVse32WaplgW7H/T/GMlZsxswb1t/Q45J3y3xhqRct8V3wvHSfM3fy5ZrwvPHd0iuGUFkA+BY1dRvuge1+gP5FBVVVVujPmvAfw+gBjA/1lV1bMfxLOCBAnyV1uCvgkSJMiHJUHfBAkSZJ18UEgVqqr6XQC/+0GV74tvAWla/NbFIVmrxRpkrOn3WxRipTm1I+QfscZWDTV2aqToy6FaESojFgIz6OJTn/9pAMBxT0/RhVoA9ODfUR/WxVIso7GSYjD8ImowA5XGtVrRr5iWX35uIli0BjFImxYIv6/8z2TLK8qyHefmBXpevSrWFVo+drckALPb7SJWC3fKGBDyNRAZpPWSbIta78p7T6vEWvO07iONMaJFojkOamuxa4nJ84lewaBhGS+Mz4qiCCcn4nvc78p3iXHjso6PBfWqEunrXpeWefqpZ4hi1xLY0zilQmPMaKUfDuXemcIJvV7Ptq+2yrikFpPJia2riHHaOJlMEZeuBcbGjGS01sD5frQx0GfOaktn5PoiF/n33WoM4L3pm6Js+m1TB0A/N8r2b6Rvt2Wj4ngiM2Z9Py2SLD/LZV72ui4yYpHoFTE2NYOdxnwqglFyDMR1ewAhHJnnC32ua8EdxiRrobVTY3xKxkephTMuYQbyvCKnfpDfqFt8S2JNKlnHh1BvUPfQ6lozaBGNcXXPbDZrWdX5PFodOV8oRKz6/b69h6iVH3TuW1mJzrJMB+FP3cD8nH3n9WFVcgyplRRxjV6pRbYoSBCxPi6An0tFuf2YGktu4BFFUJx4JDu+sbr9K4K8Kf5360iiWjFPKlFlWmuKrSvjFzxPg6b1eVXMCACUebuuH7bcq74xBkg7QFm587Lun5rswY8l9NnufM+SZgw454bPhuv3v2/Rj+O0MTa4dqi+mZNkQeOJ+e5yxoCXLXTNPs97V63fV8Tw+e+dc5hzdG9vz+mfJEla8T2VR8Djj69O5MZHuQQt1cp7+QwbV12ynsB8Jr8tMzfeErr+o0XYAKdNR0dHlrzn9Knzeos897rGaVldGdVx0kC9v8uyDHP1ILlyQ/Zh33lezvqvvi0+RGbq6jv24dZXvom//6VfAFDve2Ldp9Rw0+p32eynjmJlZG9teXl4jMfs2zRN7DraIkyr3L2M/y5vFy+4jvSiNf6K0nqY2FK8OOS7lQ8s+W+QIEGCBAkSJEiQIEGC/FWQDwypuheRXEaNuA3PIhfD2MMyLfO+3y991X0/cGMMMv0qVarbrqGvpEhhD89k4qFFqI6pOaVxUaQIHakVN1J68KOZWDgXSsu+d1oQrb0nnsI01lgZxitorzN2h77765hqqqpq+D67p/PpdOJ8z9wqlaJMWZYhVqtBZyAICPLV1sGmb2zzc1FW1jpVqaUhKl3/3tGGWKA31IoERUPm2dIyTnU1/gza7qW+y17iWtxqJLFmCPPHhrUexXxHcu/4WNnxjFrsphqP0a+QKoU5rSWloo2RMp7R/Tsh3bRavlMDVB6VOFn+Tl08BwB4+9svAAAGW2cBALeOBDnc6ItFaLc7QJ9094oqxYpYpmoJ7/VJYa8IFcdtsUChMTKDgSANRKwipXHr9xkfRwZDjQFrzJNc/awLz+JkNEonV2Yysj2djLX9iYHh+1aK+FzRteQ29OEPshQlMJ5UDQTWZWfqdGsDHY1rRIJIwc/PsSJU46nGKZioMV91LmXsJ3lPWUGUS74tbU68GsHgPOhoDANBQc49uuszncB4Iu93kefW2mgRqaVcM4uX+jw3HmmkCBZ94tPI4EAtp5RsMXfquljQkl44z0jTtBXDQaSKf33PgsVCdCDZLMuytBZq1pGfmwyB0j8u1fvBwUEdD+CxjPF5S0tx7Fr2+f1isajTFOg6MFNEar5kLhrth7nOq9Lt6/l8CXRIr0gLqa4xlvjTRYqaXhUdj9K+FWsQr/awaOpI6gdrkPUs84z5qHOArbeztiiU70BcWcCsRMCAOqbKssTpc2u9Fq1FwGKfnu1hEAOYqGggVKS4l7b00oEdv34cIMeoj/o1ESz/uzr2OV55D+eHRRuKCGnixrQwDYBledQ9xtIiJtxzla0617na3Hflowk2rUmn04plb8ZGAnWMEfupuU/x48FtnkgPEaxzvmm/aNlxI/aLSJBfR+pU6oir7wiC9PjjT+LmTUnh8sYbbzjPLby5SWEMK8ve3d62aR96PXmOj/bbtuDE6QfGVU8mE/xv//I3pIwN2etNGJfZk/7px2RwdOP3j0+m+LOvfgUA8JM/+ZNSR6V9p/i7U79vgTr+rmSKDC+noKUp9/aYzTL83+wYrdyYKuqKVftmX5+uOhc4n6Ooja5Zxsp7OyY9EIcqQBqyynUPkA7xN/yr7l91b1mWiD0KVv9l8RafwrbQ5I7nTu8B6k4z0M0r6b+5kM6Z80cDFS989BMAgM1zj2Fi+fdX5wTxFcKqtq3NQ+Ft3vyyo0YQq52kngJsBRh7G4zmoaamAmbl9HvdAFDxcfM0GPQwncr/eyld5+RWUjX7MK6flyVNU6sEeXiq2yRlEc7u6F874elzGFcowc2PjiUnMW9jAjKon5vnam6V9DKb6ncarN9xD3nWJaNou+b4JCOdlAdfdemL3cMtk44ulwuUWhcqEp/elfdwAT4+lnrSJan5Dn23Ef615BqkYe8Sbs9grPuSS6Jh1iwaD7xUBlUZgXG1SxJv0OUlq4lzYo9IhbNlmXEDo5+Z/yvpYbnkbxr8y7wZShbCTTZjoGsiGtangF0rKtcNrqP6ZJkzn5k+Y8EgbINMjQnWXXeu7ik913VvtpSNS6U5phY6FvMyaxHZkDp9sXBJU0gyUWiOkvl8bg8+9aHJpTL3g799t6Q0TVsLLvvQn6923jb0iO+i6JMV+ak5/Hm0WCwa7leuq+KCNPE8GOlfHmCjxmdbx8hzkeQgMqt1sDEGlXHdjlr5WUqXuKPe2Gq/VaU1NvK5/uayLFd/v0paa2tRrrlS27hiTa8JbzwXH5bZuH5d+pRVie0fdBEH/i4iw+S/3loXlZaynDmGUl0PXIepOu8mX2rPxFYnzXUTneqGONN8mlRe1oDpbTqTfhelzuseCWh0s25300saSrjXUBKAytRKkUZf/cicfuuIM3Id48s8s+EOU907ZKpPutqWSDcOsa5FFfsyji3pUuwZiDnP4sjdY+RKLR4ldNnO27kwuW/U/fhMDZZTzZuXqBF0Mh0DqZS7c0aMy8dqcDpRnUkjN2nJdXnAO+/KYWxvbw8z3dt0e6KTN9XAFPEgyPyVRvYPo+FA/0pZaXKEf/IP/xEA4H/93/8v+W1TiUDmPOSpPtK1w9CYWBX4xnPPAwBuqZH/F372Z6Ueuuet4tWHneYhKLMU+mr48w41XOeWJUM/tHPjCJ3Cm9c0rvNd0hjuuYm6t7ghI00ilOa9LUNUBGa7qEmebKoblwzuThLc/4IECRIkSJAgQYIECRLkPuSBQKpIqe5DyHUwbdmCr33osfCsZk0YmmfSdbSjTGZHa0ahz6DrlsnGGA7Fit9N3WDkOQPP9US8efZRAED/ESFqOMwqlJog1Yb7rXG1WAdRNl2BbufqATQsX17Gduda3F58NGLVc61VR6vMhGlPPvkkAODbX/tTLWMX5ZIuRxrgqX1H9MdHIdmGptsDE5z6SQRpmSKC5dMbv3ugBBObPZweCe27UdKRUl01iW6RMILJidUghihJEMVMhEoLuI4DRYLOnDnjPLfb6zt9WBSFpUwv85nW2U06XCiSVurnAd1VOx3r/udbdv3EqNZCRFKOnAhjiU0l1fDpdNnPC0UtBuomWTCNQBxZEpVOX4OoiZglbn0eFinLEtP5omXtms7FnbbTrRpIlWspH6jldEJXBxBxVETn6KZFeWYL10WNLmOlupLNFquDfyezuZ0PRKTs+6L1US17M3UBHqvLaXdjA9li5jyXxv3l1E266xNW5EtS8UZ2PjBZtK8DfErbZkA3g65rchj57do1scyePStusnSpGWvS6iaSZNENErocK9qkBC6pjsWx6uBRzKTVWYtYx0d7mjS8zc9EkcuyrFMfKLiYV6pTIZb0WK3RmVq9C01BUNGFtEyBhbyr2Aa/u/TQS6zW+cYYzIzrqmdp/y2hj7uerfJ0yJUYgZfWSAEp99lnLLNJHOC6Qdk1iIOp8lKSeOOjKIq1bmGoqE9ZPTfBdLksbToIGrDvmND1ARYDg16cNizl8j3duSeLRYvsoZ5PioxwrctctLdCagtMiOJox/aV9pyeJESs+vruYv08yXLEuh4v6CKo84teOfX7ps7kHmxpIc9y4Y1B49Jfr3MHbYpF9XUtO6vkYH4S7GXUHKsuetFCN32vHC/BbJ7nDeIq14XSfy/06DgoRd9Op9OaAMNLbRKru3Vh123uH10Ufjqd4p13JNXZ7vaOW1dtZrymLznvt7e3Uaj+/tKX/gsAwG//7u/LPbof8ZONN+fsSF2Tr19+CwDwwrefAQB8+gd/AACwcUpDYDzCFH7Ossy233qyaNn+fn2V62DkufX6rnvryFaass691E/H4V/fdCH199SI7w0ZD0hVkCBBggQJEiRIkCBBgtyHPBBIlTFGEuyu8ecuyzoQ0rfiUNp+5fVp0z/hWvpNL3HpQhGC3kC+76kVfrObIFKfeN8ub/S0PNwSX9rHP/ZJAMCJBv/PDRCDlOJu0Oh7kXU0t35sVdYI8vUDfklisC6Rbsu3uBHTVVtD3aFD68mbbwp1Z9OX9ZSSVySJxQxb5Tfrw78MxKyqCoM+SR1ca9JSreimdK2lpEB/+fIt6Y9qjk998mkAwMcuipU8seinIkRE6PwEclW/ttLBJTO58vZrAIC33hLrzrlLYnlMPcrsXq9n2xMxMZ8GqxLVqPS9lBozk9pYnqpllaJFyA9i9hMknhwLipEkqaWL5j20CFrrPJEXtVD3FSFA1U6uaK2mSzeY+GGRCpWLhnjxZnFcNQgC5B4f3eHnk2MZazuDTf18sJZYpdcloYybhJD9yzGyXC7t/zmXbPJoJUY4PHIT6JJRYzabtUkFvM/8yzHg64BmSoZ11MLrkrSv6leL+mj/ss78nn9JuX5yctKK6WJ/DNT6TjQs6ul4bvjzG8ZqKBqdjTKnDD8ey4+56na7jXcjdeX8sclI1ySSbJa9zlJqda0XBO1aX13resuCehckMSR18N+vP59XxTOzDyl+jBsRq3XkFpWBDWrx43ojDdSp2IbIXV/MChYMv+8eLqmcejcTuwMuLXgL3VNUj0H/NqGz6qEF8prUgsnp9dWljOHRV2R0TenN9X1rLGk87GJJ3a5rl01yrXXsKqU6Ywwt4VNs0NVYLcaDUWlGHqpivSJ0npHsoqwqq0e5Hg36ElNEmnCbjDdVj5eoHv93Ilpp6T9LskEyoE4L3WrvedzvqZev37hm+4h6jO1M6UHD+FvWM2a8tMZenZzYPiFBB1P9bAzkOTbG2/IouHMbAHZPK5qk7+Mf/NIvAwD+zb8WAotO6uqMixcvAgAuXbqEj37k4wCAXs/1XCERE/WtrzNsW9MUuaL3Xe0bQ8IsHZezpUsu4fRtvjreyX8P695LkiR1jKDngbLqXND82yTKa8Vd3eN2PSBVQYIECRIkSJAgQYIECXIf8kAgVYDLUuf7TFZRjNweXmlpqBNtymc9PVc+UxJg1KJDn1RLt0t/e/VR7oC+vMqyRTrQMkG3I/E4lSaKHZ8cAAC2z38EAPDRH/kpAMARE8IprVg3iqDhRsjVN5Mne99aWlvx2n1DIZ2x71dL/3P+TkuMkwiSFmaQiUWE1kzjsZ7Qzz1JktbJvttXP1q1TMRKx/rkk9Iff/rlywCAC6dPgVnVLJuWMuUgc61LrKt9P6gpXsli1WKfg8vy88orgpR9+ZsvyReVxsV1u3jr3W8BAK58VKw5f+unPqPPVTYbrSf7o+pKvaZzoBeR1nqpbZExszUSa9rnvvB5AMBLb0jSvU2zo/0j180XEYbq19ztyN9eJ3H7kCxDtGbRUl8UyMg2qFbEKFV0q+S4V8u3xmVFGo9BBqk0ipAz/k07i5a2BKS/VbYptRIzvqYoc3QVtTI6rjl34tRFex8WKcsK8/l8LVKzWGZ2XNJySgtionNrkrusiQcHghzt7OzYJNg+U91k7NIB+/SxlDiOrfXTT37J733WUH5/Mjux79b3e/d93n10uolQ+frJst95MVQ+BXKaprYcP8kvLbksgyxKJ6g6AAAgAElEQVShpFI/OjqyZVok8MSlEI6on1SBJapz1dEA/V4X2ZLtcZEZv0+tPvP6djab1fGKkZtI2KIMXoxHnegXdV9qFgv//dr4EC9uqRkzaoz7btbRQ99OiDYQ1bDWXRsTCuevier1omyVT0su1xinqJbluIgqeGFfNjY2YtwKSyZSRUShNC1U9W7a+8CKMTDdel7ApnDQtQdten+2u5u6aTSSxL2uTI1FpirSynE/oOtClbprPoPZespCOj6eYXNT0ypwT8Hu9piFa08HevwkDVRN9wmlu1+w6QkYL0WPE33I9GRs56B1DSD7LKts9zK6B1oR8+2PGX/O2LmD9nzktf5+hOIjNNRlW1tbmM8l7qtOSO4i4r7UqIj8PT4+trqH6826pLZ+25rSjK8CACUIxc/958Lkd2pP1oXdXdnPNnV6ojHcw03RxcNIxgNTAOXL1W2hDs+yzI6J40PR400GZwA2rQ1jaZvxmGXhMjv77yHh/uQuPCTuFLvnr7vNslosq0zYfpcSkKogQYIECRIkSJAgQYIEuQ95YJCqpqVgnQ/r7cS/t3lPplYJsttQCj2lx2pq29va1F80+WpXLCEbvQ0sxmItnWVirTx9QVjuHvthQTsOmMyPaMcKhiIy7fC5tu78nZYHzyDXbMvdsOcAbtwMT+E2dmbpPr807l8+vsm451sF2N91bI0yYdGXuxE7YX1vNe8DEz+28kP5DDGW/aq0Fj0/rqPU2uZqrf53ZLsZaDLiobzT6Wxpy3j5ZWEg+5EfkD7aOSffd7tk2WKSTxkH8/kYeZ7oNYzz0GTPC0EsX3vmFWnj1iNSBhMuK4rR7fUsFEXLLvPd0Ded6NcqCy2RB7K01clLmdBYyj4ZC1piE+Yx1go1qmTzL6ifN8lt0o4b19NvxLFZVkPPWrQub9yDL5WTz4hoE62Pg2G3kY+J41I+8Z5Ek/JOFcFgTN7ly5db8UB2rKshmX1MhIZW6GZiW95bM+hpEkpNTDIZyxi0iM5EE+sias0tP/dcC5nT57P9jHNt3uvHBflzkdL8zH7w/eD9mB4+dzSqrfI2btLLT2WRIZ3787GO4/6W/l622P38uvooXBOh43X8bT7X9+356a9LytvU1+vWMqu/1sRUlWVpEfSWzrNMZ3dGiSt1k2AcDLEKjmXqkxpRaNQlXq3zbULlkvFPq+NZqkbuH79vUo4hMvzlqvPWxEyvKuPhEgNTGfRUX1v9HNVIro+UUGbqScN8m0Zjbsn4l5aNe7puPqYkZ84y7TuiDRqXOZ1oQu9r13DzUNay05//YQDAixdEzzyyr49TDx4uGF1F2/Kqqr1cuGZpslnEypRZydxkbNcZRexvjDXmsVygUrblC3vCpJvO5HnX+tKGUeHFxXAfZRaYD6TdW1MmzlUvG5vAW3UEVGK3n0yc1HnXEneNS7SdzDFIlugzj0hs9gvPP4fjQ1l3bQybMudW3hwmVMiuZFz/dFLgyjvS/68r+96pPfF26Whdycobx26SZodBj+NA//RG8h6e+qTsV4c6/rgXbMbxLUoXmbei8eoxc355a8eWMlj6dWnWh885nsmaRX3fZC/udFwGRe4XucdjfrZaDxbO5yRJnCTOzfrUuQN1P6SsvFbfRondB9FjqdT90TK+N30TkKogQYIECRIkSJAgQYIEuQ95IJCqqqrUMicnQp8hpixWxRB51nwv1qiJWNH3njkaeNKenYgVZXNT0IzlXPxAd7YGep2cOSezKfrKBNjdFiQi2Za4nEWkvvhqghh4z4/juLbwrXEJt/lHaCnx2tY8/fsImG9N9vOwRFHU6pM4cS0+S40NsWWznxoWM9/SXMcPqBWHLHReTp3j42PsntV4NM2ZUseCZE7ZPmpA9qk0jRuxGW4OiYla3F58TWKpyo5Y14ajTf2rbHzpAoe35P3mavH69f/ndwAA/9V/I/7GA82Q3lGTTDHT/iiXDURGftvcEEtPv0crkoyZt2+JBYT9f3pPxklWzO17mCsiBcuy13P6zGeGiuO4Mf7l1sRaK6XvmkyJ8lmeQSSkzHMs1aLcY14uZeYhYw9zjfl+0BVKi9p0PObIh5OJCw5KBdSWM4692XReowqRi+Yw1m6h1q6pIhkbOvaa8aE+UhVpLhCWzef6qMxyuWwxGfHvobIw8Z1TmL2+2+3UDFIr8oE0v/cRmqb+6PjsqI0cUs0y/BirsixbueYO1ZLLzwcHYpWlxdQvI8syhwmx+ZuNp2U8mNWXvHeBOHb7l/3Bz+sY9Zr5qiwyZVw2Ur8f1iF3TbTLX6+sBTXx8y3W8ymK3HfmxxLMZq4+9VEwYwy69nnu+lgjVHZxdL4HgNTPG+MhkkXkxs/QS8OiJMhRefF4FgXvaUymxuJGZHQra4ZNHxnz+/thkyYC5TNodrtd2zc++s+4WK4LywW9FBhbVbb08bp9AtHd7q6sjx31zuktJ5g88zIA4PELgibkzA/XF73WmodEcmCsFwZRtEyvPX2s69ZC9lqzpazBE0UsRgfKFjedo78raBYJ6iY7yiDMeEj1FoGOmbiQ+nXLCJ2Jzh9dwxaKtuQaSxilnueQF/MVx3G9D1kzZ33hnB0Oh857BICdTWnLbKoePIZj1y2zibJY3a/uDDf2bwIALpw/p09czb7azMW3Lk8Tr6G+5XhoelTEsZunyY87imK37qv6xfcGs6LzmrFefv7Aoijs+J9MRFczdyGFz2Mb+JfeOmVZ2phcenwQQbWMzopVMm+gXbNMw0GM7VTG517s6uE7SUCqggQJEiRIkCBBggQJEuQ+5IFAqowxiOO4Za2trZZ5Kz8OT8++VWdVzFGpJ8+TuZx8iRSc2ZH8SWRsOberlhFFVCJo1neT4gRyzam9JwAAZz/yCSnbqI+qtRTlTr2Koqit1HdpYCs8H3WX/c9tn8+uY/1sG9Yk1sWiGT57DNEuz/LQzFLuWy8saxhZh3hv6cZu5GkdU2WZ+irX4uC3hUKmvU7csf8na89cUYJrN8Vq/yd/Lsx+vR3Ju/DoY+cBAF1l7VuMb6GrDHoTRdNunYj19Dd/508BAH/3b/4IAGCkSERH2W+QZUgS5i/y8x3IJX31nT66Jdal3lDG1v6B5Mna3e1hPJUxRGPOaCjtn040nqS7OhcXUFvHaU1ifU6O5V4/RsT2Ia1aVWURSopvxcoLxnhJ+/f3xZl+e2erlRfLj/d52KQsSozHYxvDw/YQ0RgMBjVSrr7mec5cdcqyl5GRUd+joiBRFNn/U1h+mtRWNaBGyX0WviZyz+/s/PV8ze040di88XjciMFz435sTjTPsm3n6wrLqY/qsF84Fpq5diisO3ObEAH080S10DbmxOl2W8j1fHl7pIKxAFFc1DFVxmXms6x7dxi/9J4A6nwtrKsf4+bHadHDIcuyVrxZK5eVTeujcb8OwuDFNnhllIwxKV1PAztOjbE6149tWBcP1xQfhPZ1S8k0dmtyoiVlhTdefR0A8O677zq/Dfdk7Dx28RIAoD/UPICKhKMoWgigH4/3MAn3OH4fNWMcbcyzt7ex40r7JvZyICKJVrKHAjXjcZkS3VW2NzJ2KiqwfP45PK753y7fkJiedz4tuunUws2B6bPPMc8jAFTqSTLSreX+UvTg7uWrAIBLilhNv/u83HAga+LuSYbRWVkzX+vK3N3WGMndH5L8ScmjTwAAbp6SWKN8KGPoJKtwSqltr/c192Lu9l0bXXF1SDOmn/rG18l+HjHqv/Pnz8No7sk/+9MvS+k6sckOnCsbXsH9kqfD5vO5RVmYS6zb1xiqDieaei4YN+aruU/jd/QE8NlN/fHX9PyyzJwx4xzd9sfeXpNic6NmWc3i6XlZpBoHto7h2xiD0VD6in/9d+fH9h4eSH9xze50Ora82XTutLvb4f7N9driOpF2O7UHhl57oDHKWe6uUXeSh087BQkSJEiQIEGCBAkSJMgDJA8EUoUKQF4i4RmPLBxGLALJMGlZDRK1vBSla4n1T9FFUcBk8t2tq4IaJFr+PJOT6GBHrf96Eu5FclJezjTmp5dg89RTAIALjz1lywUavrtqPejqSX3eiFPKFL1iPiCb/dyLWbDxDYx5Yv6PqqzjoirmWXDZZGxGev2aTDZRFNXZyz3GNp741/n7s/A8L9oWDjUo2vgs5o2yGculvpunTuNILbzMAzboihV9fKJWJbXQWSut+rJmc2Fc7MZ9qDECRydi+T6Zym9f/5pYvAY9KfOppz+qbVBL7FKuW5YFjOaJijSWbkeZkq68KJa5+It/Q+6B5gXS9m/t7Tq+10AjNmBDkI6SDH5T8Usnu0w1EmvbZDzH6V2xxKUan8d31OtJPNasJLua+mdrm/LlElXV0f6Vdzceq3Wm6+ZQigs3hw4YP7iYI9UYDSXzQZaTIY3+1bSSy3hlPFZVApnmFFM3dvt+aSV/6MTIu+Sc4xyhZSuO45ZOsfMFLuuSzc+kk6LJXOdbN60lTe+xrJkes15RFGvzdfhxOD4alaZpi/2O4sdQ+TGqTV2xLpbA18U+olCWpf2NXgC+p4Gfr2aVBdWP47TtVB3H+JDS2gbZ/hjjsavz1iH8fh834xlt7FThIlGsh//O7HhpfF6HVNm+4zxaEaNI9j+KjxSRhWydRReAjYW0KIgtwjif/b5eJb51Pctdq7Mfx/Pc957Bm29KrKs/hm+ciJW5o2vBY49v6V11H66L27xbBtwHSfI8x/7+vkVBGINLfdPM7eZ7Q5A1uM4B5eUtQ3tt99HrXNeageY3HCor4DtXlQn35THimZR/4Zx4e8xPdM0ZrvYGsihImmKpA2mgLI7DqbLF7sueq/jKV6XMW/L5lAL5jLlL8grZa7JWn9a93TC7DgC48fIVAMB1HRvnfu6vAwBGP/IxAMDls1tY3lL9ohugRAPpI43lyaf09FCUP3b1QrP/Ew9tWZfLrmOZ+8ZWrz366KMAgJdee0N/E/1X5USTdO9VuHrBGGN15WzJtUiv1b6tmBcxdcdHsw2+xwqv4VoeFe4cbs7pKHK9wMiuZ6db6epKf68dRZFlTmSpVfM31LpxVayvMf5xxOULoAcAY6j4d3u7qe+k7/guGZc1q2ovkqbwvUVJUedDzOXeF1+WvdxLr7yKe5EH41Cl9MarXSCk43248J5K1wH2xMXHAAD7l18DAAw1WJb5DnmIiRKXMnJzbxef+PSPAqgdMnJ1w1pkbqI8HnbuhvbVD/i293iL4+3KohKtEwO60PAqOvR11MgUGzStX3c6nTYVspIscJHwXZROnRKChvF4jN2B1LHjJYr1gzVbmwb9fb6Y4mQshykGMV59VxaDIyUJ2DojBCLbG7I4Tw/l+qPGhsMmD9U2TPTz5qYET76rZZ47LWXEHW5ali3o2Spg647K/qB7nLtZ3t4Y1vC+Lg6joSysPfUHTFJXqfEZ3TRFlLgHYdK8MnF1oc8r1E2SQaX0pjFRZRW6H/C51D5l4LuffLCqqpYLqe9G9rAJ3f/oJue7ssUlrCvDdK4neh03Gz0ZL5kmPbRl8pCzLG3yWQb+W3tBqQmEddxwTPiGlvl8bueWP/aYqdU3ljBZszH5ykNC89p1BwIbDL9c1sk4VWp3SPf5fj2Amhr9+nXZGBUlCSLk94lSOQ8GShKkm55U3XWXxRylpjZIVRHNdNPhE++wLTeO1dDwWImvf/kPAAA//Tf+MwDAwZG4n40noheYWJwHk8lUNntbW1ta3wwV6CKirkxKOV1k1FdquNG/S33XeaE6sD+yeoBiwOBvPcQWLsFM3DBOGc+RpKrczZQpXar5InPfQxRFMCmD/N1Ddr2p4ftnMt7aBTjPjVOeL0wsa1OC6CL41T8TF6jD6zexsdnX58+1/epGnsnYfvG73wUAnDsnwfjJkAlgV1NGN9v/MIlQRnes/uQGju8hTVM7rnng4t8qc9fHjndwipK41UeWAMauB7qpVRfazkyuvzgUV7pvnItx7pzsj4pL8i4mG6Ibe0vX+Om7BS+KEilptg+kXS995TsAgB/4C/l7YSJra6SJ7zP1HY0KJczpRUgLaf8jquZeG0hdtzryvs8dyBie/HtJm3L4yjMAgPnf/RmcNurur+1aDqj/qE9UvyotetZxSXaa7Ssjd7z7xivOUbrzG2Nw86a4/fMdbg5F/83VMJ/lonfWDd2qqmxdXn5F0rM8/dRHANRrxKbuF1gPrg/NPXEzATuAlhs4D9XN51LURmIPVzSyWiADq92vm+6HS2vo0sMt3VC5LwWf0aY+jyP38B5FPjEHD1nQNrbTljDNhDa7NnR5yc/5DnmQvXHjBl546SUAwF98W0JJmJg6M26f3UmC+1+QIEGCBAkSJEiQIEGC3Ic8IEiVSOy5kNVSrXTru53YhLOdDlJNBPfG5bcBAH3N8jVIXSreXBGE2VQs0KNTktztiR/8DI41WNMmKzQZK60P1NP0ikRhFs7Pb+/GYC2MnjXDoE7QmnvX+idvH/ZNkmRFUkYXofJdc6zVPKkpNv1ksmSZJMphrWxqPaDFpNtJGhY4DRaMaPnQ/ihdggSLVEZ8Zo6Z0t1fvSrkCW+9KZavwZ4gVJc+9kkAQF8To8ZqNZ4WYjnLFssaXTLecxRB+1f/+t8DAP6H/+6fAQAW6h7aj2q0jxYpWoks7agGqvY1Qd+5czJ2xopk5lmJQU+sV0bfYqnWk0rduawrnb5rJgXO8xxLJT7wUQt/HnQ6vmunfN/tdux3TKJHkw8tooslXSI4XoigxtaiXXlELKuSXD8sUlVVizChiVgl3Y69DqgpvDm2Kb473Hw+r90xtX/WIX3r5mZRFLYMzs+dHbEq+85PvjtOkxzHv8Z3D/HTGVRVHZTuo1u+sF4+eUmSJBahqhExRUyWLspjUwLkivZo4+aL0rp4z+cMOtdxuvDpifX3jjzrt37r38IoIvjHv/dHAIC//rM/D6BO/jnWvjWJorJM8Mwyo8SSSND9Zq6udEv9YbZwXTxbiZ6LAlHiu0ZyrCjaRFdgD5WJ4xhFeQeiipKf17nDxTb57yrvD9YRqBHtuqjSuvy2PClYD+Oim2+9cRkAcLAvunlnNEJBl6WYgfJKdhLRG0LKTlqpGkqnH5vyMCb/jaIIg8Ggdqn21t7lbIzFXKzmB+raPmZKC03bYtNj6Pjrqjt7ig4yRSnLSufXgmiSi5TT4+FwpAQ1HZlTG2cfxxlFSq68Ie5Ol3SuHmkC2ckj4n0yr2TuPKlI5rWjQ5xK1UPkW88CAD7zJ2LtHynyGRtBpGOd4JFxx3a6qEMMiBCcnar+mWpddfZWVBLPC/nFY3/0Xby79462V9bfvacuSF1PbesTdCyB7uq12yUgY6xOyO0ScfiulZw7g77qvWyKREMJJvsTLUO9PpRTpDpQXUaETvekDOdAHFu37itvCao+UFRvW4kb4kelTZuaLoYunUw4XGYFcqZEUD021MS8fuqh0iJK9eU2g4RxxyaXEuYP5/bUzkPuPQHEFWneNcVOQfdyXuoShTSXqapy3dhrynhe4eqB2pOLurOmlPfRtEr1rEYUIde9Vnck9byYnsHGD0p/F+o6+s1nBEWPOxrygbuTgFQFCRIkSJAgQYIECRIkyH3IA4VUUVo+03dhmFoVLE15/UWxnuRq7T+lNJcxqWg18O9gpn7+Q7EEPP6JHwAAHOUl0mTgPK807mm6o1bVygtAdBL3ehY2H12yyVY9RCuKTP2d1xfrrHjNYNeWhdHr31aStxVxaz5tMq+wdgfWQ5/16U9/GgDw6isvWV/hrMP2KEFD5FpnLWGCxiUdT+S+k/EtnIwl5uHwQHyT86XU+YlzT0pZmng1I8qzpXSkk5oggHEe2dyNP5ur1TzL5bnjsdRnhwkq49oHnhTYTSQUAIpK6rO3J2jC0bHEX0zVmteLO9bQMlQ0ixTmU4036G2oNQVtS1mZuzFstr/L0vl+OhN0jVZuQ4r7bImOFwdlESs1QfW6MsbpZ8z4kizLairSsk4qDQAmejiRqrIqMZ/PHX9woEaSRt1+y+rF/luX2LeJGPmUretimXx0mMkR5/O5TZjLMccxmPS6Ttk2YFr1WxzHdjz4sX/87NfZp9xuJv+9EzLAMpv9xbowHiCKGE9J2m957tGxtHGRayxXXr8PBuZHicZSzG467V1mbmzHmbNnAABvvfkGeooG50rp/v/97n8EADz+9A9JWVO18mpiU1O6FOvT6bSO2dIxwbijgrGeuWvRXYn+RUT7ObehZVVahovSu14DqxGoOqYKzvNaYkpbZ6J5PqrJ91BlRNBIS28skr4OqWLc5huXXwcAvPLScwCArsYk7wyHNd2xBt1zDHcVMVkuNJBcdc4gUTrlZbbWc+VhTOMQRQbdbndlkmkA6CZDbG25HhQ2lqcSnX50dOB8b9cg07EeCv0B03Jo4lJFonw0dT5xPR/6H7mIa3/25wCAndflXWx8RWJ7Nn5MKM1vaKL7kjG3zwsavfvmczh9Xe34rwrp0wXqSJ3vqSITmY7phY09b+81uDuJ7drirotLvWBbY5qKP/o6fvhTn5I6nt+V576pcU/qSTO6IHFiZqBr/NJNoNxEcrPKRXFbXjqMU805Z0s8clZium4pEQcU7SCrTk+RrGJJrwdd44kyNdrPOUL9768zLaKzvPag8OOlfeKSOoG6XMeYp7ws4LHMryaiQFuHNGXd3tLqxsify0xY37X6Zt1+dZ2ea647PspF8d+hX89Zx9jk05/+pIylpx+VdA//8j/95srnrpOAVAUJEiRIkCBBggQJEiTIfcgDgVRVcE+Z/om8QNk6JfsxRZFHV042muuvv4nyRKxCp9QnmTE9kSbiPFR66o0z4rN6+pKcUJebcnI1VYqicmNYLCJkLa/uaXpl4l7vxE0aUjLz8DORs5oqM0F2G6t4s0z/+WVZrqVqXUVrKc8jYkbrVtFKTJiVZJdz67pknEUk/XXzxnU8rr7Y1mqljDxZxATC6t/qJSFeanzHdDHH7FisdftH8rfsSZlGy5qPxSK+tSm05YfHysyj8RhRlsIoHzhZxYzGUnU1KfRArX1/+Id/CAD44t/5ManPbIz+wEUpGJc1nR1rG6RtZ0bST3/y1W8CAC5eklivyWCGRH2wj6Zyz1ARB/b+ZkTaY43dUGv/YDBAb4PohKICykxIS/NU/d/JoJOrta2rftmz6QLoK52u/j1WS1hHg/jUHd+ODzKldbspCmUaI0oyVkSs13k47TIGxkF0aBXk5yzKgJhxNq5luFRdQzTGT42wCh2mZZooIOMjKD5SVpalRVZ9NG1dstVmDJRP1c64OZ/Bqp3It2b68vXEOibBVbEvvJd91Ov5yBi0P5TZaldQpoXOp8QUNtlkthCECqUm0MwUfWZcgKIr4xPqrczGtk6VUvf6u9cAABvbYl0vE0GoZmOx/m8p61y51OTEiwSGsXKZvDPGvOSZXDObuXTxS8/6nWUZ4pR9ovqblmnywjNewaNel75dTcdu5Q5IUlnmln2Q/e17RdQxuKSrZ1Li0qJrVe4+h+8/0nnx0vOKUBEdUVTqxs3rdtwpSzQ6GnO7yGsLNQBcuybv50JHkNrYxK1x5idhfZikqtz5wX6x76Pba+gXvUfHSqqo3unTp+V3b+2fHk1RqIfMsTJgWjZHXVO4fm8OlNHPQ7JfPL4JDZ3CeWXmPHskz7nxNWHw2+opY+VI3lHnLWUw/NYr6E+knLlSV9/Ute7sTNugbUosQsXFxtWdIvoc7vUY28u0JRwPCi6NMoPDV4S5bdp/HEBNR97ZlHYe3RAdMhqInqHnRVN3WSZlMiR2vJhaD6mKFX3vdHoWXTq1J+Uf3hBdxZjzSOOUDNy5xHjIKIpszK7x9DkTZ59/5Ky2QdYFiwJH9R6M6R/4vv10Gz3GyauqyKyHUXtfyPa34i/X7BurqmqtBf5+OYm5b9E+Vn1QlW39tS5Rsb8eNq9bF0u8Ljm2jYeODWLd057aFbRzonGgX/rxnwIA/MZ/+APcjTycO6IgQYIECRIkSJAgQYIEeUDkgUCqDNxTaguxKmsLnX9Ktn81l0OkFvwbV4UN5mj/Ova25NQ+UmtkR5lXru0Lk1x3IJaXbWX72zsl1oZpo45+Hpv3Iv6p/W5ZjMqybN3r++BTfKt1FEVrLdvN8pvf2/5vXMPnrEsYXOdr0vehj0iSBBONYeqrXzFZfDpq+YpTDkPX35xW+6oCMpvuRWPY6AvN/tDvu0q3s6vMbduaa+P69esoY7XejdWqdqRWerXeJEqx+O2/FNaXL/2dn5R69/sWYfAtQKzrYKi5rZSZh/FI+7eECWt7MLLWkU1FvdZZXGyiWNPwhzbuO5zPmTNIfbbV8lgs1DKm46OJUvpj2B8XRGR4Xa/P6xfWR5/CfBDlGoayB12KssB4PMaxxtzwHTQt+DEtdMyQqv1G1qVWUtpGnB2tiz5zFC3z63Kf0Pq4WCxayAclTV3Eyk/om2VZzWTlPYfj1c+BZRH+RmJwf1z6cRn8vc4jUiMKNnGu/jabaRJuRXm2twWpm2hutOmRxGLs6ry5/vbb+N5ffgNAjez6Sct9nVhonptOGkNJ5TDV8bk4FGT1ue9KbpuLFy/K9yeCXPXPSMzFlDFl/b4t/+rVK9oWsT7vX5fP46Ob+lx3TWiOi9jqYcYk0oKryP6a3C9Shju3/Nitfpw6965KiksvgGXm5qliX07GisyVHENEg5Y2x886pt23X3sNANDTNbejSIJRFKo3SDFSRPb0aWFpffMNYeAd6pA+UC+RGWN8mFB7uWwhs37s3sMmt6v3Ip+0keiIjG2Wlg1AnafK5kDcGllWtaLk3ND5rsgF11Ii8twvcV17e7GPclt0U/eUxJJf/p7MjSc07uXoD74OADhR1DlVVPFsHqNbaMJaXSa2Z4oqxcw1p2OWKAhZP9f2SINlzn6h6KZ6VmzkosMWiBBpHecvix4ZD2Sd3qFJJnIAACAASURBVHpakvFWGqfd17jhOHE9iZoJy319a/ODMX66IMoqzzhz+qx9Z/u6p8zmuk/S9XlzpDnH1INnph4nhXqalEWBSPW68XJ+MoH2I2cEqTw6ED10ST2qyrJez7te3O8qNAdAKylvZWqmSIq/rvhxSZTm+rCO1bYu02UPbuo9G7PqxbL58cdtdsA6bt7XVbzHF3/t2Ei6VidnGqy6ofHxH+tIkmkEpCpIkCBBggQJEiRIkCBBPnh5IJAqwIhPqeez2rTk+9Y4Hynh4blUC+nNq2IRO90fgIaHxVKslSfKGjPcFt/J0Y7mo3rqE/K7MjIVPCGjdJCfZj0ovl97E23z2+X7rlLWWRybaJRv0SZywnv9Z1RVZU/r63JaWZTDy7fD2jXZzCg+m5hv+S41tme0udOIYVMrhjIlzjRWYaBWJPoDR16ehOOjOQ721aZVuvmhmC9rOpZ3u9iW9797TiyjRi12phdjZ09QpBc0BmBjKH2XT9nfaoHqiHX16FDbNioRa66QjOw9msuJ31elG6Ny7rygnW++s2/7hTEyPc17YLwcMuzLvvZHmtQxDPyN+X3YN8wHYa3YnjWbGdWBmlWok/jxLcrMpfnZOKbYlihq+EBrXp9E442yxe3zxT3IUlWVZdvj+KXltmm5rOMedAws3HglP74TqN8pY4r8GBaLNmhfU9jnVVW10AurB/S5PmrenN/r8tbd6e98PnPqy75oluXHELEezRgE/mbHpVpTc9WtxyfCkkWdfPOWxNS8+6Y84/WXXkB+Ir/NlOlzBpftj2L7eiYW3OHm0MagFmrnLpQWdHkg8zHSsmhZvfrm606Z+/v7DWRMUZ7nv6PtU3RcrcwDzSPjxyI03189P908VUSqVsXIlpVrx/dRx6xyre2rkBAy9K1jx2VcWJa7SFVZ5kjTdswEUOuRha5BPY1FJUMpUYDeoI9MdfrbVwTd++SnfhBAHYfF2OfUi7UoiqKFpPuW84dJjDEr56XdG0RJqw8sC2zHRbBKm8hQx7YpUBFxYCx3KvpsoJcOdYxmnu44UjTk7f2bKA5l/uw+LnMi+cJjAIDeb0t88Hmjuklj7B69puhXPEesSGxXVdQcOmcUPS64fhJ30hjkKmJsVXMvpEgY434Y06rzrlswnl33EUmEXZ2LswMZz8uFbm1v6vj+mKzHx8yPpuOSMfFlXOdnYowSdTH3Oj7qQTRwPB5joCyiTzz+EQDAieazfOlFidmMbP4m/Wv4jhUxKWvW50TrQfQ21ti6rNC/ylJ9tC86lPuKTrdjY/X8PV9Cz6Zszb4VQBK7MVSd2EXsppXOv8rNPZXQG6PXQ+55kPlrWK/n7lcoTZ3ucyr4n28Xe0V9TpSPUii7LClTGctGXVXC2MDTpE/kzY0jv1t5z0iVMeYxY8wfG2OeN8Y8a4z5p/r9rjHmD40xL+vfnff6jCBBggShBJ0TJEiQD0uCvgkSJMi9yv0gVTmA/7aqqm8ZYzYAfNMY84cA/hGAP6qq6l8YY34VwK8C+Of3U8k8z9ciVfazMne8+MLzAIBtjanZSA3ynJZ5PYmmYrXZOfMEAOD8k+IzeTzT3DJkQ9MDcZQY6/vqxxGsQ5vuxe/b9w1d5bPqs6r41kk/3qGJWPksLuvQvlaMwgqkcB1S55fF/EUXn7yEN199EQBwrJaXocZWbW1oLBPzzszVAk5rtsa7zKZLnCgTEdTixfdRLOXaRx8T5sZIfannGoQ1m6k1Px4g7krdn3xC8m5cfuVlAMDBscQ9EYUaDWWNfPF58WXe+8wjjt8uUFsxGHdQ6dgaKDPP5qZYuY5flGfEJyfY2xNmwoWyK5VaR37f1zglm1tCWQmHwyHKuTIhKprEGI2aIVKRBQ/1qtnXekg0z8iRWutpvRorykf0k+gNrTpFkVkLUFW5467Xc5GWD1jeR50jc4rIFMcaWflmZYaqcOPIjGcp5t+Fvkf2eZkXa3OLpGrHIjsjraHQ3D5TpUnrlIXNYxbpPQstf6vT1ee5z2DOjybKxfFBdKGvFlU+1/e9X05lDAy2UxS5/D9WS/mc1kX1fc/nim7pvD5U63hkciCTe5cLsdQuTw61jsoKqpbcd96R2Nf5WN4DRepNHboazbFCzwK9fDZd4KwypTFekvljFgu1Ah9rLFFHdaGyhbFfyspgOnP7qFL2P3/t8XORHer82tvbw0gt9oPBpvaH6ljlQ5uNXQbBpp6pY0rd9vJ9TzVnHOfmqnw6/rph43a0b8fqtcHvZ2oF73a7UKM+ckXqjMa0XH9H4lbOqK5j2du7p1r9cfac5O958tLTAIAXX35VrtHYulznWK8vOoe6KI4N/Lhhi5B+eOj4+6hvKgf9Zttq9KP2aPHX68jzPmm9yxVso3Z/oEOHv/sxL/x8dnMHW48Ic97ZsxJfOCxFV8z7EmOcKLNgorrquqIsvbJCpQgnWXHJaBwrQpAS3bVzWvdN1fotaGFzuykSQdSZZZgaUejpVrar+47ZTZmDmx8T5KhgLGvF+GEpgihQt9tpjTO+B/Zz04ug+bfX69lYKl574YLsR55/7nsAgPmcMenu+6dEUWRZH31kljrT1ktRRzItk8EvKssGc6TGuntxYDFRZRv7Xns4LT1vLD8nKvOGcTyyE3W7jKqqamZEb8xS/PHf3Iuuywe2Tu+v2reyz/xrbR4yu0+FtoVxi+09Ld///B4R8veMVFVVdbWqqm/p/08APA/gAoAvAvh1vezXAXzpvT4jSJAgQShB5wQJEuTDkqBvggQJcq/yvsRUGWOeAPAZAF8DcLaqqquAKCVjzJk19/wKgF8BgJ2tjVWXWGlmu/ZzVfC0evnyZQB1DEk/1vwcBuioZXd8rDErQ/E7vaQIFfpiRaTV2pBlBLXfM0+tPiPXOva9dewnt7t2HQpUlmWLAcVneaHwd/ZZnudr0TQf7WJ8B+NLjtT6Yoyx1hI/dooICRGRmm0G9vpU+z+nHzmtRVqfyUzujco6M3izH46Pj23MXOXVlSx7vGemrHg3jo/0s7RxczBATOYtjSM4uCVWUfohD3PX8vzMM2Kh+8zHt7C5uYlVwvdAwEENH3VekE0Z23me17EntMD6eS+8PEB9L9YNaMSSKUKWZ67VzPf75vicTCYwqWultGiGln/mjExVWvVTjf0aDHq2T1K1dMWcI/nt+Js+OLlfnXPq9FkkSdKyhtu4laIdx8h3yrHmx0dYFNmYFuufRaQUYTSJGxtJpKo591lefa9xPvt1rlH0ZZvtybNy+9Y/aw0tiMIZVMzBVxB9lvFzMhFkl8hFVVj7qNRvOcX0RJCo40PRIYwxuHr1qtMGtr8uoy13i/pzLm6ONlrzwbfM+1Zn5obj9cPhEAcHB075TZ0KrF+LeN27774Lc0tYIDc3BYk5tSexntlS7h1PXV3XrO9y6cUFeF4K/OvH6zVRLz+3FNctn8mM0kQ4rR7WvpmOBW2MExflsmUp+vrEpSfl+2EPU23fq68KQtVV5JCW/Jdee91pdz0+q9Z6SOSuWK4fKx+U3PceZ2cbSZK0GP7q/q/XaO4x+F59fe2jmnmet9BTu8Ybd433mey4X3ry/OM4UcR5rDFTE65LmsAwmUoZ24SENwSpjKY5OkQtDJEP9dxgLAsRMw91MhX3ds13qjrYQiW8R/WttmVcqV40JSJtb5ftvCbMhW89L55Lw6ckPixTWKWjrMClxjHlt2GY5t6G+t+f/824dSJWfIf0+igiZXUtye7qsr6WlWnlMfWfQxbA6FFBErlv6ql3zvZwx3pPJLpOcw7XbXLz1FmPiiRGL3W9X9bpBsO8hbpmmaLuh8Jrgy++nqM0mft8Nl320bpYqmYZPkOgbZ8hg2a58vckTlvlsT5+fNad5L7Z/4wxIwD/FsA/q6rq+G7vq6rq16qq+mxVVZ8d6iEnSJAgQe4k74fO2dTDeJAgQYLcTt4PfTMaDe98Q5AgQR56uS+kyhiTQpTNv6mq6t/p19eMMefUgnMOwPW7LKtl+bUWGRhUlqVDhL7yV14RSxf93Xc1g3bfqP9n0sORWth6ypJy6VOfAQAcM3aqVAuYMtEk6udLf1sD04qRWMdeQhSiYtxFVdjYLD/eyufq9xGkZo4h33ri38O+8y0QzWsoNsv90mXTovXq+nV5ZRaVimMk+v+SVgrQOq/9oganjsZL2TiHZY6OWlKw0LiOVH+jAZ4+ucoQVqoVp9T4ksVigUItL8cn8p73tE/jgTyv35M25QfyjEcHsmmeGLHUPPf8M9Z6k2q83UQZwE40voJIwDyXMo4OpB5/+uzr+PxnPwUAGGqeiZQMQWONwVDzBFmPumr1ObcjcQZXDg9RLCTOoxpqzJJaAJeaK2ZOtEItcMzs3k26iKJ+s4q2vdNSrFWcMxONw6rRVm1aFKHDd6QWN47Dsb7L6UzHg86tuT4sX5TYVjQ36si144mifB9uTNX7pnOqssJisWjNOcvW1+1YqxcRbD/WgXOO88QiSo3yaOXitRbxMy7S7MfPFHGMxVzexyAhu5pa8rAmz1iDHW6dbvFRNV+vEQSYZbllvSPL1TJTxH+iMTNqdVXwB9Wx6Nlb+zdwqAjN5cuSy4ixjT5jYW1Rd62EqxhP18ZUeTKdTrH9iCBCJ8cyl0+dOmV/a9bD9gfaFsydHYmtpJ6s431cy6n/Hpo+/om+s5Prgu4tj2RPvrUlZZtYmdYU4s6WDfbFyo0PGKnxsUbZpL1ztVj7LKLGmFaeGqPrUqa6lfpkoayPfNb4ZI6hsqMyBtOADKBcH6Ft0LGuZR6dSBs/dvFRbG4xDk9jahSpffHZG87zWPexzgNjqtZYZbvJ2PZhyPu5x2mOW7/dxtRt8hECf8747JJRFNn52/TqAYAic+e3P5fOnhXm4/n4BCc3pRlHU/FUGB/Lc3/saYmLu5rJnL54qPpgLnMrhUEHbnwNdRXfFVtk55mtoeopLBFpEF+u+7GcSLlemSsKRjZAaL7R2FQwRNP0+amOwXIqdeyOlDV4Q41pxq1Hc67A22v5uQX9/VJRFFZXUI9PDqQMIoE3j1xPnizTZ/D9xKlF27in8r2jiFSdPS3PGipSSIT45q19PPaYInJkN0xdpB6KQjJenuhYluetsRF5+3GLshJR0j1eP22g3t566o/ddbkNi6JoeYT4TJX+GOb3TZTb18k2tssDty3ab2Pi16+nft6yO8l7PlQZefL/AeD5qqr+58ZP/xHAPwTwL/Tvf3gPZQNwFQCXXM3PimOlk5wfyqTZ3ZTBm0Z0Z5GXNp6NEfWl4049Ksoh3VFI1sgilc30BaTuYrmOOKIp/kIWcdLQfSiuwcB1xBAUnya9GbTsv2gfouU9nNQMqk/iuME3r9Arg5cJM7PuWo8N0nA33ANbSUonSjdp4VZtkzbbWK+GBFeuCF3y+V0NfFUXvdGQiwMTFJIOVRWTUlcfT6aoIG509lCtm3lueLd1kxJF8pmbqf5A3v3FC2dwRRNCX90XF6SRuuYtZqoAtGweKpY6E599bR/DLdlYfOKiHIzyqWwgz2gS04G6xMxIoKFT65FzknzwtSvfsgcxkiHs60ZmWTKZoLom6cFooOM2SRIslqqENbB7fMINvI6/hfQhN2t8X+yf5XKJLT1MZnTxYrBuLH35je/JBvh1Vd77uonsd1L8/N/+aWmPvoHNoSj0fPnek2Hfq7yfOqes5FBFt066bXDz3XSpWacPqIRrunvdTEfx2sPSSBNG2sWldN3xuvaEAtgZqXOLf/lOffcvSpZlLUr3mmhkNbV27QahG+TpzCZjzHKXEGGmyXirnHNNnjHfF5fb7z77DEoaDHSjbaBznQkWPXfi2yVGX0eKs468aHNz027AmSCTRCR8VzQssX/8MrIss9+xjtwg+e6XvMc3uBljUKo+YFLbQjci+zdFJ5qu6IJH9BDY31Zj0GSCQhd8Pp9kI9zUjLQ+fD7r1U3qTQcJnKyeZhZ13Wxt6kHtQN8TjSV7e3t4+4rogURPXta1KyJJjdSL+oybD9bnm9/+Dj73o5+Vuo2lnwGXap9jyialjejStmwlO6Z0uh/Ooer93uMYY+r12TMiJElnrcuUf1DyDSFxHLc2hL57vk9Y4pe5c+Ycrh/K+vjKi+Iyt9TEzM/vyRqWnVeXe11rNpbyvuPl3BJQ8JDO/zCfLI+TS7gkYDwEVah1Ia/N7CFK/+ozcstTwXlnkJCETI9vpGPvjZRiu6QBWeo+9MIU4jhGqbrJhimsSYXDPm2+L4596hXODX5frx2uoaTp2mk3+nAPdfxL3TXTeT7R/eKh6rannnrKklb4Cdr5fOr3Wt9K/cuqsjTjZeWSjnD5MZ6+Tda45bnlu2tnK/TA6+Pmd+vGsO9C2OzLdeE3DDmxDbZkJ/y9bL1n3w3xbuV+kKovAPgHAL5rjPm2fvffQxTN/2uM+ccA3gTw9+7jGUGCBAlCCTonSJAgH5YEfRMkSJB7kvd8qKqq6stokS5a+Zn3UF6LbpGn3E6vWwc2azDly8+9AADY64q1btTT06y6qhxPFFnpDHH2wkcBABeeFFrXA4LR6n82UPhy6Z24m24ULcpwDzlah2pVVWUD+yjrKM19utNmUPkqC27zWlqvaTWcH4lVMzYxlmodo6V1ORELhz2z05qK2uUGABbwrOdouDNFhJVpLZC6kua5l8T2916XbityzR6T7iq9aGyU/EBd3OKIAe+Kiuzs4qbGjD9xSeDthVqV3npL6H3Pn5PAZxsYSpibyfYGIxilk640eHr/RAkydDgQD+0PFBWbSRu2NrbxJ3/ydQDAl62VRMbGL/7iFwEAHbXu7GwpoUVBGk79u8wtffJSvUVI57l/Ihb+zQ1p/4a6KuSKEOQmR5zQTUL6l9YUP7msGsIRGUUG1JUiiROczHVsKnX7sy+8AgD4rd/5PQDA7ragcIW6ZEzURWGZ57h1LC/gcSWz8JPKfhjyfuqcyBh0u11LRvD006Ib6PoaJbX11yel8S1a1BPWtWOxbOkF9hfR6KXnntHXBIPWXSLt2mSMy7l8R+ryztbIaYtPBZwkiXVVo36oE1l2nHr4iHc2UTQEJWq1RVIFQRNuvC1pAm7dEMR3OpHxmysFeZommC2oUxTBXrqJkntKXlMVrlXyXsaTf23TxTGJfIusPPe0Uq0T9bFWUYKCDd3M/iSKQv1JHeO7EtJK3bQsD9Id/U7fTcq6qm5XZObau2+3ns9gdpbre0XMNDWD72LaXD95L7y1ZXwiZXO9OPeIzOuDA3Wrv/KWRaiMvn8m6s3Uk4A507vq3h2p27yC9vjMj34eJ4pqDtQLpOPVkXXvkgpZE+BOpzXFvj/f4nUa4H2W93WPYwwQxYi0c1oJosuqFbxP8ccwQx/s73nRQqvhIVb+PGdZfOb25g5+6GM/DgDY7Mg4f/FFSXZ9+ZaQzGxtyRh5aVvezcfflne3CWCpfh4L7a2zmXoOKe5U6FjK7HzT+anrU2VKZJwT3FsZuzBLnT0Xw4z7kzzCsS7i41i/MzKuh+eeAAAcqmPHYKheOZGLqsZx7V3Q99y8LXKRu8hFNFCXwjS1XkB7W6IbToaCOHd7sh/oROLu2tF9wZLKtaNoWxWhp6QdZbo6cTv10c2bt5y/Fy48pvUC9g9EV507K8g39W65rB0wgdrdmjTpQstPFFHRJHpR0B1Rx12hrqq8l4Rbi4bbuU+e43tE+MgqgBbJxCradaDt/ue75Tefuw4hpFgil7R2WU35XHpw3QXpnFPmPV0dJEiQIEGCBAkSJEiQIEEceV8o1d9v8U+my+XS+uA+++yzAIBHzwmt5GbFxGxiEUuNa13oD0a4dOnTAIADtfQuRkoUoVZ/WkBIU+2jTaPRyFo2fZ9Q//RceXVvnot967Xvg+/T/zYtr+uQKv97WqibL5b+vUSziDz5Se1oiaUV2zB4uhFfYGMzFIAhVWXlI3eKYE2mc+xr/Nve44/ob7R4MgZF37MG5k/GSiXKBJWTGSYTKfdwLMhUX9mUPvKEIFSvvy6EJWfOnHfa8JYGhhtjsFRL0MmSAbG0fOr7VnTrtMY1MCFpp1zCKIg31kTS2Uzu+V/+1W/KNbH08dOPiWXq5/7a56RfNNh/0OvjxrsSR/GJH3sCAHDrUPvljMZp6TiYTuWebKnBrZsJ8krGX6dL643G6MSuBTpbuMGbNgZuNsPVG1Leb/6735bGdBQZO/O4/FUr6slU3sugI1buqjrBoxcUxbKWJ9d69bAJY6o4b773PUnS+PGPS2Lo/YNbLcTYT8LoW5absZJEE3gt7+1GtMRrrFNfxo3xaFujKKnRcAYzoy6/+XzfCp3nuZ3Lfp39OJVWMvWsJgrg/D88kniz1197DgDw5uU3AABbGleXMDiPxB6zhSVKMYrEdcrVFkrGLzBZ6L34r/uxTE3k8LzGKBEJoeWUn4nQsIwjTbPgW0mdumrfEd08f/68Ntslg6CejePYJp5fqjdAbkkmNPja5qR02xJFBt0uCWVIQsS4OLmWicCpk5vxYBTGkvn97pOw8G/TkpzaGGMtrKyJAQDg45/4hG1ns+92d3cBAM+9+AL+9s8IoPPmS89rfQTV5PzwyZKqBuWxj1DZgPTsw4vjfL/EwPV4af1uTAtFWier5ogfzL+OSt9PyVKnh6iJDy49Jai9UeKuF77yDQDAS3MdSztaViHr5FM3JxgVJOrSNVWrOI087yMmAda4Xg0VRlYW1sRPWm4XWwH0Fpv8NyctOww6evOGelnsK2HWrbHUOdf6PaKpDRi3xP6ZTqd2vFFHcN/kExZYwhRS2i8z6w2Ucg+nf5k4lm+MyXgT1elooF8V3PXGT//AcXHjhqBe1GGc40dHR9bzgevLqK9ruKfX/CS50hb3Gp8IwtezvqdGv99fiy619skrYnv5vHVxUT7KxPfT9Cij1IQg7ry4HdmR9SrJXI+twme5uIMEpCpIkCBBggQJEiRIkCBB7kMeGKTKlJX1lc0rz7qRdvCdv/gaAOCssvwl2YneSX9X0v/KaXPnlCBZT33mM7hhFK3o66lZkYCUjHlaUuzTMOrn2Wy2NqaKYplajHsCNjDWf5Un3nXWWJ+mvcnysza5n0czacvoaoyNMZaiM/diJBa5JhnUGKe5+jTnaqHuEB6MIvsdLSHzTCl4QR9pbbc+YwqlBh4keExRxYX64h8rPX6q1uuu3tSL5fNCnxWpP/BsssCsVOZAvecHP/YkAODiKaGE/d4LL0qdNySG4WvPPgMAuKnskMPhsO47tUTQv3+xZCwI45ZEcv3f6PSjOLks8SM2US+pYtVXO9OZ9NKrgj699JwiWNovjz92HmYg7T+nFmYy90ETFC8HUr++IkR7imIgnyFWM12kMTGZ9k2359LjzwplDuyqtfhVYfD6g9//Y+TqR765ddq5J1I0jShcT1GOXK3rk4MZ+rlYxeJU2hBpu4oFY8cePmnS6NIqeO2aoIn94aCFUPlzzY9jtMkaUdlYFrIjmkyt/AOl51UWNkuPrUhNHZc1Q9LhXFO0K5YyhoxTWPBdqAVRy0zzCktlWyODFnXPQuMJSZOeKVrPtBPpsVhBb968aWOJbJwZreCVjKOb+25cEqm1ixKoFi6ax5iKOHaXnDh27Xq0nCdJ0tKTPnLY9nWX64ejPt56S9C0R88Lkv3Ykx8BADz/vOgJkyoNvjIYJpGrP8uyaMX2+pZbJjKm3iADK+mVq6rCDY1t7fWVHay3oWXpe6cZ3rjsgKJP3fWIllmO1Vx18MZIxhq9KbqdmrY4z6VunQ6tz4ytk89E3RhPYXRed7spKkW9U0spLP0w2twDALxzQ+bKuUekj+dLufdMVxCMSxf3cOU10T8DRWgP1WshzbmOKjpACu68Zoez+okspRramzyMOZ+MmxrFj8NE1U6xQvHXet/jpTlXfMYyH8X2UytYtDsqgEjHisZA750WtHdwWtbYV994CQCwr3N7ORLU55GTHoZTjT/VOcicv0uy63FfZFkBlR2VEyA2KLj/YPJfMgo3OxG1Bwvj70wBlCVT7sjfI5K7KbvrkXopvfaKMNz6yF0cxzZWkvrceux48WmWBbSsGV4HOjen6t2ye0rmSEdjZbmVIsOhn4R5Oc/q+B5tH9cGHyEiCsUyiFzN53N8/AcEPfaTznc8pJ56rhmL5yPO6+Ki/D0w9RJQjz9/v+rrUkpTx6/jK1jnHXan5MDAqqTi7ppi25QYSwfvI5FM53S3EpCqIEGCBAkSJEiQIEGCBLkPeTCQKiOnQZu7QpmhaAX/7le/jD59MgnEdDW/iVr2pkdyAj/9mMSHfOInfgIAsIgjxGoVo+XBtwitimFqft9MTLbuNG2b4p2WhVXFOM+l+AwlLetVo8x13PzrLAFN/2w/hqpZt+a9flm0KldVZRPxLtXS3dcyafnw4zvI9Jf0ujh9SliD3nlLrERG2e2imFYcZUZbkLlRnnX9UC1iZYpCr6FV5MUXhYHs0dOSQ+PqNbHWXNkX6/qB5qlqogq+1aJGINzx4fdtkiQtq7hv1aHVuNS4vFkpVuuuxkF8940xko5YsZ556TcAALt7YkX74i/8vPTpTanHqzekbT/8SUHjemkHSaK5vBRdJKZ5omhCpW34y+9I7MLv/fGfAwA6G2IxKzqbGGocB32waSVjP+yqVW/Qk+/JwLW3N0QSLZzn2L7p3ltivAdHhG10Xd6MxWLResfr2Jj8BIfNvG4++mytf5oPiAmpfctlHMdWH/hl+UxKfi6UIiuQWTY1Hds6f5OhGzdaKHJR6jy+dUuQhLfeesvOBz7HZwxs+8XX+sy3mPtxR75PP9/DKiYnX6dRn/nJIYm+ZFmGvT0Z91/4whcAAG9ckRw8Fy4IqnL58ptOn+0p4s3YzKau9i3VPpLg908zBmtTmRpp3WYumBs3dC1SfZFlbnxpv9+zCZNZLnOq2ZgtRa3nqjeznHlmFFEabdp8c9c2SwAAIABJREFUdlvKSpqr/mA8Vt23iiw29FwzuSnQjsOJFFl45x3p23PnhIWMOd8++tGnkKgHycl1YZCbaXJjeqPYBPPsW9RzK+X6k7t5qu6VjeuBkMrdC7TixeKkhQSsEx85zfO89Y4sU6DHMugzp9n3jxJLHVc99XJZZhozo+uGSelZIu+lVyh0mEaIlf0vr0SPzHRZSDIpf85k2/rqNLwZC0XMy6IEFM3KdVxVymDLWCoG9xGNIrJQRhFIbDvRGK4j1WtT3R/unJY9yJnNkdZHc2Fqm6fTqe1D6kC/z4hk2dx6+owmUsP+fuUN2esMNE5tojkpmfNpVVL2SPe9qRfb30pkq/3je0pcu3YN27uCku9ua4LgPpmW3XglP+a6KAqkqbuO+PnQPCeslePUL9/fU/oJvZvM1z662kpkvSbmcL3nwvp5QLEIb5WvRXs7nR7uRR5C7RQkSJAgQYIECRIkSJAgD448EEhVBWCJ0rIMkVv/tZclj87/z96bBktyndeBJ7fa394ruhtAYyUWAiBIAiRNcTVJUSPRWjiiZyRZM/RosSSHw5LCDsdMhCyNpJAdE6OZcUiKkeXwplkibM5YlkRLJEVCXESIJEiCBECQQIPdjV5ed7/Xb60tqzJzfnzfuZn5VVUv6CbU7cnvR1e/WjLz3rx58+Y53znffJY69qqpbiZ8mhwom7Vy+HYAwGHNKd1UHUKEhkNQi/WWpsWlnoz5f5tvOWubRQTWIQ6G1ZpVdXoaYmXR2lm/tcxRpi5nxfcsM8Xf8JitRsRD5lBD5rdnWo+KNa5YyyTkMStD43uhc61ijZzAVyZSazYMtS1dMlWal9wba75xNsJuX9iVo/v3635lN5/41BPyXR0Hm31xlwK1GwV2gei4Pc+WhbR5x9vb2+7/1MqwD5nfHEbKeKjLENNwM0XiktBz7oIUt42Gcowf+cOPyW+0HtHSgvT/iy+LZqHX3cXKsqAlzY58tn5xQ1+lX6jvWOgIQtVsim5qqPWCao0InWZ5rPJ8s013aK0v5r0//4K4vX3ge9+JwNeaOJok/61vSZ24B+69BzdjZFmG0Wg009loe3sbCwuiDSEyz1dqZ4rbAsouTUQv184Lg0odH7dhnZ3mtNYP/07H4/z/Zt4YGKdAjmvOCXHch6914lKFeUNlAAZkM5RB6G7K8W2ty1g7/i2Zc3d2dtyYt2yCnQOt41iSJBOaBTt/zWJ+bZumbcP2R84qqUPo5iZu0Totp05J/acLa8KeNLVW3ZEjwqrUdG4aDIXZph6qiFy7vjSMpZ1Hiy5Y7KeVPUul9g0GY/2OziMoZzF4PtHSIWqq+yJC3tcsgVHM8yz7I4NFTRXn77m5OfgeHQPL545tYEzLwIh1zNr6ifzOmjJSj73xbgBAR+emvcr6XVg7A2+sNbQS6phlXOyeFTagqUj+js79mZfrhBJlqCzya4/9pok0c0xcZLSFdfgYUvus7DK1HPWMTCnXBW6D8u+oj7qi6X5KdkGviRmsF8eju5ZrEZrzZXe7Pco8zh84DgA4vyvjKxkLy3mhJedhbaOPZbkNItL7Tarz3LoeY0OZLDXxxbAu572jp3IeNfiORVDdWSbrgC009W+db6B60UTavI0Eu8r4D1RbNdwv/duv6Xybym+8QK5H1pmcb3Rcf+SZPPLKjA46Kq8p+8T7Qhbn60qyRpw/Rtvy9/PPy31ycyB/+84dUNoU6npheW4xd4QNVXebKXts1id9jxpWafNnvyQ1NL/ru77LuSLHytDV0nI2CuukTeilkKA3VF0cv6PrNTA7Ji2PJetYKhlVg9J2+R22rdWUuSxNmfWgbrTpGKG2Z5bLIPWXjDy7Qx10EWG3K+esXldWz/ku+lN/y33Vw7prp07RSPVckbm90qiYqiqqqKKKKqqooooqqqiiimuIG4OpyjKMsxQ1faqlA9emovF3zOfIcKZP4ENFa9vzgo7d8/rXyfvUJ+kDagM1jNSJ7lL7B2Z72hfd94gCWjYpZ6bKfxfD5pVOaCGMZmNazqrVEzCsM1UxZuXIclvcLxkLun7RuSYZxmgTCdNmWecXix6zlkoQRNjZ0Voou3Ie9q2oY52iNKOBouaK9mxqbaneUPpnDA+JojZE0Rabghat7spYYY0HJSWd9qce5n1brONT7Aerp+ErEeK1tTWHBhOl2toSRmzfPsnV7qsTW29Hjr2loEo9kuPYwQg1TSif02MfKDLUWRB0a+wJehsoevvUc6LvaDRaOKHILsmuZku+kyrrlzUFmR+qDWGkNUYW2lo5Pk1QUzSP9XX2K+tH9yCiV2dWhfU6cuiAvu9jZ0dQ6bAlfcJ6Thkmx/lNEZmcZ6tPKgYRSqthsOOIzFHx+iUj5XQp5rqhGxMRRV5znF+SJJmoJeSQQZRrDeUMldZE8VKMDcvQ66rrn+pLEUvb+psyx148J7oYsh1FTZllzGbV5xoV6nfZa8kyVZZ9srVRgiCYYOHZFmoe7LxW1FStrq4CAPbtEcZ2bW1NPzun+5P9Ly2KS2YQynFSH1TUhZGpYtj52TI4RLgPHTqEQOu4sQYiHcwSvZBrzqVLWSh1cJybW0C/x5pWZZ2Cq3mmzp/UUoXKurU7MlfFo8TNWxfWVkvH6nRRfpmpLd5zqANjP/N64Jh+4xvfCCBnA9/2NmGtt9XxcDjqYr4h9266Ta4qc+tpnw5Zp4eoNK/HbLamyrKaN0MUnUaByayUxPfh61jx8x8BADJT443nivN1rRHln3nUi1N/VA5ey/ytcylNEyS8Lzq3Ytnm7YdEp76zI/e84RkZO6c25J5wptXC3ZtyTC1fzveOanBbmpUxVnalrvtNR6xLxnMZOPc73lEC3Vao2xgwG8anjleZohTY1nG03ZZrYKehc8aS3GsXl8hQqdYH5awNz/Ncn9FZt9OeK72y3zkfDzNhX7Isc/eAz3zmMwCApmZWnVs9r22R/ZL99ZOyC2SRKbPrEcsic43JOX6kWTpf/Msv4B1v/y4AwKZed21lxDl3um2q8zBZsHotQH9YzoIaxVqvK2QmQpmxmeZIbde93BbZe+cbEJX1YaPRCMm43F6rO+TcyZhwA0zSgr5N+1ndZTm2bM0vxnA4BGY4GVsvhMtFxVRVUUUVVVRRRRVVVFFFFVVcQ9wQTJWfeWjFNVzYlKf6EyePAwD2dFRTg7wGyg7rmGgNnyP33gsAyFQvkmpCZEvz0QeDGFlYRvqKVeOBwpPomHmgpk6ElzufOJ3RjLpVLL7Mh2vf9x30EisK6eqM6LZs/uk0L38eu9UzECHpdDrl4yigHZaZsQg028+8V7IxDrHIgNjVMSE6UXYq9ELj0KX5z/3eNpYOCRr80impc7G5pTqSpjJ3KpCKVedBxGSUCOK7vb0LeKpTUMj/22eOAwB2enIcRCio34oVkae7UJZ5SFOv9J3ceadcD4JoPWNra8ttn/1LF7HTp0/LNhQ1IkpsWbD6KIEXMSdatnvHPXcAyN2yEtUrnT+7pvsig9pHpkhfQLZTtQqhojcNRXw6C9Lv+5aEQSPa2242MVYXp1ivobMvvwwA2LMk5+eYarjOnBRntJ/5iQ/KNtIhvFhrVylK3m41dP83J1NFTRXHvtUHjcc5s7m8LP1DRN4iaK52mb6y9k/xO7wGyXDWVUPlaqKYulXpeOxQZOuY5xXnFkxzSxoj4PWnLoOpIrlhIH+fUifOrTWZcy+cXdXjlS10Op2JOil530yft1zNlTieqJPCOc/OuUR97eee502cG+fUp85+vE6t1ikMAqdtoNbwjjvkWtvdJbosx3z0dnn/+Alx3DxwQNjZzc3N/NylZXbNusTaOZexsbGBZdVUeSkZSrlu2vvk/c2LZa2XG1N+hL17ZR4m80W0d686mW31pP0cU4sre6Q/FJWNGnV37yETWq9Pd74NVMfT7sg+RqN44vxb/SHvOdSnHTt2DABw/30PAgD6/chlCrx0VuaWxb0yb57V7w7Zd7oU8QtaIzJyjRmuZDdbFMeHZR27GKOubEZIekkdISnQtePcuUymgK911mLVZXGcWa7KMmTOBc7z3XZ5z9jRjJGDS8L2Lr7p7QCAp8RYFmdOSs23z9V62L5Fxs0DW/Lbh9eVCdHJahDotaTH11atz5jXVBog5RpL72WpzmE1rY0Z6fv9TNlWrTCaAOhq/b/jh2R8bx2U6+vAvhVtt65TMs4R7VJfZmmGMXU2/K5nmRLZL69Vzs/9fh+eZqicPCPrge1tmWcXlmX/Z8+f0/1q7cG4vBZMksm6eJzvOa86t95hWRveVCfseDB0NQXnWnKMnBv2K2OfJGV2J8/SyvdfI5uXKGPEdUgyvcZT8f6QZWWehuOL61RqqsZJWRcsTKF1OZzucM2wcxgyH75XnqPGrMdoHP2cgyPHfBRh+6L0FfvZj5j9dGk3Ths3xEMVACAZ4/g35SKd0wckTyfPoN1Ab6ADqa4FFvfdoq8ySW/oAOzMyaK239OUkFqEUTp9Ep4oMnaJw7OToE1jsYuI4qI6t2acblFrrZKn2bLbBRQHVHEhM+14Pc+b+K29KVnhPdM8ivasNkXxUgXXilG0hmbfcH9Jogs+vXeM9YIfcdJU8bIXhMhUgLp+US3E9QGspoLEXU0hRCTbZlpaTQ0WIj9Cpg9aqRpC1LXI4dA3qZSmL4MwdBfhAw88ACA/vyf1AcSeFyum9n3fjRGm5NC++dZbb5U27Graoz7cFicRO8G4VC/klqTF93mOSf83m01kTBVU8GDDpFExVbBz9226/3wCDhpy7JH2N4+xGd04U8jVRIbytTltocax/bI+fD7yyCMAgOPHjwPI5wJ77XmeB2+GEYNnHkzYj3yoYsrVOI5nlkAoWnYDmJhftrt9Z43txrLeELsX5YF90JXriGlyoxFTSrSg7Nyca5+dY+xx2PTITqczAeRwG/wub/a8JuyCMYoi95l9eJqWWm2D23/z428CAJy9IO0mGLK+Lg++39R7zvpF6Qc+fCRJko8JU0bApv3NKtY6GAxcWt8+fYgaaJHUPO2H4mz5LefGhYV57OzI2DiqhYsJ4PDBcMAxowYRRXtiQObbns7lNmXOPijTzInHHscxoEJ8pjhz+xyjXCjl97XyOPC9EGsX5Dzs2SelLwg40JSBVw7BItZDlwWaTSmfbml/s0Rx4WivpVoYwONTBc1LeN2poZNdVLo0QD9wIIHnUqS4QC/3mR0HnH8iP3CfXdRrJTebkfeXI3nIf+jhN8jndZmfzj3zDfxhpGCN3if3DxXk1P0ECu5Az/u23p8b0HkhCFyOtEsV1v5IuebSsioDXThv6YPkTifEqf3ygH+ipWNQv3uoLe83QwVFtYutpXzR0jtJ8xTk0vGYNV9XzbP6wwG+9szXAQCb2zLeN1XqwLkrPz9lgKJYlJb9zevKnisHUOm8yPnx4hpBWA/PPPOM9KsCEbffKvdyrukiXR/lbeM8kK/jJsr0uAfz8kOMbUOSJFPXrsCkTMSuI314LkXS/jafZ8vbtkBc+dhR2j63be9Z7gGusGnO+835Bf3u1aUbV+l/VVRRRRVVVFFFFVVUUUUV1xA3BMw8GPTx/DefwaI+qXfC3FYVAAb92Ikml5WZOvqa1wIAdlO1htSn6e1e2R48RI5GWyMKSzPmYk+iCnDvW6tyyzpNKwDKV4usWVG2LQ5sUwxrtdoEGm6RRsasgr7F9trUQWvJPE1Ebo81oGOC9juPfUS2SWnX+aVFxGpzyVQnojetUJCXgZo87GjaXz+l8F0F+GmGRNEp5giQRqdYM9OUPhYhPKxpcCuppNe89e3vQ3egx+YJevXv/v1/lPYt7yu1u67Ir7NWR+YQPQb/nlVMj0JwRpZ5ru+IhjPIfBDVnmbzbe34HSKkp4HH2myZtBKmV0URekP5/z5NE7rzTkHAiUyeOyspYf/lBz+gO5HzM05GSJQ9DEZMNSuP2ZsusuySaUSDwWDChvrJJyXv5R3veAcA4Etf+hKA6dcxEVF7PZI56uk85fX1Oq6VGZsgCCbmpVnpyxbhHAx7iBTFHek47GmZgrUzYpO/el4YgyAUJnO3r2nEypRsb29PpPvZND+LOhaNDWzfWvaVKXxkLmwh46Kwn4gkt5+nspXF1+OCoQGZqq997WsAgMfeIkWAn3/+W/oN37UTAN761rcCAP70T/8UgMxRRFdpJsKwTJU15Sj2C5mnnM3TlJ5I29KX9s/Nyd933yHp7KdPv+zaz23wWmO763Mq5DfzNdu0sLCAHRV/s+/6fRkHeT+XU46K8xbTmyxDR6adLOe73/UeAABPea+rDFbUwL33yv36q1+R83DihKRjOstnGrMwi4Ap+HXPJRZfrvjyzRLFrJEJS+ckN2gYaap3rO/UZzCieaYN4Cua7hsGwjlLadhtcBw0wshdV65QLFME1eyhpjTigRU5p1t7ZeyeWzmPxfOy3RfrMgh+46jc4z+4Jb99NJaxRMZ8Te/PjZ7OU0kGn0ydK/KrbUHZhGuoJg/jtrC/L++v46m2MmA1+c5+NVSaa8hYbSSaHhnS7KJsLDYY7ubzadTS9mufuc7zS6/NtnzvzOpZnD4rBjermuYXg5lLmnam4zrQKSpWM4zi/dMyv9ZUxq0pecyaVcA03DiOJ0q9kKFa1AwujhPPFVCWl8APnL25ay6zblKO1enlR4rr6cSk29m1zFjXD/ncrWUEknTCqG2i2PgMJsutSf3IGXDQxMSt/eOycZO9DnZ2dty5YFmcPJMMVxUVU1VFFVVUUUUVVVRRRRVVVHENcUMwVVmaYjgcYC8FqZp3Sy3UYDTGyj4REN97vzBUw0DzxvkUSSaDCISzBU1ycb9hYvg0zSdU+wRO9DSIwpmFga240IqZPc+bQFQZ9jhmWWoOh8OZ9r2zULwiK+cseI2FOttkkfairTGPg9t1yPI50eMQESa6snevCCL3Hr3Vfb6yX5iR+++/HwCwraLlwfZOaX+0nd7taxE2RXPGXoi0kPMLAKEi8XVFi1JlzhYCQXvuWZTfvuGN7wcAPPiGtyJaFh3ewfseBwD84D/8JQDAL/3M3wWQM0YtRYaJLtVqoUNt+UqLZpeTbkT17Guif2FYm8lY8jdExqcZAeRojOYzK1O3qKwaY6hW2U5zpW2Ya7edoLy3I9/huaO49W98718HALSbsu3dnpzrei10ScdpUka+LUN7swWP37IxYQKMVcfJc9vQc//ss8+WtmG1PvWolhcKJpqpVt2xoouuOPAFYVL37ZX5beO8XFedhbZDGS26zYKGHAtDZZlSRXDTcR2Zagp6muO/uyFW1uubaoSRUUiuLFNDtR6FOZH6LzdqOT/EZj4ZlouIF+cchstT12uL383nNWpTlXEOAieqZtHPUaq6Tn1tK9sz6FK/pYxVkuLt7xBrYZonnDwlurj+UK7XD3/4wwCAX//1XwcAfPWrwqTs338QgOiY2P8X1uX6IMNu537LUhev228fE81lqyXzxeHDoi1aWlZ2KRAEmf11fk3GySDugQKjcxeEEWq0yvM3TaGpQeaYSwbSxmGW4PyF0+5YykHRffl80Na42exgqMUwa8p6PPbYYwBy84+GFnB99tlvAADe/va3lz6/uN1FZ0Had+h2YTeeeV60J62msAyJZidEvJ/Ratkfu0Kl8JgNwfIE1ij8xg/qkm35Ejf/JKPcIEDZjYaO85GudTjOQqPxiYMxGtRM6ZopJhExw5jAxmic3w8aeq89pPfy2DGyclz9kYyVEe9JEdBr65pB97c5lM/+pCbzW+2obOvWs3J8+33tB9U6+eM+fJZFCeWe1tPiv54WoY1UCw3VTW23ZV7+k7lN1FPtI0+2N6dlWzp6n0zryq6rWRNLGoDMje85Zi6YwTVQpz3syxz6//7HPwAALK4s49hLct3WGsLMddX0oK2mFr0+daHTy7lI4dyyiYJdtzlmfKwFjTW7gWVcarUattZlnj/bluv6Wy/I8dCA58Aemd9YLsax0L4PaNmaWI0w5pVFzmLOv3I8LitG545iVgKP0bH8NFdyLBvLkZTHoRQaLjP/oxHnUdm/LVjM66GUaeVxblBKUKcQy1BNaN6HY9CPImqX12E2G+xyUTFVVVRRRRVVVFFFFVVUUUUV1xA3BFPle8B8lLmn2FRR8a4iEwtHDuDg7VJYcKCPk7QOhaKTPgsgGvbH87z80ZGFYVl4MVB3G0VJ6TZX02Jv3YGwDE2M0IiUEfC4Hz5Vq75B0eN4VGasAM+1J0lzJBcAuqqhaXY0v16L67XUocUVeRuO0FIXt6GKNVK65yh6NzbMBC3QQz9Ag/ovRZiZsx3pcUX6OL95VhDZrjIZL50QZ6xwnCFStLKhfdXrKwJFm09tbbopttMbF+R15cABIBVkZ2Nd+rOlLnSrsbyf0PVuS7Y5UMR1kCnDl6TwtZgg0fPUs/m9sg0/EZShUdO841j+vjjMcBeZGj32fXXp95/76R8HAPzCL/6ibEM1fYHqk9bXNp1DH1mdl14S/ZHVTMxpfjN1Si1F2dLAA/Vn1tVtPFJtWUznGkXtOT6Dmit+TCce6keGqkcjErN/caW0DyJSANBXRiMM5JjXLgiifOigfGdJSxj0toQtaao74qg/AolaAt7xoMxm3myRqdbyUvoM64LkkGHjpMVzT+3VeDx2rAHRLufOOCrr5sj4zSomXvyMr3U6Juk47fbLRYqzeBe7+t5ooGzLeUFSqeWyTOM0Jv6yxX71t7wGiHTPz89P6Fe5P8ukE30Mw7LD4NLSkuvvjhZF3db58ZZbBG1d00KyFLBlaY76fvKTnwQAvPe975Vj2xTU+x1vFzb2j/7wTwAADz4gjo6xzsV33303AGHkyTKfPHWi1BY7Lqw7YvFc2iKr1DvxNyy8bRkj3/cdU2f1aK7odF/659w5Yf5ZCoPnp9fruTFpz6F1veQ+ivfPjt6XuN8vfOEL7jMAWNkv6PeaFpD+y6e+VGrDvffe5xxNoVbWy8pcnVlbL+2Px8HrJmoFjo2flZ1xMwULo/K822yUKIpypoTXok4Bdq2Ra+1YPgTiqw7eZ/J5+lJlWrhfALh4bh171f67pvNKrNeTZQaXtATH/fcroh8P8PRXNENiIGOhptkOZ3Rc/15DmJo36pj+4FB0zP2EeiEf6UizjFRmRDfJU8rq7uq6YVvZn6fr8ts081FTbX2k88zysjCjXsgi67p+CMl6TJ/TZHuYGk7zphqjH/zgDwEAfvlXfgUDXct0tWAuswjIdgdh2W2ObH/RgZqfFQsCA/lcwW01W2UWSCXoSL1cO3T+nMwrX0/FDXB5qVyGgtty95R6HQ3NqlhekPWAm+9MlpRlqIoO2Nbp2Y53V3zZZHcU57tZRa4Z9n7oMrzSwA185xyq9wZq73k8DM5lWZY5VstmlF3tfFMxVVVUUUUVVVRRRRVVVFFFFdcQNwRTBT/AuL6Inj5ls7hZY0GQsFvvfhjttjw9j1I6TynSo24jdP0Yaz2jWoPF74BBX548iaRmmldLhI854Ft0ylKhVqjFvx594E7MKwNx6LCgpL5ffnomwhZq3RFnVpfkCETD7+gxah65ryzTQOt/1KWNmTI7RXcvora1QN1SmMeaac6qPom72l76/UGvj/PUzmiBz1j1FQHZJ0VzOo1yDYNbIyKxAVLdfqepT/paxLHo+AXkaD61IcmpIY6fEMetOXX8uqDbCjQ3eXtbXtc35LU3pGYhRxVm5rVmZHW0NsxIEOkLyvo01iSH/5be/Xjhy1IX6p775NhPnhTk9cv/6SMAgIVA9t9h4URCQCuBQ0NYW4qIs9VV0G2PiI1zlPHSCWbD6Uw0N5p1Z4iJuRojyAvzJczz1UOzLmtnB4JE0aHLG8i2m80m1jd1/Kvz1uaGsInvett7S23gb4s1NGxNN6s7vNnCFv+1Opkszd2Ihsok1oj6suiiInZkNIjQZzWqXcqsQXE/7DfnsKYoHa+nJB1P1ejIl9VB64IWqeacoMUwg8EO+ptaUFoR2qFjs8qFvmfVWMqyLB+7praO1YOw3WTjut3uhGbAFvmdrKsnbdq/f7+0bW3NzddH7jwKAPDVtXN7W90zlXFvKXK7vTt0/XTLLaqfPCjz9bEXvwgAOHFCxvxb3yr6Hzo4bm8Jws66c0EQ4IUXpCCw1T7a+mTWTbU4V9kaN7x+3D1Hi4SyFhR1nWma4tZbpd0XtZ4ci1CzX2LVh/G3LE5N/cTp06dnFm629e6s8+x4PHZoNlHnd77znQDyMbqrqDydHDknPvBa0c4mwzGefk70hyuKfh88oMeqLKOdP+hkNhz3ENV0vtQhmui6IE7LeoibKWwNohyFTzHUc9HQ+YOZJWks55k6FWoHE30/RICEWS1kqJyRnjf1ldti4fnQz+c7v9XR/ei4N0wF9bWBMkf3PvhGLKtW58nPfgwA0N2WtdV4rHrDi9Lup7XO4dMdGdN3Lso9fr7n4c6ajKP6GRlvo9fcAQD4yLrcwwct+e5Q2xo3df2SLWDvklzvj777XQCAI/ulPhN1eXFGl2addxuaYVPQfpb0RZhkpp0+Rwu3/5v/4/elD7c3kVBvpefQ12Hd0P0M47J7sNVhpmlaqgtafOXcyej2TN0yndOHcYpA3xoM5AA2NlggXLZx22Fx/J02h/P6pea6xrGp2qZEU73IiLPAurtP6jwh7c7X38VjtY59Rda/WKMQmJyrZtVac/es0napnXKmC6Vt2ddicP0TG237lUbFVFVRRRVVVFFFFVVUUUUVVVxD3BBM1SBO8M0zG6ix6jSRqV1BD58+9XGkCd1DynojX1Fa53xlcoXDMMRwWH7i5Ge2zgrLMHvaLYk+7Z/4xjGsRLqN1b26XXXeUk1LhjLSbd3EACDKyi6DntZUIMoR8pgjZV2oyxjGeZ9kZCpUw9MS1NDVb6Ir3kDblKauVMVBbmNOUArmlzYVGePfTiMQ5XU/+xkqAAAgAElEQVRpiAZEmufepnuYcSwk8tncK6hqrzvAckeRzJ4gGXQPGqtDzs5FQXG2urKNfqzntpbnnVuUwiK/Lc0vTxSRePGCbLujLoCb62cwr8jfU598GgCwvi66qO6uas3IJAbSp8OeoHiNudYEamKRF6IbF1RzxTHWrGsl8WzkUFgyHNRlQb9bIwKrYytz+rkEgVeuou7zM82zZw0wHVIOgTp1QpD3ffv24dBtgvx9+Qt/BgD4r35QnBHbrfKYneZqlteKKLf7pq1ThVznUAyHdCmTBUwicRlduIxOpVjDrqivKn42Tsr6kECvV6unCAJ/pmPX2FW21/z0TDV5PUF/N18+hboipOdXhRFxbfHKGifm2NsIw9CNUyKYto8sC8Jrv8is2+vWXj82XB9nmWNAuN2uMiehV861Z2ZDEf2kBpLaqode+3oAwB13CPvz+7//bwAA3/M93wMAWFyQOfGjH/0oALme6XSaebkLa7EtDOtGVTzn/Ix9mJrz3O7IvEE2ir9tt9vumuM5Yn84nZRuw+qyqPssHpPVKdiwTG2SJK7mDONjHxMWgkxYqEzS618vfbur2qqTL4nj4p7lvVg9K+6Dp3Su66g22LKgbDcR7sHWDsY6XzOjgpGhfD3cLJGm6URNsZypSyfqEzXIWqOsQxyavsrGCXyd+Ed6X2hk1MPk+wbyfp+47pMEnUW5PwW6Hkj1XuobxzQuaQLNyml0AtxyRO4t73zX9wEAvviFTwEAVs8cl23Udb+qvt5tqA61r8xFI8O3oDWVFqVdX3vpeQDA3P2SWeI017rmayQy3veu7MND7xGGav9+cddMxjq+wGPWeScs1/Qr3r/c2J/CXhTbT6aYjq6jNHHslqdUUYhLMzPMRnEZSLXaxBzJV1sXcATDshTuE9Qhdne13pyOg5dPynX4+OvfJMcXcB2hjGlYQ0fnQNY47Gs2w2Dc1e/6pfa7Op6FuonUcHMuYth1sb13JEkyc26yfWj1iMVMgjQrb9/zqbeC20/x86JzIDVl7ho1mQlXGhVTVUUVVVRRRRVVVFFFFVVUcQ1xQzBVqedh6DeRsNqyOtp1Vcvg1xuu/pSndQiSRPM39QmUtve+PqkPNHcWo/EE0jtSpyfHZimKAs0R9xVtoD5ppdHBm25VTdeIeaPKes2pQxsrR2eTSCw/GyjSSgbCCxQBHfFpWeuMpMx7Vm1G6KFGFxt9rbGdPdVyqf6J6F68rLUN4MGjK5Yez1xNWKR6U917srKLSqganwOeVpROE3Zznu8blr38nVON6rI8ZZnq8wlq6ojYrOn51XO3ti0IyImeOlCp9i2FInaYDJtvPBgqeq2nMKoJkzhMBOV75lmpTzPfeQp33Srtjnf0t11BJg4/JGj17tf/HwDA9racjywW7UZjGOQ1axQVZnvJUFmXt30rUpsr0XG4s72GH/+xHwEAvP/9whBBEahtrXn14R/9UQBAX3/TU6Q49fy8EjmpKD2Z1FMwvzlKyuzKwRXpj1OnTuHZvmhEbr1NkL/9+yU32tcxHbs8cEWLCxoRtmsUy3gjWn61NRxulMiyMjrG/iqyUrVm2WWJtXRC7R9bo8wxKt2u6zvrssZrzDEyWvsjCqV/yY6051tuzPF88De76iA43tW5JpHfJEN5jRo1rOt2Nna01ovOF6xbY52VptW9I5ptj5ltKzknARN9WfzM5q7b3xDZZJsXFxfd/i9elOtjri1Iuqe/HWg9JjqeFh2mPvvZzwIAfuAHfgAA8OKLLwIA7rzrdgDAT/7U3wYAfOITnwAAPPeMaH/IDi0tLbl2sj6UZX0Ytq4co+igyLBMBfuUuoni+aDehcGx4eqDqV7OOi0W6x6SybYIsWWIrsThijqM1VXR5j768IMAgI8ru8dt/tAPiSvaxfV1LGgdvaa6klIzFsflWonsJ+d0CM9lZ4S8HzPTAtOZhBs5fN9Hu912c4TVsnlJzlrXqKly9SRZj4cOZrz3Ftgnaqh4fbPGF+si6XGk6lI32JVri2OpubziWK0QOldRD0jpjhK0aVo+d16cYGFRznOnIy7NcyuijXzmK58DADz3tGgao6GwHEt9Oc9xKPfpuufhOa1fuf8OYT5bc3IP3V6T+1Yr1DVFJuPwrrvuAgA8/ub3oLUo+xtqe71A54SUrLrqxXWtM0xVl1S4lHP2RNplsw04Hzz33HMAck1+zQswHMh3FzUbxbGK1BlpZk+jLsdhMz+Gw+EEM+XcZo2Wdahzhc0oSdIEXBiwDRw76+vChPe19hzds5mlFIWhY2Y4F5BF5yvn2zZ1wDrvQl93dnZw8aKsmdL0YunY3Nypa11m1lCfNfbGGGVlnaddWyRaI7Ouiz2PbdQ295IYmR5Lo14v/ZY11ga6PtruyvgfejrWGx0s7pW1FB1zeZ/pROVtXS5uzhVRFVVUUUUVVVRRRRVVVFHFDRI3BFPlZUAwTl3tpaE+TYZE1eIkz6sMFD0Ha5Oo7sNti4hr/tRtcy/9yOS7MjVV3eZCfWLeDeRpepwOESzJ02oHqkdizqyiO36NiNMkiuaqqGvdj6JLCgCoKirPrw7KFbSDIHDHWjdahdp8OTd9VNNq7LrNMAwd8kAEhOiYzeG2GpFYUa16sz4lf1X1AwofEvFxDlmKAGRhiCRSREG/0x7INk7qOVxX1CZRRDLS91kvwvO8mShxoHU5trZYfVzQXSIh8wuSY/3xJ0/jE18S9OShRx8HAPzyr/waAOBf/t7vyTbWJEd6eUWRGU/6p14LXC0p6hhq6hCYqt1SprniiyvKhsVaj0adHN//+H14//eJe9YgIBMn52F+SZijv/NTPwwA+L/+9b8AAKwOBMXp73bhqxYhDMpuYmfOC4o/UNTyHq3F1VA93OZF6Y+luTaOq7vigTtEE9FQxNdT1rW9KO0mWtzWmjJxPMZQa7h5er2xIv14dPPVjJEo16maxqgUc8WBSSbCsrROUxOPJlzuXF2o8aC8raxck6Z4zTv9nK3TE3J/qptQzejmeUFOG+1l+EQI643SNtJxufYR5yJum4xRo9Fwroa21pF1vWMUXQptf9p+Zlh3vGLdLm6fgKXLlydjkZApK8+5aZrioYceAgC8/e3i8sd6SZ/73J8DyJFkskHUPB09KpqrkydPOoZwNCprtmxYDUSR7bO/sU6CVqdF5jkIApw5c67UJ2TxOLdtq6Mj53HLHo9GI9c3Vo9gXy2DNS3sWE4G8vd8s3xf+/hHpQbYgdtuxUP3PwAA+PaLorOKdMyOu+UxxfPvEHwvQeqXWayAp/kmLI2XZRmGw2Gul9KxlWttRu4zMiLW9dPenzk/FK9Dy5pzYuFvmWnh9Ih6HezZ0y4wY7zuqFMvz3uW1a7X6wUNpbzHzInH3vw23YZcuy88+5S0LS6zj4PxCHff9xoAwG333gcA+NjnRZcVkt2Yl3E2Nyes5623ybU6v7CIsa4dWHuU60Abtv+nOcpRj8S5kNfXt74lLsaf/vSnAZSzU7gdzqvcvs0E4OfTjstmM9hjnqVPZRTvZ0WtEADs2SOsH+e7g1pjzjHnALo9YW94fds5g0yZGxcoa0n37t2LlnoMuEwiHcuuXpceK69zzrthGCLTc0j2auK+qmucIbOz3DjNvxfofZff4X53lH3iM8bHPim68s/8hThA/+r/8I+dRm55SeZXz7GaV+dwXDFVVVRRRRVVVFFFFVVUUUUV1xA3BFN1uciybGq++JWGzc28FBo363t8eo4U6Q3JbunT9SymyvO8AgKkWqlmG9OCbUtR1ib4vp8zUfyOYY6cm5hBmYrvuRxoPeZGq1yXyrpY8al/PB6DXUFthqeogU/XQXWG8alxS5gzXnf1l8KQLjbqpLejOeJj6j30/ZDoNdzxWFbAoihWz0GEAqEgZl5nL3Z3BSX6yy9/DQDwrveItqmlQ4muVrvdzdK2tre30VSmyDGG2jdE5naZUx0KuxNp/vtdhwQh8qNVQFmKwBOd05g1JUJBiB59rSB0aw9LjY1PfUPefzGZd7XVrKuadSQ6rzqgTHPGybBtrq8jVSeg19wrDkCRMohppm5P6srYVCY3HUl/jQdjNOiYSRdOHUP18CaEjTX8IEOi/ZRozjVbk4W+Q7WoZ6TmIdZzzZzyEVSDV2Bl7HXo0EVlabMxv1t2pyIqOo6HGLE+iF5zQ+3zljLqg1SYjNOrJ2Qbqk/Y2NrCxXWOYUVsOZV5ZRdLoo8Msg1FNn2Wo+ksnc60+dXOwbZOD8dir7fr3mcOf6RnRQ8dsc6BdB/jScsKGq9nnxWN1G/8xm8AAG7fK/PAc9+UOnP7jtwOADh4+F4AwPy89CX1EkXnPhsWqbdtLLbffseyWnTxhI4D1stqNBpoNnS8qW40UMfbQV/Q3U6n7OJKjUeuDQHStHys9hzOcpiUz8pzLYNz3vPHvgEAWJgTdn5+gWNJztvpl57F4X36nupoF1oyP65uy9zGmoyBT+aW99cafL1fRjruxyBjePM5jnqeV3Ka4zlz14znOxaDnxWZoGLY2l7FcWp1OdSA835o93v4sGRy9Edjp9Olu6JnWM5iW4qvsibR/Ubl+kRRU1D/t75LdMsHD8m97bOfFldODIQ5S+tNxDoH/Kc/+0P5zTvfBwA49tyXAQC3HBDd1JGjdwMA7rrvYQCA32ghGaq+TDXHZKpmrpd8N9Prq+++S5aJbArPy+nT4qDHGnMDzeRpNBqOGeLayeocbZ0+y2rHcTyht7QZAdwWt8HjK9bPs3UQqcN86ilhCB9+3SMA8vm9of4FyDKnD+dnVtuVZ1KV15Nc+/V6PfhRWPotv0N2ndkFdh6K49hlRrCv7Lo1YS1H1e3XOcZ1brm4vYWh1uB8/oUyq7ilWnA7dlf2yH3h1/6nf4r/8Zd/CQCwqhreQ1ozcXSVdaqu+aHKk5n3SwBOZ1n2vZ7nHQXwfwNYBvBlAD+WZVl8qW1cLoIgmLgpz7qRW/vFaTEr5YE25SkfLiKmnOWTGAeLfahCyAFQ3lexcCrcAqt8HM6e2i+nuBUnT/vAY9+fSBGacuPnhTxUseJOr1vaJid9Xlx1XbxlXgBf29fVCznTdDAOcA5mGmgkQy4WMoz0wYsF+Hq6oBzogm+Y5BNbsf1hmFPntj2W+raLV0fzJyr2rwFZKv+Pt2WiafFBPZsrbcs+sPT7Y1c0kDbWnPBISXOsdLvSP+9545vl7/NSkHN+YYizx2Shd/BuWYRwQTVKZYFx7EWxkF1Xq/kuCxg3Ou5hxhofMPh+WNeJkAtyvdkg8HF4USbjwyuy+I5StUR1DZf/xUMuvHV8JhnikVpxN9UsQKn/sT6IvZpxveacNE0nyirwZjgeZ6VCqMBkwURr618UHc9K2djSG7S11uarS98YDjHW/q/p9crFZdpXA4cLYhgw1IePPftkXF04f77w8M+HbAVdwrKlMl+d0UytbDlcPKZZBaCnzbWcS2x6oRunJp3XngebIg1MprTMAsuKDwhcIFHc/5a3vAUAcO6iPJg89ZQI6OfbWiqikPrCRcus1LkrSZmzMctSnmOM6TCHDx92pg4cbzw31kgmB3im3wuvV9gyCpFXLlIb6IKWpiujmodQ07EWFvTBb1WMgyyQZyNNU/h+uTC3W4gGr27K8fWYb1hs3M7f7n6VZjMLptpxyLS0oi20vZ7collLK6ypGRI/Z5opx5BXKJvi1jQ8DpRTdO3iX46jDGpSHuCKEOux3nb7naV9nHxRAM4kbGKg97sDQ01tPy3z24f/m58FAHTaahykD3Ax3ckSoKOL9t3uhu6/bCA28SA6Ll+HvhdwCTcBfJw4IaAVr0crp0iSZKJMj+s7sy6z813x4cqmf9oUzVn3jOLDF/fDQuE23ZAPLm0FiRfn5t1xOkmJefDOQZo8VVD6UAFBPR/NZtMV5rYPTW7Odp2s1z1TW2uRe8Bn8Ni5rX5fS/Lo9TDSdqe6Nvvt3/5trK7LQ/riPgGzY1f8l+NT7z/6LlMYa80Gfv2f/hMAwM///b8LADh7UbZ1cHkfriauR/rf3wPwjcLf/wTAb2ZZdjeADQB/+zrso4oqqqiCUc05VVRRxasV1XxTRRVVXFFcE1Pled5hAP8FgF8D8POePJa+C8B/rV/51wD+MYDfuZb9FIt02if+S6UvXC7sbx0So58XhYMOnVP0zDJVzLKhveO0YouJKWJon+IdeoXpaEbxN4xcTF1OiyymyVlU0LFpmk4y0v121eZ0fUMMHdqRoLa1Ws2hYzyWTUXLv31WmJiOFiGu0+p9l/0TIFZ0YoN0tW7rOPenSMdI+ycgQ6LHmSTJTDG2ZaZsAeMuHPyEUSj7HdM6Vl/5XaLEY6Wo2ddRFOHWWyVt4dgxSR8i4sMUmYO3CDK0sSUo0yc+/3UAwN//6Z8CADz5mX+Jp74oKQ+vG0n6wIEDksbwmSe+AgD4tKY9fOPbgiquZkI/z3m7qCmyZJGnnFmRc3hhXX47iuV723ouV5aX8MPveyMAYDlSm+1Urbl9QZa7mrLYUCSYRSaRZIgVjd4dlRG/V7v473Wbc7KsxFTZ66rIjluEkMignXM4NpMkmWCeinbfxW2Q/eJ5dWlaoxSZTkQ1nTZoOnLxrFgMr70sqH+rLedge0OQNd/3XTohg+NjGJcZoFkIa6vVcojpLHT1UnNusYgv+6TYfr7PgthMT5p2PJa5n2XTbr8P5MLs0ZZcrwhFjLzvFjF0WdCCj8yCcci957l5gXG59McrCTvnWyE7++38+fMT48ym/5B9sCnBxddZffRKopzuBQRqix7WNbVVyz4wrXyUBrhwQfrfD1S439b7yPbF0jYn9hX4rggr2Q5cw73+lcb1XON4njeR/uXuX16+xrEGMJwjbNmHYkFfjkVrbrO2Vi4BQgMJm50Se15+fel+HUPhbLqnZwdJm3SudASE3o81rXqsKf81Pf933yl26PffJRbsA7+F01qovKdlIO65V9L70jENOVgMWTNsIpUv+A2XkpqnE6thwYyC3XTlz2UDmbuXx1pah7/58z//81J7bTpakVW3BkW5YUh5f3YM+74/cb+ZxfbYbRWzAGxxZyubOXZMDGMO33KotK+oVnOFkhl5CinTrZX1M8VwuY9erwcvKluoW/MTNw4aZXY9DEMkwzIjb1PT5+d1nk1osCWxelrm9B/9kR/B//o7vyXt1yysgLIcXfQxlZymaXzdDlLs7Mpv/tlvyzZ+7md/BgCwce4Criaulan6XwD8A7ghihUAm1meL3cKwKFpP/Q87yc9z/uS53lfutqKxVVUUcX/b+O6zDnM266iiiqquERcl/lmZ2f3O3+kVVRRxV95vGKmyvO87wVwPsuypzzPewffnvLVqbBSlmW/C+B3AWBubj7T92bubxbiZp+ELfKcJMlMUwuL8AV8xkwVAaj1dZtNNDOaLCjy6vK6iRqp/iJVJquwT3dMtJMlI0XhO+EdZY4oMcoUdcjSFBkRDha3S8tobcT2Z2yCPpGHYSEXXY6prp+NVfkd6fuBVz6+YV8WnoP+Lna25diYz8o+a7fVflLzmwdqs7utyPDAT9Dvy0Pzt4+fBwAc0/1n6moRtQTFXG4Jat1sCCJFV9Q0TR2LZO3fiRIRmSLaxPxboh7CSsj26pp/zXaOtJiqO2dj9rX8+f73vQf33CG54P/2X/0+AGBLkZBEfX4vKCLOIr3QXN5f/Z9/EwDw4CP34+KXRUh+5kVB5NLhxwEAL7wkAtgX1O62p1q2ZiR9WQvnELPotNW1gG/L+xc3RY+VKIrcUeTsg+99M1YamoOv1RzHniBB24nawCqTh6x8HdQaEWr6Xl/z3bs7sp9Fg+Z/J+N6zjkHDx3JpiH5Di3MvInPLHNgTVOKKKTVEFkGxiKZlqmI4yESLaAd6npusC3X1Pp50RoEPq9BuV6+feo4AGCURg4xTtWII1CGPR6V9UhWDE10cGdnZwIhtf1xqSwBaxxjUVXL2Nnr2Ssg59MQ2eLfNor6BFewONH299RkxD+j/aJGM1oMtcjGzCqMbNs/SxcETLJM1ibYjqmits/2HdtChspqbuw9sGjTnOsiymj4lRT9td91WkNltpcWWQyUbdF+GY9x9pyM1T17hRkcJ1emgc58zxWjzXz2f3lMfafjes43d955NKvXm4XxIN9x15TvuU27rBeeT9Wu+AVDAqCgbYp8xybR+Cbuckyw5IqaZDXKttiO4QoCV1qGawm2yrLMiWGqs3ScM0F608zMOilzLhg837p/zWIZD7bQitSshQXA9wur9oknpUD3D3zg+wAALS1FMtJ7bOgPc/t5zpUsvs65WhkLrrEwLGejAJmzjk/0WF98STTO3aHMu2fPyv252RAdUqaM1nA4dBlDLrtJ20etNdkVZjLFerzMABoMBhPXQtGyXbpONU+6Th32y2UJAszW3js9phb7PX9WrsujR26VboGHOCvPs3qrcNq1Fmkd7ae2mmJx0VkPOxgZZsyartTSoHTszmSjP3CW6lxD2nnflhjgtdNeXgQA9JIRvv8DUuz9o38sZR3GA/lNva0GUCzUzvlW+6c+ygpaMtn+b/2ulNr5Bz/xE7iauJb0v78G4AOe530PpCzSPATVWfQ8L1Qk5zCAM9ewjyqqqKIKRjXnVFFFFa9WVPNNFVVUcVXxih+qsiz7RwD+EQAoivOLWZb9iOd5/w7AByHuOD8O4A+ucHuTea+XiFnoYXF7QLlw7qzvOBRPn1B9lF36ACB1eiiidmXEj4ATDydBjjrw/zCOP5eLonbAIbzO3U0ZK930SDUvEV0I2ZYkQ2SKKI51u81aOb/bfg+KagVB4DQPRE38UPdHRxg+8isLsrUqTE6jU8OKFtN94HbJo/69J54AAFwcExWWthChSBPJtx+O8mKTLF532223ufcA4Ctf+Yr+VlAjajRyx5ichbLubdSxzHeEubI6kEOHJKvj0K0Hcfiw2K3/yN/8QQDASy8fBwB89BMfAwDs3yeIz7lVYeMI+3UH0g9f+OrzGCviFQU6DkIWF1zSvhU0raPoVl/7JfXHGKsjn0VrLHOXjMmUqpWpdD0OHVmEnxK9U6RPEahOU1x3xlq4j5a6C4vS57u7XYc0svh2Q1lFOtS9GnE95xwPZUbDOixlmT/BHti+59+2iHYQBM4W1jJVRCYdYmZYoKLWojeWbWRdYQV31e2P43bPnJR5OH5KmM+xR8erwKH743G5DVbrRYSVY5+M8DTHzauJyzEh1tnKztFFvRvjSpxdGexnpwfQdu7ReePi2nrp+wnK6Lvv+xO2yNOYoOLfVxL2urV6GY6LXq83sf0r3V9xfNpzeDXOhRb1ntDdLcr42yXbqmU04g0t5j5KcXD5oLynvz194cr0CUmauntbkPFYea1cD3+ty8f1nG+yLCudD8vkpmk2wXxbnZTTn/hldzYMR26+7+scvqGFoSNPzh21VLPKIwCTc4PV/dk5pMguT+qNymyi1UG6bRpdc/H/994jJUb+z38r2SE/8IG/ocdcZvuKznWMSJe21Lzz06Fe0y0zPxQ1TYEyg08//TSAfE60hZWL1xTXI7Qw57yaa6/1u3RhNfrc4nes7jTXNCmro8vHoa4xUj935WS5D67TeMw838+9JHrcu+6XQst+gwxO4mzo7djkfvsDua5pZa4GiqgpG5oYh8XitnKtsGbf1Oul98Mowjgra8nYbs7l9rpgsK1Hjx7FnN4TF+ZlvP/zfy5sU7igzpHKlAeh0Tx7qaOg+xtyvu+47XYAwKlTV4eZfCdmp38IEXS+CMk//hffgX1UUUUVVTCqOaeKKqp4taKab6qoooqpcV2K/2ZZ9gSAJ/T/LwF47BVuB8DV5X1bxG0aujoLjZvUBJT3U0TmerauBIVP/Imf57UCQMJCtgWWiXnPtkbFNB1Y8TUrFD9mPjNYS0IPI9ScYZ8OekmOiOR9o4wc85j1OBr6pE8EvB6V80/H4/FEP0f6PN7Qgr5dLdrpKaq4NC+IgT9Xx7I6AzKvmIU4184KI0WUzSEjqv8o5hITAaKrjavno0jPfi3URkTu/PnzpT7t9XoO+SCrxVoOLa21RacwbuO++wQp29kdYFUZqMOHbpHvLEqbzq2eBAAce0HQjLmWHPOmOhiFWieo3l/FWE/WAa3HkCZst3TP0Jc+S1Q/1axR+5ZglpnLBJqdlcf/0pJQVUHooV6T3ONMi2fWPJ531rjSvGc6J+4qy1fvFHLUyVjJsQ2m1BN6NeJa55wMUofKol5FxNU6aTIsu2XPQdGtlNuwOe62foqtDTIaj9BVTSOdHDcV5XcANfUyWnCzz8K5GDtE1PdZS0Xno+zSRbSL9aIsYnk1Yedjq0+yDoIWOU/TdOKYrsb1jUix62fVOnL+qNXK57Zn3LKK+53VR6/Ehc5uY9rYARR1NnqrK91f8T4yq07OlbjmzhojDIcssy2uRo0c90JzAVvqqHVkn7D+3f5LAIBW/dJ4blEDy9dE9cTOFvNVjGudb+jCa88li6IOh/0JnaOrg2SL8OorNdlBlrlC5ed0jphb0Hk/KbMPlvUoMhmu8HjB9Xjabywb5XneRA2z/Dou64LsPdiLclaGtbN4r3/yyb8EAPzoj/4t/Q63qWNY2fg4jl2fcT/MwmH9zLHOf8zGmbZe5Htkl1ZXV932pb36XVC33Xd9y2N29Qh3hO3guszN8+p6Z9eCxbqAfM8yw/x7pIxtUCdjpIxVMkak54xrOTLhbGdD3U45ptY35bj3LC077R7DMmdJUF5HcvHLcmFBECEeTa+xxeOwa/xSoeGxccQ0cyO3ZZnb4njk+WfNq1/4hV8AAPzOv/rfAQB1w9yxJm1ncQ6PPfp6AMCbHn2D7F+Px4uujnt6dXj0KqqooooqqqiiiiqqqKKK/0zj1Yd8rlNczj2oGLPqiEzL4wecHKaE+PUU6WQNJd/VUBqWfhsahLqIFgZE3Iyrk81ltq2cMlEAACAASURBVHUKpO6MooWmmZlDOBWtoGMen979YhsVaSESRfaJ2hCTy1t0jLKsWi3U+i5a4yjSxo366iamDjkIQzSagsb1trRCdjyddXH9kJbzXoMgmEDJLNu3tSW6EyJGRDOIAIVh6M7J3r17AQAXLwpTxjxkBhmr5557DgBw4eJBvAjJRX7/294q+9daVr/wsz8PAHji058DAHzsk5+S/SrqQ1Rp5fAdaCp7t6NFvNKx1tyKBfHq63cjPYexOu0N02wCnWEQvXH6nohtkX7Zu0cQ4kZtCX3dX6NRrjZfy/S8UAeos4JfkwMZ9HfduPJZ0CeZXqn+ZgkvA8J0jLrm5yd0flJdXxgBHui2pNe0fidlm2cgig3fd3ngDCKHJL08g/rRJWs41P2PYoQ7wo5ubIvb23YmCGo8VE1DRFaJx5nXnsnHhUGZlaW0+kHLShSR21eiHbK6AKsh4vFZfYJl6YvbuFzQ+RMAarWGvsrfm5t6rffK9cG6Oj/41IYWmDJuz+rdrrQfivO21UwxLENFhi2O45l6u+L2i8ds+ykMw8uyXJdyVLTaGruf8VD7DNKmuTmtK5MoGt9qYmNLEPvhsRMAgFp9+n266NIKiMaB+41jnlfu//rV3nr1wkMYhhN9WETq2V7OHe5+6JedQXmP47UzijJ841m5Vz14p9R98lWDO7+8AmDSfXSWxq4YtpYVx65l0sIwLLlWFrdrx5Bj3/Tvura1ON65v9c/+jgA4NvH5N5LV1q3Lonyecm2Z9A3jr5BWWOVmGspy7KJzINz58StN691xcyZMnNSXJ84lzt1xnPjWe8dPdW8MdOnWFfMXue2TflcbTK5tA0eJtfDdn7f0rpxL2u9zYfvEm1VOhw55tmuS9lOZqew3mqm9x2+n/r+xDrFjgv2/5hrYGqbvMk1/ER21IyaikWd4vy8rDvDQMZZXTOFfu6/k3qhH/nIRwAA73//+wEAR46IK6mfJujpmKlr9lV7ea603yuNiqmqoooqqqiiiiqqqKKKKqq4hrghmKoMZd0Q41IORbOe4q27TpqmEy4mFglwriLK6hA1rg+UKaqH6I81B5haJUWv42EZEelpE2It9hcEATLWKEimo0ITdW5IlSk90Gw24aWsA1FGHlKQodL6N0SA0rzKvUVRyDpEIWs3aFuIxJMxI6qapBhrfulIWZ1dZaZakaI7inKESrPsbima1e9iZyR59evq2nTywo7ul6xTqu0UJIgOfnsXRfNUq9XQXtTaENpnYz3WSFE8y1SRbeK2G/X5XEeh3d+oGzcffb+lKFNfnfvOnjiNfQ3pi9PPfwEAcPcDr5Njbgnr9Y7vfp/sT5GXr371q3K82pcnVleRdrWGRpfopKJZDWnvSJmzhA5NSY6IWebDjmHnpqTvd/Scv+EhRaKyIWohnSOl73ZMnQsiNHQa9JUsWOzMOTe7saKDnvZrNq7jP4ewKOFoNJrQGOSIVVkHZGsAFcPWlEmUjYRMGxPom9NRjvuO3drZVifBpDwf5rn+ZYQXyBkPbsNqeKw7HmPaXPtKtEN2fDLXncyxZeevR3BbnU5nAqGdVQOGfzf1mqfmqsjyXI9jmvW3PS9FPYtl+65nzKq5dTW/sbG1KX135JA4pW7sbrtj37GatXR6v3C8cvwCk8g0ay/dTDEajXD27Fk3pxBRz13aiiyrfIf1yLZYL1KvnWPHjgEA/uiP/ggAcGZ3DW3VVa7URev73/890ZLQuY7bpIbLjqmig55dJzHI2PCYi6zyNI1WcT92vcbz29Xz3el0nJaJWmaOlY9/XOo5/p2f/AndVlkfWa/XJ5hOn6yWXkM+14mGKWEUNbRf/OIXS9vKmTndlqZycJ9FzS3PkU7VWFxcLLXbub6m5Rqpxe3Z/U6sccd0azZ66sJ3aqZ+JPuf2VIH94h+jdqzAB5qJovAsuuBrg94l2Ptr2ycs1Gsncjf0BWR2xzpd3Mt4dDtyzfzC9tQzDYqtsVt02j+ittvNjWjSjNSfvYnf7r0Xc43nUYDe26R9WY/pVZZXU9H5evgclExVVVUUUUVVVRRRRVVVFFFFdcQNwRTZWNWzuSlwrJaxW1YFNAiyu5Jn2gK3ycbhRTj/nZp+24/KnJy9V2CssuO53kYqDd/MpquM5ioOeTpU766u0R+gIBSFtVEsLg19RTjcTl3dah1Koq1eNx+VGcxZD8QRWfLfWpppF82e7tObzNSZozOKH4mbZtXh794RyD4oTJYw94OUt3OlrZ/5dDdAICGJwgEa2CRDeHfzDtOkgTjVXHX8/SYnbuODo2VFckdX1gQ3ZJzsNPK8js7OxMOQUQzWJ/JOfCoU5DL/x118bbvfi8A4N1vUWcYZZdaHUHcmjVB/j/0oQ8BAB555BEAwB//8R8DAI6flVpCQJFhmEQL2V6gjGLzM4v02/AVkdEmol7TbcYJok653ojVe1i9GqO4L0/7honc3vTDuOmCKJibR1LPoWjWjYk59VFE3ST1fUQHswIyW3Y0qoU6XhSppK6PaF9fr4G11WNIUtl/PGSND3VtrJdrnVgdQ6fTcc5UNoqOnsX2Morz5vVwueN1yGuayOXQuEZOm7evNoq6S/YJ+8G6UVn3qSgydVPCsFRD5mpimsbJ3sNmZUswoihyx/ZKNG2zYtY9Z9q2Z2mRGZkrTqhjXFn6da3zMhz3XR07L1Q9yoxt8byQwShmrkwyVZc8rBsyfM9DI4gw0PvRxT51OsoKBZmrQfnEk6LPfeIznwYAbG9KFobVdnB8toM2OCEnyuJtqXPrfmXEitqdYhS1TlZfZ+cX3jft58h8565Jxo1sDmrle471EeVx9Xo9x95R8zzX0npVd90h2wR1w7Lt+ajjjiPXrGpWTlPvZQmzULR/dJ5t1souePFohKefewYA8MQTn9Tv6jGGHW0TB165/WmaZwMxA4DtHe7KcXkcw5olgsJcxVeb1WDdF60bXz535Tome27sPd65L+qaNNa2NKIaEtW65yNE9WGNcp0oBuX6PKdRrYb+SNrbrJcza+q8/tUdkBlPgdumhzFoZiAvMddhOq/QLdndZ0PDinq+c7dN065uS9fHvo4DbV1H9e1zS8JOeX7itsNjd94H4eWfP4pxQzxUeSjTz1eSmmDTJi6XDlgMu4i028z4G00DHHlZToXqQngYayqXPlwMdVLpqa3xjlL2vcEAOwMZaH2eZ2/6oogXR0NP4v5loY5vPwAsakpcY5FPV1zwsE16rPpa8/MHuC7tvWkRrQ8RQy5k1MJ8pOl4m/rAsrYmryfOn0VfH8SyUPq7Nirbb9dUCMpFUx+yzyQeoburgtpUU50CfQDTgc/Jmg9EfEAtUuZL+6QQ7WEVFrY6so0Lq2dLfUgbVC5W63qBhGHo0goZbuzorV7n3YLYVc7brQduwbvf990AgP37xG6dRQs9TXf0vbIxxoEDkgLz+teLTefqxgZefPFF7SM5jjguFyi2i9iiqNfa3FrLbm6DNuwPPiA3ovm2bGOxXccoKac8XSr1CCgXhuV59TX1YnNbbvQZbk6jChs2/S4ZpxM26PzOUI1FXLqGe9DU73ueuzFEtfKDajymuLdcTLy7K6kvHLfjZIBuV+YSghseNCWqrr/RBzCep2K6hE0dsUYv9sbMmDZvXokZkA1blNqmI9qUjeuR4uaKVPb7rlwC97+9vVn62z6I8rq99957AQAnT5685uMpbt/ep2wRVJt+2u/3J9I6ZxlVvJKwD3NXYrFuz3+icwEBPp/lNfoK/IR5QVvfpb/ql8d2eV3eR5ZlEw9+jOvxcPlqRxiGWFlZmbAj570OfoZP/LmYHH38U38GABjpgr+lhdaZHsdriWmQXpY/HGxoGvxv/rP/DQDwa7/6KwAmQQ37wBrH8YRBAecQu8i3AEiaTJaMcKCBNZcw5zII8vHH88172ef+4i8AAOsbei9v6eJeASmvYBhRN8VkOQHPKqDtwJUwfzDi2oFzlAVh+Rv2Ic9dEAQT6Y72OrImJNasrFi2xl6LttwG5yquZ4rgi037s/uxFuelNppjtu3mfmypkeI5dfufcYna81Q0HONlbfvQ3Ut8Y09fMEoBgDRN3AMhf7vbzVNEAWCkay5eQwQDisZIdqz4M6Gg6VGl/1VRRRVVVFFFFVVUUUUVVVxD3BBM1eViGjKVP52WET77lFsUHF8O2VOm0NmW08q0N45xbkPRC0Wae8pQ9UeyzfOKpsS78lR/sSsoRhJ4GOpje6ia8ByRIIqgT/5jef/iWJ7Iz52QbZ44u4EjB4QSP3iLMDa2mJoVFaa6L0EEFHnqCdLQ29nQY1ZGSlMFNmMi7opq+0xRCZEQ0VSXi6AlVP2ISLCyX2fWBRkgujqME3ieIDshDSICRXWCckoOERgKVY8ckEK7a2trOHVOGKmvf/3rAIAHH3otgEkLdQpDmUJw9qzYovq+P5FWR6S/pmxLTbdBBIgF5P7WD38IS5pemCji4fPK0VRND5qWqW3hcTH9rzse46677oI2XPpsW9BDFiqmaHcixTRNZ6LUtk20OX38sUd0XyrmHPhIgzLjMCEiNUhcMf3JCcl3BAmtR/Rdv/4i+lcjMmQlG12L8CHzJtIt8nQPsnNq8FFn+gWZhdoE60f8Kh7J+11FjgdktrdElN7bETR6nAwKbI4KhD2yLGWGl98jChpF0UTBXpsGcrnUviJTcLVM1TSWa9b4vZa0P2u6saOMfKvVcp/xGuf2OcfY882C3yyj0G63C8Lo8hw7sxSH6Z9pfciYVQS5eI+ahbLPKgp6NTErxb7YhgkL9XG5kKtL/9OXWNknz02O8YRRSZ9W/uZ47D48z5vZr9fC0P3Vhcw3dl5gCnp/0MW73/kuAMB/+IM/AACkNbJa7EOmVJXPVYAUKVO1WorAaybN5z//eQDA614nxkpkVzjeJ+a9QhRTMYuvE1lCyM+PZVsGo3Kaox1TTJ1uNBru2uS9/KWXxYb/wGEpC+Isr2kY4dPYYZwXBHZZQGUDJ7661Htda1HicezYMbzwwgul71pmzl7DxfnXphPzb8um2NR7Hk8URW6usrbkljFkTDNgs1lPNguFaxsaexXNH3guZh0rfzvruiyGM3miEdKMsVOUHLAws51nPT2347ScFXOpovQTmSf66hgqN89o5kYQzpxXfVzZfY9xM85OVVRRRRVVVFFFFVVUUUUVN0zcMExVEdWbpZcqxiwk1qKqSZLMfKKeQGCVmSKjwpzl1G9jV/PHu4o0n18XhPncurALScon7m1zoBmIBTn7cxYKdsgDxYW0/5Sn+1T1OlsZsHFaGJdTarNKzQARCbaBSElXbZiLudJOvM0ceIf4ybG3a2X2Lwny4VGrly2YB6or8Ua234lIkMFJnbDU2VgaNOfue8T2uzMnKMJLL4ll7Fe+8hQA4Pbbb3dswNGjtwEAnv6yfPb441Ig8Gtf+1qpX06fPg0AOLAiKNfa+jrCurZPKcO+WoePVMOWqhYgUzHpoTe/Wd5Hgl1lHtueoDXOkCQlTCvjgP1//qwYazS07d849vLM8UzE602PvxHApGnCcDjEqbPCZiUjMlJ67LEwG9s7YiG/f59YpdZDol2qgdo6hwN79ssOFUke9XWceUTtZMxsK4viKfLsexl8Fr32ZX9JrOhR75WJ+f+qw/PKxTitxXYRVbavNiby9KcUy3ZIrXra0o6WZQSOa3HagQovvYI5CbUrNK7wzDzCV2oufN8vFZGd1j7blktZqV+Nlorft0ht0Tr3cvu90rAoLBmrlZUVx1gTkbUaLwbRV+opyE6vra0VWL2yPTARddunjEv11yyL9Wlo+CydsB1Tl8rEmNW/lumeto1Zuiue03ikRcy5TZRZ2aJOZkJDMfWo8rhelvY3SniehyiKJvTUbqykdexqtsv3f//3AwA+ptqqQbnqATKyMn5Bj6RoOs/FWO/Df6Cs11ve8hYA+XxgNU6XKuI+S+NS1FRZJtxZxftl9J/vU+MVhjk7wTlrzx7JxjlwhxQy/tQnPgEA+O73/nVpg5axyZg140cTjC9ZFwZ1Wq4tqerEdB5utVqub2xhdBpo8P1pbNQsVpdhy3LY/trd3S2VESh+NuseZefSab4ENiPAZl/Qlr7RaDjW1LI8xTIjxd8W9VDFfU07Vl/HaprNZp8D8NqYoc8zlvOXYqqsppjB+d5jAWN6Y0wxdMuZ4IqpqqKKKqqooooqqqiiiiqqeNXihmGqimFRtFn20VeyDeDK0VD7pFrUmvzlM2v6HbpJqaW3OpJAXW4u9VBrUQOLVs1ywhqNRu6zge7n9JpodmZpI0LNKc6Q5UV8nSNZ2YHF7p/BYsDj8XgCNaGd9Cxr5mKbmStMd7+jR48CyFGSl156CQBQqxM9k3089thj8n6thmeffRZAriXjNqiBeO1rX1s6Prp4Pfflb0h/IMMcXXQUS5hbkr/7AzmOuZYgNfPqzjdUlLvfzwuxspdrDenD+SVBxJOBICMbyha8oE5/F1Vb1Wq1nHbK5hMT+frMZz7j2gvkqF4cxxgoQ7pnWdimFe43kt+ORvKb7333WwHkhY2JZkZzAXpqSeozN5loktrOtnwZ7zHHi1K2vcEAgZ7vUcrCj9ITzc4cbsbI0gzD4XDimswLMGYTNs85upZOfSWbmqZjxxDy+uA1sKNVIVNF0k6cEN0ANQB8HcaZK0adkblWhJrGgRw3FpUMgmDCDt61+zJMybTPrlZLRRYQyOdwa21u0dZLoY6zwupToih3y6SmMd9v2fWQbeM1RobqwoUL7vhyp0S/tC3OQbaw8jStweWK/16KqbIOgbPmWKurLcYsFs2WT7jUPdIWdCVT59WNpibl8U06ujnXL70OrNPYtJjUJd68kcFDFvqu6KyzmtfrPV1soaV98+43yxz++x/59wCAFc0w4PnlfdO52cYjNOjYpxkqRw7JeP7QD/8wgHzM8tydOyeZL8UyDGRiea6cY6nOVda5zrnSpbkeJZ9vuJYoM8R0vM1LGOTsF4dEpyPM0Asn5B66vSVZGGlq2bR8bIdhWYfEyvWJuhbzPsiyOZEyVGSoV1dPYvXlb+t+ytcxWTVrm85+6Xa7rn+tc+IstonFgblsrHdaSHi9U3+r27DrwqIrr7S9kGFEnaPePFiCplanxbxmo2hmy5KuI4IgyLNuNGhlTh09e3vMTKt6WY+XAYjSsh7NaVnJ7um48JA7tfL7/gwdGHfM+2C+ji0zpkkyxsixjXre9REndO635ePL76HBhDOnG7PDyv2viiqqqKKKKqqooooqqqjiVYsbBgKahsJN5B0X4nLs05WwU5erf1Hc78hXZmCsdV0CzX/NWJhNczhNlxZdjGxOskWCbc58MaeVn/VRZjn8MJq6jUQd7ZIkccXb8oLF7Bt5HRlExD7FF3N185zhssuMzWHlb1dWVlxhXiK7L7/8cml/3MYBdTjcv190Qc987Rm3zbvvloLBrB9z8OBBAMChQ6KZyutS1Uv7SBI5jkY9ckV+bz8iroJ3aVHB+UVhW0abgkj1FDFcPrAPDCIqbUUHidJxvyxmR13egiJAB26R49w59jLe8MhDsj/N0f7CF76gx1h23SMSWdQW1pSe2NkQxrS/LUiTBzmuRx4Wx8ROnYXyFOVV57ig3kKs5yzk/kKef81vV0QqJXuguc3N1jy6WiwwqMkxzi/Ja5bepLiMJ+PP5vjzvHq1fIx343J+eORT88b6LWXEbpikiBTNHOi42PbldWEkDPe5dUGKk8Gu7p/1m/JCw/n8oAxuwHmhPJ/Yopye5+UObYbFsHOPzQqwf7+SKNaNuR7b9emwybp+6rz6+Ju/CwDwzHPCYm9vavZAGDp3M2osh0O6AOr8qc5h3V3Z9uEjMkdRg5WmaSFjoVzLi3PB5dz5kiSZYFlmMVNWp1B8z6LdDMsyTdVU6e7TsdZWi9TZU/WULNhrC1xPOybO147JULZ6syvsfLNZ/v44C+GnrDEjv+3ovcii/xM1sJJk5mc3o9KKTqO25pC7HkaZuy+sqW76w//tjwMA/vQPPwYAGCv7XWvL/aq7K2P6tqNH8BbV/77+dY/Kd/xy1ollWa0uaHNz071nWSeyuHbucBrSwhqnViPboAxlVGa9JgsM59ouyxDwPshaj8wOqrtMjnztY8domvE6L2uIyNQN9Z536tQpAKLJtvPprDqiNmq1Wu52Z2ooTWqLytk4xbHNz+JB2e1vlv5x1rEUv2PZ3rHqpMlyFtegs7RaszKaprqOpuX1n21Ds152lCwyeJcrTH65IuhRFLnvcB6353JWDbAkSWbOzVebKXeTroiqqKKKKqqooooqqqiiiipujLhhmKpprkfTPrvcd67WqepKo5UK0tNX5xlPC0FlvqKF7kDKvysinhO6J5N3atEjt8ksKzzFx/rK/M/pTom+eg76QQAtn+M0GUlW1kEx7xY8Tt1v8Qnd5uATYbK5w0Tb6L61vb3tUEmL9BA1o9vPSNFU5nvff//9btvUnjz88MMApK4EkCNwRKR5fNxGoy37ePj1r8Ujur29qu06uFf2O8i039VmydUl0DZu7HQd8tFSNom1zIbKZvDvcxcFZTx+WpiytS3Rdsx3Wti/V9DwJ554AgBwxx3ClBGZPK9IO3O2i8xD4BGdUaRP0bMjh6UNy0vS74kidL0d2VZjTmubDEYIlL1kXjkZmKG6Hp7X/S1rja+YAP24Bi/TnPGWbqMh42t3p4+bNYr1v3gtEMn0a7lTl71OmdNu9UEOQcui3B1xoAyB1majru6b3/xm6bcWuQ6CYKZWhu9z/1bjUGTHLapH1NVuy7bR87yrdl/j91ut1mXn46vZNue4Rk3G8uEjh0rH2qjL2EQrd+mjho316lZXR7ot7dOx0YUwE6Cfj2dbL8ai4Ra5tS5YcRxftp3Xcr/ieedcS2S/GL62t1WTMbt/j7DvW+uqrRgJQ2p1GtOC8xJfz67KWN6/XzQ/nCMZRUdfZim8EqbSjuFsQltz44fvC3ts28LrrpalqLeVNe9LX735dW8AADzxH/4EAPBjH/qbAHK9MM/Z7rDr+rWleum9y3KviVT7a9lV61gaRZHLurBj4MyZM6Vj5T2fmRVznQXUVV9jdSk2+4XjIGcI8vmIrALDfVezcbi/oc7RjGI9xZzVsSyDr+2UfbT0eJnxcuLECXdu6vXp1wL7imuLYgaOnQvYFl6Ttq5opJqiQT+vzZUYVslmLtn53mYoNBoNjJPyGtJmPTWb5XsW21SvpzOZIB6PZc6tNjxJEiTDcsaSZfv4Os1XYFYdtJw5mvW+vHa7vQlnVO6P/W8ZxCLLb9uV+wdMZyhnRcVUVVFFFVVUUUUVVVRRRRVVXEPcEExVlmVIkmTiSdk+sQOTyG5xG9P+DoJgpovQrN9MO46xovojV/9AkVjn+jc9z7PIOlkkk0/R9snc1gcoocYZHZcUHfVtrRJ9Qk9YlwHwvTIaazVek3nORJfKdQGAHOkhwpQpRbOsyBjznjc2Bq5NFuEgwlPTuljbO4KQHThAlyPZ9kMPSJ2KbreLO24THdRnP/tZADlaurT3AICc7eGxNjuCanVqglC02x3sP3JEjlVRC1+7tKHsjz8n79u86ANLS67u1brWEpk3dTCIjPe3hZXbOC/H01C3me0sRqxakMVlYZeee/5b2nfCsr35cXE7fPrppwHk7jtxHKOvYFyzLkjU3n2aE63jsqX1s/q7ct73HFAHQ9XsBBlQrwtqNhhIe1tN0Z00msJyLbTKKE6gbOz8fKOQiy6dNlCEu2Vqa9w0kcn4t5pAp1/JMsfohZwP9Kez5qAcFcycY9xI+//06RcAAN94SvQ/vNaJNloEGciRUpvTPSv3nfuP49hdH5aBsLVGLAtTZMdmuc3NiiKiyf1cD6aK2rWxXj8njgsLvKs10mqKzkdaZ2VjY8Mhk+vr66XfUkvAz7mtnV3RBRXZKTsPW/ez/PimI5u9Xu+y+fjsB1s/6EqCY4dz7rS+Zn25hx4UPWenLu0/mZyV/e5o/UWdv4qorD1HnAPsMdv7idPtDHoT95ZX4uQ3cZ++KVVV3iXPbSOInPvast4fT6/KOfrlX/klAPk1HI/kPARaX3F5YdHVGOptyxyfJdNr2dm5q8g+UYdIdpfnm9eyrdPEfV7cWJvQ0DD7pFmXewvbbtl9/l1k0Jntcs89cv8//pK48vFaKjLyAEoMYK7LqpWOJ2ch5G+yb5///Oel33q9PEshmq55J3PG8c3xv7S05JhAvsffsC0T/a9Meah62SQeufvNrNphs3RBnON930eGS7Pp7A/OHTxvi4tLExkQ9p5o19FWP5+mKbwJF0gJnrMoKLOdxWwQ20c2U8Q5AZj5gN9rt9uObWXY+6x1m+VxBUEwcUxsV2Q005eLiqmqoooqqqiiiiqqqKKKKqq4hrghmCob0+pUXa6KskWBihoBi47Z3PjLHUeWZROaA+LWrCtzJTGrYvO0/RVffd8vsFzl316JC2KSll11cj1WOe95lvtgMXJWTf4m8lus7wKUayxxu2SomHvfbgvye+ddUnNqYUFQnaUl0Tz5ely3HDrktv+g1qMisnX8uLj33Pea1wDIWR7GZleQ6mG/j6Hq4dK2IDuB649yvzcbwnIV67KQTeJ+qY1hH7FNRO8ef/zxUpvjOMWTTz4pfdaS/T+qboBOU6XI5AP3SVvodHhuZ9vpSQ7sExTxjQ8/AAD4+le+CgDY3ZH9rywJinZxUzVgkaJfmY8skGOrNRXFa3W0narpi8uajFARu8Fw27mEBXG5vorV6Nws4fs+ms3mBHPj0LGCexZRX99cr7P0A7ubm+h35Tf9rvTp8RdenHocVjdVZKFmofqTjHIZjW21Wu479vxczvH0UlooO9fY9hfnr1nz0uXeL86RrsaJ0rT7Dsi15Cv7e+gWcSXzFP1knZlWq+UQYjIwWVquE0Ok+sDBPbo/aQsZjc6HFwAAIABJREFU6SiKCvn35WO0iOq0+lSAIMiX0ijNardt/6z7xSx9XPH71I5xLtm3JJqqcxdk/hqH0xmkoha4+B6QI7jUo8xCjuv1+gTaTLbPnZcZjrjTtst4JXUrb5Swzmbuuk8yN8du7sqcUSOqrxkD+26RTA7ecx2S7oUOZe+05N4V6D2tr99hvzPsGigMQ3cs3BavIVtjjiwU27C7u40sK7MZ6+tyv04uiqbYuq2RXVlZWXLHR6bIzidkHza1BmRbmaIi22DZe2byMLOHDsdkmYr1kYptBgq62pk1DMvMbK/Xm2CAbBaSdQHkubXbBnKXU3uOrHMjX9nm4XAIzy/fG+w1zN9w/UK9+223NSaO2WpK7Rxl3QgbjYZjxieZQ21vWmZIi4yp/a4dd9aN1K6BfX9yzrRzhb3PFs+PvY+7Nezw6jScFVNVRRVVVFFFFVVUUUUVVVRxDXFjMFXqkX+p+k3TnEYuFZdysbI++9P0DED5yZjP+5fzyp9s2uw6VRatmpWrHwRBASXItzutDfYJXRCkMrLAZhItsnqKfBt5bi+3Rwce1m5hPv+sfPFarebcqeiaQzaH+yNTMzcnCBxzu5vKZDXaLax4wtAcOCTaKlZC37e8t7T/1yrLQ3Srp+50Z0+/jNVzgk7XddQHc4LE1dUZyznT6LE71CnN9SXWRck6cBFVIapEJChLgDc8+jr5re6BNTL49/KiHM98R35LRiu65QBG6qpz9JCglUsd+ezBe+8EAHz5S1+RPlxo6/Eps+TJ9xbaLUR1OcZUa6uNFL0fjAQ17igzNVljI8OAdX4S3a72kR/cGFPIVYenVdxn6DjTUT7mo6jMYhH1tYgdtzE35+HsaWEdv/rlLwEARr1yfjrD5q0X2RCLajNmuSMV2Ta7PatxeiUubLMcV6373XA4nFlb6XJRbD+3t7goLDERQy+Q7xw4IHPBjtb4Kl6Ttk7J0aPitLm5Jcz15qbMD3EsqPTOTvm6jqLIjf9Z9VPsHMw2k4W5knuE1ZgQJZ/Gxtj9XYkuzdNaPmfXBJnuq8MpXUkjdZyz2rsoiiZ0MpZBsI6ZC+qq6sZcnExcV5w/Ldt6NXG1rpQ3SqSJl2ueY44tdYHzfZrNYjCQ8Zz6cq4WOmSGZF4eDpPS31maTDBRTt/mlzVLtjakO7Y0nahVxqyPBx+Q+1atKb/ta73HWihjp7PQwNzifj32Mts06qvLpK4TRmP5PFQtdl5PMnHHxLYcU81xRzNXnn5O6la+96+9XQ7an6wxxG3QBY8Lpqim6yHIcd1+q+irf+u3fkuPK8XYk9/Oqbba6aR1zDaMfpj7KrrI8jeW1SoyUQAQa/1C6qaz0Eei64DY6Butpolhs6eK97NQ78tDrauakT/RtUWi5661KH3bH8fQadXdk9heNyePyvMhtcbUOA57fdTY/0aXzjawTezTfC2euO0krMfWKLtBjsa8Z5W9CaDrmJ2L2whSZbX0vC8tyFpypNkmtahROh5fGd00G6P+/7H3ptF2ZNWZ4BcRd36jnp6epNQspZQzmSQJmYmZMTa42mDAxja4jUc8tF2rq3p5qFq0TXlBt9sDtqs8FQuqgLIxpm0XYIMxoyEhgRwhM5UDqdSQqfFpePO7Y0T0j72/ExE7bmhIyVlSV+y1tK7uffeeOOfEmeL79v52LRszyzlq7/u57Io4EaUTgxUtwkWH+rRU4vn+Jn1dmt0gk9+ee4G3AhXne1hKf548YMpn9kEs54LhJxtwZEQVqlVdyHUBLHIzYvvDMFm0k4DMbNAy28gJ2WzK4b5er7tgcU6oJOBZ3nPiWReselMGc3OkBS/I9t3W7dsAJPLnuUMxN209zM6vLqOvAhizc7N6fRV5qMpCw43HuSgMEvnPubm5TJ9Ymt/2IcvgQQO9gfvtNn0w3KkL+/79+wEA26+WByQGxI40k4feppa/ZlwPmmO64K3K65genvra7vUbt8p13aIaoBFwY2XgrR48K0yUyITW6m6g97Db7aJJad4VuqYoQFC9IpaQnHmeN/Shys29MHEbtq4URYAGD6GLyydx8pQ8VNGNcF4FRLxqXro8/UpLA0lFh3M75jlH+/1+IXB0MQfSogekvBuGnzsAnOvhyh7Um82mW0tcMLEGDG+4SuYPk5Le/4C4wDp3wU7HbYTsk6UlOajQlXCLyrIfOCipGWLdjPm7dBl0bbJu2XbttW08H1l6HsIIwqT3hqL7butxNqvwMMfxpuJA41Ny2Oj2s2IE7Oter5c7eNv2bdggIkH3338/AGBmRlwLCZrNz/VceZwbBJkuxq5E9z8P2fXGjplmvYKjRwVkq6iYAt3jR0yi1qK5nf7Mup3ZfdEKRFQqldw8pnS7EzHR/cgm0m3W6jnXKb6OauoNAqW2/Usq5DM7O5txtweAZ54Sd14+VM3pvhR3VQZcxagq9YZbK/hq5cbtIf+hhx7KfD4YDNBXGfblcDlTx2F9lS47najduqpZ0IR7u3sw4Zmo23V7abWeFeKoUo5e03NE+nBBgDvtumjvoU0DQldpnpso4x4PQvc39lFO5KGXFSxxScC1jGq1mrv/tl68t1Y+H8iDk0X7bjplRdqCIMidw1w9vGy97FpWqVRyIBrreKHAYOn+V1pppZVWWmmllVZaaaWVdhF2mcDMMYAQvR7RBH0C1jhcP/BzbivDEuSmLf39IkQvLz4x3DzPQz/s6P+JEvKvWo94+PPpMKEMK2Ns5UWHIaJJQGO2LD5NW2SC+RF9r4IIWdQ4jonAy/XoghC5pIqKolCydWoqx9RQspToDRN0UnKdKEI6maZFCdauFde9pUX5zsoKE0RqW9TVLI4qGB9bm7mec00JsmidQ2SILozIeBnFlPsN0ZK508K6LHlLmbalZTalrZUcSmWDSNMIO5C/H5VGDWFb6rLrOkEAidruuVGSEi/PL2tZco2rNoqL0tFjh9DrCFrYG0i/LixwckiZN95yNQBgbIYJCdVFQ//eaAKrK3IPiSRXlM2kEIOn1+0pzU9XjU6nk7g3NlSaW9nPyiCLFl1R5scI1OUxjBlQr3MBIYJ6VsqVPsAhc/zSXUPZwG5f2aiej4VT4u5ChsQyVJaFsghj2m3Yml0/LFM2LAXFudiuYSIH1opQdvsax3FO/MYGIVvvAY/JITWQedeu3TigcufTG4VVojAC3Yi5Xg36WZeyNCNgE4/39V4dPy5zvtmgyxpRUrotxs5NutfLIsNWBKSoj8/H/a81okyS7h+brhIGfn7hlFs7i5ipcyGocRxj0CY7Le2fOyPtdswgB7UWzbVgtDWC5dWVTDutlPXeRwTtX68M1dQacVOraLLWxYUF1NS1mkzcyorOEW/4uE+bnSuOoXkWrqv/w83LuuVWjZvU0uIZd6iImYR9QvbH9iAr9WytUqlkXG+BvGR0TjDACCT0+/3cmuTutw6OJse/vo9Sc5vX5/7rRFQGWfdmx9AYJmfbtm0Je6UJcyntvkFZ5WWVi2e4QDy35OrLPY2vI8pi2fnP6994440AknEJpMdX1p3XCkRYQYfR0dGc14+VRWe/uP4f5GXKe+Y8SBc+MlidvvQlOSCWmb73ZMJ4DsnJs1M3h6wnEmGmonAUNw91iloW0MqVp/9mZfCth0/arKdSUcqjojnUbrfdZ9bd0jKJaXEPXtOepc+1dxZZyVSVVlpppZVWWmmllVZaaaVdhF0WTJUHxjgM9xVO+zsWsUvWhzP99yKE51xPoDYG6lKbDQy1cQXpp/2ixG8W8R3G5BVJ4xbJOdskjnNzc7kYCSfqYJ7q83FTcY6BY5wR2S+iS1u3bs3UL40IpRGlTPlRVrLYMpiUZa/X6w6JoCStiwNrr2auZy2KokyCvfRvixL0saw0imPHKMt0QfUaPEp249577wUA7HvqMXzvS24FADx9TGJ1tm7fLoXUBZE6fErKmDTXr9UTpMqLh8tsu/GgyH+zkWUha9UAqxpLRaVxJ0XbvTKZKs/zMrLZVkSmXq8XMsyObYmy6NdqW/podnY2xxoVseV2rp+X+ICZz3YdGR8fd3EQVrjm2QpIpH9r2VrGS9jksMPqXNQ+xkwyAfixY8fw5je/GQDwD5/+NICkr3g9zp8XvvCFAIC//LAEsk9MTBQmvbT3lP1kw2srlYpDfZlO4YYbJI0BUyOcb1qLs5nzVkDW5z+diuJS7j9cR1n2ytJy5rq0brebW9Mt+mvjS1n27OxJVybXWiLn7MvFxflMPYb1YVHM85UoVBHHMQaDQQ5dd54Xq0uo6uI6Pi59NFBBCq8yPI1KmlkoYkpoZFnJAnHupM8L9jf0NqFnC+cK/OzcCpCPHXT7X5BN+ptOFAtkWQ9+xvPBioph7blZWKWHvyXCGZMzwoguz8n87PT6mD0mwlV9FYA4cUbYbPaLjel5RtMvMN47CAIn5kBBhKI9nmM5nTYm8dgZ7kllhULo2eNS5AQ+PGXJmeqFTGCX90HL4jy0Sb9brVbOQ4Dzz4ldaCl1ZZPXqQhQxfPdWYlm20BWy3pYpdfYgbbTMmSW5R6W9Nmef22/W7MeG7VaLXfGTDyGpP1WKCc9/uw9Sov2XIiVTFVppZVWWmmllVZaaaWVVtpF2EUxVZ7nTQJ4P4AbIQ/SPwXgCQB/DWA7gIMA3hLH8dw5y/JjBPqE2u8TKeD7fkaVSf42PKlXqm5D/5826/dZhLb8SzFVVnazSA1wMBgUKqAU1Z0WhuEQqfZsWXwi59O9/XyYMpBVGeL9seo2g8HAIV5kpGxyPSJgZK5GRjZlyozj2JWRYw8N8sHPh6nyWfUk9n8tNc7S10jHaNi/WbVDK6tsfXjTEtE2qZ1DuRSZfPjhhwEkqoBhGGJlXtDfmXVTmfJ7Ggt0+ITEX+2+lkyV9HHkkNEIzXoWcbEJUgONFxyosiPlUZcXV9x3Q2TZXcsg/kvbpVpzfM9DvVZFrSZtrFaKmRyrtlVVtUQ/VJn9VVU2W1xwZfCe2nQF1iwaej7+23Y9SqTHJe6t2+3myi1K8H0hZueFnc/nw7YVXTfQ+8A14NjsSfzXD30oU95rXvMaAMk9Isr8wAMPAAB27NgBQOYk5yX75NChQwCSuca1JWHRswhzWvGUfXjPPfcAGB5D9myN61OjLkzCk08+CQCYmBw5b8T2Qsyy45y//DytopZXfM3G9vC3ZD9GWmOZ77VGWu63RNUZD8PY4LOlSMl5HVxgOpNLYZfsjON58GuBk/YOKpok95QwLAFarr8rtWw8zGgtu284jx5lOyIv8eSwLHJfvRM6GqBOBb+u8fypou7KJ3qvIbaJpLhB7OMBz08pj5WQDJWq3THOdKAxV3XuFzqHNFltW6XXgeT8t7wiY2bvIyKtfucdLwOQeLScqMr8T6fj4frRIxOqY3FiWmKN3/e+9wEADj31NAA4GfPYqyDSva1f0z0e2RQay3MyZxhUm2a/is4fPGNYCXG/pfE7ZP/9AFWNZa6qUt2qetBQwbOlcexWMZT3sNvtujho54W0nJVHb+pY6nZkzq6ofH9zdCTnoeSYSbWeninINvO6TMpcrVZz8WY8U/IsaZMus9+CIEC/J3XqD4anCQrDbDwe14zVZalniBhV3Uc43i2bZuOCuXel2SjLBEcXePy/WKbqjwB8Jo7jawHcDOAxAL8O4AtxHO8G8AV9X1pppZV2Kaxcc0orrbTnysr1prTSSjtve9ZMled54wBeBuAnACCO4x6Anud5bwDwCv3ahwD8M4BfO2tZvod6PXBPs4EiMXxATOfsKIpzKsrDEsdxDlG0T6JF6G0a3S1Cx84HtTyXspaNv7FtqlarSe4mwzZYrf5hZlHqXI4MRWJsAkGyTmlW0KqV2aSOlqkJgiCX94AoGq937bWSsNf6P6fVzdhOmwehamJiaC7HQErJh+XRv9z595r6WfYtreBo21eU44vfY70Hg0Hut+wzjvvHH3kcQKKQ5fy9KxGChqDAVMZkG8YUTpxoZZH+8RaZCkVqEDukh/VggmT2Q83MB2LHYyMjCPQ7vYFh4i4wMd7F2KVec5q1qmPDqbCUzo3E+0Nf9xrjGpXVqOpv6xUmWpY+evzxxwvXA5v7yrLh6TFYFFNTpIrE+dpoNHJMMs3mbTkbC18Ui0ljX1lFpbRyYRGLY2MsmJSW6qGTa6ew62pRyZyalBgq3o+bbroJAHDggMRFcMyvn17j6sm+4PVvueWWzG+oCpYwztkY0bR3ABHbHLN7ljjeIrOKUvW6zB+ugY/0H5Xrh52c+pZVbrP3x7I96aTxHGdWxTX05JX9lVaL4/3lWmP3A5bZ6fQyZbvvVZLf2uTx3W422bLtnziOCz1HqI76L22Xcr0B4ky+yUWi+6rwFg5iFytozcaTp70fACCM+pmckum/MYamKH8P51RzbMTdm3TeoXSZRfk1gTB3huJvklhkvX5MJkfjYOpSj2az6cYexw/Zzdtuuw0AcPDgQQDAjvXrMvWpVquufWRRJidlv2Ss5gPfllx2t77gBQCAek3YmH37JU9dZ3kZNT1bUWVvoGeHri9rlD3HpM84VhHPnpPI/rBtfcbraL37/X6O+bVnHfYp2R+r1pdes6z6I+dOtSp/Z065NNtlY5SsknFPTwSsH8cHyxgMBrkxas907CcbZy8x5xzX3BNtnirkfpO29H2wzLs9j9l6pp8x7L1DwR5WZBfDVO0EcBLAf/U870HP897ved4IgPVxHB+TusTHAMwM+7Hnee/wPO8+z/Pu65/Hg0FppZX2P71dsjVnWTeG0korrbQCu2TrzcLC4nNX69JKK+1/mF0M5FMBcCuAX47j+Jue5/0RLoAGj+P4fQDeBwBrp9fGG6/agCjkE6ii4l15Yp6bW8yhNTaDd1Esy4X4u9vYibTZ2IRn4+dumSqLCFjWKY1+FOXpIhJh+2dYlu3kfZbt42+IwA6L8bKqRTSrYmT73fd9p0BDVMzFMukr885s37EZgCh/SVnqS9xq5XOVEL2tZ9WOrN9/WlFmmB8vAMSDbN2HqTLmfNVNe63ZmKt2u51DS/jKOIP7778fALBzp+ScIpo+tXYMg6r0oa9xT+Pap0tzEmt1zVZRTTtyUt5P7ZK+TN8H6+9tlXh6XeNTr9caHRtx6JTNM5HOQ/Yc2CVbc3bu3BnXa5Uci+vXqXRWRa2a9cN280HVsAah3L9+T94fPSx5lRqNhvMzt+yw9TlP1S3zeiEMkv1tOqbKrg9FrPUws0igZdksKn4h8VqWeW4o2klEuxID1YaMteuuuw5AovpHRJ15bF760pcCAL765S8CkDHq8v/ouCXKbdc8xhYxxic9511skNaNqCvXaxtnWeQtcTbjmkvkuF4X5Dxsd3NIdRFDScuNZd93/9+yZQsA4Pjx45nrDZShY1v4OjIygk5P0HT2A5k6iz4HGj/DtYDrfavVKIzFPVd8lOd5hWxvkSrgv4BdsvVmz57dccUPsKDrQl9VUz1t25o1axxra3NL+X4+Pjf9CuTPFG6cV7NHPMtI8p52O103r4jyp2NlpB7ZmJaEqU5YDu5ZzlMk552TZSyiOJlDliHgvGYs4+c+808AgBt3bgcAbJjZ7NqV8wJRJqziSd3HlO0O9eyzpDnYVlNxZGTGqg1l6HTYsT6rqkY42tS4sDCZZ86rwagMsn/t3Oio0m6cYva4FliVTRvb6NhOrW+anWGMmo31tqzWpk2bMmWnYyjTawCQMNA6zVNqoNmcZM1mC30vG0tmjW2wSnuBBObpb7NnvITlyp7B7NpBRd+02TXUxUWbc2qa5bLx+BeqqXAxq9NhAIfjOP6mvv8byAJ0wvO8jVqZjQBmL+IapZVWWmm0cs0prbTSnisr15vSSivtguxZM1VxHB/3PO8Zz/OuieP4CQCvBvCo/ns7gN/W10+cqywfQM1P1FdiRWZa+uQ41liDvsY1MJu3p0/ey8wxtEqkRn2JVUEmjoAYWdU3vo+jLCrci/lUn/XlTMc3FOV0KkLP0mihfUomAmozmLMoqvTJ9ZLyhl3XMjV8iI+idDlZNItP4kSXiFRYX+owDF35RLHYfiK9lklL+/9aZDPxt5b2njlzSj8XhICqYlNTotizbt263HVZd8YBOV9dw8J5XnLvk5iqZqYeZCdcPI1B96j2k+4bN2aIuFdMNnJFoiIdUzF67v8ch8vLMnaPHBGm7owqFp1+WPy/B5qfpNPrIgoVJRsXNbOezoeltvTt5LoNAIDP3vVxAMDaNdKHV20QNL8aeOj0FfFRv+puR3MZQccMFBFTxsr52EddRDEzwevc0bw6YxMjeK7sUq45RLUs+5JGenMMVeq3ANDtMTeJIlvVLJuqdc682s+fDep+Lqaq0WgUxuNYpvls8VpFCJ31BrCMTfq6Rebmr655t976fADAfQ/I2H/Hz/083vVb7wEAfPfLXwkA2LBBxvjXv/51AMCePXsAAEeOHAGQjNfJyclcbIfNG2YVSC3SDST3kf1gc/vYdfTZqAGSfSOTRtb+qk0zLubRxkfQznWddDwx4zO557A/eprXx8aJhWHo8hHZvDg2Psch6aqC6crutx2bmEeIs/tE3psieW9jyS5GbfFC7JKecXwfY80WzihTqCQ4mi0Zs+mYIvZf+rdAnm1m342MNt1v7D5J9b90Drv0b12ZftWxuqyH9ejgHuvUHl0MVteVYxXpQp8sNjL1oIKh7yXnGZbB123btgEAnjx0LPOeLGv6rEGlXI7F7dcLu33XXXcBADZuEVZroGe7p54+KNfVJcsLQzSYU1I+gq/nRKc8rP1AlqmunES3282xeDYes5KKnQKASM8loet/H2GYVYplX9kcZOwf3mu+drtdxMiu7zYPo4vF1jMWrV6vuzbwO258MS4SWe8bX1nAtrJ+3c4Ag352HNqYLjs+06rO4cDOa8aDck/OntfJeqX73s4hMoNWgZqWViW099DFFvoBLsQuNuLzlwH8ped5NQD7AfwkpCc+5nneTwN4GsAPXeQ1SiuttNJo5ZpTWmmlPVdWrjellVbaedtFPVTFcfwtALcN+dOrL6gcxIjiXsIguVcivwPnVwzmaFBWa1wzQwdjVHSTv8/PC4Ny9MhxIBYEwmYbtz6bgTIUkVOmkd+1e1nkKG1WB9/GIYRhWKgQVxT/E5PdSLFjFq2yjJVFnsjYVSqVHGps/U6tr7b1KR2mROaUGo0CFn+b9r+3CKuNj2LdbW4HXn91ddUhYERNHGNE1kVRHgSEnhTpDJMYKJZL9MgiMtbP1sUepVA0m+/A+ST3s2PEMhG1WgskwCwrsrwsDBWRwGVFj6+//noAwJkTR1zd6N88e0LQu51bN2fKfIEi/ocPHwYArJ0SZqtfqwFkKYgWOj9jZnJXJo1dFykLFwMD7UeiVcxh1Vl+bgOwL9Wa4/s+RkZGcnPPzWc/mTPWL31lVe7Xio6PXTfeAABYXhUEd+8jT+TWFstIFcXDpJmkIqbIKsjZz1faq0mON97LeHgM1/nEATm1N0UKG1wnkV0T0nUvihmzbA7XkW98/T65hvbp//Pu/ws/+dYfBZDknyKLw1gLxodw3izMyX3ptjs5ZmRsIqvcZ+NXqKqazs1iEVEqixE5ZpzSdw49IddoadwGw1n7VfQima/s540bNwJI5udLtC3f/rbkpqvWpT5LS31Xjze/+c0AgE9+8pOZeuVUqoxFUYS6Ux+T63fIIvVYhsz9yak1mfZHiKG3O6eYlTB42bV/raovJkh6DXNzwpAlOb+yalx2/CXjw8v8X66rCHKU9M2/tF2q9abf6+Ho4SMJM6r7xYgylcsrK7ncaYnKooy3YWpngMwDG2fi9nCNS7RKbjS3F0fVQoVlvrdzhmOlWvVzMVSObatm7yHHjGMo/cSTxHrsMNaYZV911VUAkj1wanLGXZOMBOOvBjqPXnjnHQCAh/c+AgD46t1fk+tpPqOeenqMjI67/1P9L+bY5Hv1RhnwfNZJ4kIt82LvoY21aowzRlrnYX+QycsJFDOUlhVMx8nV9X5bRVj2KfspiYuqufpZRoz3g4z52knxHKKCKo31GR8fR6wsHtc5q2hNs+dm+f/wczKHrF337HhN77H8P1lVu85wfHIc1uv1HMvoGPL+heknPDfapOewIAgwMTGWC2KDbtpVP5EUZyKugXPX4De5sctvF+Yp+1hHr6dyowyoNqFkFG7odpJktwCwuiLvfd/PJeq1m3aRkEK1Ws3JnSbtQ6aMxGUt65KSdiG0hxIb8J08OMLVw9bJXt9ulnYhyPZVdmDbelnqNC2QYMUbuCiz7zipeeCYWisPBKOjo7nfur7SdtpFzD38DJINwbpCWbMuQEm9/dx3ityp7G9dgmm/gdjjw5u6UzSkjHF1oeNC9NCjjwHIJspzrou6OU5OjGXayYfY63bvBAB84h+/AAA4MSsbUxytwYhef7SVFS+gIEW/nx3/fN/rddxivE6TKLJdDGa+0szzvIzkNO9bItIRFh5ePV9FQrpL+tusAMiwRKbnsgtxacqDMNmNYnxyIiXZrQ/q6uJbMa7NZ3OpsvO/yFXx2dTdGg8UdDEbGRlxogp85UMME/ryIYtjk3MgjuNM4nIgOYhxk7V9yLVnmMiDPdysXbs2UxYfWHxP5uuArm2DEPCz8uN8MDupgjJ33303AGD9epn7N9wgD+hPfme/m9vr168f2me5NcYAXFJ3lanWvczz6WJO96uswEB6bbR9ZPdAGu8Z+z8txONEcIw4TxEgkNTbz41Rtx8Gw8fhZW1eDM/voaIulZu2ixjRyrKMmfHxRi7BfbL/Sx86lzkDCve7A4yOTmYu16hn+6i3kk0C6+vRz9ezUISo8KGq3c8KaLlxpvVBFWhr0lm376pU+qCfva89LYvrUvqMY92JjzxzFEDy8DCm++XoGpEUX+T5oRLg8BmZT6/7oTdK1SD9MX9KHgiefESAjyZBBu3TekPDSJaXE4DF0/1uy1smAAAgAElEQVRRH0hGVJhioHOFZ8+lvly/2WolAlbqCs7kNEVnrbCdBWG9GLk1y55HLHDOB6b03Ol1s3tPszGaKXNkTN6fUdLhmird8ao4fUL6+y598GwoUXHrCwVTiKvSD5t2iNv1iipakoS4/fbb8eQ+Obt89WtfkfKvle8yhcLmjeLCzdQZbFOrOZqsm2b/zJ05Na1LRc/8vgqGNMebubXQPiBybHNMJQ/3EbrdbMoINw/9CwNxrsDVqbTSSiuttNJKK6200kor7fKxy4KpqjfquHr3rlyAHp/Eu2d6DrWfW2awrLqw6Xd7fX1VGfZOhyh8BfV6lqkpknUNlPagzKxzk4uBQZR1V7AMlWVu0qieleQtkk1O3Cyy1wDyyctoRRQ9gcA4jnPufhZZtvL0tDRCy/Yl5Wfba/slnUTVIg3sGysRaiWMicgsLi667zKw2yEQKskaGEQC5jWNhLHcon6wiPww90vbfnvfLeoWDaroqXjK4tJCpowlfc/xzjYeOnQIAHD97h2u/ROjI5m+mp0VhJmCIbEihqTsA00WPLlmCp3TxzPto0dYQp9rgz35A90j+/0+QnW56XWkHkS2L1Ru9HI35wIaxW4+WFeBQT/L0rVOCQtCF64oinLsVpFZ8ZbzETuwaJxlzQeDQS5hq2tXOPy3Z7tuMsflN0w+ubSQHcfn086i/iDbQRaqXq87IQq6Ltl1g8wIGaO08A4Rec6D8UmpM/uBjBHHca8n8ya9NhBNt+IWLNt5BYRSn//937wDADB7QoQzPvzBD2C1S2RWrvutb30rUwbbQhGOUyelH1772tfiU5/6WwDABz7wgaF9xjHD4GsrcCBGiWVFwdUdK9D9MwqzYhTp+2/FTqy08+io9P/WrVsBJH3N8TEY9HJrapFr2fm4nzrzzp8ZvVwsjmP0+33n4uSpGzUR+7SQEq2IRbcuZp7n5cRMbJJvK7dv530URbk9i++tW5Tdr/v9MCdAQC+URn0sU4YVPRkZZXJgP1fXF2iiXnquPPywrK9PPSVpB6qBlDV78gxuecGd8ltPxuj996lgo46VM3PisUGXQl6DczqKolz/00XQuTmqS2GzJddIJ+m1c6Tijh/ZtdGxi2YM+4GPirogo5cN8UgkxbPsDo33Kb3u2bOuS+wbSZnTM8KMzy1K25aXVlGry7nrhS9+GQBgYlrWyO3qfr3/MWGhuHZ+86siGLROmfuPfez/dd4Ee3Y/T5qiDFWnLdefGJfvcuzU6ypXv7qMaiUrbmH7jHtZR1/dGEYiJGTXrKJ0F/bvQcXPiayx34vS5hRZyVSVVlpppZVWWmmllVZaaaVdhF0WTBXgAV4l5zNcUX/PYCpwT49b9Rd80iTycOigoIOnjggaT9dw3weiKHb/B9KoLNEa+Tygj7AGT8ZegjJYZDedNCxdZ2tEqIAklqYI2Q2C4QnTwjBMXS/LkCVxWny6ZsxEgkgXBbhaJMQmx7UJ2tJ1L0LiE9aLMW49FwRu0bJOJyt2YeOmVlcERVpeWnUoaKPB9muiQi170M36o1OqlX7fQSVwgfUNTSocqW9uoL/pE8X3+RtFouueQ0kazSx6TSn1YKBMGWP+4GggaeugjVBl0dur0i7KHO9/SpLGtjU4fe06QZEGfUF5du7cgKlRRX+78tuW9kNP/ZD7HWUN1C94uwaVLh2X+fGUH2PTpCBRK9q/I5pML3BJgYneQOuZJAluKkMWqy96P2L7cUVaHMcIwzCHWDkmMuzn0PNk7MvnS0uC8nGekC0MgiCXYPlcdra4GGsW/bcsU71ez7HiLsg5HC6gMUxswtbdplq4mITF1li/W265JVMvIEnyy9gpJ9ndy8aJpKW3rew760wkleizTXqbjpVMi1akr8P4LCdP3ZW6v+e3fhcA8Mv/288AAH7l//gV/Nn7JWEpkXm7BnJd++pXvwoAeN1r3wAAePGdL8UXv/hpAMm44vVtn1nZ5rRt2Sao8q23a78Gsn598EN/AQBo1aeG1iv9GY1jg/eBfcbYNiYU5fd6vaiQgSqKm6ClE97buXElcuNxFKPXC7FlswgLreoegJj9Psih6raPbEzwMHbZzsk0iwEkXhAWja9UKoXrHUVurJBTIqwQoaLjyjE2DWGoBoPh3h+uHlE2JjxdBhnQ++67L1PX5z1PWJCv/POX9LdNPKYsyvIKPXlkH6Q3wf3335vph3qllrluEARuzewju0aSoaInU03PWKMNYaWiXh/13D3JpnSwc7MfZlmxWlBDW/f2epxNE2NjqGh27W61Wu46ZJO5RnIN3bxtl7ZJ7s/ex/YBAG6//U48c0zOzhNr5OzQVW+v2SMSrzajaVueeUbOK7t27ZbP105LmdUqDhwQ75pxFeJojsmZ4zXf/SIAwCmN22q35VySxEdGhcIcdrytLsk9dF5BqbjVnMiEmQ9W2t6dnwd9N77tOKe4zvlayVSVVlpppZVWWmmllVZaaaVdhF0WOLPveajX6+7psSixLZD3heWTJtFDPqHXqgmqV+RPWYSiWbU6z/MK1d6K0KR0GclvhisHWtTYyqYDSPVN9rtWZtMyasNYMfv0XpScd5gc9LkUwGzSzdHR0ZxCYVHslkXXmRBzcXERM+unM/2QKOFk/Y3zvsTJ/WHNCY5YlsLKzjpUY9BLVOEMimhZg6r6YUf9bLLRarXq+oG+2LOzswBSsSHz8n7ulDBYVa3xZGMEvioNhRoz1RuoNG132dURAKpNQZle8CJR7Nl/SFClTdOb0O/LHFldVh/xQBUEFYFrFEjfdzqdJImqAqz1usbsdE7jSjY7F5J4M69Q6ZNoXL9HNUfpt+lpkfidOz1fmGKhKOmv9dseDAa5uWy/m0eMs4qg6e9ybtXMe9qwuZ5TPSxYH2wZ6RQMFk2lcT6RwdmwUVgOxk1s27bNIaLPf4GgnFYOmAzOjTfeCAD41r0SR7Fx40anrsc2kM2x6nNW2S7NWBWlWuAr95xqRepe9aXs//bhzwAAlhZnEbSmMtdjv9vUEL/6q78KAHjgfpF+/shHPuKQ6STJ6vBYUFu/a665BgDwspe9DE89KQzYw3u/AQC49z6J6RoZFabAi4eruabjRFwi2dz+XHF9BeQTLIdh6MYw17y8suq5mdmc7PoVyFXVanVs27rDeZq029n5WK0GOeZpGHsI5MdBFEW5OBTLPNu4bpvodNhvXaqVcJD53O71lUoFPROHTu8UX5XT7LmJVqlmle7S16Enx4teJPP/4x+XxPZM/s05/bWvfwFdZeCn1goj01IW6cEHHwQAzM0JI8xEslUdu+n4NLduNrPxhS4WnJ40qxoLTqnvOIlVrTIdTC2JlQOy8VcAUPHk+mTs5ufn0WTfVbPqvFwrbQoJW78gCHIKkjaGdN20xlLNydq5bp0oiz617yCCmvzm+GFZdyc1ZrIxyQTlTwNIvAlmj0pal+889jgAOXtPaQoXMpDbtm0HAHz1a/+svxGGaveebdKnGsfVbDahsgVuLNuxyrYlCav1fDQm9YxSa4ndX20sfC62E3HhGTa4QLXRkqkqrbTSSiuttNJKK6200kq7CLssmCrGHVl0Je3/aNXt6Bt77Jg8LRP1t+hOnEp6mfhInl1lh0/KaSWRc6GzLMPGUsRxnFLLGa53b5MSW2QwCIIUI5VFFG0swDCUq4iRs37XllEiQirXHWRei8wiYHEc59Awe5+LEhLSwjB0fvuVSrZvpteuyfzGJptjzi/P81zsEMOdbL9bdbE0AmT9+238WUVRll6YzUkWpthAjt3HHxdkh0ibVdJj2265/lppkxdgcUGQtpqqdzU1pqqhKI3LS1YTNL+9MKdlCrq1cOYYmpqjot5Q5Ft9t2PtI8fymuTL1WrVsWmritJ1e5wzVx5qTIuiKDf3ab7v5+Yj7/X+/fsBAGGgqnTKisdRwuSciwU/V26ndJ6kYX8DhjEHCTpp1wPeUyqbnk/y32GMffq7RQl+02teUSwV5z7ZYeZnYozsI4884q7LuAjOH8vo7927F0CSHHQllUjVzVsMVz2z9UnPc7uW5BFMRa65JlOlqst5NOZ+Q0U8lr9ZY2tmNgizfPSoxBowJ9XE+BSeekra5Rgxw0jZNrDNLOtDH/oQwq6sG9WW1LXVECR/ZUnaO9Yafg+H5UakcZ/YujWbjNWiwdVq1aHNufyCZiwN21eLxs4VqTjqeQi9AB69InQtdiq5XrJHcnxxbljFXTK2idfOSioXZnYcV2vZc0KrKb+NY4PkIwaj1bgSUPHY7nV2D+z1ejnG0caAU+XQ5XPS+jQ0Pqm33HYM0PxJ9dSoync//aXPAwBOnZIzwJ/8wXsBACv9ZB1MzooSW8VccoxZbKsnR6Sx3sttjZGmCmev69T+4kHWM6ETSz26mgOVvwmixJPAqomuaPks028pu6T9U1H1x/kzqbkdZc9j7CublJevzvsglcC375KNSx0np2WOjq6ReKjbX/QSAAlDxbipbrePXRoTybMW82Zy/N10nZxHfB0Xx46JjsG1N8jnZ86cwZ23vxAA8LWvSa6rffsOAABOnRJm7OZbbwUAHD2msVdr5FwB34M/0LVA+2FqQlgv7rdUTOxqLrCRQJNla8Ljfr+PQU3HIb2Nwuz6Yr2QknN9PVG4VqXUel3m3/JyNpbtXFYyVaWVVlpppZVWWmmllVZaaRdhlwVTBZwduU3nMCDCwadn+tUnT555fX4bD1WUqd3GNaR/V6TYV8S6DItNsCyOzT1VFPOVvj7zXFjU1Fq6jCJ2je21eU5svwzLXWLLtKh+WmHQ3lv7HYty2fiDXq/n7nNT/Z1ZZ+t3y7KI8oVhwg4m1x0e58H31qc3qORzXOUR1+HIPL+/vLzsEGQqkFHxK4k30H5QpGZC21j1fASKmoxPymeRxlbVWtl4GgShfo8Kjpr1PGyj3VWkS5Uhm6pGGWrdY8MQczw0m033f8+X77RVubGhPtFXmsVxnGGqbGyil1Ijsiw5VSmro9m4ICJq6Ziis13/bDZMtZPGeti4rTTTafPKFamXWgY2bXaeOnUsKmua36QZrXPlv+LnnKePPvoogCRf0549e1y7OD/YzzMzM5nv8v3ebz0AQJBklpuwSVklU+u10G6vZD5Pq6Fxz2GZOVZc1wslqLCypDEXlQCjLWEGiGAT5Xa5vrRt73//+wEA42MSO/rC2+5wTDYRY8aJFTH7du/p9XpAV67TUfQ1qCjLob+NouGeB8PYB5bL+pC9Lso3GAReLtb3fJnaszFV55MX7XK0dD4p642TNu4/Nj8e9yAytxyPnhfn1iqXPzNm7svsucF2f5jy6LHqwPZe2fx91Wq1kL1Ocm9mr8972+nL3/fu3YvRlnhQHNwneahOdoW1flDjLOcWpN3o6J7uJ/PR5mhj/JFdG7n397tZjyLP83I5Ry0jbfcBmucl6sBubdC4qLa2r1mXeb+8KnN6YPqrWq26uDfeX84ve/blfLPnpyiKXP4z8iWM2Xrd614n9TDs56SqBH/mM59FPaaq7VLmuuyjM3PiDeZyYprvb9u2DcePH89ch3kH2SaegRgWSQ+zmfVrXX/yO7w+x/0nP/lJAMCrXvlKKULHS5cqsPU6Io2hj904zHr/cG4VxSun68z1d3S0mfvO2axkqkorrbTSSiuttNJKK6200i7CLgumKo5jxN0+elQ70YzVA6IMCF3MCNGD5SWNFZmXp8korLIweZ+Kh7FxQMMU+tJlD6ufVX2zKJ6NRxqW76VWy+YZabctiqz1G+TzRTjWLMyq3yVons0flSCDRbFqfCWKavNfpJGqYRnYs9cXS9i+5D4Mi5FK/9ZmwXbMnjIqjUYDZzTW4ipFp7tt6e+VuiLQFVVCUyarr6qAvlYvgzxrPZKu0/owdwTHDuOx4LvcUu4+9LPxAz3Tlp4iYV1F95fPzKGzImP2c5//IgCgpgpFvYGOLa0HGaSpNVS1CTExrqgcNBZCWSxP77v7rebl8mLph93brwYAHD1xCjO7BGGOQyJNGvc1UBVK9XsPqVDVkbnlVTw0aupXr7nUQp/36AqMb4Dc+8CPgFjuU2RY2XrVd6hmqL7c+/YflO8q2t/RGIANU3KfRkel31ZXzh1TZc0iZ2EY5tYah6oGWTS61sjG/qSVwMimEN20apVFzHOa4ea6MaIsi4vfsGh3av20KLdlxvh3xlCtm5F5ffPNNwMQtPIFL3gBAGD37mu1fPX/b2sMouYTnJyQNo6MKAq7uAyQgdFxOzEi8yVhjMgyMu9bM9NPvU43URvkNqlxKDVljTdvFwWruaMSg8B1u6W+/oiBlvr4b98s+WEY/3Xv14Wlfvn3CoL8ilcKorxhzXUAgL/6yw8CLVUZVIQ+UKU09LP7GVFYxpRxbVhdXUVfV7sg4hrMuJAssz5sXbeeFTZPzpEjohKW5Hfh/iHt7/Z78HU9qsDE7XrFsXwAUEntGTnPkn536G8ud/M8LxeXNMyK1D5pZDsT74lubn65fEUdznudhxG9VDQuyK07+bOPncM2tifNeg9TLAaAZjO7NjGWi/Nw4bTEPLUmxnC/KvVRAfThg8JeL/fkuoxpCjQnJ/MTAUmcGcdopOwJ+6jNPJYau2bPaYPBIMdAuzg0ZZBs3jp7TSBhccaURWkyH1Yq7gkAOovSfsath2HoGB+u30umDdZYz7SiKRU5PX3dtm2HfLcmbbBeUmSFbr/9dpw6IjFSZJlYN/5m9qR89w1vkFx6//AP/wAgYXZqtZqLr7TrPmPcyJx9+6H79De6lwUx5s+IJ8IHPvABABJXm65PW8++X9D8ZH/yR/8RAHDilDD4mzdvhqfjvK+xw55To6xn+tLOl/Q6ZMd5t7eIC7GSqSqttNJKK6200korrbTSSrsIuzyYqjBEZ2UZsdIKvQV5UmyMypNyo1F3aACf3ol02Cdi69vreV7Oj74oH4RF69Koi0WNLbtiY27STJVlgGxZNoaoGmRvS5pt84JsPFQ6J41ttzWXI8Eog9mndxvrVavVcuhZDj03ynWNRoLMFKmGOQTCqM6x7L4iVKurbRw4cBBAkqH9ttskD1NdyyhSymk1E6WwohgBi9oTAYudX3rs0EG2z+aBsDF+bCuR+IWFBRw+fDjzN74PlCGaHJP4h0F3JVP3aiVySHqdikQaAzKmrG61UtfPBSmiCM70hMyh++9/EK1JYQOmZwRZUvEkjGnGeN/cS97/XjVArChR38/6WZ9LDfJyNQ9eRtWRxjFYq3iI1B870PGwb5/ETFHFs6f36XOf+xyAJK8KnkUenWGMTlFsg/3ctUnb0u12C/PUFZWVjz1I8hRZxNLGFDwba5p5S7STnzebTfdZkmtFUM7FRWFuqjrIr7/+egDA3V+5GwBw5tgJNHWdHB0VhJbz0tadKHRYzbL4nU7H7Tk1ZWeZU2dUmSDObaL8DkmvJqpoi8pOn3lyn7RXAdGqzufbb78TAPC3f/MXAIBXfdcPAQC2bt2OE3PCBDnJMEPq2HhA7o2MvZqensYRRZ/t/mTNruOVSiX3GRkwlsH3jIsgcj9s7Nn1s4ipcXtEkPIOMXtapTIy9LdXgnF/snkPvSjO7ZNci2wcJD9PYrGj3B5mzzCOddSx7PvZs0c63qvIK8d6uCRxy/kcU7R+PzlDpNtw6NBBeVX2//Nf+iKOzwrje0bZjr6nXjnIsmyMX2acpO/76CuLXW/KOOssrej1dU4qY82xhJRHgK27XSNsvDzHMmM80yqXXE/YC8xfFeqeUTGxpOkYO8ZQ8b7auFBbD56b0vkJmy1pJ/M/kaFsNmXOJHHdmieqqgq2tQZGtm7NfIesE8fIy1/+cgDAgQOi6OcUTDWmdXZ2FrWKjB0qHO/cuVP6Q9tNZUG26dFHhbn/9X/3K5hasy7TnpbuO0m8uI5Ljf/7mZ/9WQDABzQe9diJ49isHg+NEfXWUK8f3gfeJ6tgCSRz0moJkP07XyuZqtJKK6200korrbTSSiuttIuwy4KpAgDEESLm+6DffQqh4dMjn86JJiSowvB4oCiKhuSuOjviS0v7CVsUqSjPyzAEzqpIFZVVFNuVjm8gKjosBiJbH7gyLUPGPqQRXbH5b9Iols0zYvssHcNWZBb5Yj0sc+YQ4gozh0fo91RpZlF+89Q+yXOwZq3khyBqTCOaxI5oNpuF6oq1IQpM6b9Xa9Ucm8a2sK9s9nOrSnngwAEcV5SGiDKR3Vjj3zra7u1biNpLmTUvRMXXPEMaT9BSdgmhvO8pBB4pTrLCeCiNj1o3swFzR4QZG59UBEj7N4IiM9omMhOeImdR2HftrfhZ/+6iuXO5WwxZU6xqpcsv5sXwKzKG5uYFkfTAtmfvuR1PF8JUcf2yOZGA7BqWLt+Ls3W2jNLq6mpO4dMqjNo5N+zaVu3qXIp+F2KMT9ixQ3z+jx6TufHMM8LONJtNbNu2Ta+fZaGZEwYac7mgOdnY/kajkVM/5BqXjj8A8t4C9IAA4K7fXlZEWD0p3Lqlc5C5A0dHxzP1rFbrqNezqL9lbO666y4AwGte85pM+2dnZ+Fp3CLZeJZLs94Bbt3UNSphTpGLebGxPcNykllvBKtKx/vPOAmbM7HX6ed+67wBguz4y8V2xXHCnBtGrt3OemdcCeZ5HiqVSk7tL71v2zWIZmOY8veykc//pOPMN/ktaRzDXHeGxXvxbxx31oMhfc/sGYtW13yKJ06IKty9994LAPj7v/97AMDDD0rcTLXVADT+rq9xwnWSSvre55lG4wO7+nnVD7DSyeaWrNpjGMOldWmumfqmVYrtGmnzAdp52O12c3OxqrFUg5AMuN4HU1b6fnH+2rgn9i3nEH9jmcVWq4UwUsVinV/rptdrLbNqgIztvOVmiVvdv38/PJMHcPfu3QCSs8w//dM/AQBe/OIXAwAe1Bg4jrWZmRk069VMXcl6cbxxjJHBeu97f8fVva0KpWTs2G53lmIeMZ6xlbn6D7/1WwCAd77znTh86GkAwNYd2wEAy9qn9Ur23MKxnZ5T9mybeD1ltRDOZZfJQ1WMOBzA100r0AHoe8kE5U3hZmwXHvswczY3OJqlyovcw4bJu9r3doCnDzx2ETzXgcZaFEXJghsPF8oosvQ17MZGetm2P53UD5BF41xiHnbis3vSfVck+2of4jjxwgEXvMBRsEzEdvCgTJ7GiHx3+/btmTI2aSI70t9BEBQmfnOHY3Ut7ClVTFnUMAxzhy57COAEdIdyIwddq9VyC0tHF7G+1nG8IQe/mWlxA/Q9laP1fVQCXk8fYnQcdDtZOeOu3oequsi0Nbnfpl178Pg93wYAHDggD6RbrxERi4VlqWPdMzLbmjAxjgZoNYxrptkcrjQjUGNdYJM5AHj6/wP75aAbaELFKMoKu1Au1rnHDYbPEfntcHc8666TXl/sWmPdq6z7VzrhNx80+N3168RV4+mnn87U2R72oihKElub+WLn7TCz48LObYIgLGvPNSLQwCD1qakpfPOb3wQAjI7KfLj++usyv4nUDWR6WmTIuVFOT0/jmeOymZ9SV8G1a+RBjGseJc3tfsINPYoil1ie7n99BbT4WqH7kaZCqDCdg4IlUk9dUxazyUZ3bJVDxfHj4jr38+/4KQDA5z8lsvB79lyLfY/dDwC4+fni3nivSsbTrCufTbTb7/ddf9uHJgsCWfnkdHmss90/+HDF61n3wLRLGR/wLAhj37uHrErgEqnzgZj1+Z7Xvlb6456v4UqxOIoRdnuZhxggmUO9SpCAvOo+ysTxNnWBTVovZwzubbyf+l6BIM/4jjab2QcoP4rdwd89eKiLYGjWxmHAcVFIA5Ovvvs/vAsA8O1HZQ8KdD+paEqQWj1JvlrRB4BA3Xt163Ny5F1ti+ceFEM0dF73I92X/CzIzOb7mq5kAJMkuVrNuf+HfePq3s3KwzM5chAEedBA9+mIYldRNrSiVVNXs14qRZCfXeety6QLz9Df+PpQQXfjTr+HXkfKr7Wk7rNnZrUvpX+OHRV34OuvuwlA4o63bt1arNPwAytcxvk9vVZc606fFhCLZ6xuT9a2+YU+lhXEXViQezU+IfvN3LzsN696lSQf/uhHPwoA+L3f/WMAwJ/+6Z9iap2s43v27JH+1XWED3e/8Zu/Km3Rfqqpq+PpBXlg/8Sn/wHf/apXAwCeOSFr9+arpI4D3SviUM822tVMzpwe0zaFwfmetWlXJsxcWmmllVZaaaWVVlpppZV2mdhlwVTF8BB5VdQCuiEpve8J4jfoB/A8VjXLQPkeabxscOEwBN26yFnExQU1Eu1PSVlSfppP70FgA/VJjWfRw2FCDZbtybkDennXlFihFkqCRlE2iC5h5sgCZZmUdPmBogkxk7/25LcbRwVpXNuS1wefEoq43phAVwNOI+i90a6zqBmNXev7Hvr9rHiH79v2Z5krJwfvK80d9RHwfurf4ElZDMomSkp0x6HpPQYoDlBTZKdZJaMgZfSMPLpzc9B7jkHoXH/4yoRzLhEfsowVESAmhD36zOEkcbUG2nYoK6yI3NQ6QWR3bBNEKNAmx6gh1v4nUeWSGus9ZNI7MlgDyLyot9T9b6SDmZffCgD4x6+KnOnMBgkMbY+rhKynQZwdHX+KwDeDioN2GOhbMSzGlWZxHKPT6bhx46Tx9b62mnXmYHbsKAOknSuktn1h4Ywr81xWxDoNe18ksDMwjBHZF7Iug8HArV1J0mz5DucL3UDYXpuktdvt5pioomSgZ/MGsN+hiwvFJa6+WtjShgZSE/2sVCrO/W58XOpK1o33bGl5IdMGtunBb9yDmsqrrx1TV1bOJRPkzf4ZKPpL1mt5edkxJN1VJs6VvhmdEDZruS1tmZ4SNPaJJ54AkARuIwC6vSyTzDYkdZbrrV8vbjoM8P7SF/8Z1+yUcrZulmThZKp0GCKOht+HtCdAkZu6cw8rkL6P49j1M1k9jin2CwUqaNalLM9tvsIAACAASURBVEDgmD8Gvdtge8tspJlafof1eMtb3gIA+OAHP4wrzXzfS1zSkWf6/SES9taDwyLoSdl+Tl7bMmLWpcm6wqeFaayEfhxk2XNbZlqO3K4Ff/X3krD1KWWO23TZo1scEhbAXt+5ZsVZd8SwSxe3JHzDigtwnHGsFoVe0MIwTNZXJkL2s+stWY1lXWc5l9PlJ+Nbk802GMIQZ9rAlCwcE51+DwHPlv7wZMPsF+emyXUgNWetiybL5728Zo+wPkzSS/fr1dVVJ0CxVQUr7rtPzwm6nnF9JYP/xBOPAQDe+KbXA5C1lKlnWG5XEzU/qUI9ex+T9a2hkvPjk1Lm97/hB9xeQPfuffvkN1//+tflu2Py+fKKuOMzCwDb/JW7v4bp9VLXV738FQCA/YeFIduuayi9CehazFQqtVrN3Tv2GceUdfc8l5VMVWmllVZaaaWVVlpppZVW2kXYZQMzp/2vq4q+O9R0EOZiVc6FjqbZqKI4BhvobdG6rCx6FulJo062HekyhzFFwyTbh5UxDPkeJsRxvuZiIjTh2kDjccbUr3nnbpHIfPqAsCtkfTrdrpMs5WO49TMdFpMBCMpS1N9FYhvufaqfiARZ5HN6RpLKMSCSKAeZojFFkyYmx5y866CaZddarSyqZ+MLOp1OTr7YxmctLwh6Qpl0Xp/+yZEfoN0jwyFljaqc6areh+uu3i6fN1WyVrULgkoNVYewC0pW14DQUJOc1tRHu68wtqdMVberTFqlgvqIxpyMS588/eR35DrXSnLVQNH9QaRojjLHvShCEOo99LPz8ELG3+Vkvuej2Wy6e239p/v9vhNPqGiQq+9lGaKVFYlhKoozHGZ2zBeJ6AyTOHbjtZGNg+FYS/vg9wyTyvaNmYSVtu5dE6wMJEwFY7aGJQdPvw4z279WtvfErMRYPe95zwMA3HDDDe56gcY0bddku1aEg0wG2a+7Pv9Fx9rVPEGqbZoKtpOobF/jJR57TNDXWq3mynXiEgqNsr8Z83PnHS8DADyu8+lVr/luAMA//uM/oqbI9PP2XAMA2LVLkgDz3v3kT/yMtkHaOKnI7dq16/D2t/4YAOCP//OfST+YRKpFvv7pz21f2ftt91Mi6ePj464c9iVRf4ppsF8ouMMynKhPKik1mVInRrScjWWzY6rdSxLa/twv/DwA4D3veQ8AYGziwgLHLwejmAPve80kg40Df+i5I21FUufpv/H+sXwrpsP9Kp0gnPUoEkYIGX9ihL3SseJWfIrz67ff+/ty/ZhCLTIOKnrGq/tZeXhgyDlJmTIyR05AJU72HpvqxPZl0drEv6fPLxESiXIgL+rChNbpuWRZ/Yh9ZNZfb6DzkWl29HuNRsN5A3lGxCV3XyiGpbHQzRGZl3W/jqif9TjgeuPEbPQ3AxWFeOA+EQ7Zvn276wsyVvQU4BpNJqlSlTrPzAjLfujQIXfNei0rN7+6IuflO+64Q75TkzZNTYuXDNmoV7/me3DPNySGdmGBQl5y1vvRH30bAOAtPyzpJu6668sAgCe+I55U99xzDwBZMz7ykY8AAJ53w40AgLERWZvmNMn0xo0bM33KfbDTa7sxcOaMfJdr1oVayVSVVlpppZVWWmmllVZaaaVdhF02TFUcx85nPc/oJD7ERCJqtSyasrLSzvw9/X3LDBFFseoqRfEhcRwnUpkGtbD+v4ypSrNN1hc5XW7684TJyaPWNKc8YxQFi64B5FW7wra0f6Ip7d+jiEMjFlShWcv2V61WQ9il3H2WmbDqUpZl8zyvMBEprUiePUr5SRN5oWoYGSsi3ryXRMqYHDjYIPFJvV4PAbIypmPjlDT33XeA/D1tNBo5xMuq/vG7jNGwSMjxU/OoKIqzqrEgg4H8zdPfTo7qmPZ5v5RRq3ioeUze2cuUX2+QZdNYCU0kfPqUKvopo+X7vksIePvzhQ344ldEPWtpQfpsEEv91qxRFHOgUqb1CmKPfv5Z9O5CWJrLyaIY6HY81GomOWZV2UrPw7FTgratqIJV1zeJS5W5amrcWhQSJS1Ohlk054fFWuViqQzqTOaAiQ27nUTqmv7vNWXZ6KfP8WhjLNz1FQ32K4H7ztKKsK02buFCWErLTjOxr0swOZB67NwubPnNN12HOMxKd/O3ZH9r9awqIRHb3Tdej8dUMthXdrhbkeuvVYUprhNMOBrpuk0V0cXFRbdO1MdlPsyfkrpOTmSTUn7qEx8HAGzdIn77X/rSFwAA69ZPo6vJf2euugoA8L3/6l8BACp9qU9Tkduaxhg89bSwQN/3+tfgA3/9QQDAa77/ewBIglQA8LgWaXLUii+/7XYYL8XYHD8Vu5NlyTsdyjdrDKrGhA50DPmtCO0epeHJWGXXFN5+rpsjLlmnKtv1VlGbFJazo/vH+rUS89BZzTKiLmmq3uPTx4/i9a+XWI13v/vdmb91Vy4sxuFyMJ4hrOqiO4u0mjkJe/ZrzTIlQ2IbrXcF57lbIwrmbLpMe33HoiN7Hhmm4msZf7avpXHa3HurTDcRZffT9NnLtoUy5JTUtnVPx9/Z+DO7p9tzHC3NNDGW2nkDaZU7Zu/r95L9wK7fPY0da1SyDL1v+jYawk5arxhej59zzWyMZNNE+NVKTpnVph4KYvnNtM7L7ZslhrXdbucUnhnnSaaaDP3JU/K6ZYv8dvsOWffuvvtubNu6HUCyFhw5LPFXY2NyXjs5KyqgZIzWb5QyHnn0caxZI15H9Ix45BGR26/Xm5n297rSZ5OqLHj9dXKe2XP1Vrz6Va+Sduow5zyIdHgdPiisWi7+tFZ1c4UMvN1vz9dKpqq00korrbTSSiuttNJKK+0i7LJgqph4rq/IWFN9x5OcGvGQBLHtzPuzmWV3LLtSpGoVppRBqFBXFO/kEskaX+kkOXHeivzJraWZGou0nA9TwDoRPVo/IujRVkUrtkwLahxVpP8XqlmVs0E0SNiughFjY2yG+YefK8nyub4HpNHQLOvEV/oBk9Fat1bQj4WFBayflv9bdSP6MJ8t15mNB7P9niSK09wJmpfFIYe9PipE3JQ16Ctat3ObxHW0aryG5pvpK1MY1J2PdsJsZH3oyVR1NHcH0Z5aTW+Y30VnSRWB1Cf6ht3ib33Po08CAK656XYAwPhEoK+C3CzPz6HaGtXfZhWILjSHw2VjcYwoGiAMic5pvypg2e/1MQiZJ2b4/OT71dVsXo+imIgLsbPFjHLsp/NSAQl7m04kyrrYdciuY26tjRKFMRvDYZWkno3xekRbWY/bXihjr6uM0VP7D7r4yFVlYK67TmL/OOaZWLRSke9t3rzZ1c/NEzIwiirPHheUlUzZhhlBY08cO55pazrGgz7+ZHWIRY6PayzXdc8HAHzuc58DALxSY6r8SoCb1bf/la8VtmlMGamBJhRmLryO5uB56cu+CwDwkQ//OSZGZTx9/OOioNYa09glMOZRldt0PRnRmMlQY72WlhYxPi7ttN4ZbItLzqv1qOg9n5+fR21U5n+zKffd5ujr97NsU6/H5Mx6zd4KutrvY5prjOvSqcpxrSP7Njt33vrWt+Lv/u7vMn+7UpVGxSSmynqWcM52w2TNsPnnrNqoPQstLS0lCdsLYq4ty8R+TqvE2fhOt6czb5VJ/sxYOt7DdJ1pP/2TEjP4yb/9W7muxgQP+hq3FOXzSNo+6nez3iBun07FctrzWFFSd8bJ2CTg6b3fCwzrpN+19yNOeQDlzoNkG/W+1lS1ODb3p6p9Wm3UnUeAvW4yv+Q9+53JbymD5/m+25cHcVYpkvcuirJJormU9/t9F1/KuFLGRVHl0ybuJev90EMPAQCuvfZa1NRT5uRJiUvifGes+XXPuwFAkgT61ltFkXjNmrWoKMPNGK3n3XQLgCTGif3wXd8layTZ9yf3SSzrrq3roQ4JWJoXLxt6arDPuIbZBNa1wHdMnDXG1p6vlUxVaaWVVlpppZVWWmmllVbaRdjlAf3EMaJ+F54qwQxiVajRPzNfEQB4oH+pqrY419gsg5CNQyrI2s6n1FpWgcayTmEYpnx/LRKUzRdFxiD9JDwsNmrY+yJVQCmDvrjDVf+snzPzOMV+A+N1QUkaGqOwa4P4wK4dZzZz9Uf25Il8pCFxSK2qoEonV3tOAaiC4TEgts5ptH5YnBUARIOsqo2LE2Mfp3KY1BUlmZufB5DkTAg78hv6/57RuIexEUEADz39lLS9eQ0WlQHtmhwegcaS1XUwkUnyGScXDnLxJJqw3WVfX1kSyGdV8zTMLwkiclIZs5mJCSxoLMAZzTbeULT4eubqCfSeKTRYrwn62KhWMdDcURz/rk9DnTNkzmKpR13ZxorGyKysdBF5RIMFWbzqKkGUK4+J2uNqR5Ca+Xnpu9UFKXPd2nXoaJ3oA16pE9k+d46iy9GiKEK7vYJqTRAsy1DMtZfh6711CHk7r7oFJPE5tGGKnxdqZ2OqbMyDjaMIgiCXa8OiykV5gtL5bey8Zd8MUwg83/ZYhpdzfv8BQSdvvkWQyzf8wJscMkrUk2zwpk3ijz83L2ww2Vii/j/2Yz+GP//TP5XfnhCUtaLxuiNNYV8W5mQdWVnKosOs36ZNmxJGTsfBkSNHACRz/JprrtP38j2y5OyfscY4BgPZuya0/yfITOh88hiXUZF+eNGLXggA+IsP/WcXd9BWpJ7INPPZ9BgbqmjwmkmJMZifn3P94mKm/Cw7z/vMfdPGfNSaTUyu1Tx2Or4Hg+yew72OMVccsktLghIjjrFO8461RmWtOfSUrDWTE8IuMo/Nz//cLwJIFP7u/urXnGJjtZJd84IrEAr2fQ/1eh1t5onSRiypOmurUnN5xyxrF2ssEXu/M8h6q9RHWoCOb5fDTmOYBmE2R2Srxhxi0pdNqsYiRhhl17eIuS5Bdotx5MqudjQnVlBJzkxVMiLy3Z/4kTcDAF7/vd8HAPjs5z4NAPjcFz8FADhxWOZnv9tDr8dcUlSa9TPtdPOAYVkpFs6uRbYP7RnPxrb1er1kj9c4TJ4/Kob1DjWGtV/lNT1UlIlibGJg2EbGY7ncd5rvs8n8l30PtVhPvFp+ZOroYr/1noa9LIPpw8OKsl11VTT+5j1fAQD8n78hsZwH1Ctli8Z/sj+OHzjg7ivP1PMLcnYZGxd27/iJw5nXO++8EwBw5rTM901XbcUTj8p5K9TxsGXndgDAojKUT37nIACgpt5S3/i6KP5dvWUbxmdkTRhRRp7s64QyRbN6luLeRgZrzYScV1cX+/BHpQ1XXytqq33GoOs2PKI5Bu15rtPpuPVlXs+YHHfzS3Ld87WLWp48z/s3nuft9TzvEc/z/srzvIbneTs8z/um53lPep73157n1c5dUmmllVbaua1cc0orrbTnysr1prTSSrsQe9ZMled5mwD8awDXx3Hc9jzvYwB+BMD3AfiDOI4/6nnenwP4aQB/djGVTCvouadyk5ehSBUvDEP3WVFOGJsHwKKqtVotlwHdqv/ZPAVpJLgop8/Z0OjzNRv34FB1X/vFixGtyJP3zTcLsrp+WpBN9DXnlqJVoS8oSq0qSGtahSeJ5Tl7PSzbl0bqixg7mr23vYEq1qTyexBx53vm3Tl58iSABAni36+/QeKGVlZW3G95H5yKT5RF8xouvkDVdxp19BXhbRu1P+au4XXpf0x/ZCJkq6urCWqmKOXGGbkPow1Owywylfb3ptIZUXDGTay2s8h/jGxm9/R8oJpiYNDEPbt3AADu+fYDAICbbpEYkR1bBc3q9AaYGFMGQxHQbjebU+O5sEu55ni+IHK8b7T5eRlHfc+DFxDN1xwojpWmulq27UT0h/nY0yyiWhSTdra4rHOpEYVh6BSb6A9ulaRsbKCNweh2u26eMg5h/owwIIx1YtxiXv0tHwNLlsnGNNi/MwfSl7/8ZbzkJS8BkMQ/8TtkjBhT1etFmbKnpqZy+XqW2jJ/OT+TmMPEGwFIqc+dPu3u5+SUxGKSHWfbnnxSUN8ffstbASSxBau9ZN3asl3m0NQaQUgHXZ2fmpuuowhuc1r6jk4VL77zpXjowX/WOgoy2+Ue4zP2Ut62WqOZ9wk7OZ5TkmMf8n1LcxTyvrON3XYnteZny7B9a+NNXfyWX8X+/QcBAEuL0s41Y9Lvy5pP54Mf/BAA4B3veAcAYGJC7nV7ecV5AxC55+YTPkv290LtUq43URRhdXXVxdCA+Ymq0v9emJxxcmeYgjKTvJ7VwhgqG4el5KLzeHFtrQa5dYWMgBM7dbF02ZxQlZSS3sAwAO1V+e7ynKyrU+NSj1uulXnxuBZ+fPZ0Eg+kjFhfPVkGZm6S/U23wK63VkGQdba5ttJtKVoLbayXO2vpPupHMQJlkSpkkwriwzg3KvVsWdWgDm4FYaSqj7Vapgyub2S97Bm43++7/SxSlebNm4U9f+JxYZDWrxf2eV7jgLmGj05N4vhxiXPkfWBZPMtsUCVlfs59gLGsnU7HsevP6Br9h3/4hwCSXFK6heKNb/txAMCunRIne7wdYNSye7pWLamisq9jmPWweQprCHBi9mkAwIMPfQsAcPVuiRNr1GXdsSq0vLeNRiOzfwDJGOp0Ze06X7tYIr0CoOl5XgVAC8AxAK8C8Df69w8B+IGLvEZppZVWGq1cc0orrbTnysr1prTSSjtve9YwcxzHRzzP+z0ATwNoA/gsgPsBzMdxTJj1MIBNw37ved47ALwDANZMCKIWxVlkIM1sWPSAT7M2UzsRmTT7ZFFIy0TZeKRc7E8U5cotUgochjwPY23S37WxVMNiqyxDZttrkZeK4lvjrSpuv/UmAMDWDeJz72t+nUhj2FoteZ1r6zWUjSBSGwf1RDExPnuG8mGMoe0bdw8Nam+Zw/T9YHlsn40R4W8sMk/rdrsOcbGZspsjisjpe0+RMI85i3pdVDWGqKMoNMk2vrcKaWzLqNbn+OJJ911ND4b1U8q6tQUtihuCVhMRnpoS1LjfG8BT5IlKc0nuiiwjQB/6YTlNahwjOu1DX76zdZvmo1gSH+UTz0jcw5ZtO12/9JjPyOdYZuzFc6f+dynXnJmZdVi/fgbVajbPXSWQ+9fv9xB7jJ/TdSPOolwc6xxPFxJjlGrT0M8vBYsNJPPDsgmWabdxWml23pbBdcEqaqVjI/lby9LncvAoGjs1IwjnSWXDvvXwI7jt9jvkby2ZQ12NqeBaMNkc1zJ13RrI68jICN78Zonl+L3f+V29jswXx4wxXkrrtdqhcp2glGvXrnU58FY1FpKI8O7duzNt+PKXvwwg8fF/7f8i8QvTM+uwWxU2aRouihWjfhhrnq6HFGF9+unD2L5d5t9xVaXyAkXyI+aoE/S1qeuGp1HIa9ZMuTaTsazX5B6Fg6wqaxgq+1TNx5zMnRGEmPd14waZVozLIjPJdZVlTowLGt6sBNixUVDlhx+SnDMf/C/CTL3lLW8BAPziL/6SXjerzBuFISrGc8S9PkdxnJdyvdmwYT3q9bqLE6KiXjLP41z8T3JukDFqvTX495WVldw5wCp1uj23kp0HtPQ+zesnLE52j7HqyZEXJcxQwJhzuXfzqvr2lS9KLre93/oGtDFST61Pq54o4Z2ey9bZ1qtNJtjLr7dFCqz2zFfklZT+rMj4Wyp5+vBcfjd71szFYhcoyKb/73nDz5psG/ufrFd6bQ0qjDuU71QrMu/rNVkrlxakb6enJV/fQqCKnnHFxaWTvWK5nOesD9UBrZJkt9vF4pyUR08A6yWGQNaK//73/w0A8Nvvea/8dvkUTp6UNXDNuLLZi7Lv8EzX0bWJ6yw/p9Lyuk3b0O7L9U8fEtbt6An57rZNo5l6DNsPi87pY63nSP3P87w1AN4AYAeAqwCMAHjdkK8OPTXEcfy+OI5vi+P4tpGR1rCvlFZaaaU5u5RrDhf90korrbRhdinXmzXqwlpaaaX9/9suJiDiuwEciOP4JAB4nvd3AF4MYNLzvIoiOZsBHL3YSqZ9ffmkyVf7tG59ZtO/LfKRLVKmSqO4Nj+UZU5oFiGJoih3nWerCJauo2ViLAIyXZHv3bZnO7ZcJShwTZHdpvoq+zX1zVV1wBVVwTt6cl+ung4NiYdndbev6X4vQvCL1A6txXFcHMNmlBqJsvDQzNwDS0tLuPFGyRljkfaJSL47NiJoBtHanjJWseel8vhIPYiO8HoLx+U98+8Q3XFxfJ5zo8e2rQJsblireWcGq9o2qUejQfZEUOZuZwA/Gs7EJYwg8y1k46WIWHa7XVQVHh1UBHFX0S5UfWnvrTfuAQB86otfAwAcOiJoz4b169DrSZ9xDLN9/f6586RdQrtka47v+2iNNIBY0bZ+tr/CTlduWvo3+mqZbMvUnE/uOFrRWpD+/GJYKzsvhymLDrvG6uqq8523eanITFx11VUAknhGx86Ojrp12bLPnHtESm+5RXKR7P2OsKMvfdnLAch8fmr/AQDAkYqg3Tt3Suwf54dTNNO4oF4o83VkZMTdR6L69M9vKNvE91T/m9QcdjMzM66ebN/aaVk/Dxw4oN8RRJdr0A/+4EsBAL//+78PINkj9u3bh+997asyfeeRXVD2b3xUUVBlmH1l3d72tv8VH/+b/yJ1mxTm6cQp6edeVxkLXfOYe2V0ZK3WS70UxsfQVLVDxqpVKsxvqPnsFBVu1pVh1/s0MjmJFY1VS+LhWtqnUmcu8SOqtMrxz/Gy/8A+/Mm///cAgF/7d+8EAPz0T/0sgHTeHCmEY83FrUQdd39t7OLF7J8XaJdsvfF0D+nq3kL1VBfb5nKg5eOjPQ1E4TqTjt0EpO9sTPOCxqGQXeVvPb3vLNMxg9UgF3OesD5n36ejKMqp63FM7t+/FwDwzCHJJeRRjU29YgLZRjDaqmO5TdaALOrwGHRXjyGhpcPUn7NtyXpypL1nivKVWnNnywEVd5N+jEMTr61rxDDPkfT34oGXnJn87Fptc0KS5eScSZ+JImWeedhoNqWD26vy+R03Xw8A2LtX7suWGVnjPM/D089I3NX27dvdZ0CyVl+tKsW8rvX4iaLIjTfW+V3vehcA4Bd+4RcAAC9+pcSfPn1YpkwrlvpdtXYDqqPaR6qgyPV3/z45jx7XeNjrr5c27NPPedZ76tDjbi/YuEn2ipMnleUPJdaK6zs9EriXeSmVbvYz+5VKmedrF/NQ9TSAOzzPa0Go8VcDuA/AlwD8IICPAng7gE+cq6AYHvp+gDBWWreSda8Jqg2EeuipNeSmLXVk4T5w9KB87skNtiIEUZRQ03ay2Elq36epS0sXWndA15YhYgxFk/RsyWaLyqoorctAxFil05m0sa6/uWmHuKhsnZnBuMpr9pSaj+ralyGvQxcducYZTXYZUsLXB0JGGFb1AOllFwn7kJle3Iooby5Att3J4kKXpEqKCqf70MDVTd5nA98PHjyon8uB4Oqrd7mI303rZZHgYcH3xUWn5puFVxeP0IuToGweTrUty5pk7tSZ05k2Lqpks3O/iOvQZ1fMTEkfcjEIYgYkqzS2ik8M9EGmVqmgoXLwzuNBD198z8DjcMB7pn0ZUiq5jlg/G1dhEi7OXQ2M7Tdlgbl+j/THYU3Cd7rXRbBLDpYNPbiuqFBF1Tu7aMIltku25vT6fRx65jjWrZd2PX1CDqwDvb+tahNhqMmhVagiAt2EuclpgHBAUIZiNvm5f7bE3sOsUqkMBSgu1OzhoijomsaDgg/PyY7TGITMgGa6YezYIRvYsWPHACSStEAqUS/lsfX15ptvBgD88Nt0kz0gm953viOHr1e+8pVuziWHvawrIV1cwoE5QNWquPZGSTL5jl8Sqe4/+0PREVhd0T3Gl813XIUTdl//AgCJa8vmzZudO4yvbnXBQRkjn//UZwEAE2MasL1OHire9EOvBwC86EVS1p49e1wwO63bljUnVMGKyrTUZ+6UzL07XizAzxNPHUc/Zrvlt1Nr5KHp1Gmpx8T4TKbsRlPX4jD53ZlFuRejY7LmuBQIkUprh/J5t6cJydU1/IabbsFrXy0PhDuv3i5/i2U9WlgS4OjoYRkHj35LBDpmxsVd+WtfuUsugU1497t/S/4fCkA0qYnmb7pRkj2/8Y1vBJCskwSN3vN/v9eNI4JLfEDu9y5M4vgi7BKecYABYlQbiYQ3ANSqiTueBYTdOYBrud463yRg9+NkTtg5w4eosJt1tw11Lnkqxd7v993enQhU6FmK04vnB32a4apUq1STA6luSAdUOv+b94qk9+kzKoKgjQg86YeBSsqPBh4CDUOY1b3OD+RvK21N5aB4dUMP86s6Lnzfd6Ail97A5QfOgjp2vbWgePo7FoSnWbGfbqoM9wCkP6noXuuSr/McxeTiWtHeoIsYPPdmE/byXvJhmmtoPyTooYnER0cwGMi9e+evvwsAsHOHiJNNqktuEDBhupSxZYuITDy1/0ncdJOsmZx3FARiqoh77xX587VrZR3iAwvX+M2bN+PQQXnwOXJU/jbwpG/e+a5/K2VtkpQZh45J2fMKSr/0jhfh0b3i+nxK95VQH+Y2a1LijZqegec23lO3TseeOw9tUlflU7qvdzrSt4/sFXGhDRuk7O07pOxhgmpu7FwgiPOs3f/iOP4mJFjzAQAPa1nvA/BrAP6t53n7AKwF8IFne43SSiutNFq55pRWWmnPlZXrTWmllXahdlF6yHEc/yaA3zQf7wfwogspp9dp49DjezGiibvGxwWRqivqXhtpYkQTrYUaNPz4A4Io1mL5rl/JPk2mk+8WmQ3atp+nXQhtQLd1GSximc5mF4peAwla5WqsLMOIBoZes1OCm3ftlCfwZiNw16kx8N6i15DfHj8l6MLCsvSxo8zhOWEG9xSPvJhIuk3pp/2ziXiczdLuVFbkIqm8XIf3m3VOkDtBbo4cOepcbsJuVha9p3VfXha0lEgdMQe/Ergg+J4KGvQVNmvVsxLudIVifUmVQhjwUQAAIABJREFUnzlzBjuuEcRnWtHatqJ0Da3jsibNnBwXtHas2dBaxK4/nRCJGY9EsWpVMrbs/0T0w1eEa1nlpZ38raJ8oQ6uqSlBceZOSz/NHj2MyfUTri8AoKECFZUqZcefG7tUa06n3cFjjz6Jg0+LG8Kx43Lfbr/zuwAAKwuL+QB5636C4SxQ+nOLOp+vpRNaXgxTdS6z9SpCdIEEuSSCStu/X1BpuvI98cQT+SBrRdfZkq98RRDsu+8R9PP0rDC93//93w9ApM8pCME6Mrnv1q2Crna72TQXTd03AORcx0Z/VeWBNfG2r8Hg7bYgyB3t6z0qLHHbbbe5OfXMAWHgdmwVRHRuVtwR162VeXzP3gcBAK97nYTb3HiDsE2xw55TqD7dpNS1+OhRKXtZE5/WJoR9mp6edm44CwvCDJ05c0rbLfWyXhlkDtkfi4uLCNTNrN+Rdm9cL+X/yFveBgDYtV0kjT/zOWGXblC0emp6wqV++MR/F5GBq68RRnLjZmEsH7r/2wCAz37mnwAAE+o+zUDzVmsUy8uLSBvX6YceFlT6vvtFapls1K5d0v9vetOb3P3/8R8X+WUnHT147tJCXar1xvM81Gq1XDoGd37oD3ICEHytmT2VSWm5j/sp1yXrwhSFWc8auuVxLqWZa7oMsh7O7VLZa7sKub3I8wuFaGafkTNFJVJpd01w34cmIU8VOtKQvWtc3XuX1JWNbaHEuhK4mbQN9tzF5cuyTna9S4th2LODvQ/2DEJpdyYWl+/ovaIsvAkbScrIiu4MBgPE8fCExVYYKeT1WU+KC1Ub8P2mliF9xfCExXlZM1Y1+S1TS7B+Bw8exE5N1Ev34dFRCgFJ+Rs2iDse7y23pZmZDXqtM06yfcsOOYd++5F7AQC//bvvBgA0VRztHb/0rwEAe3ZIkt65k7OFXh1kzphaY9a4AbKN7XYb0+uERaO78049D8+qdwXHeBxLuzfpWpbe02xKgwvduy9WUr200korrbTSSiuttNJKK+1/anvuMneexcIwxPLcEror8qS6cEoQtyO+oHjV8REc1aD548cF+Yo9sglEd7IBgbRhsU3DJNuBPJOSZqyKAiDtdYoQkfT1it7b69LST+6VKtEredXwKNy6azsAYM8mQVPHNWCvUquioooEFfWXD9Xx1Ff/2jOnBQl4bL8gsO04K8/qw0dNUcKeIl+x6Q8bpJ9GeYp8ky0iUSRTb/+f+Q2y6IZlyhjU3WjWsLwkaOi8yn6eOi2Ix0H1/92xQ9AzxjotLQq6s379ehezdlyR5VUNcOf70/OCtFt5YSJU26/aiKYiTaurWaaspeqX0YB+1nLv6ioG0emsolHNts8lKjYS7lGYTXpYTSX6HSgsSJn31b6g9G1l7hBpMLMvc+m6a7cDAO762tdx8hmJr9pytaBDK6vavuC5Q40vpUVRjJWVDpY1OeUPvllie779sEg/14JkLFrEkn1dVxbA01iP5O/JdYoSjp+7ftElk1U/m9k5mEZui65PBodjj2Px7rvvBiA+9zfdJGkc7rvvPgBJjEFf5zFRRijKe3xE1vctW7a46zBx5Nvf/nYASd9ZJJH16NQTESGb9PNpRS7/03/6Ey1dg7DXCnNz3fWCmJJZ/sKnP+589WdPC7q5sizr5LppQXB/5C0/BAD4jTf/hpSlMQBMazCMma9oTA0TBM+flL3ui18VWfaXvua1AIBDR89g06aNWidNIN6W9Yn3iMwhGR3GOlACf2RkBMsab8FkpIxHYN9++CN/CQA4eUrW/t95z8cAAFu3XYUljRdVkh4f/xsVH9H9o6UJTBlnOqUpO/ra/vkTZzCj8avzC4ImE2138SG6PjJej7FVH/voXzhE+o//43sz/fmb7/4DXGkWRzG63W5hCgMP+dhjx4zr+65L2NzK/D1dbs5TxFynmorhAlLCWoHvxq9NGEzBCJfqROcsxYoGK+0k/l2v8/ybngcAaP74zwEAvnrX5wEABw8+DABoTGj88Cq9ZyL0+zIm1ozKfF5akL2U8ZiRq4d6oSiDEsUR4jDL0IUmZbI9l9l+SH/HMlZkSHMeTMp2+EGQSmmiQhy9rPAR552V9E7fc5c83Sy79l51BzIPWyNyTlmzTubOm970I7j1lhcCSMRt2nrWOH1a2G7eY7LeXCte8YpX4OhRWYMp4jAyMqbXlwr9f+y9d7xkV3klus6peKtu7L59O7c6SWpJjRLKCCRASBiRDdiWRLSNw3jm2Yyf8bP9bANmxs8ePz9jDzPGHgcwSGBjggGBQYgkUM5ZLXW3Ooebq27lOvPHt9Y+dXbdK7WCed0z5/v9+ld9K5yz897nW99a38yM9YfQHq03Dz/8KAATuJias892P/gYAODv/+FvAQC7dtsZazBrZ7CPfPi3AQB/8Lt/CABYMTTiECnxKl0kEce90CfdV8nX1T+ZTAa7yQMXyKr1Z5IRRBK/2LDBXhc71/t79nO1FKlKLbXUUksttdRSSy211FJ7AXZ8IFVdYK7aQbYp/gfjcqmYcuCJfU7mrcWHx0xWCjRUVeksHTu7lPz3sSZ561XmWYpD9Uyy6c+VE+F7OHuvlWcDBDCvxTmnWMzo6fRArKZyTJvt1Q5iL0o2VEyyfVYnP61OV+TkrKEvTuGP+Q3DTB5BKLRLiElSVceva29bLymd/izKZN3F0388o/lqP512zDvIEu2pM1Ffo97iq3lC9u0zfs2MPLSMS27WGo4bsXOHyY5KgnjPbvOeDI4NuPsA/dynNas2IAgVP22eZ8Uoz82ahw6SSa/abystqc91MV5MqjepjaQqpDFTHEhK2zaaceLSLj17czXzFmXIc5G6TTHHZIZlerXnzbvzuqteic9/2XgTy9aY7PqyUfOS1Zo/Vkn1F82CIESxUMLhSUMKHiBCNTJiCma1yuSSnKqYI0iPrpf8t9PpR7mej9fruUizP19bqnxhGPa95ydyFKogaV15WtesWYNHHzXvpdIYSIVsLxPqCoV4y9vfBgD49CcNMbn55psBALfeeqtDrZ5++mlXJiBeY+RRVTu12zG/UGVXGc+/yDy4b9r3JgDAzLR5aMVDWrPCUJaLL74YgKkTau7OkI90++2WuHTjJuN0bd200e7Hua45V6DiV7PVRN5T/9OaN0OP7g2f/QIAoB5ZOf/pn/4JAHDm2RfikYfMq685ruXz6quNu3Xb7cbl8iX9tUYcOHDAeY7XrzHUTV5mtd37fuF9do85yrRLcr4yj7lZQ99HRm1vWbHc+BKVqpKYWxsPMdnwbNXq8LLLXwEAWD62F08+ZR7r2oL9ZtVq80LHvDh7309FgkIODaJZHyOqtm2b8b+ufv2VAIDv/OvncKJYEARubwD61+9yodjHA3RoFn8jzpFUc0Ovvxczfab7COWSuXNMGC7CS4oW/W7GS05byOb6EtKqrNvONMRq9Qbj4z3w0O2J10NMRdJeqKDbsvoLRcmwPOIO5bQ/NqT0a+XK9SiltnkNeAminy0VThRFffUVAuIQOp9j4whhXcBFzNhnJaItQoJ0/xghS54fM5lMHN1SSCZ/Fqqr+V3IkWvN/TvL81o2X8Ka1Scl7nP4kM2/kRErj9Zd8ZO0Ti8fH8PwkL33xON2xhHvTuek+TlbB1cyUbuuJX5qZX4B5TG7RoH9/76fNSn13/2QpVZoVMlfb1jd1my0cfG9H92KK159OYA42kfpafxUAkKsxDkVH3N4aBhjy+z+XWoN6FpCt8KMvTYaVBSlgmvvOVW2VKqlZ7MUqUottdRSSy211FJLLbXUUnsBdlwgVa1OB3vn5pZEjqIgiyBKKqAIxMhQk8bpbvm5jrA0IuW/73ukF7vGM30HWNzL82z37+MhUfWwmVGiPiBPr3g9NE/Q1jHzPGwetSftQtF+U6WCYp68mEIYIcvfRszrolwRyv8gXpDLpZA1T0ggL2sUIeKTf0b1CpLP435SvV4kz49RlnUiD8GTA4i9GUT9z/zyHjm1v8iLie0IlaM3DUIwgQ49PUepspdjubZQIcbPZ5YnOvfoI4/0lf2xHU8k7jtZsWtKCShP5b6NW+zaA+Nl53FxsdH8bXGMGRCbzLvDvEgVxme3WnXM1+mlCpmIkySV0TJzlkiBiF4uUJWwS4fcoakqRspEGuRVZM6cHD1N7cYcr8VKlpQotYaXbjcOzJ33mmrbJRdebvcfWoYT0QqFPDZtPglTsxbHXSqpb5ruO0txqXz+QKthY1Dx8+LMAS+Ocp+vOrWUB1n2TMm0l7qWn0x6MVtKncxPNP3kk0+668nbuGm9qZHedoepQV1wkeUpEm/pTW8yBEncg9tvv93ljHrpSy3vk5Q1NY/0XXkhlbNubGysDyleWDAU/u0/ZcjYU08a+iUVwocfMaRSanTlchljY4ZaPvqE5c76zd/6IABg26k2F9pMyD1ctjknhKob9XAz3HpJhIprz7kXmXhcedjq/+cft8TB6rmHHrjXlf1p8hmlWPX0HlNbzOfNk6y8YSqv2qXdbruxoP4QQiX+5igT+e4+bHtAWyh+p4oqEakzztoIAHjkUWuHPL3Q1/2sJfJ9CdGI//xf/siu9aSVd9dTB4AoufbHqKLdf2jI1j6t5041sh1h9eplic927jSv+mO77sOJZkKqfDW63lxEfgSNi4Lxzg8tzlGXPiofX1deeyERXapK+mimxoi7VxS6vdVf5wS8iw8o5cocy17I9J9hNO7GyLMrjVreoOXrDUm58PJXAwBu+YHNv0N7d+HRxw1VGSS3vlExVFuJijWXCtl+PtSzoQl+tMxSazsQzxG1kdAOH0GM9RC7DqGS+p/OUn7uLz8aR+9ns1nUqsmExBr3QmjUh13u/eUh4/JuPMnQni1bTsHePUyqS0RyJfMw7tpla0aZqNZJJ1kUQJl87nanibm5ed7Xynz//Q8s2naK0Dj9dFMKXbfOUOdvfvObyPDMcOlllwMADh42LtXf/r1FIlQrVqeBUSvHPJHzl13xaux5elei3n4/KE+dECpxSvX9seFRx6kaHrZ6NZjrcy05m6WytfdNN1nkzabNV7h7qN3Vd+pvzYtjtRSpSi211FJLLbXUUksttdRSewF2XCBV/xb2XBQ8Yi7E0vmUHEfH41T5v/WRqmfyGi9l7ZAeC3KAcuggR37TySstJ8CG5cZpKQ9SCahILzJzPOScGh4QMj+VPLlS/XMxuXn+ll/Q3+2mYvnDPjU7Ocd9ZRq/3r15qp67mlm/l7/TkQealeHfgZf/Q+WRkkwnG2LVGmu7kOjWMD1v8ohIfUZx0Io3HhwcdN4qfaZ4Y+VIULvIq7J+g3lG5IkKw9B9R54PfVdtVcpJRc7KV1kwL38UFZDJWz2abMLpGeOCzFTl+bW+GixZe5So/pjJ8gdhB5mQKjlCyIhuyZvWZdvVm8aNkBcLHWA9s5rvOWLxzA/e9SMAwEsvNE/PiWZDQ0N41asuw/IJ44vMV5h/rNOP1CyVi02v4hIthkr58fjPx55NOfC5zKs+tNhb855pvfTnlsa2PHu61tDQkPOU791rqnIV8hT1/mOPmVf6T//UlNxWjjMHFJGtarXq8j5pDmuu+ap38srWyRUcGhpyc80pFHbqvC4R3jGbv295y1sAAD/83g8AAN/9rqnw/cJ73odTTzVFwI/9manPbdpoOZS+fbPldDr5VOMXrl5jXKOp6alEHYG4bw7RY6vyrOBatOtJ+02ZfIZq1doJYcPlizv77DN5LSv73ffcnriWFK2UL0w8su3bt2PfoYOJNjp80BCpZn2BZbV2UD4/t76HHVzyiosAAPsPETHI2xjesMVQh1tut3Lc86ChfJs2bLS2+wVTfPvJN78H7a71ieaI+DJBKF5QkKhLt8scTK0IEfehFvepiGjyTGUSJ5q1Wy0c3XfAoYnyujsOMPo5PZqTtZZ54l2Oq2Ih8XmrEyOSeX4mRdduOzm/u5KWy+pvolKLqJ9pf5IVuOdmiNB2Wob+zjS78d42yPsTXQnmtfczKkK8oEFDly97xWsAALt2Polc3sbI0UM3AQAWuP80OnafHCNt2kSuKs14/2w7QJhl7Dzzuc9HqHrVTpuM4BCnL0NMMMfIlYj3z2eo1teOXO6oRlvnEfLAOGf0d6tt1x4nl6dZtb5dqLddzsf5OZubBY730rCtDU3uTdpJ2uTXn3aaIUYrx1dihirEbUb5TE3ZeSXDM19+2Mr8yJPGm8rxat1OBxEjY4TqtDiGNnDvP/e88wBYJAIAHDhg60KdCqPLlo0hQ6Xp+++2tUEcr5VDtt6tOdXqsoNc9E2n2tr14CMPYoTtv2aNrS9CnTRnAm5do0N29u2uTp41D08fxfrNdr3anK0zeaplP8h8WTrjLpAnq7mVz2TdeC8wQkv7WasneuVYLEWqUksttdRSSy211FJLLbXUXoAdN0jVM3lyj8UT63+nVylqqfjZpThVsl4Pca9yT6/Jy++X31cLXMz8eHenrkMPXZZqcUNBhPWj9rS+hajKsLhTA/nENYrMG1TKxnX2Y7Mr9KZUG+ZhEK9ET+0tcmxyrH+j0VgkM3kS5fDr9Ewe76UUx/x+iRC3rd4rFJN5HqJWUlVH7Z1nGw4MmPcnN1TEGubwykv9kPG8UgCTlzzOum3lmZmZcV56xaz3ZkLvfV2zxrw8yruieON6vepif+WVVTy9Xrsdq9N8hWo2w+aprlTm0GVetkrFELOBsnnHa0QTcwNW3/mW/XZ+TrHczF+SiRAQ+RssW5tkIcUkIlUZejXJyyqw7arzCyiWzMN12hbzWt16m/FdqmyzE80q1Xnc8sPvYs06q88cEUgE/eNWc8vnUmkMCgVQrPej5J70fudYFUcXs2dTLX0u1/SvsRTCvth1NfcV2y8ESR6+mC/TdspQarNVq8xTWaKHfsdT5u2cJQI8Nmzrm3LEbdy4ETt27AAA3HOPqdwp99UFFxgfKeawmWd3fLmtjaVSydVD38kppxK5lidtNK6j5uQ/fPIzAID/8KsfAGDe2ff/4i8DABpU0PvN37TcKuUR87Ze9upXAQDe8fY32H0HyGPs4YoeOWTt8IUvmsrfte+8ztqFaPXqtVTryiZR8yiKcOTIIdcWAHDPveZtFdIt9Edrkv5W/8zPzzsU69//sqFHv/Nb/5fVmyDEdT/1TgDA3fcZKn/vI/fb51ETT+w0T/HsvM3xk4hQvfLKywAAh45auy+j57g2a3PoA7/yHwAAK1ZMYMNJtuZ+53tfAwAsH7cxo/XS5/ZoTJUG8308P9UzGz43jsNxYQEQZDM4SjRTr71IsfYBzRW3t1LtLyBiEhF9alHpLgoDh9CEMTEZQLwvah4uxdsKgqCPTyk0TfOrPyqHe21uIF43iJAU8lJEzSR+69AgzjvdY2Jiwqk73vajH7k26S2zfqM8aeJYRd2u45e51yXyZ/pjqvcMpt9UqvOJz0aI5qqsDsmrMc9jrebmnvpshsqZuqbup7mpaKDKgp3B8oUimh6qqGuJey415FxGES/2OsSolMN7d2PbaVutbE2eS8ifb7WOJNph7VqbyxG/d9KGDXjiCVsDFjgnL7jIkOo7yIOd5F4vVdaJCePLKYrnqaeewqZT7P4rxm0dW73Kzil79ljEwve/ZQjW/kOGmG/cYtcaGsijNq9oKBur8RnO6rf3CDlUPBfnebZR9NDKsUHcRU7so48YH+z8C4yP22Q7a79pEH0SXy/MLs0pdFoDx2gpUpVaaqmlllpqqaWWWmqppfYC7LhBql6oLeWtzWQySypw+d7ZfjQm9uIs9V3ffMSq92+/HEupdoX0JgwXrHs2jAxjPb2By8bMW0KhKeetyHTJ72jTi56VQlCATCjPuiQT+XcmGVftvFhSkqMnrDfeOOZMJdUYfdW/Y7GlFBTjz5G4l5UlmStH9ZeXweUsIOdpcMA8SGs3n4QylabqVYvRbtJdOz1jXgx5tYVU9XJoFCPu57/xEbI4C32Sg9dut91nfq4p1WW+YeWSB6ZDHl15aBARvWLDQ+SItORps3YR/y4oWB1V3ulKzOmZm7cyd/dbvPEEeSVFcfg4ZsqMi4/Y7gOlEmqM/R5bbgjcSRus7XY8bHyKE80WqnXccefDuLhgqIM8eiH7KAw7fV7deJzKK8ux37FXIVaZTPAMPMJjy1fV+zvlNJGy1LFMsWdDg0OPg+gjzr1qZC4/Fcdas2EFmOsmva+DZVubDh065N7TfNx34EDiWpqv66lOtTBvHkR5g++7+y6sWGFezgMHDLE55+yzAQCf+MQnAADv+VnLsVTkvC4PMo9PEKM2TqmMCP6aVXa/Bx4wT6aQnF/7wK8DAN553U8DAFatHEOtYvOkyH5ttWzMv+c9hu4of042TOb+CRn83+kGWEFv7v7dxm167zXvBQD8wUc/zN/a3F9FHsGep3YBAOZmJ5GnUtX0UfMQByDqzjw1WuOUt0WeY61fIyMjeJJo30c+bCjbdddcAwB45IGdAIDTzzZvdFg2z/K6k83TfPc99+DILmv3ceahOmmttdX4iP0dNKy973nY7jE3Zd75tSsMYd9z5CgOT9pnkXi8RbvG5JSpL5aHrA7igJYGrD0GB4bdGHWogpDinK1jJ5IFQYBcPo8K54PjIIlzGwRuDsYKZtY2Qu981UttkGEm41AsuDyS3FvEj/Y4z4uh3i4axOP8ai2r15N5tMTTQZTvURO1t6QgVywmo3B8xEoowLJly3D0cDnxHV+ZNJLqIfelUMeZMHQqv3pZKkLAjwrSXpzIRdpKqpmOE3XxUa8AcX4+Xf8A1zl/3fXvr8W0weggtCMEbE+hJ8oN6urAeo+OGR/N5V6ixO+5Z52O+++7CwAwyxyk173rWgDAbXdSyY7c+z27bf5tXLs+rhOvf/lllwIAfvCD2wAAp283zlaGY0vIlKIKlEfwHe94B2693X6z9fSNAICDB2zdQ9f6+fTTjIcqruXKCasDwgg55vq87fZb7DMqwwbMrzpQIrpXtciqyf127a2bjev6ja//i0MzpSYrFOvx++ycsn6jRQacee45AGIF6CiK+tYbjRGnOH6Mdtw8VPVO7sWSxS6ZQHaR3/daFEUIg2QytUgLgK4tcmM2ueD0ErOXeuDyy7VY+VxSvww3/W4n8b5+Mzxoi8pC0wbt2pIN2m3r1qJYtgmWYxkHuNHnKJFZJLmuzRCuctbeb7ZbCLLJ5IAdJvnV/ed5YM/wN4262kkPBpF7sHm2ZKbPFObkv+eHUfWJe/AW7XanJ+TFNhiFSHRhZdy0yWRFRWIXvB0WdPAJUeQGk+FiOHXUPisUJLtc5d92rwofQhZaC3F4JaXKG4STO5TTznLzkESwFmIRR0dGRnskqSlAwj7TA1qZCYW1mPdKI+tBWIdF/abAttKG3CZBlzmPUZZQR6eDrlusrRzVyOo5PW/1jhhKWJrrsjx2qG3V59HlZ1HexszWMyyscfeNN+NEtCiK0Gq1ehKr9i+o/riMx6vCYpm0mQ6NCAr1DdGT5OF5li/+v0Jonr/gS2z+5q4HQW0+vaY2cWERXd+hkQzD0vvj4+Puer6UttbUWOp8IfHba6+1Q8Cf/MmfuLKddtppiTKecoptzAqt1eau+TIyMuLKpgeMMkNItOnqoCrS9c6njHT9xjdZKN/Xv/ZlZLy1/J//+Z8BAF/6qoWyfY6Jetets7VmYqU9oOugNlAcwr33Wpjszp32EKOw4K9//etWbzo0jhy1+3cCzuOojrUTdt177zMJ8ZUMLXZka65Xp5xigh1xYk9rjyCI23Vmxtrur//qbwAAy0ftwHLzv/4rAGDFSnsge+lZJorRqi3gvrrtQ7/3+xYyKGdbtWZl3H/A6rZylT1ErWRo36f++uMAgPGREczxGuMM7/yVn7Xwxz//CxP/GGD6Dh1ktVcXijnX/xpDuUrGfXaiWSaTxfDYKMrD1kZ+yObc1HRfiJrWpno1OUfUHnroKpZLGKE4SqVie/tiybyBfrGdXmeoL2uv+8XrgByGFGMIdF4K+x6EikUlVU0K9fhnq2ZbaUOarmxqE7/MzoEpiXeui9lM1glyOPOWSF1LdVTdetNEqGylYjlx37m5GdY/6bhdqFo7jI6OunZ3cty5pLO5VzofiMPQpBsS5rOuXrko2UfodhLXUP8M8JwwxsS+s0cP4LEH77Xvlm0NeOiBHYnfVCpWvgsvtJQWu3eYuM2ep5/GqvV2pvqrv/kkgPgMVanZ+NtCIRrNyx8xTFMJ0/fs2YMxhkbPMlRwjoIRGqsPPGIhhgqhPjwzzfK1cepGc+hMUDxK42z58jG2KVOXUFJ/nmPn4TvsQa4ydRiXvcpCsifW2t6gRMrnnGqhpQqhDNg/s5V4n1rqbP9cLQ3/Sy211FJLLbXUUksttdRSewF23CBVveZ7KI5FFn0poYpOp4MO4VEf+nbJ3MLFry+vdT6fj9EmL1xGT+0+nN17Dwdf8yk5YnhILqfEe4LmzdN6/qaNAIDTN6zh91oIiFCViEwNENXIK4wgm/SE9LZLr2wo0J9Uzsmfqr27ScQom832eZx9773viepNLrpUyKRPjPVDCHPZ+P5Cb+Q9EVJVpjSpvEgiessDtUDZ11a9gSzbKEeRj2Vj5hE5sHDQ3QcAZmfnEu0SZQJXpiqlOJWMWe/rvvKyyeRF7xXbkJdcXvSsCzmzzyWYoWu1220M0PPnjy+NQ3mxDk8aIdUnBPciVfJ8iX+pmRPRazxft2s+vNPIpUG7gUFK9Y8sp8wxww/POd/Ch/DZO3Ei2fDIMK666ios1CWlzlQJ7XitWApBpYMU0xQ4CZiUdfmyYV79hSNVvfM4JmyrbM+c6PJYTHUT+vNMCLNDaUtxokogXvuUikCS5+Pj426eCj06eiRJzPeFCt7wBkOIbrjhBgAWlqfvyiP6Rz/5xwAs3Kn3t7rW+PhyVz6FqCicsDKXDOlVffX51pMN6Y64V5xxxhlfeEUkAAAgAElEQVSYGDek9qd/2kICP/WpTwEA/v7TJmpx1jkWQnLSRqvrvn0WtrV5syFp3Tbwta99zSurzelDhyy07tBhC51ZPWFhKeWyre/7D+x0Eunj47ZOSUJ+735D47MMaVS4mKTctRbdc889WEmi+HXXvB8A8MXPf9Guv9fClD77GatTluvlX/zlfwMAfOGf/xH/7lcsvLLRtjVv+TKr5wLDlK+40uSwf+M3fgMA8OAD5iUfHrE2HR0eQKtl42v7KSYM8q2vfh4A0KFc88zRSdbF6thqxciG1nR/X1gs5cnxbkEAFDJZRFw88kPJKI1RjjUgrp/GSEtoTze5f05StKhYrWJu2uagxrUTu6DIBbiX1uj9HwCl87mOIxO6/aYvhQT7pDJj42CASWcbTBRdLufcd4XiqO98lN1PzVLgeabRySLHtCGjE4yueIh7HLu7yXIMUgRDZW+32w7xURhgPkieIf10EHkKeWUp3lTI5Z28eAv2He21TtyCa7nC87jlotmsIJNRAnieWdjsuUCh/PZGk2u4qBctCkVkW21ty2jwPgUi0q0GE+byzBfxvLpxk60HIfftuYUqxrduBABMT9rYuPlmiyR54xt+EgBwx713J66pEOtNYyN4+FELkbvytVcBAHbv3AUAeOqxJwAAY4O2v53NMOx777X5rvXp0UcfRUVJxVfbWlwcs7I9ttNQ7UyX4a5tinSF9rpx40ZMz9keUa/bNTacZOvNUzst/cZ2SrsrTceDD5iAkc4+J2/bhs2bkwJEAc9HjVCCIWpkIZYKj224/8eJ44mIt57bfpsiVamlllpqqaWWWmqppZZaai/AjkukarEkeL53aqkku76EpREQ9eyY5BPE90nKhPtiA72xlYvFIvdeazGkyAkR0Cs8RBn0bsO8OutXW3y74tnXyctCT0iUySBLIQIlbFVSsyx5HBkmjM0pHjTql0p1hHNPsjN+MjcvQoFP6GGn4X7newn9v5dCo3ol3Zcib/reJBfbTE94uVx274msq898/pE8YHFdWZdC6GSLZ+lZD8OkRPZ+Eh9VTFdX9MTbsuwaG/J0+zLHQqiEWJTLg31JUuVN0XeVbE9IlvplxYoVqJD3tJQgiMaWEuX5yKF5c4SMimdGuVXGTDfpY2k3Jblv5Yk6ESpVihO0DdlZTvJ6awmU90Sw3rnZFAlaYzIM+xL3xqis/X6Esex5rqKrVwkpCTE4KHEDa0tflljjRJ5CoRLyup122mm46y4jHWtMa7zoO37sd+/cXArd91M8+PO3d1z59e9FTgHg4MGDifL0ilNMThoCoVh6zY9eYrq+C8Sy6bpXvV53aJMkfK+//noAwFYiNj91zc8kyi7PfqfT6eOKFXl/nwemNnXCM1lDmV575RW45qft+o88Yl7WOc7By1/1agDAO9/9bgDA7UyCOzV1mK9W7i2bznTonea4OJ+Hj7DtrMmwn0l5Vyw3r+9rrroSX/2XrwAAVq421OHxJx62OnDN27/feFgirO/Za4hVdWGe38u59vzTP/1zAECZyWGVruKzn/00AOC6d5n4xu9/6HcAAO94x1tx9RtfCwA4yHaVHP1A2fr0jtsMnX7/u40n9eEPPQQAuOIqSwj+/W98HSHTROx+wrzdy5dZO6yi4FJEXk5ABEUe9Gp11kVyqC/zeUUunHiS6lEUodlsJjg8QA8K0un2rTPi34m7tFSEyfTktFtHNDc1Ntrcf7JMjzFKNFcJTsE+7fYA1EsJaGkuNygW5cRgmk23d2s/FsdIyKtf3xgNs3vk8hm3Jmw8ydCG74e3J36jo5WfxqYbdRP/772fXxetVQWlDWE7lAYGnLx4u5PkMOnaqpPuXxiIUzrouy7puJLtEqmr8ZzW0PpLtCvHhL+IQrRajUTZdV+1qf5evcL4j2Oj1pelMft799EKTtlsKNLJV1ni8h3kTNVatr4JyVGban3K5/N485uuBAB86UvGs1xPXpKiDpQEWMI4qvP3v2/J0NetW+fQnRUUoDm8h/sa65stWP0nJmz+a4/Zt+8JFEt2vU0bbb3bvdv4YCtX2tj+wlf/xa4hPi5RsddcbUni87mcG//9/Z9sUx+NLRaLfWIuKlvuGdI9LWYpUpVaaqmlllpqqaWWWmqppfYC7LhAqoIgSKjmPVPCXNmzJZnt5fqMjZl3TF7RmJeSRJn8p9zeZGA+l8r3JvhKfr1KIrr+sJLJ0XtxKaUr19B7hw7VxCiL3qCXqZApItvmkz4dTBmWPU72R1SNEjJSkgkyIdrtJCK1FD/KoW7B4kqHveajXcfCf3s25UY/yao8YytWrIhVdTwJ947nVZI5zlGTdegCtY55NmZnzOOkOHRdW9d0SRXpvsvms7FqkFdmedfWrTdvjuKL5WUfYvx5LpdzXnNdS6iS/vbrpM87nU4fEqvvatzJE66kdn4iu1wuhypVpMQbkhqiU3uCkFnyBSnpHHUH4jnJ9q80yWtpHxdLyHM2eY6fKd3CUpwqtW2rafN12TLrJ3nU3/u+d+LLX/4yACBPnsD8vLW1ENXzLzA+jjzMm5lUWZ7DU0/ditNON0Tm4YcNoZAMeLAE4n4s3FM/gbGLPV8kobCQJx+xVx385IhaCwYGBtzclec2DJLjRPf1pdyFcOXzeTeXzjvPkv3KM/xDcqzEIapQBW+wKB5HGN/Xk45XWR3Xit7nZkt9add89NFHcdZZ1kf33GOI4YUXXQIgRsT+lcp53/3udwAAv/TLPwsAWLHCPMjtzgLOOMPkiO+/3/gHW7bQC/+D7wIATjnDohMuPv/lAICpw1b/++693SFQKvuBw3bfnDgEJxuqJm5mLiekUlL3BfzlX/4lAODd11nZDh80pGx8uY3Ld77vXdbGF58PALjkFVaOTZs24emnDU1bv9HGZqUqXpiNsy/+o/GjRgrWh+sppV6jPP7/92d/jo986D8BAKqzxpdo1q29B+TRJ6IbEpXqdLUWl/oUdTVG/bX+RLAgCFEsFvvQX6eC1225MdvPb0xKO2ut13qzZmKlm09SgPTXqgUmlBcKc5i8lSzXgRUTE27OyjQ3MyxGO+pHxHUPzSutGdq72tyP/DUqVtKz8VAslh3K0e0urlQo9cGQ40/cysZCFaHSwHS0hyfRLF/9T22t10wmgxb5Tn6CYL2qvVXHKSrX5XI51zfuuox6anZ1xmLxWlKXtb+H3DpUjSXqkTwH6H6q0yDTppx8sqFRW0/dDgD46je+jpeebslu9+wy3pESpt9087fsPvPWT9u3229U7nXr1uHpPTFqBcRcWa3JR44cSZRH6SiEYO3YsQMvOdWUWr9/000AgPmKzfuJlbY2TE/bPW6//XEAMQpWq9Vw9rmGsinZ8Oc//48AgNe8xribh8m/vOIKQ8KvfvMbAcTzYfLAob4E1TI/KkrWq0rrEEiOTTf+Os++r/ZailSlllpqqaWWWmqppZZaaqm9ADtO3MwRwqANxT0KKckw3jcIokWQKXo++NrtSAXNPARKFLZy1TgGh+3JfnaG6m4z5rE/cliKOV5egEVNqJY92SpZYawQw7I3yemyj5Hp1DBBxGP7GcYNWM8kjQMsa0TvXYfXbpA/VVAscdBFUKBnK1KCOHpzhBhRxEex060G853UGjEiRfdIo2LerFkmdF0g2pDvUpGobXWqIvZQL/Wkv1Tssks0nHgv2b66Ujar9peSHvlSA4o3r2GAXmrdTx7mOttfPKQZekLkgZFHemZm1r13dNI8TEIF6oxNJ6iFDkvWZZ/n0cMvYd90qPaTHbJrji1jYmEqY8mLIy9Xo9HoQ+KEnDoPJHNwyVPi8iJl81iYs+86RUKqOeU4ttsFIrNdh6VZneiZm5ubRz5S3DeVIokeNME2HBtK3Lc3tljjPJ9JeoIGly/DiWjdbhe1Wg2Z3OJLYO+Yl6lfBmFtrpxxUtqanDReTLHYxGuuvBxAzOmRN0/x8WrbKSoILlu+EQBwzrnmQaxWq258XHPt2wEAv/3b97Jwybx7z4ba95ru7yc49MdmL1IlxGhm2jyFPrrkewfr9XqfWqqUrYZ68qYBPbwQKl7KS3rgwAF84AMfAADceOM3AADnnmdeWHmDVb5P/oMp2L372mvcNXq96EDMV/T5m1of9h+0PFJBl/N5bMypXL3rXcYZuvk73wMA/MQbLMfLHeS8HdhvffjA/ca9uu02Q9Je9rLLXI6tl7zEEKtPfMKQo/POOw8A8Oa3mSrX0SM2TjZvsba+4YYbkM+K62rjTflblDB0asrWLyF2+/btYZ3EN83jl37pFwAAV19t6op/9IcfAQBs326IWUfoz6CNi4m1xu8tjQ1izYR9p9ZgLheuF+2uteXuJ6zNhkNDplodW/sWavb6vpu+gzf9hNXvxq98AQCwYsJ4Qu269XetYnUpZg3ZyHS05rfQJMck36H3Py+V1BPXFyyU1883GOZjnpjP09aZQ3PDR4VqtZpL1L6OyU11jSHyz6aoFHjgqO39BSIp5TyV46amMXX4SOK+MqEJI0TkK1RMjcvXrzDsR/D4ue2UMDYIuQ51Mq4+3/uuJX8VMhJw7x8btb2mMmXIrFC3TCaDjnf+8PND+ei6ix4iOhfAzkq9prVKZdZeqvZXlMH8/HxfnxXIJavVtcfbNca4/h4l71JRMQFyTpmOwsJ9CJXusWal7SWrx22uVo4Yf+7is0/Gzh33W5nqzH05ZvctDtm1ctmkWnUvorNhPZHmBZv3Ox43HqQQuu3bTwcAPPqooUyXXmrKv//yLzcCMMT85ZdYVMGqNbYnTj9q6Pq3vm2ovjQBXKQNoz0GBwdx912Wb+qB+60O1/6M8TwvucQiuoq55LmpUbE6Hl2wvm3U60tqHjS7Sc0DHw3udruunn4OxfA5KvieuKtTaqmlllpqqaWWWmqppZbacWDHBVKVyWQwOjaMasWeWgcGxD+Qlnxv9u7kE6fvARmi575ctr9Xr1kFOmVQLpnnod0yj/J01jxqSyVO7vUEdzp6slXehSjxW+UYcjldFDM+MIBVVELJDBlCVQ3pNWC5clRiKhF9aNNrlecXitnQqf+FdCz48cYyeX5bnTiPkXtap6elWiNCRaWlJuOQI6Jt8t6HnaT3pdd8vpVfjsWQKh/NynjxzkKj/PjrTqeDZtTkr8x7IM+T4qrlcZFXRwiBUIS5uTnngRDfSV40tZmfS6PX2xZz9JhXZNT6VF58ecTk+fJzoVWrVYeuybPsK1XWYHVqdZIqNJlMBlV5B8Nk1nm1aHmAGezDZFx+Il8b86N1qHIEKveVyfvSNeWJk0VR5LxmQqp8z+QJZ1GAqJtFKPROSDRR5SDbQkt51AIbUx1yVVaM2joShlpPGL8fxAigEKHRYfPuFinzdoR8HKcWRbdkZd7GRmWOKo7Ll7n5ct999wGI8xTtetLi5ZV3rNMRr5J1C6K+/ndIM3Nu5IVwy7PHH7ebNgYL+TxK5NxViSI1m/JQJ7kGLt8c6x+1u66tpEJaX7DfCmXSGNNcWD4yymszf1RxAJ//7OcAAFtONe7Q98ld+uhHPwoA+NT/+B8AgFdccCF6bffu3diyZYtXxm7ivlLdOkzv/GCZ/cR+27dvH866wPgI//i5L/A92zc+/6V/SVzz53755wEAZXo6777D+ufeO+/H2pXmXS+VbI798s//HABg7x7zLq8ZM2/z3AFDAT/76b+1a2W7KA4aV2D3TvPqC/0eK9n7hyYt0mKQf+u1vmDjsY4WAo7nu+8yha6bv2Ne5Zu+bRyLtRsMhRB/S/zAsaFB1Mh3UVt1COUffMoQqj/92O8DAH7tlyxP1TAjCzBnfb1hYgC33vnPAIDf/uhvAwD++I//OwBg5aC1S7NB1cUFIZfWH2E3QI6LW7eW5MFl2UcnkgWBreOa950elAUAOj2Knf6emslkE+/rGvqt2gVAHy8kw4iWEtfvbacYDyfi2Wr6iI27ubk5d/+YD2Vz58ABG/dP77NxrTxVE4y4yeXyfciAytgmP1zIlPZazfsDBw1d/e3f+jBmZmxfri7MsC7kmJPLtWG9rbdRg+gX53K1XnMRSw6J9jiVPhKvv7Und9ptl6dK+6DOCTJdSwjW5PSUayfd1+XH5H4dcg1dYL3HOafL5UG2l64dR+z4eVN9js/lrzSO0WDR+rRctDrtemonDk1amSo844WhofuK6Cnn7Xyi/rj8cuNQPvbYDhyZtL1pmPXbunWr1Y/z7+67xQvdwvaxuSvO1RVXXIEf3XorAGBsmdVv3wEbM0cmqYLKXFs6l61dbWvamjVrcMZLjF/6+te+CQBQrTIKLGD9W7Y35dlPofiIPNdms1lP7bgneqKWzGnYy6XT+0spc6K9xAPCEpYiVamlllpqqaWWWmqppZZaai/AjgukKp/PYv3qFc4jU2Gs5BQ9cZls4OIdff6A4n3FpZKXQZm8BwcH0Sb/pbZgT76TR80DIa9FrZbMD+CrflmuJSFjyfjKUimZywAdIgPyfHciPH3E7rdnml7igl1j4yp7mt++3ryVy8jTWqCjokg1nFw2cB2l2/goh0zv98b/CtWRF+norHlNjkyZV7xNrlM9kneDfJ0wfnJfSuXP94TLFAfea77iUejiWe278ir4nrq5uTmXYyoM49xZgOUTAuL4V72q/irn7GzMqdJnQrN81M2Pu81kMj0qQskcWvJsC8lZLE+a6qLfyAOm3+hVanzyTInz1WnUUSWCICSsRC+Vrl+fM4+bPDSKO3a5FnI55NmGeXITslkNpk6iPXQPefGCIIhj0dlXqsOJqMQFGKjTi5wulncurpuQXusDzae9e83bt2w50Ra+5rKhGy/z8xb/rxwkvidNbayxoftPTU05ZUmhK5dddhkAYLhsMef33HM/fyOFKalVZvqQRB/ZrzI3GcLkvHUI28hInMOJymFCi32VVN+iKHL31au8u77SaG9eqt5rbtu2zalAyVMuftIf//EfAwDOPffcxDWUT+rSSy91Cn3yug8PJu8vlTSVK0cPrpT0Vq1a5TgdGzdu5HfNy3z/fQ8CAD72Mcv9tOVk89xe+zPG6dpKT+7Njz6OSsWu8ROvvRpAzD9YQT7E9Z+9weqt/YLKnKVSCRWuZRobanfHE+OY2rHDOA7ieMR5nfJY4PianTVv8ic/ZUjY1cztsuYkK6ufd69WqyHMEcEP7L5V8kVHxu3+Ox63+15y6eUAgK986RPWHusNUUUnQiZr69R/+aM/tHoGRNjJXdPa5+Yi0fRadQH7FmqJ7wjdKJVjZOZEsS6AetTpO78EBSIq7Y7bM+PoAmv3PPdhRXZkeQZRPsE2Ijevta64+a/ohAGiXeSRT5Bbs0BO2xmnbUdEBcY58nE0/jsVQ6pLRKi6zFV44KCtf81WhG5bqnvkhdetbGvX2Ti/7Q7LOfXrH/xNe3+T8csHWW7jtxKJ4/huk7O6QD7kUSpXjiqfJvfAmW4EFIkIKdcTIyraXLOGeS5UPrTBjLVTs2l1rVYryFI9ND+vKB9Frti+qJxbDf6mUZ137ZKT8mguqTJaZC5D8Dy6n206RFRZ6oi5fAZ5nsMYCIBm064xV7c+27x1EwDg4YctP9zG9cZP/MhH/h8AwO//3gexY78h0kVe/7YfGE9p+XJbGwZHrN6bNxkv6567LAri8OGjGCavskOEaJb89PXrDE3KjFtdDk6bKmgWQs4uZR0C5HgOnzpiv337295mdVjgPse9qs5omZXMhVUsDuDAYVvn/ZxfCDnOuWZ0c0kl7lZPbrKMzik6r/GZYoBl1T4jixWfY/VNf+/KLsG7XspSpCq11FJLLbXUUksttdRSS+0F2HGBVA0UCzht2yYsMA+GYmtXML57aLjknvzlhZNHzcUZUx0vE0oZip7JLjDdsOv5XiI/V0pvbqve74VhiExoT/G+yotyxrSaSR6OkJV2u406VZMKzK9QpQfmwf3mLd2z357qLz7N1FW2bzSeTkheUj4bIFCOCE+1xUdEVD6hb7VarQ+1mK8TuSNnqh1K7Y5G71YQxSiUr+azlJf6uVgc90rvEfu0UMglvtftdh0CpUxRis0u0LPuZ5mX12H37t3ub+fZWCJfl+yZ6qbfit+gMvt5cVw8bk8dfDREqKraVNSYmYp5wGqtGG1cNmGepkYtiTpmOP4GC+ZFa0bJ3GO9WdmbLY5Zel5yA/LWkYfHa+/bZx7B2CPecggG6D31VexOOIsieoKFRoaJ1yDMKuWJq6vGKR2qmJ0zD+5ZZ2/n34YGFPIDGB62cSFU0EekhPQJFdR4EVo4ODjo8oQIsZJS4Omn2zpx773mZRTfUnyw7iL8DI3PpfJyyXpR2qyHbrXrQpL9XHy8P6/R6XTc/dV2WmuLHh9G5ZvjmF+50jzb3/7OzXjDG0yxbpBt9MUvfhEAcNVVVwEAnnrqqcS13/4zP+XaSQiUyijkSvNVqEdcjiQCPTk56a5x5pnWvw0qqp55psX+79pl3KJf/9X/AACuvJUZQ7sm9+6DlpK77jbUTd7u6ZnJRJst0Os9VLLPhwZLTkVPbXTwkPGw5uZtXAyP2v6oOS7VP61n0zOTOPmUjQBitcFt24yfJi7osvHViXaYJlIXZYo4PG1tNk21Na15u/bZmnr3PZY37d77DCHMlGw9g1B0AAEVZJeN2XvzjEKZZJTEy19unI6dO59kXahO2WzEkQXkp0wesX4WKn9CGdHbnJfjqaU8i7lc35rtc6H9910kRSEfK8X60RaMsCkQ/li3QI7T3xlPcITX2DVxO9b+ss2fdmjj6NRxQ4abK5jLrkDF0jmOi1k7twT1EEXOqwzVcF/Jfh0dKibKvmKdcWkGObfmiIa0u+2Yh8WtM2pL4dls7yFDSDJEefkxxieWo861uTlHHr5yTFJtrkP+eJ5r5ex88tyULYy4dcztx07J0O6jM0jEk9L4iK3LxXIJk7M2J7tdG6tbN5uCXpdIyVMHDNWTuuViUTkul5aioRr2ndG8zasiRVfzrPhTVOF720+9AwCwestGvHl0HL32ve/9AABw0gab5yOjxp289VZDsFattDn9tre+Gh/6kEUAnH3mWQCAK6+4HIBFXgDAV79pKqxFcv5f8+pXWzF5bnj80cewZ9cuAEChrCgnIpK8RqeRzKupfalarWJ4yNZknfWlsaB12D/r+kquFlGWjNTy54XOXH7uxXK57M7JQsYdUvYcLUWqUksttdRSSy211FJLLbXUXoAdF0hVEAQoFPLuyTDmq5j3o1qdxdgYFY7oEfHzHyjOtVBMqnp0othrK0+D4ip7sykD/co18tQXi0V02snnT9/j62fu7rSUBT2PjlTWiAhNtalEIq8JY3dvu9c8fqsGzUO0knlJ0I0cl6XheTiWQl3kGa9Wq31P5XP0Flao79+lN0t5mSTLHwjJarf7vGQ+EvN8TP0gnpquKc9ErzLLbG0+8V2ZPBJ69dtFfVuv1/uUI91veK2lcnH1mo+Uyqsh89VlYoQtHhvylgiJcHHw9Jbrt4k8UUSthGw0yDcYKlp5KkQ4MgPJnBq9in55ZmJX/ZQbqM28ZGNDSfS3N+u8/t+qJ/P/PBvycdxaYCpLET3pUo/KSIGpm0GG3jVxV9Qu8xXrt+3bz0h8LgW1Rm3BjW31v+9Bk/qRP241vmqNuntPPB+HslBR8K1vfQsA4MYbLQeIW9dacZ+49VEx/gM2BrIdxv5LaZLfV79GUdQ3H2Ll0yRiJev1oPd6D3vLpu9o3sg7qHofIudgzbp1eP0b3wgA+PjHPw4AeMtbrL433XQTgFjB6r3vfW+irr3/F7o35qkLqnyar1ov1B+Dg4NuDR1bZnuPeCL795vH/KGHHgIAnH+BKWwdPWIefEGc4+PLsKpka/jsrCGTjUaN7cH5yTknPk1xQLmI6ogiKRbad0dHrRxC48ULEwol7pm8wOPj47jiSvMmb9u2LVH/0qCNg8k5G1vqj0Y7jtoYKpq628Gqfee2W0z9a/PmjQCA7978JwCAX/v3xpP59PV/CgBYvcq800cOH0CjbuNOy0Q2Y/dft9E4HVu2GE9kzx5TgXNRA2EHTap9ZXM2NsSX6DST6qQngoWZDAYHB9Hi3uv4G1LJ7Ilk0BzUnBnIJTkm/tknyoR90TfuPJLhfOa1dz/4KABglAqNpYb9bg4RAo6rItWKc0RK9s/bHOoykmhsJXPNZbmWlSbwwEN2dgH7aFRKauKBCSln/06SL5zPxnu/6q96CqF0UTKKwlFkizhOrSaGh8Wlt+9U56jySaSqTM5TlmexWdZNnMvDk0cdL6rMSI4gZF5CIsCzs9OsCznJeXv/6OSsO5c5HizV97ZuMcTqwfut3Zs865WGkmtpGIYOxa+Tf+RyXlExT+2i/Hkvf4XN7U4oNKaDcd5fbXbfPYaQr1ll69AuIkkvu8QUU3c+ZX9/4+vfxtve9lYAwB23m4Lfbbdbvr0a1+hzidAf2GeI+W0//KG1QxSfJ8oFG6s799vafOrJNs+XUdm5zvHhnx9MYVv/Z67ZAXFJtd/0txkQz5NCobAkYivz88T1opI+p8rn1h+rPetDVRAEfwPg9QAOR1G0ne8tA/BZABsB7ALwjiiKpgOryZ8BeB1M+/o9URTd/Wz3CMMMBsrDsRzogCfTHS7rS1qZJQSpzbFUZLgHjwfNDg8rmRC1WUozdinnW7H7SF4yn7PJ2ckmYXXXaY2Og4BF7FbSNie64JKa8ZDmJOA7ULfOiUiuEEEmao2Y5HiSG+uX7rQF6l1X2GaZC4EuE342IWEKSiAroW8jDvcDgINHbQEIugFaXJR3HLQDy4EpOxR2OEgDLrwZSiJ3lViYUu+9oXO+MMViSdTsP+gz97DSVcimIOJk6I3ER7pdEbPj0IjZGVtwJBqAQBNhcfl3hez0ym2qiCL2uxgd9zSpycTwizaQYb+LDK5FGm0duJMP4n4IQaYTYYj1q/NQkOVBps0xk8vkEmMjzK4AACAASURBVK8i/w6WBhG2eaCftsOZJvw0D345J3zAhHWhFq8B1w460NRrtkiK6KzvgpuIxnKDY3x0dMzdb/kY0wIwXCnXTSaCfTHsx7HmBIEJdbglJtT8VXhtFo1m0vmi8Vssqo8ZPszk2XOH7PAxsWIc5TIl7pEcl7UF+43C0XQIUjiaDsTV2sKSjhuJXwwOKdyrlSgPEG8kvnR5mQ/hkvx1D9AUSdF6ls1k3EOFxgkYDgw3x3znQ1xeP7lwuITDQk6Cecp3X3zxxQAsBPXnf+H9AIBXXf5KAMBf/dVfAYgTKWtjfOIJS1J5yy2WNPS6a6/DXXdbYl6FE/oiOS4hOusSS63HG2ss2mBzqpu3upxyytZEOap86FAdi1xvm/UG9h+wULn77zdxCz28HDxgD0QrV9vDdYlpRKoMC82E8bqokMEcU2wsW2ahPGFee6L1+/nnv5Sf28HqnHPOwSjJ5d2Ivx2zB/8FOtRyRfYTQ4DLhaxr08YcnYB8eBPJf/cTOwAAQzxc3vDJvwcAXP1Gk3r+0Q+t7dtBB1PT1q8Ty21cF9g2OqB++9vfBgCcd54lDd3xhIUBHpnahyLX0jBSVnbK40cvboDNj2O96XY6qFaraFVtLGlsZbjWFnJ5txZo7rgwJC/c1k+23TsNfcnwsG3jal4CQ0z0Tr0QLHRsHNxRm8SpoT3o/Ke/+yMAwKP3WnjnrjmTxS7LMcH7DXA/G42KeO/brgUAvHSNPbx/9V8/DwB4/ZsspHCAe1qT4V8F7jktri1ZOtYT9WQ4aYthsG2mtpjm3wMMLQyyIWYpb56nuNfosI03OSv47IZS0e4xsszqIqfXpq0bsWzc5sbkPnOaVBdsj9M66JyfXOeePLDftUfAfixyzr76QkuMOz5s18xk7bdDyxjKVk+K0HQ6HXfgz7NbK2wbRjTiDa+ykMozzjeBnibLwfzJyAUdsHmd8/n8884BANxzt4X7XXnV6wAAjz1ioeOIrB+2nbIFbQauXXCBnTsPsX7DIzZWH3vAxoP2Ej08NCkkMlwawF987P8FAPz1P9masO+Jx1n/2LkNAGWK/shsHdY4t/d8KoXOoD7Vpdex7QMlfsig+tCfa+12u+96/pn3WO1Yvv13AF7rvfebAG6KouhkADfxbwD4CQAn89/7Afy351Sa1FJLLbV0zUkttdR+fPZ3SNeb1FJL7UWwZ0Wqoij6XhAEG7233wTgcv7/7wF8B8AH+f4nI3ssvDUIgtEgCFZHUXTg2e5jIYAxMR7oIf8HARqNpORuHBpGT4ee2ukxCMn6r9fqOHjEvAI7njBis1CNbIHSrKG8s7G8IgB0XaLdrCOwCwl6McLffJlyhz407e/bHjEv56Xb1iPTNa9Jqy2Eyl4rDAOrMUREXpUZQsi1Tga7Jg2hatOzWSJZcWaexMtAyBTbkI7oXtTHD517Nkj0mZ7ufXRL0rG+LHm+YPcaGRlyoWozkGeBXgSP+OuH9/Qiar7XQvdTn/pe9Lh8HSdIooSHfrJhP6RUHhEhDzOHj7pQJ8m9hnyVl3yAML++p9fly5cjSw9cb3hSb731Xd1XZd+7d697X6FHCq/Uq0zl8N+vVqvuui16uIsKM2w08WLbj2PNCeAjVcnPhVj1mvN+cV0olZVoXONWSE0XBw+al2/1akMVNC815vzQBcnnayx2EY9XiQrou4MUM9DnpzI57oMPWjiaBEmAnlAajpvpmsKxKDIRJlMAOC9xLtfvEe9DppY2PwxDucB9sRjV96xzLKRl3TqT2M1ms25Mf+tblqhWIZN6/40MD1Q5NUa/ffO3sWnTpkT9/dAp/1Woua49NDTUgwwmxVnyOXsVKlwcojgSoyfUSs1qDWAKCPXdjh0mbjHGNXj3HguTcSJCFUO9smEGTW5AWnOEzDm0nMiBpOaF8Gv+NptN5IsSTKH3lUT5ASY7npm09UFhUNMMl1y7cgWerljZpAr9+OOGCG6htPNgUeia/eav/9KeL37idZa883u3PYnf+D/tWeSv/tJCONtCTscYtlwxZE4iJINlWy/HlhcdIioEUCFs+Rc5+e+PZ70JkEGAkAi2ZKCzRN1qnY47lxR5Hom40ERM7truJgW1spSv7kYBsnmGF7N9CUChMmTzq3rIzg/1srXd4VX223rL+u76zpP4/q9dBwDIl20cH9lgZVtXMvTp8BFKXlMUrNphqpg9e/Cf//WvAQCFll3/Y2//j1Z2RuPooBmw6xZa9tvWGMUAWhFqjIwItIdT9GKIYet5hszWGIYotHOkPI68ZK9zjCogqlrICxmdTdSte9iEYlYTKZ6uVnH4aVuz2wxZLTDpdbVja4Lk0qco3NJk5Ee73UYedp9LLjWk/bVvfjtrbH06/98t/cKyiGsEz28Sh8rn824tarRF1+A5qWXtPXXA+kpnwC73my7PRM1aB5kCkS+uHW95u5Xjv/7XvwAA3PIDE67QuUTr5NGje9DhPjbLs9aqVbZGracwyB6GCir8dt9OWw/GGR59/T98Cq99g4kIgWIyY2VbPBpsh5ERJVm3cjKfODKZXF9kxlLpgnxBuV6hOT+Vjn9u7T3T9V4jCIK+86d/PjxWe744+kotInyd4PtrAezp+d5evtdnQRC8PwiCO4MguHOeeVBSSy211JawF3XNmZuf+zctbGqppXZC24u63kwxPC211FL7X9tebKGKxVyZi0IaURR9AsAnAGDzpg1RJpPpkzaX5zyfzyNHT4zei/g86Ai2LftNhYltb7/LEmMeOTqDVntxD2uGnoZWl0+37SQK04t2tFpJQnlfxT2OUW9CWV/kYSnZbf02R0/o45RaP+u0Lch06GEmF4IK7qiSozFHL87kjHlPnzpCoYooQp7Sn7nQvCkLjOsOeJ+WI8urfKxTj7S8PL1qf7/eS1kQBM7j4POxnCy6EiB67TLIZHTTrWknUT05aR6mgVKB5UmWw5ehzfQgWb7XQvHUfj843h77P5fLo9NOxuDKKz48PLRoO6id9JrNZt1E0HudhuKLF09mqbFdKBRcIsJY3puy+EI2PKTO8WF66uKLfPiEZ7/svZ4jlxCvlUyMWMy+cMT2BdrzW3O2bI16+8xHT0NEjstBVXTHhZycsbrfRInZN7/ZPPODJeMHzc3OYHR0GS9s7XP0iHn/xshpESovcQt/bsxMVzBUMiRiZtK8zIpl77B6g4x1f8WrLPniI08YUtWtN5CjlzUkPzDLVBNhjt5NJnjMhEmvX57raqOygG7bS8rNtnKbhodWi0eKAMjnkmIwrVaShK9XIUMZ8inGmTrg+k/9A848zYRABk5Lor73329r++Ejxn3Yv5/cBo7vbdu2xcIcnC/zVeORjrENa/SkDhHxrYpjJkSt0XT1Huda49JYCC2PyF9kxMMAva/1un0+ODYC6oHgJeQ5LVtj9RNfY2SNoZCaixLfmJiYQIf8lzIJ25tP2ggAGCYSVSIXWLwxrUkaJ4ODg2hUuMaQMzd12JApCVS0ataGczOGBhS4FpRKJWxaxuTrnOObLjSpZaUDyGRsv65U7ZrrVhkq+9C9luh1w5oJ/NMX/g4A8PZr3gwA+Mynr7c2EgpFsaYtZxhP7aKLjIvyg2/dHK8/kfYFNmb04qPjz8Ge13pz1plnRqVSyfWzvz7nBwf70nLkipqz/VEXifsEXUREIAPxaxhuMtKwsVtbb2Pozqztn//3jf/Iytj4eHKihM46m18bBuy1vI5z44g9EI6us3E1PEKBhqPGtXv1pW/ALRQ1eNs1xqG67v8wPuQXvvhPAIAP/pKlHajPkbuZt2sXJ8lxzAFNJnmtdRn1Qfn3AvmG2QIRnIKNv+qCjeGVuRCdGlF9cnWm2smoo2yGqRKOMmEv9/bDTItRrdeQyUuMidE/FLvocBxOc840FPHCsVvI5THE5OI5jlGt63Vyp7Te6cyR5bocOr5cGx3yvzQOlI5D3G5fSMGJhvUgOFnJwpOPfuSgcXff8653AQB+QIl1od533WX8xzAMsWGVrSNlnjsW5q0dHn/KIqbG1plfYcdeS7ly92MUVqMs+8tf/xa8/JXGf63M2pgRaqN+GB6z9c6PUuo9g+jc5Sew98/RfiqcXrEJXd+PwFgqYiGbzfalvJE916i054tUHQqCYDUA8PUw398LYH3P99YB2P8875FaaqmlJkvXnNRSS+3HZel6k1pqqT1ne75I1ZcBvBvAH/L1Sz3v/0oQBDcAuBDA7LHwqaIoQqvVimXQ+QSqp3sgflr0PfXydN78fRPgmZ4xT0QEJifFAJBpJH4jVaVuNym7nekO8H09sep7HWSOsaX82M0oipaUnV4K5VmYNW9SwNjlI5UG8lQzzNPTsUBv6CR5UYepireXqlK1IYtdbWRj6dE8eSL1JlWjiG4J9QughMbiW1Chp9Xqk273OUt9HKrusctQymvSi8zYNWOJ+2xOiJPibFWOJA/Pb9Pe2Frfw7EU78vnaGRzeXTpBRf3wEfG1O8+h8WpjLVaPSqDSNRT32kwpl5eTKd4ODuLcjnJcxJHw0fOVA696h7lctkpIalsMn1XfBbH/epJrqcyLWdywSzlxqtMevhjsBd1zZH5suGLcQX1ns/Je93rTEnJqRIhTmKtMXSEEuHiuTz5pKmbCV3w1YrUj70m/pxMSXnn2E/inFx0ocnk3vK921zy7xxlrwpcS8RD8Ll3fiqCXjWkY7XeuSekyCFxTIAu7pjG5bvf/W4AQIfz66Mf/aiVOwpwz/2mULWccsA7dpjqnNpKib0vZL3lUT506BDOOMNQLiG5JSolzs1bmy1j4ty5aRu/LaJPQ8MxH6lAGeDGfJP31X7EuT7A/YERAEpG2qFMfzdsY7isZJxce4j0SlFwgAq0jj9JNK7b7WJg0OopOfiVyzn3iC7KKz1c0npJjgHV0Q7OTKLRsP0Q7Ncy+XgDRStPKW/3czxWjosDBw4gEzIRsZdI2SVB5Tw45RTj9M3NT7Mcdq1TTzkFh6g4e8NnDKF633tM/v5rX/9S4r5TjED48pfs/WKQdcpofvSHlDr/je1FXW+6URf1et31kZ+Ko4uecwj7tSNujROpXSIqJAdwyDlEGkR1msxUftvThu5+8NN/CAB4csxQl9II99yRMtZuMH7RxuWGpj40aVGOY0UbI0p2vZaI5I4HDJH8znwFeXK1qgO2L9VWWh12TO0CADywx1TgVo3YPbK5OAoFABrFNqo5m2drTrN9qDRg6G6tbXPjsqteBgD48jcscfHwjM2dQ7vmsLJs/xcyLE5ZkXysKhHbZkPqzPZ5bc7mf72+gOXjtia0eC5s8cxVqZJTI64bz0t5rgeD5UGn2Pudb38XAPCea37OXReI56pQp3kPwWrVFtw8C7qK5JFSZJnXosQ+x47SRYwQJctnc24v0PlrgOfliGeL888/3+7H9WDnTuvTXC4HZIjMr7R2nzx8hGWmgjHn9yyTj49OWF++8Rpy8fJFDASUzD9sUyLkmTJy5zYznx+VzWb7FPn8s6bM36N7925f9W+pM56PaAVB0BeN5Uc7Hasdi6T69TDC5ngQBHsB/B5soflcEAQ/C+BpAGLlfQ0mNboDJjf63udUmtRSS+1/e0vXnNRSS+3HZel6k1pqqb1Ydizqfz+zxEevXuS7EYB/91wLEQDIBllEHcZZM4a6yzj8brPtOBwt5lA6SgWWO+4wD0yXuZZClBPX7nTaLiY7q2hHT90uYDxyk7G8fp4qZICI3oNMmIxrFe+o68I7+eTrcsVELm4WQdLzu5SCXpbehQaRmqNTkxiPrGwVegmn+TT98AHzJkzN0iPChHS5onkz1o6Nxcpt8qhTeUc8IYfmKMme8i9GceyuruHnX/LjXN214kaOFRkVK658FKJg0EudZwz5DOOcB9pUSmrBcVMK8hbTLTxXT6KQfptmMrFHPuMpBfrmc+lc0sFmxXlf5SRt0+MUMg5bSk3yJvnoRn6g4P7fJEJIKl+cCE+8Jb6OLafHaHoaYSvpNSnSezVPJKTGz/NhnDC5tw6zs7MuRlseGaG+eq1VmMOEbjzlxclmQozQ069cV+DYGBpN5pt4MezHsebIfGRZ7dbLhdRc7nTi+HcAWM7+mWH8uNqr1Wo5RFNjSd799estcqg3yW7v3y6RYTGHCfKLfN7c4cOHEr+RwqM4R/V6LU4mTA+ycon489X3BmosTE9P9/HMnk3xs9eTruvOMyn1UfIylENJa9Hv/M7vAAA+9el/AACsoRe8UavjqtdY3qMb/vGGRH3POsu4Pe973/sAALfdZjlYKlTSqlQqrp5SzpvjellgPcVJzZfoHaZru95QbpIMFoj2Fcqj7roAkOcaSwFS5ENKmomDx0QzjeYcBgur2B723sox4x/MZamyt9zWafGU5ubs71KphCJzRinvVZHecHHZlLenmKklrqF2GiwUELat/QPuJa2q3VdJhlutAstsfx88aBwryx/G/IlTtsa45NNjw6yTFed1r3s9AOAz13+KbWfjYP/+/Tj3HMt5c+SIIVHf/OY3AcSqY0If/fG47YxtLplx/xx9cROO/7jWmzAMXR20HjhkOpOJ1Ta5l7TEC8wyITjXASEV2idyQQRENjbq3J8ay2yAv/sPfh4A0B5jIU6yl+4jNnYEZJ5z2irU6Zk/EFFBuGkfXvnyVwAAntpnqMZjO01FGROGtlcW5vDWq0yR/ru33gwA+MOPW2Lor3zBEpNv/klLHCt05X2/YEjOZ77/WQBAtTqFy19pSNTN3/yalenC7QCAUe41k8uYk/E0m7PjC4aCP/T4jxA2icyVbH3JMrRIEUYa/0Xys9pEbnT2GBsZxPCAznbca4lyRbzILPfHYsnmwXLufcVi0aEbOrs2yFuvMKdg3uUE1V5C5Fo5ADsdVJkgPOR+E3OqlK/OyqM5Iu5kgcrAUafrcgq2qMorpcas8qExt5fW+2uvvZa37yDKJs8sm7e/JPF3KbKx+tILbDxUpQRMRcvpqVlM1rjeCPnmWaPVTHKaatJGIPpXq9X6OGN+FFSvTkHvtXr3bN98RGwpdeggCPru6595j9Ve3Cx6qaWWWmqppZZaaqmlllpq/5vZi63+97ys3mzjyV2H+vgH8prueHgXatTGb9AjIWeVHvSjgBwCPr3KwjCLDnMWLGX+k++i3Jtn8dLKFov3jD2+x3QJgF4NhriiOt1AJrL67SKH6iAlWuf5nWZoXowizPO4mR7xoaEh5+FyGbs9/o3MV0jp5Qv5Siu+99pX1uvNRu0QH09trkBkyryicb9nyANZkIe+03Hx9S53AD19A17OEj+nQG8fPpNHY7G6yVqtFtauXZOop58faoDeZNVV8bhq60aj4cqmPDPyfDsPjIdaiH9SrdWQzSb7zEei9H6NiERGGd7ZPmEnjyFeV4iGyq7+jjle4qfFnqtm0647sjzmfCzWViea+d4wn2ME9KstlemZq1TNszjAnF2lEtU0Wy3Xtr0KpnatpKdM40meayFchUIdrZbWNOvLvXvNc7+O+Yg0xmamDNlds9rG6IqJ5Zgmkq/rFvLJ/Fix0mguUZ7esfBc83P0mq6nMmrMqS3ldT333HMBAB/+/Q8BiNeNl7/85fj+LbcAgJv7W7ZsAQDccccdAIDbbzdOx9lnW46rlWusXVavXu32Eq0Xbk0Pkoi6Ig0K5EX1zu9I3CXWRa+9ip4AkHGkF6pVEYLOBG0EXaq8NWvuPQAoDxAhZHuMkhe1YZXVcWFhAWNUBW1w3Qa92zV6wYeGWZ6K7QVlerbzOc7bZgVhVzmPrF1Hh827LRQkYh20Fmktbrfbbv6Pj5v3X2NaW8HQoPXpww8/bO+3k+q2+/bsxZ5dhqIODFh/HyISdvSoaTtoXmjt7+VE+Hnz3NwMj20vPp5MyLfGl8+TbERR39lB477tqQbLXIQDFtz5JENk+kP/zbiJ9xx50O5HJdHBtbb3XHLNW+3aNbv2/qmD6EzZuDp95ckAgHXL7LvfuPHrAIDzzrmA5bIxcvttd9r9S3l85StfAQB88Hc+DAD4yt9/GQDw/Zvtt6deYPO8eJKNmScHbVzMtWyduui883Hv9+x6r3uZ5Z8rZcgdOsh9cIfxxd+w2pCS++78IQBg2/hKtHeTO8lzYSerSCIb9yOjzMHEfFUZIns5tulwoYDajK2jTSLOc+RhRbDvahyumLB1thDG6nS5bIy4AMAtXLs2bTJoUOtgifz2sK0938qb78nTFGWS/axxL3TXzx/YVfhMFCFirq8Bj5euKJhQY2YRJepCjd/JEgnl3x1GCbUzjKBiu3Q4P3OM1il1m5jlWhWjTlYeoWpC03MFu4cfFaSyAOjj8es7z7RX90WZee/7EVWyMAz7+M0+h/pYLUWqUksttdRSSy211FJLLbXUXoAdF0hVtVrDrXc+1PM0SeUQPW22cgDjtCMp40jBjypkmUhP714OhyhCJrN4nihfB1+/7VU90+fRIk/2vd/1kZzeJ2YfzfHN/zwMiHoQsTq00MTehnlYdh00b02TnKV8iQgV4+0pvuJUXbZu3eq83zMzM4l6+aiHzwPqbScfbZI9U34u2VL5kFQOKaHJ5OUYkupLFKFDD4w8fDPM+t2stxK/kcqOrBsk+7i3bEvlJVB5exViOh7fycVQ83bKwq46Os+UvI3ttvPKigMjT6OLDWYcdMSxLrRpZGSkL6+CPPAuT5tyX5GvNSxOD2OWi6VBx4Py+9Dn86hOxaK4bx2HeLXa5onrRSJPZFtq3Ha73T5PmMbrnFCHBfvtmjXGm8kRKRgYGMCuXbsAxJ5/9bnyVIlb4CNEQgxmZqb6FByVz61OpEJl3rLRPJjyAr72tVfic5+z/DAZ9n+XuX38/vLHq/q10Wj0caqebd5gEZUk1U+cU13j0CHjhf3czxm34itfpBoc1+qDBw/ioksuBgDs3WMqf488YnlRxKnSmJeildT3FhYW+taUItHvYXqKWx4Xs9O0NnWRDt0uclJDbTKXFse+KiMUMObXEunPc0y1aqhF6mfuQRHnDXkbhSzz22h9bdi9skEXHaqQOfUtrguDQkTb4nFYscTrbLOvc7kcOlTwU9hDZXqBLUJOwYDQ1yRfo1gs9qhwSWE03g8B4MgRQxBed7XxaZ544gkrFxHWdtRxY/e1r7kSAPCtb93ENrJSaH2c5nqu7+/fv9+NRccdEoqaT0YnnAjW7UaoN1p9yrKaY8VM6HgwThHOm19FrvXuHCHFznAQRSKgmaytH/fMmNre4DaLWHn5WTaXBgO79s6DNqf2HrF1CfksRtfYnKlTSfghoolHn7Z+np0yhLjTsHlQ5lyKagHe/LZ3AgA+8rt/AAAYJjJe4D60fKVxJS/ZvA0AcN9NxoO8+rTLAABXnPVK/OpLTfNjecZQjSOzdg4sbLEyb1t/GgCgOm1zZN824/LddfJ3cOPnLe9W5bCdcSqMbCpzrHQ4lgbyjCSpG/cnTy7+TGXOra+lrK3Z83PcD4k9DGZtjoQN5sJknrZCoeDWT+3Hf/2pvwUAfPzjH7cycy4VGXHS1XmWXZnN5xx6nMsk95vhYUP38jmpI9ur+FMZnv0idAHyObtUGxVvXdzyqJGM2spxX+92I8y3Gf3D+0QZ77zasXExwvyIU0Q2jzJ/VzaXQ6dO5WIihAHvC/LT8k5BFax/fD7zz9Y+YiVtBD/6Q8qy3Sg+1/TxsMhTy/RxzjN9v+lHxJ4bh/PEPhGlllpqqaWWWmqppZZaaqn9/2zHBVIVIUCrm+nJbkxlInre8pmYl9Sml5BhnuiG/E1nce+VOXOOTb3D98j2xlg2W/VFv+t7nvwcQO12e0nu0lIoj0Jqu3zmfXp2BpPzFoteoDKbFPWCrvgedo2S8lSwXHNzcw6pUtn06sef+tyRXs/0UjGq/vs+ytNqtfpy4MhKJXqxmMtG3BR5YJv8/ujICKalWlVMqteA3twux0oIP842iSD21lPm50Hw+yWXy2F83HLECHmQV6tNBcWZSSufz8eT+lmxWHReLJ+boe8Ol80DVKeSX4P9VGs0nOJVzLkpJK6h9l67wryNQvRUl2aziUH+VnHlaneNB8e/8pCqdqcF5dkZGNB3kmjv/2qWUIuM5LGyvzVOKxVDhpot5i4jUnHwSJwnKammFreX+tFX/xPa1PsbPz+QG9mca3v3WD4ZcfWanSYuusj4D3ffZeqotZpQyORY19gTYiDejNpgqbZZ7POgZy14tnGheXHjjTcCAI4cNORqYrWhfjMzM7jtDuNMNZmv5Rd/8RcBANdfbzmPNObjHIY2v8rlsmtPIYKjI1a/kHzBIpGjOjmIg1T+0veDIIjXMnoqu0JO+P6Y8ii1k2i5kKVurenmlPhJDXqKxcEMkNxrehEMKXq2iRQF5FQV+NtOm+OS3uB4/2CuvHaEkPVscP+SYuByqjBqHxV/s1fxyucu+HkkhQa2W1obyu639sXIcUZuYJ+V+J3yoN1noWvj7SVnmNLb/v1xHt3zzjPlwMceeyxRvxPRFxyGIUqlUmJ+AT1Ibrfbk58x2e4+T1zm1o5uCV2qA3/1u98AAJx8rqE6owVDbgKu+btuMbVFoV6XbNgKAPjOrntwqMb9hu27bMLGyPiF1g+PP2ZIcbGYVHydKQe45fZbAQBDeevfUyYMIXvdxa8EAGzdbPcpk+P3qz//kwCAhb223g11yiiTQxVVbYyeudm4U4f2WnTO0IzNpTFwnxyw3175ip/AzG5D3O4SD5PHNZ28OpwHLZ0bOTAzBWvjRreElWsM8X/N1YaAfeTDxktT8IvOJY0GEVvOpXq93tdHXUbWzJLvunLc1mYX4UR+Vm/Eh+aVzgn6rqIXNB/0myHu8Q2pQhaKDs3xz7DxWTapglfheCwUCsjmbfy1eZb0c38OMVem1gqfD2VRYWwHom3gWlQkulZrJiNcdO1eZNxXltarzjoDPmIr6/nT5075O5mvGxBFrKY+QAAAIABJREFU3SXP5f6Z/tnsuHioQhQh7HaQi08LAOLCtTqdeGHXQwMbsNvlINWDiNcwYRjGMLrLi+ZJm7sEZYs/KARB4J50IjU4Pwv5foMbq995vTKq+s1SEsXx9xj2wYlfmZlCAflEHZQRsFlnyAdjQLRoFOoiwgfYuGkDAGAZRQbqJNjPz9kBot1REsuk1Ha7zjCnTKYv1MeXJ18sZFL1720LIB7Qy3mw7PKg02xQupNhBTm2T32hiogHGyUyHlHYG8P/Qj485dk+bUHEDKVsI0LbC5tQAkA/zMmHjtutOsaWWdsptEUE0AYFHHRIVhiNHyoVBEG8GHJBVciLDnJTc3bQFKkzm7NFrhhkoIeaCZLGh5nwr1xMSjKHLmEziehst+UTI6gzNHCUCU4LOSWbZDt0k5Lhsbx3Hvm8CK6LS+n/r2a9D1Udtov6T2P8pJNOSvytNlm1apU7CPrhfTpU68FWB1NfsGJwqIwZJurVJjI0bJtoyPJonOhaLrFuuegSOUvK+skdO1WzvnoCPf3oEp53+5Ih+iHP/kGi3bOr+eOj18kCAJ/4xCcAAL/7u7+baIdJzoVCuYTLr3gVAICRey6k+eSTT05cU7Lc23gwHxkZce2ptqvOMPXEflvT8pls4vPmHMNaOeaLxSLgnA1WF/oYEHGjardsvnY6DNnL2dxfoNTwWLmMLg+AC0zI223xYYprrebnQJHyzQqHiSJAqTD04DtAgRSOkSzJ9r4Yh5PtrlYxV7cH7pUrbH3qMJHxdNUe9vMMddK6JWu1WsjogayZTBMh0ZHZWav/xz7253aNQds3TjrJDtTtStX19+rVFv7VVdqUTNKx9eCDJqiwYYPtVUePHnWCJJLhlz1XiePjwYLA5oScXX7S+F6agL+m+uGP/pzttGOhhCtedRUA4DN/a1LmG15piZmDLz4KAHj/kc0AgAuH7QGits/G0nB3GW4Mba0ITjEhhl10xBQYklpaxkTenfggDADlShcDNdsfTl9hc/D9b3wXAGDrmM3VyV32sDyatfpHB6xOq9bYvbpBCwsSQ1pr42vqqD0olUbpQOzYA6LEFtZlbUzNzxXx0z9loYN7KPc+RSdNi3XI8ZyWLTBxN4Vhak22eVBGkYm6/+S//BkAYGzMHoTU/jXO6xadGZl8v+NYJinxhx96CADwHz/wAQDA3/zN3wAAjjKEsje1hp8YWqIX27dbm8qxu5T0eBRFfYJqvcl17Tt6yOJawYesRrvVJzaWySVDVCeZoFsPGSq7E8mq1ZBTeB/bO8wy/JLzXk4blcel+emp/1JCFNme9DhA/4NTs9mMQ2d7rgsA3U530Wu6/Smf6Vs/ZfnnGG584rl8UksttdRSSy211FJLLbXUjiM7PpAqz/qStEb9IXI+mtTxJHK7Ub/X1DcfMfKfbnuJcn6Z+kL23OfH7kVbDFUDYsRM2FY2m10yua3/5B1fyz4fGipjZMS8kcPDlLVluNC+ffvsS0S5lBCv206S2judTp935PmYD0kr5CiGmZMwb2OBSFkh34cmyZz3XOGI3vs4BiClP2Fwsq87nY7zMPoiH3o/HyQ9Lz5E3RtO1OudBGLP79EZQxz0PSERYRg6oruuK/NDBjRlFJ7YasfQtbw4MvWpEClB9OpijaFcLucQKoVTZD0J2RPPIgRh2ym75BRCxaHQyYROnjZPue0cIZP/yd6bhluSlWWi7xcRezr7zCczK6sysyqrGKqAggJEKAYvKmJBKSCP3BbkEa7Dtb1tX4VuFRClbdsZZ+EqNK2IcoXbKEojDgjiiMhMVQEFBTJkVZFz5hn3EBHr/ljfuyLW2ntn5snp7CzW+zzn2WfHjog1xFpfrPUN77e0Qu2iWu20zzO1Ag0LA0M33cDd7irVNtI62VL6WvcMGproc63vtM9M/krK9tVVqzne6lst8569QZLgoaCrVq0HXXsQANBRl+pPfcoGsJuyofVjYnSVRWodTU1F5ew0llAXwpRavoDwpL2k9dhAWTBwXvtBCRq21q22+b3vtm5/66et9nOoAc60/s3Pz+Pg1dZ6dfqIDaonpfrNz7Xa+M98xrblkY+0SSqv3m8T/R49dB/SDU0UqoHI/cJaVWaabLe6QOer2hYGPSs5Q9Fzz7tPAggGm6uGnpTrZkhCHbrW2K+DwQDINrTP1KKuqTGSTIPd++oqWPjy25QlCs2XMdema7nS4zfUgt5T0gktLx+OunfvXbLa/IFzHVVN7oBB8f57zLPGqjxOM99CsqUkHz/1M5YG/1U/9TLtH31/qpZ6a2uIuTn7zun1V6v7AiiGfoJNyi9aatM0dfLJub1q+QsLvhy7MmAp1cNk2/UUHOG7JXSxJtFU+C7ayE9hXt3uklX77F/57f8RAPCaP7dJtZ9qrIXqGQvWgr28aftyo7Ty5ta5G/BPfTsXt+5Vl7U5K6uk1ITUTbp3KplJru54RjDfsu+wV37PjwAAOppUeKgJtK+dU3dnfbek6kbOtCoiTbRb6s6mSXZnO/Z7oQQEM7p+oTV79YSdW7t3XY1Gy46jp36zpWN/nxKi9NbsObNqid1Uj5YttRTtVtr4p3zdN+HuT30BAPDBD33Y1klXEwvq2TEYWDfEnlruMKzST1B+c01DwqwnPM6S6HCcf+//YS1qP/lTP2nrpc8ySRInV3gu3//f8R3fAaDunu9bcurhC5OsOG7NNWufJQmBHG25KZ2VqSJOs/fMVf6FlinWh21fW1tDUjCdg32Ge5X8pFDPKlK7h+uksixH1mGsM+UZvdRCIguXnHhmZsSq69yqAytvuOZPkmQkqbbrw9Jfc54N0VIVERERERERERERERFxAZgKS5XI+GSbdR/LSf6OzgqVBDEstLKUJZqN8cm8JlGIjwvQnmQRCi1IaRBLYIyp1cm/Z0j2EAbV1TVWIZlEqIHg79Qe7L3aaplufuTDMK9aa1L0HrzWaqvox84MyoakDm5nXlFchuVMiqUJYyjyPPeCcet1JyryCXjXSluJIjptJAO1kQx8K85Xjmsgrt5zTgOhqUUeqM/0sJ9X/a39ypgqmidYz1Db02w23W/ULPVV09VXGlxRjS/bQqtBPcg7HDs8l4QE3YVFVx5Q9bWNd/A1nIVqj4rED0Rtt2e03T1XLsvsaExGqGGipazZoCaSdPB6Xn/LaSfLIKA+JGG5UpAkCdozXUf1XSgJRaGTtJQSpZqgUsaoKGFCs+Mn/+X86qlla5hXCSL5DEnMcPy0jRNoa5LOE6vWWkwtNOPthkXmtInMEjHUum5pXNbevZbUgZbdWU3siiJx4+9hGme0Rbrm9pcAAPmw0pADQEPbnRT2XlIMkAUyrsw1bQGDfIc+QYMMbH80zQBd1Yiub2jckY61B6k1qdi0WvHffLVNFkoLFedXo9FwQf3LXRuwztixplqbvubmGwEAqc6BU8fv1/puQnT+D8mZUDL+gLK28qUHgFRlQIMEQFIlrpQG5QLltb1nHliwOJ/qCOVkGKfWac9613oyR1/PTP7r4iFccmF7L8ZThnFkWZY5TazT7jIFSepbiuoWIsDKiL5avirZUiW3BoBXvvKVAIA9e22szRe/+AUAwP332+dw00MejCNHvqJ95qfkIA1yRU5lv3MeLC0tuXJZpzBp+pWH6j1eecUwPrE1Qibg4l503FE2sD84hspiiL6OjW7bPouHbtqx8bu3W8vRfe/9GABg8ZRasztq/VSClscudPHtByyZxMJ1NoZtadXe/0tDO75663aMfM1jHwUAuPnhloxnqVxGS8d1Q2MVT2pC6nxdLSFgfJ4dU9deZeWjKar4TMa6z7VtO/OBzlldt/SVwKLbtPVr7lKa7mbT0Y4/79/9ewDA87/zB1FHaIkt9H3NVBcnTpzAT/6UJaZgkm3KxvsO2zGMhh9TKppgeGOzmvfSse1/9E22b67Zby2Ejga8beNeH/d4a8H63Oc+B8DOWSeLNTbxhS/4TgDAkx77NQCA6xbtmm6oY2ZLSXZ66jFQNDJkWhW3HmSyXyYB5rqh4LuNFlNTvW90Pch3ApObM+0DU1x0NTk5CXWMMU6upupxwUUv13ZFj3H1dvydOmnncrfbxTC3lQ/TDVQEOSrL1IOAMn2g8eO9QTniyUMvC5pI6cHGdDUN3TcUw7zmfcarWfftbZOipSoiIiIiIiIiIiIiIuICMBWWqhAjVhA5uzacCVO5M66ikmTUmkRLhfGtCyOMITX/51BrNjHpbznKJOdiaZJz882stP8VpXeonQppykN/7Cc8wVIqHziwD1lDLXCF/dy1bP2bd6/Yz2MnTmlbND6GPLg109okWnRiErV6PZaIoLY2vIYWG5Zv1Ic2h3Htcsx4OkQ+96V79ZLxsWbtNmlCCxjWiZZB9zh8i2FFjWyPX733qhHKfGrR2x2fBpfX8HmQVWswqOiV3bVkWSRFszIIhuNxZmamSsRLa6tqmmZa9tyQnp3+z03GVg37I/GI1Hw6LbLGOdDysrp6yrWp0mC3vHJCzdCVgrIsLRWu+pFT4ugUgZRSyRRabNVi0dTnc1Q18ykZ/tTqUZgS65s+dXJTff5bLatJpnXBxecY0rXbZ1LmubMsc+wdOXLEO+eeeyzTFceNm1e1GFRSVD/0oVYLTVbCI4dt3ARzH7p4O42XkaxKYyFMCNthzKPG8qiGtKNj7Kpdtm233fZ0PPP227TuOm6UMY8WtHAOUBQINF5srYcZzhftK2oVe8G1TdVcDuhPn4mLKaTWVZWpri8Ltcg5JqtCmfZ0zrXbbTco8iBullalMKYhTCdh+05Zr1SDT0094+RcTMMYT4x1tW7SYixBjNPxY6f8ftC2+e+IxKsz5UERxDaE8qvX67m0HUTINnZKY1sS6XttzLR+n/nMZ1xMFctlf4dW+7DviqJw5ZHtkXGIV2oah7rHTcicaYwZoXmunom/xmBf8d2SDVMkZJNUSwSZdYfQZ6Pv/I2hHTPLSn09pzGliw86gBd+s2UKLOc1Xlgt4tmMMvapqXygsc75aZ07u1roqaVzUz1J+GavWN7stZRVIT3+uJgaws3ZkmkJ7FjmWJrpzI6sz+rpcIBa7CjrowncO8pquzS/4FKa8B70LnBz0/jpc3q1eeYY8DQx+zXKakgLPOfZwYPWS2j3VdbqREvZBz7wAceu950vegEA4KHXXe+V//kvWPbTRC3Umb5Tlq+yFtxhniNthOx2fhx3HsiZ0OMJqCxURp/lhlqG6Z1Dr7B19dz4vT94EwDgt37rtbjjox/x2ks5z+dO14FC60X5UJblyLo8RPhs6ylvACBrJCNyLJw74d6i7i02DDwvOL4oT88V0VIVERERERERERERERFxAZgKS5UxdgcZJhl0u8okhyhDXalMMLQIuYR5hjtzf5dbli4f2ghbSJ15BxjdvdfjRULNWrjDD3fZ9fOq3bO/Sx6bDwsAVHs+P0e/zw6OfsVqqZtNPw8UWeG6mr/p1lufAAB4+MMepL9nTjsz0PKzlv0+v2y1BCfWNOGlahrJEFXWEueGORRCbW0Yj1bXJoSaB2rY5hcY46OaH82jVFm21BozMwNRTXOq2plMmYCoJacvfntR/XFd8jn7YQYlujO+Zage9wUAKyvWV5tjim24/uA+F2dEi8KePTaehflXjPZH3boEVLkljq+erKxYJ/3YLafpVs1QWzXEi7OVFmdeY6VCLU2oJWefhklly3IGG+oTz2fH4ccx5JISazxWxnw8PePy6LS1z6iBIsvblYayKLB1+iRamnulNIw50TmfF2gy950+e9Ek4tTKHtR8PBy/Gxo/tDhTaU6p5drSRMGLczamaKid31u1fb1rbh8AYL5lNXqnjn7WPZ9U5+PygjJFqeW+u9eOLT7POY316m1uYqhMbDc+2GpKaSF64uMtU95f/9Xf2TYJrVH295sebNt022234aabbgJQyx10QnMeaU4pzjmXtLGn1uy8j0RzN+U91S4PVLbrmO9qvphENeW5+sUzh1wrBQpl2Uor4w0AoNNiXKFe4xgGVSsrJYZDjR1RmddlYu0eY3g0f4tqXc2WHm+wDb1Ku93wLVQh+1S/N14rPhwOHYNY33lB2Pps6Rwblr4MqPLJGMzNqCUiY3ywvccp1WgvLfnJu/lZzwWzteVrXzke+b4gY2H4HkuSBEOd22HuF9ZxYc56FvS3mKeLTKz21rSg1es2KRdgmIOp3++PWGhdbIOcPwPtTqKuJQ816uPWGpX10r9PqEnvdmeg093FLm2u22eyssvKm+RRNg7qvi/Zd/19A/u70bikm29/CtYLZZdM7bGjAxv/0078PD2zM5qUvK31K42L1ZnV994RzRM148aOvTffi1UbqoSvYb61MvetuKEXBmNrbMyzvd+asv1x7BBh7F5f5W6uY/rI4cMwTLKuc4TXsLxdykbKd5/L35ckaNGaptc85SlP8c5lu9nGWx5hn8cTv/ZWAMCznvmtrm4tzaF1/yHrhbOm1i96pczoNKDF8IgmPm42my5XIO+1smJlBN9Rww0/TpJophn62ncn1DOAcZZ8Vu/863cBAF796lfbMtRLp6XzfOXq3XjC1z0ZAPC+9/4tgMojY0G9kNw7jesWCgtTIkv9tW2IemJyYHSeWE8wellBf9N1uk69kFmzskJW5UxaW50roqUqIiIiIiIiIiIiIiLiAjAVlirA7jon5SKadD5QaWvaDb8p5+J3Pcou4lsBnMakLCfmuhrx4RXfYlOPRynK8Zaq0Ao2VK3tyoq1guzds+LYdQ4ftdojQ+2lBoEc2G99eB/8oOu9e5VlOeKjHeYGqbQ6k3MO8R6Tdu1hlm1adkQESRKy3jHvzszYe9GSRX/YPM+xvGytSGR+YjzQyh7rT8zs5g9+sI0dYXxWb2jcPak53bPHau+cH3TP127xWTJ+yxSV1pR+1rw/P0XZ8ajNpnaHZSwvLjlrQWevrQeZztinh5U1S8iC1K36p9Ls+VoU9nfHxV1o/pFAm5YkiasL2dPyWg6rertDf//Z2Vn0NN8I49LCvDJXGop8iNXjh7G0aMdRR3N0nVq3z7eTJDDq990v1CqrcTiZ+rQbZR/aXCVzmn1uG6eOOQvmqjK1JTpP7/ui9Yt3LJ3KaMYxsH7SWiH271nB0WNW29tQC9nCgp0Xn/qkzc/kxh7l5dCOhbl2gvbigtbJPvPr91uL1WMfaeNTfugHfgBANa+PHLVWqAXmiun33f2/cq/9LWva9h++zzIIOusKtX/0MMgNElQaSKAat6wPNcuVNrij51XWaqdVVl9+9hnPoTYy1zIKZQtLmw2s9+w1Lc2HE/rSOyuT5lMxYywmZIrq67x1XhHBu4D1DJk/y7JEofEf9LBotbXPNKaK447zqP7uaTfYXh1/6q3B+AQyOobMryy/0WiMaHND7WtWs5AAlTVqcXER/VXLthgyvzqPEj4A9gfVwfo8TFLrd7KNBR4dYRzROKYt5lPknLoSwbib8F1cj1MLc14SI3ExwTu4v9VDltpn39ExUDDv2UmdOytWzj3sRc+013Rs/x9XF5Bez6ChOfPyDfXc6Fgrx2m1DBZgLlCNQ9E1V2swxGzbXruquRYZS1jFjtp3GWXK5oYd09V6IR9h6KusCiozGuwPnedZla+M713ej+MrtN6yjGv22rFEtsKZdgcrS3aN4dj+AnBeuXjiJr1ASrS0crrcGLFMVTkibfnzswvaNp27851qnuk9rtlrvRc4r7n2WD1m14CbKuO45izLErk+qzS3ffblQz5T5pyWy+dw+LB9x2xsbGBrzZ67rNatt/3p2wEAv/P619lrl+01y3vt+mmglmzGXjYzcfdl/Ncjb3wYAODQF+07g7FmfC5JbS3SbLa99oaMqJPg5pQpRyyShh4jQ1++j+wPzKh1s84+vh1ES1VERERERERERERERMQFYGosVcCotsr5PWLUmkOEGp9Qm2aMQW78GKpxfsz1a8LjaZqOWK9CC9Uk69o4C9yknXfI2NKdndF6A9dff513LTUhjHd4zGMeA6Cy4AyKKgv9JB/UMDM74VhQWhWjYJhjKoydcgwszEllKu3JzIxqwLQei0vz3jWsc8jYk6ZVviYeo8WK1qxdS7u8e/P3MLdKv993x6hNcbF7Znz5LANlxcw0p8dYZ4IxfbwHr3VMXDBOm0eNCK1J1N7s0noxH0/C+JJWCz21KjG+otPx477SlPlnfAuZN6eMn5tmYcG24fjxo7aOwfhPEtXizXRdbAiCPFWT2CCnHqaA6a3i6mVlOlRrQKepuX5QunxxHe2HIrNt7qrPO8fxlsaU0ArRSjI3xoa7rWbQzZsbfeYuajA5Tqid6/UGeNSNds4Xpe/j/6iH3K7lWk0l57Gbk3nPaUjDfGkDjTXKN0945e1ZtPOEOUk219YhpTIWKtVmR/PDcC4wpqqlsmiY2fo1kzaGJWWO5okrUr2Xvef6lq9B3uhRjlDj3nBW6abG84EMlF1q4+01W9RSqzXQlAkamVqoVGM/KGmV9XPm8Z3QSzTmqSbHG6pFlb5tw7rGxYXvp26b+d1y796dTgcDQ8ZRZWZMqUG3dT6h8UKUAbRYJUniGD6Z+9DlnmPOl8LPk8Vy69p61pXPmRZtekP0c59NlnN/Y2NjRObzuYdzvtLkBnkXUXlJMP5lEktsmMuwfl44vmHOrLmeRjBfZT1mDvDZDsO1S9gX4RqIx1tZCireyXbJ+LthS63p2p1NzWPUWrP9fo3mqepJgVyZ2Ggpaedaj9yOyYKsjxt2XtIyPdNpM9UjtjSWK4FfV8YWe+yaAIqi8ryg9cLlizSM9dW1BGPCM763GV9fX7NVea/q5ROcG1vqkdDVd/Lh++7Hwqx9H65q+xxjppbbD+ICZ/TaJEncubvUysP12KTnTUN+PUY9desejWVOmVvJfu8oC2PzOrV6MY8ZO39YYH3Drh24tiBY7ukTlvV1U61SlCF3fvwT+E8v+1FbrrZ3dtl66ixdq9YlZbTl7z3NG9VImbcrxYk1KyNf8eM/DgB465v+EEDFdnrypH3v7N5r49P6au2i9wzge9fU637ypK07117hWryR2HWWPaZjRz9LxtYH8VIuvhwyMd4zWqoiIiIiIiIiIiIiIiIuI6bCUiVid/+TNDTJmPxOk/jmw3wfdfa9kOEovEdYfp3DPiwn9Ml0LEaZryEZx/gTItRAzarGiJYEk/eRql/xw2+6EUClgZ5Xhri101ZrzHicrFP5rocxMtQO09oVsuq47Dy1WKjQb5/f6edOtpuPfMTmKSiN1TbceOONVXxT4PfcnbH1qOIsfPYXamy63e7E/m4v2zZQmxn6TmdOe7rgrq3njgKA06vWR7mjOZhcTiZlKGumzSq/hcZ38LOydtnPffv2eW1wuUREKm2xaqfmVTM21NiIebVMktGQmvosS9GenR/b/jT1LVatlq81r7MADpVpKS98ViVa9+izTdRzTaRqrTHBnKl8xa80JDBJC7sWbX8dbKuWSi0bX773fjc/skxZ95jfS8ct5+DirD8nTNJEpvMwUYtNxkmllIID1SimpWo79TnNKPtcOkjRUatOGTzjNNHYg4HG4ahFiTRhkrVcjjc19rqx19bYi1JjiZqc4+qD3x/a8+bn5xxTXUsZNzmn152mmlYIZc3q2fo0m02Xlb6KnVKmrJR5a5TZT7WxQ7UyNbSszd6Wy4cyUKtK2S/d/YGaf7zGKRiN8WhkKYz60OfD0HqkVibmRxroc6JmXcVMkiQohoxdUYtAEPfF59Gjah+2Dwdq7WsgRaFadqNzrs24GLUY7tG4zVMaJ9FWqz7EwAys1teoplqojdfYl07qewmE76vNzU0Me6qRZz45jUdhLppSGfvC2KbhcIgsY241P07FmKHXh2RLa6r1fAiO/dLFSdDSbVRlXMr4d7Gzkqdw+RUJ49horzxdsDEG/X5/pJ1EBgHfvLk+IxVFaKT++5vGF+YtGxZS5XkTlfGMgdbcgy21OvVUdiRdrok0tiVtQNTKxHjtU0PmyVPLET1cUt9Sm5gMJ49bK0KhQUVNHTMtjQseDMgcqbHBw553D2MqzwiBtjfRuQsyP6t3kDINcrKWZeHWTsyLVzC+L1hbMbdUovFQhbZxafcefMtzvg0A8Htv/u/2vmRN1nxMvU0/9nphzs7dVqvlcqh9yzOfAQDIh7ZdC2y/5v/L15RZV+fKlub8GwwHFfshGXWDsdJU+ZYblZF9K4dFn2mz28RC28bozi7adzplFd9Vva1Vbbc9Tsv4D730JZg5YK2JZku9JQrWWWPcxLfgtFPmRqvWy5RfW/re++4ftLG7v/bLv2L7ed6uw3arZarYquIDOb6cXKWlUPt73jEI+pZbrnVOb2y53xa7vjWr6K169+S9GrSCFsnI+tyxnbb8WKuz4cqTThEREREREREREREREVOEqbBUGQhKNKx6CoAR1ZapH3wqjdFrVGvmmHCMaimd9hLuM/SVDK1NzlJE31T9oFalngmd96VyspGk3mc9Q7i9NqviGUpqWFRbWTDvifrma16Sm2/c79WnPyidJmq9Z9nBuItu9VQTfMz21WrPatX3rtg8Sq1WCwZ+/FdfNbDzc5ZFalm1Ggtz9veFBatNaHatJqbb7TomPKc9aNkK3XLLLQBqmbNXngSgssZ0Oh3nI+t8pclyqBaaMJaOmhmR1J3fapEBSBn7NI5lRi0zoYUqITteo3qGjrWnQ39u9Su/+lqvT0c0Fv0NF+dG62Ho71to3EUe+gPrZ57nI0xA1CKxzn3Ny7GlrD5kNCzKEqlqFBkXlamWqJVZTViuDHFFX3NwiVqW6GNsEpeHbEitWelb02bbVX4dW4YtssgLNNo6ZhP6hrO/z86yOY0ojUGvN3DPr6fayLYySq2srIzkK+M4Dv3VQ01+szMDCNkglQmOBH0Be2LIeEWLK/LUWSo787NePRhTQAsj6+VkX1F8LCunAAAgAElEQVTCBTnoJ1muROMQnKWbsV8B41ZRFCOMn6GGkNc4BkiXn6moMfcNvWs45tl+oqmyNlM5Oij6LvcL6zEyX7TdPM5YI2OMKy+00lN+ES7mAYHlIG3U2u1bZzlfXD4VdnWgWe73+2joeJLEZ26bxEJVMVklbqykDebxU0u3s1xWOX6AUdasfr8P0YHHV0/Yhwlzvwx9q1ez0YKGu4wwmoZjxcXHqGVTkup9y/ZWMp0m2/EeH3XU+xGo5l23O541dtpxpryXYr8AABK1CGTBeiVcx/AzlQShd4+TSbSUkx3Z5fjS9YwO7c1e31mEmqlaZPPx8eKM23WxJ8McPTJO6iTsaw6la5WNOHz+9IqgHBCklbVUqzhprrh1QlaNj5BVdEst8eG7lghzRDabTbz4xS8GADz3ec8BAPzEq14FALjrU5+099KYSmJJ10233XYbbr/dxrk+7GGW7Y4xpE42pf46Mee7olnFjTvWzjRcQ/rPW42RmHVyiDn+SmfdD+Pk+V7ZtWDXfF/6kmXjIxPy+9//fnzjc6yVrej7Mposjxj6+aPGjUvG0rL80xpj9aY329iqn/vp/wYA+PKXLaPs3r12ndrr9ZCKbwHlOpRg/4QxV5Q/c3Nzrr8Z70tvE57Ld2Y4HpKkIjHl/Ss2xu3ZnqZiUyWw7mXGrQPOHogaDrSCQZXBi+1cqNVdPQKhVQeDIt05OvD7OgArgcB71ANvuRC19xoq6UCnTVdB+/uBA3u8e1HwpGnqXmR8oTQ0KHz1tD2HL0UmBj1cHHF156BzBAzLdmNw/cMeCgBYuMqafUcTwnW0jX03KVMXnKp112fFBJ0rS4veeWmaosnA0uDZzKupOHSFYH031isXu466XJFmfV5drlD4ydy44HGuc+5RGrcho+teV03wXKTOahB3PVgbAJpZtwpo7/luCy65ri6iQ2rkyi0hqy1KGUzpU8wzIWe4wC6Kwr0M+z0/0WdZkKCC473Ue9lxwj7f2tqquQI2tU50Y6tITYBq08l6lGXh7ks628QJb//ZXTHQwPHNTV0w6qY0R/WiDhc+jqAguBVdSijA8zx3rkoujYG+mFSMjAh1Pj+XVBsJ2h1uKnzSB87T0H23UigY9Ac+QQXlF58pN1OjAfPVS5G/uYVPkPicYL9sDuniV40Jt9jRhSJfjCGRS6muPtyMZo0EuVMkqLuJygW2O1yY0R2l3++7ecn5yHNCMhr34myELm6CSkHmu9KG1NbNYNHH85vNZpXMVhUZmRJV0AW3mfrpLY6dsEqzxZVl5/K9pRtTLjKY4HUw8F3oXBLmGnmQUSUINzyZKmo493sDf4NEDAYDp4SZRHvO8rrqrr664bsPl2U54t5XjZ0zb6rq77w62RCw/cDxaYCI2Odh/DnsFr9FWb1/M195kQSbmrDP0jR14zx8Tw+UsKKvMn5I915NJE5lT2dm1m2qqE3Tvbx7tzsabLfmss//1MmTaKs7Hef5uipuQ5IsPlOSDbiNYdIA9eOO9ErXS+Hmysk5Xeu0monrk9On1N1V5QuvYf/UZXT9XsvLy+6cq/dYF/5f+nmb5JYbtHuVav2DH/wgAOC5t38rAKuAY7uG3Hgk/rqEG2Uq4wX+hskY4+o81DQMHBuUme7ckp+8B8eHYKhjKBxf4XqEYRtf/OIXAVjqeyb/3avJ3dd1nZS7zYUfYjMOLgE4n7fKnff8/fsAAKfVdZz9deyIJcm6atduSOYrbcJy+CxdmEpAljbuN47ZUCE0LnWDCx1iygB3PCb/jYiIiIiIiIiIiIiIuGyYCkuVgfEsOuOozUOaw5CYAoH7Rt0qUpTjXRBCtzRSVIYm26IoXHBoo+FTv9J1j9p/ahVIj5kY47Qjc2pdoUWCgbi7dq3opzVNlrrzJoXk0tKSaz/rzPYzESTb5DQ0NTr00G1nryZvowZwacFal44ovW+YuG51ddXt9F3C3tzXRGVqGXHa1LLSLjMBYEidTve/kJa9rVrU1hIJNTpOe8AgabZ/rj3v1cO5YM3bsqgZrpNt0IrFpKJS8lmpRozuLKrtb7Q7rq9CVwinCWHAf+K74tQ1IqwjE47ynLL0LQDUtlCrYklc7D3YBmelCCy0VaJI3xoFVInxCN6zDEz2q6unvLKKonCJgvmM6H55Lom6pxHGAEVunCtLV0lKyn71/Ca5jnRIDqOWkpk5n8hic6PvKI2XdRySwndTx1yoqaWFivN3c20D4iy8visbnzWDo527brOSQS4wmwkiGXStYyrUIFca3craxGucxVbvP4nylmQmRV6CHhPOUpX4nySE6GtQ9IJSETMYPE1TZDqn+gM/KTv7PZSFpCuvJw4OU19cpRrar9x3n9cGem/TfajuUkSE30PL8+nTIeVvjo0N2/+71IK/vnZKy/Fdu5homG7WR44cwXX7rVtyT+Un+8oR/ehY4fMJKamTJEGi1PI8p3LVs23odFQ7Hrg+i6QuqWf4rg2/U747k0YNjsDJJS+nHPGtv5X8qlxOQ4Ipl+LiCkWdUn0kKbOII4jiWKA9SgI3QEeapM/s9Mam65sRiyCt7Hx/z9JFlAnLGXKRuOS+dOlOKP+UwKLR8JNfO2tPXiAR1tmWf8MBmw5iS8YTG4XWNmOMI7EhDXZR+u0OLRgifLeJI+2gh1D9vsBoYtdwzWFTv9h3ajOzfbk0b+81r9aWXSuWWvxrH/NEW2pZUaw3m4EVlzwZLiE2tH46v4IQlHp/hOvU0NrbYFoIenQVft/XryHCe/E57N9vQ01OnDiBf3jP3wIAvvm22wAAcyt2bblBjwH4lvFx4OMeqCWe62BaQW9+1CMBAHd8+KO2zmrR3Fpbx5zS7m8FydZDN8ihI1Bpem0rimKEDC3cN4Tzo6JW36h5Imhrmdx4DFHemRAtVREREREREREREREREReAqbBUoZZ4C6g0NNvBaCCsRVEUuO6g1ZocPnzY3j+w8lB7lvd9TR8/5+bmsP+A9TPlDphaYpeAUnfXK7u63r273S5WVAvLJI5Xqc9qr2c1QNRqU0s5VLIBahUZXAcAq6etlYUBfs7qQ+IKrd/MXGXtcBoYWoDUF7nY0sSP6gd81dKK126jlrSVleXRwE7t5jCoj77CLaVhTZPq//A3xlRRu+DihHJaCtWpuszR1nb19BmlzjLEGAXf6hUm5qzfvxP4f4e+uRwHTdWcNVstdz8vzgk1a5Lx6Z5p5atrYsMYnVBLNRIbU9PUMi5tRFvT8ONqDIZefzSalVXUwPdrJzUtLaazSuk+zANLBFL3nKmKIiVuaP26UpDnOY4dOw5Tsk+UxETHRt6v2uVoWUn1qoq7lsaeCQOLazE33Vnb74xFC599RZfvx604q5gYF+vW0udCavGGUl1TPvAaF89XVJaajlrQQ21/6HPOMcjxffjw4ZHUC5P80Z0G2VAb2qjFp9pxu6mWOqd11vFEqu/TmhSySvxZlTGO7hsY1VQmRWXpDX3pCVqoOD9dfdQCXtGl58iUZGJDNfWUz2Gc1samfZZMhVGaSgbRIsUYNxcnpvLTjQ+XmsF+37t3Lz73hUMAgKv27PLaWer8HKoWnM+McrQeY+Diolpt77Ma08b7JPK8dDKnCOI0Qu2vaL6AwsW6kNpdRmRdpeUen86EsDHWZuw524mTnibUyZJGYl2SxFmqJPgnbG8oc7vd7kicm7tvI7AqwU9d4DT4SMCVl3tGTHIbJFvlJ5PUtxtNDHXeNNv+Ox0zPskKx+ogSKTbbGUwhrGBJAXzrZzhe5qU//Wx025z7NnP48ePe+XWPWgAn3TFERMNGNxvP5oaXLaqVnTGcm1pfNDi4qJLpcO+2+rbczt6LS30TM4cWtCKohhjLbbtoicC5Q4JOhDMYQMzsk4LE3VXKS389aKIoK9W9R/7UZsE+HVv/F1bTK5WnWT8eqkOrpmKnHKNdht7j4Vluy7+iq7FVzRVTC/JsKnHWCd+Oi+LQegt46e1EZERAqRwzIbkS+zTxcW5Kp45JLYbY4E/E85qqRKR3xWRIyJyZ+3Yq0Xk0yLyCRF5u4gs1n57hYjcIyJ3i8ht26pNRETEVz2izImIiLhciPImIiLiYuFcLFVvBPAaAG+qHXs3gFcYY3IR+UUArwDwMhF5OIDnA3gEgGsA/I2IPNSQsm0CBHZH6xhrVKuX6K437xtHL50kPiXo0hLjCcgMZT/JFrd7925Hg33ihLUQcZdKCxB3vJtKmcmdaj1eafceK1O5ayZlY+ijmgU+xFmWuXKoHXAxCOm81t3XuFT1m9f+GLhy5xfsTnxx0baJ/uyt0t5zTrWlTZcwsFPT8LFuTA7p+9mzHiyfCdSSJBmp21D9TUmtPqqRZBzE0LWDqLQnZK5jvJYfB9RIqliKIWnGmaRTLQz9TdUsD6nVqihKAWCzXyXcZYwKE981NI5GlLHG0FKmtXNWHgESUFujDHk63ta1H3o9X8vkWI3SysIUWgcIxmBQ88f4pboltWLmUwrwniZbTDUujGx8UA2cJvolG+qgXzrNX5hcj8/f0dDOkO7bXmuMIC0ZExPQvTZ8X/WLhDfiEsuc4XCIQ4fuqywjZP/LK4tjSAddaVftM3CWCo1XcQyd7Xk319jXbo5n/rjgc6XGjBas5cV5NMCxY+tMhTXvOYmevNXM3G/DgGWqyolJVkrfksW2LC8vj/idhxpCfqcVszlTMQoyLoN+6a2gnPDeOZkDta2JVLGg64FGku0NY19pA+n3+yMMcWHMWpgIPte4QsfSlTbcfGF5fL6hZZksnrRKVdaCwr178oHPEMkYzH6fbGFaLv00RLBv3wHb/jUrF1pdtTIxHk77NKQ4r8tiWmIzjbE0AcV6Remdeuf1tgZIGz6lNuUE4SjPh3bsZi3foiAyGjtU0WOPt1SNizEJLWVMtXER8UZc6jWOCBqNtPZ+9GOk0czcuy2tXQNUlogwhrGKLTIoGA/c8lktOZyYsoDso5RhmdPKAzSfFoF1I6eMVOFB9ty+rpfSVguJep/M7bHeLpwD7Rbfx3bcc/y1W+rxQVZZiGMoZQc0EjKS+l1bWcoZH1OXDYzD0TWMWpdD9sEqOTlZhY1Lsq3FwqgnB9nvOppYuKGW2bRLOvjSxcFTfnUafh3daNdYwqa+TykXgGptYcSPoXJrLV2v0GOB6VKyVsVanKnXUzVXxnvHhOyrBw4cwH2HLM36rbfeCgD45d/6DXv/GY2D07oPlZW5rfFrfR360mq42Kk5jTPu6VrrV37xlwAA1++3XmMN7esW7TqlATSlzEDbu37KrnHcu0t8byGuj5y83eyjYOJsvkcYU5uTA0Hj9jU+sNFUj6NcIEkQw5Uy/g3bwlktVcaYvwdwIjj218ZwBuBfAOzX/58D4C3GmL4x5t8A3APg8durUkRExFczosyJiIi4XIjyJiIi4mLhYsRUfQ+At+r/+2AFEHFIj50RInb3zwSvyxrbs7hktXyLc/NVvImxO99rrrExRUvLVhNRFj5zoFHN8+zsjLNi7d9n7xsybjWb1oI16Psa2DpjShhntU/L506fmpKm00BWiSnnXByDbS+10YvKDBZqbZuBBnJtbc1pCUNtIRMEh9rqrJYngfdne+nXv6DWLlrZXLJL+sVS61HWk2RqjhzVCBEhq0qrUfml0hJD1q4GGYdUW9No+BpoZ+VBpaEMNf7U7FNbPa8a4ZCZpiiqWIl67iyvz2jlCRJ01jWkjmEsGDvjkqYC1TPm+Z1OZySuIPR75rhzCWm1DGNMpfnT589nFo7Vfo/+5tSEbuk9ykrzEiaepAVNxyy/z3SsRmhzs1frG7+9Z8pZcQlxwTLHWlNyHDtuc49cvZsMfhoDJwBzg5H9pzOjFmadx4wDIuZ1nPf7A/fcM7XkrZNBT6dNDt9is7DLyrFmV+fixhYS1Sb3e8w9Zu9fWZTt+OjpM6aVHkODdmvGu7/L9ZJS+2pPTVRzl+m4agy33HXMj0OmqpSJYQOrk2MQVKNlvz9wyUadPB6qJcbF36hs29S4jJYfG5gPSycXyCrI2AZaYYV5pBgPxD5vt93cYQ6xTpBIOIyJHBg/1qVuqWyqVpMsstSG0zjRUYa9XJmsWmklv7dquQahtQaAPmOZGFtBa2jNCjgzo9p8tcKvqtV9dkE9HFKfjTFNmu5alt9oUP5pnjv1AqG2d6jxIwPNhUWteHdudiQeQxIyZSnDVlvnjMpYSWjJU4u/yUbkdpgXbSJ7qEmc9YwxLIn4TIGXERcsbwi2n++terxiGMtRWffObJHMsrSyTNcYY+v3qudDqn8n6jG/4Tu0dFYvZd88ZefsjMZPDaV6L4W57VyeRGUVpQyjRwDfSXW2x5BdMhwj42LrwneokyMjjLfjY47SNK2V458T5jwN45HqCL0bwrWdS9SeTl5609oSrhdCxsKwn4bD4Uh+xJBB05T+8+e9NjY2nOUnU+vi373vfQCAJz/1f7PtTRkLb9ezW/T4aWkOwMSlFMTrXvPbtu6gZ4/Gp27YdduefVZHsXripGt3YshY6ycbr56V7VvyGXCNxedx1fKu6vkydszF4PvfCfcurSW7H5FZw8uYp0pEXgkgB/BmHhpz2ljjmYh8v4h8SEQ+NKiZQCMiIiIm4aLJnGDBGBERERHiYskbEiZEREQ8sHHelioReTGAbwXwNFOpDA4BOFA7bT+A+8Zdb4x5PYDXA8C+ffvMrU94JNptslopY0qD1p/M7dbJqsVcT4w/oZ81LRNJWsV6dDt+nI3TptBHllqzWT+2qa4R2tzU+BNmjNZy5mcCyxH9clX2zs/OOW3UVs/urJcWrabREaPouWTFo5WBfu/LSwuVFsX41gZaEBoBq0uzqVrbLKv8aDs2/mxDWQfDrONh3FRdu+IscVrHdmN8jITb5WtfDwYDbK6uj70GQc6v6lmqNttUucbCGBAXb7FhNcHMUUPrQsUQVLF/hcw/Tkuh2ouO+lfnqmvYUAYfk0jFDBRouMN7OR95RT2OitrEkIGNVrewjS7WSbXXXt8pRjSP4scuEFb7U42JOlz5pa9FLrRfJC/BLCqDgKEw1GZfSlxMmbOytGQWFhZGnidZo3rDgev/UKsbZqfnJ59TkjTdM6ZWjTKgNFveNex7ji8XezXIURjGQfkaS5YzVKtSs+UzB2YmHdG28bcW4wC0DSx/btHXuopUzG2OLTKY42wT47DqmtMwp0xTqtxJ9XPZx42M8rySPdRYJoFmvh9YVENLe70cZ9kn+1lg5XDWaxfKVGnBnTW28K8JNcQuHitg5szzfEQzHs7XUDtaPz4cMh7Utm9W41BWVUPb6PjvL7JCbm1VLFmbagkMte6uD+GzltWZtkJZE8YPc1ow9oXBB4xNGRaj7H8VtseoNa4elxoXU948+tGPNmVZjsTa1uMCR6zKDf/ZjLm/+wzjHlkOvUPCnD8jjJp57uYzY3tdvjW1DHO9kpMFlPKvkbq4cdbdzUWVYfQWYl7FguFTSSVTwr4phv46JPSGqVuwwti9cDw7C1EQB1qta5qur5i7LWRXreKa6RVU1cflGwvqyvLCNRW34aFlq/5/UltDjbs2HENZljm21VBGub7L/e+NmveB0fXwiVWN7Vb5++qf/lkAwEte8hIAQPeAWrmVhfS3fvmXAQDX7tuPRD0S2mRD1Dgoxqet7NkNoLKUL87V8owGspF9Q96A8BmGsvzoqROunN6mfTcuzds174wyKM7qGK/yU1WMf+Gc4Tkzyfa2SedlqRKRZwB4GYBnG2M2az+9A8DzRaQlItcDeAiAfz2fMiIiIiKIKHMiIiIuF6K8iYiIOB+cdQsmIn8E4OsB7BKRQwD+CywTTgvAu3X3/i/GmB8wxtwlIv8fgE/Cmsx/8GysOADQbDZw7YG9zkedfqGzapVqmFlnIWk0qfG01+5aIoOf5u5gLpcmNRUp5mbtOWEeoNBnlZaikIEoz6s8SdTIOJ/9gFVK0514vr0sd1bz2lQaVZ+JxWkPVCU0ozFXdStHi/6res99V1/tfacWu0mWmWZjRCuaNq2WgDt/9mWlIbHfRegf3RqxYrlcJFngm60BJ8wZ0213Kt9o1bi3VIsh7fEWMtYrz/2YDfaF7YeWq1u9zmQb4yV1DXH4vF1/B3kQ+PsM2d36vardCTVv42M0wpwKdW0/7xv6RIcxdLQeUJsT3mdcXfmd/TAY+Lm/LPuUH2dDjZuzAKyrxUo1YZuan6fRaDltfeiLHjIZXgxcDpmTZSkWFxdx7733AgCW5iwrES2e3W63lrPIvx2ZpcJ+rOZ1iWPHjgCo+4Wr1lE1eVtb9vmQjYiWcI6n+VbLWara6o/Oc9z4pGZ51TKR0sIvZlRTSa0zmbuabc1d1wrGfk3mhX75Yf60cIzX84iEsQw09hhhLAXjfhgP5MdP9Hq9SsvLXg3KD1kA65bDUJu9FTBdhprjMFYyy7JaXAjjefn+oCxg4/y5X7c6hXUM5URYj/p7Q2DnY2/LzrWl7jW2D7VDNtRK39Znubpq+/LTn74bAHDw4EEsLvra9tCzgHFzjF9j/GCv13P3pSWyHqtl66xaaI39y13sTcUoF46hSXAxiNnokiS0dolcUNTCuPtfcnkjYtsWvh+IceywLrcU8yUF7xwiyzL33g/jUcKYmkloNpvOIuA8a/SeCxoHdfhemzet5awQtr5zSwsj77JqjcXnynhIvkfUooJq/IdjJPQOCfM3VeyIxYhlvNXyY6vC+KzQO8cY42RDKGcmxaU5uVCW7rmyz9x6MFhLuhirpLKQ1cvUSnl1C+UtrT9hDD4Al7eTCJ8L+9uxntbkdEPPueYaK2dOK8P1g647CACYVf6CV/38zwAArn/QDQCAlZZt69F778fcjI3LMoxz1YSmV11rY6gK9a5wnhSdmleaWkTDucE19+ziktcWMnCfPGnjsja3tpyFjPuCDcZd6drzlMZwsXzGkbXnq7UWGSPd+r+/vTXOWTdVxpgXjDn8P85w/s8C+Nlt1SIiIiJCEWVORETE5UKUNxERERcLF4P974KRZSl2rcw5C0XItNfptJ1mgbtYt/PWnXlTrUBJg9dYDWGapi4HTaJaUu7mKy0FNc+2PiHrSJJ0UAy1TmoBme9abU5Ka5PmEEjm/YziUgAZc4Aw34fYuoeZoytrQ6CJkwwdzRUA4z8ynkpWFWoaDagZH7prqb0p4WtriFBrIjXtiutvMn/1/ViayoKjzHUaH4UkcfFum6rFyTS+YmZo65Wyn/W4kDknq7SrToOpZpRcY9rKgnkvbL/3y76rM68lQkYeB9WaifZtn/mGZrsj53favqXQ5e3SevXVAkHfXtrY5joz7h7Upji/bvpIBz7cdY0ln0mYX4KflZYNWmdaKBb0eIkNzfXlnq+OFWqYS2UPI8vbcLDh2jBU7bxjfNI+olbzSkNRlFhfXx9hgmxKFXMS+l0TzaZv3QitmEDp5iXPPX3aashofey0fba70FprjBnDUurHE5L976qrLHvpOvPsFeLqTi0ez+E4KdzcpuZYfetrVqlQM8uxR9alkJEyl0pejMRpDsn6R1ls+8fljgs06a1Wa8SjgN/5rBwLncpPfq+ztYb962K8gtyAhfFj0Pr9vruvOyenZpqacz/2IdRwNxqVlwCtz2G8RBUD68e+lWWJwdD2s+i8PK7Wz96mLeeqaxZcXYGKUfHmmx+hZWUYDKw1i/OUMX4chy6mQ5/DUBm9kloYD62cYewnZTEtd84roNS+zwcj2vYK4zXqjnGxpn0PMRqfdYXAmOr5avtTWlQGlWWYnhMuttt5B/jrI+ZHGw4LNJh3p0HPDd+6wS6r3vGsFPOjiYvLZjw4rSnrms/S5cLiEqSw9ZntzuPw4cNe3ebn57U+jH/RMdKgFYZzu8a4V/rrsnFxhvXfCREZYR+sWPfI+OvH+4WeLHV5R9AAyX6mF0zV/5U1LHyPuHjQwALr6tX017NpllbyQ/vf0DuEVq02LcJk1wzfO3B5wML8c2TlS9TroZpBOsaSBKV6iDX0Hd9q2fm+a7e15vzln/yZ18a+9sfpk9ZiNLu4gJXlXXqtLzudRb7lP6fhsIppdvFdyi5IC/m6esyQL4GWpMpLydYvaTSdFW/9xCmvnf1N39pOK+uGxo+trZ8Yidmi3Juf243tYCo2VYAN9KMpLpw8rVZr5GUUPqwZpeRt6maHk2xtbQ2ZI6TQBUWQ+NFRZJKEgi8CLhLKUUpFlhsGTycqGEhD2mw0Kqpw+AGooSvGKIWkrdfs7Kxr98bGun+tCsW2Bi2z3TSzS2KcAHFCQgOLm0FwfBhsWV/ch3VMjd//YWBop1FtYEaC0iloNRA1L4LFkyF1aCXwQneesK5EGJhav27SCz50CWC/15N9hi5eleukCvwJGeJcss+aS1S4SGe/nNZnS4zbBLJOrE+dxKJ+DetXb0MjcDlyizFSx+sw73S4QePGceiOsbzQlfJKA12zQheK3poVvmmz4RaR7OtQboQLF7cJQDmSZDZxCWJtOQyGDamm6XLV3ziNUuVFq6vU2oW/YOCLK1zsJkky4t7AcxINru4x+DzTxZi+SIV6lkTczoc0vHz2WbDoc25KaeVKEwZCg7TY5KPXRRUTjVI5xTE5Ozs7sqkdTXrqy966LJqUvmDSBq3fHyUHcPOU7myp78pE9+jE+JvferLgcMyEsjWkp6+7ARlHCNLW+9vfFhfseBgokcUw95Vx3BANBn03hycFeXOhzrYUtTJ7W76ba9iGRF02my1fNuaFT/RUv0e1UR+/YQ5Thti6+e5/V6LMMaVB3h84pS9TDiDYOAFVH7l3TECpHbqsluWoGzplQ7jZCO9dlz8hmQnPPXH86Ng2zc1rOpuyxK5du8aWz7AMzolQ2VmXWZM2T+FGKeyHursvMcndNNyohRT09fuGCMuo9+m49Ua93WF/hwqYOqkNgk1jqGxPM38dU29TWH5IlDGpTXmeu8fAg0YAACAASURBVPvyXG6Mjx2xaUdmu1aJ494Daki44YYbXD1Ei5lE7pSFdP01xVlIfsW1U+Ui7beXfelo4Xt9Z1Roz9h+X1CCClK7k4WT70Nu3LoLXRdu0tSN5/HjSt1+2E+dcjZcXOfkiIiIiIiIiIiIiIiIrzJMiaXK0hmGFKJ1jWxIWR3SnncDq4tLBpcJ2hoMVyVR883Ls3PqyldL9mqvrUgAzATNR0h6kKi6n/vxVpaiqRrORtMPWiZCN6Lw98FgUNPw0U1mPBVv5ZpUBVMaMImvaocKtfbR9E/TsH4fqnYpa1XPIzS5ny0Atqx1F7VWYdLCKrlqoKFKfA1VXYsVasdJIxxqd8Ig13owaT2g3qtz4BpUT9xXd8uqt8U9O+NrpBlMXXdlCLWJYZ9OotKt032Gge3hPcK21SnDmYCvUFrVfMunfzcu+R5dlXjv0o27UMMWln+loCxLbGxsOPpgWhmoHevnw4k0xJx7oYXKuZQlkynn19QSRovUkSPWpWtlZUXPqEgYVtf94HNaSOjC1dVEwY3AHTFLspH56ZJkz6rbId1uxJ97Rs0c/Xzo+iKlC8lgPC15NTcqV5dwrDuGZVq8m9S2qqQMkpjXrW2hxjp0BR9neebcoSYyfNGF2vDNLTvm+Qw7nYpgh8lnq+BuEmOofIKvfa0TZ4Q00WEy0NDFsa5RnutYS4CoS8+mElPMqevQ+tq63ktdLWvtB6x7UEiUEVo56AbI8jnWLFGG78IzLil5/ZOJs6ktTmU0SW+lSffrOs4DIfQsuNJljk1nrHXX8T7UHJ1JozHSrpCEKEwdUFlbKjrykHyoShXhu/KOvItrv1GL7yxDSm7jxrVatdtz1go+NGbEc4dz13nOBMRGYeLcej3CuRKOg9BiJCIjsiJsf/i+Dq2ddRkSWsJChOuVPM9H1oHh+iNsS0VCUp1f9yqpl+/eTc79+rRXn/qal15IBOVf6I43ztOH7oS83wm1UNENjhb73butO1xLvcJMUj3zMJQlfM7h+6gu70MSsNC9m5aq8Dy6o7eTzIUuhN4TTMy+fJWte0M9RVifue6sI2rhO5luhlmxge0gWqoiIiIiIiIiIiIiIiIuAFNhqWJ8Q5VUzaKuIQsDj0eocXV7aDSYjZ9z3Q4KUFvva3joq15RfquGQpUmiamOzwQavVCL5I5rPajlTZLEaTYhPgFHGBPAOIww1qvf71caDaVDD7U2zp99SP9/uN/pv04rVkd8H/hhz4+/IXJUGvgRn3g9J3xmlVa/it8JrYqEY8Z1WmP6TFO7VMU4sZxQ00rtiQksKON8mEMLYF3TZMv3tVxEo9n0EnoCo+QiRcCqG7Z1Y2Njop/xpCBtFwdT85UmQottFafla3GIra0taJgdCsaeSBDMzKTT1FjV6LaZ5iDEJF/tKwVhoj+2Z2try8UjsX/Yxwy6Hgn2ZzzbYBPGMIYn8P8PRO6ePXv0PAbu6pzvbWBpyVqvjp06rfWw5VytaRSOH7fB4YxTcgHVZWUV5SflUTjGhVo/Hc9MKExZVG/XcOBba0ONYb+sLK3sE47hRlOtLmoW7w/Uk0CTlIvx5+/m5uZILFvoSx9alFnnkydPungAp6GdkLQ7TGRcj7Vw1mEmIdU40cqqqfEqpT+P63Of85RaT9IAh3KKtMH1ZMH9DcoWyim1OqjngUvOylQZCWUd+yk7q2WMbWGcRCX7DBqZ/44Jad8ZF5e6ZPXUJGv7k2Lk2kpD78uNMOatHgMb4kq0VCUiaDeajlBrq69xgrW1QGiRcdakoA9DK3Sj0RhJ0xGOxdBSMi6Bbpjc+dixY7Y8+PFu3QU7lnPQ+mNGrPpVEl5f3oRkO3VLTtiGSUQV4+bZKN25bzEieJzWjXFES6GFaly8I+C/ryd5kITypkpH4JdRlmXlqZKOjxNH8MzGcQ+ERBWT1mfhehqY7Lnjnkew9qn6xZ4/MzMDMxjf76zH5tCPRa8n+OX7lrIoHFO0VPEaemxQ1g83B47uv5+qVVW9zZqBfKF1jUReDWTufTsz46/1B9vkxYmWqoiIiIiIiIiIiIiIiAvAVFiq0izF0vLiyO7Z0VRmDXesqzEBZMthsl2nNVEbSkOZSRpZyhCIkURoof+vNCoq3PrvWSY1illqk+w3xmuFMTeOOUtq9KmqnYUaERKnrVBNgFa0obEJQutLzUqRqXUhTeg3r+dk1CYodSTUt9QkSIxSqutthkyyTPduajwyP3agrxaLLM+dliTVjhiagbZfWc6UOSUFNRTalqQE+krNrdeaVLUnZIDKtWLKbtYsaWZTv9sEgFJv5oZaeY2rGPpJUwnnZ2wqanNn+azMePZTNfBsv9ME0f8ZBkOtq4bjYaDa4C2lIJ6hFqWg9ojaW2h9R5l5QmtWWw1phr7V2i9lmji6ZLYrtBA5jSMZfJQ5bkAraQb09f/ewE8im7Q0/mRzXctY8H+XDBvrpG32WcRCJsMrBZIArRlBr6cWC44fjZ+Z67RcLEFOFi5em3KM+z7euVIMN7J2pYEtOQ6oTeScV42emra3NF5mSJr9GvtgBmo9/QTfjup6a0ProdaARNDM1MqjsUJlyedkj88vaBJznbenND5nvqtMc1sVxS0TP5eOWlgt2BrjRS1gPqg0zBw7zlKsfunuO2Ne1Wo+AKmmVea2247iv9n0raQ5aYhpeaUlSz0BljuzlT++prgwmz5johpVMGDqA6MxEdrHnVYLmcrhrZ6ycupvZJp1Mqjna1brLImlUjmvMU7RJW9X67Ra5zeZ7oDxHEmCIlPPCtU+z3fUMlqqRlmTQTfbAcNYx44LY0w1X1Xmldpe9iHDwRqZP06b2YzzRqDc4v2J4UDfhQ21XGY6TlQUpaaiiR6NeeE7lhYGvntofSw9SwxQ90648nTBIoIsTR3jLWmzuTYYZ6nieoipSELLQWV9HI0DCq08oWUojI1N09TN2ZBRtlQLqaildkaTAZf6Li7y/ogVLbQuEZMY/tI0HUmpE8Z9nUtMVegNwnuGVg9aqM4WP1UvL0yPULe2TLIEhxabKq5/9PlUFim//MoyXFmxw/azTHZNyMIYWsjGpSUIvXHYzmbGMeJ7Wq2t2Rik2YV5d8/QihbWkfcM45QXFxdd+bQ8hUzD9BjhcXqKOEtdVnlI0DK2oWsd7gFCCx7rsbG1VYvvyry+a4pvwTsbrjzpFBERERERERERERERMUWQaUikJyJHAWwAOLbTdRmDXZi+ek1jnYBYr+1gGusEnH+9rjPGbC9L3g5iimXOA21cXEpMY52AWK/t4ELqdMXInCmWN8ADb1xcSsR6nTumsU7AJV7jTMWmCgBE5EPGmMftdD1CTGO9prFOQKzXdjCNdQKmt16XAtPY1mmsEzCd9ZrGOgGxXtvBNNbpUmFa2zqN9ZrGOgGxXtvBNNYJuPT1iu5/ERERERERERERERERF4C4qYqIiIiIiIiIiIiIiLgATNOm6vU7XYEJmMZ6TWOdgFiv7WAa6wRMb70uBaaxrdNYJ2A66zWNdQJivbaDaazTpcK0tnUa6zWNdQJivbaDaawTcInrNTUxVREREREREREREREREVcipslSFRERERERERERERERccUhbqoiIiIiIiIiIiIiIiIuAFOxqRKRZ4jI3SJyj4i8fIfqcEBE/lZEPiUid4nID+vxZRF5t4h8Vj+Xdqh+qYh8VETeqd+vF5EPaL3eKiLNHajTooi8TUQ+rf32xJ3uLxF5qT6/O0Xkj0SkvRN9JSK/KyJHROTO2rGxfSMWv6nj/xMi8tjLXK9X6zP8hIi8XUQWa7+9Qut1t4jcdqnqdTkxDfJG6zG1MifKm3OuU5Q3269XlDc7U48ob7ZXp6mTN1qvKHO2V6fLKm92fFMlIimA1wJ4JoCHA3iBiDx8B6qSA/jPxpiHAbgVwA9qPV4O4D3GmIcAeI9+3wn8MIBP1b7/IoBf03qdBPC9O1Cn3wDwl8aYmwDcovXbsf4SkX0AfgjA44wxNwNIATwfO9NXbwTwjODYpL55JoCH6N/3A/jty1yvdwO42RjzKACfAfAKANDx/3wAj9Br/h+dr1cspkjeANMtc6K8OQuivDnvekV5szOI8mZ7mCp5A0SZc551urzyxhizo38Angjgr2rfXwHgFVNQrz8D8HQAdwO4Wo9dDeDuHajLftgB+o0A3glAYDNCZ+P68DLVaR7Av0HJTmrHd6y/AOwD8GUAywAy7avbdqqvABwEcOfZ+gbA6wC8YNx5l6NewW/PBfBm/d+biwD+CsATL+c4uwRtn0p5o3WZCpkT5c051ynKm/OoV/BblDc7V7cobybXaerkjZYZZc426xT8dsnlzY5bqlANEuKQHtsxiMhBAI8B8AEAVxlj7gcA/dyzA1X6dQA/BqDU7ysAThljcv2+E312A4CjAH5PzfZvEJEudrC/jDH3AvhlAF8CcD+A0wA+jJ3vK2JS30zTHPgeAH+h/09TvS4WprJNUyZzorw5B0R5c1EQ5c0OIMqbs2Lq5I2WGWXOheGSy5tp2FTJmGM7xvMuIrMA/hjAS4wxqztVj1p9vhXAEWPMh+uHx5x6ufssA/BYAL9tjHkMgA3snGskAED9d58D4HoA1wDowpqdQ0xbHoFpeJ4QkVfCuoi8mYfGnDZtfbddTF2bpknmRHlz7ojy5gIrEeXNjiDKm3PC1MkbIMqcC6rAZZI307CpOgTgQO37fgD37URFRKQBK2zebIz5Ez18WESu1t+vBnDkMlfryQCeLSJfAPAWWBP5rwNYFJFMz9mJPjsE4JAx5gP6/W2wQmgn++ubAPybMeaoMWYI4E8APAk731fEpL7Z8TkgIi8G8K0AXmjUFj4N9boEmKo2TaHMifLm3BHlzXkiypudQZQ354xplDdAlDnnhcspb6ZhU/VBAA9R9pImbODYOy53JUREAPwPAJ8yxvxq7ad3AHix/v9iWD/kywZjzCuMMfuNMQdh++a9xpgXAvhbAM/bwXp9BcCXReRGPfQ0AJ/EzvbXlwDcKiIz+jxZpx3tqxom9c07ALxIGXJuBXCaJvTLARF5BoCXAXi2MWYzqO/zRaQlItfDBpn+6+Wq1yXCVMgbYDplTpQ320KUN+eBKG+ivCGivNk2oszZJi67vLkUgWLb/QNwOywrx+cAvHKH6vAUWNPfJwB8TP9uh/XvfQ+Az+rn8g7209cDeKf+f4MOgHsA/E8ArR2oz6MBfEj77E8BLO10fwH4rwA+DeBOAH8AoLUTfQXgj2B9noewGpHvndQ3sGbo1+r4vwOW2edy1useWN9ijvvfqZ3/Sq3X3QCeebnH2CXqgx2XN1qPqZY5Ud6cU52ivNl+vaK82Zl6RHmzvfpMnbzRekWZs706XVZ5I3rjiIiIiIiIiIiIiIiIiPPANLj/RUREREREREREREREXLGIm6qIiIiIiIiIiIiIiIgLQNxURUREREREREREREREXADipioiIiIiIiIiIiIiIuICEDdVERERERERERERERERF4C4qbrCISJfLyJPmvDb00XkwyJyh35+Y+23r9Hj94jIb2rOA4jIsoi8W0Q+q59Lelz0vHtE5BMi8tgJZb5LRBYvoD3fJiKv0v9bIvJWLfMDInJQjz9SRN643euC89si8q8i8nERuUtE/mvtt6eJyEdE5GMi8o8i8mA9/h9F5LvPt20REVc6LqO8uUlE3i8ifRH5kTPU5w0i8vALaM9jROQN+v9YGSciu0XkL7d7XXD+jIj8uYh8WuXNL4w553kiYkTkcfp9RM5FRHy14TLKnBfq/P2EiPyziNwyocyLKXPGyjkRaYrI30uV0BcicrWIvLP2/RXatrtF5LYJZYmI/KyIfEZEPiUiP7TdciO2icvNsR//Ljov/08B+JEJvz0GwDX6/80A7q399q8AngibP+AvoBz9AH4JwMv1/5cD+EX9/3Y9TwDcCuADl6g9/wxgl/7/H6A5BWATA761dt7fALh2u9fVzhcAs/p/A8AHANyq3z8D4GG1e71R/58B8NGdfubxL/7t1N9llDd7AHwtgJ+dVN5Fas//BHCL/j9RxgH4PQBP3u51tfNnAHyD/t8E8A+o5UUBMAfg7wH8C2o5XEI5F//i31fb32WUOU8CsKT/P/MSrnHqsmOinAPwXwC8sPb91QCeo/8/HMDHYXNUXQ+baykdU9Z3A3gTgITlbbfc+Le9v2ipmlKIyItUY/JxEfkDEXmWWKvLR0Xkb0TkKrEWmB8A8FK1qnxd/R7GmI8aY+7Tr3cBaIu14lwNYN4Y835jZ9GbAHybnvccAL+v//9+cPxNxuJfACzqfcJ6f0FEdonIQdXK/r62420iMqPn3K6//aNqkN6pxx8KoG+MOTamLm8D8DRqmwD8L9gN03avY98YY8y6fm3oH5O2GQDz+v8CgPv0mk0AXxCRx4ftjoi4kjFt8sYYc8QY80HYJI5nqvf7apaddRH5FbFW5veIyG49/rXatveLyKtF5E49PgfgUcaYj9fqMknG/SmAF57HdeybTWPM3+r/AwAfAbC/dsp/g13s9YImOjkXEfFAwhTKnH82xpzU4/8Cf37W633RZM5Z5JyTOYpvB0CL+XMAvMUY0zfG/Btsgttx65L/C8BPG2NKlnce5UZsA3FTNYUQkUfAZnr+RmPMLQB+GMA/wlpSHgPgLQB+zBjzBQC/A+DXjDGPNsb8wxlu++2wVpY+gH2w2aaJQ3oMAK4yxtwPAPq5R4/vg81KPe6aSbgRwOuNMY8CsArgP4hIG8DrYLVGTwGwu3b+k2EXG4Qr0xiTAzgNm7EbsJnOv+48rnMQkVREPgbgCIB3G2M+oD99H4B3icghAN8FoO6qUy83IuKKx5TKm/NBF8BHjDGPBfB3sBpXwFqZfsAY80QARe38xwG4s/b9TDKuPu+3c90IxLpHPwvAe/T7YwAcMMa8c8zpUd5EPOBwBcic74W1bp0NFypzzoQ7Ya1JEJHrAZzUtgHnLnMeBOA7RORDIvIXIvKQ7ZQbsX3ETdV04hsBvI2WF2PMCVityV+JyB0AfhTAI871ZirAfhHAv+ehMaeZMce825zHNV82xvyT/v+HAJ4C4CYAn1ftCgD8Ue38qwEcPccyjwC45jyuqw4YUxhjHg3bt48XkZv1p5cCuN0Ysx9WOP5q7bJ6uRERDwRMo7w5H5QA3qr//yGAp+gGZs4Y8896/P+tnX9Z5Q0AaKzCHwH4TWPM50UkAfBrAP7z2BZFeRPxwMTUyhwR+QbYTdXLzuH0C5U5E2GMKQAM1Lp1vjKnBaBnjHkcgP8O4He3WW7ENhE3VdMJwegE+S0ArzHGPBJWcLTP6UYi+wG8HcCLjDGf08OH4Ju290Nd3AAcpuuKfh6pXXNgwjWTELbBYLwwILbgt8uVqYuRBQAn9Le2nr/d60YracwpAO8D8Aw1399Ss1q9FdbXmqiXGxHxQMA0ypuLgfOWN2PqeU7yZsx1IV4P4LPGmF/X73OwsSDvE5EvwMZkvYPuRYjyJuKBiamUOSLyKABvgI1dOr6tFllsV+acDS1Yl+DzlTmHAPyx/v92AI/aZrkR20TcVE0n3gPg34nICmDZamA3Bvfq7y+unbsG+2IegWpM/hzAK2oWI5q810TkVo01ehGAP9Of31G7/4uD4y8Si1sBnKYJ/Qy4VkSeqP+/ANa8/2kAN0jFyPcdtfM/BeDBte/1ujwPwHvVPxoAHorKjL6d6wA4Rq9F/b8D4Ju0bicBLGicFgA8Xe9P1MuNiHggYBrlzfkggZ3vAPCdAP5RYyTWVGYBfnzSOLkxScadTd6cVTaKyM/A9utLeMwYc9oYs8sYc9AYcxA2luPZxpgPjSk3IuKBgqmTOSJyLYA/AfBdxpjPnGM7LlTmTIT2zVFjzBCWPOtg7ed3AHi+xo9dD+AhsMQcIf4U1ioIAE/V+2yn3IjtwkwBW0b8G/2Dnex3wjK8vBE2MPHzsKxRrwbwPj3voQA+AeBjsL73z4YNTASAnwCwob/xj+wv9O39HIDXABA9vgIr8D6rn8t6XAC8Vs+/Az5D1cdq/39B73EQwCdh/aE/AastmdFzngW7gflHWNe6N+vxGdhgU9alDcuUcw+swLihVs5rADxrO9fButG8S/9/FICPat3uBPCq2r2fq238OKwFq17uR6Asg/Ev/j1Q/qZQ3uyF1bKuAjil/8/rb+9Cxfj1PgBfo/+vwxI+fBjAewHs1uNP0Dq/H8DPA/inWrvvgHXVAc4s434EwP99Htd9TD/3w2qxP1Xrm+8b8xzeF1zv5Fz8i38PpL8plDlvgFWq8j4fqtX1UsmcM8m55wH4ldp17wHw4Nr3V2rb7obPJFqvKzedd2hdbtluufFve38cZBERFwwRSWFN6XthgybfaYy5ecx5s8aYddUgvRbWHebX9LffAPC/jDF/c4ZyWrBBoU8xlojinK67UGhA+X8yxnzXpSojIiLi3KHxF882xvybiKwbY2bHnDNrlOlTRF4O4GpjzA/r95cCWDPGvOEs5fw9rEvQye1cdyEYJ+ciIiJ2FpdR5vwJrAXubv3+XNjN3E9c5CadsdyI7SG6/0VcTNwF4A3m7Gbj/1NZ9+6CNfm/rvbbz8Fans6Ea2HzTNQXGudy3YViF4CfvMRlREREnANE5N0A7jAV6c0kfItYOuY7YTXdP1P77bcB9Mdf5srZDeBXTUW3fE7XXQSMk3MRERE7hMsoc5oA/rS+sTHGvB3WE+iSYVy5EdtDtFRFRERERERERERERERcAKKlKiIiIiIiIiIiIiIi4gIQN1UREREREREREREREREXgLipioiIiIiIiIiIiIiIuADETVVERERERERERERERMQFIG6qIiIiIiIiIiIiIiIiLgBxUxUREREREREREREREXEBiJuqiIiIiIiIiIiIiIiIC0DcVEVERERERERERERERFwA4qYqIiIiIiIiIiIiIiLiAhA3VREREREREREREREREReAS7apEpFniMjdInKPiLz8UpUTEREREeVNRETE5UKUNxEREeMgxpiLf1ORFMBnADwdwCEAHwTwAmPMJy96YREREV/ViPImIiLiciHKm4iIiEnILtF9Hw/gHmPM5wFARN4C4DkAxgqd7uycWV7ZBYEAAJJEDWjCD3HH0jS15+in8Byxm0PuEYU3FwE3jm77aPjBa8S7pjSlLYP1SQUZy/NvUSsw8erOMkWqY65Orm4Ye1xk5Mxtg9U606aZv5UTznX9NuYeI78F34ui1HuXVXv0k99LPScvCr22DO5ZlSeJeOWEfVSy/LL0vtfrW+pv4T1Enx1/H9duPsPwHH4fDHpeeZ2ZDgBg/779AIAvfPGL1ZiA3w9sydbWplcWfy+KAuEoEb87XN/V2+u3USaOBR41Z2j/yDXBb3k+PGaM2T3xgkuLbckbANi1a5e57rqDbpwkOr6KcgjA9ivHRZrYub96+jQAoNfbAgA0Gv5zQtoAAMx2Z9FQeXF2XMhc958T62EAFKaon4I0saK+KAuv1DzP9Xfblq0t27a5uTknHwXhXLP3SLR/DHwZICJOhsL4Qi6RsF9CiUpZXdZ+UZmS288sa9p66HjNc/vMms1G7drw1TZpLOu9tV+Gg6HWE2i2WgCA4/cfteUUuZbr15WyLpzPxhjMz89r3ey9Wu22/bEhXnmFykBe3W53znloTHpOZz633oLau0/7obe2WslccG7oM6X85qtPx8GctnV8xQN5jEAW63E+hyRJ3NhkuexDwI6hj37kIzslc7Ytb1IRkyXirUv0HwC2vUNtb+VAxPcz22/Hfa59xDGTQEbeh5QJnNcsJ9Wv7FM3liWBYV0kmCtukPjvrfp6qnof+LKIsoIylI890YqwLcaYav2nnznsb1x7sSUZG0FZJgDHBNcSXCeWTiaxX7R8Hdtsv4i49Uia2WvDOcn6ZVnm/W5gYNiPWepdg2COuHtJWf8ZRZ577+o63PqEzzRl/XLvvDRJ3TN0z8itffU9p/eiLEukclZje3gtywkeP8Dz9Jkavcewt4lu2/bNwuIiAODkiZP2knL8uwpSSaDRZa+2JfHX1sTK8rL+V92TzzWUa2x/pu/oe++9DwDQ7w+0rUk1Z7jW55pPx8XmYHBO8uZSbar2Afhy7fshAE+onyAi3w/g+wFgaXkFL33ZT7vGzMzMAIC3kep07CJ1UR/W3Nyc+w0AGg19OTm5rw8kTTAY2AFk9FieU6BwUa8PTR9Bv28XFi2dvHOzHSzOz9pyUn9xXVIQNrtad/vSLPRlmTUSzLRbei0nnD+w0sR/KScTBtGZUBp/ROa6ABkOhyPnhhuC3qD0zuXvfKmNu8dgMPB+qzYX9vjp1XUAdpHWaNiXQdqwA7qhn+vrdhNx8vQpAEC/39dyB2yUq0+rrQupoa1Tlvl909PjvV7PqwfbMhwOsbm56R3j2Gk1Z7Q+ts4ULmybiLgxubGx4fXN2toaAODL997t1eeWWx4NAPiFX/gFAMD3fe/3Yzj0BT4Xhy1909xxxx0A4MY6X6KnTp1ygjysO+s6GNp2u3Gpn7yu0Wi4PiHCzRP7ju2unx8K/HrfAMDhr3z5i9g5nFXeAL7MufbAtXj/P38IW9qO7qwdkyfWDwOw/Zeldk4vdu1i8S/+/J0AgM/cfact9GorgxqZzr25awAAT37Sk7B7fgFAtRCoZic3IHxhcWMSbDZqCxv+K24hyl8ovyhrbBuGMFjr2XHJRctCZwVANX55r5Mn7UtvtmPlFsfgN3z9U6sxlPqLvK2+nUedVkfLsOOEC/I0EzeW2M5EN3Xt1qyey0Vfw2sLoDKg2HTlDrV9p0/aObdrl+3njTVbj2PHvwIAuO7gXr12C5kss9P07rpAcgtClmc/Nzbthvn+Q4dsPbMU193wIADAG3/utQCA48ePAwB6PV+2UAZQriWG75kc3/S0bwYAXH/99fbzxhttsVfZuf2VQ/cDAE6cXEI2ugAAIABJREFUsOUnqX1X3HTjw4GMCz/tSnDui9cmyoDM9WUd/rslL2zdszTT77n3fW19FQBw9z+8Cy1VDMHY53Byw/Z3mtmxsqXv0bRhz3vq056ubbD1KLzoAl3EaRvywr5jS9ZH34EbG7YvWzMdHDtux+bqmh2z115/0N6jsPNxpt3ZKZmzbXmTCbC/3agUZhkVAPZ7pzuLo0eP6oW2P40uvDeHtq/2XWPH98l1O1ZWV+2zaqZtNPX5UTFW6PtwvmvnG8tdnLGfp3TubOraqEhaMPrcOkm10QFq75KGrmP0c8hFvUkxGPS17nzv2HJ6fftOnZuz9ZBNe8/2gpWdx7QtgzxHi30hti3HcnvtrkUrS7upvffuWds/5Zb9vZEaIF2yfbNq79ftWtndL1VplPqbrpmObcPWlq13I2tiTcfZ4qKVHadViUYZxTm0e7ddV586dcr1D9cuyfKinmuvyQf2mlbL1qcs+N2ez7l74sQJtFSJE77rs6ZtL9/HCwsLXvk8b25uDsOyet8D1TqFz7CtSp0TJ07o9467B8cTr2U5rGOjozLjtJ2XjRnbVqPy4Mt3fxi33mj75lnPfi4A4K1v+WPbl2u6tqC8aenWQ1R2SYKkoe2G/qTyn3JoptP12vtdL/xOe57KuFQSdPW55txEcv+tm/uV5V0AgFf++E8DAO75rJ3GC/Mt966cm1/UvrFrvrUNO/8+8vnPn5O8uVSbqrOqqowxrwfwegA4cN0NZpx1pj6p+WDDQUJhMXALVk4AFV5GYMpg568v9MRpLcZbIQaqAd3qp2j1dcPRzPxzCx34wQK1rslnnSXQ5rgdMfy2XAhYRL0t/N9pjyh4C76Ujfe9sjbpgn0wGFlUh8+Dm9khN6wQ95m7VYF+6snsXwokCg0uyMqy0sRU5dhPbjjcs9JrqWkPN4LGmJGx48aXvuB5D57H72maumfF+/Oc8Hu42an3NYUWy11YWNJrAq1S8DKrW5kmfdbbeTaE95/0/Uz3PRdr1mXE2VXj8GXO4x73ONNsAI2WlRelLvpabfv82tkcBrm97Zfut1qtO+66CwBw9LD9fvS4biZ00b86tL9/8q678L8/9zkAgP+fvTftsSzLrsPWHd784sWcc2ZlZVXW1FXNntgtiepmUxJMURJIgqBs0oJhgwYMyxRsA/5gQvoD+uQPlmxAkiVDsgUIhmmbpMgm1WSLNNU0ze4mu6sra66snDMiY3wRb76TP+y1zn33RkRlZld1M8u8+8uL4b47nHvOPufstdfaz1+5yqsr6ikUvhj9fOjNA25xm29AeGahwrD7OZyOMZraGAqIpmkzlY9te14t5MJTNhlq0gXm+q52dfxus2HHzBj8EEorpCiP8Obj1PPk645g/fxVi3777ngyxUKXwTUuslaWOYnzvjrdLs9kG8bbd24BAM6fP3vk9Hl0nX2dbTjhBnFnaxtAvpB6/od/2EVk/bZN1N5ICJmCT5xjOtYeIdvu537u5wAA3e6CW7x0znCTt2jnyoR6aS6oBYXfozRCmMnHFZrIHZNHfYtBuiiauufWAkn+0A+K7RCUENWDA9vUrKyv4fatu/YdbgC8wO5H/nrvwNpuaYWbuVKUOMPRSLGsPJ/oWXqL9i6nswlOnz4NAJhFNt4UhGuFLfwp22P7m069li0tLWE4sbbrdm1jqN+9IAQY+Z84lNn6qNDO/p4toutcbK4y2HM4mbn32+VmIvKKQU/NZYOh3aYbl9oAT8dotrjhYvBRi+qZAiTsZwcH1qe1CfDTMA8EB0Lv7dhaaMeMRjZPNj0bI3vaEPC4uh8g5QZvzDm+V+Pzc4PWYnA25bI1bC7z/qZIGLRp9Kz/eNpU8FmmXJdMYyKx3MzLVYVphqxmbbdzaO9kcdn63+bmVuF5I5/+oGkbw4O9PdRq5qtWuCGbTujHeB35X2UM+G69a++8017K11SR5mOOUaJfdV5jNrVnaTCQrzG0vbWPkJskvQ+BDwrUapx16Tvl7/f397FM/6r7GAzMF6jvLPh2rmX2xxHvU892cHCAycSOUb/TmqfTtXd1OBwUzllvBO54BVwUHFR7y8pZYFpz1cI8Y8Stvxyay7U3p075Qxf0ow0GE3fdhBvfvV1uMpuP52++X0IVdwBcnPv9AoB736drVVZZZX+2rfI3lVVW2Q/KKn9TWWWVHWvfL6TqGwCuep73NIC7AH4OwH948uEZsiz7wOh7jqoUEQAXzfcV+bKdahDkj+ZBqYGKxIPfZdRW0TJGLQjcIGYEuBYniHls7FLB+R1xqU7go8zfe76DLUYWfe/45y5H8R7FBAodh1TlxxSRKv37JKQqTdMjPJ8yujGNmELISFDqIsKZi+H57jaKKJfLEc/Swt/nc3w9Lyr8T/m8Ka8XxcWI3Hy0XOc4CZkRj6aMvrlred6RVMjyMe4dl6Ip89c6CYmKT0CfHgepOqmPHJenfRIyddLncXysI7nRf7r2mP4mN48I1cGBRSNHTDmJ2xF+53f+AACws2Poxa07lioQJxblEsqVsS+q721s3Me7774LAFhl6so60w5cn3Y3YH7K+55QaqZHMNqoN1TPEkw5Hloti27GI7tunUg7iDrI5hEqwN7vEf/j+kCxTyn6V2c6a5ROj/Sxh6HwsynR4Vho9cylUitttlnnmE+Uaw8+o0VsN7eUhpjCP6FbOh4tP7sNa58RU0xWlKcfRUiF1NM/R7yePmNG1FOlIrNtV89bmtb6+fM4y7SoQMi6fAq/c/asRcNPnbUbHg7sGWr1uvOlQjWVDimUzXFyHU/N/u7SyACcO2epkrVaEUXU+5nnVNhjM60XAc6SDzoh7+C9m4YEKt1PpjQdh6QWaXQFOwmxEiclY5vOz5urq4ai1phGf+f9zWPO/AO1x/Y3aQbMktRl1CizY0AEp1dr5tk2PevPIYQqEW0kQtHiOOszdbfebiPke5QP6jBdXenyLn2d1xiNDF3QoqdZD9Emzy+pG6rQJ6oQ8E1OhDp07P1P+P9Wq4PZTLxGuzchIR5TGYVmhOTFDYkIC0EZDodYW1sr3Gu8b6m4a11rjxkpDaur1qffePMd3k8H06n9bxopNdd8dJvfHZIH2+7Ys8VEc4XCR6mHMBQn1pCYMcdqZ8XGs9J8d4cR29A+Gwur7p7v3X1g502EJtnzLS4aCiSfHRGVE+Wg0+kgYRq1UiWVbizExCG3fMdKw1Q6YqPeRkpXIJRHyLvWKWUES1S3g8N9nDp1CkDO3Wo0rT2CsDiSRaOIQPoCfWiz2XTn1fXli5Z5Yw2mmStxI8vydZPuTXORxn+L3xFCLjRKn0o9zYIQWWbHat5xaBffs+5d13Apl36ARSJ1E2WlZaKHdPA49n3ZVGVZFnue93cA/BYM3/xnWZZd+35cq7LKKvuzbZW/qayyyn5QVvmbyiqr7CT7fiFVyLLsNwD8xqMcm6YpBQ0Y8WS0Q4S9eE4Zpcx7cdFSn/m2jGIqaBaGYa58xR1tXBIxmPFYR8xPhLowD9330ZyJhF3kbCkcp110jbnxWSyFlCxHbVy0thit80/IL38ckzBFWUBiHqkqI1AOfUm8I9+Z//9xaFeZw8QAa96GnnhTCUJFOhJ92seE70OkWgmFuPvl4X7gIxIPKxJSlfL6zI1N7VyKRJQj5EEQHBHVUP9S1EjtUuZ4+T4wHsc8/6BwDvEXHFGV1ysjWVEUuX5d5jHou8fxsADrF2XkrYzUnoRYHYdU5appRfWg8vXnz/VBKNqTYI/jb/gFIJkAvrXBUs/G9fZty/W/9uZ38ZXf+goAoNVi1JVRrTr9ycQTqiKhCPEHRvjN37RbGTMv/W/+zM8CMJUhs2IfKI/4dC7O77AEcWccIkCUWJE1/v7t734XA/bTF196CQDQCRn9ld8UuZccmxn7cXeBnIxo6saHEBLlp8+iouDJ1772NTsnb/lzP/wZRxTXmFOXD4OTENUa/882rrUQ+BZNHE4tUisxA0WURyQQt7v2nU67y2sFyJzKYZHDpchoSkQsIzl6yIjxYsfaaePeHexTuWowMZ8y1ljnOSKiKjOJMPDeg56N81E6RI0COxmdXlrneIztnOKzSsAjrOvdxghrRRRpNCsK6QT1okoXRFKv532rPKZzJVrOU3wdbh4lBybo9jAjcb+zaG1y/iJFoYg2bO7YWBE/SNfQfAvkmQt+IJ9Cv4HidTV/eY7rVcPdeyZAsrxqPJnR0Nr/1q1b+NO2x/Y3ADKEqJOfsc/+JoGpzA/gS9BJrcN3J4TEyySOxawM9vF0NnNoudBVIQQSsFA7LxA5by319Bzu/ibK8qAfqRORjDjH94gIN4iytjlWogBIU/VF+xTK0uaYlFjYhL6jwblwSvGTTqOJ7W3jNdaIUC+zH799yzIEzp6xjMub7BcLq4asxGmGJsfAcNf6iHzXmOuFMcVlUraTn2n9YMc3Gk25Uwy5ptDYOaDo1vKyoVzKZDp/8ZI9w3SK27ftHpeXrE2kVCr0TdwiJwy0sMJ755ojmiGkLxLXvMd3ldLvSkRG64gx/dJ71y0rot1uIyVEL2RQyFF5jSGErN2xc33mM59y3xEiprWdxvUW/eFsz96tUOc61+1BEDgOqRB/CfRsbpmv8MkP89hPlGWRRjE8vkPda0iEVuuwRt2OPbL25/VbjWbObQ+L2SNarjcpriROlfrJdDzG/r49X6drbSbhEjxmFsn3rfhvZZVVVllllVVWWWWVVVbZnwX7viFVj2NZVkSjjou+lyPz5U9BU+VdbOh7CFRPJSdT2e9CGwgCKP84K0nVzuJkjv/j7rpwHa/E+crEsZkrMZQcqZmg5yv+/r3YUUW/PHe+fN6jbXh8u8+fs6yQqAi0dvxT5swqyuLqRMxxiXK0qxhxS5IcEZy/vqKZ8zVLYnK3ZmEx8uUnUiIropDz911G4nK59aIqoI7TZ71ePyIZf5KS4gfxlU7kLpVQwOM4TeX/nfT7B9mjKgc+jvrfx9cywIuBTO/T/jqdWXRqY/M+9vYtIpe6qL5q49mzt1v2OVC0tSW1tgRRVER7c8W+soKf6qkU/djx4a6Sch6PVV643sjp06fRm1iUc2XFovzxMOcb2XfsXhV9FSdg3n84Sd+gqMKkSKLy0m/eNKVZ1e965ZOfcJwKIXM5QvLB6n/iCWQ4RvnT8dFKvp8m/sCp06vH1AM6vv/evm2ox8oiFdaoSnZ6eRn9bYu6xrMiwq1XI2TdU62dtKiouJgsYkwVRrXHIbksa23l/tu5cpVE3WcG9RFlTOzuWn+ULPrqukWDG1RwUy0gRceBvL2lilueH4WU6T1JRhhxF4NNQw58ZmmIY6xMDqkC1qgGqcwCIZlBbZ63V/ZpKFjZX8fZfCYBo/lEvRRJ/zhZBqISvnwIEQP6jlmct1eLEt6TqDiXiieuEgM1cpsara5bu0TKFKmTM0hOpdqyTSQ04csSx+lwNHM8y2wiFLuITGZ8r92ORfITvtOD0QC+X1THFZosRFQKnnIlQ6I/54k2TadTzKTUJmScyESDao9bVKZcWKAqYZSjUrscqx1yqPqHhuoEmd2HeGBqB61blpftXKPRBIeUd9c9C+U5fdo4S44/zpI729vGn1pdXcUSkb8m/erMK6L5vUUb/0vLdtyd+zaWm7yvOI7dAHL1EdkOg/4B/04O/lwWFpArGB4e9jEjN1E8K40rzRHK5NGzLS5Ze127di1HlTaNsyhUTWNy7bRxywZj82GzcbH0TJZlruSR5hOhj4tU9ZSPGM+Igo2Z5eH5jjsY8Llm4ncSddK9y3RfyZxPy8u/lTN0tNYr8ud1n8hmDs1SFlSzxcy5xuNhT0/EpgqUuxaMp4XrvF5/OTUur2nEyVdk3bQ4eY6HA6zwRUc8x5STkiTVJ0yVKZ87T6vIMGrYIHTSwKXFQlM1JfjiG6GkbFNXcU8Fi49ch05Uz1teqAdB8FChgLKkdzkd7bjzutQ0NmGZzDjf/vqOnKagYn1OWatAdU/iObnlMQfh+hoXeFykTFhnosV0gh1Cx4nqn3CQ1by6S4fSgqIddottmBbTQsuLhyzLjtRpKqfBuf5HZ62FbpLGeX9LigssSbyXC+fpWlp4zm/q8tQ5vivJvp5AxPR9/8Q0P7cISYqbuflNre7vpBS+ct8qt10cx7n8/0eQqvpkWAqkE7z62p8AALLQ2uK3fu+3AQDd3gqaIkynRalbDamMzjdh3+yzfkez3kCPk6c2ZnLqcUwJZU8pE/QN9P3v33yf5wxdCsUSiev59KB03VzUAAD2B5Qphu8IwXc3rA7SatsmUb2vfl/pId28PQCsrdk167UgD3JAZGI70tWAmebS3fZsebqw/ES7Zdd1fnGxUzhWY1wpwpLt3n9wH/WGLXgk7Sw/OWBaRi65y7RAEu23dzZwau1Z11rWdppU7Z43N0ysbYmbqQ4XQwc7tggY9vcxYs0bnyIardQaQClVKWfhQ77TjAvky6dtobi1tYn9PfNpA6byuUl9wfrWjRu2IVWa1Asv/hCfFagrVYV+cjq2ReXFS+cLz5Zl9FdQXzq6CJifS+w7WqBpHNtx2oRvHG7iuU/YvSj9bMIUrpu3TUBgRDnwTz9lizFtEENuDvYPD91773a4qOamMeH80GE/HY1UX1CCJQkODuw9nz9n9cJu3rXr/ot/8S+OPN8TbxmQJplLj9N6xVf6UTTDIsVSfEZ5W9zMREov5RhRKps27O3UQ42bGm3OJeCk+XmVKZQx60YNxqQJsB8kYcf93KW4wpjvbmXZxnDdYyCT/aHLukWnTp3CkH1f495RK2ZaB3DxTDEXBXO0+H+wsYEg5nqLjqY/K65X1lbtO822+RCl5zaboatP1OJns7nm2hUA+kzDXj5jG4OEbdfkgn1hdQXjkdL+7V4PWT9zkbW+tCEeU3Jdwin721vY4+bBX7cNv/y6Aj137lrwRr6zTn+snMOFXselzmWwMVGD+bvlFTtWKZXa5B4c7PFadl/nL5zDxpZdT74xrwk6KPxd97W1bWUTFhY6ODjg8y7K77KWGJ9NKYzyLq4YdZa53/XedV2tMZz/53h31AqlgwchGqU6reXAtQr3ltcx8+tmhdnymn3aKeX3OP9dXaO70HKCPAmpJAsLNg6KxIuHW5X+V1lllVVWWWWVVVZZZZVV9iHsyUCq8MGSz8cV/52Pis4fm7kqtEQD0hQD7rBFTk4ZvYiEULjoHW+AYhN5sVjfFaLVpw8RQJleJhJpSdLc83Mp77QERQYl5OrDFFQ96RzzbXdSiqDg4+NkyPX3o98pnlORCBVwUwQmjiO0iNb0GbX1SPT2MosIqfCmK1SoHMspI0ODIRYoSapUzhlJmormTUYqGHx8atA82lZuszLKVH62OI6PpPedlFJ50rv7oPS/k8oElFMuH8XKSNJx4+pR+9dxQhVlYYonRajisc3zgXoTd+5apK7WtvGsiN7BMJprwzJKJ8EInorpIkEoRDqP7vcZ7RTCqbQYRUOV0iPCuov01pq5/KsEMnhsTarojNxJPl2SzI1GAzUiL22mne3wOYVMaBwpyic/5grHZqFDplzkUNnTDikrlhdQH+l0OrlkLxE53y+ixOUopFeK7/nBPBrqvgQAaKkYb8mfyjfv7+/hVJ4BxyOKY03m0GD67xZT2dq1mkMPncy3ipG7NECmUgpDZDsp6S1IEoCpQiGLnkZEd2rLXZ3cnoWfNSGXSDGbCu2z511mipHS/VAqAu0KG2fzfxcyokYsT/nlPDz7OHvpipsYGozUC92K+a7iW4YcSbbac/dl1u120WM/SFN7lpovH8uyBPyO+ovGXxynTtr6gGNJxPHLly/j42a1wMPZxRb2WSh7CKbQdhk5jzy0OLAbFM/ZZVtkEiZgPfvUM5TTU1reLIPvSiII7SEyy4Lgk4TvLCW6wH6myL2fJADXRfsjpfDZMQ/6luYmxCqkGEMaCrmZICOKWwuLAjUSpskCItMcs+PI3uWbt98DACwvryKjj0xmQqaIrjE7hckEmEgOXshZPEHMe2koZVQpaUSXlpftXEOK21DXDPuHudjKwhKRMIqJvPnG2wCAAxaddvLbdZWOED2ghouXrfzA/V1DgJ6iiMU9+t3zFy4DyNPNJNwixKi/N0CP48iJbIztuirbI/l53Uc5e2QwGCChaNJg76DwnZjoJtQ+zDKoE5XsNtourfHdN98CkGcxTDgP1QO79xol1M+cJqp917IrkIwx9e1/Fy+aqMiMaz2VHyHTBJ26/KG9y1anjZTZNoOp/a0p5Jbzb5ulBFLJsLNvx64MRB2+b/eseaycURMyoyohKnp4MGE7ZXlRZSKQ20wpXT/zeOnGFVJVWWWVVVZZZZVVVllllVX2IezJQKq8IvdHUQb377nio/M8k/nfJb8oydxoYDvQRhjg7pbxCnaV9+oVuRHdZcvrFWlXso8Z95xpkmA6YjTaK+aM1gLbGSciK/P6kkX1/MDJgSeRBBnsfy7/+QSxg3np7fKO+0gB2RKZe56QVxZoKKNNMxeAPV4wYTweH+FUlTltktUUYTZh1MuLx+hTeneZcs0H5J6MhxaBvLRmEaLT584CAA6Zn90/tGttbe9gPLRzdBgl2WOE5+x5KwT4/vWdY9sjF6OIjohM5G0o2fOilHqOzmRHZNZlZeS0fN35Ni/LkJcLCp+EWJV/nj9H2fT38jgpPu8HC2OUbR5lO1I89HsqWvunb5PJFG+9fR1/8A1yqgIWxeQ7uXf/HqKEUUX25TqjXCpy26jZsQ1Gfe/eNVndleVlTBl1VeR9xgj17sCiXyr9sMQI6s1bFtHc2TGRg0ka4nDBvisUqcUIWo/IgfyIov16r/2DgSP3TohiSZhC/aJFqW9x/iS2oHPMc6r8I+ISRZlm2XxJDNeXeMhJ/TcvQqt/iM+XOT+d+uKjkaickaDtsgaIqLAm7euvv4lnrnzKjmF/rQneo3/uMAraYZtOybnoUSY6nU5zgSPemopixmlxfnLzifhb5M1kkzFqHNuLRGJAfpSEdbrkmCyIC0KXX6vXoMbL6HP2HlBivGvvzK8VS4WgVpRL9zzP/az3kA9x/QHH2n7/ELuUGFYBU3ErbpPbJB6YEgua4mfxHGkCEFx1IgCaF3vkK4gXKKGDGvlYC4s91Gr2nDt79t2QfLter3f8TT/B5gc+2t0WdrdYUFe+n+hfp7Pg5tZxSCGKBSLRRLVrEh3hdxY5dmd+ioi8vllUXDuogOt+3/yOin9r7aHPyWTixmSzIfTW7l0CW0J5RAs7JFJaby4ipUiNpNITChEIOfMosy/kRMW+ff59Oo2w2LN1gJt/UyHkds5Dcux6PRtLnTYlzpME9XqO1sybUB0nXEakZnRgfmBpacX9X/7uwQND5k6fWee9poW2kujFAVGu6XTqnqtLvtc2xWpOr9k5+nv7fBa7rxoHRpuoWKfVdvc+HQs9aRWeSWjuXaJfKtab+7ga2l35JiI1WgewTzXbLAKeaQ1o7TIajTAoSbbrPej8apcXWKajT06XUKnh7l0nOuZk0cPiFkN9POB8IDRyHMcOceoSIcvcnFDMjBBltLye8n0/51eVxOZkuq/yOilLgEZd4iqcK1nSA1kRgX+YfTxXRJVVVllllVVWWWWVVVZZZU+IPRlIFVCQTS/zN4IgOJFTpe9MIhbzcigAEYU0RcioraJjDXKmnGSraFixigMz2kN539QD4hl3+Ix8KLKq64SOI1BWVvNdQT6UOALzxwBHd9XzCMJxHJn5c5zUPlEUnVj8N0dGysjNUe7VSe3uzsmoxojoU8gGimdTNJmb/d67bwKAyx2/eMFUrBYo47vCCJSimTlS1kT/nsl8urxmhtGCE9CX49rpJAU9cWQ+iC9VRgLnEbDj2u44XuBJXKqHFew9Thb/pOecj9qUz3WipPsjyKU/6vU/Lra338f//itfwSim8uQ2i2V2qNqZ+U66N57SD9FdZkRjB1TbE7oi2ewkiZxyVp9IyP37hpYLGep27NzyOZKvVaTvwXYfU+bHn1o1glBZUUtjYYHqgFKjm81mmLFY9R6lhdeo1JUX9F3i7+RSkesTqFB3FjokzKGRQtB5jGSJ9Sk0aGdnxylZra2e5jmo+mWP7cyh8a57cVzFE0h3SfLqIQsYC1kOeV/TGVXKVs1/eP5srggko5xUdFK0tUNelp7t+rvv2DOwDSd7fcRErieU1J1RFlq5/+JBTQbMThDnihH8zEvR7lAVlfco7lZEZGyBUeEa/cQu1RrPPNXAzXfeK9zjwa710ZvsI8tr1phLVFKbJYpS2/0YsiqelVQQi0WnT7Io9XDmrEWghUDuHVKtlX33FKXNWywKO2PBUyFav/qrv5pnnXj23ZDte/qUIQRjZiU8xWi3ULGXP/kZUMAOK8vW/wcja987d+480jM8SVYLazhz5hRusHDxAmHVBuPaURqjwT7Zn1rfcGp4nA/bTXJuyDERkrEVHTq/ofGkIvXyEY1GMdpeVu4cj8f53MrxlqNYxawEcdFloR+6bJyA/bxdV/FdKpS2DF0UQiW1x17P/NB0EqHGTIBV+rud7UM+p93XubPWz7e2bS3QzKT013R+VM+lT6ntyTdLDbHVpDrrLv3j2hqeeuoyn/ser0s+UiR1V0NMpZK3vLLMFsjcecUNFT8qospgr8usB6lfEn0cD+x78+uXLnlXUtsTP1b+XyUF5MtzHmLskGG9u1bbPt+/YQWCpSgrlGtthQWVb77vnldtmabFdWKXRXE3H5iPkhz99fff4fVnuHTJzqd213fVd1z5D6cKSaQ6DF2bOKVSziee4/RqPVTMRtL63vd9528anO/KugXitKnNOm35oYFT9FZZjwl5aP1964ePahVSVVlllVVWWWWVVVZZZZVV9iHsiUCqsqxYYDb/ex7RL6M4Mn1nQjWhBea7Ztxt7/f78JkDv77GqAijCkmsPGDbVdcoCbNouVvOAAAgAElEQVTJfFgGJNFsdZGq3pC4NazHpAK2itaJU+WpXpaXuoimX8ovVTSlFjbcc84/97ymfhkRKKMd2rVr568d+3g8PqK0VS5u67EiXzlHVRHoOI4L55v/rq47iZgPPrLoSpftdf/2DWzctxzgS+esRsRnf9jqn0jFJ5tadGvjNlVkqJC2yDZdunwJu1uqH2MR/Trz6+/fu1W415MsDMMjHKY80oHC72XUK4oSx7cq85903bJy4HHctvJ5xeEr5y4fV+C6/G5OsjLXUDaPdp2kJvgoyNVJdbI+bhbWQiyvn8LCqvWxMzPrmylVmS5FMfp7HFNjKrOJS0QkYCIRKt9+31KdqmYDp5krfmo1z9kH5qK96heMztUbxeKsADCk+pOUBB2XJCtG31SiL48odp3KUkykogHyMog6KGIn9cypU4mTCl2Qq0uJH+rurKg6pXsWbytNUxcJVJ2qbrfIgzlZgTKPQmYldbuR6jVNmXvP6O+YL4KCUqjV877v1EknxbZcWpT6nrWZeAottk82Hjvew0xFeBllDuqq38fxSRBAkVSFKlPfQ8b23CanIia3zp+Q20GlNc0f3c4S79zD6rL1nXfesUjwe9ft85M/9Irdz9TmusN9RtBjdkjewPLSKtot8u/ED3tEYdl6s+kyNcSpaTSK6mNK10gyFUW196IIexzH7tj1U/ZcHXJIuh3W+GGtoU99yjhwKvQ7Ho8Rc55eX1ctNfAZHl8d90/dPMALPZxiHbiN+zafLbOu0b3dfUQeM2WkXMx50Ie4fVTbm3LOT4U2pS7bQtxNcafa7bxOIpBH34VKzBdB1VzWY9FTKfVJ5U/rISmVqj7f+GCEHsd+h9ymBufUZGh9Yqtv426xK3TJxm6H9Zo8jF1fFVrZarEOV4ecKmYGdJlxtLCQq+Xt74s7audXEVqtsbRuEYKSxkRM2IbTSeR8w717hlQJ1ZFCnPMdVOF09dsmY1dvS2Nlf2+H7cA6UROp7RGZpp9Z6hna4/u+mxvcdfi/NCiux+S75X+FOll9QPFO7Vx3btuzXH32eQB5DSq1w+/89u/yfgKcomSqaohJuVacqSnH5h7r9+3tiTdm53ywtYUdoul6D/N8LwAYcUz77I85fy490jaqMebx2Bb7TK1+PAoF5OidMsjK6xXNS3rGvV0hjJFT7h6zHmCWicP1eJWqPp4rosoqq6yyyiqrrLLKKqussifEngikCsg+kDcyj1KVkRnt7lWjo8WIr89zTSYjrC6qzoZqKhUVYpQzq9xVdw3Hj0pMyghAxii1l6hmR5Fro3z/mGpGYeI7tZyyncTxeRx7GE8mTdMjKEqZH6WaW0cRmhxlKX+3jMjEjLiLmzFgpODOnVsuGvzcc8/avTH/2kUtWF9nqGjSgkWC2h2q/Cx00GzZuznYtuhJs5PXsJq/j3K7yHzfP5arZJ8onKPM6TsOqSnzzk667ge92+N4Vx/0+b3Ycc9w0n08in0so8THWLezgC9+/i9ijwik6ry0iDD19/axVLNo3oiRuRUiReJvosWBrZovVMBaXlnDeMzz0j8p6qgI5m/86q8ByHlBP/T8MwCAs4y+DjaGiMk/2Hzvhl132aKv559+ys5d4rqkqsXkhciIIkw4ptJYyl0WyexRFazNKFwy3C3cb1pvIyMPKtI0wSr1Ccd4r2dt5fLk6RvXTy3h7DmL8r723TcAAJ6vPmz1W8LA2lsKX7NUTSleGHBAntki6+PMhoZK7+5YGy73XgQANGuqgWN+/vmnPwcRcuq6N5/oCv++cdeU9Cb0HyEVHRUtH05j7O0f8HlZt0dt41REmadPyT7V04lS+97CWgO//W9+GwCwsmLvrse56K1XjePgkWvSW7E2fvmZpwEA43iM7iqVAe/Z9Z+/bH3o+edMJXVzb8TrsF7M668CAK6+SOXD6QwZ/bWyEZKY6INqJdY4N6RSgmXkPq7hndeN0yUuyTe+9ccA4PhyNaKcig5vbtl7yRUvY8yYydFGURXVcfs45/7W774OAFgiOtdoNLB/YBHjc+dM4VWR7M2Dx1PjehIsSRLsH+xjhbWQ4gmzJMTjqAcQFhxm1t/3Oa41D471HUKyffKSfG/quHviZkJz7Lg4lzWonivUQxH7+/fvO0QiGto5VCftkGhqwIyaOhHLjOujaJY6XnbK8aXaSnm9TvZl1S3jtKl6fWfOnHHclQcPDMWrNdLCczeJoG1tGadqFrGOV5ZiMi7Os3oucZ1cfShlNk2FbLV4n8arAoBvf9sUYdWmQvd070JSUqfcmCv3CQGSQuEy1zL6+2HffMMh3+10LsNG6y3dq97liGupCxesFlY588ihQKORU5XtkQ88I6p557bxoM6fu+SOBfKx5ft5lpX8uVAtHTujLzlzxrI6xGX95EuGgnXCmePoqp01zp2iIJFDqUT6mZ1zmqao+UVtgfJ6Tahji+jrcVk7apOgJmS+zJ8vKgkK7UrTiIqrQBCqz3Ktm35wFlTZKqSqssoqq6yyyiqrrLLKKqvsQ9gTgVRlYN56VozMR+Qt1YIwR6QYgYmmxZpDTVZfZ6DNVZ3vNDtoM6I2YcQZrpo7EZqa/Z1BEyxbUAHbzHseHOzP1YSw++gy4jRTtIZp/DETjwPm0gdJBj/Qvdsx4ijUqUIo0aZMSct8Kx7rsfief6SeSEAlqoxtJB6S2kX3ZZ8lRIZRJJa0QEZ0TdGrPJojRcUQM6JJo6E1sFNo4bNEynf27WHe+Y5FNZezGb7whS/Yz4wAHLAWz5SR+FSRf+VoS7mHzzaeTR0fTbVZdhjxcXGBuMgTK3N+PM+DnwplZL8S0MDrCpnMv5ujPJ7UjdhmMSNyIb/r0m6VD8/iLXUSXuq+5/ozSqo6KaM1DgVVgRD2oSiezuUP279mVKCDxLVKUZ2y6s482lVGr2K2v4vmoMjt8uzm+HOpbUo1ez42RmS8rJI4jzyWuYVZt8jt0FirMXI2HxUr1wkTwvv1r38dAPDue4YCdOhXLkkNTTxD5P1Baky6D11XYwHib/r5fUsxSfXjOk1xF8SPYa0jRp/F65QFQYDMcanEt7IP1Rzq9aw9fuEXfsG+Ix5FMsbeno3PJSpENRkhlykqWs40UI59EAQuMplSeVURWb2Xd8k1Wlg0FGhxidzQLEao9AC2ier1iH8wHFqk+NxFi9x+9dd/HQDQfuaKO26DPKtaUFTfSlJxiThe9d45xOQjm402VtctqttmXbApo+4uCpyqJiLHE31zu90Dpob8XHnaEP4/+sM/AABsb1qkfvXsZbsg5wL5r+mQfjxsyoUgkaIX0Ub1z71du8abb78NAPjavzVk7eAgdjyUjO29T+ROfixjpL7ZKnI8hIK12000U7bdxL6rSPqA3I+EKogbD2xOGF17ze4vrGGHiGSbfLx8PBbV5z4OFmcZdqIUmzetll1MlOnsui02Ti2vY2uPNey8Ig9lwrkmVQ1E1hNaXrLxdzDKzyeUQ8e2mbkjxOZwYP3gwjlDPdZXjQs07h9isMssEPLe9H47PIebUzi3deTjGvJUwDiw7464lhkn9p4vnTMUKOZ82OnZfc6Ieu/s7bpslzWilRF5kHc4Dl946UU+o/UHZQN0Oh1ErP8n3unufes7Z4mqyHfu7Rj6M+S1Ll2y8d9qtfDG628BAP7cF34EQK4Uur9v1xf6cUjeeKtFv+/l/0tjcqxZ/PM+VWWdSYm6Y+2hCX2WRaJBob1i73VrZM/wyssvFp5hf9/ek1Cgt9411Pvpp5/G+spp1yYAsL5qvlGo18Xz1h6vvmqo9gr5UMPhEDOmC9SIhL52zbIM5DNjol7vvWfc989/9jMAgOvXbwAANu9vY8Q+TGAaB/QZmW/toP455dqiS6SwHkYIa1p3Wl+VUq58V2vV7mOHnE2PfY3La4RB3dUszLheFXdvwvfRalKhl2uuiPW8/MxzXMY2+Z6qVxXNHg97qpCqyiqrrLLKKqusssoqq6yyD2FPBlKVZYhnkas27ZAC/j+Nc06PcnbLqmOponXkR2XNvC5LnjdJJIxRlIhRdkVZfKrrSLFl/bTlrm9v7eFb3/oGAOBTn/88AOCgz+ikVNak1CMkg5GQSZLBI1Km5xIyAu6AG1SX0i4+YAQiUc4sfIdQKI00cbW1mJPKmjbabStnGZnvouR5nRvu0qnmkoXiRYkHwuvzGUaTXKffZxRyymOnfC8hOWR/9IcWie9QRe3f/5mfxpQRJ6lDCeVRJM5nLZmY0YXY8eEsMpNgDj1ztXEYvR9TOa+k3FfuH57nuX6g6wrVUj2GD6ox9TC+09HaX8X7iOO4oOx23LGy41T6HpfLdJza3EfB4SsjYh/XOlWzWYRbt+5g6ZyN8SAQ0ivOYOaiXGNG/mcL1l8OGV0fpNavn3nWkIQx/54kyRElowMqtL35ptVqU9srsvriJ6xK/SbrFI3HQ9dfh+T07O1bX29uUUFtYuhTm/wBqYT5CBHSH4b0PX5ARNGhv/arR2R5oihda65+E6PKmfoNw4/nqBIFKmct6DthjoD22l22MyvYu6mGPE7X9YhC8bsjjusknqDNc/Spqri5eRvz9s671wEAX/zij9o5AqGOGRLymwJXW8rG2tnz9r5vvW/R3UOi5j/5k38DALBMFa/h/U38yTe/CQDoNS3aK38xYf2gOFW2BN91U6ppQlYCtFsWGRYydea0nX/px4wHNR3RJ2ZUvJrwPTRCvP263eO5dXu/F58y3t0yo9Ez8qMCupWlVeNHzIik3b9xG//6N77KNmSfPRzx3uyYS0/Zd9bX7Z3+9N/4awCAF1/8NBIUeQhSK1XNqyYl3sqMT73aFHCKWrVS+NYB++yWeu8BkbRmx4dKKQkBlUt/kxzDP3f11/BxsTTNMBxMsD8g75Lo291tQyOyWg0Z+++U40p8szhWiol9CsnxyQc9u9J27/XiZUNebt02dGXKuV5o5iqRY3GA1KdbrZabW8WhKc+h4tLo767mU6uZ1zIjIiL/JxU+nbNOfpi4RTGR6YODA5w/a31RnL0FZgCoLtPGhvEgl6ioOuO9T6dTLFOpT3OquJQjoq1CwM+dt9qYZy4Yf+xP/sT4U41Gw/nia9euAcjV/y5fvlJ4bqHs4g9tbN5zz9di+stFItSf/tKX7Xmp6Hf91k1rTA6Mt981n3bxqcu4fPU5AMA9csZeetFUkl8mQieE6rvf/W6hPZ65YpymS5cuoUUla/1PPKxuz3zIIeeywYhKk1z73L6d+1Ypof78z/984XqBMpxuG7f19TcMVRaSuby8CD+x80oBVGiTW+uJa8W5zSku+6lrI3HbxOVUjTH12TKXTPUEkyRBWCtmiOi9yw/pGuU1Vuj7mEyLWVg6f/aYa5wnZ1MVx/lCTQ/M/wee7zZcSllTEUGZJK8zTihNFUFr+EckxLPSDsXzJJWsFCsSRrlROnv+HLbZSd54wwbc00wTaXTshafcgOgFZHOdKM6UOhYUnkuy63VtlHicPqXQm3lwqTeasAr/A9wEqGtFIh4nMdJyWmWaFI7NZkX579Avph3VajUnQDEleVWbqxllL99916Dz7U2DzD/95b9g7dNoOHKizqeJUxtSv5Q+k5bW+vOL/7Isuiti+JANwnGpXsedHzi6yYnj+JHFJE7aqBwnxPIwifPHEah4WHHeJEkeqcjvo9rHf1M1w+3bt9Gg+EO3YxuovFRBNie9T8I0J2ilJU28skhN3hdiOWu2jwj7Tvq/RJTVxPGAx9frNQQqLhvrHTLIwc2bFrdtFtB0xXozP1+10nEkek/0QRKGqCVK2WLqLUnZcZKXcVBBc/m2+9zcSNI4A2WaWWhSkrT2XLZQCbUyhkoDqKCwfLNSkG1xst/fw8Xz9lzDQ22QfF7XFmbrLBLqglFKdex0UHPqQJLutXZvMpVPqTMLq7bY2LhhKS2gPxtNxlhYsuvc44bYBfS4edWGTUGoFlMq6zWmtNQbOLV+ke1ACXsKU4CbKSfYwQ1sNFQZixTnz5sgSYMBqrfftBS9etMWxivn7fk9pm6unrJF6T/5R/8UAPDaa687SXsVsn75Fdu8v/S8LeA+9WlbuGmhGAQqdPoA9VqTf2OwkelOel6lASZuUuKi0899gvrQOCqRz9mGKgfQ6ijwyFMBoHYIuC93wbarz17Gx82m0xluvH8XPvsMa3MjY5/xwlouDMUdKJssT4Pi2GyynRt8P2ncxyKLnQ72zTdpnvQ414Ik/BaL0p49a8EFXfPw8BCnGWBSAGCTaabaKG0ztUtzrhbsrcVFt8HSxksL4nxRW6RtLHIM+1w/Ic1cMHvC0gD67iJ99GRWXPRqgRxFEf785/68tSt9tJ5fvzfbNiY7C3a9119/vXCOw8ND9wy6rvx8s2HtIQGHTkdFcm2sDocj51/Wzlmw5AIFICYU+ZB/19/39mzj8rnPfgIA8NY71/HmG/Yu9g7sO20W273xjm3ENHbUtrIH9+29HOyNkNCt6hnusTzQeW4mlcqn9Ltl+vCXP/GiK9qtddJvfoUp0fSvs7E946n1Vd6PXevSOdv01jHE/VsW6Cqvi5SO6OYUzmX6PQzqCBiU2mfqeE+S8jxHnBXBAW3ctamy40ipcWIXKv+Bwnf0jNo4JdPJkVR9jY1a8/G2SVX6X2WVVVZZZZVVVllllVVW2YewJwOpSlOMJ0NkSV48EoBDp+phDakKUTJNIitB0z7J9tICGDLNpOY33XeTWOkMxd3rZGR/F+9bSFE91I7Yx2c+axG9d963nfh3X/0WAODiUwa3X/BZQFipZUq1m3hoMQquPAYHIzOi12EuzIwpKxnhuJZPuc9j2iwlA9l9J5NUpIon2u59NJq4qKx270rDc7KSGVPoKEwhkrt+j5PUHdus2/8OKHf7x9/4IwDAvXtGvP/5n/2bAICrV6xd7m/czdEMPn+ThQdnRAAk++vEGCT+4OfynIqWKdKvqJJSGBUbzSH6Igo0X0D5pPS3MuoyXyzZRUtKcvTlgsEnCRR8ECpUTgssF3b2PO+hqFJZZrUsDx9F0RFE5aSC2o9ynZOKDH9cbDqd4v1338fKWYvgSVK93mMa8SxyKbxtRpMbNcluW//1iVRNmUsn5Df1gCkjpOV+MGUEscfI6dKKISVK9VmhPHa/f92J8jTrQpPsmAmJ0hoD3a5F9EToD8IG/LRYuDepK4eKaaqMdkdMv8tCInX0K2E9dBLiGhZyuQ2m/9UZsVUaoBxo3fccquYnQv0lKKO+LpENkaOJ9lDG+OzZs2gy/a/O70qGN2Ca1NXn7P+7Oxa5XVoTUjbF8jJljzkvNCUmQpRe7b71wNJkZhoLfMdvvPMOtkjcRyqBGaZKMd0lSov+pNm2OSAggnD7zh3cumfnl1z12hl7R8O+RZBbi/SFFF9otS3lKPNCjGdKMadM8pKhAEur9vn1P7Q56N6GRZi/+ep3AACXzhuC8Ld/8b/EOlNpfPaDDtGmkHNPSKWb2IlCEdGoeajV5PPYv2dFnyJJaUXFGxQ4qPtqnyQvIC1UxVoSsdKl+QfnmxnnPRxOXYFgn4iVUDwf7HcfIwuDAGudHnYPiXrynQ6ZNhY2mqgxhT6O5CsY5V80xGLEOV3oSocy/TuDMXxK5ocSInHrEGtPpTJ3F63/7R/mBZoBYP3UOraIaow47y8umV8JiHIpyl+WuJ7NZm6N4YraMu1Pc4z6SMh+IAQnJnLVCusYUWZc6cZC07YppqKsHBWlFYIyHA7xh1yHfPGLXyy0Ub1VTD8TUqdUOqX4zbeFQ0D4+yL9asxsg+0HlqL97FXLVrpw7owrsry1eQcA8GM/+mUAwPjAnknrF9fPE7Y/swA6rSY89gkViB5QfEQ0DKE9y0RwhNjrPezv72P1jI33Bw9sbgiYUfTGa5bCd48opBCrRfrwa9euOeRRbbNEVE3v8pDZWgPOOynTIXwu1IcHh0iI9OvdlKXsHRob52mngPmKXIhGJTuUDSP/T5SXc6sQu1p4dC1SFp6SpL98l/rD4dDOVQsCR7spo1jq249qFVJVWWWVVVZZZZVVVllllVX2IezJQKqyDFmcIPaKUf15HpV4Vomip44WVYzQS0NWEuDTqYdmUCwWqN1znTm8QUJSNyNF4mf5jKs1m01s7VoU5wqJoJ2uRYZu37XIRKtmEQKRKj3m30bTGWaM4EqqMnVqv+RBMXrqU27TYyQ2dTypDL7LRUfhO+4zLqIQ82hMGVVR1MgV8mVu8EzCEIpEMSIQ+D7AfNYZk8E37hivYnPjHgDgrCIf4iGQKDkaDF2Odi7vjcK9wt0r/15CahDHLvLkIv6MzihHvWxlNCoIgiNto8hGkojncTxPaJ4P9bDPeXRt/n7nxS7KSFS5MF35GY7738PsONGN/78U7v1oLEOSRJhF4rAwUj/XRkKC1NfKBQMzojH9A4tCtufcTHl8KkKvd6D8fEVFy+UMomjqxonefZ1+gZo0ebFZ3l/WJME28OCJX0VnM2MfV9mGSVYSTWF0vCHdHT9DQhELCUCoaeosbKkaEZLaDRnZqzXbebkKpzbAxhEBR0oVkuZ3d2LX6i0uYUbREMm9Z5yuImYcrK4zkr1NGV+WoDD5XDuPk112SAnHGu9n/ZRFZ69tGMrz1pvGDX3q8hVsbJrPH4wpdS2Zego0+KpqIKSdjxhQuOPM+XPw6PvdvODI1Xxa8q86Evlw/F5gTYU6ty0yvk6+Sq1u89ev/dpXAAB99tNnXzS+1H/+i3/HjvMCbG7eK1z/cN+eZUKEIGBRdUntj8d2rjjNnFRxShQrdAU1KSpCjoWeX/OqSOh+4Dn+2bCUb+EQLBQtcf40cYsTgZwZ0d0SsP+xMD/L0Ihn6BL1aZKnwaQRTAZ9eETEm1yHeCWyvcf1wYDz8jZLG4y8NqKJjcHJofmiLtGMhO+uy/G4yuLm4s+IAzUajRx6Uc620HsVkiWExM1bYc39LF+p67hixLSAiEGbZRD2d+3/URQ51EKZARKscNwpPovaocv7eOWVV7DPwsFTIiUH5J0K7ZLIwS5FFoTKyMc/++yz7rlee80EGO7ds7GzT1l0IUVafB70rQ2TJHLnf5FiE5/7zGcBAO+8YcJEpyiA82++9jv2LCxWrNICjVrDcd2DunWKzY0bAIBed5nXEeooxF5rPzvH4mILY3LqFslPioeGLn325aLYxT0K9dzlAPyLP/IjeOst832rREDVD7TGU6ZGh6icSmqMKPF/sLvtkHC1lea1GhFZnVM8QQlatJfJNUVekFlZVzrXrFS+5VHWRLqeEEGhTkK7HLqVxG49Vs7sWma/eFSrkKrKKqusssoqq6yyyiqrrLIPYU8EUgVYrnscFaP9WZpH8CXNq13gTOpa3FWq+G4YqLAtoxpJhF6LeeW+pNV5DsqN1mpUoGH0tLdkkRkhVhESdBmdTSkZeZqynpIX/uV/9VsAgGepqvTcS6bqsriygiHzl5UTHEqBhNHJplS0nPydVKa4u57bkY/GRUlciVy1ycnY32H0hO3VCAOnYiPZT+WKKqp0uLPJs9v1h+RLKRJeC3wXWL72uuXmfodSpD/zMz8DAHj5RZP7bTctSjvle1heXnZF9Fx00ivykMDrSFJdhYsXVyy6M4kiF9EYMgdW5tCmE+TKZfOcKlmOJhXRpjLnKIqivFBuiUNVRrfKUQ4hEWmaHrmnk+TYXf753LnKyoVldZ0yX6xcRmD++cvfKasMlp8py7K82HMpivm4+cZPimVZhiyNsLlhSHN9gQUvKcl6/+4dDEjm2KQ88Tuv2/iRKlydfJgzZy0qG7Ay9GA4dByGsgpVQORi/bRFhT/zOYtoyr/UGcluNBrOT0WzYp9LiEpzGGHrvqHCKrR45uxFd/1AaDw5VlIChcdIJqcAP2CRRKrxYZaqTiVaokSyP8TTYsQQ5HNEYyGvHiQ/mCR2koDcqka9qPI2YbtMCEcMD1lwNomwt2nPtUDlvK1NQ2yUS7/b/0O7Bv3FGaqXmfqfHSvU/84Di9BKJVXctZjKemloc0DYVJQ0RnfVeFD75DTU0jxzAcgj6GP6pnWqYEWJRb8TP8HZi4z++8r3t3MtslyH1KpA3kAy99cpZY/by+YH/9d/+k8AAG+9a0qFB0PzE3/+L3wJAPAf/Pzfsvvku53OxljlPBURka2Rn1cLi/wYRf9lgZerhWqM58XAg8Lfy3LJ8rKBm8HcUzpzhc7d7/SfbAev3XRz/QH7iHzpeCtXl/y4WOB7WGw3scM+nYXK0rDPxU7LZd8IzV2nxPhb16n+xr7cpA854Dv1u+vIAtZIgLXVJ156BQDw5lumcrdNme7wE4ZYLJJTqPGQekCbynhClzTO9J7V78UdFZQZx3mhaPFvtLYo942AaLKQsib9werKCvpErVRMemt/i7/bdS/SZ4rjtUAJ9MFg4LJh5G9V1Lcs8S6r0bcLndvY2MAbb7xRuHfHo2Y7pwl5mlxb3rxhapxJkqBH3tvzRKq05nnuuecK158Qor7+jiFFN2/auz177iJ+9+u/Z21FJPzyZUMR42kR+1BmkQqJNxtSrc7Q6hQLpDdZ7HZrwxA6yZX3njHftrltvuuwf4Alopv375vv1HtXBleTnKaVU+bnpNQ65TP1d/fQO2e+SmvOsvqjMjT0nvT70uIKlpeFyJlvkLT7mH6w0SWnWYi41h7ZUW64U+6r2flddklpfRRk4rjFro+qLzvJ9seExiukqrLKKqusssoqq6yyyiqr7EPYExFm9mCRjFwZpaRgFid58SKhV8q9VgS9zgi6ClYmOX9Iu+UF1gpQwTlFSaV+JzimxnMpehcEAepUvXPFhRktVv2mT3/SkKk/+pYVjLxwwaJMKRLEisIxJz30maPJHf7+rkVtVMugx5zWBqPms+kITeYZdxm1UcR5a1Ooku2qx1QG0y5eERMACBlJF9o2Glok6nC/pKzHHFmf19jv76LFiMLGfVhsKAYAACAASURBVIvsX3naaqg8+4x9dpjvPmEdKynX9A8HWGdkw6E9KhzMiNCIhQtdPRy96jnFPUXJRuRZHI6LxX+lyFZGm45DY8pRC9lJPKnjjj3p749bv+qDrjv/3ZOep6w6eNI555+/jGr9WTTP81ALfYxGhiockGsivtBkPMCYtYS2tqkQx2NTkmnOrFifU20fFZHOssxFc10xcP2PHCLl9IvronNoDIZhPVdr5Lj1GVVrENWJfL1T1rMaSRFzghbz7sVpkQqguJkqgB4zypeJ88L7DebqAKaMVOZqgES/HC+GCFaSI2rywyl9reowxVkRQY1T8kaIZA1JGOvv7eP2dYtUSm1PEcmtLUOd+swAiIQoU8nw9OkAh/33Cvc4oF/qsF5TSnQt86kwV6P6Iflb49EI3WV7N8tJMTtAnyMi677eGX1UFGtMho5DcsTYDxxPhPWzXA1DAA0qlR08ME7D7/3+77Ot7CV9+Sd+GgDwpS//JQBAUzVXxA8MfWTkIQTsM6QBIvNUe0zZA/QJAs6yDCHRLOe32c6qh9ZbWOI9M/pbetYky1VjffKJZZkQEogrzD6uA9LUcdhqgfqfffZZIPvjZJkPRF2gN7P+dzigCijriB2OR4ioWBzzuQ9u3QAAPHWKhaI5Xw6YQRNzHNaQImVtuCUqcTYODCl4icjEffbJB3cN5ZQamiQ9a60ubtyx8XaeiJCQKtWrkoKlq4HFPtNoeghD84VO9ZMFsUOnSsjMlRV7/qeuPA0gRzL6/b6rGffuu4biPP38CwByDpeOFYLQZ/24Tqfj1jtSbBVHVLXlDkZ2rLhe+wPzlWHK2lNLPTzYszYD110NIuR9cqciFizW2qtOjtHi4orj8N+5bX5nFpnPuMYCub0lQ4yfef4qAOAWVQIvXb1sx736HVy9YOjaPtdlQvH2OIaE0HRYQPmgbzyu5WV7ps3NTXiNIrosDqfWvgf0VXp3q0ssrNvfcfPNM5dtbhLKp363uWc8+gYzq4aHVFbltRaXFrC8RHXRjv0tqDPraIl8uY694wVy6rr0x+NBH+cvPM17s/ZvsYbZv/v61wAAzz1rbTfku5OCpNbVzWYTifQK6kWVcNVBdAgWOYaaM73Ad6i52m5wSAXF4QiPYxVSVVlllVVWWWWVVVZZZZVV9iHsiUCqAOMPxdxFKqdxwh1iNJvldZJqUj6x3ayiFjXuuHuM7tW47UxndWwz+vY+1WSWmP96as3yP9tU8lPF7olyaJn33estoMbds8+Iz5QRkOnAvnP1iuXIP3PlJwEA/9e/tmrUS8trLirSXbKIglCXNiMOz16xyIAigr/PiOQnPmHo1wsvvIBr164BAG7cuAEgjyKoXT75ymcA5GoqUnnxPO8IH0ftq2NT/q5ISI+RiMMD1VbIMNiz/OYuVWX+1s//LACg37djNgbWtk3WzFlcVP2d9py6HgAADeZMS+2nyUjDlBXj1V4uUra97ZSHpnERXSnn+5e5T/N1lcqVuMvHlrlN859lxb6TkCi9j+MQrDKnap6zNf+dk/hS8z8/jFNVvt84jvPoVamGw6MgdifV9HpcVcInx1LAm2HIfnvrNiNYPeubo3EfG9ctDz0lGj0dWmRwOmONkZDoR5e1WVYswttqeQgcd6jYLxT1+/Ef/wkAgEf05Y03XgUAnDllPqnb6iGmr5mFgheoxsVXoXp6o6FU2OxcOw/uIppY5PrMaUPMm4QgMtXCcegD+wn9m2p1TJDmCNDIxofqkSiHPufU2HjKx4YDYpAQQc/7+qDQHuIljYjY3Hr/BgBg89597G1ZhFgKYQ82LGI+HNk5xEsTytf/hvFHFpYWsVA33zJgJNIn2nXhoiHrC4vGZfj0pz8NAFjuEXVJyIWr1XDhWYvMN1jLzEUwWScnaVJZ75K1ywsvWWQ9qNu5Qm9O1TArjjUpy5YRKr5y+D5w7ZpFuf/l/2xcKvHx/t7f+yUAwJWXzOer5pgipL7nZCMxZVbCDttQPl60mIyIpM/PmOynWth0dQVVN0gop8+5dzJNC/flUbkwSnOkrib+MEqcV9cyqsFWRKpCL3VFJxdUN4g33YmLinIfB/N9HwuNFhISFD2f/CSOuxANTEbk0rLWVK1ln6eIZosTPSa3sMZofIjIkdOWqJSmWkqH8g2cgwd37e9nyNdaIefurXffwyny/ITQr6/Z7/fuWrZLRl6m0M3UzVcRgkDcKaqNiu/lieOjrBM794MHNpbFqRmNhu7n8+ft3nJ13iI/WeNQNaaGw6GbB3VMmdOVX0dKebZO0RojjuMjnB63LiAKWK7P5XxaPHUKdfrU2mqdqn8a11IUfOUV47zt0sdtb25gl+u0aUqOOc8v7lKHNaX2iKhJ9VTZSL3eksv20T1qrSe/o/GvZ5vM8hqh5eeT6RzPXjGk6HA4LZzLS+xdZ16AhJkH/+B/+B8BAJ94xeq7bj6wMbu4ZO/jHGtgXbnyLADgxnvvok40+5lnnuFzWVvpvQipPFoj82jGTXneVaKO3o84X7qmjgNy9UH1JSGl2DhymWPte0aqPM+76Hnev/U87w3P8655nvdf8e8rnud91fO8d/i5/L1eo7LKKqtMVvmcyiqr7Adllb+prLLKHtc+DFIVA/hvsiz7Y8/zFgB8y/O8rwL4TwD8TpZlf9/zvF8C8EsA/tsPOlEGq6Wk3eKM9S8UVZhOJo67NFF0lFE0RSBqVNNpMGoWUg3P9323O1UUZ8xIp6KkXUY86lQ3qZMfVKMKy2w6cRFdcRG0H20yIrrFeiAHRNdOMXf4zXffxjJV7PYYYZJmfp0KXa/9iVUDV+RFOcU7Dwyd+f3f/T3XNmV9fbWROF6KMrg6Tr5/BKkqIybtgPnuiqbOcSMA4LC/49r1JUZjxbcaskL8mXXL3W42FRGyd4g4c+2vyIver6pvN6SCSARvhVH+7qK1xyxJXLRie88iQAk5EiJgCS9xypHH1I8qK9eVlfwe9jl/vuP+V74eUESQTkKEyueQncSX+qBj81pgR5G0D+KMHff7o9gPGKn6yHyOByKnJD0dHFjUb/OB8Qr29voYkp/YJP8gVB0qT3XfbExGMXlDc+2nKK6i/IqyuQrv7LH6u3zRRUZpk8RDIhQplgrqPOMmr9VXrvyexBFmVAlNIhsnXq0+9004tTmZz2eccUz6QebU/qTyJS23Ke9rlhINjvSs4oXlNbYCv4hUjcbme+XHFDGMeGf3N4l8P9hDRiSkf8A6euSzRpR67fepCsdaS6rf5Q8jHOxYe+4Rsa8zqhox2r6wZN9dO20oVAbzOY2aXbPdaGIScSz5lgUhNC9s2ufiKmvuEGlfoVpgrug3197OT0nB0drBqwupUXvZZwLgq1/9KgDgOrMTfvanfwoAcP683fN4Ys/g0182yClL2S+TJHI1tTRPOgVJcZQ1F6SaG8S1glNlVS3ARquopCUlQZmbVbK8b82NiMKx6ruZ6qVJ9Y99vOYHueqW+A9S5UqH+AHZR+ZvQj/AUruL4dBaaZcqgH7b5sYkTSFWx4SZGjVGyG/cNS6Lxre416qxFI8OcPWyIbAhEcFNIiAz9gWPXMHdffvOM1cNTdX77jRbWFm2Ncs3/8gUfr/0JVOV7LRZQ4ho93hUVHTzghgS19P8k2dB0Deyf3WpsnrqtK0XVBvJ8zz0FrvF85Z8pEz9T+3QaDRc2yijRb+Lo6qsGK0jlJW0QPQHyH1SSh8xnRZrt5WzVHLEpIkR15TPP/88ALjMoi/9yJf4DPZevvjFLwIAahyPu1RBPLWyhjdfN2T6N776m3wuqt017V437t1lW9l1z5KrLoW7g4MBxkQmhbJo3OtehfrLhzQ4tur1ujtWWVBS31N7H7IWWKNl7V6rK8OIDejV8e771q+3D62Ner0V3rO18zbXtGdOmbLhte98GwBw5ZmraNRtLGjOeOop41i9T5VFrXXLWTnHrUDy/keVbCKpmm+01tQ81Wq1jtShdBoDw8fzN98zUpVl2f0sy/6YPx8CeAPAeQA/BeCf87B/DuCnv9drVFZZZZXJKp9TWWWV/aCs8jeVVVbZ49pHwqnyPO8ygE8D+H8BnM6y7D5gTsnzvFMP+36WZYiiqYtIKB93RjRiNBpidDjQwXbjYTEC581YbZ3KOMtdi66EyCtzXzxjUWBFjzvk9jRY3dyLxTOwc+zvWpRzsdtzVeWTGSN5CrCxynWjSeSK0dIXX7C80DOnT+EP/h9DoiJ+t921CNQaa0Usta2Jbt0yDsdix+7LV4XtIEDCnz3eR53IkU9kKCLfY8iItyIR9+7dc1Ea7fAXhNyxpkTAvGftyPuMVLTInzr/3FVcfeaKPV/Lrnv71nVrQyrk1EsokMuHBuAr35oRz5Ahfz4CWlRbVJ2qwaSYs9zv910kX9EDF71iVDSVQlSpbpKeeTabuect14P6IC7V/Of8z4/KaVLOdpIkJ3KqTkK3dO5arZYjHCdwqmRltGn+e+V7P+k7HwdO1Yf1OUAGpDM0mzYW93YMlbp/36Jz8XTmKtc3pSDESG2bfX6hZ+PK94v5/EGQR9nVx3bJwxEfZYscxUVGqpXj71SsosRxEROpzKl/BEU0VgizU/ZDjNnUxvIGVaZWz1KNqWYROqncOYRAvBjF/fwECdGFSBFBohuzTOM1z8cHgDojpmngO15qFhX7XJ/5+P2+jefbd8mTmlo7CZ2/c+MeGrzH4dCuE9btXTWIKh0yctmrydfY37f3RljtWTQ1C2wO2di2cfhgz9rl/EVyukZ/AAD45MvGrWpTZfXll17BaGx9YkC/5RPVrFPRzK9bFLY/sHf7/i2LOp9mHbOlXhsseQi4eihSltW7snYZ8/kbvP63X30V7980H3vmjEV1P/UZu8eAz+s5NVlCqDMp7fF+4WNKbt0SVS2jVKp7vC1IlY99nPNaHb7jhTgMSvwvIpS7VF+Tb1YGhngka6eWILApjO29H/EtJb85ioV+1FyfaapfMfvi6adW8IO2D+1vPOOe3d82/suEY3ZN2TP7Bzi7bu95k2jCRMp4nNuV8ZHyPa+SB9htNTAjyjJkO0/Z3ybkuNSZUROPiJTt2znrVIVcWVlBjX3gueeN53L3niFkTSLBfXKsFeVvNMVfSh264FCNQ0MEGuQy6t7v3LE1jvzs5cuXARTnWNXYG1IhUes3zd9ap8hXjkYjd13xX7TmEfqgdYOrT+QVUbAoitwxuhf1/3abPvOEWpWz2QSDwaBwnR//y/8eAGBAhb5Wu1u8j5rdnxT89vYOcfOmtfcilfHeYcZSjWuulMqKV56293P9+vtsMWIjme90AO7z3oXmqQ2Fxt29Zddaoxqi53nuXWhO1ztTJkSLaqB77J91onxrK3aOva0QS6umD7DC86oNr141BG9xwfz9lPehmod7e3381R83FE+1tFRjbcg5Y221V3gGvf9WO0fhy+tPZWBoySP1xx5rnImXBj+bq7Vm/kU1zMbjIsfsYfah1f88z+sC+GUA/3WWZQcPO37ue/+Z53nf9Dzvm2rgyiqrrLKH2Ufhc0ajyudUVlllD7ePZI0TxQ//QmWVVfaxtw+FVHlWsOSXAfzLLMv+D/550/O8s4zgnAXw4LjvZln2jwH8YwBYXTuVfVA0PMuyPKpfirJrRzpj9KLOKF7IU7VqNSxyJ6sddzQr7iVdLq0ywMNiHaMsyxxC5pRhGFmckkM1iixa5+pDbVhu6Sc/9Tm88brlhO7uqf4ANfQVnaF6lXbRymmVzWYz1xZ6BkXFFS1pd1S/ypz3dCZlsjxX1KEKzFtXVfvJxD5rVAZLeX+61tnTp13E4/3r9ixnztgu3vGTlI/aYIV48qHSoOFq9OiY6YxJuBl5YoraMr97rBoTjBAL7QHmauN44ldImayUZ1tCUtI0PcIpK1fKPolzlGXZEUSm3FfVDjK9F0WmPox5nvfYdarK9+n7/onoVvnYJ9k+Kp9z6sxa1schgsR8w4UzVIM6MNQhnUUYkjvQZz/xiZwc9MlX3LExEYb2neHUUKEg8B3fpEtUa3P3BgBg5llk8nd+32pvJPQjX/jU5wEAA1ER09ih0zGRAfFeap6UtqS6RmWtSMhmy/WTgz3zA6fPUj01ZL23VNwp8yMDPneTyBnSzKn91RX9Ux/nOaJMqpVUheP9NYMawob9vL9va1D5q27DIskZqQyrPbu/xp7xTd+6aXVekvEQfaLyOapBzhg5bbU260XNcjQYABqNEJMhswzIA+oK0Z8xUs+aPKDi6J22ZQ1cYh6/7wfw9NyR+eMGa/GoPkudqF+Dz5R49vs20YDDdISDzK7bbgtdYhMm5PyyjlST3Kf+jnFzr1/7Jg5YP/Cv/dUfZxvaMVJLnQws6lun4i3IWwDbCZmPWt0isjGzMEQJloLjcESUSUqTbPPJToghERLHIQm2eKy12faOXb/FNn7+BYugL7HP1zLA57uaHZILrPmZmR1Bwz77hxYxFtdq0h9hbdHmwyC2Y4bX3wQANLpFxP/7aR+Vv1nsNLPd8QB9zn1+k3UdufY4s7gCDOzniOhJjKK6otQ+NU8PiY4sLC1gJvSEvLqYa4r6IvmG5PkFNTuuQSSnoZpPu1u4e8sUMdeZ5TKkcmZGnlaT9zyL7O/KzhmPpi7y77KN+NlkFtDychGJ3+D6SNzvhYUFt94oIxHimn/zm1YD9OWXX7ZnmstakRKdzlFWihNyJV6OL/SVvnWh00LAzqdjOuzXw4E4tEV/JPVFz/Mcd1FrFWUenD9jbRnUhLozG4jj4dlnnwMA7O/s4txZQ3ke7BrKd5FKpbv0jQ1m+IxUR5Tr1d6CuGjAFr+7yjZTG50l2i1UWWiQ4+XFMa5fv174jpDBs2dNBbLdND8jH3E4US0u8wPn1s/i3Lod+xbHaouo5pg8+vV1Wzeu8tw/9ZOmlp2GbURu/qI6c1pEzI5TNLbfc16Ypqh876B1IArn0DMq020WT4+gm1qP6vqPat/zpsqzu/6nAN7Isuy/m/vXrwL4jwH8fX7+ysPOlQGI47zolx+K9ZjLYYv7q9SDXO6XCxymiEQcGIecJIZ7ffS37aX32nbelQXKmXLjkUbWsHmqlJ2rI/nhg6Eb4GOmF+p+ptRu39+zz61tmxRbXES8/uY1vPCiTdR//E1LAzxzyq63vm6DYWdCGJuMv96ydbjDAxbzTNI5yNvOO94f5W0DIGDKXNhggePY7qfdXEYcsMguyZRdSkYuciPmt0huZZG/HjvRuXNGhDxzZh3DoQ1GFbZ8590bAHIHN+aEHnJhITJrq1PHhEXUYhU35IIu5WKwCTrEhjXqg12bvEWI3N7pI1Zx0LEKNzMliGRO3ZfnayOkTUjKdqu5An36dOIjTDP1tHHXO+bvIVJkTG0JlTjDfqbiqdtONp/ynypkLMliP4TSaJRG5aXaqDGtiuTZQMIAXIBM45nbeM+40FbakLDmIC4uNI4W/803TI4knkjmdlL6bjmV0YOnSZlpHh6UpvaD24h9lD6n2WzipZdedsRVjX3J1rZaLTTbeWoIkJOLNeaiyBbuW1vWf+6wKGmapgjqcuYSm2ABcqb2vv+ebR4iFrOuc/F95SlLsw3mrqOFggjK+l2bqjwNMN80l1NVbt+2dI9O13xL75RNfiHvUwUUPWlte/nGOw9Q2O+hr4KtxeBTqKLaQYaAx2izoD6d0l92WMRcKdCdUIsbEvejCFMKUSgNar4Y+Px9ZaUJs1arocuFqMan2kqTaJcpNgn9xiEFd+4yPekbnoeYY6rb0xi2zwEXRAssXLnYW+XvTE9sKvUE2N7hwmfR3vv6ui12Qm5q2uxvMUU53qaMf4IafuyvmOz+X/zRvwIAOLNmbXUwsHtVyuqZkOni3BBr4zibzbDPNMsZ+/f+ngomWxsqtUW+UG3bzpqufbWJUtJgi+lQn/vcZ/i7tekihQaceRlCEuFri7boVpHp4czmItWv1rymwvChF+JPvvXHAIDRHjd3fB9/9x/+A/wg7KP0N2maYTyKsMCF6Q4FIxbWrc/sTg8wi7mZYN/0lcHDlL4W54Nh3fz1Ht/LcDt1QYuoVCg25JpqxsX+EhfgEwrGRDP7f2dpCctMd1ps2zvbTrUxWuCnvXctSJ1c+blF1Dium1yY9hYv261zoXznts3pa+vWh7Vh6JKmsbu750QktA6MEwp2cPPyzNO26RhTVOgOU4U/97nP4YDpxts75oO1yYunxQ2R2mlGGfA2U7h3drbc/xLP2nuWco3FQsYqO9BlG2rjFscxpgxMb963NVR/YONuhZuIiPP2mKls2dSecZvpzyutLr7zR38IAPjEZ18CAPz6134LAHDA4MZunwXq6TsTBZAJAiy0u7h11wJ7ekdKHdY8JylzpStqTeh5HmrsX0p3VCHn9957BwAQMu3biVxw/fLK87YxvHX7BoYs/vvFH/5zAIDnnjcazI//hKVDbu+pTBJ96dTOcfXiGXz9D/5vez4Gj2Yza8PBgfXd5Uv2LHt7bAfOLbrPOE5dn4xJy/EDSqvzmBnXOg224faOpWzXkhghBep8lj1Yo/jaATeij2ofBqn6EQD/EYDvep73bf7t78Iczf/med5/CuAWgL/5Ia5RWWWVVSarfE5llVX2g7LK31RWWWWPZd/zpirLsn+H49UMAeAvP+75LMWpCO/J5tOVFD0rp4GlShmTZKxQB3gOYhaM7DEipKhOohQyyXGninha8xweHh6RpCynY+n/go5jSZvPxlgl8pQfS2I3IyPetBjtz4vTSn54OJe6pZS1sjx6TtoE4EjeS71FJ3kZl6Sf1YaZOycK51TktVarOcKh4G1FwhTxWGbETW2qCFGSzcl6qkilCk8yiuyiC3PCHMAcvD+ZujbJi/nZOQJGsSQhnZaeZU5s3f1PkQ196n2nJ3wC3lz7F/8nkCAIVdQx09UAAAdMq8qyxBV6TV3lTfYhnsN9qp/w93guLc9Lj0eGHiY28UH/O/rd8jm9I/38T0Oo4qP2OVmcYYlpqiJjK/o4no6w4LE8wERlDAQLMh1J6G0iEr4i9RlCptXNiHo2GRnLEvtUqsEqEYwaEcAJkffOBzRr+b1pTASl1Af7H1F49jX5wphpSJ5SCPmq1W8zTzhUjlDpU4XVhUbplQSBOo6PkOjrRKirsmOVpkpkLCXKESbWdhfPWzS602ojYmqknkdpQZ7Q15LQi0sPSTMM6PQ0XCSpW2vYmG+o6CwRmr7EAZjOPRgMMKMPazSYssW2ItCN00T7Ll0qyaWn9o5rtQAzzUtEqROJJDG6PJMwRKgouPXHq8+/gt1tS5GSVHxGgYzekmUQDJidcX/L7r22ZCjIdJoXmla2g1C30URtZueMU+Yj6p0q9WYaISmlXy4tm49XatP6Kabn8ZWWMqBhCHwxpV5oa0DBDrWLEJUW0b9xMnAoRsz0qw0WA51OH15i4qOwj9LfBH6Apc4CbkaGpLQpg9/m+JyOZkiYijqZWST+EoW15POnnL+bDaJ+RFfDRuD8coMCCHp306iIkF+5elXPxuPyMaT5NmaHW2TWhfMZzGxoKA2QvrLRbDlpds2TWofIDyqFLIqLaVfyXQsLCw4J05qiLCHfppDCjfcsTU3rhNdeew2HRPNUODYv+loUEcrLT4i2YM+/vnbapca1mSEzZTuUqRa6v3nBCrX/X/9rlqr7z/6nf2T3QdRYz/+3f/G/AADsj+wdn3ruRQDA//JL/xC7LOp77bsm0NBggejl5Rrbwd777VuWuuzWpCwbsbS0gi984QsAgDt3DLF67jlDkSRd7xDMUKJhdo4XXngBb79t1A4VE75w4ULh/B2irIdEziRCcsD/e57nUsSFkOlc771nohovv2Lo9oxlMWZc+/7mb/46fvjznwUAfOUrvwYALv340qVLAIAp0W09g96xBKXmywfVWNTXUV1Ka171Xf3eaTfzeZR/E7o3mysM/Cj2oYUqKqusssoqq6yyyiqrrLLK/izbRyKp/lFZGWU6ruhqTk4rollLC0UymaILiws9rCza/yQEEbIgnWTJu4z8zUt0ztviYs9JUnZJChZic/u2RQTGLBSq3fMui++dPn3KkYCVg6/8cT1Ci1EryZIrinOPRMBorpimiiDr+erckecFbfOcdLvfLqY8j3b4Or/Lw3ZtyTzXAcU3WMD3O9/5rovi5HwS+06rZe0hLgqpAojnip4qKh/64grZPddJUm4wWqt2unRJeefWphcunANIEt/asajIxrZFEQ7J15owh7lMYc7RuNSRgvWOHFLJCJxEL2Zxsf9lGZBC/A0VBGWklYFYJynPftoggrb1wHKmkSa5MIkrDEtkjlHagPyDsMSVyeI0lx4WH8uhBxTsKD15xgixPr25gKv4WDGKkX733RK4lWVZzvMqhaPL4/DjYs1mCy++8DJmRGxiopbbexZZW+g10e3ZOJlQnrzZJkpK8rU4gYpwDQ7zfiPpdOXWz8YUBqCQS4PvZWXVoqKnKUvb0ticE1HJxVeK70DcA5mKBEdRVCj6PH+PEos57NvYahCNWVozGWxxkJDNoZPErHxer66+xq6Q389c3yQyETeKpRbEeW0SmWsFNq43huZPn3n6MgBgdXkJuxo7dCo+n2HKZxvPcRrmPxGGGIgXKXPFjiU/bP45pO/1sMnn1ylCF31vBMPCdyP6h3PnLJJ74z2L8DbJVXWFlgPgLIs5X7pkhYGvXDUxhxbbe7df5IuFdXLMaouoNy3DYZf96sF3LEJfI78yj9hSHOl9e4b5ouKS4899iaTdNZ+yeUoIeLuZuP7W6dpzPfec3XuHXFz5oJioSDRTZF/LisyJrSgbRH2kxXImKXm2Cd9xyvtdWFrHcxTZ+Ie/8t8DAN5+07gd793JhYs+LhYGAVYXFtEmcpOwrWZUIW2GdUz4Dk6vkCOXCallAW3CmjtbFGFZNc7HLBk6/+wKmHK8ac5T2YXegvWpCvFrLwAAIABJREFUsqDTgwcPcn4TEdLugopYUyCBfOYwlKADUac0c8VthTZpvbC6Yv1ca4AeC7yWi/P6vu/uPUeV7DtCqFXs9tqr3+X1bZ3y+c9/Hu3VpcJ1xEEXl1RrHn1H/KF5VF/3rrWebF52ff7eXdmYJHFiQvvk6Ny7aaIfP/aXftSO4fveuXsDALC1aff11d/4V/b8Xoaf+qm/DgDI6Bv/z1/5VbsOtQBG9JHKkmmTA3SGiObebh9nyYO/SkRSz19+3w5tXrd5Z2try/nPn/gJ43J+4xvfKLTDIYVLYmY9XKJv0zlffv5FvPrqq/Y8E615Dd3+8pd/zJ5F61JmKLy/Ye30iZdfxLe/bRxKcTRv3jR0q8aSOydxajW3+L5/FIlSBlFJyEzfcUWS202HQAZEvg75u197vG1ShVRVVllllVVWWWWVVVZZZZV9CHsykKosKyhW5X8u7irn/1aOxGqX2WMesCLow+EQHUaWlVd64bTlrSs6dqFpu3ZFKrR7nbeyNKeiJ7pOVCpu6LgZczW4uh2LBNXId1LkA76KSx6PAmRZBt8Xh6rIH9BXdD3du1SXgHxnr/zZsqrYhHwkkTKUBz2J8sKljivGc0lFRlGLm4zMLC9b5GNlzXJqO90F913xNgLVF3VcomK+a51IXt+nol63iy2qVqkA4faWKf9sM+9V0p0nFeOdL75bRkLVpuXPvDt6ThEvT7EvIkaB4+MVry+OhpfNRcVKUSM9d+irMKGdS8VXvSxXM8yV3vihLvMQTpXneQ/lUpVtnlN1UmHi6DHzjZ8Ua7c6+MwPfR7wJMPNaOzUosCDYR87feM/xJlFUxd6RCDYkYcsrKqoZ7ZOLks0QyAF04DR3x07dp+KbaN98QnNP9Rb5FNMrb/sPZi6tnZjOhSfkOgKkaOyOqDv++67QsXFXckUyeOYHDFvvUbf0FkQLyx0RYbL/Lk8gs7fvSJy5vuAx3hdt1nMU49ClUKgHDPRvqcuGuozIrIXtZpYZ2aBEN79bYsC/3/svWuwJdlZHbgyT573OfdZj1vv6q6u7lZL3a1uJIEspNF4BrBBJoiAmAmMCbAN2IA92JgxYMYxjpixwx4G2zED4RmF8WDMw0ZGBhuBZMSAJEBI6m51t/r9quqquvW+7/M+JzPnx7fWzsx9qtQlumm6xvn9uffcmycfO/feufNb31pL2e3xsGjW6SobqlUkTLL7Y17nJY7VNnkM+qw+32p23Dn3x5uF642cGa3NT3uUFu9xzq23rQ0rUQ3RsWM8JXLsqLb34gtnAWQGkzNmstWXhv09NIiiTaUUSCRsj9c95tgTYhBHQqFy1gnTIjouqxFB7KSmIuDzRXNPWIkdH0PSykKgEjcXEV1jW0cVcWOzOUGo+yzg81BSxkTyQ+h44nZZO/U39yCJ3d/4+O8AADZZpTC4DdHxADYG1HcjrgHaROwG/V2sEYnZpHHujHycWapKBs0/9nmR/Wx9byt7hhBFkWS2nr2aQy5dMhRKVTuZ4nHoEJC1gzYWhTbpnPUdoUAHD5gK3AwjjMgHu84xevz4SQAZLymrAuoVzseZPg8GjnckSxkhdFpzXbpEaXHOf+9/v5nF7u7uoumtC6X+d+LEicJ1XvfmkAztjd1zX+bDqtiZeIi4zj1bV0WoVjTPFee7CcfqqTtNAfrKReNDPf3UY4V9LR5Yw4svGTLzrnfbdZ06ZWjT2WsXeF5FPq6OdeH8RV5Lx7WdeEj33nsvgAyxEj9NMuFPPPFFAIYo6W+PPvoogPk1b8qxqn4hk29VeTSbTfzgDxhn7Az5WcJtxuQKX1q3c12i6usGlbkXl7q46y5Tvv3M79u5yu6hNpNkelEuX5FfR+mehKG4c3zueCio+kEltHu9ub3lrjMRh3SV5u57t2xNl7viMsooo4wyyiijjDLKKKOMMv5Y8ZZAqlIUjVj1hpxHHfJ1k4XvpkXEQKZyV67am2iz3sD1K5bZuHzhLADgB7/vLwMAzr1qn6fJS+44+ZDqyWQymVOTEaeqx7fY/QcsM6RsijKQvV4vZ4DZ4P7sWpVh7M1sX8qaKquzt5PV0KreuRKyZppZZGU4t6gEdOzoSdsHa1eTJNPul9qdFFmCkPXrzHg1maFRO2xuWNZja3PbZb7UDrv0P3n2GTN56yzb+dW4j0UheOMJmnX6gvH4Y2a6ZEDaDJWJIIeFXiWXLllWo7+3g1deNF+fC5ft3EfkNdSUpU+UkZXPTtFbJ0niOdPbQEiVUBdxMzxVsTAM3f8UvpGuaARTZq8TeqBtbxmiVgkTRERFxMWR0lotlL8P24H3X2NimiJDt3QN8nBLb41TpawykHGqhF4Ec4jVvNGxPzZ0blKGut0iDCtotTqIYyliiiNoNeCtdgO9ETPjW+TUdGlkuWJ9vTESN5L3aWRjsFqpoUaOYYXo0mLH9psco7Hmlr5DrgPNadPYvnf+8nAOFVS2Vai8uoIymHlOlTJyq6uWTRxSDa8pxCiRJ5v9HFPhsE7ft1ojRKwxVitmyCNPDbASekqsSYqUJuT1apH3JXW5ICH3k7yAsWhanN8XFxedWqvmwyvKVHMf10ZSMqSiHzPYUVjB3lhqoElhH4mueyI+Y1q8Jh4/no6R0usEnjpso6M5h2OL939xif2CGd/xNMbaQXsOtKiYJoRIc6K8l8STGg103jmjUh53Eug8Iu5fptTMjtNfR1S7JImRUmpVfNYJ20znscDMtc5DGfbW6hK6C+S/UKlxMi36E8HNMcVQf7D/FVHxCq9zSG9AcQjHQynJkaO7uIInHjMV8x7/V2vZuQ77G7jdIqxU0FroICQi3mPmPhja3NJqNTCWEW3HEKFNZuqnvO8BEciUa4DLV8zTLETqqkBafP5OyKNu8MG0vEgPtZr1w7Nn7LuaOzqdDq5fK3KJNP62rthaqtGiwi/H6rkLNh7H020cOkTvIt5PISZSV3VqgNWMh5Q//t7enkMPhKZIrVfI2LIMdemTJGQlCAKHXmhdpn1kyCD90px6cNHodTweu76vddnW1o7bf/7afOSq1WplSoi83o09jl2uaaSYeN873g4AeORR8yw9ecp4ip/63OdRZ/t++Od+zq6BnzepTHru3Dm2CwAAKeF4qX02Gtna7m1vM1VBGfrqOa1nhyqNdN533323Wzv73o1ql+tUgN5P/6aDhw1ZPPOicR3T6QwP3/8gAOD9VPILqaCLkJz469bHUvbH/fs4Z7baiBOZP1vbra7S83NSXGPoWpxa95epvPHXJ+pjrrqDaHhUb7o1Xp1rK6kcNohm3mqUSFUZZZRRRhlllFFGGWWUUcbriLcEUiVOlRzbFa7uNk7mfKliD00Qt0dvoKr/nEwmQNvelpXxUCjTIU19hwwweyHlkq2tLfe3a+TyKBPiZ4/195SZvzAMMWTmo8Oa5CzznHD/m4XrVfZAWZZ9+/a77MHiYpEzNqQzet27xkY1UwUU4jZi9mqxa2/eyuo4JR5mBNQOOo/OQtdluuVXpfrqWqOoJCi1FWWZdna3M8UZKid22/LSII9lu+iBtUTFoB2e98a164hZp9+m30bSI6eNmdAQWV0tMM+9i+P4ppwiZVZDj/OU/1nxkFLnx+X4HPZzdc0yVboPVy9bzXCn1cIgKXIE1b6xsilECYQcKbuMJEYGFBWvV9ukKNYOK3RN8SzO+hf7prgXPsfL56jUag33v0x9s8gdu93i2tVr+L9++sM4ctSybVJBuuteq33vdFq45+Q7AQDjo3Yv05C+JERhmnXL2LUC65OjsdW+V+s1RFA23yKBeHLWtpMlooUEQCtx0afqYmVjrm39+yKen7bT2IiiyPVtZer88ZDIe4ZzzC7HfshxduDwEVQrRRXKkP234qFPDphIpcaUQnyYwPmEaGNdL8drytr3rs0ji/uMvzObTPH2++8DAGwwuyhkV3X5uzuWwa1Vbc4Nc4lKhzxF4proJDlOqHqYqI2FWHKrJE0zZU8hVJxThZTJ3y8iD6lFlSq14b4D+3CM/Uo8rIBjD0Tpp0TsZkL5lB3OcSCDhOMyFf8lLWyr7eqJzYmaE+J45ry+Ym7TrhWVy8Y9Vi3w+Cfp87Ny8hCqUbEPu2erp0Z5K1GPpI5Kry8io31ycdoLy9zStvs//s+fwW/85icAAFuEMUd8Bv2dn/gxAMDf/pt/5ZaP/6cdSZpiNJuCtxLtFevnuz1WbYx6TqEPU+srnf22zWhKZVv+P67Ie4pcy6TuxnlFVSYe6jPg+qTWyZAJAFhfN45Pq9Vy84uQTz0n+uQFXaXi7vKy3at95IDVasvY3S16SwmZktqgnu379us+o7DdeDx2+9V5zMgl1DX4qr1S6VtYWMBoWuRICQHTGk/9XWu6q1fsu+KPV5pVd47i7sljqsprEj/e9zwaDofuuB//5Gfswqr2+cP/6ucBAH//x38UAPAvf/bnAABrB43r9csf+Q0AwH3vfhiPPG78piubdu9w1daaZ8+fBQCcpE+Xzkuqf+vrl1x76ho+/vGPAwAeeughANmaQ+csDryeB1/84hfddQkJFDJ2jLzQmJUCPn/vzjuNC3XHkSMOvf/or/47AMDpu+8HAHzVuz5Q2Hb9oh3/8hXrfw9/1Xvwr3/+XwEAPvnJ/2z75/QTc65sE7nzlQzz+gruOlWZwDlcfUrVWI5jxTk9juPsWUHu1so+m7vXL2XteytRIlVllFFGGWWUUUYZZZRRRhmvI94SSFUQBKhWq5jNxG8oZgLyTsk+3+pmkeZQBmUYOnSEV8bNKdjR06TOTH6Tdc9Ciha77ax+M85qcAGgRtWs4aSojneN3J/JZJbV6AZ07JbizIQZR2aEhuNe4fxWlulrVQlxeO0Q92dtNGbd6dHDllW4uHGpcM4duoJvb2+7bI1znma2XKiTFPukeqPslcvqXL3uruuOOyyTL6RK7dztFjNCAlnCFFiWelRVyl/WdjEzj3K9lhJSv09vH3oIHTiwHz2qCE1jO+cxM7AzKfax78gvwkc202Q2n63nT21bIQIRiZ8klcIgQxjEn4iYNa9UlRXmd6gCGTDz3dux7F6nXXf7dZ4tokFRnbJTqRfOq8973GpWM3SL2buJ3NzjMX+yHpgZGr/+ezybIqWao3x/An7Hr0WeUyWMorlx56uq3W6xtbWFj3zkIy5jlfLeNNpSAI1w/A6bH8QDOXLcVLEWl2xc3HnnSQAZ9+D0UaG3FQQ1oqHyspK3FaetJKb3BhG/wS4z93uqJ1/N+qVDX8GfytQV/TskBZkkydw9lByeUKWU/STitSXMgsvvDXGSpdyU7uPnOXQyLebm7P9S3yyes9s2LSoLpqxjbxJti2szlwnV/L1/zTLjQoE1j2o7efiNx+OcImLRy0SIMxxixOufFZ8nlUro2jWkUltAta0qUSeNMXHqJiM7rxr5E41aiJpT5+SYF9Kszx5XMxIXFDmkim0Zesqi8BVB5ePiOllW4aE5NhIaTrRr2iPq2rRr2XdwH6+14lT+gtw55T+nHvfyy8WY3CEhZ7OxFCTt/NrdVZ6n/fjU7/8BZkQzl4mI3HvfAwCAjZ3bz6cKSBEmKYIp1YFZNdKsWx/eHvTQXrDnPWbWaQb0tov5mGzymT6YSYWN8wImGWrINcWYSHmT/o5ScAxiW2O8+vJThb8Pdq9gwnE2mdh40nrh/nuN9zOb2YkEROz7O4bMn7m858aiQ5vYJy++atsI7egTiVe/1BhrtRecD5aQqVD92/ONXKRynFCuwWyCaqjKDc57HGejfhFBE4K1smTnq7GzsbGB8dD61XRsc2C9WvTjUujcpRY3GAwcQvSrv/HLAIAT9LD7hm/6RtuWHqXtBavC+X+/YJyqPY7/3/2d38vUXjl3TaiyKpXFybhY4ZTxx+xaarUa7jz5sG07kacYl/h6Hmj8j+zvQrtOnjyJF8mNepH8da0bn376WQAZ6njHHaYs+PKL5NOzSurBB0/jC0991q6Xx/vCp0258+v+K/Prurpr6NuMXM/Pfck8xz7x2//Z8Zrvvsf62+XLF3nqrE7i/Ve7a+0h5d686q2rZENxDsvmbM7/RMPGSNAhih9x7QbycpeaRQ/c14oSqSqjjDLKKKOMMsooo4wyyngd8ZZAqpBT9yv+OcuM+UiV70Pkfmbfdr/pO3prP3v2LADgBF3uVcedR8aAohfPjXyngCxLvdMr8mQUURQ5tb9RRUo0VNiiGuDComVmtjapHsZMhXwA+v2+O6fZoMh3kqKf+DLKvKt9xuNxTiVFaJuyk3zjl7cWsyZDonBHmF1KkCFgUkKJeDypAgaR6v3tuh97zHwYPvj+D2JGhGSqd3jyj3Q/+lTv6g2slvkqVYiee/oZO2a7gxERqaEynuI0Sc0rLmZtfW+dvA+a73EmlEeZ32pURLmiKHLIpKs79zx8YkjBsFb4KU+HKAidD1VCiMrxwJi1qTHjokTzdGb/r9ZqmAhVmrsu9Xh6nclnRtnt3E8pROk8wkhKXNaWWT9B4Rj5/83zer6819VbNabTKS5fvIKKeEO81OlV64NxHOPZp8/a76m4ZXZPq+QRVkLdL/t/fSTuywwTelsFEftUi55S5N2c5NxziFn4dz5oqkmn7rAsXSOJ5uYjZSiz+czOR1liZasdOoFMaVSIbkBEJiSiGzovNPu5R35nf2fb+S1FHWbQOX7TwOMtOmXJnE+WOGSpUGHHVrK/u75PXgLniO4yUe2oinV6q0z5nTYz2FKdOnfW6vI1X47r1uY76+tufOrejOWPxDEmtFxZYXFyWXiAWq2aIdpo8zqJMhGxUo3/zq5xIMTxWkjJa5wOMelbf9K9alLdrlnlfZlDyHI8Njf8eC0gqipupv6tvhvLJ0pofc0hpGr3PSL6mj8jViMskFcM+pTdUrb1Kxj6DarRBqBSIjP3uvwvfvZzAIB//2u/DgB47oWXcYBKtt/2bd8OAOgT3Xrsc4/e+oHfIpEkCQaDAdrkE0/2pLZpc0k46jkesuYVcYpqdc7tHNbtju3DeXPSkwnIeUgdtHlFCJHm8ivXrHKiRkQ+rEtRsY/VNdt2MCyip+tUUpYaZLNp3+2NrWrk3gffke3/inGIJ0T+l9dsDbNOP6I21xyqghEakiQJ2pzHUsepKq51MtVJFP5frVYdyqFtfSRMoeochVQKd3Z2XIWO1kW+yp/P4dGaKI5jdz3VWtHv7cwZ854aD1iJsGvrgR3eJ90v3cv8/nXceo73Y+dhA0++cVqTDodT1Gq2HtO69ItPPgEAOEbfKqm8PvywIVoXz9kc++qrr7q20PPl4kVDilSdJAr28/SgqnP9sI882C888hj+zg//LQDA//0zPw0A+OYP/QUAwK/8+48CANaO2HnIL/Gd9xhv9p/+5sfc2Njatj4qz74Oufh5z1Gg+JzzQ/+LvaqkmVcZoLarLzTmqnB8XvKtxlvjpcoJVfh/zsoAtQCPPLlpf1t4L1tIU9coEmx46SWTUJfx5ULX4GQNJh8i7Pd6bh8q1dNief28wdvLB4r7yMz1Umfil0xZ6tMfFq5Fneiuu2xB9dxz1mlFTLx+bdMtjhqr9nAe8tx7nCQkVLG9ZRPgeCmTGz55wibLMWVs10l8DCs0yltaYdNpkOwrtEOr1XJlAprAfdLmLk15A764HeA+Lq6vu4lWZOUGHxJLizZYJHMpmH2HE8/hI/agrzfb2NoxKHZE0vJEUtB7ktcsSqjrie9evnL9JSsJ4ndmdi0Nnl9mtprJsI5GxZcKf+CllOJeWrT26XJxcpUkx0Gv54jlMp3WQrZR5/nwfkBmmgvWl4JK6EoB07BomuhebmLJ9U8KPyVh3Wk03T1TX5Yks18qlRkdg+2ULbFu95cpRRzH2N3dc+UgutcqRwrsNdT+x+YYU/58MqKgTVJ80d5XoRliEiJR1UUsuX4mZSYsMRnaTjeu2Pht1myRubxgi6HDyxmhW/ufTIoiJBFf2NxYTCRY0c6EY2Sq6vfbuWSEHjp2jNFo4JjC1e68xH7xp/7PFzSE0Bu8n9zIXryKJd5gYkEvPY1GwyWMVH7ZaCqRY/NVnZ+VBdBDOYpCBCoJ9KwwJGYRujlAiQSNZyWeEjdeZVcgGwu93ObNP4GshM61aTxDhefGymdEnJdUCpxKLluJPf49SRMkQfHctKpRS6beq08MlnfzPBFVMOT1q0QxZgPEvGcSG1g+bHOtUoaygH6jIuQbQU2m9DKw5pz/iU+YKMUrr5wFAFQbTfx5lk71WNb5R4/Yy9S4V0xc3g4RQIthu4crLGGbsL91u23ETLbNRsWXCI0dJRSzl4tswegW4LlnNjAvj724v2iwGzKxO9jawZQS4k6Tn7HCPqKxMuKz5dBREzW5tnU9K83iAnipYeufCxdsfeTWVlwob1OMYZG0gavXr7uEhhurcjRwfbi4mFa7tFot9Hq7bKNi0lvtodC8qL+rLV988UX3N38B7tMEfHpKPnoU3Tp8wMaTXkz0UiVRtEtXbU0kUYjdfs+tu/Tit8Bn0zYFQmTTo7ZU7D9gbX3PPffgzEtWuichCn1Hc5TWbzovXdv+/fudHLueiSrl1PHOXjhf2KdsIM5dsJfRlZV9+Mf/5J/a3y7atk88ZZ+/k4mRD7zvawEAn/v8FwAA/R1L4i0uLuIDH7D//dIv/4Ltvyo6SL9w7q5k/8usQfJ2OADmSukVehkezIaoeGJn88+uW4uy/K+MMsooo4wyyiijjDLKKON1xFsCqUpRlLz2YdZ8+d9rvTVm2VP7HCAnTb5UNISTPHpbpoJDloqMi9mO0WjovpMdx7Img4EhRluvWObnOGHW7I04xZCZnSazQmGgsp4i+ibipSvVIBoWBMGcRKgyQH5ZpCtRUlnLZOr+p+yVfvZYmnKNJQE6vjI258+vu8/KRmvbDPnhcVsilVo7dJqZHL3LCrkUaxFlUeZjxAzdxvZOoQ2TJHHZkk6HmXQihiNmMUNJKHsZ6JjnmebI+36bSTpYx6t5n6uVCCHNOtW/hAQpaxLWvKwySzmGJK+PJ0NXfif5dcH49XqxjEyyuypDnMUxWq1MIh/IypVcScCMxqfKiAc6VlYyFk84hqqUVWbWfBwWMz6613njVJUc3UzU4naLNIwwru/DmJdTSYrk4yAI5iwYgqh4rU4Mgp8looIwQaVWRM7DQHKwNn5nAztO2rJsYKti/19dMBQmrNSzciAiFHWW8NX49yaz/zpPlfj1+z1MONd0lmz/fcoyqxy027A5r1qx7N/enu0jCu08Nq730CYhvrFkmdA6+41EHjLsiRlcB1glmRW1G2vsy0TrRZiW4WKVqGmH89tsNsN+2kf0KXFcbRmaF3dpktpc5LkXBYBWFvdhRBneIbEXycFH0ukNKCTDqoEGxSWqnD83NjddCU0rUHkNS3j69t39+60N1Q8G/PsS23w4SQDK884ku06D4OmuTMHrhX3IlDlJAtfA4lRPJWkfFmXRFc0mxzMJ/+kwRjATMmbRCEX2tuO+bc3mXpnEhqnEooCAx/GFSJB7tt7wH4ogZ5NSZx+h+MSYggovv2rt8JGPfRoAsLrPiPPf9/1/F6+yCuSLXzKESsR8WYPcTpGmKWazCboL1md22VcaEjuIB5keDJtbSK1CZqiSEheCGwSBy7jreaDqD83XrtT/uqERqla4PM4qTgb8PYj0XLSxcPmSPdNbLZny2vmopDZJJq4vyoh7j6WaKxwLQsxkdqz1zJmXrWroypUrjpag9cBVrs9U9ePbmWg87u3tuQoVoRkaT2oH7dM3rX/mmWfcvrU/rfWcGFmtiGrp/3nzWV3/8aMmUBHzHA8dOuTOEQBAFLnLipYq58EDawfx9NNPAwCOch8NGqOfYKWR2sFH43Z2bH588snHEQXFJf0iDZMff8LKAB94yGxCXn7ZEK23nTZp/SRJ8N73vhdARjv5wz/8QwBZe7/jAZNH170cU2jsfpauP/Psczi4z7577E6TjF+kyMM7HzIz4J//N/8GAPD0s9buaxRaS5IEH/3oRwvXKeE63Vtdt5ND9yqKgiCYE2jSjOTTFpylBO9xtVl1YkIKlWS6ao9bjBKpKqOMMsooo4wyyiijjDLKeB3xlkCqXotTlY8/TmZcSImyBaodbbdOFI6jDIRfh99oNNwbrZCiPMESAM5dsqza888/DwBo1S3LcOjQEXceynToLVnIjDITQs5Uy5qhITHaNPpTRkqhOv/AQ6OUCZqOJ+56JL3palPJJdJbvHhTyq4oyzOZTNz1qxZbWQJ99/idlglSNjEh52mhs4g2s8AJM2/ihw2HxZpVZQR03a2OnWelWkeFmc0uM6/8gSkz3CNyjnzBkzzq6dfKZkhVsd5WBsZuV0HiBAYUkuCWKbGyJT7JVpm7OI4dSiCDPN0zR7SXgaO2k2DKdOruqyC5MCkeR0PZryXO14X7vET1kWRSzHxliswZyjXzhEAUtytSVQkrWOx2Mq4kr3VASfE4judq1/0aa//aKwH5bphhTIsFZ07O9ltZtHEyHRXvX43zhfpCp9NyKCtovjmdidNFQ1+OsZEyeJJnn8ZImW3epj1BpS07Bcr2BuRL5XiDdt1E5NPESf9L/toJZNT8e+6LBKXudwdO36SbZG05/3dJOmcSyxwPVcrfs/9mCD/ceTaI1GlO1/jRdfp1+j7CPx6P3f82r68X9u+b4OoYPuciL1qUzfkUK/IueJ6nNl914SPs+Ux5/nhOLjjIZ3GLhr11ZsElYR84QgvPOQhz5R6aEHTOrzHmtT2yZ/rGpcsAgC5lwy9etM+/9VvGpbrr1GkAwAPvfBcA4PKlS844XSbUIv+Pb0ekCimSNHZrkCHlsTW2BtMRas0iX1b3083TnKPU/7IKl+FcBl6hbRwfitwjV+GQ68tT8XHjokBDnXPThONMYioTGmg3W3V3nD3uV8hQIt4u793u7nZh37rWe++91603hBDccco7kbu6AAAgAElEQVSMYjVH+JUDWidtb2+7ag9fVECoS97kOL+dUL8bnZPa2bcn8cc/kONh8Xm/Rh7a+iXjLulZ8sJLJluesg0lY97tdp24iJsj9LymMMiQaxz9Xea8uqbV1RVsXbf2feWVVwAAS6uGtr/nPe+xfdDkXWs8tUueh/v4448XjqM15wa5/zq/g/vtHu/t2n25//4HcZ0iY888ZUjUB7/2/QCAz33hEQDADiu7nnzGULlz12weGAwGrjLgwrpdl7izzp/d4wXrfmRzW+Tujfr77t5u4Vr8MSTz396kj8VO8XmvbSezr4zDWSJVZZRRRhlllFFGGWWUUUYZryPeEkiV1RvPcm+clJLO8YLyRqTAvGSm44GwLjKMVMM9c8hILSRfAuSfhEKd7E1ciiiq3cyOAXQpAavshIxyd3ftzXuJ/9/uUWEtsffVzf4UjWUiQ0QohpS1DCPLaiwunAQAbFyn6RxrmY8csjf1i+fPYcC62ZBZpLfdZSjbtSuGuu0xmx0QDbp2zdRXVpYWcfWKyXpWwkO8HmZCiHKdPnW0cN3jgaFNK4tEveqrmbwoVe2UNdq6ZtmlY8cMkVsmb21/rv53RLlkZaA6NPmdxlTNoreakCEZCU9UUz7LOCAy8xsSqalOZEioemtm7WVUKJSunvGualTEG9CIMKLcteqgJcMZKptRqzm0TxkuZ3rMLFFCroKy5moffW8ymcxlDeusp66Edi2telEOvcUMZX2xm0nks+5cUvIT8l76ygqTb6P69IRGjUEYotEp8sLElYhoQCnJaP9a4zR16F0zKsq7OoSZJeO3S9SqEY4eXHVt4aN3QJYJVQZT6qG6x/rs2qIi9HqC2Vhm1VQKJNJ6eYNIb0iOXERkSHxL3Yt46iDDFjPYAXl7EyrGRcz+NoiiTiT3P5w4zmGfmbrdbR6Hc9Bg0W5Yl7Lpi5RNj9iP48kQkx6RmF3LPkYpOU0VH8Ermg+bkh8RKPYbqYIG5O8JGAk4T2qsKc8eBAFWl1cK57x13dpO5rtHjh3mZ/uukKXl1VU884JlSjUOlbHO198DWcZW2V7Ho6xWXeZ0xPlQ41bS7oGHBoce8lwJQof2KVM9oqHkQiTJ9yK/dKZxm2T7z0vV58/dR6aGYyFmRDLCCkLNMbwuKSQePmJZcakkgsi7jIODSoDQv69BEU17TZQ69+/VI6wKoYb6//qPf8KugVP8hz70LQCAM6/ac+u5p5/HoG/Xc37dqkBctnlS5DffLpGmqZPBHseaH7LMuUNtOQaXV2y8OS7fwMascOAaeb6zWYa05q1UgOy+a86KeE8nmtsn2bpKY68lfjD78WBAVJfmrxOqGYsjvX1twynXbRFtukYkUv1e40/VKhvkdgmFfuLxxxy6pWuRSrPG8H333efOFchQpmq1ih2qA2sOEO9HSIxDvygPrlDFUa/Xc4iM40m7NQWfz62iGp322e123Rjc3bJnwojt4Sp5yLW/yvY5t36xcE3b29vo8Pjar/imvgy8OEf3328cp8uXra3Pnj0LkLOotnS8MKJtOvdHHzWe4rFDNoc2Gg3Xrg899BCADO1SdZLmm8NULBT/9cKetfEjj34RTS7m6pwrNq7aPbretevuLNg1Hjpua86nXjAD4eV2tyArD+Tn6sKf56xG8vORQ3Fza7f8vm42dzUajQwZZh9Su9dqxefda0WJVJVRRhlllFFGGWWUUUYZZbyOeGsgVbA3eiFVc/9P07ma8xttc7OfEd9slYVWRkI/nUEk3+rFC8r7kKje1fcy8FG1iOhTJcpUnbTt9gYzK8wsHzm4j+do/xenaYvb5ZVM9Matt/k777R64x49nS7SoK9NFGgOSUCWpVDm6/Bhy1JIIUZv8zs7e4X2GvQH7jvHj58EkGVz5K2ltlTGKsplbadjqWLZ9YlTlGV8irXK2tcuUb9arYFKVClsI/WqBaop9ckzmZDL4u6PU7YL5mqhfb9p3/spzvGjfFNn7cvx75AhUvnvOkW/JEFQyTxwrI2Kin7OQ6h4WphOp1kNsHw2uK8psylpmnjfKtbYx0mmgJa4PkufHxpyunMmutCgJ1Z/OEStVlTAmcyEasW4HWM0GuK555656ThO09RlMTUu1H+Vsbz7buv7auPplP526QSThHxFmd/SmPXaVcv6LVLJTp5tgfx7iFK3mzk+grT0mCGeJEIrpR5JM+KYWed6A2P2sdrQ/re6aPOXav7rvLcNKltpPE2E/AZAQNQk1DzI4wo5cr5m0Gf1wQoczyot/m+Ol8asfDX0Kw8yRS31ed9TTPOWavxX6Le3sLCAM+fPFL6jbXVcoZAZh61TOF99BoBlIlY+50L70jF0HzR/LS0tZWNa96Mm3syE11ucc/KVF/LS0iPPbXMTDpXj1wpRCrJthXq2WWmwwPaQcfOU1QRCz+Mknrt37pnq7vet52R3WNGxuLDM49p3v+lD3wwAePF541FcoOLfsD9ATFRr1LPnhFAPnwN6O0QYBmg0Q4w0dprWDlFKHu90CHYN7PJ+7vVtrDZYpaH7XNeGVGesNqaYsG8KkVKf7I+Ghc8zPfS4j6nWPtOpG1fxgHME+3OdVTmay+rNIg+z2owxntmaaXl/s3A89ZmdPfLjqvb/GZ/XA64Nas0WJhwjvR17pq1IIY8lJk88ZuiKxt2JE4Z+NmtVjHkdWrsJxVL1kfqO1jHbV4y/Lp/PtbU1x+l679d8DYAMqZA/k8bfEXK95Dn11FNPOV8ocUdHSdED9Pw5Q3PEk2027O/9HjnZlQBXyMs/fOAItxW6XFQy1Nx0lpwqRRRF2CTvSe0vBckZzc5l7n7yqB2j17fn0fYOMBoVq2tiPuM77SVer6GNW0LjqDZ7/ZLd2ztPnnLr0gvnDOV66jmrGHj+ZeOOaR19if6dU/a1aX3ojnvgQHFdHNHbbMb22NuzucQ3QQ6CCqZUOB5QZVKqsyMqog5pzK5qB6mR1msRhvTMG+5RuXJhP6+zqML5WlEiVWWUUUYZZZRRRhlllFFGGa8j3hJIlR+xp6AGzCu2+U7JYcpL8ZTV0jTEArNzh1k/qu8K9dnetazNyj6rVT12wupfz5+3DMV4PMYzzz1ru7+Jys7iomUnlcUmpQFxHGPzimUYHrzv7QCAjc1rheP3e56iXlJEPdI0dZwlKQTefbepJT391JcKbSa0bWHRrvmuu+7ChXNnAWRZGrWllIgWF+8BkGWmvuEb/jyAzKdgZXnVtdnysrWRsvbill3bsmt84YUX7P+sS200Gs6rQhkWIXauJprI3dJSnduRn7Zr55skCfp7lh2RqlpUZRalW+ffmU2nd4fqYOXl0e/3USWPYcqMv/yohkNrB9/Bfsrszmg0mFPOk4qRQ4LI5buZAlgYhi6LJq6GywTyWhKpDwZFbkaa83CryStjIg8N6zM1fY7sfoykxkT/odls6nxnKsyljJnxnTERo2uTMlxvkGWInfIOs0fKvDulsdsswqiKzurhwhwDZHNDkiQQNjlmxq53TbXtRAfPWrYtU4GTB9IMSaWoQpWkRFuqhn5t7Vqjr3KcPvOyZTrvvv9tAIBDxxcROyU23nvxk8iLEfIoblciz7huFy0ii+I09VBUhewzKymfvV3uo9MiOpcmqDCrF0hZk/sMF4XicJ+uPl1mcanj4QRCNVBEtUK3rdqbXEUhNQlQYQayRmWvg8yUimvTWbBzHY5tvmh3re/X63UcPkaeKMfFffe/A0DumUJUR2i9uFWak+6465Rr1+nI+AmTqR1XCLsQqQNU+tK4Psos8OLiImr09hKfM5GyWiJ02EOqUiF6lRx6Zd+Vh1Xmc1jMidaIIOjZkyDETHQo9qGY8+Ee+VcdzpNV8nNGPL8KAnfPAqfuyBPhtaRzmLrPscrO7/xVGzPf/T0/BAD4S9/xlwEAj37elMZeedH6v+bLa5cuu+dTRzwk9tV6NK8U/NaPAEGlihrn2CGvBeRhxnGMIbP2EdEczcdaJ+iZqz48cj5RmbKtvy7xQ+2rfQsdyHO68nMgkKEeWls4JUEefzScZNUf9EliV0W/P+D12nfrS0X0X8+v8XjszsUh75Wid6DQZT1HhXZcvXoVbXJ1dH36qTWHrk3rkxYrAoRCD4ZDh+o++SVbU7m1XL+I9m2IL8bn6b13nHK/S81Ox9+hF2hNlQg8xuK+JbaPrZsWui00OFfsp+pdrWrHP3vOUPeVVZuHXjl71towFJJP5dbp1PUN50XKviOumeYoIXizWTaWxD8bEz3U/LawIC4dffIquv92b/cfsDXhq6+ewZAI0Yj9W/wv8b7Ez9L5iGt37twL7tx0fxeJVGqNIaVnjQPNz51Otq536y/n01lEmXyvs4gVG6PRyPUz9WXHne5/ZYTxEqkqo4wyyiijjDLKKKOMMsp4HfGWRKrmMybpXC3+nFeHPsOl5uzvmOdh6W1Z2fbrW1YTqjdl8YT0Nj0ajea4VAq98SrEw7i+YW/RR44dRlS1c5IiTb1h+5oOi35YSSJfiDr3lvGClHlYYEZGGQm9xSuL02TGsbuQZYScazRRjuUlIkF801fGSe3i+1b1ewN3XTo3cRSkuiikyiE3OS8BfVcZCLWD4/CMiHrMir4vyhy0Wi3U6dUQp0U+lly3mTxBRSnhlPvOJ6aZPnN59eDGfAaF8ymYTHI+Pp6/kDgSHoLp+yFYW6WFbXz+n1MH9DK+URRl6mCeIzx8xTFv36OqkLQEYaWogJMySx5PimiNu3ese2+2K9l9nRW5MUL7breo1Zs4ec87HHrrt+t0OnX91Q9/PnFKkDXycsIYSUjkxW0kDzbW/pMLKST1OsfiJuv4O50jGFeYiR4TseVco/EhzpPjQuT6kVTdZuxLVXHsyKGS6p880WrMeiqzGYRZH9RxY2ZfayiGYy2Ky4Mgx2X0t3J7Lfz0x14FqVM31E/tIZ7LPvIneZe1Rt1lSIXsi/+g+VqZWs1xPj/r4MGDrs/v7Ni82EiJhBHd0VzYbtncJMUt7avdaiGKVFFh7SlfIp5qgUPmR8bx9PjEvDVRVHx8O+BKmwUhUt7HlPd3d0DlWWa3mx2bm6vcaX9g57fQamYHci3vnavj0Pm52XDu7z/5v/9zAMCf+0bjUD35lKl+DTjHTDnnnHnFEKswCDAmQloNyAeS6l9aRIFvh4iTBHu9EQZ8btUC6zvXqYLXXlpASGXVxOPYCm3RM8/34omiyM3H6hP+ekX3TPv0nxemvlxcW2nbDBGw89CcqQjDaI6TKFRhOFRFRaPwXT03NcfWajXHYRLvRj5MWo9pbtZcLZRjZ2fHeY/66w+NZ61B9P8xyzO2qY66srKC/nWbK3KLCQDAYtfWgUKfxHmvk5M87HRw/lU712iBlTuad4hib123Nc+dVB/cGdjne++9FwBw/epVHDlsc9QLzz8BIHvGvvv95vX0xUcfs+/u2lrr4H7bvr9nbdhqNN3co76ittN90RpPPw+u7XPto76jdVd/YG3T5TVt79g+T5y4g+f5Es/T9n3s+BE3v2of4pqpIkD9TvdW82+1WnXIkNSf1VeWqJ69j+ieqiv03YwXnWaVQVERzdd4kF6A7s+RQ/R9TbK+oWegzlVtdatRIlVllFFGGWWUUUYZZZRRRhmvI94SSFWaJBiNRqhWiwpv1QrrvAfDuZphv3Z4MpWakrJngfsslMcp4lC9pNWwt+kVojxSU7lGJMUhO8vLLg3oI2ZHWYs/ZTZZKMyxYycBAJevXsXb32E8iWeeeBIAUG/Y8ZRNabWK3j/KCOpzrVZDHBeREblO67vNtu1zj8o5yuqcO3fOZS2EvGm/yt4qQ6D49Kc/DQB497vfDQB47tnn3f+U8bly5Qrbwe6DskZ6y3/uGVN9OXr0qHMNV1ZKmWftI2Rd68mTykhd43mm7ntpIM4BUZWASBR5HxX+v9uiQlQqZSz6NKURJuRXhChyp3w3dmXC8opwfdbV+iia1HXqVHFz3k7ch/h80+kULSqsKRE2YZ+ZUZlGPDT5ZI3pPdZtt+d4gCJpjFzWkMgEx4GyPPWcSqE4Yqp3r0pRkRydzJ/Kjtto0PskTdy4mjJb7KNut1tUGy2snX7nnPpfHunTvOFneW/2uTEmmpiMMZzaOJyKQzO1+3f+nCEkCXl98WzI87G+cZkZzQQZf80pTzK7OuPfQ46jGdUbQ/mvjUdIlNRn9rHdLvrs9QdSUCJCQX838fnaC11Xs69M5HRGhIB18743jqoDgkoVM2aqIyJjaSLEhp2fnVDHC9mfnZ9OreqUCIX2CBVvs9b/+B3Gfe0u2efVVZuDFhcX0eS4q/D630Y/GGXDI08JtMl7ffTYMQCWuRYvt8U5z6Gz/K7m3gY5P/tWDB2bOSW9KiryXuQ8VOe2UjRTzb9DpdJs7g89PxbNmwGK/iyKMLD7USUKlQQhwMqFkHyNGZHla3vWtutXnrZ24nmusIqhfbwruhsSeWc53qjOw87vylWbx9cOWNsJhW02OvgP/+HXAQDv/ZoPAAA2WMHxCjmE8vVZP2/jQujXdDJGvSEOrO1P6F6f/e92izQN0SSXR9yjFfIAR0ngUOUZ5wz1Nz1ztB7RfJApSaZz/okK7UNzldZA2ocy+MPhMLdNs7D/PHp/o30kCbC1VUT1Mx6UjYmMh9guXJPm2OFw6CqFNCefPn268Nlfr4j/uL297fq3rkHX7Ss7ayzNVHHCeejSlctOnVfeguItT+Mi2iWPJaFjq2sHcAeVYDeIGjnVQ655jtDb6cIFU/hbO2wI0XXy7Y8eOYZ3PWy+U9/3/d8JAPjtT/wnAMB7vt7GzjNPGq//b/2NHwEAVCrFKp2drV00F4vcKfES1R7ve9/7AACf+cxn2D52/a+88orjld5zzykAwJmzpuBXIYdRfKkXX7T14C73fcfJU/z/CGOuabY5rk+dOlU4viqqdF8cz3476xNaf/ncQVV7qG8pMl5gHenc3FisRtJ5OCVqfm6320iojCsumeJmiuM3ixKpKqOMMsooo4wyyiijjDLKeB3xlkCq5IScpkW+Sr1aKXwG5nkoCr8m36E81ap7G3ZIDREAZVr0tqqsiTIhykxsbm66DLbemrUvZUC63HZK1StlJPYfPOSO//a3m/qfUCa9cU/IaREPYbFm2cJLl+htMJ1glW/4K6v2hq1aVV1Db2J1n3eetHrXZ559CgDQaR11LuI6pwa9SFS7rLbTG7qyTp/61KdsuwNrLvMhrwRlQE6fNuXAhOeuTLCyHrVazbWnsjZHqcKoDMPyspRw+oXtlIJJkhhRrYiI6JyVTUtGbENm7aWAlbrscsX5lU3Ja5lNiQRMi34vvqJdHMcuw6U+oXun4yuLr36ibF5+H7pX6jsOQWzVCp+VvRdSkK9hj5iF3u3RS4x9Vlwd1y7MSCvr1mw2UZXSD7PkUmTyeUUuq8Mx1psM0Gy3Cv/Tts3oLTGFfMWRJAl6/aG7ntDjpgFAr2+okY9i5bkM+Qgr9BKLAoQNz9snse/edcrGy7iv7Btd3Gs2Ro4ePaydOR8aoeSJkAr+XRyamZQvmZVrNFuImfXuca5rhnZuLgtIfzFdQ4OqfzMir5VqHRmoxHsu5UdmIwMi6lXyJfIu9XPZvZvyb4qZRLitfCW53H0gcpX3kgKAlX02R3a7i84XSXOc7qvmMc1TQsvFwdK4rtfr7vcwLKLQBw4aIibVw2XyXIVCTSeccypR1kZVoX5EvyvaJ/lqvrpmGuSee+INF9X4dO+y6olKYXsEISr0Y6kQxZyxnfXdWWzttEWugRCkz3zyM/gz73sPAODEiWNsV6qhUZVS6oBrB2yu75Ovtcj2ePTRZ7B+wdq33rE5/rnnTH1N9/sq/RV1rULCg2SGlP5saSB/sNtTaRQwxcZ6s+1IvjNJrlKeMYgiBJzvxR3TPOMjQ+rLarNqtep+17NFz1yf+6tqBR8FC4LA9UE9f33ulvaR9+8EDEBvkfOs445HRa+jVrPD42WKvvnzOH78uBtvOiep++mZ+/LLLxfOI+Oez3OZtY325au+1fhdrWPy6ITPR5ux38VUu9O+WkvW1mcvXnD3SAp64lfKo1Pn5+YwelQO6NHZqLdx5hXjKJ15ySqaPvMH/xEA8M6vs2fGgw+bL9cv/vKHAQDf/q3fBQB477v/GwDAFz77ODq8Dl2/1mHiWkmFT898+dOdPn0ae0TZvvSUHf/CBVunLi/Tx7QijnvAa6SfFMSfz7iO6htS0NY9VKWN7wXb6/XcfK7nWkDkXe2tvuX786mipuBny/NIc8i/7TMo7CNaiPh5gFZNlUTFijn3nBnfmj/e614RBTaTPwJgPU3TDwVBcAeAfwtgBcBjAL4zldPhTSJNU0yn07lJcza5ddjNleIExbKkZrOZM+e0AaUHrRavAw70CxdtQDhJT0LKnU4HDZGSWVbi5M757NcDV5338BH7OZ7G7kbKGFdlFM9+yeRk9++38xG8/Qxl0u88ZS9DW9c3wPuMZ581CPjQIfvOBZHDk6LIgwbTxYsX8a6H3wkAePjhhwFk8r4Z9GmDRaWL/otB3tzu1KnThf3rms6cP2vX5sG6ACBauQa6rkH7n7L0aDQqmrpNplk5XkQRgKNHrORHg/Lc2Ab+ztDKRwZD20erZfcrkrloJXJS6rEI1zJ1k7klJwcR4fMCFhk52yaHGsv94oSTpK5VJoy5h5WuvUvI2ZVBcuLRPWuonIoLLi2EolyJnUwe1XbOgJR9dUw4P2Yb6sUsjWeZrDJfrvQiqIlVkfLBLznqIAjcYqfDh6dbnP8pLHTeiDknnk2xvXHJzRu+RUOapnMvTTc4j8LnXZr/hmGKqMn9RnqI2v9G7KdVzj3djo29Dstiqu4+AuAkv7LfxlrC+7EHK4+ViXbCaXwoki4qqNIEfKFtD/5Zj/2X/aHVtL5Yb3NeW8iknQE+qLj/CR9mI75cpXwwqg909KIQSQo5QUUL/dR7mUpVMsmPTELFc4IzZkDLC+XG9kPz89KKXYNe+JdpiVGtVtFhGczxO04CAGrst3q4P/aEzb0Nflfbu5fMRgMtzvX9nvV9LcDuvNNKfbRAXVaJr0pjE9tnFALUp0CdSQ6VdmkucgbKfilfGLoSJS0MEqdTceOXqv4uy3tZNhc2agAXbylfuKb87mjIBEpg59rqUvK/bouyM5vP4Rd/8VcBANeu20LszFkTlxiOrB202FJSsBpZO/RYWvi93/MDOHLUyn8+9rGPAcjmnjOvWGlRZo7M+y9nlHjmEg7jWZ/bcl5O39xEzhuzxokxnexiwDEcUUo9YYePEQOJjTP1b61X/Bcjf1FZrQao1VT2pKetkmkqGWT5Gx8lbpEJJYoiV25fZ/mfXnJE1B+yPErnkb30RZixRK7RKZbhTaZcCFN0RD7mSjA/Q5pAkiRuDaUF/+qqJUkkKqPjRqSFDAeyUWlhPLb9Z2IHkgO3ca2XCX3e26JdCOkC9ajqytum7iWBL7Es2VQiU6Vjem7OZjPUOW/v4/4DCTbw75eZINd5jWjPcPSQrWea9RXXRj/w1/4eAOAnf/LvAwD2V2yN9eSjlijfuGbt84XP2edv/aZvt2OGTfR2bQ0XctW10Dlp17tjyYtrV6wt27RfSPni8jX3fxV+4Zf+HwDAT/yjHwcAfP23fb2d25LNEb/7yY8DAC4+bfs43LYyyI/8yq8BAFaXF/G5dZN/ryV8MXUUFjveAhMzzYb1u83r9uJca1Rz/VxJw6IYnR7HLd4zZwVTsX1WwioCTriyv5DFTsSJZTaRgFnCdrF7Pp7tIGViMdTLfc8SbzOuS2813ojyvx8C8Gzu8z8B8M/SND0NYAvAX30DjlFGGWWUoSjnnDLKKOPNinK+KaOMMm4pXlfKJwiCowC+CcA/BPDDgaXM/iyAv8hN/jWAfwDgX7zGnhCGYU5C9uYys1/mXPRL4e+VSiWDa1kqVRPBm5mXMbM4x49b1kBIirKa+f2rTEQwpk8Q9cuJ2u2Gyyi2mD32Yf2NDcs8P/igERWf+KIEAyh6EE/d8SQhLoRIEOXGRctQnDxuEHF3weDnvZ3tufKliNkxZW9mM8uuqExwl6Uzn//853ne7UxmUyVqkib15NrVZjEzNZVKBftX9xXaVdkifac/sAzQlauXCvtsdxddOzmCfV+wtTIgJGLrvqv9nVw6CfFRhFRZC5VT8b5MuI1/7/L9UL9nRnQ0RlWW3jPi9KVr6/X63H1wZRR+aYDukwyHKxWXNXOmdSKjq4wiKRJzQVTByUxXapBn5kjQt9KWMsz2suYJayij2rwxpPv8JvtwvlFzTjKbYrx5ad7MO1f+N/AES17r5yy1uSENYiTsp5C0OLPrVaKPiy3L6o+Z9b/71N0AgEMsLeuPxhkSQREL2UVENNyWHPqYGeYKye9xUHFQUESEpEukZsTsatQgwimREqK3IUuDR4idonZSlcG6fa5w30LKfGGXWlhHpXJjCXUhU1lw7E0ltpFlKWNXhmpbphWVIXE+5Xxe4VhwJphx4rL9J06cKJyj5tyjRy3LqvlcGWSN10aj4ba9dNnm1gNrVh1QZ6Z0X8vmtf7OZuF8QiJrlSBF5MmPDzYt+7m7p/KsImJVcXNPfjzaLlx1BMecrsk9T2rsf5TmDip1jFkWPB2LmF9EsBfalnVPOa9s7tmzaGX5IJ543MqAXj1rZePnzq3zfOy4GxuGYOyjKenujs3f3//X/wYA4OWXzmF72653b9OI6zKD7VPMIuL8VCGiq/ltmgwwZbZ5QqQqJfqSJvb8eDPijVvj2P2U2Wq1TunvRPNqNlYH3rNFz1TfqFyoTBynDmUaDKzNakS5M4qDnjFCfVnu7LbLJNV1D/yS95uVH6Zp4MpY89cKZMbVQpkk2qXKF1XPAMDzzz/P/dm1XOvvFs5H5z4Zq8SPEvRJ4s5VFTK+QIVvnOzE0PhzNBplJbhJcVw5egbbUG2crUhPfWoAACAASURBVCvbuH7d5gAnSOOVEOq8tI5rhhTIuGzlcWkc4r/+wPt5zjYG/8I3Wxd74qk/AgCcP2dj6B/9w58CAPzCiQcBZGsBVOI5FFFtp7Wezkdo4ApFfi5efQE/+mM/YOfaZJnzfpnh2vj72ocfsn0efwAA8BM//L8AAFa5vlvf2XVlxIcW7bu7rMqJucYesypMVTO1XF/K7o3E6Px1mPUpVZop8hYAfmm+TynSmPGN0+v1utvGieGxLTNKwK2V/71epOqfA/i7yExHVgFsp5p1gQsAjtzoi0EQfF8QBI8EQfDINFeLWUYZZZTxZeINmXNm03LOKaOMMl4z3pD5Zjyd3WiTMsoo4/9n8cdGqoIg+BCAq2maPhoEwQf15xtsekO4KU3TDwP4MAB0F5dTe0sspr1nfOsX9+nLRWaASa6HEIpKxWVa9HY+IHlQmfgL1ywT9+CD9uZ/zz1GDMwbmUm+U2/NzviR+x7s2hv5kAToS5ct23Bg7TAeetj2OyNpXCjTc09NC+cuic7DR4xD8QrrzutRxXEOlHltUp67TU6G3q5feMGIwH/lr343AGD9/LlMzEFZE/IHtP8HHngHgCybI/EJtVe/N3C/v/SSkSk/+MEPAsiMAYU+KUO1y79HUeS28VE9CWc023Z/hyM7z3ary+0kHAGAWaIwsKyB5HVF+JQUcL1G9CBUhkKE3CFicULYzSTEIDlnZUayDAkRiFmCNrkXGTmWfBMmBBIUZbaFlC2QK7O4uOC4VCvkIkj0o9GwbZTplqmgjJwrQZARcXmuVSIKMnxNp8riFsnFItnv9nsZEdoZR1OKtFY0BY4SIakZt9BJyEtYgOcRVX0r2D+5eCPnnNbCShrEM6ROuMG2EW+pwKN77fOyn+yLYSVFUFe2l9vwl/6eZSpr7M+jJDtefl9xAoDnNuHJBcoM84olqS5ERfPLOJ4hTO3edToU55kUeYIBUS1l41LCUDIqn80miOOMM5CPVlQcA35lQZDmUBavrW7Wpvr7nGdwLny0VPMmh2kuOzmdm5+VIdZcKKRKnzX28shytg9l//m45ATi9r1niE2N4yUgGhiEqbuHMprPqg+KXL7MxD6bc6o8N6EQGnuav/zvCkmo1PPIZhHt0tw2JI8zVaUB5wa1B2pNJ4cs88+VfXa9fSEI5GT2e/Zs+N7v/V4AwMKCPUcefeQZpElRKl+mnwcOGCKr52rMcSD5/Mls5kR2xIF1yKknJPQnFW/kfLO60E6rlRpWJGCQyOidSOJ04saR5lrfyLaas8cAsnsVx6mb5zVWWy0ZBts6RH01SYrUL4cCITOY1yDUZ1Wn+DYaGel/5o4vfrCkszNBBLuGz372swAyiXGJTwRBMFcpoe/qc53PPCFVeUsLcel9BEI8SCHSjifNu1h19ghdZ/Kt5aYTM4gyNCv/HUWapg49uX75UuE4QsB1LbrGk8dtjbezY/PSyTsO44WXbW3V7tr68C9+x/cAAP7Fz3wUAPDkk4Ycf/CDHwIA/LW//j8AyAx+X3zpJayyfyl0XLWVBHpUlbV60IR7fuJH/zZ+7H/8IQDAP/upf2BfJk/tyT8y+fXjR6ya4ge/928CABpVO9baEa4nn3gShw+ZqM1wsyhEAQls8fhNZy/DNVe14s4xE0LJhEiA7N6Kz+9X/DQajdzzs/g8ddxzT0DMVSVh/vlS9Y5/q/F6yv/eB+CbgyD4RgANAAuwrM5SEAQRMzlHAVx8Hccoo4wyylCUc04ZZZTxZkU535RRRhlfUfyxX6rSNP1xAD8OAMzi/Eiapt8RBMFHAHwbTB3nuwD8+q3u03+rdPX3t5AwdlkWZXFzEsnK6GRmlcWssRT9vvS0qakoy6LsRpwm6FAmdkhjVEnfChGTCevSPsqUp1lN6xNPPAEA+OD7vhYAsLFp2SNfXUzZVGVIZKS2f+UwqlGRFya5Uf/tWmiIUJC8Cp/khLsdy1rpTT/LYilrJqlza4fZNHb7FSKlmugueU+n7rFsiV+XOhgMHFLlsjUeF0Ny4CNKlkp+1SGXaVbXXGsoSyluDyGroIgUSdlPylnW1jJcVV+R3HG1cM4u434DiWhf+jn7fGOTuXxWT/cuj4Bm55b99A110zSdk/x2mW0Z0XJb1SorHEdhOs2UtRxSVeSlzXE0cgqDmel2USXPSUm+CfFGzjlBkqIyHgGxZ5YpY9MYmDmFOsm0FucnJ1Un/sCYWcogQDqSMpvaicqW7NND1md3m8w296jONWZf6NYyJCZUjTetH6h6J4W9KVWK6lQAm47GmMa2v80tk7SuVIkkcw6UKa6kndWvUmaBm9Um0qrd/1p7X6EdhCpkHE1+F0IZYoRREf1UP1F3ceOJ4yZokouZQ+qkgumGuLhryn4SyQ45B6dEiKpBgNWuZRljtsPyAk3BOT73rSwUrqHhMvtUmksTN8cvd2qFbR2CPrF7uo/SyuMJa+5l6BvHSDgPOaNU2wJtIoWDgOOzwgx6JNQzwZjWFrXUjrtMRa1UqfQ6rynQ2GR/aPDe1gCwz9TI6YsHdrx2pVi9oGLYhPYOjWAf7nzgqwAAJ1n9cXfPJNY3to1jJjn6Q5RUH03tWI88ZQpg69cG6JOfu9tn5QJVJrf7hgpU6kQYJkKMieyNY4S0IQhgzxg3VMM9vBnxRs43YRCiWW0gIcw84LiLVJUxDNEm5zqOVAUhpITzgMf5dRYw/VGmdtxQm9nP1RVDBPUcUA9skmOpbPzW1ja6nUVuUawo8a0L/EhiYMr75qTTh5Ld1/lIhtvQDSGWJ0+eBGCIpW9Q7KqAiHL6/NcwzJC8xLPa8blMzkCdoTaUsuFgUHWVGyHHkTOZlZJdtWh6LVuKQTJx6JnOzedAOxSZ/3/5xZd5nnaIZ59/Bve/wzhL1zZtfEnS/NQxqxy69202Hre3bW134g4aDvMalvYtuuvXfO4k7olI+5yzl16xtejf+/H/DWFi8/wPfO//DAD4d7/2KwCAX/+3hi7+9ift74fXDMHuLNtad5fy+QfWDuPshbPIh9bQKft7U/xgTmGO21aP5jh9UsIV6tSoF9dPTtI/ZxbsuGSzYqWIr5jpr5vjJHVm6+75wmdVhm7t4lbiT8L890dhhM6XYPXHP/sncIwyyiijDEU555RRRhlvVpTzTRlllHHDeEMMH9I0/T0Av8ffXwHwnq9sBwnSeOyypxW+68lsEkmMUHX7VGZJPMNWBMp08S2XKdH9y0uI+da6Nymqd0xg++hGNDejH0F1xprZIY3rWnX0BvaWWpV5Iuu9lQE8+KApouxbsUzMtauWPWjUmrj/PlP1e+rZswCAgSwbIss4X7tgqnjiNO2wRj2kZ8iJ02/HuE+tfGZTlru27XbNeFjHD5hpaK1r7fH7n/1NO5/VQ7h81bKEQWpv+nefvA8AcOWcVS3snKbiVZ0ZR2Yepmz/cdrHvQ9aduKLX/wCAKBJjkCHprx7PTuGk+pidnmv38eREycBAN1ly4Q8/ZR5U1TbNDQ+wIwU6583tywTU2OddrPZdMovkwozDVS4qlNFadixfdWZXnDeAqlqxrM6/AnRruGIfJZdqiixn6iSNmFfigcDVNuW4Unpc1BlRrfO2uCwWlTsU0bQ9elKgEpUVNXrtKha1mYmvCou16xwfo1qDQFJZAmvR5mYPr0t6gGz1qkQMtbfs4Z+YXHJcTOUlV8gYrfbs4z4hL5wk5kyouDPECn3U+MYqYRFPtqbHa97zoEpOopnp5AHUBJnKIr6nrhMriAfRUQzyPGFMu6Qc6G2T5w30lnRz0VZUql7BkE9Q4a4TcI+1ZBqozydHBoqNa7UET8qlRujnz4fZy5zF2f+esrY6nwm0/SG+8gMF9M5xNYP93enUlh8FKU3bMsbf/av4YbX5XH/Yk/xMrwBWuzUFz10WOPIV5zNVCDZb+IY8bTIN5O6YTUlN5T+Pkko81/5B2VmrFNxQXlXQ6JMEVEtKehx2nAm1GFUmVMQdOesfq+frul4nlENHVYlSEF1d2TPwEpYNFJW/3j+lRcBAJcvmtLYdDzEgPwrx7uT95j87eTBJa4L+38aT91cBm98BSj25TcjXu98E8cxdnd7OHvBFBQP3mHP090+Ud84QY/Kac1Vm5/F6VOViM+lytCH7tz/xF1ROOVjPlPFdVO/WFxYdtuORnYPfNU/x7djOCW1oJrznbOfmneU5XcIwtiey6p4uXbNkJJutzuH7iQo8g6FaggVUuT5WP6841d0+O3RSIVCB64ySOp/Tjkx1dxQK+wr86lKHOIkv0jNt6rOyc+r9qVOoR3CIMIWPaYuX7Pxs7Rq42tGC7SXOL7a9BY8Rl7Ur37U1AHvuusuTOnTKYTIN2rWucuTVGj3aNJASuRt7aghY9/5XcbZ0hojqdnxXlg3NP9IaHPX9hk7373eBjpcD004vsfibnK90lmxfiZO1VWi3YePHsopF9qpjVkVpsedrmX/fkNf/cq2fBWRrySo63aKsTkfWwBIx0PnZaX9RPWikuKtxp8EUlVGGWWUUUYZZZRRRhlllPFfTLy51uRfJtI0zXEXvPrYOEbs8UBu9lNvrXoz7/f7qDF7QFrSnOeQzwPyYzabOff4eqOYrdE57m5bNmlt3xoA4OABQ2Va9RYGfctAPfCgqeydO3MWAPBbH7Pa8wprmHepIKi61x1yvgaDAaZ84z9Kr5SVRdZf8+9o0wcAhhitkENx9sw6Dh+w2ltlvqQic3DNULXFrm2rTIGu8cF3GMJ28VIXIyo9vfOd7wKQvb0rE6OMgPMl4bmPRiNsb5vC03RarPdV2ylb0JRjekAkac8yIpPJBI1G0eNL2UvVP2e1y+S88ac4LFGYOj6D0ICph3bqfLKMHDPxlQrGs+I2c/0uKmbEsiR24La7WcZdqkIh08URORO1nBKZUFvXN4hcSgln68rODfedFpAAIo9sqz22b4/7Sj3UIK/CpL7jKz99pVmct0oEQYBqFCFNfX8VwT8JAqogxs7zzP4lpakgKd5rB9rlMqcuyw6pNhZrytWeNY/Xl6SBO+CYmdmAPj1RnXXogZSTbJ8REZTqJMnUKCEPK08NKdRcK2+WorJXvVF3Y2qbPkwZT/DGKnwCFpIkuSGnMP9TUWEashoV54QkSTJ0Qxs7yyeeK4LCPjRu4jjza/HHXCLFRKlnyrdJDwdm59M0ReL4ZsVrSJLiNaTeWFdGe5qmjg8mb8AWUaR6w6oQkpmNvYq8cRJmduMpWvR/CZhBnrKCQNyiMcQbpZ9c3ebxKY8Zp0DMk9MobRKxSznHTvnsUT+JeS3Xd/dQrcsLj8/ewL7b6Vq2WYpnL79oGfRzZ0xNdjKwZ8LmlcsZl6TByg6pTArVIxdnOJAPIytRzKjLrp/9LdH9D4vqa7dDhGGIZr2F++6zKpGXLls1Bio2doe9Hhb4jJvrsx6XyCHX/Huv13NjUGp3i4uLhX0J1RoNbM6PHNppbdlstp3XlBBIfSfPrb3Rz3q9PvcM1fNCiIj6wf5V9lHPi2symcw9S3R9vtqethNXu9FoIK0U14f+vKPnptA1cScd6B9m/OvMf4t9NVRbWRtrzZPnYPvznZ7pagftyynVkYsez7Q+SHGRyoHLK/a/Js951rNz3ti0/0dVG3e//wefBpDd6/Pnz2O5a31IKtC+6qHQR/WTo3dyXTWbIiIf7/xV886aERFeolp1fdGqoZptm7ukBL2wbMfoD7bQ39nmdZLvxPvcJpfKrTHrRWW9zc1Np5QolVXdZz1vFOL6u2dlkqHd/trSr1jQ/dd2QnQrtXTOuyzPR/9K4vZcEZVRRhlllFFGGWWUUUYZZbxF4i2FVLkMjPMnsrf66XiMGX1WlAFwako3Uf3Tm2q/38cq6zhDD6nS23KdSFZClSO9+bdalqFZXV1EhZnMATNqevMVD+oAfZLuPGL1nov06ri0fhkLHSrxdPjmfcTO544j9ob/7HNWZy2fqgNr5uGgetvLly/jgfvMifyJxx8DAJw8Zts0W/RBmtm1vHzBsgwnT5kPy5eeeAHJvmJdv7gZUoq7dtmU/A7v/yAAYGNTNb12TbUjdzjVnk1mIgb9ot/K+sWz9h36ZkWqzU8SlwWOmBVf27/E77I2mdnSffstQ1Zjyn/SHfA8A0zGRa8cZQ/UH+KJbduQXxmzrCm9dqaTYdY3iFBN6e6tGvLBSKibsh3K6odZNl5UBF63qwNnNtevC67lUB/tQ54wribbU+xT5FGu6aS4rdA91dvruMqEKevo6tPTDGkRUqVMj69KKBXK/P995Sldi19nf/tEgCgKkaaeSp3jnIQua18RX0CIhHbhUlJCL4WFxi7rman/cTxQ9W0q7ta0mFFV30iSBKnjwySF83CZM3rd+P11OIkx4XzpavqDIrfBzzb7qH2j0ZjLjOu7Ugz0s8GC6tI0zcgVXsxxrP4YlLxb4lQFxaqHWSzktuhxFHhVEVUh33GOnxHeGGXL2pCINu8tqqyESPNeZ2or8YTJvQiJMlakdEVUBoA0+VzGlvdZfnOBqiYq4rRRvUpZcWSIoTzNnHKa5jZynDR/SWmr3u64tlK/r9E3L+V59PbsWbBFTxqJYbYaTR4zRq0qVJN9g8eTKqJUWt38wivP+8YoHOryJvlUvZGRBgGmtRCXL9uztUm/xdHA7nG303Zo5mxmzzQhnnrGSFlvc5Nqb1x75D31NBdkyrpFr7lmg9xgr0oijmO3Hhr07TtCqLSP0BsHtaq8C2toNDUH2b3Z2TYkpE1l2SWiLkHKawukQmjrl/F4ihn7vp7HiDiO2K/HY9unUKdai7ytVg2DgeatVuF69RyczXYL1yI0pEKkDkHg1PwqVD111Sg8Z1CFMwjJva5q3AdIU6J6XfqQwc51h4iYeEA6r0vbtk5Tpcn6xVedt+cHP2Aq0cOrxjebUh35njut4ujs2bMAgEVyoxtEv8dRHUkitNHQpaqQ6VTKqcV2H23xWmpNrJGjVW3a8//qdUMZh31bWx1YsXbp940HNeI19DesnbZzaNNwi152fO4tsC+dWKU/3cD68PJRWwNPd0duLTGdWlvWfU5TWlx76D5EVXnsVd09q9eE+hYVjndd1YXtEiHbo1bP1lB83qZSnZUp6i1GiVSVUUYZZZRRRhlllFFGGWW8jnjLIFVBEGQ8kKSYPcyH7yHkspRhsb4y7wWkN1ApCzkeg+o7mS7t9+WYXfT9GAz7Tq0kq421fe3tWZZue9fevJ978nE7L+5zbW0N+6h6d2DZ3uLvuesEAOBdDxnH6qmnH7XzqdvtkN9JyttTrdecAsup06cBAMcPWV1tzLf6F86Zop5qZuVyDwDLSyuFc19csvMQ1+nE+yx7QEE7zNqWgaKwH3anY1y5bEqB585bXe+pO81d+9o1y2a0m8Wa2RkzQsNK6LgmE3kHiOdUld+GIWK6L2MiRvk8pdAUZa3iSbEfTPidhrJHzlPHMhXdVnOeA+I4e0SO4iK3Ttmdaq3muBjyuPL9MJJpkdOnvpPnXslXKKPesCZdfBrHESnmOvJKbPqPeCVSEtwjby+rL0bhPGu1mvP6cuo2zNLFabEe/Ua17Tfyzspfw+0WQWAcHHFLEoey8GeYKdg5DhXRDkepiYvtVBHqEVYceiGrPYdEScFqaPPGLpHUreuWlby+YWh1t3sIkZcZlifecESUNKQvE9VK1a87nS5GQkEdL5G8PadCdeP7qfu8u5vVmPsqYJlPzI1zcnEcuz7uq/rdDKlKfPQhTREKqfPOUaH/a7zoM3JVD9n+hCLatnVmH2POseKPQIhOEDiEvRYWEbk09sd6ESnTsyespE7BTn1pJt+qIfsdqyRkIqe5MQ5mmLFv6KojzrGJfIuIVCXuNth9mjo+XYBmjRwuXmc4oPeRJmW2Q8oM+nBMnilqUG1ASMSkUyM/g95fvR3LRp8+bWphS0TP9zbJqxj2sL1hz5gZkbDers3T/V1mjD2EMBaPFXBwv/6WukoSe15tXT+P2yWSJMVkPEObfJSNbRuXQrJrtQixPLpmQpGIUPHZJ7TRPQudz2Btbiy6/szQGNZ4lM+lODdANq417oViCV3xebW1nOed+rw4ct02UQ166Gk4hkIG2Fd0Db1eD8tLqzxXa6OtvY3C8VW5Iz6UPu/t7c0h7/6845+zEIy8Op6vHKh2iJ2SXJXXZgjRlOq8lVwliyoD7rzzTgDA+rpVIW1uWn9XxU/s1o/23F5a6GCN//PVFg8esP5+8eLFwvnpHuf5Q1Lm9DlEun5db54PBwCT8cR5mwrVFx9O/e3sS6YBoHav1ewe6n5UKjXs7trvTSoULtXs5yFWi21u8hic53pcN7danTnemZDRak3PpN3CNR2oZEgtYPNuEkvlj0jcWONMKOio8FNc5rwXp9ZJ4utr21uNt8xLVRiG2SLGe3jmX7gUvlGrSgadcSmNwjqdjhvwKvPTBONkL2lmGLK+pj/Y5mcb3PVG5IQqRM7NSmHsBvzeb38CADCiZOh3f+dfAgC88Pyz+NynfwMA8Eef+k8AgJ0t2/+732WqrP/t1/1ZAMBzzxvh18mi8iVvqVbF2XMX7MKlm8sF1tpBG3D33GsvWyEJwefXraTv1KnTbn89yttev3oWAPCerzazuW/7lj8DAPjN3/wlO48XTOL9wBqh6UtX0SSxenPLru/JAwYVrx06xrbVC2mR7NeoZKa+KV8WF1uSHbVtdmKVKmhCtsHa4cQ7mUwwGMhY036IYKqFz4F9NmgnklJXuQ0HfhJPnIGyiM7TacRrsn1rktK5q/yi1WphxIeFJkNfqELiAdliLlcKxZ8zvgC5lycZ6uoBEBdL7JqckAqlVFwEXd+ySbpOE8fdzX7heFWKF+TNgl15BycJXW9/WPyuTyIdj8euD/llf84g8TaMIMwlZ5yJsnsbzbbzcjvuhTYoLtxFpA8BpHohktgF97txzUonVphgadSKD+NBz+7FeDwGtIihdHaV/ZHerkjZXxpcXEsmeRxP3O/qY9Nx8WGq+3gzkZbZbObm48z80EIPGd80uyJBoCjCzJvLU880O5My5zzuJdLy8/2N5N7zx/UXlNVqFZWwKNXtb+MT5f3nSV5sROWXWXlnMaGQOJEPlnZKAj2IM6NevbSzz9QaMhS1f8eBDNApVJFkizktvFVKowRihXPO1Fv0qXx6MJ2551PNf1567a1EQcikVDWsI5h55Y6yB+D5HDpkxPURy4Uj3heVfF189QySBevn59evFK7PGdrKuFNjSi+hSDFloirlvVP5YbubyX/fLjGeTPDKK69icdme13s0YdZ1V6sV12crfHmWkJB7qejKoDori9dPzR9a2+h/WhCr3f2Xj7wUu58o9Me3aBFabKsMbxaPEDMBMFNCmN3+qx6mONdZW5D3h8UFqo6xsLDgyhn37bOXi+FLfXduQGbU6ydmJpOJKztz851X4u4nVJVkys+H/kuKjusM013S17aLvH0CwArXiQf22wtio15cD2nuOn78vQCAJ554AoA9F5R0PX7UxpXunQQh9FzW/XGldrz3tVoNU5aO6lz1AqJtdPwjR4w+Mp3Z31dXV9FesHPX+FbfVNsdXLHzEk3lHBPtiv37Drl7NNmz9cndFLFYZCnfmPPLDvvwWtvu9ZXBRu5lTWV/xXlfzyFfdKRJmk5e7C7xnjd6IfNLxbP+MJmzDmnz5XnI9RG2/vTMf8soo4wyyiijjDLKKKOMMv6LibcIUhUUDNxuTHEuxs1kR/232rwRpeBKZQAU/UTwdpHkKYi43W46iFMkfr1V76Pc5OqifT5y1BCj2djeoluNCqYT+067acc9fszQrvV1y978uW/9LgDAI18wEYruor3dC4Wp1+t44bnnAQAPv/NBAECHWYWIiES7bbfy5fOGMu3u7rnzk8Ge3qCrNJq86/RJAMBP/eTft+My83FgH2U3d4xU+9//d9+CRsuu71d+5T8CAO59m5kXvvSiIWL33mPIld721Ybb29s5sqyyw3YekwkJiZQXrfF6m83s3gGWZdH9TFQSmSo7bte/TWPKwQ4FTHjMiOhjs9FwZZ0RMzATIkdRxHLDYB5d0k//bz6qWiPh/Gays9Vq1QmhCKmq5jL7ABCz4KYSFHMdcRxnEvaUqleu7vI6s0Wp5I/tvIT6qQys3hg7cmpWysf+ldi5654pq6k2X1xcdBkuh0Dyf/5Yuq0iSV1ZmAQNAgdUxQ6tcnONZ/ngECylZUWyT+bRLEn7Kxu72LH2c+R0lvH296wfdxeX0CBSGXJ+kgFzqFk7LCIHMo9uRTXEDWabOedsXr3Cc5Mcc7HEok4UwJUnTiYu2ytTTH9udYRhJ309LxjhkNvUQz1cKR0vRTVsubZ2++V3XFls1vD2d1eyJ8GGFBVIZEFCDYXDZyVz/I7K0OJg/hokh+8jZq5awaEsgiqJklcihKnKDHWuQuk5X3B+cggWrcfTAAhRlIqf6JyIbk4kwc15dTKisJOTGgZioj0qO1wgcV3tEavvisguoG4KpHFxrnPXJ0GMmEIBTZu/t2HZ6YSVAN3lVQwmHrKv/csMW08llSDzc4LA2VTUOzZmhMIMJ0XRotsiUgBpiKVFGiZ37OeTT30JADAap1illPYWJbQ1vrQuEZJy7JhVh+TNubOxSul0zuFat0gmXUiCb4Iax/GclLhC905oh0LP9TSeIp4IvbH9dTu2/xeft3XLiKhCMleCn8nDSyJ9d7fnrit/DTpnnaf+Xq1W3XVofZahHWGhXfyKi/y1CQnSHKjvJN6zr8ayeQLH2NnZcXPilUtW7ieqyQMPPAAAeO655+z/NLt9/HGjieiY8XQ8d19VMujK3VgeqHutEk6tRWezGY5TbOLCBatsErqo+671qkLXePToUVy8YgjULhFS2eLovq+ftbWGnmGdTrEM9dKldTdXfOABs+M5QTn6nZGVu3+JtkHXWVlzILJ+GSN25yjqKgHuRwAAIABJREFURKfDEj6V6nH9rmvq9a19WqxsiqIISVCs/AiI/jrEdlg0tlZFWzwb5NY9xfWQj3q9VpRIVRlllFFGGWWUUUYZZZRRxuuItwhSZTEv85vVxb8WUuDXzubJa522vY0q86FshTIAyjBncrvFY129eh1Hj5pEueqclWl84AEjJL73a0wG82f/5U8DAN7zP/0IAOCFF65ihVKUK8v2Vt7meUi69AL5T+JFvXSGUpXKPMYpjh63LMZ1yqnec4+Rgztde+PevWBZC0l3vv1+Mxn80hMvYHvb/neE8p1f/W7jUh3Yb+1w6UXLfHz1e2yfv/O7v2dtKRnK3XV0F6yrfP3X23VOYvvu2iEzA75+ybIcPRIvlSmYTiYuw9xuFWtilRnYZj12JVCGlahLLJnyyKFbDr2jZCaTtQhndi9j1hRPSa0SAmBZB/Ynr65W2SJlMzLJ/cz00Ml9Kkvq8eB9boqkTPOk4prMNKcZOTb/U0R7JeKVK2/VGwXpW2A+80ZAaq52vLskRLPmJOwrDo3gtYTFzKQjrwrti6I5rpzPb7ntIk2RpvHNUagkzeYDiVf42zowQ9vZjwCxM4h1vBtZDPDmii8joRGhtvnMaYaC2n51m3RvK84wVyg9eTNBCCREOSS24hka+nGjWvObGfb6/daXo88ju84cG0V0RyGuVeC38Q3iZijwjaTOHVdKSKSH/mbf5XnysBIbSZDtI3Q3WsQjH83S86J4HmEQYRYSEYSk9fmc4vk4JNMzq0yjCuqc3CIeV3Lnse57Rfffdh05sQvuC4Fr/6mGaa1opJp6Y19oXzJLHXqU8a/4HUcolwS1uGRExcTFqNaQ8r5HRF0r/E4yKSLE4lKJtpaEFdTqrCyhcIHabuie27dPRFGElZX9TtL69N32rD1HC5R4NsBDD1kVSsK1hWSxX3zxZdv2VUMfrlPqOs998vlACt9qw7dJ0Jpod3d3bhs3z3h8PP/5kE6y+U68wj4FSRY6Ek+h+AL5nzrf/NDVmkEVFclUgkrFecaXj49yQhlCUZyVhNYeRCYyJKtoR9Hv9zNBEGc6y7ZiuzgzWIq5qBqh2+3m5jtxy+znM089BSBDV+pcRz5N/ryqg85evjjHT5bJ7c52r9AOmneE7Gi7tbU1dLpFXpDWrY8+amJousdagx1cs4qjwWDgULQG299/1tcb9vP6hq0nJQevtj64tuLQxtbY+te77rkDAPDkeUPq1i8aclltWt+u0bC8f3Xd6RVkonAS9ynaAvhm2Pl3AWfYzLaaxepn1maq2nLiE6ksLdKcENP/x957Bl2SnedhT3ff/OU88Zu0u7OzOxsHC5AgAgFIJMUkSKIs05KtQENSyaRdJQcFVlGyy7Jd/mFJtuiSUFTRChSLFiRKYgJJAQIhEAS4i43YODtpJ3853Xy72z/e5zl9+9xvFruYFbxj91s1dee7t8M5p0/q93mf57V69gfd3PXfqRVIVWGFFVZYYYUVVlhhhRVW2F3Y+wqp8u3tvJa++Z7z4djiOB7PHatYXL1h+2+8mTfH7r+0tIANysQeOWyIkZS4XnzBYqKPHzBllARKEkzkJB1gr5WP81WsrBLTPfbRHwQAfO5f/isAwH/93/00P/+61a1Uc7K1gZLrkXvx2GPm3Woy/rW33cqV/cqVq/jwh03d76lzTwIA/s2/+scAgD/1p+y+8mxevmTek0996uMAgK987RkApu7TogJKIHUdKuDc/7AhYpIUV3LDmF6csSH1RUnGt7tEk+gJkJpTTeqM9NgoMWUcx04psEtPX4vX2G1malkAUIqo2EMuiVQC03iALuEcJ7+f5hVg9KnyDqOi8r7qN6f653nz7uTFD4bOkcs3S8zpIbP05sZSMCtn7jyhfpFLOJpXKPPNlbOcjZEsmWMe1fU9kvLmRFE04vH02+qetCRx3KLMC0pkKY2d21wok6+Y5vukHLIVRAj5W5wHL9zc021S2Y3o6fFDFi8vJHaQjCq1xS5Ba0m3sU8hVCLKpEAsNMGNQxtTnU4eEXKe4kDIAT3YjeqQJzw/P/qWIXj2EcfxCHIb+aQm/1xBFENjwyUbdUVM9/8MhAJm1xQC4+opLpkQKyW2lUqoh5iESFx9Ms2//HP3JYDV1rEQqzAaQkDtO0n4IsgjlVlCdnr8SyVUOecF5D0FTOickjcQk6/Q5/MfJwrVd/0wQd+pltq5zcTWPEmqxxXOa+TndYic1YO+y6kROxRJXCo+U8m0cx6ZmLY+XGaEQ6fXQ0DOgnKEr5PbpxQdfa7BieNS2f1r41OoNcyLn5bsertUjptiipKbl3HP2KDfxcr1N/HAY58AAFy6bNyb48etLrdeew3xDWub6rIps/3bXzfV4Oae+FL2LGenzaO/tWn8lPGpCG0q+4ojUquN8b5cL3cYyiAebURVXH4dpWW3xkYNcvRcahc7p7mbTzTvEmv3dt3ccIC8IK0da1vkc7OPdFjmbP3gPdLURdkITVKCbK0xPpdT407nA0OKcNxD6Fq+TLr43donhmGYW++AoTQIPeuT4i5pzdDM0Et7rk1m68aHl0LiuXPnAGR7Pn3+2f/0PwMAfPGLXwQAHJxbxK/+6m8AAB54wNLVHDt2DABwnP3h5deML98RN71u5Vw8ZO32zFe/hlZi9T961LhVbT7Dr3zlqwCAv/QX/xIA4PYNiyxaJwrWHWyizf1RTE5Tjdz2JnlIJS44Y0TX9thet7nn+/CTT+H4gu2DP/NR23O2rxua9up1O+bIWapBnn8LAFBmQudyqY5eN78Wx+SBTlD1EuzLY1Wp0VLSXknooxBBJCVlq1dZyrSheHLcA2rNiHjPKMYko3rc/E7i7Uzd0E+srOOdWIFUFVZYYYUVVlhhhRVWWGGF3YW9T5CqdF+FtWGkYL/cVcOf8Dx9w9wSfeer18jjMTZlSIliVOUAkedmfW0D6+v22zQTDy4tmUfoxHGLSW0TOXroUUODzjOv1MzCIjb5W5sel/tPGnfq4AHz6kzxTfxP/skfBwD89r+1nFd/5a//NQDA3/8H/xAbW8zRwGZ4+OGH7T4XLgLIEKKJOfNQyVN86tQp/MRP/AQA4Oc++w94n//E6j3GPFhT5vlaWzUv0uIBegsrU2y3FKWyeSf+5S/+CwDAH/vj5mkZHzdP28n7rC0PH2UMLZMgv/b6K0OojWKk8ypirW2rW0LuW4le89I+zu1ymbyssnmiQnqerr9lbazcXlUqoZXoset29tDpKOkwuQgB1Xwqca48WdJD8sIGAwSlvLqe+peLw6Y3X3/Luz+MVLk+SW+KrjWcxBEAyjUmYZRXPUnvGO+uhLC6X6b6ZGWvxkyymKQuqWLm6RN3LB8j7yd53dracsfIA+grJN2rJi5L4uYc8HMUJc8zaIAMw8gjF5rPcsc6WUHOWw6F8ZTlhv4OA42bPDrqEjgiH/ufoU8lBEE+b59K6s+PMp9TNaya6vd5x5NyeZrydYui6I5RBv68nXr8VdnbJX5/R5/75LsCMqR/+Fnlzx0t80juLI/DlbWTnjn7Q5C63GU6xT0PtTe9wgmROikoRgEQxPk+kgbizLFfcP5y1yBPSaULw9Ah2ppKnAKrkoEqGiDwUNl+z0kkCh1PHOeTXD8iUo6nMWGefOVN63RaqCrqoGtzvFAHefLDbp63ECk34NgEEspc7jCnTRjllUfvJSuVKzhw6DDK5IlJaW1tw9btxx57CnOH7gMAPPPaiwCAHpOLR+Sj1al0m/BZhRV7Htdvr2U8ZXJZ4q7mcKJPfCby/jt+Hv9WYmkA6HQUfcDk0gKTGVnSTfM8lWql4pTrxKnRWBGXSAiSz6cWOrWxseES4bpk516iWq01Tgl4KMLC59L4SqX+XBYEeU7VYDDIEA8vh1FUz6/tUkN1CdWDcITvIw6X1kvVUxwqJdpVOU+dOoUrV4xbf/Wq8ey05h4/8rh9Hj8OAGiTfytu9luvWx6rpfFpnH/dENBnz19j/a3Mf+LTfwwA8Bu/YWiY0OS5aRuzCAMcnTeOlJ7R61RuVFSUkLOLV62cQt0yde0K+i1rk5dYh5gqf7epRXD1MtEn5j3dXjFEaXxm3LVhvaEk0/n1JfAmZ3/NCoLA5TssReLlp7lr3CmPW7ffHOLh2XNfW7U56tChI3g3ViBVhRVWWGGFFVZYYYUVVlhhd2HvE6QK+yJVb2d+TiHf9NbbarUwxazufpZtmbwmfSeRZFahZ6hWa2BpyeJab1HlrtU0b8Ghg+RYUUP/LJGq3/nyrwAAfvTTn8QP/PAPAwCef9byUH2TsbEn73sQQIYM/OzP/iwA4OOf+n4ATmQKOzs7Lr+A3rhX1sxLcPgg46vpIQrpxJPH8cSJU3jmGeNGKTP3wrxd+EMfMpTtg099FADwy7/8ywCA1RXzTGysm3chDBoY9K3NLl02z9oD91segjglh4hqd2v0QCoH1OTUzBB3h3wcoirNpnmmSg3zHlS8zOXiegVBgDKRIuVdavKZ7dIDFtLDKZWvPj2ygrvCqOxyevXpvRDHKvNe+V780JVLXAyXVb2fV6QJnIJk3jOiZ1stl4Z4WHkPi/IRxeRM9Ok9LFcydEjXU7+rsj3kaVlZ28aw6V4uLnwwGEG7xB+aY140eWrkvZPt7Oy4evgqgHpm95qlaYruIMUg0TziHxAgjr28LZ7HLEPJ2dbKG4UB0jiPJimXlUMr68qjYj+3iI63OZ6CpIuUOY6g8aBcZOQNxmE+9l8KepVSgpLrwiyr99wcD2igHH3W19QHJiYmhhS67LrqA5VyPj+Jy9vklONihA6hJTqsqsR5LleJ/+mHea80kKEn7jvlf2LdIgdl0+suPC7IlBH1Vd/PwUOUR2Oh35NKIS0NsrHjoX7iegndFFKkcpEKiUHSz8ievPLACcxyLPJaFT7rDnkD7TREv0qkQHNJKa9w22D7N6QOyMLXhpaxnrh9QuSIhPV431Jqz7LKk2vib9W6SIY4agBQYhv1yQeLqazl+n2JiDvRgbkjR1HeYZTGnq0L2y0iKLWbw6egS05wg15yBBU098iZKCsnnq3j3eDe8wWnSYJup+eQEyE7Y7P2jJ+/cA3PvcaIjdjmcqE76udCPS5efAVAxr2Jw2l3H21ttKdpNKyt9vZsLRcvSNxOXTOn4jrgOsxJpNuxOWGsbs+m17drd7vaHwS4ft0QEh+J0n00zwjd1LgTYhkEmVKl0K2t3TwfSmudrjnMX255ipA+/zP15mwppbo5rVIZQcY0V27v5NfWvT3r09PT4lglbkxKiU/X1Ryq+grdefbZ53Pft9ttrKzY3lKqejduGO/w6W9YXSapbKjeP8E956e+1/hLy3NLOHfK0M6ZpQMAgF/6VdvTPXfJ9n6nT1ufubJi46/HuWNxZh5b29bet24aD04Ky48/Ytf8xnO2j1S7P/KI7QHrXDveePUNxB2r98987d/b/aatLo2jhvbEG8YbPHzM9tOX3rB2mFlYcu3t75P0LGvl/P4Q3OINI1Z6zqJ6B457nt/zZLwte+YTE1Puu4UF21M/+KDtz2W/98YreCd2781OhRVWWGGFFVZYYYUVVlhh7yN73yBV+9kwcvWtYvRlDhWJs9wCjiMymVcBdN/7HnwpyRH9KJer2N0x78iBA/bmLX7K68w3cOCAeQYOUXXl2g3z3Kyub+DQkcO5Y7//Bz8IADj98FmWg9wtem1eeOEFAMB3f+yTAID777/fxeAeOmTqKvKI6PvpGfPu7NAzqKzYZx8+7Dwe8pJ99rOfBQAcPvxfWF1gnobJSVNveub3TdFw+X7lwlrA88/bW/rxY/fzflbfzS1Dm+SRuXXLPBFSHVpePo4Bs4u3qSDYpBqiTM9B3q2EMcOIM8+RrldiTHp1zLxE05VpXsO8ScqZ0mF8diyXfdJ3KlY9lqerPE200VxncPeX+Qipy5EwyCNVMqeCVorQoWIiyuIyTeTuG1Wca9jqKs98mj27CXbOJtUPex7i4PNfZEmSOBSi4jgJdoxi2XUNPY9hzpfPp9GxihG/V+1O6PjbcTz9c/056O0se0551UifR5DE6Wgf8zh4WT/xFf0i97x8tUaZj8qqHPIWDtf/W0UF+F7hKIpG2kRl1vX3yy31rezdqMG+U3s3URFvc4SuBiDfHv44vNP978QZzv2m6zpkkF+n+XMC8fcQImPT7W+KHggkJemeeZoRAlNxxPKIXV88MJ0baj7NPMf78R6Gr6G6iesQsZ92u13Xjg16wr9VP3w/WxiGaDQakJBrnZzfKtHHVquFuGf1mp20+rYYydHas7leaO/8nK31KaX7SmGEODHXfIPcqA7X2m4nr6rZbtn+oF7L8vMAwM72lttTlKj6trZmyEm1xjFL6LJB9bXWrkXHLC0fHeGr63lqLdHfjYbtwba3bb0ezhOlYzRnac1ThJH2GDpneO4UAuf2EEk+x5XKoWuKDyWr1Woj6n/61BqnczWknaJhtzuCosm09zp8+HDuHKFxDz1k6slvvPEGTp48mTtXdbpw6TIAYHHR9mcnjx3nvQyd+4V/8gsAgP/pp/8GYj7vNXLsy+Rvr9w2ZCpghMTKGhGjZYtW6oQpVvfsmTz3DYuo+tAHngIA/PaXTKHw7BlGVpGX2uIzv/aWKfkdWlxEyEiE+pjt07rcc61ybztZI9rJvdDyfXb/vaDpnnPoAjTyc4bQSO1xUbK66rmNlyvueddr+egnIanaL8/OWs5YqXofOnLGocfK13Xhgu3X1XfeqRVIVWGFFVZYYYUVVlhhhRVW2F3Y+wapChE4RZqSC5pnnoxupuYUOWddnhfVjbPYWGBYaa7kvAjyDmQqf/SsSc2G96vwbb5L1a1ee9ede+nGZQCj3IT5K4ZQnX3EYlb/9J/7qwCAn/0//w5+5Ef/EADg4Sd+CECW9fuNy/bm/Tf/2s8AAMbqphAzN2ExnbNCMjo9HGecZ4+cms3bFveqjNl15hTpmdMASzP2Jt7Z7eDGNVOC2d7aYJnN4/IL/+TLAIC//DN/DgDwKFGgMz3zDMww78iv/9pv47VXLSb3b/6NvwUASOhFeOV1Q7DeuvCNXNsqVntzK4t19uO4FV+NgJyiAT2gypVTUV6KENUKPe/sB857EEohzf4cmzB+0NaWeTM2dxirXys7nklAD+sY2yyi92yLsdOZZyJDcqT+p/xk4qDo+Teo4Kg8COWy/Z1SXavd7g7FDDNHAnMn1MiRyTg5Zgn7XzcYuLw7IT2cUZ8e4K59Pz1vfaXTIeq5wfh8SKmtjJjjqkuP6IBIYLksb7k8Q1GubmFYcvk+trfNezo52eNnFs9/L1kKy/sUe3mqZEmSIBVPTnwUjzeXec51zpCnPvXQDQ9NkHctYN/PcojZ93EcO+WistQzOeUJQY/kEkvy/LkoypAqeXcdZ0h5kKRAyUvod+W56fdihw436LnWMfuhoCqzfvcROJerjvOzPIoOdQvy7TP8f19l8E7I0fD3mdrXvoc685Gi4Xtm/4/e9pzR8trf4VCMv8qj5yEUWn8r99PQxUYUy9zt+Ly1PirHVtl1iEwN0kevAg8hGjiuWT93L+OJeWijl59N/FUpFgZhXuowrFRRqjEKhHzWea5jx4/bPCKlM91Jc29raw8h83BpvRh4Sl73kpVLJSwuzGLQNI99n9ESuyvmDZ8r9xAwd1Qa2Fw7O2lj5OYN+7sWkv9G5CTVmEpTVIk87e5u8jsqmVGxr0p+3hiV1fb2eBw5UPWwh+6OIVPKV1RvKF+nVGHJ3WvZczh62PY8rVbTrW2KetD4digC76N5wUeFFhcXHRLhVNjK+bnCj8aQpWk6ovYnNEP9vOqhnepn6ltpmrq5SXXQ3yq7xqobw6W6O05lfIuozfLycu4a17gH035tiorTb7zxBgDbN6kO991nHCahW6uM/um2mHuVqn9rq4a6pLz3//r3/g88dtqii6pUUp5csPsot1WLkUU1ThWrN6y81958HfNztnd6+KSp/JWocviD3/sxAMALr5kaYJNr1GEiO8lQpNf1q3a9JvvMzQ0r42miXMcWLdJLk9kW82j1m33HUVNORa1OCee7gZBZ1jcg7CsOuinmWsXKfDa/8E//GYBsnlHf0TNVPxgMEly4cAlAhkROTIyxPKZn8Oxlbq6/hRVIVWGFFVZYYYUVVlhhhRVW2F3Y+wKpCmCx11m+k3euAijzY7flLSuVSs574XtPHZ8gVIyufcp7keU4yM5RrgB5PhQzK1UX2aOPPgoA+MxnPoN/8FlT9fvwh02l5egR8wT80i/9Uq6e4mXdvGnxr4r/rFarzvOifAfy5ggZqtL1UKnaI93c2OG5Ned5WVoyL+Hv/q6do7wIr736OutmMb1CjN48f5nl/Of4A5/6PgDG7wKA3/u9rwMAnqWi4eZtQ7KkYKM2PHjwoEP5FumldOo9bO9u7OeBwYg5tTJ5fkUo8NwC6kNOwY7l6HVbSEJlSO/xfvKS52P1M06R/VyuVFCXMiGRsTjNe5F9VTz1nZTl7rSbQ1ytOHeflPG/4vIJEYmUs6YUDHFjiKbS8yv4op9Yf5AHJiEPYpW5FhDGDvmSZztW/cr5aWBUKSkcyr9Vdt8Bo7nf7hlLU6RxgjTenwuXJklGVnFQlPe3309zgIaDFXLHlhzCLQ/Z/jmo2u12lifFqWHyUu65CMEZ4sHAEMfUQ8r24z3t93umihS7//scA5k/j+6HIPio0tshQ/553+65w8eo4d+Os7TfeUEwijyNliP/fQBxMpXzKRhBgIT+hWWpAebRl0CoZJLssw56baQJI8ivfVEgNcTUoZlpKiJI/u8w0byaf/6DeJTHnDrVPSKjro+xH+aXXgQI3RxfZRREuWZoRIm8HK0Tqmuvm3EAA54rlFP5vxyZ7F6yAIiCFEHf1r6FMVtPpo9Q0W15HEjMU//WnnnVr1wxdOPs6eMAgL1d5mB0aI/NIUtz06gRqVp4yNbwrS3bOwiJP3bMUIXr14xr44/pTqfjUJXVtkXBaB/SbpFD07TPTtuex83rRKyWF9xexalp8pmJB6Q9iPqB7qV5b29vL5dbFMiQUV+1uTTEu5MJ+dL6pP2ZjvE5T/txHTX3isuk/u/zTqXE3CI3PE1Td3/9pk9/ztJxY2O2Tp85cwZAto8CMk6P2uz4EUO93rxsOUkrrFuZvKXGjPWhdJDg969fzJ27TJW9PqNgZqemWXZyzlds3/ro2Udw5U07d8BcU//Vn/nPAQD/43//P1jbHbVrnT5rPLBb3Otp7lpbW3N7zPK4je9TNavfFZZ9a9XacnOHeV8P2H62v9V30TC+qmulYs9Uz0XPcnPX+umhI6Yz8M2XX8G/+53fAwBcet3GjsqjdVb94tQp43Jpz31rZdXt2TY37boKhusP8sqS38reFy9VCKzDunCHWJKt8dudlTM/AaYGQqVSGSG6+UT8+oQ1pgZknQnTdM3x8THMz9vkILhWHSDlSjI5ZoPo4kXrPM2WEeBq9Qh/52//7wCAX/zFXwQAvPzyywCyl5gHT1kn9RPnvfSSCUbMzc+4kEHZ4pyF921t2qCoN0q5cunlptfruYXr1dfsvh/5yEcAABvsPJ/9+0Z0zKRKbcL7ng8b7Psbv/6bjtD3kz/5kwAy+Po2wxAHXftd5fzgh78HgE3MEpXYIXy9xwS92vD3uXY3mKCwwUEEJ61ZyjZ0Qf7FWCu4JmlfDlWhMrXKBAKFc4aa4Kw/KOxURFkXMkWJ/TCKsgTG3Mf4m1BNlr6gQ8rPKIqyMBbC53oh2U7VVyVPr8Ujm/gd4TbOv8xpIShXlYyX4TPs604qu9uDMkeLnKzEnCq7yqy/hzfVal+10dttpO8FS9MUg0FvVDadNpxw3A/hyq5hn64vKvwvDeGmVu/lJmYf1L5Q8ux72zZ+tjcpPb29OyKUErnQPfYPPoN6TfLsoyR/bXh1jp+4139xG/5ex/rzsJ9oU2NNm5/hdgq88emHnfn39c8b/v87Df8LgiyU3H+59O2dvKgF3otZ6pL8ZsIgdpyuyTCpJHahvvrOhY3r2mpDPkv93uv10OvnExXrJUoJ4EP3hiRvjBKf2p+W+JfPV/NRkA//01uWZODdvIWSSwycOTtVaIbduOfBlzg5HXRgGCFiCNfC0iGea221ctM29wcYQrZ22/6uj1GIp91xoYqOwO423fde8l8ASEshksja9I3r5tDUBrHf38Lurr1MaWwcmLU9hfriVIPhUZyDJfYwNVFCyDWtHNratTRvjkwnaU5ZdC4taLdtn1BiWGBtrIq2ZNDpJ4uZOH6VL0zz07ZBjYIe72u/b23tuJcl/4VHL37lssLlFcKVXyeDIEK5JBEJiozByq45ote3a6ZgagmmJQhRco5xiWFloeuSlJeTmQmUGT5P/wB67V728j5Ic3VIx/LjcHMz/2I2MTEx8rL22muvAQA++EETJdO+SJ9f/KKJP2hzf+bMafcS68uyLy3by8wrF2zv+eb582xDa+sm7Fk+/PDD2Nmh8MIpG1e3V20fGPatD115wfan3//EdwMA/ugft7C833rx9xCkdr//7X/+OwCAX/zX/xwAMP/oCQBAp2n1v3XDyql5YXKcQh7zC25Ps7Nt7T3YZMqO2Mo6PmMhhiH7S2vX9ilTBxbQ2bRzKkx3of3ZtsJBKSH/jZeNcvJL/8z20xJlOXniOMpcWG9ctlC+iOu7Qilb3B83lbia/aG5u4NFhkrevmH3nZm0MdQov7v5pgj/K6ywwgorrLDCCiussMIKuwt7XyBVAUZDPYB3F/53J7ljIHvjd+raHsrgEyDl+NP3t2+vOk9LGAixsPLqzXyMGRdXVw256XQNXj1x8oiTc/zMZz6TK+MXvvDvAAC3rt7KfS8oXRLrUbnkyHvy+HZJ8Ntr0gNTm86VWaS/MAyxumJlkmdrctK8Y7P0hPXWSZbu2xv6Rz9iCNWP/sgfBQA899z8crSAAAAgAElEQVQLuHzZPGtOgIJhh1sUvzhyyGBceV5eo3z8gw8+mCGQEgShR71MIQq92SvBr2BfPbc4jp13ziFQkT2P1CFDLVdfIPNuDdiv4jhGkGbI13BdOl16wunNk/cioipKZyjMQOaHD/gEfCdNLWJsMhiRO3ehVuxwIUP7yrpWRWXvO/SwQje1wvtCttl2Ly8CMj1Nr9LNNVcuJR71EwPvJ6E+/HeapiPCAiPhtveYJUmCdrPpPMWqq1C6er3uUF8fvRhNEm1WrtbctbodtaH9VmEi5x7TBShcR0hqm6EkKyQlp2ng5hyhHXq2Thqfzz700KBSEDmwIBOv0NiS1HomajH8vbzEURS5PqffarV8W+nc/cQnfMTWDx30QwsTjKYEcOiwF33gz98+2jU8998JZZSFHkIkS5Is/K3Xz4jQdj+1ux0bDzQmNZ6IfgZZiLPrO4zHazHRd6WaD6d1dUOIJM7LPlcrSvFRzh07gj66fhmgRAQjIkLVi4Wmsi6EqNSHRPROg7JLril0K1GYnxAqIlOJEHAlox6Slhf6HjBx7/g0w8IOWTja6grXPhc+xrrFQEKZ8PEavdpE4SOOpXvJkiRBa283S07KlBi7FIVoNBqYHLc1zp9jnciLUrywD9WrGp+JO6fZlJCQrf/Vajn3/dys7RM2tvLRCt1+z81BSmUyYB89QMrBHlEFXbvVzdYcP3xZa6iPdvtodjC0PvfZ4bIIAKLrA4UkS7gnT9sIkAnj+OuSvx/QnD7ORMYqT6PRGFmXRbXoUrBBkUSah/W5urrq7rfO5ym0SeuJBCxEhZijKIRCzq5cueLOEdXDTwL86U9/GgDw8z//8wCAxx57LFfXF198EXNzdo3L1ygAo/lm3co+RrrAb3/ld6x9InuGz1x8w9ESrlF+/TKf/+J9Jn7RvWH70bNnLRXQV7/6VQDZs5ydncWbb76ZaxvtYRUOKZqMImlcMurdPSQuJF5jgiHCFJ1oct37t5//DQDA/fcZgqY+3W218cbrrwIAPvCk0W/0TB89a4jc008/DQDodawfdNsUJUnbWGDEWmveyqRUJT/wBz8KAPiVZyzV0beyAqkqrLDCCiussMIKK6ywwgq7C3tfIFUp0hyHQfbteMFdcskk4wHIGxGX9/eW7lAmWsdlSIZ5jpaWDmJ9bZP/t7hivXmvEAVqMxB5+dgJFj7zbn7zm98EADz9tMmO603/Yx/7OADg97/+DADg/AV7y9/YIolv1rwOj559GK++bNeQB2idUpVPPGreii7jT0PF+avu3R4uMr5UyNDOnnknfvqn/5odE9vRKufzzz8PAPhH/5fJUbbbbedZcEkaI3Ev5Hk1D9XVm7dzdWz3Y4eQyROTRkzQJ8Qq8ngfJBX2GY8dBIHzXk3NEt0SwZbPTM9OnjJ5z9UeWxt76NOzVlXiRXrx0M17ejPvWuYR1/X6XsJg/xy1k4v/F8erVHIIw8zURO6YQSeTXR+uS7niNLMdEletCLEjWZVenNJ4I3f/OLa6qr/uNJvYYx/t05sWewlo/c/hNnVcC4+D8m4T471/LAWQOA+uj1b3ep0hz6WdMZrQNn9Fye4HQTiC1PgyvRmHh15nevbG6a0eTpwqkMUJm7ikv3nExn0O+coylEee3DuhbUK7au73zJvs81Xz9c5kuTPkyEdevp1kv77dKZHuvqjpe5ggNkP58pbxGjlfOI4V2zYKEXpy7AMPVbrT5/D1h8VDgH2Q7lgpKNi3gqyd/GPFIUHgI3d6TkK2UgxE3lK9xCUj4h/qd9fviBTq+KFHkLIdQrWlypjm+0lfIj7x4I7I8L3I44zCEBNjDVf2ajmP/JfLZVdPzQU6VuuGQyY5f3daNscnaewEikTI3yWHSEj8JNechOvXAjnZQkXiQQ+xZN7XDE1obti6XR8zdCUKhLJZeUrlDAXyE8f70Q7Zmppfrx0aFcdAmk9EHbi0OUTViMz1iKAMI/eq5514+D6a6xJL87xut+vmZtVFc7b2OkKVhsWEANsTiVOlRMHiTj3zjO3t/ITFEjzTeeVy2QmH6RqKBtK13nzTOFUPPmhpexQlpDrVajVsUGa9QpRnhQjwycOGDF+gKFlInvuvvPSifX/tAn7ln/8LAMBP/tR/CwCYXLYyfvH3bD/4/ZRW/7mf+zkA2R5PaNTU1FQWlcT5RXs+tZUk5YXgSZSj223h2KLtVcZY9hkKcFwm//DwAdM1iPn8r167DABYmDAxjF57B5/8mOkFXL9qaNu5c+cAAL/7u78LALifXLPz5KWpfI88+BSefPJJAEDpEx8CALzIffCheRtb79QKpKqwwgorrLDCCiussMIKK+wu7K6QqiAIpgH8HICzMHfCnwPwOoBfAnAcwGUA/1Gappvv8rq5z3dzThZfn33vJ1H043xTLx7Y98wOBgPsbEtmlCpF9JJIYnx3mwn7GNPabG67e8oro7fyiQnzEtSq5pW+ft3eqo8wYdxrVBhUItALFy5geobeItZX6n/Xr1vs7PIx8wAoLnt3lzHqYRnjVGfZIgJ2+iGLkf3Sl78CAGjU7dq/+VuftzrM2rU3qSy4t7fnvCVSFTzNJHOSv+z28twNcTb6/T4aTK67tydFOqnOmVer27bvpf5XkqR4kHlmXRJB8Rf4mxKSysu053Eo9AwnJyfR3KUXK8nHdcuLJBQu8wwO3Pe+V1jPVFau5WPInfqQ453U3Dm+xD+cI1wJOunpZTx0uVJBp01ESBrJzgMtZUslk41cfQGg21GceuY2FrqoPtxt69z9x9twH1bZfYTuO2Xv1ZxjHIfmCDquftTr9hxi/c4LJ5WyEqYmbQwJ7a5Sucgln+xbm2uM7zHx9E32zevXbjrOwMysjc/2QGghuYFSPJXjXsmbw8D1AyFT8raqfsPtMPw57NH1FSYzdG3/MTbMa/Dlke+EVDnU4R2493yk6t1wbu/GRu/LujjeGtcTtY9T5Qsy9MbNS7xISbwgKeURbUuzCAdf0bR6B6VGSbrJsz98rzTKqw9OEIkUJ1jIUHYOlc/6AcIkyH3XE+ooFUIl53TNQURJnKowQ5SiSVuDqkwkvbdr/T1m31olj6NBrsv62uZostd4/+Sv/yHtvZpv0jRB3O85RTk9Q/Gi4jh2qpKb67Z2S448GeS5hXFsfeXYUVvzS/WqiwYRH2V724qjefvQIVNfLHPLF/SI+hHZ6rZaDnqf1BxvWxn0qBxXmzBURxzjgHVoNpsjfGF/7syQK6YY4XqeJY8Ph1IS2Ll9h4znpfu1x+h2hViNjSjY+snPhf6IU6W+NYw++Yh3lqg9z7XW97pGo9Fwa6nQLZ8HqvVYiKL4WuLgT01NOb6R9l+6X4uI5Mc/bpFNv/7rv8565xMd7+xsY3LM6qn+0OfzvXDhgt2f+8hdcd+ImAbVBv6bn/kZa7OqlXljzRCoQ7PG7RLq9mM/9mMAMn7SsWPHABhvTImL33j1NZbR2kUcMiFzfjL4/iBEjwjo0YOGWF2/Zjy0MveYC5PjuWu2tq18tYr1m0c++AFsU6r9wfttLx2m1i/+xI/9CIBMUfuHfurPA8ie08baTUxSt0AcreXDTAHEueqd2t0iVX8XwOfTNH0QwGMAXgXwVwF8IU3T+wF8gX8XVlhhhb0XVsw5hRVW2HfKivmmsMIKe8f2bSNVQRBMAvgYgD8DAGma9gD0giD4wwC+l4f9IwBfAvBX3vZiqXmfXMx0nFeXSqLIkiECwB28x73EQwjSzJslJEJ8Ex3jlKnoCDl0yDw/QlS2tnZYntChSyUhM/SSvPaaoUpHDtnb/GUmOTt02LxMi4uLGXdrx97Sb900tGd3x97Mb9y6mSuPr6a119zFzJS9pTfoLYr78rTYsfI4tJkDakB1odpkI/NC0tPzCuNq14lENapWtzMPWr4sITa3x8TvSIe4QtZWb129bPelN2WSnvllom3KuXDgwAHnnZCHR94cxTO3m+Y9knelrnxhFXlkUyg/rZ5JiR4m0Ksl1Gs4mSCQeVVLYZrlzKnmc2b4nk/x5fR1s9XCTtPq7/OOdE15xFwuKnmClEui2RxJeJipDCremt5j5uPYpYckCFKMj0/yunZuY0KeMeXHsPvoOW3vWBurD5VKJecllKqbUBLnLernUS2Nx/HxcTeGhOLJ8/eu0Zy7sPdyzknTFP1BdyTnUov5W5IkQZy8fQ4l//vQcdSCES6L+oNM7Sl1tMaY9QUpHm1tbY0kkpR6aZvJNx3HqlHPlyMMR9WvAilmRbnyOOW6JI8+hWE4lOM4j3r1+nneoPqPm6+T5I78H98b/O0ovH4rRb/3GsHybzMcBQEMjQElBKdK2SCJR8oo9NlZmI+sGKRZu/g8EPUgp74Y5suhpL9JkrVT1hT5nFogGq5cV9lzB6+dZJwpp+6nJH2KFuA55EXFJGwF3j0BIOUcp3xcDXrUJ+jBF2LQ63RZjnBEndQlQP8OIVXv6R4HAIIEtbqNFc2fGbeo4sbPzo6129q67ROc4q+XyDZle29urmdJlGHtuLhoc4YU67SmVNhXN9dt7Z+YsvYvl0pZns6q+hP3Hx1r9y4TVys6RZSnNE1zYx8YRbczvjoVDT2EfDAYoFLOI3KlKL9e9vujCqGAzU9KbO/Pt3dS91R7qW81Go2Rc/S3ywXpqW4Oo2HuOsyxKZ7RU089BSBDk8RDGuZSATZ3Cr3Sb+L7rK7ZuS+8+BwA4P4HTGFZvKDZuWl33u6mrV/aW8x7/KwW1WclXTrgvZaXDqLPsdcVAs19WnPNrlmZtbJ+/vMW0SQlQ9X19u3brl/rmalOly9ftrIShfPnxXqtgvl5Q7NmqFw9Pmao18tvGOq1uWH3Wee53/cHPwUAePN1+/2Vl19yfLPFOdt/X7pkegI7RPU++mHLz6V8ssoX9gd+4FMORbxGte6PfdRyrX7jmd/Hu7G7QapOAlgF8PNBEDwXBMHPBUEwBmApTdObAMDPxf1ODoLgzwdB8EwQBM/0+vcq2b2wwgr7Dtp7NuckyXc2bLGwwgq75+w9m286/cF+hxRWWGH/H7O7cTOXADwJ4KfSNP16EAR/F+8CBk/T9LMAPgsAk5PT6bB38dvhVMmcZ3SQcV9cXH/qx4/bG++BAxY7KY+EUA7Fd9dqNefZUG4nmbwKyvYtz7Oude3aNZfN+eBB8w4pnl3O6xZjdnXfCvk5IT03JWReoSoz1EdVebyo+uPlf9Bnq9VCg2/gfXHJ2A5dvsweWBjPtZ2EmaRG02jU3G9qB3nclJeKobvY3jTPmLJsN3f3RpR5mn3GNVPFRSiTEMP9uBMuuzl5Jigpl1NeZU3PWp5P5QOJ457z3ohT5XvLhcKojvIilcvlLAfPwPM8y4vsca18D32plKmA+Up6fXaETk/PkLmClIcoStEnnyAiIrVLdG+PCFovzastqbxSShpW8AvE/YmV16acO0d1kNep280QHXHr1JZqs++QvWdzzsL8UvpDf+gH8fWvfx1Ahs4KLR0fH3ceOJ9P5/hHHh9FfTFNY8d17DgFS+YgKysvEfg9c1A18jmIOr0sr5n646TGMecaIQL1aj7jezkaG8rPIp5LHrnSeNKnz0kd5kU5RVXX1/Pjc7/cZT5HS+bzEt4NP+ZbKeblkKz/APnTRtqIPsmQCA7pSxk3Nyll3Ms0r7Loc61iLwdUkiQjuXfEoYPLt8dxS69zt5/vnwgClMW70zHknmS5pFhmnx+HCCUiISk7GqceRNKWFa1UiBWvJfW/MMhyffWJwImnJS+3cg5dJudjpWU5eSqViuPJaI3V/KSx+h2w92y+WZqdTGemprP8halUaTNVYY2ViTGO8wr5ToqC4DhXfjpFJSweWHR7ByEBPk9Yc1mXCrCHD1tkjRCUShRinOjWtYv2DKTK2+Ea06Ry4AyP66U2t9XrFddH9ax89VOZnmHVy0FnefEUbcFcgeSH61p+7iutPeVyGR3ycTRmtOcQQqP7qD0UDaW5VeUGMmTQ54z6881wvj7db1z5B2niTOlZPfecoU3iy4lHNTMz4/jqBw4cAJDlpzp2/Iir53C9/Tbf29vL9j9sqzr3QR3WM6Ti8R6jVMZ5jY1bt9DlJm6cKnth1+r96Anb462Wmrl6u/0q22tmZsa1w1Hm0BIipGgLccuUi1XX2tjYwIkDxvvTGiyO+WHuz//IH/5hAMArr7wCALhKVetO28r1gz/wffjKV/49AOCTHzOlQm271M7zRPVmpq184ms9+uQ5tMntP37qJADgGrUOSuV3lxfvbpCqawCupWn6df79OdgEdDsIgoMAwM+Vu7hHYYUVVpismHMKK6yw75QV801hhRX2ruzbRqrSNL0VBMHVIAhOp2n6OoBPAXiF//40gP+Fn//63V57v2zYibzEd4jF9+NggyFlN709r62YV0aeH3kRt5mnSkp+J47bp7wM3W7P5W9R7KzuNzE+xRLY97Oz9ia+smJKf/fdd59DTU6esBhRqf3duG7HdHr5WGHFoertfnq8gQb5RfMLFmcrxbxaRQgKkQSqLN2umCfg4pUrOMDcAAfI+3r9vPHAqlQma4wJqVB727VOnlxW8+ZyMgCZp8V5cQbWpnP0Kih2+Pz5865ezhtEj0iU5mOTG3XzCMwyP0G1lKE9jsNEhKrvoY3yam5QOQkJn5PzmgYZLwxClRhfHNRZb7uHOF/iKZUrFdeHmuTbyWvk8+B8y3gBA+edzbhUQi/Ej2LOkDifDyZOUpeXqk9v9MR4jeey7xDJUh4tIVQuHn/QR6WaR6QiqoapPD66NpwHRGNSXiTlv1K+DeDf71v/99LeyzmnUqlgeXkZ3/jGN9zfQIbOzc7Ouj7l5+TSM/fzRqn9+v2+8wBLdW1pycaerpnx+cg9QD5u/9atW64sR49ajhF5wISGyzKOaN7DCgznfMnPmz6v1Oc6DV8jU0XNc4h8pUv9Xi6XRzzVPh/q27E7qf/t50F+L1lVfts47m+6PxqmNh+mGyradOChm345h9tJ65NDrJI8T0V80exGXr6uIHDnpi4/GZ+VKyvy57gCp0OlE3rF9nWqfndCGTke0sDdyZWDqFet1uCheX6p1spGo5EhVW2NQ7uGuA//oe29nG8Ggxhr69s5dAMAxifEm9nKFAG5DjbGqMLHdUhzlOYW5fzauL3l5o1mT8q1eXSvtW1t2Oky95IiGRjR0xukuH3N9iW7TYs24TKE6Xmbh2o9omtUOt5uMtJlacbNAcNrxrBlc6jySObR9VqtgnJZ44p7uZ7dR+Ot18vPVZUSEZOdNaey6tZuIcMcd9vKuSUuFfdPZY6LcpiNlfZePqeg1m3N9y4KRvlP4ziLchqojNa+4oBn6rn2HKrs/x/+sOVVeumlF9zebY/5p8a453j+uZcBwOVRatTtuHnyhsJwzbVjg3kshcx0WWbxs6RAPceIE6kBXtzcRpnc3GSvzzJaPc9vWMRSRFXA2WkpDKr9DQ2MogjnXzcUqX7OkKBKg1y7uMtzbE997ZqhTIcPGjrV3GhjesLK8u++8FsAgL/8V/5LK9uNN1k37rkYfXSO7SE08ns++gmXU+3Xfs0UEj/xiU/Ysec+AAD4MpGsH/oRUwMM+Yyv3riEQwcO5u4zN2Oo74mlA3g3drcs858C8AtBEFQAXATwZ2Ez+/8dBMFPAHgLwB+/y3sUVlhhhcmKOaewwgr7Tlkx3xRWWGHv2O7qpSpN0+cBfGCfnz51N9fdL2b+nfKrnBeDfKRGo+G8Jvr0Pc1CX+Tl2OybV0Oesk6nO+R9VMyqeREW5s1jPz5OVIPe/y1q6Idh5t1fW8vnjpDHI4vhpaIfPVWVSoaG9Pt55SUFwwttmZkx5ZTdvR7LIe5G5t2VN0dxrYvMYD1DdE0I3pUrFge7vS3kJHbtL++5UCd5zUr0wB47avyx1199mfdYdLHBA8bxCl1TXqptKhZWK/ms42ma8TLkYQqJ2MRdxWrv72FX7rFIQbXpqMKV2n13L49cZl42O7CWJIgqeXSpEuQV8+B5s2WZomU84mlXefpxf99zHT+qHDlFMfVZX4GINDGnJOgr+lUqFZR7eW6M7zWVZXysDIkZzQP33nNW3om9V3NOVK5g5shRtEggVH/a3LJnv9XdwN4uG5VjTrzGCvuUYv5T5VUr2dioVCqYmDzA8sa5c5VortfL55yJUyKORHFvXlvB3iaRVaLQ9520fCBnHzaFo+6AfLqq7mHnluuh85RWSlSjjJmLrE3+1ybHCT2rg0nOiXV6H6s9lOjtDXfIz0hsztupWb8QYiBl1Gs3TDWpHJVw8CCROXoRA6I6MTlmA851Ew1rw2Y3r96VhiHCIN8vNecpCqEknpjyczm+Uug4hrqvOGUZ2lTiJcWbSHK/l8IoQ+tSoTv5PEy69oAoo/6uUsExSVOAvMUsJyLbn9dQ+4eqExHMYBAjJOc2GmTzAACkgXjDVAsdiCuZ54AkATBQnjoHTYW5tpQnP1CdeNheUkLg8V6kwJuovxP5FgoXeopvvV5vSOmUnFgWpM0BUR1nTpgzjwIAypMWndFKAgx4TGXPkBNFMvS6e/hO2Xs135SiEmZmZly0hM9TrNfrQ/NwxocGRpVD1aZaE+M4W7s172tvoT2M0Jbjs7Y+S4FYY3h1fcNdt8x9Qplj5AaPDUoN3sOew4EJe3b9Xms0UsjLY+jnXPPXwiiK3LrrK7L6OSH1u645jIr5eSRVHl9BsUZUZofc5Eaj4fKtVagUp+uWPHRZpvUxiqI7rqmKcNHeUuXbbeXzNc3Oz2Fpwfr+lUu2/+p5SLX2kQsLttcTp0l1Gh8fR6+V30uoPLdu3cqVx+XijLJ9nfZyDc7nKltZCsLa21JR0qlFsh8mSeL6k+qrfrh2mxGyaZr7XscdXF7EI489DAA4e8Y4TRdetj3kqQdOWJmbhr71u1bOsbr1oYtv2v7y1ZefRaVk7fuZv2B5qK5esVxX4nB9+od/1Npy3dalqbKV4+DjH3BtUxb3XpEnHEPv1L5zesjfhu33UnUngrPCWzRYNZmsr6+7zbogUH/CGUnomoqgbQPx8OEj2NmxDryxbh2qGbVz5Tl3zjpEs2UdX1Btv98dIf5rsx4GVq4jyxbec/P6NQDAPJOP6eWns7ftQk000Uj2UmIPb71lnWeCi9KwjPz09CzbyO6rMMQZhhK2Wiu5dtFGcH7efl9YOJC9PEVqSxvY2pwM9qzeqy7BsdX1wvnzbkJrcgD5E65CP8ql/Itr2a3/iVtgxqfyoWqBF7KmxWN702BmtX29WnIDfpNStQqz0P07Pb2gWr0VotAfDFCn8IZ2JzsMEXCTx5gWnHwIlgu1q5RcGTUZupfqMl9Y6AgY8A2puUfJ87iUJfbkxL+5bf0wijLJ9GHLkjDborK9vYUOX2rlRKhQ7MQPb1MdhidPl7SWx4j47C/494oFYYBSpYzHH7dxeunSZQDABDeI1XINQaJ+ygWaCXsl9NLmwug2DnqOUYRyOf9cJJWuPjgY+KF6+VC2WmkCpXJeVELzlRNt4Y6406H4g8KHBgNEYX6e1Duwwqj7DNdNFP7DxViCKOlkGUnKuWZgZS9R4GTA+WudYdPM+42pSWYLRdZ3Sm7eloOEG39tVOCJKwzZneb8O0ncvxu7mzDELERv/7+d4yNNR6SjE5fewsyFtUsGfSgxfaDvQoU6B7lzU6/JMvETOj5SuJcotVCPKnSaR7LuJ8EMhvqVs3Bm90LsObDcxlhy8KpTTpZ//zB9dw3qwjuBBc5nl86/7kLUJA5VknDCPSjcmSQJOp2O28z6aUbCMHSbulYr/9Ko9UL7AbWp1sSJiSl0GRKltAe3b9sm2glDcI27etU2k6Hk0nntfr+fze07dq0yE1QH3HhWKJTR6zLEnAIWE5N1d67qlb3w7Z9aYcQpmCRuXruT89FPMj78wqS5UWubHzrrh04229nLFAC0u52RdCkxB9g052zVUZ+65/j4+MiLnup9gQ7qhRnrw+cvmyBLjYlsT52wF4hSKcQrL74IAJiks05hbYcPL+faQelqtNfRXH779m3MTy/k7q/noH6gsECF7w+L/IhuAs7RbfYvpeNI0/xz0d5H19rd3XUvflXSE/qcw7Qf1DXVHxs1K18/3sGli5bqZ4Ivb0sMTXzwuL1UnTht++ROx57h0aN23x7DROv1yLXVzo6VY3Z2hufQoc+99S73T0sH6WRYX0GZ+72IKQVa7N+3Vt8dZfJuk/8WVlhhhRVWWGGFFVZYYYX9/9reF0hVigQxurlvgEyyOE4HLjymLz+dR7BVgsoq3zYnCU2XSiX0GGKzwzCzZCsfBjg7yZAEhuToDVz2+oWLDlWQPLqDLzv2lvziK9/MlafeME/E4uIidnfsrfgqEwM7gQIlwqPIxQMPn7ZyULCg2bJyDnqJS667y0R8l26suusDQJee5vbAYM5BRNndiQhxRVLdVp+T91v40Aoh0Zm6eQTkbTl9yn4X+nX10iUcO3Ys1za3rl+2a500T8uG5E4VHjltSFZ5kGKDHpeJhQO5a8jT1iDaWq3Se0aJTHk30iBwkuWDVB4YQ2JWVswjp8TGItmmjJ0Jy0T00MfOrv02RkJkSPSn022xfeRNz5Pq6/UxF36XiREoJIBSxQrBIYlbJOKBYgrCEsCQwVJZBGSGgNBb33XhplaeCpGKXrfjZHSjyBpLITd7e+wjQT5RaJaUmCjp+BR2b9l1u5HEEeiZCyWdbNcUYhcSOez2e87DKqSlRPR3Y8ue7b1mSZKg3eviu5jgb43IShgJNa2ixtA0J0Th2lihexR7ILKYxPRwxvFQmCaRQkoZt4huBWHeg5/JZ9vfHaSZfD3DUaTm31VYBtGwLkO8ytUMyRFS6RBMPtvqBAUBmvT671l5Lr3xKgDg6rqh5WNHZxEyzGd6woRuotTK0eW8NTZG0jfn1zGWc6JeycKAWE3JM3c51kr0fiwXz2UAACAASURBVHYpQhBWR2WMfRTUF7u4k7hGHMdI5C5M9082rHC/7O/90Zfhc2UulE/Ika7Fv3tCm5IEAw+pEbIOD+UKXFj30PFBHgFTX5IlyEM2EitS9EAYhk7kQNOQJg5FdkQOQQCG/1MORttMYZZC1bJrC+7KhwsmSYKAftsB0d7UiQQxtHiQDytX+595+CFsH7b1Yo9RBx2GalXfZTjO+8HiOMbW1taIyEFpKMTSb2/1Z18m3ZcHHwwGDglX+ylETPOK7rd0wPYvOxSbmJw2T/6bFy+5NB31qTwyk/Ypi881MOBaVGZ5hXYB2b7IR6j8v3WcbGtry60tflifSwzdy+czHUaF3LDywsv2uD+r9Wu575sdyoO7RMMRSl5yX/2WJWi2+qqcwyisn0JCxx5cOJA79ijbX0mvtX7u7m7j4LLNs2u3DIlSeLm/9h46ZOIOV65ctroQHZybm0PcyyNUsmFEcLh8w7L0LjQ1jPY9R6Zr+wmex8bGsv2BkLE1i2hpVPORGi4ig2vMX/gTfxRVXmeHUTBnH37IbsgIkFWGEJ44dtzKTiRJaF+r1cL1q7Z+3XfqDADgKqO/NL9cvmBo2CJF2zBn3x+Ym0SX7TjQmsV6njx5Cu/GCqSqsMIKK6ywwgorrLDCCivsLux9gVQBXoy755GM43hUPjfMe+R9iWuhIUmSuDdt34uia+56XB8dr5jViYkJF4sqwpu8yEKKLl48DwCOoK3EuVevXsXxYxYLeoTS5orrVTk+dNZIurcYK9tpG1IwO2fejNrUFK5csljcAT1LzduUptwwD7sI3wHRhT0iFB8+9wEsLplnQ5yLmSnKaRIp6ZAAqDLLm/Dggw8CME+NyiqkTsTHq1ctyWljwrxp8mIMt6lPONW19DzqlbznQ3G5+ozj2HnrFBur33S/7abdTxyzikjd9CL3e12XkLi1LbnZvDdf5alW7ZqOXBtGaLfyJFrf05bQe18S98mL/+73+0i85IWOmKwPP6Y7ya6RiXfkvdcuoXI3n5hP8eAuyWu/P+Lpl4dL9fW5bsPeN40vWSb/m/eI3SuWwtqoTsGZacZeb2wo5r7rOFVisahPKfVA6qHkShJYKgMNJZl0kvoUxVGybidpPsj97uamIEvQ2uJ8sNfKElQCWR8cTVIZOflrJagNiCxWWcaQ+VMTjqedNZsDtm6ZN3APTaR85qtjdv9W08bW2q6do3j4ZXr9jpMbevrE0cwzrbYr5fuPzE9WPuwV9et1J/M9+2mauvFxJ7bV6DmewMxQ4lr/Iu6cRMIYd+JYpaM8MG/8CrGTJkciz36SDrWhyqH7Yd9yOQ5WkI3fkfoLOJc/1Xn4+RkLLYndwWobCbJk9cw/M/85BQgRhnlBjiT10DavfTTPLC8vY5u8k8u9PDKldfQLft3exxaEAarVqlvHnEgS18lut+v4PV0vka2QoIyTbaY9SbVWxh5RJp9LI+7KLjnP7cs2hxw+ZGNV62ir1XJrxfoOkw1zfgk5dvtdCRcxGocow9TUlHv2flJX1cnfcwkhUTuMj4+PcJbuhHJ1PKTSxnt+P+ijWo6LrmTn3Cf1OP8mQSb25ESZOGf6qKLaTBy3lZWVEQEI1Uv9Wc9Zf7/55puu7QBgfm7GXXeZUUFOCCOwdhbHSuV7jAl2X3zpeQCWLLga1XL11PMXqimuq9YftWV1YtKVvUqhioqQO4kZeaIf4mANo4+6RlTLhOKADP1SHdSm3/XBDwEA1q5ext6m1f/Rhy0dz7PPW7qTc99tx5x9yJCrf/G5zwHI9qIxZfrn5uayNB8dK4f4adpjlZmmYI1iF7MJkeNmikmNLyVR515yl7L479QKpKqwwgorrLDCCiussMIKK+wu7J5AqpIkGUWqvPP9RJyyIAhGlNhkLuks4/kzXgNl2YeSv+n68hop/nRlxTy72zsbuXs41GvQR13S4fREVHgfJfUcKK6VnsYK3ZYdKsy1NrpYmiISVCMnglyBCl/B60rIKU6XUJBeD/P0qHT5Rp+2KCvKprrNN/EGpVT3ds2btTC/6D5Vz/NvmIdFaNYD9xsP7PlvvpprnwMHLJa43+87b4nv0XSSnVQiahENarfySVfDMHRlqpTFKbLfhOqpz8hLIMQoJg+h2WojpaKVFLeCKC8776sOOcRmkLjr6DspwulvRHlPmR9bXSqVRvpf5pUP3THDny77IkY962GYl+T1Udb+IF++IAhcf3b34TWcdKwnoTwsny5Uy5df9xGse8kSACHRp8fPmQrgjevWz1f31lEjgiovaJ+kJiVw7fXy6qHVaoasq61dG0ZCMpkuwUMHR/gUcd95m8vkKtXFO2EC7E5PrlU7p8rxPej1HV8QoY2PSSJkNXLG0jr7Lbva5oqh5F0mntzrb6DNSXa7ZIqel64ZOn3lis1jH/mI8dFu3zQp9Z/9e38XAPDA8iF85Ls+CAD4g9/7UbvImN0/ZgqIAfuePKrlyTx/bb/x4nOb/Pk6j8S+PbqlcZLxtvLXCJAp1+nZ+UivuEWSGBd/a/jafc0PqoOkp0n6qknxVFxNF50xQI/eVvHvyqnGI3Llcqbyxtn3aZDkDgkcMiaeVF5aXlL36QBIPZ9rqvoqu4dU2d0tvOPDYAhBEDGMSAqJtDp3oIsxAmXh4CFUKXuttCElKfz284ll7wWrVMo4cnQxQ0pYF4I9KJXLiCgH7aMeQuaEdviy5c3dFubnjEN1/jw5IwtSsKXEepXKnAMiNH2tsez/ZaDDtAsLc+SycS3vOWRI6xQTDbN/dtMskkUquBq7LoG65MpL+TV3OL2M+qD2C8OS5cP19se9nedIgbnfaiWpWNq1xQMdg/pWphKoZ+MUeyOth0J+7Upa+7e2tOcL3XczlEVXvdvkDgbkv2ouF/rcIn9+Gyk++b2fAAC8/OJLuXpOzVvjTY7bfmx3e4NVIoLG/dPi7BJKFSvr2qrdt163+q+s2hyudD0OySIvMkhSVEt5zl7sUihwTob2aVSH5Nrp0NDdbUxwHi8ndv3VDUMuxd37oR/4OADg1hXbRz56zNaFP/LDn8aXvvRFAMD0tO1XpfZ37Lh9nr9g0WBl7qfXNo17pWixQRqjST5+jZ+LSxZFIfRN80zA9Vcc6n5pGxC/V+8Q7G+rN0xb4J1agVQVVlhhhRVWWGGFFVZYYYXdhb0vkKrh2HMATgFp+LsRj7znAXSKgV78bRRFd1RCkefDeY+GUAUgy8Xz1ltvufjR48eP547R/San7A19ftG8PAcPmob+6dOn8ZUv/w4AoMZkiT636zh5WNdYnu869zgA4Bf/8T+1eyUJpumtKtEbfZp6/BXyO0CPxHXmp9hl7OpTTz2F2cl8Mjcl9bx1w7wXzXYr93tDeRKUC6lcwuS0xf5OET27ft2808+9YPG807PmLRCipbarVCqZN7qcr7/aWzmfFI/tJ45rNBqOI3ST9VNsuhJSRuwqFadMRLSFqN/i7Byau+Z5UyJf9bOdtnmL2vQuNRr0/NMDE0ZlV3a1UYaI2o3lmYrqeW/1cI4y9cNex9pDnjjxKmq1PJKkPJ3VahUDxfm6hMB5VTO/P/qIbRzH7lx5QKdmpnlN8P75eOwMlYtd7Lef9+P/rSTAd2tpmqDba6Pcsee6tGT9V/220Wgg7uc5I92Bl1gxzT8TIVdBEKDf13yUR0F17mCQz9NSUpLqIf6M8vQk7AhCx5VLamzMkKudXUOOxLFYXDqQjS3m15tepKKXSwbNa9NjrjE3QU/zansdTea+6dTtfufPv2bHTFjM/29//jft7xoRFCaubW5v4tWXLOfKwqRd7wR5AlIL3d0xT+IUuWx9jwsCjCaa1nztt+V+0QmpS+KUX0uyPp0f4/K+6pqtZjubf6pjPIbqmVKuI6dKirTVSh59jKIIiZeEtFbPH6Ox1yUa01UC1Dh2CaMdL87lMhNyll8DoyDfh1K7kP1f6JaHrmn+VAtG8koPuVsdQic+ViAEr5S7Ro91HGZyZes2XJsALufwaNJ2RTEMBk59VOtRzBxbt29cw71mg8EA6+vrjtvi99kkSbJ8jnv5RL4XL5pqsK86p8+5uTnH8/zAByxP8Y2b1kZaY+pESISURERwwoq1++bmNhqcTy5fv5UvfCqFRru/FGU1dkrVklv//OT0KqP6f6+dR/fFTW+32yNcXz/qw+eQDq956lcqh+YI8Z78KBQ/J1alUnHInJ9DS2u/VDU178riOHZlVTSS6qtzs3nG5pC5OZv3xHFaPnIEX/7ylwEARw4eyt1f9d/mHK37C9FUXs0X33oJjfEod1+1pfh4bl/Sy6Odw+3jq/75SKHaaZY5n9SWExNjWFiwPFk3bxjXXqrRLarM3rxqvP35aSvPE48YT+rzn/9VbGza/u/xJ/4QAOD3n/6aXb9n584v2R74PqpXP/Qh41qBc+bLL7yAxSXbf0/N2X59l0rKPakNcvwJEd/bs73fRK2Cq5etbDEjQC5fuMBD390ep0CqCiussMIKK6ywwgorrLDC7sLeF0gV8PacqiAIMleXd3zGu0F2LPI8Gd8rJO+IPAB7zBWgN3C95Q/H7uq6PlLh4l4ZMyp1E3GKXnvtNZw4YRmhr/EtXdeo0Gu5vmke5lP33wcAOH3GVPfuf/B+AMAb33wFfXoJDiwaArZ1mzGyZfMebTALu7zYx06Yh2Dp8CE0xhSjbR6FrdWNXFmVEVuesWHvEWDeH7Xn/fdbmeQlEWK0vZtXx1MbXr9+3R0r85VpapU8p8jPAl4uZ0iRH0+uMqorS/VsQFRBntpqtYQKPavKeaX8Mrp21/OyOY9VBAwG+d98L5bO9RHVYc+dz4uSybumGOX91LQyb1EeHVF7+MqKsmEkKwryKox38iLvhz75OUN8juO9ZlEUYmqihlbLPFVlckwefdTG3gvPfxNl8n4ECCSxh1Qlylek2PMhHp34NUEeqVJ+MX/+SEr5PE1JGYjp1Uyvmdd5nfHwE1Qwmqe38/BBm2tcDpZmEwFRC3kxBx2h8XaNaNo8dtW+jfXZQ+bZ21o1btXCxDjqVL+6zBx4Nc4t/T1yCRLrt611a8MI9vvxxx/A0pxd/5XnnwEAbDOmX57LmOO0R0RvEAhBq7j28uftUU5TXjlu+HeHiDDpiMahxouQwr5DkvLjenx8IlNDI3rpjF7OXpcKWuwXAyKbA6dQG46MxyznE9Enx6Ej2sPnFPd7CMiZiJSvSoqOcoV6uc7EkXTtlgSIHQYVujLZfcWtSnJ/u7btdRwi5srulAEdZAWebB+O75wdpzlWdVAOmMCdw6LyHhX24Var5XI9LtBzv7nOdWu3hXvNkjhBs9lGnbzl3V0p0GpOjnGLyptRmFelFbol7oj6lPJIlkolpxiodUrKaFpLu10hSfZM1zZs7b/OfcT6xi5iPm/N9UI36jVbv7U/Uh00prqD7hDinuVIA7K1zaFwRKoy3lK25ugYqSP7Crsau35Uxn5rkH99Xw1Qew+N8Xa77b7TfdR2/trqr33Da7v2A2o71UXXkCmiRwrLrVbLRRokRGTFpUuZm1T7KJ9rqmsdOnTIcWhv31plOaZYRuTKIaRK5e10OiP7Dn2qjfS70D+hYOqfrVYLly9fBpCpGoacC6LUnvsTD9v+ceuWrWnjVAk8cvwgHjtnqn9f+JLpep7m/lfRDFHJ+sN999t8cPuC7af1nJYOHHHrXURUdVycbyL0Pe3jOGf3B2yvqyuIuzHb0xCzy29ZNNav/Mqv4d1YgVQVVlhhhRVWWGGFFVZYYYXdhb1vkKq3syAIXHZr31uQxezmvRbyemxtbbk3Wb3pK45Vb+BSYHrkkUcAZG/vOq5SqTiPg+4nr4beyLv9/WOKJ6amHH/hzENnc3W4cdO8RJevmKrJj//4jwMA1pkF/BM/8kMALGZ/nW/NL/2mKcM8ccau1W2ZR+LNFfv9oSeNj/XId3+X1WVyArs9er+JCLXovZw9alyu+SP0BBK5kidiioJBKysrzsNx+S16zem91ffyYt24cQMA8JGPfMR9qi3ktXr55ZdzbfTKa69YeYh6jdG7IotToEG1lkHC7OKT5mG/vWrl6O2Kt6X8PIzvT618Y9XyKDeDPoUq1R9LfE7xQEgVOXe9xPUvqfz4nA1f7cjPKxUEwUh+KpVDSKI8TlIokuLgzMyMUznUufIm6pq6b8a5svIoDn+QJIj4neNyEYmQ51HX8hUszROa91bpud+zearSBIN+G6IytZkD6tRxQ1LeePU1xBw3AfzPIPe3y98j5TSEDqlyXtREKmsel0KfRGocPyuIMBiQH+CuS2SdHMjJnj03P29Ls9lGiciXEJiIanMsBlKioiFRr/EFG3s7O9YHq0GCgPPlXGD3n67asZtU6YxiKW9af2pw/ExPVBER3ttl/pzbt27kyljiHNvuq252jWGunu+Rld0pb9Xw9xmHKo/oZuuHHad5S+01PEeoj++S8+mQ86oUxcz8yIbBEBLtI+sO6Ra65nG9dHzSH6ASZdcBnMAoUqE8vkvUIac6Do68lARCjIhmqec5IC2v9BUEkSNapY4jlTGvgDs/B8eFSbJcX27shPsj226chBkfLVDuPz4bzV915mS8lywIQlTKNYyP2dq63rF1a2fb+l+lUkG9ZvXyURZFkgiZ0l5E6sH9ft/tQ9pUPfORo9u3bS8zPmmcl5W1dX5usYQVpFSXFCKmeUVjROi3j/oEQeC+03N0KFc9n4NS43u/fJYab6rLMKcXwIg6n8ZdmqaujD7XVxwmx4/2eErD/EfVwecjVStcHymUKFVArQNIY5QUccC5UPf1+eOZ8rH9fZO5SY8ePuzaTPtU7bES2Hz7+GOmULuxoWdmJr7/7s4eBkkv14aaitQ+PrdsGIXzcyr6ewzHCffyiOlzbKyOLSoTPv7IGSsbc8098dAnrW7cnz1xxqKy3rhoaNMHvueDrl9/+KMfA5DpF6yuGnI0wb6r+bVEDmuP8Hd9bBIJ56aobm3ZXLP98di4ten1q7Z/PXHfKQBAtcq9ZnkMKR/wb/2WqRA+/9I3AQA1Km+/UyuQqsIKK6ywwgorrLDCCiussLuw9w1SlabpvrHxvrljvO/lEZAXQ0pyc3Nz7s1aMat645ZnoMp8H1eu2Fuz3uqH8ynJA6L40YzLw/KX8jHpl6gkct+pk2h6KmFS2NKbeJPqJvLarvGNXZmdH3n8CXyZSn0T5DsJ1ehQ3Wt80WClA4cslnpu0d7qr65vIKKHucwcV6Vxq39zw7xEly+/lWuPV1+1XBfDyjhqQ8WCl5kvaol5ABYXe/zbvGpXr5r6y1e+8hX3TB5++GEAwPKyKRcKGTt37ikAmQdkP36QvJWTk3bfrS3FXZMvtkNVIXISarUsy7dVJhjxcAXiBlBJL1Vup8DnQcSOA+A84ImQBV4+FB9qVNUJMK9fVSpCyHut5dXy828E4TD6ledqZTmlerm/fSR3mB9W4rnyhI3kuaGpfYb5Lb6HT9eVN+9es8Ggj831W1haMD6S5oYTJ8z7+8Fzj+Ppr1lGd3n5U48HEjvvPj/jobj5xJE8eQz5WM7LL898HvEUxyaOAnSoCJfE5C6QN/HmeVMDa+5IDUqee3oMBwN3H+d9TenVZbG2mUdk0LAvTp2zsUnQEiuvvIwaoZCxRXpCT5p38cWLF1hH6x8nzphXcnrC+tWxxWnsbJkKVr9jZbxJlaUmEdfJGeZzYTtF8LhnQzwFPzfanfLKDZ/bp0Kf4z0pX47j4Np4UR+XopnG4r/65X+NN9+0XCovv/pK7j5zzEVzhAqsy6eMMytO1ZlHHwUAzMzOIuL1/Vx9MZ9pn7l+pIrWIWIapInjhwbsfyE5Tfre5xkPlLfM8fkA5zeVU13ok3I+sR1clp8hjrK6qCAxl/uPB/elLJjqeXAOHEK21M+FzGUob5YPjAdYHaSaVq24dWCHyGi5YnN5bTwfyXAvmCGvFbz+ukWlKBpE62gUlVxbCb1R38wiGGxwat+g9bPb6bhoGK0PQnXUnuJJn79s6/L6pqEdDMDAIAkxgHiIed5TWXnxOtZntabq/mmYuu98Xq7WB0VMKDGZ9lg6vlwuj6DJ/trioi543H4cSl/l01ftddEhXAOHr6Xr+yq59Vp+m6wx1O1ae1SrVbfux0leqVDm7211Xz3rtbU1ty9Qu6r9H3nM1O5uk/+mMS2lQadwGETY3hVHzJ6vnpkUAzW/OY7bUP7JjN+XRwz9/GhzzF/abO7m7h9FgdvjzTEJ6oceNV7U/ceNH9bkPDw7b+tu0DAU6K0r1zE9bf8//qBdY/OGqVDOTNuxpYbdZ1N7+yXb6/b4nCqTk+hx77x11c4dp9pl0rY6neCcfZNzu+a0F7/xTbz4kkVQ7fXsGW5sce3ykMFvZQVSVVhhhRVWWGGFFVZYYYUVdhf2vkKqHDLlI1XDv9HupLLme0aGVV3kgRCKJc/mUapnyauhN2+91S8vL7u41SxnQT4Pws018yYdP2Xe3C49jlfeuooBvaaf+PhHAWRekq9+9at2f2aMvr1iMbQ1qeURqRokIU4dN29Fe9K8ExeeNW5VhzHZBw/ZNc4cP21l37U38/mFA+jRkyjvVZOKWy26qWaYM+CRx8zDKh6EOE7PPvvsSF6HQ4eMhyXvhrwYMqGB586dc9y01VWLb3366acBZN4keX6fesoQK6FdUpLZ29tznijF3TpkhgQC5TJpd4j+MLZ8kIjbUkOP3JSWcsI06b2usi9F4lhZ2ct15pio1Z2H3SFE5sQYQSx99SOXY2J72yFVE2PWN+URUvsok3jgEKUxd24YyBNHVC3JKzVF1bw3XyqQsmFOl8uVIrBE3uo0r5SmZ56mqRtDfiz6vYpUhUGAejXCxrr1yQaVxnaJWH3gycfw9a9Yngyn1qhPeR2FCibKn6Q2D4fi7fNzmlMMdImDyLXKH4ZBFDo+VMq+r/5ya+U2729/H1s2L6D61d7eHkpRnrsgRamEJLId5u8o0wt76ox5FB9ctnH9TLeF3Q2q+tUNBa89/gQA4MAx5lEh2iAv5A7zjDQ319HlHDLFcTlfz+fKE5oySeJm3M1zZgeDwUheKh/JvVO+qiAIEMZ5f6HPdQ1Du4/GjxSe9Pfzz72Qqf4RRdE4XWGcfshnNz5jHt3NDZubF6m8Njc/7+ZQlXWN10xjO7dFb3NH80iPnuRShIHmXCKk5aragX2nlFchqyT5uScMSgBVLTV/xCnbVBw/ZH12uA378QAIhX4otxRRah1LfpbMV/8bvl6gchDmSnhtKQf6x8dIc5ESQLbGTIjsew+a9iXaRwzPyRl3KZ+fyR8HGkNOxXgwcL8JXX34rKHH16gcOjlpa7w4PG0is7WazQ/brT03B/UZsaGybjMqRH1EyIXu34t7I4q5w/kZh88Z4/38fKLVatWNvW3m3VskIuJz3P18l61Wa6Sv+IqA/hyicg7zhFRGme4jREh10Rqvv5vNZrZGMMolyw+Wz0un/j2smAdYpMR9J43ns0EOkc+fnpqaZlvamiulO+UijOPYtVFWxirvn5873Tgb4lH73NA78dG0j1OuLe3JlpYW3D75P/4jn7AyTlg9V6j2NzVva8eXuLY+8V3Gn6oku1gg8rS3bnWYmrHnf5V6AsfOLLDtqKy4yblT+UV7A4zPzQEABj1bx2OOnc1VXpN5E9vb9qw3162t52fn8MZrFqF1k79FNe2T3t1r0vvipSrF20uqw3uhejvTQFOnnpmZcXCqOpw6tDqlXrI0ieil57777AUpSZKR0DRfiCCMrEO+9JK97BxkQt/HH38c168Z5H6DkqmTJM2dPWtiE+dff8PK3LRF9MTR4wCABSYwW+8MsPy4vXC8+LXfBwBUU8qtcsNzcNKOna3bwJNUblKqOeKywtxmZ+3YuTE7dmnROuLXv2YvO/Nz1pk1AS8fPe7aUBuNbsfaYZvhPdNTE7k21IC8du2aWxQ0OGWalGpVa49LJC2+dcUGoMIEDx447BaHMLDrdtr2PG7dtDYd5zPVJNZmWFyPZPp+PHAJRl2/4kuUEiOm+Xk4k19uNtFP8i8TErFwLzU1q3fJe+kOh9jkWWhNnkTsE/J92fZqterEM5S01JeT9qWb/UUkCkP0uFg6MQ0Sv6tVr8xe8r9h0QDfuXEnMYH3u6UJ0G+VUGJI0WDA+rE9V/d2sMCXhae/9nUAwAIneW12y4FSAPAleTBEBvamrGxR1SaWz1H9tJ8nf9c6bYxTSGRrdyd3jWMHbF4a48t/rUsxBsok1xoh+gOb02IuQBsDGx81voxP1W3MhUxgO12RBK6VY/n+j+Pa1UsAgKsrFh6MutX3g8dMDEdzYZdhEvXQXpy29rbRa1nZFymC03cJYxmmG1EEaJwhJ7Hm7Uw4osywZcmAx5QQl4DBIPJEKIbEEG627TqDNpOzRwy34jX2VmyuefpLlsC43rK5rqyXjs4V9LZtbgnGmWSSoUuHp+zz2BhDiTYsPHCac9+JBZvnFiYbGHSZlJSiJ3N12zhs7ljbtnftOSV6/nSGJHGEelUbQJaJLzGapvoMPwr4ouxEKCg4kAZBFoYKSZozhLAkQR9PdEKpItIaYm28knToCkOmMGkXHutUMdylSmU6aqD5Q8Ip/NScqPmNv8coocf2DrlR1hycpHmH0b1gSZqg0+mMpGbRhhTI9iXNJh2F3IdoHp6ekbPX+vYqX+5nxmcRsI2OLltybQlQzB2w/uZEDxja1G/bNXc4dpM4AUp8EeBa1u1Idju/bmcvThRPCkOkSX6T3mUoqkuTUqmybqIP5F+MhtO2TE/mk8rqfjrWd6ZMTU25vZ3sTmHwI4Ix+6Te6TCJ+5FDNv/36CBPmEICDMPtq7v3O64+SZgXodI+SPdxgh08TvNvnCS4dMnmJD13JaG9ecvqFpXsuRxZtnBjUSzUTocOHXLtLVETvQDpmnKu1Or5EM5hoQ69GPmhyflV6wAAIABJREFUlOMNOm45zww4VhdmbY05vlDHU6fs3MtX7eX+Gstz9qw57CXP/6d+/I9ZOek4j2olRJw/xurWl9eY3uMYHX2Iba/V5XOojll5tOfa3LiJ7U1rk90ta3eFMO7sWhvevG7nvvqqhfqpvZ577iq+9tyrAIC5w3a/1o613WH2g3dqRfhfYYUVVlhhhRVWWGGFFVbYXdj7w82cpvmEqInnXXib8D+ZSLLyGMjrc+PGjexNm55EISQyeUAEZ2cypBZm02w2ncffl/VcWDBIUn7mAZEEoTyt3R0X1nb7ln0n78DivIWGPHm/Sblv7RicWe3zDbxrdTx96BRuvWzQZKVl1z80ZuhS0LI375svmGfgt/FvAABnP2mhhr3OAG0l2qQXtLdl5/RJjr7ylhHflbD4/AW7lsIRvu/7vs95MVQvtY3QD30vFESo1PLyskP8Pve5zwHI2l9IYYke6ZAeVyXnfeNNI/UOE1H1jDob9hyOn8x7bVodedvYhiTob+7uuPr2SV4vMwSl2yMhlSFgPmTfHySApI4ZcqX6TVIytJfmPW8OQepnksqOJFrKJ3fUtYR6jRPJVJtPTk46pGqXSZZ3d1q5ttzrNnPXUiijQ8MqFfes1IfL9J45iXVPyEN1KZfLI3Kr8jgq3OJeM6FvvmxvWGb4SKmEM2cslHZv27zJLbZ5zOfXa3Vz1xwOqbhT4lpfXOFOFkUROiTozzKxuJ7LbRLXt9l/m2sW6jC/YGPjsQ8+isk5kvkpmR4usU8T5SlTVAIKK5VeAMMG7/vuD+C+J4wwfOmazQerW2tsB0qMc84tUewj5ti7/9QDrp4X37psZWTy0YRiDkp+O6A3XDLFw0R3HzlNvWS3aaIQyzyyCqQos2wVorGNgAnFecjf/uw/BADUqvSOTlIogdeYnZnH2prV89aqzUNzU7amnH7AEPSlA/Zc5pas3efo0TzEOWlmcR79PsP89uxZ7qzZPKmE8zHbRaGUEpOJELh1UCEsaTsfMlWiR7dKFKDfYVh3x8ZmmqaubSRMUVFosxoxzCf8zNq6NBS5qmgMeaqJbvmCGUTl9X2QpJnXNs5Hn4yE+kOhbvxMU/QJBcSBNOKJ4FTzIgD3ggVBgHK5PJJ6Q/P3xsaGi5h58kmTzr540cbdmYdO586RbLrWntbeHqoN6wOn7rO+d4WpTyTo1GOy140tW9P3OkLDrO+2my04ff04H2Yo81OB+CHuwGjkgh+l4iNFw2FxfvLZ3J5wqP66737h6TKf8qHQPpXPR6ra7bbbM+oYhf2lfYk95KX8Vc56vZ6FZrrk1p7wCudu/d1nCp5hSXdfOl7XvHTpUq5OqosinX7zNw1tP3PmDL75wou56wp18tNu6NlqzxfH8R2pHC7kf2D3r3OcH56z/ndoydaaB04s4OgRQ1M3NhmyOGl73NUVJu7evOTqCwBHj1gKkzgqIeI6d/VN24+Oj9vYSCvsIwPK9U/a3vcq96kL3EcfXj6JTe5DL23YnJ0w6bAifNYYWtiPbe783a8+CwD4kz/xF3H6AxaB8cYVu/82UeSDbKPP/c5X8U6sQKoKK6ywwgorrLDCCiussMLuwt4fSNVdmN7Iy/RIypugmNIgCNwxQl6ELslLdOSACSNIVlmeAHkKJiYm3HXlvZC5mE16AoRyPEQvd3tv1/GBJsbznhCJXDTKTJBXpQeI3o7b/w97bxZryZVdia2IuPPw5nw5MpkDh+RYZFWRNahKNYkuSW63ZLmtoQdIRgP+MGAD3e2GZP/0hw30j2HDgAE3BLeBBtpQS91qqSS1hlYVa2ANLBZZVeI8ZiZzzvdevvnONyL8sdc6EXFupsgSWQWmHfvnvnvfvRFnPif22mvtK/bUvdYb4YWn7Cm5w3jWQ8tWh35qHs/+DfNev/pD43SNO+bNO/7Yo9hi7POQ5NQJ5SUXu+alkgdE3oxjxxhLTFTiu9/9LpZJADxKEraQCv1Gr4ptlndjfn4ev//7vw8A+OIXvwggS/7rSMz0/Mt7pLZWPwjhAbI+lKdFSIn68tpVQ6zShDwDkrk77Tb6QhImitvn/0ie9WX55bEZj8eOX6A28RP5Rqknhy5PVY48r9/6yfNkt/IAhmGIxJN0V/0b7DuV2SFH4awEu5BAtbu8Z5KT9i1PPvY9zHq9XZEqpEAaJwjZTmlQFPpAnGCVXr7Tp41A/Nx3TWK9wu92u0q+a/2ZJ0H7Qjo+5+2drBIGGBMAqHNtE99lf9/mQ0LOVYepEnYovLKz10dNEsYp+4copXhBspQowIj+tUpNyYqrAJOFr95p60H7sHkEty4bP0OxAjHR8lHPvJP9G9sYE2VoUaAi4bo1GXP8TDlPpkU0Kj9//LnkfIBp0dt9s/QBAVEeh+L0rf6bN2y9FNLepqR8g9K+EefEiTtOYERvfrVp7X1wlR7RY8atW1qx9bPLcTLHNVltn4SB4x2llLDf3zGpX8fTGMsrzXVEYhxpgpRu78SNHY5Vij6k4lRxv5CiuhtraYiQPNrIiU6IqM5LCu1zUudKYpo66fRbmT/GVY68PLu/XqhffKQq8XnTcZJxp6QBwK9o3bqdLAxC1Ot1t5epzcR5WVpacmv6cNgv/Pbll42zt0KPfJWJuysV8hD7I1y9amR+iUz1OCeZF9WlTYnZ3502k8NyLas16uiP7LcDijLpXCA0Q2X198l+v5/tg57IQcYTK4or6No6cwFwZwz/jKU9xhdOyCM6Lk2Kd9bTd8Up8tcKfd7v9913VYcs+W9xj/PHvcoBAJVG86bf8XnUEgjJy8j7KSRqLh2D1e3aNVs7xNdXfygS6JlnnnECYjpzqmx+/cXl02u3252RaPd1A1IOpi75WJ/55OPWlhO7xurqHE4ct/Ph0orVU9E32g8OrNpYOsLUPzoL1ee7uHzOxmjE82CX5XjrrCFHK/NFAbNDB229vXDO3rc7TRc9sbxkvx0yEuDVVwy5qlZt3O/3rDz3P/RRAMDFS5fw3e89a223Zonqz5231CGHD9p6/26tRKpKK6200korrbTSSiuttNLeg30gkKoAQDUnvSafVcSnzv6w77wj8ubIqyCPRHfenlq3dgwpkcT27u424tR+4xRQqvRANuye1zc3CtcO6RlwsdtJ6p7opWKj8qSMAT+0XJTbfPn5H9r/U2B56SCvI66KPcteoXLe0aPm8azu21P7D//wK3YvKvVsXb2WxReTIzGdN2/o1cjKvNez39aoEHP2+6Zkcv+DH0LEtnp9w57AD9xlcawpJcP3X7Y23NspSopKDvjE8RPOS3KJsdr33GUS7xV6QM++ZZ4ASXkrPnxzewt1ejZeee1VAJmEujxgZ9+2a6uNd7alAEZJ82odVXIutrbNszWmR26PnpjlFfNMHKTMp2SuXfLd3hCTIdElXrfFclU8L1d/p8f72z0XGh1sMJlpm0ikvLh9JRUdFxEA5+VRfuF6zSFvixxfO4yNr8mbzTruU1lRnrs0rKM/3uN3bOy05m0s71F+tkJVnVRKxQIcyEMYjvqOjxagGE9epXS7vGbybtUixsGngUt0OOgR7aQEdh9F1brbxdI0wXQ8RJUcE9FFskS+CUCv/b1nTG78O099BwAQS8K6LUldJutsZdLnvrT+NCkim+9kvWEmVT8mt0q8CPnCIqpmXtu1705u2NwImw2cHNh3jx81NbAgtHVR3JqYHIyEa8OE69kOkaR2FCEiIlLjuAlhXr6lBfMyxlJCpQezQrRj/eIV7HG+VIgILUjif0KPbcy1kFynJLp5Qt+8+XLALr0AJ9nUJfhMMMcsxq2qvT7/oiH4bzGx+T33nAEA7O5Qnj4VOmz9v7JyCCHL9shDQt2tvw8dtr1mhREOzUOWzqJJdcigbetbHyEm+9Yno11D9/bXzgMAej2rg3FZgKpQzkrm8c9UOK3tKkQkBS4NJ0XEm4Ju6HRsLazVamhVvaSsSp8QCQUsjseAa2GapBL1Q6IdOSi8ZB5s9x7utwCAOEEq9DB1F7NrpEWUMVNk5U/HE0zEw5NyJNenAdXvbieLk9hSHXBd0FlEa3yei7S2bvthg5w5cajW1uzzZsv6VNzb6XSE1YM25tap+tciErVN/uOQ0Sk98vIa7LXBxNaWCaZodLi37diY1HnoyhU7N/g8qDwfSIiExqJLMO9xqBTRIhQozzHTZxoLOuMJoRIapfc6gyVJ4vYuXU8ImY86+abImnq97v5W2fXb4bBYN91jfdPm9PLCoiuz4ytrHnnJfn2kLJ9o1y+jkCP1s+qkeruUD7QzZ844/q8iqMTfF6q1urpaKIfOBEmSzCR1VvSPi0ZhvcXd7TLh9N7IxtTK8iFcXmPS4ZHVX8jZQSJUcws2Tidsp25o3xtMh2jWqaBM3q8Qer1G5H8eOmhzZpcc3+0tW2PXrg3wkY98hG1jfXfloiG4Uiz88//4pP1mz9bOhz9k/MUXXnsVHa7vn/nUTwEAlhft/Wc/8XEAwF9875/j3ViJVJVWWmmllVZaaaWVVlpppb0H+0AgVcDN46/12mq1ZhAqPenfcYd5CfWULxU68abiOMb8wrz7G5jl6oQoejcU9+tU0cIoi2+tFVVsdN8bzGkifoq8HKurB503ao75F3QfoTlXr5sH6rlvWz4cUOFtnrmvFhpNp1w4pddujV6SAb2VY3r4Nnfsqb0W2FP2l7/6JOaPWwzu9sjq+9pVi12dO2Dl6vIpXnwweTnkZWg0Gq7N1N7f+MY3Cm2puF4/cexoNHIIlOrg80vE4ZKnaJsJ2dS24/EY0+DmiIhTRKNH3PGS2E7yvjRqFVe/TJnNU7zyeEKh47BkyYcHnicq4RiSUo3qpnbIx2zL86Nx55In9nYKZfdfoyhy3jF5BBX3rPsNpJTF97qvPINzc3NuzrixxOtvbu25+wCZJ65HxTJTyismBtR89JMf304WIgCEaBJISZVYNQgxnVL1iXmoDh8xZKK/Z/23S69gvUUPL/Nn5Dlovlf33ZrGKgBMhsy1RqRqSlRli/cXf045gHqDCfbpbe5tmld/SFS8wjFQlReSU0FIp1CRNEyRkn8jpEIoXkQul/hHIKIOKlSGjQZqzOFUYz6sqjiJI6GhRJX4PqzMcvN8BUXlWEkdylHMRZM6rlWmbjdlm+0SOdN6cIKJNt94vc+iW98JMVpcWMbigvV3PLU1VfN1ZZV5/uh9ra4YclfpMr9LoNxniVP9G+8zGTnXtClhpfG+9ctUqFSUKYNqLgv9D+gZTkLxNRP3XQCIiE4or1cYVRxSLiodgz8Q0p+auHEqxEoykBny7rhSLjGv4CaiX+JJSbVX388hVcrXF6fie6FgumbqQK4JEs4/5adySp3jm3NAP8gWhRE6nY7rK+2bee5PxuW1eh89avv2xgaR4KqUMYtox4HVZRc5Ib5Nr6fE8sxxRwgwZltuMnFqjVEKSZDOqL7llfFURitfpmgL2J6gueFzeLT3+4m7fT5kGIbut9qffPTL53Ll0TD9tu/242KSZa2nPuql3+WjCzTOtF8PvHOC+qzGyJLxeOzq5yc19uvt7sHID5Vza2trRn3QT9Dr89X124MHbZ26ceMGDh1gwlyqIbvzTw7Vy9ssbzVrKz/aYsI14TqR1CEVDE+dNv2AQ0fuxpiT/447F3k/u+Zrrxsv6vBha28lMHZ5zCo1zDH66tLblq9rYZF5/8i/euGFv7Ly6Ky7YWfgZoORP7ub+OqTf2plOWARGs89+yIA4O4zpmT7kY+aEvdHP2FJh98kP6vyaoCr16lgvcO9kBzhS4zCerdWIlWllVZaaaWVVlpppZVWWmnvwT4wSNXNPLn6bG9vz6EnvoqMvBlv8+lW6IpUZY4dO4bra8wZ5ZR37PrOWzEoomDyBFToZWg2ms47oyf9vDIcAIyp7lSrNXgvK9e5s29jZdm8B8ePP8jf2G9ff/11AJmqyoAeKopuYULv3e5ogD1m+ZY0IEWzXHx9L6FyED3NisNu7O1g57LVp8mYUXk45ol2TMhhUt6DN998s9A+r732mvNePPecKaCdPGn5MH73d3/XrjG18j30kOXcynuu9LfQDaGI6qMBZc6aTeV+IgrDOk0nVQwHRQ/TvuctE7qkvutTXUv3TFsNp6KW5cYoZgyX1aMiUhXHMUIiNS53B2eOU68h/c7P5K5yjcfjGSUgmT/29duJ44hMZzxt+p+fb+NWqnNJkjivUD43SN58L6J+W61WXT1lt8ppcbtYACBKUyTiKYVspwrHQlhBtSJvps3lL3zhCwCyWPdvfe2bADJVptVDhvyurKy472idUpv6XkB9ru87hasmMCa3bjBhfjMiFTfoQeuRDxGSZ6mxNh1OUGV3Ta5YfPyVq8ZnPHDqhH1HCDfn0/304FU0jlI4Tk2tbp/ViExoJIgmo2EUkG1T684h5Dp4vGVrTsQxt8YcWxJ2qxJT2u0V+ZxBEGVqWKH4CUUVQEUNOEVOrp9RWMOU6N4m21X5pw5SvXS+Y7zST37mE3b/HdsjetxPkriKiOpqSx3mb6tb+y4fNISqRgSzV2XuPCotEnzCeDDF9XNW390r5qkNyNfc3TWvc0N1YL6uG0S0ms0WAuZMk2+Z6fQc93Ke/NEauaGtBRt/LidQJULIOoTOky7UkaqgRMaEdjrWXhQ5LlOo9SnUmLW3set/L6+Q+ilN3eAQUhWEkfcVKYvZ+xrbeGNjPVOU440S5vzb3yuqw90OFoRArQ6MmE+wUi3mT1o5cMyhJnPMQXn5oq0rEdHzFjlWI3LNJlT1nVbnMEeO7SSxOXDxuuUDukoetZCsJnNbRVNxsa0tw0qEaGrXlxqu1v/2PLm4nrJem5tefzxy5zB9x6m+jYuIzPqGzYcDVMzM9pzAnZ3G42IOJ11D7xV9kd+fBlTRbHF91VjskVP2yU/YPP/mN23NbpC7OCL3tN1uY8B2HU/tWlHM9U754jgO6+1O4R6j0QikAc3k6cpyT3bcdwFgSqXFOuq8f5Z7bWuT/GlGJIziItdZKr5OYZH9dfLkSVy5Zv3eaBX3/zhljkXl9MOA5bNrLywsuHZ2bceztt43ODd3p1b29WvG03rovvsAAEvzHbe+724V1ZmDQEiinfk6XUXw2D22eruYpPZ3e87q8+yz3wMAfP7zn7eyMmIgYk7Q7Z69Xz16H98PcPbseQDADfb78dOG3KJi9//w43Y+/Yu/tHyuZ+639ytHDqLatL47Rs7WzjVD+6ooonvvZO8JqQqC4B8FQfBSEAQvBkHwO0EQNIIgOBkEwXeDIHgjCILfDYLgNtVcLq200j5oVq45pZVW2k/KyvWmtNJK+1Hsb4xUBUFwFMB/B+D+NE0HQRD8HoBfBfDzAP63NE3/TRAE/wLAPwTwf77D1Qr5pHxO1fLyskM1hHpcvnxZ5QCQeTz0ZKzfrq2tOW9BpuZiHgk96VfC4pqoz1cWTf2uXq9nfJOgqFLlnuqpdiJvhjwE9XrDIS/KnaU6PPLIwwCAZ77yVQBAlU/vScU8BuvkAXSqNXefqMYYXXoYd+kW3YvpiWD878aaeREW7r0Ti8ync/CooXhHTh5nmZmX6h570j971nT5FxetfFevmpdrfn7OeTGm9HD9wR/8ewDA44+bh/vlVyx29ZlnngEAHD9u93jsscdc36ld5ZWXR3WD3iu9r0ZCrpg/qlbDxrrVXwpIUaU4VsTNUD/5eRmGw6FTX1Tfddot1pceX46dZFSM4Y+iCHVeb0wkcH84KvxGHse6lzdK9+92u87D56NOoi/UG0XVoQk5Krt7PVefZqtT+G2N6nWhx+HxM7nv7e25GHH9T9dokvci0/xQHSy/StETqVeH3P0E7P1dcwyNEfdOKEgobbM0t7ZQKa3WLvbtAw/dDyDjGe7uGyqUz72i2HZltvfzoyiO/tSpU4X3L7/+AsYD64fNEfmaA5uDS/QczxO52ie+IPSpt7eLgF7NCy+ZCuid+7Zejtm3jz1o6ndLR43PuHHNkJpV8oTSOHX5kEIiFBDfjDHtqUsbxTGh92EAsM2cZ5ztWuc8qdSKKMzNzN8HpAIlhAyOW4LCaxgGGLGempfif0kV9tBR5paatz49MLZICBeRMK0C3BeqYRENrpOfEDG/IIgGaTMlfQ3TKVBlKEGV/51QLbZL1EFcxQrX7bgqblOakZOIIlXrui9VUalwKHVVx3Uj+hWGodsnXA41tngg9b/IQ69FKQzSTHVPQJVK5hDu4hocuFfOmzTrXx/NmkGqnEoaveXpFCn7W6ij+nR/t4hq/rjs/VxvojBEt9udyUGY575qfV67auuI9jhxqMRHlGnNqtUqTrFtQDhTufMmEymnCeWytlxYsj3Pqdcip8THfHfay1Rm7Qsqp+qwvLycRYSwH7XXucgSvr+T5wKtkfr+3Nxcxg/meS3NKULnzd9b83+rjItcI3eprqncmIqSEVKs9XY4Hruyqi5qK5/H7/P70zRTh9ZZwu9fXcuPUIgZpVRrVt361WqJ/2TvR4xUyCslAsCpExYtpP558cUX8dDDtie1W8UIrpDP/fFU+eiKZ6HhcJidKbg2qz3UH9IG+OhDpoZ34vQx1s3G2rnzF9Bje4/J3//kJz8JAI5b+jr3o/sesHIO9mxc3H3fGadQePmyKUx/+rOfBgCsMQdrErPfuabOz9kafnDVog/+6oev4KEHHwEAXLxg0VaLLPMWuYWPP265tS5dtnvtUDnwxPHjuMgYjFdftbxwOmuevNPOze/W3iunqgKgGQRBBUALwFUAnwfw7/j/fwXgF9/jPUorrbTSZOWaU1pppf2krFxvSiuttHdtf2OkKk3Ty0EQ/C8ALgAYAPiPAJ4DsJ2mipDGJQBH3+laYRig2WzO5qygRVHk1EvkUdNTu16dl4cxnfIQXL9+FYtLRT6WvJGOh0Nvjv4v74UQhby6SxYjWvTUC6HS07w8AGFQcRylD3/YNPEXFuZYNntanqPX6OyGqYysdKy8C/TyduuZ+t5ookzpdr85ZlkH42qVpysdk/MSpLjz5AkAwDy9KPJANOgKkddI9VVeCtVld3fX8UbUD/fcY3mqvvSlLwEAfvlX/g6ATH1R9vTTT+OJJ54AkGWGl9qfOGVRzdpb3py9oRAU9nma5WqIIouRff1VZZlXbDbzJnneFnmMpuPpDC+u2cg8TXZtxfsXPdPNZhMT8eycQlCR4zXw0B3dX+OjUqnMKA6pvaVQpjErD5gsCILCdYCsH+QBlPl5MfS9fr8/43lzSJynxCTLqyGpbabTIrbgqwn9OO39XHOQpkjGI+fJD6r0ukuFDAFS5VaK1A7yxlq7HSU/5/Bh8qL2DYE9d+4cXnvN8iFpDL325hu8RsYDAHLqR03lyyKang4QTKh+Ss7hYte8r5//3Ofs/TFDlb732vMAgDdetXs+vHoMH7vH1Dhf+g+Wl6O9Su8jvf5//qU/AAAsnDBu0aNP/AwA4NIlq/PK0gG0iWCGodAF9jVRFueRI+rhkI16FRHj/lOui8oN1+CaVpWaJZEJqXuKPxWGqfNIxpAKnviBvG2sNZhznGMzigLHj2hRlfOeBw4X2rezbOUIq0SS54n4Ko9YWgfo1Z3yIxYVMfMkJVLc7NvanMTWDr1rtp7ubG9itGX7Ucg1rUJe0CQgX5JjSsqGba55kzjBmJzSiLmm5rh+16nY1l2x9VkIVlDz+HpBxpkSMtXwkCnBjeLmaj4n4SQPW9lnTgVSyCHHBQk76mt37SRFKLRNqKL2eL7XPjYRJ9j15Rgpkdd9RmzsbNnedmPd2vTHbe/rehMEiKJoBuXJIzxCm8Rh1Dqt84LWDHn0wzC7htYZnV0AcleoCHljwzz1S8s2D86eF/eG6py1jDfbUMQI75dXoQVyY4Sv6+vrM/uAfz7zETqnnpvj7/oIUbPZRt6csq/U6Pj9arU6w4PXWU77n844ah/dfzzNVGwbVHHVd/bJ99Fa5nOhFXHTarVmuLMyP7eXytyotwv/N/VBW1dbjIgQijUi+pNXSgSAH/zgBwCAjzzyKACLmHj5JdsDNM6SWNxJnilScis5egOu7Xv7u1luLbcHEkVjXs0xucVqy6tX7VqvvGIo4MnTp/DwI3bGHV+zPvy3/+b3AQD33msKgQ+esaiorQ27xvHjPAu+9pJTs1VbXmfeRZ3pJ0MbS3fffXfh851tW+t/9Vf+Ab785S/b/Vnvxx43Lt2BA6aQ+MILVtYeETIX0bC5hj/9I4u++uIXjMP1d37h59l21lb4X/8V3o39jZGqIAgWAfwCgJMAjgBoA/i5m3w1vclnCILgvw6C4NkgCJ79SYYQlVZaabenvZ9rTo8P36WVVlppN7P3c73p05lRWmml/X/b3ov6388AOJem6ToABEHw7wF8EsBCEAQVenKOAbhysx+nafrbAH4bAObnF9I8b8kpluSUy+TFl7fCz3kkr4H+n8+toIc238Ph8gGNyV1hXKy8Crv0jC0tLDrURrml/KzbS4uGmIyZf2WRSkxbW1sOvbl06VKhrG1mMH/0Y8ZLas+Zd+HMXfYk3pY3ZzJx+T6UbXpnb5fvrQu3BkWkJKLSXaPVwuKyoVk1IjPyLKsd9nrmIRPKs9/bLbxGUYQW1WnkPYsq5k34/Bc+CwDOM6+YVSE1165dw1NPPVX4rTgoLnaXnm/lmprQe7DFeNdup4XdnWL+h49/3O7zxhuGAOSVeABglTm4XB6rq5dn8j74WdhV/3RcRG6q1Sr6ihWmN89HhDQOdH+9V53H4/HMd/V+pHLwuzUPtUjT1PVVj8iUYsO3iWD6yj2qdx5t81X9xPXbovqjPtf4b1HdbDKZoF63Nlpbs/F/6JChJPKa/oTsfVtzjhw6nMaTqeOrBLH4QvSkh2kObVbuHvE3hahL6dH+Le/g0aNHXQy/xrjWC18dyh9H6ufdSQ81+rxaqY0L5Vr6ky+ZctGACmKPfeFTAIC/+3dZti9CAAAgAElEQVR/BQCwtL6DvUvmxTvMMl25aGj5YMPWouWftvmTEAV6XXzKZVvHmu2u4w5VWI6p81CzOXBzC6Iw46PJU61Xej0DtumE9Y7pdQ+DrH1mVSqLHIuMS8VyxVKaA2qcS+2WoXtgGwrVkoJe1BBhiIiBVOriwHHGXCY2eixrzItSFYI2sH5JqOC3c+08AGB7awvxvuVSicbKy0IFMXGnlLaJSFWVn1emCVIilRFVt+pEDt36UNNaTK6BXKriSyUZ2CQkTEigLHFqj0VOJoJ3VvXMEAs/wuSmzxg3/62nwDqh8lqSTBG7/Zm5hIbWE5PRzXMW/hjsfVtvDi/Pp6PRyCEoPj8pz7ltk1OzvWX7b5/IaKdj67UQnMmutdlw1Hdtr5x5NfL9drZtvQ6oMqeIF6EB4jb2Bv2Ms9OXumAx56bQdH2eV631Oe0y1Vefa3/0VXuvr6055T6ZyqhrOHSJe10eOXPRHV7USTwtcptU/7m5ooLf/Pw8RpPi3r60ZOem3k5RSVhlV9+Nx+MZLr9M5cqjagAwZC7SKlHoNI3dNXZ2tgplFtqmOaJxovZRZFGel6f/Cc1xeTYHg8KrULEwzFQX/SgY9bt4aFeuWF+//pIhZToL/MlfPIlFnktWWHbN518luv7c94xz/8u/bJFNzz5jCn/3fvhhPPKonYOv84x9bY3q0JS6Hu1bG/7g+y8AyBDF8cj68M0333Qq4Z954r+yuhyzs+Zf/j+/AyDTYhiQ4/XKK8bx6h1exPJ8g/Vhv+8LicyUGd+NvZeHqgsAPh4EQQu273wBwLMAvgrg7wD4NwB+HcCX3vlSKZIkmZG2zstTuwMoJ6UGhf8Aln8QA4zkqd9kn4Gv9sfCAhcYjwiYRHbPXrWWHY758OInc4u8pMD5cMU6N2GJOWhinTljZPFOwyb4idNGVq+3RW7kIG/VMWXCw6mov9xAAx5SKn7iWv6/1WlnB0dHKC8STxXa57dxnrCoMDuFKEhsQwnpVF8tKhKq2NraymQ2+dCqxUqy7M/+0MKXJJCxdtX69uQpC0167ZVX0eTB4ugxC1/IS+YDwJsMr9IC4I+TarWKIC2G9anvfJJt4o2lyWiCKLr5YTj2QpL8B5f897Wwqf9lfvLh2WsnM2VVvXzS7q2k/+v1uvvbf3jy2ywLaZU8fd8lN9aircVJ4wI8lP+Y7X1bc9IkwXg4dAIBFWbBTSOpLSTo99WHkvCmIIAXCuzSKuSSRv7Mz1g4nR46/QdZP5TEt7gVocbbB+s8iO3YgeDGgKELLPN3vm1Oize4yX1+5Tg+tGThDot01Nz5iCU73OTDy/NMdnt1zRw9emhubNtDQNBsY8CHxgN80HIPhBwnUGJLOnAUNoIoQEDnj1u3eLjZYaicEsZq456boxOglYUNZW3EA1tFYkCcH56kez75b5cJ3xt1W1v39ni4mmO4EyOL9AynUJeU90qT7NFgSxE9vGF7bJttNLC6vP3SDwFY8k0AuL6+zTpP0eI6HKWUGK5yDvLGEwrfKPwtkDhGvYk77yBBmuOs0rV9Cu4BlXLpWgOUjDfUK1wqiID3U7hdluxX9afxoTINAhMcwWzyX190QqHvWgPdPpNk/axUICnHwYiHrTHjkHoD2xvkNBru7GDMNBoTHqpHdHqNGJb1E7D3bb1JUjuH+A8X+bBfhRNvb23wN9Y2qyt2aN1iwl6FibXbNrfnljrOIajo7J0dW48XFmyvXV/bZkGKDsN8SJ0vQuQk7T0noO+4GyfxLZOd+wmDo6hReO/EkGq1mfA+325FDwmCADU9rHgJg6dpkeqhc8v+vo23LEtD6NZx/fYGnbrL8+ag1b7o92Gj0ZgRiPLDHn3hKD0YJzlHldaPSkXtb78dD4uy7Ep7ofVQqSzW1tbQZyqdxSWr57E7bExpfGxs8EyRUviqadfo9XpuHVXzLy8XRTcCOqT0MPPIQ58FkJ0JP3PsDlyizHqDokZn7rRz4Def/q79tm5j6fmX7Cz85ltGAXn48cdx9qyJaqwctDJ35uwa/am15R1LNg/Uh3/8xzbtxqTEfO5zn8GhQ5a+6NXXbPx3mJagyr37hefN2fm3ftYA5xvrG6xrA58/ZsIY9993d6HeelB7t/Y3Dv9L0/S7MLLm9wG8wGv9NoDfBPCPgyB4E8AygH/5N71HaaWVVpqsXHNKK620n5SV601ppZX2o9p7Sv6bpuk/A/DPvI/PAnj8R7lOkiTo9XqFkD2g6DF3CR49gudMEl4vDCqKAiRpMXSsIpSH3gUX9rZfDINq0RO4v7vnUJYaEQufCDllrEiX8uXyBHY6HTQToVhWX9Xz3DlLCClCtmDUClGZJsPiUK2i0iC8TM9mk55l5/kgIdmXBW3PdTOZU6+eQns2N+1pXR4YeVkUitJqNbC9bd+dn2fCYELld91l6Nrurl3z1Vctyahg1TvvvBOf+cxnAAC/93u/BwB4/vnn2VbmaTt+3CBaefVTxsTIE9Tttl29Bd/veEjViRMnAGQSovLyCAbf393GZFREGVVf9a0TmQjk3c1EUZKwSFaV907mk3f9pLzVanWGtOoS9NK7OJb8bSWTcgeA8XiCJhPTRfRS7u4xMV9a9Aj6yReFRnY6HfcdoYtZAuFiyIRvnU7Hha7W68Xkinn58J+EvV9rTpqmiOMJwqRImJZed5oEaFHiXt5030Pqe3sDevbb7baby6ur5jn7yle+AiAbnwcPGpIk76NL3MtrpWEVMfu24iHtJ48bgls/YHPxnqaNlzHTK/TPX8eA6Pc+15jWks2xJaK/x7pW7xsUn3iDYULLnAO9ft+tF/PzEkyQpK08ytYOQaIwPSF7KRSql0j0RV5QyUTn5KDzdfPbOG8+opv4IWs5873sNaaiqDN7wG7P2pT5dVFjWF6kVBnjKlxe63Yx0/qQohMpw0M21i385gbDVmJGp0Vh6BKOu0musYSiDL3C7zRHW+0WOkQZQY90KmlnF+ZXDPdTm2ftEc6EsE7jW6EB+s07h+7J/rq+8s1fF124K4UCtBZpvRqNRo5Ennh7/c36+8dl79d6E8DaXOuBvP15WoMiOhaYyLfXUziYjTMnHDEpiiGcP3/ejfP9vg2+7S3bj6ex/abTNu9+nwJLLvw2lzZE54IG0VJ/DunVR7Ly6XD8CAqfeqH+13qn13a7PSMY5UdM+PQNnb0mkwkC70zno2k64+naTjiD6/1wOJwRcNIaPdgrol83izjRuPUFsnQeVT+79ogVyqiooIqjdnSY9mFP4WdtW+fzdAQA2KWwg1JsrK6uYmXV1oxXKV50HxPzCpJfhoRSrDzav+fmOzkpe67ZXF6GQlUpdqFz2j2nTwDI0iYM+2M0mez9GiMg9l+3a/6DX/svraxMG/TKC39l9WZo3fee+Ss0WM/LVxmiuWyhhGFovzl71sL+hIx97OMfAQBcvWpRM2vrl3HqtKFcoytcZ9hGH/uYycAvdu0e3/ja1wEAF982wZY65l2S4XnuyQeOWKRA3xMDeyd7r5LqpZVWWmmllVZaaaWVVlpp/7+294RUvV+WpinG47F7qvflJ6fTTA7b55v43BV5EzI0IEXkoQy+l240LIoL+J6w8XiciRjkEiverKxKlKm6tNttTOm67PX2XX3Mih4nfS4ULAUJikjQpmR6KAECT7J4GhfRjXw7CYmRh+EqOVT6rmJGfZJp3usj1Mj3Fsnk8ZCHXv3y4osvut/ef78lfPvmN78JIJNsFwryxBNfAAA8/e1vA8iSAreaTQz6RW+B+kOoi8oqAYeLF84X2qEahTNxzT7HzHmXkqIHPERY4Pflr+FipydFEQp/fFQqFdcOM5L+nnCGvGx5UQOXKNgbw+7zRrHvfJtOpzPJHDN+VlGuXXVUeTudjkNU9vaKaQc0Vm83q4bAoQZwgV6vStd4Q8sHibz2Bxgy7r5CvkuDJKcKUemIKEuram2ztc+Em8MY/dS8bV1KZD/xOUNrHZKs+Sm0nAmnB/RcTu9so0exiVeeMjJvnwkMlyv38trm9X5o2dCnudjGwBc+8gDuZaLvvTMmt9udWD2fumZevSfP23yqMH3Dz3/CytejV7wST7CxZzH+7UWbpzETnHfbmWQ2AMTyMIuPUwmhtU3J0qfk0IjDNuXY6zSU/NbaabHDFBFhClQ4DzkNpin5kUTyR/TKk6aBwbY87S1U2SdhxCTsDe4TiZVnrlWMHhDoMh5mc1CoTrIxZNuQqP2WpXPY27D1tHfVEKoqkcqFhtJuVEAHNuLU5kulautTvy0PtiHpWt/nFq3fqrUWQFQ6CMWh0v6k9tCeWNwDpX6Rponb+1KO4Qohw0CCLGmRDyVuGeIAQcLf8qri6zgeGK8dK4G2RD6o6DEMxo5vpeTPatOUPIiE3vEek9VvUqwoGY0y0QEhI3wdp7efWnAQBKhVqqjoLML22KMnPU1TPPTAgwCApXkbu2fPGsosFERnCplL5n6ljzqR6bV120unnJu9ka3PnQ77alzknEscotlsYtKzvqhR7EIiFuL6aM3X/rHD+dBsNmd4yXr1uUWDARM5c2/RNYMgRJLoTGdj5NCKIUXbHIB18senRIrH5OFVq1VU4uK5R3L8E68802kxDYP24LlWN0tbwnE83La2C7iWRVyIhowIcEhVmrj7JZGiewxd0f7szhLis/eL5xYE2dlhj3LfoeYXhVkyPpj930WysL0683No1m09f/hBth1FL44cMS767o5xzzfJFxv12S5RjCkFIVwalj0bdzHbFuShHjpga9bRFRtzP/c5Q4H++M+/jCnb6MZ5G0vbmzZ23njBIpgOrdo+e9fpBwAAzz9vfNQHH5/Da29ZFMfDxw2Bur5lokrzC7Zm7rFfxhxT595mFAb78LHHP4FdphI6xpQZPSbMfvKrhkxdvWxn329/w3jI//DXTDDj4Q/fiyYjUyQYp4WvtWT737u1EqkqrbTSSiuttNJKK6200kp7D/aBQKqCIESj0ZhJeppXWfHjt32vv+JBG42i938yGSFOip4tHxHQpX1Z41GfqiutdsY/aRUT1bo43NS8FlkMP2NYlxedN0IojqQrhdAoKe6pU1T/o3e7s2hPzJN4iqmSJwoRY10mQvfYlbsss5JfDi5dQo/qMfKaCLmSclvARJTyBPlqP3E8cfG+ktVU31wgIvTQQ+YRf/bZZwFkqkYHDhzA+fPnC22m2NWvf928B0PG1f/hH/4hAGCOqIh4UjfWN9z16vRSy+PTo5pYm7G8kheVbLtsMhpge7Moa6prSlbajRl6wDPJ/SmCalHxJ5UXyUNKnfqihwY1m82ZcScLlFxWTmINdd0jBXqUdPeTJ07oCa548rcuAWjuXj7aqDnlI2byjIrrt7Oz4zyK20RLFP8vztrtZtMkxvX9bezS+Zswfv3GxfMAjLt2YI58yYG8kOQOsb9GlN7P1NeUaDFw87/BcZN4csQOSabXP06KyaWjah2Lhy0+fOVTptx39aKtF6/3zcu4RQVGED28u8ZY8I+eQUhYQcppW4PMqwwAX/y8IVMDfu+lF00V6SHG4NdqNUyk+i0VylBqb2wzx1sVenprrovPpZG51BQBlRWrUqnL5O5dZEFcnDfu81skhOe3+JUix1EOYs0rcWCVQFjREwDQu2FI1No185xefMM8pOGYHGCuvVWu0bWK+K8RJpxzUuxvk1MQdokQNGxe1epS47LPq7UmplrlWbawUkSqMvpTEWF2SqRIs89m2kORHPLwE93KrRezHELc1LQXiScmAl01jJz6nxv3SXGP1b69Q8R4f1fqkDEi9n+rUUwx4a+5t4NVqlWsHlzJpLXJ8Wu2sgT0O7vWBpfogXfpWqiWqzQNTzzxBAC4VCVPPPFF7OzaOL62YfNcbaTIjQ0mW83UIIn6cYyPRiOHhCjpqr6jtV9z2OdNJUkyw2Xy+VGad9qDdPYQCtZqtWYihGIv+sbn7+rstbu7i/m5YqSGHyniR3bUasWz5nQ6nUnhkKnj2tzUvuh/L03TGWRO7aDf6FX9v7pk+2ZecdCvr5/QWal5pBLpr6XT6dSNFXd25llTUUrqO/HFLr1t+3i323VRJyqHr9w4JJdvn5EtF962s9YqIxk+/ZFHce26Xe/s61bmzzFCQ+ey62tWh7vPWLTFGaKzH/7wZ7GyfBEAsMAUQEuLhPmJ1F9809q4S3Xs/tDWio997GNW10mMrU0b/09//VsAgDtOmML0t4hM9fbs/+2Wte3xE9YOw8EIPak5Mh1PyPM6kh9tvSmRqtJKK6200korrbTSSiuttPdgHwikKkli9Hq9Wyb/HQwGBRW1vPlKNFKsc+ou8cTFpGeevJujCz63pZrzOsjzkCmmFb2mUqVTTqpOJ1PwqVGpT14auRjFU9nfs8/ffNMSdB44aFyJJpMDd7sdV3aXkM/zDI2GRY7RFuOd19fXXc4WPyGt8x4Ns3wLQF79L/NqXbxoXgSp7cmroTpI0U8IkVTONjc3XbuqbGoH5ezpRkVOk+qqax8/dgfeetPyGVy5Yt558bGuXDXvfb9nXg3xw4SkKO68Wa/OeK1cIr6xx4fy2ieNU6eS5MZmUlR+S9Ob+yfydfJVlGQ+l8/3hOU9s77qpc+D8zlXee+XQ9k8r5pc3/KmyYQijEYj5+FSe+q7vrfsdrFJkuDaaIDD9z0CAHjsU8bnGwSct4Mhzr9sYzpJrN36jJsH+XMTxo832Qcar0imGA5tfihxqRJ4ZgqbVHRLre/nuF40mL8k7S6jRdW5hcfMM3n3/Uzc2bO48B6sPKscv6dSu/bp5VUMrtj4r+3YurDORN7XmZ+qxvUqYhy55o3GS7NVR53JwiOHjCi/WYWvvneaX0tiCBsR8qGErUMi6VJR7RL5nzAJ5pQ3G08TRFIVnBbRvIh8IF1D3IMmvc+Net2hO1IIzGT2pHpmn8tzP2bsvcb15uYmNun13H/deAjx1OrQnXL+UA2rKr4Qy3ljY5/3DtAgH2BhzryviwfMM1o9oARZRIpYhwrXpDQMECpnFjKPeN6yXFNC4YR4c4+KE0xdDikqj1IlVmqDqSIgZlT/QiRElYRY6zsp2055/5ySYVJUZUziCRLyPcRDURvtMeJhg1yqN96w5PHi5dUqEepEeRvsV3HIktsQqQoAVMPQ7SMtT2mu3mjMJIj1900hFuJaKZJjMBg4nvK5c1Qz4/WzJO0ZIgRk5xXtCa1Wy419P0G50BT/XJBX4fPPJ7J8gl4g4wUJddJ+Uq1WZ5SdxR0SuqSyKp9lpZrt4wPxK3m/7KxlJgRHdZBacT7nmq8YqPXNne085MaP9MhfX//TOUV10//3yGnKKx36SJWuoforkkmIlZ+MOAgCbFCBVH22xFxTb75p56Q77zT+7Usvv8B7UDVyf3+GJ649X5aKUzaxdn/6OVPwUx7DR+47iQas3R/5kHGm1qiMevmynR8fesQimv78K18DkPX/H/83/wP+0T/+bwEAvR27xtuXz1vZ37K1oc12VnTMobtOAACO3GWoF7pd/Lv/+Z8DAB5+wMQ5v//s01YnrpH9HdsX//7f+yUAQL3J54ZGHceYUysk/6w/svpHrQ5+FCuRqtJKK6200korrbTSSiuttPdgHwikCggQhuFMHoosZj9yT+2+B17fmaNiTUrUY09KewiyfCOMlw9S8haoBBUo2z2vXad2fpZXKHVP78Mp44nZdP1980h3FU++obxZhsLs7e25+NUARS5PtSIUo5g/6bvfsafrI9TJP3PmjKu/U/zx+Dm7zCMlDX8p6CCIMexLraaI4u1umccbiVQArU77+1YeIUm9Xg/Ly1aHCxeu8Lvm2R6Qb3Jj0zgp2zvFXF/D0TQXR271/vZ3ngEAPPigxdNeYAy5MoX3qH7z9rkLAICz8TmcOXMGALC2bvW7SD5JSu+8FHo296wcbcZBj1wSqATdRUMANb6GY3nCrf5SXnM5NdjHvekAiZStQhsbqdo3lkKgFKo4hqrFXB9pnLgM6D53T2Wt0vM+JnIYExHZ393L8oCQA+LGo3h/HZbLSoWquF3sh739/Zl8H0IAev2ih2xCT3woVLRaRZ1jVrHRcws2DsXPu90sqlQwt7KCl183L1hI1bnDdz8EANi4vuHQ2LoU05IiIlEhsguilMrrkSS53CpQbrziUuvymAXFPEJCg65fWkOH469esfGRVundJrdGc6+/b2Nic8/KdaVyDo2+zeEl8lGSto39Ew27z18xxn7ENfDhOyz2fMg6B0EwE9sPTxVTHDIHZAn9QKYqp/85b2qi7xS5F4lTtCNvK00Qpt5aL9Q30rpcVBa7mbpr3hOd/990WuQP+kjV3l7P8T0gVI+ozogqaUOqulY8TqYUp6JaHe22zZMa19KAyKBL3OU4TuJNad2oIlbrpeLyFflg4rA5Bdq4uH8GBZ9pkUcp3qaQJAVvpOKiJGmGUAmJ9DgvWZ+C1xSyRRR/NM74yR63ZHvT1nHlYBoN7HOhAWmUK3tQjAq5VT69D7KlaYLJeIhO2+ajkIRqRYqJieObKWJESIHOCzIhF65tpymOHzcv+9uXTT1xt2djVxEj2mufefY5ANnens8fJRQrDorzTsiA0CX1u4u02d93faKyqn5+9IPGklC3fORFXikXyBA6XevgwQO8v9o04/5Mxv78nhauJQRHqNLNUCafK+ZQ+2aR0+fanWhYtVp1KI/P9ffRp1txnsMwnDn3yvTda1RtVtnVhrrn2toazr9lZ6mTJ209F2dX7y9dsjOV+m7YS1wb+pFa/trZaDNPFRUFq1yfX75gKNTP/ac/4/jpF3uG7lc5j3/5134VAPCXTxqPfoGKelOeZ/7pb/1TPPnlvwAAfOanPwUAqHF963JNuOuUjfE2z8DzS3Ym/eY3jD91ePUglpdsXG9s2jzo7VtZe7uGUP3Cz/8MAODe04b6xTwxLayuICSamTKXYqNlZUxQjI57JyuRqtJKK6200korrbTSSiuttPdgHxCkyp6KM2SoyClJkmQmzlUeCT3Fy+MwTooIVpqm7n8JqEAUF72kvuqMH7ueR8p89S7dx+Wx8ngwYRg6D1D+evmyq27yjMtjkvdy6LuKSfbzQezvFvMeSJGrWq3OxOhmvDB6VANP2c6rw804ZX4ZXbZ3ejlUzu3t7Rlvjewy0SYpAckzpWvJM9ZsNl2s+F133VX4jsqxvmEIihCim3l95AWthn+9p1O/ieOsj4fi09BrPE2K/K/Iy+guyxSEms7jpnaQF8/Pm6b759v8Vn2Yxd+L4yV0V+NAXpbQefjG4yIvUN/x+Yn5urgcHl7eER+BuV1sOo2xsbGJgyvGAXz9FcujUWuat2pvewevPmdKlqfvMB7hMr3MIIepXiG/jGhh0OE8mozQ79tcrtETXSNKPJQ3lKhTnRyqLnNjcHhhYVxFjUjBaGJ9Ow7pOe3YdyN6Do+k5u0/RB7X6PIa5jkP6qLudIjiEC09ctTqLfU/jcWY6Es6nQBT8gNixu4z/9CYc9yNgaiIEAVRiFB8H6IWUd2877tSHxNiJX5ajSqWyNb30J/DRJfA3FNSzRRKDKEbYegQF7FvlGMpcfUdF177RPbE47h4+Yrz8h9lTqWIHsyEfVptMmqA6+gOeUPtw8ZjmVteRWPZEMIpOWPjOar91cQ78rhMQp+iHEdJiFAOCQSAiP0RsP4JOVWJlrcgyThUbMMx2zDmfB5Pi3tuLeJeGQBT7XGOLFfccyKtW0QMpESrPaC/13PrRp9ts0Zv+9mzxh8WQgVxu6gEm0YBAKnRCsEgqjK5/XicYRii1ai5CJKlBfOo62ywubmJuY4hQsNxMU+h9jhfcVhIxbVr14CgWrherWbtnRDNfe01Q+SFgonrk494UV/pGtqvHGJL8yMehsOhu27Gba8WrqH/++cnfS9JkpnzgRAiReeM3fiya0jVuVKpOE6zfy7yzx5quyAoRotMp9MZ5EffnUyK6JP4WYrSCMMwp25a5E7p1c8xVq0Ukas4jt0ZUshgXpkRyKKDdF8/F9Z0OnV9ooiSk6dOFMqu/yt66sI5m4+DweCWCobu85BrZEJVVK6pT37vBwCA1UMreOjMaQDA3rYhREPykp79viGkLSKkO0So6rzGhcuvYji2fexrX/9Lqy9V/j7y6IcBAEFUzGN75LjtYfPLhmD+29/7HbTJtz13wcZ7i/nZ/t6v/iIAoMF1ZmPNxvRDjxr3CgtNFz0QkMMZ8/EoQlEp8p2sRKpKK6200korrbTSSiuttNLeg32g3Mx+LKmekPP5q/xYWf0vcspExSfyer0+o0jj5+mRp973csgnOJnG7rMxvWQuJwfNj3NWrHg+Vvk6s8Urd0SmBOaXpxi7+8orr7jv+io2Dk1IigiR8jkl6TQX15xx1Kwd7FN5QlRmWZaFfDqTw0i/kTdJCjnKvaWY7cFgMMP/ksdFuRMOHVwp3E9eLdV5MpngwgWLBZbX7LHHHgMAfO1rX7PvVop8tQG5bhof9U4WOx14yn3yj6lN/ZjiPN9PUILPX5DHzUd58rxAXcNXX8yQsSI3I3+tfPw2MOv58rmGvjfxZmiry+3WnCvU+2Z1Eooqr6He364WIcB8UMMWM6zHVEF67WnjM4YpsMh2aDHPW0B0ssOcQnHP+qRbtzHXd7mmQjSatcJvBgNrL3HupCQ3HTMHy5qtDVKti+vzYFoQjMR/4TrRbtg4neO1HmZm+3u69v709T6muzaXhXy9dc5Ql7V5K/sac9KN+IXKjpVv46rFx49aCU48YKpKjcjQm/HIXldqtn750QPOsxnHCJSriH67mOhonfN0QoSC9CjUVW/l3Utjh4xUOYZrXKcnRJdQJ3LGa4dSGkPGB/K5t0J0MzUu66eLF40DsEGVtF6v59apRtQp1FNokvhfDeW9Y26yBSr8VRpNJOJIETmcKveceFfV4lxTrsAYKaqqr3ITSnXR2x/E6ZvSc93qF90AACAASURBVC9ULk0D90bjIE69SI9q0Ss9IJ+zGtXcdQWNZf1LtG9czJ3nPObsj739XbdOvfzSKwCy9XubuZCUR8fle+QtK2HguFRpYP0g9UE/GuB2sDRJMBqNZvhSisZYXV0t5DQEsjGhfVBKftqnlKfqrnvvR7Vm8/ql194CkK3T++RdCv1Y27D2V5SI1ODa7bbrm3PMh+cjRPk9Hcj2i0aj4fYqXUPnFNVBY0NRKbqG9pE0zXjrOi+5yB3mgzu8elCtCSBbU6IoQuIpcMpuhVzpVXXrdrsOpVb7+1E4fp/lz5GOm+nzTr2IJrWTr56cR/tUB5VN3/HHg8566peXXnoJp+48AWA2J6Xufx/zEL7+xquFcubVH/2omKzs5BoxF2wSWnn2efZ86pnvodG0PpRK9Ol7bA956XXjen368/8JAODVN22cBqEU/bpoM/LiOBWkx9xfW40iXxwuOsbqtsOz57Gjd+CZpwzlev5Vy/36G7/2y9ZmDNlocO1eWjaFv4uXbB4cbh93iFSfnNkp0cy5elFh+Z3sA/FQFQTWkX5n5sORNMBvJTctwq3MhSnl78MNzYWLuDCrcfFaXhjizaBpP+xpMio+EOYPypqMes0SBFtndbvtmfrm3zebzZmQQZ/4GKThTa8xGY1ybVYoYm4B0uFkXCh7Pgmwn7zTyc7n4Pt8+bRA5SFp/wFMi6cWeC3Egq4FUb/99tvutyJrfvWrXwWQhTFsULrT78M8eV0PU3FaPBw4qV74C28Gf2vBU7gOtU1mQvd8WfR8CJ/vNPAXPJlf9iAIZuRT/Qexd0Pe9vvIXzR9h0W+TnknBZCN5dvxgAMYyb/TqGOX41QCDWOKdoxHA9x7zA4x3RZDKBnaoSSvU5e4l+Eo6osgzKUrsHbSmuNEBRSCyfg0JXp1YyKouoyt4wkJxBxq2rirEq9p2hyYowBPMJw4HYQ99tMunQz71eIYr1E4YfmAvT54r4VvXN6/jutXba5VDlqfL1Rtc1dicR3UK0m10B5IUhcqF7i0BByvdEpVQq1PfEBi2yocMIhjF66qBzQn7cCHyUTzVwIWCp2rRNlclvCFwg2dEIZdq1azsm9t20Po1etW562tHTcfVh+6266r0HOFEvGBpDNnh/4qN99ATsCwgqFCFhkil+g9DyRSN0mVhDfUeh4jCFTj4vqgkEo9OErjRA9MqmOapk4yPfDGXxAU161sncwOLGl684Nh4jnYVKfhoF/4/Mbauvt7/Zo5DbT2KyzI7fVuTVYVpy6kS2Hqrj0SX/79g29xPMXW7gYO1G1PO3nSiPI72zYvd3b2UOFDdC20OTHoWVtp71m/bvuknLIP0emxdn0Dx47YQfTRe+4HAPz5V01ivdq1sRnWKKoTWAOvHLCHrBEfjLe2N9zhfJUiAk4OnWuVHCEK0R1z7nbm59z+5MuOy5zYwroJBlR4bYk0TadTF9YZJhJisD2/1So+bGRO12wvUloFjZF2u/hgpu9Wq0q2XBzb0+nUPbyorL4su84gLrGuEnvHsWurg4vFB88s/C9guXjW63Zm6uSfbVUerYNbTEJ+1102do4dsVQbcjivLHYwZahyhaHRW5uUjgfDwdsMx+SadYApRNbX12f2fb8P93c1H+lc7DAtBtNGjEZDvPCayb3/T//jfw8AuHzVzmUf/8SnrR3otDlDeXg9oP7Fn30DH/nIRwBkfXbqLhvLGwMrx9E77UFI4hcXXjNJ9289ZWN9c7eHXmx9dP9pE2YZMtXOWmjj7q5TNk9GFVtvuhQ/QSVGwD0rpKBao8r0Jnjns1XeyvC/0korrbTSSiuttNJKK62092AfCKQqTVNMJhOHlPiQbT78T+iGyHrOI0DPZKNjT5fyZiAMM5lWeUGdA5AhD05am2FfXnLBdDpFoHA7emlEhHbiA0EWZuWbn/TWr8v+vtVFqIufhG1paWnGE+SIxfSaVKPZcDPAvA0ZSRGFa0wdSbkYTqI6+SF/+e8IzldZBfurP+SRBDLESR4IH227VZiDEgqfOnXKIV8KYxD0rWsePWReDI2LNttWZOoIASr0Ssuz2hvbb0Px3D2kVB7iRhAgpFd8PCLCMCqSOOGFbjqkgn0+mUxmUCaHSHmoqy/HOhqNZsIGNL6d50vJTpNinyrJLBC40KcmxRH2KcU9W28U7p9HahUS5bzUHsp2u1g1inBwcR41hvIt9umNJcu/tx9irq3wJ8pBU6wkZSjBHsdEjVN+zIWlUo2cZsJkyjAMhV7SU7dP5MghFFyKKwwTC6cDROyvxpDroaSEGWIhj+4iSe9zFLTA/hCNll1nnWN8ccXWlm0SeS9eNg/igKT4Oc6J7/dt/tzx0An0CMemynncsdCdyrAYuuISXBJmqEYV1GtF0YQx58Eu18IGw+ImWoti+7zi0KmcZDjXXMnfhlwnevSy7zOUMqXXO44nCMbFOZRZMUxWjaq6HKWAx8mTp7N0HYwkkCUeODvgOOjtWx3bUFjkBA2GbDZdigWG+6VdXc3qXVE4nhogcgiNW6B8gMYVxAu/lBc+CJy4iGZpGBURKzjUTwia9t4wFw1Cbz73Be0BSn2htpQnfXPDwrp/8IMfZLLYw6I4jqzKyTOJVP8MvVf9tZf4SPvtZGEUod2eQ4/pSi5eMNQpExaqos8Q4c0tG9faDwMi1UfvsFA97bXzCxbZ8dOf/Sy+/qSFAh48ZJ812kxszxQwza7tF3Ui0/s9peKwcd/uzOHSZUMZ6lXz1K+umsiKaAE6N/jng+l0OhNdpHOA6qDvav9QUvB4ml2jTSQoH7Ke/60fYp8/J/pnK50XtD/6Qlu6Zj4k3hcOy65la6IfDpmPltJ9ZGoHnZNUZo1l/V9tWqvV3J7qBLVUDq5lrQ7TMlA4oxrY93/644bofO+ZTWz1JHrGpPMUiKlxPe4PrC4Hj9ia3WhSHGU4zFLt8AylUE21i8ZBsynRkaIwTbvTdMjT//EvfhsA8E/+yT8BAKxfs7GlKKS1NUOONB6CNMbyov199PDBwv8UyXTpba4hFCo5sGRlP3fernnx4mWMptaupw5ZX52hlDwSrs0N+3xukSHsRNkwF7nkxk2KCmUpLX40YZwSqSqttNJKK6200korrbTSSnsP9oFw+aRpiul0OiPLraf58XicxfcmWbIyIJeIjcl+I5HKQiXwamXIAD0LQ8YG64myTXTLJ9/Lm9Htdt1Tus/lkoekFhTLnk8g58uIyoujGGZ5EXR/583JJXlT8jqZ7xkJUfTi5ZGkDHGIC20madKqx8/Ky4z6dfBRNNXFlYPeDiFJec+k/pZHRvXUfcSXkkdInpKNjY2ZpH5qd6F9zaaNh4sXjWg/x2soDjpJkiy5blzkBsirL/EJja2E3o1qGGI4GRTut7WzXXg/vQVgk/eQ+SRZXxBCXl3VX2OuWq0675HzXnqJEvOEVyDry3xyXh9d0nfkeVNd9H9Xt+nUfUdjVL91iPBtZglSjKdjhOLFzDM+n+oQtfq8Q17G5HtMQyKLoNStk/LmeNK1k8RFYTuS877EHmxMafw6JCEUymC/S0cJqkzCXCF/LyIPp05QoUVxjWUKZTQo4FANIwdLx/KQbvP+9GDXFm39CIm6rZDP0a6Zd/r81YvYfOt1u/+HbczNH7cx1iTXwSHbU/H9rFzTdOqScTcbRUEdhxIzIXlbgjpEfvU+rEYuLYQgmqmk3dlGfRG6JcBD2fZ4OkHoic3IxDcasa3OnjUBha0tm2t5RFbCEElc5DPWPblkn3NUU1RDmoDAC5oaK+JU1fRb9ntY9PQjCGb4mTm8yatTWvxc1wJmEjT7XKrEiwrJPPghJlOhCWxnimtMpp6nnh7rnS3zUgtJWV9bww4ThdZrHG8eBzVSQm163+uNDr+HmT1fRfevcXtYiChsojtva7v4wxKv2t3ddVEYS0R+5c0fEakQkqT2UFqEbz/9LTQ7Nidv3CBHa9/2ki0iY8eZrH00Kc6LPpHzdlRBi6kaxn37TFydPXK7fG60zhj9fn8m8baPDGlP1W9azeIa0ul0nLhUpa1IikzEIn/fra2tQhvaWlpEoHU+0m+1l2qf9M+YS0tLrmx5qXRgNm2PXnXNm6Ue8fdnv/7aF/JnQ5+f7OrCPTbgflShgMJPPf4IAODVlyz1x8994RP413/wFH+suWr1P3/WxsPRO44AAG6s21xdpIw/kJ0/VG+hav5Zy4+oUbl3d3cd4v7sc9Y2f/THfwYAuP8e46UqgugOClk89fWvW10+/WnsMS3QZGz11Xu194FF62+dhZ/86jcAABcu2bwY9AZY5Nnp0fst9U6Ne8fBo3Y/CeFUNT4UjJJWEFaVZJtjmUi5RKberd2Oq1NppZVWWmmllVZaaaWVVtoHxj4gSFVRJc5XNGu32+5JX55yecMUOxvwyXyPCkTiHzTbbedlD4hQiP9Ulxd5qyhPrSdzeTVG4ymStKia5DwRUpOZFFXn8opqvqS7/8Rfq2UJAIFZvky/33d1ENrgx/1KUj3jKYmjEeY8qjdXjpuOi/HPI9+bnvOaOhU8XkNeoxkPaA6h8tE7lV2eJ+bBc147cTSEdr399tsO1dJ15SVSG22vm7fi2FFTxHFyq1K9SjOPq5KKtht2f3nNAy+JqeOlxbH7zFdI1OcTL3GyPw7yXiifM5XeIv5c7/v9fibp7yVTzFQJ7doxPVMNSjML3RgMBk4tbDjQeCcSPC0mGfSVJSeTScZL9Op3O/IbAABpijidOvU1qUWN960vVlYPoLdpyKnGRaXG+UMeyGDIOVfnuMmtAQkRCK0hm1Q/m0msTJBh6iVkng5i1NlfzYQx9rz/Qo1x4USq5qnYFjD2H2HkXHAh5W9XVi12fEgZ8nOEe7SeXiG/rkIe1aQxdYjpd771bQDA+RcsYetP//wXAWRjL+Jao1j7Rq2OMb3raAhJ5lzneLl4wWSbx31xy6yOBxZtzrdbDUw1/5Ki+mGsGH8pvrKOrXnOxThGVSk2pALIeZGlj7C2kjrg3MJ8oXxRJZPRPbxsa4qfGkLrmCSGhaCF4qLFMSqJogGYKHVg74fV4lqsLMUTt16kOY9nkSepMeMjVBqnQW7NSb39SqlA3F4QF6MSJuPYld1JZ3P/GjIaRDzBEZGEbaJR4sBeZ8TBhQvnXXsfOmAe8owfrf2hmMZCyYCjKMjWH65PVa6HoZfO5PawAEirePONcwCAI0fItYyEwtSxvW37f8Q2GnlKuzKdfSK2R5pO0WlSupxrUrVu+2J1oja03yr5t/YRIVU3trbdXnbfaUMV1P/++cVPrzGKpzP7nY/i6hp+dISf3ib/Xc0vH/3yUaAgCBzC7/Zjj/stfpjqlOfp57+Xv26GSNn49iNNdI6bTCbu9z5i56sh+pL6+TQyfgRLFkFia2e7Y/frLtka+cZbth4/+ODDAIAjB5fwt/8z65M/+Pd/BAC4cYN8sDlDpPaIwum4Nm1YuY4fP+7Ocr5kvOqps2fqrT/ufFeNXDTU3LLx4v/Dn/1HAMD5szbuf+pxU/h74zWTPP+V/+KXrP6dLr7zne8AyPZMmdLnDPpWvjfetN/WGZ106YrtJR+6/16cOWHo7YFViwI7cofxs4T2tpft/UAaCFT2DcI6wgql9AfFc1Cr9qOdcUqkqrTSSiuttNJKK6200kor7T3YB8rN7PKAeE/7k8lkRgnGeUn1OXOnJErMmGTJT+UtaNBLI0+XuESTtOhl8WNnhYblv+O/V4JKvw75v2/1Wx8h8JVpxuPxTIyyr0ATBcWYeJenMqrk0ISiF0dlncZFlM33psdxPOM1kjnkrNa86f9vln/Mr+fEQ38Uy6v2b7VahUS8+frLA378+PHC5ydO23vFCQ/7gxl0yS+XECxfySj/d6VSzBfmK1XOJpDOzI+Z9jl2qq+Phg2Hw5n8Y34f6Vp+AmNZHMfOmyYun6uDkot6MeR5BUn1s5+n7PbkNwBpVMO4c9TlzYgJ3i10zQs47g0QhOYxE5oRKF/OyMbtMSqpYd/UzqYxkzpHQLUhVMG+22wX+YST1Pp8TC6REjBHQp16daRSfOS1UqInJxn7fSgieggiCRSU61ZDlx/q+NDm7beWzXMtxaaDQ1vTWrGV4/yeIWnq+3bawv4lQxy2z5v6UtoyNPg7zFt1Jzkdpw8Y93G8a9fqhxHmmNB7gxDM6kFDn7uXrOwrRLd6338RALB0t6l3JkPzRo7rDUwDJc6lV5mcj7Vd45pM5q3Njh22cmySJ5WEAeKEHEx6KDX2szXO2mVl6UCh3nkVVze3mNNEynlVp6ypsU9FsUQefaK5mLjcWbFU9cjfjCNydEPnYrfPg8yDHoX8m201UE4vcA5GQs7IR1LuLyE5QRWTVGu8LloplNXxbfmFMcdFNQ4Rj4lMERHsw/p3mNjr+r6NmcuX3wYAbG6TH7Rp/dOMJ4iJRIoYOOYcajWZP4m8tZCc5N4+Ub4kxi4956dOmYJXRGQ2qtyGeaqmMba39vHA/R8CAGzcsDY6ftzG7t7+tturnv8rmxNaY08xp4/66tRJQx0U0bG+cR37fRsbNzY5rhLO44618/Vrhj6Ie1zzEJRmq5XlkiLSqD1f3CWfa5Tfe/x971Z7vjiEfSW/bbXdtVOOwZrj1hcT2Ks82r+ErBw8eBAbG1Y/n68uVE1nCp19xF/T/xcWFmbWCJ/T6PPHM6Q64xXrOz4Cl0fV8r/V2c/ULu2+Om86HvPU3s8tGk9I59Ufvmh80CEV/r6+uYHDp4Qy9tiG4gUNCmXdI1K/umII3vb2thtPvgqgXydFQWnr1z1SxIi4vgyo9rmzZfyn65czNAkAlhas/Z/88pcBAH//N34dBw/Y/ZWQWm33H/74SwCAo3fYOAy4pzz99DMAgO5ck68NfOKjlp9qfsk+S5lAvEpl2Arzcym6IW1be4ToQPlaxeUdMIKpVv/R1pvb80RUWmmllVZaaaWVVlpppZX2AbEPBFIVBObJ8PkZeXREHgV5c/RdH/0RKhXKuzYcZsgMOTSxAowV/9soKgnqiV1P4LVabSbvkB//GgZFNOpmiJWPgMnkmZBH6GbmK/PpN049h1nHM5TFfletRS72WTlS1JZJwlwWwaRQLrW72nJ/f999divEgmlYXLvIy1KtVh2a5JvaSCpH8i6pj5Wv6tSpUzh//nyhHXyEZn8nU7kDgM0N5vIgFwtxksV105M78BChwEMOKxXllsnQtoaU1hrFLO8+kugjOUmSzCBBLnP7pHgNH22qVCrub/WJvuPiz4mg1amAJoUch9I2mrh+3dp5gV6iET3f2XeoMuTl0EiSZGbc6Tv5HGa3k6VpingyzXEThQozbjxJcp5KoRf8bqJY8qKqZxRxnEdZvxA8wNycIWD9nnnzxYETHymPCgPANE4d5zMUb45Licb0ibahQeEVKtftkhuXTDFgPdqrdt+VY7amDYjoD+kpH22S3zc0b+QmuYpREjq1zJN3meewS37U9R++CgDYfcUQisnrdq1jR8zrfscD9+EyvXxRz+b0laumynnvIUOG5ug5/NpZ4wWsMeZ+mcjRfLer9CxOwWqHnNj2ktXljtOn2S5UOCQfrtluOb5PlrtJiD7XZc7nJj2Vbk6GGRLtuA1+PysKQGs7O1NKjlLeQhAhIpoVhUUOVY058/x9JJ/Lzuep+BaG2i+lZpq4+wKWSzGNb64opvxIY3KYtF7LKz2YxBhxDLnf9G3uT4fm0R/cMHQg3qMK3I71+fYOP5+MMQ3EqVE0hlAIrr2aB5GiCKxOGxsbDgkUyjBPBTt5ym8nS5FgGPfw2lmbO+ILr2/ZXvfDH/7QrUUrizZnNL4G+zYntT92OWZ3iQJ0F+dw/Li1zQK99k8+9VUAQNSgCq9QH/I+Y63nOQU7RXvE5NnpnHDixAn77n5xj9VaWW80Z9avWdVNe1/l/FogYqB1cmFhwd0vEB88FSJSjCzRvrW8fIDl2nfzV23kc4/1W51Fdqks53jzo4EbbxqDypNX556vKukaqtNwOHa/0XeDQHtCMTpIedlc7rncutDi3q0b9ZMiyldlG3c7PAPMUbGW/XXX/Y/grUum2Pq3/vYTAIAXXrD3b52zXE43tjSXbA194w37/+rBIwgCm8dLByxqYJtreFyjGnCkHFjsJ0XPMLlguz2fy8NF1ccmcwruWX986c++AgD4z3/hFwEA93/4pwAYn/7ee+9lGW1MPv300wCAI8dsX/n+cy8BAMZaf67bePzshx8FADzwwBlEVPJeWLXfDIiMV+dsfqRsMy3iGo+jvYGLJhhPrH5V8l6jRsmpKq200korrbTSSiuttNJK+4nZB9Ll43vtxuOxi3fVE7+PDCi/ia8MU6vVnFeoTs9r6lQAFTNf9Bp2iOzcLGO4n5Fbr6GHUKh84/G4gHgBGRLkc7h8yyMa+o2fI0CoSr1aRHDyccgZulH0mqj707jIYfP5O5VKxf3Pj/f1PVT+b2u12kzZ/fhrP+eXj4rlUR7fa+UrcR05QpUpQmfKxt1pt13Mtkx1cJy2pPh/IVWVSgWBp84m8+vvt0u+nD5C5f6HYvZ1jQeHAlarM+POj9n2lXj0fXnqhsPhTNn9eHdfFVJ1mEwmM+qTeeWj29HSNEUcx44jJ0W1MVHDKKcwls0prheSeZvKy8j24moaIod+0lMphDOoeDy+sIhUJeRgtZtzqDSIGNP71iK6sTRviPZCzbys1T5VQ8d2zVqjjn0q0FUOG5oV1Iu56jQUJox9T6gIOVe3fq1VIjeHUnJ4NnbNM75P/kKla17hs9vGAbn+liFXqNXQPGSe0GpdHlkr2zrXqS7H3CLVmt540a4xIsK63R+iRu5YSA/pEnObdBbt2inX833ll9kjjyAFpv0iD6BRy+YykK0PMiFUec6ixkDiODzsU77NOJL6gBxE9mGIMFtT9Qr/t0XLo1MptMf4SqJFfoosTlVKKUumSOjtniTFtTYe25rn9it6u8H/I0iRkH8n9b9AyDaBuIMd21dri/bBRao/rvH+kyDjjN0KuUg4tsK02P7T6RgROYNSG5xOiwqSt5NNJlOsr6/jvvvuAwDcdZfxY77OPD3333+/4wjNd4qRHVp7pY6rfUKf18cj9Hdt7G9S7S3hnh6wXSth8Vzgcv8cMLQniiIXIbK6amuGVAbPnTMUWREvKqf2gHGSzijX+ip//rlF+3V+Huh6GhsjT+nYH0N59ElqwPrsVup7vrKfvjccDmeigYRI+arUt1Kpzl9XyKzu57i0zAE2Zj5EFx2CwHGYFhiJIGXjaktzw9pK55XFAxZxcvywqZOOBmPMs48aXN8ep3LepSt/ate0Jsb+HlUBu3aPYX+ABiMRVA7Hedf5iHuVrzycPxuqLYRmqf8VXaF++qM/MnXC3/qt3+L31/HCCy8AAPZ6g0KbnT971god2/vBHpWfqXj5s08YKhfVAxw7ZfvJFnlm2l+kQjtxkQtc/6dCGEPHXa1yHw3qSmJl9X+3ViJVpZVWWmmllVZaaaWVVlpp78E+MC6fv04trVKpOI+DXn31FCFVSnokD/EkjjOvML11IWMlxVlIopvzs/LcEl+1xY/VT4fF2PQ8sqDf+EiFvCfyFvjelDyi4SvmzeSamhbzVOXLmyFOReU6xf1OKl5dvNcwDGdyJ9xMXS5/f92j2+3mYqFHM22Tv4/i+eWxkkcu70WS+QiRvivu1bEj5r0RP24yHs8goOLWqU4VFFX/8kiOU0r0kEi/HL6y4s0UBH1ulVAwPw5c7/NIpn99mc+/8Mfy3t7ezJj1FR117XyWd9VZnif1kbxot/K4f9AtgIWzp4y5dusPUYE0uonKlUTVNC+IoGitiVOOjSlcrHyFqmYxf7O8ZHkytrb7hftKgTMgYpJMJ5iSRHVgxZCpQ8v2eqBCboU547Dc59wYcx1rRRiRW3FxkTywtqFaUv2qbZhiYZN1eOT0PQCAw4dMDWp3sIedPfNcn7t8AQDQmzDHC1X+9rcMtY6oMJa0qEL1J3+CuG1j9q5PfBgAsHrM+JE3Lp0HAMxxjs8dtDqdrH7UrkkvaRRWsbhoXvQWVf9GXKf79Cie41yvMX9LSqRkiggNxvJXgpsrWmrty3IeFVGoZJq4TEoOJffy2Dn+aqJ1w8tBhsRxtyTyFzulWRRehXaJapEkWRmzOa3vejkRlaNOvF5dMUkxGBbXa6cKpjnOPk21n4xtXMbxBAPyThIqZNbG5Hyyzbo8Psx1zWP+FsfYOdZxGsSIpZCoPIrgeNQ8Y1ldf/C3jWrN8dDUvkLXbkekan5+Dl/84hfx3HPPAQDW123+rawYKjSdTt3aeucxKmF6URjaDxwfi9cIkhq6XZu3/+4PjLOCyPqi32MkT4vcYhAxmRR5U9Vq1V1Xc+TgQVurFJ0iBEP7s/gzaVTJkBheV9ymqlPyK0braO4IDRoOhzNnm1pYPDf4vCi1RxRFM2u1vw/6eT39971ez5U5H6EBAHGc5ZLKt0NeAdgfk6qLcj4JqRHfcJ7RBmqXIM3aVfXUbxeq9vkKzzKHV8mfI6IZcMbHkxFCTv4FcohubFpZ/+Gv/30AwF/8uY2PdfIhA5194zEm5NseOWJrdQpbf0+eMK7dxjVTf9VZy89X1mw23ZgUV0110W/EG9PY+c3f/E0AwE994kP46U99CgAwvGj82zaVKqVGub1uCoLLzCn4uU//nLUhEazlpUNuj+6wDjrbj3SWatsYD0F9BR5jo2iAIVG0GhGqYMy1Kyyepd7JSqSqtNJKK6200korrbTSSivtPdgHwuUTBAFqtYrjLGQ5DexpfzgcQP43eSSkHiQP15AKTRE9XVFCDyFySmxebG5/LA9IUalN3sVIIZVp7JRf9Fnk5edJqPxVoQqf44AFqfOWDFjGUDH31MpX9hHn8+e1d+i5SipZrqlRWvSa1FRW/t95YEJ7rdW7GAyZI2dEz2dKBRTWqcXYVMVQAMR9CgAAIABJREFUZzHNVAWsNjI1MxJHxiOppNEjXy1m386jK45TpRxb9OLs0TPQYptlXKp+4X0YAtVq0eOxvGzeUXnRQt5/gdnGJ4zVl3LXeDrGhPlkAnElmvR8Vc3zIe+JPHb7VERbajXRYF/Jm9hpZ1yl/H0W20sss5cpPgxc7rQW1SarbKOAOUaQ2m82b2wX6j8Zx6hEjNUmqgWiIjGV0cZBMQ9SULXybTLWfpwECJlLrD+2csjDFGi+USks4cBIibIkAFrkT4QVZoQfKf+SPKC3n0VIncccDn3K/n8rNND9X6g4Vd8m48w7qhx4qRBOqm4JdVFfx0JHHSpMFKDVRmPJvH1Cj5aIBERbRFXohYZAY+amScIQAYPnt7m2KeeT8iY5tJKevCPkVkyZsCsZjxCwbO15GzdRm55ZKgbukIMREzlJuUZfu/w20rp9t7li3t89KpUl5AUskI9Vc2itOBB2r/n5RfQ5XwY9qs6R41ilp1rKiQ3muom61j7NZhPzgVS4iuiwkCiZ3kcespymqfvfhOu1+Ck+ku3zPTNEOHQqrJpTcVocU/4Yy6vFKueLELAkGRe+q7U3CHQ/3ktoGNIZ9Fk5AeWVTkc9Xmta+DwJpohYb/Fxmlw3Q/aLOKpSx6wT9RQ4lYYpEPloG1+5fqXcp5NKkaMchBlCkSmpiadz+/E4B4MBXnrpJayu2lzW69tvGw8xjmPn+ReadfSoRVtojBw+fLhwTany3dgZ4uXXTcXt7CVDE+ot2x+Vd21v1/baeqM4zoUoANne+sADxvt6/vnnC5/rN3rvIi7q9ZlIGZ8n7edg9Md9FEUuCsnlbpoUo2FkGssqR5qmM3PQqQLzfKDzksqlM4f2y06nM6sU6sablUf9ozbTWWA6nWbnI4eYpYXv6v8+F9lFHE2mDsXRfYWcHT1sa3O9ZteeY2TTwpxde+Oqce2WFpZwz90nWF+7zz2niMhw3fmlX/hZAMBv/1//0uoaSOm5gatXDCHSOejocRtvw561s5DLq1c5xthfeUVuPy+XyzlK3QKX6yspLsTPPvcDfPrTnwYAnKaq69tnbUy/dN2UCw8uWp0+85lPAgAe/dBDdm2u/3GtioR7ZEKl77BGzpqOYTxHac+OJDFbmUDBbomSVvI7PZ6h3q2940NVEAT/N4C/BWAtTdMH+dkSgN8FcALAeQC/nKbpVmAz5X8H8PMA+gB+I03T77+LexRC7PxNq16v31JK24d3nfxkLuTOl6qW+eT+fHny17qVkETe/JCp/Obok/n9jd5P6Oonlt3d3c0eqtxGU2wrQdKCxhWeNRwO3eCfkYEXwZCkxT4fImaS0sY1txjuM5mjvivTWaFS00NdDobn30MuTvqte3gWIZsD3z3UTbKHXRd+lxT/V6kpAarZiJNkOCoKh8RxPBNeqfN0fzDiNcLC5wrv2tzace06oRSxSPFOpp3E0LBSDKlzCZyncRbOKsGMMC60WahDOg9F+jwvVBFNvNDQqh5y//ow0LxgiCPr5yTT87/xvxcEgdtQ/BDOH0f4309mzQHCIM0JNxQ3VAAI6hXvfzdfn9zDVpC1YwL9lqkY+CDbattGqaSc2tS3eOhRWoVPPP4olhnCUG9z/lKyekGhFHuag1xruLztYYJ97hCTFdtkxrt8+B/yIZtzUPLMc12G1Ey4NtQX0ElsE6uOKYtLCeVxZHWo71lZ16/Zpn72CkVhWt3/l733DJfsuq4D102VX72cul9ndEA3QoMAAQIkmANAUaSoAJsai0oe6bNEShqNx7JmbI/HnrFGks0ZSTYVZixTImWRlG1l0SJFgaBIAgRAIjUBdG50ev3ye5XrRv/Ya5+quo0HNNBNkJDv/r7+ql+Fc08+9+6119pwA6nTqb95EABQ5GG3TALxdQck3PDEWTnI3Sk5sJXAPzE+hbkdUhcNnZmdEaEKXRejFamHJnx3uBdYroOiNzhWZp7GqSSlGNwL7T6BEhMGHXF/0LC2cPDhxjgl1BlhHlyBSK+rl+dTu2pMqJOqt460Po55mFJpX3Wg9EKPB8+vhETymH93/BAtDdGiEMXagtwQ6fjblA/2uwzrzUvf1tstFPngn+P88jg3qH6Otob/MNSotizS+p263MhGVgifMuxdOnRUEMQIKFCOOeSDkj7klwpF1CmU0WAbPD6tecXeg8C1sFdivwEsWJZlzlFNI2JC6JIEu3btAtCTStf7Dk2Gqg9g+v758xIOVaxWzRZg88Y8ofdXH5bznp4P8r30/crY2Jh5SDl69CiAvuSzHGc9A9PpRNhfAC4Xikgnh0/f6/Q/9KeFIZzUfVc61Yd+P5/Pm37Ue5x06pH0g8ramjiQe5LqXXPu6YOPts/nPcVmFID+8MOeAIbUWfcM/W2jKfdaufygUIY+/MpvkoGyNLxPk2Ens/LAPLdFHnpc1mNseAwWb17qawwdpKhPi+d2EsoY//SHfhwA8Ok/EsGII08eh+2U2H65d1y8xCTeGlZN8Y19+2Tv1rE7QpEh3/dNUuV0wmbXGRwHTdegf5+/tIRf+dV/CwD4X372ZwAAx+goeN973wMA2LWDokt82PE0xJBnar46jBbLK+WlDcgNpr3oNOWc9ThPXJ7pSeTD4rhbTYZMc9yLKnV/hXYl4X8fA3BP6r1/DODzSZLsBfB5/g0A9wLYy38/BuDXX1JtMssss8yyPSezzDJ75exjyPabzDLL7BrYiyJVSZJ80bKsnam33wfgzfz/7wD4AoCf4/u/m8ij9kOWZY1YljWbJMn8C11Dwv9yl3mA1etQLBZ7Hv+UUEJaOjMtIGBZ1mVe+83CN9IhCmkvywvZZpKdxWLxsutt9tu0J6QfOn8+8YD+dnf5JK4hZkqI3qjXUAjkSdugHSlv0TLD/tKEUPVDtRqNXp1UVjQlD69eI1fHQdsWx2ir3Dzf09+6KRJrRC+tZQ+KP8RBbMofqY4O9J1BhOj56PAi7VRSy263a/ouLQnqakiEik0kg4TYer0OT5EHm9KxhM1VGMWl17gb6hgPIkeVSgWxjh09wPwKVhgGGahnXL14+v0g6PP4DHoCtW/bROa69O7mbaIbfaiXzi9NAGsRoUzPLYMgqpNdYB1TjlTgmydQ8UrsOUgShvUaWj+AXijT8/9GP7NMGX0/VUVtERRQdAsqtsPwUQoHqJR6ndLfmnhz7969AIAd2+cwzCSgbc6PDpEpiwkcozoTLxMBBkNaKhPDWK/I9RdXxOvtdxjyXBPkIJfXsA8N8VT0lC+eBQ9S5wKJ0mAIbm6WwhAV+bxrMUzP4jqut+EzpLXEMmKGRvpE1FcuCPnYZ/uHh6Wto5MSFjUxPY1pemIrRKSKDGm0NdSZIbkas6lJQ23bhuramD1fl6WGd0aD6Gw6HMWWH7PZPeQJEPEj+Vv34pTAjU4PJLCN/LmG1PKsidKhTZsga+gJUehepoOUjjjQuWz2vHYbba5xRddaFB+JNPzPJ6rkE7nqaBJkCy5RNEcbpOIarLoej+p9XyZS1dbUECNlxAxDUuuJICn6q6GjgykpXNe+DJHTdmrS2Wtlr8R+E4YhlpeXTQiVoj/9ktt6/lYVPSaqoiFsGpau0tOKYK23avjil78MoBcGr+s5TjSigJ55ZzDRu5rruub6ahoeruOg0TA677SMtu9fJl2eThej7dUImvS9yNDQkBE5MIIR0aAYlyJImtjeiD+sr5vr9p/Z/dfp0Ua0foNCEhMTEyZqQPu7P8oF6N1rpYUscrncZfeYAc9hTVStUT863ulID8eyL7vHNalVmMogKspvp7lHnqOgg8c9pVqtosmIB0XgnnlGEuYqiq/XOHtWUM/bbjkMADh14gIcW8ZTZc+3DA2GLp49uzDQLxpVofNybW3tsrDPy4TLNPw9HgzPrFQqZlx/4Rd+AQAwQbGlGw9I9MLk626S61HcJSKdxaHoB1wPpWGpC0KNDtO9i6hjW+ZFkelKEOo6SRDVBAk090mUv6+OsPwrtJcrVDGtmwhfp/j+VgDn+r53nu9dZpZl/ZhlWY9alvXoqzXXTWaZZfaK2TXdc5rt9vN9JbPMMssMuMb7TftVyAPLLLPMXrpda6GK53NfPy88kyTJbwH4LQC47bbbkvvvv/8aV6Vnm3Ga0nHAm9lmCNPzlZm2MAwvQ6DU0hyvF6pHWub8MtSNnhFNMonnQ9kM98NKvV65ZGSUQtXsF+m7fktSSKCKa6hr17RNPa993zfcuc34bUm0yfvK3o4RpzhlVkpWNVHvkfadti2Kev+nxSnCreVR/CM9D/pQ183aoHHvVnpczOdxr06bWeKadgLoD+q+vMzne+/FLCV3m56HTv7FeYffJHtZe87s9HQS+12kdANgOT1OnBlbwhuxPQhJ9RKYEo0ijyGMEyPVqjyshFvt+rp45rbMCTI1OSOe69tfJ0kaxyi0Eq6uobFAzfQzlD9flb/H63L9EQqLgIl9MSLXb1WAGrkyF5+V+78CeSg+vbGF3CBavdodFHyJbCDhHCq7KgBB1GGKvE16nye3Sxvm1qVNGyfOoXZRUIvcxqCYwfA28a7nx8TbePd3fIcUefhm6Rcm765UKnB1TdFyvL7hJuqaVE6VoS8lcFMSy+Y1HkSMVLY7UGn9UJH+PvK7WVoqKsLvGFn0cKDMpM9XabmDe6uiz3EqGW8PJe7Nvyh1XoShlkUEh9dRERQVI1Dve6fTQV1l0UMZ9y4lnRPyI9CtsXAm96aAhO078NjfKvBU5/X1PO2yA85TanlxSdBHl+IU8ANYjBiAjp0R/UjJ0dsqca+d2vt/l2hm05O6Vjh3vkX2svab8Wo5WWu2kW8NRlAo2uN5HhqKXpUEqTlyUjhTitwoUnTv+/8uAOCJJ54AABTLMX70h0Qy+3c+/p8BAPMLTAJMMZO2L6/VIRlLRQW07DAMDeKwsiIee0V9VFK8Wh0ZqHsQ9M7TftGI/nZdHoXjswyZf4oOAbERjzDoZaxpWgbFyXopaBTRcY2QlEZ0tNtat0H+cC+dySCC2ul0TF3Ssu+KyKggg67Z/jbqvVzs9ERqAKDZVeEVCudwM5msDoqm5fP5nggWUSa9DsjXvrgs119ixILyg4aJ4B05fgxNfzC1TZ5RBgtLMt4L85cG6j4zI/V5yxvvwDkKXlxYksilViBngp53B/bfAABYW6MwhS3jMDuj+3KMhUXh1U4qmhQpl0nmR4uotsv1PjpMTpsNVLiMipwrP/ljfx8AcNvrBE3zikShuM9GVe7h7MvYdhAzJUQnlrqXGCESc64Mky/WYHRWhdEPfruFIlFU3U+rYyIQUmd7r9ReLlK1YFnWLADwdZHvnwewre97cwAuvsxrZJZZZpmpZXtOZpll9kpZtt9klllmL9leLlL1JwB+EMD/zdc/7nv/Q5ZlfRLAHQA2XpTbQEuSZFO0p/+zNGp0JepjaURoM6nkNIcq7Y1/OdYvM6nekpdqUdRTjtu0jt4VDKWTQi9UrWqTZ2uV5rX7eCa2O4hIqFSwypQnqb8BIFKPk62cB75vyieHiF5iTdhpGQWh3tN/lALVtCz1hG+K6LmW8ThvZlZuELkyCY1d7zKPspsfjA13jeyx1mfw1XYdw+u4zK3Jim2Kh9r2pp9p37pW77uDjXpxhCpJ8RCfF8HaRLL2FbRvwp4T9wgwRCzsF2xWau2Z/8lvNV2sZVmmC0N6edv0UDfodS9TUnwrESvlC2iM+TBigCFDRf62QFUit6EoBxGaKeEWtEIp+4kTp1HLS11mZhjvTkU23YF0basXOsmxDY5yMmIjB28rh4ft9DjXu+QyFZiEkkWgOheiTe7GUkMSB7eYnmGI3KkiUyLsZ0x/bko8m+pBtSwLQaiqe1JH5VCo2fYgv9Dt08NXbqlBUnWMDA9OJc7ZfkWo+te5okkI+3/Sm/tGp1cRTV6jT2HQSsnw6/612YnSL9sfGvXTlGotv6IKWuphbzXrA69Bp4tOQ7zZESMZQib/tSkbbNGzaxukjgiW7xkkX5eI0kV9frdF7+8qEbJuir8S+75p/+WJ5ZVLNZg+JUlUNbMX4RHxeop6aMqNb7Jd0/2mWCzgxoPXG67P7JR4wRWVqNfrmGJyb+VfarLjBapqqrLaf/70pwbK7sY+RsdlXKujso5OnRdEsqQqo5HOlRavSw8951C5XEaXCpCK+uhnms5Ez7r034njXp4QO3WGmLHk+lI0qJ+3lealB8Ggkm06kkfXSrFYNOtd1XAVXe/xEMWCaDDZe7/irfKAtC3m/E+pQKe5Z/2cd7+t/SnXz6fuPRVtVqRwkqksCoWC6Yu0WnObY3bLLbeYugLAyIyow5b498b6Oma3yPifPHZcPiP/SpUC9+yQ80bl+p85Jsp9YxOj2He9SJk3uFf/8Z//BQDAIurWaMnc1fsyVWC2uDHcfPhWnL8g13/mG08DAHaQK3x+g+cP+zBgQnGPERM5v4033H27tPOwIGIHbpFXb4qcJo3M0EgRDU1wNX2SDYtIe1kjd8jt9YmkqvZAZZQRIYGMV7E0hIhnbxSQh05u/dDwS+NUXYmk+u9DCJsTlmWdB/C/QzaaT1uW9aMAzgL4Pn79LyBSoycgcqM//JJqk1lmmf13b9mek1lmmb1Slu03mWWW2bWyK1H/+8AmH73teb6bAPjJl1ORF0KD+j97OajRi/1mM5W/l3KtK/Hcb/adl1K/Ta/zQtdPl59GKjbBQa6k/VbK55r+G+hDN1LXSZevHrAXshejFj2fehbw8pCVfu/bZnw39Rol5jcvVLeXXIUXNUe98/FLaN+Lob1XwSG8FvZK7Tm2ZfWQC0Pl6EEJvYSw+tYgkmf+tpX7px51oNFQD6lssRv1Fj+jGiRz+2hCTxXO0OS7laiDoC7evNmGeNMmyYsYJk8CzF+0FghSsJBIGatxAwHV/kpCj0BeOTRU+wuIfgSqJqm5sFh0FNoGiMmpZJ5ymZi/I6aH0mOZIRWmStNTiHPMcVWT9jx99KR8p0B1uRnxupf2CIcqH1IlyqyfGMUUD0IRGMPJ1Pq5qsTZ4ylEJeZ4MYp8qUiHOBkoq4dQkttj9RTp0ii1IlFxWvZRa66CU0mCxKiNyXsdIkZOOIhCGWVBek6jMOnjUInVqdyoXnFFNZWLEVHZqtEQ3kISRthYFT6e32ESVCYQ9pgjzyO6qVtvSC7euDtt8uVFkSJTRFt5/adPypgeOyGvTaJeOU1aHAFjTObcTuV0i61Bfq3yeoOgl4cxvZcqmpVOwn219krsN7Zto1Iu4tzZMwCAHDt8ZFj2gdGRam88yT+ZYe623Tt3yW/o5dekvIp27Nx/HWxX1sq5c18C0ONDaZnaZQUqC15cFP7MxIiswyAIDGqma0b7WVF0RdnSuaj6kSqdi3ouquqfIkaKkGlbtKz19XWDROtvFOXRemjZimb3c+U95lJSZc40j94odSqvmutN29bPoU3zhpWjmM7vqIhVqVS6jCOn6HE696Me1/q+ckiTJDHcLVXf0+tUOUdUHfHQ9cJLjQPpjxMnTgAAJsbH0aLa5y0332TaBQCniFzV2aZqhXmceGZ5roWNdeEZNTj/DjKR8FHmi6ptyGGyuCD9US4OJkE+f+4UduwUBGxyVNqiEQJljo/yJCNbxmeaSbBbS/O45963AwB27pH5Pjor8x+ai5MoU479AU3cSyXmOArQblGhssWzOBpEKnUvg3KpVCl1dRk51tElrzVi/lI7eGn7zcvlVGWWWWaZZZZZZplllllmmWWGa6/+99+tfTM991dYgZf/U7wwQrQZkjVYxgsgjS+5Ri/dXgyoudrx+eYyiK7et5FY39wa/m2zOInR8DvIE93I5+gVJU/EiizkGJdtMWZbc6Cpol/Iz0OiD20iBa1WC+0OM9vT2zXKnDLbdgjHfcfeA3JdKjvlVxlzHjJ/TLKBcFE80dML4tUbaVANivmhFkPx6J5kzH2QJ9ehmKDmSWUvDIvHdLZBXkKBiFB+UH2qQ6+fTZQhb/e4k4YHxGnabEg71dscMfeWqljWHSAYEU/50g6JXV+PJda+m5PCDu2UWHuw3RY5ijZhHsezDHqhqotd9Uw6yrlkDhjG0RdYd8dz4dqaD0xVABURIk9KOVeMy9dcULaikLbbQ7EC5ojTnEJEe1xFNcmpapGT4uY0xj9BTD6WxVeH3BY/Vu6YFNElQqM8sjAMEZN3oMqujQXRSuiw/4OajL8q6C20xdNs0RvrwUauSwVJcqkmNQcQf+Ny71ekzsmT12EV0GR/BxyHZXL6jp8TntwXHvqa9B13x8AeVE0r5F34qv7VJt+KucyGhsnbCXS8iXoQYKgMV3r8K86zFueGl+LJvBosjiLUa+s4eP1+AD0luaVFUWMbGRlBmep3Jy8+BwDY8ZrXAAC+8Q3JNaTIxeiIjOFttwrH5tRzZ40y4A3X7wMAfOazkrdqcloQg0JR1tfGmnxvlPydkPl8fN+HrbxSk9MpYF0H8/eot185XhvNtvksncspjWrpa0/1TyyXy5n3jLqnO5jjSedDOsdXkiRodYjWcr4p6naeanfDRGbS9TA5OcOwb6+Q6/fU/eKBv7U+uj9EUWTeGx0VtM1zuHa4nv2u7NGqcDi9bdtAPxSLRZN3Suuh6Nb1B+Ws+OrDfwOgh2QVGKnwnve8BwDw+GOPocq50W5JHw1R7e62W18z0C9nT58BAExNCS9rYWEBu3fuBNBThNSxfOjhhwEAjz11GgBQ9gRdWlsUfRbNvTY7uQ1zcxJ5ccMuad/u3bsBAEeefAwA0CAaNrdNELo623LT++/FwVtFAdYhihQROTKqqmXOP3KdHKpktqmwmEQ9LpsfSX8XXEXIaMr35F69RMXDiXyxF41klCrJqcsP5nR7McuQqswyyyyzzDLLLLPMMssss6uwDKnK7EWRpBdCob5d7FsNFH6rLcOpXrpZltVTnCJi4dH72f+Zoa3FRmpyoBz1oPa8nx7iuKeqBfR4ETv2icLSxPg4ACAg1yqmV0wHMlhYM2p/CVWWEq7DiLv2Mr2R9SI9+q4G7LsmT1OOfB8rhe70lB4x+Hdfm2wMcscUsVY0S8vseeZ66p5aV58wl8c8Zuq53EL1KVW8CphfxWYbXNeFowQrDoAqKSa21od171PbAyCwtYGuFYLhdzelpJLzM9gtA9fTzwyCYmneqsGydN4kSYLEUm92zM/I12C9QnI/Ao3t73ZMGbEikEQ7W+RKdRvyvt9kHhmWHfltNtUy9bbJi9L5oOQtVTuM2acqpOVRATUKY8P/6hDGW9sQdGWFOV4S01dEFlSNET2+lLUJP7PHcd1c8df0M5TTNpgf7tVklmWh4OV66nAFKmYShRsZquLiRfH833mH5KxbXBRkMqBXfYYKmcoXevLxrwMAtm2dQ55Q4/ghQTXuul3K+Pgn/yMA4NKC5LzKFQW50j7U/FL5goc4UVSVe4bCl5xDOSIX6tFfI+pguUUz5zdTUk7vL9oG5TQBPY6SIlDaNyYvGj9Xvli/IrQizum8WKqoqGVo3dP8Kdu2DTKkaFevPlIPRcjSfK0oinpngJnW3P+I9iUxEcGOlF2zZC0rGuT7vskTpqb1OXPmDIDeWaKcure+6fUAgKNHj0qZtRpyRMl3MDLiiceIEK0JInTo0CHWR9r93ClBx9797nfjkUcFkfK4j3dtmRs37b8eALB1RvbsB78i8+7SvIz/0vlTAIC77349xqsynnu3CxKlqsTvfdvd8p9E+nRmRubycFWQJXfHPoBnQavNM5EKsi4YKVDWKA5GlUD+LhbIqY06QCx7VJLn2cnrt7hnlngNm7moJsuCdpWGK4g4Vg6/kyNS3+28NGQ8Q6oyyyyzzDLLLLPMMssss8yuwjKk6hrZt9p7djXX38yb2PvCFcBAV9N+6xqoOVkvwgv7Jo+Phatpw4urHmZ2bc11XYyPj2N9RZSM1Dup3vY4jiWPFQDbqL2JR0zzdGiuJ6NoZuf5foR2S7xes3MSf75vtyBUti1lrDHWv05Fp+3MfK/XmntuA7mmlFGBeGZXu+Ld/EZbfnOmIB60aNv0QNusdoJQEYqI3Cmq7mkeqsCgLvKqHlztB9u2jDKda5AqIhKM01dvbytoDfy22w3Q6dK77Gt+KkHmbjx8KwCgNCRe2S4VBMv0WBbpufY8Dy75bnEqj5ryn5RHYcTgOHZWDNiu5qciemjaO6gOmhB+6uW14vjbsUGibPaZr97mOKUspmUrOsc8L1ES9/FQpJLdjvKwyDUiGqXKaq22jHEcBAARijYVvWoXmQ6JHtVIPedd8gAd5swjkogEKLByqmgVbsh1IvXoEzkLOf4xuXgtJGjxOz5RtVjzcXmD/LSQA2BQXlXpCwN49uDe1lNQ5JrReWpx7aBPvY3nghemVNkKLy/f47fSLCSwbd8oySkKs7DQ4N974LpUBi3Jei9tF17KxfOCJujE7xChznMcCsPDhnemaIauxfe+SxTVlMP1iU/+Bb/HHHPsY8dyYHGuzM3MAQDW1oRL1e2yXhW5nioKbhmXNbu82jHrZ3xEkKE6FeRGq8Ix6hIZTVqCVOTz8tuAaECYhAg0/xPLWg9VCZIKeuTY6LwsllhGEMDmbys5+U7e5L6U9g1RhdJwKtk/itSFYWj2QOUd6WetVmPgtzp2ijLV6/UeDy2SeuhcrVZHBvoy58n4rNSFy5PUpMy8V8D8JeEqOuR/an0SKqOWh+S6q0tSr7+KvwIAKORlz7zxxptxYV7OhuFR4UrNbhXu6on6swCAxSU5d266QRArKyfX/09/8LtGifDxr4tSoLbpVubHOrRX5mO9KVzf/+GHvwcA8IW/Fq5X3vYxyo32wM2CbpWonLdynrnW9gvnrz1CRcmdcs2hWgBwnuUdmTNOjsidRYRKt12z3/M/HvebpA07kb1QUSZV0tT9H2uyDnyuoRL5W7A9c2YG3CONsjP3syu17KHqGtk386Z1DCACAAAgAElEQVT9SkQW4qsIALOTFyn/ioq+mvi7a9B3DF34VtnVtOBahC6+2BBmljZrQEZXbTBJ6eANeDoMVg9mfVWxh44fm5ARhw9RGvZDbrERG1BRAZcCDh3KhhcbbUQbJGhT7nwjlr+XecbkKUd+scLQPl6/0LZNou08ibqawDbSxNtKstaZm0ra6cDq5bY1kXQUJDDJwFVSXvtHk1hH5oDSh6sCk5DmecOoYYhjE5MsYzBM0HVdk3RYzYyDPSiDnvAmLAk0oawNO2Yomobo2YNPkTYTWmr7Y21LonLKFpAocZ19pVl37dQ8CPt+018WbMSRPgjyZs48IFCYgg9gmgwzbKs4RYCwTQl13hgElEW3NbxQZfL5kJXTflEp9iQx80AfLkNNXq7kbxMVSDEQhvz5noOIdyIOH25HeDM5xaS0hVNCXG+miPv9qcovX198eDXhmRzT1AaaRNFlsutJKizr1WS242CoMorREZnvc3Py4KICEysrK8jRsfLQQw8BAK6/Xm5Mz5+X0D1NFHvZTX+zacQLLvC7JnSZN8YabvwT/+CDAHphd3rj7vu+6dcwGEx6q2M4MUGxGX5vfl4e8lc3OnjkkUcAAI2m1GN6Uhw9XZaVp8hDXcVmoGF3Mj+rxSF0VpbZWQxd9gaFI/xUyKDbl4KlzX0znYRY5046tNB1B8OgXdc1/9eHxhcT39A+LhaLfaGDwUD5+hCt4g86ZhZD20oMZcy7Htr6GfukRRGLYYao1WryQLB7j4Thvf/97wcAPPKwCMYcO3YMX2cI35cffBQAMMT9dogJ2n0eANazZwAAHaZwOHjja3HggIioXLdTQgefeeYZAIDHMOwcRSA6DNXWB/X3fed3SJu7EWbGZI6sqwAHH6p33H6bXHdinG2SsnQ2uBULMOJIOq6pxxPd73Rf4muttsS2Ouhwzyzw/M0xkXVM554+/Kt8el0fdktDlwmE6E2VrocrtSz8L7PMMssss8wyyyyzzDLL7CosQ6qukdkpovmKR3Kx7WEbYWw8JJ49kHCKghBTu3MCq+YD8cAs0zMS8pl3pnYBiMUDhOYSr0OScpXykiGTuXm3AwCODgmJcKhVwJZTg+FB9Rvks2VfntZ3nfgCy2JYRU4J38ruHgGK4nGILIFk2znxNOhT+TJh5+04yQ6RMADkG4B6rWry2/yS9MPi3hsAAEuchkVKdKpkrH9KPDfTZQ9onZHynBmWL9fHkPwGG9J3K9dJX46fEC8KCMdjagPHRqXfd0Lq1lkXmLt6SSBxuEKm7AiXHs+xcfuXzppwnZDeEZdkRji8zsMkkd8uYV4nIinz0JpIjOLSELCLndUVr15tSDyPJUu8lurdUktS6MELmf0qEBP5drI4joxHEuiXC+730g72qXomI5UOZ4hfk8TadaIOHmx4RIjq63KNxqqs32H1zFO6fYhheRdOy1xsMxxxTyEHi2EPT69I6MTpDSGur99wnVy3IutzmahHjptPoVCES69frFLxNhEQzinfeN/ojU3JCbtJzwuc9AkvAEDoKgpEzx7l0NUa7QA+wz6mGX6ybZdM/m3bd7M+mtCR4S8FhiUytC4MYoOm2EYIgZLPTPbo5DWUZxB9cQD4DDNSr7IigTG9jwE95Y7HpMeJhuzRC5r0CVFwvAN6oXO5lBx9q82OYphgp4dgRuxnnTtKdl9bk3HWUDmfoX4hwwGToIPOBkNTmVQ31kSuoY63mHqSfSbu1QSonpc3Xt1Aw+xyg2IPtqVJWKVNHkMHu14Mh3W36LmdZsimOyR77xLJ74qkXORrjvWJ4xgh0TMTHq0IgobUmKhpfi9RQQ+/N99yvfJereY4HoarUyaB62Nff3rg80KhgNlZWSudtpyhKlzw9rdLCJ960lW44BLPrTcdPGSSuWr5KtU9ToTK9CXDo2o18dA7RJBKeRcjQ1JGoz64dvS1sSFIkoa/bd8qoc3F3Ab23/fdAIChEblP+MTv/T4AYGVdfmNpaK5VZD10/fUS/PYkreU9j3PH1xQB3Hd8irmoYESSWEbuXPdvg2qnBCkUdVIJdO3TOI4v+24/itff7rQse5IkprxqZVBEQxEqXf96/YD3i40mk30XEhPGnMspQsbwZybo3ned7KF/7wfuAwDcdNONAICPf+zjAIDJiVnMbJGzQRGxC0sM970k9yknziwO9NMQkbLhkSFMf1Wk+wt56f833PU6AMDYmMzDm+5kGOBhQZ2WLsm51CTa41pAQaMobLkfq+6TcL+kLPMiobiExbBrN1JRHVxOIbEpfpIwkTLTZGhKDQ1hLpd4dqGDOJA9cqPJxPTci0oMWQdR9pivNvfHfC6PNlHFCwsSmqlS8TpmV2oZUpVZZplllllmmWWWWWaZZXYVliFV18g6fDwtUO94mF7VAro4+pufAAA0/tV/AAA0l8Rb0L5TYmPf9MAfyo/pGM/xWXec3ruPvOG7cJBJAi3yKqIC43/pPR3avhMAcOjOvwMA2PdL8nresQBVLSW4s9wRb9Yul9DJMUk2+Plf+jWp1wW51vaDEtN96L7vhXNYvCKdW+4E0HsaLzEM+lMf+hAA4I5nPgMAcJjss4N1zJMnUNkhEqDvfcNBAMDUP/tFeaUn4N9//w8BALxT4ikYD8VDMuUFWF2XuOH1oiBRFUe8ZC69eqcOSV1/5P6/BAB89AOSEG/3OfGeLtaeQ7hbyJkLXUGq2pZ8Nj0q3pqF0+JVeucTDwIA9o+IZ+TX3nMPDi+IN2Y1lLqOu/KbliUeoK177gIAlP/hB6TP7pF+CmL5nTc7BNTFi/Kb97wPAPB4QTwhv/alR5DZK2+WZRl0ULk3IWOv4zgWTz/64/P5HXJW1IOprwpWu56DgEhJm55IRTM88gQ8EoL0706s8flyzSNrFzFKNLjeFg/ami11m9wqaG1IpMZryfVLRJdylgddoQ2KGIwOEV1Rd2ikyID8abyvRka9J0veo1QREdI+42+CQNEFihy02qiRMxZTgEC5E0V61C1yzUL+1gn75NABWFYIy8nxu4MJRB16ge2YZTChrI2eZ70bdgbqrCIW2pZIBTpUjTdFSoxhGQ5dhEFuDwzHDoPvs8yIEvhRFCHsKvLGV3KnVHxCVeND8gUSIlax34VDD70Vqyw668FBU096nh78OoVNIiPs4cJ1UnNXeV+KFLDPcvTY5kocr9hHogmCiSYUSeoeYp+Ojck+qryRNDoApDmKfZwq5cPxe3qeGPZCnBgpdf0sVqGGVOLYV4PFUYxWs4OJcTm3HHswoe7ExAQuXBDP//btglhpMljlUilCpQjN7KxEQZw5ddwgD1NTUv7CAvuIyO/e6wTBOPKNx6XM0UGOD8IIw3xv8aLUY88eibrYRZRZ+13RVkVn9u3eZdbAE08J2vGut74BALBjlyDTp09J3T//pYcG2lItS32DMMDMhMwnFT7xm9JHFQqTJJwJNe6lKiqUKxaQJ8Kqe3FaMl6RLOUB6drROdztdnvy8ikOVZpro+3Wv0ulktkTA3KUDOpGUx6cCtI0N2T9T09L+20rgU9EqkoBDkXkWxRO+LVf/dfSP4y+0aTQd79e+vrM6QsIA4lCypFvtrw8mDi5y2TzWneLeHfgxzh+XO6lqkNyb7Njm8yv0bGhgb7Ms85T5E/VuBNWh0rAsNR9dki+g5L8ts2bUJtiT3mTjqEvs7ylDCvdBZjAXd93eM4q5499Hpvzt4NSocT2cJ/lOdTUaIJgEKkaGqYYRhSiyxQV22ZnBsrfYFTBlVqGVGWWWWaZZZZZZplllllmmV2FZUjVNbImFZIKpGmoPKrbWMLpX/xVAMBtF88AACYqotq1+MQRAID1iCAmwWuFY+RwWCwmBn3jiSZu8wk3ueLpXVwSb9GULV6k9kXGtT702wCAh/7sFwAAd371C3h6t3i+mqzraxMp68uHbgYAzFwQb9bbGoynZ5LTVl08Zcf/6z9Ge0g8OrN/+e8AAMU73yGFNcRrsP3JL0pdGcMbdChLWQGoSApr4QF5/drnAADfeOh+AMChv/i0lP2wvP+uuqpOiSckCpfA0H/MF8WbYp8VXtZsUTwdn3yOUqpt6cuZNfneLTWB0qZDoE3PTpFx3Rin90KAMSx75GuFktwOkXhAtl56Bm8gdauTEhnUaNv6GWnL6QelHz4+K1/8gWdEbnTeA0oPnZA+ekpG4m1U8cnsW2NRFF2GNqSTVgL9qk+MoVeZbmdQYcskpY17nnqHPJ/VJZmHfiBzrlIickKoojLCJLiybPD1GRuLJ0R9af/QKABgepes4zbRD3Rl7c2Esm5LRMndyELbpWLdiKyLDueyIkEO1ZGUh6R8JfV4x2GPv0JQybQl7ku6yf8MvK6sLGOekvFbd+4F0OMHqMqdW3DYBK5BDPK2XNeF7ZH/RQgw7+pqYwx9Cv1otnrS7l17ECGxHFlzqqzlUGVQZ4DypFQdr91swSZCo15djx5zVRLr0GPts02KvoREm1r1BlYWJSpAk+0uL8s86PqU0lZ+GlGYsC31TKIAFr2qDtunUtuOrV7fQQSt1aRKHtseJTEaHe0T7Vdpi85Z5TAlbEPUFE9+Pp+HpzLURDXN2Kn09rR4shfOy+aYZ9kR0REn5/USIatCI8tKYt1IFSHVJMSahDkxMsghPdEqk59OvvpqMNu2UCjmcPbcGQA9NGqB/I16YwP1hnDUpmLxnisfRxGsXEo2Xed2uVw2SIiiSDMzcpbp+4p63XX7HQB6CWSnx+WMXVtbQ5cqkzbHb43y28vkzijH5ORJOVsVFWusbeDMGZEDH2Gy3SLX1/qKlLFlRrhdb3+jcL5H3nuPlE2u6VNHnsaZs+TokIfqeYMcmyJR1Jj7UKSge+Cj2RlUhFTkSBEq/TutnKjz0/d909+6vrW/VVlRy9IydA1tbGyY/49UZWx0HPTsUHRLy9y1Ve4BNeEy4hh79wmqt7Qoqoo7qRAZz0g/b98ne+mXPiuy+MMVOTNuv1U4TquLG6iWpZ21uiYqltfKkLTN5V6m9WvFivIXsGVWENFbD0tEzz3vfAsAYOtWWeeqIAvKkWtohlHjnJkCGF0AVxX0yGklT05PxoTok+UGfN+DaqYrZzQgl9TlfhaQO+zlycti32pb7KCNCi/rMlogn2hkiHK3pB7L67IvlziXgsTGyBZpZ4NJtyucD3o2XKllSFVmmWWWWWaZZZZZZpllltlVWIZUXSMzT6fGiUbPsB2gTGDEpqrd2Vg8e8uQJ+/q/aIE5N0qyFGDT+blnBTWmfAQnqMyCb2WX7xBnqr3XhRPwK5V8VpUIZ6hfecktnfhdz6Fws/cMVDX1n8V9CT3zFGplyt5CZ4jX+u568TbdCkU9Ou+tXE06uLB/PKH/yUA4Ib7RdXFYfzpMJP+XVqQ69em5f2W00V1q3ipzhwVD8BteembNj1wna54JJbvEk/N549IXHClSfXDwgjGyV06SudV5wbx9JxfZxkTVDiMRWVmzBIPnMbjPhMsY+06+U2hIR6v1bLUxwrF07FOT9Q7pwQZCPNMiDozipVVJkLcKt6ip9rivTpeEM/z647J56+tSBvcFhO0/uEfSf/cdwOGqRjYYj83o0HvWmavnCVJgjiOL8vBZPV9nuaDbGY95UB62lwLcageSPmt5qOpjIgns0u0KccklXl6P00eK7uEjTzzg4yO81XmZYe8L5cqTZqXqEDPYRwDlqq+Ec1ILOUlSfkOtL2DXCJFrvwkhEXUwKX3UfvBSaFaAREVzT1kocd/qW3Iumg1iMAYTs1grilNYGsSCAOIclSxI3ciSBRVI1+B6It6Sv2+ZKFKkVJ+URwoiSoZKNP2NG8Sj0LlIyW2Uagy+afYPt/kllLPKseDnduuy96wvrKK5Uuy1ytS1WzIPGh15LVM9Et5YopO2bDgpNQ/PW8wx06biFhAl31IfpRyoGLbNvnSXM25w+SoynFTlEt5giF5M57jalf1IAFVA4yU4+WYuvaXZXKfWZb5v605vlIJqQy3KrXG7KQvqbKuQ8ML+9bmJHw5FsURGo11jI3JPcA28lU2NuSsazY3sGePnMPKu1H+jyJEiqoo10lRz4XFi1heEsRLeVZ7ryPqQTVAVdQ9c0r406PDYwOfT01MY9s24Svv3yfRL8pPUo6Rjm+TiJrmCUIc4vBNB+S7ymnhfCoRITnPs/6mA4LQzS/I2Ts7Ifvelre8HklCtJjj3OJe8MADEuHy1BGJNBkllyfg5OmGISxr8FZWk+0WqW6nSJLuL2r9OafSCn36WTqKQd/XPX10dNTM0Qb7RsvaulWiUZR3qGM3VZF+mpiUcaiU8/iu971byhsusw3ym4VVuT86++wRtl/ucbZukfH6tV/9LQDAPffcg/W1MwCA6oicFf/hY78r7eb+r1EOwSi5rUQFp8YrOLBbkLHXMWJq33VS91pd6uFQua9NntbGmsxTh8gRKiMAOcFgQmKEMqa8lUXMCK7QodopZL/JBzZizfHFMyqvh6Fy2xy5jhEBZZsKOY4xLMRd5hjTvGQch05drldSfqieOxtERWcmcOmcRD8ZXiKR2jQ/7sUsQ6oyyyyzzDLLLLPMMssss8yuwjKk6hqZeZZljCgcPk4/fhJTx8SLtLJDnrT3/sOfBwBU/4+PAAAW/y/JM7D9xyTXQ4fe7FZeylqqtLEA8VY8vF88P6956vMAgENr4rVJRsVDYv3/ojSI//FnAQBnf+6j2HLfPwUA2ONS7pM//c8AALczAPWZj/y0lPU9ohiYG5On++t5Tbzvn6LyeYnB3v81ebX/XDhEq98j3KpyTTyizxbF83LnA89K3fcPg83AW8V5hMcOCYq1f53e067kP/jgZwQ526DXaVgdkpdqCLeLut9wWbx2bz0lvKeLOfF4bWkw34Mt/ZFbZm6slpT1pf0zeM+zonw0XqdqEFN/Lc+dkTY0xDPTJP+jTCBp5MR1WKdX7LpPSTzz1oMSf3zIE2/etgXJYP6NW78HALC9LeN/4seF27bzO34OIPI1y5xfH5+QDtmJzF55s2BZFhxVvSNCYxTvkqTn1bQ0H8lgLqd0vpIOvWRFZ8igVgV6PdWrHFDZaPtu5i+jZ7dtEVHSXGWhh3xO1voElT3zOSlrqS3zRrPGlzQXk3Hth+gqQkCk1oFyaeQrDr+rCIKV8sbGcdjLB0KPoapyebHyZELWYxAFqxQ8lBiH3m2KN3dxXriO68viGXfz4uWsUR2xsSpeQeUxFQoFTJOzUyqRQ6RoDpGziHXvKj/HU6TGQ8K+sfo4E4CgWEAPTfHpuY1VDpB+xiQKjYpfEAyqzkXdHpoDAG0iC62abCjnjss+1mzU4ROZUvdqqPlRGKUA5iKzOe6qYmYnCULOIYvjG/G1Q1XAJXrKFakbHWHUwLDsL57tGP5N3lOVr8EcP367w+oR0SNPw00cBFwLEVGHiCquAfultrzKdpMImLIgicE0NOZ8VMTOJKhS3pRy/miWbfc8vhxf5b/Z7qvvtiWKIqxvrBn+xyhz/8xtkzPnyJEjGB5RDoeM1bZtglwtLMiayXnkkkA883NbRdFv+9xWPPXUEwCAxYvCxzl8UBR2N4hE6V7ms1e38bq7yOWEFWNxTdZgzD1qaUlQNOUSlYsylyamBdHYMi2RH9WJChYvyT1OpymIwOHrJJLli58XlGnPjFyvMivtHuUcPX+RaICbwxrn81aqm+YpETc5LOp273zLa6QNobShUJT+eurJb2CjJb+dn5f23/U64QU9/ric+XGsIUTyWuRequtwz85Zg9oxlRt8cnoSoikh+Z++iUZSNdjQ7C9DvHcAkaj5i4IMvv3Nogb8ptvkPub6/YLsKRq5c+du7Nq1U/qQa9LivpNzBM2LSeh+/FFpU/eQXPO7v/deAEB1dATnz0h7FBn7J//r/wwAOHZM8iCOEDlcWZGxPfKovH/j7p3wGDnjEoGCL3PV4f5/8jjz0HEJH7hBIqsC7kdJ1FNs7S188iz1XNE9jZEMJZbdCNcNIpQo8t3VM5RnJOdjm8qu41NyDxZFcu66DmArN5ZnhtUl+khkfo18KZcKi3GJOQ9DBxXuxVFN+mGqKHO12Xr+/W0zy5CqzDLLLLPMMssss8wyyyyzq7BXn8vn29R6SJXyZPg4/9Q57M9RVe4N4mnBza8FAMTL4mloQjwA6KgSlniEXD6xF5Y2sJWe5uoy8yCopy8Qz8AxPh/vf+fdAIANhrYOo4yKJR6XGr0XBfKDTtNbaX3/O3lZ8R6Ns6wQlO37Fx/CUu2fAwCGHqPX5muiALT9u98vZRWkLROTUoZV8Ey/qPMG4mjAcleuv68qngBLhWKIUGkv0GmN0moTriueB48f1tQpb0n869CQtK1G71LTlS+2bea0cJxen1F5TV0Kq2znRJF5IZjigzQuWPUOOopk0MOl3LltNlWOyuLxm6XXaO2T/wUAMLZAOGxlBUEkBQYd8QDtf8NNyOxbZcKZsmzNrSPv6t9xHCNRZbRNOFVppMp8H7FRdbJtmS8tohtNcg6n5oQnFRIBDaAKR0RfLq5hiKp+DtU4Oz4zzDNuve1oHiFynJQ2FFlwiHw5ymUxzR5U7uvxhfQL/I9jm/URsgx1PhYMZwYD7VZ+TM6xUeCiP/Gc7G1Ky7npVvFoV4fJW2R+Ks3jFBN1saLY/EjRjSTH78aaS4xVJrfDU/6Q66KjiKOtHlN6SrXq7KzI5EQx2ZDk/TA0W7jPqANFtRKfH/D9OrkPG+vyuroi3tCo20FelfjooXW4cRRKORYhZeT4vbzxkvsG1cgXC2y//KarinqKahWl7tWS7L3lHPkSlgU30naxP3yOFdEm+Kr+xXrQWxwEEWyDfPJFU36x75bp9VUOUC8/FeeYlfR4UQYBZu4pTUumn+sE0fWYJL1y9MJEW0K8NI7Dt4PlPA9bt241yITmR9K+e8c73oGvf12iL2ao9qbcnnJFxv/YUUEVvvLgyYHPkbSNmuDx4/KdL39Vci2q91/5UqT/Yagkc+SJJx8DANxww0E0qHK3wRxKBw8ImnKRaFK1NDJQ97k5uWauVMTc7E75LvNCKtp23we+DwBw8qhErqzR67++JIjSji0SURKEEUgRxfwZ4baMTMoesWeHlH2CfLC1DVkXpZz84PoD16FUGMxlp4qdb3u9qA1qpMDtt8vftZrcJ6gq37PPPoubbpLz+OmnheP+4IPShzVf9upFzveqorlUI221WqhUBflIeP+xxr3gf/rwP5D3yds+eECQKh0XvaZtu6gTqfvc5/4KALBvn6B900QVL12ScXjL3ZITU1UhK2WZH+HaOgqO1Gl2XPo1xwU4RpRxjSq0CZG13XukbX6whq1Uv5uYlvcefVTmY2lU2rttn8wHjXLAqFxXqU9B0UJMRdxconCe5pQjP9bjvsP9MCJfK2fZyCk3i+u81dFcg/K2IqZF5j6sr8h9ZJ7oVNDtwiGM6CgynxAB5xkV8HWUyn6NDu9x0YVLdUOHESkL8zLeZp1doWVIVWaZZZZZZplllllmmWWW2VVYhlRdIyvTA9gYUiUu8ch8/d/8JjxfvFO3fFS4VI2qPHF/YZ/EpL7tGDM2MxYfM4LKtOginIg8xMRvpi3xiAyDsdCkPe3k87G/Rcr82qiozGxfa6PkSw6JSlW8IxNUmHp6RmK2b7GZ/bol3owc0xDkmFk7unkHJn/lwwCAhdf8hLThjx6R+vyy1HWlKu19w9OSD+Opd4lH5tz8ecy54kGN6/LEv31avAePFuU3e/j3MBGjKZ9yiTo9p1vo2pLjaYH5N8ZZya2Relzl73NF8W7Mj4q3a78vnpn7zgd4ZFjq2iC6dXoH81CdpIrS4fcAAO6+X1AmzEj9NvZcREDv+A1T4iWMCtJ3in4llRsBAGM/9SEAwFf/7LMAgHuX6H0pFnB8UsZuOz07+xzmndFY4k0QkSRJ+rzAmV0ri6LI8DRULS/p41Rdpv6XGgIdk96rjl+MLj2gBSKb6zXxqsWerNNzzOOUqIIVPavr9IaOryeYmxUFryF65uabVJYi53KFCnKaE8QhlFRKujB0MKreJUS6FZIzqmuGN0MUjCCA47mIOLd98l0sRXsiVWOLtRD5DdHcXTt3YHJS4t3X1mv8jayfEtXupibFGxozCVZlu3hjz5w5I0XaFir0puf4G591VEW/xO5xqAAgX1ZlOxuWr1wyerA1hxI7JvJVKdEku2Fb2B9B3OMdWYNcOs1PVSNCdeG07DUhEWjN82MhMt70kHPHTsidKosntVmXPU8ZRAlRyXptw6B4BVWX5HnQJspk03NbLcu+VrboQSc6ZSeATx5Uwn0ypNKqIkU5S9UY2XxVlnQ8g2IqetpmJEWT+YxOkKexpDwF9ZhrHyexmTPK2UvvcQ4GlSRt63IUqrcOOc9efUAVoihCrVYzinGPPSYI0RAVYTc2NkzOqtktsjYefuQr8lvOA+UY3nSznDXquT927GlMTAiX2Od6npoRvlOb+ZtqzGlX5D6wvi5n2/iYnKcb603s2C4cLUWbVhflvmX3DlG81bw9o+OytkepRopCCaAS5cSEnK0nn30KALB8Scpqce+KiPaGTF757BNMAOm4JnfeCOdRyZPz8exJWV+KIOSJZjY2ZP3NzW1Fwrxvmmuqp8bH9wvy20tn5T4izZM8sHsLwpaUd8M+QeAqOc63irRTlRWXySU8f06Qoj/90z+Hzfk9T27Zfd/3XgDAjXt3sg9lf/OZh27PDXJ/dOoZyUVoWQ6OH5N7i0OHhA+mKp8XL54C0FOB5BFi2l8hktJttVEmL0+RuTbRxxXmGpuikuyzz0mZW/fIWOatPGa2y2cjE3K/Njwrc+roCVnni8/JOIyPyPciRXC4PwdxF0mXZ9Ewc3lRBdtwSBmxgUD2EIdnSxICcYMcNu4FRbY/IQ/UD8jpJXd2iBzDiKibky8YbpvLPdFhlINFScGpOVkXXe67SbAD6+4AACAASURBVEe+3/DXTe4yRbnyzAuoecqu1DKkKrPMMssss8wyyyyzzDLL7CosQ6quldEj2KUgf4Ueuk69Bm+beAMuVaW7zzCufua73wUAsH7pNwEASw98EQBQuEPQppD6+20HSOilXMupx0me2mfFmYu8L9drdHhdoiBlhCi0+CRP5GmIToPIlif9yYA5BSjcQnEhNOld9QGMzklMdpVehOUV8XTNq1LLJfGErhPlmjsq6NjhKQABZf9CicU+xQf/6YOvk7ozlrXEuFtbw3BtepHDEHl63j3Nqq3cDxVmyY2wrlKWR+/eSIceaR94c55KYF3xrF54Sv7elRcP1COPiqcIbSm0XhfUzfJrqKiDlblwYpu8DtbD0xDiCSmro7CGp4SyAvJUK+rQAzwxJSpKL5wFKbNvhlmJhVyYR0y/UsD1qkpHUegbhMAiqpFYVH8jqlV3ZC44RZlHY1xf7VYbhWGZjwGRkoIrY18jp2I0opdtmWgoVSSbDfE+ju0aAabE27fkymchrzvcEK9w0ZeZQ8oNkpx8vhb30M9SV4lWsjBNlhZ+bvIj8bexclvCHqczZ7vmPQAIfS1C5nbRUySH3t+whdCXdikvUsPwXUs2mbArvylVpJ+WA1mTQzOyR5RLRVjcCNpNzdvD3E4VqqSVxYOsanRt7oGJZcFypJIBUTWL/CNL20Iyj0VkyNYcTPRw5xNd2cA8FaRyJH3UlgVlXLkk+0PcEu+0zb2hoAqwroOEuVUcKjkmPHKtmJuc5t1jn3b4RuQU4bJfA9bR417mMSpiSJEqW+ZdGBHJ7PR2FM9SdcsUmqqIHPdJj17hkJy2fKmChQ3xdoecB3miAAvz0u6FtWW2U67R5RnosI8LsW2QwDb3XkfPRXL+TA4uohQ+x8tzkh6ny1K0lWhypAfEq8cSCCqqyoz6+sQTotqXy+WwZYt40c+Sh7hntyBECqaOMT9Tkx59i3Np1+79BukbGZd1/bUnjwEAbOXdsX+LRHve/37hQleoUvfMM09jcV369ZljguZojqUbZ6VeIxOTLJNnWpVIVdBEk0hUnlxKzfXT5dqtcM2OjEg9duyQXFh1tmX3dftw5uzZgfYrdbHDfWCIOacmxuS6OW58S8vLGK1KO7bOCppz4oS0YXKcdaSCpP5dYV5A5bTFcWz4VUUSG6fJ6Yo0d19NSOGvOyxI0jP83o0/+2F84xuSQ+vYKUFz5iYFgRwmD7Sg0DDH448//Wlp926JRsjlCoZDVSxKWzTXVRDJdZbnZZ9xieBtJaetUGKO0nEPHnMb+kSmbZahiq1LC4IM7tkl9x6khOMt73gHLpyR/r+4KNdRpdRd2+Q6yu0dG5Wx3Vhj7kVy7EqlIYDjnLDgmNyqgMhknih+QJStQxTIK5ZQ4FnZqVHNj4ilu1XG1FUFV+7VcSB/+0TQg6CLMnN8JdzHHCaJbTF3YInzs01tgoT5EUO/gyne4y4uSd0u8XVxleT6K7TsoeoaWcBJW9Ewm0cEMj242sLEjTJYeFIO45khWdA49EYAwNLwvwAAXPhtkUM//JMicb5MAl4RJViQCVzkobNHj3xijRuWTKYS5TgnGBe4uxsBLT4ldeQ7w12Z8JMtHv4Ww1h4SGvIjD4ojEcRcEY2uiaTZQYjJNFqQsxh2RAK54SAeuJ6ebh4uD6P3WU5DLBHBDqK3yXJ5Q78xC/J+3zI8wskbxdkWi5ywU/5FcOfr3Rkw9lg+CMDF9FmEz1+b6hJyWr+3S5dwpenGE5UYzjikPTVI21py8IBCauoVGWTcPnj8koe1/u8c12Tm0CPyfV8bmIVDQ1blo13qKULkbEqF+oY4iaxzI104ubbkNm3yCwLjuchxKCkdkyiswUgUXES3gDGJgxJ3laZapUBH65o2FULrTqT2fK7HmXH9Ybg5EnZH2ZnJJRi2xznHG9uJ8bGTeig3jDpZ5pzM52MUm9QHcd5npDSwZtYE1KV6pae6EZiPoxToVsWQ+kSFWHQBybeMHieZ0L2lJjfbMn++NxJudlRwvzUjPRhmekemg1p6+rqGpYZImnxOjOUcE64pnw+AGofxwzliWGjmGfojoZF8w4t0nBhVtrS9akKFka4IzY3NR7DjVrr4hyaPy+E+ZaSrFUmWEUY+P3AD2DpecAxbNLBtUHCvpuSB9c+dl3X9Hug4S1KwudvNti3+loalk2wwHnp2g4cN5XcmWeKysVr2KelSZfZPwvzF2CxnLWalP/Uow8DAJ67QPERLg/VQjGiFJoewOq992KWDrWNe8opZvzN/NN1+SqycqmE17zmNUYEQR+q7r1XhI183zchWzuYQkFlsUdGZG8YGqIIFAZFGVbXN/CVB78s3xmTB5/HnxQHoUs5apd7SZsiFH/1JREhKJbk/VKpgNFRnotMXF+d4M1sUe5XyrPykKX+QpXy7yydg8v9Js8HAg1NLHlSvt6Ab9smN/MXLsl9wvQWCaNf2WhiyzahLAwzJFGFCL7+uIRKLnE/mGHi5FZdysy7vYfGecrPl9lXOaasGGbYW4k3/Ru8ydbkwPPz8yb9wAYftGb4kHvpojgRcnRy+G25brtOwa19B3D8Wd4rUIDmjteKY9ymTPnJZ2XcJ2alvYcPH5Z2U9q8XB4y46lhx5rAeIz3i9PbpT4B99kzFBApT0l/uKUyynT2enzgPH1MrlsakX4Yj2UuzUzwgTGW8Xn84acwTxGlHEOWt1MgY5jXj5kKps4zZPjAfukvPjjnPQcFSwWBOEdN0nE+ZK1K3wV1fVCWMpeXL5q9ssDvgmOTMIG8S8d5SAGfmJ6oIr+fRIE5i3WvaLXku+Uq6TJMaaEP1W06gka3bEO9xaTGdKKhJHOlu67SaVdmr77dKbPMMssss8wyyyyzzDLL7NvIMqTqWhkJp3mKLQQPSDLYYtTG2uPiRTr9wR8HABw/L16ad7hCDO3SWVpakBAYNOQJPB4lcgMXFt1DKpHsahJFlbOM6SUmQjXGuLgAPjwmQmsz5CWhp7nEEB0UNKRQPldR+HGNFWoCeEzg7aW8fFrcK16salt+4zNTb21MPB83f+z/k9cDcwCbhTVCwzfSa0zwR+XJ1R/g01FBBXaUCxZF5oG2RtOp6QxmP5Q0pyY9z3Vm8juyp4J7vvoF+XCVIQEqt1kRj8hz61LYWW0/rzpWnUS4wpATekIiwttGm0D76ogQdMdK9KLPy3xwSh6G6Pn4AsniB6x0YzJ7pcyCeMATRagU0lTZaAuXJy41qE8PEZK/1DdFkqxrG6+jyoJb9mAY1pAm0iTB3HF7CAUgMq6KKhkSf7oNqp+hyYhVdMOyeqhVSuTgSs2yLAPJ9aMGQA99UPl5Ldmkz3UduPQcV+i5bhOZWV4UT3KxIPtliZ7KkMkg60RFkjAyqIom/y2WVbhC/k4ocmEzFYPDvosSC26sMArFJYj2RIGON/fLnIYFsr/Y1Liv3TG9mx2GOAVtij0ogmjQGPlPu8G9N4jgeDpIMldaDHcqahSiJi6mOUaFITaf9VCcaOBvlWlXC0LZez1Px95GYoQfWDeVKeb5EfJVuytQGXvHRY3tmGc40IV5CR3aUJK3TnG2X+XRdS+OYQIFzH6s4Yf6ty4TjY4ymjBxAoszykppujtpxZhXiVmWZZARlRxXNCKKIhN+dv689LOKLtQYDtWgd//ECREZuOOOOwAAxULJyJufnZf1dettElq/nVERX39MzqXrbpfv6bUuMRxsY2Md9YaUX1Bknt18fkHuV8aJMrmKIHC9DW/fgmhF1m2XoVi6dsbH5D4hZKiyU5DfbiMaZ40KclJttgEio8Uyk54z5coutuELD/y19EdT+mNkTPaOTqeDKr+ryX9VVELNI2J24QLbwjDAFaJhnpc3ZRQKpYFXTZg9yb1akZtSsSe6Y3Gm33SzROFcPCfo1vwZGavJKUGZDt4o0SntWPrpuuvkHrBYLOMC7ws7FBdRERNNRuyY5N/Slzt3CbJXnJQ+PvLsURzcIbE7GikwNSOfzVG6HhTTUcTm/Flpf7PdNiGZCwsiaqGhiSpAFLDdBZapqS3KZYZ6xmEv6brhklCIgmtXxXVKKp/OTaSYLyBuUlSHe7bF0EBrXObDKu+Pc4z6KJgTsbffWaRbNDcYdjoqY9ri+eNTKGaJ4kKzTIXT6voYGhM087l5ufN85rigvYdfexdeimVIVWaZZZZZZplllllmmWWW2VVYhlRdI7O0JwN5an76AZFD3QYfY5RIXQ7ESzDFBGnnWmcAACP87QglHUERiOY2JpfzbNQp2rBCmU+4hEYI4RQUXqKkZ9wUj1WAEsKtEqN8KpZyR4jM5Hz5Lp4VnsPYjeKBWFaligav9dWnsfqnDwAA2rZ4Hq577UG2V9rSOScx2pHNeu0SMuf56hZMVRlPSygqKsh188SmXKvIv8XzkY/ordccvUnHPP47/I3BeNhutyLeqyI93sWY8sYscyXn4FxBPC3jW8UDU1Inscv47hHxblHgHtVY2lpbWoWvcb4kXAccw0Ko+qZynaXP/LnUM5GxPMZQ3uutGtoQr0nueiEg+0zSmeFVr7wlSYyw00Roq1dWxjFSLxl6CurqeVKPXcJ3bJUjJ3qco5csiRI0Of6KBBQcmT8ekc7DN8n6GB2TCXLs2JOsGPk5lmU4PcpUj9SNn0KOrEEADTaeB9XaRJL/Mtn4PhTA3gTcCrjGI9MPRFAIO7heHvm8/HjfXpnrUSR7zIN/I/vIc3NnAAD3vlu8kLYta0FRp+GxUUyOixdbBTG6lEm3iBKrHL56NhNF4qMIPmPp2yQid0KFIMk1I8qVo7dd+zAiGtRqNdEkubqxLHvpKoUZfAo4JJQDvlSTzxMSxRIiTBYc5LlfKFKl2jseyebKS9FkpeqdDsOwD7UaNCMbzLorf6XFudak5HMURYjDwWS7ivZ4KkevryyrzTNopd7GY0dkTi6y/Q3OR4dzOLAU9WPfQdGn3pzqyX3AvPdCr2qSfJtIlSaXVkn7zqtPqCIIAlyaXzAJpJeXxBuuKKztOhgj74c5ZWHxjA/JfVb+x3u+8x4AQIF8qXprHe94p/CzV0iq/+hviPjVOOnbdx4WLs/encJ9Pkc0bA+RjbMX541oxPSozIm77noDAGCEUt5dlcrna4fz3PUqcIZ5ZjNdy7DyUni4jZMPBBW5IPcoHpLGxsMluFz7rQsy3/IVynPz7L3lLuFkN8htPEe0oVguYZVzfmZC+lCTaYdU1ZmZlH3m0AFBY06cEdTjpsM7pd9WFgynZmlN+rBDIFj5T7NbBKmbJ7fr9rvuBAB87bHHceSoCIPsaHOvHpP97G1vFzGyoyck+fGpC7IPDo8I6qXo2PLysuYnx9QY0ZWG7GGTW4ST3+V+4zPp+8gw70ksqffureOwNek7EefhPCdAS8bs1CnhQ1bIMerwHqcNH3t2yXX2vVYSEicOBcwqggi6wypCoekoGF3Bs62QjAJgWgvC1zHF0KK87jMypgqg+6syDqVqCW2NqiBnzFH+Z0vWe1nvLRW5JlL43LxwXLds2YKIqQIq/E5MJLigZdryG0UINQn8Rq2N40/LfGo2ZO7u3CacsYWLGjN1ZZYhVZlllllmmWWWWWaZZZZZZldhL4pUWZb12wDeA2AxSZIb+N4vA/hOSMDkSQA/nCTJOj/7eQA/CmGZ/FSSJH/5Tar7t5Ut+eIBmL0gT/43/6VwkE5aRfif+hUAQPVG8XjcypydFSqvnPmXklB36mOi1II//j0AwAiT0T6wvYWpeSn3+jnx/KJO+e/zj0tZvsRML77/F+X6LfFMPXHdVtxMD/Ihxio/+v3vAADs/ajIev7Vd0qiurf+q58CAEy893YAQOOLXwMAPPn9/w/2BhKDPDIkqjbV9/8dAMCXh8WbMjMtXo65xwmdUTZ9abJtYl8n1nS6iedrgVLUDVeQqz018dA0pZqIIGUX1x0g3gkACFn8AcWTSuLN9urikfHIA7hAT1G4Rq/D6QTbLtDDXBLPBoZEKQniPEJ3Qjw+O0ck7jwfiQfmT/beAfcpYVpt/6QgcoX7ZDyObxePz9pnPwIA2PIbfwYAuNk+AAD4m7cIKnZprw0H4gn5rk/IfIhHe0pjQE/NKY0qbJYU+G+rvRJ7ThLHiLptWKr5bQ/2eZxYBhkynCkjSy1/qpJcpMlelZgSxwatcOl+HBmVeTIzJXOuTLRY4/UVBVP1LMSxQRV0XhiOj3JLUgp//VyTnpefb1xhwlS9hmVZPX5Laj7GUHSBCYM1KSuv71qWQZxGRmRNz20RJanjpyRef2VJ1vxzZ2Tx2W353s7tsvbK5bKRQVeEKqBnVNGXUPlq2jai6GEYo1mTDajelDVtMz1FjqiOhha0u4aEKa8c01q7gUZDyuisiee8Ra+ncqpieo5DTbALnQdEgzwLococUo/esQeTECtCpWOpKFQQBKbfVQ0sSiEFyovR1w1+r8PkvFEU9eaQzo1IE2hSWZbcBo/XV4np4+cuYHFVPLSabFhlJ4NEky9z/zKqfxiwxEpMcusXSmw++HlPndLM65Tr1/AVr5G9IvtNkiDy24h8GauRcZnvyps6cuSIGcc9eyQx7MnTwsu5nsl+J8nDVOXZAtGGiWYJp8/KmRY25ebig98n9w51IrZPP31ErvO4SLgfvvk1AHoKg3fechhbiMTU1ohmUEFuG/lacUGur0hCPk/VNcdBGAuq6xGht6oyR1pcI0WqnoJpAXRLCYkkB4jMPPe4BSaUCldEZHhGIklKJarRaUJjz0VlVdamJiRuUpHuwgWZw0cek3uZubk51l3KXuGesbqxjt/5hNwP7dwtCMXyivTlO97xVinjmCBU00xcfuq0RLjYcLB/jyAfz12Q/W1uVso4e072t7vuknuqsxflN2qLTJztOI5RpNO1qujxOhUCPZ4Zw+xLXQUhFZ87jSZAdC8h0XOIdb1wUu4XqxNyv9RmEt48Uf/R0XEUyS+KycfKUUJfD48eT0rPFvleEpNHZRUQEqFKR99ocnONMgA5tbkq98ecjWKlw+vId0MidS7nWUxpZ/07YRLgyR3kCXZ9lDW/CBFhjSaYvyj3b3O7BKlEUz7v1gWVPHp2AZ/6g/8EALj5FuG9dbjvLa68NEn1K9mdPgbgntR7nwNwQ5IkNwE4BuDnAcCyrIMA/i6AQ/zNRy3reVKkZ5ZZZpltbh9Dtudklllmr4x9DNl+k1lmmV0De1GkKkmSL1qWtTP13mf7/nwIwPfy/+8D8MkkSboATluWdQLA7QAevCa1/Ta2PD2hWJFYZVU16RTy2LlNUJyO5k4w3kP5ze6bb+ZvngEAXPiTzwEAhn9aYnZLp9exj3ycha+Ix+EPbrsPALDFFU/EkVPiifqhrYJQPeWLd3X/D34YLar85Svi4Tj0zrcBAB756L8HABzekPjeJ3/2owCAUz8jaNd0Ua65e3wOXSYVXtoinrXdOyRGeq8lbTpNb/IaeWOjjM0vY2vPf556hB/UpYJxq1upz/u/VWOMdDuU8vNMKAx6t+DL9XPkj81QfWtrPcQXXvNmAEB8g3grVs4IcrW/I2U8UJCyP/zXfyRlUUHIshZQoBZh45/8IwDAwx+R9j67Tcbw+ovi1d4C5l0gp2v2vRLrHiLBzAmp06/eKYkXq7eLes8P/MlnkFnPXok9x2+3cPqJJ7DvteKx7RCh8BN60hwHrabMhzK9+XFXFeSoyqYKbuSadBi3Hvi+yXE2PSOchZ1bxUM6znj5ZoO5hZibrVqSeTQyQpg2TpAQNTLcKppJ5Kp/08kfsg2e09vW9b1kE/eZeoF7bwyiYP3XN3lUiOpofpAOlaQ0T1OxVIHKYSpnxChJkTCyykS+D9wvw1qYlT1o7N3fyTbYCANy1Xgdm7H7YUjegvKTWK8WlZ3a7TaeOyuosPLdtm6jh5L1sqhKFdI7rnmamsxfc/rEUQT05ubIKWoyP4oTqUdVEwbLq0l6W2aeKDdnkKmeUWHV8MCY568j+1mL+6bruiaHjXqs08jVBtWxDHKlio99KpBIIUHKR4p8emqJ1ClCtkE+SWTn0VElQCb31aTXqtQYRqm5oxPScKAMhQ0OkUGbzx+JQeflb82Xpbw42+lDpGLNqaYcLpPC+prYK7HfuK6LiYkJw39TW1qSuTU7O2vG9cknhH9TrAgy1GrL+4UhmUtjXCsu18XFo8exe6ec+4srzF00RJU1vm6ZJS+mMM32EVGgKt7M9BaTdPYbbSkj4DiDams2+TA2uckxk9Lajg2roDKOzHHJXJPoyJqsc41UiYL4gSLEVHLL5WCXyf9RfiuvF1ANr0POVyXPJMBE1gpeDj4RkMkZQVcKXMd7bhTu6o5Tctbq+pqbZq4rrvEwifHGN75JrhfKdeNYxuaZY0zyzXuPd3GP+uxfCn968dIi1oleF4mUDA8PsSkyZ+cvCYK1a7fsQz5zhepePjo6ipUluR+JladOjtcouaXg/ChzT60xJ6Y+05fcHPI8R+pEz5eWBAnzyD/qMDKiQn5U2CX3NAhQqlKJtcQ5yiiOkI8Jbsgx5Vr2lPyn4pywTXJvzctnpY8XJrezqFYdk1celRxYLNdXhIr1cJlLzeYx2OCYWdwrOsr1tG04zEMGJox2mGR+br8gh+C+F5Dzd4pI5if/8M9QKEs/nzon9/BzTHp8nAmdr9SuBY7+IwD0rnArgHN9n53ne5eZZVk/ZlnWo5ZlPaobS2aZZZbZFdhV7znd1INKZpllltkmdtX7zTpl6DPLLLO/3XZV6n+WZf1vkGDx39O3nudrzxtMnSTJbwH4LQC47bbbXvWkkYiKdc89Ldym+VmqjLz7nXB2iJckoDKKV1SZLj7pf7coxPyXf/TbAIDWaYn//Hu2eJ8mvC1oESmpQjwg33eBajpN8Qi8DuK1eXxVvBbl//efy+c//SGsQq6jvufZd78bAHDLZz8ldX7vzwIAbqqJp+JwLJ6wGsRr+cTuPPw3CUfobb/zG1KIL96cqYviVbhAL8Ozo+JFubMqXqeF2gVsqcoTvwbaJlQwNOASBnkt6nmvalSFm8PjI/L/Z6i6d68rHn/fl7IWhiRWeVuBnjFP6tVkLqq4uYY35wQ1aD8sfVls6nUF/duunBiiXVg7I5e3TsGepKqMhG7jrWtS1zfPUz0GggIGtwvy0X69cN+Gf+pH5HdwgRXxTn2gJWN1/8MXkNlLs2u154zl8om1tIJokSpc9AZ2yX0JrMgU7ZPDQ9ElBPx7jVybJr2f62vy6jgOXn+X5LZQXsIw10PAHGU2ve3rVJQr05NYZg4YG5bhNynfSs21+5AIAIgHvYL9qn36/zjFi1IUQMEALSv0e+qDSPFgDMdF0Q/Wz1XFxES5X4DFOqsyVORSNfR64R6sbhCp+uIXAQDtS+JZPXdKVLSioGPUwBosS1EuRa58erAVbVH0JQwDRK7UTb3/tYYsXOUQVYoyHiG9njZ/u3Fe7pdPPfKg6bs5clfylnr3pV5NyoPlc7KT5elZVSTHj2NE9AynEaO2Jd9VDlM/l0r6sKd+1ya3S/kXihymuVYqG9dflvJ0zFwiAqllmBxnhs/JeQEDECHmOogVXTO+2EHEyFalP4NY9XmqFSo1E5JRCZpOTP9WlG3gt6nl/ApyTK/VfjM3NZb8zUOPGnVHHSPt/4mJCSwsUBWXaMMk+TB7d8t9wJ6D4m2vc88IOA8LExWsdeWhrTwp+1ie+47F3ELDM7LexgviyS8MyavuC7HrgrcwOHjbrfIfok4tzuGSIkmRzKm8oxwbB4iaA581V+Q8Lo4IElEdIdpCtCdHxV+9BY3jGImjsoeco4z2AN8fnhIV45hz2uVcjuIEMweoRsw56Oa4FpiHbny3nMfTRjFTPh8iyp4bG8bQuJT/G78uOTbf+Ta5T3r6mOxJw2PShnMX5dx+7d2CbE1OT+DUGUEzPvFv/x0AoEN0cWaP3PtNTsq9x8qyrGXPIx9uXMbY932z3jV3YYHIYYcoWIt9Z9aOLiUiW4WRYTRrsp94XFhLzMOlufNuOHwj+q1Wl0L2bJuGRWVGj6hft8m9K6dnEudsqLLMGjHBv60Yyh1N9LzhujdnA+9FlfMV6fmTAKHm4eN9sUdktktF3BzrV6QqoE0ENcexDpttxEQz7bZyWblHkR+qe0eDnKr/8xeF354bGca73303AODUKcktdv6c3IffSk7j736mH7ze3F72Q5VlWT8IIXe+LemxTM8D2Nb3tTkAF1/uNTLLLLPM1LI9J7PMMnulLNtvMssss5dqL+uhyrKsewD8HIA3JQnlXsT+BMB/tCzrIwC2ANgL4OGrruWrwIYc8Tz8wSPS3FxOnoSvP3wQXePZY2xont1Oz5/PPFLH9ojXAraq7Mifj28rY9ZnXD29o5cgnim3LB6pW0fEi3Xj3xfUK/cBUedbgYciHYiKDIFeUrxOuFw3/P4vAwAe+nVxxq1/7lEp8y2ienPHB+9F7o3ivVptiadlrMJzpcW4+3Hxrhw7L/U62JbX66oHe5OM7Qn46tGrlFMIi/G4Dutb7EOqTozwO3OC0Gn+n/yw/KYMiaVeq4l3qzUtHI7zeXIUqrO4f108vYUJ8RrZ8/LZTcxH8HBbvHnfu0GP0LDEn1e2HMJ8S7wWtYgZyHnE1oalXnffeq/U54PfBQDYdot4xpY55tZGE6gJ8vf4VvnN0uF9yOzK7FrvOVYSw+v4aDEuvVog2sDELkliGT+8UkcszReVUl9L5xr6b+y9eZwtyVUe+EVm3v3W/tbu15u6W2otSKgRoJaEkbVYgJAEgwDJeNBgBoYBBuyxDdLAYDPGMz/GBmQZkJEZDDOAJFsgoZGFGbGNAYF2qbvVm1rdr9++1153y8zwH+c7cTOj7n1V1fXq1X2t+H6/927dvLlEREaciDjLdw4dPIgDzORuqE5cWVJLCbW71MqpBnG2LX1S46H63Z7TXDpLhCt7rrq4egAAIABJREFU2bqwHR/uIquf1I/aTjOacfJqiDQfkean8mJ5iqmJBpky9zFfV13aqJmJ9rNB+bXGcfsk87msr6053/0G2b7qTfrLM6Zggy5VXb6HKjWXxlpkKeOhEmnvBpmiamqRUW03WaIWTwvj2eUnha2rd+Y8mtSI9nmt5meC9XgJGEtlKeCUNbI/SJ31TNvfMk6pR+3qyhpjOmg50vgpiwiXqV3VWK4Ll8osVD4boKmQhZDPz/N8yMhHrbLWwcRlRkljytZPW4qXKvcN11fGGIxUg26QF6xWo3vp1ZhN3W9jLKZ7iWstb+KkgpkDR12Mocb2tFoy1584dQrLy9KfF6akfoNc+sbiJbH6ZEsyx5qu9IcWY55bdxxxMSIJ5ZipkSaX0qE2Lx6KtQHdEDmdGsbJmWYFhtatiCsFjRWtaLzhujAFah+OKau6nTVM0yLUWZRzEvartStSh6kKrcutsnW9FoscMKgCRso80DIbyj1dEPCaqMWYK94qqVaRG66tKIPbh9WqJe1cpWUkV1mq8UJqwbZ9PHtavE1+7p//rwCAd/3CuwAA3/md3yllp4XoqZPHAQB/+4Viyaq2pnAzLeD/yzt+BgBw8Yyc012V9lhalHZfpGV64YCU98QJWVdMTU3hwLys/zTusU4ZUedcErEugzW51xTZAnPGnqI/QJXjukJrfo1rqBnmQLvCeKFuJnLp4IzElg0GGWLeZ/2KrINaCzInWeb4y+ltAGUBdHMID5sczjLE2GTjjftYPRe0G2gcfbeDqmGcGS1UeUyvCcZ02jWOC66B+7SKzs7Ie6slTXTPMoZMvRsopDbIBtvvSB3e+au/BQCYOyhrvK968Qtw5ZJcu3xZPp96Shg1X/mN34CdYDuU6u8F8EoAB4wxpwD8UwgTTg3Axyhg/8Za+0PW2i8aY/4DgIcgdsAfsdZe26jSgICAZzSCzAkICLheCPImICDgWsFMQg6cl7zkJfbTn/70fhdjVyDhEXrLwpxTV3VttYJLqgWPRRNTVcULGfPSOjUPG/Qp7oh24XKL+UbqEeYy+srmSqdEBhhl60qGEUoA0GLME9aqQ42iupkyZcR6bZUHmMmcZV7lPaaoZjyICN2zojWtz0s80Br5/zvq/01NPLpk95qhb3NjGtPKCcDPxbr8Nkdf4I0KYxUsfXrz8vnIekD3AovK/BexaG+qDYkD61KJop7a8Qrnuaam7u4Dc6IJOU9f4elYtEuP8aIZXtvmc2dVE9YF0LWlgxd5W/X7qEO0O7dRW11XB/XL8g5tNQFm5Xl9ZR6jVqeeSb+4Wp6qnVgS9gPGmM9Ya1+y3+XYLg7GFfsd7Vmst2XcNG4SC+jBr38pAKAXJ1hjHhRl+9tYFq3j8op8rm1In6/VpM/f9/XC9HhwfgEb68v8jXmI1F+c+atWl+XaC+ckjuIFzxOWKmUHK/rYu3gYjsc4UQuVxp9kpfOiaGgtUAtIPxltkSgxxaGohY4dvd6m+JuYdfFiqRLGYCRJxeWyukg2uT7zNVVa0lY5LSeaR2f9pLTDEyckXiG1wIEjEksyS8tye4oaSbb3Ci05hnJrlmxpnc4GNij+biXr4l23CuuWys/ueXmHl5hX5vFPyPyzcl7kTCMdoEWr4sotYiFQK0OVzFlWrYpsF9X+9gYyvnu9HjL+re+mQwtFpyp10ZgqjY9aZC6spaUl95u2vx8X5VuqEp0a4nLMAzC07uhzImrq/T6m32tZ4mLDLOOgrFq32N4Z85Rpjq/IFkyUoIGBv+U54yBo1WvR6hjHGmgbl343ZijzrJsItC5SrtMXn7phZM7C7Kx9/d/6RhcPONMWz5Zz58UKdenSJTd+Kkb6yH//trfKtW255gDzE80fEKvDNDX0tpkgb9CK1RKPjZpOoikZMS+J1r2yRBZIzjXtI2LRQa0OKDNhorFS+r7VMsu+QvZL0OrVe+oE4g3p52u0okzfKeOu3+D7ptW5OyPlrNIqZZmrM4qqMNp/jMaIStlzr/8r6+E6x0cURagp+6DlZM7+ZEgZ10vPsy5cR8XMb8k6Dla6sB05t8qYokful7yh5yj3X/ktks+zQxei+vQsFJqzMIHGPck7fPxznwAAxIylXTsrMZutWbEc3sL8fZcvXkKT8qvJHGZJSy3y62wWsq4yX9kac4wpS6SpV7FGFtFpMvmtXZL4uz7fi2E5m7Ss1WipRL3uPAAGtJAlswu8L/uFa1v5tFbHKg9HgDWUL7nPeroFog56jGWPGDc/SDVGWfpdoutXZVslC2xKlsTY5rCcZyKuv2yqedGkkP/qF98JAOjRQ6HN3K2XF6+gyfjDCxdkDa/9rZ+KB8C7P/xX25I3uyKqCBjCUO7XaWaFlRedmRoadAHTxlaDqO5nm05osSOuy8tcmJLBdRob2OCGrM2JjXsa2KoMnuO8wzH1t1jt8GHVoQsG40y1IAkpomtdGUzJlHTAlYgTrJp5s8xtprAiHb1yUJ57gRPsQXZOkMK8x4FhBwPAqnsfb6cbTquHuUhgOd2mSj/jCPm0lFFpXZtWnkfWa3B/5DwFQGILt6GsV9FhYPthuhwxtzAYQsu3BKh3JllJkRmguiCFW8vK55KCA9xSokKqUHWLRFMmPtMCzoNBsXwhc6TgzvRmAdcNBhZJahHTtWHliiz+Wwz0NVMzwyB/CmZNmKjufpqscf6gLBTmpnVbnjsCiIHSjTsuFhJCjGEfdK5chU104hFVxJ7Lnt3kHrj5vn7CVN+Fa+gOOH7zrudoHTIlyHD3HAada7C53k9d4qwuPrgwmmcyymm6nqwwce1Gp4eVVd2QMRC7rllBSQTRo9sfZeLKkpx/4eI5NA/IuOuSZv3KGZkoEzZV54wsNk4++iUAQI+EJRXKiJkoRoULxVOkLtfNSs3Vn5sL1l/p6VdZh8Fg4BaK2oeU1KRHYXzhMjfoXPRon8uyDKm60VHmuaWtI73gAd0YU/ipy58tkF1kTtiW+47WQW+V0H3KpsNrlebcTyDteorX3xxRisnd39nTcOFz55jy90lQBD8t5BkqbP9mQ/r/wqzIDJv2UON7zgZSv9tvFUXPAue+LhfMznWTC+JKcxZRS/p7mpAsheuPhCQDGTcKSV2TPzOhqo7pehNIVCWpiEqfhi86ocueCppk4SBQ5bqAC36ltjZUmKLPZNeUC3pnQ7lkvQ25QDdcSkygGyd5bpPujyaOAaMLIqX5psClAqhCl0bthwPd+7D/15Ia0FDWBCnjkWMi13Mm1FWtRUZCq9wWZJyT0Xw+qcKP3PoC+coF25MkhnjoASE0O8CNcbvdhqELZUJFNZTMgfI9UuYYkpw44iCSnyxdvohp9qecbsealqFB2RXbsvJkwD5XqddlYw2gws2VW0xZLoQ8eQPD80rz09MjFM8zg4QKFkPlgmGzd7rcCGt+hkKCcABIqGRDv4eUbXX+hCgrjpJK/ckvfhEA0OWmKyEx1J3PFwK2v3PHs4YuuVNSr7ueI+EZx48fBwC8+8Nv3FZdrm1q8oCAgICAgICAgICAgK8wBEvVNrAdzZgGj4PuJcuR7PotEsyo2VLzovGzXpE/ztFprdGU1zFDY5d6PdSrDUdrq3Sa1UzuX+U5M6oSpHsHGOyXVkEy9qGiYYZ/NWh6h2pgu/J5p1KlUlMwiIGcJlh7kEnt2CbHWO8BNZwZr6nRyjUFOLdDJd6IPNWman5cu+jPqsyvxbiYyHMbVJdOUYlCRQtyXOLN2U5VOU9DK9dgnNuUmujjtpx7i7qxpGwPNR0pw3qzg3WIFqNJ7WA7pZamI+9uriKauYxN16dVUK1uBkBT6URVt80yFhOtjsKku/7diMhgsBgnqNLqUd8QS8HaA18AADQPHkZak3e6xnd4Sa201K6+9iXiCRCzo8YDsVfmqUFMM6uy9INauJjXLtGCcttt4uKmhAaaaHgtT50lSK0cw37iWZnysnUrs9nQrYvlqKTqfqWaYXXho6baU6/ZLC1YCsrnrmsCR2p0K3TZyh2BhYUO3h6DipUyO+tJGeusZ4MWeHNA7vViupzkee4IILTeMd2SlPziwIy4BRr+foXuMFP5FC4tinWpR6vRE4ufkufz+K0p3Z/o4tkiSYC6x21EwBplydRFygdarpZ5TtqSsb9IS86aBlAPGGhta+jSSr/Bd/Tlc0zEnog70saGaoEpm0gwEGUDZ9FW615GSmXjud0lKvvVHRPDT02Ya3xLES2Dsad9tiQ8sBUL6yed1qBzR/XP4H+1ZEFd+LSPWaQ8NzeqIddk1LZ4CdIBXRgLRCrWJWr25t/4xpOHxlpENkWLlptDczKf3X5YrC23vfYVjmhleVm07HfezvRXbLMeyV1mD4sFa3GdyWFnjiBnuhZTURctzsekJY9ISGArdEtu0z8j1jmp7ty6nKXbmaD5PjmmDSdGS4uaabaQ03UuZqoC1OmKO6A7GhMGJ0oDbmjBd+7HcYGqX6EuHGox8QhThqZbuI6kXjGujNpH1U1HZEiF67NKVWVpD6BFRN2AZm8VWdS+VVwkU64b2iSwSvlMmw0tbn0nMtmP60y6zD77nJe/BgBw8stC0/7kk0LFfuedd8KoJYxjI6Y1pU1q9bMnhUynRRKOKbqQgsly65UqDMeRWr5XrsicdOxuIc5S93OVqYZU7/10gEpViXgY2kEiIB2r9WmZD6OICzqj1kUlrqhtJvHZJmyeOBKdlCRDKruaDPGIMk1cTvdAWuw0oW8tiZ0XyaGD4gY7oCeA1venf+5nAQDLnBcMrVxJf4A63S0j0v+ny+L5cPCOO3ZUl2CpCggICAgICAgICAgI2AWCpepaoZDwsHw4UkUvVKGn+r9EtbkuIFTAHJLD2CIM/fZ73AY3aeXSPGyJkr4yHgq1jPeOoSYnpzRHWRW1TvZVxrKrgcpp2fsQzb5cQe2BaitZmW4tLpWzpFN3DtTUmusBqsRUAeV0HNqWqtYyRihXC9AaqKY10q7sGoSBsXzWIozT/Kr1KuVdZoxo/Mj2PExiSVTQQ8x4KKsaXZrITJ1aek2Y56kpVKkam2EzbPCvJWqmZhFw3WFMyUKofus9avh6SRXrU/I7QxwxNyf+79MteedKXICst+3H+jFTWoZhMt7Neq7dWCp9CvVJgV8nJejQ9rHWwppy22RqnWbsVqS+92xDjXEzxqDSEK1qwjGuKRg2qN3v8j03qFm1HlFDIWJoE7V9j3FPA8YnqCVzlXS93Z7cs9fP0CVNMJTimJpRm66Pb5yAZxxqtQruvu1m5IzpWDwnVNozN4uloHv5NNokovhqxnJEtBTWGHfYUAKJtswYcwu0SsUt6OyZuylT5yWOq0jGRtTieVV6nLgEvnWXEmBUTGbx3hEtFybRyS2BZdqBNVJXt2fL8VlZV60MtLrTKpEntMLmBjHjkCznco21RrSF9cMAw1WLFztK2VBJyM7lFmOasJYJtDs9Z22KKjJGe0wLk6msooXGMMYoMsN1jMaZRpFc0yfJQr0l53ZJyGMZs/uab309AODccSEQSdMUs4y/TvvqOUOiBFpfNDF7b63I8A9UuGDsbWyguyz3v0SCioipETRWU9dgmgQ9rpPGvA+sd+Wc9oz0lSati9ohUue5QOIQxu0Nk49EgLdO2y7iOHGxspowXi1VKS316uURU5ZqXVP2rbhWRZvxZYNFKdtlWupuIhGVUurrXKFrwUajDpB4CGyHmPGBM1M7W6EFS1VAQEBAQEBAQEBAQMAuECxV1wgrDG6a7jJGgyaKaBheoGzj2ODOv5aIBuI2jeXxCcGoIFno57AVUiNTI7KaKIUnqSObavVRrQFjNJCgpYFOvL/GZ+X0oW11Rz9XjV5JlDvLUE6KUjURaSJfQ61STS1Zyvpkcmc8imiqI8kgBoxx6vN5mq5QTXRWNWEwOMBrNC5L468q1Px1SLFe6eg95KPOpm0bYF7z/uk5jjl2pnRALXTKRthDDZY31PY2KTVxdC8mQRGafY/FiM9YLegvDmjsQ5fDzyddCthzGGOQJAmyXHRVSvl9+eJFAMBgeRXVO+TFdPju7mMSwBmyQdm+aGWtozLfWkfVpx+4JnlVy0XFix8qWpYclXkhVsWvS/FzlJXF/775s3yva4WtLGT6vD6ZSIvP15gyZUq0zqLPmANqFpXBTC2H09PTWNlgLBdpvlSrfJGWquUnhUq9zhiUmHFSjgUxSVxZVLuZUWN8+bLcc4MsbJeoDdaYqitL+o5rmD4srKmqZdWYLfUWGL67MsPapFkWJwk3YtvUazXcc/ez0FunJeG89L/eslgUbDJwjNV5R2J5ekwMPYgZMzMnJyS1WV6jiXNjRBwbGqqmdPjKpFYjhX0VGrBN5MPxZjwPFh+xo+hnTOFAyjXorqPO9UCtKuXodaSeLoaHVqghCSVZgns8L05gyNhn1RI9shRbQON89NMln9V4Ic7fjvqcqSYqVURqqeDCp8JyVGkpMRXNmMyE3qnSAw8TtZtIjmXrjNHsi7xJmbg3ojV7aV3ej6ZhuHTigrOAx0zloAx1s0fEylLnXLFM64vOBy0nD2OkvH+N8wnI8qjyR5kjFxkvdKDDmK9KDbmjRCwzTMd8bsQYt2E/0bbmmtBmQ0vgjmOr7Kb7aaqMCj160g0ZDxscQ9OztCAp626eYZVJ3E8+LhbA5z5fUpV0KLuxrOtkJpgmo2we95CpDCZjZsSY93yLmHcfwVIVEBAQEBAQEBAQEBCwC0xE8l9jzEVI1qBL+12WETiAySvXJJYJCOXaCSaxTMDTL9dt1tqD17owe4UJljnPtH6xl5jEMgGhXDvBbsp0w8icCZY3wDOvX+wlQrm2j0ksE7DHa5yJ2FQBgDHm05OYHX0SyzWJZQJCuXaCSSwTMLnl2gtMYl0nsUzAZJZrEssEhHLtBJNYpr3CpNZ1Ess1iWUCQrl2gkksE7D35QrufwEBAQEBAQEBAQEBAbtA2FQFBAQEBAQEBAQEBATsApO0qXrPfhdgDCaxXJNYJiCUayeYxDIBk1uuvcAk1nUSywRMZrkmsUxAKNdOMIll2itMal0nsVyTWCYglGsnmMQyAXtcromJqQoICAgICAgICAgICLgRMUmWqoCAgICAgICAgICAgBsOYVMVEBAQEBAQEBAQEBCwC0zEpsoY803GmEeNMY8bY96+T2W4xRjzZ8aYh40xXzTG/DiPzxtjPmaM+RI/5/apfLEx5nPGmI/w+x3GmE+wXO83xlT3oUyzxpgPGGMeYbvdt9/tZYz5h3x/Dxpj3muMqe9HWxljfsMYc8EY82Dh2Mi2MYJ3sf/fb4y59zqX61/yHd5vjPmgMWa28Ns7WK5HjTGv26tyXU9MgrxhOSZW5gR5s+0yBXmz83IFebM/5QjyZmdlmjh5w3IFmbOzMl1XebPvmypjTAzgVwB8M4DnAXirMeZ5+1CUFMA/stY+F8BLAfwIy/F2AH9irb0bwJ/w+37gxwE8XPj+8wB+ieVaBPD9+1Cmfw3gP1tr7wHwIpZv39rLGHMzgB8D8BJr7QsAxADegv1pq98E8E3esXFt880A7ua/HwTw7utcro8BeIG19oUAHgPwDgBg/38LgOfzml/leL1hMUHyBphsmRPkzRYI8uZplyvIm/1BkDc7w0TJGyDInKdZpusrb6y1+/oPwH0A/qjw/R0A3jEB5foDAK8F8CiAozx2FMCj+1CWY5AO+ioAHwFgIBmhk1FteJ3KNA3gSZDspHB839oLwM0ATgKYB5CwrV63X20F4HYAD27VNgB+DcBbR513Pcrl/fbtAH6Hf5fGIoA/AnDf9exne1D3iZQ3LMtEyJwgb7ZdpiBvnka5vN+CvNm/sgV5M75MEydv+Mwgc3ZYJu+3PZc3+26pwrCTKE7x2L7BGHM7gBcD+ASAw9baswDAz0P7UKR3AvgJADm/LwBYstam/L4fbfYsABcB/Hua7X/dGNPCPraXtfY0gH8F4ASAswCWAXwG+99WinFtM0lj4O8D+EP+PUnlulaYyDpNmMwJ8mYbCPLmmiDIm31AkDdbYuLkDZ8ZZM7usOfyZhI2VWbEsX3jeTfGtAH8HoB/YK1d2a9yFMrzrQAuWGs/Uzw84tTr3WYJgHsBvNta+2IA69g/10gAAP133wTgDgA3AWhBzM4+Ji2PwCS8TxhjfgriIvI7emjEaZPWdjvFxNVpkmROkDfbR5A3uyxEkDf7giBvtoWJkzdAkDm7KsB1kjeTsKk6BeCWwvdjAM7sR0GMMRWIsPkda+3v8/B5Y8xR/n4UwIXrXKyXA3ijMeY4gPdBTOTvBDBrjEl4zn602SkAp6y1n+D3D0CE0H6212sAPGmtvWitHQD4fQAvw/63lWJc2+z7GDDGvA3AtwL4Hktb+CSUaw8wUXWaQJkT5M32EeTN00SQN/uDIG+2jUmUN0CQOU8L11PeTMKm6lMA7iZ7SRUSOPbh610IY4wB8H8BeNha+4uFnz4M4G38+20QP+TrBmvtO6y1x6y1t0Pa5k+ttd8D4M8AvHkfy3UOwEljzHN46NUAHsL+ttcJAC81xjT5PrVM+9pWBYxrmw8D+F4y5LwUwLKa0K8HjDHfBOAnAbzRWrvhlfctxpiaMeYOSJDpJ69XufYIEyFvgMmUOUHe7AhB3jwNBHkT5I0iyJsdI8icHeK6y5u9CBTb6T8A3wJh5fgygJ/apzK8AmL6ux/A5/nvWyD+vX8C4Ev8nN/HdnolgI/w72exAzwO4D8CqO1Deb4awKfZZh8CMLff7QXgZwE8AuBBAP8PgNp+tBWA90J8ngcQjcj3j2sbiBn6V9j/H4Aw+1zPcj0O8S3Wfv9vC+f/FMv1KIBvvt59bI/aYN/lDcsx0TInyJttlSnIm52XK8ib/SlHkDc7K8/EyRuWK8icnZXpusobwxsHBAQEBAQEBAQEBAQEPA1MgvtfQEBAQEBAQEBAQEDADYuwqQoICAgICAgICAgICNgFwqYqICAgICAgICAgICBgFwibqoCAgICAgICAgICAgF0gbKoCAgICAgICAgICAgJ2gbCpusFhjHmlMeZlY357rTHmM8aYB/j5qsJvX8Pjjxtj3sWcBzDGzBtjPmaM+RI/53j8TcaY+40xnzfGfNoY84oxz/yoMWZ2F/X5NmPMz/DvmjHm/SzjJ4wxt/P4VxljfnOn1415XmyM+Zwx5iOFYz/Ka60x5kDh+LcaY3726dYtIOBGx/WSN4XrvtYYkxlj3uw/j7/fMPLGGPMbxpgLxpgHvePvp1z9vDHmuDHm8+OeGxDwlYbruMZ5pTFmuTAWf2bMM3/dGPO8XdTnxcaYX+ff9xhj/toY0zPG/OPCOVVjzH8xw4S+MMYc9dYp72DdHjXGvG7Ms4wx5l8YYx4zxjxsjPkxHv8nhXo+SBk7P+q5ATvE9ebYD/+uOS//PwPwj8f89mIAN/HvFwA4XfjtkwDug+QP+EOQox/A/wng7fz77QB+nn+3AUfB/0IAj+xRfT4O4AD//mEwpwAkMeD7C+f9MYBbd3rdiOf9zwB+F8yPUWi32wEc13vyuAHwOQDN/X7v4V/4tx//rpe84fcYwJ8C+CiAN+9Rfa6bvAHwtwDcC+DBq5TnFwD8zLjnhn/h31fav+u4xnllcR2wh/X5jwBexL8PAfhaAP/CryOAfwrgewrf/yWAN/Hv5wH4AiRH1R2QXEvxiGd9H4D/G0CkzxtxzhsgSZdHPjf82+H73e8ChH9jXgzwvZCkc1+AJHh7A4BPcFH/xwAOQxb+5wCchiQ1+4ar3M8AuMxBeBSFTRGAtwL4Nf79KICj/PsogEdH3Os+SFb2Uc85DuAAy/YIgN9iPT4AbkYgCQcfAfCXAN6FYcK/ZwP4s8K9/gjAffw7AXAJw43djwP4iZ1e55X1GCRB3atGCVN4myoe+yUA37Xf/SP8C/+u5b9JlDcA/gGAHwHwmxizqbqR5A1/vx1jNlVss5MA7i4cc88N/8K/Z9K/SZM52OamCsCfg8lrAaxBFCGfhawlDvL417Jufw3ZDD3I41MYvab6Z9i8qXoRgI8Wvj8BJvUF8A4A7yj85mSQd49PArhri/r8LoAfGPfc8G9n/4L73wTCGPN8SKbnV1lrXwSZWP8SwEuttS8G8D7IRHscwL8F8EvW2q+21v7FVW77HQA+Z63tAbgZkm1acYrHAOCwtfYsAPDzUKFc326MeQTAfwLw97dRlecAeI+19oUAVgD8sDGmDuDXIFqjVwA4WDj/5RDhpLgZssiAtTYFsAzJ2A1IpvNveBrXFfFOAD8BIN9GXRTF5wYE3PCYRHljjLkZwLfzedvFpMubrfANAM5ba79UOBbkTcAzDpMoc4j7jDFfMMb8Icu4FVoAPmutvRfA/w+x8gDAvwfwQ9ba+wBkhfNfAuBBbA8PQjZnMMbcAWCRdQMKMmdE/Yq4E8B3GwnZ+ENjzN3FH40xTQDfBOD3Rj03YOcIm6rJxKsAfMBaewkArLVXIFaVPzLGPADgnwDYzoAH4ATYzwP4H/TQiNPsVvex1n7QWnsPgG8D8M+38eiT1tq/4t+/DeAVAO4B8IS19kkef2/h/KMALhaLfpVyXgBw09O4Tk4w5lsBXLDWfmarSngoPjcg4JmASZQ37wTwk9babIvziphYebNNvNUrn//cgIBnCiZR5nwWwG3c5P0bAB/axqNzAO/n378N4BWM8Zyy1n6cx3+3cL4vO8aCsq9vjJkacd1261cD0LXWvgTAvwPwG97vbwDwV2z/Uc8N2CHCpmoyYbB5gPwbAL9srf0qiOCob+tGxhwD8EEA32ut/TIPn4IIMMUxAGf493ljzFFeexQyqZdgrf0vAO40BRKHMfDrYDFaGCg6KNfrFIBbWJYEwAwAHfx1nr/T6xQvB/BGY8xxiFbsVcaY396iPv5zAwKeCZhEefMSAO/j+HwzgF81xnzbFo+fZHlzVfC6/wbDBZoiyJuAZyImTuaEhtVsAAAgAElEQVRYa1estWv8+6MAKttY4/jYqczZCjUA3RHXOZlDFOsH7zy1Qn0QEg9fxFuwWZFTfG7ADhE2VZOJPwHwXcaYBUDYaiAT9Wn+/rbCuasQP91NoMbkP0F8b1WDqybvVWPMS8mI870A/oA/f7hw/7fpcWPMXQX2nHsBVCH+y1fDrcaY+/j3WyHm/UcAPKvAkPXdhfMfBnBX4XuxLG+GBFOqIH42hmb0nVwHALDWvsNae8xaeztEsPyptfbvbVEf/7kBAc8ETJy8sdbeYa29nePzAwB+2Fq7leZ4YuXNNvAaSAzIKe94kDcBz0RMnMwxxhwprHG+DrI+3mqNE0HGPAD8XQB/aa1d1Gfz+FsK5/uyYyzYNhettQMAj0HiyxQfBvAWI8yjdwC4GxI/5eNDEKsgAHwj76P3n+GxPyhe4D03YKfY76Cu8G/0P8hgfxASxPmbAN4ECVT8C0jg45/zvGdDAiI/D/G9fyOA/42//TSAdf6m/w7xN/Xt/TKAX8YwIHsBIvC+xM95Hv9JAF/kPf4awCsKZf184e/jvMftAB6C+EPfD9GWaOD4GzAMHP9FAL/D400+Q8tShzDlPA4RGM8qPOeXAbxhJ9dB3Gg2BWDCC1AF8GMQDU8K0f78euG3jwD4qv3uH+Ff+Hct/02avPHK9psoEFXcqPIGohE+C2BA+fL9Xh1/aETd3XPDv/DvmfRv0mQOgB/luP4CgL8B8LJCWT+KIcvgnwP4Gv69BgmF+AyEqVSJKr4eQ6KK/wPiYqf3egDiHggARygLVgAs8e9p/vZmAL9QuO5PUCCdgMSkfRlCvPHNY8qqm84HWJYXFc777wC8b8R7KT03/NvZP+1kAQG7hjEmhpjSj0CCJj9irX3BiPPa1to1aoV+BcCXrLW/xN/+NYD/11r7x1d5Tg0SFPoKK4Hh27putzDGHAbwu9baV+/VMwICAraHrwB5s+m5AQEB+wvGfL3RWvukMWbNWtsecU7b0pXQGPN2CNvgj/P7PwSwaq399S2e8/sQC9yj/P7tkM3cT1/jKl31uQE7Q3D/C7iW+CLEqrOV2fgHjCS4/CLE5P9rhd/+d4gm+Gq4FZJnorjQ2M51u8WtAP7RHj8jICBge/hKkDf+cwMCAvYJxpiPAXjADolvxuH1mlgXYl37ucJv7wbQG32Ze04VwIeKGxtr7Qchlvk9w6jnBuwMwVIVEBAQEBAQEBAQEBCwCwRLVUBAQEBAQEBAQEBAwC4QNlUBAQEBAQEBAQEBAQG7QNhUBQQEBAQEBAQEBAQE7AJhUxUQEBAQEBAQEBAQELALhE1VQEBAQEBAQEBAQEDALhA2VQEBAQEBAQEBAQEBAbtA2FQFBAQEBAQEBAQEBATsAmFTFRAQEBAQEBAQEBAQsAuETVVAQEBAQEBAQEBAQMAuEDZVAQEBAQEBAQEBAQEBu8CebaqMMd9kjHnUGPO4Mebte/WcgICAgCBvAgICrheCvAkICBgFY6299jc1JgbwGIDXAjgF4FMA3mqtfeiaPywgIOArGkHeBAQEXC8EeRMQEDAOyR7d9+sAPG6tfQIAjDHvA/AmACOFztRU2y4sLCCOY/B8AEAUxe4cHkIcS5H9zWCe57wmKt3DGLPpXP2u1ygGg37peJpl8jkYbLpWn6OfSSLlimL5Xkkq7vlaZq2f3kM/h2WVZ2SZPN8UypaxTHputSL3j5PRr9B/xqh65949FX5b5rlFxrYYfqYAgAHbxr9nmqbuu7W5VyawfvJcC7+scjy3w3K4djdR6Tc912/LQqV5mhn+rT+NOgfDdi+e7R8zY87V77lXHpvn7v7DupTrr+2Re/ey1m6ql1Ebsy33903v1H2YTWW1uLpCZfieRtW7fLfVlaVL1tqDV73h3mFH8gYA6vW6nZpqweg4jjleOUbjKEGxpQAgY58e9HpyNJW+Hxn5vcJ3EhtbuFLfuXx371ZlHGVDVKnJ8SjhZ/GNuYvkHt441rGoLztJkoIMjfh8jjGemw+kDshE5kV5VnqGhR2WPdK2kc9IZVtBPm+FcbJHEXn9tSz9yvIjp3xE2ivVZdjnh9cayuMIUemnPJb2zkyy6WnbqM2Ozp4EDOWHKX3f3O6Af8AXqT488Tk8PvbLdjBK+pZx+uSJ/ZI5O5c3SWKnatVhI1GAG7deiRBFKls57/HaVMeKjmEd9/weV6uI/Neow0vnSe33OccQm9dmw3bOdR5imRCVZX1cnMsK5clgkXrj27pxrrJRZEU1oTyCzlPDdZSuj9z8r4XUe0LLbkvlzWzm2ihzlbGFO8nVAJA7+TYK/izufx8DW5xJ9a9o5JU6Vraae3eCa2EYsbl1c0XGuWDTWmrLm7j/4K/LdiRgbVlWDT8z3tO/QEdKPuK3pw+//tbabcmbvdpU3QzgZOH7KQBfXzzBGPODAH4QAObn5/HTP/1TmJ6elkJxozA1NaXnuhc+OzsPYLiY1+Pr6+sAgEajUbpHpVJxC3xtJP2+srJSOvfkqScBAP2+LDQuX74MALh48eKmzUK9LpNyq9UCACwsLJTKfPCgtH2tVsPc7AEAcPXTe/S4OKvVaqW6rK6uyncMFy16rMLN1LFjxwAAc3NzUjcuHvTexU2Qdmxts42NDQBAp9MpPVfbR8tVrVb5fYDl5WUAcJ9LS0sAgDNnzpTu2e/L56VLl9xxvZ+2q9u0QeqSUfD3WT5LYa7nV+s15GlWaqtOhwspDqiMk4O+S2uz0rPiON60kBsuSjN3TrE99Hix/xXvV/z076Fl1++9ftf9re9I23fTtZm+D6lTmvVRqZSHaqVKBYStl+qt40DvXSxn7AS6YJCrkOKRSDd1nID6w7pqGbX/+QqCP/3D33sK+4ct5Q1QljmtVhNvetM3o9JsAwCaczJeG3MiX9qNOcRGN1NdAMDy4hUAwLnHHwcA9Bal70/H0m+PiijAdCVHyoV/n328l8s77bL/aDu2Zg/Jcw8/CwBQnRI5UqnHiEyFJZdrY25uNnJ53traGoDhWNQ+unDggHv/Ol60z/WXZVz2zx+XW185Ic/ti3yByhGbY8DnpS2RX5Wpo1LWAzcBAJLGjFzi9jKFJYyn1NH+o3JCP/X3OsvryyIAyK3IqX4qbdddFbltLom83jj3JIsu9zDVBBkvr7eb0g6RzAu1ivzQmZP2XqxI3WrWLce2xE4WMeMUek8HO17kFKDywf9sJNJmlotdt6mODBKM3pj7GKfQKp7ty96talJ81rh6/+T/9CP7JXN2Lm+qFbzpufcAVEigLv2xwvVDNWmgVZN2rlqZ2xoU+Zc7Ms5NV8a9ztsrmZw3d9NtaPBa7ce2Q1mebWhZAAAbPfm9O1B5wHUCLPq60WmKzEhqHJNch0xX2Fe68ty0T7loc1xOpUzdrhzrrco81OM8eFN9Vj7nZX2URlKuWk3aodFoYao9oy0n9eymfJ7cM8u4fqH827DyudxbwYWetNGqKly68lnVOc7I942E83W0uS/7/dhXLo9Dmqabldh5k9eWz1UFWJpuX95shUFB6b9TFNd8zaaUWdeayRiF/ThYaze1mZZtS9ll8uFmynKM2Bo/pRx5tAgAYLeD4fYlotzPbQeDvr5Dbfjhhssva7FcRXmjZffXOIPBYFvyZq82VaNasKy4svY9AN4DAM9+9t322LFjbpGgldFNT6VSwaFDsvhQgaKDVxcN2gH0Gt1cdTodtNuycNJ76LUzMzKIdaNw6OARAMMJf3ZGFlgHFg65xaqeu7h0mc9b5T1F0Ogm66mnTrhn3vOcaqmMWj/tgPW6LIx1IX7ggEz01UTqdvHiRbch0zrookk3frVGvXRcn9Xtdt0CTjuQ1lvbUtvHX9xrZ2q3a+6+eg8ts27q9F7Hjz/BZ8jxtbU1XLhwwZWleG7ap8BTZZpa4fhO9fmVSgWtaSmzvl997+M2VWnaL90zTVO3sPQXCb7V0beYFuG35biNmgoTfWatVh/+Xa2zzGxvWicGfbnG31QlSeK0dm7Dl6q1q7wx1Prrdx0HWZYNBZzWn0PSbcC4cRvKNi5463VXL21/v+/uM7aUN0BZ5hw8sGCR5QAnYZvpRn+oyTfeZkE/hxrV3cO33DydRbdfvp2ce7WnjbJ27wdSjnGri6ol2Rhmly8CABLOsrbByTXLUG+LHO5TLldU2aKKjb4cTyo3ntXpesHf4F7PflBcyO53/xuBncubdstGtRiGMjZpyPwVV2jBqQIxN7YRF5FrXVlzZAPp10sr8n1mVhQvR6ZkEWzjCDbnYt2zRA36PM75UcfSyrrMwUhp3a5VUeOmyXAzlTmZxM1WQ8ra5cag0aSiIk0xSyXfklqmpjhm12S+6OYyH3ctlY1GrV1Sjs56D+0mN3G0HsOoYlQ3IlpHtcxzru1kwIBrB2p41hP1oKEylIvsLNLNTHm3Ix5F5Xlfn7cVKpXKJkt8Nihb6nSRr9913tS10G4UJsX1jD9W/LlK1wWKUWP76c5vRWujPkfXFk9r42fK7znTd1xVOc+1TqpK4Z0/wl/rAps30bqm2m4d9oqo4hSAWwrfjwE4s0fPCggI+MpGkDcBAQHXC0HeBAQEjMReWao+BeBuY8wdAE4DeAuAvzvu5Dy36PV6zvqgu1y1oFSrVbejn5ujewwtBnqO7iL1u1q9ZmZmnEueWkr0XH2OHm+1pnhvKcfQXQ0YDOTcm26aKpVdtRl6z163HGO0urKOs2fPAhhaV9TMOjsrJnHdCav2Qq9NGG/x3Oc+1+2e1VKgGoZbbhHZvkyXGN3F63nFeCTfNKsWK7XM+cfn5+d5r7WC1UraV136tJ21HfSaL3/5y2zbPu64487Sufq5viqf6nZ2kS6DXca2aTt1+z33jhTO6hep2xtdhJzbXdmFcJQmyDdvOw3ICKuB9hXfMqXQttN37LdpFCXOJVFdF/V9Dy2Y0qfzHt3uqLlsNGro9TqlMml1fPO6rxlSC2scx4jUB59lqlIjqe9Oz1VLVS1WV8uOG2++WX9CtMg7kjcAtXpZvik+IDZbW6q2cgd5OtiNVeiZbqmKqGVfuSLyIV0RN8wKtd4qG3Ir/fnWW291fZieTMi7ci5oHW9xnA40nnMPy3+jYif96isMO5Y3Jo4Qt+suhhKgaxstKcbmiGJ6MOgZ1KKvrctcEjfpX8x5cZDz/eQ5+rnMKRGvVq0+LN3PaV2q1GndqqgloWCd4Tysc92RI+K5M1CPElqKUeOcSze8makZpHSNVhfzPkdUsyHzBp0wsEg3wWl6eGksZxzXcGVF3Lvm58VTx0LqlOW0RHNQdzsc9zWuvbIE6UCtK/RGqYtc7/VUVlN2o897lz0simsBf47z5f3VXHqddbei6wS1puhzymuMoveSyjHfUrSV/C2e769Tcs/d3LdUFb2BdouipWycy7BvGRuuSQ2cAdizUOlhXZcP40LL8f3GGFSr+h7l+f2+eieVZZjvdXK1Nh635huHPdlUWWtTY8yPAvgjADGA37DWfnEvnhUQEPCVjSBvAgICrheCvAkICBiHvbJUwVr7UQAf3ea5GAwGbtd++PBhAEPNeafT2bSj9LVoPtlDUbtw8aL43qsW3yeMcAQFRn4/eECsYao5OLBwBHOzEgyuBAx33fVsAIUYq8XFUjnUsra6uu7inlRLcPvtt5euVYuMWojUgkF3a6yurm5iGfT9fvVa1a4ocUae55s0Lr7G3ScI0U9tt2azvYm8QYMZ1WLlAtKpZHjRC+8FADzn2c/DuXPnAAytZ9oenWm5h1rZlMlwdUPeu2IqmsbqcplURMsRGWkkbXeta58xE0Utjr5/ha+BLTIWFiEMhrb0HB/D54omTDU/el2vN3CatmpVtWRlbYqWVX93xBW9gfMN11gx2x9tRdB20eNFwoqI/txaxozaRH2Oi+1Ly1aoXq83ltTDtyDuF3YibwDRdUUYxlJpbJUSouR5vinIeJzGfqh1G5IyqA+9QVlObWJx9MbidqwCo2ScllnLM45hdKt7ZsXrVNm9FUHBCMudT+wyztrnkwgVNZz6d2UgcmL1jFi/V86fAgBMUyuZxeI90JwSObayto5GTfpynXEiTgvP+Ku0I9p/1OUaJNuPIxjBCrXtc33s5trtnO9rhrfbH0aVbVy9d9Jn3b22vGJ8OSYBO5U3MAZxo4KInhV9Wk5rsc4JgFEzD+eFNbJa9kj+dOiW2wAAXVqMDGXVTLWNpTU5Z439ulpTDx654/S0eJB0SfbSbM+yInLC1NQUNjyyr8sXZP6foXfQBufULmOapqbEcpbYCIcZf77eozcQ44F1prtsGZPO+auWM07FNFiMDAe4DjnD2LEjUyQby+QuPZJsNKxcc65/HgCwahNscH6sVSk/BtIOeS7tEJP0p6EkF7QKjvI68OdOn2xnO4hinkt23ozvVOPFsnzz+kTnXz+Wayf9318n+/O2j73yvhgX2+XXbbQFTa9VRlr9npd+V+tTUtOYq2EdfEuUVs+34I1jwN4N9iz5b0BAQEBAQEBAQEBAwFcC9sxStRPEcYR2u73JQlC0LOiOUy0VGtvj77Q1fur8edFi5HnudsN6P58FThnsqhWxGKmFTFn41BoDDNn3Tp56iveQ8iwsCCWzWtnUCnXmzBm026KBUCuHWmpUI+TH4zhrx9xQU+L7vG5iJOGu3beQFOvtswzqcf0cWtdWS+VrNBq4cuVK6bnKcqjnKO55zoHSPYwx7hqNM1LLXI/sRuvUrl3mM5prq67tAGEw8i2ScJof9QmPS89Vy532qU6nM5bNZ8gYWLZUFWOstqIV9unRFfp+krji8o9VG2X66Jn5mVI5FleV4XKD90xdXiqfoUgtRb7W2FmjCiyAajXRsm5QqzjUkFEDSlpt7fdZlm2ykPrU8jckcguj7ExKIDTi9Y7KfVf83An2Ih5rL+55rTHOuna187UPX3n4MwCAzpnjAICDlPFrGdMFzIrsrdalr9eTqrM8ZoxjrPFVxU5O0mLA4/2dVykgYNswAOIscvIlZ5BRtS19eFBtoMG1RLoh8r9Gmb7clv6uc1815bpAmdbSLmoxU8lwbtE0C21eqzk/2y0y67JcRZZajfFOGfN7gAy+lgn4ZhLGfC/JvL3RJRPv/CFcYLxjjTFjLTIDLpPqfK5Fiw2tXYvLMvccnZHy9pHDaFxrj54bZDTuRVwX1hjX2yVjnlV2xLqLoexA5v+65tKzXVc/AOhEYg2zhRyYgMjycbHnCp0D85Sxz1ZZCbswkVo8yNhrZH0Uc10Cq2sPrjFczkF6EaHhqMSTpFN6rp8L9Grzzjjrsh9r5TNR9/v9LWPHrgVDob8GL65blGY+SUantvGhuc50CWLzHHkq/TtnTo0oZkw9RqeC8VmTrwUmYlNVrdZw6623u5emrnQa0F+pVFCtSmN1OzKQNEGe6+iOGGLJXQNIPgBtQKXXRbVMutDUnBEM3D98RMzdSqgwSDs4cpQ052oSJkWoCjrNS6Ubst4h+X708CF0aMbXzdQ6Nw2dDRI1ZCL4jj8ubtk3HT7COgqiKHLP0U2Mv7BrmqlSOxRd/rQj6abJ71h63M8jpfdYXl7EzIzcXzthqzU6B5rNNXeAurb13UZUn3fTTZLn5sqiuBfo+3abS7bxfIFGvdOR5yrph24EfHKJdoNBvEwMWqTl13xYDdItuxxna1L/pK5CTeqgmwpTqW7pAuWbk/3NpjEWCf051fSfcybIctaFm5mEQcQJA/S7vW6BupyTMN/NOEpzfb6WL03TYSJGJXmpD+nWASBSWnHOYX0GMdeS+nBDxoVsjeMxv4b5Nq4nLCQ/miHFbq6uBsyNEdvhRkuphZ3zQaxuZ3RpYMB4zgV7ahIkvF+Frjo5XYvVvc5t3jSfmm5odaIwkWMjsY4OWC6JPd2Au5VuHDKLCr8kLLTqqwa8V0LRP6B7SqqJPvNC+bSsuZI5qFuo5m+jqynrqhOXnFMeL+OS/ipSLobyWMZmzcZI1iQVw8oVkRM5U0wss/4DTsytXORoLWEKjPk5bCwzp4m6Elelr6edVZaZqTCMyPVkjCvldlDJt7/I2SxGrp3byag1j58PuaKbSi2zKSsVjAvoHt5snOzbyg3yWtVsnJvrjQRrLbIsc7JXP3XObderyHpcU9Slvot0ETx8UMiocrrOgfOHCqT1tcHQvYrzwhEqd1Uo6LuJ+b3RknmymH+zzZxR1SnZXPU6zA9FCZOSQKBNhWrM9dIg62H+IEMquHno9kksVpF79nosR0PdfqkEXZaxa+sVXOFGcJ65A9fZHhW6wysZVcJ5abA6pCdfI3V75PVJ50JcUVnNH7wuXXQ33oqgJ6lSZnPKSJI2bK7uZgyhYL11nZily/yd5zl3c6XpHr8UL6bHkXuMV2T6yk6/Dr5y9GppQvyNxoi8TWPLsRX8zV2e524ztbW7o/ql++86dykKNKRC3S99YeQbKa6li/HkqzgDAgICAgICAgICAgImGBNhqcrzHJ1Ox1kG1HStrnzGmKG1g0GSal1RS4VqGdTFbEgVWXMWKd986tygeE2PVN5ajlFkF84ywOR1zZZ8V21tlXSjFaUqjSyWT4lbW72mmn/R6uhOf21Ng0tFA7SyIc+vFlzuim0BbKad95PIFTUSvjVPr3WuaZ5Ln95T21AtdsU2813pnHmZGhht0+XlZXdf3wKk7LJ6XJ+n1j515atUKugzmZ5aoFTT4NzfUiVVkO9+oHye587a55MrVGJPe8NyJAXNlUuEyGt887Fv3tY6Fvucb3JXqGulHu9lZU3s9PT00Gpmym6ePv27ftfzi8mgjZdVXJ/nB5G6sUP1TrvRRIfvM6e1r8OxYq6hhuf6wo4kdBilsfJdjHdCKhEg2Mpl0tJ9KaL28cr5s7jy2BcADIlbUmp9VWM9tyBWpnZb3WcLrk8D6ctJzISmHhmLWuziG8/oEXADIooi1Ov1UigBMJTXtTRHhZp69ahI6nT3o+67uyrzxBotuJZWjkML97g5RAmqdJwN1JWNYq3BtB3ZisjzhNamKLXodMTa03O8AOU5pUVK6/q0uAXS2IRO2gFo8V/T+tHNr05iBk2+rXObJilOWjLuB5FFlkiZ10gms7QhY/i2eTlnil4ol1bFCp1EsiayiKBs230lavKJbzhzJzTzxx6l+qjkt77bmZvLI3XZ4xycVoBc2vGuu74KAPB3XvtqAMBTZx4HAPzeH7xP6taVNU2broxK8jPoD62NviFW36V6n/gWoqK7or+22GqOKv7un+vTsftrDH/dsJP50CcN0/IX778Z+o7U36+8fYmi1LlZ1mp6jrRZn8QlCv8ZgagiICAgICAgICAgICBgQjARlqper4fHH3/cWUiU4luRZZmjMq/Xyj7JPqX30IeWgWlRPNQG0VLh+4Sq9lJdNH368qmpKacB0t9mZ8T6otYU1Wr0enJPjeXZ2NjAYF0sPWqBix3Nr5aV2lTuwJdWxVJz4tRnAUi8lgaRarJfJXvQ56ZZWcNetOD5yY7HtYdCd+1KttFutzclJi7WT+pQ9lHt0mK0cGCm0N6M2bJl2nGtm373qeattUgi+W2Kx/Qchb4HxXn2F9XupHnuLJFqOVOLmGrk+vx9lA9/7KwT5bbyKfT9wEetQ54Pf/NpjovWJACoaZAtzxuVfFffh69NUyucb7GM4xh10kz7CYP9BNbOd5paRZtmqLGP5mrVy8t07Dcc7Gjq8atZqq4FUcVXKrZqM42xqHNGMhtLyLqa0LzGa1ULKWN6ljTOGXQ8qUa3hZhxD1WOlw5jcXUcazJ3GrIQDFYBewljDGq1mpPjOm86kiQkSEgL3qKc7tH7Ym2d8Yb00mhE0mkvkjDiyaUn3Dx35dLl0nP7asWgvK6TDENj6pI65XqaufjYipKCkdyiys+NdXn+BmO7uvTOiXJgg4QUPVqTEyauV8tRSrr4vlGrCq3PNBWv9TqokJiiSXKNS5dlvaTzdUqCCp2eOV2jOdvEYk+9PShfcj8fhkdTnjN21lFuR5tk09gEtrYc39xsTONr7n0pAOC1r/kWAMA03+sdt91cuvaDH/6g/JGp9w/nU8Swuc6lV5dGul7Qud5PM7MTjJrvfNKrrQgrdvN8RZ7nm9ZHY0mNNE7Kantp3FRaeM/luKtrUcbtIliqAgICAgICAgICAgICdoGJsFSpxli1OKp10Vgea+3Qr5dai1G018DmnWgcJe5+aplY95Lc6Y6/ThpQtZyo9aFIKa5WtAsXpGya2FafqxYUtSTMz8+jfpOw+U3Rf3jVsdiItiSjxuP+T32ax6VOMyzPiRMncPz4cakPNStaxiNH5N4gdae2oe72z58/7yxkeq62oVr5/Pgkn8EujuNNSV81xkvbQ9vKj1vqdrubmF6GVi+UztX3fccdd5Se1Wg0UGX9lCpf6/fYY48BGL7TBx98sFQuF1PV77tjvbRsocw3aLmhNg8e3Srs0Cc9V99sj9Lej9vTOg1jq4btrnBWRs9SROZa914WFhZc/fT+qun04+Oc1dWL+bLWosM4kyEzZlr6VGi944I/vtLBd6gt1OfUGqOTIU86ijFu+n3UOcCQsc3X4G1OJCjnxdUKrBefprFoIynaCii+t0itgN4l45J4p/nwXfuxduOSwLp7XYXBzi/bdtjgNrPejdZ26ucMKc7XL50GACyeeWo4DyyLpr7WkPHTbGkKCBlbM/PiRbC+RGa/QR+HKB/Bsa7zhCEboDKtNRoyFsrpxvcOO0kcfC2f5/cZ//1b3wp7A9D034gosrECw/Ze3EhxiBaahJaQhZq8g9UlSS2icUmxkRjCW48IA+/y+ppbH+hcr2OnzjmnQmtTjXr0Npk0Dcdd2u+jSyp3y3lC7zFTl3vMcv7sM4GuZdx43IsQd9mv+rR2NTlGB7S2kQ2wa2TcpbQoRU3G71armJmTMTtDKvd1LuV6yoqosU6kJe91GePU6ThGXTdnO2NPXv4cI0uBzcuLi3sAACAASURBVGNC54fIWbfp8TOQ4zPTInd+8Af/R0Rkd9VEzcsXabkjm+bL7v0GAMBnP/kQAOCpU/fzoSyHqTjmZJirs+qNipu/FvBT+viWOj+m2F/X7cYKVK1WN6X6GZcCZwhdnxW3MVqGpPSbYb8bFy8X2P8CAgICAgICAgICAgImBBNhqapUKjh69OjYBL9ZlrlddM/LpaQaNbWcKHSX2+/1sLQsVibH0EaGvqlp0cDMMflqTPYovVdRk6+xMbqbjqmtmWqUGfMOzM6XnlWv13GZuX02eqv8lDL2mK/qypKw2dxy220AhkyDUSx1PnBwylk8nnjyJABgbe3hUjvcfEyYsObm5PlzTIg5OzuPWlXKmKXD3FHAcNeudVOo5kO1XsDQuqE7/KIFBChogukjzbAgTFca2FgVrc1pJkzual4stkNKH+1bbhH/Y9unRVGZhAZNdBNqzfiu9PmHb5J8HJ/61KcAAFOztKAtiLZrcVHeS61Wc1YuxenTohUfRGJVqrnUUqr5V8agCjTtQUTVUp8a8ISavm6/zM43yJhgWnNPJbGzJAzzHZHJkUxkVU0G3ad1gdahxYuXXDur9jBhA2/wZq1WOcaqUtkcL8d8eOh1y8yAtfro3GfsfrCRcXkf/PxXnfUyq84NAyNj1I6x4JROHaPt32yx2nkxfEal62252K9YIr8tU+asM2siC7uri0g4IFstGdM9xkHNzDKBJ8eNGgFVbs9NtbFCz4IGx2eNOehyqqoT+tp3mQsI7c1sVAEB1wrGGFQqiTNUN5tlJrekmSKPZF7UxLBVsv/FFfk+NyuWkT49XTQWuFWZw8H7ZB5cZNyVWWWSWY2xdYx+ZG7TWBONY2kZRAtlBluHNXqwaC47Wr1SziMDY5AzId40vW96PSnjRi6fZzm+N7imqta55qCF68D8HKZoPZvheqRTEVkwM8t1IGOxN5Y4Zqtyr+X1y2gy71YfUqaEOfQ03rLPOV0N8nFFGYBZJ1RdI6nFyNIitkEvkZRJl1/yNS8EAHznd3yXVGG1g+66rJVmmOMrnpbyRF25trsm9f++t74BAPBL/+4UAODKZebgsz1UavI8Xaf5Mc7+fDNkCxxK8Z1awkd5F/heSf7v/j2Ha47KprWlHyc1DlfLE+azDIL5Ek20lSULzurnYuGNssKqJwm9hQaR80gZ5ltUm9M2nlNAsFQFBAQEBAQEBAQEBATsAhNhqQJkt63WHo0X0R3qYDBwu9Y62Wp87ny9xteAFhl3/J23nyFavyuTnO6M6/X6pjItLl0u34P3vHBBckjceuut7rhanvR+Ws86LRealyJzubWkvIuLoqk5dOiQu0brp9Yljd25ckXO7WyIpmBlWcq7sHAQNVoXajVlmStr59Ui5TPW6TMHg4F7jp+Xyfc/TmnBq1bqLMcy3vve90vZaKE6yPwy1WqTzxet8l/91V/I74dEI/fCF4pG6PLlS3jO814EYKiVUauTvqvXve51AIBPfOITcs0FeT9NWmxmpmbQJauilvnYvUcBACdPPcl6St1a1Hg/+dQJV5e4Le9kaVVi5vq0RM1My7lnz54ttUMSl1ko08GQaU5jZfS916ujWRj7Bausltnl+PKsunqtvjuf2S/LMvfunIVqDHOhn/ut1WptisPy/c1vOFjAZBlMprlG1PIq4yY1jaG8ILNmlYxWqDJHV6yWTPms0bKYxKljohtkZQ0pqBlTtVik8XvKPIqhZs/FQ/FSp6m05Xx7rkoFDZ+v7XN++NTCdqm5yyJqPdmfM04JOQyMoYzNy3JzLAoMW1o066x4ytCkFm/mGRyIFXsqFxlw/5NigW82ppwVKWEeqkEuMmiV1lHHFkZG2GkjFvl+v4cavRAGtCC31O+fngVVbRe+S+DpW6pSr3mK4zjxwgx8bfNOcE1zqei4Zcez3q2tAWJPyX2948GeabDWbsoZ6WKs+gNkZPVTj4J6U+TzwgHxujh7WmKrbj50RG8o52/kqND7JqdFtsN+PWtl7DgvHVqZco2bioceKMro66POPHE659mBxiPSsyKJUWHf6PdomWF81kxzqvTc9b6sD5Y5hruUN+3aFNoMJk4Gcq9pWvOadXrOrDP2mnJhhtapk2cuodEU67V6hmjPzLJybGtM9lplNrTa2IWubGOpg2HuqVoidXj1K14LAPju1wvD34kTJ3jPKo4t3Mz78vlVjX+j1Sll/kzOKZp7TBl2G40G+qnGhfEczsNbxSoV5+BxMUPj4DNB+/fbCaIo2hTTv105N2psjIsdLl6z7bIlg9K9NUZcmbfzLHfHNmGLGLdNz9rR2QEBAQEBAQEBAQEBAQElTISlKkkSzM/Pu921akCKDH+6a282md+AGnPdvarFwmeYqySJs8QoY57ufNX6ohaBOi0VJ09K3JLuhGdnZ93z9BpY2b3ONEUTNE3mmkpdGf2YmynPnK+/ahH6agFjBvUz58TKYfj7zTeL1iOievupp55yFggtm9ZX762b+HpdtCytlnyePXsaMzNSxrV1anTJ4qP31LbSez7+uGQBV2vbzMww15S2t74rtXLoPS5dEQvRA18QdptPf/JTWCUjovoInz55hs+TMi4w/inL5PfLV8Sy9+IXvxgA8LGP/Tk+d//DpTLed999AIbsf2q5uuuuuwAAjar0ofl5iTG7ePGiY9DzmfO6a16Oq7PC6Lhw8IA7VqEmZ3WVVgtqxGp8h42qtK32U22XmP3ARLHTBi2tikawTStX12O9yW3ZDzmOY9e++s60n6/3yjm/FH5dp6aGcXn6/vV9OI2jssh5Y2swGGxiGfT9um9EWGsRPQ3tv4UGm1Hrq1YpWpAGWQbjFIWRu2pcGUZ97hW2yhcVq6UMOVLWL7bb9SnfWkfn+g0tZelA5OkGYzCUgDNKYpd7b5msoDHHmGp7m+zHkeZ5oxWqt9RBlTfS8ZmRlUzjr4YxjxMxBQbsADdkfjhjEEXRJrk5HI9DL4R1ZXVLVeYrWy5ZYmnRUGuLSSJkA8ZSUe7U1IOBcsdyvBll3SPjcMbn11ttTB+YL5VNP7ucj3RO0ej1DnNRNvIIPf5WbdASpDknO/QYodWJ4UKYr8t6aTXimq8SOWt5RJlAckHEFcaHMYbm4hWZP6enuZ6rGKTMf5VmjOlB2QupQtmh1raI9n+V/9VqbRh4xlxeWV/ucfSQsBF/27eIherUExIb3qKlrNWeRVJRSw+tK+pZRY+dfneDzxFZ9fe+6y0AgHe++13yrCwbev+gHEM0Ll+Uj2q1ummdNi5W17cKZVk29LJJticTR7HhjiurHxc1agz7Vi0/56f/vJ0gd/MxLYiReqioR1GOLOuNuVrnte1Z3YKlKiAgICAgICAgICAgYBeYCDVdHMfOmgIMrRFqFRoMBgUNeTm3ju78NQeQn7Hc5vmm3EGKcTlctCy6219bW3MWD71Xj77Bqq1ZXF5ydSneq9vv4Utf+hKAYYySWqSS6jAPER9YKl+DWo5bbrnF1UutblpGZ83gznttXbQ4Tz2l2pQGWm1l0ZI2WmYm9uc///kAhtYcvdfBg8IcqG28tLRUej/AUIug7axati98/gEAwKmTp9gOBotXxFKlFpIry4ul51wmA87UlJSv3pB3+p73vIfnHcC5Rx8FANx9990Ahn3kZS97GQDgySef5POk3ecOy72bmour1UCfmoaPf/zjAIbxb+kGM5NXaJlh3c5dkd9NZFFlLF+zJnVQq2dCzd8BWtu0z9ToU33p0iUAwJHDt7kYuekWY+rIuqeWIkV1SrRexdxU2r7FOD8AQFzOEaHtovfUd97pdNxY8eOhfCuUQr9ba9212g/9a288SNzR09F6mYysXFTG9fvSf1YoTStZgopqQp2FarSWa78sVeP85o3Ga9kcMVmP8jFWNh/KYlmExpJZWvZzWqO7qzIWFmhgffShJwAAK2vS53t9oNGUvmvIAqhsaBXGhjanRSY1qDFOpmRczVUydM6KNTxirFyullxlLuP7yVUrG8KDbhjciHGcljJc51rNZznM8ZMipRVlQ2NcO1wfcD48dstNAIC8J2NIm6EbW5B0F2210DA/VK+i8dryucbcbjoHWQ7QDBZQplodX/SKiLluatCCo+uodkyvDGSoVnktLd0J1xzpCuNPe2SIs2Lnusz6TydS51bLICZzX5xK2ednZXynA1nzdDpise5zTHdoWajPtpCyATLtGt2yt8dAY4E11olyoMI6FMd/Do3DFk+V7/9vvx8AcO60yKi5qQXeS95PpdZwsk+ZESPNQUkLeWzYdqR+PsTcem3KttW0C6vxjZmXQ9CLj74ait4txWv8XFJ+jLQ/9+8WzkLoPWcUY+E4jGMD1NinON6BHLDqyaPyXj1s1DtnuRD/7l+rVsjOth41EZuqPM/R7/dL5BJ6HJCOMEz6Ky/HpzjXBbtC3a+SJNm0SdIFp08TfuHi5dJxFYBJkgzdudgp6h619Dm6n+mmR8tTr9fdfdStL2W9zp4vJw5OvA6n9zDG4MwZWSQcOHCgVA6X9LUm7XPLLbcAAD7zWSFseOTRh9wC/KC6s7GD/cVfCDGEbvbU3U6TBPukB8CwvXVjosmP9Zy5+UPSDouyubv77uc4V7xXv/rVAIAvPiAJeh9+5IssFzdAdHM4fUZcHPWdX7hwAUmtXMYPfehDAIDPf/7zpXs88sgj0pYzIrw/+clPAgCuXLniNpoNR9wh/ewiN3lu8033g9a0lGd9fQ1zB6UPzZPufGlR+oovrLSvaQLjaW4UW40DOHbsGIChgDlBV05NRqx96UpHyqP9sNlsbiII0c1spdEsPV9/1/ekaDQabmOkfUYnR3132t7+tVmWucTMvuvgDev+Z8uEDqPg+r0XdDtdl7Z+3oueI7fqyLjSd7B05TLWmbA2UuUPKe81uNwphbZTVJ1UNI3EGIr3osuHXy+X0NmTMZuCf7lwMhGQOZINLhTG0L/ndLXTRUERPaXi53O6G9KPumuyqFociNKhr0HCfH5craHOTVXKYPJaRd2hqHzhd1246GzYrFVh2NeZ2xfrdNE0bi7lYkvr7+kGiu2yU1KJ8kZ9dBLk7bj07HTDv53zffdP/7OUDHhCiShuRIKMyBq0BlX0O5rgnQs1zidxFjt5rOMoHki/67fk3OYMFcZLouyLSQxTQ9N5rlldNEP7F5UK7MPqBpdzQ1JNmGh3rYMklvG0sS6yq8eNyYDkE5qaZdDXfqYbCaCi7oS8f0oFZRWyluiuyroooptvVZVyqdyrEsfoQOa0xpTcY4ZttLzCMImLIjNaVGhe4Bx89GALKz25f0/lHDd5WtIq21QVRAOr7n9cJ8Z9oC8yo70gBFY//H0/AABYOSOpVxLercM2PtjW9WHsNlE5N8YVbgwt3Y9jI/P0akp6dpLu5CQYQQpEKeUqVEgNXUPlUzcX5Xd6NSVDkYBCrh0tj4rHx5FM+PLlavLGL5MjMvM2V1dzB/RlpU/1r+XTtUhUWoroBlQbT5M/M827brJyDRNqY5DK3KTKde2b2t7bxY2n8gkICAgICAgICAgICJggTISlytocPSZ8BYa7V92ptqfa6PVIwdkZmosF8nn+vLiQDQP2adbLrHOdUpctDSxXLapakprU1GtS2EuXhvTox48fl2tpKVv3kp62GmJJqTKBnWr019bW0KBbygWSOKhbl+7A73m2aLzVHU133su0oCwuLrpkekNttLTNy18uhA0nTpwqlV0TZjYah5xVY9BnmwzEiqTte8sx0SZdOM9rm6IRsDmpU+tTWGcC34ceeggAcPG8lHWWLjg33SSuCRWawY+95pWurs9/vtTv3AWx5kUtUSl8zdfey7ILNenDDwsZxfKKlLc/UMr3VUwtSFd93wf+A4ChZerEaan3f/7j/69UJ7XoqcUoXV9Hm33jEq1rqi1ZW5e6ad9RWtT1JSW0sLhyWtosY5Sur4lxVqBU3tkSLRV6z7mpy66NnvWsZwEApltSJ3UPVSrVKFdqc7m2u7GKmiZXNmpWl+d3umWTtKPupmZOXRRsbNHvqcaFialp3XTuf33SX2eqoRla0NTaOeirpZgkG55L7Y2KzdaXobXHt/IcniO9/YXjAIAq39dah/2pm2KqRffcgfShVVpm8qic2Px6u//5GCYuZqC3qbty9OmyskGK4xrlaEb5tdbTftMtXVutVl2/V6vniYsy9h97RMb4y776HgBA57Tc69JlGTfHjt3Ke2bokfa5XZG26q9Qy01a9hOXRG6o/J7i2FjbWIWlW7ZqlXPeo0eK9WSOCYVTdc8J+sWAPYQlGQHHmbqhGWrMU5tt8nrQdZDO37NturnS88MyfUmebtaOq0VGLRV+Ulbnvp3THXCmiW5P5kH15FhekfXKNNdF+nuWla0KFhVETJjaJ3FSyrG4wXVbSrKbnMdzWg5spOQQEeKKJjtmmWskIaM73HnKiJmWuM5d4Bpoo99zKQHiMUblYToTTSVAkg+oVQKImG7i3ufLusR2mTLDlmnCZ0gOpusEYy0qSkLmEXiZavmd6qdlKovbb78dAPDIIw/Dsj7jmL2HoSUolWcnc4ZPue4TphThuxLuxtXfv9fVEhhvF85CpWuxYjtYTeGhvnx+G2kjDue/OC7vKRBr++7MGyfMJAEBAQEBAQEBAQEBAbvARFiqBoMU589dxNyc+Pdq7IlqVzqdjqNE1LgPjfvRhHV+jId+39jYcBqgy5dF86IaILVgqRVKrQD+LvrkyZP4rd/6LQBDcge1lKhWR8uhu2a1vrTbbczPi9VErVd+4lylMHeUpdSEtNvTbI+pTUGKWrbHH5fgSbUY6DO0fay17jelH19dESuKtvfnPveFUrt85jOfK9W13ZrG4cOHAQxp1u+8885SOVxMFa1yH/rwHwCQ97DWEW3Vx//6rwEAM6Sff+yhx1wZi+2h1jbV9rTbbeQnjpfK6GtNNP5LA4CVIOKJJ6R9jh496rTnz33uc0v3eJQkGNrfrBf3UjxXEznr87Sv+GQT+h60j12+eAnnee3nviDtrVqqOY8oZJBfYHvk7lmOjp9lXOE7rCWMJaQGrs+4EqW0TSrS96vVKsjE6/qDI9WolZMMqhW0ysR4/X46JLcwZV/op6NhmggYAxNHMPRjr9myH7kxZqgJ9ORBh1bqRiR9YG1VEtd2Mul7UzNzWKf1U2nWq1NiuepviLa1uyqyaJ6a5IGlFag6JLqpVTWIlsHeuZJfkAZW6ZMjuUeX48w2cygxRhKp9ZGaagYZrVNRN4jEutTrM+E4A9nX8gwd1ns9l7Jmp+dZNhmffkxetSZ13DA1TM/Iudmq9PmZSJ5fg1xz/pSMucsktFmYJz2ycp5bi+VFiZOwLU2aPu3aBgCee8/zAABLS7Qiq/Y1j5HSurYwTdIdKhsvpmIx6zM1wlS7yjKP1/ZW8s19Y7vYjd3R10Bv9Vw/BsEYA5toXBwJCTSETBW5Lgcwr+G9IothMMc2yxmSA49Hlktcar3BscuE72pJygYdJ2OvXBF5ot9jyueBEhjQUgVL74V0gAGJsxqMQ3IxVvz0LVTDT9XYD1Bv8JxYxlGzxfgry1gvaFyWpheROSi1VRh6tXRAy4DyofP+mdKyd7heY0xRnQRQJjaIEnoZGTm2ygnryQvSHovr9FKip42j/k4i6HJA45J80i+tr86LA5fQnGu+LMZ0U2TFq7/+bwMAzj0pa7gqx3+dtPBTTN2Q0pJuogi5rmH4eEcAQdndbDPpONelKenh77lHLPaPPvqISxWR5aMtQsPYqvI7LK6J/BhJf221+Z6MaatUNtGw+zFMu7FU+TLCj6kqyophouarW4hGxVhpHJQTRZFPLsE66O8aW2XSYdyVM57q2nZn26RgqQoICAgICAgICAgICNgFJsJSVa1WcdNNtzqGsccfPw5gaA0AgBqpJ1Vrq9YM1Vb4jCVD+sWhr7LGVOkOV9nglLFvbk40rWrl0riHs2fP4vWvf33p/nqOT+Gu1iaNn7n33nvxN3/zydI5Wjb9rhoCjQPS78tLq64dVCusljplCqwwhislNalauZRifGFhocSECADzc4dQhLL6zM/J52233QYAuON2sUYdOXJoWCZagrQOqq26/35J9nv6hFiGUmo1JN5B2uzQYanfEu+xQiYwtYKpVanDRIYLpEU3xrjkvn7SOrUQaTya9gM9T/vU6uqq+00tkwrfh93vU+W/5dP3UXcxKZ4FRz87gx76y2XmmwceFvZDtRjquzOpvGvtDxsbq66ejRppXOdEa59U5douY0UGmfzeG0j5ch5f6ayjkrDvVOJSPdVSpX2sogxwRulXjav3sA/v3J97smBL7H/biWlyfYsyKOtIe2WMI4ipabVZjnqVCTt7ahWn5ZxxSPWmyJalJRkLlTopxg+LhTntrjs5lTFewfC9WGoyM2qFNaHl0NJpHbvWRl+tj/J5mbFNJ0+JBWnA8dFZEbl18qxogVc2OuirrKOmtpeJVclPG6F9vkL2sDxpoc3EnGqZupKKDHrhcyXGcTCQ7yrXtS9qnRuNGlpN6eMtph7IqKnXGCp9rnoNmHSF5UuQq/aWlq8eE7uvr8lzn1qU+t9y7OsgldluguOAgJ3DWsZ2U8bmVJA3yGpbrVY3JWd38xJjFns9uUjjWzMXc17HBtcdVhnjVIx59Nx+gleVC3E8pKjWqc6xI3M+1jm915c5v85Evysb6zAcP3GVVO55Oam3xk7FtGAl9r+y96axkmTpddiJiNwz375U1avtVVVX7z3NmZ6ZnuFIJGcokfKI5lA2JcsSZFkgRAowZNOkYEoGDPiPARsGLBoGLJi2BEsEbdICJXPBkAQxFDkSh+6Z7unp7um1qmvf3/5e7pER4R/fOZGRN19Wveqq7qkm4/uTL/Nl3rhx494vbnznO+ez3xYrVIVLBhDI1OqYP21uWLbJa+9aJk+JPPH1XUOuKsyK6Xv9tDB4iTwol+mbVZIGhr60QJ9dKk3jSz/4owCAtSvmI+drVEYkEt6oUUU6peMIDoxHEd7M2Cn7SddW+4ZubPdR7XFrtRr64s3Ho+p+Y+ZwfOSPC4XCmCKgq+Q71tQBUaHsOblj+SCWVbDN8pnv57cyzwuQRLw3Sf3P4/mnHKvhNbP38vsJ0rInQqxSFcacU5VbbrnllltuueWWW2655faR2SOBVHnwUCyUMTNNtTMVlyNSBAwjK32paREhSes0KXrj1As6duxY+hQu7ozaVT6zfiu0Q+/Fn+l2uylCpKdpRVTFpVKb+q3+/61vfWsM1dJv9B31NS3oSjt5YjE9ppA5tbW2ZlGcxx57zNpkMU2dkzhVqgEGAE88YSp8koi7du3aSL+ErolLJV5SFEVpX9W+alwJ7RNC19yx36ggZ7fXwQ6vVbNpr9962ZC7AaMK11iDS9dJx9DvoijC8vLySJ8VzXDRPkWvdc6aN3t7e+nfuoZChtSGrrHQrTRnO2OTkA2hgerXzZs3AWQQrkIwsf7DHsdO591gIee97U7aPyFVug5pcb0qVQb5+TQLJnqqC8GIzMzMPLZ2NFbKrwf7Mxh51TGCQIjVACEj/cM1Uxs574+bJbAxdBHF/ZAqN099iuhKL7G5HpAvUC1w7IMCPNYnAcH2LqOvxUMWhW5tWbQ1YQSztm2+5q0/sXnz1Cf/PFp7jAxWGSH1bOwLjHJK4atPNFLRt0EYo9NlRJTX+to1W2NrN4wnIH+yS+6XIqmbWzafECYokD/nkYDTjVljxaktkubve4zCe7voR/bdkBHDArl+M9OfAADsbVp2gIpm9lp2fM+nkmDYTudhh35jiry0c+fMj/uci6dWTU0z4LjMlSuIGJHcZfS3zFo/Bda28n0qexIxg/gcueX2IVjiJeiXBpjVPYBKllFpeM93eU/pvYP36y4LY/tESHR/Wuu1EfA3NanEKujeDdmWeDgpmcSOqdqgxWJ6vJSbyPcdFQCif6kHzIZgIdsg7iJMuVP2VSnjNcjx6rTZRoGqhAXVjeKxEiDQvXvP9kd3blsdx9mS7mX2m/XQ3h+qkgMdR0jIe9kNmEWgOlSQgrGNs0ceWrGielbMzll5Cp95/nPWPguH77E+V2POnHijxj0oixTHzOSolStIKNmn115asJcKjRjdJ7Rj87sry7bH8wohdsmzLfvkCqWXarRQrcvUHCbUJOnccTnfk1Cl7D7G5VRNMvd7H4Rr6rYFjN9X7sUpHb9XJyiU3PMlIptydd26VfT/cSXlKGbby/broJYjVbnllltuueWWW2655ZZbbg9gjwRSFcUR9ppbabRUSM4R3ypbVyoVhKzHo4i9VOiEpgyVzFh9nE/qN27eTiNAdapHtRktqJLX0Gwx75dPsarxNEQ7YvjMwVW+85DjZN8VL0sKg+22/X95eRk7u4Yi7e710vMBgDix9jc2LYdXiJHQqA6VuE6dOoWnnn585Hzn55/icSziGjBKrjFUXasgCFL9/WrVxmRt3aLkJ08bdypFf/j0/s65d2xciNjMVuvpWNwgqlSjAlG9bG0WGSnaYZTple8YX2hnZyc9nzQCQSmuNqPkZSdXN0zPgRF4AL2OrpFFD4TECRFyIzE6luZFo9EYQ1VaDkL0yU9+EsCQj6ZxuVu7sjAa5UvJlIdeTPyhFJOq2/O8dW591XwigtZt2m8LhQIqrLweUc1LqJrqhaW1pshdGXJTiKo0d1AMSjy8FHesTdUDapP302V9sFKgaNsg7WtQUI03m3flysc7wj+JS5WtU5U4EbmIkUSf/LYCL1vKuQoS9EL7sEY+kMfo7g3WvqsX7foFBft/k9wqKT6+8cpLqC3aHD/99AsAgB65DUFR6I75nM621V1L69rsldFjzbEmEavdts2LmxdNcXO3af3b4RqHUMkSeXXlIhL+NpQfZJS7zOiz1vXCgtWNadFvB0mMsi8uhY3V0oxxrPrdUWSstWdrcIZqgRtb/qndmwAAIABJREFUO2mbh1fILyOKldbWYXR7hyqMG5vmEw/Psx7g+jrqUlEkYhUw6njk+CoA4L0bXDfkLyYpKjsebZ2kbvdxNBddHENFHqCt+1Er/PhyMT+geR6Ccgk75BGLJyg+ZKFQwNaW7RPcrJiUB+SMs15rlWpKFWlSFXZ2yvYp4WAw0qZ7zSpp/UNvjFucHo/3B5V4EpcoIOrkRwHKRWWBKOthlKvj+crWoeqb1Pc0D3wPIblE8g1XrlMFkUh9h/4GRJkHHn1oUECXHOK0LldXxyMSSE6NT2XBsm8+6+jRVQDAF17887h9ixkz7Mcm91ozJ+07qpFaJmLucb/UD/10D9Onjy6VyEHm+z77l46/9QrrzIbqdbsoOLXyUkToPqhLLtfdXWe6HvvVq7pfX+Byax/EfN8fU5J+EIXh8awg9ZHzLtajD881mYwviWt4UMuRqtxyyy233HLLLbfccssttwewD4xUeZ53HMC/AHAYJpvxS0mS/M+e580D+DUAqwAuAfhrSZJs3as93/fTKINQKEXbwzBMnzj1Hb13uUxj/IepqRRFkqkN5SSrLlaBkXl9X8d46qmn8PbbbwMY59DoaVqKVOqP2mg2m+lTcIFIQb83qjJXZd0DoQHTU/Zaq9XT85eJ96QIg5SvpIqoNrPcIvVF0Ysqa0O88fp3AGTGm1Gkb33rpZFzKh86kvLLpGazvW1RpKkp6+P584YYnTt3DsAQBep2u2M5qUIRVa9K3xXKp0iVxrpQKKRt6FWckElRkv0QCLdmg1uvTDwxXYf9ajtMqvegcXcRM1etMNuPtLq6EwkXQpjth9BbfUeRxzrRR/HDhGTqeLqGp0+fTvPHb92yKP2wLpe12SAPzmMOfSHTn/3qSWT781HYw/Q5HkZrUd2PbbE+VZV1vAJzJ2gQQepEzTRSvNWiQiDDjaXI3vcHnItEqnz6hg6RnObedYjK8Ce/968AACvHbJ0m9F9NzokW1bAULb5ycwsD5uFvk8t1e8N8QDkZor8AMBUob9z6FRIpW15awPptm0tQnRxGW2tV87VbzB7o8TUmB2t5YQoxuQQ93mKkWrlO9UGwrk1IDkLMOVilz5uamcZey85vhvNWnKpimbyokvmNrS3zGw1GzqulYhqQ3OtaVHuna21NMbNA95a1NVsL08ft8z9NqFRuD2YP098kHtArAB73AiGVxvyMiqx4w8qCcZEjzVkp8IqLXS4MawzV5xdGfqP7hKsKp/tStr6ne89UFky5SGQ64n2ZPqNPjqWXxAiYyYNQyIfP81bNIyE53MsoW4Lrv9/vo08fqWyXrS5rKBFlaPbNN84fouJuYXgvLhE9TxV8ia6pplavz3PjbxZqxwEAn/8+q0lVSkrocFxXjx0FAFTIs2zUqWRKvxOUzFfEPIYPD+FA48vsj94o11v+RHvPok8+96bGEIgHvN4pNKV9I28wGM2ccJWHfd9P54SunfapLvrjzoP19fU0+2fSHmeSpfzuYvG++UeywWAwhny5NWeHior7c9Oz5vK+PKlPetqDs14W6zSmaoH72v0hZQ+CVA0A/HySJE8B+ByA/8zzvKcB/EMAX0uS5CyAr/F9brnlltuDWu5zcsstt4/Kcn+TW2653Zd9YKQqSZKbAG7y7z3P894GcBTAVwD8EL/2zwH8IYBfuFtbvu+jVCqlT5V6QhWiUSqVUi6P8o6FTCmfXwiRUAdFeaZn5sZqLClCrydg8U4U1VHUX/9vtVppFElP/nqqF4Kjp2tFCs6ePQvAEBX1RX3U8XW+p05Z7RZFMcTbunLFOD3dbjdFIHR+QqgUvWozV1tt66l+a2srbffWLeNeHDls51Kr2uevfefbAICjRy1Cs7drUe3VkxbNuXTpQspdUruqGyXekcZF/dP4XLhwIR1H9U1RFCniDDlkQx5YdkyztRZ0vm7ExTUXWckiLDoHvbq1HLLRO9dchSTZpHoP+/XT7ZOLrur4+k2SJOn/dP5DTkpz5Ltu7rwULfv9PsoVm3+HDxtXcY9cwhq5hcpLD4rMpd8n5qIx+15E9B+mz0lg0WM/IH+Aik6eIo5xBB9StWPUi/DHXt/ezzWsvlqF9aIqofLYY8RESGYaFuVszJtPCdhGyskk6tPcs37UylYbpdLuYe+GrS1pEjXa5qdee90U/Dwqh+2RA1ej35iqlrFFjlaD6Hv9sPmlqGXX+MJV1rFbNv+pmjdJx95Xozqmi9anzT1DwpYWDfXskAv54vOmEvr+eUOnZ2bt/57nodu1sfAScj4P23lFVLaMYqlXMpJbsPUkHxAlg6FyJ9daxHo9EaPf0/N2vh7n63ZoUd/V009jsG19bG/x+ByHLSJlS8dWAQAXt8wnTh81BUFf8zkDyA7ur0zJiAWPWPkrN3I+6fVRNi+593cehj1Mf4PAh9+opvNBnB9Sb9DtdtM9jV5dlMHNtJBvny1WsXzYfNFAWRCcwKVU9W/0Vfe8VE8uU7NvTIWwR8W+QJxG61d9mgjW5hY8KqAGEA+TWSD0oSVyr7XuPXIYfaqyhT7QjWxM1olQ+3VmfySqvWh9Xazb+OyIjpUAgfrO861xDOW7E963GlO29/kLX/x+AMChRfPPRw4dxbvf/i4AoMrz7xI9n54234nA/K/2LeLJYhAhIodVA6o9jhBJjWlX+zOqw64s2z7p0MIiOvSZfYdENUR/qFjoj/KYs2ta+1F9pvu1+10X5ZmdnX0odadcXYCDWlZp2eXgu/PxIBwrt15pHIsQyP1YQW1wbO/CqUJyf49JD4VT5XneKoBPAngJwCE6Izml5Qm/+WnP8172PO/lzc3Nh9GN3HLL7c+IPajP6XZ7+30lt9xyy23MHtzf3L0Ia2655fanwx5Y/c/zvAaAXwfws0mS7B400pUkyS8B+CUAeOqpp5K9vb1hvimfdsW12dvbw9zc3Mhnenp3EZTjxw1d0VP3jRs30ifbQ4csmuPq6utVkVg93YrHsr29naI4ijDL1KZ4S4pQXLlyJe3H0aPHdc4jbQi5ahEx2NnZ4//NAS8uLqb9FQKhvulBVChbqsDF8REqdenSpfQzneeJFevz1UsXR8bqlW8al+rIEUMyXn35WwCAmzdujCGAalPXZYkR7+deMKWyX/3VXwVg0QWXO6RIhHKH3aiCLIsuuVwxF9W5lxJNth/6TVb5JvtbN2d3vznt5ii7ajru9/brlxtx0W/daGK5XJ54fm70RkiumzPd7XYRUKFRvJazjz8JAOiRx5Mwqlggtw7esFK7G+HuOGqMH6U9DJ+zuDCfJF6Q1vhI7iNAr+u03bH1usgol3hB5WoDA451LD4C269N23ohPSj1G2UiWgHD8OVqnPqcW9esXstV1po6e8q4VdusE3P73Hn7Tcn6sdvuok5O19Xr5gd8RlWnyVk6tWptXGVNlvlFW78q57G7t44BI8czs+ZjdM01p+QDvvCFLwAAzl82nmO9VkGF6ntzM1RL7Vtbiq6fPmXKo1vkNJWo0vXYGVM5nZ2dTX3OgFwD+RpxL8URle+vVg0NvHXrDvq71rcieRE7bRvnkPN1gUh/w3skBHBze4TtYfib5YXZxC8EqZJmkUqaWkOVUjm9l8eOOqxbQ0/3Aq2HQ7XpVEQvwegeY7o+4/YJwPC+Fe3D9R3L/iDvqVi24xYDW6uttqHhs9NVNKlyV6D/GlAFUHWh3Hv8IB5VnwzDHkKqekqdOaZy6IAQVbmmOpKs8Vcf1jGVpX0PdXywX3bcL/7QDwMADh8yf7uzY8jOkeVD8JlFIJ9cLFK5VdkFPbt2pbr1qyBMouAjIVK3vWn3X+0DizUqPTuaAK0W79NV69fx48dx4dI5nsWkekz732s1HwzhHM2kcfcYLrcumx12Ny75QczzvDEe1EEty6ly94EPgqK755LwBucH2pMSqYrcGlVZu797xAPdUTzPK8Kcza8kSfKv+PFtz/OOJEly0/O8IwDuHLCt9AIrxSkLXeoBxL1o7mbW3VTW6/XUwWQluoEhzK6LKKEKtaGFUavVhvKlTEnUwtNGQ32VyEA2lbBAJ5TCmFzgZcqSg+TxudmFkX5JvrparaZ90TnogWuYwtYd6bvSJc+fP59uPjSGv8HUH6U0vvLKKwCGC2xzw1INBSUvLi6OCSBoHET0vnbN+nX9334DwGhKn/uwki74ZFSqWuY+1GRT6vRbXTM33e5uD0LjC2x/4Qp3jmUXuZu6t1+K4H62H2TtilhMuqlli9RqbUiA4toV23CP3bR4LlkovcJck5A3h3ffNun8wyssXcCb1oAb4F40/K3aUT/UvjYCH5U9NJ/jeYAfpFh9zD/iAzhuXafbm7aujpywa9G7Y5uM6kwDBc/WZYepAyURmAt2/ZqS8+fDVCpOwpS+QdhCkylCdcqRq4/Xr1wCACxw/X75h+2h5ve/9m/s1KoLqQ6vx9cib+aBb+8rFLU4tEihG67FlWPW5vLyMl5//XU7B8fHqe3ZWeuXRHyoOIzFhTms3TZ/9N5te6hrMIXmmafsQT6ilLQKkqsoaUBC+8b2Vnrco0dNSKhH8YslpjodIaFcvqmu4un9Aaokle9yk3OH46vPQf/lV3PEMrfJ9rD8TRLFiHY7mJuxB6F+0+7nBaYlJbGf3sPLVd4PWJYgDp3ID4uA7+3Z9wuFAryiUuXst1P05UMxIqbScy+U3uP4fS+OMM812uvYd6b40BLx9lcYqLSBtRVTYCvqdNI050QCCV2KLnQZ0OW9J2LaldfXJpYUDL+AdlvCVOaDiiz70IwsiLK4Yn428Oy1z4et2O8B9B+ez+DzgqXVffL7PgsAmJ+1e9yZ0+Z/irN2/lfesnug1/ZQLNv5LixZ+xcu2b01oF+pT1MEBEql5L4RXprG3aMIWL/GUhlKWeZ4l+r2eTGxtman7ZjPPPs8XnnP9mF760yBVpA10MOU3mPEwpClPgZ9JLhHIV4+5KZlQlIJ/DDdd6ZfdfYj7r5sv4evSYHqgxQUPmiA1t2n7WfuPk2ZKYWCJOXtPjPgfQjeAIi1lxlNFUxfD2gfOP3PsxH+pwDeTpLkf8r86zcB/G3+/bcB/MYHPUZuueWWmyz3ObnllttHZbm/yS233O7XHgSp+gKAvwXgDc/zvsPP/msA/z2A/8fzvJ8CcAXAX71XQ4PBALdv306lzV0UoFgsjiEQWREJYIicpKllfJqdmZmBx6f3VpOyuhSi2N3ZStvPti1EJ5tq50p6R7FFIEqp3LC9P3qUIgAsapkkSYouKGqk9t1ogvqh407PVNLfVSr2Wb1OiVAiVkLMLly9YN/dseO+9c1vAgDeP/d+SqzsMtKr6MjVq0aEX1vfGmkrSoZy9ABw/dJ1+GV7/m4z8rTVIinfp7wzC3R2STJNkZJoMB6BUFTJSQFwoxlZFNJNjXO/66Jh7hzKSn2Okxj3h8jvJt3pXrsPIjXuIlST2grDcEzMQ6IrabRIaQ5CqvrjqZVtRs2S3miB4HfetUig0j4lMlJjOlWv3wcoDqC5VGLRX4lbfET20HwOAMAP0siuBAo8f3xOjJH5GSpsDWzsr63ZtTiqsQ9DhIzqtknYXli2Ugi1BYvobvCy+Ux7GzipJ/VyBf2eIpYsbC5JcaZrXmdaYJzY3Pj8C88DAC7caeL6LRYUZ2Qu6lPghkjULv3TwrKhPnfWbA6oNEMY9hCGQsXnOVwWydtcNwRbZQ0W5pmavW59f+211+AxAnqCaNLKMUuB3iAKPmDbu5uceyvm+9uUgPd9fxhl53HkNzeY+iykbJGpfHs7LFY+O491nv82I5Q7FOiIiAzcps/zOP4flvDK/fqJ7P/vty/7tTUxpetDsHud6wf97vfQHp6/SQA/BPpEgVTM3efeJEriNCI+oFiOssDSIvFSauDnSiXzfR9d7geqLIsRM2UvIJWgRQRplmu1S3+gir5+ECDgXqYgtIHoV7nGYuddomFEl5KI16w4LMyrPpUoKR7B1lc44X6t47fbXQy472izb+0e91gNlZ1QIWH77RzLUnSRoM2hKdTMVx099H0AgBckmV5iaYea9a/OMS1THn1qfgGdPevzpUuXAQC1mqUu1/nqKR2+w7Gl0nlU9NEL7LNd9q1F/xZGTBmk5HuJgjyFaSJGgfn4E6eOY3e3zcEBj7f/+k/3JakcPe/1iFAq32uda27xlWmL8KKxguCad9nSRsDw3uimNEZRlP72fpGqu5mLlKk/9yOsIUn/if1IyhhHqJTFcH++6UHU//4d3OTPof3wB203t9xyy20/y31Obrnl9lFZ7m9yyy23+7VHgqVbqVTwzDPPpE+1ikBm8yKFRCkSr/xPt5CqEIksB0tPuGpX78W1kiCFjiFeUpZTo6fxVOaREW4hZSUWmVOkudGYTv8vyeoCi4POzbNoH9sU/2lt/fZIP27dbqfnqPOWMIb69uqrrwIALl80YYxz774LALh+yd63e+0UXZBUZ6czykcLWbyzyjzTFXIWJPUetztoU+6z2bPzvblG3hWL18VNe/WDUX5SFEVjiMy9IrC6ltnvueiSK7vpmotoJUkyFj25V3/cyE22vfu1+4k678cLc6NCrrS5zOUaZgsca+xcDpnakOiL0LBnP/EpAMD6xuYwalVhgWBK4pbKo5KtHx/zkMBPaQqSj5cE791MY9umlPnarvmRJ05Znnzcb6NO2d8GEb31m8ZjrEwbUjTDyGWNQg6Kvh1asjauXLuFWsO+0wHXHlHgpEDpZfK0NzfN5+i6zs/Nptf25W8bL2rpkKGPfa7jw/Qje0RwQhYkVxHPVquDxylkItvZHS1oqRx/zSsVEQ/7XWw6vkylF5YWLJK8dsfO5cxJKz1RqlLWnz65VCqkHDJxqW5eeB/AsOTEGlEujV2VRYKnp2ex07Y5fIm+dbpi/+sSKQjJ+WiByEF1FNF5kMhqbrmNWRwjbndT7hNSDiFlyqMBwoEgCvI+CvuLHKVCFgVxq/bgMxKvDIYj5GeTwol1lmeIq7xv8PhFynPHSLDTZPYJ0fUqeeH8Knq8t2iNxrwHFCtlVFmSIhyYj6jTvyX8TrdPYSO2FdE/tcjvjTzg1gbL03gUdwjI7Zqz/dLA77I/dqwOOfBREuDUyacBAM8994MAgENLlhlQJe+rWh2iegDQXLdznZ41lBulEqbq9r9bmzaGUzO813Kcy0Ssdnft/zH5YdVaDdvMehLhSfkbs0uGDCb8pM8Cxn1mTfVC891HzpzGlz5rff/q7/+e9Y1+TllJ7l5X3PznnnsOAPDG629O1BxIEetAfo0IEvexSRyNoUqT9gnyty6/er+yMTIXbXLFy+4ns2eSb86WnnHNLSkw1oYXDmXVU3l1V7yii4PYh58TkFtuueWWW2655ZZbbrnl9qfYHgmkKkkS9Pv99KlVcuB6Ug+CIFW/c3kwrkKbnqKzBcOkxKcojqL9etV3FRFQ21JY0++y3+13RxVIpLBXY8Q129+bN437II6SxOTUd31X/YyioZS2/q+/L160iPc775hqzR/8wR/Yd1jscocRk0Fk51IsJPAZlfgEkaclHkfcmW5bKltHR44rNHDj1ga6ofVxbdsQqu6ejck2uSM1cijW+6NRjTiOx7hJLhI1Kb8+G13Qb3WNJv3G/W02EjJJhdAtLnc3m8TDchE0V6Uwa5O4VO65ZMfHjUC5behVx9uvDf3GLRDtooCay2+99RYA4Mmnnk6Pv73bZC+JDEf7n8PHxYZX0XfeT7Z0TBmF3d6zNVcosATCoAk/tjGu8DunVywiuta09SH/cYvlFAbkJoaUD5+dm0enbehvj7y1GcqxSzmvENn1a7dsLW6xJEPQKOFxFh+/esPQx909FtT0GTllLn3CvPw1cpAWlq2fy0tTKWKp+VAojZatuHDefJDm0eucL8tLCyk/dnfbxiYtVu1wYOWvL1wwTujq6ioA873ydd2e9VX+0fWbuk8szRv6duXaVXjkks0t2TXxKLFeq3CtQ/LQ5DY4hcb3W7e55fYglgyADuesJ+Wygu49QbqupeYmxErwTrr3IKo8CG19ttttLDK7pMT2pCZaIW/5yHFbjxFLHXRj+hAW441h/GcAiOhv0vIl6f3R1oRX0H3DfGZ3EKa8danKqa8qpq711CFPKnGyMQaDwZAvL/9W4j2tyHuNL5lu8yU9qid7sY8KEalG1fzbmcfsfBsN23O1icirfI0XW/+OH7fSDp1OBzHX/p07tsf54z+xkjI/8/f+vp0nETqfMunayPXCEAl5TWVuqcsN829tFoGPiOAViT4WiL63iA62NzfxyaeME/vaW1aEWNfQRXl8zouY9175yUqlAm1hJhWMHvLUtX/V93BPc7Nf5LuzfPVJ5pYHcFW7D8KPcvcp7rmFYXhX9ef92kr3iRggjjm/QbJcilzpXpAjVbnllltuueWWW2655ZZbbh+6PRLhuEKhgMXFxTGVPBV5DIJgLKqvJ1+hSXryFB8qVdGq18eiozJFOFVIV5EIfU/9yLan/7koV8CINGlLaVS13W6nfwv5UeTX5X/pczcyUalUcOnSJQDAd75jIkRvvPEGgOETfrvJiDBzdmMiS2dOHEdFKA/rU82sEqlilPZG387t7VeMj3WIxYqr9Sn2s4ImC/2VGemapoLgs09bvvMe1f9ees8KkaoY8draWhpRlu3Hd8q+uuf/QUzXzs2lBcajIpMQI13bOI7HcoDdGgmuOqGLhmXP5V68jbudv9uu+103/zn7fxfNctt3+6O1dP78eSxRYS1gMVsvDYkdrE7Xo2cJfC+GR9LBgNwCLxmOq4v2pREy5scXqYIV83s3mvb+aH0anaatF5V2GhTN1yyQ09AMiZIqyFelahen4k4vwuX3bS3NTdn/NljzaeWkRWHXbxGFYuS6TeXPelTGe5tWO+rpp41rcP7iJTsvIjRlcjuaVJ965rnTAID3zpvy1ZWrcaoGWWGBymLA+mXkkhVK1q+gTI5og3Vk4hjNDUO+TqxaHarLF8y3PLZqkWHNtVu3jUexcsj8xTZ/t7wwg0OLxoHtRftzMouci/r8u+8ZUra6cgwxCyPPVyyaffWO+fjytPm+bfJI4xoLXsbiBZB3GCVQzNGfqFWAkePv9/5BcNyBN/rrMXR+rFvj6LRb3Np9fZj2IAp+96MG+GH0/cO2EAnW/D6menZeqlHpUQWwN+hQgQwIiFoXhPaQWxSzYFSxSJ/F+lW1Wg0xawt6XCtl7inaHfMJuh/O1GytRjs2/8MpchnbHSw17H9T5M3OzfDevkNFX+4WE16rHhXuqoUSPNbl63aVMcS10zUul/ZLA26Qei1yG+lvu0kB4cDGJNyzz5aPsj4fUZ6AaNhARWLJrTpx9PN47Iz5maPHzQcVC3YOSaz9mb2KW7XNTIFDC4Zkr7/5GrrXjX95iH7uFhXyVIuxzfMF74v9ItEov4RN1sNbmKNiYMl+u7XG+oNEOQahvd+L7LpMLc7xHENUEjvPv/bjXwYAdIiuffMV2/Ndoa+UYJ/2VVKetj3xqEKey4uSf+v3hVRVOF6VIbqYrkVx/MRlGsVgojRLRZ/HYwiZzN1baK/9IIV9dQxlLmTVTl2b5F/SDKDBIC0IrE28ztf7qOpU5ZZbbrnllltuueWWW2655faIIFVxHKPdbqfR965T9RsYKpIl8SiXqctIjNCgAnNEy1P2HkkBNSo/tahQp/x+2dycRQsWFiwav76+zn6BbQ/5BfpsbduiBBWq/k2xhozPp1xFESrlACxng86AOZlUXJEaYJP8JJY4QMx824A1B9787rv4zd/8TQDALXIfwnAUARlE9trqW1Tl7LxFfnsX3sRnX7Rc3T75BScWGDVif969aNGkt6kg2PuORbnFuUJlEe+99x6ADHfMQfP0Wpu3Ywhl7Ha7w9xsJ4rh5r8OUb/RfNusgmMWPbRz2D+K4CJJSZKMoTr3qqWgY1nEd7TvruLNQVQI3bxm2d3qYclcRR6XwzXpuNlzK1CZaBByDTn1HgpEIQWXJLG1vbOxltY7Onb8BL/L+koHyKd+FM0DEHgJQDSgGOj63ZtVNSm6Ji7o6WfPIIls7PrkEIQd8wcd1kUqEJmaZ+S41ye3acMQlThGmh9fYP2YE6s29nvkWm1TharaqPM31sb61jpiRiw3uF6FpGu+aP2+f9n4nkVez+m6Ra77nS5au/ZbofSHj5hPWZy3aGxZ6HzPvnfskPnRx08ewxYRpya5XDWqoe6R06DI9YlVQ8jWbl0bGdNr166l0daNnVF1Vp2D/q8MgAJRx3a7iwqVTHdbNu4DchmWD5mPf+mtc9bX5z8NIIv8ZvP1FfW8OwLjrtuHXesqtz8NliBBhDbnym3WeVwkcl0LZtJ6Q9rjgIp5pDClKnyajaqR2W4NlduUlSN0pVy2V62NXXJitV9RPaW5mVlERLlQNF9/4br5huk5Q4yq3OuEW+Z3Zsu2HqNkiFBUy0NFQgCI/Wl2us/jm4/s9Zmtw9p3kVfAHpVJ4yIRV8mbkrsVp7WVWMeTHNNTq4/jxHHzI74/rG0KjKvMaW+5etLUAaWcurx8HN89f4vHsd986ot/DgBw7oJxR6v0d4tLVBIl+hQPOhgMzG9r5atOqQdxoblf4yno/twl56rT2UOrbed/4T3zTU+efdz68YRlDt26afuypGR9P0verPj1lo2CEZNvcms7iUul1ziOEQQuxiJOnxAs/VZZKtynUgUx8Etj+7NJJp+t/cMHUVt1s5DCMEzbddXAXRurZ+oX0r19Au5XfQexO2i/7uvbueWWW2655ZZbbrnllltuuY3YI4FUSd1MEcgZ5vJm+Sh64qywLo6eiBV50Kv7ZHrl8jWcOXMGAFCjakvI6MywUjlVrloWtRg+xQtRiAFI8cQiMfNlqWgxr1OqdIlqSPj8fh1i8AjtClXDiYhAkdEV1QwYcBxCtv3Nb34zjUDpVVXX9ZSuSu1+kfW5mHh75PDpW4TTAAAgAElEQVRyiszdYoSpuWvnffGOcTbeuWH5wBtNRl7It7hyyzgKCysnUjUbn+N/9apFsdwn/jV+vp+5So2TkCIXwcpymlwelov6yPaLfLjqfno/SXkm27aL/MgOGpUOgmDsHNzf7lcXS59PylG+1/nvp/7nomtuzat0bDNKh0JvK0RYjpB3dz9VzR8tS5DE/ZRj5HF9azSjKBqb2zIXqdIYKAp84epNzDUqI+2VCEOHjC4P+Js9Kjz1iVRpHW/t7eHkSRvjTt/W/PqeRUMbdYv+TjGCPOja/8s1i/om5Rh+Gt7WNZS6nfkgoWqKaO8yshr1WRum0cB03f63vKBaKzzfvvmThWk7xyNLxmNokgPw/uVLaT0zn8hfm/66Tt+u2oAX33zT2iD6dfq0RZzffPPNNINAfZU6qUzZAPL5BfLiEi/AbaJrQv/XOxYFvvLyNwEAe/Go8uVYjRbPg4tUTeJO3U2J1F1zMncOHUS1auz4E/6f5YJO8luT2n6YKNuDcKz+tJmXAIVBlMJNbSr8rW/YPfnQTBGloq03KffqFiYule5ovtD1wjDzQfdWccylHBf45m+E8u5sGy9HxxLqEMcxImbI7HVYj4j7pVKVdaOIZA2k4sv9SrPbSTOFeuTqhPyfT+5Y2OyM9CchL6zP2lwRCojJaSlWiTIQCYl97guEA1HRsNMmClNswOfa195C+0P5Zt3jNA7xgArLVAPd2WoiTOx43/+DP2D/YxZBQl9x7rtW868+R14slVpb3R6QsE5Xd4fHtfd13gfCjh2n02TNKd0PqLTYmKqi17fz+sEvGHp+55Zdq6UF68f3PWP1qH7n6+YzhfaL+7q7u4s2lZzdjJohj9qGcIhKcS4VC2OcKtXBStUo9d2S+Gl2DTe37gAAumGY6hRo/DUvXf/ncsL38xX36z+y6+BeSs6aD8MsqiDNDAnDB8u+yZGq3HLLLbfccsstt9xyyy23B7BHAqmS6Snz+vXrAIaqeEmSpE+Wu6pcTVMOpcxVfTvz2CkUGNGJWUtplgotQwWShJ9btEVR1JA1mHq93jBvk9GJcCCUhTVUGMGvMBLdVRS120FM5GuqYv9rMkpy/rwhRefJV5pmTYW1NYtQ3NgydODC+5dw44Yp04gb4VF1TdGKBhW6muRZNA7bucxMz+DidWvvGnlgGy3yk6j8suNZRHjXs2h1l0p+g9DGfOPK1TEUpUhVLUXaXR5UFg3RbxXN0jVyI6tuHrR+1+v1xuo+uTWvXLubct5BLduP/eo+ZV8PGgm+22/cc8uici4iddBaV1memlTMXO6i8q1dlbvstcxGv4GhMqC7/j5O5ieAz4gqWLcD8b2jVO5acK/b9m4Tx1eMj9jeMm5Rj9zPSsHWeIfqU2uscZVQya5AH7FUmsM775tfOLpqOfSHj1lEcm/H1vFUz9raJjeyx3W1cPQwAieX/85t1pcjEjWI7biNWYts16jkNE2EqVKpQMHMO7fM9/QGdt7PP2tKWyVYP1aWrR8XL9xIx+E60aUnTq9a+4xgX75kvE2X+3HnjkU7Fems1+tpVFnRd/kPfVdzT3UE19fNb6+srKBNdT/VBlyiytfNvikmTvvW9k1xyo4ZKlgsEjGCD8UclblwL16lywnNqlFNUjh1EfXser4Xy8Ab40Dk9qianySo9GK0iIiLKFUu2LrvdLdSNFnqfx65Q9227Yt0r4+IGLS4X6pUKmORd5n2CULRT5xY5efkYifMcAmCdL1Joa+t+8M2a9yRV4u69WODa6xQK2GP57XbZx0uqv/1IvLj2Q8/4TEo4RhT2fD2nR20qGJ38sw0z4VojjJ7tN64LmenDKlfmFtBiUp8va6NicbDVcGTP2iQQ5rsGfd7besalqmK/OYblqHz6c9/AQDQ5D7w8GPmh+OYKBsVlmdm5tAm8lTkXvLsk4aqX7toaqqnH7P7wTtvmo+slK3v8IlwDdoo0Pds7to9Y3be9mW312xclpaMQ1WpvM/jGoIl9ep6vY4OMx3kV8YQGaJ+nkowZbJStD8eKgnb/+ZmrQZayGyKk7wf/eAP2fi88OlnbTz6/XTv/Ou//usALMsKuHdGS5Ik6X30g/K0s9z77GfAuJ+9e3/4P6mv3qfc6CPxUOV5Hsrl8thNSVYsFtMHLjflxoV3tYj0/W53WDhXFysVVRAUTGe2vm4pIrrR93rWxvvvX0zJgIcO2QSbnTHSdq1ui1OCFQUurogQ4lS9mk7cXR7/zTesuNu5c0ZIbEmyVKQ9PrhtRkNp+WHqmDbLw7EDgIHmDB+6dpu24K/1eri5aed1ncrmHSpntEgWbXEOae4MuMEsV1iwbTC+8VZKYamolMrR65PdcOz3WfZV106mc82SHl2Y2N2cuLbf992it5MEKmRuv7LnIHNlyl3iZbZ/k0Qt9JtJ0HX2oe5eKUiT0h/iOB6ThnaL/8qGfR+S9vWZ1pJSs1zRl4+VeclwRNLxPXgRQtcXJdzs9AdRGhjp7doNTzfz3tYuW7GxlaRvlynAO3zYWF9bw9NPP2lfLdpxdnb5AMZ0IBXjXVmxm5xS567cuoY9FpXcWrcHjmMr9tDQZvpfsczUnpoFrsIB+8s0wFKplM5LFfL1uXHpUigjjCggUbKHvScfs+O3khJuv2opKns7loZ3+ZoFyl588UXr4xV7uFpi0dLWejzy+dbWVno+Cq4p3W92llLrnHt6wJ/iJuvi5UsIODZHjtnmpstg0+Kszdvr67bJTOjjb9+2jcz0NDc7iYesVDAwvrb0OhQFsLWR9T2TCou7D2L7pcHcK/sll8P4+FipUsTJxw/jKtdBk3N5kwHMctjA9LTNxSpT0mJKpistr9EYLX6tV80/YDyNNOyxgCxT+m9zw57w3j6bMG0uihHGo/eYeYrLtCiyE3atr3q4SpjKmIQDNOm3JAMvMSRP+zRpHpR5bhTlaFHaPYiKmKFITsIATMJNbYkPngkFLPzBMgDg0NIpO1bcQrFgnzWm9r+naW2m934+VFXKdo5njpzGr/yf/wwAsMs05h2O76c+91n7LoM7PYpLnDppwkHn3nwTNfqbJh80O1esfE2dx70lIZ4C0y658w4jFiNGgIW5VWujaX41pvx+e4dpgCzM/iM/YOmJv/XVrwEAChSS+Il/7y/i3colnrD56s1z5k/DKgO1kfZi3GsEwz3QkcP085TH/9KXvgQA+NEf/VEbu8B8o4JYGlMF/NfWb6LAubG8ZPck7SFcsTKX+pEkyQNTCZIkGdtr7idYtt97zwPgjf5mELK8hnLIcbC9Th7qyi233HLLLbfccsstt9xyewB7JJAqYJRI76ZZRFE0lM+lUIK+qydSveppV98vlwuZp1ER7ywS0WEEJk3jCSwSpKJ6ev/kE89jqmER5d/6rd8CALzx+sts345T5NNthZEYj1GfQb+HKUZaZZImVV93tkiq5v/Vn+uM8u6H2Oj80uJlLFTWZnSlQ0Dl0uY2dglX3+wpsmTR8x4Jn6rhpjTIUokoR8goStzA7qZFJxStdZHBqKfo0ihi4nnemECD0naUzqM2FHl2yZVhGI4JM9yraNx+aTeuMMUkYQjZQcQuZG7a4yRkLWs6T0V8skXs3HObRCR3x2OS1Lvneamk+qTvTupfpVJJUwUltiL0QIjVx86SBBgkKGjuB0qHsfeFJEAiyXAoQspXrhOVSohJ3A27Imm30RvYHF9YNL/RmGZx2z6/y2LavS2L8k2tGCpz831L0zt1/Ch2WxZl3qYsucb++AlDhsoUpZHk+fae/bYQNNCjeMUcy0Tc3rD/PfWclVe4eNEiqbfuWHqKoo8FRjifeuw0zjx2EgCwsWHpdm+8bunKQuGPL9j6rTKFcpdpE41Kgs6eRcTPfvFzdr4xCdSUmJ9rWNRTgjeVkkSDrO0jx0+kyJTSXJr01yX6DZWvOEa06xrTAj/56U/hpW99i+dtvq7A4qjr65buU6cP2rhqGQgNCq9s79iYwy8hZKZAnBClV6poMpoqWi6r4OloqlGxWEx9neu30+9WiHR7JPDHuvd5qATmF9JUXx62zOwAOOs3dTEZv8Wu56IR32MLPB/T1ToeWzV0ZX3T1vTVm5Ymm4R9bK8bItGh4IzmfZHXV+tfvlj34E6nk6JVKUKl0glEpIUq1bn3WNu2dbEwZ/6h1+ul/l6ouhDgIgVrEiJVJe0buKa6fpL+VmtW94UtFizvc60qC0aS6+pXd7CLxSOGBIWB9W1YhFU65A6SNmV9P33iOKZIndCtzL0Pu7SQdpu+ksjKytHj+NEv/xUAQGPBfLVKVfS4XyxQ3GNjw1KIEwqeBX6MnW35Fd7Le3acrQ0bw8ceewwA0GnzHkE0rs59ZRzH6f5ne8f8bMhqy/UV85W//W//AADwxrfNzw1YLHqKQiK9oIRf+Ae/AAD4v/+1leBZe8tSBfeYoVAjGlhg+mm1aud4+PBhXL5kvlh7mYV586vbW+YTW81tjp1dYzeTp1KppOP5x3/8xzY2E5B4d69fLpfT70hkxU2rd9/fzeRfdd3dzCF33xTHQ5TM9dWJHO8BLUeqcsstt9xyyy233HLLLbfcHsAeGaTKio/Z06OeSBWBTZIkjfiViqM5ki5y4j4994i2ZG1qxvJoRaoTl8gn2bLfs6fbbCR/9aTl5v/8z/3nAID33r0EAPi1X/s1AMBLL70EAFhettxeRYparTZq1VZ6HnYcRlGInO2SZ6HzV/Rgj6TLcOChyLxij0/Ukkz3WGS0wLarzJ3dYCG5OqoYRORA9C2agtja10imI5ooyiVER4XUeiiVskUxgTgWD0jcJmtiEO+fs2rf2R8p0rVVBM4VaribNPAklMWNTPm+f0/Z4ElI6X520MhvFqmaJM3t5v+63KpsXrD7m0njsZ+whhAXnX1KPPZdWWf7uMjvR/0eSkQS+srRL3BuRh9jTlXG9kM2hxFSV/qe0TfPdZ9EPhM/nct7HMO5JUOXituGCO1sWgRzk/yk6mHzL/NLFkms1Gvocm2/8NRnAAAXLlwAAFy+annyiqQJ7ZHvKRR8nDhh+f6KfgoNvXbNcvtFbtb3JAbx5jvG87xy5QrOnXsXAPD4ExZlFaKuSHanyyigpMyZp7924wp+8itftj6zbyoGfujwqr2Sm9qLrY1DLEweEsm6dvUygmQU2db5yhS515w/vGxtfvvlb+LoEcvpn5uxvrYYMX7uOSNVv/++yN52L2izKPGA/iz2++gTqZI8fcIoe53IlIq0N1W0dR++p/qs+5Kug/i8ZcoSNxoqkjqM7PYYCY8iyR4zw8EfRdgPErm9l8Rwbh+uefBQgAef1/DYIfMHHlGfa1euo8x5rnnVpm+oOZktupZZ/m5afNfh9/XYVpdlECSHPkUURqhDEARj9w7xQqcGLP5Lv1egT+vuEbFYnE7Xoua1UC5XUMnNxojIVwzKEfoReY7BqChVv6fMlVH06fgJ80uN6elUQKxCNGlcMnv0nu6RPyMRjF//V/8v/vp/8DcBABduXQIAdHqjHM4uxYbmpuwcp+oU9fFCXFi/xbGx85MfWV42gQoJ86j4uPxNm20CEcKBfbazRTGobRuP3/n6HwIAnvjM9wMANjdNwCgkP6q4bL7bD2K89V0T2UgkMjFtfjWAtbV0xPpz7ar11ydC/s5bF+ERCRRH98qV6zx/Q+6K5INp3yzflgo07aynSJXuEXvNnZHv6n60XxkKzW/NYXefuB8Pa5K56JabLXU/Yhj3K3CWe9rccsstt9xyyy233HLLLbcHsEcCqZIym54i9TSrCGVWUt3NmXUj90OZdKIgtXL6lKpoSq8nSW+MvHa6o5HPIS+rPKaUNj9v0Yuf/VlDrl599VUAwC//8i8DAG7cME5BrVbDFtX9hqp2itYQRcCo6uEaIwE9SoweOnQolTeuUMUniUeVUlos+qbodllqhKUKqAiaRokCb1SO3I2AudGlbJTTVTwbk/be56F+UoFaF21x0aVsv9zcaDcC4dp+hTBdeU034uEiVftFd+9VBNiNGk+S9Nzvt5PyfbM2qR1X5nmYDzwu5T7p/DWm6dri76IkRhiNchbjcFTl8ONn3qhUvj7NzO90/nnByHcCX76AkbM4xf4AAP1uHyG5nxdvGVJTZ356QK7TFHPbp1YMKUq4wI8doxR7M0z5WDfJS2hMW/SvxHIGGvujx0+kfQYsSqu/hfYrglwM/LHvAsNIqvza7Ox86kt9z/zwZz7zAgCgS4Rq/abxsbyStV0vkpNRLuDUEev79VvGXVD0UwjR57//B63vviF0is7L9wdBAC8a9T/y35qnQtfk12Jey9OnTqJARGCPXDEhVjduXGP7o2UedlPlV/te7BVQLbKMBqPp4hFWqZzWpsJiqWa/kW/SOXS7XSTimpBvxwQCtIVYVYgYlKSoZde2VmugTL6ViqyWmaXR57gE0Siv1UW878bJnIRo5/bhWSEGClxvffqMI0vmFxYbUzh/yXiOey2bCyqG2961SaO1KuQke+9z76FpqQsHZa8QdS0mo8hWFEXpOlKxba2vpE2Ui8Vx9zwiqFwX20Shs8ffjxcPjHNdrm0Yp3Tl9CGEfnekz+69Re/r7HOX59LyI3SJKgdlojZOuQt3DxL1eK/jGv+xr/w4tnt2HsdWDDUOtU9k8fX5afNza1v2+dod861xt4NPPEelVik371gmgM9ruLVNJKunvaVdn6kpO5ed3XVUatoPkR8WGVL2s3/37wMAvstMhU+dMZW+H/jSF+3cqEo3Wxlgad6QsKceJ3dz2/731a//LoAhx1Sy/deu2jkfOXwMX/mJH7N2OL+UTSB+3IClgFx/I37ciRMn8Cd/8g0AQ0VAcej02++VnznIPuxhWY5U5ZZbbrnllltuueWWW265PYA9EkgVYE+Sbr6j8oKVnwkAIYtXupEPN9qeKsf1ozRq02HEpez8Jq2P5Y1yqbJ9c1EbRXT1lP7CC58EADz55OMjbfziL/4i3r9gClPiFRR4/HZHec6s8ZQWc7TXagap87zRCHOH+dYao4TKbkLbOkS/GovzuLxmajFhwugNI0FSF5K5aJ8iw8VicSwKmhYiZH9SFUZHscfzvDHVFkXEFNF16724edC+76ffdTlzkyIf+ynFTCrgO6l+1n7qeJMiHXdD9+5lbjRvvzZdFR23fXcuu/nIWVTGjd5NUtfpkbdXyCCFUhY7smT8nY9v8V/juKm2FBzU7u4mlFzXhG6U66tYKEDlrrqq11Jk/nmq+mbR0I2uHW9h2tYTIqIiU1PYYm2lNnlGX/ua1SV54nGLimpNpOp4VBTcWFtP18nJk6bg9/rrrwMAFg8bYuQW4l5fN0RpYdEinWtra7jEwpWLC8b/aDH6GgvR5vk2ibwvkGtQC2IUYuvzpz/1fQCAl7/zGgDgvXOG3KWcpkXzownn1eXLdsw4CrE4a+elOSy0TZFU5fZrHOZZLDPc3UVMxH6OnKmYCl4Li/YdqR3qei8vNDgeqjnmYUDVpwLrtvi8qAkLKk/VWBORc6hOFS69tloFlAujCLI4LGDktiVlLc6ppUWLDidBjA65JB7X6R7XdECksl5RBHkyv/KeBYTvoaKa28Mxz0vglYaIf0J10EbJ5nJcq+Cpul3nmzeNy7K9Zff4gW/zbJfIaI9tCLmOOxG6HWahCJGZUSHL0SyULjnmmjNrW7ama7Uaqrynd1s2RwdEaqoBkVnO3bHi11NV7O4aatOgUmBZPEQWo71y0zJ3+qw1tblnfK3anK3pZrcFvyYfzL2GkFjW0lLd5DbRoFrKbS0jDoRukSvFNVuUqij3NFWqIRbqrCu1x8wmv4Qqx79WsbY6u3a+u75dh70duy6NxHyF/ND6+gC9/ujeyS902B9y2LiHbbdtvW9t23g0WU90YX4JG+v0Ywvm96oNnkNg+8ZF2Jj9vb/z43aMql2f7Q0iSJjB6gnz96uP2/F2qPp68qJlM3znLauR+uQzTwMAPvviMwCAF1/8UTR3zfdWq6y3R87wjevW1yrR/hrHtt+1c6nNcy/YaeGlb/5bAEBAv6dKkIGjZOryxve777p7KtdXuZ/f7d7t/tZVA0wSAEnR+RFTvLxwYrv7WY5U5ZZbbrnllltuueWWW265PYA9EkiV53kjyk56qtdTZb/fz/AbRp9O3SidPk85WEERvR6jlnOmYuLm6Lv8IDcnXZHQ7GeK0C8uzY/0o8iaNWr7x/79L+OPfteOd/6CRWdv3LYn/0BqYVRMUQQq5bqMcJxG+U56VaS5Q7WZcGCfd4h+Vet1FBnZLCeMaFDxZVLVcTcfOfu3iyIp4qAxVOQ/q+SYrbOV/a3GVRHnSdwrty8HsfuJvLr8vHt9fj/H+yD1Ydwoiu/7Y+27iJn+76JNd4tEuwiVa8XycJ6UiLScOXMGAHDimNX1WZxfOPB5PWoWxzES//6RKt8fVf8TYpXGqKJhqaCSVLi4Pta2TRXr2pbVOlk8bsh2smbISWfH/r/yxBmUiXhcuGoRxNVTVuNGanCVikV5r127wX6Rk+f7KYJ+5YopBUrt78hxi2Q+9dRTAIbIkFCg1dVVAMDFi5fTvP933ja1qb/85R8AAHzjJavRl7Afi8uGfrU37ZxKPtAg78irmC9/9llT3fvWyxYpvXnTvluo2vdmpiz6K26XhxjVqvHLXP6kzk2me0ezaX6kXq1gc9u+ozk+Pzs3Mh5uvai5KbtOt29b9DUoVNCoU42N9WASol9CwXwq9fX7o3WD1Ga1UkI1oHIf1da2Mcp9iVTrqmQ+OmBUNOztpucXM0tB8GeKmA1GFW9ddcT78Vs5UvXhWpJ4GPSLKBQ4NxpE+HktY7+GmSleRyrY1as2B26IU1mzOVRhHas2EaW9vWa6ZyoTEdhiTaGE92ch07rHqhbQAEPUqcU5UPJG9zBtoj3yjamSmzJs+n30iN72qFin+bRJf7fJGnMdZucUGuQUzjR4/n30Bvadfsz9FtGfimff7YdU35sfVdAEhlkuWgs6z3QfyO+FRNV1x9O49fuDFJnYol+bnSaKqPqEFWtzgwqq/b6ONRhTIl1bN/+mcdf/NYbKLvBgbWxubqPIe2yZfvfpZ81Hv/2GZRmknDKibI1pG7taxbILpmurmJqxPvtVa/8Hvvgle0/0r0//8vZ7phIYktv3+BPPo0P/eeSI8Vw1R5Qldf2Ccf4G9NFgZldSsf9vbt1J7x9vvcX2Of9cvrarzrifZeuUZs3N0rkfnpTmhatGeFdLEayDKR3nSFVuueWWW2655ZZbbrnlltsD2CODVGWj5S5vpFQqpbmq1cooH0oohyIOeqpVpKTbC9O6T+5TsiK+qQoe89wVCRUaFQTB2BNurTb8n/WHec/MLdbr1FQdh2epUnXIohW7m8znZ35zXw/azBUWH6PPc+x0OgDbLzCgqPFIkaqI6BrrSUkmceXocbzx/ns8T+azJqO1IlyOjc7RrQuQHTtFXsZRldGc1SiKxuoZuNEJjbfUhvYzteFe30nIwn6R10nf1fm7KoD3UhjMmquceBCk6F5tZfvjcsncPo7lud9FudBtw1V/FGLZYRTdz3C6lhZM1W2Z3JvFu1yzR9s8ICkggeYTI8a81CEGqLDmmhdzHlB5M/RsbYc+UVrYj0IqUPX7XdQDi5zONyxyGJBDdbNrqFKxSiWpa+ftNzWLOmqeX7pwHjF5ka0di+DGsV2filSobluOfzmtP2bXq9qoo0Zk5Na6IVRHT5+1/szY9XrppVcAAHOLxo3rRfSrjNwtz8+nPvWVV78DYFjbpMI5t9uxSOa5axaVnelbVLrdbqcKXtGAfnva/OUnHjdU6/I7FvV88s//OQDAzq7xBqY491YfOwvwOA3OuTu3bnIcqPK3amjpt195iWPHddOvoEgVvTLRPKliDchTUh2dHnm2t+/YOE3P2rhFSQ9xRCW+KRubVsuuryLEQqhCft5sjqJjlUoFPsdwkNbjsf5MNyySPGgTBePE8xhRxiBCxDpVfWYfFGLe43jcQpn+gUqHA3FSAztGISiiGNv/7lXj5SBcUPc38QdA4f+smu8XUK3Mo9/XfZMqtkXeL8M6alQEVe2qhZnRGmdS5QuZeTM/bXNofnEB58+bH9GaFYrTa43WyNR9SEqWMX1/GIZI+HcrHOXjDsLRjA2va/5IvmpnfQ0qT3n9lmXhCKHZo09sko+10TKOz5kVQ8xDj3M5CFAtmo+ogvuFMvd/RAqKBCx0fxLaUyqV0A5HM2hcZCTQnoaoix/w3se1VavVMOB+sEveV2/PfNLhRTvOzWuXeFzrT5bTqWskZdTjx42HurenOlS2NlVza5Z7wuaesng8rBwxVb+dnVZ6Xtlz0H2617L7z+a6jenq2c8BAA6deBohz2HQtnGV/3vyacsU+N2vfZVjaP2dIpe3091O54RqGS4uWKbA4cN2Lkc43rduUdkvsWO8+t1vs+3fw8KCZa5oL+fu+dzr4+7nsubugyZxq+7H3LE8kCXKAMiRqtxyyy233HLLLbfccssttw/dHiGkyseAUQM99QuF2d1tZ1TmmIvO94paKGqmV6lJlUo+BoyWDqP5o0pqAfPelZerKE/2iTjKRHSAoWqLW9NKqFgQqKbEPI6zIvXXv/51tme/ee+ccaxuMu9Y59Jn2CcgchX3Q1QZlRKqEw6I1DAnV1FqnxGBkLyP77x/DtOM0tbXLcLR8/evU6RoplCorFKKi2akHCoH3fGpDCNRtThO0miYTHV+BMkVqBSkcJcnmks0RHsmVZN3q23LVDsoixgpwj0Jsblb3SpXoc+NhE2qW5V9nYSuTVKxyUZ1dL7ucV1EzEWuZL7vT+QMCpFNFRw1tkRQC4EH6YgtUpkoYv77+sbBojePmiVJgsFgAE9zX9d1wneBjG/h0MpfdRk5HlB5s5IkKDPaWfRGa7/UG4ZYpWuMfmKTtWjq9D2NWgm7/Kwfia9ZGWjSfdYAACAASURBVGlrYY4qeORLFYJhNfs76xZllQ9td+x9naiGGykUctNomCrU5vYNNB3OqeqW3L4txCjme4tOzx3i3PACFAuqw2Q+tcHl+cRJi8bWqcZXSWwetcnBOnbiONv2MFtnNHfHELHTpx8DAEwThWvSbx5ZMmWrm3csgtrs7WB+wc5vYZEI4W1TzmqR0yEOSKNhkf0N1hLUugrDOOV3ab00mJ2g0j8RHdXyIvtJDkLKRUgi9MglGVPcZF0u8Rb7VHjs8nqViwGqQtuq7BPX616LiFiPHBcqmlWpgBYMlGlQROyN8g0+Lhyq/errfZwtSRKEYS+TtSFUm5ynkg8VlJSq5DTrn820bR6ssKbV1euGJGzukDcVhXj2ceNmCm3Qer6xvZseH8jyD22O9omQViqV4T3WQS17ndH9k+xO09a9V/TQ6nGvQrTp0pod/9aO+Z1Z+rnKFLnWJfKqI3KsgiI8IvF+khYjtddIb0frOF68aGj3p4+tYI7reKqsrCQbX/m3ijJdtE8JRtuM4zhdo8We+ddo+xwA4LV33rW+EoOYnbH9XHrv8CL0u720HQDY2hJX0vrToAppgZy33aYpMgsFmp6aS/eUQuCEhH3+858HAJzjOSbcF05TfbBStbanjx9Dd8/uBfX6qLKzuLRnHzPE6vLVG+yPjUu328XKMveJdTtOpdzgezuHhJyrXmBjus33r7xmHNupqal0f6r5pfkoc/dRd1vbk/ZJbqbTQWrtTWrLVUt+GJYjVbnllltuueWWW2655ZZbbg9gjwRSFccxOp1OGilQdDVbG8mth+PyQbJqc8BoVCNFdxi1ULtCpBS9KRApkmWfgNVutgJ5ts20/ghN34vjGPOn7Wn9Jw7/JADg1h2Lml64cnWkr0lCJEE1qZhfH4chbjIarJxpxR99qfIx/77IWlctRj4vXLmMHiPOKNoYDfi/tMYVz1NKKHqfVV1x1RYn5cgqt3q/2k7jUdJRZEZt6npk0TDVv3J5cS6qlHIHMG6T+AQHCYSmtcz46qpO3qsuVZIkE2tZua/7qdm4UToXuZO54+D+PvtbfUfX3UXKfEYXPW/4+7NnjZvzzDPPjPz2Y2e8HrHURPfhwqXj4IkfxLnfl1qoNdXl53Gbdd28AEiYFx/YWrt50VDpldM2bjusCxVLjYqh09klixbutHfw9nsWIT28YmpMrVRBy44TUkFMvqYf2rG2t7fT72ieLjLKrfdzc6aG1+qOKnPKTp8+jUvMrddv3nzzzXRsAOCxxww5unDB+ByLFVOGLFYaaBG1Swrmr0r0ac+eNQXDAeunFJinPrto+ftzTRu3OAKKrHWyQKR9l5H5LrlLXfIVSNtI62nNoI+IKPj6ukWE+20b3/feM37pEsd5hWpZpXXzyYqwVuszaLXs2qgmYL3OmlpsuyxlMSLvSSwka+g/uy1rT/5KUd+CFFaluKo6OwOpZflIEvusTmSuS3Sv12f7faIN5FglAe99VI9DEqA4Nar06iqa3q1OzP0ql4754rv4xHspdmWjzm4E+oMoqn6vLY4j9PpNwBNSLPVJu1a9fhOVKu8tzNAokkBdph/W+j91chUAMMv1cGftBvqct23uneY5z6aftJp28hFSARXaPUW0u91uI0izPohQ0bf7GL0/C8HV/qDbCbFLn7ixa3OxybpZpx6zvi4wo6aLHf7GzsWr6J4cQUKsnpAq576s+5V4O1kFuYqjTlyX+mhBtZ54P+QGZRBZP4WkhGGEvab1LdwxRdTrr1rNpWbP/GCHWUhR39D8cma/qHbSMStpDVL9tWPn1KZyaEjlRCRD5djjRJO0/712w/aHN65YfxbqUvszZHyeyolzJw2p7/nhsJ4lfUFQGuWf/aUf+QoA4J33DIUrl6yNKPJSXt7q6mnr0rS1IUSwMDCfXpqyc/vVX/nfAQDFAvcv4VClWHtrd594P3WqJpm7X3Kzpu6njWz/Ju2pxLs+qD3wQ5VnesIvA7ieJMmPeZ53CsCvApgH8G0AfytJkv3v3DSDxsN0oDVZsxvDVLKcC0mb+KzsOjBMZcrCjBqk6enp9DNgPO1rEvE2SZKxm5ErFOBKjOu1VquhR3LqgDfOv/N3fwoAcPK0bUL+l//1nwAAOh06K960NVmjOE43CXv8jjaDXd1QdXxtmPl+Y2sTvuOdUhEPiX84RXfdwsphGE6cuO6NFGlB1OF4uQ9V6YOP0v2cz11Rin6/P5G06D7sDGHl0YeQJEnSeaXzTK//hBt8duG5DzyTHqImPRhlNwaTigtrDo+lMmbG3C3C7DqCSel/URSNBRw0vhpvd6OluVQqFMfmv1u64KO0h+JzQN+A/R+qkiQZm2vpmDJTIBaxuTdazLoYlIBQ6YT22uf7te/ag8mJ45bmduUSJc2Lo6m/C0uL6HOD3VOQiYdXAOfGDfMrJ4/aQ5dSWnphmN5E25QlVt82t2zj8PSznwAAvPq6SZyr+K82TPPVevrgoQ3YMD24xeNbCsknPmFt9Zkm1Oz2TaIYALnmaapkvWIbk6kppUnbSdWn7SHvky/YhqHd2sQWZYnffPNlnjcLdTL7Y/WE3fx9iozcuG39mZqbx+UrthG6dsPEPCSLq2u4dMge4m7etocujVerYykttjZUFJ4EcRVcr0iOlw+O8ahvqld4LX0PnuNTO3zI6srn1ey7Jd1HJLk+CBFzw1WRT+f/fKaJ7WxbfypV2xh1O+bHSzX7f6lUPlBqzKNu3+uHqIfhb2LfR7tcRaVkm82iHjwL9N+xj709PmhQEKcyJYqDXddKwV59pu/Pztrc8crL2N22dd1jYCfqWVtVFeOlIMahJVtnx1ZMoObOpqXnNarFNM024kN7kCi4a202W7Y2ChKron8axAMsUu69GNuc3fJsbjYknsM5utmyuVlWejAozpEAkVJVOVUVVAgDO5da1R6mUrGw+eMch5WUSjDFB42E6ekDBiLKgcoSWJ+neHyJwKCYIN6xwNf1b5gwT5EPHL077NBtG6v2NaNxlA9ZUKk4fxQ7TK8uUBbfC5lKyFS6cMv+HzXof2YtDTqmwEar04RXpI/gg+l8nT6ixXvCAsuYHLGHKK9iPmvmiPUjKdWw0WbBZu7sI9WALlCOnyI7W9s2Pq3dS/b+5iY+96lPAQAOH7a5sbbFINauzQu/ZP26fsF8ap17rF3+PwzDsWCz+xAlc/fR2fRLmbvHm0T1cPeX92PZEjRun4Z9vT//8zDS//4LAG9n3v8PAP5xkiRnAWwB+KmHcIzccsstN1nuc3LLLbePynJ/k1tuuR3IHgip8jzvGIC/DOC/A/Bznj3qfQnA3+BX/jmA/xbAP7l7O6NE+ruRxtxCsnrSdOUn9b1yuZymXMjcNMD0iXgC+pBFqlwUZ/xc7GlXqNjGxgbKM4T4e5JTtTZWz1ik9fnnnwcA/Mkr37JjMPIt9Am+P0yRc56i9d4LRqOl6edJglJhtNCa+0SfQtbO+QvJiuN4XE53QkpfwGNlI/6TIhDub4Uk6fupcEe/P1H23EVuhtGG/YUj9rNJcsNZUYq7SZUf1Fy0TSiPC4Xfj01Cte4mKa+xc1MoZUMUaigpr/muayJ00017/bDtYfmcJEkQRRE8ptx6KquQQWTd8XLfayn2ma7Tk4hN14PHXJYyo8oNSujGAQv6XjSEStL0595+BwDQ6dFv1f1UllapdEK7VGCx07LotOZmnynAieelxXXXSVTvETlaoYS6/JPSVjqdSwCGSP/a2hpmF03K/HGS4HUcCVZUibIope75Z4wE/cSTT4+lR3t+dWSMyhU7bpERbp+S872uRUe//cof4z/6qz8CADh/wVJVPvWpT1vfaxah3bxj31WR4vcuW7rk1l4Tg9DWxYljT1hfG3Z8zVv1+cQJi/pO1yWbbhH2WqOImGI3SqUsFpVao/S+HsdslIytcy6WCvCYEugWa5eQQLUwx3NgIVGiY4NwkCKgFSJjYDq4RGMadSIVhVEUecA5FFWG94oH8VvfC8tGiycVZf8o7GH5myaAr8PHZwY23w93LIXVLzK1NJhCQLRa4iVRlyhniYV6KeogVLNYsjGaK89glut4wHTibQrVXL9h6Iv2QIcPG0JbrVgbJ44u83cDDJaYDbO5y3O3uRjG9DOe+aomEdteaGs2HADtps25FpEyaU8lMUVTCsqCwEjb8HX/8JFuR9P0P4k92HqvV6zvdRYFn2H5g263hZlZldQREsbjsi3th0pE/XyiYAWmyfXDNpKCnc/K89/PMbFrtHjGUihDityERJLSrKRBHx2mDi4UrK9Ty4Yqffcty0xoUijneo9F2JfsWIeY2n3k8HF4LH9w+rBdy0uXbCyPnLV94urTJp3uVSxls8B1nxAxKvrJsNixk42iPV6P5zQzY2N3+7plIXzmhU9jl9fwtZet2PChYzbOEg/66u/+SwDDNHCl+GmtttvtdJ+mvaObweVaFilSO+7e+qNY70EQpH1+0OM9aG9/EcB/hSHFZwHAdpKo2AauATj6gMfILbfccpPlPie33HL7qCz3N7nlltuB7QMjVZ7n/RiAO0mSvOJ53g/p432+um9Coud5Pw3gpwFgZWUFuzs76ZOv7/A0RuSoM59lX12RgyyJUdF8PS27yImb9+kiFvV6fUygoMKIp6KY6leXEQHxs2ZmZ1MRiQrzeG+3KW1OWdVTj68CAG6uGydgbc2iGrt71rbvB8PoeDTK/Sh6ei7mODiS3wAQMRqfagGLeK/PoSjS/nK7QeCP5L4CAAM9KJRU9I7cLkaIFZmCFyIik1zRKd+jMAglimNGZA/NWc50e88iZTHbSOol7HVHkSL1vFQZjQSn0vs85lDCNsKA0tRBgaImHmWl+xJuIK9BhUuFWsSAxwiyUMZJhZNdqVCXi5Q1V57d/Tw7x9123HzjSaRNl7+VNTcyNM59Y+S0EKNKmd+5eYuw+byW9dr0WLsflj1Mn1OrVjCIw5R7mFDkIdA4hQliLw2r2os4Biz6G0J8GSKbofiVfcSSzibap6Lcjy2amMJrbxv6srFpUd85ll2ocT0VgmLKkaoz6tokp+jiFSMUH12xtvwykVb2I46SNDI9PW9o0/UbFpFsblmkcoNiOY06109iPmpXvIlSOZVO/+xnPwsA2Fm3NjodOxeR7WemlzkOREj8EtrkME21mW9ftv8VKfVbPWmCFdMzFv0OiSz/i1828vMnX3wKL732lrVBGX9xuQKe5wwLVwpR+/zz3wcAGPg+fBK0tymVPr1s+17xst55x5CqGxwXHDP0zS8qw6CNo0ctQhtS9j2k1+m3zC8HzLVXAVGt43ptiFz1ilx/oX1nV6ijpu0e5dfp13XdwoGHmPejPR5P63Tg2X0S5DikpHQVsu6Tm9MtIiJBPiyq9AcL38ufD6RXbS9x6l8jFJL9UXDZJOx/v89dnsK9CgffjR0ROW19WPZQ/U2lgsVLG/juWZvLr7H46l9sG+qwF7TQYEFwidYgUTaGXc8oVoaN7sXMmikWkfij2QXFBUO5p2ZsfWtuar+yS2GL2owhPAUEqFdtzUwvq0SArbd+xAKx5CdBWQu8j+5sbmG6aseZnye/b1OlbyhtzhIwKiS8fZNS8mU7h1qtkvIrg4KKZ9sea6pma3dhztbjZz/zOXaD/CU/SVHkSpX7kZb2HDyu5jIzCIq613OMu+0ephcp0LCsdW3nX2CR27hPRGabe83AjrF2+30ssu9CCndb9t1vfOMbAICzJ02EokcJc39g8+Af/4//GwDgP/0rP4kv/7kfAAAk5J2WicgdPfNJG5dZ83NB0eZJqJIXnBdRf5Ai8W7GivzKFIuwf+7zLwAAfu+3fx8AcP36TbzwwhcAAKtEpvqRzbvzlw3tvHrVhDN2dgyV297mPpZ73iiKxvjq9+LipyUm4nhi5swk5Gg/fvsH5Vd5njeWKaUsnPtt60HS/74A4Mc9z/sygAqAaVhUZ9bzvAIjOccA3Njvx0mS/BKAXwKA55579uMn55Nbbrl91PbQfM787HTuc3LLLbe72cPzN9Mzub/JLbc/A/aBH6qSJPlHAP4RADCK8w+SJPmbnuf9SwA/CVPH+dsAfuNebXmej0qlMqa+kVVS0xNt2ZE9l7lPs9kovyvR7ub7uxwaRQSzuZ36n9pKi+f1RxERcRSyT+zK+VdkV8XVqtUWj299XV4+PPK9ZutCeuz9CtICGYnveLTv+v9+/DRXUttFWfZDLsa4Uw76lx6Xx5A8fKHgp5LDHkYliJU7vUiex4/8yF+y7zHy8u3XTIXn3KXz8IsWDVGkreDwk2R6p3mSRYzUV5cjI6VAF43bL0Liqt25SpJuVGOSxPndbFLEZj8bK77s9DmrqDgpr9mNGrnva7VKqvB25MgRp48fnarYw/Q5+7Q98prN8XZnwaS1kKKJfgEe+RERI5izM8adkerd4qIhU1tUTqrXxFXj2u92EGT4TQBQn7LopvhQ6quKRJZLQl7DNGK5tSc5cDvuzTtXAAAXLhra9cKLhkJ9/d/9EQDgxlVTzfvSX/wRJIyY//7X/o2dA1Et128ep5LhTfI3njizirhnx223LMo7LYldTunTZ55g/ywa+A9//r8EAPyN/+SvAgB+4j/+Cn7tX/+m/UYKXbwSl8hH++xnLWJdYVHM2hGL5K7f3sTty3aeTzz+lPWDnkGcqbNnTXn1+nVD4955+22Ona3no0ePY3PDxr1Yo4/lREjlmflebUpBUL6n3W6nc6JGVH5nR3yVUa6BrmEWPW5RTbHNwqKLROQ8RdmjUb/d55h75Ift7MRSdE79c098HGZNlFWsncizF2tu+xjmA/zZtIe6x/FjFOt7CN+x9TW1YrLcf1S2a/tDXgddKsH5XSoHE20F75fifCfO/avd3B0qu3J9VdOo++zIdytTtj/RvOxGhjogjuGLs8f5Nc05y4QZ9Hvmq4QUCymbqdbQ5RotUWWwVlexXftNeicjb+jiOeMUaocVFLdRrtq35hftO8dWbI3WWZT28bPG2aw3iObTZ4ZhD1Ek7hBVolkEOGT5mBJRuAGVmKWwXCDCNzM1jT7RLI/oWYkZNQEzitC3MavU7fjNtpW5mS6dTNGaJSLvr5KXdPZpQ79UliFkVsFvXybnlWv6pSsXcPn/Munyn/m5/wYAcOqs+dW5Q/baCmyMZ6gSGJK41meGxNrGFo4sWXtCk3TdJaX//gXj7h49Zvdx3Y8GgwFinq+KL1eYqfLa63YuT1Ke/9KlS3ZOKtVD833/wNxz+cgsv/ugCsvZ42VfwzAcyVC7H8vqBkzSHjiofRgMsF+AETrPw/KP/+mHcIzccsstN1nuc3LLLbePynJ/k1tuue1rD6X4b5IkfwjgD/n3BQCfvZ/fR1GE7e3tNALrPqkGQZDyreBwStx6UftF992CtfqNW6BM0Tw9gWfzPV1UJ81RZTFet8DwMEJZQ4fR2oh589NTFj1StPDZZwwFuPD+JTuHeLwGkMuRuZcKnlvXK2suIuFyeNwx7ff7Y7mx7nfStsXtiYdoRxAImWLuv28RsGLN3i9SAe1LX/wLAID/7xtWB2KefJBVxGl9HdXMEYcrjSqkhQN5KDj1s/bpa5r3O7h7zav9fuMW43U/n1SU+CC2H2oy6ffud3W9XbWxIAjGzt9tY1KdhqNHj6YKcG7B6MFgfIw+CntQn7NPe2Ovk5BCF6lyI2YDAH2iPCXl+ldUZNHmqyKEu0Q5yuRY1GqqNVRFlf5QKnBS9JviummxCO4UfzPNNsN+lCJVlYa1USByVpPaEoNwIevcTddZP4c8xlvXr2GPa+zzL34GALDNgr3vvWso1+nTVh9FkctiSbXyErRbhkDNMELM4DumycmLGX1/421T7PuZn/lb1j8qpf7S//HP0CI/c5a1fSqMPn/1d8w//Ph/+NcBAGvM7b+1az6i0+umhdWffMKi24cPL3IMWfR02tpaDu1zUkJQYuHc2dl57Gzb+MoPiIehNVYMNA9UtNVOcpM1aaampoBglLcpG2Y02PrUPUd5/MViEVPThnzp3iJlNR1fNXbEPZlnDaI2+SRR3Mf2Jvm5jFwvU21shnXBQkanPam0FaWiGwDex7Sw94dgD+pvYvjoRVUcbthc7ey+Yv+YN7/6+14DP1HlNfHtO4MOiz1zvc906b9Zp6xJmCcoVzAgyhUpG4FzUsq/aa1K1YYk96daHPqlCudCLLSBWQjT9C8JOVUB10OLNad6SFCKqECH0aKzERd+wWMdq6KhO8mA91gq/EVxArnbXQOxsBXYvH/xM4b2zC6uAgDaiS3Wac3//5+9Nw227KrOBL8z3fneN7/Ml3OmhkQDIAkBEpaYzWywZcplt7tslwnc7rYpd7sd7SpXR0W7i7K7Otwd4XZ1ucoDxoC7Anc15QHwBBgsFyAkkIQGJGVKyvllvnzzne89Q/9Y39r3nH3flTJJQWXaZ0Vk3Hx3OGefffZee5/1re9blSpa29KWOmt3LbD27gb5iE6fNb8m1HN0vBhF7hk8aDFv/Q5RFSJFQ7/NvpP5WQpKcCkw3aCa6XMn/xAAcJhz8uHjck8fWeFNI+r/7nfeI8c+uYa33isovUde2NwNgmYOeB9qYHZUlOVJD4iSVQojtGfIdWZANNGlgmhMBckq/b1Dftba1gBh3GTbJGPqC3/9OQDAA3/7RXnfySI4aXVmNW2TvdeYhPqksz30/7oP1z3eix1DTfaa2f3v5dgkldEXK1Ru27Wls5pbbrnllltuueWWW2655XaV2UuCVF2pheEQFy9eNLU7FAWamZGn/Onp6RHaZKEqdgTf5rhEUWSeqG3URp9ES5aCnM3HKZVKY0/geh7NpdWna0Wu9FjNZhNdRg41KqLfUa7ATTfdAgBYX5doxt/8jURim22JTKysrJjz6vnsa5ik7R9F0Vhk3ebM2DW+7BoHbrpOloWIqY3OwRotnj71x4Yj5jrSr1VG5Ob3iMrQf/jYJ+Q6qS5z/NgJAMDFi6xg3hsYBGpuRn6jUQzlM2g0V6PJsRUuSKMOGlkZITRZtMm+pnSfKM/ARrFsHtQktb5LsUlISPo4k6qNT6pFBYwjsvpdoypm3Vt9ve+++/Dau6TaukbYNe86Sf7LIFXfaUuSZKxP7flh18iL+OoXC5giMnLokNRBmq0LQtNmGLbXF0SCw9UgVdtN8QHl2hQuXLiQOb/6w7AvY91Gi5XTM9WYwb4Dojb1lQclIn7osPAWl+4S1aeLy3LsEtXCvu+dwme8/0sSnTx69ChKrIOysSrfbZKf9apXyTEef1zU+RYWWOuGKlnDKEaRSmZVqovV50Vdr1CXa9hirZc//I9CR/nnvyj1U3tDOcfh3Xvx9DHhRR25Xvzjxz/yMQDAz37oZwAAJ5dX5Fo2BYVZPSt/xxEwQ5T7NPtwjn6pwfosHUbZ63VBbrbWqG5JBdLmdgeb63Kv5uak7e2mnEd9T2NefJHWH1SereEv9V3DIWtuU7nQ+E312z77lnWLOLb6/T6myMOrEfVUFEtRgDozHnS9UrSrMaXrS4jjTwuHoj7NelhUAYypQtguyzWVqOJZrCgvrArHz9ZxtNe+SZyHNFp/OX7v77I5cOB4gfGXZaptYusEAMAdHsQny9Jvb9qU/cjSgtzvRaKHHapQhiU5RpXI0iBO4CmnWVFM8vAM19dkctDnc81TFBzpbBxdd5Qr6mSzIGxuuus4iBWZZx2ogq413AdUyFfS10B5WZ6mljjo9+T/NXKm9h6Reb/VYc2/Gucb275N1GXXVA0Ja7Pp8ZVTpHPDHrN6raMadOMZPZN4+r5HTiszj4KpKQSczw6RwPe884MAgJNPfg0AsNGRLIP/5kP/DADwbz8hZc0+81n5/K037cYn//jXAAD/19v/k/RNTLSFKsUOski5XpNeY7/fNz5Iv6NtVp91/RFZx4sFuU8f+ID4il//9d/At54S7tTKqnBWv/glUQaME6KaJfHpWttP61Wl+fW6l7ZVuSdlQ6XXVP2O3hN7n/JC9WvV7N/qXu9Kak9dTpYRkCNVueWWW2655ZZbbrnllltuV2RXBVI1HIa4cOGC4TjpU7Y+dcdxbD7zrSdwu8aUrcLmOI6JsCnPQJ9eFfWxEYp0jqj9uc3P0iiBPs0q2pbmILluVpFvg/wgjfrXqer1xje+me2UaOpHP/a7pj+0rZOemuNo5xzSIAgm5oRqBED7zo7WaL8Nh8Mx7pDNFRpFJ4eZ9x3HQSGg+qHH3H9GkX/1V36Vf8v1lh2pXbN7tyjTrJDDMRhsoWWpY5kovXLXGCHRexeZGh+jfrHRRoNExDujPOmxZCIq3s6ols05m4Qopb9r96naTvdrUr7vJF6P/TsZh9nv2G20o3j696233jqmCOkiG738+2TaL3rtJirGfusPhlhZE8Rp94F98p5GhIl0tloynnWuR7GqJvFbcWyii8qZWd8UJGa6Tr5UUc47OyWRU71v9doU1tYE5VW/qUhIsSS+5tZXCNcIA6IR5MYdPiCojOMWEKva3hlRLNOxZBARiwOr6NTq+gbmtI1se21KosyVqvi8tQ2Jur/67tcBAJ58RpROZ6elP2arVbz1VcLl+tQX7gcA3HPPvQCAG18mXIMvfvUrAIBHnxZe1hL7o9nqItYILee8qu+p8urxY3I+9d+HDorC1oXz0m+9bhtTVEpTNFwtzTUFxueR+tNOpwM3sKOt6pfUx0j71L+nOZFDfmdqWvpOeTIVrUFG1UNVDhzdH2nv1tYWZqblO8USeSHkxZw5dQIA4JWoGkduRaUiSF2tMYMaUT3tI1sV1/ZTVxIN/rtvCZwkAm8/AqrOTftyPwbOE9h96hAA4Au7ZA4eHtwAALjNEZSD2xcERLkCqj/2wr6pN6Z3QO+Rcmtcj5kr5PYVyLFx2Z4wTDAIuXZTDbdAGD0cZPcemmmjY3bYbWGosoNsgcs11eWxypwHERElu2XvngAAIABJREFUnxyvvsl0cOCxjZrR8q0nRQ3vHe/+MbleRcGq3HMFcs6trS3UmQ2TsE/iJKuQaK95tnJdEARjPJxJa7gOe1V19hwXQ0XmiPzP7xcU+Q8+/kUAQBgLl/Pjv/0vAAAbF2QP+Oa77gYALBX6qC9KvybkNw4HWtuPHE72ixlD9BXqn0qlktnjrm2I2p/6BK0pVS+KL3niiccBAH/1uT8HAExNV9FoiL/7/OclW6FWE5/Qam9lzvMtVUqln1P1V+XWSh/tzD23bSeelJ0ppuPsUtT4bB/0UiBUk1STJ7bh2z5jbrnllltuueWWW2655ZZbblcHUtXr9/D08acxMy1P98Mhc2WpCufEEVj+ABGre+sTqOaGmlpQxSwqFKM/xruxURbDiSCCoHmhamn9e321uU1qNgri+z5gRTC1/EQUU5mGj7aVqvz2rrsl73VlWWoK/qc/+WP0GWFsKnqn6l16zCDLC8vkoSY7IxT64O8xH9oBc6rdbO58qVAcRXEYvYoQZX5rojlU9dIIle8X4PO93bvkfv7ET/woAOC2l9+YaUd5Sjrm9leLsNKx50/INS2vmbZrdLhnIVJDIgChrypEWhtrhAY5vhUtSbL/eSEuk/mmFbWyUSc7d9vOJZY+8U2bdjqPtjkdZdsJgZVXZI5lnz+t7OcyN1vVDkfnc8z/5Efy273kvHkO4FG5sehRhZO544Vilst3LZnvOYhY4T7xxY+EHE8xEsRGGYr9QuTApfqU8hKqJRlrwxnxX2XXRaXImk6bzHFn5HKrK2N8ekbmQkKkosnIYpH9GQQeSowmb5OHdetNUrcloT9bIwdzUBQf0G7JnFg+/QjaXUGC/IKgDV3WwypX5LtPnBKk5swJ4Rzd946fBAB4VLRamN6NTSLqbfrjjYuCHG9siqJcyDlXKFJFtcd6gEGM2rQoSBl+kaLETAI4eUaOUalKVP5sh/7aZcS3keC3PvF7AIDDe0Rl0HC5npDc/2OPy2uXqNz8ayXqG54/b1RCF2+U31Z96Qet+bWfaICigb1QXmeo1jWIIvTZZ1tb8rrA+1skD2TI+2BUqxij9Dguov4QSUQlV3XyOpb4nUE/q6iV5gqHQ7mHCWv7VMqqnsq6VOSfFUuqUiWHHtVZAfoMaxd4+pULsqaof+hsZdG2SkVQkSAIUKzuAQBMNeS6lW+mmRUOa+6oPwuCLL8zdlyA8wlUIYPDDAMLpb8szuklf/PqMQdA0YkREGVUFLKv/sYBEAsi7K/JeLtYEU7RQ3WZX3dR/bI+EF+RBLpO9EaZCxb3WfdDypPqE9FSjNEhOuS7AaKBZnJw7bKyEWxFWUVFtnsdRESqFN3mEDWZHSGP5RbIB8J4Zk0UKWdJrve973w3AGC+IQiOR3XNgOtYlUqdHhwkbHOHtbZmidDbnCmba6TXMhgMdswqSZu9b3TINUucGG5BlV/lO7VZWTvvvfcNAIAnH5Zaf0dmhMN5ckr4otOu+KNSNIdX3PQuAMBwwP1HXbNReB7d9GHnPUihUDD3XfeFuk9dXBTe6/aqrBkO79fhQ4KGXlzZgOdKf9580yvlu03xq6urMt50XKhpf507Jz5laWnJoOa2ct+kTJqdsnX0PTuT7MW4Ta7rftu1pV7IRkqGl6aGelU8VIVhiIsXLxrZVyVZdpriXBYXFzFckE1IoaJpJaXMqz6I6WBScYQo6WcfcJCSyA20GO0LFx0LgmCsyK8t3WhDhGlHlFjH1Tbr3zrxDdGcr3ffLZuEZ088j4e+8fXMb6I4u1nXwpAq8qEk9+FwOJYiaRP+JokpmJS2eDzdbBIBVD8fObEiZmekbbt2ycT+kR+5T45rjX/ddywsyuJdKmtfO4j72cXXTEJ9DpggD28LOexkk2TpdzItaqx9aUPEtly9TSrNXK/V7+YByNo2vNCGY1Iq3/jD1+Trt69bx+frX/9687ldMLvCtC5NK7jWzHEcOK6LRPvvMn8LTC74HIYhSlPZwIwSp7u9kcQ9AHjcGF2gCIHLtKAZLwCYMlNbEH+wfkEIxCrlq8IFJhWWE+jYMyew/6CkHd58sxRsjHmFqx1ZKF/+SpHyHXSlwPZHPvZvAAD3vPpOAMDc674X0/RDr7xZCvU++k0ZA+sMdhy9+eUAgDPnzvO6tT8SDIfyXU1D3D0jc384kDYvn5ZNhQZcyq5snL52v4j0PPvEA3j3D/5DAMD73vM2AMBHP/rRTF/q6y4+IC2viM/b3N5CjSmRVW7I+kMtClrK/Fb9ZZnBuWeeEbn4ZrONWT5EOIEG6tTXMS2Kf0eJphjKRk7nSBjGiLm50IK9rq5BvGe2KJOuBVEUoVDIptbqupDeCALj6TJpuWj1D7rZ0bmtG2Lwu3aJivX1dYTxOtsofTjNNMQFIzpCERK+qq8zQUnHH9vEOvj2ZIqvdXNcB24qxSy2RAaKxXlzj2b50BT3pCD3cvl9AIA/2Za0q5/gg6k+xPsVF21Klzsui/7yvB0Wm55mwDpg7QBNj9UiuE6YmFUn5ua5qw8IUXZDbEpHaKC14KPZpLw6g78+9yezs7Jvq5QlAFBoc70EA8rmOcGHA03hkzbWC6RH1DieWZQ3VNl2fYAc9tDjcWrTMjaTpMvXbPqf/UCoc7VUKpnPbJEF9dX2nidd6LZk0Q+aDFZ8z9vk3j393DPSDyxhcdgjBSURH/P86Ys4eEiC/mdOngUAHKyL3419aSNrDyPQwvJcS2r0cavtbSQsMrzcknVZ/V/AtEuH4+CmV90GAHjgiYelHeji8GEJQM3Oix/73Y/8JQDgTW8SWso3vv44r1fa4TBwrXvvlZUV48fU7P2hznsbuEibHWjR76pvnPSAlhbGuRRRi0u1yxXbydP/csstt9xyyy233HLLLbfcrsCuCqQqiiJsbW0h4pN/j0UOtyhpu76+jj4jafVZefKemZYnfFv+WeWxNdXJ9Z0xOfJJKVx28TGNOqTJ+DZJV6MXmmJofx5FkXm0t+Xe9XwaNbHFKF7xCikK/PqzZ0w04kuUW99sSgRKyeIaEV5ZETJ7WhbdfrLX6KiNXNnIiYE9k8j83xYxUDPy3CQ8m5QQP8Btt8t1/PzP/7x8WdElphCOkBk55tKSRLXf9KY3AgBOnTiJ9e1RVCjd1j5JtLGVwqeWjlhMIlbbyNQLRlE1ZXKCpPykIsCe5+0ogJF+NdEcNjn9WzviplGySUTcnZCqOMqOe/u7OpYPHhQ57uuvl8hVp9OBq2OjxnRHx4pWXoPmeC7A9BdFTW30FEiNoSibYqnzR/tPkYTFqSmDGi0uSHS/w8K06h9KTMtrUaZbo3AHD4pcba/ZRYHFdDXFcjti6quT7XMt4JvE8vl733sfPv2ZzwAA3vZOSTfpR3Kepx+QaOOX739MjrklEc3vv0/QoITz7At//UW84Q1vkWuYlejjLbdIOlK3vzNCMmBB0bmZWZw5IykhB+ZZkJYpjAuL4utOPCviEk89I+hbUJCxeHCPoNo/99//LA7dcBOAEUJlRzD37RM0TsfgyVOSPtVoNPAapgKqf+yToN/tyfVqcfKAudiVaraQZbFYRJNiInOzstasXhDf2iHqVWOx5TZ98RbTBUepdBVEWpSVwU69BvX5PYpK2OnC/X4fDfp8HWeKJmkb00JC2ub0+ZMkMWuKRntVHEl9wMDySQZJiWNsbEgq4Pa2pH02t2WNWVuV94tEsHQ90Vft83KpbqTtPQpl+Ey31dXj75O4heM4Y5kcel+azebYe2asbMhcXl+QOfr7RDC/tyhzbKq/gRLH82mm9e49IKJPOhYUmdX+Nkilog6OM5Z25ZR2LsKqY0S/F0URCqQBbNE3VCnyomIHLoZsjxyjUmGWEMUmhoMEDtfwm2+RNOc7X30H+4GFbLtE95jKmzgqnOKZFLl+W9CeRi2L8tprnc4z7YcoiszcsPtKX7Uf7FIaaZELPZ7HVL2I8/vHf+xDAIBuR3zEl7/0ZQDAmTNyrsO7p1EH+6ovvrKzLch7vSY+XGXr7f1aj+URyuUynjkuZWlYWxkeZfqTWN4oz8g1Lp88AQC44/bbAQBnn34Wg4Ec54EHvgpglAHw8MOCZhU5Lvfs2cO2i79FbyS6o75J18L19axgxuUIW9non2YCpH1U2uI4HittsxP94lLtxUpHTLK/Px4tt9xyyy233HLLLbfccsvtO2BXBVLlgNF4PnmqLHnIqEccx6gxCuaVsuhOs5klutVZZLNWk9cojseEASZxIfQpV5+M0zLt9ns2h8ZGtzLnmlAQVo+hERJblls/v+GGGxASvtim2Mbj35LCmyo7byMnO6EwNh/JRkhspMqQXT3HtG1MjtxCtVw3KzPt+x6+7/u+DwCwd+8SW8LzGyZL9lURLI1y7dmzhGZHxoSODTvyBCvv1Y6M+L4/dv0aaRsRuycLVKipVKttk36Tzse1jz8pV9e+Hzsd3/7bvqd2hCYjVGHdS33VyNCrXy1S1srT6/f78LRNjIi6yJ7nmjPHATzXCL6AXKbEHY3rEfpKXpzhymR5lIoylQsjTtrGqkT1w6FEN6tEmyJTaFpeFeFeIGfUyOMGRTRY/HWNpQWef05IzSfPC9q0OCv58Yf2iijEboosLCzMYIY8RqokI4zlPzMV+c7pFYlozk4TWeZ9rM8JSvyXf/ufkRQkQvkDb79LroE+WLkfGyxom/CalEgdx0BEftXWFiPHLYnI9impHvbktwHn+i3XC+rx3vd+LwBgfm4X/uCTH8/0lc79O+6QCLbt1xf3S3R+ZWUFK+z/mOP0zDnyrcgBVFRnjYWD56Ylsqp8qQsXlk2h1mkiRlPTRGB4De3OqNgxMLp3yiuI4Zj3lMtVtIpj2hyDdMFnzTrQ69QxouuFTeS2fXO5XDbCHHq9Y4VbLa5J2hfWqjI29F4OWORYM0r6PeHHrV/IcsrUb0xPL5rjT81RmIVbjpKfRcttX5hGdXb67Fq09HUYOfIUF9te0wwSSUGG3ReEl3NsvyAXX2rJPX2TX0fJlft3wyHJMljfymbO2LLUoz4c9b/JlFBe+ousVwYZbXaRdOlfuP9SvqEWNe+1uR8h56tE0RWQW1QqFVEqsgA193jbRIoXp2TseJzLBdV6cZU7GKPgalFjOW+7LcdVLpmNrtncKs/zRqJfFm/evi86p3Ueuq47tv8qcny3WIw4ceXaKtMyN17/Hnl1h3LM5umTeOQrkoV08aLMq+lD4tejSDMiWHyZRY99ZDOPnj9/FkFFrveW6wRNWjkn/KwWswjq89KOvQdkDP373/wtAECjNoNqXdp69pxI2ZtC6R1qHHTF/z7zjCJ58n0VsNncXDd9qJlTsxTs0DXSHkOTdAzSn03KNNtJ9MIWtfh2ZdHTv71cf5MjVbnllltuueWWW2655ZZbbldgVwVSFScJ+r3emKT5gJHCi5vrGDwn/9+kysz8vEQLqjWJNKgC0XCo3Bt9uvRMlF1RCzsCYSMXdoSs2+2aaICdz2lHB3dSYLJlI40MN78TWrLcJofZl6jO0p59WFiUqIXKbVfLEiV54IEHpI3Iol+9nqoVFg1HJ9Qiv4Xsk7fy0NR83yqwnFJQVO6SHqtQyiriIKSqVkGiS9V6Ga+lopjKcKvMn6Nyf4r+dCUytVCQv++6+RAAoL96JxLmZB8/Lupcq+sSCTGFoql6o0iSqiOmeXF20c5JKMsLSXg6jDwpuHapUQwHTooTgsyryd3WfnGzYymNmthjVlUu1UboSrboqFwQxyoLQnqaT8+Czfe8VhCAV9wkXKqor304RL9LLewZ5pcP1saPf41Z4qQwUs3BTvF27L7Wua+lGfR1wPmqMuq+74+VXqiVstzLFjlWivoo52qKqnWlXVU8e1pU9b75KIst8hbc+nKRvN2/W6Kde2blN/OMyk7PlvGe97wHAPB//5vfBAD8dz/3jwAA++aEh+Q4xwAA118vEUt/wMgqI743vOLV+PrjgobfRo7D7l2CwBw6dEja3pbrXqP0uvqeC+dX0Kf61NJNLJvAaGvYp9Q7x16daEiP/NnWGvu0W8CwQ/4mB6rm8ut9ee454Y8ogrXWGUWaDx2RNm9uy/G++KUvmc8A4GUvE1XE5WXhBx1/Wq6lxqLFQeAZVMn3FPmRNaZHgpTKU7v0l9PkXhUYwQ+CAF1rrFxkWyvkI5WK44XuAfEJ9npoc21sBGGULTDiO07ikZpMAitrQhUlq9Wq0WhXmeiepVypfsPnmOmySOimq6UHXHgshgr6KS5bcKAy7DtzLNLIiW3XonKg4zgZFWFbFTZ9rXo/FQlqJjJHyj6lq89SbXNJ/MCj6z5uXCCq2Be/7BM1Hw525k0bTq6vCJKLJMqqrbXo16qJvV+wVGujCFXe3z7naoO+yPV0b6NKcUTEG+THxHx/ABzhnN27V4rJThMZVilvzY4IySFCQ9DlYuCjzDIHAfcJLs+nCImOb0Wm7DW+3++P3ROdTzonbBXANKqrn9moSp3+XPuqR2VrnRZeUa6tMlvEdbcckt/MiU8uUW1T0XOft6GjXHhOg4T+6ezZs1hfo8pfX8bIL/6PwmN/9LGnAAA/8qOiqPqjH/wgAODeN4jC7x/9v3+KzS/8FbtV9rqKlJdLRB9ZAkg5bnpPL5wXNHxqujo2znR9s7lO9h78UszWQLgcs9UHL8dy9b/ccsstt9xyyy233HLLLbfvol0VSBUSycfXnPwhlZpC1mMIhzGiUCKfYV++02K+7dIerUugdYGU46R1kkpjuZEaLbLNS6FLQDaKZBf71UifzZPRvPJ0jrr9pGtHFNXGlHmSEWdAn7BvvPHGTBs1EvONR76eaY9GEaIoNgiIQQDDJq832y8GQVMAKdFCjb6JyhielYX6GBTQZ+SZBWav338IZUajNUigVz1QBS7lWFm1O7Y35R6vr26Y67frqQytqIWJ3sbZ6NpOueuTFPPUXqi21OVaGIYT6yvYx7ZR0HS+t80Vs9tuqwNmEFRToDkbrXbY/3YdHJd9HUVRRiVJ25T++1qzBAmGcWi4VDFz8RP6HHgJYhZBdkK+EuHrdkTRqMXCvrWKhN8bDXl10MPSgkT71tdlfvZ43P6QEVKfPJxQjgHWZFug8mK4uYonHhGEyvWlba+9VxDEMudYWWsudcU3ldWtVWZQXZQ/3vP+HwQA/O+/9vsAgPvuk5ojt98mEUqPKEOvLdHYh58U5Kbf8uE25b1HH/wiAODwu98OALjhoERSnzp2AgBwdlM4X5UUstMNqW7H611ZkbpUOrb6fSrZ0Qc4Q0ZlWej22eeewuqWREoLROwXFoWT+ZWvSW2tYSj37uQp4Q3M7RL053WvuxsDqoKeOiXnPbAk/arzYeWsRFebvIcH90pkfVTIdoSgVMn10MKmMdu+yNpbCYsC6xqxsSH9sb5xEUW2fZoKihq5jai0tdmSV/XjHmu/IHLhsB5NtSrnHxAZdMhDKwT0aeRKdraJstL3h2GMWSIGc3OCoo0i5nKsoiKq5MI2I+Woeojpw5VDVS4pb5j8iIiKfpxDNY5H9LRWzybgahF2fkYOSTBNjjS3ID7rhGm1pChpGg7JqH4f+x/XHlIFiM/MIIHIKlra+xT97LqW8OwebUh/HB0KQn3h1BMAgKeqRxBtyD25lbXZXXI5Sxx/er/t+pqK6Ph+gDikA7GQMvB9W31SLQgCRD35TZX7H1dVTqnu12sS5eBycfasIGq1uoyLA/uP4PbbhMt76KD4uWJFzq+KeUGBfERyLLWgeKVYAhJy2bXWVCmrVmzvX+x1MgiCMX6jjRjq58oXUo6j4zhj63MUsxhxn/6diF2pTpSrJb5qoPU3/VkcvPE1AABT+ZH811Azqcgrj3SO9Kn6WR2pR3/1oa8AAD75uCDzT39L9oXzs5LptHZaFPv+j1/91wCA9/7IjwEAjt5xG7765/9B2gJVF6WCNPfjflH3xWyz+iHe6263azhU2q9j+0Nr33A5yNFlqTRbZqurXs4+7nLRrRypyi233HLLLbfccsstt9xyuwK7OpAqAEnioFiUJ24bBSqXy+b/GumZpfKVcqlU1UmV5SJGlavVxpjqn0aJNPJikCRVvbF4UgDGKsPrd2zFPvvJPAgCc56dFOmAUT69mrav22VdhMA1dKQj10kdmwMHhV/wlre+AQDwy//rhwEA585J3vX6+ibP6cJjtFD7rljO1j8JQ82VV05PlLk2JMFYFG0S2tMjulbjOc4sr6DbY6SzSOSN16JRcg1ffe6vPwcA+Oz/90cAgM31Jq+/hDWrmraarXqnXC9VuksjOrZa2KSoxQjtG+dUfbv5/IVCYazOjt2Xk7gSYRi+qILlJKQqU1dMFSGtWlvTU9lotiqGlSojtR1FYPVVlY/sGibXjCUJEA6RmOHE/o1GY1//rwhEh7yYLSKo6nOGPRljB/exJlKnaaKsqnLmsh7SWihzMIHeRzn7nqXdPKYce/n8FrapfvruN8scr1a15pEc6y8++2cAgDvIsVq5QISk30ajLvf0+uuOAAA+/C//FwDAY9/8BgDg3/3mR3m9cm275skHCuS+NluOQXmePS48sFe+/FYAQEg0o9OWtsbkvg4ZLd5stRCzdtaps5yPkPk7v0su+PyqoH3LVLpq7BKU9BuPfFPaUS/g4EFR89OaaB3y+hYWpK3PPicKhvfcKzWp5ual7VP1Kk6cOAEAOHJI/KUr4Jrxj088IVH+Wa4fB4/IuXTsl8tlU2/p6A2SHbBBlOnkQ6KK2NUaeUmWa6RzcHZ2Fj79kI4VW2HWI8+xUpHo+HCoPidBOCTK2Zb1wa/Kd1RJUv23T15Wsynf6wxknLTbXdx4vVyXXZ9KkTGtIzPGqarUxzgmNi+l01X0P8vLUjrzsLuFIddhaF1BcuoGRFumZySyXSwTQVA+r+tgMFReMJUzFSnudnCtWRRF2NjYMMqQei1aY6hYLE2sBbnGTI99XI47nozD+pR8/3ZvFecH0m9PhHL8W+vym6QjaG+cUP1OwU2u9XVFowC4Je1nZiNYS12g4441oXxmBZUQoVhWrgwV+gi4DqgcWRiI7zzTkvbsZx2tiEh2pTyF3bvFBy4szmT6oeQyA0DH0JD3vynH8orz8IkuhUSIXCvbyN6/7cSB1//r3NBxZ9d/03Yq6lwsFs06qLxPw89nxoxH1HXQHGbaE4AZN1UXXR6/pPsRoo2O4d5rzTE5b7kq719cFuSs6JTxzIN/CwA4dkb4sOcSqS043ZV5PtWQ8z3ypPj2T/zbTwAAHnzwr7B7lyBvYShtizUryYD2zOQip8pxszwyx3XG9kfah2p2poutNH0pNq5gicyxdrJJe6vvhOVIVW655ZZbbrnllltuueWW2xXYVYFUJQkQRQmiSCJTg0H2qbXb7Zun4WpZIjAaUVxn/ro+iR44oOpWEqH0/aJRh9LvaDROc2dN1MBCyOxof/oYdo6orQqYfmK3+S92bRCN/GmkLzLcolFUs1weRZTkN1k1wl/6pV8CAHzqU58CADz4oOTSnju3jAJz8zVqYCKOJY18SBTDVWE7qjoNWdvGwbgS0yTExnyP0YyZRtUo8pjvUHNt2JGI0H++X+ozPE21sSmq3qxsSOR1o9XB+lb2HhqVHav+gEF0GNWLUsiDfQ12pMO+3zvVULFVZOzv2PXBduJr2cpDk/J7d/qt/d1JKjo22us4jkGqAqInmv98912Sy60olF5DOpdcI3E2t/BaRqqcKISBqhxG3zRiFsdImDseM3d8e0PQhvVNRZblt3PTElltaC5+3EGZ8k4l1ji6sK3qbvLLekXeP3nyWQDAyor4sea2zInjZ9dwhDVnDH+SnJrGnJxv737xcedY20iRlce/+YRBRg4ckO+oz6tVBOV5y5vfAQBYZG2rRaKUdV++9/hjJ/D5gUREz23JePnLL0m+/t13CjK2sSoKUzoGB0NGZ90YjSmSOyKti8R6UVQ03GoK+tVh7aNuLP1xcUsU5HZXF0xf+RyvBu0pib981Z238Xw8P4/1t/d/CddfL7yMSlnVSeV8589KDZa3vPF1mbY/8pTUANLfVatVsz74gdznZlP6Y479H1EVrUlelM6NqSmJrHd7bfQYbbazEYwCadjjMYkUFqZ4riYGRKoq5Nv1e+SWkJ+k41IXcTNHhyNkSceOXovObcPhspArzZLo90ZqaPreSFmW/Bxd12Llt2pdQ3I2gwBwuKYRqRh2uQa3uJ6TD1KiOqbyf+MoxoD92eu22Gc9trWNa81c10WlUh6hIEGJr5qdE4xF0SfVk7TVHjfdPg625f8nK9Lfj5MHczPhJqdAP0f1OSeSMZXmGOn9Noij1ibk/QwHipTHmfd93x+rrWjWUvWhkYyzpUXxabEn4/173yl+qF6vY3FROIq6LnnKgbdqgjaIujaJWKZ56zbHdxJP2t4LpNUmdR2cxPvR93VeFAoFs4dTxTzNoJrEgd5pXqoyrKmpRaS2z3nVJ9qoypm6B97siF+cXpjBHS8TFO2rz8peao71qnrHZJ3Z5DrkM2vortcJyj8zXcLqqqBXzz33LDtP0Z0sx89ci3LigxFSdakI0OUgU2r2uFd/eynok82p+k5ajlTllltuueWWW2655ZZbbrldgV0VSBUSIAqTVLRf3h49ETsImXvbSTSfmhEQPr2PcsLlSbzVksjY3NxF7Nq1K/MdPa7mN2tEXmvUaNShmKo3or/V92zulJ07quZ53phSnq0CZx9bo1kBa03AieG42ehVj8nR2meaM/+BD3yArx/k+2VorGZ5WRCp3/j1jwAAnjkm0Ywk1lopm2wXq1HzPriuO6Zuo2ZfS60sxzq8T6JOH/pvPwifSNX5YxIN/tyff0bOy9zd1pacd42o49MnJWJynvySM+tbCHi9RsWP0RONzmuUtEeeQ7+XRbBeSO3FjgTupBTzYmoxNv/AjojFcTwWzbucvF6b/2UrRE2qsZE8w6LcAAAgAElEQVT+vmtUJ+W9n/mZnwEAzM5M8STShxpV7/RGCj52rSZFDa7FmjFiCdwoMtE4rVgVQGuvxPBUZYn1iIbkOKkaW3Wf+ImDS8IPAVU156YaYCAQ/S7rspBTdWYg/uvsWZmLnY5E38+fP8ZmkEfgl+C60tfzCxK5XZghD4FJ7jfdIhynR4hKJ4yRVYol7Lpear5cvCgoVq2eRfgHPWnHNx+V6Ohe8gReexs5ONUESSTX0+E13P9V4WPNNajs1xT0uFgX/1rguGoPeoh5/EZNorlbW6wXw3l8+ytuBgA89Kj4oHWOuV2cEk8+/QwOHhDUqNWTNiqXoVIXX1ety304cfIkACBmZPfAvr245SapQ/XssxJ1LZK79Mo7bpe/GSGen5d7d5jrS4vo+SCMcN28cgyoZtdkHaZNuXce76mdeaBzpNvtokxVO/VTOl/SilkAELKOV4Hci8ZUHXGk81WOV2ChmhJRh1Yvq4hqq7g6jmOi39o29TkajR+tPfweebzFYhHlws5Konr8AedFzLZ7iSrDskZSB6iWmclB7pAqtqmyYbup9fTotwqjGkD9PiP3rI8z4NyZpN57tZsgLeq3ifJ4qgLYe0EuLzDOR1GrBS6cAmtKudJ/fc6z044cv0HFvKrHdTKUz6nJiCRJJtbpVIXdvt5nrjW61hq1YozQA0Vg2pwzPUf+3nv4EADgjfe8EwBw5KbDvP7YoDtqQ1UfLmTVkrV+lp5jc3PTzCd9T/lOS0tLmd/qXLG5x+k6VZP2djZymK5dqu/pPkz3cltE3vUYdmaHzkPP88xv9T7rOpwQISwYFUzyMRM51unjTwMAPvvZz6HiyHV/HzMRPvXXfwEAeMvdUoPy3nveJv00IwjWhU05xsHrjiActtgmUYBttmQ/RoHIFLrHPYW1X3LcZAztnGT2fiqOY/Nb29+oTUKkLkXRb6esIyCrRjhpXzZJrXmS5UhVbrnllltuueWWW2655ZbbFdhVgVQliBEng1GkhpHYQnGEGGiUYGilRJqnU1WG4VP9Mqs8O1ECTScusNJ7hSpK5QJRBSrnTM/tY4Oy9TkC3zf1F+w6BFohXOtiGQTNcG5GyJvjqKoPI3kGOcsiVKUSaz0xqlEolBEOGa1grYZ+2OffGuljpN23al2lbM8eiXh/+F//AgDgF37hnwEAOgOJOA8i5VxRwUc5XfE2Yqr4aP2nApUaVdxJc+EXWY/hfa+7EwBwdKaMi49KhDtiX+1tSGR7eVn4FRtUoLpAdbVNcjN65HbVKx4GrCrupCqgA0CXSjg2MmTzldJ532Ooj6oQMjKmiKXrjSIjWrNLzbHCEVqzwR0LMmrZc3csV9789kXqmIVhODF6OYn/Z1cu9zzPRLzrNYkILlJFrajyPsyR9qkW6RUkMtxqJag3JCqnETjNHe/1rz0lLgCsjRfDI/kuZuRWFY/iMEKi3DeOvXAg32m1ZZ46jNR22tInS0uM+4ZtM8e1TtDatoz1Fms/OZwns7OClBw8IMhSyNpAcWcLh647BGDkF+qHBbkZcrzOzQsafPQmUXj6sz8TNcDZqQpuvFG+q4pOfUb5+wOJ/kdEQWZnBaVcWxdE6zNfFHW8V7/sOuzfL9HMh088BQAYtMQfba6LvyjEqmAmxy5zrE+XCiazICB6pBHxs+fl+BHDnwsN8Tl+mfVN+L2p6VnMzUrbI3I7q4zkbmxL9Hd1Vdq8d58gWF1y3ZaWlgz/rUr+1dSc9JXWlrn//vsBAM+fkahsQI5qkZzd/fv3I1HVQWY/LO6Se9XjGFFUa21NzqXzNpN5wKlto9T63elpQbAUUWq3xQdWq1WAyE/gMgsiIMqRZFXxBlF2rqsvSJLR2NHaOorMGQU/cu1svznVmEbBy9a0UjMZFbGqgxJl0pC21tXpJQaxdXUt70vbtjalPaqCNzPL6Ds5RsOwgwEj54lDlA1ZJPBaMsdx4PsuyiUZw9tEbsu61g/bJlJv87InZVDoGjjfD3BunrXcNuS9Kvl+T8cy7sOECnEBFSvdbJ1LYJz3o+YSeSy4WueSqGqZ+yh/lKWj3MAm1/JuyGyfabmvL7vzLgDA/iM3SNvnpzPXlL7OPlSdOFtbyi/KXA1Y46nVahlEyJ5fhktK36Hj3kYFe72eGdf6qufVY49qoQaZ99PcxUmKvoqc2dwvcw/n50eK0txrxKz35nWoNbAtPqLniv8tEbkOBnLMt9/zvfjUX/0pAGBpKH7trTeLf983JePgkYcF1f+ff+WnAABn1uV7w0ELfxHLeR586MsARvtvz1OFa2RsJ5Xsb9dKpdJl8530Pl0Kr3tSdtil2OVe31XxUAVkiYL2BXuel4Lv5D3b8dgbUe3o8xcuYo2b9g2mme3iRmPISTPNjQ88+Z7C0KOUvthIhY6kOZU0pxtfGZAqLrGTk7BTtBT6tSW+7WtKy33a6SO22Ib9vZ2gS33n//y1XwUAPPSQFNP87d/+bQAjuWFd6GOnjIDFUXWhdUgKP7JftIpfeats7G7eJymVNx2WjU5/ewURSarrW3K8LaY8nT4nE/rcijwAn14XuHmNhPA2Ny3dTgdxnL0+7Tt13pOKyqVFISbJwJudj2Xphx8b+r9c8zxvzGnYD0r2vUune7xYwWA123mkXwtMo3j/+98PILXBYsqNPlTp/KuQED49PW2O8+lPfxoAcO+99wIYbdauSYuAmBvnhA9Bmg0YJSF6nNMdkrs3+VDlFUhQpves8sFAxWT8OEG9kd0sT09xI+DJGHe42+wzLWqxziBFR84xdeSoeXCdYfmIGNKO1pYK3Mgx97Jg8GteJ+ILTz72CAKWNGj3ZAwtLclD1uyU+LwTJ54DMArg6OZji+Tvc+tb5sFwV4OBnD437yw+3GnJd6dLFJBgqpEXd1Fn8c1ObJHvNaWS/bxrVo6l4hMNyvsHpTIClynO/E2H43GWQhFNpsfoOB5WpL3zuxfRbMp1zu2R697i5uHJJyXdUK1iFSuNec0F30FzTdKQfQawmtss20EpcZ+bzHpdrns0f3XzVULADdKQm9c+1yWzIfGyMtbzLCQcDfqmLSZtnGtOhQG8iD5xONByE3z456a3UqkgYIAk0c0eXU6HUvoFlfxnO4sMJMXhAD7HObsIccJglxLENd2PG3TqeaBYGgXnhkzh65WyW41wWwUs5FULvOqDc4iWEa4qlnUDLL+NrsHiv47jwPMKpuh3tS790eb6VSzWEQ01IEYZ8GK2gKqu+el9AQB0XBez1O7o8oE7VIpDLP651ZNjn+jK3Lm+TCl9R8ZjxS/CYZFxDSaPAoQUPWKgpBhk0+GKfhHVirzXZEpqqSHrf9CTe3frXfIwtXRU0n6n6tk09nq9PlaguMB5VnSzJWjsNMUgCMaEV3QPZwRhOL/0QcneL9br9bFiv/pb3WONCpdnUxyHw+FYoFTbo+ftWfNeH+70e+1226QTrp+TYNHyY7Ivm6GIS1+JHHyY6noUHJuirx+28Fu/8e8BAP/8f/qnAIBkTdIfj7Kw8lt/4B/K9dZkUld7cg0rgxb27t3LNvL6uRbEuofgw5VSbvTVNUJkEcb2Uiyxo0JQkyzdh5cqe24/5F5OsEXn0qX85nLl1/P0v9xyyy233HLLLbfccssttyuwqwapAkaRB40I6NN9rVZLQY3yXVugQX9jIwqd3gAO4VHngkR+W4zKbjazZMZdfGgdDrNExaWlJQyY6qPF+lxGGA0k7WtXKjIyKiRXqzUy12NDz/pqS1orYhDH8VjxVz3GJIGMFyLXKbahD+A333QUAPBz/+RnAQB/9EdSfPezn/0sAKDZjEyRzIjpQ/e9V4iQ30N55TOnTgAAXnObwPpVFrPs94ZYJ0y+uSXXv7Ih0TOX0Rqf1711milKFAQIKQubxN4YnK4RHjvlRiNANtlzdH8mExFtyc40YjpJulzNFojQ36alzSfJ0tuk2Z1EJmzypp3eaKc92Kic4zimLT/8wz8MAJgimrJ+UdCTwMsWtFZp2263a5CMd73rXZlr+E4W0ftOW0aAZIeikANG0be35dpNVJFR9aDI6GSspQlknO9dqBvkWv1Bn8huiUj27C5FWyiPzXSd+pTck0q5ijr9xvaWRLPX1yTtY2Z+ie0S/6X3RoUcosFRHDsmwhc6H86fl/TDIlPJOgYZkPNr1LXBDK5isYytWL5TZNpZpSQ+4PhxEZyZYbR9piZIUalMKW0UDfIxVOlgRtCnGNHe6Ig/nZuTNk/PSkowmP5VqtUxXZP/P39KUKaFXZLCosXMX/YyQcfbvP6ZBUnfnp2bx9a2FAa+uCrphudPCzK3uipjXeeCihVpql+pLukyTlDE4pLI0UeULC5VJJK88bwc8+K63O8BkUxTTJuZD67rmmLkKqSjqVQh005DjqmpKTmvSd2LY5PKrccNnKzvjykUocW8OYSwi2m9lUoFYLp2h35wjeiDzm3bBwXBaD3bYIqepiQ6rp6fYipEnyKmawfqI1PZAXp8XZ/ttneYltrcZhHQAVFZL0axyOOlJJvlGNdiLNiBg2C0fzBlKyj60B0hHTOzMu5jig64RETtFG9DiRgOx6S7jfgWfUTVY1YM5PONoXx+gH3cWu+iXGfplZKWJWG2hxXNt4UbisWiET8qEaXsRXJ9+2+XsgfJlIzJqTkZ53Wmlvkp9M1ef8teNh2Sw89QD3SNLZVKxjfreq9+T9uq6NIkufQoisbQCztFVs+hv9HC2aVSyfh+/Y3eI70WzVjQ9u1UTkX3h0Oml3/sI78HAPgnPyniY+1NmYdg0WWvypIHFCc5299Am+Pqf/iXvwwAWGUmiaZl1jkO+myPyz7sb25ha1u+qz4ganFPE+jeU6X2d077c90UlULNuTRUuVAomPtpp3tOMr0Pem8nUSR2sqEl0/9SCm5di94pt9xyyy233HLLLbfccsvtqrGrAqlKkiRTwE0tTSIcRUey0RqNIkziugwGsYnabJLTs62FJxkZ6HTlSVefXlWCXaO35UrRRDhMoeCiIlU8ETlHna6FRvmeeZI2vw1U1AKZ79pP5truJElMZMX+rY1uXJKxmx1FMxg1ffArQlBMiNRNUw55uuzjBpLmL65IlLbEz7yq9Mu9bxepTpXnbm9qQeE2/J6cp87c7AZ/c+zUGQDAOSIlGg+LmfhfZETKSYboDbOSwEbu1SpUOCnv+YW4UNq3ekw7Zzttk45jFwVWBFXH7cb6ljm+vmef1xYdSaMmk8aMjaDZfDz9XrFYxK23igS3RtK1uKa21XOykfHYG5FubTQtfdxr0RwQObSQqtF9BAY9ldKW6KLKFPc64j+q0xL9U9nwICG/zx+JkgQkXqnoS7VEQR3mq3faJJZPST/WZgQNOnz4OlSr8n/1cdss3Oj4gpzY6Ibm5PtObAqe63w4fVqQm0N7hX+lEVWVxldu6P4jgs70hzFCYtpafPbmWwQZeuKxh6WtQZ3XwiK1OgejHgo6hih60whkXNY5ps4wsjt9VFDy3Yss+FmUa/IqVbToQxzKjJMqhENHRIb53HlBsG66RXgaF04LCfv5559HmUj5+rbwNbcZVVYvWdOimzpfGI3dvUvEOcq1OhLlA/F+Dxh9n90tSGFYEW7uxspZAKModDqiHZCj5AXZOT9kUeCI46SjctUq7e86BvGJiXa6gRbGpaekeJDPz5UXaAQHonAkbqAKT+rjuoPM9ev3SmznMIwRa9FpzgPDpVARJldlokmop3CBz2M12+1R9F8LxnJMFZUXxXnX7kt/9FqCrATVOlzOGS75cHiP3EuMfl9N5sCB5xbgeipgRZSHSHEU9Q0Ca0SX/Kxvt316uki7Ha3XzwpEDoq+zk3ysBLxFcuchzMz0+hzgiUspVEIsuuBEVJg+9SHuI5r3OjQILPy2+k5mSvz112f+U2ZY4dK7+j3+2NrqGZOgN+xhVjSmT76nqI92kZFiPR9m3uuf/f7/RGXyyp3oP2v/lZ9ZjobRn1v+njACBnTdVKRcbtP07/V9fl9P/D9AID/52MfBwDcfvQVAIBX3S0Feze60o52R9ad2vwiCj0tCULBGfJfffrOmJL6XWZOkJ6FfquJ557/FgCg01WENCu6oX8bRCjJ7oU8zzFIZUL+5XCgomAvzJMKw9D0hY1UTUKRtB1pYZEX0hLY6bffiZIwOVKVW2655ZZbbrnllltuueV2BXZFSJXjONMAfgfArRD84ycBPA3gkwAOATgB4IeSJNl4kePAdd2JvJAgCEw0XfO77Qi5XXTVcFyCMvpaLJCRoJJGIhi9WCFSonwHjRiklfU08qDn1bxeGzmxFf48z0OXancVS5bdfiK3n8zT37O/820hVGqMimoUW/v05pulYObzz0vBzP1U9tu8sI6TJ46zTXKdn/4LkW/+/n/wPgBAjdGVyKMsKdV9iqUq4oSRSyJTCaOUKl/sGRQmGxnTaGoURWORBRvlsblMNoIThuEY2mOb3bc7oTAvFjWxIzGaax0EQSpKnS1CvVPRzkk2iQ9mc/vsYwRBgB//8R/PnEevzy/xugdWTnNKnl/ngh0Juhxp0pfCXiqfs8NxAaTGT+SYopdRpNLSRD8ZQb7usKA6YY8St1X1W5GZ6yP/IBHKveRO9GNy7Xzm/pO3pEql8fHnzX1QJSv9++xZQUZ0bO3ZsyfzvWjQxR13SLFHRU+uu04k2+O+qmDJ3FpdE6WpRkOQogZVA7v9gUGqFhckQtuoSZsP7pfo8/p5aQfm5bd9RrirBT8lKy68sC6zBEJGN2dnyLFgm71EC8lKH3/5/m9g17wigfKqEWJV8Nt/UPpfCxrrGtEoTmGrmZVBdhn1XliUY6li4Jkz4pMqdflb+UK1cgUBEbqFabmXGxeFk7t67Dm2RyK6eq02f8LzPJQooT23UOPxs9y9LhHL9VU5dtFXhG+AmGiW4Z1o5J5IVZFh5oEpd8EIfqCIQmjGrM8ixCElzYcu0SUiGYogDGNVQAuwRk5Vi23UeWB8r6sqiFqagkgS/UalVh0hCINstoYWMtWsCRul73eGhqPlcl2IlK8RfPcSbF4qf5PAQZJ4BtUjIAi3wMyGRmwK1g8GHAM9RTnlN5PWuDTKov2rY9AhP4rUKQQDGVMJ+/IU1ahXWlu4kXOjGLKUi1YDodqkvcYYHp4fwKcqcIlrSUQeOzrc0+mNZju6LH2jLJi0wq1B6irWHk9RZSqF+jxGFEUGRdK2KXfSKDvTbPlt/btYLI59pmPXLgZsy7N3u92MNH36uPpde8+n31duo/DSqERIddNX3v0aOQb98A0zsh/bYHZDkVL2m1Rh3X/77WgG5GVRsbRSJ8rP0ierXOOH5PYdPyaFgz/z2U/jyccfAgC4vJeKTDvQ8jw7r/VmPHhDsz/U9cXsVpLs3t5W3XNddyxj53JRpGKxmNEh+C9lV4pU/TqAP0+S5GUAXgngWwD+KYDPJ0lyA4DP8+/ccsstt5fCcp+TW265fbcs9ze55ZbbJdu3HfJxHKcB4PUAfgIAkiQZABg4jvM+AG/k134fwBcB/OILHStJEsRxbJ5e9Uk1nR+svAJVaRpGsflt2uxaQEnYH0NzBgMtjqhqg/J0f3ZZooVtKlNNUYmr2WyaqGmFtWg0KqvRCo0Sa5FcjexHw8jk29qcHbumlh1tSiMaNmdmVFyY72ueNa9RcYrhoGfqDRg+TJhVs1E7tFeu8R//1+/PtCMeROjweofad0SbTp08AQBoTN8kv6mRG6HFTfpD+KyVU51jfR1GnINz0t8VIiZlReoYiVRVLcf3kFBhylF1Rb1Q3v5IIyNxtlBdGg3UvtJ7pjWutLdc7X/WadACpmmz+U4GVeVXfRbS1SLJDkb1s2xUSc3OkbejLK7rjiF1o0KNeswsMqXXXavLfTh4aC9uvVk4MYpQGVUjuwaXFmDi+zsVkn4pCv5drr2kPgfic4w6kTWfoigxHAPl8viezOlp1m3SsehCOQA6nzuG+6k59FojrEE068njosbXi6Vvt4aCrBR9+d36Zsf8dmVFoq6KTLmFrD/7+te/DgC4hZyn+ZkGFhdFKU/riD3wwAPy93k5lnKobjx6XebvFaoEDr0CylTC2zsv0dZKSYuAynkHrCO3sSrniGeX2CIPga9zjPO2uh8AsL3BYpOxXEtzTVCm6w4JsnZ2XebkwQOHjbqhx/o5W+RHHb1F2ry0R/zVM8dF6dCnOlV9ZgHtDqPYQ5kn97xNVCvVF3/jG1KQ/OjtUr9lfrccs8li4r2tDYRdQQ3bA0H7VlcE1atxfeo15brV1+g8Ud/f7/excpFFVznn7Lp6ylvR+RqTO9qoVkw/G1VYg0RxDVQUijXPfBaR7w8VEe8a9KpalrGk3IaIxeSHSapQMYCAn7faXUSMVA9DRaeDzKvDBs7PyrFdOuMB+RpwXYRWZkGXa9+APDlfucnK02BdsyJcJCGRGa4fYHHSJLh0la8rsZfS38RxhE53C1NT0le6B+j3FEl14HpabFbGjE8kouLJPHQNT1vX4BH31yfCOVIuVkSAaLvh5WXRrnpRkJzO9ha2m4zy65aKe50KXX1I1rNmNgScB8M4hMMaW/2hHH/pkHCotmdlvnWI0LEsHSLWPPIjIjhRrLfetLFLub+A+zQdm1UqLw+CUXaB7hkbVLTV/lWUSeemIngzs/VMP8DxDBLW6WTXQ0WbjD+yuDxJkmTQ6XQ7dI3VfYLu9arM0lFaUmu7iYJeZ5087Kocf9GRMdM6L+cv7pa2/6s/kZqRb/oh4V7117fhLlCxlxuSckh0kX6v0xIfNugyUyKSebi9eQphIvsy3bO4kN+ogi0SIodJFqlUVdAojNHtkffr0p/x/C5VJ6NQeaHImOuNUDDdWmhh8NHeJ1tXVIvCj1RBfcNVhGOhasnOWUrpzJtJ2TeXu9e5EqTqCICLAH7PcZyHHcf5HcdxqgB2JUmyDAB8Xdzpx47j/JTjOA85jvOQDvzccssttxewl8zn9Aff3bTF3HLL7Zqzl8zfaMHk3HLL7e+2XUlysg/gDgAfSpLkAcdxfh2XAYMnSfJbAH4LAKanp5N0TQuNOujDVpIkY1wlm1NkIzn61Ol5nnnStGv36BOwHnN9XZ7UhzyviTK4HmoaWdC83mI70w49lkY1FAUqFAoT8zvt32o7NcqinwdBMHa9l6rJ73mjGk9aV2GK9XXi4SjSBcBwzzytJcKIpxsUUeSTfodKaA8/LNHx66+X2jBryxKBnitJpKRCJSjELoKGRDwqfYneHDos6l2PPCb1bkaIETLXP6rDEY7CwTQbKbLzzD0/i+yk/28rJdljyr4fL6Ykk/6NrRykluYM2tcwXu9hHMmy25Lm7GWPlb1Wff9tb3vbmBKizin7GEZZkeMhjfKpXWotiZfYXjKfMzNVT8LER4mRrYQ56J5ezzCCSxVKh0pGIesVHbhRFOsCRuP8gqKH5Kr5CUqM8g6GCqXKS0EVnhjBXVkXP1IgGtC6SDWufUWcPSdqdsqhUk7RoetuBDBCMJRPMOqkBJurguoce+opAMCZE88DAHbtE2XTG2+UY+hcuIF/b56XKHm/1zK15vbslj3j9op8dnhJOFxbrJu17SraJv21t1LEoEUUq0d1N3K3zj4v11JKJGJ79B13AgDWiQIVi6KoF0dNrCyfAgC84S1SC+/21woSF9MXLV8Uf3bgkKj/zdH3RlFkELp6Wd5rrcvfZ07JMQsV8iG0XtJFaZc3VEXUDtqh/Ka5JdeiKPzqtqItMtcLMVVkuV50uoz4w8XUtJynRVW7mWkqNrIWX4/zyiPKhKEcA0kInwh6xOhvsUQ+EmvNFHnf7bkZR1T2ShwUS+TxKqVFUQeiUD4/KHjqX8gLG/RQ9uX+L5B/1qeSl6oBTjGiPl3P1v7RcRMEnonMK7fP1OIxdfxYV6kg80FrFLbbLaOQ6PnK1yGaVvjuIFV4Cf3Nwuxs4sBFyDU1CrN7As+ZMvyiGfIbFaEuBEQbdW9huD/q432MclOy/FxdhzSTxq61pM9687sW0eUYrbM+XJFIdZ817Qocf0VymgLeuzoK6DK7p7ogY6XLezSnSD3X6RbRHkWOYnIYvSCAlh9TxKjCmnU+P3C176y1z/f9MfRIfaI97tQ2iIjr99qtvplHxWJ2PdZ5bdez1GM7jmOOo/2r6quaMWDztFV5+fw52TfNVOu4cIH3m8hLQC6+qlX3yWld2iUI/Tt/8AcAAPN7JQtgpuCbvVRiLcu6diSJHOPcWTnv1x78WwDA6bPHYWoqDnR/xD2cUdtUP2PvZ0f1yhL6FUXqWkQ/B1TOTaDoVnYvniTjaJDnZff2I9MsIM0Sks/b3a6pD1ssij9RbtkYMpaq36l2qaqDL2ZXsiM6A+BMkiQP8O//CHFAFxzHWQIAvq5cwTlyyy233NRyn5Nbbrl9tyz3N7nllttl2beNVCVJct5xnNOO4xxNkuRpAG8B8CT//TiA/42vf3wJx0IcxybaYKcDRlE04rKQt6CIgEYRNOpuRxPS9Q/sKL+NTBjUg8o1F9sSqex1utgkyjMzJTnI+w7JE66qy+gxNSKiqEClUkEh1mr1Qabtahq1m4RkRFE0pno3pjZn/Vbf39jYwGlGqc+dkxpTtUJWZc5WndOoxrFjwlVotjvwmBNbZYRpkXn0zzESvsBo5Z4jmhvPp3zPRbUhUbICIw8XTp/JXINyR7ZVsci6Fs/zTHX3SVEEG2XRqIp+L60uZP/GHhd2H6fVB+2oiV0vykZZ9fM4jsfabKv/6W/G0adRf9gI5Qh91fZFmXbomL7nnnvMOJtUF8seY2pxHO8Y2dmpPd9Jeyl9DhIAcWLy+DX4FkbqNwZoMYy7vSHzoVGX6FfB1zxx+e7cjPiAYZcKboiQhBKxrClfkPVoWtuskcdIZrlILqZG5ZwRwqj18jTKrHn7a+sS7Z2dlnlzcL+o4KXz9pV/pe+95jWiJPU9b+AgvaoAACAASURBVLxXjkEkx3A7GEnU93ctzmN6qs6+ok9lLT5FCubmJGL67Dm5lt6GXHOpW8cs/cE865ZMTcl3O2sSjb3zlpfLsag0tXBAruGxY0S8p2Zw8A3SVh/Shw9+Tepj7dnHyOysoFouleyaVDFtNpsmYmz4q37WX8dEZCqsMbY4I+jAxgW5fi/ygQHVMadlnvZi+c0i+WKvuEXUUjusp9UnT0nvz+Z2y2QH6DDTCLbD6Oo229cgupOQ3+vGIXxy2Oq1EXcDSPs0OabypIz/4LVWqiW4jtb6IceGkGnINW5InlIUyt/z8zLm9u7diyHXi3JZzrfV7vC40mdTdWmzrnVqOk59v4DhkDW+BhoFlnbUeE0ajdb71OY5Sr4/Utx1vMx3HDe7fn6n7CX1N44DzwuM+t9YpkW8bupUlcil2b1H+rndlrHc7Wi9MPlNoEiOP6r/1beOr4iQrWSn86CgdFk3gU/0do3qcqUaOcgVaYfhcnJMKa+86HnwSuIrmryfNfomVZRVopaOFeVLqwJwHMdwdN1jk3z65CI5Vk5BMwfk/XTmkZ11YnMY1fT6Q8MTJB/R91EqZVFlVeZLKwinTf8Ow9D4aG2H8q/0Va9b/UHZoyof27O6uo32qviG4ar47jr5dh5r+PkH5NXdJ9lBNx+SjJ8wkmPUvQTry7K3KjW09mR27ihyNKTC4+f/+jPyd9QyKI9J1mDbSoWswrUulqN9k9YKLSAyFOVspkwUac3HbF1Z449jZ6zW6Mh0H6Rrs/R7c1vmha6T7damqfsYclx7vpv5rb1PTCtZ6v28FBXmF7Ir1Sb9EIA/cBynAOA5AP8Ysn78oeM4HwBwCsA/uMJz5JZbbrmp5T4nt9xy+25Z7m9yyy23S7YreqhKkuQRAHfu8NFbruS4amnUyX7C3AlNAFKKdSmVPFs5TV+N4pJyd5gzHlJtShWxms22iSy2md8asT2KTC0sLGTal0YDgkI2wpjmigEjboS+r0/P6WvR/xsFPwvFIDXAVMh2GEWfmZlBtyXRmocflkjvN05JHSrlVZwizyBdswEAAualTvkeEqr0zNQkstCoSCTkDW97EwCgypouISMR3hRlfjCKyvYZhdykyqKNfth1MDyqIUV2QmzKJvKSJiBLl2PpaIYdvdA26j210QRbyXI4HI610c6ztusz7HRtturjSAWQUS0LMVM7cOAAaow46nntsarXOB5lGiHFIy5EIfP3d8teOp+TIEFs1BMjRsN0qEWDyMwpU5eHSE1nW5CrubLk0WsU0vNkThTiJlzyQQZbMtaHMTmX7Lf9C5Jr/60z8vnifuEpRfQ9a8srhp+ZrmWSbmO3LTn9zx4TbuLevVLHJAwc06ajR4X/pRFTRaLUX+n7GtEtEYV44smncOTwQQDA0u55XoOM7XlGTs+cFR5UyHpye/aK+t/idAM1j6hnX/rhqTOCUN2wX677yAFBrmr0GzpLX36LtPfpE+fw+ONSjyrG7fJhKH24SDSlw9or5YrMxTOnBVlZXl428/D660WFrNaQ8w2JJnUZZe81Jdq5VZTrH1IZdfXcGVR5DTHVzlxGOy+cFq7bk8ef4zE5bziGmi3WAnI8TM+IH1ROicvvKDfV1Ieiats073nBBTzP5gfT9xANiLWej8555RdrjcZCwbAfVP0t5vX3uxLRVQWtYkFRj5Ffq9Wk7R1yO2qsV6P1qMrlbOaF+gK9JkGnFKNj7SqudZUKFc42JCq/vcV1wxtFjrUulvoeG/3/bthL5W/iOEG320/VSlT/TSSh10GJ/Lf+QNcFrYUpY8IoIFNZ1qOC4iDup9ZSec+gfKXsGqJZIaO9CBUkKxVTl87lWDi5IsjJDQd2y/kKikwyC4LZEVEYGzXmCvcHVfIPa8UsLyYaZNUm1ZIkMeqG+uqHqoy48xqePoY99vRv9Z2mXhr3OEFB/u505Rp938eAyoW+R8SOvlLXVFUOtVXiCoWCyQzQ76h/tTlsev+r7ONGucrvraFSFR7SxYtyn8+3pW0LrxGfuIvKkR6R8iL7n9tUxM7AXP8q214tT/OYwrH98pe/yn4QxKzboxqpW4JXVKSbfTqgz0gsdWCtRRVl9wLdbhc+FRn1vTZraBUC2R89t3yBfSqHWj6nSJ5nfI+tomp0E5yQx5Q+VU7VM0+f5DE9uFQiVMRbbe8+rmFDRdWy2UlaKxcYv1eXK6T33aui94LmII5ccxH6MAOE5nN1/i4oBalFA/2sgEXCya1uN/BcxJRm1MmaRLqp1PMo7MzOS3TRGqUNhkyrCrk4JQNuRtZJzg0ILzLdIemLI4x7LXQbTGkgvFykiIMuZF2VQS2IkxhyEOu2OP1gaAszmBQywquu2WTzt4mDvQePAAB+6L/6RwCAE8/LJuzrDz4IADh0RDYeZ7lZKPjZlK5yMIMqyavqNPrcLP3ll+4HAMzMygbz0B6Bpm94pUgkJ26AIcnqm2vSN61t6Y/tTUqqVzRFSJzKOlOkfFf6oz3owKO8rAqFJMhKp2txT/NgoIXrDCHSGcnLRtmHa01vsh++0w8VdlqpnV6hi5j9efqhw35otB/yJwljpNPxtI2GVOkxXcjR0WKlQZD0Ohi2EQ6zIhq6kVZS6Vg5gtSDmv0wOUiJWFyL5gDwkArW0BX2GDyInAhbLRUN4HxkX1YLJMNymrhmg8R0saQPj7LSYVc2z35FFvdtpvIE3CDv5+Lbo277HAtwFmLH3J/HHnsMwGhD1KiKb9HPF1l8t8T0nKlGzdxLHZe6ufCYOqULJijGEfO6N1tMMdzcxB0zMoe5D0e5LuNE6xncfbfIkRercuwTz0ua8Wo8BDimqkxzWT0vaX37doufmJoRP6JpkW0GtFZOSsBn+cRJ7NsrD0+Lc7Igqu95/rh8Z2Ze+mPITV61Ice+rt4w16vpJR7LJOiGtNcZZvpne1PSZrot2YxUSj4CPgis9mQctLmp1WK4U0yxubAiG5QtPihNTUt7t1udUaq59JyRMle/3dN5xCdlJb8HToLyVFYAwrXSdRNuajTFJeE41HEQBKN0s44GEDnFTRkAS7xGH0bL5TKK9DVDjvs5imzEjm4+RulP8nfWn7VbXWxubGeu15yffkOvV11xQVO8UpuckSy1roEvXMT9qrRExp6W61Ab9FXyfsE8nGs5gmiovl76SFM0dR+hqWuOF2ZS0eQzfcjKNsPeKOqDer/fR5VBVC0QDq6dz506DQB4BQV6dK3VxTd2PQSUOff5IOjG2ROb1E0rGG3aVSzCK2YpHCrmEHPddq19iR4ziqKxtVM35Gmxr/T73b4EeWIOyMEQGIb6sJoNWOoar+NQHxjSa6K9LuscUAELbaseiwwME3B2yh1sb8p9XtwtD7EDRshj9ZW6XacPTxwNyosfOnf+WeMr9IHw/DnZ6x25VUre7NotPvMPP/mnAEZF0NvNFqIoS6XpJlnBMB0rmv43Kv0j3ysEZfNdndeaulr0mY7oqrQ676nZPyToUOxEX4Mguy/TUgIqy97hg5ODkW/R619YkHW03ZE18uRJud+HDy+yzdkiwWngxt6fXa5dmzui3HLLLbfccsstt9xyyy23q8SuCqTKQZbwbiJz7gj+N58nWXEFm2xvR87jODRPnnZ6k/0bhZNt8r3jOCZtZDiUJ9/zsSIQAqtuMcqgkQmNAOzatQtDRcRSogly3Yy8ISt24DO6q4jaTpEQGxGxUZY0lKlP5Xp9h0hwVJTnGw+JuNESpTlXzp/T3gMA9JBgwKjAanOLx5W+3E255YjRqyYjnZskZE/v2QePEVVVzdRo6BZTKdc35Zhnzwk0HJMIGxONKpULCEONdCWZ1xHKk1UcSAtEAFkUZqzYrtaWtCITaQTJ/o2+2mmZ9n1JpzhOKtxsUFaLPJk2O3qSLowNjIjK9nhQFCoIAtPvGkXS82oKmJ7DFnCJoshcp/26U2Hga9JIhk60sOQwNkVPTcxVSf2UuJ6ekpS9mKIUfkX6pFbeje6aIB+FQMb+JlPkekzpmiKyu7hLkJQzmxJJU/irvOhjzx45vqItijAWiRTVqjL3Ys6vzQ2JTobDvkFq7PulhVs11Xl+To6hqXPViqRpvOnNb8UTT0n6XYupLddfJ+l9Pq/3e14tSNWr7xTBhusOyrH+5sHH0S/J9W01xQ94gUSIb7pF5M/LRHmMQAf968Kc/K5WOYoar395WQoSn2PqSJEpM7MNQdg36XsLNUZd2220WnK8s2cF1dICuQsUt4j7ch/WLkq/1zxmExAEWdp3AIvzIp7x1LLIrZ8+RWn7ZwTRX1ndZJ/K/bALfoZhaObYgJF5zayoE/Vp008OiCg1iE4VPcfMP41y+1wPtVi6FptWpNQzkfxR6rN+J2BEXL1gUGWaFNeAUdryqEB6rZKd24n6A7rJfpJFt2z/FQQFkxWgLk39tCIVmuKqhbVbrdGx9LpV0lkzSxR9u5bMcQE/cNEhcj1KAxTr9VJiC9xbRFGPv5WxrKmkF1lQusB0vGIxQBhKnxSJ2moalDk/1wX19WZ9pK+v1+uI6d80RcZlKpcTyT168jmZS/fe+Uq+T/w1jpGwuLRLcZvIZQrbBZkjESXMO01KqjMNdHaPpCzXdy9i2JLRWSnIZyEzehTFdYY7Z3QkSWLGno6rhOnWNrqi/VRhe7VYrKItcly9rD6vQZBoRcoLxWza9/r6JuqUn/fN+iHXr2N4LF2e86DPPVAcuKjuE//p8h46RfGzCwGLjfO+FBxmxbD49jr7NB766DKdUUWElunnIqaF1qbl/V/58IcBAL/8L34JAPDBn/ppfPSj/07aWNB5x6yKQPeWpofYl4pYiT9yPQcORYXWV+U+MKEJ20PxnUmSTb/TLKFBPzbj2aCYQZbyo8V/BwML5dKNpRPCYdu2t2WeKaoLouqb63JttYaWk1HRuuHY3s0uY3SpliNVueWWW2655ZZbbrnllltuV2BXBVIFIgF2AdN0jmN/wGgwI5v65G8jBLZwRRxHYwiEfldRJSN1bnJEh5ljB4FvnsbVugNFBOR1dZORGBIxlSPhFFwcqDLyQlJop7XFa2DBPHIVHBbTSxiZUR5Rui12geS+Vandzgv1fX8MGfGL0p79Bw4BEBEDADhzSiKwD/P6lbMRJcCQT/oRn8N7lP6NKRG6i5H+/WXKHOu1RBFiRlITvbGMqKr08AyjKmvbyidgvv0qoz3xMIPaAaMCga4CmOS8+cHO8vmu644ivlbkwR5vdqQiLdk6VmjTEj2x0dB039vIqD1mbZQpHSmx0SybVOl72eidRo8LMtQQhiFc5h5//OMfBwB88IMf3LHNGoFLv2+jWN8uifNqMvYYACBglCwmotLr9AzHwSc/T/ma2tfblNKuVBSNZOSy1UaN3AmHkdFySeZ46LJPZahj+ZQgWqB8dq9PNLEzNKR+LSCpkdJVgySLqdCMkqOr1ar5rUYsTWSaEUu7KOsNN9wAAOiT3+k6CbpdactBCmAUydWZZfAvCcU/zM5RlnxeznV8pYU/+6IQovv0IW9//fcAAA7zPI4jc1tds0suaplR2Qvnl/H8qnAu9+4XnuatLxdErNWW+7FCLlO5IkheiZyQudlFM/5LRUbi2UZF4oYsPlymL6wTwxk64vu22k2cXyVSRw7DzC7hOtzx6rsAANsUCgF9Yasja9Sp08If6/QGKFfkvl5gcXQtV1H0s4ICJaJPmk1QKfhwoERwzaCwUHI/6zd8C70eDocjPgL9o0veiAZ3y4zkeq7OaznX1tYWauTR1llKICJPpsMCvVsUQLL5e4qGdDujLBFtk6Ktg2FWYl3fV5RvgFE2QmOqyrYpl+fa41TFcYJerzfmW3cSA7I5tkX6Bu0jzYJRmfpBP0GjQW4m+X9BSfX2s0Xo9X5oP2t70hk+dnaH7jUicswfeuxbAICbb5S5HPVDhC7Rk64sOOdPiY+qbwmqtndafJhT5j0kB93jvKsXPVwgIu4QqYsTabunvHGVP6evdnYoRaPzZ1RMln3pKiIh560T1e52ZQyHcducT6XifcO3lb4MClowmWIXbFejUYPr6nezAmpqOjdMRhHnMgL9XmDmeVOzcsg3JYXIcN1bEQv8diketS1/x50O1ijHXubedhd91skTwov72te+BgA48bS0XTMaPvKRj6TEqLjX4HwPtSC6N+rnnSyOPJPBpAi058m1bG68sKBVoVAwKKIORR2rXYrqVKssO5Fk+Xij4sQj031Jev8HjNa7jU15f3a2yvfbphC5zUsELk+MK0eqcsstt9xyyy233HLLLbfcrsCuDqSKZlCAHSRUVeHIRhlerBhssVgcFYA00rRZ/pF5MtVcdD6hK+dpOIjgICtlHjEy4bF6qBZRDBgp2WD0wF1eBmkUqNUkWj3FwrmVsjzNr65KXv9eFvHU9qmKVLpwrI0q2CiHXdg4jZCYInaM0QdF5mQzAnj0JuE7aPTiC1/4glzL2obpm5DH1whvg9cUM792i/m9C0TlGv5IGWhmTo6rBTdj5tOurkt0pdVlxJfqWqq46BU8sLtTqkXZeIBy3kaIHjLXnO4ruz+0cK6NVO2kbGdHE+1j2Xm5ao7jjKFck3J1d0K07LaYa4Etgy6vtmTt+vo6Cq5Enn/6p396x+u1C2inEVu7ZIG+fjeL/76k5rhI3CKMACiR2LZK4A67qFDSv1xiAV9KqA+SbNR9/16JBhanqJC5uY3tdeFaOoxqxp7Mi4jnCTifajXp+xWqFMVaxHk4gMv89C3KTiu3Yj9V8VSltFFVOX9pz8r2Oi5QWXNhQ+bcARbMNZLWHB4VFp3Ve+0HMp+HnRYOktPU5LUc2xC0ZYFqnfvmBSGqMSocUPL3Xe94MyIiMU8zQrp4QNCms2fkGC4VzVRa+twFOYciZrsPHsIix3SH6NGxE8LpcKiO1g7l+ndp3vxQ+qnkltBXqXDKggceryth1N2Vvkpi6ffVZVHJKrIoZlTy4SyI/02owvboYycAANtNRvCL4r9375f7v73GCDKzKfbsWwAorR+TB7A8kOtXX1cty41oqbQ9I9deUECZEtsRORQuP1PAxomyWRoufaKva5PvIWQF1YEpvkqEzAi8EdkwvkjneQG+yls6KgNP+fmmoG3NlhbsZXFagzYx0p6MUA7NCtHsB8fP8ll7zETpsWGFwDEctSHX2JiS+pGVnXEtWBiGWFtbMxF8nYfp7IQXKqWh30m/lkpEAZ3YFJUuV1RBmYiNs/Oap+dXpKrX640pCxsFPVXL5Xm3epyP58TH3HLzzfDqcl3PPvYoAGCO4+zQoviqIlR9U87RIj9q/amnAQDLZ08BbFOB3O4CeZAoyX6hWKfaJ5GkkHPc87wdOOXyUy1U3ie6qnLwfao3ez6V/rwitKhxtZLNJNE9hY5dRVR0rviBj1iJhmOFcbOKuuZvJiFFnmYQeOgbUUV5r9ZgQWFuG7QY8vJ58m8VqWRWVNCoYv9+KYPR4v5LlfHuvZelNVriZ//4Dz8KAHjtnbcBAE6dPYd3vfMdAIDf/Z1PAABuvFEUA0+eeobt2nmPbcZp7MFzsxL6RSo6apbF9lYLO5ns67LHN0qNRKp07Khi7agQxzhSZXPq1bT7XeW0EfQa9IEp+pvV1TX99o5tfTHLkarccsstt9xyyy233HLLLbcrsKsCqUqSJFNrwBRKdEeFTZW7NEkFz85RHiEJ0VhBuMDiTin6EQfZJ+/R66gQodbKcMlNCLR+EpEsjYho/vn6eoRA83jrzcz5SlX5e35BojmtVrZukOZ/FovFsfoLir5N4rakiyXbRWUTUwdCvqt1J1QRbIF5uPe9XwrFx83+/8/emwbZlqVXYetMd87x5RvyvVdzV6ta1fNQGpAsCdkaLAwRhMOWETYeCBAowpgg/MM2WERYFm4by0J/HIGlCLANloQQqBGgRghF0xq61d1q9Vjz+F69Kd/LzJt3PvcM/vGttc89OzOrurqqS+/B+f7cvHnvPcM+e++zz7e+tRZ+7/eMI3H1qnFAZPImT7EzVJXZ3LbsyplzZ7nxwD3wS/Hqm7/ZELEHn3wWAPDlr36Fbchjl4Mx2w1BgdwZzdW5PdV1Fz9JGaL6NUzT9FhbuexdUUeXVlFO7aMyJK7zFvQdpzpUnryt1c90zM5LitvQNrWtVR7TaeqDkqar+rvGBXiuleF0l/5GvmeI8zrzPES0j8Fg4LJ0fny9Xg5/2FHCsoQlvdAimhNmM7ZjvkAqlGlp7bBJjskm0Y/tNXpbHZG4Vli2fa3XR8zvzBeWEW0Xxv/Z6to4aSf2eUhD3WVJnoCU3eIBJuTqPPoeyyY+/4KZzW5QBSwk/yko7fWhS5bJvX7rikMiWsxYT9kPco6td9Jz5uZNU9Tb2DHOw/ymZZ8RZG5MbW7afDTgfi+ftXHc5Zy8ZOZwPLQM6tEkxQa9vL5p1+aSjEa9RUpTyIkQC6rhUT1LRrOj0cj1wx4RoTNtO7+UyPfZy9x2UFenunPnAOeYIW8lMmau18vfuWnZyEGbKMimXf92bOd6/WAfUWrnPyb/REjMjZt2nkJVnn+ZKJeHDm+sD3Dr2rC2X1+VcZ37XYr7VgqpiRCKf1fUlc1izm0DInQ+al7jcxLdkkFyyDk1iTU/8V6oLDDvZ612C2MauecqIGF2V14z6dzObeo8aeoqgOfOnXf3Xv1PXmtTcn+u7Rn3RvfNzS1r/16ne+x8NActX8MM/m6NOIqwsbHh5ljnR7bin+RXMviKcXmm62ptJz5almVI5J1HdLEo5cM2d9sHjiMn6tOrlRC+2XK2rKu8pUSIxCN/7voNvGP9nQCAbaJN4pFHiXyrqIrHJSfF+XCmY8c3QYgr9LLrqp9RSTALuS4it6e3YQjyYqUqR2NPxyzFusj5ZcnIlpUsEJLDdVIeQTdTnzcsNc2NDRu7uh4aj0UBrJEXr/lG60V/reFXeGRSNkxiHHH8BOQ0tTlnLai8PKTq4ys0HX/kgQft8OgNNg2AkvPngpU7Fy/aPPgrv2K+VN/5Xd9m+0gNbf7Ub3/C/v+d34lnnnkOAPCjP/oXAQA/+7M/a9vn9djaoqIruW/+ugFBtKK2CLZl3SC4WpfidcNVT3CuShea57QPH6l6IxgRFQxJlwrD0G3XP7ZqDfc1HPQbPIommmiiiSaaaKKJJppoookmvLgrkKooCtEftE+oKa4QFmUUFuQuyU16kdVdn5eex05cBO6J9zT9eWVpMvoSKKujJ9PlMnW1yfIECeREvqxn9YsZlZkyZhnmBZZTy1JvzlXfbvtl0g6txLJWfamsyF2+x+MOB5UTNetaxb1YsJY3PMEXSe1wTBGQZ+ccyfkgrmyu2rJNLgk6PXzXv2/1thkzii8yq/HlL30JALC9ZR42D77LMlbLVLy03PmNBeQPPPihDwAAHv7MZwEAR/TomT1vGSnuAgmf+dNlhjjq1Y6t4r3pbIQ68R0zQMotRGHiPBHkJaFtzQJ6fMR1Vak0t//HYYiQ/U21wcq47lP90FedXEUKFT7K5Pos+6ePcun/YRgeq693+wm1fXLN2C9Cl5m3T3/8f/xJ/OSP/1UAVf9WfX8gZceFvbaVRWOGKi8K5yuiWHgZuHstSgBZUCIkYjSnxJL6d1nkzuNHvJeWuCpEEEBX+HJOHkqbc9I0Q8i+FNFzJaFi0ZSKegHbb0BeY6tn/WkkhcqNDqa3mKFkZrDdY106Veda7JNrqgXft0zm+tom9g/pBTc0pOwDH7YM5c3b1l+vXjHfEDcXsr8oG/n7z3wZ40Pb3qMPG9dzsbSs9pNPGrrwEOv3i8gypRkRnek0xTq9pDbXLVN6dtdep2PbZi82JLukkpfGV8A5qhXEaNlp4eC2ne+A/K91ZowjZmhDKgYG4pitb2DQ549RR3+nRMgS7m9OH62cGf0F55W4N0CrZZny/Ssv8LzsO0LuJnwv9an5XF5P1qa/8ev/HGe2LKt+333GE7lOFUAdD28rmDFLnfC+0uu20WqLR0xUXH4wqM8jvmqo5oY4jrHk+OyQiJVwvsg4UUrZSx5XE95fR+MUBdXeOl3Ovc5jiipdzBBrfPAwHWqwtr7ukCohMzpv9csZuWXttl3DbfKNkyhx7ah5UNu4F+ecIAzQ7SZYLJR9t+vRITf5aHjk7gdr633vt/U1DQKqLRLJjsKOa/Pr140zI8XQOKTCcWSfF/lRbZuFlPaK0FV5+JU8GatEcvLvQh77Bj3f1rfPYWfT/r4x/C0AQNkyL8zE3Y/Jg2LfjHgPSjZtDgmOriCcGUreXtpnQyLCEyJ044nNHRHH9uyOvb98+X50zhn/cx5kajQ7fyrqTcb0x2JfDeM616zVClfWn3U+0HBo560KolZSvxdOJhOk5DAtWT2wsb5T+47WWlJd9CtP5vO5GysRlRt1TXVc6xwbUgNM6OMlhlGYLTHn/zqxHcft61ZZ9D1/5FsAAP/in/xjAMD7P/RuAMDHP/7PAACf/+I/w1/5K38JAPDX/upPAqjm7vHE2m48km+Vp75ZqNJmlQder2Bx3lOnxur3bRvTiRT8eL6JqnDqa6yvBxtywGxQqZ7GK2rbq3HSWu41t/2Gj6aJJppoookmmmiiiSaaaKIJF3cFUiWFutOU7OI4rp6Ag4ojAgD9Tt31XTXCQh3aSatysWb4iIHjcnneT69V7+z7Rq36Qq0eX7fbdU/p8ihRtkJ+Hvqu6u21zR6zhu0kRsmUjy5YxOxsmUu1q+7b9VrhfE6SOjLlZzwVZVFU/Bu20Tvf8zgA4CI9ZNQ+X/nqk7VtR1HkOFQBsxedgWWApVTz5FPGSej1yPkh+jaTH0QYIcjrx+Sr4fm+UH4mKAiCFWWg+m+7QT1DEakd+L1Wq4XtTcsSve+DHwIAp7Yk5Ua/j/ncP6vZPdmHxI/jnL7g1O+eFj4K+8wzz+Av/MUfAwD89E//tG2XqJYyZG5/4lCgQs40NnxFXNlN9gAAIABJREFUpArVvcciAIowcE7zZcTMKaWWFrMl2qzLn08NRchZ41+Ivtghj4HO9tGSyO88Q6tjfbnsG1cmn1h/AVWnwkQorCEnB3P52lk7J+0CO2uWATwaGro0WLesc7Gkx0yXnAMiZu0Nyyy++wPvx5hIwOc+93kAwHNU2VI5uuaci1T4O9wzbtWj32xIc1nmyPK60ubojs1fD12y38iLbji17y2oAhdEHVy6bPNCTk+h9oYpBfb5uiTqNSJSMiVilHJbm5tn3ZjaeZQ+WY7jWK+tL8kTalFxrNPuOdQ9UIVBxAw5+/SCqFLC+8nWecss3xkZKrg22MatW+PaNi7znJ5+1lQIC6mTMje5xXPT/WN4cOjmfJ+nqHYPxW2SR8xixnPMMR7bdR4MxEORMuBrq5VqjM7nc4RUO5NYaqjMvPiTLFOYFUKFiIq0OiiyeiZ4MRcnmRUMPP8tIneaE3SdgriDvb29Wpu4tjma8rjsOjmPtYH9djk/rniqeTMp39hceDdEGAbodBO0qdhXFvITtOvd7UUIye9Un3HI1ZrNzz4fZ1XxTtdc1QdaYwz6dt+aTe1aTaYZv0eUI65UhBdEIFX9ILRB9xLx3ta4jwUrb7q9TQzY989esOs44tqmN2BVCOco3Sbb3EY2vgEAePWZP8A7HjY0N+Q8eigfNB5XQVXggO3UicltuprjFXrW3f++J2y7PK9csA6Vb5eU3UuoHKo2nY7n6NHDTkhVmdt+NuTTlqk6pK6Eu75erU/9qhNf5bHy0aor/CZJcoyfrLVspaRnv1W1jCSR9at5ukASqMqEVVms2Hn1miFW73ynze+f+Fe/CQD4b//SXwYA/IW/9OfxUz/1UwCAH/mRHwEA/L//9z8AAAyPrD9eumz3slb7OCK+eo4AUKiSiIqKw+Fe7VwcGfw1wvfm1Htf6fHrCW1T89FgrYPp9Ojr3t5qNEhVE0000UQTTTTRRBNNNNHEm4i7AqkKgqDGGzkJZXCKLCzcjvikWyzrSi2D7nH/B2UPfATG9xJQZkDbWvV28D2uylM8JaSAtFpLvt6rqw8q7rAm2FeD0/cuBpYZmMQJegNlUaS0wv2zojYXl8bj66htTzpWhe+X5CM6YRBWiQW+Kt/QJwdD8cGPWKZImfBWq7VSCy6Hbju/B+5/BADw4IMvAgBefvUGt2IZKVe7nGdI03pNrrbpK9n5rz6SCBzPgLDpKjSGmfA1quVtbm7ifmaplSUSUqWM4Gk8qdW+7B/LaciV76cVhuExn6iKC3NyNld9WdFqtXD1uvXNv/4//QQAU/wBgMcfN9RRWSyHPrGPtVqtY22mtvLVpO6VCMMQnU4PBbk/05SoFBGF5XKJlAplW8xULlMpaRmiTBAAZc7M6m3L6MXI0N22D8cTa8MN8nO2qdI1OyIfgln38/REmog/Mp0gJvcyIT/g6a98GQCwuUa0+Du/BwDw0COPAQA+8xlDpb7w5IsoWdv/2GOGEi/Iw1pbs+O4ceMGt23n0KXPjMCB3d3diks1MfRmc3Oz/lvyQQbbhrr0tmy+6nbWEcLa7MyOcS2n6vO59ctOQHTD8dHqGVwAaA/smtyaSSnQtpHTJ6ZN1dI+eVkDosmWred3vX6r8dHnnCyexh5RuN4ZO8ek20WnY989Gr5s22LmXu0QcOxdu/oq207j1/6/vr7mPJv8cfLcc8ZJ3d6xY949byhjmuj+kqElnmj52t6Ep6mK9vt9LFFHnzVf6DoXrAAo+I81Vn5MF6lDPaQk1qcf2mg8q21Dil9CsDQnj4ZT11d8lbkotr6zxn6n0G+joO3GolT/9NtueFcsW95glCiRosN1wXxGxIgoVJbNnVJrv0/FRErkHR3ZvUZIReUxRR+zvHT3A583foOKeuIACxksC/pZsT8sFgtErO5ZZvTqK+rqk6okCUOiT7ldh9F4joNDKkAKTaIf3IQ8uK7UTslrFl/66is2Di7sbLm5SL+ZE6mSgumSSEJEftjaWeuPs+Ed5G1ruytP2xzZu2BzUYfHLP6lCElLKf7af1HkoeMQqg8u0zpCFHG+afPep3E4n8+Rc3thUL+3Vwp2RJu9ihpFEATHqlv0Hb/SyflJkhcWrKxrY6E5peYKjk16fr34vM1V4rr9rf/tfwcAvO9978OTTxo//ld/9VcBAN/3fd8HAPg18q7e/W7jYb38inFMfbXPsiwRBHX/uSyTonBdnfprCX8t53utvZk4jhQe560Lc3qj+2uQqiaaaKKJJppoookmmmiiiTcRd0XKpyxLU/jzECpFEASVTxCzd1LXcohAIZ+ier1xulyeqpJ0GofqJM6Lyw7o2Er5Vtlx+YiFsmv9fv+Yj8jqeQEVt0rhELNg6c7RebYQsWoz49VhZlFeLX4W8ySfJD/j6WcAjmUEVh7gdQYqa/dxCqmIqXY8CAKHUCkiqqy8+93vBQA8/MijAICbd6wuunjG+B+H9P+Zj0eu/fMVbwoAxzy4XN29V3/+Wp+16X2lDODZM4YaPPKQKRj1Ot3Keb6sqwAqi3USMrX6usrpUvhqf/5x6lxXx4Zfsy0/jNN4FTWvK168p6nceIu+F5/8rd8BAFy6ZNyVRx4xBPE95M099thjK9nRzonne69FFCfY2LmAeWHnc8C68YyEqTgOHYcJ9Dbp9OxaD7aYIV2yv2aWsetRgTHptZFTUVIcg3RobX04Ik8H9Bwi2jUiX6W7Zn2vNziHa3uWob6PHlLf9Mg7AAD9niElz920rOPvfvbnAQAP7Nr1O7PexcGBHdNN8oIefvhh2/+BzUtnLxny2jtjXk9Lcms+/mu/Ydu6eM61VSEEhD526zuGTCk7m7F9ul3LCrf6G+i06bU3J1IT2vG0lDHmfLXGlGnWsvG0yklVJnRTPBR5LNH7ZoPZd6FvERGMPARaSd17DwU5TXO7zsObV2xb9BdMmIUmkIYwKjGjsutO3z575qVX7DhietEw636Jben713S7Pdzes/Z2PABy9oTCFxyU+1RajDnDrg16DgnU/4JSY07IP+d8cmA00/HUkSBDqA7GtimYR835WoS89zlPSN5nWzEmRDsjcuem5KHxtLGUz6HUQ4nwH4yZWR9PUbCyZOu8jQPNH+t9O64e+8xgYGNNvK3p5AgTKmXqXtMjqhVl9yA6HpSI4hJpyg7Gc0rYl5JWjH6fnCqO3TCwz8RtrHit9uPbVPJMksS16yqHFwDaHXIWZ4f1bcCu6ZxqxSVC5KwuWWbyeiIy2JX3EistuO3tHUNXz52/jANyOEsiXzNyA7taS8RULCSHtTiycVFwBRHELSw4Vg+HXP9wTpAv1saWzXu9NRsXC47drfNbCKB+br9dDk1JUIjNUj6SXSJ6nIeCTOqXIVpEc/qDurda5YlKXtqEaKq3jnytOG19sOpjpf1oPeqvF3ueAu8yr6tjttttxGzDkojZgv2tR+XUkmj6Rz5g3PB/9PP/DwDg7Dddcsh0ymv327/92wAq1c2vfvWrAID7H7hUa5eAE4J5gGm9w9noHhHqDKMcSdz2/8vXNzbf3DUPVfN56qRjRRTs9Sm3GwK6OuxHmHkSjU7qnINIUPIyTV0pniYe3YQlh93l/6eLOpk4dsTg2JV+iBRelcbZfnLIVNGadK23we9nyLyauZLvEz4Y6vMR5WXnGaVDKa2ZR4m7gbkSMm6sQH3SiiTDyZq2OGmj8Ii9OubTHvL8MkmsPOS6LWnRXv8mAk2Sq7v0zdT0yjKmdtfa4Yf/sz8NAPjoRz9qx8HVwWw2q0pbToFiNVnI2FjGrTtrVgbQ7/fRYnt3VUbBB1Ins8rf6oGpw8VEkkRVn+SNLswkqU+I3h0W25DjMMz1AFstGJ2Zoye/flp5KnC8ZFBR5EoAqCH0W5Y/8jjKckWOnlD80StGXh2TLK2H3cOh3fBGh0YuTcLSEcl3dnZqx+OXjt4zEYYIB2tYDHmz45I0UvlEu+uI2eu8iastx7ypPkSZ8DDlQuHQHoLKxRx5aTeiJfvarRHHtPoRS3dmUwoTzPjwUVjbb12+hKRnQi6z0vrpcGbHeufIrkufpYtbNJ485ENylg8wHtvC7CMf+QgA4AUaB29RevjSZSOFHx3YHHjlJStxu3g/ZdKRYZ/94AIfoha5ibIUJSXmWULX6cmwVX0hdCIoWqiUcV0eOGDyJZTYg+T7V8aEK3FtVYJBQJUU6bHUu8WyszZLLNM0xYJld+6BkNdyvqCh+pr2LxuL+ry5t7fnbCo0Ps/QoPc6yzwDWjOoLGe17E7HK7Py00zDY267zwXTGhewZZ4hnbPsjg8TGx1r56CoC4goKSTt4ZYk5leOScmuTPdJJSdVtuzEeViClOfo08B1nspI1tpUoftoyDl/yr6s0ujxdObuvWe4IFbppOZWLb4q2w879jsHB05uvUNrD9234mpavGcizwrs3xnV+gYALGkJE4YhQiYY1jdlKG/tOYCEQXjPoSy72nZrawu3btlDhMaXFsjLZT2Rd3Q05l/WiL2u9ak8L1EG9fLRVovrD5XoRpQyZwndNOECPiyczP/Zh0y6e++62S6Uh5aI2Evt+BKey94XXgIAnDtv66S8DDHjw1y/zzHRZtk1H+5kA5Bw1dFlCWmZFmi1+BlLsecz0jFmNlfeGNm2v/V7vh8AMJraXNbK+aCStZx1xTqHU8nzTyUcpgc39l1nSZPnteQlcBwY0PtKfKJe0pvlKRKud3zxJ1+gwZXDqaRWpsXLDAejI7ahtd1i3673wYRrS7bPZ77wRQDA9//QfwAA+Bef/nW86zFL2u3feRZA9TAleX4w4TKb2Nxx9ozdQyTWFQaJk/vPaU90QGsPl4nxQxL4b1NoHacMs9ZNYdB20u3V2tX+ofWhLDVeL+7B6amJJppoookmmmiiiSaaaOLuibsizRwEITN3dfO1VYEJJ+8pkuJalZVcDT9zHrRax2TOldVRRsCRl7siftbhvuUidVkCHZMyATlJvEJBZFKMonSvfpmX3qenGKhq/9euWbYnnc2d3PqlXcsaOwletRGztdlSZqIkAAdRVdb4dkjRBl97l9ITvYw/P/gBKwf8Cz/65wAAn/jEJwAA49EQR4cs7xMyd2xrggH5Pba1+snly5exztLJQrLzIpfyQNQfTkXscFze9DR5dKcn4n5XHCur1HXxycUniW6c9tnrxWpZpI+MaVwoe/YlGjkrmzw+sgzU088+h/vvN9GCh1gS+R3f8R0AKkPEey6CEIg6rmZqRvPGCct220ULfWbIVVamsps7RCrODKzjnFkn6hRYprOVA20Rdknc3uD4LTnHtVhutXnefjsmypQyO79341V0t03kgRWe7niWLCEbEGlNaYbZO0u048wZd01v3jTU4MwZ29YOS9VeuWalg2CJ1yOP2HWdkMCeLmbo9S2LfIsI3MY5+22HJsQ5ZXNbRN3iUKTsljPhrpASlVYok8mxR1QlFTmc81mapm7sCqJQmY0zrXZWGCx94vGEQYCSJQ0zmv2WqeTRmRlmRrVLGfYQtk1N292swNHErt15iki8cNXmY5Vrx616BYTGk2TEkyTBpcvW7hJs0IQgBC+OJAtvxzM8sL4VoUSqklBOUEc0VOchY9BZq+23SrFW41yoTsH2kHGrUC6VCS2L+r0pSRKMeX8asWR1JjSV40DXdody9MEBd3bD0M+gLJCzfwnm7bEPr1NUJCRSpZKq2cz2FSZd5IWNJwkHBTwHWRjcS5EkCS5evOjGpeblVcEfX3RJa4xWorIz+22caP62bY9GI4da6Tfqb1pjaCxp7IiekC1XjiMQQtXj/igyEdlv2m3rjy2anGuJ0ev10GOf7NGweveSlRXfetnmps6zVtK/HFNs4SxLClUNhADgnJj0WKq6lOgTx+qAokKkWmytW18aTcbus0zIc0JRMKKsF8/aXPbik5+xfy8oOU+0K446KChMU67ZXJ0TAU4Gdg6lSnd57Vbl0VXyq//5oeug+3iW+VSAGAsuO+NY5Yb18kOV//miaepDs9nsGNWl2xXVwbbVfdmQo/3bVv58+wbLoLM5nnzS7HDOn7fyvunY5jsJlvzAD/wAAOBf/st/ae3D8X/SWlzHIbTrDzvURrpOgzWhgdYu48kRBn1b96zxfi7Rken0jYls3HuzUxNNNNFEE0000UQTTTTRxF0UdwlSVZeNVsKtLi1JdGdxMg/FCVlEdWMyq2lnrfJ6PcOpjKOPUASRX+cdu6fwjowNeezFKfWuuY49z139bBjKtMw3Dtazbf3YlyRSjcdj991Oi9kRz3gtFl+GZsD6fru/5pAgIVUhEZJvRLwRXqLERSTrqjb7nu/+LgDApV3Ldo2PhvjiF00q9Ygyq0NeO8e18jhmvix+nueVEZ+yWVB2to5MnoRUVciQvTqDy1NQrUi1uny/asrsC1Y4Dp+Hsq6KcpwmgPF6sXr+/tjwEVQdlzgRUUhp+XmKCeuJn6Hx6R5J0pJhv+eiAIoFMJ9SXEBE4j6RiyByGVK9RjRhFdL9nscfBAAcjlifTwQnbg8QRrzGHBCdmHMP/0+AG9fuWCYvIZ9gY53oByIM982QV5r/pUjARBXyhXF8ds9azXue2Dw2nsxwlv/TsW5tGyduQkL52ppl5QY0vFRWbqtNQ9/h0PWxzEOZAiJD4vOVkvnPZai4dJnBiIhMUQoZ0ZYoLT9R5t4aRJnEsixdVl3IWDVuNF40xjmOSVxfzIZY0Ew4IwKZ0mQ0W1qmtr9mSEklQ85N8/gW6cxJ5cvA+MIFinrwtjmd1+WSfQEcQ5jtul66ZIiVxtbNmyZ1vc4Me5Fam3bJq8jyJXqEpHJKXC95n2iL98Q5Jef/E8fzlbxzgIjXzM1DhcY+2Gb1uSemgEaQJFiMbL+6lgEztqrGECrioy7OpDmr+MxC5OQAIREYcarSjMgJuYhlHCNuS1SBCBXFRHrdb9z96xsdWnMI4d/YsHaYTCYrggh1hEKWH13CQUKXxDlrt9YdyqX+pe37Fgpax+he6NZJ7diNI/GRUQpFs7eHhzbPxTRBFwqRL5fIeGG75HdKXOPMO636ZEyUc3aLPN6SXLLIjiOKqnuckLhDorb9s4YcaT5qdesWNf31NdevI/aZkNYEEeeVCEQBiZz2xVGmGXuCMRYT++5wZHNEe8v2G6sigFwy8SS1f+NO2n7Fy9JcoPbWGKne87girScjtNtE7yiq45vrzj0dga7XDlEUoU0Bjj2aucfko928ZajT8FVDph7Ztfm/RTT4cLGLK0PrO9ev29x086ZtY/eiIfW/9Eu/BKDiWPmGxsvlEoXXdzMnKvOHi9+o3bVs0ri7c8f6dH/QQRRTtITXech7ZVFfHr5uNEhVE0000UQTTTTRRBNNNNHEm4i7AqkClIWoIzku45XnTs2s9GpG/Qy+ZHidxGi+cE/6w6P92ncDbnOZUd4YdZ5MVateOFRFCkQtZs3KsI7N+NKZ3VYbpRROPBqMsjnKWudUdaoyNpYJPDo6crXYEi8ZM+OlbNHWxnqtzTZW2idnttbxgDwlKh/18KXXTzI/8zk9Ou8la+JXzdVcJlfSo9pfoP2Kf8ZsNbPXl6iu9qN/7s/idz/9OQDAP//4rwEAnnzqKfuuy97wmPOTuUetVqs6D6E3jm9URw59WfIoilbUHuucKqfKl6Xuu0CFJC6cCXJ0jNPkt/tpxoBxHB/7rVNG80wF/eyWYlXS3b++rm95XKtbt43nM50vXGZHGdDPfO73AQAvUDXuXos8yzG6PXL9J5ciJtGB7f6ZCvWVpDGRoMFZQyxevmLZv0vnLNvap0rgdJRhTAn15ZCmshvWL9a3bAysrRsPJela1nexTw4QM6qL8QRg3X+U2XEkRNwzcg8W5KFc3bO5oH3BlPs2twZoE93Z2DY0a2/fspC7Z+19i6pfRWTfQ2wZztnckK21rTOOw9HfJFKR2X6GY3sNI6lgsd9O7Dh7/Y5TYSWYhdmo3sdyImP6vCzq43YwGLh+2O2Qw8W+XZlx1i0h5gtycMoFosiOZTQhikhJ9z4VZZfkjum8S0rcz6cytCwc7yid1aXSZaS6wfuVVGSr6ghmy8PQKXppjLWoHLZFNbwNGoyvUWlvQM7RbD5BNxESRhSAXJN1Gsb2QiqXuUoIci04rZh6Icc8NOeozTgvUm2v4PWQemweBA6JclAJ5bDHRK3TJfsnr4OQRc0VnSRwNg3Kbu/uGmK3cd76qpTs2h377foGDZxvb+K2OCREF/M5Ud3Qu5HeAxFFEdbX19386VuE7O/vH1N41XeWGXlm4t8ROV8jqr2YlcfsYNTfdE0uXjQuttYL+lz8pKKsKik0z6Up74uhzX/TOVHuFg2rz77XbbslgcKQCAz/0Q9ps/AtH7RzGBp387lP2v18GnBMhW23DFjy/KW2WXDMlJwbHBdZCrthiAXv+wn76HLB45Dq3IxKruKLsQ/3KNM7PxoCVPbdWifymhM5ohx9xvVYlh2vivItTKpqo+WJr1FCFUDeW9YGO86oN8jryPdpdjG6dr75N1DNkddvvsTzpfy+qpU43166aPeyzz7/qkM5O21eX47VDl3uz52ze5ZQT41zoXOr1TrOrobIocyu75a4ccNQOJ1bGAZIUyGE9p0zNIIPIzv2m9e/Nn5Yg1Q10UQTTTTRRBNNNNFEE028ibgrkKqyLJGmKfJcJmZ1HwCgUisKg/pzoI+YqM40dQhBcEwh0PGTPPW/5bJusifOTb7MKnW/QFyAae27LlMR1jleQRA4mR5fhVDHehISBFSZhzCMqv0yw5R7XkeqnVettMt6BRGSpI5yFGH9XGrHiuMGyqcd3+q5XLlitbr52DL0ypAtFouV86h7tBShtZ2yN8q8qE2FOp4/fx4/9EM/BAC4eNkyn3/rZ34GAHD1qtVoD8m1cihkWTc4jqIKKSrdax2p8s9X55YkifssoXdFmFPdzVP/c2gX26fqH1Wmxm8PP46ZL+N4P3899T8f7Vr9zWkKgg5FcJwrqt0dDHE0tmuzzdp4qVEGh3Xj6nsmghxleOC8iNZiu66dkJyAYol1ohpRQbNLqk0tSyIU9CfqMisbCdlaTpDz2i6IaG+0yPcJ7bv7N82/ZUJlNaEfeUAuUjfFVOiGlASJSLQjyxCmsP2d6do1yabmLxJEl5C16Wkzsuu2TgUrIXIRfaMy8nXiyLbRorFukS6xxixjlto2pjnNj/v1LLvGrZD4vCiQLsUHJHeCaEu61Jji2CPC22oTqeCc2G63q/mCaAuIWJVyt+X5LyfkRTBbfbR/G+WMWVeiHBEVEqVuKIPPbDLkcbHPs2yg3+1jRM+XQ/EJOddsbBrqst23ayY/J80Ren/t2jUISNf11XwgpHnG9ugFdjxz9qGk1cJUnBme7jrNp6OUHNS4jo5DBsOB5v4Agfy/5E/Ffh5G4lIRmeJcHNMnKyuBxdK+0yEieTStPJUAoEcEoQjrmfv1rm3r9ryLFr+7Q8R0i4qW65s7tW1tbdEwmGMqLgL0ImuT8ZHdUxZj8kRotn1PRZGjXIwQ8P4xza2NPvjEd9v73/lNJFTCPDogX1iemIEMs+2l260r/7Y6S9eOGoudHn2axlLVtNdOt446XHuVptNRGzMqlR6QyylvwrnureSFrvesL188Y+NgdLSHzS2ZOFvfl/9WyvEnZbUsse99+Ee+CQDwmY//c/v+bAhMbczGLXnZbfDYiMRIqdVBsZwrW4XztJym9JSKdBycI8RpooF1zHG+0LyUZ9joqmKJ45ncsow+TGu7RJAOrEJhnliVwbS3iYV4aIVQXLt2WkNobGjNGcZEneLK0FdeiWFYXx8kHgdec4e2WdMeiDnv0yfq9g3jR915xdRehfJONd9xX+X8EH/5v/nvAQB/8yd/GkCl9jmakutHddtv+TZDHZ960vjVYSBO1dzBh1q7ONW9P2SkqizIcw2F3Fv0+vb/0VHq/Kg6Xa0Z2WeWsze0rwapaqKJJppoookmmmiiiSaaeBNxVyBVQVkiLrJKvYgqUhEqvkisGnw+4YeuflO1+3T95lO9EIU4aiFAXb4jlyJSUPcUCJVFFHeBSEan20IB8W24VypwyQXcISRCvbKqDnbA7Ey6EKpBbhEz3g4vcMAEUQ+mlcMoAZOwyLKytp/DA6omZXVVnyU5YNtYqbfOiGKRYxUzMzZnNrNF5ZieVJ14PHlQqS8mfA7PmUX93O/8LgBg76ZxMTa26eS9eIXnGriMtnMPZ2ZlykyIECk/q6Nsx7lz5xAxK9WjutCf/GN/HADw4osvAgB+85O/BQC4c2efTWi/fejBRwEAg7Weu3ZzZtFyZrpjKUsy86dr2WnLFyJGyP1n5L3FzAht9qnAc4dcDNuFc38XXhQU5TFk0OfuLb39r3K7TkOVVmvhgSoDXXm+VQhagLrru+8C7yNY+jwsKx+d/T3L2o2HdeXMey3KssRyuUQQ1LlxkJJZO8GZHcvIzqkkd+uW1ZIXyhi37GqLrxQW1hb9jU0E5CEEiY0TcazSW9ZfAyJYF3YfBABMVYPPeSMpS2zuWCZ4emTZ+7We9bWr1+04WgN6X5E3UDCVmx9dx8s3bD/9tQ0em30XnANGQ5s3YnqyzIl+RJxnwyiuFLQ4f613Kp4kUFUSyCdKMR6PnQ9L1cfVf8Paa49mN12qEDqluSBwf7di235JhL1kdrlgDfyM3jdBZpn2pJhisWB2neNjzmRjSc5FSkW5jHNO7qmmJkmCLn0Li8K2JQ6B0IB8Kv6IbdtXoj137pwb00Ln1WaaEzV+nHKguMN5hjXyixKp4TK7PA94zyGS3NY8geMR6OA4H0n5Vce4KFlFQRQwYEVGnuYIPa5rh/eLmCqYun/6HFS107IMsUbOmPyphJTIa8opJXJuCrfYDxCiu2a/pZAZbqcHPKmqguWeiSBEGLScGtpSawvydB5+7Jvw9Fe+CqCqoGiJ/8b2FadP7a2FBV2pAAAgAElEQVRKl1VlWY0Zp1ZMkKvF/uf7Bonbt1wuURREogfGs3FKhbwOvXW7NlLYG05tW+c7F49V/fjKcD4vSMfxxHf8OwCAK3/wOey9QH8zzh1zokxtVXtwbBRcAyWcB6KidGvGoKzfw06rsikdt7DynBLaJV+4iMqUWj0eXLOOOCaStn5e/nhz5OTNz9gmLc4zvm+U+nsYqXqJ51YEbm6QCp3mCOetxOofvzpK+7hz5w5G5DdVCLDNIS99xTjojz9kXoM3rxrK1OV4fOjSffip//Wj/C0Rca6h/9SP/DAA4Fd+5e8DAH7v0+b1NeizWmVl5ql4XfXx/YcdTkGTczpCa+vVih7N1aNRvfJia0to4vRr29ebOtImmmiiiSaaaKKJJppoool/y+NNIVVBEPxlAH8WliT7EoD/AsAugJ8HsA3g9wH8p2VZvrYlcQAgDFY07lkrLLU4BFgspYxX57L4fkQn1ZuuqqKsfqZw2YxTaCrj8dh5EyizEYb1/a6qzAFVpiiO42Pqaj7qsKoWtbpN/5wAoCXUaVlXrDs6qqM+yqbO53OnOOTagU/pyi51+PQuv5kir9fFhnHo+GXa3x71/X/ndw2pOsf669liUjuO2Wx2TO1OGYGJPGRO4bzpd4ejEUrCA70Bs2WJZVMu3meZl+/6LvO2+te/ZYjVgIjd448/bu2wmGIyGXH/zFKU6iu2X+etIx6W4wpUKlrOs8jjnb1eRFHkzttHpvyM00kqhP5+3Dayk7O2PjoYhqHL1vjxepy+k47RoY3Try1781bFWzXnhGGIfr+PuLRUbhSyT1IBqd3u4coVUzZssw67x8xdSth4LLTnrGUDxzP7fGN3E8Pb9EWa22EspFyW0ntlw7J8d25Z9nPEo92gN0oaBFjSQ0tKfbfonxJxPPfWjacym8vDjzyBxR3EhJkTbre1oNLp2MZte4MqYQv7QkniTpvKX1vnLiIkVywlmtHry2F+yjYiMkc0Qv05SVrHVFCdb56nmun4AswK630YhiuKm8x6cnwWzB2nhbxnLJM7PTT+QJHOERZSViUixeORV99wZO3TJ9dMtfadjrhmpeMBjEYjfiYfGSpn7Zii2iuvGiooT6BVfznNKT4qrayzxrXjb3YqRKEkt6NDpKDbZZuV4tLYd6WqGiV1rmwQBChKVWywwoC3nqXam2poJblVJVHBEIXz8EmZKR8TsRXXUspZ/v1M1RJbeYlNohviuAau5MLOV76TuueoamCw1kIZ2bWZzyz7Pj20djikGtvbEW/VfFMUwHwRuSoZq/4Afv1XTc32P/nzfxo3yG86mBhnp9R9sVPn4wi5WB1jPofFIUTy/eI16/aIcrAjHBxJBa2DNfp4xpE4zTMej/X/CdHd9zxifKjtC/THy/MVnjj7JBHPdsvmV80ZQtd0DiMd18X78Ph5G0/PfumLAIA7wz0AwEZbFUxUvuVxTHluvW6Elrw++Z1JWufd+fdPIUVppmqVEG2ugzriNpHDuuA8sLNu83xEvhrINcsWQ4AIf1teX1xZn1bJ0W6tsT3oF5YFyOI6x1v3WN9TTK+aK+Ur1el0EBMneellu3eJQ/Wu974bAHDz6a8AADbJfSs5dz50fhf/0R+z9v/Fj30cADDjveuf/pNf5TFb/zga2rV837e/HwDw1FPP8LhKLKgYGXF9rHnuYH90Yju8XZE7rqoqA+y4JlPew+MIYagKIqn+2m/3br6xNc7XjVQFQXAJwH8N4MNlWb4bpof+wwA+CuD/KMvyUQAHAP6rr3cfTTTRRBOKZs5pookm3q5o5psmmmjijcab5VTFALpBECwB9ABcB/BHAfwpfv53Afx1AP/na24lCBDEEUpm8yIqFImXggCInFdBPeN3ml+VQ3uK8lhdq//er79V4m21LjgIVOda9/pRRug0pAw4jqr56JpT8PPQj1Vkx3ltqWaW4IJzGW/Xa5hVnxsEgatf1uv2JjMuQR0RU+ZLBC7V1/cHA3dtxszafv7znwcAnL9s2Q1loq5fu1E7pyzLjinRqY3mi7qCob6nY19FWVRPrQxIyGOL2ZYss8bj73mPnQtV1daYCXrg0kU89TRr1nvifTF7m9MzghlgQZYhVYeCsERZ1muFhT7K28Ehox7K5yKovnOaYqDjF3j9cRXlUrgspeeT5vehVT+U1e2dFH7G+SSVQr/PnqQy+A2Ot2TOKYrC+qyHLCvT2+m0MDpgG5N7F6HyJQGARx81vt6Na6Z8KR5n8cpLWGPGdnPH+AnTA/IimEHNyMfJA47Js6aKVnJsHKVLXLhgv33uuRcAADs7ptg1ZjYQ7L8t+QRRHS4tRo4Po2t3NLR+OqYP00ZJVKNt+w+WzNwyS906u4WUgyrqSIWLbVOnorpIiHaEQXysr/n+aWrnSqXUtrHan1w/LYjKCuXgWCzmzCBSnVB+TnkeIIg4L3O8lvTP05y3y+symisrTH7WlFnguIeUSmKbm8Y7eeW55wAAY/pxRVmdN6A+tIpIay7z7xf+PcBXd2232453M2XGOKSy1lqHt23NiUm9DcWrDMPQee8seS9N2q3abwKqj2WBlPzYLxKgw+8sqcar1G1J/sp8Xr8XK6Ou+f3+Sxexu0P/RM65IY9jdGCIqdrHeWyJl9Zto83zlF+W2upw+LZmvd+S+SYMQ7S73YqnTISk27Pr8yt//x/j+77vjwIAvvwl83A6ODCkZj6pqk6AChFVP8uyrFYZA6yoEYs3q0ofTuXOn0d8xTJw++tT3e/MmR3+hmOE1+7lFwyZ3b3wsH1+aR39Qbt2jHEilNn24ysd672Qy/bli8iJmj88+E4AQMS+MVsY1+rpZ75s78nnFvq2DCK0A6nycm4I6vOfxp2rBmF/j7QmjFsYEZkb0EswzeQhRY4g358b655hSG4vKHFEPmvZsWuTxvV7ufavvuzUGicVF159fz6v+/FpTtQaS9v0OXaTycSpl0qd98Z1Q6xiHk97i+quOStcxNEPcnz+X1uVzw9+//cCAP7uL/0T+y3nhNv0rZT33Je/bOupSi04d8faSuRTVW8Hf+3zjQpfWZl0ULe239sb8viIMHYCh0wF4BpTgyWo821fd99f70GXZfkqgL8J4BXYRDME8DkAh2WlH30VwKWTfh8EwZ8LguCzQRB8dlU6vYkmmmjipHhL55x5M+c00UQTp8dbOd/IHqGJJpr4Nzu+bqQqCIItAH8CwEMADgH8AwA/eMJXTyRslGX5twH8bQDY3Nws05VM/EkZ+8ChS+73AI7zcXyVlSAMjiE/Cv/JU3XnQiWqfSxXVP/kB9U9cRt+5jEIgsoB3EPKTvOBqnyziNSUVQZTvjoCKCoHb3uv7ykjcnR0dCyjkad1BarB+kZtv0O+qh52WpTo8W9tH6rR5+WVT9SY2R5l0YqicOftECoeTxmcnOH10caiyByPIs/Ff5Mni70NI3ExWH/O74kLtnPmDDaoHJgza1fKn6pLbwfv4V7XPAwDh1RKXejWrVu1Yy69fumjoHmen+oT5asi+v30tfpQltf7v66p3+ardfd+VO1czyKtXgc/8+n/9u2It3TO2d4u8zx3yJDLsAlZKZYAUfH9fcuqv+ddxiUQ1+DGdesDu5eM13e4b5neMr2JguMlZbZ/dGh9PsktM3y0b7yQS7vnAQBDqlbOZoYktXZ28QK9RQKqcj7zkilqhm3+Zmjb2BpYGm6dc9K8TNzfiJjNJdext0meCv1aBswkhuon5PEsFgcIe8pU1+c4X33KR2O63a7rO77CpMIpS6qPeeOnKIpq3uZYXzCTHUBKW+SYEcEJHG8ogssXEj3sEW1cjKydx1RURKvObeoR7ZtOllgSEbxNnxrNh/Le0XmvbVqbaW4UhzWOY1cd4Fcp6LvyZYoC20ZXFRlFjojIYJe+V0kkpVtroyklDUNmoR0nlAhWEIUImZFP2A+E7MdErOQVKKXZKJFHY4iowyqAjKgrEbshvelSXlNdM1VROE+ebhubVALMOb7mixnb1151L5BKWRwJOcndXD8e2/5G5BRmbxM4/lbON7vnzpZpOnOeke1EPEhrs83ufbj5ivGb3vehDwMAru7ZeL/xjCFDqopQnOSj6HsNukoWjgOpvYmL24uFhpTY2rwfADAiP9shI/TpCdk3QyKXZ8kxeuCBy2h3tH9yOVtSdaxXTviVPB36JB2UBco2UZyuvcb0ResTVX/PDpUhyYcSkvPqK8/j+osvAQAmVG5LgjoyrND7jPNNmxUFeTpDSN78/pFdE62LAmcDl9ReBz16jiXAiF6G+xxHG0TiNCaFzDleFA+g3VlF8Oq8U59j7a8TNP+sqgmrbbrku567wHvFvs17S6qwdogkzeZcp0UlLu4YunXlivW79U0idExAfs93/3sAgBdeMMReY3eRSgW2WhtUlQl2LvI807rpGx3+/UZcwqrNOB9yjk2SAHPnC8f21PMH3lgC9s2U//27AF4sy3IPAIIg+GUA3w5gMwiCmJmcywCuve6WggBlFFcPUfo3J88kThDwRrJ0ZSWEdVv1h5uS38v0vixdSVbsmfBG3g2/INfUf1BrtVrHHtb8xaQvg71aYqUOpsHiHiq8bfgLckGWq4IB2q4z/pOYR1o/jgkXIJ1W20HcU5pY6jhmqW13Y1p/ENMEsOTCqzvYcJOl+w6lkD/+678AoGrDCeWN9V4k79Xz0rXKi/rDgy+CsErujtxDU/2Ba1WCGagWLfr/Jz9tQhrzMkUm6XSWXohEOuXirEXyIpxhJhcncQsdtslvfvJ3AAA3bliZo8rHRLQWATZ3D4i6mUwRoH6MAZ8IW1H9HFph/X0QBMf6nZNF79QnXv9zjYcwCpGn6kdKVqD2W19KXbLYURS5dl+9ka++vk3xFs45BcpwhjRVmZj1Ba5PsVjMkfBhJqLc9NMv2M2mT8EAlUc99ZSVRZzZssV0gQAly8gyLmLyrt2gLq/fBwCYZ1aWcbSw/X/hC18AAHzkIx8BADz37ItYY4mayu/QtxLBIpUlAcvQOIxmLGUL+10kLH/bp5T7Zp+Li7bdOKMWS29bdm7o0siWD1B5niAoJC3M/hLUx54yXFqIByvlxM7yYmWBD6zMvV6iq5L5l3VBVbqXFWN+xvl5RsEZGm0WFNeIuI1WXCJLWdLLEjp5T3Y2jFw/lyz6zB6ElxLDoPlxEIWYM2GhxeSdq9atcgp3SNSh4Lyi8re2HlzCCEPOC3qI0sODM3vmPJGmkl63/YdJy9lkSP4+pwz51sD2qwWrRHxAaX29hkGMkIv4lAvTuCWhH1lvcIwzS9eGHqQypKFK7FVeygd1zgtHTKQFnONu0VpgnWIrIQIcjOvlfYsFjaQpNtGh6XObfajL99O4QMExNLwz5LHab9PF25bIecvmm6LMMc+HiDs2RxxN7dq2KQYznl3FMy/Yed73+J8AAJy/bOXFD5x9BADwKsuMZyxlvX7D3u+sr2Fvj6WCXFtIKCriA1CPZaAFF449SaBToCdfJugkFMlZMpnTki2BPUyHtF3YeMAevrIzKu2tyvxyiseoT7Y7dfEn/35R8Hft+Rwh+23JsvsF+3uPDyAx5+i8b2M4WLO2u2/tPB5+9FvtO7zH/ea/+oe23Uzlv0yUsyyxzSSL1PnDMMaSBrGdiAnkCROTFC7gbRktCvOUCwplhBHKobX32hrLuF+nTH4wqJuAZ1lZJfa8pJVC6xVJ3fv35DzPEa5xjA7t2HIKwYxv2282+bAVc76ba91UALvn7X6T0QS64AN/vG3/f+SRdwAAnnrahEREjzi7Yw9uR6P9yhqBc8KS1Iq4JXEwAgWBHj1Oz5D44lhvJIHrJ6anE4mCaV3OtXbX2q4oQiQUPysoapHlEphjUm9eF7w7dd9f81Eej1cAfGsQBL3AVmPfC+CrAH4TwH/I7/wZAL/yJvbRRBNNNKFo5pwmmmji7YpmvmmiiSbeUHzdSFVZlp8OguCXYJKiGYDPw6Dufwrg54Mg+An+7+deb1urmXigetKLV9AfZfQkYqGnVmVmfPL9KrJ0GqrkI1JLj6yuyPP8GAKl3/plLieJT/iQvH7rC0T4ZVeS/zWkpn7ep4lsVKWDJEuHkcsFKHul7IikOP2SwTNnTKpZmde41akJXwDAE088AaCSqPzYxz4GAHj5pTo0XBTFqTC2rrR/fXyKXZqmmC7qcuSBQ98I9zMD5iN4R4eWbblx8xr+1A//x9YOI2Y+03rpibtORHcWMrw9GOLVVy17d/XlV+r7EarjkvcivqJ2vBnyY2im36ccebM4fo1FNPXbLmJZDzztiTKpCzDkee5MDH1U67SyWKGDZVkeKyfR+ft2Bd/IeCvnHMDwOmf0zNKFkJBvO2nhOssgRkdWOnGG5RDKdgnRHWf18Xzz9i3Xp9rdehnGK6+w/xDlurFn5RDr/PwTn/k9AMB9992HBfcjAvetvQO+Z8ae4/aRhwz92qAk8sHeAW7t2XURqrFzwcb0hNLqXRpbt9t2TilRly4J53mr74xyo5JZaK8P6LUSQ6nKd3NPsMWZ256SsVZ/dmWBeV6ZX7JUKWXp2JzzmGMWq6SIJR3zWeq2M2epXsFrlHO85JpzVB7F87+5Z8jedFGg0+nVjlXX+/pN6w/9Act/OAdtbVRGqgAQJoGbU/3SHbWDtunPAXEc43DIkh2ifE6mObJr1lqzbatMTpLAq69C+1QeDQr8yHw6YrY5EspFZLHV6SJneWHcZuXAkPt3KIe9PxpPeOz1kq92p4uSqHhKAr1euz1DbM6dsyx4Rwgdj30xn7s5V2WFw0PKH7e/sSR3xVs73wQIgxYmE7vntBKJetinvV7f9cmvfvEPAAAf+BZDreM1a5PHzn0zgKos/fDwnQCAvZduoNu3Ul3dp3WN9sc2v7h1Ats/DkWPYMVB3MNoaP125wJNxQM71qeftfLDgrQIiWKNKWyRndnEMtOcYMcmxNlHpv37xaqgjcaZX9aGgGOEXTiVCNasutfnLOFv7Vi7fusfNx2R5z5t8+n+V03kYmfGscT2qaTgu1WVh7sdcn3GcbAmQZjM+ntJCfT9+RwBywhTGEI0IOqnqiC/kkbnqPer6ySfruFbsPjS6qsl/reu2/yVDKzN1vs2J827dq1mB/abM2c5V3FsHU5SECzH/Mj2/477DZl6lfedj33sH9lvMmuPFkUeUsqyn3TMvoBKQifzvF6dd2Jo/Tl7C/iIhRRiUK90q8pSl2ABExZca6qkVWbMi+o0XzPelPpfWZY/DuDHvX+/AOCJN7PdJppooomToplzmmiiibcrmvmmiSaaeCPxZiXV37I4iUi/Kqm9mvHX/4ATTN1O+L9fz+o/6btstZe9UKyiXb4QgC8R7GcP5vP5qcapPlnbl8Mu+DhfhgFKJ0GpJ30akDJrrayBO++oQh90/nriVyZE75UBUUZQ78+ft+x5WZYARR3aJJEq3vGw1Vf/1f/hvwMAXL9u2cWf+ZmfAWBEbG3PF4LQGfl1x13Jva4givNlnRTtBCKYechyZndEzJdQRiadzAKf+MQnAAAf+dAH7DdLEezrnCIhVSFTN73FEr/xG78BAEgo2yxzQ5eB8jJyvoz+clGZmZ6GnDqkKqgfz6r8aBCKd0h+mo+Qedtq8TjTNEUQnJzp8pHEk9DW02wIvlbz47suSgA5UDA9lRccC6wjn01STCf2d5+k/oz9d+OCkW4lWuMjN0UZod2hAAIRkKeefh4AsHvZau577C+3KA8sQYPL77Js9H0XH3BI6S9/zKRtz521rP4G6/F7W4ZYfPJzZm+g+evaq7fxEHkPMsW8OaSEO6/XNlGORWEiDC0aCb/3Q+8FAJxpDTAb2flukXfRQn2eOm4VUaHpThTHs4tQv/EtAnLVujsuYOrMT0lhw4xIRUTeRi4pdXK5ZhJuiAIEFK+YU3a9y4zxrduG/qxtWWZ/yTZeHFFanuhcgBxL8jPUrufOGZeDiUx3bZVQ17yqfU0mE8fH0jY09+u92kncU91HBoOBE4ZQ/yspGOBI2BzbLcqVZxD5Oq7ekwgSsj8udcvnecoQXChTFFZzb1wY/2qdsutToizDA8uGS3K/1ydyxqz45fus712+fLkyTGY/0D1gOjOOR0J+ivCLlGjnndtDPPucSTan/G63Z8d++UFDZn/vs0/hnokyQLYMsL5O5IAoS79vbbxIx+iv23W8+pLNFe9777sAAO0ztEBx2XXyz2i5cP7MrtuN2lnzSZR8G4CVCgOKDkTiC9MdPIriY/O/uMbvf+LbAcAhh+JH7hDtQJCiKITmrnF/J1venMZJX11j+fNLSZ6dW8ct7RyXC60PK+7YnH2yNTCk6FFyVL/CufzGi4a6tU/g2Tt0m/ffHvlHuoe6tQfXTfGajYu01cKU95H2uiFEGoPHRbeK2v9XK4DURkJo/N/4YlWaB1bv530atI/JB53cMbrf0XWrIHpgl30lXxzb5sYZzhGvvGT/4zJYQkUzcuw3Kcu+XMr6pqpQ8NfavnS6szpyFQxVhZd/vm8FQlUdh/sLQDWWNN8uFln1jBGpoopr/aJ+Dq8Xb4ZT1UQTTTTRRBNNNNFEE0008W993DVIVVmWx1TI9FRZFIVToDpN0tnPgK7W8q8aoK5+10eGfKO21czNaSia6un1qlhFsvzMgo8E6GlZr5X6nSSLK+Ss4nupRldKMXW0Rwya+XyOxOMxuO9w/5L11Xn7bbyzvYUkqlAjwHhWQCUJKp6HjOH+xt/4GwCAz3zmM/i1X/u12n5cJiqtSzEr0+vXDkcoEcgQ2tUPS+K7jrI4vpp0UItq2y+99JJ9xmzoOx81VaUWs8lSUDogD+sF8qfGk1klc+oZJlf9jn2XDLZYXCdel06rdQzt8SXUnTpiUO8nQHksA6TzlgGiws8Eqi2TOIbU6P1smeIY1yusxs1Jptb3dJQA8gCBUMpS6mvMYLV7GLJfxIF4SPZeYz1jkbUQz5gKau99/wfw7LPPAgAOhsyykzsTRlLJsu9evu9BAMCdO5b9V/veOTzApz/9aQBAj/LERwcmuZxPrS8+/fSQp0KkfdcyxxfOnXfIw/qmIVBPPWdqg2vbxmURP6m/YRnd0b4d5/VXjGeZny2xmCqbafvrBTJGrqMslWl3Vdvvc6j8/uv3PadbLMwiyzCj/HlC+emS3KqS7R3SKijM1Z85rpYZikKcV9ucZNGFII55bkOiLzFRoOnMtrW2uYMFM+JxIT4AldSYSd4/MHSpSzXAzbOUYObYmyzGzr5Cv/HvNWoXGTtXamCZU7wNycvrU6o9KjTHEQ3kuNa9oFJjDFBSGTGUQiKz/uqHYVjnYwWrSwIqdIWJ+pKd32xu5y0kdXvHELxL9xtCdeacVThsrq0fM3SPOcdP+X6+VFbYzvvGzasAgN/91B9gPrNrtnvBzrvXtjZq9e69XHAQhui0+xgQ1UsXh3wl6hiWLjMfteyafOZTZsb6vd//ffb/wMZhywlrMsvezirkY0xZ/227zgv1FY6RDXImM64pcqfWBsRhne+y1iaKRlXRd3yzWUrIsHdMdDWKKsTTV/X0uZWKY+Mfx8eGGyOlxortN6GCX7qQ4nOAhEh3hyqXE/azgBYJT/zA9wMA/uH/9bMAgLNcJ6wixw4p6xNd5SFmhZAg21+fYygvrP0nywJ9KuClbl1ycuWKQucmI+fVKh7XDzwZ+tMUBbWvxWKByZTWHJxPD/YNqeomtv3Nge3vcEwlaM0VYejU7nrkEh2yEiDL7XWtd6a2X38dUxRVhYJ/LStFQ9wV4esbtFotzKb183Lr78kbO+h7b3ZqookmmmiiiSaaaKKJJpq4i+IuQarqSJDLmJcV+hQyS5gt6xnz1/OLKoriWK2mr0jl0A1PoWaVp3K6gt3JsZqJXFVn8T9b3Z/qoCslQdtWawXl8NEN5yUU1xEUxUko20nHCFRIkVQBHWKUzlxmu8ca8C5r4Tv0q0qJ5KzF9TZ94okn8N3f/d0AKqTqF3/xFwEAt169Ujt/7V+/XX0dMeOrjI6yOVX9N7llUnGjYtCcHlxhGGCfBngLGqw+SUWgPFcGjEgem0uZ2KIMqtpoqogd49R16iaDfl8LyrAyYOP/lCVyKJCye+XxrJay8H4EntdXlnoqiUXV933lRLWlb5TnZ8SSJDmmYOnXRt9zUZbIl0ukuZT76KuRGmIzKDrYIDIwHlm/FRp59aq9v3DWMucbNDjdJCfilatXMFi3cfLMM88AAB55xFDRF56zmv77mdXvd238BNt2HdWv0/kE6z3ycFI7tkvkY1172cZnwLHfJ0/j+lXzTnvg4g5KGlznaR25PzrgsROxkprllVv2/20avu7f3HN+brcPDDF4kMes85WynZArFRhEUXRszlOm8rR502WuS2WFl86IeU5OTeSM1fgdvsqTaqZzXqbO7FY+OaMDGptTqW5M8P8222ObaMzmNnlTaYpFKi6BbV/mq3722a94EKeq2+6gCOsqpT6f0Vf2WlUJExKnebBN+bNOWzwIoXvhia9BEKIkt0PIfYsVBgXRtaQtHpbUU5UFB0J6nUVRPSN+9ry10e5l6wfnL1h1QodZ8EG/Mj9WP2hx/zLuLbj0uEEz0Nt3DIW9csXGxzKbo79m57G+yfZlFUDUuvdyweaXucRwaH1oKQN63rc7nQUKIh9Y2vnd2bNx98rLhjacJ385Jjc2IW+w3eqgZH9a4xykm1hS1NVaVUnR6dU9M4MgQM77ne5DKe+5G/TamxCZb1Hprt0zrleZxe7+tMzIc0x0X7DvVh5AahGuhcLq3uOPDVdRpHmlVVdYBr2mltkMXVVVcHuJ4znSKJx999v+pCkAf+GXfwkA0OU5hukcGasJQB/ApZAiqoqG4mxqXPao6Lnedyc2CMUpqyM2vn+kQmu+VcVpnbevMK1rKBXnkypeugMioXPbbulx4dOCnpyqwiDq1+9HmGb0X9y07w7CBeAAACAASURBVG5wLbdOVH+R2TwsVVgdc8g2L5eBU/7UNF8I7oOuaf0c/fb4xoW3TiLq2KbPZ4AYy6U8VSkzWRLlFxfdMT/fyJ6aaKKJJppoookmmmiiiSaaeENxdyBVJRDkhcvgi28QqC41iZHzCVeqKgofORLaoMxAHMfHMh9+1sChENXh2HEoc5Kmx+pb5eHj87OOb7M4wZOlfuy5alSVIZIH0ooyy2mcBJfZZC2xHqa1rWWWuYxHJsduLzuqWG0zoFIDXCwmSInmrDFbtVUqE000gy7k6dzQoIqPE2C+YDaub5mN//y//DMAgM9++rMAgE996lMAgJ6H2Ol1thyiS3XDgPstluK3sDY4suzKshDqVffVyrMSSYtqPUo4EM2SApLLmThQSJm7ipsh/yeH2LCYXJt0tcTkKkilUe+BFVUf9jQ5yOfk9aiWd1UNKQhOVo7M4SFG4r6tKEcCQBQnCHQ+jm/G7FghLgr7GD1rgrhCiv0+7I+lezLKyGXyUvbrWJ2gvcSCqJHaZcgM4eaaZV1nU+ufF86bGuCr1w0p6vf7WFDV74kPm/qU+HpL+reM0nqmOuKON9apCjheYG1g/VVj36lzir/QIterw2tAZL/MC5TMSL/yIlWfHnjAjmNi5/TCFTseH5X+7BcNvV3lVS4WnwMAfMcfMRXpD37wg/adSP2FGVWiIMvlEq2YHET2R6lw+kqobg4smeGWqmbSAgr65FHZE9xGmovPqKoEjsnxdbZLH3lm/5st7DdXj4Y8ZhvzSpDukstUcizcObL2OXv2LFodziXkpSSJXf+D24Y2uOwy0YCM+0rISYjbEW7Qa8qN5bjuL5d5nnRtzh+9TsuhRjHbMBY/ikhVi2M7KKVCCbYls/XtLiIdI++bnYh8ESKziao2pAbIuW9ZLFFwzirY3kmLiOzWRQBAd2C/WRsYUio+VkIuVpkvXGp6rj4sz7Vb1i7XrhtSOk8NMVzftONdWwvQoZLcLaJZ21vGW+lmX1vG+G4Mn/st5DBE3yGD4sl223aNfp/3yR+87zIAICbvM5KPZQEw8Y6kXeePn8YbV5XCKo/bR5UVOfuheMWRVIvlnRgGju8kZUJ51gWx7lu6qdbRVKkQZll2jKtzkkIgUM0ZOp7FYoGjI4+76lUsaQ0kbuP7fviPAwD+1T8yxGpZzNHhmqXLQ3Tqb0s7HvnWLbQu69iaY9DfBMhvExI3kIch1zDa70mKvjpXXynQf9U5qDJAiJXaIc9z7F0zbu4sNdRl76rNiZceMKXIkoj8khUaMashgnGCkNeiR578zX07dlX7BPQ89Pnrro+FLaekLM63vAPfNkDqa4zVqgoAWMyXK9U4dS9Qnx/4etEgVU000UQTTTTRRBNNNNFEE28i7g6kCvUndZ9rZJwSfXbcQ2f1N1UGqMrA+EiVwkdqlJ31+TBhGLq/K4dsPuF6zti+OlpRFCiKOh/F9xTyUS5xFsIVHotTcfOQOP12Oa/X32a53gcug+l4Dl622G8XnVPlLRJhPLZM8mBgiNThoWWGtrasrnqd/JPB2D7f3rYMcDBP0erYfnsD1vUSRfnAB8wv6sMf/jCAKvPy9/7e3wNQZebjOMaSXLqQGVX5MbTb5E7N7Hxdxoo142q3LMtcHbufxfL9wvSqrFdRFC4r42fzVrNE2s/qe18NSdtb/d9xH7V69rooimOeUhVn5Xh/W93v6r50mUvX/3wVwPpvhXb8mxglgCLIETFzpyzlIFHWrcT6hvVl+XOo/lyhvi8elPrR3t6e69PKsqtvd+hjsk+0o7NrKNf40LKCa2u2zwsXd3HxsnFVlO0UJzG+adlIcZrE9XnnO99p+xoO3RwynfI7h3YcG+tU+yNPLJ/RH4nHvs4s+HB4gJs3jedy8aIhE+IgitPzjne8A0A1BgZrts9ut4dUnA5yKdTFTuvzPr9zsVig5SmE+d8pVEkgvkgohakAY16TmzcNkQtQeXgBwBqPtaCyVY/p6QHRwel07BQZc29OP3vWrtlLLxsntN2q30bdmA9KtJK6T5PjSRDNcVnnkc1bM869UVC6ua1P9b81eot1iNp32R+FRkuCLReqXVRz/Tr7ilRUW8qsl1KBqyPdZR4gIO9KPLf+oFs7ZvlkOe8r6Le6Fwc4HFob3t6zjLl8DK+8/AIAYIP8DaECnZ44Xh2nOtaj2t94bNcuXbwx35i7IcIwQLvddn1XY1dzyP7BTXSJEKhSQNn9BRUqv/p58+167D2PAwDWyZNZzieO0xvkJ99bjvsD1bnPYRjWlCfrx85MPd/7HPUgrKpq1J8i3qflp5i5tY/GktAoKlZG0alIgI9c+chBq9Vy5yHuosag7x+qvrtY2usjl4zrOn35RbQjO+9RYnNHN5TnFNcSrHRZdu21G9tcXeYReuSYy9vOeW5yDeHWad46zqkpx7HjtzlEkL/R/O/7iepz3X/G4zGO+Fk3tP9tkDMk9Gm50PWpj9VOq40BzysJbBtT8k8TfnfqrYHUllWVTODWLlonaupUl6o8WPG2hL9OlgaBqpFW/fMcqpkLmdXcXX9OeL1okKommmiiiSaaaKKJJppoook3EXcNUhUEgcuQ+KhPEAQrT/T1TL1QFb92WLFcLo8psPjZfMVpyn5Zlh1TRFPG5TR/rFVkwldZU32t3iuboW0p26J8XFEU7je+h5Neu7GytMxIOWZYcOyYfHTN9zTyEZvlEkipiDOfS5GPCjmst57NiG4RDWqxtjpudVa+Y9mTrS3Llrfa/I7n6fBjP/ZjAICvftUycz/3cz+H+dyOZTLZx2o4jwTyCLbPGGI2maZsu4oDt74+qJ2nO+90XtumX3/e7/ddtsjPpmlbOgefe7RaJ+57W/n9za+pXo3TPjvJ7+Ok70dR5HAncRYVyozJM8UdFyp07DRH+NdTwbxrIwCKKECm68dmPNgzRKfV7bh+MJ/beFQ76ZqLj/TYY48BqJCk7e1tvPiiqZhp3CojLe8f9aMv/P4XAADve897bb9EdvYPbrh+IsRkc9O4K1IO1P617RF9Y86e23LXpz+wzzLyknZ3bBttopQJbCzq+23YuOmGGS7t0B8otu/u37L9vfw8uQRUCpTXyvjQjnP7zHlsbtO3JRXH1E5fmWNf2SqM6nNRGIYOWdZ350T7NMam87x23iHbLl2WePWaXUdlJvf2bPye3THUTaGsr+amVUTpzBnzZXmRvISEmcsbN4w7JzRQ3DqHkhO5SqLA8b7kq1fxwIRgS/2NWdEVvxrd6zS3xJzjQT7UQmg4txUTqSukrIUIYUGuVKS20RyvOaDO63VzVBg6/rKPGBaQ0hvvV0d2XcRjVRveuL6PF5/7EgDgcM9QvS0itbu71i8X9MLZ3LJjX9IvLM9mmM1sPK2t2XFMJ0Ln78U5x6pt5o7LZNf7yhVrl24PWMrvzlXM8P5D7s4zX3kaAPDoo+YXNS9sTHfjErnu1byeIVUvk1OqbxSr482v1HH8cKlJnlLZEkXRiZUR9hn4f0IVgfifx1FojWtfCdO/x52mprwa/tqm8lIiMkOU6fHHbN79neefw4Kc5tmU3lVEmTXuAvHfNq3vFuSNxlGrQgDbUsQ7GV3zkavV+2jl5VRfjwnV9Ndn/vfa7TYCIoWzEfm9bXl52TjbHhjKnhF9KaPq3G4t6p56PsdqlI5r53AsghJwq4yTvTDf7vD37zwWo/q6rd1uYzKu8/Cr6qQ3xhu/Kx6qZPzrD4DVRagv6ewb9SrUWVdhVYVPhPTLDH2ocDVer3O8lnSwbqD6TANeg2XkTPTqJr2rC9nXk570DXuLlcnTl9L2F4f63N+He4AoI3dMCbVKZ3xoGYY20GQQWCznPBctuDYQtbPafqex/aZacIW1z3tsl4cffhgA8BM/8RN48QW7+fydv/N3AAA3b1kZidpUlywv7Jy6lH3Vg5SV/y1r/3OES++hV+2uySPLMve3Hkj9coqT+uzquZVleew7alO/nMG//qsPcn6p4mJxstjISYIAeal+fnK5px+rZtH+Tfm0m/S9EwHKoOX6ScAFjZpmPp+6hwV9x0lm9+pJEJX4PfTQQwDsejn5frbt9rY9vGyyLOLqNeu/7378m/je+rcWWxfOb7s23r3Uq+1ng8f1+ONWBiRjW4lRTEeH7rrrwevsWXvIGY9t4a8xkCT10uMOpXbb21vuQUM32Qd37Iash7u9V82odcgxuHvZyNDB5hZSJSrctFmfW/z5vOACvUS1GFE5zExmy5zT1Y/9OXc0s+/dOThyJr93blj5X7dbn2t7NPhUSduCQiUHB5WwxGRi89T2jp3X1WvXa/vTA9mgX19kOBnxuIUASkyJ1K2kS730W4viNtu6207c/UGLmh7l9zstGq5TyliCN8uqvtf2EHfR5oJ8zrk20INZwraLVM5evx55niMvNHeAbWR9WffWMRNsI5Yuvso+/MwzT1lb3jpEurDS1G99wvrq2fMsmcKc+7EHsohyzqw+RByEOGTZbb9ri9hNlsYOx5I+vpciQ14eYm3dHtTZHTBYU6l1iihWyRjvz5kMbFnCxQeRL3/eTMHf//73AwDaYQ/DIR9ANywR4tY2Pbv+YcBSLSbKsoJtSKGpElWJuR7mwPLPuYRPKK4S8jdhoD7cguS9Emm3lLqn8sHDJQTYp/RsherBwH9Ims2tX/V4DmUhUbD6PXD1gUThCzrpPqU5rVvSBFliKGGIC0pQq5RPoljsh62zm2wH3p/ZTO1ua+UhqS5cpvDL//w1QJZlx0AFlYzru7ofzUY2L710g8a+nMtmwxEKJhwmfKj6yKMPAgD6WZfHTmuNCS1oOA/NswB9lrsvmRxZ45rnJoVhkrI+/rVec9chL6WH46Tyy5XEbK0d3iZqQdXOnOdCll/SYFtzWqfbxuEhxapY1pxnShSkb2ifTflfE0000UQTTTTRRBNNNNHEm4i7AqkC7ImyMpFkpoJZhSiKXCZCUNxpROfjRP4qK+/DyqeV//nIwapQho8AnIRI+MfnI2Q+jOsfh867z6zlKgrll/1p28pqOCSDmxSyVGsTD13w5Uh1fMpItJIqE6v9aT8qi3Pmlku7Tp12j+0RYH2D5SpuGxSg6NQzHtrGSSWdly9bydNHP/pRAMAv/ML/BwD43U99km3GrNrCttFhVne1tNA30XNI1XxZ+38lm2/7393ddf3vC1/4As+rjlD5pRN+RioIgmNooi+/XyFUdeR0FanySwaPyd96ghmrIigRSeppVjcVVXfwkbMwqhDd08x+71WkKghjtLubWPDar7FcZk6zwrBVulKVnbOWXVabDikyISRBZWCSTR8MBnj00UcBVGNLyFVC88UzWywBVnkqu8b5i4YG3bxxw21XY/sMBRLOEfV69tlnAVR9T4jSmY1tvPzyywCAi7uGXjlRlnN11Fpoi1AhMYg77babRIQcb6wRMelwfzQQVglTOzBEZ5ku0JFxtuwCwvq4qAR/iJAI+SyqzLU/h+v9/r4hcznLUQL2+RHnjTv7RzigNLqm4T7RJJUcp0uZYFKgg8jdhQtmbHt4eIhXXzU08XOfM0n587tWOii0q9q2tc+qPLS9hkCksjY7b81tlSyxtfv2JkU+eA17nRZ6lDvuEL1UKWMqyQCKa6jkKOJcn1HWuN0foNO1ayQ7DQlVuHtsWjdTVwnreDzGcGjHpr6rvqLzz2iGukitLfcPrP93OJaiPMVHPvQua6NNO4fx0q5Z6AzPWWpDCwK15Ww+x8MPvoPHRsPmkc1Xg74hBvdSlGWAIk8wnVh7D/o2hjss2TwcHiCVpUnEsqPIvis9LY3ha9eEPltfffiBB90cnqpyQf0LohKo0kRZeFqxxLr3zhCG7D9unaS+Ujd71Rqs3db7uLIckXF9oPuUGkDro3ppVXvl/uXf94+VnAf1uWt1HeevB1erLFa3qdeYeELKz7/1j3w7nv+8SdfPZxQqoDXC2sDGULdviGnuVTqdFK+3Hj1JwMpvB40F3dOvXTNkasR7imxajvat7Hqj18N1lq+f36JVhJD/Tr1NtdZbFcDS9VXZ8SbnxHhk419WGpoPT6PRnPzZH64NQiVHzz4kcg3Hza2bI3BqdJ9pDV28dpHYsWiQqiaaaKKJJppoookmmmiiiTcRdwVSFYYh2u32sez/6hNwhbLYez9D7lAg1sbLsDDqBsd4WKqv1DOl5B1jkrTDQvX9rKksS2fSqNyEe/72hAt8AnYURQj17VJ7te1PRtPabx1pjgTJ1XP3xSN8oYAYMogjWXhRSYjmeZ0cLyNlty1mQuc8OZlr6nhaUehk0OnlhvGsLl3quAFDSpsungcAbB8cOMK3pIiVUe8ye5FOLfMSJRK3IHclrmSAp7etRvh/+Z//mh0rM+s52/v6FcsqS8qzR2PUH/yBHwBgsu3igijT6vpFUjc73qEhqDJGg8EAzz9v56NzEWLlTF09lEuh7M9iOXdGqE7GlPuVNDQyIma8hlDNetJyRP7KMJrb9yTdhXiEUZ2Ym7RijGn8OhpZ5teXlHcoG+X4A42DlbF2GmJ1z0UQIEhaKJd2HqM5EVfyGCbjheMbqT/cvGEZu8sPGvpTCLliv7nAzHG/t4aQg+zCtvWXi+x7MmUMeKFu3LL+sz6wevnrRH3uv//+ikNFuwJlLoV+7e7uAqjGguae27dv4/KD99n5CEEWmiNpd1YFXLzfvufQByInZ3c2XT/MOKemMkPUXEx0QxLfyylNcYNzKAP7jUZDf2nnkDODvWzT+oLpwAV5ApJHX05GmJM7MyJ/ckThgiy3/e6RS+YI/cycb7aWWMR27Hsj295Lr5pwyN6eZXXf+x7jo/TIjwtLR3Kxbeycc0T0o7ltf3Rkx1iIECNTTqIPESXOxWsYFSlGh9Ymw6H9dnho7Z+x36UBs9Lkdt1Hg9eLFy9gZ8dQnrMb5FJwDizIi1tOyRd4wKT3UyKJA/Kk+lEHGeeYBfvB3iuGcgiFe/lZaxfJ54ufF0URwkiiHXYtO13xZMn14jx+dsdeH3jgYX5OOeW4RL/P+ckZKFMGmhUF4slUYjnsn+0uRkPx0KyvtvjbpFcXA7onogyQL2N0KH2uMaz7VVB20G5JwIr9KZQxOW0fOGZj3mtfedk4jRfOXkCbyIN4yuqbTthrKf44ESwJSvH+FAYtzKZCisRvqyNU2m9F3CfqErYr25ZcY4NoEsQlEl/4/2fvzWItS8/rsLWHM99zp6pb89TzQFKkSEtNK3I0xJIiyUr8kgB5chwlRoAEfkgeFOfFyFvgPAQBAsT2g+EYjqMkBhzaMIHEpCwpEEWTMgc1x2Z1d3V1dY13PvPZUx6+tf6993/uJbu72mSVvT+gcbvuPWcP//6n/a1vrWXHktVAdR3ReRxqrqbTvjDTvrCO9mjeq4aPlGju1Pp8wHV7wX45TVPMec1tLr8JzZfXzti8nuXc67RWkRk/Tqtg8a9Zz7TdbrvP+KJkPtq1d2DrzZJCJTJff/fNdxFyLzUk/0toIwswECX1CheNu3a7jTgT/82u+dwZO0bxjs0VX/rSl2rXc5olT/V+fcuXn3RMp9w38lmGC74nhFHFrsm3dPpg52iQqiaaaKKJJppoookmmmiiiceIJwKp8tX//J81OWrUVYpOM/BVTW0169GRalJW56XIsC0OyvpSoESlEAYoFcrr9bQ+x8rnwcRx7K75NOU0v662lDQtsxu+QqEyHbrPGevblfnoiJ+DUkbXXRvqSJSPep1W01z97GmGfGoooTzHx8cr9c1CrJzxmjNstmuXZG86EPoSI46ZQd607PznPvc5AGUmvlTDk5SolJK+yWO38Ru/8RsAgF/91V8FUJqlLlmbfImZfx8xzbIMl2mAKq6MZJXFQdBnlfnxuU9VBUv1oYy8k8Lj3DmelOSY4xYK5j+c7KrUw7y0yGnmjrPZ7EQU1b/P6t+rxzytfvwnLZn6OBEgcnNBIXPpUGMicWNJWWWF2k1jrNu2Z665JkmXWC6IvKTW5s9cNTRBqNfh8aj27+NJiYoC1r/0PGTu+9ZbZph64dy52nd9s8jZbFbKjk/rpt2Sjp8S7cjTesb0uesmD3/3zrs44nlvXDc0K+eMmBLBWlJK/DM/9arda1Zmxx1vk8efwrKrAVGUdM4xRg7GnNc5OjCkZHq0h9mIKM8j4xKsDe27vY6NkxtXz7GtLOt8h2pYg26Mu48MVRwzca/7kwrj66+b1PfWliGJn/mUqTAKdSyiFgL2hcuX7dn90R/9EYCyncV5S3KZP1sbH49oPPxoD8fknAopcAa5uR17SbXUhMjN+MgQ8Zvfv4XjPWu7n/uMGUlH4qUQSdA8fnBkz7LFhzvlPLJ/vI8337sNAPje90yRT/wojflL560Pnd2xTP6Vq9Yew+GwXB/TOsokg2Rdu9AX/b3TlTT2Aq021cU83qrPBfXnl8lk4jL2fqXJEQ2Fn6ogpzYjutCmKau4bJ1uVFqdsFIjBOW33V6GdgdEpZR1f/hgF5eJOGv9FR9WqoAyv263BvwcFeYq+4g4ktw35zXyonU9pTm8+EI6ZcutZWH4w59r6vhh4keVSFXVwgQA5ovcXRtQ7tO0xlX3dj4idJptiUOI1sjpJFI63V3ixqs2j73zbRsrMyJAC843mv+6PH/JQYpXUCY9V5/77KsHVznQPrfc52HpWKo44eNBRMXjP/nj/w+vvWLc8zXupdbIh9c+Yb7kdz1O6/r6OkZUxJvt27zba9F8m3xY/zu+Ymhc2Yw4RelkdS//k4m6XsJiXq8wi6LI2V2UfejDnenp3RE10UQTTTTRRBNNNNFEE008AfHEIFVVg11fhS8Mw/KNPqtnPvyMl1/vmWaFe2tWZqOs86xzSlw+RtkVvqrGcYwgqqNXUVCvc/WRiqo6X5adnOWv3n/1vA5RiFY/49fXOlSP2aPxgj4MzGYVRVEqzkj5Katnc3wekL4bloXSK35gvqeCMjAJstrfj46OnHmpMrxCqjaGxrOQ/8JwfZPnpUIP1X42NzeBnmVe/tJv/ycA4FRuxG0SR0AxViZirrrkOf7O3/vfAAC/+w//EYDyWf35X/lFAMDv/M7v1K6nVPPKHF/ml37plwAAV64Y9+Ef/IN/AACOcyWlNl+dsYb2CZFSX1lpS9X9chwURcnHUj+I1M9rt+2eqTgy4kgAQJLWEVLHw/J4cSf5uPkI5U8u4/QRRWHPVXNBizX+CTOoy+XSZQwdt9CpX9m9C/149MD6Ypd8gdF4hLXLddQziusIor77cNf67eaZ87W/TyYT1/7Kel4iWrrPZ6pnK66gUJjlcukQF4WOcfmSKfRpTOo7it/7wu/ZMYdDrJM7c7hn2e61NesDa0QmQD+PlHX8RceQmv39fWySj7Sk19Fc/i2FfaYDG2PTqV1ncmxtOB/bucJsggh23AvnDBFaLKxP9ziPzYi2XVhndpi8rbduv4doza59co8+VXy+6+SnKest5OTNt28BAJ57wdDr2SJBJCNmZvvXPA+gWEqCNFZejuyY9+7bPY0nCeDagUqbnAYymm+2iBikC/IYqfyZJSn+9GumRvbW974FAPjEq8axepZ8uSOO8QWB1GKP/E6al85GYyTUXO33rA+/+JopeJVZ8LoaYVlhkSLg9mDQYkqcc3u7S/W3nngxnOtknsqqiXYUIg46tftzqrTtuhffSWqqp/nhdNc28FRGUCAI7Z4SrbkcDwgK5602nQg9ououFTS3tw1V1NwuJb2vfvVfokMvp47QdSomdjeo6Eqe34LrhdYNca6iMHTrbkS0qd2uV12IQ5UQGQmV7C8iFKibfEv9z/HiibImhKpaLSksl4rMVaXe6k/Nw/JpEz+r6ivqe22epg6tn1LWnJLXfvHSJRzt2vg5ptpdRl72iDzYjtoqIoLHubpqXOx8j/gcfF5U6fdZryTpdDorFUNab3zkSucQ6nT8yNDoT33iVZy/YH1Ge7gB+1A6O64dU+uB2m1vbw8dcjIvnD/P3xlidY1r2f2379Su3dcT+GEVLU9aOL9A9stW3HLIexn16oL3Gw1S1UQTTTTRRBNNNNFEE0008RjxRCBV0sgvuUR1jkeWZSV6JcUZj/dTzVpUjxGEQYUrQiWUrI6EOSQnrGdIskr2rNBLOb/T6XRrn9X1+co17Xbbfdb3MPI9hfRvZROyvMzi6Bp9pRvHj2nVMzX6uVwuV7Ikg16/9l0fGdQ96BjrfdVhl+G3s/MAK+qqN9WMo+5BHJWcSkUTKn9JKci1bVhmRMJ2XZnmv/qv/yoA4O///b8PAPhbf+tvASh5DvO0jv4FQeAyz8dUPooo+/hPPvePAQB/8pWvAgBu3LgBAPjt3/5tAMDLL7+MYEDPCqJYV69atvhV1mHLq8fnJTm/qiAvUVTxApOTuUyu7YiGFmHk+FU+qinlQGWzpOLl+4kVReGUl05TJlK8H2U/34fjaYsgDNHp9DCf6RnYPW9tGnIzmU9WVY48ZNtX8BKyWSDF4SEzg0RV4qiOcilTeO2a1cAvqRYozstisVgZtxpH6i/KhurvQmuHw6FDTMUH0nFDci4GRBkO9nZrx5iODWXZ2Rpie9Pua2Pd+vySHkO6/7VhPWObMvsXFQHmUzv/dG5Z1ZDeRQV5IYHUyMZ2/iKxn52Y89dyjHXOg7u7e7x2+udxbBdEPw7oWxUoW50BkwO71uGAPCc+j6Mjyzo/+8zzbFM73803v2P30rV7Xd8+gwHRHc2tG1uGCIpHmRWaN9n+9wxt2+e5u90NhPxMt60KA6mjWbsEHHvDNbvXFrPjzz33LNrkeoo7J4+pd/fv8t/qn3GtPUBUsL/ecWh4GNq1CxmIqOwnvsxiwTlBvKhO22VxhTrEPH9ChUyXqWdGV35V8i+KwgijY+t3Hac2ZtnwPK/3ZT/a7bbrZxorbn3ievE0RRBwzSyoaMspdji09WqZzB0C0esTARXfiXziEjmelAAAIABJREFUMbl66kNBKA5uim9842sAgLUtqwLZPk8fLCJhQgbDUIqOdgxxlQGg09FnOL6g83j34ufig9TxxqWgBsf5rXtLRZE41/VnGobhCi9dHK8il8ebUK76fBgEQclHc/xtVd9wixvYd+MOuYscKllq5zzYnSEv7Luffu3nAADf/JYhxH1yJaOwPt/5/OVqnMZPd3tLr0pksVis7PH8Khet25tn7JndpV/im983v8K/+DOfxfq6jfeC8PWkoBp2IdOlus+p9idra2uI+9ZWbz7ivm/H1o4zx3Y9m4XtLeaZuPmoHSsIExT0P5tN7TvzWb0q6sP5Vqm/1T0d80zIKlUzs8n7PqKrFNDalc0dyqq9gN4XPqjS8dO5I2qiiSaaaKKJJppoookmmnhC4olAqvI8x2KxWEFyqj5VfkZcWUKp8jmfqqyO1ABlRrdU3aur2OTMhOSBfU5Zj7hV8peUxVHtsDLBetNV3befkbBrqmfl5LfgUAdm+gp5YUmNMCo5PQpfgUVv3FJXCio8MABox62S3yOFHunxJ/XrcjXNPEavJ/WlJWazuq+Fj4TENLDqgC7gbOM0yRHEpRIhAIzohzH2lMnCfcv0zpgJ3aZnyaVLlzBs0+Wc2avB0DJx//l/+p8BAH7tz/8mAOCv//X/DgDwnTe/zWOvs33mLmuWExVYUl0o6dmxZ3um6Pcur+MrXzfn8IvnzuPPvfZnAQCv/fxnAQDPPPMMAODnP/saAODRPcsei1slj6GQmaF21HUZqKKoI4NgGy6UeWM219WBI0DA1hNfwal4JfVMkPysorjOl4uieEVBsooE22XU/czccwsLQP1Zqo/yfOvWPdWelgiDAJ12DzH9jOYTcfDk1RI5/o1ThOO4ESooxbqz9KK6+67VnF+5cg1dcUY4t4BZUPWLhGNxn+hShlXUUOfX+aQ4eZ6cRHmkaX4TgiIFKqDsJ3qmxwf2GdXct5n2E3r62s/+tF3fYoKtLfZDqmDFHRvbZ8+f43fZZOyTBZGk0WSGHhGgw2Nru67QvMiOtc5+ms3s/pOCKmVEodJZgoN9QyQODg1d2trk3CK/GipLJSObL/Ymdq4z65dwPDI/pgHn5xH7q5BsX43qmecMuVpwTrz34AFi+sG4rCbn3h7VyYSgjOmFNSYXJtI4ChbOi25jw76zvkF1vXV6SvHZDQbisVqbptkSHc1XzOrOcmXbySOOuW6kVPTi3CjecVYkCJk3XeuTrzMlx0Nrjrx5OK9r3UqSBB369EhJTkptrZb4lER5cyEa5IJQeTVYJoiJpqxxLbl/3/r/YL0+x2nNrWb2T/IfAoBhb/vE3z/JEUURNjaGmEykCkfEiDyOk5TsyqoEKtRR7a/TFfotj6MllhzfzzzzHAAgQTnv2/HrqnMa/2rvMAxXqiB81cX3E35W/yTPUZ2veo4fdiwf7VFfqVbaqM1Khdv6seRFWqjig3O5fNKCIEKHinkt8pXPnr/kjg8AnajeDtU9n/ODbAnt++F4hY9CRVG0cgyfuySPzL1Dm9sKKoZeuWjjIWynCLmHbRFlEc83zetVD1rTqvewf2xzsNadg2Puz6jmWSr6WR92UrKKInQKekIVg0DtUedpn9AiKDGeOjIlpPzCxQ3eg13H4YFdh7z/Hrdo5qOqvmmQqiaaaKKJJppoookmmmiiiceIJwKpAuoZi6rLNGDZDiFDelv+Yd+vRp7nLgvkc6h8rs9yUVf7OinLomtKUOdylTXK9e/yKmrX5CMFpzlUp1TKieO4Vntb/ayfcfUzQEVRrCgH6hi+Qp3uQfeorEZVXcfPHglV1DFTZqvFQ0AYoEjrvg5OuZCZV2VNfI5ZVcmn27bjnTljWfoJuTBrrEl/5lnjpvzu75oa3ze+9XUAwN/4G38DAHDr1m1XI6tyXscnIA8sJa9A2SywtvzOnbv4h3dMMfAPv2yu4ltbWwBK5TWhBuqnQiTG9KlJ8mxFZVGh5+L6Vk41NY8vWI1SIelkPw7fryPLsh9ZG+yPoViJuQAIiK61mflyfmieKuTTEmleYH8+x+GR1YkPIO4P/T2SHg6opjZj1m02s+c0pErXkuiwuFXXnrkOABhPjoHYMvMbRAgm5LuMWMwvbt7WepfH9tSYRiM3bwltUuwy23+dfCyNn+kxuYkXIuw9oOojx9jZbeuvxYb9PJjYXNchYrRBZbsRs5WTWYokt79JrfNwbu1x95GhSzn5UfmSY578jNFkiSKyen+0rc9fW7O/nT9rxxzvfR8AkI1n/G6ppAUAx6MRYvK+jneJwJGDGPCe+kQDu+vWxg9vWwYXywP0iPxobCfMPi/Zzv22tekO/WrOP/MxuxcuiTfffhtv3nrH2mjAZ8m2Wx9ae8xn1sazkSGUXfJFrtwwJO/8hW03Ttd5jcvE2l3eToqU6DycGmWIBREozTWhQ/btu2OiD11y29Rfem3xWOLSFydKaz8Ha9Y+M/YZN/ckVAtsxwiYIW7xHsaTY14753EihZvrZTUAAARJqbzb5n0ejuwZbp6xz1Y5t8DqvDWfz0s0ldemedL3jXsaIs8zTCYjKFHf7hAhDkrPSF8xTv9O2e+FQMctcWyIyhRLiMr0xS/+cwDAi69afz5HJNKvqOlSqdPfv1Q/6+8PToswDFfWG38f4u/bTkK/fEVhH5k6TdGvilQ5lCGQuiI/XIjTKoTW+qpU4DbWtxxn9NI1q0JprxsyNJvXPUGdV2RlPVW7qurGX+t9XpTz3vJ8Vqv3oO+oUkFzydaW7XkO7/Had+g1d24HbXpqsbAKyYzfjevrjJ63+tRiscDMoaV2/o01+87Z9bp+QJRzHxXWFRWDIEBMH8Iw0PwW8Xz1PfhKBKg8K3KXCcjvnLd5YH1DasnWLiMqN5Zq3h+M+1SN6j65+rsPEw1S1UQTTTTRRBNNNNFEE0008RjxxCBVVVdqx4/iW3yaphVVl5OzJn7Gq1pj66M5vnKd//asf0/5lt9uxy4rVEC+D6vZimpUs/6qRV/hhXmZoBVFw7z8+2nIlB9OQYhZvizL3HGdqmBSz6Kc5k9U1rmXv1P2zD+/y8QQQUp57UUAtHt1rpo4B8owSIFLylyqOxcKlCQZds7Im4TtwO8GQvdiZZHox/KC1Zb/t3/NvKfeeOMmPvd//xMAwDvvmK9D6dVCL5lMmT9l9+z3s8kUIELzzruWpb/51i0AJUdD9+Z7f4VMt+SLuctCr7RZovp6u295olXb2H/uDtmI6j5tPqeu+iz95+z/XOlblLzsdlouE6c+5HMwnraIQmC9AxzTW2ed9eo/9QnL8Mb5FI8emaKjFMzuvSsfE1OjU/+cTu1ZZJkhCovlEhcvmreH/Hn0vMQ13D80JEf9RGiQkM5ut+u+o1p6oZ89Iie7+3Ydel6Xrpha0927d9DjmFtfs3r7Y55vyeMrQ35APtTBA2Z6KzzSg4NdXpMhA0lKFIPZzfmkrnSajOzz8zkw2DRE4rWf+Rm7Rs7lowO7h70HxkEc7xnKtk0fuDIb3ym5a0Tsd8kZ6zELHWyRW0M0RLytWw8fYJ3IXBhYH17r93ht9l2hHduDs+5+AWBBpGZnZwc36V11SDU/8QSG9O9aJjZfffJT5h+1zTlKKlS9fgtTtlFBeLz0AKzPn07xrMJrLNGjOl9W/aJFRVTNPRqj+nyVWyfEXPPVwYH1h7Ob1k5q6+pcID89IVA+XyTL6n3b95qKoshlxP25x6FqFT/F6v0HQeDmLj0rXftJamtPeuR5juls7ObrNtUgC5Tztc8r0/33+uLJ2rHm5Bq3WWmxXMwxYMVGRN7jPsfV+Ys2rqRoprX27l3jZ25ynHY6ndp+Cyifjb/nOgll8fdBvteUwufxVv+uZ+8jUz7HS+dVfz+5esnflxFB476t32elDb2egMQpU47occmmQsx9gN//q+f3+ch++Mq+ai+/egco292vpNJ9t1gFkfI6X7z0rB273UdQcJ3hZ9dZEbF/YHMV6eQrFVXL5RJ9+oYWnG9nUyqo9uwapUJ6cPc2r6uORuZ54Iz42uJdFnXU7f3tF8Tfth/nL9o6u7874THI8YrEOaWfWjHD+w2/TavvH35f/qCenD/ypSoIgr8D4C8AeFgUxcf5u20A/weAGwBuAfgPi6I4COzs/xOA3wAwBfAfF0XxtR91jjAM0Wq1VkrJFFVozn84TuTAK22ril34jeJvPF35XVCf+PUCkWXJyvm1SPqGdYqqgZvkPXWMk4Q4qud1L1ecy9I0XYHR/XbQAK++TFXPWW0bVqmsLGT+v3WdeV7+TouvPym6CTAtX6YA20SmRR36jlVWGNS7X5LUZVa1MBwdjvFo0yYSCUQkPP+MJZsy5gxCwuuEu19+6QUAtln+i//ebwEADkhA/9KXvgwA+Kef/zwA4Pvft5Ikf8B1un1nxCsf55AvcUeU9/Xb2x+YVp5RfzEu+O/Ae9mWmWa1bNM/ruu7Qf0FzJX7eCWf1RLS04jI/kLY65R9y+8jRa6X55NLGh8nfhxzDvIU0XQX587aZuSXf+3XAACPaCp9eHyAhcQ4WEtx44YtKnrmknQNWfamEovuYA1Lvii7F3O+XM25UKqkS+0p6fEHj+zFpL+2tmL+qH9LTEGbZglU6GUrikNMuSCO+ULY8kjFmicSDsHtLduMRb3SfPjg0EojXRnSsV3ruM0SNr5cPPuijbEBCfStaA19mu/GfHmbz23MzY7tRXA2HtXu6YClHCMK4hweHro+p5epd47s2XzyJTPoTdp2D49Ysrhx1kwrH373bVzkC2ZMkYkeX7LeeOMWAODGVSOhByxXfu89e4G+cv0GAKDf6uLCBduQ7u3ZYr6xxRdVlqG88ILZKaRLbS6ZlKHRcxCmrsxOJeBtlizqBVWhUmS9bIWVtcFP/pUJRo5f7+caX6jnsylabMMWXzyno+PaZ/b54ixyuq6jKAp3Xq2x2sxrfuieIlJTfTFSKFmg7/olXorqOqvjuP53Svn048aPY76R8I1eQCfTulBAGLSx5LjGUkJR1v8mY77sZJwHOkr6MQkadLBI5ABt4/4rf/Q6AGB6+Gf40/5+/sxZnsLa+fzztiE/e/asezYXLphBuMreMiaUNWf4litxuxTDUh2iv175ti3VsnT9e9UuRhYJdr4kUYJCYhTn3TH10liuU/X5TiIqbg3OJAZhx5wtjtDpMFlEW4lBv55APs2CprrHPC3pvbJue2t+HMcr+0P9HFAYR8mFkAneN772FQDAn/mtPw8A6LY6CPjM+hTEcYJWsnFJtafLa8cejUYI2c+WpD3kpEvMuMe4smNt9v3b1g9nLKnsxgIaIiddn2TWhpI799thJYrKXjC0MfLSKzZHJ6msGmys3LldHzuTqaTU33/h3YoZ9KCFOWX+l5qaC/XV933Y930VfxfAv+v97r8B8MWiKF4A8EX+GwB+HcAL/O+vAPhfPtjlNNFEE000c04TTTTxY4u/i2a+aaKJJj6C+JFIVVEUfxgEwQ3v1/8+gF/k//+vAH4fwO/w93+vsNfRLwdBsBkEwcWiKO79sHPkeY4kSVbKDKqZKf/N3i9R8zMf1c9XMwrV4/piC31mYpQZlq5BURSrRqkemuBnJqrmr63WyQZwfnnHCtydlvCvj8Tp3z3vmp0h4wkCBfqpzIIPAevN3zefW1vruWfjoxxVMYvqMSVtH8cxcq+NnAAF6r/3r0e/n0wmyJilkkHwFV7HaGKZufOFnimzSpT1XcroucidvOczzEafYenL9pZldf7ZP/tnAIA7d4x4/nDXyr2WaVKWx2R1tMn10aD+jH3kKowraJPKXHFKZHUYOk3TldJQ1w+DemnGaYTgav/0JVt90rgrc2CGsBVHiKJ6ls5/Zh9l/FjmnDTB5OAeXvnsLwAoBQ3On2f5TGcLOX8XdC3blswNERnynh8+MNTleGx9Y/fQMmjL5RJ7+/b/Eqp4/jkrRw0p27vLv7/zjokh/PRPm5T5ghL5+3fu4NKluqSvX7q1x59CrN64eRMA0ApKO4ZuW0IJhqY9fGSZy9u37bzPXb/Gc7BdEpXnFA5lky3BjOjKhGXRZ9csky4j4Y0zNAlPYyelnRHd0JxCjjFmPM+gb/f0la9asl9Z8uFwiPnCPvPCC4aExYVl1XsUwSnadk+37t8CABzNrL92B2sIeKKYKPm1c1YqmLF9u5rPaauwRwPhAdsJUYxr1w3tOrszZRtRyIdIQZ5Ryrznj42yPIp+uU7aWkIVKiGUSbSeoca5tZePTNXHXofrisx3exSQUEY7jmNMxvb/TkKby2K/RyJ5oedNk/LKXK3zau6PYq883cs6+1n4NE3d2qa+q37gE/QdCsv1rVr+qmy6f56PKn5ce5zZbLbSZlon5osFUvbZLa5Hy4WEmkrBJgBotayvzFh23Io2kRChaHft+Neu2dwxm1i/XmMJ19GBld3GRGFufvdPAAC3W128/NIn7Bi5KnZYwUNT2JzlJyVCwDV5PEHcrq8pVZEp4PRnVt0T+GJcy6XQTa6h6ryojhEdW+ug9oxepYhX2tVhmaSQ2SiKKnuYOg3CF6hYMSmuoEyKallZ9bP6vS9OFQTByr5H/d6vKNF9a32o7g02iDhrD6NjqoRcpstvv/127djdbhdzQjQyrC8mo9pnTquscsjdY1EBqpLqFo8e2lo13KAtwISlilwXAtmQZBJ6+/Bnj6IIeoQ6jmT4P2h82Ms4r0mEP8/x95cBvFv53B3+biWCIPgrQRD8SRAEf3KaH0UTTTTRBKOZc5poookfV3yk8810Nj/pI0000cS/ZvFRp5lPSr6fWERZFMXfBvC3AWBjY6NIkmQl03USaTUI6wiAMn+KUuKZqFDYW+GSRJ6Jm7Lw09nYuwtlCkv521L+vH4/PjJRzVD4jSIC8NJDnTJmFXyyYxiW9cYlSbduCNgmadmv+wVCd38ug+hMluuE1LkyJYToOj3JbU5XMj0+cuKQEMlsVvhDy7RErYCSbyUSeUliJm8sUCaU8rqLERYLy+jMl0awnbE9tkVIZ3vMR5aJ2dk24v9Q5MskRa9L004akvZYm/wrv/qLAIBf/81fsc/yXsUDOD4+dqa+f/zHXwUA3L5tZM1vf/vb7jPV70i+3W3eiwxbFDYYjSwDpPAJwqkkRWMRlMNSht4zhJRBtS/L70u3drtdkO+8kjX069xLxLDLc7TKDJ9nBPij5HZ/DPGh5pyt7c2i1R1g+9xFHsXa601mbtv9LZw9Y3/rkLvz3j1DgvpdynL3KG1Lzo/MeZM0dO0zJqrzLfYTjW1xqobMLL7FzKHIwMvlzPULZTOVfXxA3pcyusponjtn+75Hd9915sNRUK/Hf++RoVsLCsrMmB1/564dU9LqaZq6Z763a+fNYHPNWt+OmSysHxdzmzfnS2ZfowES8kNS2TewT3cH1mb9Lbu3+w/sGAcUqXn51Y8DMORdmdiCcuPFgrK8PNacZruS733voYnIhHEbMbPs57eJUBFl23toPLGPU3I6XRCN4aQ0pPT5eDbDiChPu0UOLLPaMh/WHOcqHmja3qcoRp4FjvfUojBBmzyRwyN7Dq2WBF8kQmHzx2AwQFGcjE47wjrRr4Io0/6uPUNlpafTKbYpROCT/CcjmwPjE+wzAM1R9WqIxVJrbf16fD5JdU1woian2Jr44QtXVK9d8bjmnI8ZH2q+uXLpQrG+vr7Cl3GVNd0W2kKLxXfhOJsvxKVa44HJueraejKftpwhcFFY/7l8xRDfd962dWt92+aVFis4Uhp69/U88jne/cH3AAA35/az37O+g7X6nubZZw0x1jp25fxVHPH/1zYpmEE0WX3U5yH5+4Zer7eyDh4eGlKhubLTobR3zD5Cy4fZbIZuj3u8or4OOmEMD3ZI9U9ygFqt0CGFg4Hdt8RdfARNfbTKPT9NqMLnvvv3X5oVl5Us+oxvcaO2+spXjEs14F5XVTTbO9sIyPXf5rynY2j+75AffPny5drfAWBvSmTKE4hJFvXKJX/8Vcf/h1QhR812qBCn3uaMnR271iBX5c4hz8c9cUyp9bzOU/0g0el03LvENPHv84PtcT7s7PQgCIKLAMCfD/n7OwCuVj53BcDdD3mOJppooglFM+c00UQTP65o5psmmmjiA8eHRar+MYC/BOC/58/PVX7/XwZB8LsAXgNw9KNqjYE6ZwhYrSGvqv/JcNApIcV1FSFlC4VYVVWMFKcpkPicKz/bf1L4WUS/zjTP8xX1plU0CbXfnyS1Xq+1L69JmUCdQ9meKmLm852UNZSqkjIdfrbF3VOWVtA+IVVCRPSMiEaRWzRPSj6Yq5su6rW3khIvinqm00m/V3hbrn7WQ5GkliXFPGX61ZvKbFKMNKkrALkaYWaE57OTJTnX19fxsz/7swCAT37SuC97e8an+fKXTUFQ2SOhFUIVlM2bLxdOEltKW76pn+MwULpZqstFnjmOikuUsv1lxLkiwytuSKUdOq16ktXnxflZtGq/9/vsSdzFf8Xxkc45QAgEPbTadq93bn8XQGkCXHQDJLBsfkHp6CEVlQqqEa1JXp7cvLPXrgMAfvCt29jctLE1odpdtrTzbPQtu+ybJqvND8m1OnfuvDOU9k2A71CO/IUbljHeoGrVvZu37FxhjgtnLVM5YdlRxPPuE1VTtvkOjXU1TvYnj9z1lfMF5xRme3fOWTuMpzbmv/XdNwAAnx181j4XLRCy68zIhQxlccEqqH7PrufhA0P/XqIFwnvvGter1Wphn/YIG0OaABP1e/6FlwAAdx/YeNo6Qxn2t8k929rGYJ3cOJrOPnfZUK8XX3zZzk8kb8J7aLH99x/Z+M07MUKK28n6oeA81iYvTnOxm5OJZAlZCMIAMRsi4s8l+0G/a30myyWXLt6GlDg7WDjpbMlw1yXTp/N6SVmXa4EqA4ogcNcs1UmfN+uvCVW+b0RuyXhyVPusUPh2p84Nlgm1/r1cJCucEsWCHcEhWeR6OFRgvnSIgELzkebNf8Xxkc43WZbh6OjItYdvIBvGeTmnam116r8ej5aZ/M1Na5/+WubkpOMWERCiKm0qNwaqZOFj6PbUl0oeT0pVvTyy/jUmpym7X1f/+8MfGOqu+Wk4uIjrLxvv8eJ1e988e8GU+da6VBn1FI/VD4WyL5dL13/0GT1n9RGpAbaIUHXaMjSOEEbWdil5jkHuIaKBxwV3JuM2Px8cHODieZsTdR1ap30ula6vyjXy+fCnmSArfK5zlmUr+y/t6XQ96v+vvmqqo9/9wpu1cxwfHyMmd052H3pGTu2VlhH37t2r/T7Pc7TX+vU2ot3GgM/QN5CeJqcjOM4uptDe+0dI6AWo4L2q3CL/taPnIPVHvQOIm5/Wvvdho6zgeTxqwPuRVP/fYYTNs0EQ3AHw12ETzf8ZBMFvA7gN4D/gxz8Pkxq9CZMb/cuPdXVNNNHEv3HRzDlNNNHEjyua+aaJJpr4qOL9qP/9R6f86d854bMFgP/ig15EURTIsqymmAeUb8aLxaLC81AmQJlz8N/KIgrRUM1usYIeKar1rNXws/5VpKz8efq92HWWPKKTas3tWuvqf0KOfMQsz/OVelvnb+N52Pj3UhTFCnrlZ09OQteqnwsRr5i/+r5I7tlJWVGcm6BU+Ut1PmY4OpCiYT1renR0XDtmr9dzPDTHDTi08x7S1PToyDJyeqYLchPk1zMYDLGxvsVrXPBvlpnpMCOl0L0qQxYEgVOiUu361WvGt9k59+sAgM/+WfMD0efkefXuu8Zp/uLv/SFuUp3NR0D9rNb2BpW6KgjWaYZ0BeoZwFJByD5X7RenZc9OMwOufs73sPL78EcZP445J4pCrK0PHeI5mxA1pAJSMTpCv0fuEOvukat9xJPjeGZm64AKcp/+9Kt49MCQyk5sGcM77xiq0t6irx1RACGZGqPqL+F7pSGw42exxv+l5y0rLE5gSLWmEf06Nrc3Vgwy9V2NDyETqpt3XkAVREPnVRv1OkKQ7b6PRzb2AiLQ3/jTbwIAbjx73ZmKCuWRobfOJ9U/1f4ni3HtOl555RXHVRtT7ak3JLq1Z4hdSBPITaqlndmyvwdh7LLMtFJx/VUZ3EhqoeR+SL2syvVx5psEtEt0UfOj/cvPXDsD4zjGmP5bvhqYz7XQuRxieXjoVM/8edtXJTtNeazq/bOCZHsGo6vrW4HZuI4I+VUZ/nf17BzyHUQrHM/TvBB95La11l5RHfPXuo8qfhzzTRi2sT64isXSxnsrVoWFeNQFlM1XGx3Tf63XoTE2PeSCUOPPxkGehVhbJ8daayd5hkMqd4ovrXW0RVPqiGM5iEJXGhGzciQlMt1mf35As/GMnOd4w9bcKF7i7R98w74zt888eNue0RY5q4O+IcXr21Sho+munmlv0McRlXzlt1ddfwEgTVWlU1/rCmSIOSdnBVWQA+vfqfwypTTMtp3JX5KqidcvXcHomGa3REb6RPc6HCuzRR0Zrq6X2geVyCz3KalULr31G/U+XNUN8PepQvM0Dz971VD9wW/8pt3j1NCozUEXBzNbPwZt8/PshHaeWWTffect44IPaQrs2qXVwgbn0316qAXibNLjbkhOejexMd2Zk+PJoduOgSyt6xAIoc8L+lXlWjvZLjJyL4AC8oDlnMxKgbDH58zm3+Y8f3TIPsx5OM0/PMK0WCyRsiKlyKnlEBEBKz4YAvYTZXw20UQTTTTRRBNNNNFEE0087fHRm8w8RvgKc1WkxqEt9FCIo7pSoKtNTeW7ofrk8vg+Aub/XhkwXYcybydxsOTr4bvc+/eSZRmiVt0Py+cM+dk8ZTuqPlonZRKBVbTN50/leX4qEqXw0S1dnzvGosCUmS1lXtU2CmVmMnn7MHseRCGWnjcDE/6g/YZTb3HZ3KiOhs2mC+Q5PTnkrdRSu9s1KuMlTtOEWXR5fGxuLlbaVe0/YbtLZUjXcZLstt8nO6K8AAAgAElEQVSWyviusXZdx9R1fOc73wFgz1bZodPa3/XlrKxz1zFj3qfLnjOrKfUwhRAQX50xDkIss7p3yGmqf75vWqvVWvGy8q/5aYsgDNDux5gzOyqfl1SowGKMCdGTfs+erdpyPK97/wjduXDOPnd4eBsbWzY+9h5QjeuCZWznc+unJbfFxpX6iZ7bq6++6mrphX4K1frYx6ymPvJU1+QNt1gssLVl3IYjZmR3d+nDxKynkCsdU8/xEn2iJpOJ4wAqY3zx8hUAwKNdy5DPptYOQ2aWH9I3a/5G4rh+/a71F4JNrv9sbkqxyX6/u29Z+ZdeMr5Uq9NDq8PsL/u4Q9PI11wjuqSx9/GXX7T2iDpAJv/CuoLdmJzcA/LTxlT4i3jsgOMMIdANyOFwvjVUJ5X5lKvtr3MilbWez+fo9UvOQvX+nbIY6uhwt1uiYcrI+4iUP3/566XaaT6fu+PqGOpLfpWE5iZdV6/XQ5bX50sfMXOqgLzfFe++ouRKCxlVv/fbakU1Ny9W1OD0nH311KciigJ5np7An+V80O65thIi4XhXAVGVwtouyPh77oX6gxZycvO6HaE7rOwhinz3jiljXr1iYzglbzcOS85bl+p64uQtZlz/ZvaMzq4TCW7V+3CaJO656nnq2d193dBrBG8BAC5ctPN36JMl5OL8xYsI23VOUcyxcdq6HBFZi/IMM7UjD1t4/o2Okez2FBwH8tVKEhScjG7fMzTn8lW71pZU/wYlAl39mSTJigKm2h/FybwjreeKqp+ov/9S/5fXW8h57+xFqglT9fTg0UPMiADtERGN20SEptZXdoj2twY2dvc5/w3W13B819aIrTWbCzTvHx+KU2nH2KBC6iSx3+dEmIbrG5gQ3Q6COqqtihrt23zkrgjgEKFAf+I0ks7pV9bj3pfcqoz85ywjMo4PH3EcI/vQyoX1eDp3RE000UQTTTTRRBNNNNFEE09IPBFIldT/fCSl6kJdZinq2Ti/7tZlzgPVfc8rmTap2injpqx+HSnyfQLm87nLxJSIkK5dr7f1OvclVQjb7ZZM6xHQCbz8idp5Xc261PeKErlSBsjnwei6fHWdKhriK9IofJ6M0B5dh87Vbsdod+v37ysqlueonz8oCnSdF0s94zljXXXId/sw5rGZcU+pTBRFEQoiToHSCUHpYVY99oIu9FOq3Mxy47ZsHY6AsI6yrEfkfQilWNBLgpkinR9RiMA997qPyoSu466vMLunjKGyifPFArGyk57Slo4deMiRoigKhMzwdIjqlZ5W3rNln05yjy+XpY4bIp+TQu0eSv1PvDkitKhwGnQcZpOc7cdHld75MUcQhuiudbBkn19SJW8WWXv226lru8mkjnoqc3pAZEZz0JQciG63j8nIsn7rQ2vTI85bbWYZ5XV0547VwG/S30XeTFmWubEtLzRlKjPxUHjemfyq6DHV7bQdIjUiV0wIhThMmk+U/dfvlR1ttVruvq5fN1XDw2Pr6zl5AoG4kpxPj3iOwfoQe3vWNrfox5Swb8tD6eLlGwCAOdtlY8vOXxBZunP3nruH49Gkdm0Lcsf6EZXjyJ/skGuyPz7CGhEiTdQp2+yYPnYF55qcaFBMn5s5OXVREDmVQx3fISdZXe1Pv1dUPWnEAyn7khB3Lb2qaLB2mM815sKVedvnbZzGx6oiz9U1tNaGi0Xts/q72jxNU7fGlkqr9aoMHwXzkbM8z1e4Wwrdm/qYzq9+2u8NVqoCNG+e5nH1JEee55hMJtjcsjEasS2lgjmbLtHpCvng3E1PzjikMiKRgqMDex7Doc1D88UIZ6n2KW+nbq+Oejz//PN2bKE8qqzh/N3pdMpnxGvTd3vk2ggJn3JOCTnu19bW8N57hpaIs6hntcX+tOA9vfOmqaxeuGAo0KBnfeytN36AFjmbVznfpBwj4mH6fWXp+GgLDNaEYtstaL2KWbkUiONEdUQp2s2psBkHIeKwvB+goozHQ/r9UGtwFEUr+xDtCzU1OG5RXh+PJ/H9NZ78yirxRGdOWZn7mb5xb/s3zmMw51z84EsAgM7UOG7jY7vPHXLabt6+ZX/fNFTq7dvvYIsI6PGSczbvocvnL8+xIZUjdzbt2V581p7lstXDwYGhV7uP7LwLeQvyWKF4Sg5JLHmiWk9A/6mzG3Y92zTYDNbt76+8YtUUr8/v8d7qyoofJqbTKdpdf9/FS/2Ax2qQqiaaaKKJJppoookmmmiiiceIJwKpkvpf9d9Andukt/VeT0owdXRHGQIfBcjzsKLUJ9UY+5dqRCO+gXc6JzvDV5WwyjjZp0cZwOq/Oy3W65/iPO9zbPzsxXK5XMmGloo46Q/9d9Unys8o+twaH+UqOWWZuy8fzfPrfxVVF3K/1v606/FV8arcsyw7GW1TZtWpAioDRL8X8VLSxRJtepq1ea3Kiip7PmWNeEKEIBCCucxLD4mkzo1QNmswsIzPGt3Ylbm7whr2ew/uQpBlK677QSicsmPu8aHieIV/p/NXeVfAqqpYtR+ozlwcEKGK/mdLtLfOtape09MeeZ5hNBsj5JzQ4lQ4GhvalOYtl01bp+dRh1nV4z368TCDVyzZ5vRGGR9NQQAErZj+VOv2t+msjgoLjR70rf9IFavfK33GlP3V+OgTSXTowtAyq3PyPNeCjhtD4sro2Srb+dZb5DiQQ6UssD6fpikuXzYne43D45FxrHKeZ5PtMiY/IWTWO97bR9cph9r9zjgv37v/AADw7h3z2mozY6x6+t39A3ed86Wd5+jAUL+LZ+zazl80LzosDDk7y7brEOU6mt4vOY5L+53j4TBjPGLt/5xIUhRwjo5KNGYsZK6oo01RpDGn6oCTuUdBEKAoVHXB04f1n0KnB/SI0fhNkgR5Vq8YKKsg6siUn8EX12V9fX0lI+4jVwpd+6zi1beUSivnwyrH96T7Vehc/X6vdrzavbTr/lWaY4QCTyezFY6Jz0l+miKMQgzXB+7Z9XqGOhdzVafkiGiMJtQ4zaTQaWNilFp/VMVBktlcVSDFjLynTtv6vTjIkkfOidiIJ3n5nI37gn04SRIsCfPIUy5n310Svc+J7kYBESxWr8wnU1y7dg3AqqdSqDWP/Jc+fQEfvGcowzkibFG7hQcPTMWuzRtcag719gka26ow6nTWHAInT6+AFR2dXFx7a8sl76kbWVt3WEUTFEAklJwek0LO+jpfq77mKqpVVo7jHhPNi+SXys86PiR9nDinL5fLlQotX+nZIdAF1x3OYXtv3gIAPP+xFxGdsfbsD38ZAPDGn3zR7neDKBvnnXiNFTesxhnkIfpEUUf0A1RlRkIET6rJ4jjlRPkKcoyzMMZyyWonaL8mhIrzUKgKJ49rFgEF57su9+UvP2eIZVTY8eOZrYNtnuP5S7Zv+/7hXd7bh8eIFosF+mvSRXi8Pc4T8VIFnCz5XC1NKBcWEpy9Mjht+n0Sbyvur5iZ+p00gDpvvUTBl5iuHlf7TL/ja/HWwA/DcEUK13+Z8l8IXRlkpfzPh5f9hUyLkl9m0W63V8oq1Q5V+PqkKF+CViXl/U284iRzWP87/guYL53rl6REUbTyEqHwS1P0d20s9NK1WCzw4IFt6JbzuvHkubMGn2th6PbrJSvdbhcFJ1hw3EmataDE/+3bNhHfvGmb1S984QsAgIcPbEM4n03cS5VMVOXn6/qFV+5T3XD47e+/3Cr8Z1ltl6yo97c41uaExyjqx8gqz/ZpLLn5YZEXOWbLGRYsB9ugfO6Ym4+DUYLh0PpOS8aJXJgHXes32kAo+dBme+Yo0OuIdG5lEFrEg8C+q5eb1157DQBc33TiMFngDKZl+vviiybEoH452LCXiRn/rf6bT6auf6h0xpfR1xyg7+hc+n23210prT6mqMfOGdv4PmKJR8JFrr9tLztnz5zBJs2nA86DE5rq6uXp9W9/i+e/wTa19pDAy3C44eb0TW4AzlDCecgyqfHS7g2JnV82Cq+89BIOtLnzBHUe0lw55VjsqdxNEuss6UuzBOt8wZRhr08cL8WA7NhqayVaqvO2n/Rym85IgkP1uT8IArfxUv/yRSV8E1x/joiiyK0pitMEjfS56vwig1g/+ebLwuv3vlhBlmUrxuK+eb1f1l5do/wXP//+nqYoihxJskCPNg3nduyl5ut3TMghy3L0Kd6gMjtJp3e7ShyqhJhrPY2119Y2nPBCp03p6rC+MQ/jk0UftBJnWVYmbdjfVOabcmHI1TckQqAkztpaOSdxPDnRLwmycFmKeF0qYU4qdiqun/N3ebf+4u2PpXrygteU6r55PsnUSzo+rFMslCDJ0wyPuFar3Nnfy2i86R4VSZKU5fiaGzo2F7RbNlZbEu4K6ntBfX40GtVesIByjDiDbI7RmAmgggmLNQ6H+2/dxA7XiMG6CSNde/6TAIA7N20/ckhD33XKkv/gdRNIGnZ6eOc928PIuHnKsms9fz0fJfnIIsDxvr0MR92hSyJnmZW1j7m+LhMl5U+RPQ8Cd0CVGe7uWgJg0OcLKteOvX1bI9IlyxJ5iPpM98EiTat7qccrJ2zK/5poookmmmiiiSaaaKKJJh4jngikKgxDdDqdFeSkKltdIjH1LKGyCKeVtBVFVkFGVLpVN49T1ibL/TKP8jpWy9xEkqyjLO4tvpJV8yWq/ZIMP1unCMIyI6Pz+wIROoaPcvnZxOp39VPH9AnAfla1KLKV0r3TSkH868qysv19NM1H+fT7kwwpW0FdwltZ0arsfvXfGUm+urcsjJxUZ8F2FqoYUFQkSyS/bs/w0jXKzy6XrgTgkJluIQ3zuT27b3zt6wCAN998GwBc6dCSz7YVBo6bWYoV8LyoZ+KWWR1ZrJZw+vLnvrT5aahoFEWu/DFywhRx7WeW1hHUqsWAjwz7yOBTF3mBcJLg+IhZsC2WeFAKvFgmyObWHx6+Q3NFSsnO7AfaLH9TmUxWSB46cGVlmnOSJaX3WQ6Ilo2b3ZGhPf2z9kw6LPvrpDmOjlmSNSVhObYTT5lBHj2065K4xSOWz6ytrWHJZ5xFkh3fcH8DgPPnLRsppFfHODi064naEeKO9Ysf/OAHAIDnb5ihpAQ6yD3HhcvPAgDWu3auqxcu4cazZlCp7OMViksIiVJ5rMbcgm336Y9bprXfidEd3gAA7B3ad2RyLEnhAdEwgks4W7C0Mp1gTjn8BUszD0nYVrY1Rl1wpyXhirScg8tMtczT62tNORfaXCQhEZW8JRWp6XIcqtJC44boV6JSt547dh6xRJFzmMackEtlsDWPabzqGY/H45XyOh1LWfCqqEb1nvv9PrK8XmLvE+dPq3yoVhr464U+q6y/rkvom9ouiMoSQd1XxGc0n9VL7J+GaMUt7Oycd+1w956hAsN1lmHlEUKW2XVUps7qCLdOscskLMvsEd0dHS9dGwWh1gw7blvrdF5HOe/ds/K7qywDTNMUBWuWj4j4qmKjFdarY9pBvdx1vliUz3WkklmuJXruAVGXDkv9O7aOHkw4t+68jD6NigdrXNv7LOFjSWMc1StIWhXhp3J95DrI+x1LVGWwwXvh3ynLnbuy3BhBh3YtA/ZfTuEywc3yBc8vIQnu2/IlZGIrsKPI6/u1PCeqzghiGsuzTLPbL5zFTA4bG0cUveIUjRbnsoxzRpSyyuIihZPGS+RH9p1FZOc7pLXMV//gTwEAz1yz56+S6WHP5pDB1gbCI8qw8x7O71jlgZCgd3bt2ENSHPZnlNQf2px648pzuHvXSvFkEK8yQBSyQlLlQB2xaqUFcqKIEhl7+037+ewle3YPR7YOHI7tc1vrRGWDD2/6qwgDoNUWxiT7JgmIfcBjPfbVNNFEE0000UQTTTTRRBNN/BscTwRSlec5ZrOZy3wpu3eSWa3PrfGlYn1SYximjgtREvBZq8u3aGXAWiSK+mhQHMcnCEVktWv1uS3VelxlbXw0wRdo8FEmkZzDMHRolo8Q+HXuPn/ppPOehmr4SFpZdx+u3J8v7+sbT1aRLIceeXwOnx/mI1ZVDlYY1O/bF/MozTPt/EKqHLm5G7ssbSL0SNeR1HlhhQyki7I/nmHWZsiMf6AUF1GlZ65ZHfbZLfucarlv3TIjwXuPxk7mPPPkzuPI6xfO2Lc0lD6Nj+eyuB5Hwv9cEASO4Cw/whJlFXJVb1sfFfvXKYo8RTJ7gJzZv3Rqbb82pKFpJ3ZE3ViILlHyiOTys9s0Xzy2rKuTnG5HmJHMO+yTOL6w74h0PuAx1zeZ9cwlGsJ+O5/j2nUTijhiBvHdOzftO0RJ9VNok5ALIHRcvt1Hdr5HDy1zeemSIVTnzp2z+yWqIQJ7lRMhRCRZaiwJibN/nyG3Su30U5/6MwCAlz/+KQzPWE1/xsxkK7fs63WOQY3F27dtfHTIj7pwzojWy8kR4sDOd2HH2kGk+mUisr+1/zFl26O2ZV+jIMP+sSFhU6Ia2+fqSIjGy4C8uTxYrSIQmuLcChwfqT4XleID1neq65ePxvsol1/FUF03HHfGkfBPnmN93lJ1vvXXUl3jSetE9fcnHc9fe3RstamPVIVBWb3g86B8bqjausrF9asf1A4679MUQRig0+k4HqbGmRMfWaQYje1vSUJ+FFHzVosIDQ1uB+QYlvuHOTY2JIVPsQmiS6ORfcfn5akfzNjv86hcd2Ry61BcHssXDHGVRWGIqeAU8ddVSbSsG/b2KUzTJ8qcz8tjLXjt05nNBeevmoF5JK4v9wAS86lyDH3U1B8TpT2M3cN0LuRI+6cQL33sEwCAR3vGb02WdXEuoYA5jnmPnLsXC3TIyWVTYc49xmlc/05bBubWTo8e7WKL8zkGdqwef07HFIQQcjyx7ybUAMjIC9u8uoPxkX3m1te+AQB4+NbrAMo5cjK2z57ZsLnzyssmtT+fz9FlxcqEe9u75Plqj3Nmx/rQ924esm2tLZdzVkMMhoh4jJh7iqDSvvbz/fMhz5+39UVG8q29Mf9i1zPlMx9HtV9/uAhKUQ3Hs3O+MR8Me2qQqiaaaKKJJppoookmmmiiiceIJygFXb7f+VLPdU6HPlPPovu121UUxs+0F1IZadV5OZmylUUdqUK2mqVrUbJT3qfLtC55LSADYYRWVH93dZlHqvnIRLIoPAnNSt2/j2L5KJfPbelWVK981T3fpLFsl7o8vUMy8tXPtJiRCLL6eSXtqvOHYVxB1erqcyVCBd6DshlCX0quUcrTSAI1y6UixHZR4St/n7I+V1yFcb5w17QQb4ISocspESxCOPtHlom5SOO69fV1lyVLxqyjpvLa+rY4KvbvMzusNz4ynsnDPcv253sBCpd5VfYMtfZI2S+7Ss2JUxcETu62zQxczGvttesZuTCoP2NUjK2lnhO3ZDLJrDxPF0fi8PEyIa5Vdiqq+LRyqoIAiOLAKfyNKU/r5Pw3+2iz7QoiI2q3bq+OtDqUXEhgmpampwsa9fIz7S6tBoie699hKtlajdUWFpn1tRdeNIW+w0PLkL558zZ/b31M/Ag9k16vhyCza9/ZMWXL7377FoASmaqavAKljPP3v/8GAOCVV15x/aDVEvfSMsRXrhhyJHThlVdeAQBce9aynltnL6CQChntJMJEpsrkNHWtTa9LzfXIOE/HY0PYsFxgje0c0/g6iMhTEG9ByGDfxtzhnn33eDoDYirn0Xx5wbEuE+3+oK7gqGfp5ojFYoVzWjoNKJNZtjdQIjZVzpGfIfdRe18+uYos6bydDvkx7fp8XSJpdTU0navT6aygmDq+1FF9I99q1YSmVF2b2kYqh071kufzkYw8K1YQBBecnvy/V5VwT6to8CtJnoZYLpe4ffs2zp61SoZHj4xLpOfR6XTc/wuBdki59i/kpczJZen1rb0Haz082jVUQeNdiJXPrfYreqZc4zpxC6FTylMpg1Csuly4XyWRLZOSd8X5KydXsi37Dt5CqmoN9q3DQ1trszTG1qZJZMv0OJvb+WY0Gw60LwnF7SlNek9SHa7er48qy2S8oOR6GLVwwPnVr37Rc5lyfGsdKNUZu27vkvH+u9zD9Di/+RUkUWxjZ/TIntvB/QfY4Rgtcqovcv0fkAeXxTaHHc8O2cbcE5CnebC3i3Zq/39p3Spq/se/+T8DAJ49Z9ezF9nzvnjWKhWOQ84DCN2cEK7X54p2JDTN5uiLF23+P7xlCn9tzvH37z/EWR5Xa1Wa1tvycN+O8X5C8+mYiJwsJrT31prtZAgfI4qiRNN6NBueTD6cCmCDVDXRRBNNNNFEE0000UQTTTxGPBFIVRCEtTppX/2vKIqVzPhpPBz/u3Ecu7+dZphaqtgwE+FlxrIsc9k3h1hldZVBaevHKqoNy+tYLutqRad5PJ2mxJTn+anqej4KdxrXCKioHJ7gCfLDrq/VClc8vnyvFsfDietoW/WzKzX3HrfLvwfFbDZz558xA9ZjDbNv/qtMmd9eVYNpvy9JVWyXWRRdz4xZvF6vhymz9JfPmUradEqj4MIy/C1laZncUH+u+pWVSlzsXx5PyikXORJHiVRJtclltnmMnDwfoZq6J2XPFVkWw+tup3ITSp6F/N3iSn+yv/jj7KmLIATiIQqqUm2dI5eITRK32i5TH4lLE9bbdlUllBn6Ii35BkTdpzNDRPJIfE4LIa3LBTO75E/0+i0UqCPMZ85a39vZoVk1kYobzxh/SQjCwcGBM53MiU7ytCvzg8+HefXVj7tjKzN59arxBY+Od9l05JTtWN8/f2GHbWhqmXGnI591xJl4WKgFD4EBORb7E6vxR9eua3fvHhJ664TkFGgszWY2LkdEYXQP+wd2vUUrQH/DsqfzROa+dSRKimrrmzQ7Xtbnhna7XXKYOnWVPd+8PEnqXnk6RhXtOi2DrnP43IswDNHvrdU+K9RJ/W9B800fMdXPxWLhUA+tgWort255flHVEFLmeKq8h67n/eUr0OpY/d7AZb991UF5YPlrsdqu0+mscHydymDy4TLIP8mIwsgMraVG61WP5Hleoi1CrUnjnk7oIUbFYfdMyb2K4whnz9qcIB62FGaTpI7q+WjqvXcNbbhy+bKrSAmECFD9bCkekKe46xQci8AN8KqZLgDMZHLOuTPsyOixPoba7bZDjS9esvkkkoIc17j9XZt/ti7UzdCzLFvpzz6a6e+tslT7NJU+hWXVkVMntmcjtdOLNJtFaPeUOi52gC7R5JzVR115jHLinU2o8sexM+VeM9C6miQIxHdr2/NdyNOLl5ixciLepLfVQ3J55V+FGIePrDLmzdfNB7C7sDVhI7J57sYZ49SmrM7ZollwMpq6aoV3D+ooaroQH87uP1mOau2TpDP374MDu6bPfOZnAACf//zn7dq4L5Sy8oP7h/hRMWG/H7BCIddY4biI2D9V2DMPPvxeJAxLc+PZrPGpaqKJJppoookmmmiiiSaa+InFE4FUAUVNhcj3sAjDcAVV8tWTlMVTNrPqe+G7yPtIhVMVYpbFR73SLHd/c8cK6scUl2c5r6vizedzx5laeKpzPlLkK/wpquqDp2X2lBFVOOWeVmvFl0rHUNZKaI/O7yvKZfPlqQiYnxHKWaOs9l8ulyu8AR9l1L3p38rm6NidTgdhVr/PgPXfx+NR/VrVLln9HFmWufvzvWOOZ3UkUz8Pqeo2W8zRX6NaE+SrYv8uqNZ2kT4/MRWBdP/qj61WC52OMil1/lOptse+xHp4Jffb7TYirzY+UMab3BUp16jrCDAdDCyDliQJUFjb6bn7HLpqhhuA43FlebbyWZluCbV42qLb7ePFVz7lvE/ceF2WSn5LZgDTJWv6s3qGNux33WcBYM7sXxHmTjFPXj9tZurGVBvUCB9StatFVCbj9w4P97G5uV07n1Sx1ti3Ot26z10Q2vO6dv2Cy4jvPqLq3+VztWNpvtTY13NVVvz4eIz790wR8MJ5elgpY3vRkDFlNl944QW7nvVttkcAma6Ij5aH9aWm0673te66cU3YRZG8G+H2u+Z5EhZ8DsqQk2sRE1bsdclFoFfM4egYLSqkdQect0niEJpXKiVaaA7W3zc3N1dQJD8b7ubEovR2AsrxVUV0fF8/XwWwRJ/K9WNrU154dXRDx9c85vNm9vb23D3os/LQekBFL31X96t/VxE1f53y0TX93q8K0Jw3ncxcG/iKok6V1UPyqufwqyLURsny6eNU5UWB+XzuxpDfttX+mGbWv6f0i+p1qWoZC92r7z1GoyPHuyu9m+rIp86j56F/37hk6PJkPHHtGzmUq74OOX+oUD6fnMsCIPT2Voo1Xteszb2W1jZyTTfIi4qKCF2i1jkVA68/Y5zRd/dsHtq6QM4VT6G+s1gsVtBU/zr8++8E7drvizxxynQF+U4zquztbJoKXZt8sLfefAsAsL5uqMtw8wxQ1Kt75gHRVfogTvdsXVk+b3Nnb04FO1bAbGyt4/addwAAz2zbfYb0f0qEfvWofkj12S65pG/fugUAmMxmANvua1/553aejn3n7DXj5fbP27HFvRvtGWKUpqnzlhpyEt67T8XAjj27Kbl8k6l9Zza3fz8c2Tk/9emzuHDevvvmW+ZteOOGnfe9O/YMHzw0VVbNmTFRKKQ5Cu4p9DNghcCRTX8Yk1s34b5pjf21T4Rpnv4wpEorLucOFUPJuzQHkiXXYH3EVUxp7Xp/flgNUtVEE0000UQTTTTRRBNNNPEY8YQgVZZZ8DNfPjoClFk7hTJbqjP268+rGQu/Ntvn9hTi67TqiE7cLjk+eSYeDN+m5Skk122++qbMFPVabYzpWeNfR1Xp6LT7BSyLoPs6Dalb4Qnxnqqu9j5SpuyY36Z+5jEMw1O5MyvXIw8BZsTb7ba7FnESdlkbfYnojl8HfZKiYZhLdVAO8XVVLecBxa+0TrgH37vJ9Q3WVavue8bsesiM3fF0gpu33rb7OrDszPq6ZdjOXbIM+5LPoU8fKw47KssAACAASURBVN3/Sy+9BAD42Kdewu///h8AAO7eNWfwMT1EfPRPWT9dl49cVj/b7Qz4GX6FyFlE5OPnf/7nAACf+umfwve/a6pxX/3qVwGUz8F/to4/Jw+Tyt9L1LGugPbURdRCsH4BEZWmJqojJ6KUJQny1PqBMrTnmOU7Tsin41hPlpJPtExyN0zdXJLQWylnZnRzaD81P41GdZ5M0CInomi5TKBSs1vb9KWi6lEi3hb7i8bTwf4I/Z599vJl6x8bG3asb/7p1wEA/9bP/Tk7D9Ge3V2rxXcKd2GGn/rkq3ZtVEN67ppljkNm+z79mc9Ym/UMBWtHq/0l5PEjnMxn7XbY19v0dSnses9f/hRe/+b/a79LLcvb6VC5bEiUnON0kXOcJjaP9dfWXT8d7wnJ5ljidWX8buJ4LHbsgZQED0alp0xHfkH1eUrPTGD9gp47UVgqcvq8OL8Kws+oVxX0JtOROw4A9AfkiXG+zpkdlwGd/t0mbyXLU3fN6m8+N1Phe2BlWVb6U5HLIYQoS0/2BHLrCNW42u32qZUVEddLqWNqHpknZbVEwfHVpqxm5pTEPCXBpyDyLMNoNHJ9Rs+hipD6Pp2OO0W+5ZwI7XyhfYy1y/rwTFl9Mq/PJz4yqnBVCeyPR0dHK6hWWdHBtVXrc1Ffr6qrh78aLNj/kxnXdPalLK9z0hfzGc6dO8trsnv4wc1vAwAuPf8c742KqXF9HFardE5aK6ufdVUGnI8jolNBmGC+sPFW0DPwYM/WhAsbhsDnVBJORjaXjtkfB52O8/Dr96nUGdk8Njqytf7d75vH4MtXd3ihHDs924Ml8wUK8knvvmFI2NaVC3Zt9E4cc48TsvLpPr0I5w/teu597w28cdP8qd5964sAgJeuG1J044LN3Xqm4q+p7fr9vuNcuwomvR2QxPQwPagdQ/vJB7yOL3zh9/Dii8+74wFle4tLNRza/uib3/iOtc8x96Qn4DsTIlNgX714yRDDB+TYggq6ma7zhwLY/KNKIXzFwChF3FI/4v6Qe/sA3md/RDRIVRNNNNFEE0000UQTTTTRxGPEE4NUVZEEP2OS5/lKTXaVswSs+lxUM2P6m77jI0X62evWHeIVeZ6v+FRJuU3ncTwUOYdX6+v56urXvitL4CMFuj4dQ8f076t636cp6wVBUCrn8b7UZlXOWvU8fju1EK7wbvwMpMuEyS6qoi5W9U0BgAsXLAPjI3XK3vn8OQBgaTAS+UxEUmSTmg8znsyVKUNSPYaysM4nTJmuuI7kiX9QbSe1t3w1FlTvWeb2GWXR1jftGFvbF9gOdn2DzdKHRNcxGde5TcrzuedChb8ky5yak+6nxex5MlM2nb+nL8bmlvWdj33cPIQuX76I4eBc7fxf+9rXAJSIle7X9S1lwPNVBUlxuPTzaYu8yDBbHmB/bM/z3BnLgr31xncBAMPWNnp9esj0yCFgBjMsiOTlUl60Nhj07e/H+8enqrz5iPNpyHMcx46bon7pI+3yhOsxO3p4aJnEre0z7nwa85tblvW+ep0KT3fetH9fedGOGVt/GU+MjzOZTFbO3+9Yv/n4Jz4NADh7xvgBYUuZy5Lr4/qplEWL0i/tpPtuUa0wzm1sZlsLnDtvfI+79yyDnAn1W4jLUed+iFeyXJbo/JLoys5ZU72SGh2BKucN2GrVKxzW1tZc22V5vd3lkSc+oTizeuaae6oKdprTHN/IIflUB+O5StXOyCEEPtqkMXea91WVTxx42IGvFqvwqySqnCbdl87v+1b5qojVtee0ceBXC/jjIa14vSl8lO9pijAy9T9du3yq1B/G4zHOn7c+qv4svpu8rcJwjb+3OUso33KR4MJF+66ewWRq3+0RCfHbW/8Wp7KqsKt+5HyporrKacD+77wbsxRRq47EujWNyH+X41tZ/ENQ2Y0qkFmaOJQtDKXobGNCiH2PHCb5WFb5f/786Vcj+YrCujx5lkZRG8uEe4bAjjumX6XUeCNyeaKQPEG3fQ5X9lKtNrmqlEEdyI9vSv7rmh2jgHwLM/T79A6c2D3Mdu38Ax4zpaJgynYZH1t73bttyNbX/vDzSFJ77mc2beycPW99p8O5wqkPcv7Z3993v1+j2uice6kR53P1VbWh5p2SN2/7h+999y3MyU/f2LR7GdAPUKiTKiKq65zd1GollLbFepbaP20RSbp339C2LHof2JDjUHlkKnqetfsAWkRCrRmwXMhz7YPtcRqkqokmmmiiiSaaaKKJJppo4jHiiUCqigJIk8Lp3qt2WlmEALHzx2m363X7bWbzlZFjUgWdVnlrpSKc/bvFN9ucb+SKuWqFvSwq8nzFp0r1/b6nVCjUg/X9RZAjgHyJdD/279lUqlL1+nrV5Dtn+jwvlXe8DIxfK+1ngtM0XUHmlGHws4b+vTjE0BrNzidbB/5c0hcqk/pNUj9WmqYr6J2PhCnzoWztSWhj7ng+8ikjd2syrh1TPlVtZrHztLyebE6OAPuVsmeFozDZ70eTOmITRCEKeodELdb+E9WZ7dm/J1Rt22AGaEFFGqnvHRyWfDCX8WM/DNkfZGQ/kmcMf6ytrTllHvdMeD39oXyI7MsXLlo276d/2vgu16+bMtv29nlsbdk1bp2xz7zysZcBALdvG9fqm9/8JoASuXr40BR7kiSpqDyWXD2golj4lEUYRFhrb2PnCj2eDuyez+1Y/X6YZQ4ZGVBJLuF8MRwY6hPk1l8nmfXBKVGvOC59vTRe/bHlKy1qPGuMpGm6wrtxyAH7zcaGjWM5y68NhWzPK5lTu1/V/F+4aLyw8bHdy5zZ4U7HjtXrW81/lmUuq6l7uHTFkKMXXzIvqyK0dlG/lZ9TleOguTyO6yiGn9kNib4kLSp+9trYvkCk6r6haqLvhWDfYzt0VeNP/6J5unTzk+baMVHhJcepMvTqx/N5HSk6PDxwnykgvySph0od1VNfFM+xK17UEv548efclLw9fUc8mVYrKpXE5vZ8hVzp/BPOfbrOrS1DW5WFHgwGyLO6j2NVDdXOU1crVea61+utKBTqu2ojHbO8b+svQlharZa7byEyp3lf+SjXYrFwf/N5w1ovn6ZIkwT37993PCmprym63a5rI/Fdnn3WeDD37t0DAIdkHR4Qjdi2f7daHaSJPMLqa6qPcvo8JPHVLl++7J6bX5WSEpEX/0qItfjlQRzhcHRcO64b5/IjG5H/ovWZnzseEW1IYuzu2nqzfcYqRe7eM6VKDFjhwu+s9e3vVfSt9Jaqjzffn0pRQIqi4Oc6KDIpVVIZtWfnk09WwT3lzmXjSWtcjpcBNqjU1+I4ShLO75nWZaH6dXnenBDK2nAd8ym5TJzXF4eGAB/fMhXUnHtOKXimHOe/+3/9TQDA8xtLXL9svNrnP/lbAIDzF+zfF89ahcLRvt2b5ggptz569AgzoklLcmMjPruy7TQfzdlmalv765kzW26fcnxsc9O79EErq5XqKpWJ89lcjXL7beedTKzvHHN8RJxbcxBawviEozA8sCmIrL+wGAJRH+gP7Tzb9HyTUufubd739PTDV+OJeKkKYMT3KNJG3DParZQRqMyrKhkOrMpzVxdtf1Hw5cB9iNgvp6ieR3+bo74YuAmIm/0WyZSL5cJtGHxysL+R8ssbVHYSBIH7my937t+TrlmTaLvddrBp9UWrGn5pgF8eGEXRSludtjjrc9WX0HJQ1GWc/Wfmbzyr4S/gfmhj49oDdfnjLMtWBCHcz/Dk/lCdkJ2ssifMoL6ac+GRgZyuY23Nnu21q8870YqI5P19GuWVfdmebewtBEVRrJSf+n1VG+1nnnkGAPDLv/zLAID14Ravr3DPU6RRLeKSyNY5tKh//esmanD37t0VSein1vSXEeQZwvkB7t9TyRwFR9ie61t9LCixmmYsVVm3BWFyaOTj2ZSE2SUJ+lm5qT6tffznV5XcB8qxF4ahK1VTaCMq09dWm5KyfQkYqHy36zbcpQx4vVx6my/WMucc08y6yK0Pbm9vu026kh2v/dnP2vFbtugHofXtVs+O3fVenIAfvblx8wnzW/p7b72PcI8lJOu2Ad0/MDleJdCSgkIiuW0+lrOyzZNELyuUaeb43NqyDVlZSsdnxnvIecxWO3Akdm1U9VIjI0u9EOnfatu2Sn+iNoYcf3pZWRFhKjivcFshCf7lclkah7Nf6eUu5kZYLzfqayrDq81zRf2Z+CWD/tysPhZFkbsf/Txz5kzts6WZeX0bUX1h0v/7ZVn+y5SfZGi1Wm7O960+quXwT0uEUYThcOjGlL/GZlmGN9+05IFfoqXvKPmlv+/tW1lWqxW5BFCHL+fttkr666X1enHSsbMO6Qt5infu3gEAXL9uZt9Tz5Baz0yG2lUqQNuzKcm1P+CctJRMNt+HuxT1kWx5gTbQYnk+t6UF+/14z675sGNjaG1gc3WvWyZnfbsWn6awIn5V6Ho53sI5wpgl2gu7yD6P8ebN7wEAnn3GSqXnY2vTKfdn6+vbAPiiOdc+1cbIYmzry4L7wZ2WzT8JE1KdmMblywOkIfedOS08OBd1Ydd667tW5vf6TStRlzlwnxSDT1x7Ba/+278EoHwBdwkfJZALm+evMEGmfri5uYl5RGnyuV3zaN/2AQHvbba0/hZRhKPdt793162dpsdTzKZ2zcN1Jnq2JZh0GQBwfGTt8uA+jdo58WeVdSFgSbYS+Pucf2c0Mg5Yfr9kci3uUrhnnLsy83Kd8dQrArvHy5avwHBIMZhshraupbBrW9uREI/1h7dfr4Mwp0VT/tdEE0000UQTTTTRRBNNNPEY8UQgVXmRY7GclBkvkeDDSlYvqJvk+UjJaea4VZTrpL8BFfNOvrX7RojAqty3X96j7GlB1EPZHEShM6J1MsLMNOkeTi3NaJemwL5Jon6eJnJRRXSq5OPq38rM96J2zJOIwH6Ji49Y+RnpqoHvinEswyfN+uhj9d78DGdVxARYLStqh76xbgXt9NsQJ5sT67lUM2F+RldliPr9QuRaZveFVM2mGYbrlqWSaapKQO7evYuTolqG6aNsiozlBQLQVCqi69mgIWsUhSuoptpKbfsLv/ALAMpxIGTtD/7gD1yWVCiWMp5PY9YYALJ0jsO9NwCRrecaN8xWBW0cHFvG6vwFy4weHlsGb3pspYJ9Io5joT8DIjhRRdyhXyeK+0bffnlOVeDGF6MpBRBE+q+XvCg51+21naS+0K7ymddNX5XBTlJDOVrMQvZ6Pdy/b4jcJz7xCd6XEHSWQPP+Y8kkZyUaUaLOqF2bwu/PQmnniynvLcVgzbKIQ9oUjMbW7tOZfaY/qJc4TUc25ra2tlYMrqWWm1CGl4reruwvLuprhG+mDqyWLyt89GlRyfALPZL4jYRuyjLyeqWFSmyiKHAog1/+Np2qnesVCJrPVAkwHo8RcR7Ud9UufhnYSdLuvonxafLcCif1XpmT9f+lmEin9p2y/LJucBwEwQq6Wc7PH0zi+EmJIAjcGPZLqHZ3d91z09hU1YG/b1AJ4XvvGXI7GGzg6MieleT0JWKTF/XKAp3XL3+dzWa4evVq7Xf+/sgX1lI/H7S7rjJEdVxO7IJGxiqtl8CXT2cIwxjrRJEDlp9NUbcHGR1Zu9x9z0rKrly55K5P16r+5e8lfMSqzbGDyv7AGbazlL5HsYev/bEJOu2wLC8NOTcIKRp0S/oB+6ZKBiU2lXcp2EPxo4RjK1EFTFGhP7Rog9E3hPLuLVt7/wWFpW7fM+TsziNDFtcokLS1s+UQIV8oqETR64IV2i8Mh0P3Ha0Zeob+ntcJmonOIJQ9y9Hr1uezDqspVEq3R/ENJ2BEESj11x8WqdYMzZHsazHpMmm4dBQbP/Rcemv22c0z3PvqmachDg+t3bsbnG9ia4fOUHNWg1Q10UQTTTTRRBNNNNFEE038K48nAqkKgsDM/rxMup8pAepZQOB0iW8dK03TleOdhnL4NdtVvpCPhCRhXXZUyJQyJUI/ChRoBfVMm5/Z9DlOCmUuWq3WCsHd5xidRio+6Tx+RsLnafntE0XRCqrko05+xrPMQLdW6vir91W9Jx/1qh7DP64vwevf/0kiHCcJYABwcrCnmeDWIqzz49JUxxLvoS7tKpnpNAmxpCFsn3W8ygxKsjRJ69n7apufJiPs5Ea79ndlQpUZunTxqvtsVYK2eh7/vtWHn3/ejPzOnDmD73zHzPq+9KUv1T7rG0c/LVEUObLlxMlyTxNrk/Wh8UYO794BUnt2e3esLQPWvPdFmOeYX6cpa8pM1ux45tpYyIRkkX1+iJ6BMsdVwvVJEtWAkartHpQNVZaYc0+xQLfH7F1Wn2vOnrXsp8juAh36lNM9mhpvoR8MsbZhSOp0yTm3ZTysTl98VWZWQyImHEdFkCOlUaUMpOGZ/5bjRyg1xwkzhzEibA/tmr5w600eP621VUSUOKWtwDrr+IMgd22jrP50VueY+fOoUJ+ST1s4ovSACGTJg9Fz0bxRR8+rc1GWWduNRvaz261bI5RcULaSkKsgdCTuNrO9PidWZr9O+tpDEIBSsMlHBqOe9dnxVEhRWmufxeIY7Xbd8kLh90dfSr6aHddc4s+lk8ms9t0SUYA7tvpGaUrKaonWE7Ft+UBR5Dlms5lDCFStIN5cHMeOsyZE9K23jEPjt5FQbffv8QLrlBsX709bpoGQEa5Hqo5Qn6nuI7Qun1aF4guRiJvbCkIsUs+mRmIiWtsdUm/z3mKmqqCI95RhRNEKoQnqC3NyV2OKYG1v2HlVNZEkyYoR9Wn8ace1j+r7BSBy/Szv0gaFyNmv/+avAgC++Ll/CgD4xM+8Zt+lBc/+/i7O0bKh4Hoy2rM1Y+eMzfu7FBIZzfjsxP0KuT9BgIfvmQBFdO4GAOBffPn3AABvvP4vAQDf+f637Pomhlz11q0tz52zvnT2yhXMR/WKh7tEM9W3hJjrmYqvNx6PMTmc1tpIKHtB0Q3tKJ1+wITVFmy3Ig+Qif9J+5EjoougTP3HP/5TAIA5+a9f/uOv4rTw52hVgUWab6FDl/Odv09USAxsa5v6BZH1nTn76aO7Kab7tLwZWttc/hitK3rvD6Eqz9VEE0000UQTTTTRRBNNNNHEh44fmfIJguDvAPgLAB4WRfFx/u5/APBbAJYA3gTwl4uiOOTf/hqA3waQAfirRVH8Pz/qHAWAZV7WaTvuCzORTrMXQMTX5ZTyuUlWR3n8bDyiAIHkvT2DWslzL6m4FKtGU7KXzLIm6aKs/SXqFKWs4YUyi3xD5kuteFQBgDyoZ02cYpvH8fHrgUOazeVZma1TMzl5dpfF8uvOS0TFz2T6b/N+zb6f5ZnPlhW1QZ2/zhGR6kqQ6liSLy/rqbtEcXrMtC+EGKX1+uPSZJM1vFmKbGnHleKV33ZVCffqv0MqtxRBgIT9KXecPT7wVLX79Rp+ZaAt+8cbDySPX5f3LaDrqSNp84RI4v6BM8ATj+XcOTPj/cTLJmv6ve99j/cb1I6Zpjm6zKQHbMPQKSQRKZ3YvR0z2/T7v/f7AICXX3ypck8nD3cfwVP8/+y9Z5hc13Ulus6tHDoHNHIjEQxgzoo0FUgrUNEWKcuSZdl+GofROEtP4zfPz/ab5/FY9vjZVhhZI9uKVk6UKJoSRYpmzgATQAQSQKPRubu68q0zP/bat+re7iYAAugu0Gd9X3/VdeuGE/e5Z68ddDxks9nAv0o1rPfeey+Apl3/qcRyyBzhkKuIJciGxqXuM3Pi31YtFpBkxmmvpqwzI4/6YV2UagVbI25qm+qcVlZ4KVY2qsn3PK/JekcSdUaZXGUIdFy1/tZM0Kj+gep7QX+6uMoc2pZDzpufm0Y6JVrM9au3hsocTV5+PIjWM2ph8PA9/woA2LhJQtqnO7pQYJl1zFVqovVsMLJWM6GsPEP9GS2SQeJm9dFS30aNwqftopH7NDqghjb3fT+I+qRssybgVj8o1dgr26DjQDXo+Xx+QULtKAsQZSFarRiirLwi6mun36NJohuNBkrVsK+CjqkJJorWpM8qV1uv1XQJyljp/TUsctRPSxm9ZqJrg1otLFOazEjY0kTv2RqOXde8WCzsF9P6rnAqsBzyxot5yOfzQZ9NTIi/ploUdHR0BMyUMkIKHf/arlErlWQiHfgD6byenBSG3HhhpioarbfVwiT6m0YjjPp26dzRcR7v7oHlXClGIhhrgtzoe0kwD8g3+I0aBgeE7dmz7xkAQH9vhnUgY8D1euywrDn96aZ81DbRNVXHc9SyKfALY2Q9XU+rlTo8+ub4RVoFURZU+U6z44rLAQBHj8rz8wxT3p3LNZk/Ju6dm5L272U5fFospOLyvZCQclXoYwQYPPLQIwCAh0p3AgAOPiPWIQf2yPHePpmrA6uEddpxkaREWTMsoewGVg9j7aBE8tW+2bRBIjnqeGv1dQealhTW2pB1F9BksabGZO2aLQhzpT6d6lPVw3l/cHQa+ZyuJ2TNZ0U2rGKqF41KePuPxeKl6ZO90BdKx6yOfxMTud+dUuaeljYUj9NzHsbH5hbcBwgMjGDj9PuMh31Ii7NAzKPVAHPZxGOcG7VTz1R9FsD1kWO3Athhrb0AwDMAPgIAxphzAdwI4Dxe8/fmTE1k4+DgsFL4LJzMcXBwWB58Fk7eODg4nAIck6my1t5hjBmOHPthy9d7ALyT/78FwJestRUA+4wxewBcAeDuF3qGARBv8SGIMiit0GRp0SRvUa2dIma8ZpI6JRsCLQlCn/pfVGPfap/Z1NaGtbZRn6dW7WKURYn6JUXt6xWtWl3VeAaRVyKR2+p+2A+sNf9Fq29SK6IRoPR7VJuUTCYWlF01nlo3LVcqYIb4jEYDnkYAUxt81UpoHrxIfir1PfJU259JI99NXxBqVpbyN4n2v8IYs6BeAZvJS6L+Ls08YRaep75rYb+0KGO2ZITJeDPXl/alsjxq5675Qfbse57XSrkSiZgGqWthyFivSGQsvffu3bsBNJPvbdq8ucluRdpoqeiMrWMsqtm88MILATTt6k8llkXmeEA6FUOR+ZlMWuez9FFXPhEwFToOymXOrVTYx0W1gq12/TqWtM/VtyeapFK1/K35qQBpe7Vpb02I2vqcpViOxZJhNueYlEcTBWteEZ/a/4F+sbkfOTSNwpwcC5JCMhqdMZoEVqMiKbMdD8q+MPecfNcEutGxtnmjRK2aYwLlZEceSgjqmJuakXL09wozND8j5+Zy9BMoqvxsBAxyib4bnZ3MqZVQH465oKytbaiMYkdHRzDXc/lwxNkymat4Iiy3owlXW9mmJiPD/DyR6IR6PCrnW9sq2peVciR3YSTiqQWCCLrKcupYVd/PaBLe1iiVyhBFE38rC6JjWhmlCfqRqIa7UqktsM7IZKQcatmg9Z+dUZ835qsq1xYwJ2o54B+PKvgEsDzvOCY0L6LR6YrFYuD3on2vbEt03YhGzqvVS8G5ynxlszJHilTcz5PNXrde1prRoxI5jgE8MTCwCvMF6atSqcpjcu7MNMc7WV3Ni6djdnR8LDg3mQkzIUYj6UasYWK0SinMS3m9RA5lRvVcO8TnkhnxaEVQr8p3XXPsJPNF9RjUaakTWC6VtMzhNS+69uu6Ho8nmz6TMfobMmGx8aQ95pjsPcv8WPuefFrK0zeNTvqf9g0IUzbynFg8pNPKrso9Zisy/w7PM6EyWZ87f3wzHr7/JwCA7QN870lLvdetlXbevFkYw5dfew0AYKhfLFxyzItXqc7i4MGDoXrquFC2Z2Jant9cj1re+aw8d2JM+mGastpwTqJGX8masF7jzLPJ8AJYt6YTlTrXpJyMZa8h1/b2SPsoc12rqe+q9gcWQOugfmDJdDi5vMrdOcq0yYm5FssDtW7juIBG786yXNKmyZRcu2FrAmNH5X6DQ3JlklYbBX35imYQXgKnQjz9MoDv8/+1AJ5v+e0gjy2AMebXjDEPGGMeOFPDMjs4OKwITlrmaNJJBwcHh2PgpOXNPDcMDg4OL22cVBgdY8xHISmLP6+HFjlt0e2dtfZTAD4FAJ2dnbZWqYai/IUKGY8viHwU1a5HtXkBo5Jo5ttQpiRgJsqR3Es0vIzG9K9WqwtySBk0tcKtz43mgorH4wvOibIqS0Vla817EmWgotprE4lK15o3aqkIeYvlVQEWyUtS9xdoeEoRTVDgQ0T742ymRZtPdiXhhbXTlYpqvqnNpCYyiCLG82q1GiZL4gsRzZWxVGTDqP9Hq82wImAkbTg3TcCC1pV9bEYOjPqCKKJ5iKLaxEajEbRnVBOp2kXVwK1dJ78fOiQ5JPK5Dvj00eOwQ405irLZsNYmy0h0Ws7bb78dALB69eogN0+07NE2i8LzvGBM6KdqVZWxWi6cKpmzalWXLReq6KA9eDC/OI+KlSISDWqCazr3wr4OOgdUk6bfi8Vi0P5R2/6o/4syCNHj1toFOVbUd0f9gtSHR8e+MlvxeLzJYEfY6Fpd89LIuZms1D/GrPU+IxquW9uDasXyviO8ZjXLRgarlFy0HJ7nLYiyZzn21GdGz1UfiFXrN8g9D8j76tTkGGoNfb6UVbWr5bLY1qumvCm/VBZUAzZNP+cK8lxVOmbTYb+gGuutrFQmmw76U/NvKfSe+jz1S9N1ozUXWVQeRPOXRSOiLhbxM5rrqblOqpVAeM1Rlq5QmEMqJ8/J5rk+xqXPUrGwX1hUrnqeh/lCKfSb+hjkmR+sXFLFhJRD84mVAsbQC8qiucyUoWpqqsNsVDM3jr9g7qjsmZydwXLhVMmbNUOrre/7wXzQsdy65kfnjM738XHJz6bjQSOJ6vHBwcGAYVVGQmXEmtUyr7JF9llZ/RRFfgdWKjWL2Vnm5eG8yueZp+nBXQCA888/D0CzP3Ss5PP5YPwqor470QizQU5QRrZs+E1LjiKj/dUpq0ArAo9jaHqSfmirRHYYvxH4+9FjzQAAIABJREFUzEQRfW+Jvj8pWiMwR6N4NoJ3Or5zcT3I5kV2Hzk8Evi4T01IJN9p5p6cp59n92qWldEP9+4Wf6l77vgpAODAU4+gv1d+6x+Q/u3sCrPIL3/ZzwAAVvULldKZZV4zMsTF4iS6uqRf9V0iatmjfat+uLp2PfHEE+jsEoY5weiulSPCSNUqajkk7dPfL3UB5d7M/FF5ZiaFEtmsw2MSyTDuSV+etU2scEZH5biO7bVrpc4jI0v7Zu/bt0/+UQOnyDah6ee/dPS/ZFLqVGTU0Y6Ssvvye9dgAvkerglktRr0sUL5+BgqxYveVBlj3gdx7nyNbb6NHQSwvuW0dQAWz2zq4ODgcAJwMsfBwWG54OSNg4PDieJFbaqMMdcD+EMAr7bWtvLa3wbwBWPMxwCsAbANwH3HcT8kYvEFeZxaWYY6o79p/qcoq7PAh0UZlfn55jmRfFCpSE4DjdKnWiS9Lp1OL4iQFwtylIQ1MIsxGFEtXNR+PeqXE2VZgKaGIZpDS48rUxW9Ryui+bCibF9rxECgqdWBbSwoe5QhDHIeqS+Vsm/GIKY+co3wPYL7K9RvScvBw41GA7FI9KDgksjxBTmoWsq3FBMTvXe0nRqNBhoabTESyTGqGYm2T1MTXl/Q3/pdtYzat0NDEiFHtU3PP9/U4kQjv0Wfp99VE6jazEajEURZjPrDLdUuS2l9Wo9FI1WdLpxqmQMYxEwChdlIrjba+nuZZDMHmTKXnI7JiNZT+69VG6p9GfVXbOY6ouasGDYLah2DUW2vMppReaFjonU+6XOi/pvq06TR1vSSYlEjHmk00yJy9LuqN0RjefCQsEiaX82nf5Y6q76gHyfVnB3MPaV1mWYUujTzZHX0ipb2+eefxQHmp9L2zXXI/Uvz8l3zVKVSorHNULPu+35Qb23DeEJZLLBcUp5qEK1M57daKxRhNfosovMg/F39lHS+ap/6vr9ATuv3qG/sYrI5ahbf9EvKsA7h9Suav8jz4gHLqjJEGbKo/G6N+ifXegvkVLTM0TU3yqS1+gLrNcpyxOMqg8I5cVo16prLqlk/GSs1G15zTwdOtbzxPA+5XG6B37TWt7u7O5gTKgN27RKGSNlsZai0ffV7o9EIch0qU6VQllXngeYjKzLH0OQYmcKkQSZNHzmrPoNyj7Fx2TOWysMAgHxO348YUS/ltUR8XHxsRMe51kmtVfw60MVcWzoXj4yKf1A14rOodZmYOQIA6PR60N1DHzJlYJgLMmrBFPV7bJWhgbVNOexDpr5GsHJtrof9kJB5OHJoBM8++SgA4LGHJVLf0SOSS6owKn16+auvkTZkiOnhDqnD6C5hqnrjVZyz9iwAwAUXSlQ/9bFOxKWtOvPCUOVZzilGQWz49BtNGpQ436JrR7BGJJQZGgm1TzKZxExN5FiBvrP5PHMpUnbrHH3+ebm2YXROy/k9uQ5o4OxqD8dbKSzXtmzZwjLLPe+79xEcL9QiYEGU4uA9ubHkO02VEXxrs1KeiRH53tlHJr27CI9RXatl6aP5WfoDTpxipsoY80UA1wDoN8YcBPBfIJFwUgBu5aS5x1r7QWvtLmPMvwB4AkKZ/4ZVWxEHBweH44CTOQ4ODssFJ28cHBxOFY4n+t9Nixz+hxc4/88A/NkJlcJKlBg1lUxGIra07jpLtbD2LspQKIIcHw2Luq85SCJ2vpr/SpkhshBRrWEmkwk0bgED0QjvXhfT5mu5lmJXoprAaB6pVpYl6qMTrX8tEu1Lry2VSkF9tP5R7WRUyxTNraL5slqvjdYl8HEi26RReOJeDDXVWjXCGu2lotAlmA9Gw99ZA8TN4mzeYlp6udSEylWr1Zb02WtqT8P90ryHHzBVQf6tJfzfom3dqqmOsnqKaB6xwoho6HL0dznrrK0YHRVN5NTkTOgeUU24Qp+l2qXJyUmsXrMxdM5SDFX0d8lZE65nlKE9lVgOmdOwPmbL0wErHQuiwjHXlM0E56r/mrZpsUoNVjTCnmpjq+WA8dDogtpeHXnRJKsvCxDOj6QRzpLJVGD/rf2gY2pujhp8X7WwjFZJsZVMeGJgDqBBXzyNFJdKyZhS+aX+OKo5TiSaNvc+dP6J9rcwKX4AR4yMqWz6UraL2OVnk1KuWq2CXF7Kan3N/cFoS9QU9/TINdPT0g6xHNm+JCOQFevYu1fy1cQ9eX69zMhSnKcZRiHTOVmrNxkkjczX6t8k7Qt+V8sDBNcATSuF2dnZZqS+QpgBSiXDVgM5Mkc28MujDDYGMU3lZfxQOdKMZFXnmmNj4ZxbVd/CxJj7hu/shvUucTwWGWwlmrdK/VqtZ5ClNt00qMHl/WdnpQ8191aTbZJnjR4dD6K82XpY1laZo9E21L9U7ql+n8rmxzMxeJaMgMprttHszDxaoYxVmdEa6/CDsaltpcRoKnlqw/8th7yxjQbK5fICtk/bdGRkJGAg9TfN6ROw6JQ/GjVWWSlr7QIfvaEhYTWUCW7md1RZIeOwr687KIcyU5Uq55ey2Unps4kJ+s509YbuZW11SYuR6PzTOkTz9qVSmYAB6R8Q2ZDhPGtoNGCyLPq9ERe5YGo5+PT/88laL2X1E4222moZ0GRJwwxwjb6lKm9rZG7qICuWy2DPXokEmG7IuM4w11GGjNTU/sel/jTsuH9U2nK4Xw5ceOnLsPWCCwAA27ZK3qmGlbGhzCCstMfUuLRTOs93gArXrtkqetYweiuZqAMHDgAA1q1bB6DJ5Gl/aL9lMhn4ZOgMI/iN0crFZ4TCak3qlmYbewldM2SMnb91Cyii8cQBeYfJ5ocBAP394q+1YYP4+D2xS6ITt74vLZUvtWmZsXi+qOZrnfcC0Z/53sqcpDNHaPFFDro8DcTiFDAN6ZP5ObnxHKNMHi9OKlDFKYPhoqKChu3S6swafSGOdkB0UgeJdG09MD0p+Zq8M+w8GWzAuK1Tp0O9Z3G+HBzTULRRc7ggDHfEHKv15TNaRq1DVGgqNEy653mIaahIq6Ehw87JdV/bgRsX3WP6QNLQHMQPm9fFvEgYeqsvLWHTxlod0ETI6nhs+JLQYLZjj7yvX9PNFb836s0NiNaBi7CackaDPCy2QfYDs06WzapZUzgsugn8iMN9G4/HF2xEmg9gkAvSy/qSoCGirY0tMP2JTviouVN0Y1yuWSRNeNNWrar5EgODaHAVSl6fIbyLM/PYtI4Oxwlx9FSTo0JZzRdIZ9OMqh6MLZoojBwNzJNyuTzr0Ny0Sotp+WgatMgm9IVMAs8keJ6HbKYDNfaBbai5Kk0AKvVgfqpTrb4QaRCWIOE122KeL9+ZZCwwIdGX9MAJu0QTPk71mKdmEvLdr6tZWjEYJ/m8bIT0hUBfkPR7EEggMLGqBYumlr0ZJCUcuCIWCys4dNH1PG9hYISk1H98ao98PiBmQRs2iLnKtrPOl3LE0pgvMWGxkTFnPE1G2kw2CgB5vnTASjnLVTlvbnYCyYQqDMIh5HVMq0zU0O7qhO/7flB2baNmeohkqD1agxHJ+frylwg2CTG+3KncLFU1CBBNnTj3jNX5xJcuvx5sBDSUvRfXxOZS9kJxJnSvek2VQD666DjeNCcMh+HWsaOoVlRJ1jRpqpQXD+xU1mSlkXWkNcDRXCEsQ33GMteX+YK+yNZ1wyjX6tp79GhhQdoBTRxbLGoy6rBiL1AGluPBXJyekufoy2W1fuYRQ37Dx+zs7IIANtpWMzMzC9Yl/U0VMFFlqG4MZmZmgk2UHmsGjZF7BZsarvldnRLQIMYXBS8WC0LoN9jP83PynCuvlKS3u3aKkmPDejHh0g05YIMxGlX6RtPiRE1YNdiJiZkgyfD4uJj11avNsQgAtQo3pLo+8e11bnYasQTnAte2TDpsKqj3UKVZ4DbRYsbfNI3l+2BM0yxw/lGZMF+VDaHKh8MHn0OWCbK7GDiqZ4OYSK/uFFPBi3ZQoenJteMz0h8TByQIw8Wv+hkkBuUa1cM0uGnThM4aWC3TxXeMhvR1hcmKO3uGFgQQ0zVf5ZtuZnVd0O/1eh0ZPrnAJPe9fRKYaMyXzVVlThS7npF2KhblWdrnA11dSPTI/C4whUaxImNJA2I895yYReo43b59OwBg587HFgRsW4hjKXKXVrboe7vhmg1ukIuzdJeYicPEKAu5Ia5XU7xWt0lhsuXES+Hg4ODg4ODg4ODg4OBwTLQHUwXR/OsuO8pYeJ7XDB1uwsxUNEFeNJSw53kLzOuiO+KAbrTh31sDNix239ZzFgtlHn2+YqF5WThkbtQB2Vob/B/V6AX1TqaDc6PnqWaneY8lAkUQ0fYy8BDT0LjKJqoJJcOON6COqeEADS/EaCzFPkbNI2OxWGDGFDW5WtLsM77QTC0a/j3qRLuU+aXXkpg6eu2xgo4ETGYiHZRd69l01lXzw3A5WgNZaJlU46Pa4lI5PO41Ua2GEN2yRbR//b1dqNG0Zp5tmWJIViXMvbiaCLHNYmc2G/WCsAaw8SDNQqUcDgBSr9cRj6tJnlyS5BwbH5dwxdGAH6rZLJdK6MjT6ZttXadZlWGmRA0MUeeY6OkWU58sNatTs88HfTzFJIs6blSjGjX5DMtPaps1hCwZgnKZyY41GWItLAtaHZeVxQnmckLuVS3RVI8s9ejITgDAvufEpOOiC6+EacjzVg1Ke+ayZHuqGspWvtfKooWv1uSezzxDE8ORPejooLldmlYHkfDM2j9aRy1vMplcwLxom0VNS4KgDiYs30qlUmCKqUxu1OldtbwpJt+s1poMEcC5T/GkZnWWDFU6reZ+crxAk041qeru7sbcrCaEZhhoMufVCp8TCaWuCV8nJ47wGWnAqLZdzP1yDIdemCeDQCf8wLKj3mwHL5EN1beLJpsNrgWVyDqa6ZDftY27s8nADKleI3s1qkyBrNtDQ+tD92iGb09h/XrR7q9dK+foHE3Rgf5bX7sVZwpiXgwdHR2BrFdNfauli9Zdg06sXSvpr6LWOFETf2vtggARzSTA0odN0zZ5Rqkk/eDVm2NZzQ0HBoXF0lDWfT1rAADT0/dI2UuUGUkm50UqeE50HdQJoOyysm6Wk8qLq/XQJPYfEDmXTHSE6qesSnRdTKpFk/VQohVOUpO5c/23MZ1v4ZQgaV302ObZ3h7EODerkLYpT0r9emM0g6QFSUmDRXGdnJo4iDxZ9UsulbDzpYlmuHsASPcK61yvS93OXsdkvGuG5RlD6wNTfZ9rd4oyojAj602lKsxVmm05PcPw+H0yTmYLJUxw7ETlXzy1eICOwKS9WMT8FE21UzTRZDj2hiY7pznw2JQmu5e6pCmf/HQeAynpq/W0mHnw6H5pI1psDPYJc3fNq14NALj5+7fIvVveRZd2S3jxHJBH9i2aEEHlsY8GUI/cnyHV9ejxejw4psrBwcHBwcHBwcHBweEk0BZMlbU2ZHsbDcfZ+r8eimr1l0psa4xZEC52qd16zCzOfsTj8QVMWJR9CpINR7THnuctCHwRZW+ivwffW06L+lEsxXYFWhza7psWliv6/KgzaVS7oaiVa8h1d4bur8n2ooEqbEQTYIxZ4LsWDVQR7bPo77VabYH/V/RcRZOpCwc0McYsYCCjGr+l+sVau0BLvVTwkaXGYWvIVh0j0XDXAZMYCejh+36g4dQyKWM1xASInZ2iGerp7Qo9o5casmQ8BjAwi/pbebTRVi2Wjn8TYfmstS9g53xmomEtyqXagmTiAWMTjwU282pTr8yiMlb1wJckzAbVGyXMzGggAGlb7S9NxphmwIgKfSTn5+dYMmqQvTjmZuX/huaoboTnbTRsezA3TTwICOAxcEy1oqF1VXMc9jXQuqQpC1pDvQd+CUbZcPo60Y8gaegXkZIxsn/PQyjOs+3WS5jgVWuFdejtpt8A2/ngob0AgFkmGD4yKv5a+Y46KvTLUp/HSlXaQ1muQI7Xw/KtXq8vcMRWLbAe12ubyXnVAkEZpEbTKoG+IxrsI0gEzjYs18IJfFVWV/1a4OekKTjUZ6rOAB5+IOrDbTw5XkIHw0JrX2gdAllP3xfV/qus0XFaKhbgU2+q9VSfknhcyrhh/VYArfJCNOjpdBr91KJHZZne//777wYATExIyH3Vyl911VUAxJc3uj5HrUSiSbF17Zmbmwv6ZGRU7q/tn6mIrDujYAzi8fiC9Urrn0qlFgQc0XaNWqdoX+n34eFhHDwogQH0Hso66b00GbCOUe1nvVcr27V79+7QPWbmJJWCyi4dj7lOJu61jUAW6f2aqT+knsqQK0PZTE3DcP3lBnq6GSKe8mXiqLKruVB99VqtSzqTDdoxGGfKFqvlkAYB4bgrkxFOkxWyxQlMHNwPAHjy4ccAAF6FZZsRVrF/QNqjzCTXu596EACwOt+BTEye28uk4qnNEmxCmdqBgQEAQF+fsIANvtxtXL+O5TDI98l8n5yQdtbAO13dDC7El6taRT4zaaZwmGdQsFgqmKNB21B2a3+orNDv2qfxeLzJlE5PhO6hn+q33d8jY2eU5RxYI/M+P9AJj3YvWwbknOI0k1BvFb/bI0yOPDoun888I356utYCC98pzzS8tN6UHBwcHBwcHBwcHBwclhltwVQZ40lIx4h/SmvyQ9VSJBJh2+FoOPCoJtJaG+zeVYMY9Z0JtNMm4mPF8yqVypLR/aIMRTR0aGsSxaX8sJZibJq+A/FAwxgN3R2wHmqjrBpA+s+kk8lAWx0kHoyFy6OIsl0B+5ZIoRFhYFIMb6oRCjVSXGOJMPGt/0dZnqi/0mKJnKNtFdXWL7hXfGGkv2jCS0XTXy/c/q1s4LGYmsUY0tbP1nyVx0oDoCe3sqPR8RUkd6WWfG5GxkGlJJowtYtnZGl4qKPG5I5dPcJeVa3cS7VWlbhG79JQugv9AqPs2hkbBdCK5k/9cprzViPN2QW+bhrBTL+rBlX9CfT3mDXw/UbofhMT4uPg1+TaeMIL3UujBXZ1abTARHB/1QzruToUo2GZW1Mi6HjVMdT0RdRzwvMmON9vJifVeunYm5+Te+XTojlVtqleZsjxjJSzVJhGkgkrDx98CADw7OEH5NqMRJSKe3KPhmEUS4b4rlWlnZLJOuKUUz7ZPA3DrgxNEHGMfdhM2hlf4Leo41bXgGjKgXpNxrGykslkMmgrP/DnVIuCaCLnZKgNVRucTCbRYLSpWkXnuraz3CObkv4OIoBWuQb6dRTmNLrbXKi+qjlOJaV/NqwXv8kgKiDr1tnZifWbdgBoskgBy8B2MYz4FU1mHovFADJxWi8d37fddpe0ZVaOD2/aFtQXAMbGycbG0kumzchkyMzFmZxZQ2vT2SXXkQ/kUDPKJkPKN8Jj90yAhlSPRu5r1cprv0XnXTOZc5jd0zE9MjISMOEa7U2fo32mjIW+L6jPVatViJZJ76Xn9PZ3L3p8cDX9tWCCskcZK59sS1wZ8Vp0PFAOejlY+vcV5sdC94qu9cG7YLr5vlCkf2OvFbarTvlGMQNPSW8/YmFCq5DxkUMY3Sn+nMOMtprMU87EZM48f2g/AGAfE8aXi1LOVf1xDPTIepumvNfox82Q8WH/2wTfnywjUpdmZxHne1q+IxwWXn0rjdHIinw/Jgs+yhDr3b09CyxZdL7rp46ZcYZLbx2PM2NMJ9IrMmmBVVSVdQl8XaU0CUY8HFy1Ht4co7wyiupwnzB0P/nBbQCArReLPLrrHmG5NTru9PTsgvfuMxWOqXJwcHBwcHBwcHBwcDgJmGMlAF2WQhgzBnEmGF/psiyCfrRfudqxTIAr14mgHcsEvPhybbTWDpzqwpwutLHMeamNi9OJdiwT4Mp1IjiZMp0xMqeN5Q3w0hsXpxOuXMePdiwTcJrfcdpiUwUAxpgHrLWXrXQ5omjHcrVjmQBXrhNBO5YJaN9ynQ60Y13bsUxAe5arHcsEuHKdCNqxTKcL7VrXdixXO5YJcOU6EbRjmYDTXy5n/ufg4ODg4ODg4ODg4HAScJsqBwcHBwcHBwcHBweHk0A7bao+tdIFWALtWK52LBPgynUiaMcyAe1brtOBdqxrO5YJaM9ytWOZAFeuE0E7lul0oV3r2o7lascyAa5cJ4J2LBNwmsvVNj5VDg4ODg4ODg4ODg4OZyLaialycHBwcHBwcHBwcHA44+A2VQ4ODg4ODg4ODg4ODieBtthUGWOuN8Y8bYzZY4z58AqVYb0x5sfGmCeNMbuMMR/i8V5jzK3GmN387Fmh8sWMMQ8bY77L75uMMfeyXF82xiRXoEzdxpivGmOeYrtdvdLtZYz5bfbfTmPMF40x6ZVoK2PMZ4wxR40xO1uOLdo2RvA3HP+PGWMuWeZy/QX78DFjzDeMMd0tv32E5XraGHPd6SrXcqId5A3L0bYyx8mb4y6TkzcnXi4nb1amHE7enFiZ2k7esFxO5pxYmZZV3qz4psoYEwPwdwB+FsC5AG4yxpy7AkWpA/hda+05AK4C8Bssx4cB3Gat3QbgNn5fCXwIwJMt3/8cwF+xXFMAPrACZfofAH5grT0bwIUs34q1lzFmLYD/COAya+0OADEAN2Jl2uqzAK6PHFuqbX4WwDb+/RqAjy9zuW4FsMNaewGAZwB8BAA4/m8EcB6v+XvO1zMWbSRvgPaWOU7eHANO3rzocjl5szJw8ubE0FbyBnAy50WWaXnljbV2Rf8AXA3glpbvHwHwkTYo17cAvA7A0wBW89hqAE+vQFnWQQbotQC+C8BAMkLHF2vDZSpTJ4B9YLCTluMr1l4A1gJ4HkAvgDjb6rqVaisAwwB2HqttAHwSwE2Lnbcc5Yr89jYAn+f/obkI4BYAVy/nODsNdW9LecOytIXMcfLmuMvk5M2LKFfkNydvVq5sTt4sXaa2kzd8ppM5J1imyG+nXd6sOFOF5iBRHOSxFYMxZhjAxQDuBbDKWjsCAPwcXIEi/TWAPwDQ4Pc+ANPW2jq/r0SbbQYwBuB/kbb/tDEmhxVsL2vtIQD/HcBzAEYAzAB4ECvfVoql2qad5sAvA/g+/2+ncp0qtGWd2kzmOHlzHHDy5pTAyZsVgJM3x0TbyRs+08mck8NplzftsKkyixxbsTjvxpg8gK8B+E/W2tmVKkdLed4E4Ki19sHWw4ucutxtFgdwCYCPW2svBjCPlTONBADQfvctADYBWAMgB6Gdo2i3PALt0J8wxnwUYiLyeT20yGnt1nYnirarUzvJHCdvjh9O3pxkIZy8WRE4eXNcaDt5AziZc1IFWCZ50w6bqoMA1rd8Xwfg8EoUxBiTgAibz1trv87Do8aY1fx9NYCjy1yslwO4wRizH8CXIBT5XwPoNsbEec5KtNlBAAettffy+1chQmgl2+u1APZZa8estTUAXwfwMqx8WymWapsVnwPGmPcBeBOAX7DkwtuhXKcBbVWnNpQ5Tt4cP5y8eZFw8mZl4OTNcaMd5Q3gZM6LwnLKm3bYVN0PYBujlyQhjmPfXu5CGGMMgH8A8KS19mMtP30bwPv4//sgdsjLBmvtR6y166y1w5C2+ZG19hcA/BjAO1ewXEcAPG+M2c5DrwHwBFa2vZ4DcJUxJsv+1DKtaFu1YKm2+TaA9zJCzlUAZpRCXw4YY64H8IcAbrDWFiPlvdEYkzLGbII4md63XOU6TWgLeQO0p8xx8uaE4OTNi4CTN07eKJy8OWE4mXOCWHZ5czocxU70D8AbIFE5ngXw0RUqwysg1N9jAB7h3xsg9r23AdjNz94VbKdrAHyX/2/mANgD4CsAUitQnosAPMA2+yaAnpVuLwB/DOApADsB/DOA1Eq0FYAvQmyeaxCNyAeWahsIDf13HP+PQyL7LGe59kBsi3Xcf6Ll/I+yXE8D+NnlHmOnqQ1WXN6wHG0tc5y8Oa4yOXlz4uVy8mZlyuHkzYmVp+3kDcvlZM6JlWlZ5Y3hjR0cHBwcHBwcHBwcHBxeBNrB/M/BwcHBwcHBwcHBweGMhdtUOTg4ODg4ODg4ODg4nATcpsrBwcHBwcHBwcHBweEk4DZVDg4ODg4ODg4ODg4OJwG3qXJwcHBwcHBwcHBwcDgJuE3VSwjGmGuMMS9b4rfXGWMeNMY8zs9rW367lMf3GGP+hvkPYIzpNcbcaozZzc+eyLMeMcbsMsb8ZIlnftoYc+5J1OdiY8yn+f/Zxpi7jTEVY8zvtZyTNMbc0ZL4DsaY1caY77Z8/wjr9rQx5rolnnUn6/OIMeawMeabPP4mY8wfv9g6ODi8lLBcMsYY8/st83GnMcY3xvQu8swzScZ81hizr6VeF0V+v5z1fCe/DxhjfvBi6+bg8FLDMsqfLmPMd4wxj/Id5/1LPPNmY0z3SdTnrcaY/4v/v8oY85Axpq4ygMcXyIGI3DKs0x5jzGPGmEuWeFbSGPMpY8wzxpinjDHv4PHfXKp+Di8Cyx1j3/2dvj8A/zeA31vit4sBrOH/OwAcavntPgBXQ3IJfB+M1w/gvwH4MP//MIA/5//dkIRzG/h98DTV5ysALtRnALgcwJ9F6wjgv0AyZev3vwDwFv5/LoBHIbkcNkFyEsSO8dyvAXgv/zcAHgaQXen+dX/ub6X/lkvGRO77ZkhS0NNRn2WTMQA+C+CdS5QjBuBHAG5uPQfA/wLw8pXud/fn/trhbxnfcf7Plv8HAEwCSJ6G+vwbgH7+PwzgAgD/FJUTUTkQkVtvYJ0MgKsA3LvEs/4YwJ/yf6/luVkAD690375U/hxTdQbAGPNeaiAeNcb8szHmzcaYe40xDxtj/tUYs8oYMwzggwB+m1rQV7bew1r7sLX2ML/uApA2kkl6NYBOa+3dVmbYPwF4K897C4B/5P//2HL83QC+bq19jvc+ukS5bzfGXMb/C8aYv6Qm5jZjzACPX8663W2M+QtjzE4e7wBwgbX2UX2GtfZ+SFK3KL4J4Bdavr8DgGp23gLgS9bairV2HyQR3BVLNLU+91reE2yT2wG8aalrHBzOdLS4b/oqAAAgAElEQVShjGnFTZCkjouV+4yTMUvgtyDKnKgsjT7XweElhzaUPxZABxmtPGRTVV+k3PuNMf3GmGGyP//IenzVGJPlOW/gbz8lo/RdHj8LQMVaO87y77fWPgagsUgTBXIgKrdYh3+ygnsAdLPOUfwygP/KZzVanlsEsN8Yc6Iyy2ERuE1Vm8MYcx4k6/O11toLAXwIwE8BXGWtvRjAlwD8gbV2P4BPAPgra+1F1to7X+C274BoJioA1kIyTysO8hgArLLWjgAAPwd5/CwAPXyhedAY897jqEoOwEPW2ksA/ASi+QVEA/NBa+3VAPyW8y+DZAw/HuyEaJhhjNkEYIp1A+vy/BL1WwxvA3CbtXa25dgDAF65xPkODmc02lTGaNmyAK6HbDiOhTNBxvwZX7r+yhiT4v3WQuTOJxY538keh5c02lT+/C2AcwAcBvA4gA9Zaxfb7LRiO4BPWWsvADAL4NeNMWkAn4QwY6+AsF6KlwN46Bj3VLTKgajcOqb8MU0TxT+h0ukrxphVS9zf4STgNlXtj2sBfLVFqzAJYB2AW4wxjwP4fQDnHe/NKMD+HMD/oYcWOc0e4zZxAJcCeCOA6wD8EbUuL4QGgC/z/88BeAUneoe19t94/Ast568GMHaMe0phrfUBVKnBiV53ovVbTCt+FMCa4ymLg8MZiHaUMYo3A7iLZToW2l3GfATA2ZDNWS+AP+Txvwbwh3xGFE72OLzU0Y7y5zoAj0Dm3kUA/tYY03mMa5631t7F/z8H4BWQ+b6XDDYQfrc4bvmDsBx4MfInDmnTu6h0uhvAf1/i/g4nAbepan8YLJwg/z+Av7XWng8RHOnjupEx6wB8A+Iv9CwPH4RMNsU6iHYGAEaVRubn0ZZrfmCtnacgvAPAhSdUK6nTYsJAUcJx1otIASgvct1BAOtbvrfWLwRjTB/EbOd7kZ/SvK+Dw0sR7ShjFDdiCdO/40BbyRhr7QhNdCoQ9kzNbS4D8CVjzH4A7wTw98YYNUNyssfhpY52lD/vh7g4WGvtHgD7IBukF0K0DqdS/rTKgRcjfyYAFCFtA4hPVmtACydnThHcpqr9cRuAn+cLP4xEwOoCcIi/v6/l3DkAHYvdhBrb7wH4SIs2RSnvOWPMVbQffi+Ab/Hnb7fc/30tx78F4JXGmDjNc64E8OQx6uFBXhgA8cn6qbV2Sp/N4ze2nP8kgK3HuKfWrQ/AmLW2BuAZiMOn4tsAbqRt9SYA2yBOq4vh5wB811pbjhw/C8dvJuTgcKahHWUMjDFdAF7deuwYaGsZ0/LyZiC+GzsBwFq7yVo7bK0dBvBVAL9urf0mL3Oyx+GljnaUP88BeA3vuwpi2rf3GPXYYIy5mv/fBDFhfArAZvqDAcC7Ws4/bvmDsByIXvdtAO81gqsAzKhJo4K+ZN8BcA0PvQYSbGyx+zucDGwbRMtwfy/8B5nsOyERpj4LcUzcC+BOSBSq23neWQAeg9DWrwRwA4D/h7/9ZwDz/E3/Bvmb2ug+C7ElNjzeBxF4u/nZ21Km34dMyp0A/lPL8ZvRjMBzO4BL+X8BwJ8AeBAS5WqAx69kme+GOFHe1XKvxyGmOwAwBNHIzAKY5v+d/O2dAP6y5brbAGxt+f5R1u1pMOpPtKwt5b1+kfb/LoDzV3ocuD/3d7r+2lTG/BIkAES0rGekjGGZHmc7fA5AfpG6fRbh6H+/B+C3Vnp8uD/3dzr/2k3+QEzhftgyX9/TUtZHWv7fz3sMQ96HPsHyfQ2MGAwxYX4Kssn6GIDP83gWElBDy3I5Zc48hFna1fKckByIyC0D4O9Yt8cBXLZEWTdCrIoeY103tPz2EBgN0P2d3J92poPDKQftoW+w1u4zxhSstflFzslbawv8/8MAVltrP8Tvvw1gzlr76WM85+sQ7dTT/P42yIvWfz4FdVgF4AvW2tec7L0cHBxOLV4KMuYYz70DErp96nQ+x8HB4cRgjIlBzAWHIIEhvmut3bHIeXlrbYEs2d8B2G2t/Sv+9j8AfMda+6/HeFZIDhyv3DrOelwM4Hestb94svdycOZ/DqcJxphbATxumw6aS+GNhgk+IZqnP2357eMAKotfFjwnCeCb+rIDANbab0A0SKcCGwD87im6l4ODwynCS0jGLPXcAQAfcxsqB4e2xC4An7ZiEvxC+FVjzCM8vwsSDVDx/0IYqyWxhBw4ptw6AfQD+KNTdK9/93BMlYODg4ODg4ODg4ODw0nAMVUODg4ODg4ODg4ODg4nAbepcnBwcHBwcHBwcHBwOAm4TZWDg4ODg4ODg4ODg8NJwG2qHBwcHBwcHBwcHBwcTgJuU+Xg4ODg4ODg4ODg4HAScJsqBwcHBwcHBwcHBweHk4DbVDk4ODg4ODg4ODg4OJwE3KbKwcHBwcHBwcHBwcHhJOA2VQ4ODg4ODg4ODg4ODicBt6lycHBwcHBwcHBwcHA4CZy2TZUx5npjzNPGmD3GmA+fruc4ODg4OHnj4OCwXHDyxsHBYTEYa+2pv6kxMQDPAHgdgIMA7gdwk7X2iVP+MAcHh3/XcPLGwcFhueDkjYODw1I4XUzVFQD2WGv3WmurAL4E4C2n6VkODg7/vuHkjYODw3LByRsHB4dFET9N910L4PmW7wcBXNl6gjHm1wD8GgCkkolL167qA0iaeV6MZ8meb2ZmFh1deQDAxMQkAKBhGwCAfEcHAEAZt4QxAIDZ+SIAoLenG/NzMwCAekN+6+7sAgAkk/IcywfXa/JZrlQAANVKGQCQy+cxNzcHAOjp6QEAjE+MAwBiMWnCer3G73LPjo5OAEBhbg4Nli2fz0nZG1L2Gp830D8g3+slAEA8nuAzJqRO8QQ8SNm7eN9SReqXSCTZZvL79LTUNZPNAADmCrPwjJQxFpeyZdK8hmX3jBw3kHKVa3U5PyHlmBofRSKZlfbs7QYATIwdYV1Yt05pl2pZ2smyrQcHh1Bhe84VZthG0q/pdCbUduw66ECIJ6R8fq0G43ksIz95suXzvRgHj+VxtrlFcFP4PFf7bH5+HgBQq8nztc+qDV/aoVQKipNJZ0PHEomUfCblXtWq3KNSkc9MVn430qSoVMtBH3V197Dt5Lcyx2q+Q8ZHoVhg/RMsZxG5rIz/XEb6KsZ6Tc/JtSW2cWennDc9O8f2kofEPAOd7vNFGdfxuLRlKpUKtZW2R0Lbv15HNiv1L7H+NY6ReFzG0tjkxLi1Vgby8uOY8gYIy5xMJn3p5uGNKnJg2RnNcWbRZPF1TDVCnwj9CjQ4bhq+H8xxPTcYyz6fY6jP8jgHY9LXKvs8A/hW7pfguJmhPGhUq6Hn6r0SVj5tIgafc5qPg1+v8xo5UChybLO+2ve8DJ7noVHlmEpJH8c4XkzEukHlSp0PSybjMLxfg/OxXm+Enq93aHAexbMy9lO899zsJIzOV5bR0/VB245zTz8N2y7mGVhtu6TKZy2tXBun3FRZkIhrxXVN8IIywtb4XF2XBH5xSu6tp/HeyVSWt0o22xV+cFbruUafUpN5XJybBiDypAopo869OOWmylNP+463iLMOiWQi+L1er/I3aee6L6Utl8tsDbnY9+UzlUrwnn7QZ6lUmsfC417nRyPy3aNsNoUqUg32XTLJ51C2Ul5m+bxKWb6nuTZNzM+hqm8nOtADES8HRkbHV0rmnLC8McZcmkrGW3+TT85tY9Aii+TTr6vskDbSuWOaCyUAWYMtwn2jcyR4jmE/c07VatIP+r6SiMUQntVNNOWgjdwzkEDQUVDjRKMoRIqyo9mH4XvpuxFsc/0P5reeyR90zKis1nslEgnEWY9ARgeDxYYfy2fo2FY5HYt5wXoXi4XfLQwi7R2Rf37DBnMymZS5onPV88L3CN5LIu3RsM321L7xWTadz/GYyhKE7hVCUG1tB30ueO86j3O+894xzws6QGXSwvtTputaGRSExwFUtI/4/DTfLYKxg/DYiUzt8HODd7jwmqGyqjkMVE4lESyrkT6LojnsFvbxgnrz69x88bjkzenaVC1Wo1BJrbWfAvApAOjIpez6VUm87nXXAQCyGdko/eAH/woAeP37341VvfLCe8dP7wTQfLk7NDICAHjPe94DAHj67rsBAAdn5PebbnobvvPFfwQAHJmWwfqBX3wfAODBR38CAOjskuedfc7LAQBf/upXAACb1gwCAMbGxvBzN74LAJDvlHN3730WAPCVr8i5V1xxBQDg/PPPBwAcPnRUnvHgwygWZcG85KIdAIA9e54GAKwe3A4A2LbtLADALbd9CQDw1rf9AgCgyE1dJpPBKy+/CgBQm+dLLYq81x4AwMyMbFiGhobkd74Y/8NnPg6u0/iVX30vAOC73/8XAMAv3PQrUv9+qednP/7XAIBf/OB/BACMV6W97vnh17D/gLxA/PoH3w8A+MaXPgMAiMdlCJ1z8aukrQ4+CgB4ds9BAMDPveN9yOflRf/xXfdKG3bIRM7mZVM1Mysvi7qgVmuloN4AMDdeQF9fn1TChheLTEZexqyd5ycnuG9C3/O5TozPyDnj47Ihnp6WzYsuXvfccw8A4LxXvR4AcDfH0qaNmzE8PAwA2Lx5CwBgdLfU79KrpA/TGRmfn//ctwEAW89ZBwB49WUvAwD8+PZbsWbtKgBALi9jKJWQa2Ynpe/uuuenAIDr3yzzwFAwZ3NdwYa/y4hSIcnN248f3gsAeGT3LgDAO98uZf/E//wyAGCgR4T8cwf2Ael+AECMz00ZaY/BVVLWFOfdQ488KHXYvhUAsOuRndhxvtRzfl42a3t2HwAArB7aCAD4ws03y4GVwTHlDRCWORecf5793je+GCyGzU2QXFYtlZDki2CVmxh9AfEbck2d89OnUqBelTlZq5ZRKMxKwViyTFbG/NHDIq/qfNn0jbwwpztkfCf5AtvZ2Y1YVp5vZ2ScHnla+vrIg7fLcZa5yM8BX57Rfc5Z2DslZTkyKXOpUZY6pKi42Tc6CgCY4YtDslOUJam4zHmDOsqjhwEA12xZzzJyca/7bCv5zPfJeCrOyzNWr+kPlD3Tk9JWE7Py3Lzh/bn63XtA5n4pJzJiR6fcK52uoVaSOnTlpI1yVA6BZU5tXg0AKHTJszo6ZXynEkl0dsq55ZLIrbmCnFOsUWHGl4vhLTLGswmRNR29smZ6qRwG18i8UMVBlooV3R5NPv51AMChA/sAAL2rNkhdfDmve3AYA8OXAQBqXOx1Wxa3Mo9Ksw8BAO76tsjk+bExAEDdprFzVOrwrp9/JwBg56OPSDky8qIyOiJrTL5TZOD6jdJPZ3OuVqtVjB2Rd/98XtaFsi9jdW5Oxuf+p3bKNdsvAABMz4hszOYSKM5LW+mmTudBOp1GK1J8/v79+6UcA/Is/PQQMs+JbKvw5XoN2/TAUemXjYNSl8qMNFDvgDzra4/ejZlNonyaKVBRx7npUy5+9P/7xErJnBOWN9lMym7fuiZYt1S26KeXiqFalTE5MS4LNsUK1q6VNjNW+kzXXJVZlUoFft2Efove3zSk78YoF0bGZB1Zu0rW/t58FnxccF/9bEI3YlQEUSEUjyVRLEk/j4/LfE4lZS1ZNSRyzYupwknupGNJ31M8z0MswfUuzo0J7z/Dd70n9x9iXbiZikudt2/ZHGwa67Vy0CZAcxOvCohaoLSR36emZlnOXnR3iwzK5yjnqGBpUDFRq8hnlWuxz3eLsfEpTM+JjN5xtrz/JRJU6sTZqmzKVELqNs93HO3zhu8FbXLoiMwNlTObz9oEAMh4UreYUUURFWUtm1w95nNz41upw/SM9PvYhIytbKfIu7M3U8bBB6h4iVFGa9vpZ6BE4bjwKM0SntTp4NgkDk9L2buoVF4zJO88lsoccM3w+B6n47W1Hnr/apl9CKk3YnLPmWn5Pl+W8nR2icwYGOxGjfI9ySmqZY+OZR0Prc/W+umY1O/apj+9Z+dxyZvTZf53EMD6lu/rABw+Tc9ycHD49w0nbxwcHJYLTt44ODgsitPFVN0PYJsxZhOAQwBuBPDupU6u+8DoDPDEXtHSjRwR7d3GrcIKHJ2fxJ133w4AuOziSwAAE2OiUbvisssBAKt7RCOy/YYbAACzVrQNzz67C+9/v7Ardz34DACg3JCdZ6Ei2oK9Tz4HAOhddTYAIEc26k1vfiMA4JOf/CTuuFNYrUsuvRQAcPiwaE3+9E//BAAwNi4a6CFq/e+7V+rwq7/yQXR1UeN2RLTDOx8SJuBlb7xI6rlRtP2deXnev3zzWwCA3/qdDwEAarUKfvvD8v8N178BAPCKl0m9b7nlewCACy4QTePBg2raJV27fv1aVAdkh//MbmHI+vt7ATSZoB/edjMAIJ2Snfk/fubj0k5x0V7/zgffj6OHpOxVmkFecpG0gzJlW6lNmxmXZ2w/R9py34FnA01nZ7eYXcYTojWYnhWmxKeGfbZAs8OYaD5MRTQhqdwQqg01k1LqWT5nK6IhatSl7B15eYYXV82d3HumWAy0RIP9oj0ZGmSZp6VO732PaHi7h+Rz387dAIDX/cw1+CeynffcfwcA4Hd/+bcBAKNHZezcf/8PpF0uFSuQjh7REH7n+98HALzy5VchlZb6fPMbouGenRUt2euueysA4GffeD0AYOKomFZ+53vfld9/9k2o1kinl+Sas4dFKz47J2143nnnAQCSVJP88s/9IgCgUBKN5HeKP8C1bxCN9113PwAA2P2AjOmenMyd0pxoeTpSMi72Py31X7N6E+ZmRdM1X5S22rBRWILRURn3K4wTkjcAAGvh+36ghdK5oGyUZ5varDqZmVKJJlM0g4uR3VAmI9A6o4E6TRSUfW3QhKyT47NKE48qx62piabXr8t4LscMOhLCvMTJLA6uEVZl5AFh6xNQ0z0ZA420jPWJyaPwTJr/y1ga6KLGmKzs+rXCJqTLIgPLNEPyp0STmc9kkaHpRqMRnpdqaaumJE0TmljQDspEBdrUBLXLMWrOK3J8Q15kQ6pTPldzvhb8WtN0zmp7k32iNjKTImvdkLatVmRspuLdiHtsd9Z3gDJvZoZaYGrujx4QeVWvSdm7ad7dMzCAwvh+lm0YALB1k8w5n0zR8zRFr0yJdn4vtfT5bmlbWyogRcYuvlbmp8/5GZ+UuXX3rSK/qwVqf+NrAQDFoocrrxQLhlRgQiNQ7eu6NSLHDpNRTCZUCy919DwPFY7Zvh5p1yL7u06t+JYtssbOzkld1PQp5iVRpHnjhg1S7wMHRFGrZtP5vIzLCpnUGNlXW6VWuBFHb48wfxXKvgzbTudK94D8PkuWV+uWyWUxRhNVS5Y1R9NzxFY8E8yJyxsj2nCtt67PKmNKxWowV9SypZPssY7VhKdmWap9Vy6jgVhMzVnVDC7MKlD8YI7rhZrtd9DkPB5vHlNzqnpd5pkyCLp+xSJmaMazKBTkvtPTsj5t2UyGAlXWgaxDPRkql97b87zgWMAucO6qFY5H6xN1H+jpEJmRTADGSttVK5F7RCwQPLa7rr0JmlaWy2VMTkpZkynZL1d9KbNlOwem/GWa0JHJmpmZQ0+vyOpEiiZ7fLPWkaoWM6UirRzYeAYJntHALN+HLDnDPrqFpMjCJdkvahYYp4xtMos+bFBvyl9+n5ycZtvJ84ZWkZGn7IwZi1qV8y22kMUBmgyOfleT9kpJ6lQoFIL2XDXQz2rJ81Ok6NWkMkY5r/PA9/3g/gGrxPrV2Fgqd2YKItOSgUmx9MfeZ/djcJU8t8E20/nlax8aZbBoqh5Xc2e7gJFTs9MC5+Px4rRsqqy1dWPMbwK4BWLx8Blr7a7T8SwHB4d/33DyxsHBYbng5I2Dg8NSOF1MFay1NwO4+XjO7ch14Jorr8GGDcIcjD0vmrdzN28DAHR15/A8fZjuuEv8Tt7zrpsAAFlqidUf5ood5wIA9o6JdmPfvr24dLvYpF5zzTUAmrvVL/7LpwAA/dy1H3heWIfubtEQHTkiWt4PfOADmJ0XbVyK9uT33iv+QcoQfOELnwMAvPnNwjrortv3axgfF9v3IfoFvf71r5Xn9AgjlsnKPdPU4uX5jCLt3h985EEMDort8+iYMEYa9KG3T8q67SzROH75y+JLc8455wAAkok4LrvoagDA8CbRgvpWtBYZ2rmrVj1GTVhZtdXUhB4ZOYoEtSQ/IPMytFo0AocOS3lmZ+Sa83dcDACYpzZhYnwm0KypQ6PafxsjWvuYqr6pKUjR2VM1EY1GA4k07cipcjOenJumo7NpUGtBjZVqTBrs61gqizifH09SA8969/b38fHUbsyLhvaX3iGsZ8kvIUUGYZpt8/WvfxMAMFMSxvLxx0Xj3dm5RtrlAfF/GTss2muLBl71CvGLq9JXZNWA1P/O+/4NALBmUMbhJecKU+bTLvzxRx/DW98hLFOeWvpOMiDnXiiamEceF2Y06Qnr2c8x3NEtmsjXX/dGfOGL4rN33vnCkL72tTIOzzpLfP2sJ2322E7xi5uclrJXqynsOyC+F13doh1UrdG6dVJf4GGsJE5E3gDiANFoNALtlM5XtWuH9YJgK0kynIFiOMWxWKMWljb2VmkI66NvQJg8ZYV3PfG4XJolW6tjnT4u8wxOop4Z5fkZNOjTmEmQzaFWOdkhtv+GWmFPNbz0J2jMzWJ8Xvquh0xQzFePCYL1zNPYP0+daucaMguzJdQTYf8MbZu4Fw7Y0LRPV0avhE4GA+pgIKHytFghBLKAmto0fS26k9TGc0kyiDcDMZDNK8foD1SX+UMyGJ0dZHLo6xEzNrBkyGUYSIZa904GPOqiX+NTTzwJAKiVyJ77wtjksmmk6V9WmRI29nBdZO6qc8Rv4sDzsj4kpmUuVMjcqa3/xNQM9u6Xd+3tV78OADBDmX7kSVnHklZkT9UK6zkyIXU7+7zL4MdlTDzxxBNsu7ADeWFO+njjehlrqmkGmY1qtYosgwEVyST4LKP6pZU5hodWSznKJWnjnp6BgCHTIE25nLIa0qZHx+T5m7cJg1qakvJmPAa+SecxybV8aPuwPDbCaqq3ufrdFkrSb761iFFeK3MeVz+htGr3Vw4nKm8MDOLxeFBv/dR3kVgshQLXzIAZonrf8zTYkMzlwOeEPp2NRhw69zrpk6g+RQFTTJZHAykFfZlQH+VaM4iAp8GfWPbAg4wMCZl61fbX61VMTsq8UcY/R39pE6NPp6VcZfCVxRBtE2U1pqZkPa5VGJCH70u9PSJj/Po8wHXf98O+NDpW9d6TZKhU3g8NyXtVqTwbsGy5DmGaO3L0aVW2i75GGoxinOyP58XR29vHerLd+fyYMiZI81yyS/TTCvwEfYsq2XsNytbD+iXIHGXI2JcRbqdqS+CiIPADyZ45+rKqS9OadSIrOviuGaf8jcFvBhWKsIhRtk+hY0tZykKhgI20UMomlfGWc2M2HMDEi+vYbmWO9Dn05aLvWIXjbIZ+a8aTsZVl/8R4j2KxjEMH5X109eqeUJlVlkWDjLQypgGbyT4qVuS+4xPzOBGsOI/u4ODg4ODg4ODg4OBwJuO0MVUngnwui1defjnKtPfupQ/ONKMbbVl7YcAyJKg+mWCUpFFGOfnq18VPZQM1w3v2CYOwceM6fOxjHwMAvP8//AEAwHLn+7KrhMEplkU7+PijjwEArn3NawAADz54PwDg7W9/exC26evf/AYA4MYbfx5AM4R1LivMwAP3C2PwlrdI2ooDz+3Fpz/9aQDAX/3Xv5Tne6JZeOoZ0WIaRrm57TbxlXjfu4WVyJHJenb301jVJ6zRwQMMZc4dv2rRNSStRsc79xxhHx5+4B5kL6PmkL4RWYZb/863hG056xLxz9o9JZGiPPpOvO5N4r/1L1/6Z1x0lrAn6tdw2cskql03GTTVLlhqF6apkW14dTSoSahbDQeuGn3ROKqfhTJnMbaH0bijyQqMhpWlb1V3j2jk1L4b9MsqlUWroKxftcoIiqls0GhJMlWqGVLdgoZZ9eiHoJHQ8h15nM8Ijc8wcuM55whDecfd0mbXX/8mAMCll0gUyJ1fELanu1c0Jo/v3IWtW7fyWmnLIyPCvj76pPiljY3KGLr6Yum7D7z/l6QunT04cFCes2NQ7pekRnDNemF384yA41dFe1apinZ590Hxg9h23nm46effDgDIZWTMdmRpEz4r9S2WZFxecOGFAIAJMlVPPrE3YFLyZAWGhzfLvbKdOBNhrUWtVgs0maq5DH6v2SbbqdGOqMFKpcm+NBg9ktr/TI7HiwVU1T4can+ukZXoL0hNZZ1+QAm1D6eNu2k04LMPCzXakpcYGY5hcA1lX5LG/jGqI2v+PAY6ZJwcnWaIf7LBlYSUJ8t51Enb+24yBRNFkbm2WkWG9ffUh8Jr+j8ACxksKmeRyWQWhH1W2/26hkemlr1u5NpGhnPQ0hdseh5Z2tQrM1bVKIuk89KMjvjchDBJHd0iI1NeCkVqNQd7hZ0vkdHupv+gramGvoP3ps095Xx5voJnnnwKALBqFdnFQdHy1qmpHj0sGvT9TwqT1N8v7P3wZjk/H4vBshy7bpH1CfSx6t4glgUj1KzOMwrY2ZeKpUVfXw7zJannGH0sOyi3Z+kXtnmtyN6qL204x+OFOTmvq6sLRw9Kf9YZ9XFyVuRDPEivIeNgjmlH+npFS18qVlEoSNkH6Pek7IeyHAyGFmjuc0y7kVL/nmwnpssit9Qvpkw/5lhKZF2Vkd3mZ8iCpJra986sjOEM5bXpk77q6TszZQ7QnDvR6GNpU8Jokcwz/V5yaWnnBOd1EJmU8sZjNDQfFt290ucpstpxUJuflnk9z84aGmRUuoSuwWRXq2WkGMXN1sPh1jXNRNLSH1LTQpANqdaAAn2ZVg3J82JJ9YviPerSZ3VLNlVZMA05HjOIcfzoJCwyXUi5JGVMcdyp9UWGUZttfR6lkkZsk1uof1jDl3vF+U4zPy8yNE15M9BHuVvpx+gRGZnlMN4AACAASURBVHtz4zInO5Jr2UaaHoJsC0Xb9LTMpZ6efnQwumtMI9VRrmrMOXYpDH3C4xWR6XVfylUuFIOoe4ODYqGVTasvVYXlILvka/TBCOtiLaCpIchaz5VpYZWXAvT28p2LvlwaHbBua4hzbUhEIudFP3VdnKUv5WRB+imdy6KbkRPTDQ0xr9ZGOq+5DjH64Xzgp5wIoilW6G+cNNKnxXn15ZL61wx9v9O0MGrIPfIdSUyQVRo9Ks8dGpJxZ9XCqaE+0zI/Gp4yhn4wvypsu2KZzGBFTVSOD22xqTo6Noq/+eTH8KpXSVjuMjtkZEImwGc+9znEKEjeesOb5bdRWWge3yUbkwuukMAJ998vG6FknyyA3d3dWLtWJscE87w885hc09UnDfyyKyS4wMuvkE7q6JKOONTDzYj1cfPNEjRAnbZVojyzWxbe175GyvXAA2KGOHpUFvp//dF3cM554uj7wzslmMGz+8RUatsWMcO6tEc2gl0DUs5H7vkRAGAHgx5UZgpI9Mk9Du2XF/GRw2ImUS5Jh48eEfq9t4dhu7nJe8+7343P/M8vAgB+4zd/DQDwsb/4bwCAd/38LwEA4r3yYu5xwH3wVyTk/ESDg7g+F2wAt54ri/4UF8McTRp98s0HD3HTZ/UlxaChtC4lTIwmm0jIZNSFNEOzRw3Zq5sfP2EQp1RqhlBXepkvmFx4OrrlxWaOceQ7ufkqFguI07G9wpfATI+0UZwvAWoaEetvOk8CQLVYx6uvuxEAcOGl8uIyvEE2VRu3iPnbgeekv596cj8A4C03yMb4jjukL6+7/g3oZsCSJx8R058KX5ILdNJ+4w0SSj+fkwk/0CUvZyMzc7j77rsAAPdP72d95JpXvllSCdx6i6QfeMPLZB4cmpBy3ve4mJ1t2LoZRZqh3vOAjMOBs4YBAPfeJ6Gar7hSUgo8/JiMzzpf1s7esg35vPTJqlUyr3T87d8nm8czDR4MMrFEM0x0ImyW0kj4qDJP0ywVBEEuPKsbFZkvaW5yaprfrl5HisqH0RFZoDv5clMKcv8wTLXV/FF8CWB5PHhBvrwgUAGf38E8Z3PjMn6SujBzg1it1eCDCiqaa5anGX6W5cpR6dBgvqIEzcCSlAEFU0EyyIkWcXqn+WOKpmVBzhk6pVtjAvOOWErGaWVWru3pULMPKkF4z1RD5Eg+zYXbAMksncohm8uhhjyvQlO9kQJNNi3zDiakjWumgrmaLPgFX+q3tltk6+7dYo62bpPIvLVny8Zk/KeSImGawRE8z0ONTvUzRZEbTx4RmbLF2w8AuGzrxXyuyJy9B8Tk9x7KgKE1g+in+WUaNJudoFl05SDbUuTT1a8WBV8wxhIxPEST9q3bRIFRmJY5N9gl7XBkXGS+hpyfOCLr23kXiHni9Pws+mjuM36Y60OXyE/NM9ilaRaMBiWRtp2YPoq+XlmXHnpIFIVq6q4BK9YMiUN/hi/oFb5OHHpcZGFy9yTiNH9Kx+S5k5w7OxgsaKZBU85OOW90kkH0utOw7IsYQ7b3UV4nu3TcnTkwRsz/ogEqgpyVVRukicl1SrsnmEeTllQILDeD/EUMaZ1KojsnG991a2l+fmA/AMBn/jM1kR3ol7EUNUMcGxtDcV7knCoXNYddQk3oVOPAPtWAEfPzc0hzrdY+Ul2nhjoPcplp4jzoI7hhiyfgBelQRAbM0uw0mZZ7Z3Ii57ppHtegksWzzbxEumZH66frpeZtG1wl8iaRYBuaGPr6Ra4eptuHmjTm+FzLd74JpmRR87eenm6oNeuCHFs2nNtLEWfqjBLl4pGjY+ju07QWNHv2aTqpwdU9zT/HujYWbno0xsPU1DzrL9cMDsn4yKR1UxEO6KFmoECr60r4/kHQB36fYWCNUlHadPs5ZwUBOmJ+uP21rQL5RlPtNDdd5Wo9KGuKx1RRXyrPsB3k2qFBvnOyL1NUDPV0d6FW1YAgNBmcknP6+0VGWm56rWF5GomgfNpHhTlp93GmZVIzTE3Fcyw48z8HBwcHBwcHBwcHB4eTQFswVZlcBjuuuAA/ukfCVfdSQzY8JJ/JrjzGnhSzq33PijYw3y0avm3bxSzrEE0kumj+1rdONJG7du0KaFrdaV//ekmQ+ugTEiCAfqDooAN4dxe1LQwl++Uvfxl5slfTs7Jr/upXvwqgqYH44z/6W6kLNcDbtotmdOTIfmw7S7RDP/qRaB4HmBDvnvskuew11wjLtf1sMft64IfCLF39qmsAAK+55mdw9VXXAgDu7Jcyb98ugSguvliYiaeeEsbskUfEhDFBcyNjmmZMutNW7fx9990HAFi/QzR/U1NSty9+/gsAgMuvkxDv+Y4cVnWLRvecHaKtnCWro/RtgYE8As0UtQzZbGZBMjWFR8dzE5N71EhrdwYJUKUOXiaHeExZQ5oTcOjmaHKlWjZ1om2YcFhYLxGHYbxxn1qTGM0NEzRf8Tk+DIMJFCZFU9bR14mOpIyNdRvlmhy1Rms2inbrggvk2v37hT04NCrj9F03CcNVK1bxo1t/CADY9bCE1O/tkbHT1ydjZTPDG2sC0Ak6gHodXbjkEkkl8NzD8lvfoGiYNRm1JkfWwAAP/UieNclQ6A34mBwTpipD7dw3viWh+7duE/bxvgcfCM4FgAoDHwytHsA994rW5umnZR5ecrFo1kvqw7lrJ84kNGwDpVJpgfYtSBJZr6Fcbibfbv1Nw/Tr71HzwJ6+fhQoJ9SUpVbXJMOa/JMJVJkEVrV0PsP4+o1awNiq2ZVq/ZS5KmoyYmpsG2rC5tkg3G6hpOFnGRQnzfpyTsYCM6SwRlXaIxaqX6B+1isCLSxC5VKtJNBM0t5sO5m3aooclQn6NZVKBfe1NQ2zLf1Qp6mayjWrzDP7qVorBjJOP7UNZ2n+Vi7L/OnqoGlfShiSmMqCRgOxeJi90c8gHDPTHGzZLPJdw/nue07Cpc+V51Gio34m1REqxyWXi8l1z6DM/T27Jd3Hhg3D8v3pZ9BBDekU1y+fzGlHXkMJSx8WmBx33XoNGiNYvXo1nnpS5JD2q66taioYDT6h3wfNYMA+XHSRWFQcOiQm9TouE5Sfc5T9KntGC7IWb1m/HqNzYtqsTHCVpkIqg4/S4qSLjv7a6T4sEjR3TPJzniajXn3lA1W8GChb1Ypm0AkfnpE20vb1ghDqmnw8E7pGx+HGTVswdVRYFW3fFOmtbron+Jzf05PCZtYYBKe/X9Z1r+EFAaL8SBATz9M1l+a/lDuaFmJychLdTImQjqvpvvRvXIMp8H1A5VIzQIcmkI3Bcv2vVXVcM1Q/x1k2y+TAKQ1gw5DntgHUw0FcFPoclUMpmgH30LVC31diCYOODiYAL9LMljJcTWVjcWXm5tl2XIM7kvCttHsiru8p4USyURlOUY3JWZm7DRNHV5/cT839NECJp0ylhiOPsHKtbFilEk6MG2NQl34mNs6m1NKKlgI0+TcmvoBV0/tHWTZ9nx6flvYZHha3hq7OPGr+HNssHqp39F6eJsGmq0fDs6hxXNc5rsYY/EzLpYFJOhkEJcYxbCF1SifiWEMWa2RMnlucl9+mmDi5t4frj9Vw+coYAzPTBbaJXKPuSJs3S6C73bufxfHAMVUODg4ODg4ODg4ODg4ngbZgquJeHEPZHpy3Xna8Q2tEe/fTnwiTc+O734NnGdSgi34mdarIt6yhPxCdKPuoLTXUxp+141LUtwq7UpoXbcJ4VXbY+QG59svfvgUAcO211wAAHr1FfErWbZSEuje8/edQnhNN5uhh0ezMzMp+9JIrXw0A+MH3PgMA6BkSduufvyBBJ6bHRrCPYXvf8Dbxmbnz9tsAAG955wcBAH/0ZxLA4j+8S5ihWly0iXc/ITvjN/7M5cjEpMzpXqnXbbcLy/D6K8UPbfM6uea1b5DvYwdE82niZXT2ij1trEvs2A9N0haWYcCfYtLl3lUyHJ7bJ4xG4iFxMj7vvJdj9Wppdw2znUzSzpo28bUE2ShfQ59TIxVLIuGpFp42utSaxdhnnf+bvfcMtuy8rsTWSTenl1N3v9c5IZJIDYAACeYgKnAYxKEkciSOyuLIkiy7pLFpW1NTZfvHjMoez4wlzcgjUdSIFHMUSQAkCCIDRG6g0bn7pX755nzO8Y+99nffvU2JATAKrTr7z+1w7wnf+dLZa6+1knJ9FrMnMVuySDY5FPCSGKFRb4dZjCaJnh1Lzj86I1mezU1B43KsT24yi5qzc9jYlPtMOpSZZj1t3JLsLGwlrcq/j+XYbo6DRKpfErVGafMuxS60vjc7Kv8/aQuCdfpZQXAuzp/F8so5AMAISeqpjHzn4x8UNOtf/69/BAA4uE8y3ylmim+7+XYsviDZ7/kVyZ5cdbXIs09C2moqJZ+dlDzjP/wD4c01KjScvrCILdYI752WPjwfyrh4z1vfDwD43GelD48Py3kXz1NGvhXgVz8sFgYvLUk//O4DYinw7jfeAAD44vdkDF0pYds2EulUD0VVg0NjEugY/t6gKWWNv6kzC6eZZUtRGDuO/DC5OqvS/hYFZeIcH+UtlbiW62nTMDWdkHFmhV2TEdXMl2YocxQ/WQ/7pW+NKaPtGG3dHLP8AbP7FgUr1BxXpdU7igKwf7fbbSSTanlAwoDTL1QxKEGLbRK8ihD1MraaVU71taXOIxYRvSqtItotB4Wc3GeXNe4aFjPHeoxcilwqkk66nQBjYzIOUvy/JoVWRoblnpKxXi09AMzulvlzc4Oy4ImCQceVF3b8hMzjQxQQqGwJUuAQtR9m9cTYdTIm3JiDGOv9M0QBNjYk+5qi5HzY5jPmdZx9UcZ5PJ5GyyYMzMz8yIjMR6urwsea2y18qfOnZZ1wHHIyYvLMPS+JUQocnaKYRsAOp+2joZYda6xmSGXSWFmRvqty5xr6TNeLgnapxHmOZvGlFR5j9y5M63NQPkiFmXTTt9lR2ceq5HG24w4miPzZ5LSoMIFBTq+gsCwLnuddJlShnxXfMibi2meVt618S+3fOs71ucTjcfhxFRqRNkrFaR1AJFbFsAoZSvqvyNreqAvCNT5WwKmztFohWhkoqjSAWFtK6Of812q1sEM5O0SC/C4FeHSLSc6zM4BYG8Nwz4PNOaBEaXPtIwmaICs/VE2uCYahVqsj6PQjVUYggeiXcqomdkqfSiRp1E7E3A56guRDwzKOyyXZB6npu8rW64ysSJXj2IDTj2ZfZr48gKA1OWdscg5JZrIoDJHn1dpiWylqq8gReKx+lF/nMNtxDA8spF3N8JBKvct3Yg6/S5sCFWHwfSCgHH2IgXmdoWulIlX5EZkzDhyQajHXasPn+FV7kUExI/1U8ZlmqBUcQJdiKm1yKUs1afeErVw6oous5lAhM8dVsbIADo+bK3CNrsh16LyeScozi8fVhV2fj22qn2rk6s7tnpOv/JTAeIRURRFFFFFEEUUUUUQRRRRRvIx4TSBV3U4Hly5dwrvfLUhNg2+sNZMhAI7dIjXo8+cEgfnmN0TB7HU3iIT1zE7J7h/eLfyQv/ob4QVdd9MNyLHWu0vZ8YDyvqeo3KdRq8kb8toqpXLnRaXNb1fw7OOCPI1Qqe/9H/x1ORZfkldohDi2Q65D3/I//vGP40//w78DACSosPJrH/4wAODMqmRi5mjeeN3Vcu2qcjK1V471+OOPY4QKSEevFfSs1hI074eU/X3htLRLjfWlKWbA3/mmOwBflPuyrOv/vd8RaflvfVV4N7e8SQyLH35MjH3fRs7Z1UcFDdnYuADb06yUylxqjbBKZoZ9n3r/juOYPw8qwCQoiQlmIrLM3ipXIp6SrEMiP2TU/uLMsGhtdK3Ouls+iByzWqoMVC3R7M9vGxl65X4oB2PQdM6msW6WRorxeNxkabTOW9NG5bL0FZ/1542aZOiSVCzaf1Tk0ydnxzF1UbK2jzwiXLbbyKs4TgXLT/w3vwUAuOdu6dt79gmi1Wi3cPwl9lUiDXsocb9zjyCjb82Lke/IbkF726uSZVtZk6z2zokJHPyl9wEATjxynxxjQvpQknyeoQzlRyHPdnRCMlE7Z2YQ60g7Hj1Kc21KQfv+lZc1Bmj+G4ZGLtigPKoaZdsmu5lOU21KESuOT5c8kUGkqF5vIsb6+wzbtEQlUxBpbbOWPfAVoUrzt3V+Fs04UT6ARkAOjU20Rc1/VZ2r5Tfh8bguZcdblqowtfvuBV01zaQEMnqZVaNGZqk6Zz/K5DDbrNyyEUpvdzodw/FT3ocqhRljUabzVE21yfZI2b1jKirtkC/h8n4dfiaoetfmXNSoy2elWjKmyydOyLz4uqvFJmDXTrnG+SUZF+PjIiE+Mi7P2Mi2twPEONd4CXKnyHksEm1KaKaU6M/SRVHFi1Pxz3Y8xCgxrJy5KteY9ryMn2ZFMstTVNJbIccom+kCMpUhlZXjLSyJOf3sLrnmSytyD3qvnivXu7ggSFHgFjFUkP8b4XfaTc5Tyu26XpQCG+wXWgnS6rR7ynSc+xRdMCgA+a0bRKx2DMsF7xmWeS6oNQ2a0mnK+SaHJVOs5tABM/wd9rUNViCkdw3DJncCHEstVahEP8fjSgjbAlI24CqCQeDCYl671K4gTQ5xOsF+xS91iW7rAua4RO64TrWKK5ibEN5HjIqcI5y71SogG1ezV6LNA23oeR727JA+enFJuHOtBvkwIfkonMssKqfVG4KOxRMOclSVjBlrCCLE5KV0aTLrUspbFVM1rDBAh9yxNaKZza5cc55rfcJYrlDRj+h6OwjRUeSbvDOHdihbZc67lAvPcS53fCJVNCO2LQsW1AiX/ENK99eobleixPvIqPy7l9hmltyVZ9JF/z5IZcJ1ndQ+vE7lTq3OmZgaQyOUNdumeXaAfkS+G2o1EO0oiMIpJ7zWaKNSke/mh+X/8jnO89zb1FqsmNDnzwqwMAwMmuWrJQLHpsN22WClyzpNcQ/skDm+Q6XZEG3DCyRQZRApj33W8qu8N+4P+f9ho2MUAYubMp947LPjo/JMky65hbzmJvuh2paEdo8rlefY8DmvNFz5XC3JPn3HjMy3NlGvza011DgnxqhQq/Lw3k853URIVRRRRBFFFFFEEUUUUUQRxcuI1wRSlc5kcNttt5ks7cKS+Fxcf734gHz2c1/Az7/rTQCAySnJgh08Ipn6CxeEp/LiSVEZuvF3RQ3vox/7FQDA0soCniWv5egBybInknLbR44eAgDs3y9ma1NTwtsZotLd174j3KeL88tI0/9pcXWN1/S3AICZXbMAgNVNydo8R18g9cb69t334n/4l58EAGNg7BApc6nu8k9+SUxZl+fPAwBuPvYGAECRpsRf/uJXcMdtgmr4mcm+45/cEJ+gB74vqNq//U+iQthcljfybNzCG24TxClNj4KpCeEqFMgB6FKxJpERJOvgUVEhVOPcmGuhyPrWODPqcWatmy25xpDv5+2ufE8FYxzHM5lORZk045nLCEKXzaoCFX0x6L+h3/PiKWNI3GHmLU6FwGxesiVdZsSUT1BnRkhRKcdKwld1oY6aydFsjllUNUUOeI+aqYZlmbpdNXFtdeR5axbJoBqqVFXVjAxrli1gbo/0lTyzZR0isU8/JRy+jXXJUqvC5IV5qXs/+LarYDNbd9MttwMApnbK86/W6eFgU4mpKBkwjzXt//UznwYA7Hv9HTh4RFDOx14SfsWb3/xOAMA0FaA0U3RpRTLihw+J6teTP3wal06JYuHVtwki5vFZnaca55UWjm0jk8ua52b4Aqp81AmRoklyu9WPUmo2Vn+rf1ckttPpoMXMf5vZVL+lqmfSbsUtGZ8lIp21Womf5NGEgTmf/psaqHbpa3bTpMwFnqo2KYLm2oajY6nqkqseMOj7rklYqsIUlbe63e42FbJ+DlWXY3CYvMUSVZq2e5JoW2i76vhRhEo/Y3FdgshpUySv3YXm/GLMTGs7ZIm6qNpcnoa1y0RMcrk8JidFCW9pSbiwZVWAdfoVtRyalYdxOe/MLvnd/IV1FKsy16eZ7FXe0SXOhU3O+V1mTDVFqT58AWycPS3oVWFC1g9Va33oe1L5MDU22/eba18nyFGr1cLQNH1zlgU5mNtBRdlFOeaBffLbWrHBFpTntbRAdcRUBo0avVUMD0NuZoRoknIwNqiKqCbUlmOb+11YEESsQt8gReyWL8p8dZim5h1ycnYl2S8W1rGDCrovktN1+HWypneoUudCDT9lvFTVpNNzEU8mzLUAQDypPBBWC1xBYUHGkRq2Km9FeZndbtcoMxpFUqKmykOBUQ6lSh3X4LFsCln6CI6MChLbIP8qQ37W5JgghIMcH33+Z8+eRYJo6izHzgp98PQ3m00a1nLd2qzKZzqfu9yPCD+aS2TU3wY4ZUEQoMVrVj9R7Yu5TLzvGNoeuo53u12jyBqjUVKd+4EKvZSGR2Wv4RgDLfXOVDQwMCbuek2plLRvncbCeo+FQqHve51OB0rrCRU1Cfs/bYPAk9dPLtXImLR1PGbDHfCOMtUDA5xeRRnNs+RnsVg2iPjMjIxv11UeGBV9WQVWJ29pu7Jf73hsB3JXK1UahxOhHx9SU2757aVl2afEXAue068Aq8hg3O3nsHab8tnSPt71scTqmoD3oPsRVSRV5M6o0vr9PLYgCE1/c/l8C0Te9Tmo2qJ6jalP1la5ZNbx3VQOV4Psn5bDGSFVUUQRRRRRRBFFFFFEEUUULyNeE0hVvVbD448/jrNnzwMAusweZFh3nc1m8eD3JbP3m7/1cQC9uvoSOSw3XHszACB0JIvlWpIBajcuwgnlrfTb934BAPAL7/snAIAvf+mrAIA77hAU7LFHvwEA2LFDsmsfpeLZ+uYm0lRXW1cn+oycP2BN5vC4HCPN7NqXvvQlAMDGVhFuUn57/NEH5dqYNZy7Rrx+Ol2+ea8K2lb7zncBAJ/4F78DAPhnv/Yx3P+D7wEA/vSL/woA8O8++T8DAD70rp8HALzv3e8BAPzRv/nXAICjO+bkug6OYM9hQZ5gSVbq4rwgd7/0q/KbEwuSvfiFXxbkolSRe3QDydRYXh25GNWi6OugHilxZnodj34HqiCjWe1OYNSDXNbq5rKCkOnzzdAfTI9pavep0OO4CSQS8h11e28zW+9RPUxrdjvMeFrQzBWRq1rF/DmT1uwF67Dj6hSvXkXoux7f902WSlXMNOOVTmvNsKqqgX+X61UPF9tJAF3J+ExMkHtCL4mbb5a+u7IiGWnlFmo6ve138S8/+T/Jn8kvOX9estXlC4JUPvSIjI93f1AQ2gceF3W+JD3Rjs+fxQKRx4/+gfQrd0P9w6SdP0yu37MviJ9aPieZ6v/6lXswmZe2O3lSfNDueoeMoR9+T/rqlRZBGKLeapq6fM1SKQfACzxUmU3XZ98kHyWgP4ZmNlfXBSHRDOr66jyarOWulWTM1ciDqpD3EzJzuM5ssPbFOJXUpsZmsGtGMmaaGdXPdiDXvPbY4wCADtVMdcyFfgeuutPz2ktEYwNmQ23jSyXtoUjV9qzcoD9Jz4+rn0OmbafndxynL4u8/f90TDWY9da+p2M+oPeT68TgMLvrMMupqn8Os9GayS5tSQZVUWnPS6FS4bjjMeps/1ROjjXMtjx3TiodDr9OqhiYOMXsnh145mmpOsik5bvq86dczLGdVAnrEF201RuMtf9uAuNjgqIFvLann3+Bbcf1qyrPfZeqlXalz03vGsPZs4ICD7GiwIZc3JG9Ullx4pSot+6cFD7N8rz0tcCTY7nxFLaIiA6Rn6Xo6o4Jyf6qB1KO/FHlyZ2/eAEp8nM0Y6+fmqGPk6eXIqfj+HHhfd6ZlAqQVnsdRXqKFaZl/VjeEC7ZxllBv64ip6tJz6EiVRpj7qQZX0lyxfxWf/XBlRShJTwTHX8+5/FmW1UxQzPPKCIRH/D6uYz/yaE6NTKGNH2iHFYs7N4pnJEq55s1eh8qMqXPcgez8gCQYIXIAw9I1csE+W8Gda7LeU+flXFgW/Jccpm8uSajehf2owgGmRrwqTJzVhhileO4y7kxT8/PXKafuzqI4Ni2beYgFSotr8n865JjNTEp92JBOaREnxQpbTcREvmwiJAEhPX1/hUx2e7DB3D+8/W4crxuR6sW+r9bJS8rVC4Vr8u1O7CDflRvsEKg98kvhJzb+IxbTR+FvKBI8YQqN7JigWrMNvdFltWPdgVB0Ksq4JzQ4r50YUWeS4dEqd3k66XZX5pd5W3Zhuelx9fqgg7bNFQvRSKZysetNboo1eWZ2JxPdtJzShEr3UfW61wjqGDb4b7GcTxUiaZ7RKp0j5lkZVMqRqSOHqBVixVOiRQmOQcniVD5P6PKaIRURRFFFFFEEUUUUUQRRRRRvIx4TSBVrVYLZ86cQZaeCvuobLZOFRDbjeH264QPsrggNfJbJXkjNSgIa9L/w//znwAAt90ifJB03EedaJYiUFub6lkiWURFoSrMqu3ZMwcAuOdb4gX17PHTcGOSpZjdIbW5xXXxBslnpQmrtry9337z6wD0antvPnYb9h2SLOjyWfEgsZlpmd0tGcfnmeGbHJdj76CPkLpjl7bKSFC5b3JGspLKQ1K1uYbPGllbMhPnzkpG9Kl1F4f20JncZv0qJFtSmJIMxy7eU7MhXLYu39BdqvDZbhoph2pNrLdtteR8WsOrzuRZZgSU/+G6rsmCajZaFbfavtaXy3Vptsn4dZDT4jseQmZFQ0PWYhaPGc74QO22ZkgUOcqkc9DEg6JMPrltjYa0hyJUIb0WQHUrz7UNkpChZ0q1LL/RTMugl0iH2cVGRWqnLTuABdaCExbQGuEd9GXb3JSa4qeeeRoAcNU10uefP/Ei9u2T4+eS0pYP3i98v2FLMtGzM1KP/+wTkmW048NsCckqWr6F0ycks/3Ew5IBeuvtbwcAbBGxev4FUSE8dEgyzbUy0chYAvE467bpclgqpwAAIABJREFUD2dpJnIgE3elRBgE8BstBESfFAHd1LruVoglKsS12jJ+Nrfk/3wiWJqN0+yvck5WNjaM+t2ePaLguZteHokM0Vmqog3ylhThse3evym6YGrqea25vTKfrT4r/SXDMVCq+/CZL2uQy2VbVAxjFrBRl+eo49knv9NX5KrTRYIoT1cRXUsd7CW22LcT5BF2Oa7q6MDjd90ufUo4lto+6+VjKd4vByXbuEleUMxuwmYWv8OsLmlPyFP1T+e6rYY8F8eXOXJkZMTMP7t3S/s///QT8tsxmTf9rmRf53bKXPTC89L3d8xIm6bTWVx77WFpTyp1tck3c5JyPQZ15PWUivL8q3xeoyNZNJk5j1mSdT8wK8hAOEOeHJULM3lpp80NWfO2NjexZ798t7RBBUVmjkN6As5OzwEALpDL5FqS9c5w7bFa6/CYzU2Skzq9n5lxV+atCxfmTZsBQJHz5uRQASdeFKTs6EHpu0vLMh4a5JTN7BY+yMaKXN9EUfrBUkfaIX9oDitUvRynt5rFeTEgfzdkn9nSfs+KhHgshZDZ9U5Arq1669Tkfq+kCEOg6/vGcwjqy8a+AvRUbxUJVg83RSgq5MHkiZSmiSSGrQ5qFSpSprgOEdULu/1+ScrFPnNG9i+nT0t1zNTUFFyqnb3umFROlLn/WrggHNscldomctKH1ja4xvvWZShb775V7bOfS2Xmsm2+eBXOSRppqmhmqOTWvoxD08+DlT/L+col+s1xbKrCr7HU4yQW+F3z//pbnd8UIdS9RGFYjqWKph65fsnE0DaPvn40yeE+RY9RLNIjlVzwBH3sHDuApUjZNuVk4HK0X3mnqr6pisydThc76GWneyqH83rY/1h+JApmnhW/U2kqYiX3pv5pI+Qp+fTYU8XDbhAYZW3lXGs76D145Me2t/V7AKi32rDIV09lpW3GCK9X6tLeKVYYVVn9k+T343F5Lslk0vx5fVkqedSbVjl3qt69sCjvEdkJmf/rpU1kVLWVfYXb08v69I+LCKmKIooooogiiiiiiCKKKKJ4GfGaQKqGhofxgQ98AF//+jcBAI88IpyOw1ShyxWG4LAW9EtfFh5Ul3Irt94uXKaDOyWb1mlK9mZjWbIM33roW9i3T5Ciw9fdBgDYf1jUi9JJeWvdf0DUi44ePQoACFmHWlmTevtOo43D1wr/6QJ9snIeMwIdQQqm9kp2X3kVb33rW+W3VhxLdJif3SffObxX0KYnTgoydM3rRZ1v3JW36k1fMqNPPyPZ1Se+/wOMT0kG9WO/LnyYP/5//w0AIM5swr/4vU9IW87JW351mce+4R1YvyDXePNNN8g12fIbO061w6RkEStEsrqsWY/FpQ7et5pAU5Ew1uY66vauanzkMKGfI+G6rsnGayZO/W9aIOrhyvkd9adKSsbAY9bB9hKwLFV+kXBs+iuY+mpm0Zn41qyKpSmawIdL3lWddftt8q8UuVIPHZeIkkO1pbgXN0psikbU2O4+M/0xt1+hrMFzZGNa/9+Fz2xdg/Xctt4vv3PN1cIvuLgkWZbHnhDOzPpmCcdfkoziu+4Q9b3bjwkievHZb8u9ENU8dU54WfuvFc7T2+4QtKvesfBnf/HnAIAHv/BlAMCnP/NFAMC//d/+IwDg7vuEH3WBflpvvE36cCqRwPKioFxD9ME6e1pQ19VVqotdYVGplPH9e+82z0ufq/bNcqWGrS062zPbOETVo9ldwldQRE+RWOUplCsVU3+vWVQdA0UeU5EqVbpSZUpVyAyCtulzgzX1igil85LJUx6QT9QnkUj1ECjNEFKpSRHVmMd6+LambOUzzSy4bdvGF6rb6s+UKoKtY1xDM6tJJ44Yx2tj4P8Mt4LHCFkPH3CcJshJ3SgWzbhstTi2+RyyShDimCuQo+kQxV1cXDBcEUW/d1GFbpOoT4IKn64jVzg9Kc92g5zZZCyJONGdSR7rmWeEY7WLnoiBJfN1ixnbuCffH5qRtaFaqSOfp8cZ2/m662U8PvygjDWLc8Eq+VqFMalSuO71N2KzKGiCxecQMgtc2hR0qc3GjZMrmorLuVJp5Yh6xp+sSd7XelHmLeXnTVCVUPu6Kir6vo+bbxGlPlW03bFLvbSEF+W1WC1wSa79EOeGtQVBDsvFEuYvCsoxyjHSIdqSyst5avxunXzTZp5qrZ0OPHr9meoItrPyUq6ssAC4xgdP2Ro6xofyOaRUeVHT+wHRn5auS0R5dV1i//fiLjzOMxkq+a5SsTGXlz1OktzfJlGNFBUaWwnZJ11amscaq392UFm2UJD+NHdQ9kuLi/Lch1Kyx1hOyx7j/PolxNIyrnM5GQOtKtEcXg8CogoZ8iLVz4lVG812DBvr0hY5euuN5pRLxTZjPwgM7MKKGtcDARBsEaFSJcyRIRmLVsC9BtF3pS+pzWIn7PEJFVVbXqcKIfdDY1k55qUt+fH6qsxdyXgbrku1XyLzys9SXugWebcufZxmpwXtcxSx823DA9e7U354lxN8iP77VpR/aVWey/DECMK4PE9XPgyntMehIjLnqcKgInW24bxXOnJ/K1QoDLmn27lrnF8V9Nn1ZAzHQ+7vggBtVvn4ba1yUI6VfLa4xwrVH5Hfq242EeP5J4guXlySNkux+qmyKfOMy4etPnY7OWeurS8jT85sOil77IVlmc8TRDurnH/iw+ofKfPPzslxs560eK0B2/+nfUt6TbxU+d0AW+tNvOUuMZ1Nk5j4yCMPAQAOzl6L9YpsFi0a0eU9afjD++YAAPfffw8AYP8BkZm952757dFbbseOnVKmMDxFWNWThr3+epksWiyhe+Ce++Tfubndd428ZN39wCN4+7vfCwBYuigvWudXfF6rLEpjrjykHz4nAhWNsnSaW294F2Z3ySL8p5/9FACgeFQWn9y0lDm+8LzIVTdZmrK0JUISzz0tm+vXX387du2S+9w3LvdwNYUoPBri1StyvvNPSycpDEtHO7T/MLq7VdZYOpwSkG2W2TVVX9iSCcj1dSMmbe0FXSDRL6esE3/AzWBXCbhc+MHSBd+y4HNz1KHMtCGtc3LMZ/V88tMmJ4+MGvmiAz/gb1WSVUnrOklysrB4rhhf8lR4IAgtdJV4qiUAekLer8tNGyi+oTB7p1tGSNlkNyb3l+7Ks2qTvBlyACp52FGoni/ojuMgzhLSkCWDuintgC95/G6GpTiHD8kGrLpeQowlUHffex8A4J++/+cAAJUV6avnT0n50oEZabOje2TSHpqSfhCWisiOxtl2ch3XDct50ixpvPZ1kjiob8mCXKvJ5u3YnYfw138tL1VHpuR8RZY6gZvGKy3arRbOnz1tZKNnaNVw5IgkYMZ3zpiXFZulW502S0hiusj3k7CNxHpoo60bI360KF4QZ/ldpUxZaG4qVPxAN1lezEaepGMNLTUNVcE7xReRnGycYlVZSUutEmIc0z7NEBNpmZ+qFZqrcsPa5gKiZtWbNMvWhQyAqaHVzY0abWvpr8rVKrE37jhoVlWIoideAWwvA+knNHt8yesYwY4YOizt9Rwt/ZXLcWgK3uC4LZCM3OAXKpUS4nFZVLe2JEE1Q7PHkyel1Lrd5iZnD80wWcozSWGXeq0Ci5uJFIUiDhyS+fr48y8C6BmN5/gynWG5sqXLqg+4ND31eX/f+ZaIIbnc1GgJ1xTn9+SI9Md6EGJ4VBKFBRp5+izpmWUC777PyJqXjMn15XNyfi1x6nQtaE5njWWF11wva5o+h5FCvu/v20UATrwo69CR62RMrK7Q4J7zRrgm/XGvK3PN+pZssuNarunFceetYgHRpFDIpRVuYmZl7Y2vSX9baEn52kKcQjFnz6PDtWSjJJspLfXeOytl81dSWJb0cYtjpmVsPaRfJBIJM1a0mE3nE50TEkzUaPJGJdgrlQqmx+XFXykN41xrqiwvdZMs4RqW5z1Oi5jmTin9L5XXscQy1+VLUhrVohGzJpq0fzdY+j82wefeKGHpPA2np2hEzfW3RaPaTJprLUs69UVBX6qKxbJJumryqveC37OqAIAu12Wddzw3ZuZZTVKNjko75HJyjCCg9YhqKhjJc53DXZM80/bWuWmc96nlYQXuNUolaZ/NjTLyQzQRDvtLEjVpp5/DFP9IUITLFC5uoy/Ypn6Mohec7zWRHHA+Xl9e4T3K+B8ZKiDJckK1KhgUBNGG6mrZNVRAxDWJvQYl1FUAYoz7ETW0V9ELI5jCfcx2QS99RoOiHkZSn896lfNSqlAA9AWUpayOlkHG5TeT49JnNYk2RmGJNhOiOS+BGvumrslT/M0qS1mdgfbIZHiMVojiloy3FEVfAl8pLv0J/R8XUflfFFFEEUUUUUQRRRRRRBHFy4jXBFJVq9fx6FM/xPCIZBV275Gsy7E7xQT3z//zp7B/TtCmJgmYJZp4nTwlZVEFEtC0rEFlqY8euQ4BU7sdytX+8Bkpq1q5JNDgnW+4AwDw+LMiF11mRviNb5HSwjvvvBNjY4LivOc9ctwnn3gMAHD11ZL5e+JZEYYYykqWZY1EuNxQAfkRebPWbLRmoL7/ta8BAH7xl39VvpuWt+iXzss97piZAyBERM1Off7znwcAXLtXELlHHxeU6xhRqKuvFYGO2T2SqR0bm0CbWaEyZYZdolsxlquENGzTN3KFPWNaduJbqFMCWTMAWlZj5F4tzYwoyVI+Xdc1RnP6W20HdSLVDJVm/rMsjVID3UQ2YYigel6Fk7uE2bu8ZpVyNYaJDNeJocV6GT2fipyEhK5cR4nRQd892I6LwJRgqbS63/fZJiJWM1kuOa/KwsdiMXNNPUngfsEMDW1LzRDG43GMkthaJJlXDbL/7m4pIzq8T8qbQvaD0VHJiOnzefjhh40R5yX2+5tvvIb3pCVvG2w7uYd5EtPHdh/F+35RDKqHhiSzuUEEoETJ8CstxsYn8Fu//XsG/dFnopm1djeAzxoRNR+1WXLc4ne0ZHAwwiAwWVXT10z5hXxHxVgSNPDUDKuODcfdLkMufUyRIbfDMUikZJyCN8tPCrJg2Y4pkdE+rSbACYoY+Ioa+0pGJqG5LfeWSqWMhHlHbQxYBphmGYxeu0qbNyn1bre7iHFp0fbUdk5lVMq7H6nq8nqsmJarhKakN0F0b43y4BNMBR5/SVCnIzTQ3KCx5v4De81Yz+bkfCpcsXOHVAmsU9pbS4G3apRgnmFGHS4SLD/uNji38dldfUiOoaTzS5fm+Rv53uyszL353KgZS0FA0QEeJJElQsmS5GqN5XejgiTUq6tIZTmmOU+rPPTSGSlB92IjfW2o83rSmOR6KDdpBs7+Pb1Lrq1CAveZZ2UtnJqSca0kfNd1MUoxpE0KEkykBUWrLUj5z/pxqR4ZH5HrrBB10d89+vQTuOr118q18LjjQ3LNlVV5ljEKaSzFpZ9ssgxxMjeCAlG0qZ1y3iG2TSHL8s8rKCxLSubVDF6FFBxbnovrumbOiHPO0HGva54xu6ZQwOHDIqTSLG+iVpT2KxMBrxP5s7ke7CAyZfuKTEufqtE8vlStGEnvg3ukf7/wouyHtJS5SWGasSlBgRosOc9m08ik5bmePC0VDVM7ZB+UGeF49zivtmmsq/MtKz02N4sG8dCSVCPeo4bkHa2W0bI/lVF3jf1Fg7Lcc7MUx/KIRGkZoqLqvgpu6TwZM+jNEsscVThtaEg+PaLOwwWiUpyfipUGLM6r2QwNY9VcmeJnMYr5TMxM85q5T9KSvjAwohn+gNhFD/sgksY9cJlCOXu4Nx7O5eC4bOemUhv6URZdyyzKsQfsY67roMqSzYrpm3IBIyNaKs0JkJdsu/0GzmEYmvWubYTT5BjtliJ4RLJoQdO1epYXSiGZpnHxEEu0A62O0jWCn1WiXDb7h9Xx4enz5W+UWpFJsbKI+7NugwJBBRlT5a0SLLZVjcbEoyNqFdJvLfLjIkKqoogiiiiiiCKKKKKIIoooXka8JpCqfKGAn3vfL+K+798NAPjyN78OoJch+NCvfgQTGcms/MVf/AWAXn2tZm80O3ffffcBAK6+Ski2f/mXf4mbbhaBhrndQsB84rEf8MzyTvn4D+XYXWY+HnlWauafe1HQp/f90gfh0hBsYYnZuXFBxoZIeBtPy/V8/wUh5r7h5l8AALx04jQSGfII+Ba/uCjH+MQnRFxinVyIe+/9FgDgrreJ1PXFi4J2jY2O48EHxTjYZrZkdEI4Ar/9u3cBANY2JCP5tneJoa/L7G613YLPzE4ymeZt01yX9fwq7W2kSV3lTiinqHuZWZxm6QelVJMxaSdFSOr1+mXZEkVglDzbZeY9kdTslbSl1pADvWzI3xcx3m+bdcC23Z/lA0JTT9ulVHNAlEuv3SeiF0to4bV8BF0bIWV9syT4jubId2F7lItSU14pyzVfWiEviZnAesPBUGGEP2Fdb6AysyrqQaI//75rF8n2gYOnHnsSQE/2nF/FrW+SvnLgoGQXFTV4gfLpQ6NyzqefeQ7v+XnhBe7eK9/dMU6BBcqlj4yR6L8gGaC77xfBmHdlp3GW8sr7Dsoz+s63RVTmrrveiCsxghCo+TaY2ESV2S9jvGnHjYx+hyR/RUd12lSy7aBgQ6vdMDwgV+ENhs5bGorgqHCFkQmGZZAa5Q0qupQloXeTRtSjc3MAgNKSzAGNpZMI/f45JyQfpVSUjG6GghBx8grbLa2jl3MkUwkzdjg9mYydZhs7NEFud4iokiRsd7roNpp99zPIP2s11ZKAYz3LTLKt7VKHVUixDVXcQtrhHKXuD14r3KJEmRLfI7JelMtlrK7KuJuenub5wTaUe8hmpK9XqorkyL2epcT09PQEWk0Soy3yBskliMdljBc4f2UPClKjz0nRay8eIEYkQnmaFVoSqJG0k+Bcyzlv4bSsOa4HlJOylsweFlGaALLmvPS8IHQqNqCG0SqLH/CZO3YGQZ2WCjrHM2Nf70jGdnZWKh4UKdV+2G630SWpPpOQdrWKcvwUtWkySUHD2+eEJzW5R9bX7kU51s6ZGaQpvPLSWTEpf91VIj41v3QeALDONlwZkbF1dHof7y0HR8EFh+IK/O74pKz5V1KEYYgg6KDd7UeUkuQpeZ5njHF1DhrkI2qlgyJHL70kc3zc8hGzpZ0LFCuhxgU88lG65MlUKU/dVPNh5agXCvBbMhaKtIhQ7pxBH4jErlDMJc392cTYCJI8b0gO1Tla32RHZWy0AyID7H+6J2kQMSiXahjm+DVzVtjPy1GESuchlx0kDC1sbggyl6I9jnIJlSatFSY9WXLlr+nexOqZu3OuUJsBFTnwINdqh0RQuCetdYooEWlOZWhlwnlusyjXpXY+mXyOZ6NNhto0WBZUgEKF0vQaHYf2E+T0rqzTQoF7HkUuHauLgAi9ypOHphKAIh8q226oTrpf66BOtL7DOXmMYhopncK4/iiCD6KgGr7vm/OokJkT9qNZinpXlB/He9o3ux/puDwsNS5O6EPkNSe5VqUpZFZn27U5d3Z9Hxa5qyn2jRIRed09dpvyDMdYyaOc40zWQ42855ZZCwcqq37CiJCqKKKIIooooogiiiiiiCKKlxGvCaSqUavhmYcew/5peZsvU32my3r/e776DXz0Y/9U/o31ppM0TJ0nd0kzbJrV+cEPBI264fXHjASsImG/8ouC5jz8sNSTP//oUwCAOus+r75GMoPVqmRkvvrVr+LJxyXT9obbRM3oU5Sn/uQn/xAAcBvlZ7VmNzMk3KaxXRk0fKm5f8975LwJZofOnBMlwedPi8rfHmZVVy5JNunRR0RS/eDB/ZiZkZr3ak3+72+/LMbEx46JTLxyq377d38PANBU9RUEsJiuqTATMcQaWceo30mbGvNBwiAq0709jCTywKeGqotpRj4MQyRplqkcrl62nhkJZn4Nx0n5S1S7suD2GfwB21RkzHWYK5QPZkg069TptOHa/coviqa1iZwpMlcjeqDIXszLmCy09i9F2xSRaHfkN8rl0Cy/ciocxzUKQLEYMx+hSriqRLXWUlMylRma9bVVHDgoCpJj45I9O78gaGeJKmsnzklW+6prVTFQssXrzJQVRkYQo6LbF74oCpUf5jg4fU5Q0NERGVMXzku/3zUnfIigHWKISnTf+64ojqlq2XPPyNi50sK2gKQbGqTAKPcRdQoD3yhUafZNn2mHSGeM4yrGcaSqUZl41mRZ1QS805X+oWqQOtYSSTWnlFDkyos5AMew4ecRIaqU5ZgZZiNLvqDGE7cKIr/0zQXkqU7pEblNxORYJd5Tws7wvsn98uVYZV/ml2TMRrch/5cMqGoXp/IlM+XtOjkVrFdXVapGpQ2HUrnKw1KESNVDW8yG2lSK0yoBWxUFnRi6gap70TQ7Jse6kaqsi8x6lplhnKGNgu072LtLEA8dc3kiYW3KcqvpZhhQ5ZDjO0256KXFebi8n9zQNK9ZEe0K20Gy4oOGpjo3xeNVMw8nqK64RV7Y2rpwInfRjHWY8vjKJ80nszh7URCp6oaM9SNXifVGuUQlqxGpVgjZhhSlRI380lQqBS8u95Oiq3OXc+/IpPCUTnxf1rXxIRrJevK9pa0m0Ja+cGinjP0u55IWuWSxFXL++PyxLm27sibIFaZdNIjyHjkkCFWlIu2xk2qUXwllbcxB2kcVWd200zOI5f8V0rIGJof6x8yVEqEPNCitX+S8PUslszBoo2PWJSrj+aqyKQ92kmp/un5ePC/VA1Mjebi+9N/F+fMAgCSrPvRzaER4KjvI9xtJCbpRbFCd1ksgGZPnfOGi2GW0ffKUiGqurstzbapyn85LmRRCjucbr5U1Y53fPfWCIL8HrxIFyYBVIC0qvK1uUektlcEEFYvVpiUgiqB7PjUydiytrJHPjVLZIBKHD8n9GfFSKvWFXRkjdaL7vuESkfvZBjbWOffxmeQzVMvlfi1g1UHg0CQ3QbXeTIDmJrnlVAxdX5P7ShLlLQxRhTAkN517DV/3OpaFrioSDlQGdKl8vM62alTlN3N7ZDx4ceWPh7BpAxEOGtZy3u1Z0LDqgJyzZruDSxusmuDaPk6k0uX5Y0SoWqo07qhWAed4x0fLkmP4HapSc41YXaP6ItHO8RR1BkbkXKP5pFlf1X4kxbV5nXuZKseF8tc8PuSRMUGdQjuET/0EnxfZZFVYg7z1WJJVH2H/Gm6l42a90UqDRpM2I5mfbr6JkKoooogiiiiiiCKKKKKIIoqXEa8NpKrewIknn8EHPyQKY+N3Ck/oe9+7FwAwPbUTf/Jn/xkAcNMttwLoZY1VAWeTdcAnXhDE5k1vEuW+G15/DI8+9jAA4CMf+QgAIEk1ukvnBOWaYRbnHe/6eQCASzPFF5eEW3X61HlsbIji0eiYZHMmaBb51a9/AQBw+w2vBwBcf+NNAID/+CeCJF1z40Hcfd9nAABH9t4IAHj/e8RUdbEk6jrve9/75Lq6kim5737JHn7wg+8HAHz2bz+Nd7/nvwMAPPKIqA5uViQDsFKULNIvf/TXAQAdSzO9VGSx2gARoAz9XDaY8Uhm5O+ZTL8qocsMkHKMgF5mXdGdQUNfzaZtkjOg7+ue55o/NwcUaWJs50ScNcGKlLEuVvljYRgihKqFwfwb0MsSN8nhqPEeNDOsFlzJpAufaJL+VvuQeku0qOBnfKqY7fDsLuqGI6JoEhW2GvQbCtQMWL7XaBZ5Dv530DXtkM9J5luzWm5CDTr5W6IaDdbYW0MF4/D6vc8J2jpMhSQ1gN2gv9Df/s3fAAA++fuCWD7/gnA0duycxemzgozO7RO1uJdOCjniAo2ij14vCO073ip8wItn5PsvnnwCATN9e/aKv8zJs5JFr29JBurKCwu2bZus7yDaEAa2QWQUlbwcHe3/1H7darWMp4nvd/p+O6h0qefTcaUqn7VaxfxGr1Fru3Xs6bGNaiezsjfeeQfOP/m0HHdNrr3NTK561DWJZoTkEimK/c4P/CIA4OkHvwfH05xbz2Rz+7XHyctqKHIX9vy7OkTcbEfR2J5ClBxLEbyeP8v29kjE43Dtfj8UVWhsU6HQ5TyRy0pGVRX+crmcaU+tYKhVyHlI9astKh9B/YOUAzk+No12R9pMM5fKhV1cFCT38KGjvBdmp2ngqz47rVYLw/SdOkKjaO+AIM4XL54HADQbeg55lktLsiZdaLYQS7FPBvKdhx96nO0gWe+c3ht9FrtQrpuqrVq9eZuZ6npNnosq6E3Q73DjklzP1qqsc9VugLfccKf8eVHaavWs3P+OmPy2GEpbJXfQ64jzixUnn9BNYXVB2mp2hyAI5XVBpkJmyMvMPnsxuSc19my12rCUI6bcmkDu0wrleV95YRnfxHSahs30CLSs9mXzi3r96FhRJHwjkOehfPJWq4U2OTodcinjtvRzgs0osF23aPAbJ0f47AV5po6XRNjRCg25pnlya9XgfmhGVP/aHFvGML1ag52WcXTugqBnhw6Lx9oKkdmT5KcfPiIIcqspz7ZUlP1CMpHCCNEcyya3hXybQHk6vIdBRdVSqWTmBp0jLaJKtvFNknYYVFTVtq5WGygSiZ3dN9t/HlYX9Kpl+jlvnhs3nG6dg/RYOr/onG18+nio7ZU+PaSb64rynVixUqXyb4z3WqB/HrCNpxvq8fqv0fDGzfqmaJ98e2uzYnQDpqZF6Vq5XSp7qhU1DvdHup9Tcby2Hxh+vCJUpaLsS4bYDiPDcuzRYVY7kCfYaNSNOneLVQ6JJPc49BqL0ZtWOegxVmqoSu3oyJDhQ61fWuF35XqGuPetc61qKq/eKD07Zs8Icueq9NaLx5WX/5NFhFRFEUUUUUQRRRRRRBFFFFG8jHhNIFWxeBwz+/fgq/d8GwCw/8AcAKDsyxvjTCaBG268GQDwDL2k3vve9/Lv4s2iGYLbbhOO0TD9MD7zmc/g13/jYwCApWXhLr1EH4IPffwtBdZyAAAgAElEQVQ3AQCXLrFWmHWXXtBfy5xKpXDHbeKZpZyHLL04Ll6UzMx3GpIBeHtasodzeyWr89JLL2LvbsnanDoltcqbm4JqKe9reUsyUGFZsnoHjwiilUpLZuC66682vLD9+w8CAOJUn5sYlyyhRbWTQOuNVe0JvlKmUKG318V5yU6FzPzsnZMsYi9TIt83SmSWpUJ4l2XlNYz6H3lImkXb2Ngw6E5gfKnifZ+qgqcZaCfG7ArrtOPJ9DZfG/zIMNlz8pXUB0LP2W51EPj9qES705+90WN0eR16D41axfi36HfcOLNEzKLWWCPepgt9m1wCjxyBIAwNX0f9hvQZacZHM/4b5S0eWv7dtUIweYWbbhIkNJGmu/uwZI2ff17GQZVeb2fPC8dqdVWy547n4hSRJ+P2zpr5ZF6e2YkTwo+66uAcAGD/bskUnZ6PY5g+bZrpnNstfeal06JGeOVFiG63a/rxoMJWiMB4GGl20R+oU9ff1IgCaUY5kcgaFMkoV3EuUwWrwXGkmcwectabmmMxVdjsR2c99ZmDol48p5vBXiqePn/f9+W+itKncgnptzX+ZpnedW/7hZ8DACwRqWmFHcRi7OOq5ESxJ+UatakG5VEeyt6GLA2ibINIlWaB64qYMRuryHIsFoOKLW6VZCw5eVX4lN/k6Hnlk7elY7PZbJqxqxUMirZ16WczPCoIko7rRIJzPtX6gqCLWlWOm8xI++/aNdf3GWdNv85fk+QpaT8IwxA2fZieJffQD5TTIcfWjHaG3Loqs/+1cgV2Ss6bzwlnYIV+WONjgjS7kLlOUQ/1ZIlRiW1jax1OoCiPPAfl62wR2R6aEeTAIfcm01B0ooXuhrR76YScd6Ql99Wg0tqOA/LbbknQiPNLMufs3y/Xd2l9A3t2CjJ36SWp+oixr5wEff3y6vlDzkPY8yJSTs3ElNzP8CgzycEAX+SKCAu2FUOlwvmY496mj4/reWau0HDNetG/1uqYSiV6fklukmtsk+s+1519+8hl4phVj73SuiCSW5tyPflCAXUinuUyvas41+uYLVJBtM5/T3P9HskXUKWPpfFipGKdw/G8m9zBxbOi3Jmjsl6dnK6xySQs6FzBdghVIY57i1S/x51WENTrdcxM7+Rvdd1XxUD1bZJD+uGP9sbc3Nw0aFehQA6p+r9RbTUk3NXiHrDBsdTpBkjSs29tTcaCrhXqb6ph1puBipvtvppdzvMufUJXL0klSY2w4969ogpsaTtZ6nXlYBAnGazo6fHVpW/VanLeeq1jUNNcXhEb8oA7qlCovp1atdQ29w8AHd/CCrlkaapaqpfhJNX2VJW2WFrnMaRPua6LXE7Wm8lJ2Tt7nszhM/Q803lWkbyAu9ICf+e3mgj4f+Mjcj6d/9ucM1Kx/rXKZ4VRGHThxVTNUL5TLG/yGP3VFD8uIqQqiiiiiCKKKKKIIooooojiZcTPjFRZlrUTwKcATELSgH8WhuH/ZVnWMIDPApgDcB7AB8Iw3PoHD+bYsAppDOUlm9Eix6SblgzBpUYZk8y0KM9BM7sPPPAAAGCUb8J3HBOVoXJJMpLz8/MGEVpZlSyJIlXrVApRx+ZZqtQtnJLs+7NPC7fpQx/6MFZXBc1K0hNkglnJFLOYidwcAOC+h+8HAIwNSV3u7t2zuPeerwIACnnJ/D/00EMAehm9FO8pk5I39Dz9WeJUqLrhxutw5rRkAU+8IGhDfkp4OdOsic+yZtRSFS2jVmeZDPeJk4KUff3r4gO2/6DU+f/yB4S7ZThGWofMLI/jOKjVWn3fGazR1VBvB81AjI6OmuyI1mDrszOO6fRjSDBTot4aoddT01IPj78vtKbZI89CVfg0I9zpdBAye+U5muknh4ucKlX/C1Q5kQ7rtVoNQdhm25DfwWezua5du8t7LPL/e/wauQcHTqq/XT0+K81W26xpNt5agWbKfDSrcv4jRyTz+MMnRRnyzEnpq6oO2aDXh3IzCsOS5VlbXzcZoBQz/K2moBQPPixoxh1vOCbXCsnQJKi2lsrlcerceQDAqTOi5vTLH/mgfKcgWZ1vf+//fxXAV3LO8f0AtVrNZCM166lt3+32Moc9dLRXfy3/Lv1WneA12+hbtkG0FT0iKGz+XXk3ej7lM+qxPTdmxoteo441Rbv0vMojqNc5Xuy4QX1nj0p/efYh4ZVm2eebVMG66a43yrVzXou5PaTZpcpVwPt0jHomxwlr7T36i+j9dzodxOhHo/5Y22vXgZ5fiN6bRTTbV1Sw3QF4XI88sDhVuQwKxrHVZO372NiEOdcgD25oZKyvnUPOJwUqXK0s03uHc7Fjx43an0X1QZ0vlNuSShFJJ2LVqcv16JjPZrPwu3odcn9bWzK2tH+pX1GKx5hhRj8Y72KeCoEgT7bZEHRpuCB9Z5Nr0jozttM7ZXwPUyE0m0ujvC7nq5HrqtngLvlxHlXgKktSxVGiB85wPoELz50EACTWyVddlmtdXhKUY2xS0AGdvxRmTNGLp3LiDJASJN1kyOljuMTrCdjv0ts8CaV9uobTFo8rh4oZ8c6rw+N8Rfc4oYUwsA1SmKfaolr9+L5v+o1P1NYhyqkIivGGTKoXj3quJWGzf3V9euyQq1fekn5tFWS/Yjg8RMFyOaI/QccgHkPD0id0XtF5p1KXvrTGvYCq/61XSobDpJzFXbukHx9/Tn6TIk/LIafm9IL0XY+o6vTIEDJJubYa+ThKhEpyndS5UvvSpVVBhRKJBAqFAm+LXE2u/wi1SoZoA6/ZGvBvajQamJmh3xx3xcpVjLMiAIYHy2OFql6cNJxVned0P9qrclCUBX1tZ5C0druHKrmcz7lWbLLCaIjoyzCrUZS/bQw1cTlSNcjd1eCWB5sbcuzAd7Bjh8wfymmz9Ev6ORBacaN884XFVSQ5n4SswhkdleeiHDLlJ8XyMqbX1mQuCcMQW5syv7RbMu/FknJtp8/I3JTNyLEU/cuQg1cnT9Gv17FOVG9qaootIife4Hlcg+6yzTiGAqvn1WhxsZ6ckjGj8/1PGi8HqeoC+P0wDA8DuAXAJyzLOgLgDwHcG4bhfgD38u9RRBFFFC83ojkniiiieLUimm+iiCKKnyp+ZqQqDMNlAMv8c8WyrBcBzAD4eQBv5Nf+EsB9AP7gHzpWzLGxI5tCjaobx0+KUsxkQTJh0zkPHrMzd94h6n+avRklp2hyUpCbxbPCcdp7UBCrD374VzDGzMseoktveafUeVe3JFty99e/CAB48ruirPb+j/wzAECOb9nVeg0tIgV/9zXx6ZmkR8DJJUlQfewmqS//2v1Sf55KSwZi6fSL+L1f/X0AwHJFuEzzVJ66cU7QrOULgkLtmRGeSmZKlQXlet572+txmFr8Y7fIb6b3SyYoPyTeFR61+zUDpd5U9fomLlyQa/r3/+cfAwDOnZM3/y9+9rO8f0HS/uRP/gQA0HBUvUmO4cZTcBzJkmqmSzPBmmHUTEidyJBLJRXHdU12OmTNqmacHDpnB0lyIVTFpiXZq1gox+h2u4izFj/QrAkzzR2fqT7WlFc1a8EafdjKB3FhBzyGr+pC5LIxu9fqsIZckzrM8gzlsqjV5HyaLdyoSpt2aqquJp8Tw3TqVs+eLn04HA9w5cDVlvQZj+cdpfqkqu/UalWeSzKyTb+Ouq+KUHJpq5ty3Eqd/ey58wCAkWE5VpzPYc80UdB4GbUq1XJCad+VuvTD1+0VNGPEk/7+6KPCf3AS8r0XT61gZVH66B23CN+vuioZ0Ls//xW8WvFKzjmWJcpoihxpn9Rssed52/zUJDpEXfygX/VP56IEa++trrWNI0V0h0imZtl0/GgmcZBrhNAx9eh6HZohTaVUSarNTyKKzBKXSh0E5FR4RI6njwgqXVyWvnfdreK3F2g2mmMzII/MDaRGXW5QEVR+l/eSzMn51NsoxoxyMwzNfen9dCr1vms1nBJm5dU/SYdeKpFEh2gWXDlPxvAWqMQ6JfdWoAqeorOxWMzMS5oxXl5b72+jivpVSVvqcylRTbXRaGGoIJnbLq9KkUFFwxc4JvK5kb570jr+ZrOBVl2ekapBjgzl+47VpMJZyGoJnV8K2RwK5H0NZ2Wu91syPuvKMeMYt5n+PnNKkKV2SPWyhIcG1UlVmbBSpjrqsDzLNieU2TmZA7r0o1s+fQKxMhXSVuR89Q357bF3vBMA0KJq6PnTgl4fOCx9bH1F5oZrrz6Cxrz8OSRScZz+RfVhoq+c8xTlVI/EEL5BHlNJcia6ilj8dByHnzVeyfkmQIha0EGrIc83P80532LlR9gxXm4dcojiGeVSyf0qypgnGpCMKULcwjAR5m5A1Vn13yHtZozox9AIva64jjZHpd+XqxU0tuQZbFTkGTVs6TuFMTnvsKousgpGq0HW11fgUE2u2iKaeVH6RpznTVDpt+RLPxwrSH9QlMGNx9Bp09vSZ7UA1QhdVqw4XMtJtcYlcvv2755DlnNQl/0ooG+XzjcBlYQJhsG25fxnF6RqKT00jCHOJzZ5Np6rvJt+b6set7XHdd3alLU6TX5yhvdXLLNyhR5rFjmboS37qZbOsYEFi+sKPLnBlQ3yQYkA756W+QBch1zugZRr5CNEp6M8YB42UBVA7oN4T8olLdKncHxsFAnuv71QubpUE+XBLFYQdcmHPH9BKr+2TDVOHJNZ5ZrT+5ObqWUqTuu6MNRRj6veupdI0FtR5+Qh2f/XLbnGUfb/yor0z+UlmXd0Tu92uzh4UDQHggrXRFYAjBZkzFzaWuf5VH6RirLdNuIDSrWqpmpgxZ8wXhFOlWVZcwCuB/AogAlORjopjf89v/nnlmU9YVnWEzVuMKKIIooofpJ4uXPO5tY/XK0TRRRRRKHxcuebTqf7o74SRRRR/COLl63+Z1lWBsAXAPxuGIZl6++TZxuIMAz/DMCfAcBwLhseP34c194sb5ljzK7GmcWpVMpYonLZd75NpGhK3mLvuuvNAICVFcleJshlefhh4RCcvbiC8SF5w33v298CAHjuGfGyarOu+5abJPuualIL85KBbNMf5LEXH8SeSUGRRslZUWWaLDNw586fAQBMjI3wmiUjNTI6jrUNeTv+q899GgBw+5vlmlUHXzNQWnD74P3CASttysbvwvxFHNgt/kBwJfOqaj62ZpjJf6CFgFGLi8Vi+O53vwsAuHRJsoYT9DjKMqugynGqmDXobWBZFhxmobXeVP/ukctkq/+B1c+dsG3b/Fk9G/T4muH3XDmGZo1jvCfbVfQt3lMiZJbM15pY9NdGD2bIte650WqjQ3W9FpWKWi15vh6zWIoIeOx3iiYUi8VtqkL0tGL9rTq2J1ir21aZIUtROaIKncCoxA0VpJ2bxsuH51dOF+8pTrUjHyHAOvMOFbF27Zb+XylKhuzJJ4X/VyIKmjwoCkH33CvZnJtvPYYfst8v0jvmKqIX6tmjCpNveZcoaz7+tPSL249dhePPy7Vlh1RdUa5x/xHhBT51Tvr4qxGvxJxz1ZHDYafTMX3RKBw5mn3smuyeRpqKi5pV79Xl9yv9uWEMzaY8a0UoVCFJ+49RoOSxFFkxXKyuva0eXr3R+hX19LYNT0k5CPDQ4Dgs8x5m9guSvnOO2U2OjxL7cYbol0UuVsKx4amqVEq+61N9KjMiiEmtqy71VLgcqNvf3kZ6n+02eWBEewyPgMNZM+hW1zcKnsp/Ci1V2RMEafmSZErzRNuSVNBLJpOmfRV5HB+nkiVRFeUuKR9I3fW0bj+VLKBJpMxxlRNKhJnoyvg4eRPMnCuCGI9PmGMnySFIErlXX6r1VRlrmg0dzvfzBRxYyKXkvqan5wAATz8u3MdMnH5/5KJukce5+6isEeqBNTkzjY1NWRcVif3KVwRZ/vh/K76HIbPTFpUEOw2ZXysLJUwy29+stNlmMqeU2bdbRAxnyV9o00enxuz7sAW0+N1Neu8tqI/gDmk7VXrTbLNHFcJWq45KmTywrHhRFthGFy5IpcWrFa/EfJPJpMJWq2Oeg1aWbF9r9c+DiqT6qeNe10mHPKpMMoOEJ2t5ckjaMU/+zcwO6RNeQtbeNNf4DL1/SkSmpy0L65fkeSbX5Rl05mVuWGRli09VNOXF5PKCEBcKWdTJYdfQZ7SbKrHaZsp1KXN/tLgs6HK5XIZHTrXhPXK+U388hz5JDXILtS1zuZzZ74TGR1LVgvuflSKhXSLDOt9OjQ4jxjnJMipz5NsEwY/8VKJsEATmmrPkO3pEPRps3xKRGuWcW9BzEA2xQnM+9XjSPWQqlWE7KHI5wI8Kw8v+rGtX7/+43pDTV6yU+QM55/BwAa4r9+CH6ktIPyitTlKVYu6LNskH9dkO0xN5lNZlb+HQq07bxVQnbfNy3H4O27ZNv9Z9Ya0m4390hjkLVhjZRO7KG1t9n+l0Gi89L1Vu+2akGi3JNbuxRp5WQpEpOb+i/K7rmvW7p/oo963z+k8aL+ulyrIsDzLZ/HUYhl/kP69YljUVhuGyZVlTAFZ/3HHSmTRuuuVmvHBKyPdNljSNcxJfWVnE5JQsglcdvQZAjyS3uiQL66VlWaSu2ifS60tPPgcAeOMdt+LvvvY1AMAmjUqXzkmZxO233iLn54b43Fl5Mdo/K6WEvsUysa0iCnl5OPrgRycFRj9HSemzZ2WxrnLztHNONjHzZ5Zw1RG55kNHpSSxQQJkpST38MiDjwAA3v0OkTV+7AcPAgDe9nNiCjw0lsQTFCS48R0fAgDEkiRkqokdN0A2X/YUdj1z5gw+9alPAQAO7D/EFpfOksnQbI+d6NOflpe+97///X33CgA5ThbGvDOmsuh8qWtpJ+29iOlnaGRyaUyo5VIxOaaaPJoXI96DTVlyP0zB4sSa5ASj37V5fh2clr6YsDSmwYVeS/mAy01b2yxj0HsJm/3lJdulbnVzWKf0sMMNr89J0mc5j2sl+WMV0IghN/DSOjkpm696R9rDGJ8mVBqZE07Rg8cNY7kkJaQHDkuJT419euOS/HuBRqhuXq757KJ8PvXsPKZ3Sb+eXxHj3oNHZLMyNTnG89JUlpNqjRvAqeEMGrvkfPfeJ0Ish68W49OtRk/Q4dWIV2rOsRDC8n1TJ6ELh/ajIAhMn9OF19OV2x54IbBU+ERFLrpIpbk55Eu2LibNBscJz6cGhrVqf3lcJpPZJrMb9n36XV2I1fJA/53fSlrwArmWgivP1gimeD3ZcQBwVFqWC2UhJuOrHktgk2UvBcoeuyzVyLMfry+x1JkLZoxJqarfI4a3B8oatW81+f81JiVSGZkLukqCDzvociznGiSb12XjuLEqfX6iwBIqblyq/H6j0UKTMuu2ktyTTGgwKaZyuUnKkScpNT8/T9ny8XGMzshYukCRFn3JzDORlozJxrXOeUpfjPUZjuRzRphASf/ttrSvvtRVSpyn2nJPm0VZx7L5EaNicPacjNdMloktdosz3JDO0Hx3Y5WCN5TAr1zaNBugLAVlWkzs/Jf/+98DAD72mx+Vg8XkoIlJuYfxI0ex8V++AwAIuD7mR2kxcUmSMCcuytp7ZG4OQE8cIV2Qez29uYj2nIyn8yw3CinwU6b4h9tgqY1q8/AYoe2bOSY7Ln2jyhczNbZ/NeKVmm8CP0C91kYy0S+0FXRV0MY3879uQHUuMiW0TS0llT7ks9/ncjmkczIWpnfKnmmEpaPJFF+iuJnv8hw6H22Q2L+2toZqTfrPJo1TXZaj7ecGdaOh5Xjy7xsbJP97FmyWs+pGOE1j2mKtX5bd5nrZppVClhY0CxcuwtkpQhHdQF8eZE1NxrgxZint5gbtAEh9SKY8WNo3fBWmkDGgc6i2qSZtNigYo5LaI8NpU/a33ZAXuFyUK5HQ0lmW7BbL5jcZziceX4AyTIwUt9b477pRZ9knRbFingeHifHiFtuML3ejo8Nsjh+Ndm5/qRosJ9cXU7VvqVVpZUA59FEK+ORSjvmu3mecZdf6krdJIQk19E1kpE+N5OQZtspbGOc+ebWmFiJcX1V8i9HkvqFAUbaYFzfS9S3Wdw5PsKyP/bzIEuYuRZaGM9LHdI6LWw6meD8Zlvst8mVKTbHVGznO56KltrGYZ15Ee8lMJg1jP91r0s88O1mya/5zAC+GYfjH2/7rqwB+jX/+NQCvHukiiiii+Ecb0ZwTRRRRvFoRzTdRRBHFTxsvB6m6DcCvAHjOsqyn+W//I4D/A8DfWpb16wAuAnj/jztQu93BwsIC5s8LZOzxDbmUFDRgeHgY5Zq8LWsJ2ybfWmPM5rWYRSlWJVNy441S0nf8mafQ5Vu5lpHcTrL9E489CqBHfH7rW98qx1JokmS2t775LfjKV74BoCeveLQrpYoH9wgi1WQWJc7yNIuvxF4iiS99Q35ru/JGXWaWdIXlK0N5FcRomPsFgGefF7Rt19tvxZ4DUmbls+xKM76WZu2IDJUrKowgmYnvfve7pqREoWd9l9Y6b82Eff7znwcA/MZv/AaAHnTbbreRSfVEI4BeuUYY9meGFFbX2C7lqZk3/bdeFkU+ewZ1KoPOjEHYQSLWj+aYUgiWCup59d9VHl3PCSswsq8hRSwqlX7p0HKJBqlxytOzTcfGxsx9Kxm+zWxJwlZBEOl/+jwSLI1otliikU6aUkBFWdWwOrQzfW3ZbasJMZEqBIbgHKNogGp62Mxu7d83BwDIpyWrWw6ljxUKFL0o10CFXnTZvguLgm5NT0jGXfvB6JRkOw9RXGBpfg2lLTnh2LCUk2ysKhGViNyrE6/YnBOEIdrt9mXZ4e1ZSX3mg8a8Gj/KuBGQMTJYLjr4OVhaYtBbnqvVavXKEAbGTcDnl4j3l5xqn/R93xyvXu03JraMCaL0OSMXq+gtUY5YzIXtyneSLFGpqrFl2F9iq9flqm48tqHOtsrP9xuqazJY5xG1teiVBidgteXaq6oCvUlj3Cr74jGpADhZk2zkTErL8drYooGpR2l3JS7rHKgm5TrX12taQpLldXpYXFxmG9V5XjVuFWRoc4MSwL5KrveTsYHLbSS0D+l59+25Wq5dkau6fH99o4wzi3IPyRhLztvSEGsqkEG7hDpL7LoUU9o1K+PXD7ooULq/WJVnZ7M9PveFLwMAHnpKSnx/57//5wCAq1gmWpgax8Lr5ZrGt4h8nZFKjjrFPK4+Jte+siZrsjss/cUZZoZ5Zhb1mMwTQ7sFOckRZT116iXeg2Sb0yxFrzXlngPHxzDLTF2ueRdOCgVg6cwiXqV4xeYb3w9QKlVRYFbfYr2rynd3Op3Lxsj2ag+gN0dtbek65Znvz8xKSWw6LX0lQfPVOkvcw0Z/CeEmhVsaVWnvrdUl7NgplQyzE/KsdF+k/bnDv5cpvhBQWKJYrGCrofLeEioQs7Agexwjg03keIP3MMK9T7lUQo0VSkM0tFcJfZVB36IATKkk/W/vYemfYRgAnBND7rt6e4ywr+3KXEdXN2U8zM1KGX0u7RpKR6vbXzKoc9lgxY0CRMVi0cwrQ/ls33cUqapXtQyQ6J4zw8/eFrzJZ1Xcku9mSJdQ2oTt8LwD5Ynbr3NQTMMCq29CIsQlIki89h0U5/DbFYQsc1Zz3zr3zUtEpqsVVhGwLHj/HukvFRUB8lKo8MCK2g/agSjFJJuW/jE+3qMj6nqiz6rGuXD1vMx3CZYULlIIJ85yTZXTT2bTiBMpnF+UfrdW7Df/VYSqzWet1jdBEMCLaXk9952dHy0l/+Pi5aj/PQDT3S+LN/+sx40iiiii+FERzTlRRBHFqxXRfBNFFFH8tPGyhSpeiWi1Wjhz7hx27ZCsQdyWt8kDBwQNml97CTHWYidY37hOSWc1aH0XRSjuf/QxAMAM5dOPHDxgsjLPvyBS0bt3ytv5Ig0f42nJkt1zv5jyri3LW+6Nr7sOAHAyOI8C36gPXCW8qMULIt1+Heu+VajAD+Xzi18XQY1MZtTUr958nWRW15Yk46coQ2FIMp9PPv0sAMBhBvr0ecnMxVJvxiizRzXNlpCkrBkvm3wLT00AKVX6rW99y2SpNXvdIK9DMy/T05JxeOwxaTvNZmkWudPpGG5ChxyBWKLHH5ELULPhXrZazzGYceuR1yW7lSJB1RS8QrMsWn+cQoycBDU+1axGqURDRMqVWwMcDs3qhJZvEDBj+qucKtbwakZOa3S382uU0D5Ys6w15Jk4pWO1hprfHxoWom4ymTWEW3NN5L2pUaFyY7RdWqroGfioMaPY6cr92jQjVul4jzysdaJtw5OS3Wo1hI9x6Mi1eOpZQWanx4Uf9cxz0t9OvCjtcOutYlewxYz0EiWTd03uwhalSNfI2zh2u6C9h5MHAAD3fE9MuK+UsC0LsVjsMlGW7UhS0vQ56TeKLvQQ1X5StOlzYWh+o8fQcVFmf1XzX80Ga5/bXoNujCw5HlUGN5vN85hEspixa7Afx90EXKJLWXIQdcyFvE89ljHpZWazUpXMXojAzGktynD7HJchicIuUWIQnW0TafdsBx3OS1rLPsgPsfn/JVYg5BKSbezQkDqeyQEdimgw695YlLabGZH5ev0FQSzitKC4tCJ9v1KrYmZW+BmLRGM9ctdaTbme9TX5rmaB0+Se6DMOAws2VX+Ux1kYkuxrUuf6LhEiCjOo8I32Idd1LzN51v6g80alJFlggsJYp9Gn7WWQTAv6cOGMrEcNSqkf2scsd5wSxDF51i++KLzb4aac03YstMidq5KrdPYChQHIaaifEf7MH/0v/zsA4OO/8REAwG0334Jrf+GNAIDiN2VdePoHsj6+5cMfAAA8Q+uT2JxUVqySJ2XliA7E06jW2N8oqKN9aojPMGQb7ySP+dQF+d5db3yTcujRYr+aKAjasWrTFPkKihCA37UusyDpcu53HOcyg9ZBxEp5SIP/73meMc5NckxqH7Vp5HrqDPsGudFp2pmAn9PjeYRs53Pr0t/WOb2CLccAACAASURBVEdsUdQgHqqB9QavR/pWJpNGRS1VWN1y7sJ5AD0Rrs2ijLckTV93cM+xyoojy7KQZ4VOhZYi2lfA+9yi2EMi3s9vb7driDtaKdNfEWAqVRjlmpp/y99HRsjrDkN0Omr+2o9i/32iF4pCh2FoEBeP1wHywnJZOVaD51XxmzrbOpchkh742CR6Fo+rQA3HuadVD4pU9XPCe5Yb/jaUPOz7jqJfPpGksSlp/0DFhmKh4b+GRAgvnBd+aa0q503TyHuMYiONolAJ00TbNmoNtLkP8dq9Kiegh1wqlxeBtJ2uQ6lUyrShVqMlkuqMLeff4JydpJhNk5ynMsWWklYOLV57mkIszorD+2NfUgN7A4L2qqQGK0Lcn/Ht6NVjfEYRRRRRRBFFFFFEEUUUUfwjjNcEUgVIFmCCb6rDSclY3HevSIFff/thXHxRkCE1T1SOzU3XXwughy5lqQhTZE191g3wrne+HQCwXpI32mpN3o6vv1HU/07PS7ZOMxLX3yg16bt2yNv80vom2sxwvnReztOl2es3vvltAEA+L9eTy8k9aHZ134GD2KI07MKCZAlvvE7QLodv1WfnJVudL0gWJzsiGYqb3y4miyNjo0b6scPsib5xu+phxsyEq3whZpMWFxexb5+gCYqeaCZEs8aKYM3OCoJx1113AQAeeeQR3lsedWbSk5T5rjf6TVNV4TzFTKxmJMIwvIx3ZTI+tkpRUzqWpB+Lynn2Nt5Js6FZJM0myDE1W2XxWMoZUU7V9hisiR40b3VsyapZ5C5sR9ZMnS8zzDYl01UQLpWkTDqfz+TEDP8/ve3/VZqZGS5Ko1odIgGaqWQGpk1z11q9ggTPn2HNPGiIF6TJd2A26cTzwlUYWZH+NzYk7TOc83HrjYJEPfgDUdkEpdw1I3f8uGQzN4hM3Hj7nQCA548/hdtpXZB+Utp/cV7k2a+5TpShrsSwLOsy3pJm1jqdzmVcKe1rg9LH2o+UI+e6rjme9jWjtsffaDbOcJ14HVpzHgSByUBq39Pace0nyqFS7oGqFLXqNXR4TXq+hmYIQ81qNs19br/2TpWyyp0GnIAStzT9DZPyXUUw3axkjHUusgNVIewiUENKlToeyPa21d5A+as6Fr2YOUacg8shLyBBZCbkfNHakN+qWGd6UrLOcFIos/4/RqPUFnlRqyuCxClCpX+Px6lcRyShWq1hxw5ZBy4qL4Tqd9pWcVpBpMjP0v6i81w6nTbKpmpboM/QmA5PyXqh1hi108oFaOLSpmTxNSNbYgY/Q85Jk/L3IRHtXXtl/u6SO5qIxYxtxtpFyfI2qHYVOjLnTdJeY2JYzv+Zv/ocAOCBHzyGT3zkg/Id2ia85ZPCp3z8tCDciV2y1l6gSTnYT1KcG702kCAvtEnEqlaS/uUnpR8MFeQYy6uCKL77vbLmdbo1VMjdWrgg/e3caeFWGBnqKygsK4TjtREnL0QRA7/LeafRNCimrqEqOmbRbDtG89V1Vg1kk4LG2okMUkl5jkNUP2srVzQpfWWGSpkxj1wXrrVbbVnPNraqqFVlX6TzS1P52ezXZVrAqNR0h9yjjVIFCVXq5PzV5pqq4z7JeW6jTH9Aoi/DRIrW1lexuUap/ARRY6K3Q7bMMzYrWsZHabata75to06ESpH4HteaY4RjqFGX7xXygpxYRHk7YQDLI7d5gEOlHGjdjzR5rvUtabtsIY8k1+GQ1SYuVf48ckonKHFfpE3O5pbKpcuzbgVdrJRljzM9JnNCOsGqnFAawla+mOHE93PTw9Ay1xrXa2Vl0dq6jKFMRsbbFI3bbVb4dGAhoArxxYuyNnnsK2Oj8u86N7ZaJbYlFae1KsEK0eUc5XB/nohzPfP77QG6vto0cJ9kWT2uMC06KtyvNrgPimVY0cS+llSknmvGaGYEGVfOt8T11ecaUtcKENKi45xD/G3VJj2Qj1VxKkM/sA/4cREhVVFEEUUUUUQRRRRRRBFFFC8jXhNIVRiGaHXaJlO+f0YUiKYmpKb8zLmzmKMXRpHZu717mTV7/HEAwNWHBY1p1IkUjMgbeb1ewkMPiO9TixnPndOSHVkvC0JV68hb/bFjxwAA/x97bxZkSXpeh528+1b7Xl3dXb2vs/XMYAY7MSSIhQAIkpK42BE0LZlh+sUvDDvssMKhCD1YDNtSOBS2RItSMEiFCMqgKAEEOCQHxDro2TCYnp7p6b16qera69bdt8z0w3fOfytvD8wBB4Sm5fxeqrvq3lz+/Lc85zvnSzBX/iZdRzqeh9OPnAPQzwE9/w1j0VSEeHvLUJZs2hDgiQnLO72zvIxR1owob9lxV1eEGmR4D6Z1OXTCzrG0bGieR5TVPzrXdwujDieR1qNTjQIiJXTR6jDPNJPJ3McQCYmSA9dg7vDb6YYyRJ701v6Diu06s709+cf622AxQyHrXboISUumd30PYg8a6FFD1CY6KwRm34EDbBc6FDHv3O/JBZCaLz+AT1RezIJjhngPYpB8ollCDkdHR51LWt99UC5qyuuWdiTDtuPz8vs1JDwvmgtdYa56DkKVGpH2kkthsZDtF5xl3asK638kicgNDRsieeSEocojvj2v898zbd+dOyGuXLHzPfNRq4f2wiWrOVXetNzo2Xnrs2GGCBHZwUprG1dv2tgcG7X7q+1aP7918zU8iOF5HtLp9J6xEGUtO52OY4jU18Xq7K1bBvTbSUhet9t1xxvUVEknqN/ru9Ie6DlXKpW3LcK99zsZot4qNCzmc3t71X1G/VbH9dt9Btm+S10j9ZOjRTvm1PQEKi267VH3lJIui8yUcuA7ZK3zfn9ceWQrVGtqsA3VtsUi9QJy/xNc6Ad9R9cSr5FM1O2yIcRhi33xprFNGdZgmZoZR0/FnDy5Cdr9iRmsUsS0tWV9XUWapXEbHR3FdWoL9+03Bijw6eQH++wwa2u1ic7OzxuztXc+Fbuwl4G08xpzVScb0+T8XfetXyyv7iDMko0ftmueSNiaViHr1mFdHbnFTgwbGr62ZutL2PVR3rYxv7ZhY3z+gGk8b9xisW7f2jIb2vwxSsb9xW9/Dx0yUGPUhcxPG0MwQge7DFFokPUbZYHZIbqDtT0fvmqMcRrskR0/uGhtOr9vEQAwNWNzT48MaqvbxDYZmTu3bB1OU3+Vzv9wxTjfC5FIJFAsFvuZHX6U1fQ87776iYMOoppDwmQy8vsgCBBQn51g6kqDhVnFVI6xbzabcry1Y8+wxtlObQ0Z9sFN6pzqZAo0JuRoC2p65KhWqdec+3DQiOqRtZaled8trnlVavyaXK/nD+zH3RVjK6sNuVja3qrXtHuZmrL+LZY3QRao2+uB0xpGhmwsuIwDn23UEYNk11UkQ+Ta2O8hnY62q+aqPJmTBLVD9zZNaxSEdtKp6Tl4Ca0J0eyFXje6VmjeDyo2Rsu73AP1QqQSNgYnJuk+nBB1wv7g5lQ75uA6FASB6yMdzsXrWzaGez6djOesfXIFaYusLcvbTSyTkS/kVPTXjlUg69Sis7bWFum4+/u5jPvbGF09ta4M6pGzrD0m1r9arToWX2uh1tMiz9Oj5q3TivYxrUOpVMo99yo16GW6/3kpZUqAP6M1Jnu93n3tKQ1xf6/9ziJmquKII4444ogjjjjiiCOOON5FvCeYqnwui7PHDmNsyJCQChGymSl7U13ZbWKMV1ojA5MiY3PmjLnvqe7BHN/yb982dGt4eBgJumXtsMbQiQPGamUumbveGpGwi6xEkWW+cY51AQ4ePIgrLxmqf/myaVaOH7djnDx5EgDw6iv2VvvkuVMAgCubhmIcGSrhsQN0NTlK9yjmnj/73HMAgI9/4qcBAEvMAz0+Zzqx06dPAwCaGFIaKRKevfF7oaE3vS41GaztJaro5j1jztotIJkwNKLRUJVrQxyEIk2MW771/oVDPIchRv/h338FAPDhD38Yfo81cMgAeaohIRsVMjPb23IoMxRzb/2Nwdhlva6EF82zlbuP0454oUM6hPQdWLBrVl61GMoE851VfT7p9ZmIYl61e1jzKaA+q0c9XIa52hmiXES3yhu7yBCdT+aoCWnQ7ZB9xXf6L7IJzI8uDNvf11dvOS1bq0lEJFCOtvUV1brqdqMOcb1OD52WfXanbqih0Jxu0+5/hO5lB2dMB9hkXZpa3b736msrSBFxu7lmmogzdBG7m7P7nB6TpswuL1uztvvw2Y/ixCjzmNlXlg8biljfNrYXeAEPUgRBgHqz5tyqSiWbe4RWpYrD8IRiDqBsXiuqPciwhlsiI7eutoPEGnT3qlODmSSkOkxmsc7cev10TFlt3dWj0TW6mkpklwb1WrqHVr11P1NG/U920jQX6ltC9hyCS/e9Qm0HS3dtDhnN2nEDsrPZpFwOwXYhgs6x5yc99MjQtolc5jhuJBRpCX0nYtjq2L2qlmAik0UhsHmgQTTz9rChrM2S9dPatrEvS5t2D8d5r51kw92/UFS/ZeNByKme3diYjYG1bZvzNG/tNtqYI6qrMReyndOciyscrz2i3mtXr9oxOBZHSsPodqyvJDwx2HZdiwvGKJeJ3OuYN143R71D8/PIpmy92K5aG3apj5TD54F5W9fyGTtmlc6Sbeorw04CBToXBtTwPP/1r/Ma7d6u3bFrPnXsIwCA8+dtEewl8siVbKyHzL5IZKVToU5z3O5TtZHqrJPVJpOU9YFG1xD5Vt3m+qH91u/2cf6YYY285eUlAH02Np/oOga9OGrtUK1Z/xdj9SBFIpFAoVC4L1tEYzidTru+mU7LdTaKnA9qOd362OnATzCDIrBnVWUtKZnRTU6Z9jXo2trv0VFNSH6rvI0SNUUer2mXjFWK502xD2mdDsgyJXsBOsy20PwlzahC7m8JskHSvOsestmsYy8avpgYu/hOW1Zt9rO8a9c8HNo80Gq14ZOR2uX9a29Tb6k+nfXRQsHWy1KpyO/a54vZ1H0OrINuxfrsDvc4M9RN57JFBGSNoUyiZCJyrE4nWuOwWCzx+lRjMMAcXfXkeufzWSWoGQp6Axk2DDFqnuf1MxDIEG+ylt74tI3lbJHZPy0y4xyzyUQBYxzPXc5rw6WhyHmSnJt9sm9icva2k9YgacqUDSVmaIR1vPxeVK+0sLDg7ku69bzYTa57o/xuwPlFa5bOOT+3D2trNle322TgOWeRPIcfcP+ckE6uzwbvrS8IAB770DazCt5pxExVHHHEEUccccQRRxxxxBHHu4j3BOSTTCYxNjaG6o4hEGvUHKXL9qaaGs4j9AytPXrc0AHlX0qHdfiwITHNpr01HztsOduJRMLlBOt3NVaVFhPxxDmruXPgrKGHF17+Hn//BADghRdecCiF2KNtVvfW7z/9mY8BAEI6o/w5j1E6egR3Vux3l+8uAQDOPfo4AOApVqS/Q0TuyBFDc3brUUQK6KMRiZTyfu33QgmECPSI2Fy7Zm6J6XTa6Sr0Jq62E1p98oRdxyuvvBw55s2bpin4qY//xB7vfusyQkSENKgdxKC09qDpunblQgs979LVRcfOMZd30BENqRBDw4YsianqkjmTDimfM7SircrZRCiE0Ha7bbTb0ZxcaahIQqEnR7IGUb4Ema1GC80WkbVAGhRDTQZrRQzWLNqLfvRrIcldSHoLIpSZaE53is86m0sjmxNKTPSO7a4+ojZVm6VTdo4Tp405DZHEW1eNZa0QxTy1aMjY/LnHAADDY8aovvjyV9iGhvbMtbII6XC2vkz9EN2ThsbyeCDD85BKpdxY2FsfCrD6MSHbMsnnFrIvdZrU3g3UtmrW9Kx9Nz7F5uxs8ztdQ71uLRPt68kR0tpVbJTf2zu2rY8JkRufMUbV5Zzzp66jXW/9QFfDIBF1oNSxVc8oQ3fAVCrlkHNKtSJ6M7u3aJ2uvVoi/U7fCTj20tQltLqqV2KfK47YvNGkE6aHQEQu0qw5wm8gS41PKmHtMJW2Y6xsGts0MjWBTc7Prn4MrO02tq3v6zkn0mTvqatdW91291+ttHg8Q7mnR4l2UweWpltVQPZtatF0K5CutdVGh85tadaok8ar2qjyflkvirUD0xzn7XYdWxvWVzZ3rU1mDlBrPG9sY6VqjNUu9TNC+kfGrE8Xi0XU6e4mt0MxcZ22rsvG7717di6feplu4OMqmbdP/rS55Gp9Lk0ay6U+3qWjoKvBxDmq3e1giHWRdjr23SNHbI1tUduzvmZsSJs11rRWh60mtsgISB/SJLpeGn1PbFt+qJCm6u1qCwFAsVB0c7jqBEkvrXHtdELUHM2OTblj1dif9Jy7dAZdoStyQGZkmt8JOVaTfFb7p6ZdBsUE+8+jD9u+QPsH6YUCjm25AdZbTTTIVMlheG5qNnLNbeoyK91K5DpLzE5qNpto1VkPkGNxm3pHcK6odaK1IpWdEob98ZzlGqqsnImJ6ch3tF5qruqSDcqnR+5jqpKOkbf7vUfX05lpY1lrVbJ+KGNqxsZVjYxsii7FniYxto/OX6Ar43bF5qxUOo0iNfbpNNnMrmqSWh/x29zLhNG9xl5dnuZ9sboes5SmpoyparVtnLd3mFFjt4CxsaLThclZW06Fzg1SawTb2ud5ta/zfd+N33rVjq81S/Nwo2F9aXhoKnKs+fl5rK+vR74zxr2k3xFTZfPLruYhl11i11etVp0eUNeaYFv2wgH2MSG9cr9f6G96/nX2B+m+3mnETFUcccQRRxxxxBFHHHHEEce7iPcE5NPpdHD79m3M0LFvdtZQjiLZCeSSqGzbG7CqPAuBfeghQ1OEwN1bvgagj3gtLi66Gk4FuoisrxnikWLVa6FGz1Hj9IGnjKFapYtSaajonGguXDA9it5eS0PmGPj8d01T8sjJRQB95DeXy/fflglASSvx7J+ZM9uxM8Ym9Oj2ksgyV57IVa/Xu88JDGkhH2QmmFffrNhb/dLSLf496dARMVM67tSUoQUry3R/mzXmQqzI9RuGVDaau8ikDY1wznQD+d1CfvSWLx1IPp93aNWgnsHV+SGY49A7ar4cItLpocZK5H1Wy65HzFiNqFmWOdsJ1sHwQ+WwJ5CS81Ivypx1qHNRn8qTvRCTWanUHIqh78h0UfcrRF6f070ERGZSqdQeFkufVds1It8ZRDNbrZZjFoQsO+1PSvn3UcfCLnUP86xc3+74aLxqTpnpGesHzWqN92foYUhm7ugJ6gQvGLM1P70PXTpnvnl1CQBw+LSNtxKiecgPSiQ8D/lsxo1j9esec989vz/mhDypnRqsc6fcb/V9oWOtdsP1eekB5Pw4PG7PR/PVMHVCp0bGI9fR9FNufAjB07UWisXIZzvSPKhf5VKu75SJpvqObbNrDQIxVjYXCo1O0OBropR1fXo8b2OszOuotTuR83s81m69f65ul/oq/i2Xkk5AekKyfhzXgW8nTosdDHuuxkhAljQIWSdMOfVEVrPUdaZzxlytbG64TIK5gwd4TbweIrepvLRTZOaSZHCIpG9uVdz8E3rUDG0byrtvzv7fJKO9eMjmzRYdzYby1IZ0yvBydCjkfbo6LT2ioGQoN4gKC9HeKW8gSR1Wm2xToajaZ3asAjUPus5tOn2FRGXHJiaxznqFIRFzrT0njlutxPVta9vVDXv+Bw9Yxscr338NZ37qg3btnFtVg6jbYXtLx8tr1pzvEPRmB5Nk4Wcytn6ukpmCiDs+7xs3LLNCzy3nZTE7Z1kpCOV+FmWGH6RIeB7yaQ89si7OjZO3ksykECS0LqqWG5lQUsWqzdijhlGOf/VGBfeWTC9eStpYnaBm88aGZfK8/G3byxw+ZLrpa9dsn6T908HpR+Bz/zG0ZjrZu1eo75Pr5qqN/9EZYx1IsqO13XDzxzbX+DX2uzpd19o09i3BvpvhXqxCR7mNrU0kWTtNj1duySC7Le2mtkAZaoRTqZRbM1sD+5Aq2SXNh2lqfbRu1ujcmUqm0WqrfqXNEW2yXSvrdoxazZ5dlky1nl2lWsfmlo2rUjbq/ueY4QF2H9ynaA4dGhpCk22xTd2P9ho9rkANn/WqeP9aU7RPSadT6PA+uzzP1Jydf3tnPdIueerWW4GN7XtbdTd+5bbX5TVn2P7aqLk9D/eE0u2VCiXX77Qvczpk7sOK3FumU9EaYNubm5hhfa4SNbPSx08etH3q7D7by/ic76vUrW/TK6Gyu4lN3mclYE0/6gSDVl93BgB1ZgaESbF+HkLOYx77xu46M7xg7fFO4z3xUuX7PrbLO5hlUTdtbFrcEMxPLqDgkRIcsclZNN/1qzYBZDLWqc89bqlM2uhcunTJbSzXOFmMMXXp9CmbUBq0X+zQTvjb558HAKTsmeHs2bNo1O2azj32FIA+9fiXX/sWAKBS4YuDz+JroW2SxscW8Wdf/oJdI+0+5yetM/7tn/+7AOAWvturRtU/9uHjrl0AIEAITwU2lRLIhcZZmXOR0qZ6bXXLXac2R3qpmZhgkWFt7GZt8RoaZioIr2N5xYw8vvKVr+DTn/pM5Jrc4FShQm1AKNjca0et8wzasCsVJs9NSJn2wjKq0DNsdqvONniLG4cOhYj6mSvRft6XuJUPj+mAfuDDC6MFg2UFvHzXNlJFbta6TA9sNPovgw1Z0XpK3UPkWIPWoW7Dmem/dKY43JSyqGhUVID0B7yYBQE8L2qLr8nZ2ZvyfErBGRu3CSqZtH76h3/wh/jpj3+Mn7W+c/0Ne2m+fP0KAOCnP/tpAMDSLVtwDx9hmkOiiO+8ZRPXq9cMrLjZttTQo5M/3ITzXgnf76FS3kKFLypOhMxNZ6fZuq/onz4j0a3aWjHDQqrFYtEtFrkc0zKZOlOuR0GBwNfLOtNXlZaT7vafLW37h4b57AlCNNvR8gaKXsd3fUfHUL8pcDHXC6LOp3tJpez/u7u7fRt/2u/qM54XTeNt6oVljz19NiuRMTcTTHMLlGbJhavryhvYtSckeE96aOtFgGYsmx2mjuRsrI1xbB0+bC9OK3fs2BcvXnRp2jLMSHI+SrHdixz7d2kj3OGGQs+wG3juGdW5udrcMPH9XRU/ZtphlXPDJNOmVgIbz/VaGVvlaJrlMO3IJUovN2QY0OAxabDhJZBhGw5uUJIc65rrZudt/t7hMV5h6vnZhx/Fv/v3X7bPBva3Y8cs/a5NA5UtbgbVpyfGrF1OHtmPXD4VueYmjTAS3BCVd2qR60vRYEGbs2wmiTWOrxoNOza51jHDyPU/gUYpCsgL+TEUC9aelYbKDtg6knrwav+6Eg66T43HpLNHD93Lqu/WelrTcwPIdyyUWZy9zbSw6Zk5TFDEv8m+Ocv0u+lJ62fptPXJg/tsg5qmCdfwCF9u6ltIc1wPF+0l6vFzViy+U7VnloKN/zKBwkkW7h1aOIztTftMnhtc2W1v0AhDfWJLZUQ4tuZpoFCtVJAheLLGtFfwpSGTjxZSHwQdc7mcm7dHBopra85Su6vEitbacpklDjarbl/SC6y/aQ5R2p/A0EFA0/d9d75mR8Y89v8WU9Pa3YESNNw/COyo7NaQy9lnmk27v9lZFhXny16H6X9qSwcE8hw5L416Q5IKpkg2o1IHzW9K09QxKpVKP82PL/VJDrTegBxBKdwplnORoZMfBuBXsU2zOaXXj49bX1F/H+H+uS9FGccuS2UU+VI1KYkFDcbu0TBidsHmuyLXjO64Hevm8mXsdKqR+xosRzJY2iPgi3oqlXFAeZUAQYUAyP6jBkTcuWVrxV8VcfpfHHHEEUccccQRRxxxxBHHu4j3BFMVBAEajYaz4ZwasbfXo0ctFcFLeTj/7e8C6KNiSu/74ActRUFv5LtMaRIrVW+2cOiIMTOvvX4RAHCWzNX3mA5VyBI1ZmqOaMWnz5iBxdTkPP7iLyxV79QpS9XL5+w6nvnYJwAAL37vVQBAjijqT3zUGLNnn/1zPPGYFfV984qJEl96xVIIP/OpTwIAQtpLfviDPwEA8FUgTuLKdAoeUYIk0UAhvYUCERJaIQvFePPNt+xz2VGHSgi1cUwNo8kin+Vda9Odsv28zTfzra0tfP5nf96uNYyi9EIahfyo+G3E7pX/dih8UgYM9lk9O2frzGPr97l0xlHjOdqLiv0SalXrUMZO78yUiuB1heZ30KHNeopIoNKqdD1qu1EK4ZklaIYSnj3XIOT9Zgwd2ZuiB+wpdihLV6butFp7mI/Qzqe+ovtW+zghLu8/DEPXhsNDUXMCPY9BA5FGS/dNW/QPfxjra8Y8dinSfOuqlRIoEBkS2ndgwVguFSeenT+KepoFoZeMIfaI2o2SQXzQolqt4GvPPXdfcV5XgHBk1KUhq48p2gPFF8VSOiteJJ0JSUtMFNlXL8ECii0ZvBCpV0FXwtHJXMf1oQRZBCHDTfa1Nm171ff07LvNtkt5bjWiKYprDXvGYqtLJZVbsPPXO/ZzuphFop6IfFdjSsd06V7B/SyqmHVnNsN0P9nyqthvikhhs02Wi3bKaS9AR2k/SRvz+xbMaGiDQuWxCcs42KoQ/Sd7v29uAT7TD5XmEjQNOc2yOGqKzO/UuDEzG7SJloB5bHzE9Q2XkjZk/xe7o2e3vmHjdHSszHOA7eWjUbfP7JChOfuQrR/tHhnsrt1bucq+RPYtk/bw2veNcWrRqOHCW5b6PjFqc4/SQEssGXLqjKX0lXdtLajVG7hz21D2z37Oyna8/LKZESXZpm2armSZSthVQdPJHKoc/4UckfAUi4Cy7969Y2vsvgVrUxUtzXFe91sdpLg+ra+xYCpT7ps70bTbfFZWzBT4I+nSa1XsNEkTjUT6wSv+G4ZhxLTpvrRxpF1BeU03zO5zhbR3yPoEzJ3saY5p9/DWpdcBAIf2W5YLuzGKOaafEX2/ddUyDG4t2/NY4Pp45NhRjI/bvihbsOfYrtv47rGPJIeN5SqRudnasOf/5pVLmCDzevRR64Mj3J+N8afWFty287ZoLkQLhgAAIABJREFUPtDguj5cLGGThiuSKdxbteOnc9GUd4VYl62tLbcvHDSIGmQopiZZsJtzWj5PxmRk3JU0abbtOt66ZJkcmt/HRm2+Ub9U7Nu3z+1HdX6tJ+MT1mZKj1xetj1gToW9cxzDpZI7jzP/avo8po2n2Rk71hUayGS5b93YWObnGi5DSFlAg5kzYt00VyqKxaKbz1vsE+mQ8y+zB1rcY7lU8nLorh2wsavzD3FvU+A+YZtW58o4YrY3smz/Sq2FGTLuac4zGaYOy+RCffrmdUsVHiOD5bNIfHW37Gz3B43UFINpmH6o4s9dtLkGbW3aPC5L9aefNqOe8899C+8kYqYqjjjiiCOOOOKII4444ojjXcR7gqkqFAt4/MkncGSfWdLqzVMCuWqzhl/9L3/O/sa3ZAktczl7Mz37yAkAwO/83h9Fjv2xj30Mq0QRnvnEzwAAshl7e5+i7faF10yQOTRmqMHsvCGiU5P25vzd51/GieOmv5J97Jtv2PnFXPWgYnaGRO1sm1HE1GwGC4cM/b6+bMjLCFmWrS1DbSS4THhkJgaQ8TAMHUosZCtJlGpj0465SiTwC39g96+avHtFvXpLF2oj1MLvrUR+XyFiJIRsY30XX/iC6cJ+5Vd+BcD9zIxYldFhiZctUqnUHotwe55Coqo1Q0Iz6aguR0iQzpHNA13q7Jwom8ivrFkzTNIP2f67RGszFKY2m3WAOeuVZrSYajIR1Yx0uyzU6owCNuGxyHAuH03odza4A7bSQqZSeTt/Npt2xX9lOSzdiRcQ3ep5ke8mU9Lb5B2K1WpEbbYHrWLVxomUhrb9fmFhAcu3zXgimbPvPvkhQ6/pagvfp90ti23S4RUvfv3L2D9rCFMedn9vvmiozZMzH8CDGIVCAY8/9uh9TJVjDXtRoxhgDxPUJWvM6bNHNqpDC1wPoXsuGn4+mZBMzo/8vlDUeIkW9KzsNpwNscZYqyaLaVoPy+KWf3d6Db8H9dKc8uA9Gx/5LO3J21EDC80r8i3v9Xru/gtEHcMB/ZXaTIUtf1CR770xqAlUP0540TIKXiKER8xPOpsMEUyNeZle5Gkl3uTfu+0eml4r8t0kx1qZZhP5bNS0pkBUNFfsG/JId5bleKnQ8jmp81Cv2WtT/Lxqa0CGepWhUhZ5jvkUmW2PDFGNOizZhKfSZNQCzl/lGmZZyLtBi+lrd4kyUy9x/ISteV/84r8DAHziE58C0DcfABLIU6ciBlZ9aWODhV05Pz78iDEMaRaV3zdVBHKFyHdaFOoPZexYJfZd6Uu1Bshooev30OVC1CELo6LxxXyU6c8ze0L9wvP6ur8Si5L3fBnC4IELZeMMlt7Q/9uJNrxO1O5ZfUH6t92a9CI2hp1xTruFYZfBIiMpO9YIsxC6XFOqZJmHyEZNTxnD1POBu2SegqQdd2vdxsqV1y0LJ6Teb+Ut0+B6tG33Ez7uVIyJ0tqdJLsxQgZpdNpYnjWaXSikD00nU/cV25XuUIYYmofVl/dqjg8etD3bPWY7DRY/1/opC3WZdKmUQq3Wcp/xklELe/VrZcdoD6J7XVtb61u6U5etv+3sGuuhuTnHQuFBN6oPSyQSjinitIIG539dqyzmG2TIj5+0vefGljGYyWTS2YB7iK5Z+umKEdO4QbqxpaWlPrvDtcppSpkJIKYoK31q2rnN2I9Ewmn+s9y7V2jAoz1f2lM1YGUoqHD9sDNaKpI13+3Z30aZ5TA7ZMd49ITNVS9+52t2DhaDLm9uImSZniAZLZSs9XhQYyXtWRAEqFai+8KjR6yERTbxw70mxUxVHHHEEUccccQRRxxxxBHHu4j3BFPV63SxtbyqNFA0+Yb6xLlHAADD9TTWt1mYbMjekt9YMj1Imnajs3SwO7ifRUmJKlR37iLLPMtcyJzRXUML2mQo0kPWDIfHDe0oe8wDbhiaNzRZwPwhy9+9csVQmjPnzHa6UjF08gMPm27qldct33WO+ffNWoBmw655Zs6uLcVrvkdtwMKYHaubttzRLpFO6YeSyQAe6GZHhKPLPPM6rebvXbP2uHnV8mvbPSK0Gc+5J03zeB6R9aGQ/y8ZarC0tAQA8JXTS3Sl3Wjgm9/8DgDgE5/4NNvXkEbnREMtQLMpRqnvhpfgm76Qj3Ta2iadikKOIleE0HW6ZGySWYdwdpr2uxatUEfpDJTk+cXyDZWMWWm1VGTRQ3nL2EXpOUbpJtUj4ibkz0/Q4pz6kra/jUxgbZWhJayQOPmqCqPXM9Pva8zPTSQSDmnvEh2vsu/khqIW2aUikdmemI8kmnSN6/FM3Xa07YIWi/lJQ0a4pN0m2llrYnzuCADg/PnzAIDjC3a+1y4uAQAWT5iGcWPJEMtNOqOdOXIUW1X79yMnDR2/WbS+XMnO4EGMVCqDidkFh3buLbQNALlMCo09mrbITzJFSRXnpX4pI91jMtu38BXKT0fJBOSKyaKY3Sgb1SFKlkikHOIvJ0Eds8sxliQf1aUtuH6WK+W++xX7litx4I3xBlm+gajsLhHVgEXWW14BM8OmuyrIfWnNxofssItk+lvUHNE0CwhTTh+S7EWLYcsOt6fCpuynGRBJD+1zk4HvLJ63febnU/uZY7ts1ewcQxm54pGVbjcwPMr5n/b3eS4uAXUCIW9iiPdY4zwRBirOOezcqEboQlfeoJPdlqHhE2LMEvYsaxyjE2OGsGe6XYR0W1TBzhzHdgi7viCgxXjCGm9sxObVofw4mnR9Q8I+64W0aqe18tN0un32S18CADz/9a8DAD71qY8DAA4c3I+Dh+jQxvIkTtNAV8Ry19aPzZs2vv/er5l2dunuRZSGqCnk5JYcs767fo8MHoicV5lRwv6QY3+ZmJtBmVkikywC3Gf/qGMO6eIqASvn+WQqgyyPoznVoe3BX82Ivtei2/OxvLl7n+uf5/fZAaHpSlTR/3d26NTJsZNDtFC53245TXH6MNe/MWvfBAV+xQbXZ9IgEyyTUChSJ9duweN2cPmOaVYm6SB7/LCtG+2ajfN9T9i+bI0lZ9bW76HIbIsdjpEW9yc7OyzZwOwQzy2b0gLbdW7X206bs0OXyUCuclzzhsh6yW3OtWUqhS3OQdK7JsmE9JpR/dNhlo25yb3OoSO25i3dvoWQWRijZPGkRRcV2+Qc2htwQJZeDgAof8SRI9Zmt1naJsc9kHPsy0Xde2v1unueYnUcc8QSCi2u+fuoJW3vWr+YKPb3YmrXCtmsQfZPpTSkxyzTndPfk9Ekl8MhzlV5sXCcy6SDTetZck86PjqKAvVvyvgolJj9w77b4D420zQGq8nMn4npqX5BerKHEwv23cqO9bM27dJT2m2xxMTWHXv21WoV6aJdqzKbAq4/IcRccZPJ/hH27Bn3vAzaIVksts2pM7YvF3P8TiNmquKII4444ogjjjjiiCOOON5FvCeYKnge4CVx6dIlAMDZxywn/OoVc6o5OD+HFmtizM5anuOp44/x/5Z3/tL3zP3m2JFHAQBbW4aQfesb38Sv/NIvAwDaREvWNuyNt+vT1algb6Z/9md/BgD4hZ//vH33JatXNTExgVdf/T6Avs7nNl1sDhywGimZlL3lfuhDHwIAXFky5C+RSOAb3/w2AKBAZPPwAWPVDrFo5PisHaPHfNMUfzItFOlkEj5R6l26dwkdkJvMm2++yfu2PGiXH+x5SKjuBRGet94yZ8CQObszB0zLppxSVxiPhSmLxRIuXzY9zm/91m8BAP7+3/+frO2IOEr/k8/QQZGog9NqoI+8CdXRd+WuNaiz0HV0u12k08nId/MDDondetTlBUSd5FyT8NrOIUg1rJzbHnVYPhmyCmssiKkKggBhIqqZ6pLtc/W5BtgMXZdQp0aj4RyQdH/6rtpKxV2VUz06aih6Ppd1bZFh+yYG0DqFGAnpPbpErHp+F6UhexYf/Yi52XSrdIq8ac9WgMw8c9lPHzUnqW6lidFJO/9Lr5qDYNDh/89/Gw9ihGGITqdznxuXnonnBfe17WCdNT0TzQn6brvdvs+N0fVTFbjeU9Np7++FYO916NTfFDq2xs1gvjiSCfhkgsp0cNMxxgqGahaJbu5WbL4QgopOvx/rWqQLyFFD02mxj5Gx66OgfecluU4Otl1aWia5c3GSy1ILUmWx5Gang5AoZ69FVp5sX5IMhmP1iL725ByYTt83LtOsqaL2FgqtGoaTk8bgiElJp5PIZDjmeM0lMtsLB6x+m1ifdNau+eIlQ/gDslJ+oofqbiNy/65YedX6jObpILBj5/P9+jqbG3aNw6wd9dDDpqE4T9fai5dtLO4/Yuzx6TNnAAB/+R0rRP9T+SH8xm/8BgDgpZfMSfAMP3Pxoq0Xk/PGRu3etnWk1zJkv5TLAyy2O8Q6VfVda/9WO1orUAVeDh+xdWx7i+5w1V2XMTKo3XN1qVJR7UOHjEsy5bvP3LlDxzjViQsfvEJVqaSHmeGsm5+HqT2WPjEBz+ks1Ud7ZHsbzEZRHac8x/Dapv2+mApxaML64i7He6gitxzXmRHLKJjMWv/LMrNjjdp0+D6Ks9avD7DIajanPYR9ZHbSGNu33nqTF8oaW6GHBvv8sYdMo/PqK9bfunQQzHLOarKOZTgwt/gJoMr9mahRjdHR0fFou3AsSbeUSqXcvufocavDdvPmzchnH3nE2LUKmVP1S7lET01NOQZsY5XtymfjHPUY4/yu3IN7vV5f6872dhqvZdOrB2RONHd36H4oF1bnjoj+WFhcXATQ3+PpmHJlVMHsKrN2CoWCe/5i/TRmfpAbonT1IyMj7jOz48aEqRbsOMd/nnrQvvasX1MPAIq5vNNbjeSj+xRdV5KurL08mTq2w8b2BjZXbT3bP239rwfWzDtm+5At6vHESqrG5OWb9p7gJz0E2vcoq4PrkAr7dqWhYoF01YnswUeWz+4c+0qJngKr141tfKcRM1VxxBFHHHHEEUccccQRRxzvIt4TTFUQBGg2m3jqaTqJMVnzwH57Yy2lUnj5TUPfMszBrOzSZSbJHF7mYV64YLWohEx8+tOfcW/cE6x4PzQiJyQ6xhE9SQXM+yZCNjZpKEKj1cIHP/JhAH1HGCELFaIEY1P23c2y/f77rDGSSSWcE8r8giF5ly4bU7S+aW/cj7OCeWHEEAICQP083W7PVQJvUR8llGaQ9egzGnI38R1qre8c2m+I1LULbwAA1lhDoO8OaJ+TC+Ds7DzqPTuv6pzoWKqTFYZ9FxWgj/LY3+ToFEW0G3QiEkquzynPWGiDuUxFmSKhWjmiyImc6jYJmbBzlFnbI5tNo9uVXkV559Q3EOFeJ0oqB6Veq1/BPDdKRNnV/2nyuNnIPex1JAL6OeWpVAp5IuyqaTE5ORn5rOpu9LrKrU+7exayBjIMgwyHzp+jc05tx/rwJuuA1Cq7aDVZf0GOS9SJzc3ZeZV/PDpiyOBrr5rr087dVXz4px4HADxOnePdFevnq5vUfTxo4Vkbqh3FyvTreiT6tSyIHDpWNhl1fBxinaB+7ZOUQ9nFqDqWtNOJHFP9R3OUnJ40J+rfe8+nY8sFS/X9NPYDhI5FKlO3p+uQ+5fsAdM5O39phMjtPWMtmz7Q4Xc6RP9y1Mz0+H+hjL0BdLDVarn6I6rHpRhsb2mshBx6ntBvIJW1Mf3ay5aFcPxhY1k2Vw25HR22dm8ShRybmnTnFwLsnsmEtVVvlefjGBD7VaL7X8+XPqridEi7dLBKke3Kk7GTk9fGhjEpCbL1HjVenWYXzQa1DarxRZZP7nuz87Ym5PP23G9fs/bvjo3j6FFD3YfG7L7+/GvmuKmxvrljx/qFX/xFAMD581bLMV+ydvniH38V/+v/8j/yfDbn5HP9eRkAzp02FDg8aNkTszOmoxkeK+D22i7bxu6zK10gNb+7dN1KUct26S1be48dMz3Jxm7b9U0xNHoebbGdcpDjGiymKgg9188//3nLHBEyf+XiZTxo4XnGVuVZwysjfQr1gQF6kDJX46kjPYgyWOToN2RzibJD6p0WAh5HdQPv3jOGZGG/9a8CMyZyXXv+2+vG0Bw6bM+/Wa+hxrkp7UnzbOcd49hpMrPl2ClzX+u9ZeNyfHoKXWbOiF2SA6X2SXK0rd421N/jut0VQxn4bs6SJaCc6ZbJoqrvaF+k/jEyMtJnOukcLc1zhXVLVedysG6RmJx2t+N0Rk7/yWMuLFgmz61bdu1itzQfFwoFN59J03379u3I+cRqa57PFlTzzhg2z/NcVosyVu5S0yzWSf1fDFZplOsO2y2Vy8JLR11UB0PX6TIHeK+1Ws3tP9rdqPvf0AgdJDvReohj3CdM8N4K2RzyrJ3VqjPrhmvXZNrm41H23Smy/dt0tL23cg9H9hsTl+W177IP3+M9iZlShobWFmmhOkkA0pQrA4XMlH4mpM9kdoMSnHZ3d1yfHSUTrOdw8eLFt2vKHxgxUxVHHHHEEUccccQRRxxxxPEu4j3BVBWLJTz59PuRY57xa6+bfklvxvOTU0gmDAG5dMnyyQsTxmJt7Bhq0A7lQmdvoG9eMpT9qScfg0fHrbu3LX+42TFE4MmnLRc94NvtGxe+addTojtgx97mt3d2sc0K8EL8hCqIsblwwfKMjzJnXXn3hw8cRLdtx188agje0g27jgTdwoSAysFOPiw+XV/K29sO0eqoxlJP1baJng4g4q0duqxkMg6NFQp+9Kjp0jZuGRKyxLxaMSfKFRY7MjU1hZsrlqMspEU/R4hw51hrS+i6kJBUKuVYK/1u8KfQDKdXGmBf2u220zcI8fKI5gkB7TEdO5eXAxXddlKqrF1zn11fM/R0ctzaqlGn6wzRrbart5J0P3WNmRJdlQhHCLXRsQdDCHy356PVpmaNyK7qj/S9AxE5r2pvlYpZx2jsqr4RUaQW+2ij2s8vB4Bshk6LZEkTSSBHJ6jdXUMPW3SIXDxgCNH5F21slbetr/dYTyuRSWOJCOP584YSn3n4SQDAyRNHeNV//rb3/14ND16kAvxg/ZggSLi29AfcnuTKqN+3iJg5Z6dezx1X/cbVXONzHNRaadw6XRTu183pu4OIpr6r/88v7HPzkvLtxapMDdt3Ncdtbdn8qTkoQ5p8eHjY3cNOzebeoawheD2yS122R4Lf3Xvdg/VBMmxL16a6f7qfpRLR+lW+l3L1v4QgC9Vu81mtrNq8deaEaY30DFOplNNGHTp0CAAwwayDVaLMykaYpX5we7uvjwAMfXboN5HgHbJ+eg7KUihvsX5Qytq0OMK1IQiRz9n9jk/a3/RcMllrZ+mFjh0zbZOe9fXr1zFKHUxh2ObFn3jm/QCAZ58zrW+LLNgCdWHFoh3z4gVzqL19a92h3PuZneCz766s2By4S6e1J8/aWnjjjrECjz7xJK7dNpfQjXVDhsF2yDM7wZs2Vkss3759dr3f+ObXeez2fRkV0nQt3zUkX+x9h7UBx8eNFRkdm3DaDfVrMQanj9sxfudLVqfmQQjfD7FTa7nx0AltPqi25BrXhs/+Hvj2HGtVe74N/j/H9VEMxtEjNm/D85y+5c6y/e30w5ZRINar1ZFmxz43d9i+67M2Yjo/iukGXdToGCsWsUhGeGvLjqG+9DNHPwcAuPD693H9+5b1kguZOcNsD+kfCzn7/zz3Witbtn/Q3qDcaiJBJjxo2zWvUo9UYEZRlXOo5lJ9N5VKubFfIFMywoyNHvde9+5av1bGj9wndYxcIY+Ac09tV67DqlNpc4Pmw8ZAJk2hUHDzxiqzflTb6RhrHZU3jZHSXK26eWLbCoWCY/WmOa4GHWnFvkuf5Bhz7gl930eGmQedVjSDRNeu69Qctnefpr1bixkIYqpW6E8wNWHzWo370iGyk+u85yOHDjmtbmGEcyH3pVPUxaW5vmxRP+U17PmcOXQYRxetT3a4x6s37Lt3ydBpvp1gRsLSLZs7t6mBb/ktpDhni6nUvKPzdp2u3z5XI/s6MTGJmSlmCpFdvHrdtFqdMKoP/qsiZqriiCOOOOKII4444ogjjjjeRbwnmKput4vllXtYfs3Qs09+1irDf+VPrP7GQydPwztqb+l3Vg35urZkaNzhw+Yl/9jDhgg8dtZQrH/1r/5vAMDEVAE3rpuG6dFzhqpfv2lv6f/id34XAPDhD5kb2pmzDwMAztKffrdtb8bLy8tYuWfXppzhSb7Vnnvc8n6TZIPuEvlV/ZlWJ8CrL1tO5jfOGxPwa7/6SwD69ZigvGq6LYkxEXKSTiXQlv6Iec4B86w7fNMX+/TFLz0HAKgzWfT48eO4fM1qZwlx+caaoUT7mUO7Vrb/d+h299RTpp8RMnjp0iWHaCh+8zd/EwDwD/7B/wwAePJ99h0hA0JCstmsY6AU+r8Qd+UKCxnRd4VqN+o1V9dHyKeYKo8aJ6HDEotsb9vnfDr7eV6IIlmmWc+QoDLR6Qmio2CerZyMKnXW7vF9p/0A2cWR3AjbLKqREdoklCmV6jsaqjaM9GfSlPUGhmHggBEyVum+E1yCPGbI+8qwP9QqRM/Y1MvUMuxS49eobWOYNRxKeUO4mkQEe2SEP/oBc658/ZKxUVmiTvAyuLFsyPIJIqDrzAX/5ndfxoMYHjVV6tdCP/u6qT5KKPZEbLC6gtNf5aI5+JXq7n057XudLPeeRwii+vzeiu9CDvVdsS81spI6v/LyNfbam/26GuNkn4X2S1MlN8s8HfZ2ifa5uafbcy5cOprYrDSvOcFc914rOgbeLvayvgDgt6L5+Ukhijxmp9tDgfofIbKqeXKQWshtor8j1MqKBTh8+LBj2cUertLxdZwo50H+XbX5ZqeoRSRK2un03UKrNep/2FeavHa16WhuiO0jXac9226QRpaM1Ajnp2rNvnPiuLFr3z1/wY5BfZwcvvzZOXz7W8ZInT1na0yetQGlfcgl7Dl88y++CgD4hc9+AgCQ6LAf7L7gkHBlKdxbsfVpjgxdhmzQLNnqFp31skPTOH7MNAaZjLXrlbeMjfDJYN8jy1XiXLTvmK1BTc5b4+PjjinU81Cffv/7jXXLUWOkekmepzo6Q2/DHtPBLBFF8B+ECIIAjVrdjeWenPOImCeSXaRZj06i1zrd/4Y5VwyzhlmTrotpTvZe00OVdaLCdVuzNqhDyh6185WrZGDpIFgYsnOURqWX8cGEHgxvk81ljbc1rnH7jlof2eBY+u5Lltmzu7WO0jjXCtYbq21aP08myC4zk2ONDEqDBepK7MP5Xgod1t87RS3VqxdtbCTJeoylyFgzC6O3J1tF82kiSf02a9y12FZa+ytkJh5/yvZ818lGvPH6m44JUgzqYDVGNe5LcgdMp9Hi3HeIznXSXm9zbk5yXmtyrS2xHp/c8hKe5+bGtXVj4MVY5QvR7IY73IuKjfHpLNiq1hHQsdnn/K71RWvDoAOzIpvNuvtk8gvGWXNqYsTaLk82dIgOpSNDdg8jrEGHNFCk/m6G890mNVOru9RpkXVtBzbPHlw0LacXJiBCyGdHbLXoDMl9k5y+1+l6WaVGvKOMn6SHgDyRF6g+leoT8v9BNPtD43F+335XD22VLP7Kup3nqaeeAgBceO1NvJOImao44ogjjjjiiCOOOOKII453Ee8JpqrVauPqtRtIENX7kz8x5O0ONT+b2zsYHbc32hsvfAcAQNAWZ0+dAwCEdKx79quGnnzkQ8Z2NetdfPUrlnv98Z/8CAAgUzSU8Cc+9jEAfSeiP/7ivwUATE/91/Y5arzW1jbwmc9Y/vBzzxkTpGr3q/TOP71oiFya3/n681a/J5cv4BBdnL77orkzVSt2rddvGNv20ONWc8vVm2mzUjfzf1MeEKTEALHeSmiPLknYvMfvSNtTqzFnu1q9z5lucf8iAODwgiFPy1vROginTln7CBm5cTPlGDq92QsB/e537Z7e99QTAODkQXvr/+j8fdc/1X8y9EIMgELHFvqUz+cd46S6YDtEK3wiY+0m84yzhpRkySh5dHtpNBoIkqxIT/2XkCexX6Ig5CDU4nUWi0UUqE0Q4tRuvT37NojWVyp0yEqlHBshrYBDYomeuGP0xA3YPVQrdYeiZejsVRMDxWtsDGgXCgVq0HZ9HrOHaoWaCOadV5rWztt1YyoD3xCysTHLf76zYSjb+lYNDz9mfSIVGuL8/QumCxydnOK1ruBBC8/z7ssx1zNJJPz7HPparRo/E0UBq0TjhMZPTk461G+whlTQ4rkJtjeb9tyaZMV74Oe6PYSw57TLsdwikttoRJkhj8yjz/liolByWhpd4xJ1EuBn7i3ZmF+p2zM+IDcy6vi6vTbKHGPpJJFhtlUYWj/dXTdEbzRr7E87Yd8N0AHoYCnEtsv6aunQUMUO8bzckI3BVq/K9rJ7S6CJFGuZHDp9gvdtfX0oa8fy6OIqpm7fvM1fzULbaXOkUO2B+gci9RNEV4sn7Vi1mo2BcnmX9wi0qcdIEBGX/iJk/ZIKn0OXqOeBeUOWt3etP2xsbaI0Yc+h0bVrHyfr1qhZGz7yqLFBayt2/iRtCY8fP4ZRMlNt1tWTjrNENqfb3eZ5WAumZvdy8U1jmpPpDr7xLXMMLNCRcIv3OcL6VJ//pLFblU27l+tXjR3zO00cPGO6SZ/9XmtQN29tee2GofzvJ+p/+6bNAY+csqyFFDx0uta/R0ZZVzAkIwVrQ40ZjZO+5jCBQmGI9x2dHwcd3B6ECMIQ7U6ApLSFaWsPV8fR66IkHRDHzva29Zkx1qCamJSm0RiUPNmuuZkZx57skAncZZbF4o7tTyZn7HkXWJOzsmN99OGHra5nNp1Bdog1k5hlE1RtjRkasvF//aLp1HWuiSHW2OqUsHR5CQCwtUOtDNfJbep3VVuoVpNDKhnymo37obFRp/u8ecuOJTZVbnvFcTJJnPdOsibVy69+z63LHTJ/62Sxn/7ABwEA11iPS/Oh9i06x8LCgptHpC1fvGvCAAAgAElEQVTXfKf+pnpRe3VIgO0fnJadWQTSJe3js+twXZEL4Mqdu5FzbW5uur9pnI85l2obK3K9m+S5tG9R/cDx4SH3u1sr99hU0f3IoKPt3rpVrrZTV/dtz8gP7PhZzkdFugHuX7D2P3bMfuYKJVeHsEw9YLdt13xm0XR4PepS2zs2/za3bG4pTUz0dU98lmNk/epNu57RkrVPdavu2mzvvfghkOa6QqKqr91lZleLrF6FbpBj3L/kcjnn2KjaXVOLlql16jHLYMO//gLeSbwnXqpGR0fwuc99DtfumhnC8LhtHH/5l80q9o1XXsGRw7Zp/+SnDgMA6jVrpOtvWgN84H2W9nelbYP4G197DQBw+NAMRkr2QN+4YMK2atcGz9/+xU8CAP7oi38IAPj13/hvAACnTlv63xY36o8+fg6/+/u/B6CfQqciv3/5zW8AAHJ8ilXfOsmv/dqvAQB2Nxo4fNCOJ9Hm8+fNHn5mlgOOLwY+J0TQ3CDBxTOXy6FUZOoRXy4CiqK3mM6jAVEu2zX3etY+N27cwMHD9sKnQSuh6Xeft4nl7GO2aVEK4QiLFKtznTh5GGVaiOt3RQ5kiWZdih/HsDYge62hNQnpJUobysHFctDYIpvNokdBrQr3Kk2nyfsPErYANVs2SJLc4KWSKj6cQI2bX9ltlgqixpnmxA1Nli9iw7Inbzfcoq/QQi+huV6U9KLmCsLSHCKdTrsXw/UN0vek+4vDds3aNI7TQnmIG87Ve+uu3Vu9u5E21HmHKB7XAhTA2qlS3XbX3G7qJV12++x3Mgzhs1NZgjbp/jOPfwTfefFZO/6yteHPfe4X7P7ydp//4bnX8CBFGNpk7KxwOfnuLdqrl3q95PdTAqMFS52JCDcbqVTK9ZdBq/aQxXXzxX5KJwBkudlpcRNSyhexWVYKq51HhjM595LHAtMUkis9sFgsun8Pvtzt7HDjwPINlXs25yambMMyUhjmHbZRo9ja5xvg9Nxo5J60IA+maSUSCWRokNJsdiOf1fWEYbSMgu4xRYF7wkuCLrhu3to7pwD99JzBYy8uHnBmLPD4HAiyjDHdaZPi6xLbXcfSXBWG4X1tGPK8lYYAJjvmYCFyfT6dTmMox5QtWjsXxoq8LBozTFgq3/detBehYywjsrGxhUOHCHqt2hyzjyBYx7fFv9Hiy17a5oCvfPXLAIBVbv5+6ic/ioTPFDHOn5Utm3uUltflMf7x//aPAADve9I22W+89QauLdta99Qj9ruJkm2E1vkyffSorcV6cVVRaJ8bmFw6syf9iIYIXLdSLCQ6CLj1x1TapQImmR6vAvCJRLQY64MQQQA0OyGaHZYrYXq+S5PPpRAmrG0EiCwcMgBxnC8Tc0r7ZDrYGNNht+8sY56p9N+/aPNwtWVjN/T0gsZCukzLeuaZnwIAvPWGpTQ98vBjbv1LsM+GLMzbrtBUwre5/vL1SwCAVc4LXT/A3ZvWR0vccOeLtnbepSHFDMHQ+hUzPCrvqOivjDIK2FV5GprK6CVH6ergerTL61L68dzCPiyyP7/4vO2ttC5eub4EAFAtcr3EaH2W5X8ymbzvBV/hJAecZ/R89hZlH5Q46LnqWNov7C1YDPRf8prNZj/dkMYT5S1bu7UOVdhmGSLXdRpWnH7ILO5vLN1EioZeg2nsgy+CmqPUHrVazaUbat7TNftKZc9Ym5Ym7UV0jnb9enHJphPIsRySz3TefM/WjLtXTYIzylTOuVk7horydjwPzYbWN/tMj/3twIL1exWyv3zLjqX1VkC+7/tIQBILlexgCSa+7O5wLR8iOC2wul6vu72c1pknzhk4tH+fvVy903jX6X+e5yU9z3vV87wv8/+HPM97wfO8q57nfcHzvAdvBowjjjjesxHPOXHEEcePK+L5Jo444nin8aNgqv5bAJcADPP//wjAPw7D8A88z/tnAP4ugP/r/+sA7VYbNy9fxwdpGftv/ujfAABefcFQh8dPPI5rbxqicuy4sT7hlCFcr79hKXQXb9kb6bGnjeY+iUUAwLULV3H0mKUuvfzC1wEAyxTY7uxaQd+TJ+2N9OIbRm8Ps85qAoacJBI51Br8Dt+mX37NRLuyny4TESyy6GWvaUjAs8/+MU6etGu+fdPesH/mZyw18do1u/YOhdAZCQXJepV4Ial8HgERHZ/pE8U6+U3aW966Z6kYwk78gEV5kUeOBZOFgDBzEeP7DZkYYkG2BOlXnxDx1JT9vV5vYKxk68bi44ZaCgF59FFLv6xu0qJ4kQWTiTohzCKVpvVpOsqQhEyjCgkjDTsk2lCVkZIhI/V2GwmmD4Fi+RTF4TnSK6UUxeFs92RegkQKVrsd5Dw7nvgGv00jELJZ60RxO0yJUjukU1k0y0zFyNu1VYgE+kzraZNV6NG0oE2h6PiU9ceNjQ3s0qpVBU7zRJO6HTvPwj5DosWMbG4aUlwoZhzylckb0iiEX4yd0jMnJoz12ikbs6XnlE56aNLO1ochQAkKQpU2JqRslGh9k88p19jEgSG7tm7e0BwvsE70xuvvTLz5I453PefIqEII46BRRBiGPzBVIpGI2oMLjRQ6WK/XHZophNAZUxQlWGZ6BG2qExSpJ9mPG60euh0V8K3ys0TzOU947GNbW4bgCfW8cuXKnlQ9FqsmMutT3N7YbUTuSfc4rLmgGyLpkTFuR0se6F7oq4MEmQlnOpFM3mcu4IpNcnyIsetbrtsxegHnqq6PlBdtX/VlpcEI9ZVxg1jhTCbjLOMDzg8qUl5jap6KryZ5E5tExYXglkol9+8GkdsCU1va/P0mSzEMFot0bH5pGAWiu8Ms1FrM2c9mw+aaXMqyAx552NDmMsd8r+vj+k2b0w8eXmDbWRsdOWr/X12z+3/1oq0raab1fuoTlta+ce8ONjN2rfMzxvadOGBp9FmuFL/9z2joNMlU6JbdQ7Ndx9EjVhj28uvGfuSJILd2rC8dZQaExPY1lh3JM0U9nU4iX0izPTl/e/051T7D+XwPQwxEC3MrPKZdtlo/nMXxjyDe9XwThkCnG/aNWmgSpDIbmXYCAe3IVah0kuzx5LSxCUePWhpSo8V+z4yeZDuBCgsxn3nE0klDcE7nvFLbtj586rhlpdy9ZWxnkn+vlneRoslDjn02oAFNt2nHfuFbJn1Icy2eP2DPP5MfwpU3jYFaWqFBBou/3mGR4SyvWeYODaZhjdA4pt7tYpjphA3uz7QvUNHjKtc62aH7ZCXSmYxjMU6etnH0zDPPAAB+7/csw+jnfs4yK/7lP/8/AfRNstTvWq3WfYy72C4ZFbz1lo0zMVoqr5NMJl2GSpkp80p71ryr9MeZOdsP5JlmLaZkfHzczcW32GY6/yrNr7SmzHCd/thPmJzlayxhMDU1gQtvWJbJ7KyxSGLidGzd297SEYBlYLlUQK4RzoadRhE99s/LN2wPUGdRdBKGOLx/H+Zm7H6SsPtLqOzDLNkmprk3snau2WlrD78XolG1sSDZz90bVlx6neY+m9xrLW3Y313aH+eUvRRRkjb8qzT1aDKVW3Pk5LRdj9aWlZUVt66pCPCZYzZWhnMF/DDxrpgqz/MWAPwMgH/B/3sAngHw//Ajvwvg8+/mHHHEEUccinjOiSOOOH5cEc83ccQRxw8T75ap+icA/jsA5HYwAaAchqH8Gu8C2Pd2X/Q879cB/DpgDEWt2XC5nC2yQemEoSj1VhNPnDJN1bN/akVGf/LjlhP89/6LXwUA7BCpbxAlq9NieqPawMc+ZIxUs2eowf5G1GShlLfLb5AheOMNY6E2tuyNfLfRxZuXDYmpNAzNuHXH0EhZN/7v/8c/BdBHcT/wPrvedCaH75x/0RqHBgAKIR3TfLvv0G6zTVF5jvmxQSvl7HRl6wvmm0usV68JebY/+6GMItIOcW2TqRB6Ms+ikc6OlMjgIAIfhiEmxo0BEbIiHcEEC8ItL1tbDU9TkE4b8HxuGO0WtTs+WSSidUJJVCBXyLNy5yUMnV7YjzrZE+VX67s9j/ooIp8edQ7Sqcn+uVrfQi5H9J7CrzrZtJ7sydl31u7u8B6JUIQJtIks6trVVkJ8KhRglobtOXVIh1WIulUqFUwTldFPj5xZrRYVXurYe88hrUeuJ5F6tEDy1LQ9B2ncstmolWoqkbzP1rtfZJhFXgfs4LvUSKSzWXz4Iyb49b5j7PHrRK+3K9aHf4zxI5lz5omcKQZ1f3stZ9XGg7qrH2RPu7dw7GCB6zAjUS37PBG0olBBzifl7SrKdTHqZFeImHkcx40GRb5DMgGwY4vp3HvNGltdahInhm0cS2Sc57ma/NnrVTBGZLRZKUfaKEttaH1XBgZBpF2afhOeF8Xr1Of8tHRHZK7yLCRMpj9FFNzzckhQK7S3CDiA+0w4pAtw+p1kgAJF7yrFkCTKqvIV9So1HWS+nQkGUehbt245jent66Z3krmACrGX8tECovCihgrF0v0sm9rBFRDe3uA92Npw4XuvAADGxkZRohlRihbSEuMn2WYq9CqG7uBB6/Z+jTbOYQstraksp5DinKa17vIlQ4MX9tt4eOl7JugvFEr41V8xZuQbf/6XAIAXztt6SekNZhZMF5HmHJPnnKOCn7li8j4mapAR1u8VjhVOhM4O2aHsnLezuWix6b/h+JHMN57nwUMATyULBrQ2nZaPbRborZTt2dy9bXuMTtM+W6aoX/2vzDlsfGwUq1dYyoVz9vGj1MxxzZ2dtvW7vEOjEuqm5WO9s7OMNhmJfRO2L0hz7rh8xfr/3WW7ns/9wi8DAG6xNEsuPYSTj5im/bWL1p9WqWms0RZ+9S5NkPJ23iFm4VT26FDv0BjnLAtE67m3pHPkfPfxnzYt/AvMZBodHcXZw1Yu58WXrI/+49/6h7xPY5CuvGH27J/4tBmzbHGtvXzJ2KeZySl3nq2ynafFfdgGGZkmmbNjs5bBo3IAjUbD7Vm8jDZg9nNm2rpGnfNqMW/9XXPWRWZ6HD58xOlJxSaKkRdj1+Q+YZ0s1+b3vm/nytr8s7lTQ7Fo+4A2M3b27zPGSnspjxlP73vf+wD09wujo6Mu62WCGlatXeNsw2YtaiDWpoFNgXvTpWtXscmi3kGH2i7q/yZ2qIsdtmudnDY9ZqNC05nQx2bZWPrra1ZiZ4s6wDub1rcbHP9rG/Y8spxbEtxHhUECAZnXbernpdNjV8bQsLV7NmXz4OYmSyW1a3j8nGVdPfaYlY0ZV8par6+deyfx12aqPM/7DID1MAxf2fvrt/lo+Da/QxiGvx2G4RNhGD5RyOfe7iNxxBFHHC5+lHPO+NjI38g1xhFHHP9pxI9yvhmsWxdHHHH8pxnvhqn6IIDPeZ73aQA5WL7xPwEw6nleikjOAt6B1/Lo6Bh+9vOfR7Zgb5wqQirG5tUXXkeNlunv/6CxTjmiti+fN4v19z1pb5mrd9Yj382mfDz71f9gx/meMUa/9l/9PQDASy/ZXClHv6eeMHbpFrVPjz71AQDAP/3tf4mrd+1tOZWhzkkFCMO+BgMAKiv25n9rxVCXibERHDpoaMH+ffZGf+WKaak00S4t2dt9iRoin45ZM8z7TbR7gGcoQZoo1Tbz12VUUyUzd+KE5cE324YQrCzfQ4VI8/yM5eI3qa3yiQ6XCoa8DDIZQhWPHz+OUnGY57MTCtGdmCQywtxwsR2TdLWq1WoYpotdtyeUzhCQHlFJIcy+r0Ksdi8qWAn0kbVWvYG94Yru1qy99x0wZ8M6dSYtui31/BauXzcEpMTc7S5zh4USSytx5LC1oRD/IAiQZo7uhddfjbRNggj01Jy0U9aXttnmc3SOOXbsmCti52y7vej/1R+EdKuN8/m8Q422KltsI2MbB1mTqWljIMSQCdVv1Op9hInH3yXyFZCFU1uKwXyYtsuVnRauXDO0slaz+/rkTxvi9+3vmGUzcAE/hviRzTlhaG2mNhfz6gr6ptOuPQYLJ6rN9Xc9Jz0j3/fd8xFLrPM02Le9VLTMwTJzv3ssrJpMZNDicxmlLe8YEcQtMbjTNq+owKXYlsnJSXct0trpGpNkUkcKNp6a/Jw+PzZBa+AA6BC5HeF3xPqmsmRkUtF7dLbxQYAUWYu9OitrS0TaVG2ZILLbU5FGpOBLD0IEVdcozZJYc+kjhmTxnAzdHOOmaQKinYbNmz71nZ4nG2H7KTZubGzM/VsIcaFkB5ulS5bmhz7jbudQ0fRcvojZBRtDc2MsbA7rX0k6jAa8pzrv8X3Ub7zyyivI5aZ4Hs4P/M72jp33b//i3wEA/MEfWimQPNHytV2bI+q7Wzh21FBv2bKu3LN1bHzW2vZv/bzpe08/bOzA9q5d39T0Iv74y5bhtr1swylPPWCNNunDXK/aLEExxP9zWkMmm3QI/uBrh+aiQca9309C5/o32Hd+jC8oP7L5BrDxofGw18oaUHH4qFZMbXPhwoXId6Q9mqFL3vFjR90Y0d/ETL/vSdOLy9VTc7vaW26x128uoTTEoqt1Y0jS1GW9cdXm/sywjbPvvmoMSYV6maa/hHaDhck5f3Y5j+2SdctyfhX7orGluSOfz+PcUdOeV/kdzVk7ZB3UZ55/3mz/tSdoNpuOtVK2yeysjbuHHjK29c03bU/39AdsfDU4pj//WSuV88L58zh8cNHarmGfldvg7SVzSJXGXc9D88/c3JwrIq5rrNXs/mTlns4kI3+/ceNG5P/1eh2HDxvzu05d2hbLpkireeKEjWVlN0gvpXl/ZmbGFVFfXrHMoY+xbNCt23YPg26Ae51tNY/pmaj9da2DrHNxv7FwFV/a0gKS1GlLOyx95c627YsyCWru09bXR4aoZ1+6hRQn0An2lbvMIJrm3urF12zvlXP7RYl6WUg7CBAEXbYNS+5Qnzg2OsF7smNvUj/foDZ+YWEBT3D/L43uX3ee+WszVWEY/g9hGC6EYbgI4JcAfC0Mw/8MwF8C+Fv82K8C+Pd/3XPEEUcccSjiOSeOOOL4cUU838QRRxw/bPxN1Kn67wH8ged5/xDAqwB+56/6QrVWxTee/zbOPWpo2dnTpwH0800PHDmEpbumafrOtw2lSBJ5+7nPGtL20ksvAYBz0Dn3mLnUjQQ1rK3am219zZA/5ZE6NOMZQzOEzD75uM2Xf/TslwAAO7tlhHz/FOKifE4xVh4dwXIsatdtGnK0urGNjS1DHK5fsvoOE5Oqu2LHmqa7z/w+u57Jgv19c4u1JcbHXE4unKsMaxkQiRZj1SR6FBKxKA0VkUjQ7U0oMcHD4eGoNuEHaUQ6nQ4KdLjSMfIFFWm07+Tz0eKprt5IJu00B92enVg1ZBxqMqC1kgud02h0OgA1U4NubfWyXasHa5+l22/wmM6azH4mE5I8uGucoruSXNR07BZz2FXgGeij0ap1NVwylEa1VNLS8pEFHCqyUB7vvd1uO6cl3WfgR12GdF36v9C8brfrGKci6z9ks/IwtOgzE5tsD3ume+sUZVNRLUKHueLOMTEh1y65bNExzvNczRAvwVo97HdnT53h0b6E/4jxQ885iUQChULBPfPBOiNBEDj2SmNssIi2fmr87G1rMTF6bq4WG+wzdfYjFasUs95gn1tf3cTCAWM8SiN2DDnUOfaRdd62tzf5ezIHe/qLK1BcVU4/XSTpAn13kzn1dMdLiQ0IPeeuNUJHwJZkSey/zslsAGHPZDIRFzegz1gNugIO1nbKUfsDz0OHRSg9z65N/VEIqhBFfffOXWuHo0ePoNcT48V5iCxPTbXwmHI+xGLtbf/+eklC/1V8d26B0hkiqtMTLHqsOSln/eX4cWO6O10fO2R2hwvG1nfIoFXW7fnPjtr8UFbhbx770KEj2OK6oel4hGhrL7BrFQp+mutll/3h2NFFAMDl77+AWt3abKRkz71J9jNg/ZaRUbv/q9dsbfr2d+zn9PRRVNSvuE7NUAu6tGKuhGXOH8Oc61RPLMmJNl0IkKEeTPpRIfN79brA3vplYjajzO/en/rMf8T4oeebMAytjs4A663Y+3/9e9CZc9D9MpPszzG1DRWvZm0p7j+UObIwZ6x2yGdT5Jie45pwd+Weq7vW7dkatrpuaH+ZNbUa1EEO0Vnu1l1jMGqtDrZ4ngSPUSZTM8t6RLsVux49f4VqZubzeVyiw/MnP/MzAIB/92XLMJrfb/PgNrNANKcdYO2rqakp/MVf/IXdz/B05LhiWZ5+2gpUv/G6ab7EPp+nrn6kUHKMa4vjKM91OEvtVMixu7i4CKDfZ9966y33jEZGohk9KnKcSkczfNSHN9ZtTj979qz77CsvGuumY5aUZcD90CLHoe6hyHknl86gyfqAMzO2111dXeG12r1pDdNz0D1kMhm3Zmwwc0vtq8/I4dBlX7DvyJm64wdYJBNa4f5U55kbst9rLumSUbqzYvv6rbVltKl/2iXrOcIMjTeuGHOoZ3rzzq1IGwbOnTeFBjOZAt/6eUa6K2kXWdhaa6fH3x88eNDp3H6QzvOdxo/kpSoMw68D+Dr/fQPA+34Ux40jjjjieLuI55w44ojjxxXxfBNHHHG8k/ibYKp+6KjWavjmt76FE8cWAQAjrGkxzlz59a0a/vO/8/MA+iyGvPRHWJfHh72RPsaaUFMj9nb/1ddfxmOPPQYAKJ+2nNSxfYY4/ut/bfWwhouWm7vJ/OJchs56G5a7n0oC+Rzdi5iLPzZqb/XDJTtPkzWPKkRz69JaVSpoMwd2qUKf/XUiTXSeGh+n5ugF03jtmzJk5iefsToEK+UdHNhnCMwu8+XLG3att+jIc2/Fjin0vN4my9DzMDyW4d9UZ8b+T+DrvhoGg2iS53nI0HFG321Tq3Rz6SoA4AjR0UFtQjJRcC6HBbIsYmIqdOAR0iukTIi00zSl0kgReZbbYmHAsfD6TbuOOT7bTM7OtXzPkJrxqUlXB0r3l8sz33fH2jQMogh8tapK6qFzWhObmPKFzhh6dWvZnsckXZYKRGg7EebO+sE96hoKeSG8hkArhJCLKUkmk66Nkg55iVZGlxYnZE0PtaWYslKhiJ3NaC0ePYdqK4oIv04078gpGy+vvnYDn/jER62ttuxZnqBr3Avf3avhfnAiCHzUG1XHZKgfqf/mc8X76pX0WZVodXr1V+W2Z/MpNMhY5rNkqljzpc4cbjFT1Zo910otqjEolYqYmrS5bmPT+vDmmiF0QznrL7sVsdTSNHV5XRlUicRlWXOmzf7BcnMoU4M4XDI08MxBm1+8hPW9YiuJboMIHRmwbtXQ6FzCrivDY9fosNcla51AxzHYGSKnSc/aqJ62Ob0DItuh/X6DDqzHOW82cllsELn02P5yPSsQ0ZUmMakkdgqn1teXMDFu91PI2dxeKxv6WRy2/6t+nUeH1VzG2qvTsgYq5XK4fecm21X1W+w0clENuHzeumOa2IUFQ1JX1gzp7XZ8LBLtrbC20/SUXXvocR7nc0qzPlno2/knJsZw9bo976vXjE0cIgrf7dr1jE7YvRTFmHo29+ybM1T4337pL7Fzz9pwM21zbVdtRsbi3qb1ZdUVfITM89ZmBUlmFszSZS6TtDY7ML8IAEjRdfCRR23NTUpTR/a163n3obxypxusQZXlc9Cz9MPA1fPTMZQtoTH6oIXnefc5r2qOSafT97G3g5oO93vYT62rt27dQobHcVqlln1GDsenTlo2ztJt09pI0yd28bHHn8D2qu0lvvn8n9nfxqw/LR4zN7SXqSfeIutU7cjlcgjlAQ3p4SPmnNng3kfMweSYjXPpIl2dukwGReqz//w5Y532z1o/TpBdlYZJjIkyji5cuOD0VZqDpw5Yn7161djcP/3TP7Xfj1OnzrZN0nekkMs7rfujrFN0+ZrtKTJcSz/72c8CAL74xT/C3piennYMoZ6nWPRatcX7s8/evGlzivYgBw/anuTll19Go2GfzQ4Yt6mviLG78oZp3I4cMgc96eKazSZ6rP916szJSBuN8761lvWdlm0/MTo66phhXbscA/dmYAB9LdtNuvKNkuFKT03htevWZo8+bd4HD52y6+jShTTHtry1YnPm9qodY3P1Hla4395tUodH/4JskbW06A6ZkFeMm0Po6NpoOQflVLLE+43WK9zZoV6QWs+jR6yG7blz59xeKZOKOicPssp/VbyrOlVxxBFHHHHEEUccccQRRxz/f4/3BFOFEOiFAX7/938fAHDyyCIA4G/9nV8CAOw7fBLJFt8wWfX7Dms4/MEXzPlITmaHFw1l+NMvfBkAcOnWPYRFQzg+9IwhDasb5vzxsz/7swCAI4uGqtyhg4ve/D0iv17QRYF5q2Eg5zY6gVGPU6QmIZMa43ft7b6Zz8EnspjKsWI4850DwnKNrh3DZwGQ8xcst3iIOaUzMyPYpA5pt8y6QDVrj41t6SqIMPNtuwfqcTwvggYB2ON4lov8fxA926szSacGa0vZ37a2DXG9d89QjRJZj9mZfukOoTJyHZQeDANVvYVuixXSvXTgoSHdQiqqS5Lz18iQ5W5fecuQmYOHFiO/b1S7GElbe7ea0bpYXWo3CkTLW7t91z/AtGc7bPdOx+5la32TN8c8dDJWbcLZ3bq1f93vsxrKmRYDJcRN+jDdk5iPvfoOhxb1onn2fWYwWsNHiJ1iZWXFoXKDufouv7rdd6IC+u3/xFNPO23aKbJXOV7zAutgPKgx6MYl9ikMQ4f6KvrIVS/yU2hfgXOAH/b67pCJQdyK7FYnykz5ZMwafPbHjy86zefKPWMsDi0aMlnf5dzCcVRjjTpdu4cU6jU7TnKYqGeov9m1slu6yvNOA0VGq9tsIUXWU1oD9RPdbxBo/BB9p9Ql9AOERAYTYXROGdSHaOxvlm0+A8dIOptFgohhbaCGmMaP5jOdXyyt/Uy87fl26Cw2Qp2aaiOWhujKtXaP95hFNpeI3K/Ot7Zp11ooGWMnl9K+BsvGYiadQ/2tzwIAACAASURBVHnHjj86atdcq9q9aK4pFuzYVf4+ICN/d2UNZ8+ejrTd5qYxYHNzNqfluZ40azYXjRPpV33HseExBNTFXb9p2pJ9h60PZVmvapW63XnWudvaYL3HWh37ifarX2vOF0t+loh+UZoPro0+MyJ8pO4bX5rb+s9MWjsxWv05b1Bv5eqQ3Tem3vuRyaQxPz/rHNtSqftrEf6gGoiDiLl0IHKDXF7fxNy4Pc/JOdOFtCqsE0V2+fLrxiAkmIVTrlgf3nfQ6lkdP/EQ2Mx47CFzjHv2uT8BAIzNTkbOe+OGaepqXOPavRCpgvVFadpvXbXPHD5hGQ011gZdunsnci8PHbbzX7p0CS3qTNVXumL1Of9UOZalWfz+982FcGJiAudYY+jZP/mKHb9t55+dtLGpfhfyvNLGt5RRVMqi6ll7N8nmHn/oLID+fvCPv2S64dk529uoD3e6PWSydjytuwv7ySr3LMtAOjjnwLtj42z1lv18/0c+gNv37Jo93m+F83qRe5w36GDYIUM4Tt3U62/ZfnF3d9dptrY4rttc00ulEX7XHnKiYXP3yVPWloViEQH3EN2O1iJ7vptkd1QEtS535qLdY40ZWOVMDWdOG/NTanExoF67QXdobouxSgatRdZzKDeEyo6xeBuco0fH+2sxALSZ1RFyv4wU5wz2uc31LfidgG2mOYK1SbW+0zV8ltqvU+eMhR0d+X/Ze88oS6/rSmx/L8eqV7krdVcnoNFooBEIJjGAICiKSSIpkcqmwijOaOQfHo3DWvasWWtm2WPTQ8njkShTViIVqGAqMGlIEARIEGiAjdToRufqrhxfvXo5fv5x9r6v3muSIgcwjLa/sxZWobre+8IN59679zn7DCCiz2qfRD+nXLrv1m4+7xRYYIEFFlhggQUWWGCBBfYqslcFU5UbHsIPf+hHcOrhhwAAh+YMvXj44YcBAEs7JQy0Tav/He96L4Cuqk2SOU1T+w2B++RfGUP1z3/9lwEA0Ycy+NwXPg8AOHqH1Z360z+1XCrFaM/N2v2kdvLii4YI/OD7TIXGi8bx0DcMFYlEye4Qie2QzWr3IaNidkaGBrs1ISjg1yHiIwWSNk/zyq0KRe1E/nXW0Tp6eAabW4Y0ZFLMaVo3ZqhQsvvnd4gmDxp6oXytdquDCtVUQmOGPApNqVQZq5xjnDGfS+itkNdOp4O5A8xvozJMg7VKpEq4tWUIQZQqV0IXIpHIDbV6hDQ3+tgWxb3qd6dsGIli34zFHjeqvUqGatuhQUMezl8wBGR50cbHoSNWab3j112OlGKCpcan5yuR7fQbyjOo8nnjDlkTapWNsIYUmaHSDpkpsV+79nOG9zfU0R5aNdaEaHvMbxC7IYRSbRiLxdwzFx1r0JvPoxpYm0TRpSwpJmB4eBgri0t8H8UZM8+G77BZ3e55DilqHrzlNfj61yzOPkJG5a4TVtPhNSffgJvSPBuPQoc1BvTu9XrdMSP6THf89jJ9oVBvfbFOq9XNKYxRSZJ5R0wxQH7Hxofyc+qkjiaZszd3cAbLy4ZyDg7a3Ouv7aKaM+VyLwN69oWr2CZSGYkYw5qI2ziIMSe0ViEaF+Pc81kvSD5gp+BymEKqO9THFPSzEG3G88dCYbSEiHKJaXGs9dencgxZsze3rREKuTwwn2yLFCjl+48yr099JoQ1Hku4nDXVR6mrvp2nukjWponkIN+Xyoqsm5LP5xGL99Yhk++LMF9Sc1J1Y8RYXb9uPujgwYNIsd2Vn1suk/0nqzNOJa99+wb5DvbOxWIZ164bu6A6NWKoRscsgqFMlHc/2eIax8fZM4Zcz+2fw+Xzlifyc7/4SwCAw8yZeuRRUxhbX7V3GmR+6RLzw6qlOvbto89tsu+4ppw4aXP/rrutBlKdLESTa0GBeZeRUMitJf15UC6PF70qkdiTT9SvoNlVVEviZrNwOIKRkZEb6gNp/GezWTe/+xmqb/dT/qdYLCLq2Rhs1Gx87Z+0tT7ENfXZ562/xT7ulm1Mra8Zc3TmmdPYP2X7oB3marUZObJAVkFr2zLXwBYZgra/iwhzV0JchxRBopptF+aNKRX7rrX94sWL7l1m9tt4u3bNmHkxBVEpSIrtIlM2nLM5MzyUc+N2nDXkpOQmnyFTzs0YPxfmmD5//nxX3Y5+PC3FX/aV2l3+Rn6o1WrhxAljta7O27NlB8wne6vMdatZ2916zHyW8oLWluz5zj79NCoVW3+zQ/Ycg/xZZITPBtf2X2ad1U984hP2uUHliQ64PVskbG22zXqdqsEkH3btiu1xJ6havLS8jHe//R0AgK8+bLUnE+xTtZnqJLbr8lHWLiPct5bLZTffnyQz549QmRBm+R0bd1HlFBfJ7oeA43dbFIx33cZKZVvMOPfL3OuEnRiA/fvahrVhtVZHhHm+/XNESstZ6iecPGkM1Rxz2hLRGKKUxQ711ZD7f0X97yVbqw5/6ypuO2DhDneftMPPH3/6dwAAJ+64B7Vdbhp5IPjGGUtAnJ6wjh6Mc7NdsEHdrBrNHmsC/+af/QsAQHzEunYfE3y1SXjx7FN2bQ6e43fYcwwO2abl7Q+8G7sl66SzLxpF2WxY0+3s2gBLJUjJcmJOz9p38zs7bqCPRJjMyA6WHLv+vr1hTjVKWlObhOeePY+dGRaao1Na3VZIDEP6GE4yz41YlpKp1VrFHaLCvm2qY0fMKWQztkiXthnyEmJoIzf/16+ZM01lsojG7P91LS0ACmeQ3OXAsLWDDjCxaMolHCcUQqnk3CxDCRnG1GLR4wgdnWSQq50mqgxj6FCoIh6z96t7tuAOTZmTvP0uC+V88pQVhe74NvGPHjzmwgvLDL/0GX7pMxG9RulYtcMkr7m6uoydgjkJ5Q6HhuzZowztHCUVLieezNoG68pVa/OZmRknaqECfeEM5U2VpN5XKHWvEIKTQmXYiEc3lUxbv+9jseXVNesnbdJVtHhiag7Vhl1XCc5yvDUmlofoYL0KxRpUSHBnHZ2Y9d0W2+HcNZt/G0WGQd5k5nkeotGoO5Tq8KnNXsiL3JA43g2/4RhM9B7KVWagUfTR8HqdugpLVzjGWxI64cFhkoUU5+Zsg9xs1t2iXSzaQqXk7n0ER7S412oMbePnL1++iDyLg4+O2Lgsl23ztLrKcRRjmB2Lgnq3cNljAu/g2AiyDA9eX7M5Pp2z+/YfNmVu/HS6YR4CTlSwsf8Q60ov9InlePE4Wg27nvyyPqvDiwt15uIn/xKNxhHyuCHjfNku25hXSJ/CcRT2VyVYMTFhPnFh4RrGedDR++oAkmTYn8ITdbhNU1q8RlGSjY0NzLCAtkRxxkYlO279XuchqsFwoPy2/Uwmkw5kU/F2hVgrHO+uu2ydfOxrJkYwzo1knWFDhe0Cfv5X7DB16FYDHa8uWl8Oj9szv5XfKe3aRvnee2ztW1laxdOnT1ubjFubvPH+BwAAr33DgwC6oVQxhnhK/EKCSO16w5Xt0AZMbdkPKKlvYxSs8PaE+PX7xf6w3JvBms0GFhcX3Wa/H5ioVqvusNgf/iff37+5U1vm83kMpG1uSjL92nUbK1M8PBw5YuOwRhGAMCdonkJOA+lhPM0iz5LBL9Dv5Bm6VSDI2KY8fjRun0vHE2j4vSCz+uj8+fM9zyqgSHNXwMi1a9dwkSIOEloRgCoBnMkJexeVQ9DBbHLimAM71VYaX93yKeYz5MNvu83C1NYofuB7wK0UOdug+NfSvB3UUlGJdNl9JTahdzh+/DjOUg5+ZtbmyvXrdjDMZOwz4xSwUkkc7UGUVoBWEzM8CEdz5l9m98/ZM1LaPj2YY5vagUjy7XWKkg0ODmCIB7FM2g61IyP2UyVv4vTROuwWGcrXbrfxD/9gwOnIsD3rFsP+FFq5qKLzFK4pFuwdVPg4m0rizJkzAIChSfNzq5vmb+6kIESzY+MgyzB0gW5Xrl3F0qq1a8VTKoU1jcZOaqAXXCnykL21zTEdSyDFfa/V5e5+V2HQR47Y/lCy+BmGbSYi0S6IyANvs9NbyuG7tSD8L7DAAgsssMACCyywwAIL7CXYq4KpqpTLOP3Nx3H/m98PAGhX7WR+y4whhSf2j+CJpw01OH3qcQDA6++1JNmxITuZPvFVC/E7eNAobCFjU1NTDh2qhu1EnwnbKfbO2w2VE+KQJUP0hrvsVL28a2jv5z/7GWSI6Ar51Gm2xeN0QWwL0aU4EwHH90049KRIarTfuonfFL/gv4eiRPVQcwXOVOhTz7xB6lNJy0KvRcM6+Ul0WSahxApr8SJMXqVAgxe2a3T4Xb/j4RATnBcWDPHuL8goWvnIbRbutldaPU40wCV2qtAjQ3HE3ERdQWVS4yuGciQyKSDO4nkM2ZRwSJVS1G0i3fGYClUa8l8iY7a+vo7hYRsHTdLXEcqutx3SbUjU2rIhVQoH3d7edvLn/YWKhXhrvAkBEtroxbroapT365fKVdupP9QOaqdms+mQN6FVZYZ91hjusZ63+2dUqLWg0AQmfrdqDtlSn22yMKCYUpUr0O8uHNEL4757LNRnlNKsf/93nwEA5Pidm81830ez2XTvKNMY9RB2/99fDFAmZkjjRqxXq1y7QQxEQiY7hQp/t2soPHV4zPpViNrO9pbrh01K4c8wBHaAErNiicsM5VHYTDQGHDl6gO9hzz48Yv20TiYzybA0hfFG4zbWai0yWQMZhMgapEYYltwXUqE5oHG7xpDXTrODlgpts62SXm+IpMa2G+MqdK2w6kgEES/F+5gv6wqC2L8LqVb/DA3ZeuH7nuuLconvxd9DYZWxMCRVSPHqis3jwawh+ocOHUGzvdtzfYU/RejPNOdb9JNHjyqsmCUZdsuIRO19hkcyvJ/N9ePHbI1ZWrc5qEK+YqdWN5dcIU2NUY0Hof1HD9vvtxN1v3Z13p6H4YhTk5PIMkRqg0xYmP0ejZMFYVhqboAhTQyXTKeAu04aQh0J2/s++AMfAAA0fbKOdGMxouBtKg/TRQHNimMsNHb6Czj3FwF2hee90A0MscadxszNZL5v7ybWtT+keHJy0rEt/cJF/UWP9Z0eAQ+Gyl29ZuvzSY6JFiM7irvWD4NZ2yfsm7G1bXPFnicZzaJas3Xv+jzD/RoKTSabTHGTJhmKnS2KhyWSiJG1f/PrjT0FQ+jPXjSmapqlTvL8jtZWFa5+4YUXnNiDwv3EGk9QbOLMs6d4DZuzr3vd6wB09yR7ryf2RONOc0Z7oBdeeAFAN/xvZ7fg+qbCeS4mVvMuxzC7GMOcNYaffvpp9/8FrruSI5dkuorvFovmqyvcN0yRnTp+5wmcftZCNKscBw1OqGsL1h93nrTSQOsUWnvbA1bmRGH60WjUvWee4cx6/+0d61s3v+iY205qPI8EI4p8CqbN7Lfoo22ucwo/3uG+eIehfCqDEIvF3FidiFpfDnBcKjTcY3TW1BELv5uYMeao1gBGQ+bvHnnyawCANYr8KLyxP7phncXHIyzzM5gbQZusecjv9Rn7puzZ77zTSgtoDUkwGioWiSLE1AY5Ms2377WEQ8BUBRZYYIEFFlhggQUWWGCBvQR7VTBVCIfhDYwgRhT833/8PwIAJkbt1Hlo7gQGB4xlOHHYkN2hMfvd56nywAdNfn3fqJ12n2Ni5Pj4uBOmOHzSTsVvffDdALon4I9//OMAuujJv/8PvwsA+LGfMuZsZCiDtTU7lcfIopRLZHVgqFKS+TFKbswK9d8tokYJTOXbCL1zCdYq3si8AyV5N5qGbkyODSOXNaQzTKYsT8RF6OkOmYok0aQW82QyqbTLJRJKLPRCSG981KDFCyx2d+9rDAFq8cx928m7cOiwxT6nmMNzWvH2KtDHa+od9VwD2dwNgghC2raJ2oYJeRb4HSGgQpMrtSoqFJFIkokq7fbKrZZ2lItgz3fXyfsAAM8/ZwIj+fyWcqAdQxVtMo+EbTXMwqBDIza2XjhnscuAj4TLl6DIR11F/azPponqFIlqOaaKL5PJZBBjLLgQ7hT7dGCglwkQ1tEknZFMph0zmcjys0yib1OCeX/OmEQhdGPMuxGbMTw0imLREL0G5bxV5E/9IXZTvytx108mcZ1I+mWO1VuPWPz5ffdZAuzHP/U3uJnM7/hoVmo3FNoUGhZuleATVdul5H5TIDqLoLYq9tkCi1MuMQa9WWm53IZSmdLRZEgizK3hpVGmlHZuwMZ6dZfFcDfXkGPR3ckRS+DdJKOZZ/Jxk/HwRSGGZEwmhobceBHLIrT12G2G1CVyZKo27d9rzPHSGAz7PuoSduE4KDdsbkdgc9Ajk16p2nOFKHYRCXloEaGMcL4WahKrYdF2shtCBVtxyxmNpiigEYmhVSV7wRzUAUUUcL7Ib+ayvQxRrdrsFmpu2nyV78lyzlXKErJghIE9DRoda9PtrQ1MMXcgNWTvPcBiqJJFH5+w9apONkA5b2IcIuEYVtaIzM8YUnr0VuvLpdV5AEAsbs9+9JD51zDR0ULHw1NPm++6+y7rswbzNDbJNj5/zfIXHnzLDwAAbqGP2t6wa49MxrHMsTHO8hw+c2oyERtnQv2VrxWOWPtHY1GUG8qZs7bcouz98Ii1g3JloZwn3j+cNp9YrO6gTTGDRNN+xnyyuiwe3yCC3SSjrhxhdOqISmI82puHBbb3zWahUKgrt99X3qRerztU3UmK9xUK1rrg8oq5f4jF4tjcVDFta6sLl8hYEZm/tmVzNFFgDgvzhvZRUKITCWGAkRyLm2Qi1lhslWVMdsi2pHMsaM6i49EYUKUQzLNnrHB8iPUVsoM2Z3OD1u+l3d48yc9/3iKMhoaGcC+jYcTylCixrpxClStRG24X7N+9SNi158LCPNuoze/aNQ5zfp170RiqLd7f5dK221hfsPvKZ6o/xLJpTzPGyCf9fWR4uBtJErI+GaIgwgRzWndYfFzCNAuMcJIIxerSCsIte4c29zrtmPmZmUHzjUX22daO9fXiPJ83bt/zvSqmZ+cAAHmOBzHDegftD1IsL9NieZmZ8Sl0OL6KJfvuixdt/6NcP5W6kQ1xHChHe2O77fYUi9sWWTZVtn2RhCJyI/b+2f323flnLI8qHvWRp2jFxJx9J5agcBaFva4vm19V9FGhYG0ulrDV6JYAimVsjdAe5vYTxtwODVBgLKY5xVI1vufcitg75T2XK98bMx4wVYEFFlhggQUWWGCBBRZYYC/BXhVMlY8QakgiM2b5KKDMbYWHySfPLWFt0ZDyI4yZffq0xdcePWrI3+iAIQJCmhVb+7/+z7+F3/jVXwMAnL7wNADg9//8rwF086/ueN39ALr5MRUQqWG+0nB2EMuL9v+vIWr40FcfAwDEKa+cSRmaEPF61aUajQYuz9tpXPLJMocKE4nSqbpGZZgwEeFYNIwYVVvEzOg9hbQgadcqU6Fnr6pSfyy24m7nZo2ZU9FhFe67cGkeAJCmylUiNYBdojRFMmTDVNOZZzyz3iVXy/Q8X7PZdBLiQt4U1+uKdzakvEW5VyIxtYq9i9/uIEWJ8KaYhFCvQmCD15LMcKVcYvvY8+zU1h16LaYwRdRii7G5NSJEOzuGYhV4rZnZKbSZSyWmLhJh3pmUaHi/UTKoMn9PbK8+KwbOIW81xhuzf5SjM0BWyvM895mddUNrNFbCMRWTNZRmcsr6NL9mqHaMJQA2t9YRVX4X5V1DhGbEaoi5VP8ImcslhxHis68z3yxHVu/Rr34dN6P5nQ6ajaprc727bHtjyUn6Lq/aePDC9vs249V3tw19DPPfa5xnu6W6Q0ZvY4HUQpG5VE1JyRpjIJStv4zB2NgYSIjh3AumLOUTGU1mkj3f0bNrPg3mRh2KusP7hMNEQZu9c2/ywCyvZYxmJk0530wGdSJ2YnlaVKZrMl+i3dTYtvd2+THtdjenrNkrS6u8qCrn9gDZuA4lxmuc361WB2WiuLqu2k5ItnJllUs2O2MoKHBj/kmJY1lMleZAf6FtKZ5ub29jRNLGjGhIp21dEHIrJnmdLECZaL2YqtuO3Y4KFUV3C3a/BP24lDeVTzk+autHgih5NOwhw/yq+aumaDs1ae+nwvLzRN2vTNqcP3bUZJ1jzL1Lp2LYrdn1VlfMTy8vUmGL8ucZ5pTMsbB0m+ptV69eRYSF7FPso7/+9J8BAH76I/+FPSN9a8jliJJ9gZQXW/CYCxvj+PPp8zyq5rZLytehbHLF+iMSidygetc/hm5G0zopZkO+tl6vf1u1UZfnSWZQ+wVdo16vuxIag4yQ2aH659MskDs2Zn5mnNFAOc7prYL5kKHREQyRqfIv2Ripcu5WqSbZ4LO7PDkqbI6OjKNe781dvO24FZUV26Q5OjZqezzlNml+Hj582LFXrqwCfYHud5hRSvJ33ZzTTbdmKnJDBap1/ZGRkZ4261ch9TzP/U3rnuTZxcS4XGgyd/K/tVqtq0RK/xJnzvfFyxYxNcBEwwIjbPQu1+etXZaWlhwDpuiSje3eyCbtj5wCM9t6gH4qnky457h8wXyG9of6jvYN+VVbx32numrsNNDNrZaf0/37mbv+/dzOzo5rw/V164fr182/3XoL5flXbB9f9a1tL7Eo+VYhjy0WrK43qWxN1cU8x2iFe9/1jd5x4kr0NBrdscMor6O3HGbb2X41zvyrKFVuY3tUafvfp0E2scQcsu/WAqYqsMACCyywwAILLLDAAgvsJdirgqkaGBjAgw+83SEBGcbMexE7Oa5utzA4YqfjpVVDDR591AqU/cVfmgrZf/nP/1v7TsVOlU+cMxTvQx/6kEMjXHztYcutunLFTsmq6XTokJ1qr1JFKcL42HNnzmJg0NiF+99qxU4f+fojAIBOm0o4Ozz5VuzkW6rbabtWr6NJhbYWazk4JaqQisEayqKCeZ203TdCNCUMHx5VwerlXoRV6m5ibmRCuWq1GiKRb41wCb0YZf2Htm/tv0ik5E7mJe0Uijj12KM9zyolmBoLF6tA5S23Su2mq9Si/xc6r1jwkGousd/1TvopxKTVarl8KFm3T1Xsjso1fIcsY2o9MkWNWskhUGHGIEu9zakoEV2aZhFCKQOVq1VkWSOhyoLNaaIjqlHj8qSIDCm/Yoy5DOVyuYumSeWRqPTgoKGI/TXA9hZLdsimirdWrb3FApaZsxJn/aFMplfJL9qJIp835GtiwlC7rdUdfjbT8+xC+WUR+C5fR6qLRw7aHPryw1/FzWjlUhGPf/0rNxTh1Bhpd4CmmDyOpRKZiAGqzO0/MAcAGBqy9gT7N57NIUkUv8DcyxCLdjc2egtQCx3TfYU0bm/lcfWioXrKG52dMh+4W97lZ6z/9jOOXvmMG9tlh/rqp1Sobj3Eopf0J8tLxswMTrGey6jN60aj4eapfAnIaK+uGBMzzuiAJlnUDnMTW82mq3UnJbpWp5dl0NjuXpvsaMV+j8cSiMd7VUE1PhUFIP8p5lfzplAouM8KXZ2ZsbZTXkAyZdcUggmyAOtrNm+Lu2WnWtogk91sqjiril/au6UHe++ve+dyOYyOGrt0fd76skb2bWJsqOf9+xUGV5YWkBs35FoFU5XHeoIFRLc2LOLgiUf/EwAr2AwAY5P2rrFEHKvXbb1cXra1Ls5czBnW4BsenOi5b4jrSCyWRKNsn40wGCLGfKvPfPqPAADv/dGfBABkUvYu7Q7XIEK1HjpIZRmNUGa+Ydt8e5wqdBGqxtWqmneqw9etIad1S/leoebNiwX3157Smr+3SG0/U9Vf9Fe+Sj87nY5TDQ0p/4pIvOpHrVF1T4q+Oyocvc/GweOnTyu1GHn6uTzHhFT/xplrLKZIc3hzc8sxQfJn2mutr9teIsK1XnNDbK5YjzNnzri2kQ8UEy3Ftm987SsAuqyT/EC9XneMQ6XSW79Tewix2/2KbmrjWCzm7q+/aQ13+cz073pmjctWq+VYJPkiRQOFycyGGFGjPF3tPY/dYpFW9UoVzz37rF2D7+eiYLiGb6mgrvJFuW/RGt9oNR3Lpf2Z1hm15TNkLtUua1wfRkbH4THvN56w71y/fr2nzcTcSTlR19Yamkgk3JwdGbb22OK+8EsPmY86esSiwy5fNiZtl3mazXrN5bp7NXufEvtS54Hnz9t3WqyTpn2T2mlv3UTVexwft/7IZFmPikyV6nXtzWNUv+vfyrv2bNss3P7d2s3rnQILLLDAAgsssMACCyywwF4F9qpgqjKJGN582xwqFTvj/fA7TX//0W+YXv37f/AjaIft1PrEKav67FOFL8O8k2889RwAYIL1N/bGgX70ox8FAHzgpz8IAFi6Yip377vfVO6k+qd40zed/BUAwJlnTV3pv/mN/x5/+ucWT95o2Cn6rW8x1bPnnze1m0jcvluhIledp+xSpexQlG0qLQnpjMftZCwUQSjO6KShp1Ka85tNVJmzE4tHej67zTwHFQvQvaqMP/X9jlPCkZ6/PiN0bIwVzEtkOwZz9jx/9dfGAnbg4TV3GKKi+NUhMjDTsxYjvbi81NMeitFvNpvufkI8hHQ1WvZ+qmSdjPeiS2WqwYwOD2N9zRCVEvOehCKHiVoIZcikGVO+TUW0sBCJFmIx5nYR2RDS1WRbeWQEKqwgL6WeSqUEz7NnV7s36k3+rcL72HOIsVM7CVUDgBYRkATrDEm1JxOyZ1YdLaHGQvPabR/7qLK4U7VnLlOhp1QgetU2FC2ZYJ2qqtS1upXFVQNnk+NQyJPyOvTMQhldLZlGHeNEVD/w/g+yjXrjjm82a3faKBR3HVIshFH9mxkYdjHdMdb24bRFo2WsoUdkV7kFjbBqk2XQ4hgbpeJjnrkFLbZx/1xQW2s8Xbh4AT777iirwOdZrypPNawjRyxvQeNFfX3p0oJjNlXLRSj3yqIxUzEyCMVVGz8npm0siJ26duEC7jzOWjche9Yk8/M05+pkqTvMY/Akn9TxXS5hPNabS6Pn6K9PEUiwuwAAIABJREFU5LOOVwuqP9dEbsjGvOaeTAit5tqtVNRTjaV4PO76VWy06sckU1TnYh6C2m6TiopiHTczA9jaFENFdTuulrWa8jp76wnpnab66kvtfc9l5iSmEnYx5WusM8dhinMyEom465Y5l+++2+rUnH3OcoNfe48h+MqnfPTRL9q1M7Z+tFvACNe0KmuZzUzaOL941pS9csPW/+PjhmxXK6wlWAfSHLtl1tYZGLIxKjz4q1/8HADg+99lKrlRItwqhRONpBAC0e+sz8+w9h1ZvwrzFWLKd+U61/GbiMV6fXuTeRLqj5vJPM/QcDGS/TlFmUzGMQ76jKspRBOCLtNcGhwcRI7MJ6cqRrinUM0lUEFR+UA1zsc8WYbB7ABqZKiqqs/HKIg0x9Di4nLPc8lXdjrdHCGt/3ovreWjozbuxP7oXcToRCIRtx6JARG7pLaanWXdJK7bV69e5bVH3X5PdSKvXrVcJQVdyEf3M+R7axDKF+hvmr/ypXoufU7vfOHCBXf/pWVjim677XYAwNPP2740TOZsl/VL9/M5xT4PDQw6tmt+0fIfVRu0WOmNTjrESJrnz9j+VGtIOBpxNaVmp2Z72k45bdqPVKhUq3dttVpYYI2z6ZmJnrYRE6XxprVK+2Vd89q1a46BXVi2vimV7TP7Jqzm3emn7ZnvuMXWliRVYGuNKpr0YxVqCjTa9uwbVD2sc31TPTP1j9o+kUi4Pjp61PpmMGfjT6yWGCqp7ypCodVqOT+jdi5xH/Ti2bP4XixgqgILLLDAAgsssMACCyywwF6CvSqYqmYHWK8AX/zqFwAAB4/ZCf373mv1N3Y6l1FcYE2lkJ1WZ/cZSnvsqDFGO7t2mo15hiJ+3yFD9fKbixictdPylx9+CADwwfe8p+f+589b1e/hMUNKKswD+MwX/wQAMHXwv8J73vMuAECxaCf+VSoJzuUMFby6Yc83Nm4xo9UGlXIqBVTJLgym7NTcYI2j4RTzcnianqDuv9A8hpCj3CljhKzJdoHxqyH7LJjTBaGlRGYaZKdCbc/FAlfqVJ8LG8K0mjcE5CDVVTw+1yJzOcaIMn3yU3+Kn/8Fy1l71zvvBwCcfvJhAMDb3vlmAMBXnjA1xO2iXaNdZI2NSgttiUOJqWFdn1rbkAlpInaoNqTnTVBpr1hquFpSzRIZKN/QiWiKSlOspL2VN+Q3ljRkKJlkrav6QdSJ+Ai99qje1WDOG6hol81a+1y+bIzmwYMHHUqjeOpnzhriMsJnFXodirMPyXIsbRnDFg6HXZx3NG7fEUq0zbpRaTIdPhmsBJWaPM9DR7W1OjbeOmWye2kpEdn429gxdmskK9RYVdKBWMQQpRhriMSYnxVPWMx4rV7o+b1BdbeoX0NByHLb2nBhweKt7zoyBwD44hNWDf5mscGhYbzvR378htowQuUGUmmVUEKd7ZBmHkiCldf9hlA+xnQzd7Gw23SMyG7V5laSdUFSVM3sV1QSK6n7t1odTJOdXFo036a6PZmMzYulJUN5FUev/KnhwRGk04Y2VskyKIZ9etx8YZr1U1JECkPKtdiTL+HybJj3UpaCIdnJDhmkVoNMuHJf2mHXJm3WIQpHu/HuwJ48Gf6Msu2U11lu+ihTKUuKZkJdxXxr/ojtyWa6CKbaV+j/1OH9/C4VHPPWVmK0sg3mh1Bd0+90WaulVTFg1g4F+uBh+v46+1BI5142wo2ngRSf1XxNqWw+SPkaqs2nXItMKoHlTbvva++7FwCwwmgAMVZL64w0mLD2uf/NrwUAnH9x3v5+bRWbDVt7MknzS8WCtWGKc1xob0tKjiRHqpUWchNiHqk8ywmRIFIMqsI9/Lm/BwC86YF32N8ZLdD2EujitqwHFDPfF4tQdY2KgVX2xwDrtRVLpRvyXsSQVCrdejQ3i7XbHTefANzAWCUSKadYpz7prxvYz4jKisUiOpw3c1TzrDPvciCl9cnarMB6SaqROM+IjmStiTxzNHWfKte0rcvz9lycd259dmtfDcvMs0xwTyO1y7e99S0AgOdYLzLG/pdznZk2H7e9ue7aZH7Z2PQM2QWf6qLPnLN9mhirIeYrhjpAOc88sKi9wyTzT1948Zx9Rqpv3G00WVPPc+R61EWSyN9oToi93dqkb/ZUn8/aNJnKIMP1VqyWmKEF5uc/8MADALrsenzY2nh4wt7xdXfdh8tnbb+RPWR72w3uHXz2Q5WRO08//ZQ9D/cxQ6wb5zc78D175nK5l11SNFSHuat1RlscOLCfP+eww9zRHP1eg/ujKeY07bI+lN5VexyxjYODQ26sTlKnYJr5oG3uqbNSFGyy5lfGrtUpFB2bepls5maean+MpFFenupj9WsTxGIxl38az9qzJdIJPitVV6U90FKeIn9ttNBmf7bo11ZXzL9evmR7ne/WAqYqsMACCyywwAILLLDAAgvsJdirgqnyOx00yru4jyovX3/KalAN5KhCcukKDowfAwBE4naavIv1oqb2WXxptU59fsY/HqGqSjyZwJkXLX68RKZihfWnhAR96s//AgAQJgL3Ij//4z/2UwCA3/zY/44f/ZEfBQAsXDe05C1vfptda8mucX3LvnP+gsUUD40bmjI6Nokiq4hv7PQirUeYKzFLtCbDWhOqX+RQxFbL5RHoJL61Y0js8pqh1MoJWSXiLUW3RrnuED4hQYpV1me+ecZQkzwR2O08lexYs+Z1b3kQTRjy8CM/YTk15xnPPPC0IS2xiD270DghNYf2H0CIaG2GynFCFqJEDfrrDahf9NxhAO26oTRVKsNUiY4380RAEvb+IsWW+Y5CrH3fxw7rPui6YgeEuJ04YXVeKmQXXv/611ubrq66WG2hhN3aNUJ87dmV0yUVwmLJ2nxyctKhVGInwoSn0321JIQUKh690Wg4xF05U+q7ZotqO/2KSKyJFiXrNT42gW3VVYpKacz6Zd+MjVXVJWnwXu55omHkmI/11OknrQ2p+HbrHTYvbzbzvBDC8SRqQo+JWA4wry3SajvVTo8MYpUoZIgMn0/21DGQHN8To2MoFFX3yj5TqrNeVF+NHY1P9adQuYnxSYcuK1eqwfpEiPQi98rhGSMLVt4tu75boH8YGbRxc/Kk1c3y7ZHRipFVaCt/qFszzeXWRXN8Drt/gzmIxaa9U5V5jmHm4IRCIURCjp52/wZ0c4uEHPajjRqbhWIJYSLV8in9iL3mUVe1sssYiXFTOwhNPXhwf8/961RpXVsztktMVTY7iLZyLDUPGDogxqpE5i5Mtlj9obk6MT6JS5dtXQixHd77Xot4GGBO2+aWvZvySVeZV7G0cA0r1+cBAJ/97GcBAO/8fmOC9o0yX6zMuioMT9jetL4+Ome+ajybg5egCmzZfg6kbXw/8ZjN4/SY9dmddxgbVtix/qiUa9gqWpsMDtl3qkLmqYaJhr1/K2Q//+HzfwMAuOe1xphNHr4THeK2YY9Kksy1C/FnlDUpw2zrFvu/2W6g41t7brPmUoM+LUk1upvJlFOl8d9dA7qKvP1z4tvVCZLp91Ao5P5fY2+Ue6firnKLe/PTnMIsfdvKyopD8ct9CsPyTcrt1N91r8OHD6NIRjzKPYb2OA8/QpVkrpsTE+arNrkX05oIAEmOlTSTF2Mk5LbWbRxOs07bAut+3nePjdmdzS2UyGpfZd2j173RVJrvueskAODCpUs9bedqnTG5ptnx3Vre5DiLRZm3TZJdbSc/q/5ZXl520QLyxfpszuWjGfumPdjyOWOhJnLMa17Lo9W291+lD5JPrDCCKMzvDnAPoPx9p2AYDYPbDrd3lM/WvkB92R958/zzzzv/JdU/pxzMtpKioK6pd1UUxNzcnIv6ijMqpkS10wQjh2671Vi4IqOjLl+ze7UbTXzjmW8CAPKqoTdIVWqO7b1q0MCNtQhHRkZcXpr6RuNQ7d6fU6ef9Xq9m0vF937s8W8AgKuX+N1awFQFFlhggQUWWGCBBRZYYIG9BHtVMFXbmxv45P/5e3jz2y3u9P3vspynP/hjq4dR2dnF7fcbM4WIIZDfeMxyOC6cN0bk7e8wlask6wnpFP/cuRcc+vuRj3wEALDKGPmvP/Y4AGCYMak7ZGqkCKKq91OTs9jcMCT3mWeMifqlf/JLAIBnPUNAHpy0E/InP22oYo0KcpFYGpGo6m0Y0nfo4ByArurgxJghgYWdbt0FoFcZSMiSEBCd0sWgLFM9SgzKTnHXta9O6f3VxHWt62v2bqrTdPwea8vHvm7tE4mnMTBGJogxqm2yLFfnDWkoMt52ep+hy42GvXOn04JPlHZ729CZKTJgCaqJCQlWrpOQZ71/u1lBgSp30Zj9mxiYEJXZGiVDL5JEy2dmDEUR2l4sFoEOlbCqqjfTWzNE6I0QGY2baDTq0DldT0iInr3J+ONsRnlZAz3v0qi3ECWbl0pGe96X5bDcNfVc+j0Sibj7CLXpr6tUr/fFTjOXpV7v1kESwqT+T6WVm2OsnuLyFSveVF5MMoJFKhLlWQvnfe/7IQBAYbebJ3BTme8D9QainV4lsTZVOzteyLVxOtFljAGgwxj7WNrmValmbRDtWF8X2nW0qVzmsaZOlLkq4Yj1nxjXDGO/PSrJ3fsaU43a3Cjg6rYhsizdg6hDH+0as/st93Rz1fovT3ZmeXvFjeUp1utIs27WC/OGmE5Pmt+Ie8pNtHE7Nmzj9trGuvMXGc5Dn+8Uydhz+EyWlC9IKEA9Fkazw5wZ5XZC9fSotuRL2cx+HwrZWK+F7XPJVAgFMtyjB+xZq6wxlSBTFI/YXC9S9S+XMwZnY33DoY1CbFVjaXiY+QKsuSVUVsH1Qnp3q0WsbBDVlCoqcw3WajYHmm3mvLTMF40NmY9M8Lme/eYzKDMXUUpeV5fMj42MUHUywzHDmijDrKsSTcZRJX26dN3m3pe+/DAA4P7v+z5rF6pwLS7aGjg5Zc+XY45VbiKLZj3M97R+r3SsTTcrhoaf/ybXCb+3blJuOIuoz/wXc+VIkX30K+a36hG2rZByrpsXnrZ6O2h1MHvUmOwGx3fDY1QC8yPEEIcYpeFF7B9GW0WcOmdra4MTQD7OC31vyPGrwXzfUPH+mlNCyj0vfEP9Kf1Un4h91Xf3KtftZa2APUyMu7/f8x35stqe/LT+NUb7A61TZ6g25/IA9+Z4sf7YgQNWQ22H7HWI6rtiU6U4rLVd8/TQ3H6sXbMxeusxYzOaTPCrMbJohOP9EJlQ5R8ODw8jnTZWo8V177nTxnocOGzzbor1uBZKO3w3RSGwblV7z7pIVqXdtmsluYY3G72MycmTxoI9/vjjbq2WuqGupfXYKemyvw8Omfpdh/e4fHXBMXKpuLVNgYqxQ4xCWiGDVSuaT9G4KJZVs7Tl6gGqz+TDFY2jvc8E/Y9yPoeHh1HYsf9/05stT/7UqVPuukCX7ZJP1d8VPbW7u+v6dY17vTb9/hBrO545azWuqnwH7VvXtjbR9jUX7BrdXC37rkzjM9LHiuZyOfeeGv/6m37q2qr1JVay1Wo51vT0U5aztksl0jZ69wj/mL0qDlUhz0Mq7iHJZObl69aYh2dM9OHrV76C06ct0fEbpz4PoDuw72KB2k9+6g8AAPm8DSLJhP/Zn/8Fjh61iZ7mJnJjgx1bVaE4a4YnmGyvQXKRgg1bW3mM8OA1OGCDcWXZBvgP/aDJyV5cNdrza0/ac67vMLk9kwOj+ZDjgNcCqwNRmx3bHxqzt5ikBrKjQrlZk7S8Nu/9BwQvEnKbab2nfteEa7ft2jNjdpj4fh5qETXnee36kjtMSbq1yrCzRsOcSTKmwrY89EEDP+Sk4d178m9y4nsXh73P1V14Wu66W1uU/2aB5BhDb9JhczwKA9Dk2drYdG0px7c3sRHoLhJ7iynavcyZHzhwwDkpLTQpUvDOiTCUUOND4YCxmD1nobDb7RNuLNJp2+iurNh4l6Ssrql7JZNJ991WU2FV6HkHFSV2YR18l308IK6trbuiwxpDMYbRUBEbu5TUjaesPeo8QIbjESd9Wija/T9HOeWZmf24Gc3zbNyprbt9Q6fr75Vy7g2ZiYetLYolhpYyXCXC03Gt0XRCCF6HITQcYxJuSPJgEKXP85hQrlCKTttDbqB3Tmv8bhDguXrVEpsV4pPjQf7g4EFXLLtWtfstbtsYKzKUYeGqHSbuOWZ+sj5i311gOEYqnkCFidGZqgCSXhliz+9ts26In+fGZY2bljjHWIIb8Zqv0Fe2S5PXDHNTsF1CjMIxGq8KXYlyQ37hnIV6e7B5o/nUarXcBlQh1vtnbZyqBEWIoT1zB8wXv1B6oece9VqpuwFmHw2NEAxas2eO+r2LvxboZMLaa9++CcSzvVK+QxQl6jBRfJNiE0r6vkIBmGa7jdERA+qO8WDyyFe/bD8ftYLb991rMsUT+2xtGhuzQ5XWptnZWVR4qFNYjMCvD3zgA3Y/bkw3N2wMhRiml0zkkIgpZAb2N4ZBKdndC1Eun/5cH5SvvvLi8y688sidJq7hS7iE4afwGdLK9ojyMH728jUXbpvfpZQ6HVW1QvDzJrJQKIRkMnlDgdG9a0L/+qO/KSxJ65QrYu8K3vs3yK9rc9ld+3nIYh/l6TMa3JxEotEb7qvQNV1bPkz/rufK5XL4sR96JwDgsW8YECs5asTtOx1uNTNcr3MUylhnePKLL76IFP3KpWvmA1UE98TdFrI8f+GCPQ/3DSFudre3NxGm7739Nkv7OM0it6Ud85VFbZD72117gXDE9U2pQzGXpM3ValXy9/ZZbb4ff/xx97sLX2afzM3NAeiK6GhPo4NJOmVtd+fJ4wCAsbEhnDln999ctDZR0d9hFihv8JAZZztpPerwwNpoNJDKpHv+pn1yP1CvvU2JogzVas199hGGbOrQpmdWvwtYFimgawPdPV2U4kYKL13iHqdBf9AqWT8sEBBrej4SLJBcoZhKm+2tva/6R6Y2199TqVRXkKIv3K8/7LYtUIFjeCefd2k/586ZuEmL39U4XF1VSP93tiD8L7DAAgsssMACCyywwAIL7CXYq4KpCkc85HIxfOUhK+z7zBkLe/mN3/gNAMD+8RHMHrakxON3GuImhG2aRc5W1o0pGqIsepQo/M/9/C/g0kVDdL/2NZP9Pjhr6P1tLBAmU7L/8eOGHpRKdor+ypcfR4ZhGr/8K78IAHjkK3aaf+qblvC774DRvLcfN+r67Gcfds9xkEyZB0sKFOIsCWQlKUtsQqF7e0O8+pOgVQBRJ3GhCNcXLFSkW2SxeUOhTZn+PcxQnAYRwHNnrGDdz/70T9jzpQbgJ+27/+7f/msAwNAAiwAPGzIyOsECxgklExORrlfQKlHKncjz+rohMTWOPqFqQuDUDkIiyuUqSPIhwYKEoubzFNWYX7H37krUJnretVwuAxQhEOLhpOb5HaEWEqrYixzqs66PGIokU8igGK0sZUfXiMRls1mH8EQivXLSGndCj4QQ9YdwAF3UUP2uZ8/legsTumKyku8fG0UkZp8V0ra+yiRRyptmKE/vEqUZhhBLRHEwa2M3y3m1xUTT7GDmhme8OcxDKBS6QRxE7Vqt1lz79wu9SIc3yST7Zse+u0vUr1SrokRJ4xCR9xbD/cZYBDMc6hVlUZXK0RFes+EjmZCYAmW4KX5Rq9rPFksSTM9O8RJ2jcXlJVf0Gr5k2A2FzHKchBi6N0lWPpshy1Szdw01O674tpKK4zGxa0xoJ1MnVDSbUlhQBEAv6h3ls5G4QozsnubVrq+QSrvG2MA0thjSq76R32y3rE2VMK7xqrHfbDZdQWAxZgp/yw7a3OqE7DuXL9s6si4pdfqVWrXomPU450Wa6HqKbdnuKKTQ+l3zNk2xmn0TU/DJ4OcG7b1CZHmGWUh3Y8XWgMceZ5I2S1JcX7yK97z73fyuXfcd7zChimrRfMwuCxpLilttPUKGa2srj5VlW8PEKIuJ8/nst5+wMKRYxJ7n7AvGEjTqHbQaRb4PC1Y70RGFbvX6SfkczZN2o4LnnjI0P79jiP3cocP83cbw4nVb63c3LAyoyDDvRqXpSpskyEBK9KIrgnLzWCjkIZlMOn/Tj5zH45EbQgPld/SZVkuskxjhbjmIWFRMCfuGIjfZYUlp23xUREWU41IFVasMIQNulEzXd8cneovCzlDafGVlBV/48qM9z7xDcZHcCEPdubaNHjT/s2/C1rxahetYuY46ZffDFGxI8v7pnM2d8UNz9h2KYvgU/+n4PnYqNhavkuk9dpvtw65xnzgQF3NBYS3uARosi+F3PHhk81jTHCW2iSI3cjl75oMsXHuJ4hcf+sjP4GO/9ZsAgB9+n0X5PP+s7aGGWRblyiWbV2Mj1h+bLIGytmbjfmnxOsrc90VT9LMN813bLPo+QL8if6daNXRx5icp+BKFvd9O0fxLiqkdY4zW8umIJYqWL+QxNGJ+NkHmRxL6Me1D5MNVSH7Fws5TLBET8jwM8Ls1btgkh1+tK4TQ+kzjTqk28VAIoE9qkHkbHraxovVFpvVH/ig7YP2TTMWdIEacJU1UDbvGwuFadxoM/6xxDG0sLuLSWeujclNh/wyZ9XsZsn/MAqYqsMACCyywwAILLLDAAgvsJdirgqkKhTyk0lGECgYRKFaTB1eMjo/gb//uLwEAbbBwK+y0euvRkz2/DzAReYux84cOHsTjFLVYWrC4znuPG1r24Q/8IIAuWiwUTwzS9IwhM+//wPvQJuJcY1J6uWxoyTZjQp89azG8Vy4ZMhImErCwNO+KiCapERoJMweAbI4YCp8oZpwF9JREGIvFHMKlZy2U7PQcogSty5MhuqBCdp1Ox8Xcel4vu+WSZGtE1Zv2/vkVQ3v+9tN/an8PR3F52VCZNOPswwk7j49TwAKUlX7+GZOhvPsQJe3jcfh7ZGMBIOpit+1ajrEjEt0vxpFJ5xDn+X9jlTLTKrK3aM+aixlaMT1lyLsk3dUuIyMjNyTx6j56LsWfZ7K98eh7ryMkrh9FFBOQZJFBF2fssdheo4wQk/A7zCPY3TEmIJvpZabUL3tZlP7ES/Wl4uzFkClPb32TRZCJUIV9HzuMo4+RGS3u2ndaROTDIb/np4qpdtpNN4aVLHz77SaosJzfxs1onuchGo06FqQ/cTyRSNwg2Sr/oOz6LcpPd5iHUu10i7+m2MYqaE1yEmUWr1Z/7iPD6yTAWdS5UqoiQtS5yb6WQIOQSRUY7vB5NvLmR+r1prtflP5hisIUjSZj3pnUMkZ/ibZ9t6MyBuFoNweRb91fKFk/NQa7+ZwdtJgj49jwaC+bon9XEnCDaGCYRc2r9TZKu73iMIMUIerPjRRyq/k6PDx8Y1I/x/Q251yEKPjmpo3fCIUsdsnijo3m0GrYOwxS2n2NxXjrzAuqiNVjW4vFljz74OAgKiWOEeagZlP0hezDiyxO+sQTFvHgS7CjXcMXPv8lawsm/b/pTVboPjxiz1MqSqiiV65ZuRHhUAShULf4ONAVrtlHaWsnGFCUiJHyoupIEjGXtHlH+aTMr+00epO9t1isVOZ3OmjwO0pcf/rppwEAmUFrqwxzY2fnLH86E7Oojvmry6iSZZfviTLvMBG7kcF/tZvnhRCLxXoK5gK9stAavxqzWp+6ghC9eVOycDjsxp7Y0v78LK0PQv372bBQKNTNg+wrc6Br65qSD1fEw8DAgJujeoexUfMrCc7VTtPGamHTxtc3mYO+W+T64bXRDhnzUarYcxR2zSdduWzjef8he45bjlme5FqSa9/2LkBmrly1+S2RKbGnTO1BPGttuc45OsV8xK2tvGPeJaqjQuRt+gEx5C8+a0IsDzz4dvv96Wfw/W95KwDgAvO+tP9QbvOBA1b6p8MyHIVqr8DT7Owsrl62PVZl13y0/Fy9TmaOz6M2bu/Z4wE2/+WL0WB+PheCEfr5Uc67OOfdaTJq4+PjSDMn10U50Pol5DVmlCeqIu3xWMy1d4htpeiBriCL554V6K4Z6XTa5Z/1j7f+nHtZvwhFOBx2Y1ZOQ8Wdwyy2o1yqhophU5zuq488gm0Kdfj8rKKN+ott/2MWMFWBBRZYYIEFFlhggQUWWGAvwV4SU+V5Xg7AJwCcgMG3PwfgPIA/BzAHYB7Ah33fz3/Hh4hEMDYxjLe+0wrL1luGSH7xi18EAIwOhbGdt1jgu+41lOJzf29KSHP7rWDrhz/0kwCAFpGgP/qDPwQAfOgDH8Tb305Egaoe+0Yt/2iVco5iFf76038CAHg3Y9kvXbZ473gijBXm7LRadvJfWzfWa3jIcmnKVCjSqf6uAbvHP3z5a1hc5GcZ+7m9Zd+JU1VKyFucLFCGhTqVJ1UoFBwSpGetVBTv24sedPOwiHZE4i4GXiiBzKn9UA483LLvLF4yFZTciDFqd9/zGrRahoDdebvFE5/6hilQTU0aAvLkc6bENUqESrHEKyvL8IisSnJ3msxMsU+hRgqGrpgdEYj8Rh4hgnSdtlgDa5u5ORsP1a1euc+DBw35VAx5o9GA1+lFAIXq9Mebh8LWh0JR8vm8k0YV8qIqw/2IS4QoTxdlsc+Fwz5zTeDUEDOZRM97SzpUSJRQxd3d3a5SYSrX8+yRqNCrWs93pGCpXJLpqRl3XaF4yqXb3d7gc9V63mmaMfOFUgHjGUOPPve5LwAAJg/amC40u2zeK2Evl8/htW5QyxQ7HAqFb5gvmmMN5t1I0WqA6N9Iyvpot5hHnQO2WLC+7kgemH3QYX9mOX9VDDVJXxAbyTmmcoh5a65gYcvGYIpjYJ7+pS5Vz1oDpaaUQ+07UjQao+8bZn5AmjlyGeYYrVBZMJEZcLKzYaowqfhtt0gpSwLwXbq5m90ipWrXhmLs+VPsW4VjMElWtEqJ9VY75OZyuI/pdvlnkivOqAC3zaf5+Xk3p4Scppif5nvWZ2v0FwmWZOj4lI8nG3ns2DGcPWPSqJ3NAAAgAElEQVTlMyqcr+MThjafftZQ9lDYnjkdt3fM70gu2p5vfX0Nkaw948YG0dxx83Vn5u0aC9ctsiFBpn2rSBasVUGU/vKRR74GAJiYYMFxxvrfeotFXMScsuAw28muMTg4hNtuM38tdcEUpfUvXWSuSdbGgZi9zS1bExOJBErFrvoq0M2lSrOv+nN01U9iY+KpAQwzD015Wfe93sp1DI6ZbxFDWNo23/vYww/ZNZIZeIx+aPL+HeZQSGr7lbCXy990Oh1UKhXXRpozYhu+VVTEXnW/vfatJNW1polF0rjvj0rRtfrLa2SzWedvtIfRNeUT9VxaJzQ/8/k8pidYqJVRMYrCGeAad8ucMaM7VONbWrX9Qt033/UzP/cjOHTcxoTK5HzzSfvM+XO2HykUbf597kv8bpm5XROzuI0y7OcvGlNUZr6fInZ8VXugf52emuA7gc+bcDmUTeYB+fR7g2T/wqS7MvR/p79uOfoNv404WZzFDWv//vw4mfyS2k7FcrOZ1A1jotZX+mV01Nq4xndT5ILW/LDfRpi+d2DQ/Lx8d5o5dOAcnp+ft3/nGhIKhfZE8vSuhY75JiM/O6uiv1d63i0SibicJXTs2cQ+6Z3Edvnkc9QeQNe/97dDy0VP9Oai9xeD9zzP/VuM+XFeR32ptdOuubpk4+5FjpetShlTLJru9nj4zkzZt7OXylT9JoAv+L5/DMBJAOcA/NcAvuz7/lEAX+bvgQUWWGAvhwU+J7DAAnulLPA3gQUW2Hdt/9lMled5AwDeAuBnAMD3/QaAhud5PwTgfn7sDwE8DOBffqdrlat1nHrmOsZnLXZ0ctpO2ZevGLra2H8Iu207UWcGrfDbj/2Y1e6YmmGhWBYXHPIMGXvvg8Y2zR48iEHmlYwShfyPv/e7AIBS2ZCYj/yMFfL90X/y6wCAU09ZDtYTjxlSeejQIac2qHofZ+ftVB0ZsBjeRaq5JMmglLcNkTkwOY3zRVMfLFO5r8ICo6r9FKEyzfSUIQCjVD1RzHK1WndqfyHWBhnOENEUAs6/7zIPYTDBXKuWh7aALsbLQzleRIWrIfuHzbIhNXNDKb6rIVYLly9ibNpO8UNDpgJ36+2vt3fw7LMjWXvvgbL9nktKCayJjGdtFU/b33aazP8ZN6TVsQMEIMuspbLE+gjtTg3xmJ3/20TUN1fX+H4sfNckAljvjVVvkgFIp9NoNV12CAAgT4UiId4xojkp1rBR/kko7KNMpa0OE/0GRowJErrTrhOhG4j3/HuDNcDCoTg8Is+phAok2ws3OWZVfDdExD3GYsFotNHqq621RuWd3ACReBYcjZCNU47EiZM2X86fP4/ClrVZPGJtUm4qP4312ojEqZaOcvwmh8exWzUE7vX3W2HAWt2etbb4Al4pezl9TqfTdgp9AByUGeNcRCiEatnGpeoiVYlgRckWZljbqU20fYdMBepF7BKRrVTML8RCVPmS6h3Zp03O8bjHHKdBFiKvVZ2CkVTW2h4V8qhGV2ZNvmKBjOMO2epmCyEqEnJqo9mydxkignnhnMXSP3iv5cYlPCnomY+andiHQoF5XmRq4kRBy1Tla3fsOTpUmopTSSoZiaHNeRiPku1iXbc4c5tQIbMM5g20VcOONVm8OnIj5i/WVw25nhizaySIgkdj9hyDYfvc5oo97958OKGYKiQsFmd6n/kz+Z4cVWMPzNq/b2+tYXKf+eP1NUM111cMdY0S/R3I0p9tM3+MeWTT0+YjM5kMzl815iebtv4tp1l7qWBzrl5RUVxrj4kZm88TI/uxtax6RNbuj3316wCAt73N2B61e7Vqf796xXIyRhlhkMl6qDMfJJWx/iiV7feh3BwAABzvq5ctEiOZYh2tTgdpPrOYSf0Uyq7f1cZCvfciyK5YOVmPJx55tOc7b3vb2wAA55inEmNB+Eaz4fIBw53eemi1V4gdfzn9DWBrgliFfob8W+Vt9NeFE2HlGOs93xHzpPGsyBa1WX8OsNrfqfXt7Lj7uIiNPkZMbKbrBzJWExMTWKNCnU8fkIkbuyPltMKaRUwoly4Rs3//g9//dwCAeHoHXtr2PfmCffa1b7Rok5/46fcCAP7hc1Z8eGbOnr1Ss/G5fO0iLi/Ynm1qyvzZxro9+w7z1RPcA4LPI4ZadZqS0Qgy4+Z71jbs/VvkHOrMf5qeNaZsbdP+fpCFhV9zz9348lce6mkTRUepkOz1efNhx48ZcywWUKzgG17/Wpx63PLRtcbvFswXK+pka8vWFNU4VN8NZrk3zmRcTdY2WZ8qaz5FyfqWWXNLasVl5hal0oPIU+VVEQn6uU72TWNWNbj0XE1eo1atIsIE03a1l3XqH49iqsSo1ut1F6nTrZ/aW+S3vxaY/r0/LxoAOsx7bYaZf8bQoioVbRdY9P3JU5bj6SfCaEA5slTmZATXt1Jh/k72UpiqQwA2APy+53lPe573Cc/z0gAmfN9fAQD+HP9WX/Y87xc9z3vK87ynqvXvTbIwsMAC+/+lvWw+J79TeOWeOrDAArsZ7WXzN99rsntggQV2c9pLyamKALgHwK/5vv+E53m/ie+BBvd9/3cB/C4AjA0P+HU/ikeesFPjXXfbYyWHzFfFB4fx2oN2ov2zP/kEAODX/9kvAACGBg2BuHLZEMFT81bv470/ZOjG//bb/wFvfK2h9SdvNXZrZMjQ2kjYUKM//OM/BgCMTlpM77lLFmd5hvWtzq+tuDyU8uOGWghxevxFi+8d5yl7imzTfa81Jqdx6hTOCx1ijaUCT+1pIgxpKseFmI8jRKjBw2apVOqqBJFdUnX58Um7X5rgXZSn9sVrdhKPeT4iRPxaikX3es/S/XWiVlTLgqh6Kp5AkvUVhFIqVvbyZUNYV1aNOXnn3ffZLVRHqVpFvWPoTYZoWjJjbaX4b72vYnelYKT8hvMXnnO5VEI80qxdUtxt9nxXiJ3QNrF94XAYHrqVt/c+o+7Tn8PhtRSP3kajLXS0N85dSIxM19Bz6O+NRgNJsnchTyghc9qIosSjUl+S+g/rdCRT7r2biaa7HtDNj5KC3+6O9UeYbay2PXjwAKo7RJzIOBT7FAXV/2qPrupU54Y8tzCRrze+8Y0AgN//zCm8Avay+Zw7jt/ix2Kxbs0P3SAi9qVbE63CmmTqt2qN9WKiROGFcClPqFZzinBC79t1XqMvdyuSSPMafs/fvRBQZd6kxqmQu10illsbVIVq2tjIZaw/d1thVPiMymW555577FpEat/wBlNYzZJZzXg21pKxbp5EjLXuwjGh6vYcdTKbDd4jST/hlEh9wOdnW2yTMGPbO+hVA3T5Il5vvlYCCacCJYU4za0Mc6gGqAbo6vf4ZHhjMecPunX9rC1HyC6qTYWOqt2VezY+NtSjvgp061IVWU+mQSQznVJNPps/HunBRDKKctXmY4m5UlsrrCNDxk5o8wMPPGDPM2Lv3KhUcaZm61CWjNjGmuX4Dg+ZLxZyvbhoa9+TT5ztacN0Jol7yEQKtxSqXSJiW6HiLvyuSioAeOhgZCjT04b9vk4mP6E1UetJu92+IS9Rv+szDz1kCP+3OnSobYTq67288EvBgr8ne9n8TSwW9dvt9g35InuVNJ1SZl8ulct9plPpZ7n6c672fkf3URs6pqCPyQ2FQu47mjsa//KRWhfUz1pH8/k8cul4z2c0v/McZ1NU5QWjVkp5e55nnjMG54d//E14/qKN73LZ7j970KKCJvfbd724zYdYVIrDNnb/4FP/Er/32x8FACw9b/NtbJ+xxSGNxbKtfWBuZY0MbiRpv+dyw9jmfErn+A4Re6dyn7KgH1FEibX/H33yDzG931isEc5NKYBGGP2yb8b2lnnVkWSkwtKVeXunThi5CP+tzfxsKR6v2PyWMmec7xRmHyYz9pyRbAyluF0/TXa3HbdnVo7bYNjYtReXba9dzlPpMb6FZow5RDvMS2ryfsp/Iqu0SCXJTqU3jzubSmJzw/YjEa4dXTaJbDejb9p+79wOh8M35vtFxGpxbeS819oaYx3NSFRrSNP+A9CgEm+owb0cfff2lvnuJ75uDGKI6ogxL4wOI7XCmpNs5yTf+7u1l+KdFgEs+r7/BH//S5gDWvM8bxIA+HP9JdwjsMACC0wW+JzAAgvslbLA3wQWWGDfk/1nM1W+7696nrfged6tvu+fB/B2AGf530cA/I/8+Tf/2LU6bR+VUhUTJyy+dJX5Ij7ZgSOH5/DXf/K/AADSSUMEnnnGlFeeOmUx2kNpQzXuesP9AICPfexjAIBbjx3F337GHmHkp+3Eed999wIAPvvFrwAAHn3MTq3VsMV1r1O7vk5m58pKtxZPs9nLFOh0vVuyOhxXF40hWaAi1+vuvRu5JGOQQ0KYrNlzg8bISA/fIYHMrVnfNEQgXygirUrYRDgTOWur8xcM3WnwJO4RvTpym6ki5tdWuvU+hI7xXYQNRshcSVNJ9Yz0jqlUCivMPxJ6VWW9rv37jSmLUDFmlDHCa6yT1O5UMEaFwIIYuJo9x+iwITOKM14hIlPI2+fU1rFYBGBulJCwJ089zmsZSjI+TjSrD/E+cuSI+/dOm+hZXvkuxgj1qw/KurWm2oiwrk+K1dWFoordGR8f77mmvpvK9rJiQBe9yWYNzalTkabNmkZSXctvadz5TrVmZclyH1JEglZXbJw1yR7EiLyUWaehg249kg7j3YUS6VmFUOod9G5S6ilsFzA9Z8jfyrJ95zpjks+cW8YrZS+nzwFsPmj+9teGiUbDTu5IaGOJuZDJjGrN2PxQzY842z45MoR6zf6t2bDxUffss4UtG9vKZ0sNmA8YzRr6WmHNj04E8KiU1yBzKSZskDl39RRznSZt/G4wf6AWi2Js1PzhvkkqRtXtsxsr9plqxfJvXne7xdYnImRHic7lsgMokKGLkSEqFe0ziodXm6U410gmo1ZtoCYFQLZJs2o+KJokq0X2y+c4Ve5jiPNkamrK/S0SFpNszxYlgiwks1svq4vg98fbb22t8zPfWpVL11Cuwcry9S6rkrS5HwoLfbXvJliTbjDH2lI1sfPWxwvPXkZG+Q5J8/ELF+etTbkWPPjgg/Zc49b/KeZI1kpljAxaH+4UzA9kMszTpC+olq1NT5w0FvL6gvm1Z545DQA4fOQgihyz0aS14eKy+dhYxJ5nc9vGgzYCUqCNhLoMhXJOhUirXfrnTD/7sRd97v+OfI98Tf/fO53ODTlcDsluvjLpAi+nv/F9e9fvxC7p3/rbRKY1pb/WVTQavUEprb89u3lZfs+19uapaB3Qmqb13ym29fWlrhEOh3HwsK2zWkN3mHfUceukjZ2hARt3+w9YHcu//itrursemILv2ZgYHbf7jVEpc5s+UzXs3va2dwEAnn/BzrqlyhY+8rMfBgAUNuw+H/utvwMAzEybKuDGVbtmJGv3UN72IHPBvVbIMbKhspTiWHOLPrrGPJ2jxy3iaYt5ZD/xEz+Ba4u2Zz1/1tT8lI87Q4Zum/nhqsG6xnVb7f+FL/8nt7fqV2zUPEixTluUNRDj8pWcn51wBx5zy1Nxe9+hGavjurlj+9Ozy1YPb2OT+yaycuX6Nnzm/bYj9tkMWfzWjt1/a81Ynp2GjaWjB4x90zq1tbnhxor8vuf1KgrLh2gPokiObDbbVTF0Cpm9Y7afzf5Wc8nVw1JOvXINmZ/2d39n48LlZcbYXqlUN+KEVFgqY+2c4T7tu7WXWvz31wB8yvO8GIArAH4Wxn592vO8nwdwHcCHXuI9AgsssMBkgc8JLLDAXikL/E1ggQX2XdtLOlT5vv8MgNd8iz+9/Xu5zkAmjR948+tw4s47AHTjcd/yWmNb1jc2cMtBQ8qvXrMT5yRzlwZZD+nwjCnJzc4Zk1UoGbMSgod/+qu/CqB78v347/wOAGD+up3Id4k476o+APNm4n4X1RQaFyHL5EEKKayhQkRaFZyV0/P888/j1mPHAQAvXrW4XqGBadaoEYPQYf2bKhGoMmNWy9Uahp2ik6EGl6/b9Tfyhh4IIRgiQl0jbBxPJtBBL4Lo6k5IDbCvDoCswNyBZruFBtUFhTCGwr2x2VKdAWtviQ1qtkqAZ9cXIzQ6aahsq2HIxDrzseLsd4eUsR3qjRo21+19QUU6xf4rD0lInZAy/S70Y2dnBz5rJwiR+nY1Q8JEpB3rFYshHOqNY5e5PBfmPKk9hK4KzYvH4w5FTCUNjVZOlZBH5arkqRynHJZOp9VFAKky2WL7SwloNGfXVI5VJsvYZTIiqysrGB0Qwkm1v776C0LEhPbsRZM1/vU3jaFC8ZUVfHi5fI5qVO1FW4Fuf/rtjlPNlApUKG6oWjRmbTtMBcg6Ua9WiT/bPqqMv5faVIUKUkKX2+SJlTdU2LR2jLm8iYjLcwmTndZ3pdYY41gsqfYV/cjk1DQGBwy9XFgwRnFr2xiKKnN7RkbsXRLMKWiUbWxmiHB6nuf8UDRkiKVP5dGm/FWTTBJZ6iiZm2azm4MXoa+Li80iQhlLisnrrQUS5uf8SASlio0x1VoRw+9ySyK9Klh7kU3NQ7WZ2jnCXECpTrl8lbhdc2lpkdcOw2dO5eiofXdh0fz3xD5j4wcGzQe1mta38sHK0xodHUWbbdOsWpuN3mPI8VDW1q1Gw+ZYievF5nmryTM2NAwBs9P7jT2744T52FqVNa/idp+zL14GAOxwTk7tNwXD7FAWkzPTPW2UG1EOsuWyxFXHhrl3flu5N2G3tvUzVLqW/JbaWu+/F1Hu9ylOlbWvVuC3yjH6tvVpIr3r1P+T9nL5G9/30W63b0Db9+ZLOSVZtkW/+pnau7/9G42Gy7fpj6Dpz6Fy+5g+JjcWi7nv9tew0nfkK/vrKeZyOcyyLuRzz1i0j3zR4QM2FhcWLMKiULBr3He37fWeOG3/nktOYuG6qVtKfW9i2sb7k0/anJidtm5wapRxsnLhCtptm+epcWNe/rt/9XMAgI/+298DABw5zr1lYg4AcPaMqdbmt1mLKZXE0BCZGa6PIUanVMiy+1wQWmSs7rvXIp7+9v/6DP6Hf/WvAQD/x7L5iOVFe68Ka41qj6GapKVtW8elJh2Lx5EdMZ9w9vSzPe+5yaifTMbacpzRBxNk0MJ1a4ft7W3EVR9swvZaF+eNEYuP2P1/8KfeCQB47ll7//e/13L/8zvncOwua+/Zw3b9KJnwT/+2sTt/9RemGHvy4FsAAMOjzL/doUpirYo626ZOlUHtgzTs/YSNxw1GDuxlPb9drqDLM+6rSyXb+3fNpxb3znXmvX7zm5ZDli9KhZBKx4OKTmoprdetZ2nm3+nnd2svlal6WSydTuN1r3mdEwNoMInw4UcfBgCMTowil7bBObufG/NpO0S9/q3m2848aR2+c8oo4fe96wcAAFuLS9hat0F5bdk2GM/ycLO0bIeqSpMLPos5+uyzKMPwoqEIYmxoLdJZbj7cBt3rLUjYZpHJiwurbhC8483fZ8+0Zc+TS9ChUdbWZzL7NguGNrjpjidTSFCY4do1WwwTORv4sXV7BzKw2Ni2QXP/97/Hnr2+hme/aeEgHsNpqiwM3OZhS/KbSoBsMxQnxkNf3W+jw4POmTMma6rQm91do7VnWBBu7i4LRSmW7doj42M4xKJqdTqna1csZLHFZEJtcLRIyOGvr1s/jUyOwePGMs/321izSXnhRaPbOz5DRRnud+yYUfRatFutFqqV3kKLCiXUoiEHoPvLEbbadTTouAYpCVsTzez1LmY3FHXkmA6FQvBYgE6f1QYvT/n9DEMFY65IsDl3eB3sMnRSTrnMw4x+X7hmbSobptxpjMU+k4kYLp0xx5KKf+uwHTe22R+uwLAXcYfkmRkLp1hnMdON7d773iymTY5MGwbXN2EfIUrrw2OCPH1AImPtk6cIigpaZiMMrWmV3Jze2rT5KfER3TNE8EGH4DgoGiLp307THYg7DAvdzVOERP6CkvzZAdvkRyhjvJHfAXwbL0oQHxzigbpkY2pwkCEdDBlM0zco9DQRjzvRnRLHbYkHryrnghbBVkPy6Zw3oTAG6B/LnONtKiVEshSz6I1scmNQB/mNxgpSbIshHojaFOcpMnQnR+l/hQNKsMLmWu8CrNDiDEWB5Eck5HL0uI1rzd/i7jZGcrbJmp62dlhesc2eBDJ0EMmkesNmtcin02mcuWT+aYzgX46hgp7PYssU68nzcDUy0b2WwMVqXSEz5h/GJqxP1ykWtMmCza95jQky5YZs3laquy5kUqGjkpRv8fAUDfX6k2G+c7NRRzzJ0grfJvymf/PdvwnaK37QH4amn/K5/YIxvu/fUFT6ZrZQyEM8Hnfv2f9OrVbrBulotWf/z/6wQOBGqfTufVXQNdrz3f7ww2q1esO/ufWvLxxc79AFA+t46CtfBQDMsvTKxLiBOjvc68wdsnVZggnVGg/VSRvvH/03n8B7Pmz7I2q1YHnZDgSSHV9ZNF/1+Cm711bB5lYqdQgNgkXVls2RfQzZ+hf/wsrl/NWnLexteUmiQypgbn5gfHjIvX+UAlHlivnfJAtYC2Rboy9ZoT94/X2vxd985jMAgDtOGIA+uc/eS2DzY49ZusqzDM0dYQmHNtu2VNjFpUsWku0AKc7/O++8E0AXNCrkrR0qDIscI7gzsf8Q6pzXZ649w/bgfvCE7ZPLRbv27CEL3QvF6Z9DZWxuGbidZfjliWm77vve+wYAwD9QjGo8JfEtHjYJdA8NDWGJAh3aW5S515Tok8BnjVetf9ls1o2nrkBWbyhrv3R6tE9oa+/YVyrFNvfHFyk6J5+aZRhqlCIX7VbTXUd+PcYyTZ3GjaG638leMRmdwAILLLDAAgsssMACCyyw/y/aq4KpqjVaOLeYR2bAELaVdTuJf/arhi588MMfwOUrhugtMDlwp/O3AICf/Mn3AQDuOm4MyUOP2XeEptxx4gSeeMJEDb70pS8BAKjCjYbHkyiZATE3knAssZhjLNSVhqXaJcoUaggz8TpM8QUJA+ySfownUkiwMGuVrM6+ETslJ8IMpWIS4eamndoLTMhU8bdCYdcJVdSqhg4ePW7Ij1in61fsJJ7OGCI6QuGGwuIaQDljSaTrJN3qQ7yESEXIfjQo1NGBj2Em0veHtwktmJkxhGqVkpoHmcQ4OprBxpohO/NXjdVIxez9wAKA7Y5de1/SnrlFdmdo2MbD7u6uCwl0ohJEsUeGGD61u9XzfEtLhrqIbSkUCmi3esNZJMwg0ztJhr1N+s/3fdf/QraTg73J20JZZI79SqqAawkDA8a2CvGrskDeCJH4MpNbFULadEIhCWTJVHosdlyvMjSQ6LwK8S1eNyZzgyEU6cGmu6ekSDUO1DZ6VvW/GDyhSclkEqV6bxKtktdd2Odj87iZzPf9nsRxvZdDx5u1bjI3ZWAzKk5JMYldCjdI4jvFQrcxH7hO5lBiBvVy71wTw71D5ujQ9ByAbjmBja1l9yw1+pohFgXfZjhIlWjc9es257a27ZpvfNPdiLAgrhiyKHNtMwwdGR21PhZSuI9CCgMqVVAsIiLEjsIcBcojNxosZCxEvUFk1Zf0u48ww6Oj9DYdst/Ob6RtDO4yTLtEvzY4TXGUzQIyqd5ishsbNseHh20ebZIFdMwyB3ij0cD8/Dz2msKFVewzRTT6tttMJGd53XxUrcIE9oEUZmfNh0koQn1znWJEY+PGYG1tmk8Qw3uVMslDQ0M4sN/8dIhhoCssZCymqlqlzyX7KLQ6m0zhyG239LznZZb6GCLbNkI0PEt2CZQc3qD4RMevYzxifiHNYqcvXrCSIy1focjW3yEypa09hXW/XWJ4P1PSH0omBmsvU9UfSqbf5U/7mZS9n90bEgh0ZZBvJvN9n2F6vbLo3SiBRjd0yYWz9jJF/Uxgpy9aArgRzZcP7xem6A/H3MsM6hraQ+n6WusU/qffc7kcYhTzGcjZHFletfm0xnV4YtLGoR9RAXH77pFDFpZ35frTuHKRBcGT9my5EbvmHXdYGsjzzz5izxezefar/9TK6qyunEZhzdjaW7/P7hNnEMJ60druyW+Ynzt5t7E+Z5573j7Aebm0tITBQbvuzKE5AECFPkmS6mtkPaIMC55hMeDFhQX4XFNVAFy+4EnuPSUstbZiPnSLfnCUImVL89eR5na8FFFagPWHWJa5ORO5GGb7X2MI7+yMhV6eeuF5DOyzcMKPfvx/AgBMzlj//vHv/ZW90yaLy1dsHJx9wdaSbDoH1Gf4jNxjjnT47Cw/Ye4YzZK1dSRn71Bh2HE0M+TmrMZOk2uURJ3AlJouK8RomEjkhjDjcKg3PaOfsXIhlXsYLo3nPM8Jn/vc5wAAdUZ1JLh/dFFanB+JRAyZjPnIuESUVNy+/b35m4CpCiywwAILLLDAAgsssMACewn2qmCq/m/23jPYsuy8DvtOuDm9/Pql7tdhunsyJgAgAkEQYgBAF60SVbZkWyWznEjZpSqWKZd/2KZUtsuWLYpylUt0UXa5aJsSKdAGKYgDCDIxGHKQBoNJPdMznV+/fjndnE/wj2+tfe85rxuYwYymusvn+3NfOPeEffbeZ5+1vrW+/aOa/C//+I/lY0/oG3f7QIW3SwV9Q3xq6ZwUvqgGOzNzqyIi8uZl3WZ/R5HOV28pIvCRT/20iIj85m/+jyIi8rOf+pS8/obqgG7dUbRiBwwQzcVD5P3zfTT0iN5QXedLEDD3EnmeEJoPIcwbeNGc8Ux2ZHZAlOiF11QcuHBCUf6L5/RaDAK9pkikB9F0vaGIQK83lBvXFfleXdXibbbocf/nf6TFkP/7v/dbuu9ZZT3OLurn11/akjJMDIxlKGwkQzAlWQq+gV5VSvo2PwRT1en15KCu50KmqEykAQYKfSDATMt+623kB4d9yQDp8MD8LJ2CEBJiwW5bEaqdXRV3+hDAZ9K6792jtvD934JocBAo8kQMfigAACAASURBVNGP5YGTBSIyTcTEtm1JwdSCTEwBwtQGDDNCD5b2QGLG0bwRM4deguPzs9+NFkqkNbMNU4NKKm/yij0ISioTeo7DToB9oCBnB2VPoBM73K9KIT+JnzXPnMJ7Ii1GkL+oaFarrbnL3abuq7rfkQqQ9nJZv1vqQ3jrK+JVKpEZgIYC+z5q16WQU3agUVcE6CRsvFOiQvgHLdSowjJmICNtHEwYQkvS0KM0e7Sih8GLpfd0cVHvsSXUPGlb39m4aezVmy0YUwRA8XFP+2C2l0+uiogIpg/ZaigamnYtCWGdPQMB88YdvU+d1hDH03vMe/LQOdWZHlaP5MrbmsO/CP1NCvNSf1bnnr1NFX//1OOqPfQHOo9Wcc8zjmsGcxOZAy6KbfZhz17IQoTNp0hK23DYGkgIHZYvur8ydD5+itbPLAasnyx8uXPoY1eO5G2aWGjjUGP5+uuqDfzsZz8rIiIh2pbF1Pf29kxxcjK4C0DKiaRSI7izq0j6JMbEIXSfM+WyNKAH8W29v3Pz2nbD1/T3zS0g67j+zS2dv2hk0Wq1ZH9TUeYGtAY9suQnddyce+YxtKX2qevXb+p57B/I8/9SkfmpSd3fJBipqUmYbaDA9+SEa44nIrKyAnbMtqXe0nNchIGRi2KYJ2Cy4jro20D2nTHr7XjRXaLAnHM4P7K8BpHeIdh06mBFRrphCsSJWMeNYsbNc+LH43n4gw/HUv2DjDAcseP6e/S55fsjVjBeuDe+bdx0IpVKCf2T4gVU49bqDDIp/H+z2TTfYTszyEyRCTaMFVjtjOMaVoWGUi6MM558UpmoV15WhnQGOs3zZ3St12JG0blPyTe/ouu05VU9zsc+qfPZVg9FrV097tlT0Azuv6h/zxXl3FNP6c89PY/nn9MyOV/7Y10X/ue/9hsiIvLHX/8TEREpn9Drn0bB8IODAznCeqcIeXwPZgt96DxdsFoBGOHqkc5H6WxBcpg/HKytWN5ic1u3WVxUFmhpWddvM2Dbt1E+aPX8qtRqOlaHO9DhslzLtM47U9Bzt5pYi5VwP1D64uGLK/JXf+WzIiJy5qSOxXpN78dnP/NFERF57mtrus8C9LFt/f/UjC2tgR6/jIwhlrk4QGmXFDKMOPz2UfKnA1OSdK9j1jBWQEZUtx1A60WGKAc9uVmT2vYxRiqFeZ/26C50/C4yvAp56KLyKDfkuCIwVHsJPgL9PnVyum0JFvLiQA8K86V0NmPmLxvvBWkMmSBAaZ13GQlTlUQSSSSRRBJJJJFEEkkk8T7ivmCqJioV+cUvfl52bytSwTxLC85E3cFQTqNo2lFd0YqNO2siItLAm7jX1bfpdTjL/dd/+++IiMir3/2O7EA3sAUXQN+NIm9EhuI5ytS2eJ531xzk8U+juYqheONOVD7e6Nduq21vraZoxpOPKVqcRn77YTVqU+15nnF+ofPUFq6fRXD/27/zX4nIyF3mG19TRKZSqRiHr7g1KzU9xgUt5gzE++CkUtJodCJ/IxNz6pTmFR8dIt8YbfboY6pVuPjwWdnaVtdFz4dVKVB8F3n8ZJfI/qVZKA66tGKxaM49bjNLVG0Ys8QmAkp91HA4lCE0H224tT30qJ7jJgrxGateoCfjjnBnzijCRPeaadwrupXFLd2JwBSB7pTLJWOhzm2pE8unCvi9Gfk/9Qal4qT5HxFHIu1sOxYXHBUwBpMKjcT+/r6US8qMkfXiOU7A9pVgZqczQo/GP8evV4Cs8rsPWhA1jhfNDA0qljH2sDbmoR6c0ybmFPXfgw4nl6VbI3SU6aykgGaS7eti/2Xk0AeBjoW33nxbREQuQCPph4qcTc5UpA29Ubut9yMPXWWprOfYRiHZCTCQ9Zb2ke0bW3LxvBbXLOaIWGpfunJZj3d2Xr9D5r0BNHJxAmhotWEQ0g7cWKmTYhmDIZjnLByVxue8MDaXZukkKnrd3iBWxoG6HCDefrd7zE2Pn9RCsmwF9X1bW9pelUrlWBHUTIZ2vXq4jY31yDnPg9ErQdfb6bRl/pSySX3oJLJAUqcmlaWVUM952ti1w/EVGohsNitBR8/Jg5OjBafCDBwbd+HkdebUqn6noHPzUu7ESNMi0Nb19Vy/95Iyda+/rtbL58+r9opZBOzTKysrMj2F4wAxpwsgi6ZnK1HH1fECtHEnubhexzwvg2jRWsZgMDhWjN04BeI7zBqI7zOVSh3bX/w8HqQg8xfXhzEsyzrmzBfXtMWffeOui64bta43z8WYHTq/y2cLj2mKtsqYthrbcs4fYp/dPvQyYDIq01OGvZqZ0mfM7o4+U6uwzv75n1cr7xf+XNmlyYo+NwY9ndu29nZlNqtriuZtvc5/8oquZX79v1An41/5N3Tcb2xrllIhD8ZsellCS8fIlZd1jdeurYqIyN/81b8iIiKb25o5M+jrvs+d1fnx9qs6hqZnKpJe0HO3oTfKprRv1sBYOXDfLJb1WHlkoVRrLZnHOqjT1Hat4nlsoY3KhWipl2tvX8bv2tZDr29KqlTKYEygrecaxrZw/9H9c3B0bQ21rdc3d+XiR39Jv9PU/TuO7v9bL6ordqMBO3ywPbMsXB/6Zl04W9T5jOUWOtCUWcgcyuaUbQwO9T5UKtQB1yWHbJw6NNhmzkA79PEs6Q6j7HMQBMf6PzPFyHinQR1xjp6Y1PbJUiseOHL7tmYL3NrQZ3OI6zyxoOfI8j62rdeaxvGLmZy4FJ1z3OEcg3vMQ/eKhKlKIokkkkgiiSSSSCKJJJJ4H3FfMFXplCurCzNy5RVFNabLYJJQfO2Nqzfk+y9/Q0REnnlWC489ekHRuR+8rEyNHSji8U//j98TEZHTf+vXRESk3evK9Q1lhgZONL84zjLF0SPmVo4XFYvneY/Xuhn/ffyt27ytA6VkUalGR1mEF76tyOPCPPJyUR+H6Kbv+wZpaqMgZg6Ogt/8+ldFROTSa1qXgIXKXGh92u220RexVsvounE61I5JtH5RDuhKNpuVLopXkqmha9a//VdV6/btP9f8/1e+q4jId7+r9+WFF/5UAtFzPwGtARERv496UdDOEd3Pwkkom1ZE4sTKpEHNyO6w+CzPp2IYGo1xByoRRd9s1A4T6GjaDRbR1PsyYJG/fjSHtt1uG/SOxxvQURFIB3UfrK3QRN2X0iQ0LY4rNvKJPSAgPbBIfgooIlLZQyBE1DjVagcyN6voUDvMRK6PCCERX7ZPEWNofV2Rm6mpKamU5nHO2r47+6rfyOf19wz6Tg5uduwvuVxm5L6IGk1tOMEtLT2Ymirf96VWq5m+yPFtijZ3PbEw//B+TUADR5aQfZLfJbNQKJSkhSLNWbiuNXw4spk8bf3Mo44YWcwSdFxbO3tiIYc/Q+c0bNMD2hdg/A7JjsOF79Of/pRkcR1kFDdRjJJ/X7uh9/7pU9qvpsB2DXCfU5bIxu01PTcwcWSqZoFGQ44jDpzsDsCIV9K5Y+x/ta7tkYfrXxYamzZYoBB9vwlUOF8smntBN9AJMERkgthf+XkK9aSazabRHPL+5vK6r8YuEHqin2DZWPR3eRFF1nMpqUNHSi0kdWlTyMtvtqJubTuoOUU919zcnJxFhkUxr/PBJuq7be0rkv3kM1rX5q13lEE8gMYibVtSxpy2j8LQXWhNQ0v7w0MPKbvJ2nxkG77xDX1Wvvbaa/KzP/tzIiLy8kvqirs8p/eO7CrnEd6n8YK+8SKz8VpIcb2OqVvmUQPkHNuWz7FyaSKyz3idKsuyDENCJjLOujxIYVl6TXF9FMN13WPM7PF9WGbbe203zjiJjBzS4nX44qwAnyPjf4sHi5ynMrpPc5dTrnHGZKYEM1m2NlQH+vWvf11ERgXDX35Jax5Nwwm51+/KuZN6n+2W9qMnlnSt99yXdV24uaFObnMn9Vh/42/9pIiIvHNpX157STVU9XW9rsef1qK2a1vKUD2HOlJNXNssCmqzzQ8Od2V/X7OcTk3qM82H0PXsqrJQ29t6Ht4QrofTrHnXlN1NZYtszIU9ZA1UkF0wQF+m22oOc9seHE2DwDOpUdPTOgfdvKlzNLOD2i1de1TBhk2V9Vo7cH0tV9JyeFXnsek5OnHqtk89o5qug6oy9PWOXsM09HIZqyW2q+OreaDz6yCjes/f+u++JiIi4ug+LLuNttN7ebSl853lumJZ0fFOB2M8OkaOfQ70kWPrZfZdzjfDobYhZZZFrIfo/losw3ES21d3D+W739F+Rd3bCcx3oQVtPU4kh+ygHFxgXccxdVwZ/YCeAh15L5EwVUkkkUQSSSSRRBJJJJFEEu8j7gumynVEZooiPhzUNlFI6hOfVie/b37vDXnsIdW0vP6qIm6/8jeUidrd1Lf5+qG+iVbgKnLzqiIUL7/1pmwDJQ0yihqkYqwTUTq+RRMRY9637/vHmI84UxXXY427GfFnH04jAdzCBBWbB5a+Cdf6YMaASNB1J5PJGmbmnXeQK4tzn5hVxOX6Ff27BVT35IKyQpWZObl9W9EiamjIOpRQKbyHmhHUSBC1ovYpVyiYfH2iZL/6q7+q3+nrvl5B/nMHv9MJazjsS2VCv9toopo8nJ+6TUXPGg09XgGMSQmk0x5YuZ3DmjkuETEi0azrMiwqykG0I+6ClE5nBTIOmQbyyXvVqYP9A0Pj4f7zu4uLiwZhInruAFVqAs0uoaZPAw4+dFfqQZ90q3ooS0ta96aNduA55uD85cI9rdUGEgsHtcWlObl5U50hJwp67rwfvAbq5uh21u3reVB/0m53ZXNTmacnn3hWREQ++vGPiYjIzZvX0bba3/b2FXGfmlGUp3Z0aPQkZGlOoCK80Vg9YJFOp2R5edmMBd5rjpFsqiy9IbVvej+GIbSOYJM4X9RRZ459o9lsiutEEWLqFzOosdJq6nFnZpRdGaL20+6Oon6VSs44E3I81sAOkuFMQ6e0uabsRhF6LTdlG6e8XFrPaX5e54ODWgvHR84/5jg6DYZgcLqdjpRR826A+SrEAOpbei0FMOphlKwXy7JGGsiB9vV8WffliJ571mZdF91nCmPfBl3b6nTEgush9VBkbk+hBh4R3G63HWkn3/dN/TTO19xmZkbnjcceU4ZoA1kMAVBKo2sopSUNRjdEXRofDOFJ1OR745I6KN450Pma8zwZ3kwmI2uuXl91T9u729PfP/bMMyIiMlXWe1Y4q8+3FDQm77zxuhThwnrrlp5jvqL3cOqEXgOfDy8B9Sdb/ZM/qQh+EASyAf3uBPbFcSyoU2XFasHw2Vcul6Xfj9YpiuuIeb1OLNNj5BY40j6RiSIKHXeau5tei9tyjMazRB6koKaK1xnXSxmnYTnOgI/vY/zv4xk2bBPOx7yfJgsD7X3MSZFun5nMsf/xeJzDOEapPeYzbmt3xzA+h/uYC6EB//jHPy4iIteu6PMrgzVQD467l6/oGKpUylLdQV2kItZjGWVVFk4o23v+of9Mr9/VMfLbv63sbi5wpbGpc1HQ1efT83/2ZRERuQMG+mc++hdFROQPvvovRESkCYZ8GuuJo+quqU9k29pWq2d0Dnnz0hURESkWlSFx4STnowZTIZuT6pEet1igs6+Ot1ZTr7MBdolOmS3oc3tgjArFrHFQbCMbxiW7i3vK0bSA+nlbN9RN+hd+Smu17u/fluf+d2WV/qP/8t/U4/m6tjl7Rp/lv7P+FT0+ai/6C3DSq1hSntH59MyKtsN/8O/8pyIikrd1rlo5r9r/d3b0uB5Yx4UFfYYdHNXEp24+poP1xmqeiozq5I2vl7kt5wpKJznPT6BNjUsfNFbdlrbpi9/8M3HQSnlkWdkpZKUhWyqT0r+XCrqvDF1JQ9+4Hod4FvTggTAMo+PwR0XCVCWRRBJJJJFEEkkkkUQSSbyPuC+YKtu2JV/IyBe/qF76Fk6rNKOo+x9+9U+le0LfQA/hqrKLvPUSEPtOU9/yv/h5Remu3FBnkq2DffFZ7ZoaqXu4ecTzjcfrRcT/Fmek4vqseHVyERHPj36X7mKZrL6J19t4Q+8T/YeGYXZGUsj9J2NSAko9ALJqI0eVb/HZ9Gh7sjpra2siMkLCxms4iYjYMSSS0e/3xYWGiwwJ0cN/8Pf/BxER6eD3Ls59Zh7ahGLRaBPeuar3pNlUJKaYIbKqSIiNtt0H8puHHiXnOKY9qWkiY8LcbY+1JMAQmPz+oW7fbnWlhm2WTq5E9sF9B6xRNOZiJqLoLfsGkVy66hEJpEimTDcr3OOj6i725crBgf7sm36gfaMPFJu/F4twF4ODX6tdkzOo61HdU5TOsIk4R+oOiFS6YGzZPpub2yJAXA6P9DyKqCC/ckqRwB04Ni0DCWNfsyxrpHkAs8H/ES1/UIPnT6bPuCf6tnhAM8kAHNQU9Vs+C5YOtcBM/jj6huM4EgyjboLtdpSNTaWQU492dFD/LF/Uv09MFiQF1qYHvWgR+fmsH8dx7fnaB2pgXA8O9iQHNs1mLnsm6pYZP2dW/rFRR2sYDCULHZIHLWJwoGhriH5ppTGfOsfZezvGbjCY0079opljAe/dXld0euWhC2ZbMiZpIMkzYFA5B01OKoLMvm/b9piLI+sGglUhu4JznpqCKxQQzjJo8nK5KAHuvxWgHTzdfwUOrKwfZqGOFRkqjs0gCOQ29Ab7YIl/8Rf+NT3nCmrwbelYLOfgyrarSP8j585Jraf38+GLqpny4Fg1taBj/fJlOohpuz/7rDLQdOS8efOmtBqoG0PWAQwB9at9PAvJ8I/3j7iDHNvSaG7xncGQc6OeR9oULhvdhxGrCNfBTNRtMP4cHdci83icp++lObq/wxLHSY2xT1FWLwiCYzrEODNFpja+1hh3TmPwOxwjnCvYliNXTGhI+31zj+6lWQvArgzBWO+Dba9UKoatziP7hc+dt69qlszGpo6DlWXV9QZgSJ/+6KdERDME3r6s2S5TGR1Xk6hDlEbdzut3lGWy8d2z55Q5qVcbMgdtaHFSa1stntBPC/NZBzqhh09CwzXQc7cn9Hz6e4eykNXn7u62rgsmyjreA1xcuwM9Zk/vWfaEttfA8qSM8TyTx9iDHvUITsOlCp7L6MOho/ewBKbMGwayu69jtVDENnBZ5Thjz9nbhz62oPe0jvMqFTJy+7LOM999QRnAkw+BsRT9zq//NTD0BzrPDFHXaWL6cfk//6GyXMGB3ue5it6bDlif63s4Lp6HmYxe06Cv5z0YdqUHpj3Ag4ezfxrPMo7hHhh7zhXptGu0s1zrOna0j6aRGeFgHnSGut13XtHstUHGFh8ZF9PQ6XvIEMlhvVzO6T3LpDDG8OSzHFt6+K5Z6w1Yxxbs/ruMB3F2SiKJJJJIIokkkkgiiSSSuG/ivmCq/CCQersj+4f6xv3sU6r1KFQUOZip5KTZ07fIi49p5ezf/b1/KiIin/6konN3tvXNe3v7myIi8vm/qIjgP3ruyyyyLBk4p9n2D6/IbpCxsXpW8XzPOJrEiOeSWpY1cvVhhXSASsWsnk8LdQACokh41+2gTtPe3p4sLCqiUpnAm7ajb96HQKcD3MohNAwDaHmOmu1R/YFZzcnf2lJGwuSmh1E3RH7erT7RL//yL0faYXNT9Rysw7BvEJChOQbf/DMZaDBQn8p29Lzefkd1cY+c1xzmSkWRaNaUCILA7INoKWs3GD2ccS6MOlSNziOUBnQVhO+J1lFDxfo7/C5RlfEK8ya/HNvkmfcPzZupy0PHrDQYikJBhl41cl1Gg4BaVnnUFHKotRtqG6fcnMm5Zx57vM7ICtglnp/vQxvTgwbqxJzY0LE0m9QooEL6IIpeEk0mi+NIKLdvqTMS8409ODce4H4/aBF4nnQP9ozDTx/sT4i+4QQlada0j1kZ/d8ycsdBAhlHzFpdWS5BDrZYlgiZAfS5AfSK27vRPniAWnUZoJGVaUUfg95ABnCBnCwqM9Gso0ZaFkzBiRzOQ/vilWvKevnhnkGd2XfJiNVwTc+c0uPkoAEQIKdZL4N2yIkD1HXQ0e/2oftyLSCTHudCsGIe+rw1FCeDuQPonw2c1cvo8QqouRQOdF7p2zrXr19XF9Egl5JTi4qUNqEl45jifMq/p9Oc1/WQVhCYOkx7cB8rx2pJkRWeQO22/JSO9SKYStd2xA61DSXoo+3gZLin9wzEmeTSej7zczo2l1Z0rj5sHMr6HZ0fH39UnbQGQL27VT13p6/t/sZbf45r0L97QVoaYOxDB+zZHLSpdd3mwsXH9QTQ7zJgFK++dkn/7nvy0HllDGrQdgzqmB+AvvZsnbdCPCSnCoqc9wcdSbls19GzbLwNObfSVTWL2n2GjbFGWgQ+U3gPMykuPcLIvrhvN5MyLAuR6iGZwxgr86DEeMbL3WpRsZ2dWM1FtkncHXC8TeNZNiNGVj+pFeUzjWEcNj1vTMsSZQ3j7o7xrJ1qtSqPP6598TW4EI8YCD3e5z73Wf3/q+p0zGdLs6nj/2Mf+wnzvKO+c3tLWZe1WzqGzp/WvtxtgyGBftlOpaUGFq+yhzpMTW2PlQXNKvi/fvf3RUTk3NKqiIjcvLkmIiKFE9BeW744yBLw9ZEp127puoTtQvbNgoUrn7WdTkcyonPxVdTDykOf3cE8NLRYawnzDNZ+XBNJ6I9qiFWj812vi1pWGCMlsGJTU3qtV25pBtAXPv9zcgCN1j/7A3VhDjM63//m3/11ve6DN0RE5GhNL/L3fv+faTtMXpNMUbNhpqC/TUN/5B3qtju3t3Cueox0bgLno3NGs+dJtoBaq8goY5/hmmLkTeBGPlNpRyyLa2o8M9Dv2A5x18ujI50ft7ZUP1wsFqWI9RHXS8w8IfvF9jdzWDBai8UdMrkOY4bEu42EqUoiiSSSSCKJJJJIIokkkngfcV8wVcPhUDZ3duTLf/TPRUQkn1ZE7uRp1Xr8zOc+I88/r7U3Hn1K82izqEj/0MOKAH7vu4r0fe4vfFZERP7JHyqT5QW+WBbeNEHM8C01HqaC/V00EnEkKI4WxVEdbjcYDEZuPmCRBAh04DvRv0MH4+O4QZ81PAZSmdA38NOnFU0YdOD2A4TRgyagB3cZVrAuFArmOnZ3NX8/rhliu4QSvRayU5bjiOOgzgs0TWSK6C7XqCoy4QdRXdJgMDDsUa22j7/pNllbUYRTJ7XmVRc52zkgA3nkwe7u3jLIVtHk8+r5sG0L0KgQ3bxbHQ6iFkQkWCsBIJLY/ExF838zmYz5LtHDQi4duc5cLoPPqDahJ8w77ojvEQGh85Iez3H0mlyHVb4V5SKK43l96Q9QVT3U47I94kjQKP8YTk22HqRaa0mAukenVlG5vkPUBi460Ftso1YO2zoY05QFQBHpuMNc/QcthsOh7OztG21mC9rEPlD/XssSO6338uEnnhYRkTRqWly5om5QB/s6nlrQCF48p3n8zVZHBmjLClzvmhU4B4ItZz8iG94A83gdfTOfteTkgtZLqfmo8cQaNNDDtFBnjU5/RKMHvabp90S3+XsDOrCZZ85H/m7QcCCrlpUx8yH7Ph1IK7znfhSxNvqoMDhWr8Rsg3kphVp0KVzTLq5liP51/eoNObd8Gt/Va6BukGOM8xPr8HGea7c70m6BycX10ZWM7cHzMZq6BsYxaMhiPi8VOObV6srUUatUmdD2LxTpzqpjYf/gEPvIo91c8VHGjczy1Xe078zP6PNrG/VtKlPaXtmytq3tTsrMKe0rk9NwiAxY7xCOWqhj6GDe3thSp7NLr2nNnsceeVSuXFW0fWJS284HMjv0ta3ycE0lSx+AjQwDkQFqHd5LNxzvO3EnXDdlm2cM5w8G5xF+N+7sN+x6xxibcf3Rgxrx9cF4Nki8b8bdFDlPsz34HLMs61g9MDLVcWdjzhHj2Rcieo/j7BnPh8+UeE0rMgjZbFYuvfm6iIjkC2BXoK0Osbi4eUsZHAvrlOUlXdtdvaqugOXSVSmWdRxv3kFdUTBCg6Fe0zaycvJ4foaohza5MCld6Bo5nm/dUQ3Vt773grZdQcduk89e1AfMQY95en5Vrl97U68PGk5qVzn/HWKN44E5oj7KTrtmXZSGg18dz4SHHtb16iG0VXQvvgE9ZKmkx5qZnjPtzXqVYunv1H+mcR8WZ9V9dP9ImbwJMFavXLkuhZlVERE52tVn+NKC6tX/4/9E65mWM2S7dd02PftLIiJyYmlK3BQcjSHp396D3hPsE7VU3TaysbBezeVRR6vvSaMVrTfHazpW0w7OfY7L58NQIJUzzFA2E2WozNyAef5bL2otVOrotQ9j/sJajn20gGd33H2T+xwMBsfmL6FjYDZaA/VHxX3xUiVBKMEgkOUVfXgMhnpX55EK84Wf+KxcPP+oiIhU8XAqYzB86f/+QxER+cW/pJ3jzQ19eH7vbX2Y+ENX7IBvU00cjykgMStYGFoMIJgLxib6+EsU47iNbHRiCsPQ/Dw0x9PvDno0V8DECptJnw8tHsO2pF6naB4DHR2tggUGO0TXZwVZ/WjU2uZFg+eYcqJpND46Iic8Fjv1cB+ymaw4sBmdQPpO0IGg+rSmurzZ0okwbTHtDqJDJy0piPAbsG5Po6P3IcBnMdNTsCpmytT6HZ2IlxaWzT7a2EcXbVcEzd4PYNyAe53GQOviRcItFGU2o/1p0EWh1yJEjEVtl8N90sjatxy8/PqWmDcuTpoBFjgeUifzEzDmgK01LbTdAe9iKCkLYu0OXnwdLBZyaFNP/z4Moymm2ZQrrqX7pa020wD5wONCky/OUzOYCNP6oCrbjrxzRan/LFKexIIgFvmoU2VYzaPoIRd8vV5HhqDCU7ivnYZ+Dsp3N32538MLAjlsNYxNcB4Llkm0Z351VnykNbHo5Q4eMtvbaGNY0NMWt99jGqUtg762S23QMH8TEWnhZZQP6hqseLlgz2JxW6xkTUkDi3bTfCAgfdZhChXSJmwsYHzPkYwxqogu7go9WQAAIABJREFUwBYXdY5l/2mhSKWFeaOCF/l+ry8OXlrKMDRhEdwiCkD36/p/Gq+wGLFl22JxvmSB8YAvd0gxxdxDE4xaj+lfet4rS6dMiint0NOYnwl+8Pc62rCPec73BpKyaByj59roIq3O40IFaVFN/W4Xc/4JvuwcVuXA1vkggKiZxZe5D35WijqvHB3qi/PF8/rC2ukNJMVi7Lj/yLKUwwN9UTt3TtN2N3Y0TbEHoG16rmTmof2q9i+CjVxzrSzruXK+fOstTfsro6DqO7euGDvqrV2dS3/us5/TtsML8fbeml4/BOYOFkiOWGJno8+0uKnEjzKMGDdQiG8bT5+Pv1T5YWBeBPg/Lqa8exhN3c9B44+4HTx/H19XxEHf+Essr59gQi6XM4BH/EV0vLjq+P/5cjUOiHABym1M+lnM0Cq++AzDUPpI4x0OkRuNBQifSwTozpzWl4yTJ1dxXnqsarUun/zMJ3XbvI7ZelXXept31CCh2tfx1ca84CI7VxoN6aT1XIoWUtVgEOUA/EwDWL+NcjX9nP5+Z1/H4UPnT5pzbaVZhgUvonhes10yeJkgqBP2Ldk71PUQzbX4wsVyB7MLarrG9evIIIlW7GVzjwhMZ2PgkYUXwgHSztMAkksohluZmpNTp3Wd3F7Qz120w8xJ9Iu+Hv/0BS3h0GdaaGhJ+wjp7kjr7jT1mvoD7VuHWHvYWFvtbuiL2y6uwfO8Y+Oda0/Tdni+0j6efd1xLLGdIPK3OCDD/njpEtKbkWhXhnGQmwqNLTpBBfY71+bLW/TFjOl/g8HAHI/naNbLqST9L4kkkkgiiSSSSCKJJJJI4kOL+4Kpsmxbstms7EBM/crrKnak6PGX//q/a+xqX/zWt0RExAFFyDS05557TkREXnhNrSQpZbVEDBdobH6DKJt0LyvT8YKF/B/fWuPF9IhyxA0SwjA8libB/73bNAbHcYz9N9EpFzaj8yeihWzjdun1Vt8gHUQNeFzS+K3O3S1UjT18NiUZwMMvvqhpls//qdpvhkA1ykVaRWv7lMv6eVRrGJvLOALhAonnd3gvp1Dk7dSpU3oMf1Skk6gEkZ5uN1p81hQy9hSR8nE/ekEoj1x8BsdR9IaUfQgberbZ9LQiFTT2sO2RrSpTMJgCQKtqnlcX6VO81rTDgsKhZLO6jYc0wCEQR7II/GRfMsiV7xtmg+l2cbQwniLDfbXb2qbbO+uGpeD/QrBsZGhpukGkhvej3+8LuXkX6FgW1qRivzcU536JbDYnF5A6LCLSAtLLtmm0PekiTXVoIa0MSN7UFNLQMkwP1fu1s6P9amJy2qQfdGAdboFfGICNzHLsg+WZLSvaSCOQdCYvPTAjGbBHh1UUmc0BuQfKduGCGrxsbSC9thea/TqYCcnq8PrYj9yO9sEBkGYf6Rj5fOHYfJhymdqqfSBwWXAUaWhM05CBYZ8lJjZuC8ToOB8PCPLV24p61hvaPqedjNhAHWkkswVTHKZBDnAtLtF5jKtcyhUfpgZ9zA9pFDDOpJhZgHIGSPsso3h3p6HzrD/0xAHaTOZ+H/OnMathOlqPRhU6NzMNcH9/18yLEyjyO1lkUVDtbxNI6271kPaHtMiTJ1dk+wDsP86D5SxK2Kcgha8B2/Rb67A8hhX+4uIJ8UV/7vW17zC9cnNd9z0Ptqt+yPRtMBruaFyTGYkjtnHWL54C7zjWsW04T9Eu/17p84EfHOt/DFPG4gGKMAwjSH78ul3XHWW0oL9zzMTneLYRn+u9Xs9ss4xsDzJX7Du8D3HWid9zHGfsuRBd/xg2gc9t3Mtx86hCjsy39sWF+SWzXxGRZl3Hzp0dzSDagS34REX7faPRkq0N/dulS5pK+AwLZM9oytxNpMz1UnpeXVvP/eDGuiwtaUr7dhNzINYBLLdQmkeWyKZ+9+SCthPb+gfff9UYUQShzgU9tKGggPcQc0UdRKkD+UCr0ZI8irrX8R3X1bbJ45k/bOvvvA9HMEsLkB20ubMzypxCyn6IPDzel1JJ72Wtq/ML5QH030qlBnLnpppWFDG/FmAZ3u7o8Screo0hsgxaSIsOw1DurK+JiMjZk1rCobaH9VEaxZ6xxlnAOuIOzEiuX1cWfDAYSA99UqwoM8Uwa0BkULBPSSjiojC0jTbhmot99PJlTRU9ggkGDXIse1SmgGNmssy0Zv2P75ubhn3GU/1+dJmkdxsJU5VEEkkkkUQSSSSRRBJJJPE+4r5gqnzfl1qjKfPz+hZdB/J27owKvy+9/Y44sOxeWNYc9CYQkdqtNRERaUAbMARTYATaQWDEyhT0jtuIRraNoWXGYGKsMF88RznOPt2tiGEcabubnep43K2QH79D9iA9CfviIJqbSiEyRY7lYlamJsCigJmiDXajpp/p7PFzFhnpPJ588klZv6ZoxNraTexX78c0WCXqKpjLenRUM+c16EWtKtn+vE7qOwY4P7Ylt68e1o61O5kqG7myHo5B3YlL4w7kX9fbTYPa8fPoEBBPGM1zZzvxWJ1OW7K5qL2wKVAH9JZC9BwEsOYe41YWyiXxhvrdHIq4hl0UFQQCHs9ZHy92ae4d8sxPnNAcbaLXRG9G6K7ug1b8ftCTo6oywbOz02gr3T/vTwNtxXMnK3rjxg3ZgfZkAQUZKeLNjhW3fqDCtkQyGelDD2UB9eNYEbcn1U3V1NRg7jA5q20+N6ttevOGjokyWKa9LWVSBgNP+jBdsaAhotatOKGoKxFdw7qA0TqF+c2aLUoP1vc7sBamjX8qpf2kDqY1A5T00ce0sOO1y9eOa1YgDO6gGCaZqp6n/cnmk2Aw0mAVcK/j8yO1l9QN0njFg+7ScmzDpA9bMGqBZskDqujiunt1mGFM6PlYm7DitWw52NX+Spa21dHrbcFanporWs87GGvDfk9S7JYYB5lUlBXnGMtiHNsOkXw9X0cssSlMxTxUxNwWQi+XNjo5Pc8eNB+8t6urJwRSMXN/65gnhhhzO2AIJ4HYP/6o3sNq7VAczK2bXW2Tw33tX5alTOmlN9X04vI7iuAPwcZdgMHJUb0n3RaeF2CWr93Q+XtxCuYeZE4wJ/tkWANfJqBvi+uATCmKmAg9zsL0en0zh8W1FjRouRtjIiKScex7sjrx83lQYrw0SzzG7dbjmjXTZunoc5N9udVqmTHCjB5qSeLrEmZBkP2IW6+Pf2c8U0JEZBjTtnBfs7OzUoO9+WBARjz6DD1zRjU8DpjSPvZJ44ajRlOuYW1hgQGpQv/E9QKNEU6fg/sLxufR0YEcojSFiyriMzM6nppgTm6DBZtf1vMg676DUjyVyrTs7+kzro1nHfWuzE4poU17mNO4Bun3+8fs8OOGJIbtjxXUZlsOh0OzDhrCWp4MuWUKk+tzhmuvjQ3VPIeOXkOnN5DJSTCRtJgHU3fmvGb9rEOftr8FphDP+O+8/Lp85nM/IyIil19Wo5scjHry0NR+7JOfEBGR3/qf/oGIiMzNzKF99H5x3hu/3nsZut0t4hpKH5katZr2g20USud2pUmasYwKmOcLzBij/T/n/WhZApac8bzAbD+6d8yo4vr8vRnjJExVEkkkkUQSSSSRRBJJJJHE+4j7gqmq1xvyta9+XT75SXV/IUNB9snO52RzW1HjU6tqs7t2Z12/CyverR1FaFy+ETM/udcz7IkTcxGKo2TxHEoiJOPuf3H0Jq61ilsIO47zrhmpe8X48clUpSxFSwzrYEeZs+npSXNefLOnLmtjQxH2GTjENYEqTQG9JEPx5JNPiojI66+/Lv2BouZkr1jsl4hYu6nn1etHLTVt2x5DB6jB0HM/u6paELZzBudO9MawP7mc0UCMIzvj7ZGHrqU3oJsLkGccc2ZufpSLC30Yzz0E0sF89Hy+HLmG8eLDdK3peXAbdJmjC+YGbkP1mvbLMgr1+YGITfcyoLRZOG1lM9Ec9Ti6Zdv2iJmDO9xbb70lIqP7cR6OY+zru2Aj7wCZWlxcMva2YRhlJsl2kQHgPllk8do7V2UL1uN9V9GoIrQf0one7wcllB2vG7dKji8ygiKWQX/ryEdn2/7gB1rAMoCmpd/V7dgn+/2+HB7oWJudZpFLFDKFPS2R4jxc+mixTXt/z/Ok1qhHtu3SHhnM0MKS5rY3a3oPlheV6V+eX5D1dZ0fef+pj1ic1+8QZRaMJ5AcYkOLVMwXZQIospdhAW09PhFJIqtbWzpOA/SvfNoeWbQHUR0IxwsZEQtjwsL4Pv+wMjWhP+qfHBdmHo85SRn0H6hjvpAzJSUyQL0z0AWM9EFRB9i+ReYQxWcdxzBhFTiF+UPtG9OlqCuXC+Zw0MfzCi5WZ86uyJ07iqCvY/zMTivLtIn7Q73Co1N6//PQtA3dUKYLiraHPW2Ha3cUmf7Wd7RAcqqLLAWUuzh1VudTuoRNTuWllNaxXGsDfQfqm0WbtarbuG69pjmcnxWOdDlxS232x/hzLa6bymQyZkzEy1nwk/uOM1X9fv+YlTLvf9ye/UGO8TVInPFjG43WHtH1i+OM2Nd4wfp4wd44qziehcN98rssXcDj83jpe7ihtVotuXjxgoiMLNKpWeE+6Qbsg30JcR5vX1Ib8+n5E/LMR54SkdHc9NWvqg34ww9ryZXrN7UAPZ+fLGMyMzcvKcyjLehO6aDMYrSfeET3sb070jvqeeK5nU3L4qJmIrz4DS3fwzVEsaRjs4qi22zbrS0wRWF4bP0Xd6zk/TGOoXiecy4d19Tlcnef51ZWlG3auB3Vo23u6Hmkc0cmQ2kWcxTLbbA80dptZQNlgMLN68p+P/X0M/JHf/RHIiJy8SHVVAnu2QZcgF/+h7+t14jsCz5jeL9se5xdFrRvdI4Y11vyusfbLbqNtunarQ20AzXfOXyXDK7uI5dPC40zQ6QI+R4ZMvZzZqehbAFYwDCwxDbaQfRvOMju7OzLe4mEqUoiiSSSSCKJJJJIIokkkngfcV8wVY5jS6FQkLfe1tzwjyN38ypybJ9IuRLALegrX/kTERGZg6ak1aEOB+5seMucmlWUtd/vG9TAuN85Ube/eNytLsePcurj2zWRifF9xdmrH5ZXercYf4snaueiSEMHTAERoVnoPXiMU6vLcvMmdFAV/c7jTzwSOR8yOERb8kCAXn9Zayy0220pFslM6WcZ+bZ882eNHoe1dcby7k2dhVjO+GOPPRb5nYhHr9OKXFOj1jSoFNHTJrQCRMBYByhAnjUL+PlwrZuemR1jglD8F+5tthXN74/XAxn/mcyYBU1RAWxXh7V0wNilse/+YFRAkXUlqEcS1LoiY0bUKt5fWq2W+XluQZmGJ554QkRU7yQyQs0Mao/aZ/uow1EqFWVyYjp6DUDFN+GqlgECGKCP0Q2pUWuKA4asCS1IBnqsovNguv/ZYkvRyZrfLSBn7SH0bb4vh0fa12bmNIf/DvSbE+in9TrqKIGFYl2hXm8wKuQIHQDZ3w62taBtclL62eo28N0Ojm9JAJfSQgkFr3FPGz0dr+069IU5HZOsIzX0muKLjs90CQWEwXpZHR2nBeSe22CbOlU4icG1b24hJ9mKbrMNJiwoofYVxwXm3hRqxARpPX5oD0yNPWpnfPSTcAjHxBSYuhTcUzGfZbIs/OhKHg6vZJLJdtjQHFSyRKz1PJttOGDajqSpecS8gNJrks4i+wDzhgM0Mos5IEyNNLJFOPaFnNMxtvpE7sHyuT7uGa45BQa60+5L9UAR8UceVX3wHrSmIdzSDqD1+NqtfyEiImtryjbl8imjM1ta0ns40dbrPO3rHL96SvfJeTKX1X1SL3Djxg3jspVHP9zeVQYbj0splvS695sobIpi8q1WSy6cUua+iz6RBatGNlVQT8cfon4XmsnUbPQ8Ecx1/gBzP3qG5ZLBuHvWSD43mldszKWDPuotIhvgQY67ZcncS5cTD95vRiqVMkx03Dk2XsCbv8cjCIKRMx3WAzxOnDGZm1Mtzc6OsiDValXWbkMHgz5RKusY2GdxdehSz57TjIqcq/v66Y88KyIi169cl7defd20hYjIM49rpgzd5R5+9HERGa3jfu7znxcRka9+7Ssmg+X8RV3bdLpgjdGEb1/VYsA1aK84pgTOrm4qlFqd7qk6nlNuHm2DwunIWAiH0TZMpVKjtQvmFfbruONxPFuH97/T6Zi/UWfGKBSoLdI5vHrErCDsA9qfc+fOGMe8AZioi3C4fe5Pvq7ngznVyiOTCdkW67fXpL6rjNC36zpHMVOFLHYPz34y+GaNA0az1+uN1lAxvobXyf5H1jmeATYeW1vavzyPTLXOb+kU66lhbsOzLJtNm6wByuT53fEiv+PhjmVHxcdfvab9rF59b9k4CVOVRBJJJJFEEkkkkUQSSSTxPuK+YKqGQ0929vbk6aefFhERAANSgUPVUaNh8jdn5xWle/OyakpYa8gGwngBSAjfiKempuTwUNEJanT2G/q/e2lY+FZNZKbdbh9Dh+IRr8cxzjbEUal3W5+KcTemqtlQlHhmWv83Na/oURXoOvOQt+7clofOqA6NjMT5s+qAQ3bDGhK9hsYHqM8MtDau60qjG60ybiOvth928Xfk3aeizmDjTKHn0VVuwvxPRKQA9Jj3g6iPQTx9ke1t1KjJ67l5cBNbgq6kj1oxpRm4EQaKyB61lf3J5AtSyKJWBa6FiNcScqnZzmSOiHIFQUpSyNs9OtL9zk9r3xwAtQqETk10DNTjdlD9fGmxaNqEKFYKbUYdD6+bfWncFZDsEjVVRLPI9hERZF/zQt3HBBzEms2m0cAUUStnA251E8jvpkMZ7/9l1AVJuRnjvJQDKsR6NqH33ljX+yUsS+83xyvnC7Z9q9k2/yOCyPEyBQaBDnrsN6Y2nTdCnXlf2JePUH0+l0a7sRaHD7csoHCt1kCCFOqaAf3MYh9nTqpDYK+j/eNt6OtYb+zMuVXJuTrHrE5rn2+m9Lr2Q+2/GfwunONA5dDpyfND44KUwmcBTCsdvHoeNEUu3f9QkyqdkTTqQQXYNgWWrQPnPMizxEF+fD5QVJj1tNIpWxyMpYEXHa/U/MWdVw1K7/sjVzMwVSEYqdH4gF7RIbIa1dGO75dM1b3qIzkB5ilhFoH+3tjZERss28aaMsoeHrnVfUVh9/e1P0xO6hi8vaZ9rFwpypyF+lQlve58TvtDqQh2E5rjc+dUA7ELFmp+Thnm+fl58+zLYo4tFrU/7ECDPNHTuYB9m9rMwWAgl2/eFhGRM6dW9XjISiiS5YTGjEj+CJXHfQkGIw0dGKoQn2m4LabS1GF5kTYcDoNjjq+mjt/wvli2vOewbfue7FMq5RjNFD+p9xllzkQzKcbnnSwK8rC2W8qlzk/bkPMan9981o7XIIvXpeK8F9dQ0UGOz4m5+XlxqZEpaj+bKOgYTQeYQzCuD+DgxrXGN1/8poiIfOITn5ADaHorWHd8+9vfFhGRqZKOjaMG+izG//e/+6KIiJxcXDLrnVdfe0PbxGMGD5yc0c84l3Xh4MfMgV67a+aMhWVlgKkPY/1Bsn1d9FGbU7htiY22Y+1AtivnJK75eM+YcUNtVbvdNu1cNXOCPuPrh9DWtrX/L6wsmO+IjLStl1+/Kp/5zGf0nHAtf/bid0RkNDcwG+Yq5iPOVZY4Mjmp66CtLWWs2M+MZooMKtgu1mA07pSZ3LE1Lvsb+xb7Xb+Xw/+1DVNpm2aOUq/pvalVtY0K0O8XitRfQbMJfTszbGzfERe1q0gXmeP1o7VY2daslWrZgWH5LKyd1uG6241990dFwlQlkUQSSSSRRBJJJJFEEkm8j3hfkI9lWb8mIv++6DvmJRH5ZRFZEJHfF5EpEXlFRP5aGIY/1K7HdmwplUpyBCbp7X+p+Z90n/rHX/oDGTSju6Db3+SsOtU89BCc5ICIkMFybcc4Li1Bj/LyW4pAEP2Pa6jGtSwi+rbNN917OfYRmYgjUUEQHHPaea+VmseZLe4/j5x8IlE724qIP/us5ihvb6mW5szZE7K3r22FpjH5xicWZvEH5M5ShwDIIAuEIJPJSGUWNUvATHTJogBdIELQAUI0zgCMqsZHURoyIZ/6iY/rvnGd88t6n+hwl8vlTV2malWRVyINRGlm5xTFPYK7D+8H0bZyuSyDVrQOE/9HBnPxhCJAozogek3FYl76g2jOOmsXDKEncFJRzdfkpLIYw1CPsXuwLxloTsx9d8DcAXljf4s7OdXrdfM39mv23ZMn1dVnEVXOiQj5QNPYPs1mW7pAlkzdESDwZIEtIM4vra2JyCinulwuSzENRBP3//Ezimjv16vyYcYHNeeIWBHHJfYXoq+dVnfEFPp6v0wbQ8dI5oL3hG1da9TMvTuA+9LkhP7PZr0ei+wtGCpBfQ3jzuVIiDpBkxVFbmendJsG6o15fe0vZ0/q2Lh+XXUD3faEXH/7koiIfPpjH9NzPlS09fFHlKUOPDKsGvmSzrUuGIRBEBp3Sm9fx5QF3WR3qHMhXZdYjC0Y6P/b/a44eW2bLNohD1RxHyhkahIsOF0B+9GaPJZlmXtRyI+0byKjexSvsUM2Kp3JCIau0XS10c5xfUjaJXMVZUNSqZQ5l/496hgybLBc5hM6BdfzZLKUx/51v20w6kdwHyuVojUEqb3r93y5c0cR44ODw8jxiWBTv3LzlmpOTsyrTqQ/0H2t3b4uJ1dWdVvjVkvGgrVl9H4sL+s8sr6+Ya5/c1f3Pz2j/WtpUbMhLDhpOZj8/SH1g6nI7z2vN9KaxFiQHlwm4/pizo25XMawLZxTOb7S4bt7bn4Q8cHNNxpx9m2UxeHf1QltPNiWcX2U67qmreJuxLOz+owfetE1DbfjWOp2R0xNvJ/fK9NmvF4YtcN0kr15S536shhnhayee6kSddYl2//t73xHdqDlySGD4y//pV8SEZHvvzTSdouMnot8fl+6dMmci0e9Jc6D64UmnPvYl0w2DpwOB4OBabO3L9+MnCt1pn1kDAQOneVG9bvS5egaL17rNM62GudhszZyzfPYw5pCGroPsnrpnJ4zn/0XLqjjIu/pww8/LN///vcj+6d2jHPG3p4+O4zGF7rYfm9otHSj/3VM24gcr8FqHF7H5kdeP//HT863I+YI2VGBXlPgW+Z/h8jmYD/nuY/qRgl+j87DYRiac+GW8XU7r8E8Q7AmTbkZo7+68o6+HwwwZhbhqru7cyjvJn5spsqyrCUR+Zsi8mwYho+JiCMif0VE/q6I/FYYhg+JSFVE/r0f9xhJJJFEEoxkzkkiiSQ+rEjmmySSSOK9xvtNTnZFJGdZ1lBE8iKyLSKfE5F/C///XRH52yLy2z9sJ5ZtiZuzZQ3s0xBOTIeb+ladzeZl81DfqFkPiS50C3P6FntyXnNT6Wn/yHllrmqHu0Z7MDenSFe/uyoiIi+/8ZqIiOzCVSWb17d7FlEJQ3rae2MsFlE5vokjZxSuWlaKQhxqCkLxJIpOvddwXdcgMXRkOzjQtnGyeh4feUbd4A4PNDceUgHJpMtSq2pu/MMPK7JBZNOGM14Blbr5Fs9rE5s1ZWwJgVITeQ5YsRogMvP9M0AqukBbcqW6dDxFHlghnOxWCvtq9ZBfXNT702gr2tQfQJdyuDXmegiXwxOKwJQnkV8M970G0KQjoHiVGdXg7e4dSLeu6PBZ1DqzHf1fZYLIr153GPJYenHNZtu0SaUMZAsOQZmM9kOiRUUwiB6ccoIedSeuuNQVgBFqHsE9zYaLGNiuAbQKwxBozkTG6CcsoNA2WK7tLUVVHJtOTbqPXFmviYiMZXUM8sN6ZUGo/7t154qes6/nvAmWM+3qtQROXeweEC20r1tA/z7S6/sQ4wOZc0RCCcPQMATx3O9er2dQzWm4+p1c1TohV4Fkxet8jesouT+2OftHBQjiAA5+UxP6e8ol6qn9eOjmJJ1ihXkwvC29b2s39PhPPnFRv4vaJPmsslCZdFbcR5RJ3AFz2+jq/veurYmIyMULOl/Y0DQddnVsTIGd9sPAOIta0HKkcB50ryzAATQA+2QFul0umxWLbDzGOlFQVrgnChg4OVxjNAfftoIxdDGKmBPRZNvGQ78HFgXzBrf1Yu5nxq0V44nHd113rGZZNOLsSh+/p3Ks54QaPRnL1HQZom3svO5/aV7nkTactHJC1zY+Z0JJYSyTTSJiW4LGxLLhPom5bwsayT726bq2dHvtyLl2utoPyU7TyQ0kk+QLaeyzK8uLOsce4lkTgu1bgH7XyeuXemDA+dzk/J5zUqbPBKwLE0Z1Z9RYcdzxflQPjsy9I9p8u4/aXiOC5MOID2i+iT7/78YGkSmJa67j7cDfydwVCgUZDqLtx/mG+iMyBWQq2N7j5xTXl5IZu1dNTuqBisWiFDCPvfGqrqk8sLVTqLUmOM4R1m/mWNhuYmJCymC6WWP0zdfUDfCjj39ERES+vKbsF8cyM10uXLhgMpX+36/9cxER2d2EPrqgc1TY19/PnNE5ktkFfBbatm0yVsgIGYYGGiK2S4A+zRqDge+b+zmqyzWMtBl/JzNHtmk8zLwGlzvOs4dVnTvp3EdWkhp5xsTEhMno4bnyOPF6hU3MC2RnisWyqWHHOYjXwr40Xrd1/HPc2TDunMw+RLaN66jqYQP71GtKT5Vl/bZeT7mkc6PtRGur8XhxjZ9x9HNT4tFl8Ie4/I3HKGvMls0NXTunXO3LaUfH29KyrhNffeVNeTfxYzNVYRhuisjfE5F10YmmLiI/EJFayLcRkQ0RWbrb9y3L+g8ty3rZsqyX+RBIIokkkrhXfJBzThUPkCSSSCKJu8UHOd+81zIqSSSRxIMZPzZTZVnWpIj86yJyWkRqIvIlEfnCXTa962wShuHviMjviIjMTFbClJOVUkHfIm/eUcZqe0/R02G7LtmK5nkuAiWbqihaUUFO+sGBupsQsdjd1e9OlHLisc4G3lIff1QZmzZQu+bhvcwFAAAgAElEQVSb+gYaGmQUueF429Y3YaA0cJEJRf83ZM0WvN13wboY15dQxPfpHvLjvcN6nifLy1ozhG5irCVFV6c6tC0d1KP5whd+XkRE/uyFb8rp04qw30K9KtYh8ogMAazygmitLzo3OSlXfLArFlDjHBBty9Zrm5xEDSTocEZ1nZoywHFqdbAtMZc9bst7VoeD4TycHg+Pdg1Kt7KizmfMhSbys/229hmyYcwHnpiaQbsdShEs4todRTxXl5fwHWjdYO5FdIf56K1W61i1+yLYCZ5XFuhZG+g2q3OTxdjd3T2GRPL6iQzROdC4HuKEer2OzM5qvx/CQfCoipoaQGSop2B9CqLsPN9sNmtQOR53DyzT5rbqfnw/ep/SKeiNwp7MTCtKXjtS5oPaizpQtA8jPsg55/FHzoeO4xyrIzJi9kaaHiLCRDeZp857z3swXnOHSCz70PaWIoXDWH56LodPoI/Uo6SLE/LWlTUREclk9D48+YRquk6f0jFQRJ2mLmueDPXz5saaZLOKUBuGv4M6ekAmu6hHlEafm1jQ/iVk7qy0NMCO0rXS69KtE2x1bKFocu69gQxlfO4UcR0wdG393Q8VuaQLIMcJ/zCORvLnuO6Nn7x3XdRt0fbX71JT1QGSn+EYxJxnY04e+FEGq9frmf0PYjqBuAY3hD4pIEUTUBdnSzCk6x3bSI//kcceFRGR9QOdtwbQGDQbdAj1RvVYMB//+Z99S0RGc+DHP/FYpB3acDotI/Nga2vL9D/2XcfhHAOnM9x3znlPPaUM5vXr18XyWZdHzx7NK35f76UPh7dcAb+3tO/UDoCsh10zD8V1nIMgij4bFsDU7WmZbeNsr7h3d2H8oOODnG8cxwnDMDRjxGiAPNYxTB3TqozXyRQZ3ee4lrPdbpv1AP8Xd8ZstfU+cJxxzJCNt23bnBOPF9eAx8cf+0yj0ZDepvaVyRldB1AX5ePZz2c7WR8+g1LY9+HRkTz7iNahIot6uK7MwVcuvS0iIoWpYuS6uRaampqSL33pSyIisjSnfbKNvuixXhTGEBkTPhe3t7fN3019qH3dv2FqoOXqdKnLjN6f8UwiulzGNVW8D3TjZJ/mOiUMQ7NtA+OY7czskMqUnl8b2rO4fung4MDcT7bvpUuqrY2PrzQ0r3mwzfWafm/83OJ9NN4P42Pb933T/+I6PH6X59Ws6/mQHet2O5JnphjmZD53mcUQ1yHG63n2+30JcK5WTJduNLT43Wg3cf23bq5LtQq9oa/Hf/TZCzif9+bW/X7S/35GRG6FYbiPk/x/ROSTIjJhWZYLJGdZRLZ+1I48z5P9/X0pTuoDgCluXDC7gS8NzOgrsNA+vaIvGQLAyAn50gNxMwbPcNg3++GLzg1YxbIw4jQG01FLB8+gOyr6KqI3LYuFRBZFCflQYrGxoB9NNzGL8NCRPmyEh+/t3pgoFAoje190KAqc+aDh4mV1VQXHpPld2zEe9UMwgqRc+XsWNDbP3aTgjKUm8DtGHMgUSSxO1lHEslLRthy9kHSkgXZtI53IsaOD0yyK+CKAorgUpt7N5pgvCDzn3R293iMU1+QApeixVK6IhQXlDCYnC8flJMYHTgABOM8nm80eG5wcaDx3nuvoIclUIG2nYrFoJjz2Q16LL5jQkG3EiWdk7Z8T34tOIDxXFmDkAn9qShdJ+5gkOYnncjkz+XJb3rsjWJe2WjrBzczoPlJItWx3POkgJTOe5sB0rg8pPrA5Jwy1LeOpNWzftthSgHnD4R7asKj9dQLpokf7uqjgg5EPjp3tXZmAyLkIk4VsRuejHlJMJidheAIgIxhivhBtV2/gyBFAnw7srlemkQ4IICOLFzIWoq7WdPtaK5QQxTb3cf+ZWjqEHbXloxSFD/F/Bovcrv6/6bUkaGi/cPGYqCONuYJFew/9JZ2H+QAW3X2xxRHMMRbAJRQjnhC9fgn1O23MBRybnF5Sri025vQQabkZLNSCkC9sUeMVi2POsWWAdh32AXJgnu6hQi1fLnp8CPvRFyUtEYGFEeZ8h6LzdLTQe2YYNThKjaULxVOpOF9MlpH+aE1iW9ikZ7jYqEsYaIO2G0z70rZZ30H3/pae+/SMzhf5gh53ehKlE/IpadZoB63tPzen83K7q/s+QH/kM3IPaZrlqSlx0Sa0w+5hHu+gyLJvwwKbaaDo/xswZ7l1+46UkaZPA4EMHET6AHCMKB7GFWyf6cWVY3PNIu7v1LSmnf2vX/6G/CuOD2y+0QjE96OLANcdFRyNFx+NG0IwUa/NIvHch+McK2oaB4k4/vlyYwyvsICu1+umjxowYRA1diK4wefi+AKe59w8QgYAFsQEoLI5nf82NhSM6zQxZ8IEKJvOyHPPq0HZx5/9qO4X/XhiXvvmzoG+RDVw3FmUZgmHXSljjO7s6ja0WOfzmOuhFl4EWwB/d7H99HxKjhq6zelTpyNt+SbNazD+B2NzlIhIMZOXIV5aJR01z+EcMQ5uihxPqRw3eeB3mV5JwoDt3Wzo/Z+FtIGlNtauXzUlLCy2KyQMLBDcwSTdE5huBCjGm8+bl0oCUgaELURfojoAxkKJ9lPHccx1sn/FU/UYpUo2cgw/CMy6p1BKo40wNwOsoqSFhmsB5ieOqOFwaI5bSmtfzsXIB8vmGlfPvVXVOW37oC4BXogfurAqIiIu2sbvvbeF+/uxVF8XkZ+wLCtvaUv+BRG5LCLPi8hfxjZ/XUT++H0cI4kkkkiCkcw5SSSRxIcVyXyTRBJJvKf4sZmqMAy/Z1nWH4painoi8qoo1f0nIvL7lmX9N/jb//YudiahNxSXxR7BSi2CsbIDT3JIb3OILOONu0gE0Dpurygi4ti2eRteXV0VEZGVRVhXAgm9hlQmpp6QovY7+kZu2+4YioQ3cYfCamyLVIlSMcpCuI4rw0HUPpb7uleedRwZmp6eNkJDCouJOD3+hKaRtNuKYpw+rRbKl97UIni5XO6YoDBeiK7TjxZ9JYVNKMxyHVP4jd8hAkSxJBmipQW97rkT8+Z8qzACaaLQXlwsSBqfqQIhWJkuEBHLHn2HDCRRNB6fYm4eo4nfV89qIb9evy8+rKCJnnVxPKYqOGSjUiHaFEU38/ljbZYvRq2QKSIlmsRUSqK8rusaNmTctll/j9LoFRRgpSmHMoV6jkcd3b/jRlFNMpalUtSgguc3bhnLtA1eS6POFBDdVx6o4rjItg9km/bWZLGYCvFhxAc557D4bxzRNSlGMo7y8kvaLzj22Laf+tSnRETkhRdeEBG9j/eyn6XpghHoppEqhu0MwzoMzX26DfOdoRnjSzhXHbfLS5riuoMikbY7JbcxX/gwmehhPNhIu2LKay4D9JWMDeZgR5xRUV2YsZgxQCMCzL3VOs0QRra5k2VYyDfR5zmnMXUQ/ZcCdmN9y3bIZcx8kAZSOjRW7uh7sMMVn+UsRigp035KSFMmq0WWnAwBT6Peic5NHM8iInaYjl6/xdQS/aTBC23ymcpniSOZNJ9PSBHEM4btX8zp+eWwXQomTdlUWq7eUQIkR7E9MNBUJpr+yPMh60N2ut/vSw3Pvocf0XlhnDkXEdmFXb7vR585tm2LhfYuw0CoWCb7r8i504mmrE6WFVlfOaXp5o1OV/JAiKdRUiAAUxgQdcY4Yao3mZOJiYlj9vccQ+NW3v8q44Ocb8IwFN/3j6Ubj9uUm8LUGIun0I5kWdin42l64/uLF/XlttPIPmAWEP++hvIZ48/keCH0uHU1/85rabfbJnPCWOZjH6+//nrkuzwuzSjMGHdTphzM7duaSZRGX+Q2DYxR9vMBmPNWqyWtpv68OKvXdxlFgCkTqBRY9FpZ1N09XXNkMP5qtZqZ7y48pGlft2ALTwaH834F6a6cB9O5rOQwJptjxlQiciwdj8+MfB4lNBymYQbiYWz4LCqMscp+wHtLBotrQhdMzokTJ0xZhz7mpOlZsNhdB22rTLTvI7VwbE3C9Q4LkY8Mb5h+TTt+pjRHmTXbto+l6MUNUeKZXOOM1qhcjeA4LN1wd4O3eEFf13XNXJFKMcsq+l0WJq8iO4eliPwwkIsXtYh6BWZClkTTX99tvK8VURiGvyEivxH7800R+dj72W8SSSSRxN0imXOSSCKJDyuS+SaJJJJ4L/Hhwcw/JLK5jDzyyBnpIQ/URs56q6FvkeVCTpaQP8s33Y0barrAXHBjuQ1kjJqeYNg1OqwtaBMcCP+eelwtiW9AD9QZ6vH6QFcpEBYRmZ1TdGRqGkV3h20cFwirTVZBt08DqSjkXPEhIPc7UcH1vd6A+RZPVmZ3d9cgePzOFNqjB2RkflbR62vXr0b+fnJ+WTZxfbSDLwNxNPm+QIQc5LsbwwqgtZZjG2F3gP/VIBal6UMO7EbtCIwi0ItUOiunUKCW2aa8DxSczkFcKmCMqKlC2r24rmvQmWEMrSPy00ZO86AfLUTpOnpf+v2WpIpA0YDAFApAh1GYkHnnNhAjIkOtVssgeUStbtzS/kcUqQVEOJOLikv7sBtOp9MRREdkZDNdnCjjmrzI36lPCwNLclm9Z6bAbF0R5rjNKZkWz4oO7fX19TFbev3fDy6rtf7uvp47C4A2URCQIvZWqyVV6CnOnlZL2h1o2LLpKOv4oEQYRsXBcf1GvV6XOxt6H+bmdf5II2+fTACRtBdffFFERn0xl8uZ/dDumnhZPG9ekNs+MifRe5R1HEmnqOlBbj3QxuF1Rdk2dvTzzh50WlN6nt/809ekD3TXZtFFGLhMp/WTzPLEMix4URjb9aAJyGTkYAuFi1d0LqW1OvU/AwimxY7mzafT6WPCYBvjAmSWWGUUFoYOi9edSdNGPhwx59BQ0TiHnwKdANs2DRbKsUXSYMT8YdQYhJ4CHNucrwvGNAaIahCMNFJCho4Caf1OXOfK7473KWNkk81GvjMy9QBzhWOkMef33bSEQMybyJhgyY/JCe0PS0tqWDExqd9pd6CHKunvU1Mz0klr//v2t7+r351W5H55RectMlQbsBMmWlwqlUyxaS/Qa7hyXRkEWq13DlGs80Dnj8mKzuNnkBHykaefFg8M4RSeOfRDd02GR3RO4mcu74wKeRqGkFrn+2LZ8p7CsixJpUZmFHETinQ6fay4LlkkkyUTY4zGWS9qvuMMAIO6HM4z8YKug8HgWIHUeEZN3BiB98eyLLMN9aXxYq/xcjIsClxHFotj2cZUwbC3NKSBzX8T2RJknw52MXc6WdmHjs/YomMe4RqDrL+diTKEvIZmt2N+5trxrbfeEpER22IKxkJiw2fxcDCQFNZnzjBqRBLXqRnLdUx8JuMpY0sQYk4YRtud+rA33lD2jeYaE2CGeb6WFZr2HKLYONeQh4dg5pAhMehTr02t7XBk/ACjBupeB32yi9BQ0UwoEx2HdysZdK/i3rwf48ZQI6ZM1z0eNVM0SbNomMLSNLrPcVMQw1QxA4SeB3iG+LDWP0JWxyAgG7hijPJSFoyZgqg+7t3G+9FUJZFEEkkkkUQSSSSRRBJJ/P8+7gvIx7ZEshlL6nCvyuDtdRto+NL8Q1JEkcgaLMNPw+VuHwhMhkUsgSLzbfehs2dlB0UR+RZ7ZlURvkOwG48+okhAy2ORTZj58AXVCgw6sgzUNgfHq2ZLkREf+gbm7BKRTKfTMj0DK8xtsBfUD9yjGDCRICIQ165dM8fnG/7p05qDThTl9OlVERFZu35NRERKQCttyxLHov5G98tcZdo7x53q+OY/biNOTZVPy1sUgy3B5WxpUdvUhw6KjoOhH4iN/czN6PVQ40YUi/nGLs6z04RjFtHujH1MoxK3eY3n6haN+yOR4ZS4QLippVtYUMS1CcSdf1csKZqfTgTMuNmgjfbQ/0yb4bvMfy+A/Wq328fYxrgeir+zffrQZkxOzJi/0S2OCBiRwRHTgX270X2JjHKwqSl76eXv63GgiWh3tF+60Ip0+7SZtiWX1XOnzosFaYm8PahBdimO4HqeF0FiRUTeeecdERFZWFiMbEvkkGO0enAoGWpywA6nkDtP9yEilBkgzGmOLxbF9boyncc9pMUtkMyDA+0v+QGOgWO9fUOLOHeGlrQ6YMO7QB/RM0/PKLrJ+qIhKOhmU/eZs3TciB1IBn3Mgg14CITQxXkUKpol0AaTAkBTbNseY4Kgu2HBTLAsLcwP3S6smFGSYcQGhaPvgm1iOQsL1+LgvrANbWY6SCADoNrGQjjNOQ5oO+8HmCs6gRpXrjA09z+NMUwdiEtmH+3O8cv5hSx5EASSz7MYKG1/o1bzHjIKeAwyiEEgMsR8mMaMdH5VHW/nT2n/q2R03lxc0H53VNPtyyW9L99/6RWj561iv7fXd/Cpz7j+MKpPYnstLCxI2lXmaQrP0n1YpZ8Ac8t+0cDcSG3XBhjOlVPLIiHdzpB2QJfeGCvC4FgbDofHnpOGsSLd+YBFGIbHnl+8tsFgYOb0OBPEOdaPaZzGGaU4q8dnumF7Md65L/Y/si3NZnNUCHvsfMfPkTEaU6NC2bxXXI9w/9yGjAm349qD824mlR45+/b0mVVFxsbZVXXju3BBmVtqrvxBF991R2UvMJ6YwcSsDx53eqoSaTu2uZPJm/UWn5Nx5zq2B9n0PMvmZLPH1kzjNt/j3+X8YthlsDPj7o/x45Jt43UXkFnDeWd9XdthbnbaPO8L0GVfvaoZNaNC6bgGamnH+kHcbZL3g/eUf2efCiQ6d4yzo/E+M97Px6+RfX0wGBxrs3SK5Yuia7uRG2a0vcbdB8lq8ZP80ebWNq4f6yfMXR85fVK6jQNsywyEaNH5dxsJU5VEEkkkkUQSSSSRRBJJJPE+4r5gqtrdnvzgjSvmjfixx7So4SwcpHqdrrRRx+ImCtieOaPajo1tRdzoire8oija2m3d7tmPPClX3lad0elTqyIicu3tb4uIyAQKCn/2giIhWbxF72ysiYhI39LjyyCUMt6Wz00qKrh3CJewBgoKryhzlkWdgEMWaLOyYnuKSszPKOKQcakHAooBFIn57Wloyg4PFPGbn5syNbWmULthBjnqxUXVRASDESMjIpKFBqfdPJC0S5QESCve5lOsVeEAxSC6QAQM3SMIXLFdZaQGPdTIcPT3T376iyIisrigKGq8yF2rWRevh/omfWUe56eBcGNfwz5qk5zQa9k/UK0PUd5288iwWcY9iG5iOSAdROLg9kWUvQcnSccW6XWBrOBjf0+RiVKxgHZBoT5QlFXU6VlaPCFDOiSi0GfKViSwgrzmYwXxcI93t3bN/zOZKLLC+zxR0b5LRKrZ1+PWUWMr46QMEhewuFQIZ8gpbTPmzA+H+p2hRfEKHLNskbVt3eata6qDqx7ofSGqR7cbF/rAVh26nJRtjm/j+K6FPPcaRDEPWIRhEEGH2a/IBG9vb0uvp32MGsB4/TDj8OlGUb9erycexrxNByGbdUqiWqs8GS2HxQi1H4VDXx4/o05WbbAMW7v6OTOFAp7oi5sbmi/fpVYwO9I0HULjSGfHUglMFcYAC3PnsjhfH7VoBm2jMSST2cd81Ue9uZAsj0TZhmw2KzRdIupYRsFWx2UNJ7CzyFvnuKmgn6Vc2xQmZg1CG/OjN9C2c6EP8Hpgl8Bg5TIj9tS0v8f6JEBIU2SmUGsK82ZvyIKXvjhg03qGsdWod+vRa5tURqdW1fHLftBoNMxYpwvYE09ocd03L31Pjw9HLWpSOSdNTc1IHxrLDuqk0Pk27+g5nzih/SOPQp6Npl735ibR2IxsrCvqzno81GXduaPZG+lsVPNBpHdra9voEDzoRJot/X39js7jy3Ch7KEPXaTWCvrLQqkozYb2WfYHO8ZMxV3rRqyMI2GgbZfLR90nOd4erBjVIRI5zvBbItLH+sfB9fJ3O4a+s/bOuFugbfOZEq2nyM/RnKXtnMtSa0yrOd9sEy9cG2ed+ewdZ/XjzE88c8QUn42zHWmeR99kiJABJvu2tq19Nbh6PfJdPpPSTtZkbFAH1KzpfNJCkVm2Q72jx587cTJyjJSIbMAFOou1FYv+cn4rpPTvJ1dWRURkfkGfvbliQdo4fgPPD843Id0+ezpXkAWDzF4qeV1PBkEgNR8ZM3CSputdjlqfLHXi+ndmQJGdOqw3xYEerY75JoN5JWQ9SYt9BuMtw/pNtrTwnTDUkxsvZi8ipo7T0Ke2McqKjrv/xd0tuS+TOZSyI9/NZbPSbmh72x4Yogw1tGSO0KdCOg+D5cSzJZ9OS5qmslmse7Bto4rC5HX9DH291ocvPKLt4PmmDuGA102SK1Zb7kdFwlQlkUQSSSSRRBJJJJFEEkm8j7gvIJ9CPi/PPPWk3LhxQ0RE2k1923/k4nkRUdaDrkgrS4rOVaAZOv/TPyUio0rdA2h9ZsGGHB7sSYg360nkmQ7m5rGNIg0WUPcTi8pyLUNzcnNLkUc3NcrVpM6lC/blJJztCiXWClH0oAkk1vNEHDBFdLAboTmsy6X7pG4nntu7sDpvUFH+LweGZmVlCW2kSCQd/lhPy/f9Y+gBESgiPkQPiTblgQBRP2W7KWnj7Z3IDh1pVlaU5ZucgCaCtY/AumxvbcjBniL9h0d0oGFdKD0f5lvzvE6f1n2yPofjOAYdIzrFfGLWjmiAVZqYmIi0pXGTyuXMuRMtIYpCFLkABLDX1e/yftG5SWSUAx1Cn8Yq665DZxzUEEFbj7sWkk06AUaO6JpT1H3zGLwGnle9Xjc6qM2tO5Fr4PnwO2z3Rlc/+0DM3FRGPKDwly9fFhGRYlH7KoP3gSijcS5L21LG2GGOOiu3P6iojG07UigUTPvFK9xPT0/L3r4yeu9cUYT0yaefiO1Dr57tROQ2CAIzHz3+qI6T2pEyt1nqgMCmsCaZbWq/QEdj2zI/qYzUT3/8GRER+d4PtObLUVe3rYERoAOj62j/7dR3JZvXe1kAi2Ghv7If8VxHWgj9PcRc5BZHOg0bKKc/QO01Mq1ALnuQYhBJd11XLFBhzCDgXOPhuIJ89VYN43ZlOnJeEjqSAmKdT1FbSd2bnk82x/pRQJvRf+vVI/H6RCShYRqCCYMG9OCwFv0u0Ej2B5HRHFNHO3Mu4RzHuofPP/+8iIzqlbFNDw8PzTZk7l977TURGfWdTEXPeXZGn0kl6Jcq5UkpZemIpwj5Xl3Pp+MBhW/q/OH5+nuhoH0Jt00OD2qGXV1YwEgFCz2A0y2vl/dnXFe7ta3zb7MBWB3sZg01XiSj8zp1aTwWXcn29/dN7a6Uy+cRdEKmbht1aFH3v37PEwvLk24n6lRHx90HLcIwNNcQfyY7tj2me5HI/0bbRp3TWBvKtm2DpufBavA4AVjmLDI4RuuYaM3E8TpZ8XktrgWOMxjhmP5wnI0b/46pORbTdHH7SqVi6tDxbzwun/leOqqTzOGaGo3Gsfmb7pJM7CC74oAFofad+/6FX/gF8zx++ZWX9DvQI3ZRHzCejXP1qmZALSwvyTye6fwfNd0esgf2wB7/xCc+oW2XYr0kZZm63a4MMWd2ujrO6Uj66g9e0XO3o+wOn/XjDn4cz7bNunPINsC99KGL9cH6jOuljIaVhbJiwXk/rqn7Ya5/phYq2tbUGy3ptZHJcxxLcnDXHXp6DYOWns/UNPTxXnQeMPUKx+YQrnsdTBF1ZIzdRs0/39HzOvuIZrqV8Jz0PM8856gzHno/Xj28B3VNlEQSSSSRRBJJJJFEEkkkcV/EfcFUed5QDvf3JAt0gTnx25uK9tbrdVlc0Loa1Lasr92KbMvK7fE84Or+npxb1e/aQNSoN6pMKJv1lT/5uoiInLygWq6JIty2BvvYt2vcqwTahOohaoJMaE6sPYF9gpnIV/8/9t40SLPzvA4799u33tfp6dkXzACDwQ5wA0mQEldQlCPLlixZEiWZtmVX5UcqTv7lT6riVH64UpVUKo4j04pjRXEsShS3mKsAYiGxL7NvPTO9793fvt78eM5573dvAyFIwDQmuU8VqtE933eXd7vvPed5zrHvVqptEGB1rEbR5fwrn9xQlJKUeggJjtOLql4rOxShQHR2cMDYLiGB8v/Q7/rZ6nT2IFBCdRzinFX+aeDRAgQ1CslUElleu74jNmmIdWmZNNFy9qHQk3qtAp/IYnnXUOvrRIB7VMSSapqQNyFxJ06cAADM3bjkUGO1mdRbOh15mIRVd6L3an8PI21OeYcIoNR1BsgcHT5oyNTO9iZS/EyaqMia8piJQIsBmJoyxHltbY1XK+ZuO/BfIOKieg6xakLmCpEaAt/33bXl6MSuNN+dXWuXQXpaVVnvUqYaZY0MRCaXx8q6XROSb42lCEWKKjmh5+PgrKk7LrAf0hEU9U4LzzOES6h3gwx3p836BaSwW7Y5fuKkoVqnThnrVFMbk0k8QM8fx+I1KtikD0ibyGiS6F+OCnb5BPuR9YSJlHx7qM6Uy4ClNMgN2N/uu88c3xfWjPFs0E/k6m1ja2tS0hs8uMfJXvP22JHjvE9bW7tJG8eFJFX/BlnfOFrELnPVffkxkVlOcI4rKyDHupxW3Y7V6CWRKdhc9lmXtJOmyhQZ5bYQdK4fXWYnaOx3amV4VI5b2Lb7Gxuzz2p8rm5RSUx+e30KU5p/gY9bmJ2OroEPPHg/AGDz9m33uR32ha+6I6LaYnSXdwwpvvu+e+y6enaPg2P2DHh0/2MOKd5P5T4ShmiSSdN6JrS1Xy0sBdXC2t9Gh5lRsGPXXmUfljKGku+S0Vklw9TpdNAi+p8lMp7hc3KuQlVQjkMh5m2e6/jx40g17NrqZOqUYdHhdVW2qRaasjbdpXpWjzUhfq+E6Snrsyxv3EvqOUXFRtZ4pKmc6FDwVBo+azbSaT2X2vzsnaj+5yGRSOx5LikSnufqCt2znnMh8HoKM4Ius6RQQJ3qnWIzVIeVJpqvZ532RxrDYpiKxaJ7lmgM6t+i16Xo97jqRJQJdbtXLEAAACAASURBVI2af3q2K5NDn3deT+02RkfDGRqO3eZnR6csS0dzVn+//64Trq2uXDH1Y2UKTLDmXPsVsUt6FivzZ25uLqhRq1k7PPbIAwCA69csYyHJtrxxfQ4AMMRaymw2665Z6tTy/BzjebTHuX6V2VhUJ+3PlGiQGavQ2y3dtfufGLU5VKYHlasDS4fVRxOJhGvn3V2bz8qkusXayioVE1usrVN4nuf6PZF4axZZ7JPaWqxQv+9qdD8Q9fgK6iG1J9UneygUmQ1UsXU1l7f9uUpa02nWy+dYa5ZXLTzc9ep4vbZd69KCMZLSLZictT1ofoA1fR1lmXhIa4vPevRkMqzU+U4jZqriiCOOOOKII4444ogjjjjeRbwvmKpsOosjBw66vEvnfq0c0tEx5yKv/G2hN7duzgEAjh07BgBYWmAd0j6rveq0G9ik2/arL1qu7JGjhrp7K8YyfPKznwUANPlGOnPF3pBLBcuD9fwebtOLRqqDUkwbHbS35Xkq1OybMaZieoKqbN4qulCeunKT9YZPzye+Rk+P2lv0tVvGwo0O2eer1apD9AbpLp4lSuATidTPImmxLpHQVqvlkIUom+Nqu6jLn+Xn2h0iv0mqwFWbGJsyVEY1AoV8KXQM1Ug4lTMyKjOz+9HpGtQwTlRolShyu2XDTz4/0Vxx5T0nvCTGx+y7QpZUf1cpG9JTKgWIFxDk2+pe0+k02u2wwpu8g4q61ulJftf6SyxUwvMda3edjNHktNXfXb1q9TYjQ9Y+azCUWDVOQk4WFm5jedn6RP0RfCacKy3UWCie53mYm5sDAExRZbJHNClNtObl198E0OeHASHD9vPylavOZ6ZO9qrV3A211dt5Tg1MjaBGRE3zTMzZ6vLKW37n/R7dbhfl8g5KA1TaIkqnGqfW7UWHAB4/YWuP2kdKakKbxTQGKlkpDA1a366s2tieLAmpowpdxI0+T9Um1RylEml06GlVJLvQK0ml09aenYqNp9QBG7dbRKvLtR0kvB6/a3Op0ZDKHxkBon4VevV5baqGpm0uFItFVHm8Jr+bTYX9U7L5sAdOnczzaGEAXa018pGrhZW0mh1bE964dA4AMMT6Mc3JannHMWQJYn8aewsLttZGPX8SyYB90pwSUjoyEtRH9v9Un6reUeeo1+u4++67+dnwMyfquZJn7VOUHex2u31eQmx3P6wY2W6Hkft+j6JUxJtPx3XrB9sqnbW/b23Z+WcPGnP64qtvOP+ry9dtvqboN9fm2i4/u0RaNaF2jPXNDTToW6dnntYn3ef2iq1TyppYW7X1sk2kfXKy2Oe5E0Z7hXI73xwqm2m9TCDtGH2/z7vM2rCDOy/8UN2S1o5+ny6xOxoLUUZCamtRlsf3fZTyyq6x8SUeLM1xF/U+0lgK6tQC5iyqxBitt4uO1WKx6NZKHUdjRAyOnqX3UtlZoblsnw1nP0T3gUep3qzvqL0mp6YcM/3mOVtPHnjAWCZlD4yS5Y7uMbT32Ldvn6vh7vLaX3/FaplGJ2x9PXGXZc5cOG9+gEv0Lex5wP0839CoMVM3520fmuGamWcbVjk3qmT5l9fsnJVKxV2TPPPEhK3R921kwP69xLpQ9alYuWw2655j6hsxd3LQVN9pLgcZQHv9z6I/neKyq63aOw+7ESYy6kXqxn9HGVWsnytlMML9bj7P/i/TkzPH7C/WB2dz2tPZ+ExLJTYZJOFcmbcxktYc4bw4xPcCn/KLPe2Xej0kEuEMsi73wVFW+afF++Klqt3pYGV5I6B5R40q1URcWFjENg1hjx+39BV1VqFonbXEzd0+pmHJOPbShYvIsfFbKihnik+Z6TJvPPscAGCLRW0HZi1Vo5i3AVmr1gHKN66u2YNkfMjOKwnHZU7qA3zpKBZsIGx4a8iy05XOoHQ/7UbyPEiJ4hOSTddgzmWTAdXPYr7g5YlUMZ9RWT4k/XZg7Ku2EuUfFazwyZ82VTwKSTXTLPbAYfcy5cQbEC64lbFwj/fKWj/0fB+D/M7yshULZrgZW1m2ga9+1kPiwAF76b11y2j3BDp7pFlv3LAXT0dZp4qhNtPPflNcHUOUu8RMtJipfSRU4RYcv4sir1n3r4eXCh0XSK9LhEIFqpJ8Hx0bcdfeYSpSgy++KfaHRDf0wt5f9Ku/7dbqoWvLcfyX63ZspR9evmLtc/ykPQg2d3bdy8Aw79vrhDeWWjxcsTjbdnRo2KUe6DN6WB06Zhsu/Pg13EmRSHjIZFLY2LDNtB5kmxSUqNVq7sGj1A1tvNUvSovR37V+zYyNOREJvXAVE9ZPuQH7rqTVJTWt+aT1u1NrOCNpScn6TC8byIcfJjnK0xJvQW04MEjd2dKLgARVuG4O2AO7UbF+HZ+htC/TJvrHntYPJ4MsUIaA0tqObZy6YKGxn0C7JWEbvniwLSEDzYKdP5Oh5DbNeTU3hsbG0eP/y1BcdgIHDh62++V8VT8VBwJRGoXGttowuhaqz5Qf0r9hDTYTKszXUX0eQ4CS5NrDhdN2PhlIE3TqhQ3Wc3yZ6De91e+ZVHiN1dzTtfcoltSsGjiS54vRLteVe04cw/VrTCUft88u8vnVo4FzIhmWPi4w1bHdaKLFDeCFC+dC9+fM2jlmZ6ZtzckzrX6NYOXZs9Pu2jsdFfDbGJI5fM/XJkxp3HyB8rvQS0Q6IzCQX32Lzdz7P7xQ+pyeS86svlRyY1NjwKXQc53Jsq+UuqaUyq2tLZcaGxUvaLLd9Vx2IlEcoxKS2d3ddWlfknLXdWjfpDVS4Lde7uv1untm6FkaTTfU+JrnC5Gbl2yPVquFUYLKehGLmiC/+urzobbL522D/OKLP3JzfpjWEDsrtiYPcq786LsmJpPjOqg21fNrMF9EYsSu8fraJi/K7nuzzjIUipD97V//NQDAxrbNpZ+89BouXjRwNVuSHQkNe6+Ztc8orSwSFPu5xdKWJNeFIwcPuZfFFkUmSvzO4UdsP3T1/AW7DgJUaiftm7a3t11bqT3y+WSoDZ0widZhrZ3FYiCclQyn1zab7Mu09Mq1zhJMqmtt7bg0O7WvxkiQhs09Bns+xfWvODiAqSl7BrW5p/J69jJZ5nOglLVjpbOSwadJMIWaMum8a8N6Q+Uq9t1777P0T/RoU5DUc0EgNNDyw0bNna726+FUyZ8WcfpfHHHEEUccccQRRxxxxBHHu4j3BVPV7frYqXQcArZDk8GZA4ayL63uYmXT3so7LBoUAiykR6kaRRq3PfusGfz+0hOfcNS4UJxM0t7iR1lE+/JFk5g+dNgQgR6NOek9hprfw07V3uKXSRHfddgYsRRNec+ceRgAcPmivSmPjdh1TI/PYHvHvtMmgpiUAAHfhIcpmAHKfo4OhiVMc6kALS8w1SSbEutib97FSPqEkKGel+grLAwXHioabSIfFXsjv3zFUkVO3/0gAODo0eN7EIdUUuxGWBrWS4XNHb1UEnWyaR6RtgqRFrEdYn90fUrtcyITnZZDY65du8HrsD7coEHuwFBYJl5onmuHXg/tNpkiIrD95oXWlizIJosgdLXbaWGU6adTTD/cpRT0OBFCITPLTCeQcEWuZIh8PxIklM4ZFvbCSLfS/xT1et0xU4UJyv3fuB36jBjUpWVD6IZHbEx9+99/x9orV8C+/Ta+nZgIESf1g1BGtYvG3NTYONJk6i5euczj2e875V3cieF5HjLZFLJkfGXEPTRM89l0GocOWRqV2uWZ5wwpHRkJ2weobxxD4afAoePmC6BUHvW9jbVBZyisgn3ZLbSRzYm9IjLPVMVGi2lvCJtx9shOJzoFtPmZwXy4MDjL4tsiEd1GVWbe9qkhMuxAqw9Np9mvRGBYhC2D8y6PXaUD9+jkNBbnbQ3J8BhtFn8P5yd4v9Z2B7nmlsicDbOtU0nPGW1nM29tGKsIComZatjrBanO/BetQc6kuxWW5fYjacO+7wdF1nmmxaTCaL/mfI4sW1Qm2/d95HIq8iYF6ak/JKijNMCwOWY2m3XiKamISJBDgZly3K3YOlKUeTeTv1peB6ePWpqyhDo2tmgwSpYaEWuEKaLxB2cP4PJNQ9+VSeCzzWo7RMNpJKyU7ArFcQ4fOg6FYznJNgUpm2ELgTRZNo8ofcrLOBNUx17x3/yfLRvnfRJ+SHpc41BrRr1e7Uu/UpqnfabCwv0BimJpvdG6ncvlHGuhPZTGitYuGUnr/JmIgMX29rZLRe2X1e//3e1HIoy17/uun/XMFlOiuRI1DNYY7hdBUEq5nt1iVXSsDEVV9Nzc2qy5z6+v2f2PMAsjx+8cOnIYALBbsX9fWWJJgdj+iEw4AOw/YJlKIyU7xvmLxtS+9sbrAIDjVbtHZTbVKruuTSSqMshyBKUBVkesnSVw5pNtfeAh2zeWt7bxyMO237p9yRipJLMIshRB26rad1Pcv7oyBt5DoVBwbaZnt9oqmrpX74T3HL1er88o2tpBfTlKwTTfD+TPgb3pyO32LuoU4FCfOeGhTphdTqYpzsZnWi6fRM9nmcgk94MktS9etQyb1QXL5JlhVkWmxOce17vFpTUsL9tcqVNw5+F7LN3UV0KsY6HCKay+77u1V/fdasZMVRxxxBFHHHHEEUccccQRxy883hdMVSqdxtjUjENbmqwP6bDwdatcw/2P2lu8iglP3m1voDLIPX/ZULXJMUNm7r3PDDPPX7yKU3fdBQD43g+eBgA8cr+hAyW+gc+yhkdAs8Qv7rvXzvGDp59HMmFv+NuUHZVwwATrCs5T1viDj34IAJAnK5MczqNaYQGvkB2iFF1JUfKtWVLNHlE9yaLum5rYI6Oa8CVhatccmOyFJS3NEE3F0uF3aKEHtaahC0vLgdkuELAtA4PDe9iuAM0KH7tGiD7DfO9+GVl9RwhwtDBSiEC0qLbXSWB1dT30WeXgS1YzylD1S7UGP1lES9Q8ajipCExvmWPe6QRmij3VxLDwtBrOb44iX9vbAQukvqnx/Grf3W27RtVKKC9YdVSLi4sOPVmpEvFhLvZzz1k94CzrAFuUqpYh6QnKgM8vLDkZ19G8MS1J763bXf2k+jAAkHK/rnGTKN34vincidHtdrGzsxOg367mxvq+Wq26MSREUEx3oRAuulVfC7lbXV1HkcXEkkjv9iShTbnaVNgUcXfLji1J5Ea1io1NW1PaHfvMPrb1lXlbT9JE+duNJq/T2MpuJ+XG8PHjVjOwsyvZ/nCNg8dC6gIRw0QnXPsDYM/64WoPU2pLzkUWUu+Wq8EcKqn+J5zTnygaGjk2YW2cp8FtlmOwlMuB0w/Vtt1XUCsVpiqCgv6s+92tOVwOC7xmJ3qAcGSy4TqCTCYTIPSQ1HBYZEAob3Qd66+BCtgr1TDJwDgsaqE21TrfbDaR6IXFDKJmrG2P2Qlp1h7RFHigyD7O+dhp2DWOU0xiuBQuUE9lyAKwRba5zj541z24yWsb4zz4yEc+AgB4+ml7jpbrYVn4sVEa0zOLoF6vo1gIi+A4Ce98eI1v8BkkReZsOni2uTpZGdf27kzzXwB9NWZhpNzzgCbZ1ANuP6K6YPuM1p/oOt0vRhVdixybwUwDzaHomB0bG8Pm5nbo33T8aFZQ9Pk8MjLiRJeiYi1R4QQ9N6PGsZubm/DItOo7Ytk038S+KPT3SqWCMxTAkHDU/sMm6DQ1a0ztpev298985jMAgNfIPkngora1g1GKC01Qun2TIkP7D1EciizU7RvX+Tl7Pp44chgLS7ZWdykYJiZuYlIsLoU8uAc4edjW5XnuI5u1OqbH7P6O8Pzb3FvcYF1WoylW2eaKGOL+Pld7agy9+OKLobaMMldq61Kp5I6nMdOm3LiM6lXLKNbHk+BaOxCl0PhKZ8I1S1ET6AwX9xLFlwYHS47VHxiwtXCYWUCJnv1+gXXiqxTIKZYoNb/D2ubNbSSZhXPqiPW7lxBDJiZS63H4OZhIJAKGSqwrxdeU2fNOI2aq4ogjjjjiiCOOOOKII4443kW8L5iqTqeDrfUNPHK/1UX5vr159phLP7dxGwsLVAJcNAW5Laqr3EfjxdvzcwCA/UcNsUiyTijT2cEgkbsJogMTs/aG+/QzTwEAHnjoEQBAvWyIzL4PGSJX2bU319tXruGN25aLu7Rhx52kQt8spbXTGUMqmi17y+9J7anbgw9jTzIZFlrQ+LDl2xvxNhWi2nzHHaDppRTCBvIDKObDJpYpdl07gp6qQ1X/kPM8JDwirUmZKFq7lst2rFqPx2rZ+U6S2ZveZ+zH0Mgw4DP3tBdGY5XvnkxRTcalJhM96SWQ4PE7rFupETXPsyagzbYSu1UgMtogQtZOdrHbEpsTrjsSm5Bh/nmWCGieiHxeampdYLPCa6/b+ZQTPcyargSRFz9D41ZP1zOGJlu2SSWyAmXXPaKIPuU4W2z3tW1DwAJUL+HQkR2qpU1OMoed999injOVqbFdpfpQteVwluvXrKZJyGBxyNisKzes1lBo03qFEvustUIq42TnhVZ1iAyBdT5Lq8aqTZI9OHTMkLMb524jXyBLwTzze06dst+p4nbnhY+E10OnI1NeSqtnWBPQ66HbtfZ55lmT1h0etHmcTIcR2zEiqMpF31xdwvC0fVZ0zvKy9cPq/CK/S8Nt1frw9zLz6BudLj7/6U8BAN54/RUAwG8+8QUAwHP/7T8FsFfFE1J0SzRw8KBdU7NlzEOzScRa45TqlB7VqDI9mz/lhs2JZqOCJNkVkKVPUdK2wXmSpDx3lgp/6a6tjblEQuVNSPO7NdZrNKlGlWjT/JH1Sl6PClOeZOMT6FJdLitGKGIs6dhy/j0ntbx06m1NVl1uf0SFL5EIq+8lEgnXrhmyaEKbnZS8kw8OqyP2y2XXWzKsDdfHpSmTn8Rby6Zns9k9ZtyerpnjLsXzJKQkWYjUunS7yOVtrTl7ylD18zdMday9wXGetGMnWRf20Cl7ng4UfUxyfZ6jXcgQ+/KeB84CAJ59zubFtWumknvskD0Le0TSS7lJJKnylVStDceQxpaeZ5mUVOmEJHuuLxSq+Sjk39r64f0dAYsABGtHMGbqGBu3NaNWD5vw5ni/UmvV+OqvVxK6Htg62LgWcyCGQExSlCkqlUpIpcK1vvquWNTtnbACbD+Dquexzq+5IwZN9+mYDN6/7nFnZweIKCIq+0PKhuWKPZ+UQaHsjPPnz2NxyeqxGjzeImubpVhY530rw0iqh4urtm8rpbPOOqDO2us0GZrTZyzb482rJqE+SHalQqPfTs9Hh6a6krCvUf11kLLoUzOmVCh7nTozWHpcO6anJlChAXqKe7177rJn7PKa7XUvXqV9ScKuT+uRs8bpdl2mzptvmsWK+k6f1dqg+xcrtbm56fpd9gZJZlu1yb4VqNwpJdnyjn2+QRXtXq+HMWZ/tSI1ogr1bS5LI/WC7V+GBocxSjZ9hO1bKNleZrxg17q2Zvd/Y9n6dmPd7nWVsvS+38HMfpr7cv/ng8859otPDQBnAYSAndLYdWxrmnvKzM9mNh4zVXHEEUccccQRRxxxxBFHHO8i3hdMVT6fx91n78VzL1p9yANnjSlZXDC0f3t1FR/9wscAAHfdZXrzr7/+KgDgwjlDD44csb/P3zbEvpRkDn+9gaeeMkZqt2tv4K+8Ym/tl69Ynu2JU8Zu/fj5HwMAnvzljwMAxkr2+UcePIsKczHnV+2azl81xmBtxd6an/j0JwEETMXqljFrxw4fQZc+NmPj9hY9TwUamQDrzThNtE4ojpCo9fV1JJKGPMsbRb5U6TQZCTI4gaId0aRUFl2+rcsot1qz31eX6S9D89u777kXAHDmrBnZTU7t43XlHZIrRLUf0QX6cqWJyO6y9qxSqThkS6iU0JPRoqEV169bznDUkFCoyubmpkPWhKzoZ7TWzB2b9UgdMgG1ehVpnl9o9eqWHUNeEYcOWu70xIi19eaG9XUuM+48nvJEr0D2M8H7nSYStUsWTsptHSLVS4vLOMjjV6nWdfWKqRyOT1j+8wrrBVV7t7zOGhnfwzmaGm7RkFPeSBojUVRbv6t/VlZWXHs65K8aNlcEjfiUj726bPfcaDRwF5kpkRdiLC9fsjznOy06nQ42NjawvGRtLnPcDbZ5u91Bs0ckjvNzYL/1sdi6HD19hskW3rhhaOmBAwdcHYIUPVV7l0uotsiOOVSU/5nNhQHWaA6Pj2GFa4uUTZ95xmpZPvXpjwPor8cIryPdbsd5iqhrpSDmFO04PqJ1C5pH29vbGOc80FzvEWXNU2HV51ojFTLVVtXrdYD5923eZ4ZMt/zbRGkP00RctTe6F9/3AyWxoo3xKAofNfBV9Ct5KTQvtLZGzcEz6bDCXiKR6LsWGilHfP5cjUkmjLrr2K1WC1mywJo3WTKi1ZqtvWKpo3Uq7XbbtbtjzHjcaC2oU0mN1NOk02lk6EtWYY3Hhx8ylunqzf/bvkvU+YMf/KAdkx59fruJgQnr/y5rS26wfvlNsgIaO6r1cYp2iUAdTD5c8ppS6Dmi9atFdqBfeU7345i6iHHznRQ2nv2+uSpGh7Vm7S4SXqS/0/Rc4rOuwHEWHcOtVstleagPUmIC+fxJROpComqB1WrVsUqelw9dh5hYnsKxQY2G6mU8tGWETdYkx34d7DMoBoCNrbCnnxiufD6PYt5YDtXuTEzac6pC9h4tmysLN2w8rty251M2m8VOnazWxFjovhZZn1xQLVleSqJUw+P8q7ea2GCbtKk6WSTrM79g5/PrZF80DrnG9ppNjLKWv8xMlgN8VshLrEnfLLV7oWj9cZq1YOlEGiNUQF1cMTb5a9+wOVqjqmuDP2vNMNvYojJ1Op3GzQXLhFCWk9ZMPfMrVBTd3Fzkv1PJM5dBsWB91YFqrLneyL+MmU1S0EtzfjbI/gwNj6NBL0WftfVtjp0sPezA8Z4bojpkXmM6iQEqNw5x3cmSmc2N2mfvffh+AMDyU3b/W+sLPDYZ1aECpvcZuwXet98NFHmBoGa5C/oo8pbKlQZaygRgnWma9a/JxM/2mhQzVXHEEUccccQRRxxxxBFHHO8i3hdMVc/30eg2ne9JgW/stetzAIAv/87v4NWLxgypZuTAAVNOO3fuEgBgZdmYobFJe9sdIDI2PDGIl16z/FKPLMPEuL21P/oBQ+e2y8yHpWrR6KShDC9851sAgFOn7sFtMk8bzHttNe1Ya0Qevvr1rwEAPvYxY9TuZl3S+TfPuVzdwZShAiusc6nqrZ4I7yD9CHrdsFIWkMAOfZF8+rsMD9Avqk9nHwhQvAC1TKJLRa+dLXvDl5fRIpmI2ePmB3Zw1nx5picsZzmdZn1Db2+u9Nt5WLSIjPWzTULp9RkhYhPMjdY1i32RL4rQfim1AXvd5vu9MsL3HUaxE0kP6zzeEFXKVOMlpF3qQhmeS3m3yWTa5U8X6XlWqcjTSr5GzPenMlyzFVYD3Nra2qOyJ4WgbdYHekTNlhYNGdvlOZLpLK5dN0bIzxp6KaRPiJxqrG6TLdE51IbpdNr1ndq3WKSHBGsYCxz/U5PjPKbdW9YvOEVCsVnTU7NsB2Mk77Qo75bx3e98H7Wa3XuVNWjNpo2vifEZLJfFBkqxzRDBgYT1gZD6DovgVN/XqOwEaDPXnEGyf/vGiqHPjg7Z78VceDx3PB9Z+colpLJE35aSaiLJNHO9GBqWJ0jPMVNuXUjsrdkBgrkoBgvJQBVK96DzqOavSxRcukqdJpXM+Pd2q+muWYxVlvNjl1/qsG5xmHWzQjSdshl85AtS+2uFrlVjP6pGppqjwLcKe3yBtB5oHYl6S7msgXTaHaeYl19QJfQd53lVD9c26Jy9Xs8dI080tduTb1PYEya6jqVSqT1ruu5zr3JcuE+1znieh3bb/m2UapSHWK975qhlTfzkorFP587bM/Lhk5bx0WxW8Owr5svTJJz70mv2+4Zv43CkaEj+0EAp1KYlevplMimnqplMql4muD/7O58jLf098CQTMxhlpqJ1cndCeJ4XUplVX/WP5UDFMvx8UJ1M0g88F4EI28d2THG90Vh0rC3nhmOKuecob7OOJ5UK1IBZW6Nni9Yqn32nZ5/6JZVKO6ZdcyRa46XP5skI61kze9IUTcvlMnqetcniojE1W9sbPH+B7UJvTI6pLNebu06fxCJr7bUmR/cQmteVio3/mZkZtp0dc3p6GotLNhdm9s+yfbkWc31dXrYMo4lp2x9KObBYLLrzaa3Mc53JuP2ZHevYMdsLeiX7uzw7Z8am8dpzPwEArNa3+B1rb+2f0pkc22Mg1LZa0+r1utsfa54p9igqch3a3WGdaDbnFGn1WqDjdqnuJ89BqVZvV2x8+qyZz2WyYLIVOokmr5F7WCqZUrDWjfH+GjunIM3x1yK5mk/bOLzn5DEAwOWLlmG2sMCsEo7t2dkZtNqs108WQvcfnTNSjxZj3J/d4FQ3M+E16p1GzFTFEUccccQRRxxxxBFHHHG8i3hfMFXpdArT+yZw+l7L926RjTl02N5Mx0pFVMqGBOxsG3pcKRvy8Ku/YopY169bLdX0uKFkoyP2s1XdwSd/6ZcBAGWqlGyvGRMgxEtO3g2+va6z1ubcBWPBkC/CozfGYw/fBwB4+nnT/99qi1WyY//wR88AAJYWTankzD33oEB1ueXrdrzRMUMJe2RChG4I3W13wgjF1taWQ3qGeKzdQYMEhFoE+dByzrZ/b3Z7qNftvir0ONolKv/gw6Z6eOTESQDAsBgcsU2s//CSKbS6YW8QobRR/4GE0J1O4E8hVE5o0Y0b9BugL4buSUiZ2kNIycbGhvuu0D6hokJgdB367jS9Hlr892QqgTQxhBZ90KLeUtduzQEAxiuGDH7g0ccAALVKGUmqpjXoCZTPEs0hAt1gvnWSOcPtmhS47J727z+AW7fm2XpS1bHvbG7vhu63zBxpn/nYN2/dRpXXXK3YTyE8g2yPpZUVYX9pYwAAIABJREFUXk+4lkoM39TUlEM+hVbls0TvifgdPWxMZV3KRfQAW1pawsSkfadKZE3XrlztOy0SySSKxRJG6a1Tq8o7jXnkyTQ2Gtam9QgyrjHoWDrOYyGHlUoFxUEb0z0idNFav8EhQ98yZJBkBNYiG5XIZJCnClSnJX8i669Ot8brSIR+qvbB85JBbVCSzG3Cvuvqw7huROtVJibs+i5eaAQsC8ea55Etlx+TPK5YJ6R8+ma9ig59mApch6vM5WcpHgrDNp6kgqj1pB9RFMsRVeaLeh45Niod1ElF6410f1GGSj/Vd/1+P29XP6rzO4YskQ99Tuh4sVhEknO9SUY0z9qxDpkC+c31e1vpd51HbaO5/FZ+WECA8Cq63a7zkulRZZBdhofOHAcAvHHVnptLVPh7ibUp7eoWak27/4NHDgMADhVsXfzRm6+E2iNQQeyErg/w9/ghSSVWn5WPm/rLqWJ2u+4zOkY/A3gnRq/XC9qBP536X6cV8p0C9irnSSk0Oh5brZZTuatwz9Bhn+gYokTTbOeaajx57M2NDSTK9hzS80Hn0fyv1smYcNxL9S2bDVhVeS8q60PsjmKAY1qZFS4bpdVGpRVmDbRvUE3pRkRhUMfI5nOYnDbG6/WXbGyePWt7yfvus/2a/Jpy2RLbwY49NmY/b9y4hsc+YPuhH//YjnHPKcvg0T5M99RfB6afwZpA70fWCJ6gT+D2Gj1XmfF07xk7V4M10q1qK2CkmBnRaITPMzxiz1qtparR1rowMzPjjiH/J7WVxpuuPcgksn4bHBxw51FNd5XPtwbXri4XDylLN1iPVWR2TrvTRJf7vq7zoyN7rrUhUg6peV8qldwzUhk0GSn48bsba8ywummMYtu3Y0/Si6zb7QZrox9WVZXvYpfXrnWnv05XegCaV+rLnzVipiqOOOKII4444ogjjjjiiONdxPuCqWq3Wli+dQsnjxl6JgbhB3/9QwDAzNQodjbp30KktdW0N85RIp7/9gVTDux17d+P0lH7iSeecC7bx0+agtn8tQsAgK5TVaEHUsmOdW3OGIVHPvhLAIDXL7yB7bqdf+KQoSP7Z6weqEIlN5YOoMv6ihw9XK5dvYF904beFIqG2gZ1QYYqbBM9SDF3M0cUWYpvqWQGnsc6il2iBk0iUjxfloolBMaR8OQr1UaDSLeQhel9dj0Hj1gbDbGuI6M3c95Ms1V1xxbiFUUNhVrpjb/JNhUC3mw2XZ+pXx1Dw1omoQv9nglAgJiNjY1hib4TOq+QIX3WO348dCyxMhv0oSgU82iRZVINm0NL5aVSZ81Mw9pjhezP5PgYukoGpmOU0KLSoP19cNgQ/hUqZaXJYBVSgWKX2ENdY7Vqx6g1rF00Zpr09NnYNGRmp1yBT7R+mK7vDiXuiYW0vhphu4hFERJZKBRcn6j9B6jI0yQjcOiA5YrPzlj9j+qLZmdn0aEH0eHDh+0eEnYvhw4dwp0YQ0NDePLJX3HzpM02l2rlysoK5lj7ODBmCL1HFjZQ3bL2EWIrFbQjR45giSqh8unReAxqm8IML3yqMBHZ6yWSjnlSHVudbGW+RJW1ZOBTAwTjuV6vOpXQSlXeMmRomDev6+n3ugECVNbzvD0sT0J1MfxOgt9pkOXr8R4GRodQ79n55L3S8lknwmk0NmpzO0V1OHmhuDz+btcxcK12uN4qqr4Xre9MJBJujEcZAaHgb+eB1M+2BOpzjdD5hK5qzZPXiZDe/jrXLJlPtY1YxxJR2V2iwNF1LZPJuL6IMnQKnUd9GTBEFt1uF0nWjDgUPE3mfMZQ97/55BMAgP/r6z8AAMxvSv2vixTbZHvD/vapM8bcL7H2eZF+MVFV12C8ABky+s0mr5EIcYFKb25cJqIMVncP26iItsOdEv2Kkhpb6pdUMqi50jjSmFS9TqD4G1byK5VKyLD+UHNBLI7zpfLD876hbAjWSRZzeYAMidYxx3IxdM3BdQZsgMaAnsdiRB588EEAwLVrpnRb4TzfYt2U7qUwMoRsx443S+bh9TdM4fn1162Wb2rMsgo+95nPAAC++tWvAgCa5eoeRUTtNeTXpLbsUlFuisrGq2vG0B44uA83b14P3fePf2xq0CW2rbKfosq6u7u7jiWWMuzxI8ZQLSwYq1JkVkiTflbrS7a3aDNRYbA0hAzXxOuXbN/nkV1mApWrOa9wn6K+DGo7626uVKt2/1oT5OmlPVaCXqmTk9P8btWx2I1W2MPPZTVwrVrls61EtT6n+ul1HROljI86M7gyPHieqoRaK3TsoaEhdxz3t5y1R4Xs3lf+5M8AAH7G9i1Hj1DFmHuxrc0ORqkqmMyEtQZUZqtntvrLqd6mU8hkw/uzwcFC6LPvNGKmKo444ogjjjjiiCOOOOKI413E+4KpyqZSODw2hvVde7ueXzHvmEc+/BEAwMjkMH75E58FAAyRmRoYkGeIHeOuuwxdz5DRWebb9I2bt3H3GcuvXV+1/F7loh4nu3F7zZC3QfqySOnt+ZdMcXBy6gA+9tnPAQBeO2/oydFZY3s26V9Uqcgjxt58xQIcP3rMwRH7Dhiqv0IlNanr1Iv2M8G8z12eX87hlXLD1eywRAdeToyMIT+1WhhN1Rt6s9uATxRwlKqHUzOWf1xkXdYwVcNSaebGk5XwWSORSvpI+WEkSMcPkBGyWkXVJFTd34W0udo1omcJqtlIuSd67f01ZdEaHiFjQlOEfEj9Jprvv729jSbPK08NMVQtIh01KdWwv6R6M/GxjzqWaXHekKfCgE2dtXW7t5ERO5+8yC5fMbRpk8poQ0NDAStCxjCZsDYdn7RrXmPe9QDrcd5UTV8ihXaLfdMMqzD2yF7kOIbWNg0h9DhQlAeeSqXcd4S8zN+ycfjQI5az3iNjdemSMbkEFbG9vYl9M4ZKqa9U0zg+ZojfnRaJRAK5XM7VUvmsi8pmxAIl3VjbovdInejf4qJyr5mXTiBdaODq6rJTqhrkfMhD/aY6KCm32VgbKBk6J8aml0g6ZFrjRAxR180962Ohb4GiUtYxI5oX1SrVvojgCrmNsh1Idt2/R2t2EvTr6NKzTzn3yrEfYB5/u1kPmDAihgmqVh6k0midiCUBdMdQCKX3fd8hhiXWQeiadWzNcefnlEm4v+uaA6+dsGJglKHze+HP9/9/KhFWUtN3HEvP80f/3ul03HVkyALIt0mIdbROq38NFHKr0D1Ea1TVTlG1QABo0kPGT9mx8gOq+bDzH9ln68Px41a/vMNhcO3aDXzorNWjXLhg68F3vvltAECNiLYyCZzCaoRB9P0uEgl5vai2ygvdi1TRPEjJLu3uJap6qPu8M9X/7N7VNbpP3Uu71drzzNIzTsxJi3WKeSl29rFO0fG+weeE1n+3L6EyozyP1A9IJNBshVX/pIyq+hO1//Agmfu+9UFqzGK5xIhcuGDPQant6e+6N7G9MzMzjpHSGvCFL3weAPDyyy8DAK7cMCZp+s03AMCxc4urK0GNVs2Ov3XenqUlZox0GnrmWxvfuG7XpZqr7Y1d10ajfB6rfQf5bHXKxlQurbH2eHtzCzWuhRk+D28u2fkzzhfJjj0xbcfeJvui9nr2xg3XvqlcuB5KqnvKPinluEZ1+OzifqVRr7s1qtULs0znztkc1lwanbS/r60ZY7Z//wy2d5j148svjR5S8k9NWVuWq6y14xruJfh88BLodrmu0gcqTVVbDfxkip5/rCVVdlRpqORqqXKsq/Tosfcv//m/ZLvY+Y8+ZBoAHz5tzPlffv2v7J6bbfQGbHz7zFgLnmvMLmD2h5QsU1xjs+k0skkqZ1KZtc29lWrO32n81Jcqz/P+GMCTAFZ93z/Dv40C+DMAhwHMAfhbvu9veTbL/nsAnwNQA/B7vu+//NPOUa1W8dJPXoBP87HHnrCUhPkF24S/+OorOHbYCvu++ud/AQCYmrbF4olPPA4AePTRhwBYwR8AIGEb0lq9iT/+4z8GAPzub/0GAGD/tD1A/vRP/9S++1Ez7t2gbLkk0K+8YS93SGVx/ZqJK/S40X7sEbuePM0rNzcki22DZ5b0cq/bdel9CZ8vT2lJNdqg1SIWfWgHRr4d94KRz0tSO5yKEjW31AKRziYxzEmayfCFlAtrKqXiPQ405TDyQReo2/p7Hpj9aRr916zC1DKNhnd3d136pTbzWugrjXARpRaYqGRof0jUQlS4Cv8nJ+1lZoepKTk+tNSmGxsbyLB4UdehzViD6T0dGYHycyOUIX7jjTdcOqnO12jbtTYjhsIbG0rlkwyz9f3NmzfdC19Uhl6EsTZLNaaaqp2WVtYApv/p2tVGzriXEd0IaxPdL1Sh1IwCZUeVClKr2Gc1DE6euIfXU8bcTZtP9Yb16zqBiNGRKbzX8YtYc3o9H41mEz5T6zoUoqkz5bWT6CHBl4eFW/YieeqMtYceiAs0hZT5byZlc3NrawfjTKtQGkQmJcGA8MuEz4dMmxuXbF5F4i0kkpIbD8uCt1kEnU3L3oCbWHZcz08hyQdBKqnNuo2T7Q17iOaLNp7LXFckrLGjdEF4aPJhneQLYpry5yVefI1jgZ7q8Dv2e6WdRCttD8AdrnFTxyz1usV0tAKHrcQoShLhaAUvCmluwLW56UYK2V2qnF4q+ox8Zearz2qaOIln+xUFbszqnANqy263ixQfxF3er15QXQq6LBIywYtAf/R6PSRo7dHsSsqaL7HMKCkRHHTpoX0G6GmJ3kgwIBdOx4qmgUU31plMpi/dUaIGvO8BW1vSKVvHPv9BAx5fPGdpWctzC8jyufDwGQNdnnvBplWCEsp5CpRMFm3MFrOUvma6UjbRQ4JpoMl0OFWz262HrtVtBltBGmA0rTOI6O/vLn4R603fuQAE67h7EUZfOin/pn1BVDpfm2sZ6w4Uimh1O6Hv6qeeqdHz6kVNz69ut4tswZ4/emZolgR2IeHx1w9qXL582R0H6HuWRdKsdF333GNr6W0aSl+7ds2lCs7NzQGA2zfovGqH555jqQfHzOOPP47z588DAIr8rNIas9wgO/GNln1Hz2Kdf//+/e6+6w2lRlI4iy+CermZn18JXVe90sLEqO33Nii8sVsm2DvIlGDuvRpcM+HEyGwenD59j2ub69duh9pXbSdp/UEaxEvkQ3+v1Wru/28urIS+G90nzM/bPFeaeL1ed+NPIhe6toX5OWsPrYPcp8v+QM/JfD6HUoFrZM3GXZnCVm6nw+tIsC81TjKZTJDezQ9/75vfAQCsUiTt7GM2Pv7mk0awrC/ZPZw+bi/sF6/cwibFLIr77SW7xVKPBMIkQFRAJ51O7xULIiBU5cvzO413kv73FQCfifztvwTwPd/3TwD4Hn8HgM8COMH/vgzgf/qZriaOOOKII15z4ogjjl9cfAXxehNHHHG8B/FTmSrf95/yPO9w5M9fBPBx/v+/AvBDAP8F//4nvr1yP+953rDneft831/6fztHBx7WO0nM0GTxue9amkGTrNDs4bswd8sKHZOwt8c3mJr35Gd+za6za9TluZs0Nh2yt9cnP/4gPvrIaQDAAOWTd+r2dvrRjxlDdZhFu/6Mpfs0iMQ9cL8hRU8/9zLqvqXuPfFxk2d/7offBQA8ctrSWRbGDc14+ccvAADOfsSMhf12C2Wauy7XDFlg5gUOHTljvzcNebpyxWjtFCXQu5QwbdXayBBxFjqSpkTyEOlOzyPdmqXMKU0804mJPsNephqRrk0zpS8nmVfS21nKMDdZRJzM+k4LuV4Ns0tK31CK36uvWnqkkJCtrS2HwtaYwubSWvjdVpN/Z5qP0LV9+yyl89b1a0gl7d/OTFkfrebsO72DZFO2LQ1TKUi1mrVpKm33nMkCjTLTuMiQpVis2SMSrOtIjtu5tmtEost1DO5YX0wzNSCfMXbCY9pQk2ITPtusy3tuN5SyU8DCvDGfJTIboNjDzo4xR4ptMme7NN3cbjXRIBqUIuIyRhZNBoQaFyM04lznMfrNXdUPQqQO7TdU6957DIkuMO3i9VesD6+0XrNjtWs4OG6MVD4l+WimgKGB9zp+EWtOIuEhn8/3GWxbiP3IZlLOhFspbGI/oyiz2lWoZ78oSJPHK3jh4t+oyEJU4lvpicBeUZi2WA+KpmguZilyUa3XXKqQ0q0cw8xxIbYtkQ4LNOje+ttGf1NLSUCjx3mUl4CF5MN7PuocJ0dO3w8AKI7ZOiVT4oBlCad0OVnfdtv1hWTpo4INQqp1//2FxtH0YGc+GjHodZLyXBsbzZr7XorsnkwxO2x3pVYWijInDpuyikkoFovoyIrCV2YBU6iYruQjnGGgMONepeGEH9O633Y1nAocZSl6vd7bmhxrbOU9piIbsYpK3dr63LlzeOllWwcKTE0tMA1K6Z9FilAMkzHRuMg5cZ5033nD4zAqNvFWIhvR+w+YnPdWUv0Xsd4AHjzP29MPGve5bNa1gZhQzbsghZVS4rQ+0dhtVGtOyEjsVtQYtl8QIPTdRpAm1dll6nFXa5XGqn13m+nPunaN8/HxcTd+dVydLypIIEZLbJRiZGRkz/2KiZHx/Jkztl/SOqvslOeee26P3Lnm101mE4jBSfOehrimbDCzZWxqEpssuxj1mOWxa/+WJVOfT1vbzUzbvuToocN2/6NjuM3ShiNNW9/myKK0uf5KDKpDhmoAtlZNT9k+tb9MQvf9dia/W1t2DqVlrq3Z3tf63u5P61w0osI9IrDK5TJ6nFc1pvdNjNuisLFOITWlrqfDYksS8kGvgypl+T3erxhUZV24TAE+S1Uu0uq0nZXL+fOWqvjDHzxt93LMsio+/6tPAgDqt208bK5bm1d2KfrRKCPLspjNip1nh/s2CQQNlmw8ppJ7RY6yTFUs5cnIJsUQ/2xVUj+vUMWUFhH+nOTf9wO43fe5ef4tjjjiiOPdRLzmxBFHHL+oiNebOOKI42eO91qownuLv71lArTneV+G0eco5vPo9Xo4cuQIAODrf/nnAICZWUMEzp07hwcftYJCj0V62WFDZP7r/+6/AQD80T/6MgDgw8PGJBSZy15vdNHp2Bv+n3zl3wIA0nyLv++MMVhLCXtD/853LIdziVLK/+AffgkAMDI5gys3rK5iZdkQiKlpW2Nl/roxb6je/mljUoTinDt/KTDunTKk4/TdVl9wa87W5jrrGKamDbW4vGIp2lnmoWdHSk5uW9LpQQFgJ9SuxQKZKxUPIrsHtXDyokTJWjssGiUS2yzYMUenrPC+U2sDubCpm0/Etc1jPPvsswCAH/7whwCCglTf9/cUFgtVEkqmfGf9LrRNyE29VcP4iPVrj8WZY7yn9W07jzcVPsbUlDErkhat1WrYYR2WUJqNLUOEhFaI1ZFkaO4g842bDcwvWf8LaXnofkPNdst2jB2ya+OUGe0QMQOL+ze3tiG/zxwRoTYly32ykFu0DdjZKfP+7Ri7u2WHMM1M2n1FkXehdmL5ooXv1WrV9Ynqwp588snQZ4fYD8p3r0g45tY6Jnj8DtHj8VnLIb9w1ZDH/4jxc605M9MTIYPXqIhHLp3CIFnPUyeMjd7dtv6QbHCBpoeqqZqft3pCz8+iwT4cjCDHYrWmpigpzTqkfiltwPLTVUcZlUxP0HohTYZIlhC69kw2A7EnEr7QeTv8vU1xFs2JTNbGUZFCQIVcFq1aJ3S/fo7SupxTJV5ru0QpZiKsrXwRs6dsfmSKIzx/2DjUmYUTORbCHfw94ZgfzUvdX5TViZrE9no9Ny805jOZcA6/5oVjtIhOi9lLpZIOxXXrZCtsuqq2jebia31pNBrI5VVwFhZdaHHuy5y5/zuA9bnuK8g0SLAtaSQcWdf771+/R2sIosxsW8pH/M4Mx+XD95/E65fMGLgj5oLPnqaEUbiO3X+vMd0yNi4OUGyk1+lrq3B9bFQopP+aAZsHQbu3QvdbqZTxHzF+rvUmamDdP87196gwhX46813Ou0BcRbXPSXgpmbna3ySyo7GpOazxp3/XPmVoaAhtsrQS3slSBlx15Bqjuk49t9fW1jA5ac90MURRJk7nP3bsWOjvymjp9XquzkliSGqjaHtojkjA4vDhw26tLLCur1AkMzdq7X2S2Rjz103sQs/zFGs8F5aXAnEvFjzmWCs5yhr0HOuzRsfsGfyrXzTxsldeeBGjQ2HhtAbYvqztWuA6O8bntzJ+rl2bAxCey5ob0XZWzVc+x7p69vWjjz4KAHj66aedxU5pyO5fNe7aH4jJEwu2vm7ZM8ViAa22mCq7tovr9mzXOvTwI6p5szaU1YcYq263jYSUWCLPVQlVaC6vbdt4OEAGacAvOabqB9+xLLBdilj8k9+1vX2B43CBYiQXrhhjVaFJ+ej0NLa3bf9zc8WOf+QAjYFp6VBgDXOW86VLWxLP993c0VidX7T9p/ah7zR+XqZqxfO8fQDAn1R0wDyAA32fmwWw+FYH8H3/n/u+/7Dv+w/nsnem70QcccTxC4v3dM2R50gcccQRx1vEe7reSCgmjjji+P92/LxM1dcA/C6Af8qff9n393/sed7/AeAxADs/PdfYTC3PnTuHk8yd3LfPUHChGuV6D1eu2Vvzpz5n9aR//hdfBwA88mGTVXzzvJm8ffurXwMAfPTxDwMAzp6+FxcpTZ1N2dv57KwhIl/7mikJ/pP//D+z8500qcZMwdbIRRq0vfjKK5hmfc9hGtN941VDSbYoqf0QWa9v/vvvAQBqh0yufXBkFD2ilGMThl68fs6kQxOUcW4zJ3Vmxpi6RZp7pqg+ks3m4TtZU8r1co2WMo9QQtUfMKUVuWwiQGCIfIjNUOybMKQ9wXzcjWVDMyT/mxkcQKdBc0G+4TeJdK+R7bl0xfpHaIre+huNhkM69FNIk1AzoWlCUYRi6XOFYhoDzOsWopNPUmltV7LSMs8UqiuDQvvc2tqakwgV8iq0pk7UuEIFsDJl6oWY+d1JtClRK7nNGo2EVQc2SAWsOlVv8pTU31i337d3yvCJyicLrLdijZl08pUr3qa0/g5Rl1QqhWGaCwsJlDGx2kPsnlAWIaJq0351myha+MILVgd4nH/fP23zb/6WXU8+m0OL9V3naUidpLpaKpCI/A8d7+ma4/s2Rvvlr4GAxdvcWHP1c8+/ZPe8umlzXaifDLlVN6C/b64vIsl5qYjmsottGBzIhf5d/VatNkPKRP0/m1T/cyqAEWPLXp8ctas3EnPpS/5WNZesdXHMFhUx4SNHdTf9LZdmPjyR3A4Zi7rWMbLkAwf2ITFABJBS8umE1DjDa4AYtah5Z/+6IfAzMM2uhu5bf9eaAwT9GSiWSV0uXBOq+dOg4qYQdkle2/mVdx+uz0o5Q/C3VuAMXRvXHLVlV6pUnD7RWqd2u+3mdFR+OrC1CNcWRSXVu92uu7+oUajOV+V3CnL+zNr4OPvAaRw7as/DK9eITBPVHWGmgWxDDu63cT80LDuNIHtC9+/5Ydn3KPsqRLufDXES0xGFwGj91X+geI/XGx+dTg8iurR2BMSXv8e4Vver57UkrducUz2uyflsGinVS9NUOZcPq/0FDC14Dntuqz6m3a4hkwurynUiKoR5ZuW45yL/fWhoyKn9ygZGyn1aE1X/c+uWsZ+aw4pjx47hxg2rkcmzpkXnFav26qu2b+qQ/Tl48DAAyxgQIz3MTJEbZKTEfm3R+uYETXnfeMPq10dZkz42MupYuwLrcjoc79tb/HvB7mFhxWqN5xfm7HrTSRSpXlqTvDlVButi4FWHxmyH8g73E2zzXrfXZ0PBfua+QHusAp8zflp1qNaZ55ktkirkkGad5/Ky9ZFq6GRBJHN59c+pU5Y1dfPmTbe+ydJHrNvYuGUb3JhTVopd19S46Qxoj1Gv19HlmiSlWI2RZFIMtK0zK5vWpvUtMtjpDv7Fn/wL+5tvbfZb//A/BQCMsD9uXbZrfuWS6Ssss17q0cc+BACYHp/ApQsXAQDPvPgKgCBTQdlRGR47R+uQao+ZE56PPPc0V66b0vdOhc/dfNja4qfFO5FU/1NYwea453nzAP4r2ELzf3qe9wcAbgH4dX78mzCp0aswudEv/UxXE0cccfz/PuI1J4444vhFRbzexBFHHO9VvBP1v998m3/65Ft81gfwj37WizBjvKRjqMbISvSE4qQSuHjZ2PennzVFkFP3GjN04i5jhJ75vtVD/YPf/VsAgNUN1rpUymgK2SDLVK8bmi/0ZnHZ8l3n6Efzq1/8AgCg1paCWwPnX3sJADBIw7OZKUNgzl+8AgD49OOWb/r3/vD3AQDf+PYP7LvdBFaIkswcMRRHxmMCq9aXhIDbv08dslqmGt/EG9UGqjv2Zj9Aj4DcqCESBSIkQnqjpoI7OwErFTXsFcLebbNGhKhJK2Xnun3L2LgTZ+/B1ipRaiIOPpH4W8yvXVqy/FYh0EIgW63WHhWnKBMlNC1q/tvPIlRoxLZJNClPhH2waDXCGZq2Dg7S84vI2Pq6mJsusmT5dB2HDx8GAGyx/mWHNUS9LUM3yjQ/rN+6hUkyGOVqJXRtQnqUiJ6lYkyd+ckelYP8ZApLqzaGqxyPFRo2V+jlIDSv42pJ7F4GhkZcX/l+2NRXc0ZtGVXVcl466bSrlRJDp3YQmqcc9eSD5vl29qx51zT9Lp567hkAwZjJ8b7275vBex2/mDXHQzqddu0mNkDocKfdQo9jeIdIoVjC/QeMtRYburxk/erYp8FBdEgiSJ1x4oh8q8LeO/qpv/cb+UbRe/WlQ51Zc9nmtevz7W6nTyGPxyWrldFnmGPu6hhZPyFkc3d7FblUmKkqsT0G+dlr81Rh4pjfd8TGS3ZqGN0U2Yq2zalur8D7lAmkGGWE7r+/Bihq3CuGQmMwYIyo0oQgdF/qT3mvRP2gnDegmDqZoXr5gE3pqv4p/B1wHW9HzJf7GSPnz6OveOFami7rWKP+Ptlsdo/qY9RQR8WkAAAgAElEQVR4vRdhpqJMVafTcffbjIwRpzZJNjLFfsmmub6k0qDVC47M2thtULmszfUrlZayG/vDF/tGv7BkwNZGFQqjNYTRZ1MikdjTRwG7+d76VP2i1ptUKrXHH8exmn53T+ZG9LMyqFYmYWnA+m54YABtX/0rhbigphkIPJY0DsRYBEx2Ea1muE5XfaGf66zP0XVJUW96ehqvvWbsjVg2PZcUyqDQeXWvqn2+cOGCu3YdV2vRm29aFpIYK12z5sfu7q67L/lXRvcaOn+Tz9qZ/bZvqPGZX2823Hc2ySYdOGBMzEGyW+VdPvvpQaW1tOd3sMJne3HIrlF7mqERMoecIxrvpYKtGYGPXNtdq2p4NA40hxuRZ5TM5m9SefALX/gCvvnNb9r9R9TtpLao8+tZppq20dFRp8xYKtHUOys/Va43XAe10C4tGUGr8TI8POyeFVI0VuaHwo37trXl9SvmL/bai7tIFuy8/8kXrdb7wSNWy1xet/O8eclUAW8v2Tg8c/ZeAMChQ9ZPIwODLnvi9YuWnbbD/WJX6o9knWRwnIC8WT1cvmYsarnCDIymjY1HHzM9hxtz83gnESf6xhFHHHHEEUccccQRRxxxvIt4r9X/fq4olQbw+OOPu1ze+ZvGfvz10z8CAHzuV34dBaICr71kjNGHPmFv2i++8GMAQIbo1XDR3kQvXzSE+C+/8V384R/+IQDg8KyhE//D//jPAAAf+IB5Sa0LiR4z9F9v2zdv2ZtpJpPBNPNKt4g833Xa3pJ/+bOfBwDsLFkeZokMzkc+9AEAQLVSx7PPPm/fJSpygEyU6hrEmFy5YPedpnIheKxULoE0FU5yfJvP5YUWqhUNvdjetjfzEtVvzp496xC+GzfsGpU7LMZilYqG9VI3dCx5K6yurmOY6jYdopHVsqEnUo9pUN0pWj/1VnUrQtylatPv6q7vAH3qP5mi87i6tWpI1CgZukKBili1sFKOas9u3ZQ7eTDUxS7JB22Q9UpXrlqubntdPhGGlA0PDri+2iVadZuO5U3WY00wl1s+WcqY94lMp/JZ10Zpfkd1WTUyVk6pj6zc6ISxodl8Hlmqs2WSUikL5yyrT4VEaQwLqarVag6dUp6x2l0onhgAtaFD9TMpnLrbmOGLRLOcRxMRuTstPM/a5q1YUQAoFAeRydv/D41YewyP2bwdGzNmT22czhiyuFu2sXnk4AGsbVgbg8qOvW4Yqc/lwoxivUH1qrzNSS+TdH1cibArGdZo9rh8+648g+ikXwmc6znuU0nWRQ3amPYbNo5G2ed5zm/VKm7miuiQNRlI2d+GOzZeVhcMKax36WNzwNolO2rtVEoW4LMusE2FqJHhMNumOR6tl1GkUklXH5pnW/WzrkBf/RdrIDX2u92uq3dSraUP+2yna3MrlZYHGFn0qKJgt+vWo2Qy8pgkUeKpRlL1Ylw+nYJdOoseP5xIhfHLjifFwmKoHXSPiUQC7R7VQXk+Ka/qutJJqW8FzBQQMJvpdBK1qv2tSNbb3YIYjAQRcz5IsvSBzGULaLO/0+ybYsRLrdu2ax4o0CeNglMJeij6aLv6Kt8Ps2lBbVmYoXOMVbMZMDcaGxHG8k6LXq/nrj36rEslPbfeqg5Qv0frLUcGB3gMGyvVWhlJttXOtu0xokxNIS/1SzHY1pb5AhUdm3UM8rgav47dEUPC59dZqhdfZ93S0u2bOH3iWOgalbmi2ildj1gY1VqpNnh0dJQ1Z0EWhpgQsV6BT1mY3bf7Cvvtvd35bswbG/HFL/wKAOAW62e2NzbduNYzfGzCruPE8bsAALdv2z7p/hnb+730wosAgFIu4xj3EvdUVfadztvmnkr3q5oj7R9q9fIe9c4aa1e1T6vxmPqcau3EBn3ve99zfTVz+CD6I5oJoDZWJsXCwgJmZizrJFhn+XyBVDjZtslwXab2HiMjI3uUSaOegvrOMFW8b89b+yOdw/Rh0xQ4esKUGnfY3i+/Ynv8S9eNkTt1n3kfah83NkoG0wcOHrT7/sBDxi597ylTpV6i19nQSctsk4JpJkMm78YSllZtvFOQEPc9YGO63gz7iP60iJmqOOKII4444ogjjjjiiCOOdxHvC6aqWCzgkUcewf/+J/8rACBNJRvl2x44cACVVXtLnSCbVGRu7tPP25vowWFjkhLKoacKyu996Xdw9z32dlretrfyv/9lY656nr1F/+gFqyV5+BHT+//WN0xZ8INPfBQA8MTHP45kz15fX/iJMWVpIiFSvfnKv/43AIBpsgu//Ru/AQBYXlxCj7mZ6ZRds5iAq1csRzSbMhRRqm8bm/ZmnGQ9RCldQI7qchkiAKmUIQJCnLrMcx8atHY4c8bqG2r1skMule+snGUxg+0GfZuo7a+6qeKIISSVq+s4fIg1F0RF2kQz5J3Rainf3aI/HzxaEyEUSQjHntzxiMdBwk9ha9PO0yEjtU0UJd+2exlMGKqztm5I0ASVFoWmpdNp54Cu3OxLV0xNRkyVEEL1j9q21WmjwPHWpmrX4uJSqE0vXLC+PETUfpg+EWkiNclUGqUhY4qu3bjO49qx8mIElMtMEkM55v0gvtBboUpRNDFaf6G/j4+Pu3EghSZ9VqhSMqJA9uyPrI5q/4FZbDSsr3bpETNxwNpsfUVKw3dWSP0vig4GHkg9h9gFzvY2xtU+Gp9vhyjbd+wYQT0IlZ3aQpCp3NcgO0zkstdpumuLejupLkCh/nPssJ+A3xOrwGNw7ZkmkrdAf5Qx3luOSls1MjlDpQG0yUYneK1Vsm6gw3x+whDkGSqddnmuBHx6ZQWsRhRljnpLKYSk9tefBCqA3p7P9B+jn210LKJ8oXj+aE1RUNMTXqPy+Xxfn4XvwYswNlGlK1eL0usiweM1GrXQ+RW6Tl9yrQiUWlNptqcY+3ze/RsA+L2w55Ew0kBZruvYZ92Lxoqrk2O/q411D9Vq1amQRdtdx+j1wjU4qiMJFBWbe9pKEf29358LADLpFLqiBFnvVSSTovl2p0W/91rU08xDb4/an9gX9ZF80YpkUkbo1dlpNkCydk/NUsC2SjnT1vFajf5UXWvTTCblVNx0fo0RZTi0yKbP35oDAEyM2bO3WCy6a1Q/SmVU16G9RonPPGVL6J5brRZmZ21tunTpUuj8GsOaf7oejbdUKuXGb+BlVgm1nc6f1bPt+ecAADNUuh2dGHeeTllKK1+5ZvuDFWbHtFy9jnmS3nWc/oU7m0AqXCMXnVc59pm7TvqM3r590/29v54SAFbXbb9aGhp099nfDrqnfqXXP/iDPwAA/OVfmNdr1FtMx1Afi7Ha3t529z/IrIUs2aRmk8rKaal7agyH159yuezaX+uZzqt7Up2c2KCthrVtp72LT9xjaqObt6zdV5eNXXptzhT97n/IlL7P3GP6BaMjdq4sFZkziSRazP45etCy0i7vt33SwqqN7SXqG0yN2xjaWrNxsryygV3uZe+9/wEAQJrrbyb3s70mxUxVHHHEEUccccQRRxxxxBHHu4j3BVPV6bSwvjGHzz75aQDAM89YDmWNHj/Li6toJuxt9PEPfQQAsLhCVIEI7O1Ne2t/6qLlYXaZ73/ztTfwxkWrA5E/zzGqhTT5Vqt84NdetvN+/otWJ/U//7M/BQDMzB7B8Li98a8TJf5f/rd/BQB49KFPAQA+/BF7e75AT6zLN60+58SJU/jtP/x7AIAGGauvf90UWmpV5kgP25v/A3dZ7u53njIm4+GHHwYAXLlyBcN8s67yzX9jiUgTWae1Lbo/37Cc4VrW7n8oO4pbRJamDxqiXCdKlGetwGbbvnv+lqEmSb75pzYMCbg5v4BjB62N/savfREA0GrXeA92T1WqDLZbUf+NFFJJqcgoj3hvDQTQp2pFJEQ/m14NBRIIzaac6VkLs2jqi2tkNzPrRNOZK91sUjGp2cPQll3zwqKhFc2GITAbRKISZAqbNRtLYqw89AKvmE7AQgBAS21JhGa7QfSmSISWiE253ECZ5/OlQshrVp8mMlRoI8rf7djvB2cmHTp1/Kj1g5C+ihQLO2GlJqEleSKFD529Gx9+wHLBX33VkDYM2DU/9KCN3QXmHS+tGtvXYR3Z1aVbSLGW68wJQxOPHrbr+MF3n8KdGL5vfSqWI8ps5PM5DJFt3Niw8XLqjLWT0Fj1iRSnhMJVq1WHahapqKnx0+Cak0mP8EqE5OvCxNp6e1TAoui2mx9iLlytQdJ9N/Cpse90qUqZGbZrLbAWMEn/kBprMgrJDFoVMg/0YttVPQgv9fgxW088IphZT8ilh3QyzET4ZLfUvlHFT6e6KIXBwUHHAueyb12TKfRT60i/f1WUDc/mwkhyFMGPsumdTieobaAKaOD1E2Zfet0w6+Z5gTqdxzk+OFQKndfNU1cexO+IqcmmkCTzF2VEA/SZiDHRfymeJqnalUkH6oNO6TXC8qkfhKyrDaenp1Gvh33Q1Ja9npQrw4h12vnnBMpm0VpFXUe/chsQzD/dY6/X3cNmRpUz77zoufo4tZXYp067vUeZTZkTQRtRLZfP9saa5nYag3mbx1FPM7HsHmvlxscs+6c5wNpsMiZbWxt72FtldMiXKsM6xC4Z0gHe1frWKhq8NinJFuhTt0s/rBGuEZ1VMZJkf/kc3zcx7Tysov58upcmFUtXeQx3b57valQ1NqSKHLA4qjukf1TVjrGwYBknxWIR+w7Ys61WtuyL+fk5AMEzV9k5R7iPvDlv9dqTk5MYY/31hRct6ynHWrVZMibK/jlz2uqAnn3O1BLrvP+jx05iftGev60uFRoH6FMX8daLetppnSoUCvirv/or+y79OR94wGqLniczJ0W/W2Sl9rEQdHh4CA2yl1m33tJDSjX2raprKwBoNlgP21cX6ffox8j9UIK1vPk8/Qfr4Uyfo/uNKUxnEpi/bHu57aI9G9+8bl5TU7OmvrjvsD1vSkOs1+IcUs1Xo9tBm7WzEyO2x//gGbvmr3/z23beTZtLybwxdBeoEuh3W/jAo9ZWRdUf0vO0P/PkncT74qWq3e5gZXnDmZBqs/v44x8DAKysLuLDHzYz3wwXARX968ErGlMpg3oQfOtb33KLkyZYhbSpUsPOnj3Dn5Yyp+K90Qlrnldefxpf+oO/a8fdsk65fNUGwOS0Tablm0ZZStxABeKFfAn1mr20NBp2zSdOGM15c84mZZYLwta2bc4eeMDox6NHbTAtLy+7BU4UbZGpZBIzuEJZzUMs9tvdsnYpTQy5NhqOFKIqr0ztoheD3/7d3wMAVGl4++yPf4JXX3g1dP5MMbzwvV2aBxA8QKNFi1GiNCpJnOqTXY5uHBXu98gLme5R46LRaLiNgzbB+qw2Ekp/0HdVINvr9bBKyVRnSDwcTnmJbjxUPLrOsdTtdvdsBqPy87oeFbdq3LZaLdeHKrzVefR3bUbUxmkuwKWhAfd3mQtrfOdkGstFUYIpkrDVddaquzh83GTEN9l2D91nL/xffNLsB77Hh8SdEpJUj6aNuI15Lo2JSZtzE5M2hrSJVB/0IvNHUa/XkaMxarAxt3GS8Gx9UtHvIDcGba5nktH302334qxwKYqZsFBD/z3ZlxNIaLfOl7SOXqaYwjc5Yw/72zdtI3PmlAmR9ChW06434NPAsiEBhmHbiJ04beCPNgpZ97APZOK7EoCQlDavMWpgq2t20u6co5VKZU86peZDNI04EP8INlLReSnDyv50IyDYIETTEPvPH13j9prRShQj+nKbcCa/tVr4fNqwqMuiaYHdbhcJtTsbL8kX8CZf8naYijvgxpBe2NTaCZfWGAWsoi930fWj0Wi451WduWVqX609nqd7q7rv2HUEBsfRlMjoi2n/hrC/HZLp7J4Xg+jz4c4K/y2FKpwYU6Hg2lchUQO1TYZgp+Zyzw9eNrqN8NhUH7gxmuBziy8bSi1V+ni5vIsM0z31zJRBrBMuqin9MJxiV6vvOmEoPScPUyhBL2BKVdO6MDFqG+c216ft7e0965n6WWMmnba1oX+e66faMyrVH21nWaxELTSOHDni5MWbdb4IDtoeS+O/SZBB/aL1eWJiwr34TtFiZJrp+T/4wV/bNXKN8JgmyPdDd88vvfSSexGTLHhUUCwq0KI1qz91Vi/kU9xDPPWUgZ4S5On2ZL1jbao5ViuXcfiglS7M3Z4DEIwllRroHvX3hh8WxkmlUn3rul2jftd+eJ4v6EpL13UUill3v7du2gtXS0Juh2wfLAGRbk+iaGHAJplMBhYZKa4rBLNOMbVw9zXKsjO1U+vx8OA4hvh863IdjwJu7zTi9L844ogjjjjiiCOOOOKII453Ee8LpqrRaOLC+es4QJpP6RNHjxmF953vfhN33WWUq4xSR4h0fOlLZmguKcU0aWWhDr1OFz7RwrERYw+E2IsJEr39rW9/AwDw2GOPAAA265Y2+Pf/8d9BNmfHHeU13sVUvaGBwwCA1q4d4/w5K6rbP2N/f/HFV/H002ZY/NnPfhYA8PJLrwMAzpwx6cghmh0//bShCp/4tH1OaVoTExMOeRWLMU8ac7lqf//N3zHTYd3rj58zuvfajav4+EcfBwDMUQ57hIWPm0xrWmAq5d1nzBxWjOEjlJyf3TeDhQmjpqPpUlEjwI11Q0/7I0m53krVrrlYKvIYzdDnXJFrBBEOirj3mqY6BLYbfAYIEO/+9Je1zY3QcRVie5S+tZ+mimJ0ZmdnHQIi1EjohfpDDIeu58oVYzK3dgz1ymQyDmnVZ9WGMq87cuRI6N+FDOXzefdvm+t2D5Kb1THEtAhxlqT0IaY0eL0u1tcMRTx29Aiv1e5fc0UMjI4h5ipx6yYKZDiuLtsx0iQbb5HpuBPD87w9qXWuyL6xjW5XSJzdu4q7JZculC9IT6E1QKuJZJoGmrQCqCfDBqaZDKV2VYxdGAgdK5UKUmmicw1EHYUQasw5oZdWp2+8DoWuLZOUC6199iCNjOevWrrs0DDTxKo1dIUccz4cPmZrX5K5uEo5LRD1bjItLJ/P9UmD65LDNglRY99oWl46nQ4EKJjiHbVaUFtq7ek3/HUpKkqtTYRlx6N2DtE0Nc/z9hjVRmXfHZOVDMtX9xu7SlJd39Vao3uLpuH1z+NcQmnAndBPHV9m8QEzpnUtYE6jiL3aSL+3OZa01vQzhx7CKVVRdilfTIT+7rGNQQYrl8vtkUqPMlXR8aDfe8m9Kbm65rfKhni/h+9bG+wxrO77XWxO1BA5mgbZZAaJlP6TyRRaLZk8K/2NqH63Ffpd6aiNBo3tGzYei6U8shl7ZipjQ2NR552aNgZreXkxdG+5XMEJSaVS9uxyjAGf3aMj9t2kb2touxs2kt7Zbrq+j44JzVEZeGsMa1wUi8U964hYj+haoXaIZrJcunQpEHWh1UqD1zaSUWaJtaWMjrXHWFhYcNkvjR2bx9dvMStkw5ixu2lUqyykP/s3/87ujWJYlUrFlRZoXVWoLTUuJDSl/YnmVLVadXvbY9zbqg2PH7f988VLZrZbJnMumfyZqSnHMmo/EhWP0fjUelsshed2Ou0hx9S5NKXKlZK8yWem5vQ0sz9GyCQlkx7AvavPMXvsiO2xJ5iy6inbgPvGrmeZJHxMI+ElkCJj2hviOt+y4x9jps1PKEpX4P6owefTqVMn0etQmImEYFRI7Z1GzFTFEUccccQRRxxxxBFHHHG8i3hfMFXdbg872xXs3295/ru79nafYaHYl37/76LIQsxXvmfszdikobhH+Eb+zW+a+MPUkL1Ff//73wcA/NEf/ZF70zx37hyAoCD/k5/8JIBAFnxn1xCaV16xArnf/7LJU66vtFDI23E9T4iQvU2/dNFQi099wkQ2shlDO5S7Oz8/7xCVXNb+TUWaYgJO3235nts7a6F26Td3Ux6vWIyhCctzPTBrebAXKA+ugskzdxsy0u7WUS0zNzfP3GwyR64o2BlU2it6vWJ/3yIrsrK0jC98wWpnOsxnnV+5yXZQAb5YprfPd9cLvwpOowiAkJgoA5BKJfbkou9hrCKIsFAGoU+9Xg95oRiRWhj9FEKzWbF2FyuVy+Ucaqe/bawZMqX+0N+jxnxCkZrN5h7Z4pMnT7rjA8D584YizbJP+9G3a9dM+GRyfCLUVkK4hR4JvSpQmGCQ6N7y4hLGxyzfeoUiJ6PjU6HrEQL27LNmUyBhlwfvux+eZ33xd/62WQWsr9p5rrG49E4Lz/OQSqVc30dNSX3fd2NNrMYKWVghduoftb1YCL/TdmN3qCQD6TzPnAh9Nk1j3VrH+jGTKfD8neAzXD80x3Kp8FyISot7fRLDCleHQENXgf0erydL+f5VFm73ej1UWacxc8AKhLM5uw5JfCc457Ks8QJRyWa9ESDwKiaWPDivsR4xNNY99tf8OCPPZFiQQu2v0FxX33met8eeIcqMRFFY1SH116Ro7qZSYaYkYL8keR6+134WTsXtAXKv89nvMmMVK6rah2QygSEaNat2Q9fjWC62ma5Ha5Ha1tqjE2obhWPV0uGxpGPn83n0um9dw+FqcIvhuoioCEmz0dkjkBHt56j4hLPXSCfdfUVrG+7EmiqZjUfHgSLheX3WDWGTa7ErbbHeDbHA9u9jExNo1cs8j+ZTuM3ETGlPJcGC0TGrG97a2txjGaD6HFeX6JExInPdpChTs9lxfaXMjYV5W0fyheD5BwBZsq8l1g9VaHw/NjyE3WpYvMaZaHPea15pLdMc7pfYV/tqzdYaqvroxcXl0L/reVkul91xRikKtk0RKNWLtbnnU337Bz9omTzPPPOMG98jfD6LucqVrE+vXp8DALz8qmUpjQ3aMZp16590Oh3UhUWMyPttDvp/am5pbjebTbdPUV20DHLXKc++uWlrZaYYNufd3NxEknu3KFN5kWIOp0/rWHZvYg7719i0WwNpD7TNNanGunqOu/1TNk48t+61kOKzaJJZaHmKCyUoppEEmUz32kLrn+IAz5kK1miOzZGSvTd8/7y9D2SYEbK+bX09OKax3QuMyiNWFT8rMx4zVXHEEUccccQRRxxxxBFHHO8i3hdMVa/bRbVacSiDzN8+8rghAa1mBy/+xFRU7r3XGJgOlbieY+2Qckk/94lfAgB89KMfdX9XrYyUAcVI6A1fKIaQEL3tLiwaIvr8MxedWstv/9bfsPM+8x0AQDFrx5ybs9qShx56CECAnl69etEhTXNzpjaovNrLrHEan7A38088Ydf+r//s34Wuq1KpOOZD6MwDJ63+6eUXXgQAbJNVuve0/f0KmYTVzSWcOmj3u4+KgR2iVnqlzrPGyY+g9mqHqbFxV99x7QZrhYhmCOnR/cp0tD+HXgiYlIfUz1KriqLJe40LA6Qgyiy4z6TCf48i0tlsFmmE6xhcfQXHxwpzijd2t0PX4fu+Q+vUJ0KthMruRKTV/x/23jNKrus6E/1O5dg5IDRyDgTBBJISKVLMoiiSikOKI3JZfm+e38i27LEtSyOtp5l543mWNZYlj2RLGlmmLUuiIiUqWBTFHAEGgCAiASIQQAPdQOfqylXn/dh7n7r3VDeBRgPogny+tXpV162qe88599x979nf3t8WL5Ko/vT395vj2nNEYplFZcdWAxwdHfWpcnnHQb4rx5exXraAWN+uDvKIZUaG0MP7l4KDclzJR5Q+XswS68KOtra2YFZXi++4wgQvW0qqcecbtNYolUqTFnSNhmNIxWm+hjmfbITnvC6Q902krDtnE8MnntVMPAxdpv0MsFevKUaeuSjnI8UTND/CETqG5DoFAsJs1Bf9lf1LAUuxCbGYv/hvSFVRLPu9/FW2l4EwneOk7CvAyk1dXIqgmWzV4SMDaOmm+ZJqozkfC0tuj9+TPl5i1onl6sKxQC33kssC1PIjaR+JBLVLxr/KzE2NdQvWmGrOERrlougpSynOqItKTkQhg0hUGBhR+KTr1GZOgkH/LdBbpFjIBLF14t02Y8rXZ75Q9O0jx7L55XLZRAWEo37vs3ibT7DdFk/+AOdgVCoVHOkV1dg8j4llv0p+xT57DodCIVRZ4jga9xcFl1eRS7b75D2OrbJoM0e24pxEZLQ0R+sYMIGMrc1YGSUvBYQ5RyzH0v52kefzGRMVQzZMNF/fcm+R+0RTmrzuMt4trTQfBwZOoLWJi9Mb5UXab7Uq7CrNlWKRjju/naIhhrgUSygcQIRZc6/qLODJo5ZCtiLpz7KgAaXQ2SEFeWleN7FynhRMN2qnTcK68TXCn4eCAfOcZuf92YyBzfbFYjHzmV3k1i7+K8cQBsurLCnbTvA1qPk4R44Su6Wqko826mvXyMiIsSsiFT48xjmKwu4yQ1jhNpvix8Fan+RZQcZfIMeRnGeBzZgHg0Hf/0DtWeMLX/gCjwdd90G+Z8g4NSWTaE5TH9488ib3k87D8uVU5FjyuCW/u/coPXNLxFU2mzVsfbEk6sQ0Hwpc3H71mmXcen8JDY0yoMUGyTMNPX8MDtEzZjOfK8334wCzXpJzq7VGSPJcOYriB9//NgBg53Z6bj3BDNbC1eupfYP7uG+96GijuSJ5h5IPNlVJdcdUOTg4ODg4ODg4ODg4TAMNwVQ1tzTh1tuuN57Ari7yyOgqrfl+/fCTnoJk7JWMSwFEv4Jckb2Ezz77LL0vFnHTTVSgVzyOwoRJTOx3vvMdAEC+QJ6hj3yEalL943e/BQBIR+egrZm8tQcPklJaMUcr8KuuIIWSn/3sxwCAD3+Yck42vUjHv+vu9+PxJx4FAPQfp1wuqbn1wgsvAABamokF+vGPaR+yMvZ6KITdEnahhxX8htm70MEskByjwh6qVCqBVi4ilxSFpSir/40P8XuubcSvR49SftaqFaROeOXlV+Bwv5+RkrEUr5HEGY+NshefvUzlcrnOwySvE9VmAeo9kuVy6aRx9BN5/rzHqFarKEr8rvbnXWVydN7FQ149oTsAACAASURBVBTluSXe3P7+fuONkXMin5kCpey9k1fZV65A3p5ly5YZJkjqfyxdutT3m4Nca0z67fXeSluHMeT7jhxf5oywTtdcTUWyY3xOZ3e1Qwi/jvZmHgc530d9YyV9NAqDuoyNLz0DAFi8iMbhhltvAQDs2EbX0vkHUv6zvf819bMcgvx/IiYqVOTtlbloMxfirTw+eJzky+Cpu8TMhJ2XIrA99ZF4rK4eksBWrLM/r0AhEGb2QhgCvrayeT9zJK9iT9vZk9naPhshzg/NjPsZY2F/5L1hDlSNfYpaNdBMja2wv8aWYQYtlbhcLldT45LaVlInyVLKs1mWQqFg7hc2s2vbVvlc3ks7vMV/5TNhBqVPRvGz6i9S6mWRxftss40ml6jiZ2oCipnDSMCogYlttecoNH1u55x4VePkM5lXtgpgknMr7JymYrFY11Z7vtnjI/0Xe1YqFSedw+FwLZfDu2+jWqer5lzZfTgf1f8AGmMZS3s8vPdJmVcyjjK+hSLZ+iLXS4qF+R5X0aiy6l+Zi91XjcoffXdOz2xzHAA4doQU/GRuBYNBBCP+ukfFErUjFBbFPJnnnOsZYfuYSJh8LykmXGOX/Cz6aM4fnRLh4ugoFk3el+S4y9zxqtt59+XNabXzLCU/SmyEqcdkFbitMagRJBL0HDY8POo7nl3brQpqz5vMJGezOZOjY+reReUa4BzdghQuZzaXIwLCkjcWjZr+jI/nrDEUBtpv5yQ3X/JBg8GgUSiUOpnf+hd6tr3jzvf5xnST1K9i+zM2PIrjnCe+dBlFNsn9X8ZW9ikRLF2tFH2RG+Wi5NEYsqx+2D9E41wus/rgclLfk+J7TEqZ+1O1EkaGc/nlWQcZOkdHjhEj1sQ5ftVSO++Lvhfi+1AqnjDs7utbKC/8lR2kxj1apXb80Z/9PgDg0AHKX//VTyn3bDAfQExzHjqz+kFWCJTIg1OFY6ocHBwcHBwcHBwcHBymgYZgqkqlEvr6jpgq8xHOM/j1r38DABg4MYLOLvKuf/vbFCN52RWXAwBuu+02ALXK0RdesA4AMMRxsaVSydT2efNNihUVD7NAvGWibiWeYM2ewGgigt27STlw4QKOXa6wAliJmINKhT2gPKL9x8kTlExdjjVriM267FJiqKqcd3TfCqqx9cgjxGSNjWZ53yVfn+bNm2c8KpLbtO3llwHUmBBRghIPzGiGto/nM8Yr9OYBYkJivBKPslfJqCCOcm0H5a8PcejQIYxx3oB4KcSLEW8iT7zECIt3bWSE64m1ttZ5pY3yVtWfA2B7QGvevKmrPUnbxWMVDocRTvpz5my1JflNoeSv7REMBmtMEXttRrm/4k2S8yKf23V3hoeHjdfsqquIRRIVSqlpJedYvF3CQnlV6vI5v+fd9jyLYp/tTd+65RVcuI6Yx7LUOYnTNSXnTPoov5F9xFJJ5HhMDvVSmzu7yPO5ZdtrOB+hFHtnLcbCqORVI6hWaDw6OmiO67JUcpe8IJofMo+OsadvxdJlOHKYrpMwX0uBkP98ZLP022RC8kOkBg2r84WCdSpYcj6MSpRVz0Y8usWcNop0Ji9L6lZZqljyeUiYChF8C0SQK9B1m0iyuht/KApOdg6Ptw82q2Dn4dh5I7ZqZjqdrsuPMGwLM83CrBt74alJZ7ztxkOd8x1XrlOxTZLzIcyit6ZQ2GJKRCXzxADZ/iSrqiYSkqdEiEQiqPDQSDtk/7KvlpRfNVS+BwCRmJ/VExiVvXG/zbVzryKRSJ2329TWkvMe8s8tQaVSMfuV8ZW5a9e+kve2kl8oFLKUCL35srRPyXGxlRXD0Ygvp9UL6cP5DDsqoFQs1kU71J5DZDxpfIVdkvne1taGsQznAUf9c3B2O+VFlkqipMt5ajk/G1IoFEz9OzlerWafXynTztvJZrNQ2s/MxLleUWaMjiP5woc5X0dslRwjk8mgUPHn6MmcEJsg80zGRzAwMODbD+Bnrb3vbTbXqxYoqnZyfctnksskzzgV3u69VuW70i+xa/IdW7nTzm0MBAKm7RLAU6cyao27zdh6FWvlmVbaLH3bupXUB+cw69Q/QNsTySRCPHeOHaMcMrne5XlZ+iTzT6LC5PNqtWrOVS5D7ZjbQ89F/EgDDVaB5GipmqJn1TeeNDY0EGP91MbRdoqWCrZz/1nJL8JKksWBAVSytP+f/YSYquEK2ZC7f5+UvKMpej+H58v6C0mDYMuO1zHK81zULbPj9H4s42/XyeCYKgcHBwcHBwcHBwcHh2mgIZiqfKGEnW8cw8gWYl/a28hTsGbVBgBA14Iu9B2jPJQFS2nlO38hxXO+8cZOAMDsWbT9qecfBwAc7N0PALj22muxZQvVtkq2kIfjwJu0ipdKLq2dtGoeH2PWiStqL+qgdrR0ppDN01J7Hqvu7XqdckmO9VG859xFC/gY5AG48Uaq67Rz+wEsXkyKJ8OshBLhvKM8S+SvuoBYt5455AHYtpfau3QZqaxohLHpFaqdtXAJxaaOVKVWCI3Dttco5+XD/+52AMDYIHkdXnl9B3rHaaW9YC0xFUfZW9TdSVWt4xlm2VrJa7jzNWIfxvLESoyrCkrsjS2zSllTG423eF4TIco1y7G6SooVBYOhMsIR8ixkxtjTX5I6UeL5onGw45+NmlQsYTxL4i0R1a6aeozfa2pDa40Se8LkOOJdiidrjJR8l9pVy3MRz7Z4ybpmdfv2Id6rTq6/YHI0YrTvxYsXm3w46f/ePaQ8I/VAJsoDA8iraLMjI3maQ8EEfXfxLGKOmjnO/Xmr1tTadRfhda51dfgwnau3X0XXFxSNc4lrJRWK5DHjtAf0JJrQ10W5Wtt43o8OUz5gKiqsby/OLyhf3Rg7ByiEMKJhZplA45OM03ekGr2dByW/zY6OQbEnvshsdyLt96SW2uicy7kWlSyZm2qCmjZyHFsds672TygMbeL/maHgk5nnavTilTQFq7T/WgxFQghw/3MFyRViFTDeh+3JFrbHWy/ErqElbbVfQ1wLRq6vYrFoPLWDw0O+/su1lWGlMTM+nK8AVTb1UkT9THJ4ZJ+2pziZ8NfACQaDNeZPV3z9lb4tWU4RCHm263aeWqlU8rDzoirJXueo5G36c2wCgdo519o/dnYeju39lrGUdo6Pj9fV9vGqG9J45Hxt9rJDtqqgnGebIS1atbi8kQfSRjvvC/Crl9pzuVKp1M1zm8E436CUqlOtlddoJFJ3nsXWyz1Pcmrke3lmm0ZKZTSxEqA9v0eYkZYaRMKqS2SF2KNoNIoinwubIZb5ZOfx+phEbas70vE6Ont8v7GZYtkeCASQbiWbKOyKzA3bNtt59IFAwDBvwjLJ/qV/UktQ9inPFsKyhMNhT7QJsS3ybCP2RvYBiyEaGRnx5EP5877svDiBfc0kEgnzv11j0FZHtlk2U0fM8x2ZI3K+JR/q0ksvpX4L27yLnp/HMhnoAF+3mp8XWSVbmDrZt6mfynX0ZCzHxsZMP+fOpnPZM5deK9o/h6WPMg75fNGjEs35Zhx1leSoi6NvHgAABMM0HxNcxyrLaoCFTBZf+uIXaf+cD/xHH/+/AQDzemheFMeoLzs44qa//6hpe5L7M8bPsFXwOQpOzd44psrBwcHBwcHBwcHBwWEaaAimSimFaDSK7gR5/zNj5BGTFfH+N3fhnddcAaBW/+DxxyjfKBQUDxi9drX482ReffVVXH311QCAn/zkJwCAlSvJw/jTn9L79nauMXCYvCbibfjweylfq/f4AN52+WUAgDjnI33so/dQO379KwDAsWOsYsQr9Y4OYoG2bnnVrFxDafJaPPyd7wEAbv/g/wkAaObaRw9ye1auIUaps4PikDdv2Wo8T8eO0co6GSevyry59J2L15Ni4SXrqW+P/uoVAED3rE7M76GaRVlW1Vm6ZDkAYOAEMSe/eY5qDl180zUAgPWXUJ2ijY88AQA4OjqIWYsXAwAiHNet2HubzdA5Cpi6A+x54SDaeDxsvDVjo8zUmPomXDNB4spLFd/2aJQ8EoVCoU5pymaVqlW/8pbAG4csHj+7Ermdb2DHXyul6rxIErNs5+TMnUtjLR6yJMf99vX1mbhmeRXPVyjsz0WwvcmVSsXsz+Q/cbV3cE0H8SrJ5+KBe/XVVwEAa9euRU8PeQ3FayVeQqN6aNXiku1NTU2G8SryOCyaTyzqC08SI3b+QfvUuOx5U60CiqvCxzg/QGK87ZxMOZ8yvwqjo0g1sYIpX/1iUwppf+0p8QKmE/46QlWuowXUzqldn8dmbmoMgUIg4M+LDLDqUqmc833Xzoep1bUpoMA5FiWuzyLqfsGgMHRSE8efP1UoFIzn2GbX7JxDQUD5WZGBgQGTb5NkpVPhaaqenB1v29NJzleq5A1TpTn/KhKJ+vZv249C3s9Oi3ceAPjyNDYgxkqJxZLknPlzf0pcPwpKg0XYkIzJORLWi/qbK/lzW4QdrlZrOV2259ookIb9jLvdt1gsZuzGZDXP6vNXa8eQ+WerDtbVL+LveZl1+lzV5X4KhPW02T1BQAXr5o7toT+foJRCOBw242DniXlZPTvfSuywqOLZeYiRcMQoRUo0RmbYrzbaw5EVRlmNIfuuVqt1x7WVbIVBspmj5uZmZHMjZj/e3+Zy1OZIjPrbFiK7KCyQ9CWbzRobKXPGm6vjHTP7+ErV5pncl20FRVErlr7YrEuhUDCfyb1c3ss8FHsUNNEFRfN9Wz3UqBta9lXaJccQ5PN5z/OI3zZpy97ZrJeXGa8x0GT35V7+9NNP+/qQ4/GQGqWBQMAwVZLrbjOS9j3DVqGNxWKmfx0dsl9me/i5MACyWTlWehRbkcsVEOOoHhO9wNEUHOhkag32MbvUGqPPM6yC+Hdf+yoiKdrH+lveBgBob2a2dZjus5uep+eVnVyrM82q2avWrsZerjUr2g7LF1PUUb7Az1qnCMdUOTg4ODg4ODg4ODg4TAMNwVTF4jGsXLnS6M4/+QStJl988UUAQFtnCLt3Uf7J2jWk7ifKHK2ttCLeu5fyRd5+z90AgBQzWoODg4gniS34yH2ktve/v/FPAIBLL72I90Gr2wGuxSTqJhyGjHgwhE1PPQEAuOUWqs8zyoqCt97yLjquonaY2gacXzA2MmLYqxO95M1ZvnoVAOCNw7RabhXlQM5h2L1jPx+f9lnMlzHKHt6rrqX8q+2vUY7Zzu2ks3/dx6hvzz1HOWWbXyUd/tWXXWRyeZ54nFQG7/rgBwF44m27qb/PbqJxX8YsRJjVrIZ6hxFnL5XUaxLPj+1p7Omh1f3QMHnvR0aydbVqarUhpC6GX5lI6i5I1ls4HKzzztieZl3xe3VtL3YwGDSeL/HWSf/tHCrbq+pV0apVrKfviDdHvDcHDhzwjVN9n2vqOuKtS3P8r+0J9uYbyGdm3Hl/TWma5/PmUa5dfJLaX83NzTXPPzN1jz/xawA1xkzaI7WuhNEKRyNG4UwU4HbtoFhsYVVf2bsf5xu01p6cJmvMY1kgR/MiXCbvYw9fJ9UhUQqk+TMwRHOgotlLnBlDgmvDybwYHyavXh972xbkuAZRjNlKzhEckRolgTCS7KlT7OUTBb8Kz4VYmGsqsa3RAWFlIqbmS8jMO/qsVJY6UKLkRJ66wQGyL9nxWj6jreCXq/iZXWFzTD2hQI0FqbEmkh9I+0qna55R+lwYGmHjqE/tnR2IRdn+FZkN57w0k+tkqUWJiahWQ5PWyZLfhMP+/JxoTNhpYZRK5rsmh4hvCIp/E6xKTbGk7xjlcq1mj2F1LBY8a3Iq4BsPyTUqlcpQis5RKOhXRpT6VLbanvRZvL+VSgXRSJyPL/2j32TGaV+JRNI3DrLPWCxWp6Aq+7dVH6WPYlfMfMnlPDke3Ds1MUNmq0NqVV9bTHCymoWNiomYcXltb24yzw4hyd2z1PhCXNynyDmOcj+raI04s5YlrlMVi5C9lrmby3JeKD8LiUqw5EeqABCNiMopXxOg4w0eoftVku+XEVYDlVzHsUwGAa4pGhSGfJyvjZA/T5rTUpFixbY0K/KOjgLZsr9Oln3vTKbIRojdiUWpj5lMzvwmziyyzFXZLnnLVfhZH/l8PJfFONvEWJz6PTJCrJfYLLn+ZF8njh83x9JWLSt77tp5j/b3lFKevEJhcf2cR4199zNYojwdiYRquVx8fts4T35kmHUE+HwvWr3Ct+/9+/cjwExVOCB2ndrT3S35d9T/KNdtzHMufoajG9JNLZjVQc9/CFI7slw/LQxm/UTRcVwUl/keEwginGC2j6PBAjzfC5zzHeBzNn6C5l2mje6d//KDHwEAiqGIeQ66bQVpH0Q4P2r7fmKhXuLnlnkrKFpr7epLqLlK4YcPfJ+Ox/ZudJDz9Dq4xhZex6mgIRZVY6NjePzxx3HRJSTocNllFGp3cD89mB/t340Cn4SjvbRNFgrr1tHCSCb693mA3/UuWuxcsG69ka6W13vuoQK9QmcPD9EC6c473w8AePRRWnzEWHL6nddciwsueycA4IUttJg5zhfULbfScb7+tS8DAFYso5O1ZBEtTKLhCK59B4XV/ezxhwHAFGHduIVC9BYxBb58KfX/6BEJ7aJJFVIhvO/O9wIAnn6O2tbKBmbntgMAgF/9gsIQCyW6eGbNpsm9b/8ejLMwxjXXUDu2biUhiovX09iFWCL56JskNiDFgls7+GH7eAptLTQWc2fP4jaS2IFIrL+NJe43vUYTzxSwDSpjUOVV5HQlTKa2AAJ/z59s6034nixEzr4p2wbZK/Nsh7PIIkveS8iAkT1uaTEPFnJcCWOyjbe0WULCJPwvk8mY/UpCrIR+yQOOLHpsKd1CoVBLbGYRFREZueFaOqcxjhv69SM0x5YvocLCq1fTomfnzp3o7qYQEEnmFeeBhGDIOduxY4evr62pFiRTdAO/cO0FAIARlt+P8UPZ+Qhv2EhdgdNiEFB+8ZP2droeimE61wODXDhWBFd4v5lMxlwXMtYm5HKU5k3/cbpOJWE4VGYhAw4Lq6gyFC+EBoek1AEXB+X5YYdhyXn0hhKZYsKSmKz9SfBSGkEgoS2BYBipsCXgwg/3sm877CwaqhXUlN8YBwWHC9sP4EbaOeQXjiiXgQDL0adSNHa2PLJdJFvrWlFQ+2F9MkESGZ9AwB9W7C0MbRcsNiGavE87lEeu40wm43OmePtQC+X0SyzLvtLptBkbcXbYIXzSB9vR4w0PC4f8cswCeSAfz/jlsgueuWUk5a1xto9r/9ZbUNsrROBtuy2GYId1V6HrFh7eMKfzDVr7wxbtuZXL5epCxeQ8yniLDdEsV93WTs88pVKp7trwhvUBQIivTX7+RT/LVM+eTfeEYjGPADszR8fI3mQ0nTu5Zsz55ucXuYZHxjNIxehBXJx+4rCU60vmdbnsLx3hDV2OcZxXUPnFpszcDfqdCLLIyedLdU5He8Evku779u/xjYvcA5OJaF3Y3/F+uj/Pn9/NbT/q27dcn5FIxIyNjEmB92XKH/C5tM+xd47boYMCW6DFvh68MvG28/f11/3PYzfffDMAYNOmTQA8ol3lCiRWORj1l+eRAuappjS3iL43NETP4AEOw5vd2YYIO3yCWvpnYqcBAHkpW2MJqiRTCZNaY8J9C1KYXTxPEqpN2x976ln6Hh/jogsuwHvedSPtI0tz45XXSPRt+z4iXdp40XXZNZQS1JmQgsJlXP2OKwEAj/+GnrGPMXHS3N6BqcCF/zk4ODg4ODg4ODg4OEwDDcFUaWiUy2Wzql62lLzr4glob2/HZReR/LN4+594gsLc0lyo66mnaXWZYApbEhZ3795tiquKt0ISz597jmShe+bQ6nVBD9N87HnedYDYqKJ+Hjddfy0AYIiL2f36SfrtqktoxXvvvfcCAMIc7tLRQl7tw/sPmmTlO95NwhfPPkHCEO+6lUIZ5/aQyMBD//IVAMDvf/wTAICRYfIY3XjzdciXiW0aGSWm4MBeKkb80fvouPEkeRy++o0vAACWLF1P7QkHcaSXWKU5nLR44YUXAgD27TsAACjkaN9dHeS1WbeWqNOdm4hJS8VjmMVS4e1MuS5aSG0e5OJx2XFqqy17GgxV6ryUVabqykxbh8JSbJA9LixlGY1xcmemWBeeYu+zWJJQHb+8tFfswZbAFq+WHbYi3xOxkUKhYLzPwlDa37Vpfpm7kvQZ8Ujm1iXr8/wQb5Z44LyMmnjR2tLUjuuuJoaqzKGTOw4eAADMX7QQQI25FU9cJpMx+5Prwfa4ybwQL9b69TSH9u3Zhw6m9Q/vp5DVx54hCf+penEaBdWqRj6fnzBBHwCUCqFUFmaVPbQsrd6UIo/i4QPEfJ/o5/PJTElra6thwWVeiBeyrY3G8XVOih3g66cl6RdtSaQSiLMHMMEePBGHAYeoGRls9valwzUJZNu7KR5JW9raToIWL2E+nzf/m9DIqp+5s2Ww/aIEXK4gwSFp41IKwR/CIiyMJNiPZWjc4rE0xrPkKddVfwFNOyyxJptM7ItXKl+uJZOgnfMLddSusfoCy3Y/JxNdkLGVdskxlVJ1xT5lrGqMlb9YqNezLfc6mxGSPtgsj7TLm+BfKQuTL+yR2Et/EXEZH7tosvd/m5Gyww5lu7Q3nU7Xla+wC5zbjKIJxVa1ttjz8HwN//PC7kOpVDLnzw47rZVM4IKqLE4lIaxK1cv920xNU4LmxOjYMB9fZPJrYc/5DN0PTVFtuTEF/IyhnOcoh9q1tbVhmL36Ekouc7RqhcWJLbVFOUKhEIocwRJI+vsi+8hwsVlhPzNjwszXpOolzFjGTMSZ3uByIqtWLPXtQxi1bDaLCF8jIswj+zx48CD3WwqF05jJ80GxWDTjn+bIjWKO2Wvel7D4IWbEy/CXyQgEAr7/vbDFTWzBlloBXe1hfCdmgJ/h+3ZfL7Fuct03JVO1SB75DZ9+KRnR1U39PXSI7l2aBTWam8iGp2IRxEQsqcL2VM4d27d80S8oJvZfitV7+6X42UlVpS80hoOjNE9zHDpYZob18ss3oFig4wz2EYu2dQ+tKXK8+zUrVgIAOprpuUjiBSqoYu5cej5etpxEubbupKi0kTG/uMvJ4JgqBwcHBwcHBwcHBweHaaAhmKp0Ko2rr74a4znKQxBP/mKW8e7ojmBoYJC3LQQAXPtOkkwslGgV2TOP8lR6D5OXsJtZqY0vvYQVnFeyYgUl5z3y8EMAgKuuugoAsHf3AQCAOCDFQz/85FYAwKYnH8OtV1L+0U1XUGLbLdddBwD46S8p2X9LnjzOc5kNuv4d1wIArrvuOpQ4sfT4QerfO658OwDgsZdpFT3O8tif+IM/oj4FaLXd3Eoeo698+Ut4zx3Ecr3w7Ebqbzd5et7glXiYi0l+4hOfBAAcfJNW6jv27ca73015X8k4eQUe+dVvuK3kxSlxcvyf/ac/BgD8+Lsk+V5lL5YqVbD39V0AgBzLusq5qV5IzNm+fSQkIvlCaoBjucM1qdYYF4otFemzdDN5OsRbIYm6uRz1Rbz9Wuu6Yol2THqCE1/tWGWvp8zOmbI9rHZitnhKA4GAyeGTttZLBE8sN1xALXZciu7aDFGhmOM++OVe5fjZbNZ4lNauXku/HWF5XT4f4h1fvYhYxjznPG3bRkImoVColkfB45zkvog3T/r/9rfT/JR8oFmz5yI7QPs/yIIU8+bSbwa5eOj5hmq1ivHx8TqJWzknAFDJ0rZhTvI9wR4y8baFWEglxAxVjr2T0XjSeOLtQtYhEWLoIjsR5MKCs1iKv5MLYKoIkOR5GuDcrpZmzlMwZcsJNttULpfrioyK1zuoJi5YXLuuRGAiYKTSRTrdLvZrWBcRMmDPdaFQyzESSXPxlNoCMobRDsu1KTlPJTRzfyXn1WaHpY920fBisWj6a+cpSD/topw2U+VlEuzim9Jmm6GyGbtSqVQTKuF5Zn/H/q0gHA7X5Q7ZDJ18bo+tnJ9QKGREM6I8rmJTpYxDlO8bwvZ5j2HLnMtxZW5PVgzYy4LaRVBtZl/6bc/HWCJuxrcmVe+XeD+foLlEQi1n0F+ENhkJ1xXElvHt6iJ2u1IRkRXJH67l94bDfvlzGbvaPY6Pwzm+GjTO+RztI5VOoFike4k8r6RZ5EAxIxZh5iAmbCfbhUwmY44rz25yn7SvOxF9mKiMicivl6o1wR0AGGFBjJH8xIxpR0e3YZyM8Abvf+nSpb5xKXGRdWFXShzhkohHUa3SuI+M1/Ia6TvCBNE+JbfNK6gh35X0n3jUzzJLuJIwVfminyn2ipjIWNmlMmyRC4GX7a2Nt58hlH2LjbyIn3Elp7ajo8PYhgSzah0dbbx/Lmyc4fzIYk38CqjNz2AASMe4QPQQM918PxlntkcYujRH0pjIiXAQIkxm8uQ137OY++k/SveBI4dYBI2Fma68+h10zJFRjPbR/Nu8eTP1n5VRrriccv6XLaI1QGuYc3qrHEGhwpjF+YUXX0zP+gfkeEdJqOVU4ZgqBwcHBwcHBwcHBweHaeCkLh+l1DcB3AagX2u9lrd9HsB7ABQBvAHgd7TWw/zZpwD8LoAKgD/UWj98smOUSiUcO3YMre20yhUW5PFHKbcDwVG0sPrYm4eIERkcotyWZctIZe8Qy5PPnbVK2g2APISixCYerkXMdokX/+4PUeHc4UH63vPPP0+/HaCV+aVrVyBcZe8sv+ZG2bM2TivjUrXk+63kvmx5ZTPuuYcKBf/qF78EANxx+7sBAFduoNVzIU/7auKcop8+RUzavjcoZ2N4ZNB4PBYupLHZs+1JOs5FpDYobIPJvWFvykvffwlrV3Me1j4ao5ZminseHSHvwUe5fZteoLZ3d7GEZi+xMytXLMeLWymHSzxR4mGw5bf/9emX4YU3r0ByHkJB8h4sXNLm+66o4UluXaUqalLR+uKQVm6VHZsv8HrK5Du2mpbN5d+ZGAAAIABJREFUDMlvJvLa2sqBdo6GrRLY0U5enOHh4TqFL9uLN1kxzVQqZdoseU8Dh474viM5VLuZubz8QirgLBKj4XC4jiWQQqPSjkOHDgGo5SNKPtbLL7+MeR3ErFzOHp+fPkyXdSB05v0y58LmFAp5vPHGG3Vx6jX1JI0Ue2iTSVbSCvvzBUscvz0ar6lUAkAsmTQ5MrJNmMRikebJcIaYi5555B1T7MEsiRewpRnJFHmbFTNGefY2R1N+b7fi85nxFLc23lyZS5KPUvIzI7aynSgeArV5kkjGeAvL40ak0CWzDBXxIEuOVbDGjIm3VfvzfmwJ+5Dx4Ev+VAI5zvWUuW3nadjMjOTXej+z86LEo1xTImUWsIVsk9igcDhcx6LYeZN2Pp79udbazJXJCoxL+Qg7P8LbtsmK7wpjZLONXkbRVjuU98EQs11F/3yQfQeDwToba18rtrS95KiK57pYLJrxtu2kbael397ogVoukV9l8kwX/z0X9kYphUgkUpfLZyTsm9KG3ZDskniCbH6Rc0c0e/KF9RQQCxj0fWazh01tNCdq6o40H6QIawUVJFnePG3UPTmHiG1VQYV9bfcyKkoUUAPSJpZy5/PexMyQ5BoZ5oTP5fj4OGJSvLtMbcxkRMWSjpdghk7sQXdbbc6Y6wl+VnM3Kx0LU1pRwq5lzW/pNYAM9zPOJU4KmhlfnofNcr3xmBU5LyumFMKc75YvcKkCttG5PCtlcgBEjp9pEqx2WmAWqFQuG5W9qFXmwy7YHZwk58q73b5m7WLrBw7TvX5khJ7nVl+4GkMZsn1lzm8a4PE4yqWGEOD7TZT2vWAePftF2JZU83mMVyTvk6XqOZJF8+NbnIvtJngf8YgwdZW6cgsqTv3K8Ni9fpjz2Zn9mr98IR1jmCKADr4+jCNH6Zl1lFnFd19Pqt0LF9BzUJIZe2GoqsVaJFGYVbC75tI9+aIVtJZ48umnMBWcyhPR/QBusbY9AmCt1nodSLz9UwCglFoN4C4Aa/g3f6ekPLSDg4PDqeF+OJvj4OBwbnA/nL1xcHA4AzgpU6W1fkoptdDa9mvP2xcAfID/vwPAA1rrAoD9Sqm9ADYAeP6tjlEsFXCkdx/2H+D4Vo5/veBCiofdsmULUsyu7N9POR3ipWtppdVysUiKJPsP0Eo1XySVk/d/6IOQteMLzxOLcu3bKGZyQQ+tVnftJm+GxJUf7SePW3MnrVhTPXPxtQd/DgBYv5ZWr1deRrlV8xYQq3N0/6sAAMXu/21HaNVfbUrjF09TDalDXCQ0k6fvxEcpVvPBnxAzpQOUV9Hewnk7o8ScrV3TjaMnqIaU5HJdewOtwHftJfYpyfWjfvlLYsNuvZ6+d8c7b0FXNzFCvXuo8FlrkhiII4fp+GMxOt7IMWrfbdffQPtk1ZXjoyfQ3kT7GGWVv6O9lB+WYAZxeJTicUc5RjfKsfyJcAw93cRyiHrakiXELh4/wcXk+JZUUjFuH437yBDng0SriHBx0KEhOk5TuqZwBQBVZvsU/DH8BW5HKBhCnr1JEjssHm67dorkHomXLRwOG4+WqAbZHmc7z8IU4vSoehX5O3lPcU4ACLLnpcTb4+yxUgH6PJUMYz4XVW5rpnO1fWu/7/jiPVwyn66Zg3v3+dq5cOFCvPwazfMlS0jdpsTjsX0zzd0E1xrJM1uwmwvlneg9hiQXk8zxb7p5vg2NcEHSM4hzYXNisTiWr1ppmIIE5xuKwpCuFAxTki/QqxQ/lDy2QpZsTrFI3vhR9uyOZgYR48LZMtfGOMdt8TKO8Q/Q/Bhn735lDl0jozz2bcEwygUpEMvzUNSp8tTGcVMAnWxjB+dAFHJ5BNnbGIgJu8DFb6WguZWHJPNVUC6XTU2bMrNbEh8vOQZSSFi85IprkwQAVEp8XZaFjS349l9jQXifBSkWynXfslkPO+0viinpTqWS5PT4vfThcLiuoLe0WVQJ02w/bCbRm9doq+7ZqlxeVgmovxbD4XBdnTD7vbJqoVWrtVpMcc4HkH7J8YUhrJQlLwt8PNpHhhVq0+k0SmW2NVxAOs5FvMX22WyYKcYcDtcV6JVxsNlN2W4rCIZCoVo+rTAFfLx80W9rpfZR1RwjhJpzXXK1/LUIzxTOhb2RnCpbjU3GbmRkBJUE9auTVeUO7qNnnZYmGtdEUupF+fP+lFIm71FsgV1TTVT+sll/Dmw0WlPai/I9NhL2R1TIyRGGQFh4L7tY5ZqatfwvaqNEO8gcFjsj76WdbW1tCEjuVsTPQAvLMpefQeQeHA4Ku1pTKs1yfrJhwkTlMmAzadxXqd9VKiMZ8ytVphLC0IOPw/aYc2ibW2qsd5RziXSVwz848iDH6n8hZmFyBVHulGrY9KK1hq7K+aRtdq6kYaqtWncyhkopT26mP3JnMvXk2awBsHPnTiS4v+EA7S+X86sQj7GC65oLVnGbs9x4PqKqYGic7ndDoirJ0Qspfm4JcuHgkCkK77eZPvD9ZM8eUm4s8z1kzlyaY/O5nmqlRO3Y/+Z+9HP01Ya3kTryrC6OBOGxrfLzoBQSjic8TDofLx6jtcXyZfQ8vucNYkb37DtU38YJcCZidz4K4F/5/7kAvEc+zNvqoJT6D0qpl5RSL5XOsJF0cHD4rca0bc7Q8MhZbqKDg8NvCaZtb34bZOAdHBxOjmnJ6CilPg2S7Pi2bJrgaxNaE6311wF8HQCSiZgulWpVsfv6iAUR7/+aNWsMMyU1A8RbIfkf1157LQCgvZVyizZueg4A8Oyzz+Liiy/1HfuxxykfSeoMiLKbeE+uZHW+5mbyjKRSCYwxE8OiKnj0yacB1JSpjrMu/jXX307946rgfb3DuPhCUmxbtICU2VhEB1/95lcBAAuWLAQADHCe2OAILTJndRAb8Nq2Xty8lKo93/9PXwMANLWTHV+3nvpWGievQiVPMbJf+pv/CgD48Ec+hib2IMa4hsIJVlK89d13AAASimN32WsaYs/vQo4pLR3cjytbunxj9cYB8qK98BwxguICmjefvic5XgsWLDReCKkV0d1J/Y0nqK1H9tP2dWtpnF7bRSxLhb3LuULBeDRE/VG8M3IOy1mu48XMgLCOBfYMlctAMO6v1G4rfYlXJ2cxSVpr8x3x/MnxxeMvOU/ixROvVihQU+yR+VUXVw9/nklnO827njk0lrNndRv1y1//mhyo4uG1FQxlHyPZjK9dz2x83uQ37DtE11CYpYrmsvLckUMUm9w3QPNwvCDqdyNo5ly657mGVRezjxnL83m2caZszuqVS3S5XEYo5GcQJF1D6Urd/DA5JOz9bG8nr3A0TtfXvv6aSp2wDKPMUMk8yTCzF4uwB5ftmNQ/mz+/x+xDIF5VxWyTZJTIuZW2GyU9FTBqX/GEeHPpO8LEFK16IVVLcSsUCtXVmJG6NbbqnfGosg3IZrN17I5de8euV2TnF2qtzfVht8OuqWWzxKVSqU5Jy+6nnddo14CKxWJ19WBsxT55b9sEr3dY5oytdid2Qvoin9fmYdVsk3PmZc4BQFepj5JjIn2y54V3HLyKphONi/R5fHzco35WmvC7Nstpe8ODwaA5N3YelJwr6ZOdAxIKhc1vBXY7zgXOlL0JhYI6EAjUKRlKXxKppDlfohIrecqxiNQyI1sSi/nnbD6fN3PEzlWT8z1Rni5Qu3a6u2ehiXM4JTdOKck59ts/ubd6+mnmpHwm+5ccRZkrMWbBbGXHarUKxZatyAp+KVYKlD4NHafnQpup9NYFjEb99/B02s8+tabJZpsoEY7crACGKapwTlcsLLmj1O+jR+keKIyasO+BgDbKhSGeCYr5iqAo9/F1nmI2THJnhckJBAKGrZXZJGNqXxu2cqlXDdDO97Ttn82QCrt8YqC/ppRa4vEepHtShvOjFiyay81jheOqsFF07GKhhOFhGocKM4ApZpOkzZKPG9D+dpbL5ToW/9XNpDit+Blq/gJS9J4zl2tMcS4vlJzbJkTSdM3M7qZn57LU2+NzFmWGjKc0CgW5h9XyHQMcITSb1QAvuoCeS598hiJ9TobTXlQppe4DJXder2tumMMA5nm+1gOg93SP4eDg4CBwNsfBweFcwdkbBweHqeK0FlVKqVsA/DmAa7QJrAQAPATgO0qpLwCYA2AZgE2nsD+Ew2EsX05KdrJ6ldpH+/btM6pjF1xASnbiERFPyN69VP14zizKF5GV8bbtO9DVRavWtcyEhLl2kORn2R4Yed2yhXJN1qxZYxQEZaW/bg3VvtrNHuA16zcAAFauXOn/3ur5hgEShkjiWD941wcBAL98+CcAgMs33MRtfhEAUC7TPtasuhg7d5KqWyxOq/Z9r9PY3HA95deOMlOVHaN2drSQ5+pY3wlEON43XxCVLlqRt7An7JnHH6V9cO2jB370AwDAFW+nuNTtu/dgwRwaw4ULFgCojbt406T+QHcneYJOnKC+7tq+HXHOV1m2lGsEtJKnId1Ebexi5a0ge7EkJtUoI8Vq6n+2V1TmzPEjh32/sRVzxsfHUbJqpngrkXsh80/YoEAgUOcBtHOpbO+t8eLzFVYol6GqfpUuE0/MuTLiGZ7PLF8zq5kdPdKLhQsXAgBKrMgonji5HoS5ldyQstQHitC5jyUTKHDc/XzO3+k7fAAAMLu90zdmEgff3k1M2aoVq3H0WL+vjeJNlfpoZxtn2uYEA0E0NTUhl/MzfJLjoiuFOhVIT1sAAGlWtILi/BDOeRiq5EzenORBVTyx87R/Oj+JFJ3jAnsDqzw3RkdH0cpeVnGOG48lv7c99uL9RVWbPBtvjox3H3adN1tZLhqN1tVDqeX9UNttb3uZt8disTpFOpsJMTmHOX+NNq8n1a6HJbAZJHvfhUKhjuWSS1z2b6ukyTFq6o8l89vJxs62Afb58DITtgqX7WW21Qq9x7dVBY0tMrW+RBXRr04Zj8dRLE2snGerpdo5OJVKpY4pstktmW92XR25XsrlsjnPNlMlOVW2XZdzXi6X68bKZv3OJs60vQGUbz7YuWaZ7DgCfF03831HbHqVVdASCT+7JDUhc7mcqTsmjE3t3im17jiHhM+ZqUnE193Q4AgGmS2X+15t3tFvhcGS8yssRywWM7WM5Hq2c/RMDiFqqsxeVCoVFLguoNSqk3pc8t242B9PPT4ACGgNuTuXmO1q5xpLtiJmKeNn6MNibyoVRHh+hTj/yii2CnstNiLhjw4JBoOm35K7meVnqRLbHWmh5FaVmV0x+UjVqmGqZB7YETT2e9veZDIZD9uCCb8jEBXndo6KicVihl3c+iI9S4d5PHp62vg99S2TI+XhWFVqfVG7MuN5FPiZNc5KenFmWcPcOXm1Wf5qtWr6t2XLFtpWpv03t9Izx6JFpJ9QrsrYSn4U/S6JCKpFjozg+2mGa8AmpMZXhOeMGRY+L+FwzUbybS8eoeO2pDsmHMPJcCqS6t8FcC2ADqXUYQCfBSnhRAE8wg15QWv9e1rr7Uqp7wPYAaLMP6ZFZ9fBwcHhFOBsjoODw7mCszcODg5nCqei/nf3BJv/4S2+/xcA/mIqjYjFYli5cqVhg+pq7+zejV27KL5SPALd3RTvOGcOxVk+9RRpyb/GCmfv/8CdAIC9b+wwjNSTT1Ce1b3/nhiiPHtixji+PcCr2Tb2AF3CHptUMo2Vd9zJbaM2d/Lx22YRq9DXS7mrL71Ex9i5nWpgvfOd12PjJlIdPMExwXe+l+piMYGDDRsoL2rdGmJyumdzPPLrlPuy+pLr8M8/+h4AIKj83oojR8hrMHc+xbsKc9TVShEKe944iOMcG9szn2pc3Xnn+6gvFdrH5peofRddcQUA4JVXaQxnLSLWb9WqVRjpJ1W/ALtW5s+j4x3tIwVBqZHQxupDPXPo+Lt27cXIMDF/Tz1JuWzLlxGbt2cf1b66/FKq7t3SRh6BphR5CAY4PhfhWqVw8R55a7EAQGcXHbd7VrtvXPbu5RobRSDMCnaTMVO2Z16+VywW67zW8l1hNe0cEuO15YrtpVLJ5I/IqygldbZRm2UuZ8bIi1jlmO1CNIYc14yQdgjbKdeFeJ4kV+Oii4jBEm/ayMiIYbvEO5lYRCqMVVbqEYjHZoGwkscHzbzaxzmNojLVM5++s+/IcZwpnAubA1CenJxHUU6T3CNdrRqPaYTj9CWnoXMW2YdjBZr7TWk657M6yF6MjGaNGleF8wNikbDZLwCj7FdgJisfofMmOQfe+m5hjgcXF5oK+L3ANlMTCgZRrfrj8MUjWODj2uyLeKVlvlQqlTr2xs7LmSznSNguL+yaT/Jq59TI9kqlYrbZylA2+yUMhnjl4/G48cSb/CNrHAQFS0nLm9MkNkb2K9eW3VZbncvLpExWL0bYAFsFTa7NQCBg+mfnUtXywvy2p2wx8cVSvo5dkn3I+KQ5b8VubzqdrsvzstX/7Do6Aq9qmRzX/m3S5KX487BChoUo1Y1n1cOEnkmcG3tDfLPN4Izz/UMFAwgG/MzM8iWkFDo+xhE0HI3S1ET3x6ERsj+pVAqFPI2RsEdybuT+JPMqm+O8LM4vjjCjEItHEArQfJdoBMnzLPI9TLH6YljTOZS6WiGtcJAjGYQ9E1XVYlGU5GgOt7c0cx+afO0sFovGzoX4sTTHKpYVVjuMhoRVFpuV4fHKosr5UElWtyzn/WxmmetTVVgdWBQOEWQmOVCFDtD8ylZYVTRN/ZP7tTyflrk9Qi1lx3PmfBZZ4Vgid4S9r1r5mBWb1fa8F7tjIgCk/qGwjsxC1XJahf3RKBaZ7YvzdR0wSV4AgFCEc1lT9HkuT89Y+VwZ4RCNXWsXPXeLymFLK+e2heQ+Q+0LVGgMh4fo3FfKVaTFZnJtw6CwbjxkxfESt4O+F+ZjRBWwdy89Q1eD9GxRZBXCuYvpuSjI978gs2Fa7l1cA3GsMI6RMbp2eg9Rnn4z1wsbYmoqGuW+MIMWCnJERTlvcoI1s+gBjmJ54IHvYiqYllDFmUIum8Wrr75qLma54CTEbMOGDeah7tixY75XWXhJweAT/TSoGzduBEAXqxiySy+lxctvHn3c95t8gRY7slAb48Jwzz1J30un07hwPcmwV3nIHnmMFnHvuYOEKSqc1L/xWdousqCHjvQjU5JQNJrgzz77LAAgFKdJc9P1b6NxyNA+jvXSA/IVvNgYLAxgeIQMXJQjEdq6aAHy2JNPAACuYaGOY8dZsIIvuA0bbjGiHTfdRDLrzzxN6q/BAE38K656BwBgNj9EX3zVVQCA5hQZwP4jR7HoShq7/gEyLK9sfglAzdCuXk2iFpEAXZhiGGZ1dmNkkPqT5NDFVStosZYr0HYRYWhhYZAms5ilG385UHv4kZAIO+G3nW808oAlohhi7FKpFPK8iLSl1AWTKTQpperCV+xQFPvhQB7eOth4lUolM78lDFXm9PZtJF0+xiIGb+zdAwBYMI8WTiuWLzf9jvA5kd9u3boVQE1sQoRbRFGl/yhdJ/3HjpnQA3mw6TtKkuAb1lOh4HXr1gEAhnhRJ4Ix+/buN0Z66VK60Wdz/vNx3oEXLeYhjsM25AaqdASlkj/8ySRjm4cb9orwDWMBC4v09o1iIE+hMpGQf0EisuzNLBojD0w9vMDu4/O1ZPmiuvloQjusxZT9UJ/P5syNVuZnPi8LAL+4g/3Q7S1Kai8E7AWIHQ4IT0iZXcxV7MHJiuF69y0PXLZ0t/1qX3vettXe+xdXtqiEHS5cqVRMHyTsyZYFF8i+pK/ewsp22207Yo+x3SegNiftcMsUh47KNSjiKCHPnJOHzckEEmyxEW8Ipb2otgsU24tbO6SwWq3WnW+z4A74++sVXaDf1hb1kxU/Pp8QCChfWKwRqODFTr5UNNvk8XrHjh0AarLQMg5il1tayf6MjY2hlYWkZLyznkLg3ldZTMviS85lS0uLKVFwjMWo7JBQKWMi9xYR52pJpdHWRs9hlYp/MVML4fPPGYH32qmF/dF5l+vOCARVJNyPQxu5KHupVEKl5HcWCepEfIJ+h4jXISHzd4RD92TMQiFZ1NM+C3l/yHI+n6+FF+YLvjZrXlTmS37HlylGYT2D0HH8okFid2rOM/8ckj57xXXM9Qyxjf4QcplL8trSksKePfTcEeXFbWcnPWOGI2IrqG/jIsbFC3QRMkkm42ZeBXixHg5IuQ3qW0VCSnkEKuz8GxgdQZFtVRM7eub00PMPa1vUnDgyTjwOo2NS+qRizlEvkxyzZnX7xmh0dJj7wkJiTTTGqWAE0bKEEVLbP/NXf0W/yU9NufNMSKo7ODg4ODg4ODg4ODj8m0VDMFWVSgXDw8NYsYLC32Q1LR643t5es/IWT7yEgb3yyisAgOu4KG5QUdhXKMx0X0zhGFPTCxcsAwC0t1Fo1IsvkiDEmjUkdS6eBwmlauYwtNlz5+Kpp0g6fAFT8gsX0+tffv7zAID/8WcfAwAMrCHhhD5m2bbv2Y9chbwWK1kuuVCl4+w/uBsA8PWvfwsAcONVNwMAnnmRWCCMkBhAz8pluO56knnfwaF6sxfRcQplGquehcS6ZR+hVXVnN4V2bd6yFYNcMLfIhc82bqL9p5JEs370XqpruP8Yjd3ffvl/AQD+5A//EAAQDwGbWEpbWJYbb7wRALBtO4XwpZh2HxogD8Dru4kpWrFyGfo4RHDRImLCCkWh7cnD0HeI2C9hQxYtWEh9ZXGOQDJWl3gr50rCDYp56uPAgAiK0PdTzBQNDAwglWr27UNgJ9XbYhOhUKjOgzxZ2IrsWxjU+V3UvmQyaTyM4sWS8gA9c4hlks8lYVQ+nz+vB7u2k9cyzVLmEk4h3iu5HuSaiQZorqVjNE7Ni5fWwogsX4qc2zJ71ebxeTp8jEI+21s7oPk3wh7LnKqcp+VXtNYol8t1YUkmlE1Xa4IEWkIH2PsYZsnqDI1nnj1ls2eRZ2/1qiBe20rXhXg9x5mF7uBQT5HYjQRFbIBZMY/4QSBFc0m89xJCWLS8//JbmXv0SvvJ8DUmxX+DQb/JryU2++dxMBg0/5vyAJaUeV3YrEesxRYesJkQ+Y18r1YMV5nfmTA2Pv5kBSxttsfbxqwpvk37t4Ux7BA+b/L5ZEV/7TGzPcZe5sYWb7BD2uw+ej3nkxXZrbFeUjg47BvLmihFpa6N8luxT+L19oY9yvfsc2azbLbYiZyfiUI47e+WKn6mwGa5QqFg3W9tdvN8ghT/tWWjvee0xCHDQetalGceKWArYXIyt5csWYIsh1WZiAbev4RpC+sjId3yjCNszNjYGNo6aE4Uy/5wSzmv5t4S8s/zaDSKeJzD33gey3WfZcGAFlOY3G+rvIyJ/Eba5g3nBYB+vvfI/THE41DIZU3EjFy/EvYoc8YwKAH/HBLmbnR01IxVJEzHGxygzxQ/Jst7Kb7tFaeS0EApIFwq+210vTAMzQMvs2YXCLcFamoiJ36b4hX/sZlhW6DHFi4SezhndieOH6c+zJ1F8yAek7B3f7HnLN/3MmMcNcVRM+l02szNqt1v5b+WJY3lYC89G/YN1OpGbli1gH9L+6+WRNSDbZNhrKk9Uti6WKoiHGLpdjLv6OujZxiZSzLfhdVXnueXHEeb/c//8Ze0Xw43XXrRhQCA3ocfw6nAMVUODg4ODg4ODg4ODg7TQEMwVeFQEHM60ti5nVintk6KDz544AAAYHHPQpwYIm/NoUMUK/n2KykP6QQnU77yAnnbm1IUQ3mIC5hWc2O4+UrKGSrxKnX7q8QQXXABFdRtZcnGFzZRQd9160gufe1aYrT6BgaRYM/e0mXEpi2YTUzAvXeS6EX/CfKuvLaT2KWubvJI33j1xcbTEkxSv7KcYJobJTZHF2gVPbeTPRVBWrU/v5v62tKbwTuvuYHbSuNwoo+8CMMjNEZbXnwCAHD3h+6jfeRpJT53aRmRCMm9i8dh+SpiucQDVu6j4zzzGI1hVBIQ36BxeuK551DiXKnefhpX8U6sXk3MleT2tHLcdYSTDAePHwUUeRQGR+h4QwfIa7ZkCeVhHQ6QdP3CHmISjx4jNm75MpJxf33fUUTZs9LFzI94Hk70ErtWGCfPVFs7ncsVi8nb0TPrahqfV7bhwsspLyzH392+jdq8hmXwJZvy+DB5bMTro7U2nqhFLO4g81G8auKREfEJ8XoNnCAGKYgy1q8iNnFsjHNykuQ9CwZpfHp6qG9SYHnpMsp1enbjRqRaaf4NjdLYNXOhxuVLqJ9jRWIkku2U1PnKa3QtlThmua/vOG6/meZQdpja3t5E53CI58VYkfqSq7LMcYxlaRHFaIYl21kwY5hf5/QQy4YD51epFoUAAiqGaITOuSRwh8PMXARqohJhq0BwQBK1Y5zrUZFEWZrzs1ojGOqm8zXGLFYwIQn4dJwSx2/H4jRf41xeIMAetFg0aCTwEwlmrJiZ0FYejLEvxguaM9vimry6hiEq1zMi1G/2vnKse7VSNnkvIclHspSszXgICxGpF9mwGRKbVbLzcbysz2QCCbYMuZ0nFA6H65htgXi5bfZN4PUKm/wXTmDXnOSeL/jFNYTJ1AU/s0V5aSL7K/5LZllY4rqiqR0y7jLWhVLRbItwrokt7W/GUgR1LBGQYDCISpVZB86DMW1jD23AyPXLeZIxjNaxeDbbJm0tS26V8SRzFwOAVtKvEI+hzAPJB/TnHArrVqpWUBJmUkQteI6Mj5/bguNnEpPlEEoxWC8MI8pe/s4uZrl5PKSw97Fjx1Au0XdF7MhmYiVPWRgru/hyNBpFL0eUSASJETTi1yrnS4nIg9zjxsfHwZUoPPnwfuGiXI7tXcgvw+9lQaLRiO8z6b+0p4NLfAjknqy1rmNCbcZOkEjEfe302gHZR5al3ZPJtO99qSRMbNH3W6+kuldoyNsXmxkKha18VNTYPWGcbdErmwm2GdtKpeITiQGAGEcQFQr+ot9yXImOGc8UsHAhPduOkiTXAAAgAElEQVQ0pcRWcQ4li1/IOBRz1O+WVhrDdBM9V0ciISOiAcvOiP0JcftE2K2Pn48QSWHFEtY4yNOciAQ475d3WeawmJyInzBjVhDWP55CLEn2PdHMURxF+s7hw5Q/LnntwljFcsx2Bir4zH/+z76x6VpMuf8fuu9DAICnHFPl4ODg4ODg4ODg4OBw9tEQTFUoFEJHRwfaeRV7lNkQ8cTNmTMHB1mO3I7zl1V7DxdMHR4smN8AwPHDB8x3hJkRr8F2yQfi3IVly4gpEYaivYU8Q11dXehlr4js4/gR8uq0prhwLTM569eTYp/kdGmtTXzvD777EADgtpuJOZs3j2THl86f72uztE+OFQvHjVdGPExvHqX4YiOJyh5Z8UTt2UnMQaQ1ZnJzxONz8cXEgGzbRrLvgjvuuAMA0N/3Jo8pedtvuukmw1TJ+D/44IMAat6i228nFcTFLLG9efNmAMCKVauQfJO8A4dY5lxy544fHzf7B4DNLxNzd+uttwIAtuwkpiTZvMf0S17FmyCeB/HiCIPWzeqIJ47RGC5duhS9vTQm48wU2flIHe3keTPnn4vgjo2N1eVwhdl7LPNQchTk/AiDJd6tkFJ1HvcjfTR22eyQaaN3H9LXzs5O068gzwnxuMtx+obpmumcPcvXh1lz6XwMDg4bxcyDe4iBnDNvvq9Px5j1lbGUfVcqlVoBRm6b+NdsT+B5A0WePlFHs71+XtVQ8SAKypwPIlK/8luJ289lC1iyhLxcw+M0UscG6Vyrkp+Zkbkg3smJCk4bxoClhFNpOveT5fd5CynaCm0xyQuzmCo5jxJXHg6H63KK7Bwf+Y20vcBeWKVUXdvtvCSbIbK9r3RuJi5cK/uy1Qi9SpzSttp5pX3ItW7PW/v4ynO9BkP+/Be5Bsz4BP3nUOZLLpczRVHjnC9a6wN8bRaIJ9vb/5xnXCdqs517ZOdmeGEzg5LbIfZEjlWpVEw+hp3vNVkum+1ZD4WCdfNMMNH1Rr9h9rFS+749RvZcOj+gfDL50k+5PmPhCKrBt85Zy7KHXpk8RbI3LekWBFmhTYM+GxllRpzHrjVNLI+wXlKiQ55NhsplU6heokJKrIJcZuqxpZ2Op8y8oGPF0wlDwJ44wc8snMtrq0yO5/0sb2sH3WPz+bzJmZJ7ekny/CTHaGjYN3aiLBeJRGr52SfoHibKgDKvhO1U3H+Rehc1VEChXBZWKch9oOtI8ojNtOPrPc/XzrxZszHOEVSDI9TGpiaWJWcGuMxMjbSrUPDnrcXjcXOem5rJvoxn5FoscZuFKZ64CLBSqqayygwNVG3/1Dd+tuSooXATjf+seXMRi7K9RcLX79EsjWGWy3HEmMFLNbfy2DKTpmqMuzb3JH8uV57ty5GjXD4JNKfmzG1BJMKFq4tsi5jlD/E+cnyOxUaNFam98mwUj8drxdw5rEJxznKWfzs2yixYjN63cP7cX37uvyMQZTXfBN2DP/OZzwIASqP+QtUnw/lonRwcHBwcHBwcHBwcHBoGarLaPOe0EUodBzAO4MRMt2UCdKDx2tWIbQJcu6aCRmwTcPrtWqC17jzTjTlbaGCb89s2L84mGrFNgGvXVDCdNp03NqeB7Q3w2zcvziZcu04djdgm4Cw/4zTEogoAlFIvaa0vnel22GjEdjVimwDXrqmgEdsENG67zgYasa+N2CagMdvViG0CXLumgkZs09lCo/a1EdvViG0CXLumgkZsE3D22+XC/xwcHBwcHBwcHBwcHKYBt6hycHBwcHBwcHBwcHCYBhppUfX1mW7AJGjEdjVimwDXrqmgEdsENG67zgYasa+N2CagMdvViG0CXLumgkZs09lCo/a1EdvViG0CXLumgkZsE3CW29UwOVUODg4ODg4ODg4ODg7nIxqJqXJwcHBwcHBwcHBwcDjv4BZVDg4ODg4ODg4ODg4O00BDLKqUUrcopXYrpfYqpT45Q22Yp5R6XCm1Uym1XSn1cd7eppR6RCm1h19bZ6h9QaXUZqXUz/n9IqXURm7X95RSkRloU4tS6odKqV08blfO9Hgppf6Yz982pdR3lVKxmRgrpdQ3lVL9Sqltnm0Tjo0i/C3P/61KqYvPcbs+z+dwq1LqQaVUi+ezT3G7diulbj5b7TqXaAR7w+1oWJvj7M0pt8nZm6m3y9mbmWmHszdTa1PD2Rtul7M5U2vTObU3M76oUkoFAXwFwLsArAZwt1Jq9Qw0pQzgT7TWqwBcAeBj3I5PAnhUa70MwKP8fibwcQA7Pe8/B+BvuF1DAH53Btr0JQC/0lqvBHAht2/GxkspNRfAHwK4VGu9FkAQwF2YmbG6H8At1rbJxuZdAJbx338A8PfnuF2PAFirtV4H4HUAnwIAnv93AVjDv/k7vl7PWzSQvQEa2+Y4e3MSOHtz2u1y9mZm4OzN1NBQ9gZwNuc023Ru7Y3Wekb/AFwJ4GHP+08B+FQDtOunAG4EsBvAbN42G8DuGWhLD2iCXgfg5wAUqCJ0aKIxPEdtagKwHyx24tk+Y+MFYC6AQwDaAIR4rG6eqbECsBDAtpONDYCvAbh7ou+di3ZZn70XwLf5f9+1COBhAFeey3l2FvrekPaG29IQNsfZm1Nuk7M3p9Eu6zNnb2aubc7eTN6mhrM3fExnc6bYJuuzs25vZpypQm2SCA7zthmDUmohgIsAbATQrbU+CgD82jUDTfoigE8AqPL7dgDDWusyv5+JMVsM4DiAf2Ta/htKqSRmcLy01kcA/E8AbwI4CmAEwMuY+bESTDY2jXQNfBTAv/L/jdSuM4WG7FOD2Rxnb04Bzt6cETh7MwNw9uakaDh7w8d0Nmd6OOv2phEWVWqCbTOm866USgH4EYA/0lqPzlQ7PO25DUC/1vpl7+YJvnquxywE4GIAf6+1vgjAOGYuNBIAwPG7dwBYBGAOgCSIdrbRaHUEGuF8Qin1aVCIyLdl0wRfa7Sxmyoark+NZHOcvTl1OHszzUY4ezMjcPbmlNBw9gZwNmdaDThH9qYRFlWHAczzvO8B0DsTDVFKhUHG5tta6x/z5j6l1Gz+fDaA/nPcrLcDuF0pdQDAAyCK/IsAWpRSIf7OTIzZYQCHtdYb+f0PQUZoJsfrBgD7tdbHtdYlAD8G8DbM/FgJJhubGb8GlFL3AbgNwD2aufBGaNdZQEP1qQFtjrM3pw5nb04Tzt7MDJy9OWU0or0BnM05LZxLe9MIi6oXASxj9ZIIKHHsoXPdCKWUAvAPAHZqrb/g+eghAPfx//eB4pDPGbTWn9Ja92itF4LG5jGt9T0AHgfwgRls1zEAh5RSK3jT9QB2YGbH600AVyilEnw+pU0zOlYeTDY2DwG4lxVyrgAwIhT6uYBS6hYAfw7gdq111mrvXUqpqFJqESjJdNO5atdZQkPYG6AxbY6zN1OCszenAWdvnL0ROHszZTibM0Wcc3tzNhLFpvoH4FaQKscbAD49Q224CkT9bQWwhf9uBcX3PgpgD7+2zeA4XQvg5/z/Yp4AewH8AEB0BtqzHsBLPGY/AdA60+MF4L8C2AVgG4BvAYjOxFgB+C4o5rkE8oj87mRjA6Khv8Lz/zWQss+5bNdeUGyxzPuver7/aW7XbgDvOtdz7CyNwYzbG25HQ9scZ29OqU3O3ky9Xc7ezEw7nL2ZWnsazt5wu5zNmVqbzqm9UbxjBwcHBwcHBwcHBwcHh9NAI4T/OTg4ODg4ODg4ODg4nLdwiyoHBwcHBwcHBwcHB4dpwC2qHBwcHBwcHBwcHBwcpgG3qHJwcHBwcHBwcHBwcJgG3KLKwcHBwcHBwcHBwcFhGnCLqvMcSqlrlVJvm+SzG5VSLyulXuPX6zyfXcLb9yql/pZrHkAp1aaUekQptYdfW3l7q1LqQaXUVqXUJqXU2kmO+Q2l1Opp9OcipdQ3+P+VSqnnlVIFpdSfer4TUUo95Sl2B6XUbKXUzz3vP8V9262UunmSYz2tlNrCf71KqZ9Yn1+mlKoopT7A7zuVUr863b45OJzvOAv25oNKqe1KqapS6lJrf6dyDZ9Je6O4bXvZzl3M2+uu+1P53QTH+pVS6lXu71eVUkHe/j2PHTqglNrC2y9QSt1/un1zcDjfca7sjVKqXSn1uFIqo5T68lu0578ppW6YRn/Mc8pbHVMp9Rt59uL3caXUkx6bcR8/o+1RVNh2omP9F6XUEY9tudXz2Tp+ttrO4xSb6LgOp4FzrbHv/s64Lv9/AfCnk3x2EYA5/P9aAEc8n20CcCWofsC/gjX6AfwVgE/y/58E8Dn+//MAPsv/rwTw6Fnqzw8AXMj/dwG4DMBf2H0E8FlQdWx42ncH/78awKug+g2LQHUIgic57o8A3Ot5HwTwGIBfAviAZ/s/Anj7TJ939+f+ZuLvLNibVQBWAHgCntolp3MNn2Z/vPbmVm6bAnAFgI2e7/mu+1P9nXWsJn5VbG/umuA7fw3g//G8/w2A+TN93t2f+5uJv3Nob5KgOl6/B+DLZ7E/3ueUSY8JKpz7ac/7jwH4OP/fBmAfv7by/62nOnYAQqDaW2K/2sW22sd1f1P/c0xVg0IpdS97PV9VSn1LKfUepdRGpdRm9iZ0K6UWgi7IP2ZPxNXefWitN2ute/ntdgAxRdWjZ4Nu8M9rupL+GcCd/L07APwT//9Pnu2rQcXcoLXeBWChUqp7gnY/IR4g9sD8tVLqFaXUo0qpTt5+GffteaXU55VS23h7GsA6rfWrfJx+rfWLoEJuNn4C4B7P+/cDEG/yHQAe0FoXtNb7QcXfNrzFWKcBXMf7FPwB6MGn/yTHdXA47zFT9kZrvVNrvXuCJp3SNXwm7Q0f85814QUALdx2wHPdT/F33vEZ5X9DACKgQqzevigAHwIVsBT8DMBdE4yPg8N5i0azN1rrca31MwDyJ2n3/aoWuXJAKfU5RZE7m5RSS3n7EqXUC0qpF5nZynh2YZ5TTnLMhwDc7Xl/D4Cf8v83A3hEaz2otR4C8AiAW96q3RZuArDV85w1oLWuTHJchynCLaoaEEqpNaBKz9dprS8E8HEAzwC4Qmt9EYAHAHxCa30AwFcB/I3Wer3W+um32O37AWzWWhcAzAVVmxYc5m0A0K21PgoA/NrF218F8D5u3wYACwD0nKQrSQCvaK0vBvAkiF0CyOv7e1rrKwFUPN+/FFQl/FSwDcRiQSm1CMAQ9w3cl0OT9G8ivBfEvI3y/ubytq9O8N2XAFw9wXYHh/MSM2xvJsNUr2Fg+vbmrY7pve6n8jsflFIPgxw1YwB+aH18NYA+rfUezzZnbxx+q9Cg9uZ0Maq13gDgywC+yNu+BOBLWuvLAMiib6LnlEnBi6UohwhGACzm8QCmZht/nxev3/SE9S0HoJVSD7MD6hMTHfdkbXSYGG5R1Zi4DsAPtdYnAEBrPQhawDyslHoNwJ8BWHOqO2Mj9jkA/5dsmuBreoJtXvwlgFZF8f5/AGAzgPJJflMF8D3+/18AXKWUagGQ1lo/x9u/4/n+bADHT7JPaix5VorsNbZ/N9X+3Q2/d/iLAP7c473xoh/AnFNpo4PDeYJGtDen85vp2pu3Oqb3uj9te6O1vpl/HwWNuxe2HbKP6+Dw24BGtDeni+96Xq/k/68EhQcDp/l8w5BrvwPAsGf7qfbv7wEsAbAewFFQaDFATPlVIPbrKgDvVUpdP8FxHU4DblHVmFCov0j+Fyju9gKQ8Yid0o6U6gHwIChf6A3efBh+lqkHNY9Kn4Su8Gs/QKErWuvf0VqvB3AvgE4A+6fYL42JDYIgh1PsFyMKos7t3x0GMM/z3ts/H9gjswHALzybLwXwgFLqAIAPAPg7pZSEQcb4eA4Ovy2YSXszGU75Gn4LTNXevNUxvdf9adsbANBa50FhNnfINkWiO+9DbVEocPbG4bcNjWhvThd6kv8nwlSfb+TaPy17o7Xu01pXtNZVAP8btfDpwwCe1Fqf0FpnQXnjXnEdZ3OmAbeoakw8CuBDQsEqpdoANAM4wp971V7GAKQn2gl7aX8B4FNa62dlO4f1jSmlruA4/ntRi9d9yLP/+2S7UqqFaWgA+D8APOXJEZgMAdCiBAA+DOAZppfHlFJX8HZvvsBOAEtPsk/pWzuA41rrEoDXASz0fPwQgLs4vnoRgGWgxNWJ8EEAP+cHHQCA1nqR1nqh1nohKETnP2qtJd9qOU49RNHB4XzATNqbyTCVa1gwXXvzEIB7FeEKACMSCg3/dT+V3wEAlFIpj7MqBBK32OX5yg0AdmmtvWFL9nEdHH4b0Ij25nTx7zyvz/P/L4DCEQG/vbGfUyYFt3sWgANsw4KKFfoAPAzgJkWKzK2gHKmHJ9iHN6/zvajZkYcBrFNKJdgWXQNgh33cU2mnwwTQDaCW4f7q/0CGZRsol+l+kFdzH4CnQQoyT/D3loOUXLaAYu9vB/Df+LPPABjnz+Sviz+TvIA3QPHAire3g4zeHn5t4+1X8rZdAH4Mj9oMyNMhKjxPALiE/88A+H8BvAxS0uvk7Zdzm58H8P8BeNazr9dA4ToAXdyHAYyC6O/DqClofQDAX3t+9yiApZ73n+a+7QYr/9ht9bT3lrc4D/fDr/73pwD+YKbnh/tzf2fybwbtzXv5ui4A6APwsKdNJ72Gz7C9UQC+wsd8DX51MN91P4XfbeHXbgAvcju2gzzzIc/37gflfdnn5csA3jPT88P9ub8z+deg9uYAgEG2I4cBrObt35Brmtv6fs/3PwtgI1/bS3n7Mt62iT/3qhLazymTHfNSAD/yfO8fANzgef9RkHjPXgC/49nubeu32B5tBTl+Znu+9+/ZDm0D8Fee7b7jur+p/8lEc3A4I+CY6Nu11vuVUhmtdWqC76S01hn+/5Ogi/3j/P6PAYxprb9xkuP8GOSh2s3v3wt6uPrMGe6SfdynQJKoQ2fzOA4ODifHObQ3vuv+VH83HSiloiDBjau01ifLX3VwcDjLUEr9DMAXtNaPc3rApZpzwzzfSQDIaa21UuouAHdrre/gz07pOUUp9SUAD2mtH+X3FwH4T1rrj5z5Xk1+XIepw4X/OZwxKKUeAfCaJgnkt8K7WSJ1G8j79N89n/09yIv0VseJAPiJ9kijaq0fxFmmrBVJNH/BLagcHGYe59DeTHTdn/R3ZwDzQTUD3YLKwWGGoZT6JoAESKnwrXAJgC1Kqa0A/iOAP5EPpvCcss27sNFabwbwuOLiv2cR29yCanpwTJWDg4ODg4ODg4ODg8M04JgqBwcHBwcHBwcHBweHacAtqhwcHBwcHBwcHBwcHKYBt6hycHBwcHBwcHBwcHCYBtyiysHBwcHBwcHBwcHBYRpwiyoHBwcHBwcHBwcHB4dpwC2qHBwcHBwcHBwcHBwcpgG3qHJwcHBwcHBwcHBwcJgG3KLKwcHBwcHBwcHBwcFhGnCLKgcHBwcHBwcHBwcHh2nALaocHBwcHBwcHBwcHBymgbO2qFJK3aKU2q2U2quU+uTZOo6Dg4ODszcODg7nCs7eODg4TASltT7zO1UqCOB1ADcCOAzgRQB3a613nPGDOTg4/JuGszcODg7nCs7eODg4TIazxVRtALBXa71Pa10E8ACAO87SsRwcHP5tw9kbBweHcwVnbxwcHCZE6Cztdy6AQ573hwH8/+y9aaxl2XUe9u0z3PnN9V7N3VXV89wkm7NEUZYVS7JlSrAYCLENOVGiAEYGARYQw1B+OBEEJwHyP0ZigECUH46l2IxFS+IgkqJINntgs1nsblZ3zXPVm9+745nyY61vn3P2vfe9alZ3qyo660fdevees88e195nfWt96+PTLvY9PwsDH56Rv5cOdAAAmZEvAj+E0f8b3sS/DZE2+4t+z+sNnFsK12alaz8wKT9+6s+UrPCvMXwPTuXbbO8izcTvJj/BFfY/DLB2exUA4HshAMDzPK2P0b85Hp7WS+oXRRHC0AcAzMy2peYpH6BtsWPIH+58PMbaNnk6yIVj4++WMv252bTB2ufObMIf+wz/vr8XfyvM7sn32AlikCYJACCOY/nUv7M01nsdG4uOoTEeokT+32h29Gn6PC3/ypXrq1mWLe9R5fdT3pW+AYDZ2dlseXkFvV5XvuBc1+5KktjOcX5Onzfjwn5JdbKn+jdLcMucpIJYRpLYBaPfy1++7+mnX7rP930EQaDllgvO6+XU3a3ABA8G3rufd0MGwDPl+cF+yPVGucy8P8Yl1zFeqSzqGs5rU/i92+2Wymcf2bpbPZVN/LwT8Zw1AKsuuRYzhKHqS1NuH/9021aSfevCQsrPZT94xiDVNTwajgAAifYd547Jb57wt7vnlv9jvMlazxTWEvVmqnPY/p2W+zuOo9LfaZoiDGUOB4GvdeZxRa65euXKX5XOedf6ptGayTpzBwoao6wPMmRAtve+Z+eZ58yLrDBuek2v1wcARKNe6Xurs5y5ZWDG1qSdCvqZZtRV5XlvTPH/zm/OHMqnkIypV9BhgV/Wt1ZXoLze7bGk+CxnPcOpT95QU/zZroMsS+3z8jLKlZ52bjLGFLbZyWPI81Cuu8r9JJ9lPZ7lN5eu5RrmPj4a6dpOkoI+lU/uA2P7UVreUzzPs+uND/ac9W08rV+ajzuQT9sMGczYHC7vWZkzD1mPIAgK+11Zn9tzk1M0xytOpB884+V7hNPf3I+47cVxor+zHnnfNRuis1utFgCgNxjIZ3dwR/rm/XqpmjSzSqvYGPNbAH4LAALfx7HlQ2gF0gH/6L/8KQBArAvlwOJhuzlxMuaHhvLkobBzayYcW6R28UA6lmVT3ANAcaMdXzSTF4lt9IR7bbk6sK64h6Q0TW2darWafJflC2laXflM98Dge/VS3dkPdohSKSvxtb5hgC/8b/87AKAzcxhAPuFqgVzbbjZK9RsMRalfv3YLh4/OAgB+9udk3+kPtD6xvGR5wVD+NnrATZsT+wUA0rGzX7m9gaO07H1pikyVgnuAcQ9pkyTZ76XKpBO/L9Yvk7U/daxSe+DxS38DQJI5Cnds05hcZvG67e1tAMDa2hoAYHNzEwDQH8hn4snY8eXKRDIeYTiDaxuyOT/5rIyhn8m1USSHod/5J//jxYkd8MHIvvoGKOucAweW8T/9z/8LXn75ZQDjm8/Gxoad4/x0x604Pq6wX/p9WQfD4bBURqvZLP3tzkljjN00d3Z2AOSbKJ/fbsv6mZ+ft/cAwOzsLJaWlgAU9IWzEfcHUem5E9eLozfsy7h+Uia9mDQajdK1u7u7AICmtrumKpe/83qOQ/GAQP3Me9m3gd8o9Q/L2N3dxYsvvlhqd6fTKf2dBa3S81kmP0vr1llTdm/RdcIy3LFM0xSHDx8u1Y1l1eVP1Ov10u/FfWSv+QUABuV7qDfYT/V63c6/ixcv2r4BZI5MqjPL8Dxv6r5p97FGbWK/FF9guT/xuWxTvyf7F9fF6totAEAUyfeDQQ8rBw8AAA4cWAAALC4uAgDiRK75Z7/zO39VOudd65v27BL+9n/2zwtrRPdtVetxPEKW+m4RLAdAYW42dF7whJgahLpnI5bfXnvtdQDArYuvAACSSOao0U0o04MoGxLCQxByPkv/8lDtB/LZT6R+do2mUp8w9OzB3lOja6pnm1DXSKBzwteqe6Gsx86MrMO5uVnML8h37bbM36aeKcJU5gjXCOcXP5MkgReU9yOuSWvUoO42Na27/N7pUA+M0GpL+clQjY3OHst22/Ohnp/CMLTz3D2H8t6BHsy5Hlkv9lscx8jMTOm5rt5l23YHUsbt27cBAFeuXAEg+3muT+Va7gO8l/Wg0Ql69uu0mzh0UN8XdG60mmWdVWuKzjBa50DPh4k2OcpiBDqH2W72C/uM9eD37I/FxUX7G/V5qM+3Z181qnDOthsyT9a2RHc0m027V7PcXk/OLdwHe5GUtXp7S/qjL/Xo9rYxGknfPP34IQDAM8+/AAB4/Y0zAICXXjx9R/rm/XqpugLgeOHvYwCuFS/IsuxfAviXANCo1TPP8xBHfOPkQUAGzxgztnFQplkx7eYAz/7folf2c8o9zuZR3NymWSLclxtKsb4caCqHSQcpYPImzsXKRRiU3wPHLLKU4uHI/raPAdQUFD0ADLs7aOopqMOXqLCsYNt6SuDC4LMWFmdx7tw5uWZGvnvu+Y8CyF9UbJ/qg62BqLAw97Jkl+rulRWfHWvPQ27Mm2w9vzuZXEaayrxIkgTNmvQRDxLuWLEeVATFg5ZrJXOV1rQXRT6D4wKMK+3Al4Ndkkrf0fJTQ81ed/78BQDAQ488L3VTA8jatZsT2/0By776BijrnFOnHsqiKLKbkD1sF6xl7LP8wPDu54mrn/hprXFTkKQ4ju017ubOMeVGweuK+ou6xn1JyD9da/Mkyymmfld8rrvpp2mKrS3ZtNh3fAHk34O+bGB8IdzY2ACQH/YHg4E9eNgNUdcFn/v2mTfttUCui86ePWvHk9fyEMG6dqPyuLubP/ux+J27f+gSGBtL++LcaiFDWR/mnyjV2T2MZVm273yL4/K48Hr223A4tHXnQYWysVkv1ZlSbKOrW9z2Z7oH8CBz8OBBAPkY9vt9298co/X1dQDAyvJRAMDmlvx97dpVAHlfzs520NCXNmuo0zJu3rq+Z798APKu9c2Bwycn7rrFPjWY/BJN3c9DfByVUVeTjEAQL/Nkb0G6wS8AAGEo4x3rC0O9LgfS0UANmjBIYp4TZP4EutcTKYwznatElBRZMWmGRk1+m5uRF6Mjhw7p3zIXOs2WPleNCDpHZ2bkRaLb24Hv8+WFz+XayPchYPK69ILy+mK/cq/NjfDy/Mi+OEo3tdsLGI5EZzZnygYX3lvcQwFYrxhjTI6aOC9zdg3py25ntl6qe6BnAgDwg7I+p/C5xki9DmRiZDiwKH373DNP2P7hc7e2xVB665a8cLz99tsAgL56ZiSx9pMn9ajX2qjXVEcPiG7qPqNlxtqGlmlHEyMAACAASURBVM4lqGHA2HOcj8AvtyGzSBHnDvewpHRdmqZjeyT3Cs4ZV3hv0YjkGiDdl6zhsGwYHA5z4w5VYRxLef/2j/5MfpuMfUyV9yum6iUAjxhjThpjagB+HcAX36dnVVJJJX+9pdI3lVRSyQcllb6ppJJKJsr7glRlWRYbY/4rAH8KcRT9V1mW/WiPO5CmMfo9eXtMYrVY1PK4ANdKRusVrRque5y1GsKbigjBQaJcF6A9/d2dslzLBKVo+eQb9TS/fdeKPVZfFC2aZRccF5ouolNuua4rfI6YyD20jNTVUnjh/Dkszc0ByK0UoV+2bPd2xQKyfFAsVL1IrB39/g7m5sSi0t0dlNqZeq61XtrgTUAWp7nCuGhPotYUz4mh8DwPcPxsp43ZTyaTEQfGAfh+MOYi4M6DkSJE9ZbMk9Qiagl8r7xUXXTCnVJF1wg+i9aZcXRLyu7uilVvMJLPI0uCIvSiLjTkARtrYgFrq5l+1C1bwP8q5N3rG3vfmNWzuG6mIceuLppWNsspfro6xf29aNl3ESLeQ8ud69pXdHUputEVy7UIZlAvlb1XbNG03/Lml/3ksywtxMGIJXY0Ijpb1qV/8Rd/AQD47ne/CwA4cEBcvj7/+c9b17lf/uVfBgDMqQ6iJAn7eHwcqC5cNNrGFNwB6jgeBwAtS/enyeEptl/2fMTe4TN3Jvt4HLzfQrv9aFS2/rZaMuZnzryD06dPAwD+4A/+AADwta99DQDw3DMf03vFUry8Im5KnC8L87MW5aC1e6hIlW/eLwebO5OfVN/ovaXPPLYjRejG6KkwHs8wDo6T23BNj7BxU1zBrl09DwC4dU0+fV/PHAkRFHU71vnXbOo6zfI12lCvE4YFcM3OqDvWseOCMh4+fFDrm6DRFF3UUH9GItAugsRdPEzlfEC3+U57HhE9lXThWBdi9Vxy3a/5OwBkzlmCnzMoC93WMxuTLvfVagGiWHTiSM8QdD8k2tVUFM4i02nurcPvwkb5+bEiJF7ouv+WXY2GwyFabZ53y8hsWCuHvtR1DGc79VL9xGVaY58ViTx2VADVA0vi2se9w7pJJvK5sbaKfk9cdGvqueLr84jyt+cF9cl4XmIsBhFGP4B65qJWk2vTVNqQ7z+67wXlPc3zPHuN3Qvposp9OC3fQ+HvOzs7JS8BIHc7ptCDgojVaJS7wXMuvPW2gM7ZlJCK/eR9005Zln0JwJfer/IrqaSSSiiVvqmkkko+KKn0TSWVVDJJ/mpNPirGGIQ1Hw2IJdJoLEe9kQcqTwsSp58nLbPudUWiBoqNJQknxzlMQoymBXTnLHyT36KLAcdjMV0OA9decRbjFuTJsRDusybFVKVJuQyyi1kLbF1jazSY843Tr2NBLYieoX1SEUNlgwtb8tmLiDbSIp7XfW2VwYFizgjDWqksg7L1ptj/ed/lfQLkFhda7aH+4GwhWWCSJIOCmlPjjzyvjHoVZV+GyKxsCYdLnYScpYzizlWiay7Njef7tkH7Ba/b6jhjPgn5yOeOWtlqanlTKxMtlV7gI0ukrv1tsTxtd8Was7iwckf1ufckKyFVbkzNXkgV5U7GwkWiKO584vNpdeRn8fnUca6PuRtLU7T6uYHBk2J3Jn26/590jRuvxbJ937cWQbaTPu1/8id/AgD4H/75fw8A+N3f/d1Se4uIuxsgTuFzXYIh7gW+742hzy6ZBHAn6HTmfFK80rdkwbP9o9+nBSasad4O04ygd0RI+16gXXchKWMva2UElUx+jz/2MB555CQA4Nf+3q8AACL9LRop2YfqnC984f8EAPz2b/83AIDf+73fy4P7NcaDxDruuN8PkmEy+Qtni+d58OLy+cOuXY114hq6fEPiY25dvwEAGHZ7CBTN8nRvb0J0OHSPTUnSRG8NRShq3IOjBCsrgi49/vhjAIB6vRzT6Adl0pfBUMbF9zOLDMx4SmDVUNRH5wgU7Qr1+1pQJv9B5ttYrjSh94/qOSf+0EX74zhGghytkTpN3ssVOMnb5PNZPjDQs2TDOUvqOuO8s7MvyeuTqP4KtVwbN639O6sxZayfGwc622yhpZ5ZvHduVvrZEvNQDyZyb4PxWEoYgtCz187ONUvPaXdmS8+vK2JUC8UzoNPqWOKTWGPL+l1BeVZXhfm5p+RjPD96ijLGnFOeQZhK7/S68lxLchGWSYVq9bInURAEObrHvSsr76/2jO+co6l3imd9tpt/s09dkiW7L/jGnv9ino+y8tn+TuX9iqmqpJJKKqmkkkoqqaSSSir5ayH3BFIl1poMmb49Zyktsvk7nxuDkFsvJ1NoU/ZiDsQUtp09azoWX7H39dMsJu9WXCbCO7JkqkxDKFw0hVaMSB1jac2JhgN46jNdb2msjt7rN9V60xHLSKyMMemWWAZm59rY3BIK71s3henpnXfeAQA8+9zTck9URnf2aptrveanpZt27AQEA30/ALIye8+49Xq6TIuryWVaGZPi4bRuLtKh1ryEzyo8wktzVrpinfN6levDeUfrZpqmY6iF9etP1O9bLYUcADIDIYE11/nazlDXpplMzHPPS5aVWSVd2uIiUrUXM94kmWSRdueLO+doSSPDXZqm9v+0DHNMGUvgok/FGANa6tyYImvt9cqWQncu7sUWmbdBPufm5seuGyi68Md//McAgK985SsAgIUFeiOU68l7iwyp01A1WozZP7SSW7bSYWLZBqfJKJb+tuyELbn+1m1hy1pZXrG13N7ZLj0nUGSq7zyf17NNxfHY2RHkjlbVwUCeS6a8ScI5wfIYU5aPafm6SSxZbl0YH+GyYuVtEEmSxN7L38bWQUJqez5XrcKR1ifwrfcDUe+6xthArd1qnMd/8Zv/AADwm/+pfL700iv4/d//fQDAQY3TJbsgx/1+kizLEKeJTQFjNI9QktJrw0Oq/XblkjAhXr8in5vrwuTH2DJfx5t5fMIgABhf2dBzUlut7koZDaPIiZG/Hzp+DADw4HGJuambFLWG1GVhUVnghlJGPRA0o6FMtj5jfOYkTif1DAL9LqjrOUHnoqt3KHHSLX3ved5YDiXmTUo1LszmhVNvmIB7kjHoUzeQ/p3IEZnrtO5tjVe2KS4U4ev3I3hgvJEiFKqk6oqqZWlZV5LxEMiRtzxlg8bQahuGFm2S7zsd6eMiUlMjUmdZGMlg7bAE1x2q8UbOfmcp2jU+rlMvx2O5ayeFXD8/U7M0+Ea9jyKNqe8ourityBQ9rDbX5DxXi8nYOYtf+Nwv2boAQBrJc199+fsAgK9//etSdqJtNYxtMgi0/X7G+D/Gu2kbrN4hgqT6djtnS+4qq2ymcZe9nvTDlsbzJ4mm3eiKTmecIoyx+b+YncCeg5hqp3x8nCr3xEtVmgLDAdAwAjeSqCIP7s6sMkpTBttzEenGpR2c04IyUDstuJSMB8ftJcV8Qe6Bwg0EdwOhKXEyKFzrUDMH5ZeZICR1p1LJI3fnsclDuSlROetz7EGcyezAA3OexDTVezKvPDtsnbVaNaX29NWlrRm0EDRlQ6/VOiheHPWlrO2+vDiFGgCfaP/vbIww05J7ew2Bfq9el4PL48/pxK5rkrWeBqj64y8VVrSdLs21fXGeltQ0TZGxbnQNoucBXeWcPFXFsXTdO10Fy3fnaTTMnufZ4Nj8+Rx/dTvIwrHn5u2QDyorF+Z2aWdzGlZ2YmzXEF0Vs5QBppoXjC+Z1sdSXdeimoXrr24JnfGTT4iLyGiL+S7ub3FfHIoUr/vmC5pAS+2Ov0tO4rr7ueNVLJNjzs9pVOtF90A3r59b12wf37FJutH9rtkq0yRzTe7s7ODgITlwffMvvg4gP5hvbokL14K+iPGwz3tJ5gOMvxC4hiUSInBP4IvL8vIyaDBjuS4tuyVyYf4efWajVi/9DQDbm1Ku5/SZ2x/XrolL7MqKuMRmWWbr7Obhyt0701K9WM84ju21c3MzpWv5WOap4cuW6/Lo+/7YixZfNt2cY3TxIVGI7/tjL6buCzDHyu3jtro6jUajqe6vaaLtz8qHXPbTc88+jS/+2z8EAPzGb/znAIDzZyU1B40M95MYpPDigc35NKAr32XJIXzt+hUMlAY7UprzOl+U9NDq6/xLG6Q8l/lRCzxLmkKXpdmGjN3ho7LOFjTXV01d2wIlqCAZlRkBQajnAt2XGi2ZOwtzkh+ML9E8g9R1rMJGPR9nrce0FBLUS2lWJtYajUYwTAhs76FOVrIdXasR9359VpIk9sEsv6V9R6MFD+Sbu5rTriW/0x0tNQUSNFMmeXKN8tZNbcK+YF+qqJO1Pv6U/aB4X7df1gHcE1yCokTzdpEwoqEGoTRNkekZpjMrOoHrimuU1+bEIYwryMZeWlLt77YSdLTVzXCoLy6HDyyV/r52+Qq+962/BABcvy7nhCceF8N5U1/u/tbP/xwA4NsvfkvKVB1TD3yQot2Of+SEZWi96G7Nlx1fz82D0dC6IvJw19eXyzxh8mQQpqjL3bO+G7axn1Tuf5VUUkkllVRSSSWVVFJJJXch9wRShYKLHlCEKPMkgkwSN+aSY93/iFhokSQlyAzGA43L1uL9qzdu1XVdx6aV5fnemMVhWvJZNyCR7pATCRs8t01lmeZ2dCdiYfg4f651AfE1IZsmiuvo5/qWRoCibGUK/DrijCQAUpfLFy7qNR8BAEQaAFmriTUNSR6kX2xL8f/j7m/j17riJiZ2abSzPTiKXYryaa5hFBflSJIEnr834jGN/rkobqBlHrRdtuK7iEiSJGMIh1umm+zQJhjORjAacGvqMt4HDp0CALxx69yebbpfZBLRy14kDsA4UUPRRXlaWgaXQMJ1xyjqAtfdz523bnoJWjKDIBi7ZprOmdbGIAimzuncBTsrtYn1+OIXv4ivfVWos/uD3P0UAOYVoXLnmiWaKYibgoJlEJnp9wUlJSkGrc7z8/NT0yXkSJDWZ36x9Iy5uQVbP5Z7/PiD+jxpC93Qtre3S2UfOXJsrA0UIskuEYm7r01KBnzmzBkAwKOPPloqc3ZW+pKEP0SbWNaBAwemulKzPrOz8rm2Jp4GW1vSh0X6eiZmXlhYKNWdur5WSGAKAFeuXAEAHDlyxM4ZS8uslmkmr9/akrJJwc0xbjbr6HVlr/nRj4St/JOf/CQAoNW6/5CqXncXr7/8Tdy8IV4aXPdMwptlGXylBadbWUDvHP1skQ5b0S4mZX3w0AoOav8ta/qSwNKw6zlFXahCJaEyDRI1yFoOTQOhEo4QCeS8aqgnSXtR5oTVe0meysEmEY7c5KplAhrOA6bCYT/EcTymK3P9U95z+W3MFDBpgnSodOC6nq5eljn41rqgf0QPuspUsbQsSPqBFXEtTVIPQ9Jrq3ud6wXj7p9JgUhh7GxHIjESdIRlLxRXLwdBYK+xrteBdX8BAAxJ+qHugJF1g+N5AQgbHX0+CUKk39uzZV1K1Llezz2u6jreRO9HRKY1QW59JO3v95kaR+qxpoQpDc/HcENcAhcVEbt28TwAoEc0W+c7510U5wl8R3oODC26x7NNed/hvBtpvUbqqRCnCUZEpBRVI1JF9LXfJ5V/+bxU3Cf8KSjWCHcmFVJVSSWVVFJJJZVUUkkllVRyF3JvIFUqLv2h9Z1v5r7d+yXedH/3jLcHWrM3yUWhZmPfuMl2bQCqU1Ycx2MWj0nxG6Va8W/72LRQhn6zL3HC+G/Weu7EBphsyvXI60krbXcglp80UR/qQP1tZ8V6O2JSNYuUGPR7YjVoNcWadvOqIFVXL4mF48jRB7Rek5GcosV8vziXbA+qZKNxdxkp5bPyZ7YH+pc/j32iZdq+dWLp6AdvYwo8O3guamGDaaMyrXf5+VOrpr8zcR6RDsYe5uQULm04xZ07rjUNoY9IrWTLyxLY/OMzEj+yujrAfSmm3O5JiXbduIDptNjjiI7b13wWfdu7mpSQlls35mQ4HFrrPcVNH8AyiegU43Fcetoxsp59SDgmJdy2lMIh0xbI2A8GDAqXsn/4wx9YuuUmCRJ63dK9vV3RJ4uLZaSoKJPSUwA5ItXW5JedmTLZw2CwS/d7tNplVCMj/bAm7myqFZ5xIxubYmmNRwkGGuRcPyRtIB04ZXVVriX6wngkWt+3trbGAvWJkB04IM8bKn1xtydtOv6AJFa9du0a6vVyTJOtu4obL8XhOniQ9RjYuDM3UfLi4gFtg6BbS0sSH8G4lm63a+/ltbYe6nnA/SnS5L/HjglSd3tVYr1u37ptUQ8SgXha/qVLQlZ0TIkSNjfWtE0yl5vNDloa9/LZz/yMtk8a2O/ef0QV8WiAGxfftsH1NUUXfJ1TjXobiS/zrUYkWD+bSmrAOMSTD4qXQLMp49+qe2hprJTRaPq2jt1Q11tNocG6IpRNRWMaSnXtt2rINIaWKOXioiZ/16Swu4pcxIroNJRYINru2jiwUVaOFc2THDuJXJ2UH1lm7J4JlPdOT/eeTNEGUm3zWVEUIdH1s61IyUAR10yRilZDPW1Ik63kM29dkzPITi/GoWNyDmkekbOMGwdLsZ48yHVo6iB01MW7ioyEKOsBF/XKsswmSuZea9FqR5eTLyDQZ1hvlCiysVwR1ztjRNnPJNlQvRjHmmC4XrftIukI63b5qhCmdNdEV3Au7Sq6vazxW0eOHEFLka9VTX8w0tjzyzduAgAWlahoc0d+763LvsB9UdrHuvIML2WG2h+RkrtEel5KrLOOZ5nJhkoEROIU6mT33O7GtsmP5fFO0iqmqpJKKqmkkkoqqaSSSiqp5AOTewqpyq0W5TfF0Whk3yjdxH+WSC8oW5OtH2wUlZJSAkCaJqV73DgVVzzPsz6otEBYwjxrxfZtXYECzW0jHIuvmOaj67bfJl/1jbUOsmvcJHfTrCnF+A5LVcokZ067rVVJESNatYpW+5FaZGY0mVyrLRbXWlN8mXueoi/axiFyy8YtZQpcnBff/NUbErNw4kGxTjL+Qg1Stq+LdKsU14ptY55G5bipYuxb6JX73bdlqHUnnWxNK9LyE5HKn09ErnyvpxbhRK3LcZLZ2Biifi5iVUQaimXJ/8tLdTxBNGOnyCJHxAW2zGkU8sVEs267ASDxEmthPndaYqi8RMbseLtMxXy/y6RYxGno+BgqXkC0psWvcR4TdXLXIO8rItzTEntTXFaqNE3HkK+xdu2T2Lg459322vljys+leJ5ndS7XNJEKSn1B1oK16CpyxxijnZ2didbcovR6omtdBKcotMT6qvOMp1ZYteQO1C+fqNNwIOPRaNZx9NgRAMD16zdL7T5yRL4/sLRYLtOph+/XkSRMSirfNdRyGmsCT44TWcqIXM7OziJNyQJb7l/2aaSU14x3PbgicSJEkFrNBrY2pby5ubY+XyzUjBdrKX3yUC36me6NrdasZRfMHEttoIngdzSmjAgdr7dxcnXf9mddE4rTk2F2TvqMjIlttZyPFPUaDgY2vuvoUUHvLl4UD4ci3f99I8bADzwb7J1pLgrS0cfwMKNeHytLsj+eOiHzrNNUVk9NlOw7bKCNRmMMReZnW1nXeC1RVRfd3trasvesrck49pUpL6auInOhnoXWC/G6Vo8xJlTnU6B2+5TxSlzC1qMi369ddN/Gf/q6p6G8B9csgtPDtcuCorQ1NHNxVplJl3Rdbcs66ASiX65rbBsTvTbgYagI68sXJA7owx99TspoK9qre3BilGnX8aiS5us5UL1z7G+KLsUm1+9yfY5gJSjH6GZOPKiln0f5bON7ir6YjAR6FpHmOYB/u7HhnjI8DkcjNHRujnYF1bly7oIU1lNvFC283pY+nVsQ/Qdds37mY+GAoJsrh6X/L1yQMtIVmdPdoTzjwBGJZZtR5Go0GOYsq8rmB18RaY9MhSJJpkyGHRmHkaYNGMYxmoHM691I66yU7vz0Vf96jEdjP8BYdtfEK581LWPraBd3IhVSVUkllVRSSSWVVFJJJZVUchdyTyFVFLIHPfq85Pu4deuW5h4pJDyzbFHM81G2/BXzJhTjSopCBiKLwowm83sU7+v1d0v3TIuP4vN3duMxK7FlPnGs1W5iYxf9KD6HuY3c5+U+ojn7m1tHktDxuWO5tkJlYApzFhxeWw9kHJp1sTzs7igil4oliIl8jVrIWu0askQZaNRK1htqvqpLYgFeXr4AAJiZn9N6Sb+4OZmKdXSt87YNKCNJFmGKM5i07NfsWjxTfzL7UJaNo4kcktziVLb8u33q+/4YC+Q4M1zZUmUKebP2YzlMNWEe/X9tImdNiGqMKaCao1IZ7vx3fcmNMWipNWxe/e7nM1l/i/HeLJT3siTIoG7b1l+/+Ml8LPx0W0qLGq1dic35kVhL7EitmZvqY04rr++JjlOwBxurYpXrbsj1hw4ex4LmhDMjZYbz1Ye+p3NOEzCHagVN1Trcrtfy5JZEaMA2qF7URI6W8ZL9YPVYZNnF3HjOOGK+IkX8FanhZ6PWRKh15Xcu2sJ+cFFS6ohOp2N1G69l/FXeh0xwLeumyBbItUXf+na7zFC3tS1W0Rm1aDdaDlugKehl3Se6Xc1poxZlxliFoSn9bZM2zzRsfBH3L8rCvPx9VeMViMYw/nRmZgbbW1JOkYkPyJlXA1/qurO7YftM6pN7c8zNO7mmho61VZNv9nrbtt0A0B/s2Jg1sv5xDlN6A+mPbl/zDWqfkx3x0qVL6Gts3ea2xF/QytwfSN3nF1ZKZbP/u91NPPCAxLhsdzXOLZNxn19i3q77SXxkwaL1liDK0ghlbR09uIKVQ2K9P6CxTEwMPNORudvUWBevlrN8AjLe/D/XCOdCFpQRIXfPLyaY5rzt7cpevr0hY8J8WZEp720cb3peAPmezbiroXq21FRHMbYnTcqITb1eLzHhFcXTvYfPIarNv+fn5zHTkbW/oPkUTx5ZKZW12ZE27azLPDxxVH5fV3RkFKeIRtL+mab096vfexEA8MQzTwEAlg4eBgB0VaeEPMelaQFVUySILHTa70TqXNa5oqcR9w83/pZSTJQ86fsoinI26rTsseN+2j0ejN+q4fJZQeji3qB0za7mTW37Gn86I/ro4FHpj6eflP7pbm1j7ZqgyQcUgVqYFxQ7ZvLpWJEizckZMUk0DA4u63n/hsS5bWiCXsZUeTY/VZkFMLUcAB7WNmQ8iW5tbMp4c66k7DvmrNU+9I2XJ5d26Alc77j9pEKqKqmkkkoqqaSSSiqppJJK7kLuSaSK1ovim/o0NplRJNYFWjgjtZzz7bJmfPt2XqsF5XtHuRUfyPPBuJKm6RgiQnGtKy6C4Pv+RKsEyy0+fzwvQrl+5TqV7xnPf5D/7ZYfKFLlxoTYeA+fPrJyfbvdRqLMPNFALELMpcFYibUt8Wmuq8+qksBg9caqtVbPzIil49p1GUvGMfzMz34GQM4MQ7SgaMV284G5/td2XiRl6w6vC4IAWaTXOPEmlBHKOQsm9fs0ZDJn94onXgcAi4tinbaWdrIb2baNSt8Xw8gccsGxeca8ZW7/FGN0XF91dy2539u/kww1fX5Hx+Tpg8L09dqFm7hfxff9sTEo+ri71r1peZvc9ZWm6RhT3c2b0k+0Bs8Pxaf/0VMPAQC2azL22w2ZG8cXQ/i+WFe7oVp/1ZcfDVmDS2rBJdNdzFxlo9hCYC6iu0cqtrG+2Y8VdTyub3Ls0yShRZv9wbigYu4nWqSJlLj62Y1RJFJVjCljuS+99BIA4GMf+1jpez7fxpsWrJK07hMpctlp3bwybjzL9vb2GEJFITJjPRp0nlA37O7u2nIYd8RYLneusi95/a1bMrdWVlbG8kO5wrXPvpskN9RyzHYTBXHnP9uQo6Se7Ttew/a5wuuor4i4FL9j+zh295MY46Hu17GiuZ5OHhNUaqFNNj4PNY0rs7mjFKmu6fjOzMoY+mEeSwVI/B3HwqJGipRzPXGc2f8uk2gURbnnhlrxmeuK6zB19otJ+2TcLyPPZLQbKoo71Ljlmpt7qIAuu8ylvZ60ievgrbfeKtVrcXERP/XRZwEAB5syRxbVU6avXkrHjgt6uqHnls0t6Zdbyjo5jEboD+XakaK584vS3z8+/UMAwMqaIMInH35C7iHDnO9blMknI6Aic1TO7hmLwjPoYDCwTHXumcJFGafF6HtegenajI9v8XmWhXVL9NCFc+fR1Hk2VHZN5h5rK/tk3VPvA/VgItvr2qroh5pn0NaD38aqIoA6HYbaD15T6jfjC9q8zfN0mlm+AKL2TWUVvHXzupShsaTIyJGg81HR78FoCE/dzzYVsSJSatRzwihPgZuTNMsyDGOev8qvRe82hrNCqiqppJJKKqmkkkoqqaSSSu5C7gmkyiBF4A2RanWuXpU3X6hVZWVxAU899ZReK2+iQ2VtYlyB64fLt8vAi8es9m6el2l5eooIk1t+bvmdnIcht64FY7kJcl9ksSLSarmwsFQqK8vymKZxK/BkJjCLWKEGV3JWwbLFw8YQaf1aNc3LMtI8NKMIRxZOSJ31DT/QPBiZ3vvgiYcBFKyV1t95EaurYjmFZoyva96xBfUNv35b4ktWjmkMiba70cjbQIsW2aFyNKds+clZb8oxTr1ez1pj3fxQ+b210j1lVp+ypcn93C8HWRRFOSqiPsLWN1ideCMznrOBZSep9Kc7hzjPTVJmleN1xdgV5ozoFsYVALa3xTJHi3cQcA7L9bUEaCuro1+X367sarzLMUER8CLuKzHGIAiCMWbQotVvv7xU7hzk9cPh0PY7LcW0IFuL4ab6mCs72jNHxZJ6NZX1Ew5vCHUmgEZHcvnsMgdMwLhSmc8RdYKi12kc5cyZttbMfUekfW/VPyl/xzgz4t5zfi8hgkLUw43PaDQa9v+cy2SX4/plGS7K4nme1UNEd2jV5nO49sk2aHNvFRDGaeyOFCIyZNLj+uH6ZbxUUVh39i/rd+7cuVI9kiSZyuBIJMOOcwAAIABJREFUcWN0WTb79NatW1hZWSnVifOSdWXfcg8iCtRqtSzixdgm5k174403Ss8ZYwstxJO6c4HoCpEp1ovz1R2HohCxdPvlfpB2s46PPnkSKyuCwJHJL1Rre60eWoSorTFUYUPGyNecUnVlWuU8bLR0P0sTjNSKT+R1VWOH3DnixlIV9xMXqaKVH85YuHsfkM9noluMVY25PypyRmrf0HNZnMfPOCy/25W23VDGPsbPc//0vACpIlLtUPrEY3xpk/milEnyoUfl+apLTp+9DACI/Bq6kTynrs3a0ZiyQNGXoeaceutHpwEAjzwiZ9I0SW2uzzQunzVtnI62092/i2cQxu5yTbj6ht+7+w7LKHpXxNof1JGuPuf3g3VB32qej+5mea9im4hyh3PK+rci59ROU+bjAfVWWr16Db4y53VmRFdsdGWsUu2BWkPqOlKPMuoh33j2eTw7tlqiX06ckLxs25tS1xvXVK9yL9P4KXg+ujsyRjzbWMRQJyTzlNmcoTy3JSkCj3FmZXm3Xh4VUlVJJZVUUkkllVRSSSWVVHIXck8gVYCBMX7OEKWxPDX13TQmw8aGvKUO1I+1Ude8F7tlVhVaOfj27iO3+tNK0JsSw+QiN8UYiWnxJsz5NC0ualB4vXWtFINh2Z+/r9YDyyBXYFZzGelg9rEGZ+N+oG5uJXup4+87UOaYTFlfkKbW8ptqv7pZ7a9fFX9nWjOjSCxFw1EP9VCsRTavieY3OP3jNwEA67cltmpzQ55RD8oxPkUrC1nMaFVzLZpBODn3WK/XQ6QWl2nZtNnfe8WGTIqfKZblzpNiGSOH1Y8xfkSEfO2nRlhGGdM0tXFm06zmzOjuxprR6tTtdtHtM68G71L2OB1TF/2i1XrYqGGjprFZLbnm3G1h+fnkRz4iRf0h7ivJsgyj0Wgs3xst6WEYjsVUuVb3aajlcDi0lkBajmllZN+uq+o99LDEVH3qObHGnX1NxuT1115BrOuwFih64IsVdjYQ615TWTo9ZX5MVW+O4gSe/hZwzpHSSBnF4O+t+iej4yIuUvWTCOeczYWkzyCilGWZZZEj2kdEalr8KsdyNBqV8l3tJYwXytlk8/pxLlCXFGOFgNzK6saHTUJS3Pxklllrt4wSFxG7IsoOwO6BbBvvdWPN2OalpSX7ncs8yufxez6jiAK6cV6uzs1zNqb2nuIziv93ESkiY26ZnBdxHNs+Yp9wb9lvTO9FqYU+jh5dQEOZ5eqKMkXK8OuFIRYUiWJfcJxdBBSJ9OnWLZkPxXhZG7tDREqX6FDjhNj/oxHPB+rZgARtjdX0dA/1lPaSDHYBdYhO7+KYcm3EKDPItnRu2rorCpaF5bVbbENeR7knVp21ozE+3ZF6vOgZp7+xiuXlT8j/h8pQ2ZK5QgLdgwuCCAcag1/X/fSxJ58EANy8dhNNZQfe2GUcmuawUr27u6psiDoer7z0NQDAs89+CKNIH8Q+07o1NQ9UgLptJzDOxgcAg0TqlmkuK57LMo2PgqJAHpnrbN5Njcfd7cNXhshAzwNzmh+qrujnxXfOSnvPCdPf4ozo2FEvth4ri8o+yfj4ZUWmZheFye/pR2SvOnmgo/0i8cJRfYTjR2Q/O6tz85qe6WYPamypxz1FEXuN1yrGLTVC+c4bEE2Vds/NnQAAzC9IWe+8847026bopxs3tlFX9sdEz6415pxSyutkJPNyoH2YkBMhS+Ar8hXX1JMr/cn2uXvipcoAmnqLbgw8mCq1ZDSwrnI++W31pSKw7dWJpjCzx6RnmcndvaYckvgyRxpMJjtMkJMchIETlKx/E+4Na/lmIPXIX7ase0SZvTiHhjPnb9sx+csO6SPzTpuMRY69fBW+S5yEc/ZaSy9ZpvJkAt+drW205hksLgpmEJXdHevqonD98hUtW569dGDeUhETXl4byEvUE49JwOfpH0jgKRXQs08/I2Xw8JZm+csLXegYlO8erLRenvOiHHi+HSv3WkoeNMtv8sXkew7lMsfSemNmpc9szC3RxzBicmNZdr1I+oUwNw0G7H8qb8/z7MbG9rjB8e7hhH9bUgzj2cTIbHdgX+4muz3auZxmyFQZejPy+cQjshkdeyQPKL/fpLhG2ObiS5VL5OG6g7luVzyY9vv9Mbc/92V7R8f8//mO+E1+4qefBwB8/Od+DgDQatfxH770FXnOmlLc6kHh1FOyBs2MuuDyBbqn89evwXK86MagXrH2BYxu1JMS97Lernus6+YYx+WgZ/fwvZdwbjNxLMV1KQPyxLhra+LS5L7ssCz2dafTGXvB4TWu8MWEL2z8LL6osAy2z3U3dAmPigdcvgC4tOise5GYA8hfNsIwHHMrpPsbxSZYLlBaAzmleRzH1gXx8GGhP3YTjpNAhcHhlNu3b9uxYHvcBM0U6kT2Gcep3W5PJX+iuHOs6PrMOrpEOm5f3g/i+T5mZmYs6QRd++b0s9VqoaZ7Jue+NcwMyuM76Jb3rSIxC/uKazBy5iT3QDf5rO8bbG3kcw8YT2nCw61r0Ivj2I5zFJeJKtzQC/fsVXxBd5N9u6lnuP6sG5xh2T429GxxdKZMZkI919ZwBeaxPjwva+SpT/4sAODShct485VXAQBvvPk6gDzZNMchd4/X9CL68vHiiy/i2HEJf+jMyRrd7sraXYRck0VlghbqCpbV7XbRH+X09sU+oo5kP9xeF0PQ3IKUHerLT384xK2LYqQaKC3+C5/4KADg9dPistjSc+ryihClXLoo+iGOY6j3G4ZqzFvScJRnP/whAMDf/tzfkWvVDfLym0LgcVF1yCOPPITBlsyr1S15qeKLeRBoyI2+3IycLaJWq4/NXa8hfUSiErohMoH4I488AgDoKKHF6uqtQhoikn/R4CnP4W5n3f31RcpLDaD3ZjGBEdL/W+dN3IlU7n+VVFJJJZVUUkkllVRSSSV3IfcEUiXvj559M+x2GVRMZCm1lNGkcWRCXxpNrBWZgWiKGKRJglrgJnYsI0eEyn0H5ckJHFL7xmschMIiJkRBUlJ7a/38nNLcd1zGhn2xSNCqEg3LAYpMeucVaNkprmdajkaVXQyzLEOalYPy2N7McRngZ40ujdqXzVrdXhsSEjVl8g2f0I1aEWYXxLq8fXvdoorH1DqyrnSmXsZEbIo+ZQyuLwcGpnGewJguURTfdYNjP9GdhLSkGNlypyVuzmipmOD2F08xUtDykTpud2MEIkmC0HdtGOoao5ZI1q+hBB5pQor3FOwMJmQl2uQimK77X46y+Hb8iVAlWe4uBYxTh1v3m36Elpr4Ti6LJe6hU2Lpq9XvERXyLiXLspLLiYtKxXE8Ng/G1onjpkIXmO3tbYseTKPY3x7Ic2kd/svXLwAA/uEvfxYA8PQnA5y7KBbJ0y99HwCQ3har4s1YXSqefhoA0Fo6ojUUa6zfnoPxHDrejO7K2qasnBzSJRkwxkwlYaG4fUe5E0p1lwbdFWNyDwPOw6I7W/F7CpGVbrebp9Rw3Probkiqc1J3u4hRs9m0FmP2iYtmufWgXikGh7vokkvQwXuJ7hTbSKRqGtrjkp9MEheBIi0168Xf2X6igsvLy1hdXS21l/dwnrPunP9EsrifNRqN3G1c5wqvZfv3EvYnx5CW6mkEMveyBL6PpaUlNLVvSME9o8H/o9EIfbXIs89cpI7ritTWRbSJc9XVMyNrqS+7qedu5EpxXW9iqPv+ICq7KgdMOpyV9V8xFY11YzPlhN2uVwzXpZsiZTAYjO0/OYom33Meus/f3d3FOxcuAQCOPy9EFNxDLUKtCNqjT39YypwT9OfsNdEHfq2GVPdFIqFEiDivOXdJ4BL0RHd3OnN2raxvydj1hrLOz7wtXjinHhBUheucbSIyvbGxgWZjxvZn8bnPPy9zhmQ2Rt0EuZaXlhXt9wx2t5XoSNv95T8VbwcmlL6mCBKJi+rqBj4zM2OTu596SIhpuO4+9WlJQ/HKq5KW4iPPCX398hFNVr0s3hUXz53HUMnI5vSst+ir66pS6fvqutpqyvqnDqvXGshS9apROvxhJn1IneR6G3CeHD4sZ5Ff/MVfxLe//W1pnR6LqEOtd5hFCBWNUvSpGQQwqc5N8Dleqay13hbuRO4/7VRJJZVUUkkllVRSSSWVVHIPyT1kZvbAdzyCTdGICFKMICBVJBOuqY+mWtsZF2Xjgwq+u9OoOvdLbnmntS5+WistrS2Zpd+wMU3GQQxoPCbpBaUYA+TW1P2b8TJ54KNakZHZPqEpwlc/48wJeCQaNWIfqzWt1WwCGue2o2/+tFbSmuJavEmcEPo+Ym3HQMktrLVMkaoHjj4IADj3tvgwH5gXKwatqJ4xeZyZawR3rOJuHxbjh9jP/EzT8ljBMN6Ev+c+5OZOlwqrM4nkwkuda13ikPKoFuenUasdY0XGYqlQnttu4LeJkvG4r7jsw+6Se9jEwZ6PSC2QUdzV54pFLNq6Q57Re1CKtOmubigiw25Q8SQiG2ByomX3WkrSlXHrNMUKd+2mWCxvbIjl7sTRUzj56OMAgHNnfgwA2FVK2du3LgAARlfFcn9UqW1rM0KfnRpjUwukivZbRnXDOFKU2j2pbybRzBf7IYomI793QnntJqXkPKU+6XQ61orZdghmaBU+dEisoS6iNSnRLcul1dOla+f3lH6/b9EUEkRMS6DrJl6lRXUwGNj/8/m0flN/ErlyUbidnR1rMWfcExEgPo/12StxL4XIAeOt3DHKU1bk5AOupZ79wTFj22hZZ32ItGxubuZ0zDq+brqIvcSdm9OScN8P4vs+ZmdnETPGSOcskYvhcGjPOy7q5CbDHWpKjCIKO+Z1Qf2v65903VxDzWY5LtEbxqhzvSvK0x1qPWjVj8v7RDHW0CLdaZkQxU0268ZNFVFe60nkiEvw5fZHCOCtd4R44bHDgsgcX5C1MqPkH12NyX/xu38OAPjwpz8LAGgpAdONK++gGUp5nPckRnnttdcA5AgW9cGWzvNbt9YAo2tgVom6lFxjdk7WDHUWx4z7ONdHq9XCyvJSqU+OH5dUGjwH3dbUM8tzK6XvN7flTHZ7bQ27m/L/DUUbA47ZjugmJrgdJqJ/VnQeNI3BykFpd6YeVB0lU/n3/0ZYqB5+VOLGLp55GwBw6W35nFOyiXa7g+u3BfG+tiFx831NgcP553uM2+cc0iTEvcEYmpnqOZTLnXNpjLDI5GeeT3/6pwEAa6vy/C9/+asAcq+vaCRjRkKzJFLSk4aPUK+pZeW9OtJr1srcbFOlQqoqqaSSSiqppJJKKqmkkkruQu4JpMoAqGUGSSgWMcTyNu8r60aCIUxIGl1lPNJkqPWknETN9f/3PYNUY2XymCaNO3GTWTrsfGQBNIV3T+PGUGlwFZkDjaW5JIVuzoxDNkOiDmSyo9XKxi2RDn5P3/Hyb54TE+GZkI0AaVPJiJimDiLhIBQ1HQbTVmt7PUW0LdeMZmRsFtXiuazWkuGOWG821UIRKpVRFoQwsbRzdV2sBItqWb99WfyNE7VWdEfyvO+cFlaZTwbSb8sHFgClWa8RzRyRTlrrqk0guwyUdjpRNHCAEI1ArFW0h2U5dZ98xGU/fzJJZgDSrByr5CIPlimGIWeTYlTiyWx7lCQhc5ImpCUdDzxLmxqGrL1acXy1BEXKFOigTpFaPWt+zmbHBIzwy0jLNLp2PxsgHciYXb0iVvPurlipFhb3j424l2Ua6mSMGUNmXB3DPqZffJG+3rUyu0jYQiLWvcWmWD+bdYnxub0rzzz56FF85ld+BQAwTKT8S29LCoLTrwg71ejiG/o8WVeHnhCmp/bhNqKI6JrqASavTsiiWabPH0M2C6yllP1izCbRBE8Tl7mPQma57e1t+39aeWlBJkLlIijT1mZR3DpOSnIMSD/QIuqiWJQf/1gQxIceEhphFzFqt9u4ckWsy8eOHSv95tLEcxxcxj8gR5doqeU105CzSeIyJrrCsnndcDi0dWD/si20kLtxM+xTjlsURbZ/3Vi2OxE3PtTGCb0LtOtekSwTzxsXheIcjqIoT2ar25HnkX1MqcZ1X4gMGV7zJMv5GJRjlVyaclfPEf3sjQbIoqx07Uxd5mZKNmZti6v/fN+341yvdfQ3PXNoovJ6nZ4VsseFYTmFgDHGorcuIlnTc0BbY7tmNIFsvy/P78cxoh25d30g7bu4IXNkfknbH0hZD8yK7hhocuQfK+ry+b/7C9i+LetqLRY9/vrLL8vfihCduyAxTH2lT29qXFCvt4ZE44HW1yTeKlS0Lx5qXFpdzh7UYf/4v/7HAIC33pIz0Pnz59FSJsi/+dm/IeXr+vvxWaEO/9XP/z3pFz1H/OhHck46+ajEkfmXz+PMedkT0nVpQ6ZlbChCpcdlbCtvge8p5f3WAAePKN2/XILlpvzv+SelfG9e6n5b27h8WOJROzo/r519C1du9rWP9HzC+ab9YDIZ235c9giZm5uza6OvqV9IDx86cYBBo5wg3PSVfRVAfU6QwqAt8Z+/9quiO//k330JADBsyZzZ6cueSsbNTjBn3zfioMzYy4TFgB6M95EKqaqkkkoqqaSSSiqppJJKKrkLuSeQqiyTxKuJwg6BY/kMa3XEzAUSlC2MZKqbFicVRZG1vLi+wG6i3mkxVjlP/XjcQOKgPm5ZYRiOJV50rYXFfETFZ0zKozNNpsVwZBks+x9tTW473b+DhiIqbbVae0BLc+KM1N82UuSQ+Tba82LNbbTFurW9Kdbl3f4OGs22Pl2tBD2x2hw6JKxl565eBwAcPX4SANBcZAJUscR85IWPIZxVq5kyH+3uiKWhoaaGZsh8CDql1RJv1Le5lsUWAaUtwSKQFkEsdUOp/6ehOO7ve8XpuYxH7pi6t+bzxAOUmYZxaPZei7oOy9879cqybKrfPe9xLYTWx93L+4FtOHpU8t4058o5a+4X8YxBzQ9sXKNx4sx837cMUuyPVr3Mwnb5qljsRkPNPbWt7EVew6556g4DmXtDZXrcHAiy+9wpyffV6YjFOFUf+LUb2ziszHS/8Ct/HwBwRvOC/OidywCA5XUim4IevvONfwMA+Mh/9EuIZwQRiGr6mSj6GYolb7Qm1s+G+s2PMjJCSj2DoJUnYtVYD6PMTb4mrQ6NXJsokyGThhrj56GFTDVne62MOkxDl5rNpr2G6AZjdVZWJKaA8Uic49evix6Zn58voSVAjp7QGu7GdI3p9SSxKAKRoVOnJOkl42Aee+yxUp3dfFELCwtj37FMtsll3iQqVqvVxmL12E7e66KgLvqXJIm9xm03kTLGibAfWI+FhQWb44p9R7SN97BfJvUdn8XnsM65B4nqMWWhjNWbhLHSGTxkykxGb4NepNbt7P6zBSdJgp2dnTFGvyLaNxyW8xO55wWLBtXLiWTDMBzL5eWecVwkmmNUPJtMm0+coy4iScmyPI9kHkPFWKnynHDLLtbH9eBw5zNjnJj0tRzzLP9n/FPHF2bUw+pJ8dFnJSdmrS56tr0i8/GFhtTvpW//OS6dEwbBzS3RK8OBxmHqeaiuCYtXd0UP9RUhGSUxQJQx1LMmGaY1Hq2j56TFRUFQXn/9B/K79vkTTzyOJWXXvHDhAgDgiCLyXGcPHRLU5eolQcyIGF++IrHor776KkL10Gl1dC+nU4p62gx1vnXUW2hez3iD/jbOvi0o1+2aovmJ9Nnulpzllg/J837pc58DAHzlK8IsmA2k7AePnkSnLzqjoXP17GXpUyKTMcoIFdvPGDOggKoqQMQ1wvlPLzB6CFw5Lx4DC/UZQPNhBZAxbEDa+fm//6sAgK9+Q2KsYulCBJ7mDzNR7uXkyLRYv2ly/2mnSiqppJJKKqmkkkoqqaSSe0juCaRKJGf/833mWFFLRZraHD6xZZUrxwTQ4uH6/ddqtTFLmmup3xepSscRC5v/x3kttTFNhRwbRVaw4m/u+69rzSm2Zb/cHJZ1j/7nKXNbpJbphLFU09AM+3ddnvvVryhzSpohM2JJODgj1pSmIlLNWbEEJZrdfKsrn/MLmodllGJ9Y4ctlDppp129dkufL+O9ui7W+9qWWIA+/amfAQB8//W3cU2tR4cWxa93Q7OKHz4ifz/+qFgt5tpiEan56o+tFqPQjzCyHa5WNBt3pvMtK1uVy7J3vIY7dpOu43euVXia5ONibF6hJCOLlv7CXFZ+Gf0am3O+GYtNcOe/m/U+j8/Lc61pyjf46isf+3dIiXMPSjEXEoVWMr+QG44xJewvIiRuBnj+Pcmy5aINBw8J09Ohw4K6HFDmJ+bjy7IMW5uaj0oRs2efkRwrv/Yf/ycAgBf/r38NANjQmKr5BUEUXv3m1zF7XJiajjwq9zSbYuXd3pY118wEPe731FKosQ5EqdudFLHGrdK6yNweqeYi4bohMyv20VF6EYC8z9wcTPzbGGORKeaF4ThQ1xetmwBw+LCgpwcOHLBjwWtciyjLYO6lSSyQRJWIzBChcvcAxnwRjWFZw+HQtoFoj5tzqIjqFP/Osmws/sWN/7I5WLQ+fAZjrfr9vq0b+4a5blxd4PZLsa7uHuvqLaITLio3Nzc3Vuc811DpawS651tWxP4AHWVSs3kd9Td+3l+SIUkS21cuYpUkiWUo43dFXQTk4+DmXvN9f6r3g7sfueOR/51aRMA9J01DvRiPNRwOCygTzz1EoJhDrZzbj0cbzhnf98fq6iJXnN9cZ0SmoyhCU+N/drpS3taO6OiL6gXDuj7xuKDN2+c0JljXf8dL4cWaH3VH1tUjDwgyM/uUsLDSw+a6srCyX1JkiDSGrBGK/oq4dnRclheVOXBTdMilyxcAAE8+KZ4Kt27fwA++L/kI/+4v/R0AwBunTwMAntK8UIytOn/2bKmfGK8YhnWkGjQ1DKWuZGvmvKg7ccFra9I/Jx94EM88Kch7pEyJ0P6/eF08IeZmpa/O/FAQrf6W5mXcFd3xw7e+iQ2Nh3riQ88BALqae9WPyYZd9g6jeJ5XQKJUB1pPMjKTltHNc+ekD/tD0bH1oI6USKkn186syLjfWpV+/9SnfgoAcPqNN7QvxfsjCFKYuLxX5Pr3A0KqjDHHjTF/box50xjzI2PMf6vfLxpjvmyMeVs/F/Yrq5JKKqlkP6l0TiWVVPJBSaVvKqmkkncrd4NUxQD+SZZlrxpjZgC8Yoz5MoB/BOCrWZb9C2PMPwXwTwH8d3sXZWBMjlQl+lYbjdQiUsgxFNAaOiUOZCyHxQQWK1f2Y7nyPH/MAuTGVLnxMm4eIanK+Nt58ZPiol3A9JixaWgbc31J/gfWYXJMlVvWKJM2bShbX6fWhLoKY31NEKLolqJezC3QEguNAifoNKQNu6NtcJrRgrp+WxgClw+Ij/7tHfG7X9+Sz4cflO9pZT139jx2kobeK9akjQ2xPKxui2XkpR+I5elJRayOHhYE65mHxUKbDYdAnRZO6Y9RTH92WuLEijqp/40pW+lcmfZ70aq7HyOcZ1EKoo1yXxgG6EGsYz1lHtrYkL46NNfSe/auX7mu5ee7lpmx2Ku06G8vler15fm1cLDv895Dee90jjEl1ioKLfae59n4Fo4Praq0NvPTRaaMMWP6wrU+P/e0WAWXDsgzWA1a8rd2d9Gck//vKlPT/IxYY194Qaxtq8o+991vfRMA0NCYjHaSYu30q9ogqXNrQay7waL45ccNsb76ofrPG8avKlIU+IiMInCKkqaKNGtKPDQg1tfMIr+B9tdkhrmi0HJMcWNMkiSZym7HOB3+zjGchLZwjHgNrd2UGzdEnxEFY9mTrmXdeI3LdkcEpZhHhXW8dq0cB0Fxdb8b51usu4vUPPjggwDGEVS2pdls2jlLtM9FmfgconIsq9lsWis+hRbxLcf6zfqx7OLv7vpiPMxTyihGGY6GWh+N6ZpfQH9URmbYFhcRex/lPdM3WSZznLrC9QrwPM9a4jkGLhueG0vFsSueMVzhPW4Moau70jQeY/F0vS9c7wfWLwgCOyZBQFY/6D3Mo0gdSb1YnudxnD9/GtrmIlWc0/1+H4nmzBvp/JlblGsOPyDI1IWrgrZcvCAxPnVFzurqhZRmIzTUy6V5SLwHbu/Kenr59I+06rrea7Kmj6nXzNmzZzHUmKVE46wYH8U+G2lusWPHjpT65ezZt21fUm9xjbB/31BU5dwliZ1q1qUe585Jbq7BQN1WMmPZXlP15KppzGyg7e1rrtCW6qi0Lt8fOnES3/mBIGNHD2m89JLsFTeUKe8jh0V3Xbgl57K6ln1UUbjr6zdw6LCc3W4oMsR4/r4iiKHWrx6W9YLv+2PxpVHietbo/CCTrY5dsyNeHjXjo78lZ9ZQ96K+6pX2vMydNJZz1PPPPy8PZgzzlbcBxvnp1sR5yHrcqfzESFWWZdezLHtV/78D4E0ARwF8DsAX9LIvAPiVn/QZlVRSSSWUSudUUkklH5RU+qaSSip5t/KexFQZY04A+BCAFwEczLLsOiBKyRizMuWe3wLwWwAkk3Hm2bw85LKnP/ri4Q6yhMhUOT4IGGeicR60b/1di9tYzIlnxpGgKXFaLkJVtDhOQ5lcZMRl8CmKG5vhoguUHDmLp7LaTbs3U9qV0FPWvshDQxGRQ0+LJeKdt8U3f2tDLJy7OlbRQGN/lsVaauo+ErUo9IfqsxoQ5ZM2bG6LRajeUeZAZVO78br4GM+06uhvqtVSLW/s5/UNsQDVNWfE629KTokr18W68sYbUs8PP/ckDh1ivhnNB6bom6esL9mgzHJUtCIzv8b02LbynJkUVzMNocp9iWmBLI/7zs4OLq9JP5/XdtUCKWtxVsbFZOVYqrHaZdmeMXvuteVPg0wtcfQVX98Qy197/d35G79Xcrc6Z3l5GY1GY8xyzHnVarXsWNOCRiSEiIC7bmkVNsZYVMMy6Gm/MWZoXlGoQGPhMkVPewN5RjLMUEvlu6W2TNStXWU8OsVjAAAgAElEQVSymxcL4id+4W8BANYUtb34mqyXegocaaql7qZYPdduX5C6qnW1Ni/1WVQWrHBGYyMjxnp0kGRkVlV9oXlrqItHkdRVm2qZQO8EqaJuc2OOKIuLi9jYKMcuUFyUiwgK2aAuX76c57hxLPRuWe5zp3kEAPn4nzwpLKVErNy4JEoYhvY7IlTu+nRjyihxHNu6ci7xk+gX+4esaJynxRxXi8og6c5D1pkIA/uUObGiKBqL4WGOHZedjuuB9WIMWr1eH8vtxrI6igpcviTIwYoym/H3FHlMmc3htb1bqscHKXerb+bmFhBFiUUSqOOL7H+MWfR9N6aD/S3luizGaZpNRZdYZh4TzLpxn8rH2GWKdONzp7ElF9n/4phoam9KXbn3luO0JnnluHHyvIZrln+3220MlLU1G8rzlpZlPv3oTUHzQ0Xb5xRVOXZIkKSf+vhHAAD/9x/9MW5cF120sCjIx25Pyvr4Z39e2qKxNee/IO/Tr28IYpPNtFFnLNlQrmnr35GeKT78GUFGnn1W4qO+/vWvAwB6qksHgwEOP/yAlHtRkLEPfehDAAqMhnOio8++I2echnpS7IykHlE0wkjzUc2Gmv9Oj/gnTpwAAPzwhxJD1NN5t3hU2vqdV16xeuSqIlE310S/UEf94Z9+BwDwNz8lbUnW5QzgJTKWz5x6Av/viy8CAE49Kp4Y1KI848RkduyTJVLGeHu3n8cKat/tRqJXmnoerWvcZabnJE3XhVrEQG8D6DXMj+YrYyiJ/RbaM6VnPP+MIOYvD3awtSV9Vs+kXX3Vp7Xg3WFPd83+Z4zpAPhDAL+dZdn2ftdTsiz7l1mWvZBl2Qu+t3+yyEoqqaQS4L3RObOzc+9fBSuppJL/38h7oW9arfs7SXollVRyZ3JXSJUxJoQomz/IsuyP9OubxpjDasE5DODWHZQjsT/2b3nJ6qofpjEzuVWdiBUZ7ZKy1WyvPEHTxM0H4bLdTBLr9+sgVq4Vr+gfPJ1dsOw7utdzJ+WIKH7aMrO8HpnDM+jW1ZVEGWRmOsq+1B2h0RBL5uqWWMUbbbFeMK9OSx1RN9YESdlR9p0w8TDSTO0zc2Jh3O1KGbsa77Go1nPGcKwrcoWR/O6NRgg9Kd9TlsHDB8XCfuGqxGcdV6aetTWxsiRgNnLxQ75xexOPnRRL9vKKtKvelPY/eELyQTS88vhTOD+BvWKWyuMwaQzdsXKtixRaZgO1al69ehXffU3yP1zbkj45ekQs0B96TNEDtepMy0V1J7FW0+qZFXJc5XUUi+TGjf1RifdS3iud43kGzWbTjhMtZrSWNRqNsTwtLusYrcyTch8xroVWfFpXGadFxjzGqNmYBB3z2dk2MkWqekpbyVwnXc0LcuIZycXyNzZ/AQDwjW1Ze1tXzmPYl7q3PLHuczaONqXOt3c1Pqwn6+jE488AAFJP6hd3Y7RnNP5KYwnSvqz5oVpfGzWJnakrghXHpKRMkcdO7K2PXaRo0jwtxkgBeZ9SaGG9pKjHJNkPlb0TIerDmCFXXATNRa6Acd3Cte/OE2AcxZuGam1ubu5b92lxNyxz0l7AeT2JUbco02LfiCBOKgPYW28YGIQBWb9kXhFFm/a890PeK31DcZFCooqj0WhsP3BjjNx9ohhbVURtiuLmmHKZXovxW3y+631Dcc8pReGccJ/nfvL5bu6h4hp3z05u/BljFomI3rx5EwNlmQubUo/zF2Xf31kVdrsHNa9ikErZ/a48/6WXXgEAPP2h5/DWn0hs6oUfviV11ed9/02Je0qoq/V81NA9PwEw25a1H0jVsDgnSNiGxhadOXMGQD4+HDvGMi4tLdl4oB1FiK5flHyEt5XBcMvuL3Lv5qacfbiGB4MILY1tbyhLMJ9386agL9SVFv1WHXXs2DEbb0WQg3OTZZBZ7/w7Esv16HE5Ny3p+e30m29hS3UWUfxQyyI7IqdO6szlNE3H9lGU1b4VO3dN2ZMkDH2rgweKlI6dteglxdyz+vfjzzyFb33rWwCAoeYEtTXM3t07xU/8UmVkdfwfAN7Msux/Lfz0RQC/AeBf6Oe/26+sLEuQZNtAprCuusRsK2VjzQQYgUGRCrOCMDpKn+OKYJwOfdpGysHhorWuXGmUH6pJ9qCnlIDJWCNd+PbFSa/L/Pxlaoqn1H7ueMD0A/g0yTDSsorKmc+bvMHagGcm5z0hgdBbN7aQKBS+flHciZpNgY03booCuDaQfaXWkHHZGCgddHAQA4Xke3rw99Rlsz0rFWp1alqmLIgL50WJzC2Kq2GSDrDSkgW+3VV4e06UA0lNLp2TIMtmRxTt9k15fjuQQ+JgFOD0eVFSR/VQOlQl8uZpUXwHD8nzFxdEiZw6pV4d6aBEPQsA6j2BmsexpUuful04c83zPERGXxJDQuF6r8LbPe3DnZ609Xvfl0Pi9Vs72F7b0b6Q8jauiAvAaEsCcWtN3bxMWYklsbpS+D4CQ/hcA0K5SY7UXchXeltPFWCkyi0Y2Rdz32voc/RzqXyQfD/lvdQ5gBxE3ANEMfibGw9fePi3ezByDwye540ZV6hTuKnNqPJnOgHSKXfmNPlr6GO2IfOwqb4LgRKZdLdkM/X78vdTH34BALB+Qah2/+zSedhzr55d69RXSmbRnJNNb0tdWE5/RzbKBx4Vd5jDJ5+HH8m1WaRGJgYZa6D2SMlT+n2Zm9lEjwMe1itvhKLwRYgHCPflMkmSse+KvwH7p2S4Wym6EQL5wYz75AclLlFD8WXt/ZT3Ut+kqVCWT6NLN8bY0AaXHj10Etu7RBZFYhy+nFs3SudlmS/X7osbMJ7cd1oKDkrxe9dtdlp6CWtsNOX6jEYj206XkGOa6+4kMhfOzTd/LC9Cc5r6ZfmYuOyONkR3/vi6EMcEmtB3WD+LMzfk3NHdVDpuNYDduC16LqhLn9aa8n1HCbZMrY6hnpli3duDBdHv3S3Z0zPdO0g6wb2EqQ7W1tbQ2JZ7t2/JeeScuq6tX5N1R30w0jOHUZf83q7Uo9VowNPfor6bMFf6JVVD3eys6PDWXFt/TxDoobauc+cjH5J0HJtr0meDnty7vSHnphsz8ozvnXkJAHD+0kU88ICcGQ0p/PlSPcjPowAwcpJVJ0li68o57DUJbugcpqs8z/oeX8hpmBjAmLLLKF+8WeZIXThDTVMSNuUcM1ev41Of+WkAwCvflZernaHoaPMuHfruBqn6NIB/COCHxpjX9Lt/BlE0/9oY85sALgH4/F08o5JKKqmEUumcSiqp5IOSSt9UUkkl70p+4peqLMu+hem+HT/3bsoyRilF9e2VcWF0s6jX6xjeoZvGXmiUa+Fzr3EDfiehQuPlTiafyOuT2eRh+xFV7GV5HC93Mj07JSnQQE6j8nZp4Pl7XROAJqkGRs/WsXptTX8Tt6bL165rGWKRaarl3dcA1Dm1MhxYmcPskvRrnrRTIG8iWNeui+VxqMHydbUI0VXq6rUtMAYmy8Q6t7Ut1qPOjDz3xutiEfqlz30cAPDWa4JcHdSA1Y1+H4kmM72pSQPnZqT8K9fEtW526SkAwBtnBAU6f+mq1sfg4y/Ib572XUctYESEUqcP3T6Nh0MYBmtqhGWkKNu2ugB88xvidtCcXdE+VtetoIV6Q109InWZVHpt5TBArM9x524xqHg/10WifkxA6zM3cmbA/He0GvbUdbOj9LYfhLyXOgdmsltncY24SX3dT8okWuxJScCBfA0QmWK/xhEtzeoG2G5iFOp6VLWQsum+Q32vaNfiIXHHOHDsIG5dFusmFbzPXtOqD3YFXZpTt95b6q67fk3Q3IWFo5hblvUR1mSuD0cyH+vqej2iJRtsKy3qFSq1n3CvIQpqk96qRZWuhsXveE3xtw9CaFWn+x3r4SJZ75dwX3SJYt5veS/1TZZlGI1GY/qG4+953hhBhEuUQ2F/FBNGU1e5e/o0FzqXOGcS3btbD5tIfkJog6sTXeSKZRKNGChiXkSl2H6XIIV9xXk4yUMgJHqjiPjNVTkfkNL7z/9SCBQ+82EhWThxVHXlvCA1f/at7yDRfZmpI6jXPvpRQe/PnBdPAM7Dtp4Bmu2W7ceLl0V/Xr0sXibzs4IuZXE57QHPNhfVTTEMQwx1G+n2pfxdRb9qeh4iUca6uhSSWj7QNBhra2tWrwQhdbCMw4ISdNA9ju550UD6vNVsYm5Zzh1NRXFuXJbzD+fMz//yLwIAvvFn4iZ5c1Xqee6CnKfqnQ4WlsUVsKfu5TVf6u7pMiIaFqh7fNHF3t1vPYbhGGlDTc+URMGMsz7CMLT30v2eZxuOT2ATbEuZK0pKMhyO0K7rNZ9QxOpVSUuypXvlncpdE1VUUkkllVRSSSWVVFJJJZX8dZb3hFL9biWDBsPbYH/5nkF8xhj7FqtMkVNlUuJWCq0k0wgaXEv0pBgn19qfpJOtOrmkY77SrkwnjMivdy3p01AvSvHnabEfbrAqvx8NpN9bTaW77HcxuySWlVW1ngxGUufZeRkQWldaaqV++CGhqtzcWcXtdbHexOrXu6SJ+ZodRbk6Ys2J1HpAy8OWBm6u3l5HvycWlaNKDTrU+XBTEwm3WmoRUj/jp55+UsrQBMY/fOkHOHVCYrTom8z2H9fYsTffkXquLIsl+HuvisfHs888gS9/VSxdJx88DgA4uCKBqK2GzKnbNwUpoxWZFiH6OA+GCa6eEz/uy4oirCkdPROuLh18WOq8rfFoTOxrDEaBXFPXfj6mKAIpuUdpeV64vu3w9wjKNxojxJi7lH7vTEIc2MR7TDTImL367vTEk/eDuFbXooXVTTbKeUldlGZBqQz2eRAEthxaYosJYQGgUZ8t/e37Gi+i/vSHnnwEmWGSao2dqKmVTz/7ag30GzKuhx+ThL7Pf/Zn8I3/8O+lrlsyX2pqocu6GtOh7e+ty+9Mmv2WWidfXv8STjwqRBiz82LNSxWJimfE6pnOHNL20/cdhX66M6KKv65iyWicxLnUH6PRyFrqad1eWVmxvwHjhBHvl9DKu7Ymc9NNCvx+CbUV++i6ehhwLd1vkmVZgVSgnDTdaDJyYHxOuBZ897yQpunYWWXaOYhzp4hQ8XoXoSrWrVi2G2tV9LBxzzguzT91aaNZL7Uty3JaePee4jXF/snjhRIkrJOmc4g19nh1UxAZkmJ9qfsNAMCnnhfPk96GeMmcu3gNMQS1IqnFkqabuHa9THaxqnFZsc7Q/m4XRlGuf/Drvw4A+LM//VMAwAsvSLzrGSV3YBoEktAQUdnZ2UFPyRVaim5dvSq6mCkEdnTvb2oc0NbWpm2/7QemZdFhJ8nE/PxsqS8feEDOQtuapuCJJ57AW2+8CQCY1fPY0pLo/QeOybXXN6Wvjmvqikvn5Lx08ID0S9gwmFsU3cBzQl1RL5/pOZR7YOR4W3ieZ+cqEcuBnvmgaFdN95maEjaRZKNl0xRkNkVAHJe9JnLvNE3wG9S0nnr2GcXwNC7+gKJ9H1L6+++9LDFjdyoVUlVJJZVUUkkllVRSSSWVVHIXck8gVQZipfFBf98yletoNEJd/VdpnVPjuo1XctEYa7mJx9GeaX+7CJWtXyEexfVJppXWRXtytsAEaVa2Hrh1pWWmSJFafNYkhGFaksrcal62WBXvKbZrUhmzM2ItTSOxYvzg0ltYWFDrtCFrilhA1hRNqmtwT0tZZQaaGLTWbKChSEyilp3urlqTErmGyfZu3BYmssOHxXf/yhVBdlqtGTz6yBMAgGEqfXXluvgsr66KBWr1tsTfvf22JPs7tCBWppeVMvXo0cPYvC2WVlpirioD0PXbgjIdWBaLzPlz4uc8Nyv9YFBDksn8e/v8DQDAbk/ZezSJYKSWmPOXxarlWhf7/b71qw7rYp1aXhHrUX8k166tyXPbHVJUK+NfliLRa5ZmZMl+6mOSGDDhQojKY+vOxzRNxyhz87grJptmglDON/rJ1yxSxamYKTK2UjuI+1KyyVTxRcSKvvMu+59FGZQFr8jgBZT1B63qtEha2m2dLwmBRIfJaLfXxYwyaJum0d9U95BJbyD3DDX1wIz6sz/z8Y/j5g2Z229++2Vpz1AtuQosrimB2oOPyDo585rECxx9XFDb67ub+NY3xKqrIVVYOCBtiFTnLp2S5MPHj8s9S+qTT91TyXRx9QNjLChFFIqxTG5C4/dbXISClusPSsikynpwLRGxu5/E8wyaLd8mzM7PKbn3TKo6tdHQBMnqybHbVZY5JrhNy/t1kiTj5w6LKpXrYZOwJqLLcqY/M+a5MpamhvqHZwoN1MxMZr1xyHDssp7aeG2iT+pRktn70jzuSg9KQ0WXMi/3ACjWjyhMEAQYadJdkBFPPWqWl+TcsnJQ0Idr50TxfXlL0Ie6epo0Wm08dEqQ/tnDokdbGsvUUkbh8+eE+XhW41BTZfpr1hpot6Sdf/6Nr0nXaDzy7q6mudiRM0ag97R1PxgqFXwUD1HjWI1EJyxozHefybXVw2ZL0a5cD3Afz+y4GuV2n1+UMuo1PerrWVSdHbC8rGevG9fw0CPCJEzvGu5752/IWesTn/kZAMCZSJgVTz12BACwpt5Cm+sbNhHw8pKs0Y11OZdxzzCKHEWO14fv+2Nsl15CDy+p67qiakEvT5gNAPXZnCWV+2ug6Bbj9zl3hsok2NBAZcbN1RpN6xHQasmZblaRq5OnHgEAvHXmFdyJVEhVJZVUUkkllVRSSSWVVFLJXci9gVQZeVP1NOdTrMkui0kWbWKwlr7x0iLiWGjG4pMKlmi+eVu06w4TBRfZvGhZpMUlG+2dxDDLkrE8D/slAXbbUsxDQdkvtuonyIGc18Naz8VU3u+nWN8Sy3dTE6P1FRkZJbSqCKrTVAa/mXmxHgxHsfVr3toU5OXSOUFzjp0UC/dgVaw5DbX2cNwbDfl7dmYJV69KHJKvzIQnTjwAAIgSQY7OnpUybtyUeh6cz2MTAODhh0/hRy9/HwDwY/UdDjVRXqTBRG31VT7xoFiGL7wjFpnB7hyCprTnlVe/AwD46Z+SHA6x1quhFiiboNPQqqdxL0ENnrLqzcyr5eviVb1WE88qGjTUOBgmKvQzg0OHZL499dgD2q+avE9jrRDLPa7ffdEPfVpMH9n+4iHXihNTVfB3DwOiq/Kcq+v9iWXe82KA1ORWUFrFmWtpa2sXvYEyHQ6YH0NzyzBRcECrsFpYfVqdYzTUMthSqzP/DmndVbNko0kWSRnPWc3Htru+jlm1rsbKkrmuFutanexfGgOhenO7q+xwSw/ipz4tCYHNltx7/bwmw+zLepldkvZu7Qg6vLygVuBtsageaTYxd0zmfF8tg1s3NAZQu3DY/yoA4NIlQbvSR4VZaykMYHR+GDs/GbCnc4vMkloWQ6/4d9EYn8FBE/WzfgfxWq5+ZJxuzg4lklspc3Ysxl5SHzO3FK2rjHVw2fD4zDAMrf45f15iKk6ePFl6PmMsXMmybKzutODyk/eSyev/Y+9Ngyw5s+uwky/z7fVe7dXVVV3d1RuWxg7MYFZidnLIGXIkcrRRpCVLtP1DshWWZIkUpZBCDoZkOyzKIYcVoulgKOyQRFEURY7IobnMDIkBQKzTABrofa+urn199dbMl/5xzs33MqsK0yAwULec98+rei+378vvu/nlOfee++EPfzh2nf1FgZPHMl9g/sraNDPDnNELFy5EvmR+nj51ampqz2v941kSz92N77oRQ8E5NDoqprTzwRYcfz8sDEMEQRBFthiSbo91rjHiSn3JHKcodylSMJNasuftYqhsjHQ6u4usAoCTCfS7qOvQ2xWh0398AHBh54i3zc1k0JaKXCHXK2Zs7QJ2r1eSed1Z140UdK0gul2rl42rAEYMheZbqVRCW8/Zrq7Z5vEh5QPVG5z3lWnlA4r1s7qOhWwJU6NcM/imXiplX1tTTE5N6pr5fUPj8ODBSayv0Y9WFKnjqA0XL51VW5S749g6kueoRcpyISKaT9uUBzg3HdUjNFbNmCSLMMnlrYB9MapBWixxrrQVbRQ5XEURdHz6u+ERPmMeffRRzM8v6FqtPivPYxEbzz3LqId2i3197QqjgqYOkpXqYifyFTZWB8pVHYP72Hi0e2j+x9QxgXiuXP9nMpIrWUB6eHgYDauJavUYLZc5x/YPaF5YLllREVfdAFCqFlot9uGIIj9c7fv138YdWcpUpZZaaqmlllpqqaWWWmqpvQe7K5iqbhii3mkio7f7vBDfWl05VR0H3VDIR5vooZdhHGcoHatQKI9Vg7a32ExfLZpkXQ3X7eWbAD2lEEMe+1H+XM7yTXxtI9ZLyJPrmdqaYkSFrjlBFqFyUwxospwDQ6kM6Ta41vT5A6uB1Kfu01Pa2Rs1Mut2DSHaXTMm0zXEi+0MMjqPhkNWCMhl5Rzd3GjBVd7Glvqm3eanVaw2JbJDj1Ax5cyVNwEALT+LrR0eb3ubF/vQk1TEMTWnyUmiSRYjPSdU3VdNqvKgh6n7iBJdfoPsETpEx7e3mCc1K1XA8TEhsm2itH/qT34WAHDh2hwKIxw7k4Nkey5fJnq8s8OxcmuOSM3YGI89rByRwfFRNLet/hPHwfmL3HawyLZNqVzT2Bj3yTiqeaB7nM0W0VJM+sVrVwAAhYyUE3eEmigO2sStPDERjUYNDzzCeGcbKaGCol0xVKHGcqZrcciRdhYAoNVtoqv7aph1Rrk5juZQRzlcnuojBb6QMScDZIhsdbtEwARI4tbgvV2TKMox0Lyui5XZ2tqKfEgyf7E/T63/GP3oq7Hh9mm+x/439CtSutL3W0Iujx6ajFSeLLfRU75VUZCavyPmROicq9Gx025iRHmJH/8sx//lc28DAL4luK2ia23Ij1kdK1PPau1swRODanWpynlj0LltV7mvzU2itN/8nd8CANQ2m5Eqqh03sBwS84HGqBvvpOFq/2f62SnHuKmkSmoJ+5ndi+Vl5lAYq2T3LPm9bW/sTj9TlIwwsG2sJszcHOva9aOuZklW6Z3qKPZv16+wZ6j72bNEvQ8fPhzbx3KMkhERuVwOly8zV87GX1J1LlkDqf97Y++MoTLE2o7xva6XZXX87HzFTDwn9F4z3he2ydYY/bi258WZSGNVreaQ7/NedYM4Yu84zq772vNZpsxp54n7sChPqevuYgKSETOuzYMgoXTsB+gq57fjxJmpJLtk55Bwai+nK+j22NQ+prf//0idWGPW1h6HDh1C6xrnYKvB49t6wOb3xibP34xqGonBEIPzqU8/g/l55g7lpDo3JvW/o0c53zZrjKCZGOd8qFY5/69evYyxcf6tTdBMKPU1tsQaa61nax0TBygUcmh2FBGwSR9g7ArETG3ZMeQHXcsTEiszOjqBjsZIxjW2S+tje1ZFSq1iQTPc/vqtq6htK89OEUqh/P/0DNce4wfYH5ZbNq4aoJYX2GwEWK/NqW/IUBXyql/q2to6rhbcH4G1l4ousFt10iLO7PuNGv1U6HooSlXS1vYQm7glpqykPrX88Y5UrAcGqlHulpONv0NEeX93aClTlVpqqaWWWmqppZZaaqml9h7srmCqAMupsgrKyvGw+ixOJnrTNaQzyvvx4giIoRiRItc7nDOZd5KsCt6vJGhvrXspfCXbET+207cPPzsdY8JUd8bb+zYYUtPtdneh48A+FFVk+/8eRuiwqStavC+/7nSJJpw+zTpNrWaAkQGh40LJDMUeGCT7Y+3+5h9SMSwsqtp71wU87nvoCNmmVUmPTavug+UbGAJ8/Mgs2y/Ua2rqELYEAR04yH0qVaJUhkQ9/yzZn+oQaz2dfPBRtYFVsYfGp3Fj8RwbqPF18iRVXawe1vQkkRdDwJ599lsAGLM8O838L0OkDIlZnCMSPHOIv+dL/H1pcVV9q8rdExNYk7rh8CC32Vgl2zo0RDSn3Wiqz9junU0ilZ/97KeRQSJ3SWPHEKhuGI8/3iuPb796aEk0Map1oXvcr5KXnCtHC/doTpWsX50RALa32eetVivqy8j3JOd8N56/1u8vkvkvSYVAQ50t5jsnZvv2beboVUsFVAakrKiJ6Qp1rolZHVOeX9sQvY6rtmwhr/k/ptpsVdVVW1Ve1uk//BavTwJSxqYXVS+rixCNjnypclzzpugl5mR1g31VHeQ+oyW29TaacMWkdppEbJ2ixri6rqdfZ30aZ1FjrFSYZKoiWmtfM19ic9lymAz9NyW7lRXOSbvXlmOSyWSiXKVkbaEIIdU5kixBv0U5KwkzpszOOzk5GTsX0GOG7NNUAM32U67sV5W9cUPoeyKCw7ZNfm/9lMlkduUe2/kiBcvvsWUV/WF5Go89/kTsOu4pc+y+WF/Go2OA3Uy4+Q4va2uceI2pHtu1m70zv2bIfS8/xZSITTFOrIC7Oy9rP0uqx3Y6nWhMWP3I5HrFxpXNh3onzjZ0fT9aj7iI11jMZeM1tZJrsFKpFPlRq7Fp573//vsBAEvLyhdS7teph54CAEzPcr1w7vJZoEQ/OiXl4DNnye6ffOBk7JodjcuVFeafDg0NYVV/V6rK1dT9Xe/Sv+Tz9jyI3w+zRnMnyle2+92U77S6TJZnms25sd/tHq9vrGFKeV9weX6rDepqLTU0xOdAS8+7coWM2aGZGQQBT3DkMPskL3Xbixe4ttrcsjpxbMszz3waALC8wLXOockTuLbA9dClS2SzKlJOzOd5D3crD/fYx2TeZ7JuWTTGNO6NSbfoHITbu7aJ8rSy8XV5xjEWrHd++85z48zYfuum/SxlqlJLLbXUUksttdRSSy211N6D3R1MlaM3VquBk4ihRJiJajx1o1j9eL2o5BtwFJ+J/ZGX5NtyEgnpj+lMotTRNSaObftEiKfj9SGHfHvOZi2PA/q0YyQVmqwferHYvbf598BURdesnDEpETVUy+a6ai0NV4lqnDx+BLUtsipdsVqG0hp6MzFMhKS1IHSQ+RIAACAASURBVGZmlHHISyuLqIjlgiOEXbUT1leJyk9OSDlQqmaGvEzPMHb5xvwtFKTUd2ueinmPjfG3mUM8b7mkmGqhFr//h88DABbn2ZYHi6NoG2quMXRdKO6g2nnlMvO1Hq88BgA4JnVCJ+xi9hhR4jPneY1DUvDbWCRCtrLBe5vJ8RwdoR5V1cm4Pr8Am24b28oHDMXy6H4cP0nlrfExnuvgQbbxpZdewuxhMnSWG9EbqyajtjdD1T+XenMkzsgma7B1hbJFcysT7kLBozj3lW3ck6Y6VTZPjamyT9/3Y2wzsBuxdxMKVv15j4Ym2/0yvxCpHmk8Z+TYAtUPGRADurS6iskDZFOsXortY+pTNn5aDSmjWp5CNoeM8lJbqotTmiCj+/inPwEA2FzifFnQfAo1JkzFy/eBrvljU1o15M7yEuSeHSlrTQ1LBcrNo7tBZDg7xO+CiGVSDZoEKukov6+X5+cBUX6VWZzNeqcoBMt3sntlDJV92r1N5lT1Pyvsbxsjdk/Hx4lkr61xHkfKmH2RBfZpyGk7yuXIxo5huRV2XYa477WPjR1DYbe3t2PfJ59zjuPgypUrsX2sDUllLWMS+uf5Xjli/df1va6Xta083V/91V8FAMwcpj829vGeshAIfCeq55TL7bX0MrW/uMJw5OuV/9Px9dxQrmHQ7UTRF1HukhgKubNd0TCeG7+3rutGbOV+OWvtBHNvMzpXKES5SmbJ/Bgb31Etqmw8R9wP+5RrdQx7Dplv8uSQvDCee77TaaHZMpU7tnNokM/QXJbz6+jscQBAVqzP5CE+T6/cZPRKdbgEr8jnr1LZkclzLi4uKrJmir6iInZnXfcp4/qYfYrHN+Xi2xL2rQye4jHW6A/XVpRbqXlWEuvTbu2gpfZaPc+82P28V9J5+WyoKV+81LUwA917AGVjwjyrf1fRJ/e1eqOPPcY1TvQ87zq478R9AICWcspWl7k+c1pSP5yYZv9IyfX0q4xkmp7m944XoFJi38zOcP03KAXVnZpYN0VkNNX+fsW/XqRMoN84Hs3P+FKcdjPKm8poXkjxMJvJoaX8dNvH1B2LyqELpc3QVWSGKbx6nhfls+YKbMOIFKzHh9+dv7k7XqpkNgE7Snosl0XHeQVs7nBgDw7ag537ZNz4A2VXErnr7pscbI4mmXBuD7F+KcfktlFoUKL4rz2Ao0Utwkgq1awnex13LLsjCnvhRMmk0UiiMxG6Zdbf5v32tVBKK0DnKPH72k1S2eaIun4XTVHT1VG+gDS0WCtLMnNnRwVS1f5ADjDnuXB1vm0VgvMG+RJVyLNPByVDOj1FRzgwwGNevUbBiuHhYTSV4FhW6Nz6FieAqwfLJz9G8Yvf+aMXAQAjlaKujxOj2WxjUomnW0oENfnVioos5oeVXKkH3kElZp48eQILKqbabLKdGxtcUFmhxmZDjkAvpuUyFylLS+zLldUllDy2s1rlA+3Rhx8CAFhFVlcv29s1Xt/GuTW1fygWFgT07reNt+RLTzIMsL+AdXLM9Apax06x52It2lb39/VruDfNiS80LMTK+rM/HMFx4nMr6rdM/P9Ieth1dwlV9Ive2PGB3iI6ernSfSsX8r2SEgIlLFF5oMzxWlZRYBM12NpgGEan1ULoGiDVE68AgKpkYk/czwfoskJxA41fTXMUy1k0mjYgNG4SYNNwlb/XNOY7TYZjVAoD+Lt/+78HAPzs//iPAQDZEQIEXYUXOm5cNCiqe2mCQ24G0AtWy4A0/e+qv7OIW78EdHKMm5jDwgIXN8kXoWQ4ju/70W/JYuz9pT76z2H3tB+U6x9P/Z/2MLcXI5u/tn2r1Yq2SRbFtBd/eyG0EMbkS8729nYv2V+WlOlOCqj0X6ddi42vpFDFd3up8n1/3wW6vVP7nbiwUxReHITRQvwLX/gCgN5LrH1/L5qNFetLm//5fH5XuFE3sfC08W33Jer/MIwW1o26yfsXYsfYT3Sl/zliL/j9YYX9lpRBt7HTbrd3jSs7bnL8Jcdyv/S69YWNr+i3XBxUMFEyu85arYZGg74npxIOlmKwXWMI76OPPRDrHxPDsvDLxdsLkbhFUdXOl5cEDGkI27wz2fSBMts/PDyBwUEV2VU89YljXDsdOkS/9wfPE+S9epHnnbvOYze2OQ6qxQqWtlQWRf62IHA5K7GJ8RmCbCN1rp82JOO+vMS1yWC1jJ06fVN5iPuOjVZ0jdznR3/0q/y/ymO1BOhnXQ9NtW9kiOuepQX2oQmpTY2y3bdu8/uHH2WKRU7y7QuLqxjUy8rqBtcwdQuZttIlCSSsHzCysWH3vwcqyDe24y/10Rjq85m2j40NG9O9cOd42Qs3oxBbN4uTJxgqakJiVa3hDGi8U0vD/1JLLbXUUksttdRSSy211N6D3R1MVRiXsE2iKmE3E7Eq9QaRh7KX332cvn3vxJLhfknJzv4E9STiEyEwQfx7s55U6P7n77UT0XmAXoijE/aYgm5EFsRp9f2QQN/vhSQlr92S9jpqv0liPv/8qwCA6cNEWS6dY3G3I1MHMTxGpGNVYT0jk0Qvd2qSGtfr+aNPMpnYCjc2NpqYHiWtfmCcCZ8Xr6sQ5rHDUfuAHkIxPy9ZTolg3JpfhCsEaFRIe2NbaO04UaXnfp8M1YDQu08+/TQA4IUXngMAvPjss/j4x1ictCbE3zOpfTFE83M32d7DRJceVJLr5SsXEarfTX49lyPC/MTjSoRVEeD1RX7mJxUK1SKCVnSBIDQKnGjayhKR16rCCeoSprAiwY0mz3HixDFks/GCdz12VQhQx1BEX5/x0NZ+2ys0kOc18Ys4Iul5PZELQ+s6Jqt7sCf9fK9ZEARRe5JMQlzqNT7XIh/gJSSH9bvneTHWyr7jsYTgStQh0D3I63fPQshCB5tCLnMWKiM2qylmOVMhYxUJJei+VQcG0Wor3Ea+xDc/JWT2E9//eQBATWJAb77Ewo4dIXyNnU4k2VuU6ISpTGwLXR0oxBN7s0p+z+Z9NJaYqPzDn2aYyc/9/P8BAPjYD/4IrwccN13Nq4ZKNpjUbdgnZeGbD83GMUDDwHvj1Iv6w9gMY4qN1bHk5qQIhf1vYYOe50UhzslCwXa+pLR6vxy7WVLgaFH+IclQ2TgxAYvJycnob3tOJee0MRb7sW1B0Cs8b8itMXUmjGG/J0VZAODmTfpDY1Ui4YCcFa595wTuVqsVC2fsP59JHntRkdp4odlf+IV/gQuXiRgbg7BjssgfkFDG+2tO7FkchTRFJVp6fWX318ZqMvrGxA7a7V5Yaq8QaryocFI4KxmWZ+a67q6Ine/2nOhnZq09No7s/2TkjlknIWjhuu6ugrBR1IWtXyx8Xf9buNba2hoChS4FkSw7+7Up4YobN7jmaO1ozSM/uLJKdv/w0Vm0LfxRjLj5DGOqhiUotbZOhujYcbI9n/j4Z4CuMSC2pFboopibP/9jXPv81m//R37f4noln+F2W1tbaLW0LguNzefcGBKrdPK+h7ntovyMHGOnrbIq3VZUEHhCKQTTB7nG+nN/9ie5bcfmLPs4q35wwi5KRaWlKE3FGOpphUpevcWYxukprufOnGGJh4XzXMdMTk7i9jL9bVvPHU9sW1uRRmEiOqY/wsv+NrbJBN2sLEAvHJq/2zgx0ZVGo7FLXCfJalk0jvl0G5b1egM1SbObRaIq8n93ailTlVpqqaWWWmqppZZaaqml9h7s7mCqIBQkQbr0JxkHhXjRtLxwylYnLumcRGD60btk3lHybblfEhnovaEWCoUIUbI3XkP+rFBx8tgRqphs1B7XuisfTKiy28eg+RGrpETXfByd3A819H1/F4q0o7ygUplv+utrRGk7Hf7ekgz4kIrb1bY2sSZJUmQV173F2N3BKuNvG+vsq+FRoggDKlx76MAYxpQsOT5I5CNzP6/d+vfChQsAekjvgYOUge4qFT2XK2BByaIDg0QY5heImpSKvMaDysf6qNCcmUmiTOtKtszlb0f9bEUrjx8jelSpMBHx3FtvAAB+/3d/BwDw6GOPAGAxvhtzPM6JBx4EALx55jsAgCceJhJ0UAzayZNk+f7oRTJkrgQIxkcGMXqA7NXaMhE2Q5MuXCCqX5L86OAw78sTT5D16/gNhDqOIV9+0JN+BnYj3lZkL5kPBOyPQCYFW0wGtn8bQ28i5vDgO1Cxd7k5jhOhwf35k0B8Plmx7qTtEu+Q5XK5CEUzfxEV/TUmwHYxBsnN9P+LdttHV7kEjToROrv3VYeI6W3NiTGJpojgxM52DZ7Qu7whdMrbs/xOw+Se/BiFK3wVED73CksQdL0OdmoSrVBOZEePi4wQ1KZvEtv0yZ2A25fCBg6NiMU6zrl29bXfBQD8lb/4UwCAn/gr/w0A4K//vb/P/hFz0dA584OjEdpuycYZxFkPQ+etr+3eFQqFXTmIxkQl80bsfhjb1G/J72ysRM+gREFdY1D6/XnyOpKy6EnxCWOQgJ6YhZkd146ZZMoi/67rtOR0oDdv+4/ff0zbx/K4HMfBzMzMO54/WYIkaeVyOWKCjYXZ7zn1Iz9CBtPmyWOPPxlte/ToUQDA5paKk+9TguRuNsfhWEvmVmYjpq6zK0LGLMlUWh6Q65rgVYBsNs4e2nhKsko2ZpP3od+HJUvNJNcnvWdMa9e+1p7kPrvXOsn+cXat3SJ2QaUdbAx3EhLb/SybK7lxY6qfVy7TzBE+e6fGKXZic6ZkOa2ZDJYXybJYft+jjzDnua5yLteuMnInl7eca/o2pxtAaveRCJkliTqeMe784ovf/yWeT4IJzz/3LQBAoVBE2FbEjqZVU+E/eYf37LFTzBs/130TALAqVsjGUqu5A0/y80XJof/QD/B8QXR9ldj19dR+emMuWSLC+n1s6rCuj+NwfY3Pn5b657Xnz+Oq1jbmIy2nvay8K8u9t3WzjaVOp9NrRyKnLymmYzlWyXV7LpfbV2zFrseisuwYzWYvx9VyZe0Y9jw1n3inljJVqaWWWmqppZZaaqmlllpq78HuCsjHgYOck4MTxqWJOypmubZaw8xJom4mRVlXDG2SB0oq1Djo9qEkSVR9f1YL6KE6/cdNSrhb/omhuVEsbXQurw/Jsc+EnLBjjJkVP+Z5w6hUJuBlbR9D1OPXlUR5LC+H12mIOn8rCM1oq9jbC68Snc45RAKW5y5oe+U7NBoRauoLjc4UiCJducRY5axkPxtWELPI8x89eQx59dXZa2RkhkaIrJ8/y0JxFuc7NclcpitXqJBjSNTs7CwOP0K1sgErrgtu8/wfiDH6MJVogg7zsf7o5bcAABOKKfbKHt46w9+saN/oCFHjF154gR0j1uv4SSKjInuwtLSFxdtEvo4cJqI7WmH756+RwZuWtPvptygzmlXxY19ISCvwUZIiU01o7PU5sm0t3cwDYqgqUnerK6emmM+j5YtbCE0BLT4ew64X+99i6w2hZNKbWC1T3pJCXJiJq01ltG+gnD4fm3BAtKaQtzxHHsOrxtmDe8ZCttcQeuun/hyAHlIbZ68ixDYfV6UypK1UKkWIexKRtn2bbWMGOBeyYn+6LbHFgY9bC5xLlRPHeNxiWfvyGoeqcRas64sd6/poSgWqITbY8igdAad1U38TO/rRT34fv5dC55UzFxAqP8ARi5RV6YWWqSEJbawJfWw3pRI17cFrMc7+1GEyuJdPsyj4l55hfP5b3/x3AIC/+uJvAwDOX+J8vsWpiRMPHcehGc7Dr/65v8DjzrAfVtaIhn7yc0RhDWE0qW3f96N8C/NbxtoYgp0sBmxIZj9Ka2PCjptUMkvmp5gK39tvs2hosViMmBq7HmNdjGWy35Pjo9vtRmPHGH1D122fXu5BXPK9X2HSUF8by0nm1K7Z2m/zYWxsLMr7Mktuk8yXStrOzg5+8Rd/EQDwjW98AwBw5AiZgs999tMAes/Rp55iMdZ+1a66cgctkmH26LFYW+4ls/INyed0PxvUQ9H3XqfYOiHoWP6UfIuX7RX1lWO2PCDzWXavoudFooxGiLZKt/RUiZ2oQGo32gbolZFxPbuu3nEtdzMrVbV8Ic5cJc9vbejvl10RE25ceTlULqup1aHtw9HapTpEf+NJwXdknPlIXbE+ba0bb92mYt6O8kPnbi0iL0Zi8qAKg28y36quebAl5cBpKRDnu/QLVy9cx7EHTuniLaJE51OuYA6W68P78MUf/NM6Nq/nypXLmJxgu19/8wy3FXM1XOG+V9/mWqeUZ1vLBZ6/21YURFhAQRLyUOmbwaERbaPOjSg0XZ8iXgoesLnK8jPbkiXPj3LfuiIipiTpvr1J1j/QQmJZMvG3by9hp86xeWCMftfuc6OlMSu15G4rHnkVYxsTLFO3q6gcfR1K8z40VVqttbNZN4rQaTVVKqUu1WitGyvVvRW/6/V65D+jckh6PdrcfHdqoylTlVpqqaWWWmqppZZaaqml9h7srmCqkpZU2fI7IRAp4SH2W9iNo1ZRzocp9zmZO0a2kipKdizP8/bNn0haMsfFcTL71slKxju/07H32zdZeNSsH1VPxkYX1M6akJdcgQhExpfCnZT1esj7ALa3iU6a2t+Eaj4dPkwmKKp3onjjlgoU3rx+AYNCiZstIhyra0QtpqfJFBk6vKkCw4YMHztGZHJ8fDy69utSpPJ9HnN8dBYA4GZ4jI5PJMSUs/JFHuvts29j6hBRUi/LPjt9mjlUxgC4XaJWgRSDNho85o2FRTz5IeZSDUoB6PHHqZ4WCona2CTEbmjuxrrUzBz+/9Cph3Dh/OvsG6Epg1X29+Qk+yEQItNsWR0atjEIOruKdZr14t/jqPleRYCT6GRy7OylHgYAnuNFbE1G6KVvyOP1e7T4L1hgNislxo11tsNQYs/z+mp97Y0cJxX++hmrZP5BklEerKo4pSeGSuyTnSrnAA0hhhvLZDRzY0TbTp4g2+G1ydBYGH9D6njFyiA6Gn95If++0O2s3VMV/2wrv3JojPmOH3qGOVYd38f5N1gMu77JbcpCpsfVZ035jw2rH6LQ8y34cJXDBdekTfl54hD9xdY22ZxMi2jwx5hGiYFZfgbdyxjP8reXfpls+EJbeZItzvGnP/dptndQBW3RQx9HR5SPZLdOlzHgDegaaY4Yq20x/2Uh+p3WNgZN9K9Lv/T6t34PAPCzP/PTAICzS0Ron/rQkwCAqjHMYpYycLGxynu0vaXaO1bPLuS+pTL73VWh0YxyQlpBDQ0VNM1mVGumyPteKZHRH5zQfZHPsbFmLFShUECgR7xX4LVlxZZXczz/rZtE7O1Zl8+x0a2dNjyX+4wp93Nrnc+A8XHlhbmG6GqsW5+aem23jc89xrzQL334I2xDlf7YA6MUGvKfy6rNV9P5660mCmUpMVptQOW8FLN35bLlHS0M6U8jxbJERE0YhlGOVH+eVb9FdaqsTpTlA3leFIbStbqFiTqFu5ipRD5tt1fqqo8xSBT7DeNrjH62KfnsSCpTJhmqpJpsuVzeVXMxuZZLmm3n+z5yltRUNxaVY6ezIRXURE3OYl75j7rszdoyxnStJeX/mHKzPRMsH2h7i+c4f51++dFHH8XZs8y3mjlC/1Yq8himLBzCGHCrH6janTX6lqHhAcxdn4/6AgDyhXjumtnlKxe1r+p+GjMdZCK2sarCtf/+V34ZAPDgKeaHj4wzt6ygNc+lK7zuIAgwNckivm2xaa+9xGgfTVFc277G61NRYqsbZyqBE2PjePPt82o/j5HTmB4eIfu3uExmPBvG2UjHcXbV1kzm/SV1BXrjopdjZbuYlkFbjJ1da77AZ4jNQ1t7FovFqB3G6ppy7Hdb8yctZapSSy211FJLLbXUUksttdTeg901kE+/+kuSFaptt+EI8Y8UP3TlhjTYvrurgoe7UKGoHk+C/Umq2fTH0H83pqrHEOyuYJ6sXm6WVBwzhLF3fb1j70KWEp9JJZT+60q21xMaurkoZkYwzjVVkh4YYB86QiBbzaBXRT1HBGR6ahYA0O6o7ss2EYgQ7MPmzpqOkcXAQE+lRxcFAKjv8Jglna+mGmQHDxJlNqWsQ4cO4dd//dcBAM++zJylmXEiLx/5KNX+HI85GYcP8/urV5nrZHlZP/ADP4DvnD4T9QkA3HeSNaZGR3meao5tefk7ZLBmjjGPq3HkML70w58FALz4wh8BAM6phtePfeUrAIBf+Xf/DwDg4Yd5/qef5nWd/g7RntdePYNmg3kUn/88Wa5b82TdNreIyJcqREhOHhWjpjHe7rR3sUnJ+74fQ2XWXzup1uB9TyKA+41PYi/ctq6Yac8lM1naenfVxu8a07wwpMrY4n5ENzlvk6xT8h70508l822SyqJR4bkgfgyb9Dv1nV6dkGkiiAXVEdmQ8ubkgK5DrFAhZ/5yHaWClOkC5eKJhfZVl8pX/bQeO8rzHpml4lvrI0+h0+K1zYvNWL1NNmFL9YIKOoc1Re4LxWIBtQ1u60h2yhdCvL7CY1VDIsgSODTgFoeOcS5enFvB8FHWlXv1NSLCf//n/3e2+wRrX9V8sTARK8hjtNtt5JRTAcXfw8Zy3tX5LV+WbXz9FeZ8/Y2/RlXCN75zEbOTPO4pKXoeEqP86GGyLQ8/THpta5us+NYC/VfXGAU/xEie/nJMqqi35ugX6y6R7KyUHLti2MMoj6WDYsEiGaT+5nLeZou8h1nlVWYtf1afecdqnznwhJRnPHt+cN+tdfVVy1gR/p9Rf1QHKxhXTkVNEQTjY1Zzhr72wEQ8j7OtvAloPLYbO8hK1TITsn0ba1Ldqm2rvXo25dinedU+Cxwgq/nkW80yjaVO0Ms1vlfMcRxks9keI5jPR98DcVR+rzyj/u+N9W2qnlDG7ymnZfPK3VG/txRtYWubZO5e9PxANopGsBpilsMSBFJD06IrWdOs0+nsEaETZyLM9vOZnU4nOl5yn0j1T5/z8/QhVvOt3W7DRDbHJ8hQba0rZ3HbokGY82y5jH5JinKlSnQddk/Ovs0cvupHWesy64kRdNh3p09Tfe/t8+cAAAur23hMSoHXr/GZvrXN83Tk9/wwXh/P8sQsp3Zubm5Xbq4pwZpasdWNa7V5PwYGeF2b6+ZEC2g1VZfO53c7dbbz2g35cEUcGVPzyENcr9Sabaxu8LgbilR66GH6X1dr2oUFHsPLxOt4FcV+z8/dwsgQn1nGSFuO3brqgXmhKTrH65gFQbBvvb0kQ7WfWjfHj/7OmKqpqYM3YuezT2OlgiCIxpN9Z+8SUV76HVrKVKWWWmqppZZaaqmlllpqqb0HuyuYKlPGsbfX/u8BYH19C92Ab8CmtpcocxCZxej21Pl6iP13i42MEIJETpXrursQnsjeuah8bPske5BUZLJte+ftMWz71X3YT/2vP8+jV4ma59nYJtK9JdSiq2Hw0CNEgG+rcrZdx8LCcqSW9dAp5haZ8s/EMGN0c/lM7DOrmjrNdheh0InqIONq14W0T0xSCWxjg0hoscwcogHFI/cjBDY2bi8QrR0b4jEqVbF7DsfH5cuXY/1g112v15HLEYmanZ0FAKwq38GQkKe+wLj/X/vabwEAvu8zZKcuXDyH1157hdc8QcRrTYo3X/sNVkg/NE12aWuT19ccM9aT13Fw6gAmxsh8GeJkrMDly4yRLg8YamIKNjxG129H1eR3jb+E7ZVLZdYfv9xvhh5GipmJMRUEYd82/DRUun3sna/nbrUwDNFutyPk0pBca3Mul9ul3JdkqrIJpq8fdU5uu5upUo6B5rjBkt1u7x7VlB+wJtan6hM5y45wntRbHL/5UIyN0LnBSg7dFseh7wg5FjsdCsEUkA1XOV2mcJXJ8/ynHjuFQAjljasc86+JJb5+nax0vSHWS02oKp+yVMxioCImRkpdYUmItPKEjipfySlwzB84QtZ4qal8v/Fp/Pwv/yEA4NtnhUg7REatvn30tJAPdqVmGbTX7BcEbfbdL/3iPwMA/G//5J8DAGbli1aWiKDOTIuB99j+sfuA4zNEiPNZjpH6rRtqJ5HZlubAuHwMxoT+i33J5kpwjD2TCuiAWOKbPn1fRoxVO1QdlSx9VN6tou0S1fbyytHSvWm6vOahoKpt2bfmIy3SIJtxURBzYYyk+fR6m/0+OswckBCWP8nrLBS6aNbZ76UCv3PA805N8LwTIzz22BjbMiHFr401jo92o471Fe6zMEeftyTl1a2VUNclP1WQCuOk2j9YQFvMidVkNEq068dzje4Now81X5KMNOmvRWl+J1L1TNSeclSnyuvLjQ2UNGg1nfarKZY8b88cROqwYhqd0HzX3vmh/ez+ftE4yfMmWYhoTbKxsYuBMmVO2yepZGnnLBaLGDrA5/+qFPuOH2c+9tICWeSa8vJU3jRSA7VakXA9uGIoBlVPM1Ato3rN8rQ4r6ZUR/PmCq/zhZdfxZtnmCP6yCk+48eGefyDBzk3CsqdDAIqELtSWLx1g8cIOh5WxebU9dzP5uLrIF8qySsbnF9ehnNlaoo5ljevX4mUOTc32WcHp3gdvpjwB08x/3NNc3T+Jn1lkMkhU+K2Wwv0mVmP13Pz6gX9z+t5+4xyreRLVpbYxwvzt5HLKSpJPtBUGFtKzHIze7ORrutG7UzmVtk8sP+TNQb7a6NF0TeJMWLvBUnWay/VSfvNmMtkTtt3s5SpSi211FJLLbXUUksttdRSew92VzBVjuPEFPbM7P/FhVV4HpHMKC8KceQ3mfMUHasPqf9uKH9SbaY/xnO/SvDZO+jC/fZNVia3N3LLA+p0WtF1JRGgpJpP8lz9scuGfCUrsy8IYchlGf/61lnmHI1UiKqY1n/Wy0dqKts1ohfjQisvXWLtKbu+c+eJ2Nw3Q1T54NRR1JqmOEYkqNEgOrK9SbTEYrfXN1RTRxi0MUqtViuKc/XENlUnVENmlMeu5JX3cIT3rFIhg/a13/xd11eI0AAAIABJREFUAMCf+NGv4JvfYD2uY8d43IJqJjz2GOOhT78lREa5Ig8/yGNefPs7GJ9ge8IOfxsdJjq0rlpf+Sz77JFHeazbt42NIqpVq23huedY3f1zUi0zhq4iVN9UDz2puFmfO14enSCuiJS0ZKx6pNjUp5CUZK8MvUmyNMlP182ho7pKXUOPhUjtNBf3vJ673YwdN3TMUKn+Whn9KmrA7lwHX/sma15kMj3F0WQOXNS3dr+CeC5m//mttorVDSuUiJSOjHIsZrtkSgoqSpNRDblGbR0ZqWG1lTtlKL+xoFuqR1Uqc161Opx7+YLU8eobOH6KaO/hk2Rhx2bIRJwRKrtwlYjm0ooUOTU2ttbX4FlBLOX0DA/xuIWqGKEK88QOzJ4EAMw3uf23f4s14/7n//NX8HcGOYdrDeVfiLHJq15WZ425Pd/4/a8DAP7u3/kbAIBc2MbIMO/nT/yZLwMAxvPs15/4Iuf028+S0T5CshitFpm6xx8Qch0W0drm/Gxuq16MHh/DKs/kFTV2ikLUdQ8zqjnW7taxtWP5RtxnYkCoe2g5bWIK28qxyXJeBd4g2qIT674iGjSnjZHMyBdmssr5yIq11zE6oQ9P47Aj9NvqGJXLep6oro5jtQx1D4P2NgZL3OaJRxnBcOIEWa2x4xwPwW2e35S1bt0kk5dzqVJYLLsYUd7fzCTHqrEQ577zbe6rmjfnpKQ2FLANhyujyIp57CR8G7x7DwsOwVKBjvLdnIRqses48PVbO8Mx0tQ9yVuelNT3ymG8nk4YhBGb5HnxvJTd9Svj66ZIna/djoJuuhYHpPy+iDkzv6cx4ni9On09NWaN0azlAyofS+yaleC6dINj5eUXX1T7Mwj1YyZxzY7Ydj+RF2bXVfCATof7FMS2uAX6Sq9Mn9EO4/7v1k0yRlWpAHq5LKrD9FETR+kDRkd5rMU3ea155bTWa2z/yRk6j5WVFRSl3nn5Erd9W9dq65b8ID8PSjX5+7/wGQDAwqryVNst1K3OoOpQFfVM2lJETVv5caYSWdcz2fKCw6yLDniMyzfpGzfFpv/Mz/49AMCqlAvhcq1RHJffCYHVZa7t1pXrfeZFMoebG4piUPSRPTOtjp3lq4XIoKK109Qh+vfVDUUDKQ/X8rlL8lH97FQyvzCprrufroER15mMi4xjtTjj+YEWLWVtsTW25d4ODg5F66Ag8az2EvUJv5vde94ptdRSSy211FJLLbXUUkvtLrK7gqkC4nG5Zvb/0vIcXE9x3a7VPVBewz7ZVRHL5PcQoe9Wryr5RtyvcrMvyxXGY4Z72/Wqjb9TFfW9zmvIg5nnxXPN4hZnFaJjRvHRQFuodVbVzb2QKMW2ciIqw9x2pEJ0xxitkVEq6QRBB2PjZGIOi4HqKJ9jUGzPdSE0E3mpOAkBaGytwckxf8GtSqVsWRXBD6g+lgpC1BUPvSNUtd7q5YIZOlEZ4vFnVR9rqERkxBNcUajwXGNDRIDmrxEBnZtbwcHDjG9++TtU8PvYRxhf3Gpx22+fZsXyH/3TfwIAcOMmc51KQwXUl4iwdLtEVg8dIVM1PEKUZnCU1/Obv8daNj/wRSJRW9vKhykNY1o5VDeus3L5/Q+QxfI8u99sY6dNVKd/nHSEMAdOnAHxlYNjFdOTKnaGvuw49WhcRcyoEj7y+XjcvfW1/Z9tAALB4anuV9Yl4vWZB1lJ/ln8Pu5lS+ZT9qtm2vzcjxU269/+nXLbgF4Oi1Vt7yZ+X1/fxGCF96WiSvYFoWsRCS+3srnJuThS5vwu5NxIYbOdcWLbdpWT6kZov1BBIXqmvra+vg6lR8JTTsuJB08AAMYOkkG68MY1AMBz3yZT4XfI2AxWc5ESYV6IdV4yf0XlXRVHiAZfXyJyON/k7wcOMydhZPowILYraFs8PufFP/vH/wAA8K/+xf8CABgdkcLnx8h6fe6Zj2Jb8nYT+u3s6y8DAKoO/cTBMV7H6jKPLVAYY8PcfnN9DYFr/pm/ZdWHHflTpXOiWiUKva26Yq2A1+kgh0DbCiCPat90A2N4+UMuw3ttDHA3X0JNqqxyh8iI1cyJyTdGLBTVb59t+REndOGHUmgLrQ2W78VrbDbr2jZeP6frt/DDX/oqAODQFO93V5ETy2eJgq+sMufMV421Zkf5q6rF5YRhVMPK88hQVgb5jJk+TL/sKVriwk3mWkX+K+giYwKNYumD6BpxT1q4R9SMo/kZ+H4PIc+aT+C2pnRs7U6uT4Ig2DdfPKkoZ7aX8rBnOe3Gelk+nvnEQNvq+voVBSMVN+Vat8Sat6QcePYtstuWPwwpizZV0y3rulGDLR8nWtNkNEcLcYYqii4IfdhQmR4zFp/Hf1C1Li1fyfLRjA1r6flZGRjC1AE+y1vrvKaX32RkibXtC1LtbR/nGH3xVeZZHzg4HfVjVPdIaza7Rlc30c2YwiCZ8jfeYL/s7GyjVOYc2Vhf13eq4aW8U0+fxrocVMTCmrZ3vRw2tk1VNZ5D+Ru/8RsAgM9+/gs8hqbSZoO/nz93EQ+f4rM8kC8qDXHeW++2tpZ0ft4nY3tOn2au7ZEjR1Aa5JpxTjWeLA+sbVFgyv/tj8gAOA6Tz9mkQqbli+0XtdWvPWDHsCgTY9Xs/iTn0Orqao/5lHKhY3PHsdF1Z/aeX6ocx3EBvALgVhiGX3Yc5yiAfwNgBMBrAH4yDMN3pUm4q1hu6MEWnNFCTwtBo/vMbB8bTJl3kUefpBf3EoFILqT2C8Pr/X7n59uvgO+dWFKEoGuJ730vdfUdDqhthbPUtvn/W2dJwc9OkpoOM9x3VZO1UhmE63Fhd22OlLAVdVtZ4YJqWWGBQ0OcVEtr/P/gRAnTB/gC4mc44aHF0YZCPzYVPjJxgC89Jt25scaJ6QRVBApPcpvc9r7DPKYJR+ys8343RC9bgujJk9zu6tWrqFbZvsGqXryUpPrqqyzK62mwnDjO8JWM5Ke3duq4eZmUuBU7/qM/4ovZocN8UWp22B/TU7yeF56nQx4f58JjdHQUMwoXUHRHtIBoqdhvMiGz/7PVjhdGjByQJVUWOfFNBjQZDhh0u9E4MAdjRUobWnFZYnDS3GymV7yxrUWaQs86Ej35IO398DlhtxsTQrH+6g/Btb/3E6npT5Dt/wyCINo3mdxtZkBCU2IUfru3EAUYmrmxJqGAIs8zPc0x3dXqamKIPrA8YCIUvH9eEGCnRnEFz7GaE/wI9DI3JFGUpooC5yVksS357BBtdLUgb2ub0gAf+oNDHOPDA0rGnpKk7k2GAi/dvoaKrjkKF/XYvxW9gCw7fHDdUAjsj/3kXwYAHLlEwOFD9x1Bs8Yx//QjnDc/+dUvAgAO7LD0w//wFxlqO67CkjmFBc5feRbjo1wQLL3J0goH9MKxrcLbByZ4/pr81tMf5jk6Hc7FrtOBlIUhjQmMj7ATpzSPRwY59xpaXFb0AhfW7OUKgKvi4Dts/0CF1zEc8P4M2UvcNq+jHbKvm611ZDU+vTr9ZMXjIqrU5rGKOQGL9hTXI6grP9YJeuNpW4n6A3q5zTS5uPXVHw09G372p/8O29DKRC/8tXW24fYcw7WXJO6xoQVzUmAhKi7e6fmc0EJltciqjtEvm0BJM8uxdeYi7+36+jpKCj/r6hkfaDHZsTfTD8jelzWO48B13V5R3IyFcurT81BSOF1NIXMmPtGQYEJXIKiTWHxms9mo75PJ/bYwTQJmUcFY3ZdysYhtLVptzdLQcyISypCvSgJQ2Ww2enbsNLnNK6/whWNpWUIMQVxcIKd7aTo93cCHY8s9xNcwbslk/+0lznwqdygWC5jQ2mVUz9so7M5eagTuVIscZ4sSanAVrnZ7aTEaqw8/woLVBw8Q9LxyjcXHN2u8LxbuOjpGP3j16tVo3VPXS4qVg7H7cfQ4w46tQPjv/e7vqI32kldAtkg/2tW6qKU5m1NoYVEvVXm9sLVaJgvOYy4sLaIb8Hwm0HX0KNcylQrb/cYbLBfzmU9/GgCw0eDzO+dlsDB/W+1j33RFSJw7S2GKY4foU+2+Ly8TEDHRj3K5jA2FG5bLKqBcE2jTNjQpvi7pX6ckC0QnReeSohO21ulPb7G/7bj2jLZPezGztU9FREIu15tDijrGjsb/xATbfaf2foT//TUAZ/v+/58A/HwYhicBrAP4y+/DOVJLLbXUzFKfk1pqqX1Qlvqb1FJL7Y7sPTFVjuMcAvAlAD8H4K87fJX8LIAf1yb/EsA/APDP/zjHtzfW2nYjQk/sTTyb2CYZXtOTVI9LN76TJdGe/Y7db3sV79vr97gZu9UrfNd//j+OJd/QIwLPySCUfOft20QiNreEqKtrdsRYzYlJGhlTOKIOsrJex6UrZHNqQk03VdyuZcVEhYg/cIrI4+NHiIyMH5jCTo1o2PImz19TOMuWFSZUQVlXyduHZohiDoh9GSzlcN8sUfqv/iAL8h05SHR6fp5IdLVK1Gh1mecIFTL0wAMMJ1rY7ETbLi8TiVm4TSbMkhe/8pUfZFtEEa8u8/dG3cdxiVYcmiZT1Va44dYGr/mAig7OzbEPhyU6kRF8XCoW4WfYD9cuESWuDHAUn3qQYUsmGpBkarvdLvxOL9QD6CGMRmf7QjMNxekXqAA44pLSvDbukgVwDd0z87vdiB2xD1co8tLVq/gg7X3zOSo2HlH+CTGKfD4fK0sA7B+2u1+phL32ieanVbuNulVlHNq9cOId3Zer1xlauyL299xFXuODs0RDP/YE51yuLKZzvRYVbGyLBbXQqUisRiinob11oeNQeFx1cAB1FeO2ApUZsZOOjjFQ4b6HJT1eyBDRG62E2KnFGcxhsUlFsV3PXiAb/eor9CuZHPv/wnkyFV/52AkMC9V9YJb7HslJ0ps50GgrKbsp4ZtLb3HfVt3Ha89RdGbqgKtP7jR/g/4hP8FjPvEk/UpbrEsoOekOApSGta8klg8d4tw3hHhH93R5U2EpQsO3tyVOknGwpGK30qKBr+fXxx6mv1pZ47EWr5/TdfCcO20nKgY+NkLfYqh+RdMzL7+etdhfJbr7CukrFcpYlYS5cuzhin18cJb36k/85F/iPmsq1iyc9eqNeYj0R31LxXybFvbD6xkuK8zRBAxUlHdrS8Id6KLdUiFkixyxArJdPWtVRPzpTzG06sryr/GYmSw68nmm/2/M6QeZCv6++ZswLqnuWdFjq/AahtHfEXtlAjTmc8VUuArLs7lsrAzQez5YNEIS9Tf/Y6Fbtn1jZwdtHW9HNz40xrNjURKW/O/G9vU8D1f1HLh5kfPOGAHH2CULz7ByNUm57G43kog3NiMqx5CxiCGLVlKov1imUqmIIc3nSpSyIOZf4cZ5CSPkFVJ83/30mRsNXufirXkcUEmAi5cYmnf0PoY7D4t1unqbIasWQlgVGzM6PhH189QhsthWquO4GKqBMn3oWbE+xYKKDus5+sjDj6EwRNbkhW8/BwBYUzmCHd27IRXWlQYDCgqH9MXcVgYG0dXcMKbq0CGybY8/zkK+JtdukZ7z59jWyZEBdPT8X1HpiEH56ofvYwjlinzJuiKYrPivtXFxcRGe+mRTPqArVt3CAJ1uXI6/P8IqKcKVLAtg485Yt6T0ejab3fUsTkabJVMg+oXdoqLC8jtZTc2NxWW8G3uv3umfAvhb6FVrGgWwEVppbmAOwPReOzqO8187jvOK4ziv+B8wnZ9aaqnds/a++JytzQ8+bDG11FK75+x98TcNLd5TSy21/7ztj02NOI7zZQBLYRi+6jjOp+3rPTbdk+YJw/AXAPwCAJRy+XAvNihCiLvZSF64m7E3S0vU57ZJlidChN+5DXYtsc/9pBv7f4u22ecEPXS798KYbGM/0gPsFqzoF79IXmMSPU8W1YswvUwmysfxJTu6ukkUa6e2rQvh82FB0p2NjoQrVNj37NtX0GoKcQiIuISo6pNv/LWm5DiXJfN6mOc6f+EKbi9y3/M3Gc/bsphVxdk+8sCjAIDbc0S73AIle03u0vUcZIUOPfLwUfWZ5IY3xNj4a+oztqUltLbeIGLyyCNP4MbXKeObTxTEPHyEaE7ZCBqxb2PDRGJ+9xsv4OgDvCYrUPzMZz7NPrtJ9OrMW0zWnJnhdm+//bbOJRSx243kPStVIi+BL+RfghE7UUy7Cjn2xxgHe3wHoBsVqo6zJ/35QmbJcgPJvKsk6xqNR6dXXLKhmPGBIvtwa31j13m+V/Z++pwTJ+8L8/l8hIIZO9c/579bCYb9Cm7351cmfYpZu8N7bXlAhuBFyHGjgZERMkBZ5Tu1TDtWczFf4PjMeZyT6/OKUNpZx/Y6Wdm6YuYdof2e0N1saMnAyldQjLnSOrC6eDvyS011ZzYjqXC1qR2aCAPH8fCg2tIuYHyYaKIr2e+u5m9T4/QHP8E5f2KM/X/2TeZgfOQwGZz5m9dQcYncOtsqqF1heycP8vP0aSKI584RHc8VLHHdwfEHuG91mMj1+Uv0LVOSTB9VXuVNobIlCd6ceIAI9vLyIgbE0BkLvLFJhNaYqqDDa5+b5/fbNWMZ2YejYw4mRy23g0h5SYXNywE/az7ZwNlR9teVmzzWwUFg5pjlv9C3TgyzTW7I/miJ2ag1eY/rNobAczmlQeRUbPmR4w8AAL70xc/xmLp386+RIYvwVYf3+Pxb5zBQYd9lc7y2wiDbu7nFfnc78WdQWwU+LUk/k/Gw46hga8fmAU8T6r5sm+iGGIRsif3SCTNRuZJQye0mKe7cearxe7L3099MTs2EuXwe4a6cWMs/81FUfkfBnunqT2O3TPSj6ZtMOfuj1W5EOSL26RtjtaRjmVvTM3VD+To7yoGplHLRM8NyZOxYAyqHYDnHJiSxLvGHl55/Dgu35tWueO6vJUplMj2fCACunmeOsZEO0LE1jM7jSyjGC+L5MQNiUCynZnx8Ap06z7u2yHWA5S+bhP/oKOd7Q8986+OSmNO862F1i8+yMbFdc1c5N0zkZ+IgfZMrv3h1jqx3u92OmMD5JfrdkycZfXL0JFkcV0W9P/rMJwAANy7TZx0Ypy9DN0CY4bydGL0GANha5frs1KMP8jq0Tsu43K7HUOrZn7kKX2xPWdS4rZO+9Q3mcFlO+B/8/m+zXyQsUa1WoxIuVg5j/hbnuYl8mFiZrXGMfQt89sfWZgu5Nv1ZM8GMRj6ibeJjcd/hutmelLqeiWHexrutOdhuf0cUujG7EkUKgk4k7mJL7XbbZOBtfZzR9Vl5IZu6DnxJ+ueGJPcOy0N8F8IMeG/hf58A8COO4/wQgAKAKojqDDmO4wnJOQRg/j2cI7XUUkvNLPU5qaWW2gdlqb9JLbXU3pX9sV+qwjD8GQA/AwBCcf5mGIZ/3nGcXwHwVVAd5y8A+PU7OZ6jHAeghxYHEQrfjfJ/AieOWniCEZLqd+9k+8mPJpkjO2Y/8pxU6nP2CV3s5Tb1g1iJeE/EmYG91AaT571jRUD1U7vdxpoQj5aK8A4MEsU4OEX0ZnOb6MLlC8p52iECcfGy2JZcEaHlf3UtRprowcgAUYUPK5dqRHHBGcXSX7x+BX/wGtHgA8d5vkLeCgWyP85eZFxvZ4fH/s55sj7fL1THPzGD6QmiJJkC27UjIiabM+UbxvtWhaZavw8MSF1rcxNlXeujjxG1XVsnivXQKeZdDUhOevIA0aPbt4lcZdwCVjZ4bcPjzPdqKVa80eI2WUnJumJSK8oHcRyLofcQqO+OHiHiFQhVMjTFgqWTzBH7SsyoxozJ71oc/n75ef0MZpLN3M92SYV7boRCb0klTErRqAjx/yDs/fQ5juMgm81GMf17SQ6/03zU9cR+75dU/65lFJDwdfI1Fus9MDAQqV0Zs2psbcsnCpiVYlooydeyCl5ubvoYVfx9eUC+TH5qSwpeFvM+KIlrQxBzUofb2d7EgXEy1a0d+o+OGANDsLMVoX5S/goU4jQ+NoK2EOhmx3L6hG6L7RkqSFK8xvXo9z0yCwC4qdyMQnsHeY3XY7NktRyxas+9zCLer7/CYxye5b7TYrn8sI0bN3mc8yqCOXmUvz36ISp7/d6/YsFg4x0+/5mPAQBWN4jKzhw8gLl5stA7DfbN0jKv3djaIBjW/ypBMWwqXbzO2SMzkVLZxir9hM3T7RXlCzi8h+0aEe7Dk/z95ENj6Dj0aYZmD6mQbtCSDPAC/XZXzCUsBUmFyDc3NvHTf/1vAgAGdYyF82/y/Oui5V1TMOS8runejgwOIStkuDpS1W+8v9kB5eU0pEZpzy8dwxRCW60OQl+MTFvos1i/6w2i4MPDvNa8IgBcMXph6CDjmYKk5drsncP4vbL31d8A8OD0VItt3mt+wHN7OU2KWLA8yEjRWHO4U+d47GhR1PQ7EQNlEuElsThKP0GofQ/OMCpjbZPjsRiwv9cXFiPmo66C4fUWx8KmlESXpPy7vMB5N3eDirjlYhEO4oz8LmZe/iVSctPP0XrKdQFbU2lMGmM1LF+WLDnTPw58RX9Mn2AeVE65SlMun9emknv+Ktcab108DwD45Cc/yX45MhNFLSwtsL1WwNbU/+oNro8sv7gkFr6cL+Kg8i6tEO716/Q7rz7L/KjCIG/EzBTnzMHJabWN477T6SCvPKsHHuD6pCV/GuVFPfoI2y12d2GBPqOgsjZHZg/i2rVrAICHH2HBbvvfCghPPcXzb6/RdwwN8/ytVgvzt9i+S5eo4vrUkx/iNYv1u3adfXflyhVdO32KsT2O46BjuXR6/tnz1dYlPZn0eI5vo9GI8i2jMdTcez2eLxV1XuWudq0sRh41qQ0mC0Qnn+82x+z6MplMlGdo48uutW2V2+/QvhcZn38bTOi8BMYf/1/fg3OkllpqqZmlPie11FL7oCz1N6mlltqe9r4U/w3D8FsAvqW/rwB4+l3tDyrjJHOceuxMLxa768SRkG64N9uzFxu1SyEvgSYn34iTaoD9+yZrWUVtSSDS7yanaz+Up3/bO2HigD71G+Sit/JtFYZblHJfbZPxx088zqJv81ts9+qi6mQE0vh3MhG0NDXDN/sR5Rs8cpKIy6TUrQpiiEbGGbvbxRwqV6X3f4TfNVR/50MPs/ju1/79b7IfpC41PE3U59f+4x8AAIb+zOcxohyNrBQBu2KArL5LpJ4mRGR1lUioKQW9+PyzyJeIyhwRsn39Gvsj43LfDdVnKHlWq4iNymULOPMW0ZunP/QRAMChA8ztarV5jI5vqjq8LsuHWVxc1ecihseUZyIkrpjn8R0hsVbTZ6/cOyeRZ2UWzRU3zu4mx/pex93Pktt1/DaUrgFHaFJTanG3V9bv6Jjvt71Xn5NxgJznoCRWweqbWT5BEASA4u+tuGnSer7GmGxTaGwjo3ngeZYrZX1q2/LetzuWm6niuyo6FLgh8qqp0hYi3WoYvEtEdbBINLqxRcTSbXOsdVs1dDUeKgW2x4epRXLO5wfoE7bWycZAuZ9ba4bCuthcI0IbCKmzcTEyzLlfX9nWNXO+dFUdd2NrFW6WaOLSCufU5jbPN6qCleuqeXR8hjkH5y5yfl0Tonr8wfsxWKUfqA4SbX75BRbwvfQWUeCm0vkeuo/H2NHcrzU2cHOePua+k1T0+thTHwcAvPLcGQDAovY9fh+R27BCNLhR5/1ZrjdxaUE5LcolW17SfZDmwIlH6YtOVqiOVRRbMFASWx52sS5GoKvi9VYXzK3UdUxe58jBXs0dAKgUsshm6S9nhokUW+7lti4gP6E8QEdKrOv0RV/5IaqYHnv602is8N6tz/G+bzd579Zqc2yb5euIFRoaYZ+7Xh4bNTKiN6/Rl9pYbWo8VHIcd23lmPWKwQrhbQbRb00V+zI2YHpAdYt8FWVtqAhoiwh6bmAEdd8YiYTCbveDYar67b36GwfMReoqbyPU89QYwjAMIzbHikiHmsPGEFpO5ZhYkS3d7wNTB+FZ/THLgzR0Xc+nLRXD9q/y+6UV3tMVzc/5a9ciBtqQessTsrVOtaQaiJZ7otVjp11H1jVVx/jaJfk8impbWTFciwJyHFjB8ijaQm3a2tqKfW/KdpYn1el08MRDrFlXFhM4Mcjnb2OD+547y3zTZI6P1W3yfR+PPfZY7JpsW6tT9MRTTwFAxGDfvEIV38APsKMaVi+9eDnWh1avqi7V5OXbZPse0vVevkwf++STT0aqdrZ2+NSnPgUA+A+/9qsAgKUFMkkjozzmhCJqVlVf6vnnn4sKJH/yUyzyu/461QbHJuhDMx775+FHufba2iQbfuXKlWj+fuhDZKhMidZyqqwWmc1hu5f9DJMnP9KLMutE/dvfp8ZU9edaZbNWn0xjJBevxWnPSMtps08ogqJWq/XygFXTbVAqzBsbm7H/o2LVOpfrOn1rpXje451G+Jh9cNqkqaWWWmqppZZaaqmlllpq/xna+8JUvVdzYOG0FpvJ7005zyk7aNT59jg8wk9DSYJ2nNVKWiaT2VWzx8yOn9zXVNqi3/uQMTe6uPibtlmSZQq7Xt/bcIL5cnr6+slrBgBL1wpDwMlY3a29dfgjFSFTD+tI3WlhAV2XqHF5iKitK9TqxIlZAEC7TkTqQ7P8/Y0MUayO2IjJsRHMThHpuDnHeNqZCaJF4yPKIxCKVRL7EhapKnP1xquYPcR2D+aJlv6lv/rXAAD/8O//PK+1xmufnSXi29ohenbkBBGZ185cxakHeP7hHNGpDSE/XcWkN1Rry83xOtZ2xOzlif4MVUo4fIR5X2NDPMa2EK/GFq9r6nEiVWurRG/yLo956tgE3r7GvLDDM9x3df0a95kgiry5RZSv0SR6n/U4DqpCdQarY3CyQmuVG2K1tExeKBMVYzPmUiif48AP4+hJslZSO6pYb4yWIaC98dgLVdf5EK+DYuPw6HHeh3MXqFDkZQpwVD/HF5o6JrYiaO5mVe8Fc5wM8vn8LsTK0OI7yV1M+o1ejHc3+rvNw/asAAAgAElEQVT/O6B33yplzolG09Bh3j/Ll3JzWbTFapiqnd1rq3VUKfMzn2Ub6lJe8rIBHKFtzRbb42SUayEks7WtOHQxaS3lCdWkCLraqGNQeQCm9mWKmnPKwXRdHkvpGybGhEazg9DheYeqHCcDA2TMtmpE3WcmZwEA3/zWtwAAy6v0SRk59vvvvz/KO2iIYT/zNtHmDZGjf/IrH2X/6Fkwv8R5/OwLb+DgQV7zQ/eRhV9bIVK5tsxrl7vCxz9OBqtrsf1SllpfW0VTOQ3La+yTnCbQJ76PeVkjU2LP9Uiwunq+/Oa1a1eiWkue2G9HG2+vkV1qav6UBuhHszl+7jR8uAG3Xdezb1W1pDal3jp2hG37yb/wEzz2GBH1jatkv858+0WMjNE/rW+yXZafZLlMjVa8XoyxE24e0bXbI6eoPFFTRawLnc8aMyeUurYppiXoom2sh5jKUP7ay+k5HqmA8RxWiygIwogdNz/4n5Kpeq8WhiG67U7EOpl32dIY26nXUZFSrPWnqQGWpEa3qdzGluo5hgXVSqwtIqjTfyzeIAO5oJqU8/P8P8oTycZrXDlRvpa/y0cV9DzImd+RYmBkug8ZOHCV77mj2pP9uSr9x7Q8FXv2RbWGukBBOS2mtme/lZXbN6U1yKbKYRizks/nsX2d7c2K5Xn1LT27vDiD1tDcgdp/XfnchUIBt6pkwGuK5HFzPP/Z81QBPHPuOwCAUdVnevB+qvI1m82IzZlbIItleVBl5a8XNa4HxL7fuM77Mqh5OFAdju7Jk0+yptTXf5MRPOPjXJcZg/Sv/s0vsw0aRZZz+8ynPhmtXRt6qJ/6MBkpq5v1hlQHjeU7foCfV65cifrb8rDeOsOcemPODh+hP7ZnptU/tWnpum50T6LcuT3yjQEgJxbK6qmVSiU0xC7ZurecN2XchMK1NjCFw7YYNMdx+o7PfZP5URZJZDVbjQWdnJyI9onUW9VHt2//p8+pSi211FJLLbXUUksttdRS+/+N3RVMVdKS9XIyjousxzfNwI8rpnlOds99zcKwu0s5L5mfdMeKetgdX7kfQ9Y7fxApQPVyp8TAOQlVE71NR+gNem/Ihlon1QejOlVqQ0f9Y3U/Mk4W14Ve5Qo9pRmgVxH86gJZmKkp1WVpE5EqV5lvkMl6EAGFjxwiijJ3gzkQW9tET+2+FEYLsTatrq4iNxRHD/7lL/1rAMDhGdZyuD1H5G19nQjU2AhPNljhfnOXbqHZZHstP8z6yhSLFqRItCRlGqslY2j37Ows8kKSl5fjylPFAs9jqjdHDrPdVkNoeWUejx8ja9ZVe33lP92+TVZtWepehm7kpXA4JkbPzRSwqZpZTSkjGgIYGoO6T90o9mW8jlFy7CZRxndjto/17c2bN3dtY+PN7qHFike4zOlL7/q8d4MZM5WMAb/T3EVgd9/354cmVa8iXyQm0fKV/ID/d5TH5TkeAo0xq0Hm+3Gl09omc1qGNdYCX6xXaweeWHEno3p+EZMpZkSKUUGHcz0/QFTcFxuVq5SNSEdHvsesIgQ9UsEz8Tn9EQRBpHJm7Gd9i2NrWMzVjRv0OYZUZoVKVgbpo3KFQnRP5pSHYDVXjh/nNoNSzlrblCqdUNpSDhgQfWbx+cZQ1euqqaU6SYYCzy3ejl1PY6ce/S2iDPcfI2I7M0Of4hFAR7sptbauPZt4z1utFjpCWUMYI6DaK0JQK1Ux/cqPC21eZ7IolXiNGzs87rWbZNAfPEU1xM9/5c/wAvRs3LpBH7isPMdqdQjbqr1TlrLYppjCtlT57P7kxJKEeiZ14aLV4ViwnAkb03ZfStVKrC1NKW+FUm3LZrLoiLGM2CV7frcs55j/d9rGWPTyjLuJaJDIt31A6n/vp7U7Pq4tLPbKgWlyHZgiu3ioXMDKbY63xTUp2SraYfsWWZBzb1AVd22Bv1sOcAZARsdzFF1jfeWpQFXR1Pmk6CchRfiOGHonG+WGWs28jMZV1zYO47mlNnaCIEDL8p1yhdg2FkETrbEsOkPMlo33XC4X+V6zvJjPKKdVY6gjdrWpCJvBShUHplk7aUusxfjMrP5nnx4+TMY2p/aevcB8KFu+BU4GL55mvqUXcjy/dY4MlbFdxj7N1ei7QrXh/vvvxyOzzLdal4LxRz5OVcExsVrPqy7Uhq7PmC2/Rf9z9dxp1FVH9MAsr7U6zWfsZ2Z53ktnyNQHO/Rljs4PsS/ZXBEZKRLmlcM4rDVeXQz00JiilcQyvfjKm+raHOYWOJ6ee46KhfasP3SUfbu2wmu2Z1lWPquuKIupqSlsihFLRmj08q94XqsxlrUoC+XzAYClKOeL8bG0S+NAqqyhxmfWK0ZjyHzw2hqjFywPD6GihHQIW0d2Om00mjUdh99tKyIjGUn23SxlqlJLLbXUUksttdRSSy211N6D3SVMlYNMJrNnfR6AFe0t3rI8YG+l0ruPwKt90KuwdzxTLTFkrdWKsz/JOFCzbre7i+VKKsQkmQN7u/X9Njodf899rYJzsi6XHWNTKKPnedGbfBTPqvbaG7+h19bGfI6oarvVY+q2dLyCEKCNdSIP9588pm3Zx0N61b69LCQsV0HXERrZ4pCpVMux862uEBHwQMTz4cfIQuXzeXSEyicZwt/9nWfVFv4/NEzotywFtoJykAZKZdSkfDZhleiFxNu9NBTDkAmr+m3/N5tNlCs8z/FjxpBRecdU3qxPazUiFBnFLI+ND+LwJNs7pLyCpXX2pa+8pIGK+tuXipeQ37zixFdW1qPaQM2WWB/l1XRC1R1CXA2yP3/KxoR9l0T1zPZDhnzf7+V17KM6aayfoTxmjuNEiE5dY+TttxlvDfcucSHv1hz2jY2f/djsd7Ikw90/f5PsVVLRdGeb99xqzYRSmHPFxmzv1COGO6vvCkoeqlTIYGyvkR1c07UWM0RlK2UPTY21omqvZYQyNxoct6FYyebWZqwtvnxit9uNcqoc1YLbWOVcmtfYLw/yOlo+z5txjI3LRbH1lv8zOkLEdk0sysJNMkNWP6veZD/8wJc/GfXnZdWHef00EfpTD1Mx6+iRWQDAubNUA5yQEmdHCo4Hx0uoqt5RbYPfnX+byPTtefbLD/4Yz+Mncqk2hMaurCxBJefw8Cky1088RoYoELviK49lfY3M9/b6mvqup+K5Jga7plpWJfk2I6cHxRAG4P1vC4XvIMDbl4iUf/6LPwIA+G//q7/FnbTv5Tevse+E2BvT3G6Zem0Tw6P0Swu3Ga1giG1eTGKpbIqkvHdbUvxbXFnH0BD3hXLnAvlpexa3xRxUhrnd5CQR9U09CxZv3oqYQmtwxhhU13Ju1O62sbJS/sqH6GJvFj60opX3kLk5D8OzB3D1MuesI8bOWWRb1hYXcUtj9Mwl1lCyNURW2Lcn9cWdbJxNDwIfmYw9W3k+/Yu2cvhC2HpF+ZGWt6QF1KgPOMq3csRiNzU3m3oeFHPx2j9mjuP0RczEnzvJZ42tVyzn+538rO1jPvrWrVuxY9uaaGFhAcHLrwIAPvO5zwIABsVEn7/IPn1F9aIa63y233eSvmT+JlmnrAMMWp95fA5arSmbMzPTHN8WyfH//oevAQBWnpqP8oBmZ1kn6z/8638LADh5kmuN8mg1ds2hnqdPP/MMAGB9fR0DRTHvirrpyhdfvMQ2VLX2KIiNGhBTbPPw5vUbaGit6Z/id63A5o6UWW8zuqGiNoaan5cuXsSHpW5Y0prutddYD9AiaOy+29qjqP+///upUvjtb38bWX1nLJfdX/NN5mfW19djx8pkMrtqW1lOpf1vfWf3w9hRy+2t1+vRM9i2NUXFaB3UMZXVYuz68vl8lJvmuXvX1rpTu6tXRL2XDQerSmQeG7dCcJYkSUsuXqKFaab3d5SEqxtrnZVcSCVf0DKOs6dEdf81miUL1HX8ZnRz7LcoOd7nvuY8Tc7ZBlFZEuDlchljo3EnZW2wlxoza2OzaS8ZGygUOBnrTTqU1RVOrMlJFr0dqioRVgnZA6OSmdb1jk0fxvIGfzv9BhfTs4eZNLq0qHA4eekGxyouSOTg/vvvx/mb3McWWu1O3JFaF7qeZDczXPiMjdABz1+uwdUiwPqwVIqH/9n3lsxqiYilIifgyMgIWgprXFpi+614XkMStiPj7O+BASWV6hyjYwOoDrCo34ZigQKFyYyMsO/Gxk06lf0xMMTzbq9x+6HRYYR5jqulZb3c5mzRojGr96ToARUL9UuMyb6Xpb0s+bByXXeXCMMusYu2vfzHQ0v7X+p2SbZHcuL3ljngnLZ22TxKhtcCu+9H8gXJrP/3TuTw46G/dr+KuYrtBQBoKMTFwnxdpwg3kJ/QmGtKhtarcy4uSNBlOM+QjmxehZlb7UioYnuTc75Y0j2u81hdJZ0fVmFHewgt9flKewm33yx0zELmWjZ+QvbDoKSe260uPIlpjA1z29p2vb+5Edhh/fJnf/yrPJYWdOtrG7iuBc+QwnRNhvj17/Al6/otzt/pGQrQmHhQtTyAUe2zIXGHxWWbt9x0YkLzWZLLoQCuhTkumJrNEF/+8ufZn6p0bS+5q3qJGh6SUIVeem/dYpiihVb63RANveBYKMuWQuSq8ktbqmIeKpQyp2fSj//4f4nqcSbCI8tt1y7xxWhFhTvX1/UCFskWc3N76R4YGIjGmyWb2zMvo9Cdtm8vPSb1rfCc6iBCgTzRQlhFh9uR+Aa/t4KbG3phXlV4mtMJ0JAQQ6VMP22hXLVtHmNmhuFvt+aXdEwVCe468C2u1CrF4s4Bj7vNGo063nj9FZx9kxLeO1pU+ppbThBAywF09ZwIHM5RW+tAobsF9Ute6wY360DaR8gKMDXBgpFBpVDYwA95/2sW7mygxmYWge59W99lrZ9zcflzG1P9BVajFIZcXAgjmS5hvsST+E5/GkPSVybL1ySfW/bsz2QymD1E4GNhji9CR7Q+yenZekrAsa25PB3zynm+wN5aug1fodgZAaEPnuT66JzCAH/lX/8bAD0/VNuiH/7yD30JP/dz/wgAsLXB8T41xRDh71Nx4W+9/Dyv4xT3NR9qsW5DI+Pw5eerWtyHjooxa04sLUlSXSHU0/LdSwq5m7txEw8+9DCAHmC+oRC2MYnYtCXotbXNF7d/++/ZprW1NVy+yPBCS2H4L37izwIAvvY1vjzms/RhJq0+eYglH1566SW2YWgoKiEUCaZpPWp+x/63Na797zhONJ7svra0Xsnr2VzWy1TXZNiNYAh6AHM0vrQ+sRewCDR04+HX/eMvOc7MbNs7tTT8L7XUUksttdRSSy211FJL7T3YXclUJZHgSmkgog8zDt/wmw2Tp443Ya9QuijkRsfoIRzYc99kobJ2qx19l0yEM7PzJdmv6mA5elt2o9A1C+shIpKkPaOkdscKkzZ2oXP29ryyvBn73+RGg0BMTmEgkik22eKdHW6zskik16QrRytEezoO+2lC8uSLK9uwXFE3w21v3rit4yshPcNtlxZ1fkk4Hzx4ENeXr+jaJGohIKBUNvaJfTk6JqauJDaqLGav3UIXews0WDG3KCFe/fDgg0R5fYVM1Go7KKiw6vUbCvvrxIvXGSJrspvWT7m8h2UhKh2F9eVU4BKupFmvL2tbjt37Ts7yvJIXvnLlCsaUlNxRKFBL6HA+Z2Eucaa0nxUyEQCzJGq4n/WzTUkE0Gw/prZ/+15ZABvDHAetBKt7r5jjsC1JBikZ2vJOlkRh+/3Gfsy29V+rZX2rY+neOwrTCVo1VIs8/nhFTNAA/cUJCamMy4/5viWs23gO4QvVbxgz1bFr5vw4OkOU0aT6Myaao/lyYHIac7c4x62PBqpEMH0lBo8qaqCpMLjQsRAjP5JQN7GHnS2ed3mRjEShJIZZIS51fQ4Ich8cHsL995OBmppkey+dZRjMW2eJHD/+9AO8jgNknX7r6ywW/n3PPIWswh4vvc4QFtVJxYMPHY2dry0J6LfeZJK6rwLk44NF7Cg0siJZ5NEx+pqcWL/NFaK9awqTHpSAh/mk0MlgUujutMKCJg4yhOjIfY8gZkLuIT+2fu0GmvP0KcsrRN9XFEmwskw/OjRGdrw8oGKcfqJoeBiiLPbQogS2FV44d/1cbNucohmGR/h89QMHoeIfr6icRFSoWn7UDXlM8xsmm74tn7ezuYGhAbJ5XRNSyHEs5xWeWRkgqzb/OlHyvEnK+35URiSKaYOFuN17Pqe+uYlXv/7bPX+tNoQKFfW7HWShUCXXCuTyt7Eyx8SoIidyCpm09Uohl0Uhr7nXiUvkr3Z0j3xjqvipKYtmR+HGaMLTs90KlZsvyplg0j7iA91ut+dHnXgagq2TksJa9r8xFYVCIfKZNlaTzEFJDJKJJJnYzdTUFF4+/QoA4OT9ZJdefZ3hgBXNxXUV7F29yc+S5LivKSz2h770w/ilf/l/AwCOKAzSWO6KxB5CPYP/9Ff/FADgv/t7Pw0A+Ls/9w/xT/7XfwoA+OY3mdLw9lscz7/2dcqi37zENdCL3/w2gB6j8lM/9VMAGGr3zDMsEfGafNGhCbbz9FuvAwCGJ+l/M5oHb71JkQkL+XPyObzyEkOiP/JhCoodUQTNsy+9qOvSvNejy3MtJWIWt+bYn4sLZNyNgZ+eon8NNIaM9TaxDSux0Gw2o0K9tg62e5YUGIsiubSeLpd76+QodUF+pq1w3yg9R7GtFh6IvvWSjTcr2JwU9rJrTqbN+L4fjVkL/zMz2fU7tZSpSi211FJLLbXUUksttdRSew921zBVTuBEccAGTAWBYsa3VnHr/2PvTYMlO8/zsPec0/vet+++z9zZMTMgBgABkiIJiaFESdFiRZIlWY7spGJVaUmcVEVWUpXkT6ps/UjZjl22Iim25bJjRQujlaJISqQoigIIgFgHs96Ze+/c/d7e9z5bfjzPe3q6AZAAAaMG8vn+9Mzt7tPnfOf73u87z/M+z7uBJ8xT51bxmYTaOwLp0px9RcDqzG0tlnLSYLFbfSrdIMsSERXrkiGihWkkqjoLIkNeTHK0+vVpyRnle3EDf0+xYJ8v+lR9fwFhPLvaAxVeAolp99V8gkXP/NEn8n5ntJAajkeE28R73TZZDgdP3rU6i/DZLBAocTGIXk3TgeKA4h1eihweoC+niYRIjywIkcpsVuTuBtALZVWoVRaPIsHNQ6C2sTie6t040IypmZJsXgNq8/AHgM7uqSFGgfn+REIyBfThZBF9G42xEOlxRKI5/E4qBjSjQN3A4S5yohdmgUxEyNSpPq3bp3FIqiDmgHayNou6lYEEa0J6nCiqoiiGifO5t30knT7GzHPPIH9Z+12RmEefRC6zpvfWqkDgTB9jKxqNBvaubpP9m8MNKJRoFaqFWInMeLRMbbm2WDon/NFC1m5Q3Fenspq9jOelSyBmjvK4gz7HyLhl8ZihSNTsB4VfY1GMs9OnwB4kyU7cuLot76emOdzjCOobsXnjfxvXXL5Rgd83Y/2C70bUJpgsoUN0VjD2piajkhf0+aVVjOWJDMZpwgDa2mtBlxSN0KyF47jeqEs6SlaFxgAWx0NSLXZ7+H0d6z5jVLYwGbyeovnKVaKuZepA1tbAuhDQlpSaLQxwLaXSlFSI8npkT9SwoMDil1rgtM5Ck4oGZgtkeTw/0CEp+vjqa1dHfnduGTqJV2mPbFDzVJgsSZvFwbUy79oFzNOzlyEcj9L6eWOdLDp1CRoTXduR2jG1UyzxkExRfE09nMtirCWK4n3SgUlem+OKLJ7AOS6tgXUj2SMHXIP6juoB8IZqzWZn52V/F+fWauL6y1WMh+kpxMs2NXUxF+xOhNc0UZrmsQ055H2I0mzEF8TWhQVdz1RPyd8gkiuRuPg0z0imaG7BMd2kPb5DU4suLeU9NV7i/UkkEmJFtRSDGjchbqleWHWcZeqxJqlFub8UiowmaYgh7z+myhdPHK8pURaQjvGiVAuVMBOSSdKWnCxuMoF5Fdeq7f5oBo3FeO56nrS63FtQ20xCUiJaDJ592OIbtS5LLVCv5XjRwOZcmzVmYW0woyQ1rkWPGIEO1zCo7+MkNXnurqNGS2QfuH/QUgKe37+vpjNjskfWmkxdj19ShuoSjWNu3VmXtTOISR94DGYLxSLW+Bz14n0y0BkD537nzgb6h///w9/7XXmE5lrr69BVdgeY33/7x8FM/bvfgPnE//YP/3f0wwI0TU4iKTscv9deAxP0N77nPxcRkSyrjP/DP/pdng/iW2kCDNK/+hf/l4ggo6dvoX+PWcT95tdRmHiRc6JW4d4mjmNGLMSDxWmsxXvHh1LIYa5+8RkwVrubuJYO9VoF9neKscJO0gzFsOXKJcQow8Xfju4i/jlkM/OLNHrj/P+hvwHNlZqh39jYkA415Ok0s8M6NV4frmHnHmJWz8W3XLLRlWZLClPTcn/TLAbD1WwKZS4xdmP8bov7ular9ToNle7PNK4qC+xyzy3cc62cWZNjxr6oN5rtlqQh01ttIVMVtrCFLWxhC1vYwha2sIUtbO+gPRhMlQ/AVhGRGPOD1e61WMxLhOhfn5aIBnUwZTJSat3bakEnZBM1ffmVq7JElxR98kyngRakM0CEDg+R5z83B/SgVAKaenhEd6nVlaG7Toz5xVoQU20/+/j9cc2V4/bFsTWvk4XHtLheVB0Mx57EifhZzJ12bOc+i3Y6gjH/+S5th4t5oJcxMmgV2oKn4ikpFYEKvvwyUJR0Hgh0hY5+02SbhC5XrfbotcBuknbbfRaeM9TxikUz6WKVoW35IVHeU/1VKZaAfmuuaqagRXaBItge7mXCYEHOFFixYxbsdHu+zJgYC6o7CwpO8lX7R/+fG3MIOirXxacTlbr+uaLaJhZcjQApUZSt3cKxtneq8jJzkdU9KEG06MRJXMNzzyLv+dJDQM9qNSAjhyxc2mzWZSGP8XVIFL3Zwjmrq02UOcSuIrFEtc37gNlv1fnq/oK0ivS8qcvSGBKsdqz3fzaAj79J8esHthmGWJYVjCfN5x8tuIz2Zu5/b+aiaNt2kDs+XrAwOAad+kgUSCJOJFftuvuHsrSCMb80Tb2Xy3FzCI2NWIhjFhlWLSRs27b4EVoY02XOEGobiCS32mAZtNiu3mONDZ5pyfpNIKURsv+ra5gfUeaez87i/La3yWKzzEXfsQNGKrDqjmPuHXLu7W7hO+qktXYaSHOSyOLN9XXJZ1gomI58Wyxu+z2fgm2yY+L3JojUfvwT0ANNTE1Jqo95v9gAQhol6xbN4H6oO+mNW3iN8F5Ol9Bf2Vw60KcE5RrqFfYdriXBKZAlOqwuog7ZAM+MBIxdawC2z48k2C+4tqE+hbGW+tcXX3hZPK51sSj65MQC9GDdDo5PMj5Yk1R3elxGP2UKM4GbnxFFf7h0agwYCjKkBu/T9Bxc03yJSI3ZH8ogaPyOx2mPTpJNS3T0+3RXpfNqPpcJ4kNTmW4yVmki5soYKGPRaWNexDNpcTQOBeFHtT7vP6YqZhqylEsE91fZpzTjhO86YlKfGyV6HiXLqlpJZbXVUb6pZRH6blC0WQOKqdkualVPB8UWC0kPqItUhvp+fWnglOaMZs7E4tGR/2uzbTuIm+m02k9rBoAWJh9l2UxmwfiBbnjo4pbUcgh0qutZyqqRZeB53rkDJjebzYrFQbJNFutgF3Pgk5/8LhERmaHb3l9eg15pgcWAtUxAvVGWRg17lhMz3GtwT/Enn/2CiIjkJxBnzj+BmGUzs8kZ2PLL//yfi4jI3/1bf1tERE6fWhMRkf/h7//3IjLcn6iVuO4BL17EfuHZZ5+VX/4lnPvZC9CD95llU61j7nz0qW8XEZGjA8TOzQbOt1HeD65x8y72g3d3kDmSTqIvOZSCfYlkETyi3Mc8cuWKvPzKCyIiMj2N/dryKcSC+Tnob6+tI1NAXVmffg5smLLLS/MLcreFe9JgSQ/VTKobc4R6tVMlHFNLs+QzWfGZ/hQwo5Gh3bnI6521tak+7f71XI+hDNW4T8K498Lt27eDtUdrXes4D93/wha2sIUtbGELW9jCFrawhe09bA8GU2WISETEJwIVYZ2Pi8yZvb19U849gn9XWehwKk0klDnbES1yOQAiECMLNGVk5fgQT83qv18+wpNtuYn8TtVjxZJ4qv7zv4CLVJG1Tu5u1+XCKbg2pXncCNEjNwLU0LKI0PiaW6yIoC0mkU5FIxXrj/qjdRnUvcnn07RnMd/YcKTFOiZ7e2DVWi18Jp0GqnBIRyitoeLx1p5ZOy29vhZNIwLEeiM2tV36exUiwjUH/RWxmKvvTgS5ycU8rrfeYBE7JmvHqD/qtHDMYg7frdRa8v0/8IMiIvJb/y9yki8+QlR6AYxYJAUkIJUD4pLs4h7+1peBMpRm16RIuiaeYA6wuv11ca4mC+ouLaLo7/4hvjsxhWteWlqRvTtA3k+eBIp07QaQl4vnkUsdI+LfYr/88WdRMPDwcCA2WTR1RGqxoHGJLNfBTSAxpQLQnbWTOA+Hn6tUjuX8SbCJ3ZQW2sS5T1u4h67PmjVjmh3f9YLCqm/m9qcIzDcqXjvOtOhnFIkfvElRTc81ho5bph6fcE7swQghb7d5vkjHERFqTawxVyIxzNchtl5gN0Qk2RnVQqqeznPi4hHu8lzWkfMZn5TZ65MRieOeFAXzd8oEG7WylJRcDOey9wrYlAHHWoEFXVOskeYwp7xxjNhQyibEcRAHklnW9aM+xrfANpV38NnMJFDZLvV+pSRib7vdlixjazKiugfqEnjPb90B+6JOfzoXZyYXxB1Q28E6TS61FHe3Mcef/CgKRp48Cc1Rdg4o8Gd+EzHikUceCcbp9etAM89dWhURkdkVzCNFqg/3ca2XLkCzOVWYlMNDfDcfAyIdpztpZRdxoVljXSjB/e+TPU5N4Zrr1QM5eRoIbOUIyGzRBNOsLmjl6mjNFUO9KJgAACAASURBVNtTplIZTFuamxsiIlIoQFugOf63j/DdYgEI+nGZsWAK/dDt2BKlw2gkg9+7u8U6MpO471EL97bRIWPB7Iw417GdnR0hqSWLZD2Fa44bQ8yJpZilwNbro1867a5sbiKm6Xn0qcNTJy/fwbhLso6OxVpIU0kWFPYsiXF+HVBHmyng3PZJf21wPe8lVHuqzreeGBoHg3Co6+X7DwuOmobMJiNiRYJKPvi7Qd103AhqJ0GHLRK1dC6ij5RdNjzcD91jRKOmDKhZcj2tgUnWWtktMlmeMpfM9JFAc2m9jpkK3AUTqhHEMYNae/fVidL12HVVBz7KBGgL1jbqs2ytjSjmfYyEsrajGmeTmi/Veuk4zBXyUj5EDNhcB1Nz/jzYpB6LeltkpGYXsD7fowug1lzq1JtDp0pHnVPxuseY8fFPfZ+IiPzcL/wDERH5L3/yvwj65yd/BP+en8Ye83/9X/4nHL+B76osTgvMtugs/PUX/0pERAZOVxp0ENbP3mOWixY9f+551INSh0WL97JMR9XpYkk67JM8MwV2726IiMiJE2C5a3RbPK5g7ztD/fqX/+zLYkRwr7Ksv5ekbn1zF/FPXU73mYW0fg8ZEy0yTPPdgcQTuEcTRTBRWl9Wz2efLJsWSp+cQH+dPHlSdnfxXqDl4xDVjClt40ypjsfl5WWpURurY0mL/ypTNp5dcn+GisbmHoOmOgSO78e+WXv/RaewhS1sYQtb2MIWtrCFLWxhe4DaAwEzG6YhVtoKXKV8ojjLZ8AOPfTh82LS/izhsT4O2ZZ7m3i61crtir4XJ5Cz3up2JBv46NO9hm5Ge1V1tMMT6Y3r0PosLgA9jZB92q/ek9/69B+LiMiJeaCVH7iIvNfcFD6j9V3icWVQgAhYlilClx4CIEHVeEWeTQP/94iAr98BAnCVr/Pz8wFqtEG3rNkZMCHVOnKHa/XySD+USkBAG426ZFKK8KgeDOfWqBI9JRTYod6g0sbfbbrDFSfTMj0HhPvwAAhDvULHQNYsIEgqLJkgx1UgMS+8+IrkPvZRERH5to8iJ/iLf/Zn6MMrYIjSMZxf9QjH/sPPsU5C8oKIiORnU9IyqjxXIKwd1t9ZXsYYUbSiRiuaWda2yRVw3o1WV1pd1UihD4usVZFmnu+AjjDPPgd9VI9ar8zEpMzMwRnnu77rkyIi8vUXUY9i/xjocS47xfPCCdy5i7HUauH/hfyUROhcGEnid9S5T/PatWZQUOOInRk1zCCPfNxVzhhz6osErOgoQmgYxus+O55DH7Bc1ijWYpnRwNGsx3HepvNXJD2KdL9fmuF7YtpdycbUaYrIKZlF13XFYj+ZQQX3USaxRw1iUFeD87jf8yXFemXRFPWUpuoqqb/y0X9pshxTOfzWPJ2/on4t0Mao9rJQwPgpUvdTp04lztul9ZEajeqwyjy1lwm6UCnKNzUFhFDjRZGsl81rbPe6EiGqavD6utQK9aidScQQ+7p0g8pRt+R5npTpVFUo4G+tNl3tFsH+BAwVmYs/+Z3fwTGJiu/s7ARzSTMM9PoUdczkgEKqnnZyBnN9c2c7cFgtMD51+H/VC5bp/NlsgqEqZEdrCK6eXJYI/93uUltEd6jpeaDd3XJ75Jw1BmltLvTnqMZW0dBojOfFa0yyr3d2kC2QzRYDhN71qYfycA2Tk+iPiQnEQiuiemNmILiIAdGOK3lmG2j9wjQ1Dq0GYrxqmZRt0z6eLE0F2QnKlOic12vx+ojB3RbdAFXrRY1oMpGWQ2o4MkSMVa/6zLPQYyjDoajwUPcpYttvzJy/H5thmpJMJCQWU2ScsZd5K1bEEKvH2Mp1qnKEMRpNoD/F17p06jaK/okl4hLRMKxxnzGBw0u6XPNtbvkMfmGgtc0M93U1IHXsBmsKNU16z3Qc3M8c6Ht2UAOS8yqmnwmsnXHucWoMI56YzEZxPdWp93l9ZPvV7ZDxN6HftSyZn8T6myRDMUUG5GgfMbRDRuqYtTItavvUdTQZi0mTc2SfGUyTGewhfu5n/kcREVlew57rv/mpvykiIm3Gg8efekrOMZ797M/+rIiIZDjPa9RhZhh/c4xZLe6xutyTJpIxMTLo9wPWpRPO940b2I8MGMMS3K+qbi7K8bC/txNo6p09Zv8wrmhNUtWlKZNTr4CxK81Oyo/8xE+IiMiffxVz06Fz8fwi9liqIW3SlS+SxDFUJ2a3+pKa5NrEjdj3fx+ylD73edTrarXQx6UZrAM6xsqdpiS5Zw/2Ls5o7NTPjmud1PEvnU4H16VaKmUiNTbrZzt0LNVjJRKJoGZajgydxkSN0W+1hUxV2MIWtrCFLWxhC1vYwha2sL2D9kAwValMUh7/0CWZIFqq7n99F0+1TtURl257vkuEnMhvs6r5j0BxNB+5sg80c2F2To6PgTzoE2+trig+3UWo00mwdky/TYc7IiRrJ1fFHeC9W/eAfOwdwynl/Gnkjp4+g1dF16JEcV3PE9dVFgEIQ7kMlMJh7nCFiPSLL0Dj47lESFmnq+eYwdPy7Cz0BAbP9dpNVNVWtPTMGVQUP2aO8fz8rLg2EcUuzqmQIFqeYeXwMp7q7/B8do+AwKQSQH9spxXk2Z46ucjrAmqyzxpXK0vQKV29jrpRSdYhiUYs+Z1P/56IiPz9//bnRUSkOIPr++Pf/5KIiOxskgFw6fZIBHYlDbQpG63J/iGQhaUVRcnUkcUbea1UGvwffiOTA3qdyxWkOIHrUf2IVljwObY4POTgEOPlE9+JWhNff2VDnvkK2LUbt14UEZEStVqFEn5XGbNqDeOuWiVr0cS939s9FtekRo06vGxq1BlOi1EpImNqrQ9fq5+9ea0kbYrIjGuqPO++ui9Bn8nIsQL2a+yYnmcG34kScazV0M+zZxbe8Dwe+Ob7Ik5/qI0kgmdyDniuM2T01PGQzJT+v68MH9m7aET/7wcOni5ZnSjz1ZUtTkYwBvPUn+RSrF/Dee302tJhvZICazels6xPQrTbtNXBjYgeWadWsxkg/6JIMXUxgUtml2wDmZs2UTpPx49lBoihvmqNHUeLzHC8jLMNzWYr0OdVG4jhLbI9SydXcf3UY5QPVSOKGHXlyhURARulSKGyLBq/A0aO8zivdaIUSW235N49uF+dWAUbrjWvEl28KlMwM4OYEKG2RXUbnns/k6wuVGSEiKCPO5xZljq0ar2uUnBdQ4dIIuS8V46D11Qyzz5VlqAvfeqbInF1pOR6MOZ8mqLjmqK0OWqqzGhfNnewDrjU1HW5Fq6sPcxjUvPGe6wZCJ5nSIIubOkEtTPUMnU4L/aPEetUm5uk+6PeW8d1g/7U2KPEiMY4Ze50runner3e62LYt+p8+iA0w/TFSA7E575F9TARXlOjWhXH1T0MvhOlc9twrUNzGEMMMlW+74jJMRrhPB+wJmaU8a3JPciAmjp1mtV9VDRqvs5JN0o2J069epPjPkInQYPrUyQeFYushdY+TLL2pzro9Vu61vKcWR/KcNUd0BSL8z3J73TJ5sfI3gfzTl2iybY1KjWJcD5nE+izW1exl5pewb4sQRakX0dMPWbcSSeoo643pFnnXORestcFA7O3izp4v/qr/0xERIozyFYqpqATGjQH8rN/72dEROTMWWRb3b59i9fPGMF5drgHxmi8PmK73pRiHr+roip1fzY47zJ06qPkXGzuW9QlLxaPB8zbhz8AD4IbN7AfMwLNP36vUaf+taC1AGvyZ1/4PPqIY6SrWiaOkUYVv3ewi35pkpkuzIB195OGpLtco5h58cdf/EMREfnhH/shERH50p99Ed+l87RlgTlyxROLY9JnbbUO3Zd13mus0L7b2QHLtrIC3Wy1dhToexfJrt29C9YvFlOWl7Xg0loDDmPOtA2ZmsK+M8parK0WrrNIlv2ttpCpClvYwha2sIUtbGELW9jCFrZ30B4IpioSMaVQSskE8zHbrJOkiKznuDJQxFfw9NpsAVHLJICUN+gmksngCXSayMTAbksmi6f0Wo3IRxzHPT7Ak6ipNRuILmeK1EV1cB79blw8opHFEvLp1WmpWsHr5z//VRERMSygHR94BI4tmXQ+cEA5IgOkuelHNXWGAVowMYWn60M616lmYW//OECBJ+kOVa9Bs7OwOMtjol++9rXncCyi29s7W7K0gCdwZTmSdI+Jsr5KjM5YB0Qxc1kgMTtbYNSOKn0pN/DE/8nvgD5qfhbH1JpP+wfb/F0cs8I01MXlFcnRdfBf/ZtfFxGRT30SFcq/7wd5j/ronyi1Ta196uOO8P+9wyOZiq+KyDC/W3NhNUdWnWOSRKoSaa39xKrsxUl59uhpERkiXovzYMLsAVCbrS30+9IKnHKefg7OPJu7NUlTc+GR9bO7WtWb+e5EylLUHul5/ulfcFxISm4dgZH81Hc8huvWWmbUcsWIONlEtaKKefh+4Lymx1WEebz+0TgCps2yrAD5Hm/6HfNNXLUMMYNyVI4yZTy3bPHtVRt/YJrvi2HbYtMtSfsg6mvtOBFbc7k5XvT/AbpI1z8tzm44RP3itlhJfDYeoRtmlm6dScaRFObWZJ5OWgZdNStAUCN+X1LUq2WLQMqUKenoedERNEXHvj4RveXVtYAhiVMzE9FaQnRw6w0QgwJHVOoDtKWSCbES+IwZoHtA+zSH3nIwFtUxziVj12x3AmasR43WxSsfEBGR6QXEOGE832JdGZ2T09Nglo+PjwM2Q+OWsvB3WYulTF3QqdPQO756E7Xk2q2uzCyRQeUa0u8QhSebs7KMuJlilsLtW/ju5OwyvxYJGCLbU+0rjnVvA7qnRASxxqmhP9QcMk5kvThZChg7HTP6/xoZ9XSKCDodWnOsG1au1AKGzOpwbPJcq6oDaWLsRlWryfNTbYDvG3LmDJDzu1tgldS1dWMDTqhDfY7Wy1IHWkuKBcR41SA3GlgPD/YxRrNEfyNE0GN0lBtQc9FotiXG66lxPPapG1IkWVFo1aFpvG6326/TWY2/vp+aIaZEzVQwLw1PHX8xHuKRhJhkKXVd0JiujK22ONdJLV9liYjjsoYPqUC7q9pI/p+f9bluBs6mqo9zh9kuOhf1/3o+em+UoUolNPMiGugts6ns6He0NmcMx3J170FXSF3H4vH4cL5rPTIyNspU62enWHNKY1Y2mw2ybdxZsBbTs9jDaFy/RcZG9w0rdMOL85quvvJqcH0tuh9PToCJ+tKXviQiwzqm6/cw///ZP/4nIiLyC7/wCzJRwDhv8VzjdLF0bfy+TTfGQC/tj+qYk6l4MDaiidHYOSBjlyDLPaA87fu+D26En/nMZ3CMbFKE8V77akI1pYx/lqlziG7CmtGTLYpBJ8iluUWeB46lGj+tPdpi/Nna28Ax7+J7jz7+mCTJtlXuYj82v4j96r/5lV8TEZFPfPwpERF57gg6MWUyM9mMNFnnr8njq+5unM0O9KGMD/dr/3RM7O5gX3rIrKPpady7115DZteVR7EeqcaxVCrI5cvYs7/GWmYJ7iW1795qC5mqsIUtbGELW9jCFrawhS1sYXsH7YFgqkzDkFQsIRGeTkSYj8u82/qgGTwlH7MWy9oakAbHoAaB6MYxfer1dXVtVW7duTXye1rfQNGUu7s4pj4Rl/nErKiGc1iWAl2qbB9IX5qWW0YMv7t/VB85xqc/DVakODMljosn3WwO72m9KjMKVHbAJ+0723i6V6RohpWtpyZmZJ7Iy9HuhoiInDuL698xgECaLq7XKwLF2dvFE7rxeEzcmLIY1IhEgSbYNq+FiPi8ATSp66N/JlZwzc+/ui01HwjUsy89j890gIQUyJxdfRXoTTwJxObMGs53685LsrIMXUOvjet59VXk7j7+QeT9nj8NNNWmo1+dOa3r1JFNzC1IrwNmrgqyR6I5IOwxagUyGXy3R+S1z/oni3NkFvuOROOsyxVhjSnWlOi1cG13b8L1JjcDBCRPnct0MS/36GZjjlXbjtFdzWWdm7kFoFunVuEUVP8Q+unFr9+QjofjXb0NVu/yWfSRFaGOha5daSLDmuPuOEN9T4Ak+6r90LpooxXDx90BxXUD1M6m050XMUe+o23cOdBx7eHvEj13qPebz7w/NVW+GOKYEamzxkZQc4UMixHxZUB4tzVQ3cko+9fuYc65mC6StHmPEpbEi/jOSglzfnEB95bSAykQsTQ9fNlmjSfNwXcGQ6ZAfHyp3VGnLjJYHJ9ZsrJlMgT1VldKJcQWZXKDc+6QLacOJk7mKlUkY3UM1mVnY0tW5sHm+NRutOlYpTqxODWieeacq0vc1ta2PPXJT+E6qFWbmMRYv34DNacmiHJfvw6G6KmnnsLvE2lMJBIBcvvoo4+KyJDN0HEcxGetr0Onq7Wl5YDVs/sY28q23L6JtWBmGgyROs2unYF7l82xn8nlJKJoM1mkrS3M2/Pn4fx69dXrI+ejuldFh30xJEFdTC6HuLi5CcZfXVNP0PH2uIz1Q50Me/1GkJXQoLvefAkovEGmYmcbsX9AbV0qg2vK5nEvBwORJh3kMtTjqcapb6vrJfrOISpe5Xm0Wj3Z28HxE3F118I1pBU5DhgVuh7SUStKxDtXLMgR11qXgfMeNbg9e7SOUcDksa5ZLlsI1mddt7Re1fuQqBLX8aRe7kiEOhl1FvUd9EO3Y4sZRV9EqK2NWKP1LbVFTa3fRSYrEhWfY3DA2kotMoK9oCgm5ls8TidJ7jkSROqtWDRgOHUPo/sQ1eqpffEEHT3jZL9Ny5IJstjquqf1ggKnSJ6HxXnp8D6rg2e73ZZkSjVldPfj/52OstiIITrPIlyLvIEtUwuMVVzTbrOG0pXHHhcRkXyDNYdsZeZwQjduIR6ksxlpeljDz62h3t3OnQ32B7XwrO10ki6Adc2OSiVlfgFz9bnnsO9T9kTji16/vg71zWQS7X6gZdbr1xpLnYbqjzCHdO/53NPIgslyUfHtviyRTdM4qvfUJIuczWIOVyq4P36ULHM6L8Up6vX5Wc0M0GykPrOhjmvYhJWv4e9dzvvn/uIvxef9/cQnv1NERFrMOkux6NTTf45zztN9VrOxxHGlRcdo1Tfn0qOsm7J8mpW0sIC9x/0xRPc742yr/l01rZoRkUxRx5eyZGMLbKZmJJzi9b/yCtitt9oejIcqy5JcPiN7exCe6WBSUXcmk5L9/VEryG0WkUxTHBsZKwin1ODLr9wKBpZuUrWDdeFVu/YkhYebW/dGjhmPx4PUKT2uTuw+02jafdr6zpJuHXCwiCWOjclwfIjPzLHQZZcbOl2E9TWw5GXQ7A8GcsTFcW4OC+ftW3d4fJz76dN4cHn2a3jo0SKKrVZHalVSzFzgDyhwdHyl3ilMpRtCkpO2f4xBfm55UtaZctNu0lqbdP+A4s5Ll5E2k2T/3LgGq/FTp07JAQsWJxJ4SCtM4BhXryOgzZVwTUWK9vc28d1WG+e5sXMkA6ZTZSax0UxbmhqC66xXaLmeQWAokrrW9KbrN27LFG3m65V9fpc9yLS3HQow83N8gKZRQC4fk2QOgS6X0VRNptywr3bWEWgWl/AbujA9/sGL/C1Pnn4WD4blfQTjwSmca4WLRpE23LoQ3S/eHjeTeL2dxDduhmGI748WBh63VNfi20Nr9WFx6uAhzRxNwUm5+bd1Hg9K80Wk74h4fEDpauFUzgXLsoJNTqePBUg3+RqwXRbY9ZiGd+njSEPrlfdldRpjeamI94oRxAuDlu0+Uxj6agzB26oxKZOakEFH02BwbiYXhAgF5F1a/9q9YbqXiIjnG2JSmNxj6Yl+EPtoqc40GX1wdB1ay2YxX04UShIzaAPPh/BOFQt1mnEkzTICu7vYfJcpAv+2j3482DTUaHywsY0HEuHvF7iYahrYIYXjGvtVcC0yjNsaF3XDoumx+qAywU1XIp2SBB/aPBaorbN8RJ1pQreOEHtWTqyKiMgcF2iT5S663a70+TC9yXS/EwRK7ty+y+/g3DU2r7Ko+P1lDXo0OLp3DQ9gGo9yfAC6u47Cziv8ri8ECQ1XajXc3+IUgKEdmi9puuWHPvoUrpEP+1oMeXmVlsOOLydPoyzFdZ5zmkLuFB/E1fpay3xoIeUTK8tBql6DKYPtJsa/SwOLuDeanmnqAxrjjCVxmaOF/jPX0N9tmgGpxfV4KQh9tW1HPE9jnqZKjQFF76Pm+564Tk9cbubVrl8fQGOJiPQZ9zXdTzfRxlj6n0sg12Lsane70nbQJy2CbS3u2T0CdSYF+TYfjPygiDxt+L0hkDbcgI6ajAT3hoDM8jL2MbbrSJ3GKymmovpZfGeKm9cjxgEFxxOTHG+c98lsJoirgVGGmssQNNDis/p+QtMgPV+6DYynDR9ztc0H/eUTAEtOr+L1pZswsAhStLie9QYDmSRw3etpaQRc00maXTRZsFft6/+PX/olXL/Tl1OrHxQRkVdeQIFeS3SdpDGQpmcyVmu7v6+j5ihIZI6ZTgXrNPvfobGDx37L5/OSY5+1mjhXXbcVXNPYqfvoS48/KSIis9MzQb/qfd7bx8NLmw91mgZdo2wlrtbmLcTqnt0Th8Zcn/6t3xARkYc/AKnDx558SkREyiybI9yfBoXT+/3AACrJtWF8HuiDuhoV6ftq5NLv9wNgT9ePIsHC8dRR/X+Je89sLiHnL2APvX4T+8Br1xCbU6nQqCJsYQtb2MIWtrCFLWxhC1vY3rP2QDBVnudKq9WQCKnbHA0UlA1qdJrB06imcVRZXNKm1fM8CzLe2QLblaJQ05CYNJs4jqKgShfu7NA6PKXWpThmLAY0T63Y19ZKkk5roUkizCqsnsWT8LnzELkp7XriJNI6Xn31doAKlEpAdmpVPE2rgYaiCIrIKpqQpulBrdwQn8jL0RGua3IC51gs5tmHfBKfBtumT+q3b92R2WmgBfYAiENpcpbvge5UZGJiEt89PgLaU+J9KBULEjGAOHpENleXgdqqVXGFYu1YDOdx9hyQ137XkNlZ2luymHEqO82+AzJUqTB1z9IUOyAmx3Xcy47jSL2H33WIvJ0iAru9C9apRJOPrjOKsil1PTExIZbPNEfa0udS6P9DGlQ4pKj7fRxDUeWj8qEkk7gnk1PoI9PQQpfo/3oc/T01hWtyKRhWMC2WcGVuGkxkV/DdJpHfaFQFv5riN5p+5/v+kD0i0q+IpxJXb1YMODC08Nz7Ughff3wREZPCYJOMlcPPxdWOVe5j0ZiS8urW26PGH5jme2L5HYkanHNkFGwWfJZoVAymOMZMpgiSyrXIINsUsLaI5NV2UWbh3HJeFqdYhDvN8UjWs99lehfNa9S2WtNiumRj6tWG5PIYa4kkUz19TdVi0V8tTtvG/2NE1KLxZFCMW1NktKCmim4jFn43lQYrm5vgXOS1JCKGuB3EOq9HVoGptpUjzKmGTQtxnsdDD0P8m0xlAlbFIPp6+xpizce+/SkREdkj+6PjSWOQxi3XdWWSrLSO22EqES5ulxkFPhHWuQWwb5OTk1Ina6bsijJUh0xp86I07OC1dZjSqEVE6+2OeLR7np0HUu0zfTfHYvKBhTlT+9TAI7CLL5cDVFVTVTQdpcH0myxNfHbugUmKEH2dn5uU5FnEi3KNTigWvruwuCoiIk8//YyIiJw+cw59RqbyWRbWfeTxJ+XWbfT73Bz6ps7+2NiEUYUWEG421NIe99A04lKrYgwXmIZar7EvaYdsquW+oyYF6A+TZRdsdxCU9rh7D7H8qIl+z+tnx4x1NDbZth2Mib8O1uqG4Uss6kqC9veurbFkyLqm1dKZ41nHU2TMXCLGOaVmM0YsIgOuj90W2eUBC+aSVVGDCl03bDKiPlMJE9FY0Pc6rrvMoNB9SJqGOHoex2RyJiZK8tgFjJtKs8LzwPE7dPHpM+1OmYI0U3VPk0mq1WqyvbernSUiQ2ZayzHo/k3Hhb6fz+dlwJhcIuM6wX3iHNnrQ7LsMRYon2JWkM6ZysGevPoi4rfD64/S2vvOFubKwtI8+w7XryUvTNOUL3zxCzh3rqFqQKP7QZd7mij3IEnG+zLL99imJxGDhcAZP/ot9J3uZaLsM4Z/sWmLnlJGxxPxuIeMR4apoSJIJxYRWVpexTWSsRww3XjmoYfEIWsXZfZXeQ9zd3cDbOLkDMZni3FBK7Mk48N0UV+zG1hs+urXkO63cRXGFN/7vd8rIiJ3D5mxQV6nlM1KhmYmPY7NKOU/JOTkaA/3oVjEuihMne3TjCUeT4n4GtdHTaU2NxFfH/4gSknEGHcXTyCVu91uy3MvwDQpyVI3ZkJTY2l1/xZbyFSFLWxhC1vYwha2sIUtbGEL2ztoDwRTZZmW5HJZydN+NcgpNRVZ70uPSKJlq+4D75XJHB2zGKmyW1WiKOlEeojiE0UoM683y99TZEiRUUVLL5BJ6TRr0ueTr76mmZOeLwB52aZmQHPUb6/jqffk2orUajjHblDwkTnoLAZ7lYXqxtmFVBK/n8lkpE+0RtmsO+tAhC48BJRSi1jOL+A7yrKZsaS0iRrlaRFpUySqGqckhZiqk0pl0Q9VaqqikbqcuwCkc5+mHru83kwOxzg6pg18CuhJuYLzPLn6kLzyMq7v1OlV9Cdzlq/dAPLgdcDgFSm4DLQj1FiZrYbMTALpLc4A2Yqkcb0LJ0rsO/Rlq0WbeqItqlMTIyLFPK3lXdz/o0MgYxvrQLwzZAZevQptwpPfBlSjkJ0Ut4/rWixRpEt06OkvQ5h65SIQjxlq6gYDl69aWHggmQJ1LkR6F4mildj/jk3TAtWMcFzeL8AcskzfGK0dN58wTVP6ZGMUHdaitePfGbJiw2LEQ+tbCp6Jmjf7ozni75dmGY7kjKoULIzxNsW2Fi1mJwuT4qfINnLO79TB0NjUg0wTUZxiFF0q4XNri54UkhhjHYpvDSK1Si3myD75NBjpd8FcVIm++mJK8d/idQAAIABJREFUq3nAr2iBTowHZVBNWnp3GXNshvNCKifpLMZytYzz6KmlLu/pLo1sllaoiSNzlS3QRrZRlw4FMMrIxSKj5g/Kfmn5gkQG89WwLFlfxxxSdPnyJYi/cxw/X6FAfGkJcUUZnZs3kce+vLwcILSqidXYrpbqC0XMZzW8zZHxb1RrcniAOLW3CWbq7jXoGVtkiJL0AHn0MSDsB4x1bcbAo3JFJpiP7/ZxnS2yWhEyuYVpMN7b13HOykIp+t0bOMHY0feO+ftRMr11or7LJ8H8Z1kKY3NnTySqTFiB/Yp+//pLKECuRibr6+iPFu/TSeprn3nmGTl1Doy+qGaNa97FC1g37qxv4H1qataZvXB8VJf5uVX0VQLfUX8EHUN9aoKjpprlaLwgw1GYkt//DBD8aztgXWZOnh35rDLtuiaqFjgajb/e5l2LMfuqB3r/NMMwJGaZgTGIGkQYzjDmdmh2NCwbovpZ1daoqQHXAHNY0qBLwxnbJaslqsdlQVUeadzkxTKHOl7VqNzPAN3fdB7erzUXAQtbqWDdtU1cz0OXYEKlrMLq6qqIDPWPJu/hxsYGjj3oS0wZMv6Oxjs9L80OGi8U3W63pcgMnTgNWTITmDM37q6PfPfbPvKUiIjM0CjBbbIY8N1N+ZEf/GEREfn//vRzIiJSYly7+Sostl3G8DTt0+83RdB1Wf82bvrh8B5a1Avpfi5iMbbHIuIPaFLUHWqkRIbrcYeskmrxle1api41k0pJp6vsIWJDmVrzCcZKzVRYmEfcvXBBrcVj4jEGqHZJm3oAfO0FMOBXHoNx0Gf/BIV942TQovGYDLiOjmfO6P7h05/+tIiI/PTP/aKIiBzvY40b9NtBbFJt94DjPdjLcn8YoSnKMQvLazZGp9MJMsk0e0DHkN4PvU9qPKc61HQ6Hey71Lwiwd9rc71/q+0dMVWGYRQMw/htwzCuG4ZxzTCMDxmGMWEYxucNw7jF1+I7+Y2whS1sYdMWxpywhS1s71UL403Ywha2t9PeKVP1T0Xks77v/7BhGDERSYnI/ywif+r7/j8yDOMXReQXReQffKOD2I4th0f7AaqpucSKfviWGzx51ip44nSIstdoNxugKswh1UKdsWQkeAJtdYFKTEzhKfXkSbAe91jMTd93mdO5fwQmY3F6PniyVVRwbg7MSaeL86hUgTxozvDMDFgIxylLnMWGt7dHLWrrdY+veLrW61d0Q3+zfHhX4lF1R8JltsacqaK0Yq5S23T5YWi8fvt3vygri9QaZIh85qFpKk3RKaUKBD6VxMETKbAtxQlamtpd6XksTsniyvvMld+uoo9mWDRzZw/HaraBHrz4wg3JsyDw7t499i/O4/IjQEvtHhCYw2PkH3u0+VTb3ZXFFfnwY3CpOX3pMX6GRQbpZFgkqho5ooUy7X+1L3t9RxZmqbtbR1FfiyjR3h7uy+QM+qVLdulrT0MvdOLkvMyT8WpRC/PSDYyD+RLu8wc/dIG/gzE06OH61d2o3epJdhL3s01EapUFlKNEwPpEURTVHmeORIbo3Li993gbZ6p83w/QSWU+hrauo98ZOv0NUU1rLK/fIwI1F1/6hufxH6G9KzHH9F2JOw3JmrjXiYQ6ZNKetl8dFt+0MT8L1OHE+dnZAtDODz0J56fJCSBap1cTYtmIXc06UL9eQ/PQ6eSk7ly+Fphlv/K2NjvNIVNDF0y9pbUKtYk5sBsz1NioW6OYkcCRL5ummyBZnG4L17K8jNjXUt0ENagpWiJnxZTOMa10ySxH1GK+hVgwuZIe6dPsHJibzauvySHjgMaek0s416efBrOr17a8jLihLJSi39lsNnDVu30bLNPOzg77AR3xyEeBhveZgVCcwvx95cYNcckAXKcLaesQ92GC6PPDH0T83t0F4+4wf3+d9rm1elOmaWk+vYg+OdhG9kGJa5HqNZVtU82XZjqUSqVgLVOkVtcFi2xONAFUtN7E+R0cA7k1Ywlp8G9Jof6ijDip1tIZxrhcAXv6MllRjTmnz18M1rYCC3hqYVWXhZtVvzE3h/imuinHNgI9iD3Aa5TMaDym1tciIvI6Fj2TRx//5Ve/Kp/7AspnXPzwf8ZrYOHo9Khrr7rqauzpdDqvYyQCN7z3VlP1rsQbyzAkHYkG1zLuRGyYhkRjGo+pnaL9vd6joJ/pVlyrY84MBm7AUDkMILof6GkhebrURgxdP5QpVNfTxNDVlGtLhI6BuRz2Vjmu44H2irqU7ERBOsyCKOSxLvv8nQSzMLQ4cIpsdpdlCpIcu9mBIzVqhNpN2oCLMnbKXo6yDtqX8Xg8GOdR6nJ03jUYq06fhT12/RAxJMnr/shjiN21gyNp8XfnGEd2NxBnC7x+h/vIbms0o2RmZiaIVeo+Pe7YZ1DjZKt2kNqjWFzXZE/SmVHNv0/dne5ltZRBga6ratfe417QjAyC+13fQRwpMrNGSzVMzyCm9egg+JWvfEVERM5fvijTdOoMLMyVzeRrroj9i8Y9LaRep/uf4ziBL4I27SN91WP9n//4H4mIyMc+9pSIiJw+e14SWtaE12Nzn9LqcZyT5dX/u2Sy8lou4/btoN81JuszxCVmSijrprFa15t+vx/sFfUe6v913L3V9i0zVYZh5ETkYyLyf4uI+L4/8H2/JiI/ICK/zo/9uoj84Lf6G2ELW9jCpi2MOWELW9jeqxbGm7CFLWxvt70TpuqkiByJyL82DONhEXleRP47EZnxfX9PRMT3/T3DMKa/2YEsy5R8NilV1jJQVEMLVN7bPA7qt2g5Bc0zj9Opz/RYu4BgbZb1hK5d3ZLHrlwREZFSka5+fNK+sw6U8pgMiTJFqq1aXQG60WmXpdJgjZY8n2apsWlUke/58GXkikf49Ow71HTlSnJ0jN9xyfbkc6siIlLMU6PQdXgeOFaPRWoHdaBZvX5TehHVVYy6/emT+MZdLe6Ga1BXq+/8xIel1ca53z7Aua0UUDhY0cGjMhCaXAKokZXDeSpT1jyKS5b1FtwpIp4+0AGP9kJHRCCXiXZowWG7lwzy5YsTeC/FfHKWZZKFk2CslDHyWcB3YQnX8vCVJ+XMZSBKUeb3a7OYb22S3clZZ0euTRGSQasmCSJtMaJZ+yzm2e3jGhZm0bePnAWqcf0mUO5qw5ZbrNmQy+L+f+TDOJ9HL4OhUtO4Wzc3RGTorlbmmJ6dm5F9Is0rs0CasnR/tE0yVCw6pyiS5sObrvW62lJKaRhaw4X9oSiXFbg90TXR8MVV1IyfNdxRZkpra5iKtRCxNMUTV9A3UYdFHal9aMSH9YTeg/auxRwxPIlEO5IzMG6zETIHA9Y9GxjSYM3NnLBuHD9LAldm5jEXpvKYP0ulJD/viUNWx6e2b+BiPioyXCY7qS6aA+bJN8haZ6yEdOnql/aVfaez0SGZsgyR5TrOa3Ya6Fy53pZsEQilQ7QzncAxlA21jzHXirNw6XTjGJMtB3Nj0DmWWIToMotlN9pgQLRYNbtMTp0C6yVavLHdlDRZ70wWfcJulQbjViyD97t0XN2kG50WzU4YA0nQYbPD61MNQZusyy0yQotEJZvsn0g0Jns7QJmrrIvCsjmSIug4Mwkdwvpd5NSbvKbmIfplZmpaeix2LNRnuMww2Ge8doh2njiBeHqNrJjqOHd2doIYqtoS1av0B9TWkY2wTRaGxy/K4UFFzl/AOQ64HmZjmJ/ZDF0YqdeKMBOiWgNaXprGvWy3qmKTfdjZQKzLp7G2TZBkJMknr117WURE5sh6lpYm5N5d9EWgIUvgVeujmSnOmSQOlpjg7zIT4csvbcj0MjImVJfVoJ7ZTinrgDGeoZasxvFvWdawXhFPsk8HXI3p70F79+KN74s5sAOmUFkorZM0cB2xLFyfMlOKpjsu3T251im73Ca73LdN6Q14HF9ZDsyRKFlF7TMjMlqLSLjWOs5Qp6a/oxkTyqr1K/hdzRpqtBHTNu/dkxJrQC6QkdbxrutPh/EtcEVeR922AlnXazduSYfjOckak2WyP54/uk7puev5maYpWTLNf+dv/oSIiPzeH0LvM8uMogjdeDt9FqhOs3AxMxN+6Md/XP7iK3Cq+8kPIRvmX/6TfyoiIilmQR0dYN+o+xOd591uNxiruv/Sc1V9ksnutcnk9BmX46yRGRFTaoPR4ubBPeIYibEYsvBe21y/9w/QT7/xm/9BfvTHf0xERHLKVPbxXrFEB0+ygZmMOpjGgmvR8XbuHPZju4wZHmsdqitjl+PB1zqfPN9oLCYOGXhtw7qao82iPvSVa9CHuhER4XGyMfShw/44QVfXg4ODkf5xuE9RPwORIbuk/a4a3Y997GMj56NjZ6hftIKxmkyMFr8e7q7eWnsnmqqIiFwRkX/p+/4jItIW0OBvqRmG8fcMw3jOMIzn2u3eN/9C2MIWtv/U27sWcyq1tyc+DVvYwvafXHvX4k3/m6Rrhy1sYfvr0d4JU7UtItu+7z/D//+2IOAcGIYxRwRnTkQO3+jLvu//ioj8iojI4nzJd2xPukQat7aR96p5uYZhBHmcLusQaW2fQH/iahVsPN2miMwuLy8HbkT6VBplHQ0eXs6eBlqruZQmn0xfe5Xo3WwpYApOrKyO/I46wmzRxebsGaC2WoOp2evIwhwQR9OnA9QhrsUygGKqc9+JE0B5lLE5sQS9gev1ZGMDuoK1NTg77e8iv1/7pdmiu9KsuuFpzm5Ebt5Gf16+AtSw2uTvs+7O5CQQl2qZuoMYXQFzRKxSvrTJdrnUV5QmgSb0bcIVzL/e2oLWyBHcn3bLkfPncc4Z6jtc3o/JKdZhqQBNSWf4nQYesudnkf86NTUlsQQQJY/ozNCNbrTeiUPESN9XhM40zQBNUgc7RWZMoiaJKF5Psh7F1ATd+vxUUJleETitv/MaXcz6js3rxWuZ7GSHdYku5c9LOoXvfORDV3gezKd20B+qmRlqnyRoirC82eu4GeC4pur+9s2OFbgD8hiDCJguEZEU73cuizHS23pPNwvvWsx5+PyqH4/EAxa1T3awUkcM6PtxqZMNjFDrMDGBMR/n/1fJkEzTSWpmCuPK6x1Kj45x9QZYrDjrQekYLCbU4RKorBlL8bdYo6/ZEjGB2vvqFsoacCQM5JUbYE+nlnE+rSh0BY88+THpDRjzyH00G4gPyv5niMY1m/iNFNm2mLLIlintPuahxjidL4rgRckGR3OsOE90fHt7O5iXWifFJdsS4ZKjaHuV7FZQE47odNSMSovahXPn4az5/AuIx0888QS+M4+4SnBeDqgj2Li+LrdvAKGk/ETmVxBbz64BKVd3WIcatzhZ4SI1ZQtLKxJPoo+OqFFKENXVdUJ1ajduwDFPEfxA/1urBdejc0vjtbrGJpN4PTjGb2i2wtzCfNDf16+DTTt1GvFb+39mBuNPGYOLF8Ga2xy39WZXLl+Gu9eNm2DuamX096svwZH1/EMXRUTkwjkcu6HOYrGozNLdsEO9sMviZ1E6mKlTnxcw2vj/i7xP0XhcYvzbnc0NERGZmgapM842qA4sGDdkS0SGGprx+PQetHct3kwkYr4ZnxLPxbV4PuZKIU8dieUOr5mshsPsmy4djwd99JnTR582udYctfrScYL8A/11ngMzHOjSGuVkGTq84jc815MEMziC9YAOlaolSpmY74WEavkY9+aX5AOPYk0rZDEnVON0ilqmSbKnDTqprcxiPn71K1/GsSMxsVnzcncLe5sYJ2+DbGbfwVqao8NfvYpuz+dK4lMf/cu/9i/wXV6LMjEHO+jns2exF7lF17cuY9ulKx+Q13YRM159EZrrBLOduuw7I8tMEo7HVp1MouOI66ljL9kcMmKeqTWtBMdgvNGadw7nQavXE8PEMYo5+p4w28HiRrVPhr5LBmecBfru7/7uoA7Uyy98XUSGWVcD7k8yOWrMXczzxUnsdeqHFclQO3a8jTiqToENOgpWjrAvPX8BfbixiT2py5hhOp5UOd4s3Y95yoBy3+ahI4pp7I8vn0Xc+cJnPyfzjOeSZV001qHqtBGzZqaUbWP9MtZUtKxhPTuLDJ3BqXTiHJnTedZj5DUqy2bRq8A3hnXA+ryXFuuGFvNvz4fmW45Ovu/vi8g9wzDO8k+fEJHXROT3ReSn+LefEpHf+1Z/I2xhC1vYtIUxJ2xhC9t71cJ4E7awhe3ttnfq/vfzIvLv6YpzR0T+ruBB7TcNw/ivRWRLRH7kmx1kYDuyvXsoJp/a+3T2U6eSQe9YqswFjbFidrVOpz7qUOJjTjm9Lj6fL+Y0VTOoIp9jburUJJAWrXuiT/4f/CD0Mhn64duDbsBUqSNKQl2qiFbqb3Tp09/u47uxqBlQDi7ZkxjRjKnpiZFzVlYlkQR6tLsLtMcwfUkS0d7eBjqdz+FpfmkZSEPgJkRkJEVHlGg8FaDjTTJAqQTOY4KIT7Ohz9Z4rRwDGYpa1JhNTUjHBuLqdojIEK0f8JoMi26Lceal8runTsxIkQi/ReRp6dTZkXPO0EVIkdkMkd4pMlWzc/PSJhqSoGguSnQiqEx/H7IpMryXiv612+0g3zbF+leKFsUTRDd81ligHm6ySP2cE5HDAyD9zz4DdzArSQ1Am5qtrjr0aL45rm1pGTnd0URcchR2xCLMEXdZ9ZuokU23Q5Ms2Btdz1tlqr7R+9/sWOP6rYEv0huw7gbzybMR1vyqpF53rv+R27sSc8Q3RPyo9Hj/EjJau6vdb8vWPscngaqPfwSo/uI8EPzZBWU0qd/rgmXwBp74PuKDFQdCVprBd+JEUC3WwlBtXFTZSTKx7t6+RNOITylqiQLdA79z4gPU7XFea12jrZ19KdGFVOd+WnPoOW+iJj4rKfw9neM1EKVzBi1xiLYa/JsyNDazAiYXMT8lzfNYR2xqtDqS5RwzqBno0VlrntqLjTa0Tvc2t3he+NzCPI65u7srJlkuZTH0/zkih50ejtlW17t7rDt39Yb0Whins0QoL1xBzTmJ4xgHmzimbyFObhKdVRfZTCYXODOWqIu6dw/ss7LSboT5+SnqOQu45vV1ILjVWjVwm9LYnmE/nyf7tk1HQc18UGTZdd1AL6tOVkNXUJxXtbo30h8mmSOTzMbExIRs0K2221LnMsSxgz1c/8wM/h9lDbI8tRfuwJMCx0w6gutqVbHmap3DuEf3WDIJr76Eej7rdzdwnpYlA5+MKTMNVPOj16Zsn7JvGqM9zwvG27j71nuoqRJ5l+KNL444/rHkWOMoFkff6proeV6wlvoDrXlEBJ6bi35f67Xhcz1qkFz3jdi7UR2S7jE0hrxRzL9fVyUy1KWskOUtkEEZsP91rnS73WD8Nqq4r5rRob+r7p7qfrl7D4xtge50W5t35aiM+GnreYwxkxFrWBdKZKhfchwnqOGl40rrNOkYUvb49jYY24sXEct1TkU9Qx45A6b3IIrPaA2jPB0N69R2Kptqx1mPrtcTn/3dapFVlVFG0NN9ijrqqTsgmbJcOiUehVcOWX3d20S4HxhwvxRJoE/7g9EaeKlkUl56ERqlHq/7gDqhOa5VnSaZQt7THdUjmSKPPg4t2dVrYN5TdG40TdwjdbZ+5hkQt2fOYR9X3kPsrBwcSaPCPY3/jXVIVfblwB7O+3/7q78mIiJ/5+d/RkREZuno3GRWQYssp97TYU0qujM6dqCl/6uvgW38zk99ktcwWktPPxfUFnTd++YCtV2MTcnk29vjvKOHKt/3XxSRx97grU+8k+OGLWxhC9sbtTDmhC1sYXuvWhhvwha2sL2d9k6ZqnelDQa27OweSKuDp/xMHghtg0/9yVROEkk8lap7SZ11XyZYU0DRLIM53I8/ilzyre09STJXMj0D9MRhTqxNzcDstLqxAZHY3QZDpNW+i/lcgBZqfneWT/FFVoFO0xUumhytpbFxZ32IChHln2d9ouMy3WT4vqIp5Qqe/I/3wA6lUokA0Vtbg/7LHgBFeulFMCfq2KK1JdrsO7vZCM652QCKMDO7KiIiB8dASQsF9KHFHNY91nS5cwsoxsARSVMDYHq4DwOilQFKQrRggYjI4QEQiKnpdOBapnq4vT0gyqqjiMWIQFObkc0B3T17DnVosoWi9JnPb2oaMRF9T2s6EM0ZRzED9i+RkDoRbUPUqQfnbDvUOZSm7z+0bO9CR9ZxTOkT/S2RPd3eo6tYCmOq0sFne9SKpOgqNEM2cqKYkSQ1bEGtEOZMizNaj0XHg+eNMkf42ygCFNSWGquLoYiYoo+e7wXv6d+UKVQUUdEbdcHR8zEdL9BP2D7zjjO4d7taWOl91wyxJCYNxpEIhQxt1jU5KIsUi7jmS6ynduo09JLqIjpdwmucjMXARd+4fkbqZDsHrDFkG5rjz6rxHPOKzBvsR83XL87FpMd4mGb80nGgc65LrVVqFsjlBDU2A08kT1TZYT0Yj3FhwBog7S51EmnmvpOJNMgkDNp1adPZtN1gzS2i0SdPoz/SnL8qanIs1RP05MTyiZHr6hIhnZ3AHLt9+zV8l+8vkNG9ff1GcI0Jsu007pInP/wh9CFjr7IrL/zVcyIisncDyPLuPU+WlnDvNE8/Tne5rQoYGpf6EGXHrQj68OIlaEMsywr0ZbeomxxQpxbjWlPhsR599FERGSL7q6uruHbDuK9eIfudKOvuLmKg1tOZn0fcVK1RuVqRwyMc/9Qa7uXVq9BBLS4CZZaUamtwfzRe9FS/YWakWsN9nprF/Tg+xD3scn2oH+P36xX8vVjCsdLpYqC3sUyMHdWimnQrLa9Dq3tMF8Yy9bZCfVqrW5MB7XpTqnVVJpRjW9cmdUlUhy/DMAImJIhhjF8an95PLRqPyMLJCbHJPnS5Thi0jfV9SwZcJzNxjM0WY1OP+4YONYua0aA1gUzbE/91Rhh0dI2pLov6Ya35xb/rGhCNDmtoDV8xnysNOjKSObOd0XqK3/6JT8iLr0BHRxmKLCxgPuueRjXmVbIL+Qmyzbz/2zs7QaaSz981uNQN179Rdk3HRTZTlJ4z6pCoY2V9HdlJly+DqU4xRtVbHO9ZnF+v0ZIcswjcSex1luiEubUF5ioeV+YGZ+MwwyUWi0mzpa6VnINah4tMXYqf1fGucV9Zt8GgF9xP1Y3HuIaX6OQauEGyYzT+aUxZXFwcZiZE8R29v5vriI0O+6VDvaoz0JjRlSj7rsw4dol6zGPWK9RYfe4CWPYO46HGPT8RldlZZGTs7Kojnzo2qhsxmVIDr1/68hfRb54pJu/zn/zBH4iISPYHflRERAoF3UNNsg/xu+PMaiqVCvpT98njNd6mqenUPY+Ok0gkMqzPxX5ocs0aBC6Ab609EA9Vvu9Lb2CLydQ+FZ5Vq2rXbEqUlKfZps1vTIXWmBzzLNyaTo0ONMsy5egIgbpA698i097Wb2OgPfYYgCgVFW8f4WFjSgthZtLSZgfrTVFB8Qxp7gTTSqoNDLBWB58v5nNBQcUpplZowLl5F4v1HgtlKmV/+TKo6cMSzvvw8DAITvog0KQA/sQJCK9jtE6N0MJ5kUU3bX8QFML9oz9CobfnXoT17w99PwoyTk5gMk/zN9bWcKy7m1g0zYgljovJWSqNDkpdQD1Ti8NiEs3OZ3leEgjOMykEq1kWCdXgrZt5HeBTUwjAalnqGZb4ukjwO/qwpBsc8V//AIL+wPkNBoNgMVa6WH9nbo4P7G1sMCLHTAHr4PORZFFsBrK+2jbTMl0foiy1e2X6pTBAzs/gGiJRPwiChsEHb1eL7FIsPGbdOUzRkNe1oGjkWKreeNHBwFLds4OF3Lbdkc/qA/ubmVtEB36QikCNtGTU+vp2+w2/86A30zAkFolLlH3f4caBtXolZonMz2G+zk5jji+wQGo6hTmWSqoFPVqUG/VEsSAe8y3TaqjCorN+FGMgQaOPFIO+Bv9+h5vurU1JasFeCpTz3ABoEUSf6X5WlIsAv9vrO+L6TFPmey2mOXq07o4kca97THf0OEeTzEr0Bx25t8nNBFN9PfbVqQsAOyJMjxYu/nXGYtOKDk1heI4NbnqaTNvWB8ZVmvGs30Is1pQO37Akm+cGgQ9ERaYOaoHP27T8vccinVt3cC2PPTIhJYqal0/iYeJIU3eYqpj1cO5f/CIW9UuXEHP3D/FQgfjCgtBM6U1zvuqDUInx4/AY39EHJd1szi0sBWua9sP2Lk2CZHTzpyno+nDV6XSCdBvdiCkIpTFtj/bv+SL+nk5neV64dsvKSiaraUeM6U2c4zSPvX7r9sh5aFFo19uVJNeNMxSTV7geOxwzWyxJkWR5kzLv3eYOHgZ7hiVVrpsN3m/tm+nC6KYvSPFkfJ+bmwuuezwNUDek76fmeb60u45EIgq8aKFdgoKeiMX1oVxDPyZpCGJy7UnyodZh2nqji/thmoZYMp4yjvjjMA3L1fWTm9s+1894Sgs56wor0u6N3qseH8h0r3X6DNK+NMXvM5/5jCyfWBURkXOnsR/ReKYPy1rAO8sHZZPnsU2ANZZMSJOpg2oioOYKml7rORgrMQJ8EYKj9Xpd0vnRNEMFADSdVs1k1vjUN8XU1n5BjWkWg3N+/msweahxvGs6mFq96wOTrp+tVmv4MJNGn1RrfDDiBn1A04dcZhTM0RpByXgsONfDfTUyozyBac9adNi3RgHlGcpYMslEsA9oM2WuyTmZ5O/2+TBZqyCG6epVq1Vk/wD3Ist04gPGl4kSTZaMVRERieRxrB2a6+i6M/BcqdLePcn9usphNL7og7qrT8wjZlx43dtALNQHI40z8zR801ih+xZ9qJufn5OvPv2XIiLyXd/zXehDrk06DrUw+zCVevhQpcdzdQB6asTz9kCc98xGJ2xhC1vYwha2sIUtbGELW9j+OrYHgqmKRKIyPTUrA9Ke7R7ZACI11XItKMg1fOIEAra4iKdXTd3L5/C0uU1r74PjI3n8CtKw5AnhAAAgAElEQVQzIqRmlZFaXiGb41Dwx5SthUWghUoHPnT+gly/jmJ1WuBRGSs1s9jZQspgaWGK546u3d3YkFyWRXUtRVaAEpw6hSfxGbJsL730kogM00wiFHk//PDDcv067D71Kf3SQ0jBiUaA0qpV79UqEBlFXerting8zulTLOp2TKtkF9dbKQMhqu0DLa7VaKXZQr+snD4ty6s414QDFEt8pLspIh9jP6iIUwsOHx1vy6APtKZLG9kK04r0HKemgbScPAmUNF9YFRERO2ByjADZaQ3UuhR9GZgpDEZtn7XdL+BV1EJToPQYtqNpPWTBiATmi2DUnn/5lqxeAjp3tAcW02OqS4SMgMd7plalp07jGpI8Zizui8kUMEUVI5Za5PKcI6Pnfj9TNc7AKcKpSEuLtqdBOhOvVa8xmUxKicU5Gw0gbcoKVKq1kd/TY+tvJr24mISU+hzXNhHH3eQbugk/8M0wTYnH49IgKjw4xv3M0b+hOBmRqUkg9bOzeJ2YwP3TceJw3GgRWMPVNKVYUJixQyQ+W0TcSqQxFxSFVhRUiJwNWCzadV1p8f5MBIVR8V4qgWPYtDyOkyXv0IQglZ0apuWWMIYlimNp6kSUebQW0Vdl0iIsUN52nWB+3mAR7CKRwkh2ktePcdLYxxhoEB1NZjJyimh2p4njnTwFG97/59//BxyL6OeAFu8NosI+TRieeOIJqTBdN03kVNNyjxm/N28ixpfL6IcciCNZvnBOcuyzAlnxGGP85g5Qzz//3F+IiMj5i2Bh2g0VQeN8p6enZcD7aSXQN9M5sCsrZ/CdbgPXremBa6fUJA7Ntm1pkx1++WWmR5FlSjGzQFPcCiVco6av5HI5iWsR1GMtPk2GNIW17vQa7KojZMHKNdx/lzEymbMkwyK7G8w6KOZxLZN59Mt2TBF2VgN2WVBz50Dy/J0m6VuLZiK1Ju5VSu8L08JeY+bHPd7zhueJw7WHS68MeIxWBcccF45r7Gm320E2gq7turYou/V+aoZYYhl56ZGxsEyW9aD5hOP0xOB6YJHNiiXVgID3YcB07fYwpV1ExOt13yAlkmyGshpaHoOxSsfh/eujfkYzRLSfl5fBJvudUcMa/e7a2ppkKINQJuD0acz3115Dmm+RhhQBY8H1qcIxa0Ujgb21smtp2rN3yAxpnHWYil9kYXHLGs4bXfeU5Ywyc0cZrN1biBkTHNuaWHLm3FnZJfOyuop9iO41r74GiYWmAXr+aDrq/X3isvSKjlntjyTnWSBH0PRvGri02+1gPda4q2Zcegyb1x/P4Ds+fz+uRaGbzWFqf3N0jii7rtb2aoqi1vOpdCJId37oIk10dsBU6bxXc52vvvQ8Xp+h9TzHYcfuBxlV+h1lvwYcu5rJNHzyoLW/SMC1eownOv6U7VM5ju5p9B7rbx4dHQX3X8+pUFRDGPxd2Sgd0zs7iIupVGqYXsn9X4pp92KGTFXYwha2sIUtbGELW9jCFrawvWftgWCqLMuEfSGfUO98HdasjRbQh7bdlZlJvFer4Glec8L3jzZERMQXPGVubzNHks+9uWxRyjWaCNAiOBYFKnaCRXdVh5UV/F3tylWc3xrUg2JiUVohJ8mI3SPLc/4h2LAflYGELi2Cfdq5syUbG2A3FuZXeK7sduamd5tA7aYn8FSdoN3q1DSewKMxkXwBTN2tW2CiDObiigHk4+y5NfYPC9NRH5SIRqRWxXU3KDg83MZrrYGn9SbzXBMZQL028+5nlsAgTc1MyrzaW6qlugClTKdHNSH6tL/LAsbZ+LwMaG9vW0AejneBvFz64OP4TAn9MrDAEA56NF+g9bzpDSRG602H5iKe5pubQJNcsk8eBZAdfk7Fl51BVxzmyKo24fZ1jDPfJ2pEe2Wh/uCAFq9T0wWp7uAeuj1ci5puWHHcl66o8B9jqDQLZK7dwfhwfFOKLGrXJ8PhkqVwfDKztOEelnGkENPwpd4dLfg3XvivWAQypgiNIneK9iSjhtQprK8TjVeNVWBaQK2CTVQpMEQwDEnZihrhXkVuYE5Vtsvyfmy+54kz6EmCrE8shXlDKZxYliOTUxgPM3MYY57HPPU2PmvGWSqAefo6JevNWmB/nKH+Ksd7b9LUokOGLE8b7gF1ny3Gqk69LAQOpddGfFDDCr2PFu9PpU2ti+C3arWWpHK4x50NHDdL44ri9AKvj1bLNIOgzE8aB5i3+/v7sskCnknqD574KAzPvJgW+8UxGkRY6WosxWJRTM7PTBFza5sWyqcfYgHyg3u8FlxbhHot1Y21Wp1AfyLUa6ZpZHPIvtu7g2MQbJVHP4IYvHTpQmB7XqeWZ595+fvMKDixANbt6guwID5xClqQ+WWM70azLWtnYbHscx1oc055NPSplRELzp2FxkyR06DguGEFAvYzpy+OvBclRN6gBldNANQS2hNfxMCcT9DcRO+Voqs9auuU5amT7atWcF67By/I0hLYs0IR61Grifjc7eDYjk1mso5rO2bpiEwmLzOTjK1cW3N5Mhi0UvdpW31EJuvONs6rzsHkRqJBdobTHc0kiJFJVMZkvA0Gg/t0GOZI3ygr8H5qjutIrVZ9XdF6ZaotKyZRBpDSFPpm4Kogn+wWPZi0uHOLWkvHlcDBSTUrJJHFc7mGGmrkNVZ8lnPY9J2AEbB53CT/X+ceJ53BOFxco+kJM24++cQT8syzYC8uPA6jl1s72EN88HFkCRV07h4hDvzRZ78gIiIpZXB8WzpNZa1wbk011/BVT60aM1yDZpwYpojNDBqNwcrWajkKj/MuQtFoi7qxEywGfnhQkUIW+8ETZ9DvX/0qzjVGNknLIwjnXY0ap0qzHphraAyoVkbZPNsYNTvQcW/xfkSTCcknMb/LZawBPkuvBCUFqENTbXaf2TK1ajP4LZ0zNRt9mctoiQhmIqhhBDXS+Rz6IxGxxOdYiHJ/usAMqoNjrAmuFu4mF5Ogycr+JvppbnZB+tynqP5uahJ7yoN9jActKO2NekyIc5+4yjRwE3/l36KQ83QJsfojTzwlIiKz1LLeI3PY5m9ubW3Jj/2tH8O5GqqH5/Vxn9pmPK5WkO3A7hB70JWo3hMlpmjApAXs32oLmaqwhS1sYQtb2MIWtrCFLWxhewftgWCqfPHF9QfyyquwjLUHah3MvHtxAmT+wnkgb1k+eXb6+Mw0Xele/DqQxynN/48aUmDBxU4Hx5ibhZbqa38FnVQmjSfRixeBWhToDtjuAPmr1epBob0888jnZsGqEMSUbgdoXYZM1h5Ru/mFuYA1aBMdNIlKLtCy0/XAnCgSF3y+hcf5jY0bkiMz9pFvg1Ph7RvIDe71ccwOnYBI0Iixh78vryxKnhb10zO0Fd7G0/of/sHneEygS0tzmoeK/m80cA0vvnhbdnag95qawTnH6b7YdYjA27gPy0vIR55Iwllwa/2ePP91OLIsn0Ce9flz6P+1k0B4M8zvT7MQqRBF8YnIDbp9cYnKVGipXywyv56sQZu6pIihSDDtgInQJWKGVIiSabHMSSIxmkutTI1LHYDmRW9eux7oFnx/1HWvVsM9WzyJ8ZBlrvaLV6Gh4G2TuflJKVCLkkzquTNXnEWAW2QkAkeo+wo3an63oon6GWWiHDJ5VepQxt3/4lYsQPp82hob6gg1Zr8+3qpORIT9uUDQ5qILJO6QCOT1N/zmg9tM05RkMi5J6pFMki8r85zfaydl5QLiQTpJZI6vWQvxoUa2ctBTnQKOEY1GJV9g8e0YPtMhc2zzPlkGxvoB/+4QlY2waOTURFaqHK8dOp4OSKPpuPE7tOZnHn+RluqxmBVoLxNFjMsc9XQ5Wpp3Gds6RCddaq1cT3WtfcnRoa00i+/M0iZdkrSFtzEXS/xcgmBj4/hYPELGLv3Qs3QK8w5YdJa2xftklLJ0p6pWgdI2m82g+G6eZTNU+6dOXoqoP/YY4tfaZbBg2cUZSXHcX3se60GbroNSR989/TzQ1wsP47wy1Owqi/2hCw/JJs81QobIY2Hzw2Oc4yT1al3e/2wO31VtxNbW1lBvwP4NtCxkpxXZLrNEg76fK+QlGtPi86MOnzqn0wnchwNq2lSfsrqGGPzww0uyvQNEtlwhm0m2PsfrzaYRE1xmTSwtzLAfZqRN5iBF19rOgEU3W2SmiFA/Q7avTTagR2ZFYnGx+R2L2tO4ajO5xuk1qeZF45tpmsG/VQ+iMTc2Vuj9/dA815N2oyUpuu3ZZLK1aG02mw6cN6MxxGHXpv13Gfdb7fGrdfRp1x4WZ1d8XLWcOeqRWi2W2Bgv18FYnyTL6djD4qfKrihDohqryWkt/ovfX11DpsvnPv9Hcv4hMLHtBvYdT37Ht/PCeb85ztOq4UmM6oYsw5Ss6vroKNzg2t6hXlhd8HT8970h+5PLqt0/gzDZ0gTdPlXzrdlHjz6mduFg8mdmZwPXw/t1jSIiFy6Asdbiu3duQ9/eoj6umC9Ik6xdhprFbpssn45dC/Ms0Dzxu7qu97sd6Zvqzov7rOuyjn9zzPl4/HMLCwuBK/XCDDISVEPrUp/uazkXysFMsl5rZ8/JxQtgFTtk+Ti8ZJX7tps3cd1bW8ja0XIROVq+Hx2WRVXhGY6ZmKlZHCz6fYTzG7iv10Wq/6TuXe7dhUbzp/+rnxYRkcN9dTLkPjHKucM9VyqVCvpqep5u4Dqm2NQLQZk07bu5ubngb7GoZkHR9dYJNVVhC1vYwha2sIUtbGELW9jC9p61B4KpGgxs2by3I8fM3Z1fhEtdpYKn2bXlk9Jpk5FhTqTp45m4z7zavT5y5mfpJBeh681jVx6Tao11M8jmPPfsMyIiUqvgKfXKI5dERCQWBaqh7nyxGN4/PqpIlg5+igqWy/jM4py6EQK1U41RMY+/7+3tiRp8KQqrqEFpMstrAEp35gzcnO6wqOLeHlCUhx46J8dl/Pve9ga+Szcdx2VxUSLd9oDFFlmzpFqtBE/ccRagK7BO0+Y19NnTzwFpPPmjn8J107klmUT/VytHMvj/2XvTYMuu8zpsnTuP7977hvvm7ve60Y1GNyaCGEiCI8BJ1GgyoiTbseRYUVmZFKtKcSWpWJWyK0NFZcuVVGSrNFhlmaJohpRoKVQ4ASRIkAQxNNDd6Hl683jneTgnP9b6zuv3AIqAALIaydl/Xvd7955hn72/s/da37dWg8dtJOXllBcSZGiqmKI15fufv/gM+yGbxV2nWKcwXmROcjwtv5+MoeZ2zVIoMjU8MxOtVtAX0mwKjRHdb0tolqO6ODO1nJ0nU7kr9q9Uq6BVE+KTVp8JTZ+e5LPqSCFsSoahO7s85+zsNC5dXFI/E8UxTwlIqagvhcOnn6dSkCm2hYfyL4t5CAnoN980QwtHMnxWRSnzWL69oVrdbhcNqaS1DtQTHKyxMqTOEFAfN/FCGAxMaSekz0iFMGLf2Y+IG2KUdYZY1XdKcSJg31rjc7+xvYq3YnMcolRJKWyFXT4n64tkKo6CahyTssUZDMnMuFKFQ4So5K01NAAQi4QxHJiCIj/q+knkggg19syEMa7agowQ5mwyjl0pJ0WF9pm3U9gYK9Wn9MX29DqMI9FIBlkdB6pL2lG88mJEX1MJ3aeQXLimIMdxHg6HMSr/k7jPmIgFzstPUMxnWh3UkwfKYDDw1b22dsiUjBlDJsS6pzowY1pHpdJn/RQKhbAr/6e8GTUK7fUVYDVvpmYYV8zQ1IuE0GnrOxrLY3nG7y0x/PIPRlEsjPWpxcZLly4hrewHqyW5co5KZmkp9q1LjcqUpAzJvdXQ1uaSz4Kbup3YLBtvPvskZHV0dBQdGawPNW/tuHeo/uuqanWrqsmdEPMekxdar9P20eRCgT97YlcrW0SMI8qa6HWsVla+g4Mh0lJ0y6m/6xr3FpcaDc6HddXP+rUfNvbjcXgylcYBXxrftPzVTPj0d3tvHVSseysyVSHHQSoah9e38c37L4wKZU/HYbGhWuU8cn1WQSpvYtUjYnmg+t5wCNAr1O+jppgQq9NNRvdU5gAgbabjg726Netv31vpgJKuwgwmJjjfrLbnEx//pG/QreUHzp1hvfLJO7mmKW3xnTeS4XmL8gA1L9BBvYKG3jENxTmr3TE24aCP4l6dUASOr0qsrlHtjhnUphVvrfbqpZe45rlfytCtdh1pxRPzhzNvrdNSZTYGorzLmLa6ZPXzc5gWw52Qp19XsfiaZduY51Zif92UY/XUIdd/dmaga9kGth6w+WVMmv3e+iedTvveYV2lLA3ajKHFOcvc4ndic/y5eITZDVPTs9jU+rugmOgzNlJltPNZbdn6FvthS9/b3NxEWEzdnUcYozZVl5uQcXIipvp6rWdcb++ZOn41OdtAHlf/9Df/CQDgYz/+CQDAYakzjk3yOv/4jz4FAPiN3/gNJNKmh7Cf1bS1jf3f4qKN8Xq97o/7juo/rZ9tbftaW8BUBS1oQQta0IIWtKAFLWhBC9obaLcJUzXA0tIO6qohuiZHZcvpX1utYqqoHE0pwiXj3A8W8txx1lTbUpwkYpATUlutlBAVCmn1WL2OVD1i/Lm5JWf4FM9fHCVCt7u75+2yvcVrajSIQKRUV9Brbum8/H9ph9/p95RLPOiiI9TC/KdMEcnQinvuJTP37LPP8n7XiOo8+NDbAACdbhtjY1KmWSTdYbnL/YG8GqRAZup/TsjUvUJIicWZkBdKo0H0IJrhzjwuVq3Z5nA4dpR1W0Plxp+8OwZPOeBenLv2QoH9bGyHqQxFwjxms8PnMjtVQDzJfw89eaRMMUe31Wb/5/NS/KqzPxLRrO6baPbLLz+PSaFzaV1rqUFm0BGK3m7x2qfHidZePk+kzLw+hu02+kJ6h1miZZNCbzZWiUCPT8/rvHxepgzX63UR9nj8nK41K6g7KTbTVW3bkXkhIKqzGBfae8ehReTFXmWFsDlCsYyB6Anm290l8uzn9LouIHYzEeU1GVpsLIUv3yakzjwszPcHzgCQmqB34OetruLAK5HBhDdES/jLqpTfNiv8fybNcfBWa96wj0FtA6Eh48bUJOfk3CE+1/HZNAaSAeoMpEwXYQwyP42U+sdxxCAJBW01a/68CIX4/NsDeW/ocWWloJaUB42b4M/CCdYmVCtlZObk01aRkmZa9UdSEFze5JjrSaWousl7yfQjGCb5u2dVU5QpMH4cPcVagukZ3ksBUkAVE9+WcpzXcdGWCme2yGtrxcWq6NpHYWqVvK411djMHz2Kq4rHkE9SSH0Tk29MWAUkY2JnJ2dZ+9VUzVkkkURhnNcUkaJnW9kKu6us4OuD8WK3w/MenuS99ZoenCbHZzHC8fnShW8CAFZLZOxOyFJqo3QDAHD/vR8HANTTZNUHqSiyQluvX2St73vezTrR7z39dQBANMH5XGvy+h55F+tINtb4vC5cPIOe4sJIjver6Yua0NB8nmjrCdVnmW/V2bNn/VqWrS0yllaftbbKZxQVa59TvWNoyD6u6n2WSOZ8BbG6FE1LqinrtFVrI6YooufSUG1VbiyJWJFzIZzjz+0bPO/mNuPnX8mDaEWsYEY1qBFTw2xWEVENizFSfSHGEU9MYtdUN8WeSxk1FAphKDQ7Lp+YoZQKWz2+Y99azYHjhJEWM5wvSGl1wHuq18vodtgHIVPy01rHGKq6WG0tI9CzekjX2fMlNPZCYT/uWS0wP2vj66CvUzQa9dF9e+9YTbGNu/ExMhTzc/Jx0hqg23ERE1ttSqVFsdyXxd6aT9P0BMe7McL2Lny5XMZUke/O7QqPsbZJNtUyAczbLyWlYfs9AIyJZTJFPquN9HRPm9tcp2WSvF/HV0uE/zOrAuhLZxlfrMbdmKuNNc5DYzvsOlKpFNZWuKY6PMd5fFO+oRGxjeYtVatx7M7OTPjfBciYhORDZ4yQ1fjYZ4xJMTbbWH7rh0aj4TMwDWX2hKScGgtbZoL84HTjN66T7T559wNIpRhvonHe1ze/zThnSrZFxSNjfSxbJ6ssgHxuFL0k+7si9srq0lxda1fee/XOD57DeSnBDkSD3n//fQCALSnGrqwzzp04cUL3GvKfle1sUtJHsOwGq621Z2gxtlwu3+Ldxr/ZuHdenUz/vi1gqoIWtKAFLWhBC1rQgha0oAXtDbTbgqkaDj1UqgN44E58dJS7yqjUtnKjc0gmuDs+fpTswtYmd6lbqjuaVC2V+SHcvM582InxGYzkuPO+eU1Ig2oDMiPyoZJjdaNBRCCqrak5WadSGd8LoJDneep1IiIzYtAsV3fomkLTXj645W26QpRNmc5Qo+vX5fKtXXMqyZ3/6RdZl3Tq5H24fOmKektKXznuosfkpeOYEpn8hM6eoULW4pEZv1Znd4eoGDxe+8VLZHOaLvv9ypUbAID3fIBIwNHDrBVoNLsYqgZiqHz9cp2IZsrqk/p7CCMANOq8129fex4PPvxhAMAdx4gohOUDBnkJrKzyvGPjI+pL3mNX/lY7GytwhGwXlGcbrgudEWy3LbT8uuriZlRTNZDXB0IhXyHPagEGYhpmpRQzVC2ZIy5iSznDR48eRRyj6iMib5UyUbTiJH9/eF5+CFEphXV5b1NTHMsLiynfS2RTXkCGYkXC5h2hfvF4LGOZPNdFSPdn/hKwGirlIR/UpzlYFwUHfn97kPKWjmmfNQTKvmMoZm+YhRuWZ05GLF6J/2+n3nr1DQDgRMKIjWYxrWc/k+e9T0jhKpNJIB61nH59x7E6EGO6GVc8IXtD/X7Q93wfKEPErC7GsTq1IhmRMSG3bdUIVtZv8O+ZpM/yuA7HmNUllMocvzGr09F3o0Kud3Z2cPIB+tbdqTq+P/70ZwAATz5JxmaySEWrX/0vfo3H3OT8PnTqnQCItk30Of89zYtsnHGkPdAzF2PWbKguSl5IsVgSc2KZdoQqbq4SKc7L66hdVz3huNgQebQsHCeFlEwmsSUlq2SGx1rf4bGmZoWUS03z8B38TljPYfXqDRTE/EFzqN1QXrx+bPBQeOAd7Id01jwK2adzi3diSX5+M6M8/7ef+CoAIOqJ4RULtSuVvK01vpN89D8cRkIorvkJdhWDLOPA3jHGPJ8+TWbxzjvv9DMZDLk2dsHmZyar2lT1XVeMt8XgkZERSDgSw+F+L7ojR4iob6ywjztWUyUqzfV6iMT4fG8uXQUALC1z3H35K98AAJTEqKekvtXrWmyyuBbx333Ggpii69CPOfYV1Yb67K/nH8/i0lu5xWJhzMzl/Fhrddv23EOhECJJIeWq/wmpH21dFBbrGHJVS6XQHnHg14Y2xRo6mrM1sZd+vYiyMPw6nXhYxwqhZ4yQxRV1e0fZEOeuk8HJT3PeTUwxHqyuLfnjalIM1VDvaU/fTWpNZ0wl5P00ucA4dd/QxYUzL+iaVDsXVt+oHmeo66tJBXRSsTOZiGEgFiuRk9eSVFdtjMYiUnSWJ6NlEo0pZt19/CQ+/7kvAACuLdP/qKuspI5q3Eqqp3fEINp11hpVdLXuunDlMgCg1eC8trrptpgaqz/dlbebBE6Rz+fRl3eYndeYoWqTz7uu+RCLi+2NWhYKf4RCjq/MGJU68kyE52so22F+jmxjcZb9fkYs/LPPPYdPfII1S1/58pcBAIdnyHpZzWRNdXpdrXVNSdHebZNjo9gQu3hsUut01YVNyaO1IZ/TRJf31GppnGD4CkqoLbVLU139vT/+1wCAxx77GADg7GmuxX7qEz/B8x+aRlqsuvm1WQZXSFk5Cwt8p9l4LUsVNeRE0e+J1RdDaHHWZ79eYwuYqqAFLWhBC1rQgha0oAUtaEF7A+22YKo8UOkmLjTFE8o/P8sal3A6hlEhfqtb3OH3uvIhinAHOi42ZmmVua1D5ZB2vB68thB/7do7LlGi5atkiA4f1nmEBPWFBC0e4a6+Wq2ivC0FriZzQcNimzIZ7nz7A+24VftSUD1Ye/0msln5Qy0R+TRfplKTyHNf9TfHjlAppy9EEh5z+hu1CtKp/QptjrxphuqrfEGqYfL2euEcmSr0BtiSAstuT9r8fSFBykPeLPMY7es3AACXx3mOfoOow50nFhCTqkt4KMZIvjeWV2s7f/NJKBZ47GtOCKvKRXYS53mtOfarMXWzUu8yZSJ3wOvsSOHx8OIinv8P/w8A4O2PqC6uJaUk1TN4yod1PT67DbFcPSHVsXga4TQ/Gx0oV1z1XyqXQmWN+cUN1WdNFPlsV9dXEckSlZlc4HedoWrZDJboC/GT+k9K7GgiLfZtGENILFMiLJd385IamIKfmCONQ8cYrKHrw4aua5/laYe+mpZQYgN1xaoYUuM6MSAk5M8z23n9EJtixzAGa+iaX1Ybfd3XyF1kG1dj7KuscuW38BZr7gBuq4yBvE6mFGsmxjnOe+EhXDF6VidonW6eUk7UWFpjo/ixARz09ayTmq8zik99U1ATozlwdGzVVoQ6hmA2kRGK3HE45vKTqg+M8TOJKI/VE9uRVj57u1/Bk18h2njkTnrB/df/8D8FAHzqT/8MAHD1RaKPD7/rFwAAv/4bvwwA+PgnyCqPLZxAKsRr8pWaejz+QLVWzZgQywjH+uw80ci+18dA4zUR533mc0IBW4wPcdVUdNR3yZDQ+KjmVSqFsSnGlIrqEOpiXQ4tME6WN8kk39yQv1+S/x/JFNCtE1VduU51yqWrjL0qMYC6HzUpOz1otaqqKVpfvomQ/h0W2p+PMS5srYqRijDGWJaA1dsmk0RLF4/ege0Sr2mnyvtOqYbEU81dqSJ/QcX88SLfDRcvX8VDDz0EAHCFfZo/1z33UK32ouohTD3UajS3pOyXK4yjXOE1trf5zouqFrhU5rsnLFbckZ9fPiflUXRw5Sprplo9XuvpF4nCux771jyArKbDUOeIWJCh5/kBcuAdUPs7UKfguPv9/xzH8dmU/mC/6qB53ryV2nA4RLVa9VHwpOpxbpdgHwUAACAASURBVPXl8hyroZJ6o5SNG/Jjq2uMmBaZVRR5oTDa8nGcGCe7sCnlUFP9i6uO21pKrK4xpdFo3K8/NlW9mhgSYxkfuJc1i+vLHP8rUsfMjY7BFTOQlN+c3af5Btm7zu77XilYTuc4ds8/+wzuPCo/pAtkxGKapEPFaFsvLBwiC7Kk2nvPi6KgmhnLGDLfM6uLiSi+DDXfd+RB98wzzAZqttoIqXbNmLkNZQZsrfB+qzV5kWpt066RSY6ij5RYI5sTVZfPzOr3cykyeMaypfTc42Ijh7WWEbyIK87U68qokadTboT3GB5aFoTeMTpWNBpFu6YshgKfQ0qeTm+7/2EAwNnz7NuKsnXuuYvvh1KphLNnqFwc07wzhiwmb7VOQxleWs/aXF5XbZPnheFI1bLXb+uz/K7NZQ8LAADH4TNdWrqpe3zlnO7bOqTLY167wPXjIw+/CwBw6AjXZ6aWmEgk/CykjMbhQOzePffQw7BRY4xalUq1sVOOE/ZZdWP6bT1qsfm1toCpClrQgha0oAUtaEELWtCCFrQ30G4LpspxHESjYV8drSDlPlMyqfc6WF7mztLyTQ2ZmJBfk/lY5aTgsirWoep5eP/73w8AWBNjYjVUR9//Xn5GSlUjYmNiQoxuLt3guQo5jE/w2kpSBLRd7PKy7bS5Mz9+/C4AzCcHgHQmiR2hE4aa2E54fk4sl3bCLbErnnw+klJ36nRaGJNyn91DS4hMzzWGRPnWjly+8zyXFw4hnWJfjaTpMbR60xBO5SpLqWZhnmj9+979kwCABx8mIjpRzPsqMdu77BNTTFxb5/1bPZihWhGxLnedOol4itfeB/9myKbdS/IWFR0AGFh9mp5DojCB+MwCAOBPP8e6hp5UXH7yp38KAFCT6lBcvlBpIXN9KRiWa5vIhoisuaoPC6lmxmpBGhV+tiMEarvMe01mgFaLiMfYiGpAxASZp5ejeqWDPlZ2b4PBAHGNiYN+G9+v3erl8oOqCg66rR+sQ/A87xWeVvbTakAO1lbZz1Y06vuJZKv8zGGJu6Xv4Zi5+pru6DZq4TBC+SwW7iC7kstLUcpQ0fwYmmKkGqpTiKl+MKz87IFYlmxO3nhC6aLRGEq7REItTticNuWmtMbHwJVPRo0dGhkwBmzvVJFIy49JQFkmJ280ld51hmQkrPahptqeYrGIqNTcnn2a9S/vfJSx7oPveQQA8Ll11ZzyY/jtf/l7AICXrnwPAPDf/vovYSanGKa46PU5p7IZ9tWSGJucxnU8LzbbBXqueaxZ3R7Pk5T6U8rUuVRUYB5TrbZUyRIZeEIzx+QFuFFWXAgxTmRGqRh4XOxpqaVawfrAR7d3ttmvAl1x6DDjeGaK1/Hhn/5Zfq4iNkoMfLPZQl31YEkxvEnVkFlsS6imIK56rNFxfrejmt3V9XW4mlsjenYN1ZpUKnyPGCsRiYhlFCtx9OgdOCdfLIshxaJ5q/D4J0+yHmzpBmOwMVX33ce4vbK2is0Sz1ec5Tg3v0NT/pyfXgAARKNWkyuFv901bNfIsnXlhVgY5fP92pPPAQD6Qt8t5iTkjdiRyioAREyttPfXe71YbYlnFJYDtPSuD+udEotp/qlPm7U23irNdT10u12fbTnooxMKhdAVq9EZci1jbGZf9dltdVJNz99T9oDrReEJH6+UOK4KUvPsy6/IG0rJVWsQq81NqBYpVxj1fRur8lDLSLnWmKtNrcEyWnsZsj82Pg5H7EpYirk7K4xFlrkS1vvp5dMvAQDe//hjAICVFa4rPvHJn/VZo/Udvn/TmgvVmzd0rTy21aC7A3vXpXzGLZPl/c3Ocq1T1vhXKSM2V7jmKIgpn3zv+3kseFi4g3VGKSn8OhbfxeCtKt6lFeeGqpOqNVtot1QjdKCWaqgTT2kOG5OX1Lww7zkvkUBc87cBZQhojkakMOyJmep5+/3bzEeqVin7jFA6ZnFFzztkGUacs80Kn4s90/5wiLBWGT2dx2qm1uXLNVCmQkMFqe02+zaTkY9drYWIlLbtu+a9ZgqCppewtck+tPHYbPVxsHRyqFgQFgsa0gf+4s8+DwD4x7/5z/YdIxKJ+IrNkYi8u+QxeEYsXFRZJ3ted3v+VdZ3vuqxjttuv744c1tsqkKOg1g8ikKBA91kNzc2+MBvrK0jppfOwhwXceMFLuKzaT7EiSK/U69LsnJ2z7jyO99+CsCeaeLCYU64mswq5+f4cs5rwXP1Mgvgdja52YDT86Xa+6I1Y3EJAahoeXSMg8WCxNgoU9p6vQ5mZkhPXrvOSWkDrCzxi4EFPpdBYmZySn+XwIU7xEABxEw9WypKdjXwGjLBnZtjMD16Bynys6evYOEwafVEnwNoUTT7x//2+wAApTqP8fl//1kAwJ9/gT/PXaBJcjji4uRdpE9jif0DLqbBO9TicEyS550mA8Nzz5/GXXfTYC8v08CEijWbzf3CDbYxc5UK1Vd6VSybw/gJblZntUiqKM3TBDIcS8lSWmalzEDQknRvG12sXGXAe+xDvP+OiiXbG3yGlRoDX73BfsopdS4Wi8LTYgMKfGkVtIfNvC6y36Dv1okO8KV5cPPy/Ywvrd36uR+0qTooi24LnVuPcXDTZBsxa3tpgHYsybEOYihIYGBbAMSuAICjK6+PGr9tmucCvZaf6gAFbksbcXdLCGlTk0qamSr/ZsXXTkopfHqBJuIq8g9F0Vbhv9tRQM6wn2Im4Ssj8r5SO6IaGx0V8nrhCCpmm+Dx/N0BFxuRuAxDlYYRN9NVPd+tzVVElGJ6dIGx7voVpk6MaAP4ib9FQYqXrjEd5PhJLtgjHq/rX/72/4T//Jd/EQAwoY1GYVxp0hJGCG84++5/oA1kZCSBnhXMOybZLZNZjbGWxqe9yJqKZ7bJiKUy6Kpwu6ONmcmB50bZV6OSdF5f4wKhpetII4byLn+3YdLG8kutNNnfcxPceHQkipNR3DJgJ5sdgXQasHKVfdTTu2VoQhWaH05CRqowsZqk/j7A7MICAKA7ZHw6f5HP4dRJpjC+LFny559/HgBFcQBuMsyY2U97U6xfXZcptARLzBDchG9eeIEF/53+AG2lpM7KMHNunjHYkWxwXwtXWziYFUAqHcN4jP27U1X6mVIIR7Icb82YHJQF5NlmKiTDadd1Eda/h6aXY2I4WhCOKObXJF+dlIx3u91GVDHU4lZHhfJO5LZYtryuFo6Ekc/n/Wdp9+SLWLku0gY+KpW8rFSmpvL8GopNHaV/9fXTiUcR0VLONgCebXQ1v2xjZO8gkxw3MZR+v4+sQO3pGa6Hlte4/lpW+cChImPJhMBue8c0O20UsjzeWY3nUW28uoqV3/nOdwAA95wgEPClrzGdP6vNzWZpCzGBEw+/jwBQ68knefwKx11H959Ump7JZOfzOSS1WbVNlb2HcyOMXd96ihs2A0Vtk2mL693dXYxPcW6MFwmymojQ3fJfOH2a8+ryDQJSIQFERw8fwcXznNcZrVlKMj13tCG6YSI2mqPTEzxHVDFkZX0NWT3PXoK/awu4tXk9FPiu7Gv//V3Whs51XcS6ikHqo/aAn0lLpj6t9eP2OjemDz/INXEslURZm2lbJz/7AmOSGRebgr2lsBfVXw2lWidTGbgDpTPL9NvMiG2s2Hiz90FRfb203NorYbAW2r+p0nIMjz9G64oJfTer99HY2Jj/vnEFECwuLgAALl1iDA87+83WzQooFIr4AKgB4ta/JrbxWluQ/he0oAUtaEELWtCCFrSgBS1ob6DdFpBPLB7D4uJhrIl9iFqxm+Q/7z153KfNQ2IKUjKDHVPaDoQEpmXuFhcNuLa2hkceZoGlFU8a6j8pdqtWJkq2LHShIPo3GiHbc3N1DXHJJy+qOM4Qp3XRycYQmimwsVEjI1lsil0xSnQw4LVWK7yecZkNR2TQuFtiikZeYheuN/B3+rm8xCVEq+dGlEajnKC6yepKFtyJJvHQo2SkvB5RhK987QkAwHOn/xUA4JlnmbyVVHrTwqLM5XpEFYqFHJ559kkAwHve834AQExpAwtCYg0RvnKFx7Lnc2jhDmyKzhfgialR9ruh1JOTKuLXPXaFWPTa7J96vY5QUmbGY+orEKXwZdKrPMdWi8/wnNDl/BxRtcN3LeJuGZ92JLO+tS2hkB6xhRfP8VmurrAg/NFHab48MV5EIsXxByEcjqWAiYmwtBVLWTVkcI9mfiUTZM3QW+OtfHbplr9/v+Lsg6zXQcZqeMv3vt9nbSzHLIVDY8eOgfoAMdH6bpa/u9oh8pYfWXzV67rtWygMpLM+GplKK+VWKGHPiSAk1tOVkEjENXNOmWTG9qfzQiiYizASKcUBMag9pYqUtxjToj1+1+ZcVIhmTPN5MBj4aH50YNLu+oyl/eh8xuJPKv0sPBj44hpZpfC0WzzWsubpoVnOn3/2mz8PAPiTL3yR9yID6kp5B3/wr/8AADA1x9SxX/sf/hfeZ4FjfL7LWDgUkuyztu4Abc3dRFrCH2Kb0hlZMvSICiZMvlmMXVNo9OZ2GeMy8i4pVW5UcSOjlI5qhcdIjhOxbvf5uaef/jpGhV6GoirqVjbKQ+8lQ+dl2Vf1NvtyRv1hUsuVagXXlHakoY+hHFWP3k3WvK13jiexkZ5Egxwhy+6wg/Utxv6wUo1zYnzPnCOy3VXh/Ps+8Djve5MxyUUIxakZfYbxqqIi9DVJO7/7PcweMHN7M4RfUWH93fedQE3plF1lQVTL/K6hwjGlUhaLRJ13d/gse50+XKU9hpXibDFtTCn36xti79Uyhfy+642GQn5Mj6f20qB5UKUrC1GOKi3KV/4Jh/z0H0OdoTQnSwc03/O3RPM8eIMBGXLsjRGTQnddF15PwifqA0vr3S5zTpRrYqbUhQnFHycc82Xsw2JgUmL5jBq3d61lg9h7yaS+G6024oojl17m2PRFqJRK72h8NzRG7F0XDwNnXySr8cBJZqVEdQ9rN5i5MzPF+bW6wlTVXJMMxqFxsl9IFXD8GI3Pz0mQ5QPvp9n2E8oQOH+WFjDmZ2/v/vLOLlwzyB2qpEEy38kYr/nYkXn9nYFgZlpp6xLnevf734ucUvS+/lWK/IQ17p75zrcAAHWVHExpDteqzLBp1bcQG5hY0VD3yxhVk7DZaJhrSTPDtRRLiBmOp3MIaU6mlV7dkey6v2LVM45HvX2/H3gmCpTyxU1aDZWHiM0uS5jDmOG43k8VpSMnwh5yYn4uXrkGAMiPS1DtBvsooXX5uLLFjMEKx/gcqqUScmKajYGVywdqWpeOKP2wIdbZ0r1DThRDrUdiep9GVNoSyYjt1jvyvgcpuuHJwDwie6FKreEzVTGJPF2/yT2FxdJWdb9hshfes0+yddhFmT+nxOoN+q+tXMNawFQFLWhBC1rQgha0oAUtaEEL2htotwVTNRj0sb29ibvvZr5tQbtdSPo5PRL1kfKoEJ5Wgzv969e4EzVDzoFMDkckWBGJRLCuAkPbiRrrZXneZqCayUjCV/n4S8s3AAD58XmUZBJmebzXrjEnNSf0Lq4c1mqNKM7UJHfziWQE+QJRgR0VkTZUNb2X/0sUaXOTKM60jIxt1z02VkBHiJIhmV1JQVYkrhCP857m5pk7XxCae3O1h3/xv/8fAICH7+M1ubrfaTFEC4eIpm5uEekcyRChiIQkb+yM4NA8Uas7jvIZffvb3wYA1FVFb7mzVks2Pc1jb60uIysp0L7Ou7K6pGuO7/uu5UELmMdAqHWv10RC6Ex2QjnQZbFNkj01ydi1Hp/d4gnWLBSPMT+4MDuDiNVy9XjcDeXKbl/h9SDOZ3ziPuVWT8bUpxO456F3AAB2tsmEbQhxuyz514KkiH3p0AP1S8Ph0B9nxhAdrGn669qtx7n1563mka+1vdaaLmtNdDAjw8e6ilSPx2WeN2h83+/d1s0DMPR8uequ6hotbzsUjfj1Jd7ABENMwCO871Ahjb2o2Nt4YrBXEN4Um6TH05M8eXuXKGc0xHmSzMhg0JhNZ4iIZK4hwQYIBe1JlKWnIuCeCoaTYkNc14UX5mebqrV0IlaHwLiwvc3xu3Cc6PCReSJ5584TJZ4q5FCRwbMb5pyKpMzAk2hwVDn/VrAcE7I7jAyRVe1CXbWVTdUjhdv8TErooonzGBtitWjRSOQVYiuGrpvxekzIrcnotpUTXyyOY1C32MHnmhLamVNsnb+PcuWpFK+zpnqtlhDUXrft15g0y/zdmND2RktCN0K2u5LtHYZUPykGcSSf8ut2O3oOSTE2Y5k5XR8RXV/Q5BYW2RinK1dYw2HMweOPk9VaWWXsm5tlvNoT/DFJ7o7PhIVlhmxCKR2h/zlJLt9qGAwAlUbJr7MaqO4sLPbTYlxk/zRAyOaFiY+EIhhqjDiaZ1HVWNk72OoVjAWzmkYHIaQkTW/PF1a7N/zrRS9uz+bADUcR1pyNqr89mcaGHQ9eRHUnkkevNJWFoVqbge/yyh9hMXcDeL7ZqQl+2N9SYqotHpmnQESxanqW49BFyBeVmD/M7AND863OMKm64YkpMlRm+fH888/j3rczq8MRE9fVesXkz18WyxSy+9e73mpvEpGwz7hO6/i5EY7ZjNYPKbHedcm0x7XGS2bTcE0Qxxgj3q1f03VU64HGlgRitNZLZ/fG3ea6zL5VU9a0cadsnIuSIzehjIFZGJR2EFeGQ1WMjM1rR/fk6fqKyj6qyPag1jLBmjg8rfdsDli8M9ELEz+L6Fw1mRL776XIXoZQRzY9Ma150ppvjo4xv8BnbLV18VQSF6+SoZo9xAwE+79fDytWycZFvbGXSQQwtkQUe1rKxrK1XFLS+cZi273ZsTOZDGpVqzeU1Yzl6oiyvf9+xuxx1eanFTNMFt2LhBDTOjyTVmaRxtu2rJjGZc1kWR/GGIbDYb/fj6mG7spVZl29XqGKgKkKWtCCFrSgBS1oQQta0IIWtDfQbgumKp1M4qH7TvnohaGWcRnUVWttLN8kgtptCSk/tgAAKE4R4X3uWaq7ZIXEGWg2PT6FrkxvC6pdMplLM86dnyEycvbcOX5JKE9PB/nuCy9iXrv3ohDNKWNfktxxb0s2fUZIaLdnMupFODKxDXtSb1EtVSkh5CHMnf9YTqiparwKWZ5jbmERG9tE9I4c5y763nu4a3/heUpFToxzZ37meSrUdIdEPmcnx/DSaZ6vN1T9Anj8tXUinTGhFx7492tXydz8wt/5GQDA4uFxfPXLXwIAfObTfwgAuPtumsadOEZm7PQL7LuHHyajUxbq1WwPcLgoxFdobChNtMBkUJfWiJob0momiKaINhw4BjggneZnrnZlLiilQDPkyxVn9JPPYWKeOdv9iINuh6hE39PgEKK8ePywPstxMDXHZ9oUIr2+cRPnP8Vr9NkmSbW/51Ea0U1OyfhUNTQmtd8VqhONhoEQEY++0LS4xpn1SzIsuVWhuYbqhDwPfexnvgxpMYTZmKuDcujWPM97BbtljFk4JMUoY2417sOSYUWyjzuE2h/JE3n8xi5R9IeOE73/p3iLNccBwlGEhNzWZLSYz5p6UgpQ/OmLvRARhJjQtbb6M6I/hIX+xoZDFKRM19wl+mlqmCbHPmxw7m1qHIekJJjNcQw2ezUkxC7lzCgyZGpQ/Lkk09ueFNzQM4n8EDodG2sqwLC6FB1j6MoS4gbj6k9+gIpK9ywwvuxs7mBDEuXjizIlD5Mp6UX4MyrFz7LkebOqGY2koqhUpOCp85raXDwR1aWqlsZUD1XLZUpPzWbTjw9DFVFUyvz/6AS/s7MqBm2U86Zl9gm727h+4bKujf374MNE0sdnOF7Lyq2fmmb8GooNqMuQPRxLopDm80ylTcKbMXhijnNgXTVd8kPHiNQiDcl1h0PEbc7JuTgmdbDdbSqrmRqWsVGGHFcqNZ8RevzxD+l3fKcYU2pj15TVovr/sWNUEDxz5gzmFvnvlpjClN5bk5NEewcd3ndZWRRmXDw6OoqUy5haU+2Co3E4Ps5nO2FmtELlLV75zEYy6ccpQ4GNCbPPTkxIhl7MhmWCxONx//nbZ2x9YMxVbUd1KW+BRmLcBZRp44TNOFxjq91BVzUka5L7W5IqrzxX4Zpqq+qEulJh80JRZFSrGFXdXyTBsZOUzL3VUtk79vBhSezrPV0YG/PHojGkOWWQ2DvmiFTh7Dl4OtepU6fQbnAubOvaTVq8pOMvHmaWzLYUlSdUf3f2NGuxpucPoVrX2u4kawVfkPz6vfdx7lZ2Ge+ui+0vyci12e5gVhLlEY2VSRnCGhOypeyj3CjfY7uaD0W9r69evYp6mb/rqc6orvH38hmybFWt8fwxrIKhcrmMpGpzuqqLG+o5h0N8DrOKGQn1f0R9mNJ61XVdpGSh09X5Q5o7toaIiJEaU313zDGTYH5+Ij+KiszEx1Uj6SmeGsv5c5/82+zDZa7xLEvo7PmXkVWG2LPPPgsAcEz2XXM1KSb+4Hyfnua5ms0mmnqPRhSLBpL/tzHkau1jfVhWf+RyOXSkGDvsKa64dt/8zHs/8FH2oSTce7K2yESUlRYNwxJ2LHvC3s3202LKQXujRCLhZwmYVchA7y5j4l5rC5iqoAUtaEELWtCCFrSgBS1oQXsD7bZgqvr9ATY3dvyd8rxMaM8qDzeeTGBa+ezzs6wBaItFsJ3niRM0gDTVm64MXoG9XbGh9zXtPM0gz/K6bfd6QyqEtosNh6KolLnzvX6TCnGTMkIMx4nimRLOtmp8zKz3+vXrmBY6urjIPNZuhzm5VmNkKlaelFuOLJIVy0sRKZFI+EqA33uexoujUgk7coRIq3mT1OpEZKYP8fODwcBXjakqB3f+ENmbjPxuhgNe82yE5/vkJ2mI+dQ3/goAUCqN++jUT8hs988+/+e8tnhafSzjR+Xqr64SiT169ChumHqMoQOqQfHElETFlHXMe0voSk/Pq9/uwhGK0FSNwGiRSNSuPK7C8oyYlJdGWp5nHeVUt/oDJNQPVgxgaN3ZZ+hjVq3z/Gdevql+IgIzkpnGyZNE8L/x5NcBAFmptpXMD0vqamY+lxVymEiyX1zXRa1qaLV8bIbmw8Dv2Pj0FbL+mvb9jHyt2dj1lQVv8al6NWXAW5spg/lCXeGoj0YtLTGf3ZSQDs/M/8BrvS1bKARk0hibJLNZvSHU27U6mSQ8ocmRLH/Xczl/umJZYmKY46rXaag7w6lR9CC1rQWirq0dzgco17w9xnmq8j40akRBZa+HfG4GuxpbZ1YYj1ryyBud5Nyeh5gisVIRecXUesDsLONCucJj9FS7YHEzI7PyZk356B0+13e8i/5N25USTst7ZRjl35wm2Z90UmblNalnQvVoqrlyh0OMCNXcFfrbUXbAwIwsq8Z6qFZPSlpW87O6vYHiFOfy5Rvsu7gQyrVt9p2T5HkTfX6nW2VcmZo8iXic8WH0Q+yT6UNk27ouP3tkTqaTyqnPZhm/jx9jzWizVUZ3yGdSl2KjM7LA/oXQ5gH7IyZGc1s1BubNFI/FkVMdiltljC9dJELcjvPYQ5f3MH+I1ytrFriuh5KyE4ZCe43N2VhjXxWm+I45PMvvWpHw0lWyXuF+F+UNni8r5j4mNrGt+tmYTIkTBfZHQ+h7aOAgE+N7c0zj35XKYbLAsZOucmxV18ggnLqH7+YbS4yf4XiE7Az21LdM4au+rnodeXElxKBZjAqFQrjvTqosmrKs1bK81lrQ26k5jodwyPPruJsy9O1A9YnZKUSVwXFIypTT8gFzVNN58XkyCNeWmJ2CsNVHRRHSOy2nmskjh+Qpp7FpayurZTEvphMykB56Dm7e5HMbleqm1W/bGsOU0uw9XhQb5LouClKEHNF4v3qZ42tM72FjqPqqcTz9AtcxUV3Pyxcv4B/9xn8DAGg3+d3DqseyuqCvfPnLulbefk8vqGQyiZoUQi3rxthMq/+amWMs2d0R26sskbjUF5vNJn7h534OAPD001wPWK6HGQW/8BxZNWP9GpqXOxvraEvNNB5XLZticUlMeVOsi9eS96CKd1s9MzB2AK1l41llFOkCrP6wLfVPu668rmtEdZH1ehPjUtdr67h5MVFTUux78QwzinLjvAfzx4sm4rh8WfFdY6Xe3s8eN3blF6Z1jPXputX5d7tIKVvD2rjWrbZ+XF9n7CpXeSxj9SO3eM9ZBo1lm73/sQ+qHzguh7aOkwxmLGExw8WY/GLNG/bSZdbB1cTmTY3O+dcK7K2Ber2ez4jXpGxs6zCLu6+1BUxV0IIWtKAFLWhBC1rQgha0oL2BdlswVYlEAsePn/Bzend2iHyVSkQVUpkEihNCsgT1tIRmxFXTVDAfKxXfpGLcoffaA1+1yPIsbdfsK0OZWtKgq+vh581PKpvNY1vqf0UhMrWaPGTk5VFTvntUCi62Ay8Wp+AO96u9pTPczTtieRo15fKKGSgWyVRtrBGZq7Xa/vEW5vm3tuodnnuOiE9eqia9fmPfuVqtjs9ymSLMjnwmOkJzFhaJYuQnydz8zu/Qv+rk3USomo02fubjZK8+//n/CwBwzz33AdjL0baahBfkwn3/21hztbS05NcGWF694YyGEhxEHjvKqU0Lodre2fIRqH5f39H/kzmOi0NHiUSnlW9sXld96QB5DtCTStdA9EBJyPKmULQt5ei/U/5UBaFsN66v4xtPPQkAePyDrD1ZvkllGJW9IJmyfOPOvnt026b4N0BcyKPVGVg+e1zjwPe8eh1I7PdjqgxlsT4OhcL+Zw4qCPoFa5az7+xnuWKRKAZSL6pU5LkmxiHy+iwcbp/mukC76dcveuqL8VHOo9WdKpJiTVKqTxj2xPANzAtMilrYXwMaT6R9Pz13KL8kseKu1L7yU1Li7Jn3jNgujZ9MyEHU4zidH+FzKJUYv9ZfehkAcGNHnlcaV5EYY1AuP46VFTIUMeWSp8WsxiOq0xCCWhP6l/rgNQAAIABJREFUWT7PrICKELxSaRdpKSnlxIxFQiruaHHcJsyrTvWmjV2xL4PBvvgHALsl9nNI/iE7FZ53RaxLJmUefTzGhUtXUVL96vImz7dwnAiqI5+wUdUNdOTfs3icKGSjXsK0UG6rISsWpbpV0ftjKIU+oZ+ZPH/evE60diQfh6fYMS8Pq46UC3e22XcLczz/mt5XVidiymue6wDqz6KYgZiYm+VNsjxjUmm1ONrtS/mtUsG4KXPJI3HhEOOzNasjDfmMt7ywVJ+WGymgrNqWnpTkWmGOobTqEAzRV+kHRkb5vLyh69cSDlWDOvR4X3PKJLm+zedz991kqBqqDZ0Sg7FTKvkod04/LbPE1HlNac3qxYyNWlxcRKul2imxuObzaBkGF59bwVuluaE4mtkjyI0S3e+Bzy4s9q/teWiqRmg0xbHSa9j85nhviwXpi0FPy6cqG09iLMf4kinIh2qE/2+pXw9Jwe7wIn/GxRDmJnkutzX0VeRsHZZSneecWA7znrOMG2MXSpUypseI8pdUf5cY4f+XbnJ+15QFUtI9ZfRuX7nJOBWKxPBv/vDfAtirofuAGIpjd3Iuf+C97wEA/PH1m7o+eZ85fTRUH2+15z/2Yz/GvurfwgQBuOsEx6rVBdna5MjJu1Frsf8XjnLdc/Ec46zFuWOL/P3ytRs8/7hlnHQRjvDfDbE7nS5jgs3rvtQ/d8SotcTUWA1QKARErFZLzIjNa2N3Z+QbFenL40zvp57eNaGkh5ayfOqq3x4r8PzHTrEe7sq5SwCApTPMuNrSuz+GECKa52FHmRjK/tmVkmpOY8b6rqwat5jqp1wnhIFWPhOKXVaPFDFfNvXl9R1eX03MYadZwrDL+e5KUyGc4M+P/cRP8vximUwVMJtS/bgZl3lAR3HuxlVmd4yOmJdac9+1H1RLrlQq/rosIZ9Oq5nuNl5f7eYbYqocx/lHjuOccxznrOM4f+I4TsJxnEXHcb7rOM5lx3H+1HGc2A8+UtCCFrSg/eAWxJygBS1oP6oWxJugBS1or6f9jZkqx3FmAfxXAE56ntd2HOczAH4ewMcA/AvP8z7tOM6/AvAPAPzOX3esXq+H5eVlrK1x92yIuiFSJ+46it1tIZpSZHJcqbgIOb9ZIpppiGdKbFM0kt5TV0vxd4Y4wjHEmXvLbFbKR8rLNM+peCSFRJKfXd/i79JCQhPyDEjF9Z1dIpDmnzU3G/EVrxra8R45SuRn6PJ6Lmo3v7JKlOXr3/weACAkha5sNo377jfm55ruRTU7uk/LO/dziWeyfv8mE/J3qMkTQzvyX/q7fwcA8Pt/8LvsFyEAO7u8nl/9z/5LAMBXv/R5fO0J5hl/5CM/DgD4i7/4CwDAxz/+cQDA5z73WX7nV38VAPDUU3QhD4VCPlrj109IeWeoeqdX1AeJZep1iWZkU3s50z19xpy4rSamqQTkoWpHelJGGkihKJqMI+IzDKphGvIYU9NE9+4S4gohNbMzROQSsTFcXyWCfe5l5rPffReZsVGxWZWS+U3Ia0sIWa9nrFAfedWdlYTam0KcMXj2XAxNsf/fykIZ4mZ5xwdV/+yzB/2rhsOhjyyGw4N9nx2qv32fdrGt9v+JsWmsLnNuXrnEfkhJudKr/+h8qt7MmAMHQNjBqDzkZHkBt89nkc+lEJMaU9iUjKRcZLWPIc3riJBjTwxKvz9ERBSmF+eBXdX/DOQ9Vdll/xWnOX6NPa+qjmpz7To6JSKy8aHqE+J8xve8kyxxqcuYMxAD21Zd38ryMlpCRovjRKz7UszqigmzfP2xCc7Jhsd73V5n/VK3WUEoxg/lM0pur3AMdENiWI2mFTqbMvXOQQxtCJkWy9QUC9upKIc+qjoBZQ/siOUypNkLx9CS/0gPPE86z2u97+0PAwB2TVEPYl125SUYjWNDnn8D1cFdFSL+qU99nn0kxqpS4nX9uz8iSr65rjqp2ADTU1bryWeSUL1IyOHz3jY1Po2PTcXvgRV9OCEMxPasXb8BAKjJ524iz3lZ2eD/fY8zIeeJdMavR8pITe+6IfRCkPv6u6mIdlRvWlEWx3RxEtt6P5oKl11PQ+8+V+PTSOuWJyXHdAYJjf9ag5+12oKrN8gQ2XiDEO5yyZTH5L0WSyEpFr6ys+fHAwC7Dd73y2d5PmOs3nbfPf65TKX36CLXAc88Q4Xfiy+TVf1htzcz3gxCcVQTi2ir/m9rjfdvTMpuaQuFNOfbht7xI1L/DYtdziX3x36L+fl83mdCHfWvMQTv+zA9zWJi2ydVGxtTLZG9Y8LJKOIFeW4WbEzsf7dkx/j+2tQaZ3aWrFs8HvfZre6Ax9teYRyZlD9RRHG1vMV1XEfvnr78AVvVKp56gt85dQ/HgNWBPfKOBwAAh8SQmn9ceYuxYzyfw6Yxv2JInn76aX7HVJvVP03VeB4/zve31YddeOmsP767dY5jy5i5KaU869PxaR7r5bPMyhkMBhj2TWVVNYNSe71VXY5/3p/aYe/gWCyOrrJBkprf9r425sOYk7bWLZ2q5qXeS8122/ddHJWS8eoS5+rXW1y/dcQYjubZTyfk43nt2jX0zdOpzGcZ1lhqyqepr/eB9anN5eVlrnXT6TR2q4yJtubOiX3b2dza9/uQMgi6WuNVq+U9X0iFz7//S1xL2vqx3WH/Z+S9Zirh1of5fP4V6si2Hrb1UL+73+POnmkymfT9qOp67ttar3d817PX1t5oTVUEQNJxnAiAFIB1AI8B+Kz+/kcAfuYNniNoQQta0KwFMSdoQQvaj6oF8SZoQQvaa25/Y6bK87xVx3F+C8ASgDaALwF4DkDF8zyTL1sBMPtq33cc51cA/AoAJBNxtDs13HmCOau2E7bdfTTkYKZIFa3dLe68s1LGq1S5q04o7zidNDTRP4+vKNVocueZz8n3wvJZI+YHwB1qPE4moyjE7fKlC0hIJQlCDzbEjHWk4nP8Dl671TbNzPC211Z30O9LRUxodKtNtqvdYjdNyMfpzFmqbeUKRBkiQg5OnDyEa1dYw5MR27a6xn5wTJe/ZfVgadzaNjY20O+zM/7WT38SAPDsC98AAHz960QvalKmes9xIkSPvFNM1n/yKwCAT37io/jIh+iV8pdfoOrfBx//MADgC1/4AgDg536ONVdf+vIXAQADnfP48eM+4mKMjIhBdM11e7CfOTEspysPCbgevCFRnK7v4k0ENi/fCUOVrA7O6hoiUhp02z248gFx9Zm+aujiYl0aLaIpPeVnf/GLzO/P5UZxzwNkCkcyUvPTd5sN+a2MTui6OMYi8pCwe3EcD9Xa7v7zNSv77ts8ew6qALquu9dp/vFe3Y/q4N/31LScV9RZ7bFecmzXc7Ix5cqnIR3PYnOdfWOX0enIS+XiS696/h9GezNjzqG5ccAdYlvqkZUmkU5PTGd++hC2VolQmnP7iWNkLpEhc7B5g31i80d2X3DCcaTlbD+UP5MjZc2+GILapuW8s89zY5zzqYlJXW0H9Q3m0NeW5bkkFuf6U+zzSoIxaSAWKiaMLDQcojAiRTypce4pOsoTT8jtmljpptgN87wKD1vIqxY12uK4rV0nSzsyq9oesU811UF5fatZ7PtsjSOlJp9d0XmqquWyeoWB+sXUMnN5F00xcAtHqLx5aJEKr1GxK5VNHmtCKljbZfbPb/2v/wQTE6YGyodi6pXFIlHOa1VTBWXf/d1f+mXeS5n//9hHjmLxMO//xBH21bgQ8lZddXH2jBVjwo5YpoRlEWTQFiteEdu0qzl15QzjuTFE6Ry/m1GNVWqkg2Ta6FPO067UUcelNLvTZr+HVaeWUT8MxY7fXF5FU4h5VCzbQJ6JbkRZAloCuEKhjb3vdEPotfi7dpefqTWE/ooFjejZjY4z9qWzvHZTfp2endnzxuvIk/Aa2ba3qebWVGurQrgt5kxMTKAqZcb19TX9Tqyq0OdGm+Pyh9XezHgTS8Sx21xBNiP/xEOqqVI8HW+FMZ6y2md5G+qZGSF86bIyZ8QQGBrfbrd9heMFMTBV1aNtiXU4cYy/N/+guDEaqsXqRxyfNYtrjWF1blYXZ+crdPkcyltcA8UiEcSk9llp8DsxZfBUNvkM61Jj9hQPb1wlG9cfWlZECKZrd/0q50a1zPvtiW295530hJyaJau5LkZvd6Prq9x9/etU581Y6oGajcNsRtkvYsHsniuVCl56iXF1oDlg70NjM+6QT5f5OG1Kya7ZbCIuT6eE1AxNZdH6zrJPrKbQ+tLWK9FoFOkUr0mlbejoO8ag+LWailkx19TptE4Khf37bOmd1BIz3W1wTh4+xHfY7KEFAMDNq1LUdF2fCbOY4IgBSym+dVWLbnWPdi67x1ar5cdZ64eVZa5TTUHRxtTGJq+npTq9SCSCrtZwrjITHno7a+jaYvBO3Es10B2rg7b14i2qxvY7e672f+vDrGKqMWa2Bsrlcn6mXF81ah2tV3t6v77W9jdmqhzHKQD4aQCLAGYApAH82Kt89FWr7j3P+13P8x70PO/BWOy20MsIWtCCdhu3NzPmTIyN/PAuNGhBC9pbvr2Z8cbEJoIWtKD9f7u9kd3MBwFc9zxvGwAcx/kcgHcByDuOExGSMwdg7QcdKBRyEE+EMDUtn5U60ZVr14mEuF0XGalXpaQIgoFUslRD1e/zVppiMpJim5K5gr9btZqe4cBQfqKju8oRTuhYExO8DvNcmp4Zx9I2EQZzoN5S7UMhz525uZBnlatsNU7VShv5HI+XzvLaY0leTzotREDKMYePkKHb3iXieuIOogob61uYlPrh+grRmVpbPlzyXTHUYEIsXLer/NNMBu9/H1ml/+23fhsAUJwmamrqVf/9f/c/AgD+53/+fwIAnj19Rf3A63r3e9+H0y8xj91U/1588UUAwM///M8DAL72tS8BAEbHiEicfIAKepubm7h2jddsyM94noiModTm99ARmmDeUqag1mt3AP0bAyJwyag8rISe5BM870AorY+4Cz0fei4GqtGwepJmzdgJqRJKym56hkh8u000JZtN4cxLFwEAf/8X/x4A4Opl/r8ntL5akhqlUGpDoBzVPTheGI6UIvuD/Xm9SY27VoXXbKijoTqvpgboO5QrR/vgZ15Ze+W+gtWyvxmL4ajex5MPk6NztNtdxFQ3ZDnJA9XmtOVV9CNqb1rMgesBvYGPYDWrUmsSfb20dAMLp94OABi6/N2W6ikd1QmNjHH+JKWuWVFNCRzHH+txqZIaSxjWsWbH2J9JseQhq8GS4lYok0Ymz3GYXXwn/ybmtq9rXpNfjau89PYur2vYqMLCZMjPB1d9ktQHI0JW+0PekylppYUwu/UWUqq9214iUxaW+ti81S1qrtV03/msbVRDGBN7ce0GUc2w8uLNiy6b5t8NMTR8z9Q9c/lxOGLfZ+YWAACxJPvG4uVojtdz9gWqdH3xz/4MAHDvXadwc4l+LG9/G+uvvvMd1lgkNI6Naa435ZXn8v8ffpxoaLddQUUM3HKE99eq5nWfjOeX5UmYL5DJuvPkPboXY8kT6InVSct7JiMGMdnme8T8UjzNzW5bCq27S74/TyLJ94Gpkl1VPB07TMaqLUS1KQbHUPDx6UmkrObR3Y/gDlXLEo+yP4Z91dYMDeFN+LUN9aZUuUIcy4aYW+2lvT8NjV9UDVSj0fDnQVN1KlPK/liTF2RKmSUlHWNdGRil3W3/u8Y6dDvi/b3XV+PwBtqbFm+y6Swee+R9iEh10Qnz2eatrrbTxM46WbyIMVRiih3Vn1y+yedusf/WDA9jU6wuyGqIdhXX6mWO5SnV0iSVSdGW+lpsfASO3pUhrSVyGn/2s6I50xebGFVddzIcRV21Sk5SYyOlOvIBxz9iUnST8vGInqnV67Q6PQxU82w+VWU95xWxKcfu45rijmPHAADXVN8cGfb9vrDa1FtriYE9hmh5S2NVhnCnTjED6qFTJ/DYxz4CAPjsnzOzsyVfz7bi7ve+813ek+KC1fqM5gu+d5zNL6v/ukf1Yfb7p59mrXmnqzWHJlm320UkLPZS4/6hR1hL9pWvflXHEEMsfyZT9gxJrS6ZSMEbiPnTWsfC/7ve/W7ekx9vxFhGrA7YRczW0vpOSO+qkNYJvs/ogfFnY89xHLTENhlbkxKbb+y1eZY2W6pX0ho75A6RlIrtfQ++g5eu+rypacaM1TUp2uo6zB8wbiz8YPADM3dsPFiMNA+wUqnkx5uulGk7Vf4ciSbwetob2VQtAXiH4zgpkBp/HMCzAJ4A8B8B+DSAXwTw5z/oQKFQCOlECqVtbqYuXLiw7+/dVhz1BhcMd54k094fqCg2o4VNUrKvfUtl4nejTgvdthlfskPjcb7QliQYYEE7ogWwmS2OyPSwMJbCVkXFi10VONc5bOp1vax6JkygxWabg6bfD2NDAWc+LdM4pb7EXEkERzjRR/P8/bHDDwEAbm4ymDi5UZw9w9TA+SmJHehduaX0nS0FgNExThKnpY3ToVP4w3/3aQDAQIXuP/v3/gEA4NrLDBKf+uN/DgBwBwwWtpl67EPcjH36M3+Jj39MUuKi3M0Q8FvfIt3e7vK7aaU3nD5NitxxHESj+zexdRUcWlpm3CTmlYKClqUsKTBEE3sGbB6fVTSj51DjsYyyTkj20xH72TfBCngIJfnMoia77/BYHZsFCiKlBoPokeNMN3KGcdx3nH1y8cVvsl+PHQUALC3zuYf10mj3OE5cT+mYkvZ3ewB6FZ2HPyw4dZROlJR0slH2lvfhhMJwlbZzUBbd0mUgoQE/3c+Ci4mxOBG09FmTJO1rUWTXnnA4tnoux2NH/eNE45ie4oZ/eW1X18QFZiQ5ih9he9NiDuAAXggdvcgtLcBRP8ejaewquI6OMQ3PTAcjEj8xA0NbdBan+SLt9Yb+ptpVWkw8y+AdTbOPu32+IC5eIDgR3yEIM33X/QCAXHoczgjTXLywgBO9PE1id0GF467SmlsbfHENqrsI6QXsDPen2LYVn1q7XAdmcpwvdcVGE3sId5pwlMKR0/ws6Gdlm99tNyX9q35xZG+RTKVR2eFGwNX5XdM00Aa+VWfftbSpMtnwMcmS9xFDcUrms0opGdUC1FV+TGmZsei5p7607576lSZaEqC4fp6bqyMCkC7IfHe+wLk1neI5Ll3gfU/kTJwkh16P/XniLm6ub1xhPG5IZOHoKS6YTp3gT7NGCOs5lXdLvjz0iEDB0YLM0ofcvJ07x+u7cIFSx7apbDaBRJfXtCNAb3eb7yt7+XuavyPqs1SSxzZQqu8NEEvJQF4pYyUZJ49I8CmiZ9aXRcUlbYIzIwV/sRJWmqlZnEBjeu4w783EayzlaX2DG6NcdgQhPW8bDwO9a9M5Pu96jfdkbWqS5+p02hjVZrWqjUFZ6WC+Gek2ftjtTYs3sVgShxZO+aIjbaVlmhvwSDaD8RwX+LYBNqDDUpQ92S8MuirQ18KwOQQ6ytneLrGPdiXsNFOQtcBAggzX+WzmZBidVHpqttXBxgrnj22aMxOM7a6JfulFWShyM28WCqXtNZSVotfT3NxSauD0Ia4TrshYNhzm+3B0gWNr6yzHf9QJIWpkXtjS3hlXdyWp36zz53sffQQA8N0nngQAxJ0oGj2VY2jjbdLdMQGFuQTneanKe8xqrvQleBVBCBfPcY319iN87z/55NcAADtKd7OygeIEj7Wl9WOn1UZKz9U2GGsCXP7jB38JAHDuHI+RNGBImzoz/+14ERRjPEZL76Bvf4/CLGltXkN6V5UEAiei/Py43i21dhM1yNS2yWubV5pfU3F43WxcMnwOZZETU9NTWFpibPRFNbRQ6WtT7/XZlybG5VuvhPfS7/o6T73DZ1gVqGMb1Jbk2VtaTw+05vYiQCTBsfPjn2SJohu3chD+jMv3ISVQbSxv5MeeOe/BzbRtZu35uDJh3tzm+3ZC6fau56CpdVdHYF42LZDQeX2+MX/j9D/P874LFms+D+CMjvW7AP4xgF93HOcKgDEAv/83PUfQgha0oFkLYk7Qgha0H1UL4k3Qgha019veUDGT53m/CeA3D/z6GoCHX89xOp0uLl64vsdcxIjAmjlqubTrS4dfPM/d9LjS4foq9k8LcXMgZDRHRCCbceGpADIuWdG+Cv2mhbh42i0by2Q0qxnOFnIpLBwianbpuhBYpYtYKqHt5uMxE0NQWk88j6527c2GUi7S3HmXJWpw9M4FAMDiXUS6n3qSqMbyFnfTO5tljOl+Btqt9zoyeWuaLDgRqfl5MnlW3Hru/Bk8+k4+jrNKWfv3nyJzdeIo0apUnDvye+4iG3H4CK/9u98mK/POd70LL73I9L/jd/I7lppm6OTheRbC3rxBVC03IrNmz/Npcmsm62zI514hLC86mdyf0ui6ri+32XHUh0LYokJ2DfGp7RC+TErIJJUVCxmN+M+qo8JHAb3ICK02qnqg9KZJocwRxOE47OewGKBLl4gsP/jgewEALz7H/4dCPK/JLBuKEg5H4QjBdjQeXSvS1XV0lV4RiZv59K2slOEf3qv/dPr7/u/Lo+trw2HP/4wTsoJUyVsb8q3vmMpLPMy+mz7xKDaV+tbWs2mrjxbuf0Bf+rf4UbQ3K+bwYA5iCRkaVhlrLLUik09jRpYOO6KFExIRGApdTo2o39RxFRWFJ9MZJExeXCIDPeWcGmOTGSe6WDT5+jivI26X1upiqHTRQUKInZ7LUDHAk6iDBfFkzsy1PYTMSFFF15aaZabZiVHNTxkYt41F1fVkMhnkxCaEVQ9istxVFaNHdD0jmusDxc2tzbqPog8sXVQpNF2x0JakEROyGHL2FwcnRhLIyeLCUlSMbSvJLH35CmPSUCIIxTz7sFzagQghnHmeKVUf+uiDAIAFGZnu1MhyuYrX732ErKAJNeRGEpiYImJ9/jzjZlhKJDNiJO+8m6ziYRmP95t2ryr4jyWwqbSXoRDSWMSMdMUySQK6OEsmrSEkt9Eu+ePKBJW6kjDvCMnOjvL5W2ZF26S2hSR3B/09OWy9+8an+M7bXeU9ZWWWnlQMTKctVrt+bK8qrTCjLITWOt9LNzeYUfLAA4wB25JNvnSBx+62WygovWZmmue1YnAnypuz9ChLg1xX8X+73fZT6g+mtFl69AZ++O3NijftRgMvffPbfonB9Dzf15ZalsqkkRADeFVCDeZPWlE5hNl5WLw2Jmt0NO+vj8xUeVvS/d08GYLVTR7z0JEFfleBZig2dNCL+oatliq3cplzxNZBkPny9DzXCd+UOW5xNI9Wg+8HV1lBPaV15XSfZoxdl8jAlIS8LF1te2UFrvqi0W3qdLynkuJNTvLsJV1fXDfRbndRmJBhstJnq2V+pizGbk7iOidOcE4fUwqhpQs+88wzfsnGQCIfz71AyfSo1JlWVvYblTvql2az6a9VLM7a///kT/4EALA4R5GLrBjjuHRORlLKZAmF0erL+kdrFvO07Vgc0Hw8cph9WpH57nWJQcSTCYTjjFHHj/N8aQlrTU2RAV5d52dPv8gspUcepRjExYsXfbNni7O25jL2x8P+tD9r+1LqlLJpNg/1Du+prWyOpmJ3T2mC9iIYDof4sQ9+FAAwWeT9ec5+zsfG/UHhM2PW0um0n6ljYjYHm33HstM2N8koppIZf/+xpGyGMdmRVCrlVz3W92tvVFI9aEELWtCCFrSgBS1oQQta0P5/3W4L2b3h0EWl2sauEGETg+h0tUUPu/6uvapi/rbQyVSCO8+kCl5H0macpt31VhPRKJG8vPLlrc7VzFfNgNKB6rHC+4vdos4ARxaIJN4QKjA/S+RlVQW3hw6RwWk1hzoG0YwrS5twrODUZXdPHyNqcGmbjNSc6pNWV4iUlHa4ezaZdCcexfVl/i0ndLJcUw1Xn+hkcZLXt7RChGrxCK9nbn4KN1aYz+zIgC8t5DmmAryq6pIefzvNb7/4NeYS/8RHaRz4hf/7y/i1f0h59c0tMjIi91BTfRg83uNYgYhvRwiY53m+GIChQkPlBhsC0qg39/3fEIOQY8a5Q6RUD9VTnm/IDHxD+1GTrHJnDTHqSrAi7sbRbvO7BZnHGauYEHocFiTMFHogpPEQjcTRE1wUjquuRmjJ+Zcpw3rsGAU8LlyQMaVj7A+vo9msY6LAHHWTCjaG1HWtDopfNZQlJbNg3ovwD4OvD/50TPxiv5GyL2iBPgDrq/3iFsamDMLs75CJUjR4D9/4Dy9ge5eIe7VGNPqukxyz3UEKb8XW6w+wsrGDsGp5phZ4P8ce4By49OIFLK1xHo6NkZlY3yJiPK7n6ApRTQkpGxGzUy6XEYvzeaRHGMuSYnOSA6vJ5JxIhnms8oYKymWkGGoPkeJUQlzxaKD544Z4nq4Y/YRMh2Omzx2NAWLw0ZZ4QUwiKeBcdzsy4dQ9GHtvrHIulUZSRedWmL65pZqeLK85EZGkr841VCyq1VvY2Ca6F1JtgyP21UZpLs4Y2GybSaaZIROlrDcbaIlFdBLKxx9wLF9VDN66+hwAYCrF78bSslfIz/nvh3iWfbemeoGXXpI1gOba9Ayvb2aGz+nCVcbK09/rYVz9/7O/wAL26WnWUb5bwj+QSTzCPEY0I3lkxcROc92ff2NjPD7c/cxhVjVECxpDZtJcGN9ERX1Y3VG/C9b19Jx3lzg+i4cY+43JlAI6RqeKqEgg4oZYH4utxhyVdL6a3jkx1Wn0+kM/bsfifN71kt61ygIYKtOgXCHLu7xyAwCwvsz32thEEX0h1WYxMC4LjKgEnSIm0GE2D2LbimNjPnOQE6osC2pUdn+4Uuo/jNbrdbG8fN2Xy750lSyfGSV7ABxZrCQz7Kuex3f8+cv87ED/T0hkxjJrstk0PvjBxwDcamaqrBzVFC9IPMSEQTZXJXUt9v367nU0dzRn9UpZUiwaU81OcpTf/fJfsoTMMlyeeOIJDIZLqA3jAAAgAElEQVS8lpMnWSv4tnspmV+TQIbVtT94H9ndDUmsf/THfwIA8Oef+QwGYi+yqrsyWfiIajmf+uYTAIBHHn4UADAqAYNwJIJxxdeMxndHVicRxUbLZMk57FvLNLF37V133eUzLufOyABdtYnLMr63etCa1njNBudDOBz236W+MItqRY0JKatv5yZVY6l3eyLLe92pNOCFeS0WR+ti2TKjjBETMoqfUwbNX135MoA9pnx7exv3303m9+5T7H9bVMwe4jvsya9TKMMY7MuXOFcnxqf35N6VZWPvAluvhA5QMAdFHzzPg6PFtcWoprKxyiaiJFEli4vGVE0X5/HRj/wUAEAaOsjklI2k957FLmPKrE7Krxdut/dillg9q8u3e9uzFjE2jhfQbDZ9thxad66sMMshGrPI89pawFQFLWhBC1rQgha0oAUtaEEL2htotwVTNRgMsVPa9XeeSytESEZHiZCFoxH0TApWKIrlynZkxJkR2r8lidBSmbv+bD6O8VHuuF0hPUnBlNeuEJWcmycCYAbCxjLY7jYVTwDa0c4WZdAnOeFYUbVdqicw5Z7iDNHDbLmOSo074J0qf97YVE601EvOnjcJc373XY8y/9/qp8qlho9slipEmEdlFjp/B5GOeovIyLFjNMpcWiISE0uE4Q34t1EhjCvL3IFvrPEePvRholxXrzAX/tGHyLpcukk06xM/89P47Gc/BwB4z3uoUGQ5qadOUfa9JCUgy383hCAWi/lokCEeVjNlBnwDKdAYMhKP+5a5AADPc3y5VUMrumZ4p2bHMjUlR66KpgbZajYRi6pGQ3/Lmbm0WE1TyhpKWdIxViw0QESfNeYJGks9Ie0vX6BSj+VuN4Ri9Qct/97tdwkh8IZmRcS6YbjfhNf+HovFMBzuV/0zcb+QkChXOdr2f2umfhPCnoKN6xrrxfOElbt85E4i8ecvnAYATIgqybcTGJECXUtqf951Pu8//MKX8VZs0WgUE1PTOP+C2DshZ098nuN8EMkilOX9D0Cm4JGfpCpRW2pnzd4NAHtqSJvrRDjjySyMDWxIHjghnN2U60ZUa9Ary3S3rpqSi5yDy+cv4t53M989kReqP9Qx3IquUTnwGjddmeWGmy0MfbZErKgGTFmqS66Uq4xpTmleJTSvRyIDrK8Rxez2NLZGiJiOCCmPhGxs7VeV3N3dQlk1lyEzjhT62dZ4bCYZLw0xtM9FYpJpzk2gLtWvjpQtSx0yF2dfZv+P9Nh3xQJR2LJi/8xEAUWxStlRsc6S6733brFqTcbHRHJM/cP7fuQRxr5CcRTTR2QYrDoMuKo3knpsTwVyfb0nOrtEoxtV1XOsLsPtSMFsm++0rqwwourvipDctqTmHb0/ItGoH2PNZLXf5t8mZFtRVX3C1irfCTHJtffFuMfzWWRHTMGKzz+pd+zmOu9/dJb91K7vKWgBQKvVxKF5ZjtcXeb5ewO+66y25ObNG7w+1RI2pfSVk2pcdiSNVoMxbESqrIcPSY1O6qyGQpvU/yHVi9RqNaTF2LTFdpkMtdVWvZXa0HNR7dR9VD+qmLujGjMMXRxWrV5Dz7UulTfr31hCarBaA1k/nLjrTlQ1V+z4J0+RMarUlCUSM7VF9uW0TH/XV3l+NxbHrpQha6X9JsNXpUw5Os+xtLxEttfep/V6HdMzEzq+5peYobru5bBqvcuqA8qaYfcO721+7rCfIaTXEpbFpkXTvG+zxLl5g7VeLY2LzGgej7yTthPXZSp87A7O2XxWKrVirJY3bgDYq8Ox1mg0fNnvm1p/dnr7a5zbql8Ph/dzEZ1Ox38WrQPKxbbmsVq69R3GymSCczuvuDS/sOjXecbUATYnc1onmhpraY3ZSMcXj+n3/PzkaBFek/1+7Srv5egx1lZtrPGZzs8xI8MYnYTWPN1uD47GpN1f27J84tZX+7Ngbl3jWZNfsF9X2tN6sCeGqqtabLO1cZQllM1m/fP3e/uzbPw5o1hhP+0ebN/Q6XT8dbLVXd5qkG33CezV8bfbZBIdx/HXWx60Hk0rjsZf3zYpYKqCFrSgBS1oQQta0IIWtKAF7Q2024KpCoVDyORSPsuRkKdHQ6hePJ5E10zk5GGgDT5CYp2uK2e+oNzaihCy9nCIUJg76kyKPweqLTH1v6115cwKcZ1Unvu82KYnz38HUSmjFFQjYcokFSEzXandTE4R3S7LHPiO+QKef5mIS1OKgKsVfnZuigjE9rpQBPl+PP8cWQ9TwwuH04gKHY6LVTkiFZ+WmJMnv0WDOE+IQCEnZqG16/sqdBvsqwfvI5v1+I9TbeXJp74BAPjQu4n2/MVffgEAUJwhyvH7v/dvMKO+CgvRTYuxWLpJRCSpugbb3TttolydTsdHCww9sGFn6n/GMm1umonk/pxZAOhKsS+lfnBM3tAU8sRcDcO+nAwAoC/kIhWNI6zn/v+y96ZBllznldjJzLdv9V6tXUtXV6/obqDRWAlSJEGKkiVqZGksO2Yc0vwYKTyj8NiOiYmYH7Z/jGU75sfYDtth+4cjJmIc8tizaMLh0ToSJZICCBAEiIUAGkt3o5fqrr3qvVf19i3zpX+c82V1FUhxg2nAyhvRUV2v3suXefPe7978znfOSSf4mZT8sxLyWTCVo2FgxrpS2+oMUJym4lHjgNnylKULVUOcSHO83b1HTtXpU6xp3tzkNS4vr+BAWTlD7sx4zjIkXqTcdzQjFARBdP3fy9xuHCSO/D2q8dYYGgftiPfm2PGVaUqIG/PeTfp0uOqH+jbPcz6VQKPPc59V9rzX5TE+32CG7rXvelYf3+YkU0gvrOAJmcNW18iNm6xwDqacPHxlN0djxqV3XvwjAEBeKlRhVxk68SfnP0fTwp2XX0ZJZq+1PaEIUnbMSIVt6zpfn5NJ7uQJogILpzjnXnzlO+gLGcqIf2RGjq75B/Xv6HWpZYniM04BoTzp7B778uBI2pgG5+Jkkffaat3npvh6p9tCWia3Zjqc0nxMC6Xtio8zFvdgPDDOR4gJeav0+vJMEj82JwW9rrhFbfEmIl8RKVMmdrdwyCM0XxT+rL3Je1WQ11JT35tXJnvu0gqmF4h4XH6cHlPmF3ZFilajHO9hOmkxlv3lWhbacxHq3KB5inpV5yNvwJdeAADcvkHOi6PsrHE0Wwe1CHVom2+havrD/b76VN5WqpIYCGlvDweYXGTMffoM0e+b74vPqrmdyskcXTGuq3s4qXGT6g3QawjB4Jljvybu1AQz+dUDcQ72+dlTJ1Ud0upiJJ+2QprXf+1dKsiJooz5srh9UpqcLprRkK9+CDFzktdg/GXLaq9vitsmVD6rbLhVh5RLEyhJucximiEJhn59ktp4HGLQDyKfHMuUp8y3bjBAfZ8xYWhVFp4phwoRUPwu6DMzQjD8Zg9ZoRszs4wjdXljGnLS1T26+jg5TS9+/Tm+T2a4Ew5Q3ec9yev4U1Pcy9y7xf3LPhjrJ8TD2hC30QnG8FS5M5bvU1Xqg+YbaRw6V3s7T+t1SmqTTz/7ucifdLrMPZYp43ma51Mz3I+Z0uF5oZ63bt3C+j1W36STh6jJg9+fkbpqoc1zN4R8ZZnr+jdfeAF58c0MdRtqzqblU+QIKZ1QbLdxORgM0FSsMFNdq6gKVfWUEYRj8bDRVSwR+nhx9hy8Mfu7KoXE5XPkSg1VpVNWv2dzqjr4gHN7Uq93Oh00xalLls0oPdAxuX73RFjytX/pSJUvk8lEnpeH1TDmL6pKHvBc+1qIQu2fAl0z/AB1manvi/d4IFXdA6lDBpHnk6qAtHb+jb/1H6En4/HJCduXyONRiKnFOfs94nJZdVKIKGZYhZJt05La0zQMQdPeMxxJLbDRgucbxiSVy2gvH6v/xS1ucYtb3OIWt7jFLW5xi9tPrH0skKowBEZBApcepvJWX27Qg765MDcxUWCGQzYe6Egpp6+6z1JJ/hvyJzhom5JgGdNTfGoPpL53coHZuLoyAgsLzO6YLP5QrtCNNjMV5cUZrN5R1kKZxbF8iyYrqm+vyodE3JaHlllDPBj1MVfik/2W1A1THjMh20IuSvIlaOzxqfmJR1nXX2vw2jooIJHkE/1Ing231oiIlIRcPXmO2cyNHR4zmWYm7OLlT6FRI4q3D/50MswAfeVP/g0A4PIFZkS++QIzr42heB/KrkyVEpiqMDtzsCflJflDWQbSuDuhvKCGqp3N5/PoSl2xIo7c7g6f/E19sNWUKmGe59wRD8SQomQy+YAyixAb80wYKkuh7EJCWfXjajyJhBvxNRJpZTiULUkmmOk5tcJ7dvMGx507loN4ykN9l5kwQ9UGyrw74jA5AynmaEZt3L9x5P3ZpIteQYo0UtnrDDkekjkpFCnbZRkYU8IKxn50HcezSEFgXlPyBVIGzuqO7b44YRa+3zrSJ6aEM1If5jN83R/xWJOkW2DnXg898TgCJQLPnRaKcYP36hPXRkNgaxW3bxD16FR5v0rym7u/dguXrjwDALjyNFHHVpvxwmr5exnGgobGd+dlen9MVSbRVb/PPUYkrL26CgDYrDE+ufLpuXebfEpzb1+tEg3IpxNwFEta4mr1lJGbWuBcd13GjaTUG0Px+8ZNF4NdcRvb/J6M+FcJxVFofjpK5SWUSc5LleqgUY/q0HvmKSKETEUC0RhLSOGvP2Y/pNNZpDQ/rMa+p3hh87jdVMZU47UjvoIz4gDLZn00DoQI7bLP7DRM8LKjPvTG4hJJwTDphMinpNJp/m2m4KS5b4g/hCBGS6EQPQz7cDQ/1l79Ft8qnsj777/L7+kRtS6o7+pC2ltjy9ZWo8ywo4qKQIqfviMPqC7jeW2H12o+YjOLiwiUZR7p5/krjNN375LrVgHv6QcfkGNmHlP7dfbXYDDE7AmiCzbXe0IS2lJsLIhbMqeqiXfeIZ9yafkMBlKLTaosZGmFmdvrt8k5scqD3V3zbpRXozLJqVQqGkOFgvnosZXL/Gxd3L5ajX1nHJTTp09HvNGG0DZT6X2wguGT0lLJJE4uzEbjP1oXxCMejZLIpdnPqaLGU1uxwiooNFcMKWhqDu93W7h5j6j1rqp7TAlyRveuLe7kt55/4cjPgXi+M4sz0bqbE3rR6MmzL8/9wto7jJGvyQtyZo5jy/E8DIVyZHXPpuR5ZbxAq0IyXlRPXK+8lHjv3luFJ28jV+tTQX87e4H7wk6Xc2T+BBGrXPZdnd8k3nrrLQDA8knGxsfkn2h85T0hchZvbI21KpHLly9HynV7zbq+h/uBQHucHaFg+0Ks8xqH+VwOPaH2qTTvZ1fcnRlVIpTSR732UqoW6Wg+9oc+lsRp7t9SgBO6bsqGLXEW13a5HjSFPtbvc35sbm5GSHB2mp+ZkVJgq8P7bIqay6dXeG3+IX/J9goPqvmxD1UFE/G6xaWN9hy8VnccwpciZUdjtyGEzFdsdnXdnvryV/7dvwYAGI+BmRnu4dsNqVAmj3LtLVbYmDK01+ZUKpWKeFj209Qw7afFLEP9pyYOEfTNDVP703xTf7Q7PxwyHiNVcYtb3OIWt7jFLW5xi1vc4vZjtI8FUuV5DorFJBoHzCYUc6ppnGVmbDDoIatsyX35NVVrfPJsSjXLaodzqtntK1PQbjfRajEr5Lmqt9QT99wcn4wti5KL3OTZIqfmTBYHDWaQ56TicvMGM8wXHyI/aWlpBQCwryxCSYhWIpnAk08+DgDYqvN7dqtS9ZG6y4llZii+8wo9BAppeR7d5pNzvQd48g85vcgsjfl6TM3wmk6fJtp2a+NVAECvx6f9a29XsTRPhOjqY08DAN65bmqDUtNRPfK0FIGuzAqxkZfDp56+EqnbGKfMeEFegtkC95jKyqG6SivKGlhtqmVTAlOuk+KVNct4HkhBLJfLRVkUQ2rM1yaZVFZUP4PBUSTHsunpdDpSDjS+2Tgwry/ej60t1rRbpkbJtyPnbGPC6nstm3Oc6XTcYR04VLXJ54j61FR3bJ+1jMyDn7Fm32PnZu/5XgjWcZ+q0XAUXUND6k42Z4Iow5zVZ3isgwOeXyLvIa0snitkY7vOv6WLcx86109ECwNg2IQrPtLSHO+J32IWcmG2iNoW53zwshCQIvvPMqqdpPxDlH2dPUM1pp0bt6KMu93jlFBSU9LzNOZOf+FZAMCtP/5TAMB4xPt3UG/jg3eUfX2YWVfzK/ESxpdSxl4QjtPmffS6QGEgnz7VjAfKkLbNJ0RjoVJg3Cjn+XtTWdhup49hcNQDzjiHafF/XFPrEqfq0BukHc2dkbgWFi/6QrLbTZ5rVihPKuS4rkmlKpsdYKw4PSG1zI0a+0yJygj1gc6joNifSQJpIVSbN9mH5r1jtfaD5lG/Esu+DqTC5wfDyOPOFDX7im3Qz7HPtWhvR94oQvJsHk+dWkRNSoBd9dGmMuaz5y7z+4SsN6UCNxCi1PGBJfHCjBdp/jVTvry8NhgfK5OzOk/LkYpDXMzj/j3GtJUVckdOL3OM3trk651WTdfNazx/npn+7Z0d+Irt6SmuHx2hagmNv5zQFls/DaEydCAIgij+WtsT12ZpeeXI7zZfLEY7jhNlpi322/iy7/skNcdx4SazyCQ0RsVbaohDBgAdXWdfvo1ZcYmSWQ74TpvjLG08JfXtXq2GtMbcucvkym3syPOyyfu7IR+yD24zpvkdqbAJfb1+dxUz04yBVSHjxuOF0I1AsStvqpRS8ttvHERqx+nwqC/QBXFI1+STNiVfrsUTGsNC12fmT0RzcSj0bFeI2GhMrtVIqLKh61atUq/to6MqD/OOuniR86sklMfOZ0/9YHH5jObF2dOn8e2XXwIAPP00KxTy4vm9+Sr3VG0pTo/Fceo94LlUmtH6ob3MGfmE2ppqnMGEYmdXCLbtfN67eRtPac+0IE+p2l5d18dz7QvV2q3xfviqZNhv7qufBpH6sSFSt3W/24prJ8TdjVAp92hFi10PcLgPs71F6Jvan3jaxkPVDqbbaKF9oCozoZ0jzVUPVlHEVhZC9IUv/DQ/OwoxlHptpcx4sykE3NaOq1evHjk/24u1LMZ2u1EMsr2m7UMNqeqOjvaDrY/1Tj0aE7IdxE1VkRgy9oO2GKmKW9ziFre4xS1ucYtb3OIWtx+jfSyQqlQqgdOnphEqM5rN8FmvXOJTfmVyMVLbS6aEQOg94w09paoeeDQ6rqGfRUvcqN1dZrrKOWbXzXXcnm4tS2a1xZbJ7/c6OLnEz7SkPJQUQrC5zqfb4jn5oThWd8us3uxCCb6y/IUsz/nEJSJT9zf5+/p91kMX83oilvrPqRVmLBbGSQRSkXnzDWZen5Cq1do6MxKXLzFTsjhX0rFUH7xdxXt1PvF/6knyO0wB6zvf+Q7PcZrXllA/jJRVXTqhDPzcJBrKeEFcsmTKsqHKWit7kEqz/1uG/uVy6NW7R97jCWVylLfIZIwfZKovUqlzrGZ3HL1mWcqEMn5mauErA5FLmZqXF30/wOxxqcjXXEdcIilKJhxet2V3ssquPeijbVlSQ4jsWiyLc7wZgmRjaDgcAh7PxTgPhTzvmaF7xvEKQ8vnWM4jjBAoG9fHv9/+bud3/PVer4e+slGWSZ+elkqZsjg9eerY302pauxU4chYIi1un3Fwat7ed73+j31zHCDpwbNsn+ZIWVmqUjGJVIpZrkJJCIyS7l7SpJ3YX9vyBNm5wxr/YmEChRTv9cJD5MH4Qge3pPTpB+JDvPoyfxc/4uwK33/5yQV87TlyeXY2yWFJalzmIhlAjeMu49Vgh+eRa9XQkZJY9UAeR8admpRyWIVzOycPlpoQdvPZyxbyKApusjFnnB3LkHdUp2919FnVyYdjB11lRo2zMBRKmxT/aqbCYzUbHHujnsarlDdHnSCKy9kcf1Y9ft90mX07HItgKxiqomsr5hLoNTkuTelyf4/311EmfdiVz6CuxeaLzdtUMonuQApRQqr2qzxGpSIFWC+j35l9N1TO0zFrtTZ2mpyPWWVMZ8/wvW2hjDOL9PmbXKL/X7fPfms0W6jWOf8WF4lEtcUpmVkk2rR3jxy+irgIxkuKPHnub+HUKXl4ictXDzn+5uaYDd5Yl2fhrviWUu5LuC56iqn9htY4rccb1aNqWMZTsPXTPAUDfxzxHawKwKoPzAvI+n1piciFIez311aj47blrRZxqSIFsU9Oc5NJ5GdORtdgqMzsJKtx+v1+5B84U+R4b4g/fWqF3kIdZd8d7ZM2V8mR/sKnP4v5OSJFfXGnLks57sb7RHnyUxyzwX1+x1CLW1JzC/0Rdrc5ftJah7quuGziP2amiS50hUakpcBbzhbQ2CAClNMYeUgVPC+/zPhmPnh9IbMH8ud79AmqEY7cQ/QgrXXvFfGUNjc5Ro3z7nqcF2ntAQulJPyA1/HEE0T179zhnsq4VTY2NzaP+hitC0Hb2dpCucT916wUFL/6x18BACQUQyZK8osKxdtpKqamUnC03/j3fplehrfvrAI4rIrKSj26VGEcuHb9PQDA2hrnwcVLlyKlOkfzpysFx5I8rdbvEjnZ3eY5H+6FxEFLpSJF4S9/mcrOHaHthtzYvmFSnDfzLQvD8EOo8nF+UkocqnGSPw1V97XnqNZ20dDY6LSk3C2FQKt5sAqG3/qt/4rXIuS+H7hR3OhluY5YJZldn6Hadp4Rqq1+q1Qq0fUbunXrFvvsl37plwAA//oPfxcA4Gl3t7/Hftne2I6uOysk2CohXnvth9M2/lg8VOVzWTz1+OXIuG1KBMXFeQ7uZq9jqCYWRKgdSN5ye8dMJm2jwx8Ga/YHXaSnudjaoldX6WBam3kjze7sKDDkjm6g89kMzp/h9755jTcpJWlg7TeiGz6jBb8o8YFMPo2KxCxqdcldmuy3TG8XNXhqMsiMiKkSMpibKaMjaHR6WlLm9wWni5C4vsXNk5SU0Rck/PDF83j8CT6Avfs+iaaXzjOQ//zP/gwAoG0kcdeI5yI7qh9W792KCOyaRyhIVtQeWCPirYK0r818q7UfPeB4uq6xNug2KcxkzkjU9jDxoMleJCOszSossLlGqpQ8uh6+7DvLgpLDMEQ41sOLNo7RfVBZgz3ERcFE3xH4PkbaHBhMbpCwvdePShOcIz8tIIRhCFev2Wdtw3FY0ne0jMa+i1KnR5MFUdmhjmnvtWPa6xZkcjM5NBRoqvucM1YS0e+pvEbzwcw2PUdjPEwjqYd6f6g+UWDNZ48S0D8xjeo40fy1RT+QoWyn1UFWcrdbKgtYlJCJ3a9RyPhQ0ZhPmUH0OMSoz7699cqLAIATkmc9eeGMToBffPsaBWdmpviQU91jDKrfXsfP/OIvAgDeu0FhAiuHKk4pgZSX6IEehhMJ/l7f38bBLuPDnjbEKZmkT0yZWAt/dlR+k5Y5qInKDAaj6GHbEgo25vp6mLKNiSvBhKEepGgBYPPFxiuv2mKqp6SIxY2RYl1oJWyhG41h24hPTvJvbX3/zIJtgqw0WRLc4Ri+hDECPRikzRDXTIZLSgro3i5JWKjTMQEPB5kcj2sbn2UluWx+drqcE622ifJwrlmZTpDMoKIk10APZuUZrmmlJOOSzedqlffWyoFOzJ1CWqXmNT3EVGT4fnuV42FO66OVaVspdCTYkUlHthWlopXV8ZzN6LWoMvW0NkztjjZD+RIKEmJpKR7bJs5ECNp9nq2V2Fg5jlljFPLFSAb91Ck+PNrc2djmQ1b0EKsxdl/WKMPhMPo+i5eTEjqyB7E9ybJ/EprrusgWcxho/GdzJkdvIjAO0iofHephIishp3GZD+LleZaq7dy6Hh0TAF659g4e1gbposbg3jbv+/wsH7Y6iunPPEYqwvs3uKlvaU1IdEfw9H0DlbVt70tIKSFaRINjtO/zWAunOGd2djcw7nJeTUzz+77xChO2X/6lnwcA3P6AY7TXksR/yh78OZbLE5M40L7ghObInJK9JyR7bqVsWZX03XmXSaxTZx9B+5tMQL32Akv4HpHYV0cP5BcusCwykBjT3XfYh99+nomJxx5/BAOJ1IR9Jq7Tesi9c4ff29S5pyRkUMqyr6fmF7Esg/B1PSyeOMvxbsm6JDi+N3ZVlndrFQBw5hTXg/nJBWTliZFKyYZC92xdDyqNUGNFgiaB9hxpAQ3FfAFXLj6qPuR6c0cJuVubnIfnL9AUeqQ57UqUKpkIMZBVRCQ4E3LNsNLsvoSuHAEHZuRuZaCDYIiB4nhnyL4aKwEy9viZv/N3/y4A4N4W70ugPdnUdBm5jCWGfb3Ga7DSzlLZHpi0b5FheLrAsdTsVHH3JtdTe0AfznJN+NMX+YC8tc24N19hLHG059pYvx09TA2HlhCXsFz6wfT6929x+V/c4ha3uMUtbnGLW9ziFre4/RjtY4FUASGccYDHHmEJRGgSzzJs85IZBEp1VkWQr8iA04BFR+T6MDha9pVIjaKMTlPQ+Kw+a1kyy7C1O0KwlIm0TG0+U8Kr3yFZMZue1U8efxRa6QkzksvLzOLty/Szvt/E5BS/r7nPLEWpyHNdnCUkv7vL87IsrqFep5Xt8MajqJxwQuduGdY3rzETcfkhloRckmCGIXfD/gC3b1Fy15CnmkisZ87yM1PTfKqfmFSJozIAhn48NrcUndtApEDrm6jcTAjWQKWDZqKZz+eRllmfZcDgHS25scyIZSR7PWUIUodGfpG4RVRuZ4iQzPb8o2a3VsJmpYae58ERGd2kyi19HsJELwwh5DVlRMh2XReO0C0bGwZBG9qTEmJ2/Josux+GIUahxFQ0Nh33KHkzo/JA+6ydZiKROpQt1Vg2eNsynXa9BplbRtjOr9PtYHjs3Ky5js5Hc2kss9uRsPowzMJT/mWsedZXCcYPl8P5GDXHAxIFFCY4nwOVpfSHkiX30lhTVsuMI+98wKyqlYMVisycWQbdHR2OTRNSWZCRuD/i/Tq4ywxpmOE8tqJLR5cAACAASURBVLKMs+ce0mdVPvzuB7gmgvTyJWaXB0JjraTOrAGKQq9HXWZFG+EAI5Xn+glDO3ld8xmNiw7v8URBsvBCKA6anNf9wSAa64Z2ntDYGmtMG9na4OteV3Ld7W6EHBuSXCgI3enLBFOIWK9rAjQcX90Of282gXye8aJYstJifl1JNZqByiCtXLvVZp+6qTA654FQ+GHXxIFEoNbctjKs5m1ev6FgqVQKfWVMbW61ZXpca5hIj4zQRb6vVlUuGPL8nHwxMil3FafaMumeULbd4kMmfRRpbh90cVCVuIfG5r6y4GZjocpnTKgcMZIRbphlRQKNupHc2d9l2XeUymaSqey8aqtGyko7oRvFsgNl6PcPJOkdKH4rbhgadSgKxP7q9/sRimgxz+JWQcipST4bQDk5KQfrB95rxsxW3mh99klqYcixZnuO42Ibnud9SNJ6pJhv4++i0JBQ62Nba3DoADWh2NckbvOZT1FswUq+bS5byc+CSkbXZMKbrqQxCjj2QzMIl6T6SPM8qXvoZXmfh1pzW50uFmQUHPgmf885+c7bPJ/9GsfkWMf0hWBv3GVp37lzF1CeFAIqsQmLq3MywR72+brtfebnOHbef/99LJ1ZAQDUhWpPySYHQpW+8vzX+XdV8Lz2EssS52c4d958+83o3sxImOXMWR7TVSz98i/+LADg7Wu8JmiuPPzkY4AqZBIq5W+olLLX5Pl8/fXXAQArKuV86Cx/Pnb1CfXlCPs1rje9tsptVW7dUCmdxeqq5ltO1QYTJYmiuUk0zLBc6/WExMespNFK7FxVShTnVSXVrOLOXSJy0yoVzYnaMZRhcSLHtczEHqC9XkExvlatRqIRgdbCaKaq6mBqQtQbj+dcKPK7zp5biaqMshnupR3FxC99/hk82HyV5RkivyMBo3u37yApQai7Ko0tz3BMuUJBzQqoJxqPjaVsPgctQdiWQMqJecauFaFt334eP1CLkaq4xS1ucYtb3OIWt7jFLW5x+zHaxwKp8lwPpXwBfWU6w+hpWhK+xTxaLWY+zDxuT0/1JutrWbKxczQT5PoDQNmvQ6NaPq0apyfiCkTiCnyqt7rMve06yuJ5dbpmciuzu6Jl4Jo6Ft+XVkZ4NDg0RMupjjrhmjGlSKOqoTap5OVjcrOu34O0LuArOzQ5xe9p9SWV3GL2oCt3ZPv74tIS9kV4LYgcvnWPfIuSshgrqtnuK2uVKoqQHioD4mUQmKmv+jcvSVgTYrDsuWU3m71W9PuhDLrqeHUMy+I6liXVfTHk0DJHnudF2bsPIVUQudJEBIQimIT1gxyr8dj4Vxpf+n0s7lRONbVNmU2GnglbOAiCo6a6hgBF3Cb3qJS58UEebF5CvChxcXJ5Q/CUTZdhamQPoMxgt9vFaGS8M8k3C7mzTLD1VZTpVpbXUCnP8zCOOFpHpVIdqGZe5z4OjvLVUukkXGWlRpICd8TBGAaZD13nJ6O5QJjH7oHuhUQgkgXOheJEDoWKZOmVe6rWyHdKmHGsN6WfjC+O+H6ZXDbKzLUl4R1EyI3GvAjMZup95xZRsOoex14yV0ZHptgT4lvdXiUqPXuecsEYm7GtODQiveeXz2CwJuhY/J6yCNKljMjmvjhVykKmszm9T9nig3qE9hh3yjh/bZNjVh7SYuFoaHRk94G5qz5UTX0uJ/ld8No88RaySXE2XQlcDIcREuOJkO5LYCbwZKCa5XkF6oeOMtle243mYVnnbpUFuayqBrrMWDebiud6/6GktwdH526Gngcylk9I3KOluba9y2PNTJm0uQzHk2mIdhQJG/mKW7fvkNNSUR+PNb/7ykrv1muY0D1LCmUwvtNOn2ufZZQrs8ysJ42D6kgwIxxjNBBHTrzVHckU2/nYutrX+2xsp4uJyFA9ZyR73d6wr0yxULfjIjqG/vmjIBL1MKTE3tOXIIfFYhM28RVnfN/HlBADWwctpn0SzX/hcP2zdczWERt3QRBEZrIm75+GiTNxXBtidfZh8mae+/pXeYzBEC0hIlcuEc26f4/c7wuXaZzbFC/n3BmKZF37zhsAgEeEkO/V91GtUdY/EM/GUK1iQfdQ89DVeWxs8f0LS0v4zNNPAQBefvEbAICSruW1V8hxWhIfbDzgMddv8Z5WdI9vvX8Dz3zuswCAN97QuT16BQCwLQEe41aeO3cOACLD32c/+1lcf5fz6dnHKHxx++4qAGCoazDhhm+9xPPzH2e/fHCTPPP+sIdKknO/pKqj6j7n2SOP8b1rW9w3uTIWX5gjx/Le+hp87SEuSaCjKbTjrdd5LeVJzvMDzb8rl3lteYkydJs9ZISq9TQHDoQ+mmFuQ3veU4v83p1drgc2LyYr0xGKY7yk3R0iMdPiY3bEGzNz4npfAj6ui/llipvcvk5e0s06fxZkXDw9y8qp2UXuizsHQv93eIzeQTtCEy2OaPnDb/z6b7LPpjkOnn+R5tNf//M/4XcUs+j3ZCUTmviZhNuEFJnozoULvP9/9d/5ZQDAQ5c5pp/93NN4/kX297oEMD7/CMfDn32FliUnZhijq+J0bqpq6/V33sSMOKqnl4ki2rrWFAf9B20xUhW3uMUtbnGLW9ziFre4xS1uP0b7WCBVjgNk0m6k2Geyi6mUyUa34InDMVIWP6Ns3JTUow52mWnzlX23um5/5GKgbGxW0sjdLjN+llFrN5U1s2zhvqR6VTNbKKYRjJnZ3arys6Zmkvf4dF3bUc3wWarfWNah20ugsc/jlopWM9zWdR8a0wKArzrXzSozIidmmO1ptDOo7vF7G+JCfPZh8s8qWWYz37/LGtJvr/LUp4RYdd66iWceYwZibtqk+5iRWd/h9yyfopytZZMLY5mMSjFrEAyQFMqSlKxoX+qLEZojNZ9QPIdkx8xOe2i12DeGovStRlfHzChbYxyjTHriyPsdx4lQE0e8owczfA/2oWvinUKOIuVBOIBX0t+kzjXmmBkLVAp6JhUrRbKQmSGELjzvaKbVsrOmXmZjCsmj5/VgRtIxQ+COUK8c711fRqRImnQ1+64uI1bg0NR6QlyI49yqXu8oUnZcln089qN5ZRnoiPeSFI/IzFQ1Dschx1pnMDjsZ6n+pcR7TIQfNir+JLRxEKLbCZAtL0S/A0BNalHNoI2uUIye1N3GAcdNpNootbmexlhWaG5uDBRK4oyoLjur+xaRR8STmT3LuYk2+3rltMxyByGcAufhSNnWxZUVnb3CdiCE0aTFS0LYL1xFU3FyEjyPSfEVx0OOx9mTnPOQglS7yqxzVQiCl0pibk7nrsy0qQ+mhZIOdF5t1aeH/iGaOyF1vWxOiqtN9V1XksoybTcV397w8HsBYOlUPuIR5mWFkEgqbugzE4ZCiSdkyFo2l0NaaLdEU5GRumFNdgb1LVUBGCfTNS6ozVcH2SKPnxDydOYkM5hrUtKqTPB7N8UjMOl7a+MgxMhkkrUeGKcrI+P1A3HqMLAKCJ5wIeOjs8+YDs25jCoIhspkF4syCa0xUzwWtDe/QLQ17SYiy4CmeFYQX+buHd5vdTcEXEX3tH53B/MXmHVPCDHpCinb2OI4mFvg91uMO7SbOEQuTVF3amqscxUneproh6Hyx03NwzA8NOzUe0xl0Mbj3qZsPj4BzXXd6LwfbA+uY4cGrOLjWhzWmmNrTULI4Rd/lsp6X/uTP4wM3Nclke8oVjni3ZgM+94G73vS1geNu+mpCnZ3+dkJfc/SAvu7XuOYzYu7k5Nxq1XJJDMZ3LxNpKgvU++Uxt25M5wzVXHMk1pspxTbGuJaXX70Kq699TaAQ7W/W6b2p7FpBtElVZR87jOfBgCcPHkS27d57qb+t7RME2tHAeDP/uiP+d5lIjaf+exneB7iVL3/9ltICd15932ifI8/Ti5rr89zXr3Pa7D7cXlJe8xeO+IODdTP7YDj2NGc7Yivf3Z6Uf0kbrrUk+GNEehe9MSL2ttRn6mKoGBm0Kqwsb69J8n5RCoZxQpbyre2OP8mxIcdan/ipfi+dNp45GMkpc789BVa73RqjD9bq0Tz9u5T0fHmDVXNSAkYviTWO4PICNgsWCaLHEOGVDb2uVb8X3/8BwCAQFzjdtiP+PFZcfBLOaH7Qm636hy7O6/y5+//6b8GAORc9stf/7VfxS/8CtGrBd3///Yf/XcAgE8/9TQAYF0IVVL7yf6Q8+T0mTOoCrWvSV79/HkiYJfPUHuAmNr3bzFSFbe4xS1ucYtb3OIWt7jFLW4/RvtYIFVBEKJx0EdJ5muh0J9un0+O+VwRadWxF4Sy3JKinalIHaqtmcIZMwaZTCbKLBua4fg8lmXYAim7GZfHaoUrZWWKMYyySJZZGiizWq3x+1cWFnUsXtNYxaSjcYh9KWoNVKNpCFlaCmAV+THk9fdd1Tb74j04GEa1t3Z9tQYzEOtSgnFlgDka8jzPnVGt9NZeZPDmj5lhuvowORltKUP54pJ1uvw9IW6IKbSkkhmMTaNOfAara08qM9LpyMtECJZxE+CMMRod5d2Yce9xJaTjZnPWiFQJtRwbD4gtJwPnyMcqmYo+AxyOi6Slt3HIw/MtjYyj6JLVMOPDtKjoeHbudi+t2ZiyzKtxoHzfhzc+6qHVlUJSRqbQG6p/tnF6qIzlRn1kCmvHlaKOX6/1x4NmwXZujtM/8h777GH/KyyoljkcJ2CkvpE4faGu3x1/LELID93cZAK5uQq2n5NvhfiO+THRnpHrIUXgA9ML7JdKln1QLPC9mQTnfEb+GQkpGSGVA4RyWCYYHcY083La98W9lDni3q7U56RONfB9bG8zxl198lkAwIkFZt+gjGI3JTNEQ4czNufmcPYsfVr2s8xi1nYYUw7kI+LlV3jOrpTtDqQOJpR6aXEBExWhW2YcPOKcNzW6Qs08rjifW+Cxp2ZzaLQZ81whD0WN13ZdWe8sz3W/wdiUL7If+gF/r1TSyGTYr3kzGxaK6Eg5rCi+zvQsz7mjayvnJzAKzGOQx0il2d9hiv2fkfqecSPNo8Z1zSsP6CqWGbfWl4dZytG1JNRXj54+ciybq/lsBtUqx1dkND/B4zekMliWF4uX5/mNIircCHsfvM/v83ldrlC2+cmC+oN9tbggc1hdQ1vchKnTK/BVJZHLsq8Ohspqt4luhXZvBVklpOyWSqRQlU/RKMvv61vXyL+uKt5C5Amje23cF380jDjQN65fA3Co6OYYR1efMRTU1uATJ05EsXNxlvPsuAH7J6k5YyAxDA+rIrQGjcVNHSU9FJSpLyq7bzHeUe7bYn8o5HBmklUxTz7+ady6Lm8lxbEtGVWfOjDvOB5rUgihJ5TVxup+q4lJeVq5pq5mXPAsz7W6TeQINWbyU2lVdHQGGENqbvLpXBIv5b0bRDkekX9SUsqyN2+zSmZSY+fajeu4+BD3JZ1djp9pcb4Lec1V7T1ubRERdjMcu9dvfgcFGXD37/FvG+LK9DTPljQOq+I0nTrFWHpxhShEJVvCm2++CQBYVKVMW9U+hphevsRrMHQpJ+/BrFdFT+bazpB9NSOeeqVEtH/9PpG8VVUH7bfYD1+UCft4DEwZ31Q82Iyu++xZIiZ375J3O6jx+++Jy+ROcM50RwN8RqhKQQhZvpDR7/wZWCWPkKSeTJNzSWA4OOpT5UmF77HP/hwAYCHgGFtf4/c/9zLj06aqDny4UTwJVXU0GPC9dcWbr379a/w+BTpffO6En410AByhnH5Se2jF8p4M2z1tzPwBfwaCMv/Pf/nP8Scvkjv1H/7tvwUA+KlPE6HauMN+76hSIimeWEcenVMz0/C1/y5OCKHVvt0qIH7QFiNVcYtb3OIWt7jFLW5xi1vc4vZjtI9FmtlzPRTyFRSlpLe1vQoAmF9kpmJ9bTdCEayutiI1FeOaZLN8WjZ/pFFgHjthlIm3LFhST+tNZVMHykhCdcgnT64AADY3iQblCpmoHrrVlkdAjueWSctvRDyVAyl2hT4zRAvLJ6MMw+wcszLb28yibO3x6TnwpbanTHOxzIzRqurep6ZLmKwwKzQ3x58TyiLs1VgjWtZnL8jLwlQQZ2YrqKhGekoZv9oeswZTQgYP6vLKeUg1xCHPfeQbHykBN+IyMcNi/JvjHKNIhVGP69lsFr7fP/Je1z2KFBraE6FRpkr3gIKeITIDeWZEvhtCULxj6Fbk9aFsXzAcoSt/j0pF/ldCYgyRGgd2fvhQs3M7fs52roE4OebFdVgrb8hWCn6Xx9gU98Lqu/OqkTclv8gXR3wp3/cP0SPlQUzV8DgyZe27eblYfx5XJjx83T579HPpRAYj8SQs09OV31DRzIM+cS0E3BGe/cyTAIDMkHElZTzC0RgQOp7QfBi0ONcSGjcDQVlthdGRsl7+cIApecKZQloI9tMwwZ9z0xqD8j4qTzKzi4Tx2hxgipwVSGFxLPW5lmrds8vmxcTzc42XlBzDk4pf2Txtmry+nsZtIs045SqzWJzkee3t8v6emD97aAylzwzb4imqDr00y/FrviWBFD+dUQ/9sTxtUvxso6n5MSIi0eoSZclmOJ9GUqOaneV5F0oTSImHlPLMR47vLRUYz/JTjL1jzc28kMJx6CEhxNri8vYeEaPKFI9fyfEzjst7avHE0BDf97G5yfh7/QYz9DYf7b3Ddfbp4hL5AqVJzt/ihBD+wgQm5xZ1veKUKRu6nPDVP+JcBIbEAwAwOZmK+IqNnVVelzh+GSEZiaKhW1KEVcWDL55Wt++jrAy+LM0ihH1XFQ2GELXlD+YJ0chW8hjqXE2Zcr9r/AtVRYiD/LnPfQ4AcEOohCnBLi4uRv+3mGY/Ten0uOqi3eN6vR5l6C2Gr62tHfn9k9RChAgQRh5vJmJrmf3xyEdfVRiGeEZr6bEYn1CMSmiNu3jxInpt3vPbN4iIlLVfeONd+iOVy5wbTamzlYTUTk1xfHjdHqanOX5ru9z3HAgZzqRs3nF8TUwL0VJFywfXb6Co/wda24dC006qYmZzj+NsLJVJq3Ax9clisYC7q5xnD50hz3T13h0AwNkLHAeRL5LHaxMwjVE/he0a92XpPM+1p+qkkfp3qBgxK054oTh5pE/bnSGWxJmcVOXB/fvyOqqY+imPubREPmpdiNHplbMIgps8GSmUmrdhIc9jpTXPt7YYb4oV9vVQc+jxxx9HdWMVALCvWB1oj/XeDXob2rjf3GVcCtOKx+qXlfOXsCuPr8Z3iLo1xXetrxKhTmWkUJtUtZC8nkKHeyQA6CvuZLQ/bIufXk1Qde/e/T9ivwjV35G+QZjII+GLW6445otj9jv/4p8BAGp1aSIoPls88Md99LU/KlbM95HHKEl9sqP4OxJkPqv7si3u+dRMBf/L//g/AAD+2T/9PwAAv/Clv8Lr1FqWGB71SXzkEaKjG1vr+OAD3sMzXyQy97WvEVWb0prxg7YYqYpb3OIWt7jFLW5xi1vc4ha3H6N9LJCqYOyj2ayjKHW+Zam/mNdTLtc8VNxSLbKpCtkjsXn+mKhN0LeazgGyUjoxlKugtF1C3jS9yKND3h0dPhHvyh9jPjmHorKCjz9OroJlL2X/geSc+VgxW1vM8djbO3twhDLU6qwVzohPMDZX5wa/b+MGM3El1TtfPGW+JyMUpGaYTivzouzE2XOn9Tq/b2pCLtxSCfTyGcyr9jeX5xP/4jIz4Fv3mL1YvcdM5IUrn+f5iTPQUW1vsVQEjLeh7NnIP4pURSp7ysSb50AYhpFqkfGwWvLUMv8Rq7O3rKZxnQwFSqVSETJUVM241TnbMUMrVtd52PtT4lL1ez0ccqeUAon4WUcRHLsW4654XhKey8yO1aDb8UfHHOvNn8HOfSBOTbN5gGyC52r13EN5Pm3Lfd2VZ1GErj2A2PX7ppaWPPK346jS9/LJcl0Hdg+Pc9fs+yx76CozZYpSg2EbnjJbyazx/PTZ4YcRsU9GC4BxC43qKgBgJC5PbYsZzzCVw1jxoNtmJsxvM+aEqvHeqH8TAHCguVZZWAEALKxcRE91962W0AWpdCak+Gn1411laiN1TXm2IZFCsMVMbVO15IHU3aaFfogKGo3xlvw0wm4DZSknJYRqrJwngt2Qf8qdTdbHz80QPc8pY3hiib/fur2K6Syz2HllXcspxuWyYlt3wH5JSpWvmGcmOzUaIkzwXNqqS6+IB9TaF+cwyfPYb/F9RXkJOlJlSmazSCSF8mmcmjJgWv5NbprHzBeUJQ8N/UlDQxf9keZ0ijG3Iy5BXsj+9BLn4j3FQlfKpLlcDm0hQPaeZ4ScWOzZX2PcvHeHfKGDPfVXWQqpXgHzZ5gJHWjuDzVvwoB9d+sm15HyjFRjTc22XoviUEvja6jFJlFj1v/UAj1YNu8xo96WouGjT9AzaG1tDRCi3VFGvKvYOtYcLxgfUKgsrNLDy2DQ47jbl3qrk+D6cf48M/qB5sH775NbYUiecRAajUbUV5btPYxLR+OGxSKrJhmNRtH1W6w1jpWt05+0FiCM4rfJs/VtXwPne1ZsGIcsQkhVDWGop+OOMTOvKpQD3qvdXVbDNMRzvCHfpiceIzJvara5rJSJSxORf2brQOhRYULfpyogVb/0VK2ws8aKl1wuh2yO9y00H0cbC2Wu7YU848tAnNHxQD6Kmu/zy0vIaD5vykfzzJkVAMD6Js99cpL8o772Ua72M43qAYY9KTprnHfEpXpjlcdKP0VFuyDJ664LhbO9R7c/RE9rtalMboivbuOuKQTJEX/90gX25YsvPo9UhuP6zFnxXsfsh5s3GCNqNZ5zVns/q2jZEdf1pZe6ePwRonp5qZna99s8sAqngaobEuIzT4jzmEpkcUpqsjevETVuCbmaPcXYnVVVTFevZ6T+53hAWZy6Vo9/GwSG9nGs7vvax03a/lHnB7UwQNY43prffe0TO0JfE6ZkqP20K4/BUiqNlLxPe1IWtnVnJAXHrpRTrbqiL55yJq9KhgRw6Sxj03/+9/8+AOAPfvcrAIDLj9BrzHhzG1uMmW+/S8VJL+XhSz/zRf5fnmOXL10CgKhi4QdtMVIVt7jFLW5xi1vc4ha3uMUtbj9G+1ikfFzXQSbnYGeXT75W124ZgyAYRWp+hlRNyU3+/bvMHh/6AZmyGbM4iUQC4/FR1b28HLMtQ5+R70FST+TVfWYCp+XT0usO0FTNebXBp3jLBGUyzHTcuc2MxBOPUX1lZ5u/zy3PI6f60aKux9SRSlK3eV1Pz77P27FYZsbXOGbvXXsDhSs87rIyUr4y3tZXJ5eIRlnW8KQyzuXSPAZSpEkro4EUf55YZo1svsDr9KQ2A/GWMmmhMsEQGBu6I9Wi8CiXyhCrkXxvTEklDEO0xV2zc7VspHGIDIW0+tqDvpTDLEPteVHWZrIoHosyYZalt2xe0jhMjmWExZMKgbT4G37ALFFaYyltKAzUpNLXH5k7eS/KvNh1WrPrT8jja6++d+Ra7fViIQlXGSbLfKWViXGFQnoZU1LsHPmO8XgMKHtinmt2/MBq9Md/sSLWg9zCCIlTi1BG72ide0HjLwiGGAsCLpZ5z0IpOPrycPqktdAfYLh3B2+99ucAgOVJIReak77rI1QWb9RRLEkJwRMf5KEcY0+gTFnorPL3rX302/x/Msk5VSjLC06o9fYW53E2ZZwi3teDNSpAjsYBduR9Z35mBfEg8gXGr5QQI1MyMq7RXrMOX1yupHHxcpw3Eyek3NYkMpNUzX+mKG6FK3+7AyCUT5+v600qc2m8gYHiqY2NnI6VcEO4Qo8KKY7LcYffFwzv63tMZY5j37zTMjl5Q6UzSCsuTwrFSgq5KsufSlMBrhDWtFDi0AkxVvy3TG2+xDg9IY+dhOairziyeI7HNN7O/b0DpMVt7WjOv3WTfzPU5f42739HVRF9cN42e0Ic8iNsv/oKr09Kr7vKWK9IEPXsQ0QQO+KYNcSHyhYLcARFBoo9Vn3wxFPMkNeEKMxJeXYlz7h+S/yJZDKJ5ZPMKr/2Cv17VvW3J4QC7FWlAKuwZpyYfHESRXnanHY55wOpwQ4CU+7jePjgA6JtplZqPzudDtrqf+PnRBUn7lGV1uMcWM/zosy8xcvjnoSfpDZGiH4wgu8crcIYqgIhkUhEHptWfWF9FaFbara2+ZqHyUQKRanIXXmCiIz14+0bRLvX73M/YtUX+02O3cuPsNJlc7OKusaCC0MI+ZHpKe0PdI9SijOtPufOfm0XrX2Oq3yO52EcwpOnVgAAU+IZdhtEaKvyVrM53h50Ip+ii2eJ2Ny8SbQFaQ7O6aGqUsQTre6Iv44QodasUGjGoMmfBztcj5t18R/PcD7Y/q0yzTlTLGcwPWD8Mt6T7VN6fc5NU7k0Pr/Fx3J5EnD5nvv32d+XHiJa/OSTzwAAXvnWVwEADc3ZQkVcK+1JZufKKCquPfkUPzuh/eIbb7zBvtM8CLUXm9T7F+R/ujJ7EksneD//8Hfpy3VaaIshguZfmBLHaJQwHl8bGcV34zeagrWpNaeSfG/m4mcBAM+9Tq6Xm+S1zySHcOWhldK+K5uQyqDQvcAzZUGhbFr/yrkM+uKVXnyYY/jWLfZlX75dxo/zxeE1/nNC3LJ/+A//C5wos0825D1blUKiKVWaandWa6epJKazKbyqWH16hn1o8+6yYvS3Xybq9f1ajFTFLW5xi1vc4ha3uMUtbnGL24/RPhZIFcIQzjiMnoz7+tlQpq6QK+HAJ3rkKbu/X+VT9coK69z//IXXAADJJJ9IjZuQzKVxYoZZAVNo295hxjGXY+bBMl8HyqpNyP/E0I/S1DLuv/MOXxMS44RSb5HySVvvHSeUaSsIWQvSCOTNEIi7lU7wGKv35XI/MiUkZQbkx3DjBjMmFy4vYjRWPW+S6FJCNfHmH9VTNjmbZ6aoVD4ZXYuhGpa9yqn+18sxe1ssLah/lPpNS1FPmalEIomRVFMSenrvdvle49SMhO977wAAIABJREFUAzl5B0JQHGYXnISHjJQSE55lpZgRaylLnFH/98QxS6iPs1IU+tbLb2BK9b7NEetb5+Z5ndtbdD+fO8HrbUdIkVLBI1Pnc1CUItHkJMdIKaf6b3l5dIRGpjM8j+FAGUJnHKmyRap/lqXXWO05Uo8r6/qlKJnyDj26nKG8rcRtGppyou7lUKjPSOiTKeQMmm04GUO++N6RFBXts67yI8c9XOweuq4Lxz2KNEScLXmg9X3eB1eIWSCFMscDEnIt72hcr09zPl6oLeCT2BzHQSrlRZ5TrhRB/SHv2ziVR0pj3TiBblZ8RmUuUz6znXXxBEIpKaU9D4kR0dakeHKOfrfsb9CT91HfeH2aX57Ox3OxMM+sm/FtssoQZ8SRDJSxg3mGaR6l01l0xf3LGkVLXBlDRRdPPszvFxobyK/EZOLcTA4GfoZCdWwumXRZFIMUaxMmoxnSswQAfMXcdkNKYkKWm4ofptI3ssymMtdjuIdylPrMOKrT15yz01IlwpQ8qYLxCL5VIWTZZ2lxGYzf2hSP1XH4/cYBSYh7NTNXiPhATd3frrK8128y639CCotDkyETmmywz8HGGh578tO8fvmT9TWn6lUeszjBe1yYJLqTy5jvXoCdbcb/aalhQff7hRfI5bvyDFWqduW90+kRBTx5+oxer0Z8gCtXrvDUFJeuS1Esq7FdEJI3Uozcb/Rw5z7jdE2cvmReXDFxHIxjcvo0M7tWPWB85263GyH7hr5YzBkNLQvO+2FrsGWHk8kk9veP9rutY59EpAoAnPCwcqLfPYrwj8fjSGWv0+JcOc6tsr4KDVXU6/5ohIwnnzH5zrlSeSteJAd8ztT/WozbVfkH/fbv/CsAwImFRbiaRxMaE2cucq/RU//vSiV4+xbX3NOLREgPVu9iQlUmTe1TPCESQ/FRD4Rq1YW+DyCVSe1F+vttrCyTj1Q0/rjUP5dXGP8a2xzfp08y/jUGqkJBEjmpP08LAV/f4NzJlThW3rrOaqBTM9w3PPsM0aA766v8zqkKShX22Rc/90UAwHMvv8hz7sovVXOzJHR9bfVdAIATjuAmGDfubUqJbolzZ5jidT79LPnqL73yMgCgJZR3a5f34+mnPoNQe5ai0J1uh+PgwMaDYpjtbT1V7dzTPDntAft1xgJPHDdTEHRVOZQRxzITqVVLndNNIaW+G3aO+oYWhYD7qhYbqFrpb/z63wYA/PN//D+DbxjC98TpVigMdS0jqQDms4x3jTrH/5ef4Li4tbuCuxO8N4N19mtf6tMWBxakrrq1yXHgq7JsboZj+0s/+4WIH/+Hf/gnAICS8W+1ldtaZcXT1CT756c/Q1Tstbfex9wkeWf72kNadZSpcf6g7fs+VDmO878B+LcB7IZh+IhemwTwOwBWAKwC+OthGO47xPL/JwB/BUAXwK+HYfjG9/uO4WiEjY0NVPQwYxtBEzLIl4qoHfD/Zm43UWanrF0nEbGgcpODA5nTanPS7/exs8NBUhA0feoCJ6WVL9jDxtwcy+5MZtYWh5UzRTzxJOXGX/oWJ8WezPUWV7g56mgC1KqcgNNaJKemy9jUIBiJNF2e4OCYneWAXlvjoDG56l2VlTxzlSTn+aUEUhqkRh6tzHCB62gjnstxwj35JANTIndY4njcIDYv2dGxL9K4HlRNOCElEqsvqNSFg1CLY6vFYGGCCL4MAqPv0AbMhZUFhhhpo9/u83iOIOfA5+u1Jo+ZURlTXyZ0bYl+VCp5tJsMVq7Mn+t1Paj67Jj6Lv9eFKxum6q9KvuyPDGJIDhaXjfqmdmvoHA9zEGbBrvG0WiIfvvow0qpwEDjSipV+w4kVZbpqDTAHUkwIJHAAJKxVrAKQ3tQM8doGRWnjsq253I5DHBUVve4ua/9flgGe/Tv43D8wPceFbMItfG1EtKNDSYd7MExBJDS9U2oSLKh2qt5BbSPsv0kYg48FyjnI3GOSsVK11TSMb+C+9sac54RxLUB0FDo5RiExypPMUGB0SCJfQlCXH2ahpFLIjUnS+qvHGNAV3EkN81NbV+Gqvc31jEzy9iSlQnuQGVlSRmOuwWVVMh80VO5ZqFQQjDQw4MWpKTKfkp6EMpUeF4mGw/FQt/jnFt+fBYbr3+bfzJZdsXgjDZf6TzPL9RC3VO87gxDVGUsbqXOQ0k5W8nGCYm1bMqkc0IGvnmVX+bKxaj8xsQTktpMWwGup3vX03ze7kq8aDxGwspvMyYDLrLziNeSU8mzlZblJtl3TvZws5sp62Ft8VD0CDjc3LblG3FKZYm+yPe2OR20DxD0RYhXUmac4rn2JrhxvScZ6WxUjsS4HsJFRg/6GyLbjyVONKVSLyixUpJIU14y/m1trIrZdGQmfWuH5VndJte2T32eJTx37/OhK9ADoaty9jAYY2KOsTZsy/hepcy1fcYHRzunA5U0Hbds2N2toiwhDBPaMQEBK/+0B6SC4qk9fG1ubmJDG+OySnoWFhifrP/v3FnFR9F+EvHGAQ3sjws7PSi+YZvH42JEdr3Rw2WGa47Ni4TnRXErkl3XvekHHCNLZ/jg6wfar3Q5Lq0M7oN7q7h6iYkWM6zua8M9JeGRkpKcnpI6NseRTmJfa7mjsZ+1uSvRq20zqg2s5F5S+trYdNptdOo8l5v7Kg1UMqWzxWPOFjkeWzq/pgSv/sF/+V/j7/y9v8frVzJnpiw5cCWXthRXv/HaqwCAiUU+qM3NsSz7g9u3ozH4teef49+WeZ15GbV7Suq8/RoT+JsNXn8uk41KA688TEGEdpXzzIQwGip/NWGpsdZco0lcv34DZ5Z5Lqd1btNaK/qy6bGHGbOCqchSIrIpGA6jRJCNr/IUv9/K/xIqsUxpHc+MJa2eSETz1sadCc7YuHQVX0LF3fo+x8dllSPfff8awiFfs2R/IHGTrErDLYafmuL3/s3f+PcBAP/gv38BJ+fZh+6AfdU94H0uKdG2s8N4YIJENi8++5lneb65Mm4o4TVpMugujxWV2U5wX35TQhUP6cF0Z6+OWa23Oe0Frl2TofYPmcT5Qcr/fhvAl4+99p8B+FoYhucBfE2/A8AvADivf78J4H/9oc4mbnGLW9zimBO3uMXtJ9d+G3G8iVvc4vYRtO+LVIVh+A3HcVaOvfxXAXxR///fATwH4D/V6/80ZLrkZcdxyo7jzIdhuPUXfYfnusjn89GTssH8hlQFjos5CTRsbDPjNg4t625lJGYOyyflfF6E58QYKWVDLGtgGdBQT9P2xDsUYuAISr9wkUhREDjoC75WtQqefIpZnbuS/5ybZvZwa53Z0jNLRLampvNIpmTiqXN+9VUa8qUkCTop2NmML9siLZckQ5xOpyLpyZYyfQkhU20hVUvLLIMslS0zwe/KZrMfEpMwFMeySVbCZyIgg7bgX0ObBiO4gn5dCYFYRsSOvb/f0rkK5dLj+nBwWPLgyUC2JiPAjgwLxyNmOrttZhNSrhnb8iDTk3m8dY33/cYdHuP8aV5v1lOpojJiW0IXrWTLUwlBu99AqMxvXoIcdu5DGY8WJGVvwhpdESQz2RQqytpYHw6tjsvgdUmoJlXu54kob/oeCTeFrkQArGQvQqZcM5zVfVEf9n2+fzQaYYSjwiDHS0Ps90OD5aOy6QhCBMND8ZAHjzVQFmdNJFsThVGiEKNRGJUcnBHCMmpz3HsZoXsfYftJxBw6Picw0BjbMMnbJOfVRnsNyYLKrnQTl5ZJ+p0QKj6cJKE6qfjSkMDN5MNXsfsuS2T2WzJQ7crAV2j0/ioFMiYnOBYzQsWMWJvJ5/D6ayxZSeRllzDLLNtDMvj2dK4dfW9JKH6iUIoy1y0RdpvKiA/HHFMzc5L+FaIPS36nSrrmARYffQIAcKBx0VfpWFuyzZD1hIkbrO0yK7jd6KJvsUZZxbRKF7MiFfdTks1VyXFS5Ois5tn0zCxG6ncrhxpL4tzk35uanw1lrqsq15go5CPbiukTzPqmVPbnCFn21Xc5iYBY6drsrAmKuJF9gpXXBTKBHprVwxQrG3ptnl9PSFVKfT8zt4hApUNDIfxz07yHb77H8WFrXb3Kc+93VRaYy0cVExaH02Z+rPWpvsWsrGWBzfA+ISSjWe9HJO912WYUlG1+/mWWEE7PEW21Nc+VdUS2UoI74nVNF/iZzWME/q7WHpPatooPQ1Smp2aicuSqYr591tZiy4Ift9cYDAbIZlWOrBhm9+OjLv/7ScSb8XiMXq8X7TWsrywWHxwcIJu28nT2gVXKTGtvYX1ZVzlShLJmsvDM3Vlry0DlVuky551VYYRjVfoIlUkWVB5VnMDePsfqQIh7tiIERAICrRrvVUmmq2YOnihNICHbmk6T3fCkKns27hHVbNQksCRhhoTWM1fiCBNpFxNJlWDrPi/IZDgjVOvmu6Rg7EuEYiS05zd+7VcRaKzsas4EWq8a2i8FQoTeVyzLf5Pj/+GL3MedP3Me2xtEylbOc06YtHmix2NVVVXg6BoyIf9+cNDAskoD93TPHr7AGH3zOsU2Hn2U9gfv6ndP821vj3HhlfqruLBMNLGsaqT5aSIn505xr3NdYmi+e7RaxcbB/v4+KmV+ZmaescnGgy8EMakxNlSlSUliF+12OzrecbqIIVZ9TybwKhkvC7F0VMr57vUbKKhqoy9Esq/qoKIJEOm6H73EEuX/5p+w/NQrPY1nn2ZJpqd48vsbvwMA2FW1w1hoqK89vwl3/FufZz7k9//gK3j5m6wkO3eGwm6hxlmzxn7+4z/9PQBArsR5sVnjPb937x7W1b+Axr/ELH5Ys/EfVahizoKIfs7q9UUAaw+8b12vfag5jvObjuO85jjOa53eX6xcFre4xe0vfftIY85e7Yerk45b3OL2l6p9pPGmL++fuMUtbv//bh+1UIXzXV77ru6gYRj+YwD/GADmZydC3/cjQphJ1p45w6fZvWYbB5GJJJ/A1zeY2RrKKGxfhnAJ1fcnk3pCHz6ARCnTE9V+66k5peyZfYfV1vaEYJQLs2iLjGxP9m++fhMAUFRNpgPJUcocdW6GGc9mcxf27GrXZZmABSFTwZifbTT5c3bGECv2h+NmkFd27uqjzKxklPntdCTPLTNLyzQG4aEc66FRrCFSIrxKCrkvvoOnuv9AxnRjZZkBH602+3d7i+uJ1fHaPYv6uM9rLcugNJfKodsj8ra+QXTD78s4Vzy0RoPZginLgMEY8jyW4wCTFV7frXVyAN68RqL1iRlm2k6c4D0zGX4jYBr6BgATygAZV6leZ1Ypm+b3npfMsL8lsRFl1cMwQCiUzRHx0jU5T2XIEkaiF8rn6/2eBCaGGEWvucq4pzRWg6HZBTCrY1lzJaSQcN0o+3EckQqPuf9GPKljr4+DIHrNjmH3zNP5hKq/Twn19ZRxX9vdQU6y4ekh58zpErOI3312/0TbjxRznnr8XAgvG5GdWxJJ+fmf+yIAIH3+Cur3OT5G4tLkC+ItmLz+gPfzvbdYe92oM0vrf/N5tDtm0CnJ3AXGsrSEEw40b4oF3ovTC0S9VpaVYSwVcWqXx6vKfDUjvsnQFwdzywwlBTPp3rdr9chccXqF3wvFsoEZbCfF5VCG2Rf5OoAyiqELg6/yA47xQZXHCHo8j56sDxpCOrfEZy0tnsGkBBh6smdo+TxXRzwgv8FYMCmejHEhJ2eYpXdSHrISkUhbvBLi7ehnOmm8MXFgN2VGOTuDQMQ3Ww8mZTqZForji9DvGxcyL2sMxRfXdSOeRFYc2K7PbGdXiFS2yTVoVkISXlmy0UKH/LEPZCv2BfybDJqvXGWf3rn9AQAgJ7TzYJf9kpmZxVjxMSnLh7Y+e7DJceFOcGxVZODsaj6bsannJbGzxes5d4bIpFU8DGXkOzrG4+xJNOn1d95FZVbE7UZd58pMrhmXZsXFtVhkXKAHpcAt5iwtcT2MDEz1nn2hI1mZ0Boa5TgO5ucZYwyxu3nzpt6r8f7/TfuR4s3UzHzo+3503YbYWawvFArReLbrtfXAOE4RQpeQ/YC4Jg4c+OFR3p/tMcbiSpaEBJu0fU4msI7m/3wZcKc4F2/dYj/7Wts2JcwTOmbkKsNuCRikBgPMCF07/2lKiFdk+/D26xQd8CR0ZEICY6ERza7QR4ToCmxL6lo6GnerDca7+1VZjZgprBCLQb2OIM3+NLPZgVANheiID1iQsNh718gXdfQ7Eg7OyDj37jbjyJNT5EeFEpgyBPGDdVVJCdGbyhcxViCZVcz42ovfYH88xGNWJMKwsKB5sEfU6+JZIir3bt/Bvtage1ucI1WtEY99imIKNze4HqVgtkFHedRPP/00vvZVimuktYcMtSZktC91tJMYhOyfUOMlCIJoX2TNxpC9bny5gtB+aVJgosRrK05Mo7fLGOEWxfsMJH4RikOpsbvWlujTDBG8QuYprCm+9KRAZGuVKSbpoxgq/s/MMy5/4ZkvAACef+lFtIfi0otL6mmvuSFz96k+4+0QjH/3thS7AgeOOKu+qp96AnuO76W+X/tRkaodx3HmAUA/d/X6OoCTD7xvCcAPZ0cct7jFLW4fbnHMiVvc4vaTanG8iVvc4vZDtx8Vqfp9AH8TwD/Sz9974PX/xHGcfwngGQCN789tYKar0+lEqmyWibJa4nQ2hW0pf0wqm/Ktl5hNufgQM7G3Epadk5TvmMcKgkPeiWV+Gg1mx1bOs4bVasBnVSNaU/1lVEvaCyN1pEjy2LX6Z2YAykV25fwUa+bPyPRu9yCFWo0ZBsvsLp9iNtpqQr/00z8FANjY5PcWizyPmQVme/ZrB7h4jhmNYonnlJMRaGVKaIPUlHo9qZwkD5XeDJmITGcdyfZ6R9WazBjNGbHv6vvitI17uHGT9cxlfb9l5S2rZka+Zhy3s82Mazoxg2xOKIf4aNv3+bdA8tUQUtLeZ9auPxLHqchsQiaXxYwMCJ95ipn+115jbfTtdWZ19vo8+HyR1zCjTE1Wsuk7O1uYKXM8ZbO8XkMkzYB0c4vnZZlYU4Yb+QESRdWCK3t3Ugo9TaF8pRK//0Amg0NlOZpVjstRGCJoq45cJqWjoXHIdO+EWDn6e0F9GfaH6Etl0cayZYcNbbLXv1d7UHnqQ02qQikhc4lkeOT1wElgLAnWlORu+z2O5XHno+dUfY/2kcYceB4wMYnzF5mNvPPmdwAAoZT+tt69jbvbHNsFKU62m0JYdS9OJDle5sHMbSUpWe70CDtt7sEWhBTNfJGS1pCE7rfvmPQsx8nb16hK5SrOdPo97OxxrzYW6n7hErOe8498ked4nRnVrQ2+7+RJHqs4NRUpWEJjyjRu0+Ji+gmh0TZ+ItlyQ7qT8JQhTBbm9VlxfMQ1aHWuAQA2JA8eZhivppbOoilEJEgIBZfa1Iz4o+c8ZnTHygJ2FAsivk63jZL4IBOzjJe+4teBTEqrQs8d1c0/foX3ctjpRRK+JlNd3WMMTugY5Tzlom3eGOK+tMT9cqvVQlUoimVsU+Jpzao6IdWRCp4U/jojs50wefoC9lXhkFDf+HleX0US+7NSPeyJ+zldYd829mpYWWAfGf+hIMRqaNnYPu9HbVtqnZrexgBw4EVIflVqVyfFtTj3EPmBvu73UFYYr7zNYzW7A7wt6XZTofR0XbNSLqzu8j4YOmJVHLae9Pv9CF0xQ1XLqhtPwVR7rdkewKpUgENVXrtXtj8wY+H/l9pHG28AmjnrJvnG4xWCimCMTvDdTY4tU27rYqi/21rrj0ZwhO5kxe0JZPUxHFt1Au9RVIXTszWO9yOXSUdVHqa6Z/siu5/dpBBijfOtD8gPevjKw8hN8J6s1znev/ECjVRbO5yjpmhnMuE1ybMvC8H0h31Um4yrOakAr60yru2PGLuauu5+T3FZ6+Z4CPRszdYmQ4ArAhPME6zSFoo8KT6kinWwcv4sEkJgKlLdawk1PSdp+ZY44Fcd3ofXu0S70uk09rVnDDSuzaB8IE7XjU3GymlV49RUJTNURVG6nMW16+8BAIriMJYmeR6FMvcyFcnB97vc83SE6JwS56pSOYm+ELNSQhYF4gw76hBTTHWEVCaSBtW7kUKn6RX4WvNDrR1DVU7l85z/fVVjrAvd39zYxqTQS1NLLk8JEdf9MHXPRIn7uYuPs0LjnQ82cfGhzwAAXvmz/xsAkNK+cEoGvc0W96NTQmi/+nt/yvNR1cH6vfdx+jRj1cGWDOG7PDen+S0AwNMXxC0TL+7t67zH23sBklI+rYnjP3LEO9R6B6nffr/2g0iq/wuQsDntOM46gN8CA82/chznPwBwH8Bf09v/DSg1eguUG/2NH+gs4ha3uMVNLY45cYtb3H5SLY43cYtb3D6q9oOo//3q9/jTz3yX94YA/uMf9iRSqRROnTqFO3ekMqUMgWWz+v0u8jk+HRvvqF6X/8EWswe+nmpLUnAb9YxjlYkyLVa//NgjzGhaVsz8L+x3U7azbE7eW4Ark7opIVEL8/I7yfOJfH6e2csJ1ezvKTOanyghpSxkKq0aWClfdfg1yKiu+cIFZhy6Pb7/1AqzphcvPAxHKRUlGiIj43TKlJCMf6QM1fDDSkmHSIUhV/K3EYK3pox3WWSeQOpz/UELB/vMjiwrezqWmpB5WW1vrql/ZBDp8X7NTc/glswCM/mRvpeZADP7DZVV85U1N4QoJwPD+2ubWFwiJ2BK13f1KjP/z3+bCMOastdOS0pF8nZYXGJGxHVS0fVbhs8Rh8iXKl6tLp6L/DAC1VunsmmUZng9ZhWx2+D9dZV57jjyR5uVomKdv8+JA+gCQIvXV9sgijGUv1DoH0WfDu+lkKLx+ENqfsfVo75fG4/H0X0+zGXjyPdEyobKhKeUsWz3B/AqQjBMoVPqimn/R60g/t7tJxFzMHaBThonT3Bc7U+z9v/2u8x++Z0RVibJC+yJSzQ1y6zb+g4RomqO2f5zP/0LPKY4B2+99AJ2lG0tJJj9HX/zBX5GnJJCllmxhLiQM9OMQTfuEP169ld+De1txrbX3yJKnBrIe2OD93Eyx587MmlNiS8fdPrwlG3tSv3PES/JDIQToQUS/jDeUtSGfUD8QWg+DMTTaipDmtN4nlPWsSNFpda4iwkZdC4LMS5UTD1TCpwZqRKKD7W2ylr32x8wW5vzPIykgroqBHtP/n0TRSmWyZ/JTStjb2Nydhah0J0t0TMvXaKSoXkEvnyX9/Chh5gprYsLeUOvF4pFzMpQ3JCSaSE2zz33HM+nK189rVdjKRn2e8xoNuo1nJjjemH8yIHi8g1lvQtm1j5D/pKtQYnCAbaFnqUneH2ZKa0B4o10DnR/xFNrt2Quz1excLKMnTpfy83xWjZG4j3dJLgyo/F/0OJ6OVHg/fK7e5gRV+xAnmsz0+x3M9sZGvdWCMKgb0pr7PRsJoO8ssrJxFEeZ888IgO+19TQ5uY5bvYP2rh6lQpygdCdppBiQ1A+qvaTiDcOGLsPY/DRNhqN4GofYGv2h1R7zbdQ65eNu2QigbwQgEFP675kigVyR+uFr3uTEdf3ON8aONwPmG9opDirYzjiPF++wjnlj/rY2eWavrdD/tdI8y8rVOPGXfqxFSr8fahlY7Ne1Xn3Ii87GytWMdLxFZtUhTQwdVodO5vJIhQfxjUTZNsfOebJKQVicRtbMv/eFT9xd20bWfXr0knOlaT2bdbPa/cZG07LXNsL+ff19fXIZHtHan6G+mWECJ0TX6vd5Trw7Oe/CADYkMG374+jfcnVq1fVJ+yPhrhbVg3UPFBFguLuhQs89jvvvI276ufTUog97j2l7onG0lCG4o7jRVUCA907m6uGRE9PS/lX6Kf5vN6TsmiIAK7Q7ILU/voDHisvjm1O689IlQuPPMY5vnDmCtZuMM44QtlGGpNtrTdBUmqL8iczHvC3r7Pv7251MSm/wWzIvuuK45XVXr7kEhltSIPhYokx9pEpB6HDteiDBmPmRs38XRkj+dfv3z76HVHc4ha3uMUtbnGLW9ziFre4/SVqH7X634/UBqMh7q7fQzLHJ+UpZfd9PfNNZPPY2GOGt96Q4pXqLN++yexBWuhG0nwg5EvipYCS6vi9BJ98azviNp2TupA8NOzpPWteJvrdzXaRl2pXtyMPq7PyN1EmOOEyy3DqAp9qV7eoTreSfQwFU50b870ZZScrJ3iM4dAconn955akOpXgk3k2nYkyDdFP1eRDfIK0uC5ugk/ZtT3+fXFxEg2p54RCXnzj30gBZqQMkdWurt9bBQD0Bw31qY/Tp+XLtcps8WDIJ/xW19SbpC4kBcVSif107/ZbOLHAbO2a1LkMoUoJZesKqQlMFU818+s7zEAUJjNAhscNlQ1eWORnf/nnmOl4+xo5dlvrzBSZn9fAeEpeHz/1zKMATNkMcKRIgyy/d1qeHam8lGoqzOZ5WQ+DUP/XGEopW5cW6ri3JaU4ZY07HdXlKlOeyxVw/hyRjakMMz6NTfZDv6XMUKDPKDPbVnal2+8ipezNQGpqSccUBHn8gVJQ34tbFSYCBCowN5rNyPpdfSpxQnjy2vJHen/CQdLn//fkTdSWc3pJiOQnrgVDoLmGN58jVaKQlQKn+EH57DRu3GcWsdFjx3z56qcBAI88QbWhey+xpr6/zrG3UWemLZnycf4hIg+Qb55l8wbm7VTlTbhwkWNi7iTff/cOVYruvPoc1pT1TKtOvVjhZxptIvoTi0LSuu/os+TNDALg3AV67OUrUoIWdwLHhsdYWciRssKhYm4mnwdUdw5xIacXmME9EHLUnOJ8GQlRDlV7vvL0U5ha0fVnTLHMUBUNPilJ5ZKMvQ/NrAAAZlbYH/WdTaQsM625PN1gzJmb5vqw3+FasCL+6JQ4B52Rj6oykaXKCX2tLiLD8fqlFcYC80d68gmqlpkn1c5eFYHGfHWPxzKeyMoKz3Uy9SwAIK1JeOXhS/oKfsf6rVt4/VXLg5DmAAAgAElEQVTW8u8qI/1zP/MlAECQ4lyPFDmNtyJ0rt/uIFTwSOlvPfFBdqUO1nqLxx4I+a9M830deV11BiWcOKkMeV9eV2mhifJdfP8GM9vlSa6Ft25xbLkJD23xYyxTffs235szXtgk+9tijvkqGW8nGAMHDcZtU96NqgQcoa06hqEBlvE/MbcQ8XV9xalMNnXkfD5JzXVdZLPZqB/Mn8t4aMlkMuLSHlddM2TOvBetrwxJyGazUVWNryoDixn7QiDte40n7lg6XaiD3TPgEN0w7pqhp4WkVPd07wZ2X/I5JLLySuvzeJurjEWeKaWqgude7f9h782DLDvv67Bz371vX3tfZsdgBhgMSBAECAIEJS4iKFuyZdlx2U7ixHbsuFRyXHYpShxV/nAc2XLZkuO4bMeKLFkqllReKpIlWYolkqIWkgAIAhhss2BmMNMz3dN799v3u+SPc363p99QISlQDCa+3z8z/fr1Xb77fd+995zfOYfzrShGY3eX48N13VjTYzqvwUBuc9K02nVXBKR5BGNhaQGeXFx3t7l9L2TfpMTAF3OWqcU+tHm+sc7vX3jlFXxc7FGjKa3gNvdnUY9zc1x35pSftbvFazg3vxgzMnaMN2/ejH8HHOiQPvnJT/H3t7nOHzkuV87Uyzh1gv+3a7Qz4DW1CivTGV54mWvJsWP8vrFib1+9ioIyDW1s2JiBnHxHumaW8WXPXEHgwzNn44lcuPhnMUamj7KxuyH9vJPyEei5u6D9+rqGs8u8V9lz+5LYwII0r5/44x/DP7/28wAAVyxrXixfQ+teT2P4GTlMXrnATKpOj8f3HR96Cq07XKPWdsgIui2uZ05bmYOQKzRPAa7GSdjxkctwXXu//BFOKJcrVeD8u3QL31BLmKqkJS1pSUta0pKWtKQlLWlJexftPcFUuSkXpUoVG0L7y1XWdY8UMtAbDNBq8f/rG6rdlYuWZTX05SrT5q+RFXqZyWZQKfM7Cwt8ow+sVrMnpzxlmcwLAS2IWXrttdcAAMXydPxmbw48swtEIKamTbvEN27HIaoyVTuufYVIiWUYSA929CjrXUNpMBy9NxfkzGWoxnCoGvW7MoYMgWg3lF2jGmVDtex7I+XCtNpFZJXrYPXGXWnGhsqPckVR3FI97owcqG6+Tn3D0vICAiFOd9aJ8MxKY1QoCqFSvfXCImtWO9pHt9eBwOD4/CxDanmZf5sXMmZIZzws5U4Y+mns73XVv3KoU5aAue49/QxR4u1NohrXr60AONCpTc3k4Km//TGvGVSbPX+E17IZigWSW2FKjJWTBkZtXotiRrXrQk1uXCYiZS5WO0ro9n2rd+fnrWYPc4scEzlt48hDRGtuXScE4o6JlLjKXosG/Hc2W0Mj4HmZe08kd7NxYA59waH+sXZ3PX5KaNVkTtUIh/VZdi0tp8qJnJjBiLU5YnNTOJxtcd+0KALCMY4qF6ndWgEALMitqNHy4XpE4r7/B/8yAOB16aKGV4l+PTDNOfDOLWoGi6YbGgUoCinuyklzqDGXEcr/4Q89CwDxvHrtt6nlOnGUY2TkjLAwy+1vCdVuNDkej57keO1sUo9g69ZVMQnf9dz3xnktxgxFcuwyNDincZRSvkuk8WwoIQY+EAhz06ZcfTclBLsuRDld4byePknkdPr4CaBkmXNsI9/yUHi+eVeod0rrp+rjU1kh1/kuHM3/otilXFGZTxqDMyXTPvLjvsavkyli4RjZ8cFYzqNC4kPpIMbSURYLvGZ7e+zj6Wkye8tHTsT3CWNMnnvuuwEAX/kKGStzoWqoBv8Lv/MlnSPnz+kTx/HkU2Q3XTHLbVVaXF/hojir8TaSFqYrVDrjuei3eU1ev/AK+0YZP+Zeu1QjYt6McVdeqAVl4qQzOXS1lkzPUavU6ZlDIf+tylksFGPRV75Xq9lDUyyTp+ucEgrt4LAuyDRAtq7Yvch13Xuy8ezfjJgD69uFBZ7LI49Q79yot9BosK92pZc1rfP/xzlVf6AWhiF6vV7M6hm7YAxTKpVC2jLjrEJGfWXMxe/Xl4PBAJ7+b7oYa9PT3M+f//N/HgDwsz/7s/pb6G/l8JfJx4yY3TOs/62/U7pP+CldX2kaB74P1zIwp6UtX+IadeYYGYrXX6G7aZTSPX1kzJo0XZ4bz+9jx+nK/M4K760mqapKp7MgdjNUf129s4pTR+iO/NSzqqgRU2Q5eTn1YUnuxdPHTwI40FTtd1p4e4Xr+Nwiv3PmDFlecwbdN/ZbrsQlaTtvrqzGmm9j9R48w2e8lZUVHkeP82pL+kRjffYa2/HPn/oUWay2HmLt/vzBD1K75ui5YX6Gx1dvsA+t1aaq2N4m02vZZjZnA3NDNGNf3c8tn85xXJNKwpOmbjg0TwPL3lR+pRwWL7zGdcmcDFNOgJTG31ji87mlI/obfv6AKjM+9izXxU9/9AkAQCEDPHXuJADgtS/9Bj+T07Ii/JDLKp8qZJ+98Jn/lfvV5+XMUYy0fnqO8rmVARtC7Hmf/TKyjhDdmUIaA5Oa636Xk36/lvnmNJwJU5W0pCUtaUlLWtKSlrSkJS1p76K9J5iqIAzR6nTj+tPVNaIHFSEBre4YwzHfWq++rWwQ6WLiGn0h9xWhl1Da9sxMGcelUbqzRiT3yQ8yoRpyhvGU/1Fv8C3XEKFyhSh2yk1jSfqFtPRXrRa/awnaJbmazAoRrFaJZuzs3UZR9aWOUr2hnKh8jm/+xpSlxWilHP4sQx8Mh8PYkcdQrMm8iZx0DU7KavOJ7iFM4YFTdLjaUYr39atioBbljCcEaiydTGPf8im4z5WVTYRCKSrKehIAgkFHTn5CXr7wO0Tzl+VUU5udxfV3qDl58AxRinOPUM9w6RK1IOUKkbC5Bf7NulDcxSPsS0QZDMQqFtRn5m4UpaxGuK9zYr8vzMt1TAxSbSqPjIVS6G9GgimGqp1NV+XYJgdJS5Dvj/rI5jjeiiXpTHrcvzlHGqo09nkcR4XQtYRiFwvVGFG3bArLCpo+RgRuLE3K1g3FnoipQhQgEHziWO6I8BBjk1KO1UYrh0Hoso3lbDaLthzODImcdJXK5sTQCcZ0tDz4gzEcbS+ncb7fISMH5z5lqlIOkM8ho1r//VscxzNTZA+fePoxfOWFywCAC79O3dVA46HR4ncXcmRlHRX5W/bM4vxC7GS1uMBxcHKZ3732NrWWX3nhVwEAHekLt/a4rly5wjHwwLkPoCXk7NQj1A0elZZnZ5usysK0nAszylha5s9723u49s4KAKCidci0KzNznGNOrHHiWBzIDatjjmLpfOwQGIx53gWtlyXN7e022YXlM1xfjir7yClX4JuWAmqeOVoKBe2KGRny873YBZBI66jXiPOnLBds3DusJZkVS99QH46VyXLsgbNo1OVqJX1KJO3AmjQ7M545WPGazS2S7SuJeU95Ll5+hc6iloeUzfF375frWaPBe1FKeS2hqiV8VQC8ffMWemJXfMvk01i5s2MsBM/hYWUmVjS/SrkMSlpbXLHPb7zxBgBg4YhcCWu81xXETPX6Yrmkhdva2UNNLObqBvt3d4/f6Q6IulsWoDmMVaq8593Z7cdsiulEwoDbbeve12rzX3NJq8jhy5i0VCoV59IUtbbZfcwQ9L6u6UC5fr7GWr/fj7+zvMxxduUKt5sVUt4xWfF90BwnhXy6iFSW1z3OGcwf6KfSWZ7vZMWAMUXGmDha+0cDc050Y+dAo6BSYgLT2ta//fl/w5/jNV1rvvI2h/1B/EwxkpNeV5oeYyZG0ocW5Fgaab75joPI4/aOZTneig/xmJvSPT7xMepQUwHP4fordPtc8VmlUZ6q4cSD1AwZQ5UvcL/7utBZaSz7cjD81Ke/n/3x0lcRRRyL+Rr3++Hv+CgAYE+arUad/x47zbFkbML0LBntty9fwYW3+Fz0yTTX2y1HIhqrDknxOfG6wzF9/BTn3flHz8ZZTY99gM82F15llZM55j3/2usAgOc+zuO6tcJqh5H007MLx/Bbv02m+/xDJwEAGVVbrdzhOlNUxVVlhmzcsT77fCA3vK+8+GUEqqQKhzzfUoH3H0d6oZ06+7+kZ9KxGPIojDDU2m+uj31zItUz5cw8/6bT5PduXiKzZyKrqekqio40gsoQy2tYnpBr9MMnuM596hNcQ+ekSU9HwKl53iNPPkT3w8tDapYr0ro7dfbDstiwvM0hVXSl/Aa8QLl7ojd7A56DDz6v9PR85MkjtVIS+x60MSPvhWaje6iPUulv7jXpPfFSFYGi1lDlDXXRztUaF3gnncHWDh80TRBoJQf2EDk3x8lhD9GhrCKrpTxqsqTd3eHfdHQTnFE52mBoRhFmoam/VWlEoVRET/bjFoRmL4DT09zG7Ax/LkhcF4r+LFdqGGqg5yUizBVlVdk/LAQcK+TOTCdMoOg4TlzWZQ/LfU0AM7mw/Q50AzywK88gUOnRzrZeSO0BPSWTBdk8b6xTcKicvJgO7fRCeDr2SDaaroUG6iGk0eSiUqlN6Xh4HUrlfHytrly+qj6Tba9eEOxdxwL8zpzlxNvcJlXb7vVQ0g07pdKTxh7HyOwSr7un0saMbDeNbq9V+HMu48BVOVFgL6YqBQgz/Dzy9BAnq3UrN/GymdgIpd3homRjxcZd/JKtcWHX6e5Q5kgPFLUa9ztSadiVa7Tzfvw8BZjdJq//dp20upurINRN0BarSPT1yCxx9VJlN2R7UbKb93g8/H3Df61kxEoWTSht23IjNz7fSHM0I4DAH41wfzYPQA2bQ5770899HwBg4x2GNF54/stI+yp7kvX9XIXfzckMZu0W16Rnn/sjAIA3XuGN9MEPPITOGufSnVX+m1IYbn8oA50cAQ5f1tqFouIWZHV85c2X8Uf/5F/kdzyVe2yyr70859idOzR+GWptmqoKhKrvw9NLTWtfpVN1zpeuys+OH2eZYSavG5TGQFZlGv2BH79M2bVvaD4MtJ7kpjj2IxnsdCQGdv1UbKELjflQL0YpAUhIc3zuq9SlL3H4WDkT/W47Ns9ot1SGpFIVK4++rrDMvkobS1Uez9rKKvpavGb1oumqhuQRvbyUVUJofbi1taN9cZ+D0RBLKl05oVIhs3S2uX75Gq/3E4/zIcDZUXi5XqiLRQd9vXi4jrYrm+Rl3Vv6PY6Pz/3SFwAAlZIiGlqNeF66ijZoCVjKyRQoHHGteerpD/Fc53n+TV2n1y9ewpLMRZDneY5d7m8+zX65eYuGAts69raE5eVKDWt3OL6zAh1DrQ9V2fX3x4fDai2iwwDFTqcT95X9zlq5NKXv8sHUDENszS2VSvG4M6OlitZyswW/n1oURegPB/ELkj0T2EvmyB8jFRwu3bZ+HU2ssbYu2+8LhcI9IfCxmYXuW/Hnmoe231D3xLyXj8db0Oe8t5dqa/Y3k/eYIAjgCqTp6dqk9VI3qvPnY0c43uaqfHG6+qYMUbTeLerFGQAqFiArg5qiwGZPAGKgl0lP96I/+tx3o9PkM0xG0Tu7e3p5UEl2RS9PJnWwEOZCnvt68smn8JXnafyyIhOJ3YYAN62Z3/EJlue98QbnfaHIl6/jx0+iWec9YXWF8+z8Ob5cWfmf2aFbCLZdL3uRHa5uoNOxUliC/jvbPKecSpR7AmsqU5z/2TL7ZaXJl9DFxUUUrhW0X87ritaZXJHrsUkP0hZQLuMK3/fjZzZ7mY/DpSekJRYRtF/n85k9mzpw42eMIDLglrvJaH8nT3L9nVJMRwoCpEZBDAwf1Tr2thEnWt9P2T0rLdMbMx+BgT0D9Pq87vbC71jJrJ5py3q2dkMRGnJuyuWy6Kv8taaXSnsuHwXfHHCclP8lLWlJS1rSkpa0pCUtaUlL2rto7wmmKgxDdHoDjFSi4Rgyp7KL/W4HGzuH7Vq9NF+BU3pLrerN10LwIomsjx9bgqvX1LMPPQgAMODHzCficDu9Y9rnM7LQHPv9GGE9fpKIiglrS3rzNVHnJLpWLGURqbyuVBE6FBKdzehvQ9kLBxHf2kcSV3txGG76QCwo1KAuo4qpGhEQKwPclWXptoJDzz18BDvbRE9SEoUfkzHDtpCQQCVAwz5RwuWFkwCA22s8p9dffwdDncNp2aMvLZNFTIvlccVcOLoexrK5uVRMJ1+5Qgo8I+F5QWL2iowxzE641RZq7ZsFfeXARldMWVFBpF3VSJmdclOi/uUlC/AT/xwOEaqErzIlOlmBzqOCsS9CXHsq2RGaWMhk4DhWVmci4cPBjNUKt1lXMF+jbiUwRP/mZhcRCAFqtHiMg6HMVTpEfLbbRJfSsnKfeZDXdn+7jpTsnTMqxRiL+pcmPg59jsM17xJA8/dOjDR63iSbZaHUh5cDOzcndJBSuaWVXrgq4wriqNH7rKU8ID+Lc0+xLGX9+u/pc60npTyKKZ5bv8frNGpwXM4XOW9vdrSQqM9nhAauvXQhFjW7Gi95MUJTVc69zDTHp1c04xnOzfoe17ynnvgofKH7bZWQZiQMH8vopdFfP3RKx7Q2+sNBLO7tNCwcndcyIxp6S+hndfqwwN3GSKVYiI2DYrZTc3CkwNa02OHWfl2/5/fml5bQ6R9mPV2tE8irfFbxEhlHa2OW+z15hGtuNr0Y77cn1t3WQCv99hXGXCrw30Brj+uVMNRcq85wXRgJ7Rxqzm3r2plRwryE9UuLZKeG4xHuyLr84sWL2r7YP5Vhffpj/5X2z/GwXOVxvhOSQTt1dBEvd74MAKjvclv9LsfQS6//B+5XtvQLJZ5TfV/2xKMumvsy8SibyJ5rbqjyYccjCv3ll1g21JZdf0EM/CiMMI4DU7mtp5+hMDybpYHPW1d+hv0g0XtnbPeqaYzVZ7nM4SqJGaHfO2JZ7bpYNYf966XTMVI9FLuQik0veL2LqoAwk4Su7vmZzEFYe39w+PrbunU/tSgKMQ4GyKvcznFlRiR0vlwtoKPznAz/NZbJ5lKguWzMguu6MZs1yWJ5WpMCGZYYM5QyOYH+LpfOxX9r17ml8WRlUHY8B6HDuXifFhjvqFRqrGea2UU+J91SWW9f7MpQ+wi17nRHPnyNUTMPqMr+f2xjR/cpexZ4/ne4Zv+x7/0T8DJiR1WhYqZcjsY/dFxZ5UNYGb0Tx6sA58+/DwCwcZ0l2tdWWFlz4iTL0i68QoMaR/e8l17kOV566wpOn6ZRxpTKZ3sdzqfjR08CAPz1FR07x7eZMDz6KOfhl198Gd//Rz/N/V6mLCLUPT+ryBcouNhMKE4dJetjRibnz5/HpaustKjvKrLBnht0rXpi8IcjPuMU0hYjlImf2bIaV0Ec16N5LxOfVTF5nQaPI6dzcd0MejIgKSseySpbOtrvnU1F6JqVuxnXZFy0Gzym1hYrqrqK0MhGPMaHT3D/+TSfk3xVf6TA4x2Ne3Fgckb3ZKu6sjFkVvtQOLCVwY9HPuZmFXautcjGzuibXG8SpippSUta0pKWtKQlLWlJS1rS3kV7TzBVTgSkIwcFhcHm5olutKV92tnoIDQxfZ5vz1ZfbYjAzCwRmdlpWdQauhWkkAaRxLxqMFV2C18MjdXom0HE8WNED1yhHYPmFlJCdALV/Dc2iVJsSxdjDFpReodaWch+2Eeouk3Tbhl6J5AOKTEkjlAUs/ntjyxANoQvLVm7TSaqNEuE05iIOwrs3d4kutLY0hv7IyFCn+iAJ+Rh2CYC3d3l+b99jejGqQcojDYtwZuXWPccOmPU9/ndi31+ti9RdE0mE0eX+Ja/I0Q2yvNnLzeHkepcTzxIlqsncfJoIFtdiacDEMWdrhCtnpUpxJ3VfQz7QppqRBaWy6bxYp/6AwuMUwiukIicZ2GTGYzlxJuaMqaG17TsKoQ5OhxQaYhdLp+D50r4mzV9A5mIngToWdnMtoVEm3FISezCxtYKUrIhD8SirsiQBRL5Gvvm53idZo4RmVkMFtG4wWu2cUsBs2nZ3IqpCsUkBoECC3Mac8b2BSVEQnysZnqs8x8L1TRheBSzW2Zp6uDiBoXFZ8vs/+lpXt+yd58yVaEP9Oq4/TbF/6MmNU4VmZYEYYiaarvfeYXI2NJRsh4Q2vvwEq/P9ed/EwCwJRTuyNEHMCsTgUCTvSwBtY2pvTbnWlmW2r6vOIlYb9nDnjSQ+z2Ok4I0Q6Fs+kfSB5jWwBMpOxi0kBbbX9E8Me0lZEZTF9OZ6krrJc1eLmshwT7GmuMHrKzpODnmBQqiJCYl0tjzh/1YAD/WumlreV+RB3khx13bh9mnFzmuWs1mrMNxIp5DWUHGW1u8VhALGJjnsuzSO/stnDtH04zPfu5zAICHz7FKYWODrH1RWp6lZW6zJTH8m2/RnMLLZOGqOuFDH6JmqSF90I0bXAO//Lu0FE7LwKQrBhpi8hbLM/j09/1ZAMDP/cTfBwB8+mO0Zd/dJZvV3OO5DIXSVoTwptwIU2KcAs31SJUNswscO6EC50tiNhZl67wnJjOTSuGrr3B8l6UfvnKJ8/hzn/uXAIDpGbJO6xtcz37oR34YAPDCiy/i2jUaOxnrPdY9aFsBq12ZQRm7mdd91FiSfD4f358m7cDbcawGz2V+XoHOMixxXTeu/gi1bjmOMSmujuf+YawiAIEToikzk1jHanqN0In1VpPMlDEz1s/2e/s8nU7HTJX1r7FdQzNZ0c95GYYY25rXGB+NRjEDaAi9HY9t20gf+3xKplV7eztI697m6N7SEhPhar9uhvPaT3OeP/MhWmp/9au0Wl+YnYsDkUuzHJOO9IizadNrcRxWprgtM9/Z29nFSJUTvTH7JKu4A1+lHGHIc1COOzKuVQPpHp/JIq37X16VHK+8TCbm+g3OmRntt1q0yhsySlEU4Xu+548BAOqqUMnKGMKux6nzjAqIVPGyusq1/Y3L3Ha1Wo3DhF9+8avaH89v+ajGfV4xLpvUUA2kYV2aJcu+uLiIRRmn7e3IZOll6sQePk+NV0XGGbOyZR8pWNdLOZib4fnZuLP511cF0eoq105b/6FnnlxObKjvwpWRWCjvgbYMaLYVoH57levdygb79sQJ3tN+5deex6/9MpnHbo+/88AxGgz4TFlT+PSU/AN6Ix5nt21Ga04cpeTqmTuSLria0XOgSjjG0pJ5GekS8xU0pFkLZdBkpjlZPcsBWt+/TkuYqqQlLWlJS1rSkpa0pCUtaUl7F+09wVSlXBflcgX1Bt9MC3IXurPON9QwPHC/qwi9M6aqoqBeqyuNXVWEpJfKZUzJAabRIApWlabHdS0EVWia6mwHsg415H5/fxtLS2TPIoWdCujAXG3h0LmYdqFSkftV4GGqljt0bNYcuf10e0Q3ymYHj8MhiqmUFyNbg4FsjfW23pADS6NJpPvimysAgNOnybZt72yiKNtIQ6tLQiJeffVlAECuIGtO1Urv1YlENtvsr3QGqOocFqQza0irMRqoDlco+ZTQ5I1tHs/+XgfHjrPvzpxh3fELX3pTZ8nrkB6xH6ZmiVqaB1JfLozZbBbFvEI6uzzfQLXCEPI/MLZFuqCxEKFIlp35YgblaSIOmYyus9jMrlinlmzoDe2x/oiiCJap2B0QUW7KSt6TZitSIfhk+O7162L7whBLx06qj3guxdIjAIBLV4iOv/UWka9jQpwNGapWa5hV0OxjVqN+mTXqvYbYgR77YWyMhNxvclZD7jjxeIoRSQtS1rg0DcMBEiytXxDEKKIFYp89y2DEo0K37rsWjoHeBrwOWSA31DiW/nL57Fn81udZQ/9hsQudMRG6tQ3qXtK3qRFsNvj57DQZ3kyqg0gOeXNC4Nd3iC6ahic/TSZlflqBljMSEox4HLduvYPVO28DAHpiYJaK0tjkuD6OA/7rCBUcat0a9rrIav0pyF7bkLuB5uvGOueRuXfOiyWtSC827LVQFhNnQaGtNufJtFi4UWQupTx/X1bM9eYu3KHiKjQ/MhakrbU2dDihzAG1Lz1n0eG51vshhgPVtA8VCyDUszfkfn3psfJu8dD3ipUaOnJufEwhy6MB7y3v3OK1m5tTRIOYoYwYuuUjnF9Ly0fwzk3O3ddee5XbkGOYOdR95Flayb/xGufv7jYtho2x+gf/8GeR9xRSriqJz32Weo2//t//HQDAV75I178VaSF8rS9uOEJbVOCMdF7IqzpByGk5LfRfFOVQx1cWSr+5v4/Fea4lRUUHrPeIkE9Pc40LZPGekib2J378HwMAmu0GHnkfNSbf+QxtoP/VTzM4tliwcPrDTqjW7OdMJhOzKZOhtMZ+xAyLrruN5W63j5zsxsfjwzqhMLx/GCprKTeFYrlwoHWVliNlURzjEdLSzFilhK0V9mwTa2AVH2KsdxAEBxbtd/U9AIy1v5HmqCu9eGg6JX3fSaViVsXYdS0ZSGtbGTFGI+mz1uRwmstl4ntlRa7HeXO9FWM1jo3cuN+KXCaf+SAdb4+ePI7VDd7Tbq6xMmCo57Nansc4L8vrp55+BgBw5xrX7iAFpMwRU6xFr8fzNi1rHHYsjY09Y+XkduqPx/Hz0Z763YKDjXlu65nHoh1sm/Pz8/jqVxkl88HHn1SfcL7XpLHa3iZDU5VNfOwaLF1sq9XC5hr3u3abn70lG/YjJ04CAD6u8HFj4euK1lhXTMT5xx7Gk09y/x05Fp49x2cMX+fb63EfvducuxU9R3puGYGYYHOENJfovCozhmJwnn+BGk7LADcWdNQLYn8AGw9Tqq7oKXJnKPanrbiYyzf5rLm218ONdTHgDZ7P1jZZvGdOSR+vZyx7Ltnfk6OqomIKeQ9j3YNSWtcy0rTr1ODIQdbX7z15vrf9PuyR0hPrmZaOvCOm7httCVOVtKQlLWlJS1rSkpa0pCUtae+ivSeYKsBBEKZQVMhXsy0XOOml/CAVv9kXioeRh4wF5hrKIjQrm1UdZOTEgZOWn+G5VldJ9KajevpFsQDGUBnak/MWUYpZJMK2bi0AACAASURBVB2x6m4D1YqbxsQQOUOOaqVa7GxUUJhxnBcUA26HHfQsENFQrX53iK4CR33fHHmEVo+IPGzvEt1ZW+e5TM8QGTnz0PsBIbo7O2RiLinDoC8nmqXjrN2dVWBuy1AeaZoeWl7AxSusrzeUNq63ViZLT9oMgaTxOVcrxYM6ev1tbYao+OW3iJo+vsi8h5bCl8sVORWp3rtYyWHQkw5qzGtZtzwZISOR2JWikGc/yz7NzXIbU3OlOHy3JQauWM3r2LlfYyOt3a2tCoLDeqSO8qpG0uX15PZoejRzsToudqparWJdWSzbylxLKSfsA48RXfrs534HANBQQJ8FCh49egzve5To1I40B/MKMdxc53XuXTNWTU5dkbKmhDaO4MfMlCGedi7p2G3qcNaV/evARWi5WNIxvPkGHdE25cB2/7UQCDvISxO4eZ3IXk6M4POvvYZnvpfI4OoKx2la9fplZXDA5blnxeLm0/x9a+dtpAuc6/0St792h+NjUXktJ86SSe5q7UmLPd/fUR5epohchn9zVo54t29ShzPWdRpOf4D7L3H+1hVa2BwCFQXVDs1JM9bTyXm0Q1Z0/SLXgvzDrLlPu3S6qszMInQsHFosmlBAC7Kd8jk/8nKkDOSm2R/7cBQUG/Z5rD1jm3SezSH720Jf8zpeQyELuSmUi5zTceaOMapyuhxLB9bvsp9OnhLDu76KlQGZcmME9vbYD9/xXR9hP+9z/RhqjBvCuifmv91t4YY0E1MVnucHzpOZ+rVf+TwA4IsXiNj+9pdeBAD84N/4IQDAo0/wuvxP/8N/h6DPaotKkddm4ypZrx//X1bUV9zvX/nBvwkAOPudnwAA/Ot/+a/Q3+e6BOUFmeuX19P4m2Vfeo4CP8VgOPq34vmxU2Ovw768dJX9cvk2tbeWn+Pm1U/bXF8ymQyuXeZ4u/QGEXPLNivLDa485jW7eZMsrLm82nH2Wp14De1Kj3XqFB3Lxj0h12KybG2y++dwOEQo5q1U5Pl3LYxUIbntMcfQfdHCCOEgRCmjHEtz47OwXj8FZ8SxUG8bi8ybqZ13Ruu06eNiR9wgREGMS5yPqGeKtjRF5hQ41H0srfuk3QNSvh+zhhmxLD3NuzC+Dxx2aswXpGuOovi+sDtx2nb9Y12YdLqOnvU60vRcu7GKtDSin3ya7FVfGhc3w/FWqfDfx5/kGPrZn/m33Lafw1gMb1ZOdPaMZXlgNq6ysoMbaj1sBurbTDrOO6qp+uLZpz8OANi8zfE9krNdqEoXJ1Rw+qiPmTne9ytzZIAh59j3PU2W99IlVgWdkQP1iy9Tj5lRJtep06exqUqqxz7M54Ff/5VfBABcvMp1qKv9/ZW//NcAAF949bMADtbFC2++HM/RmTn++9qrZMbtueDkSeaElaW1nZUedrdRR0p9lBHbaJmfOXkdDOpcy7Zv8p5RlsbJ8sQyuSJ8mHZNod/SKj94nP2ypWqHS7f4+Qu/zYDfYb2Dxpa0Yi1lO4643/efVTXYkGvXdlPPJ2LKs+bw7DjwdeyOSslSaY4pV9d9rOqnYk75YF2Og5EfHLht6nyDOONTD1HfYEuYqqQlLWlJS1rSkpa0pCUtaUl7F+09wVT5Yx87uw1U5a6SzZPJyNrbZKuNolAbeys373xLe59TTlFaLFRKBcHZXAEpR7obpYnn80Q8DEWJ8x6EalpitKFI07XjMQJk+ze0P5flNjpyqirozT9tmUBuDpHengPfXOdUz6k6cmMEunIWjELuy2qqd7f3sbrCt/jnnvsOHqtYjqZYjd/9vee5/wwRigfP8N9CMYv9faLTAmNx8jTREifF/q3Ncv+e+nSgdPD3fYCI6/rGBr7z2Q/ymOrcyO3bK/wb1axaxsG03Bdjl7O9PSwu8doYEnD6LJEmX6nWX36RDjVz0mu9//089pq2tba2jv7QXMrkwig4oCld1FBOOE8+yvpbc4NMyUlvt7WOsfq/pHwsy1MZyMGx3eYxG2JntcK5XC7WXnhiwDZ2lDklhspq1guq7U6X5c6XMr0S0JTDlx/wu4ba9pWtYTolV/XobTG2YRjihZfoCHR0mYhYwzQoeY7dY48Spd8RAjTYl6NgxpDC/fi8bLzPzvK6tLtWM3ygoeJ+pX8Jo7u0YkKC9PPG9jfmiPOeaykXKFXRH3AMzCl3rqhMnsePncaVS2TjyurjnISD02KcbT0ZDZTFIS1NvlhEpP7Z3CIr+ZGPkCHxtKZt7nJul5Sv5ygDqSzkEjMz2LyzAgB4+WWinHmhsDPS5Jk+obVHBLGheZst1WJNVyT9SUZapo7WrV6XvzemfWOdbFxe2qpMvhCjuxkx6DZvwoBj2xuYLoGHPBAq7qVCDPy2+lnslWrqN3fscyHqWidtPJkr2d3NkHpjx40puaPv5oSYv3yBLNDTTz+FgfLstraIbh4/fpLnqzVgXo5ZKRxmSKwiYNjrw5dVWGWB5/353/htHoeQ8088R7ZxFPGcfupf0OHv2DGuQVfffBX/+z/6uwCA1y8wr+qa9EHFBa5xY+Xk/MIv/GsAwNLvcS0cRGn813/pLwMA/vm/+D8BAE88SUa/scex0xLz74q5g9z4dqRnnZqawZ6+2+5zPxsbHI/GUJgew66DVWeMRqO4T+z+dPs2EWpbPx59H+8P5nxr37OKBMdx4rXENMaT+XnGehiTESh7xvM8jMUydDuHx0S+UMD91iJE8H0/7t/JagDXdWN2xb5jP8cZVNpWV+yu3WOz2Wx8Pa2/7edJR0Hbn/W7Xfe068X7tWecnOkeY93b4bwyu2ae58Wf2b/2PBBf14n9N8QyuCaNzqQRSqRz6RqfdZrSBTkex1dGzMgLr1LrOi92qL4bQbfquK+sTZ5vxjusqbE8q3Q6jVB6+KwyJ199gXPWE0Mfyt10tsTn1NmlkwCAfm+II9JBP3yWFSVbm+TsfO3XMr1sqj4oRukru3Tn7I66GCt/zjTmn/z0xwEcMMFdsXpf/OLvAgCuXiULdesWc6MWFhbwgo450LpmFV6eqn42NrjOl8sPAziYl6MwQFvXKtZcWx+KMb78Fu+HDT2XmoNgXTmC3SBEtcZrZeu5q1F76zrdCLN9MYj972SfguvBxauvYiBdc1cZhl4ozWaoDLsWqw1cRzlaWssHY8u285CTDsqccGUyC1/3g2l5MXRUjeXJpXEU+UhLf2eVFx3dC0olW2907/o6LWGqkpa0pCUtaUlLWtKSlrSkJe1dtPcEUxXBQRClsKV67oKQAhE6yGazMcKVVv1kTrX5JTkRGcJZkfbJXK8ymdwBQi8WwfKnSkWxW9LjpFR3WRIrFgnNCHwf9X2i0EePUnOQSZuWi11YLB52wjKEplw+0BT12jzGuHZTOoMQXf0tf9+WXqigczl9+jSWlJlj7NqOsgpuX2efjfp8y148wm1Xq5ZHsR8jvXYcL36FdaznHqa709Qsz7Or2ti8kBg/ML1DDh3Vwpr+pjYlPZIQKTfk2/32zqa2weMpFvJoNvnGny+wr/ZaREfPniNa01WOleWEWer37AKPo1iuYmeXTnjTMxwblkg/NSdXvA/zXEpZnksuZ9kF7MvdvS3MHuG129kl4jAzw+tfyinVWzXjxuCYlmM0GqEttz/L1RnKGagppuqTz35CfcxzXL/Dftjf57lNTU3Fjoy31+jq5qUNrQWAA9TIMlwMbXznnXfivtnaIAr9+BOP8ZiVC5Gel8PjtlAmnVNL7FixWkReLMjOHo/Z0EQ4lkPEPrVxn0pZfToQmY5oAocJ71tcxgFSaeTFOjXlZLW8QPTz+spK7HJm6eyRuesp86QlhC5SflN0F5K7p36fPWK5Ibxu44BMYlauoYbkBcFhjUm73YZnDJHYo4KQtIzc39a1zYGsteaPCnXsdhAKmesold6cu+JrrHPw5HY4EPPZUY5ObXY+RixjVF26OnNqQzqMuxIAAiG6A78LX8g0VMvvh4aCKpMu4jnYmmT7srViNBrFiPkkqm+IeiAWri9Lr7Lmz8qt1XidnptlPxvrb+y3L+bM9qvlBIuzXGfdlIObl4nMriivyZfm5YUvU0u1v0ItVX2Pa+MP/Lf/JQDgR/8O2aknH3sffuanfxoAcOYM5/4nvvs/AwC8LfT5zhYR7fPv53xui0GEk8NnPvPzAIAf+iFmR/3UT/0kAOAjTzPj5+VXeHytNudzyrGxFOmc68jrXrZT5zF60guYo5wh+MYk3N1srEzmI1mfvfkmHQuNnbD1y1jZy5cvY2HB3GK5f7u+Vq0R64snWhAE8XZ9IdJhcNhZ7H5qbspFuVyO+87awZobwdf4zmqej/zD7JM3Mf7tOWI8Hh9yAgQO2FxH9xhzb7W/MQbr7qwre8YyTVU4PuwoePd3796G7/vxfu1Za5LltKoPexYpViuHtpnK5TCy7atSqexyG64c21KQPk8Zew3pUb18DT05+NpYtWbrix1PMFaFkc7Bcq3a7TY8zRsVHqAmfdTmO3T1nFL1yfsfJUPraG69732PxU6JczNcPzK6X+9ukhnOm5Z0h9dhVwzx8WN0PA7WN7AmbffNS3w+yIq1fex9XBtOqLLlH/1jOnTa3LVz3N7ejK+JJ8c+e6ac0XG19fOFC9R0PfwwGav19XXMSFM+sBxLMcXG5u/EbtxaB3TNY31e5MC3cihdBl+6/YcfpfPzNT17fPk3fgsAcPVt6ja79S0MOryGvub3B86wb9ryC6gqQnFV3gCB6fj1rOlGQEbPX66cCyONx+ma1v0h1x9jSFvm8OzlEEnvN5A+r1TWGA4Oz9mv1+7XJ6KkJS1pSUta0pKWtKQlLWlJe0+09wRTFYQh2p1eHP608Q6RwaEccjw3ihkaeys3RGScVqr7PWi7ucWFsWNgVpqIkydPAgDqe0Qp6mITHOmU7twhK2K14qdOnUJWOqyWPPENcaqphtTVz5M140EwxmhkjoRKOY9rkfnqXRd6t7HJ/Y513g88KGZjZQ3rq7e1DZ7XG69TZ/HyS3SU+/CHPg4AePyjYt/keJjJFlGXq8wlISC+EBlXKNbIXBCl7VlZJRLgi+WpVfMHqLUQgNk5JXLLRaYvdsVSqOeV9fTahUuYnSMb4HrsQ3PkasjlaG6R24LyeLaVoZMV25JKpWJ0LCVtyCPvO8/9e0pdF6vV2OQ51us8dkPsTp14AGt77Ku5mZMAgEJeydxixizjwNyrDH3r9/sxahG7COlanjtHRzBzVjREdm6WqM/x4zz3bCYX53pYTpUhrlml0XfEbtj3bJx2Ol1k3bKOUeNvJI3KFhGvgeq9F4R87XR4zWcWxbqNumiJtbDzMtTS3J0isSaeCpID6T8QpRDEddZx0AebM/Hz/dR8F77G3KkHmefRbhJZrJTKCDWHAmU7VbV+7G7zO9ky+3as+W25Oq1OB2PNsZ0tMlOFKn+uVemw2ZbLnN+Vtkjjuiu0rlyu4tyjZF9TsgldWVkBAKzdYV18LU9WzRFL3m8QScwUplDf5Hd2xGYV5ULoiHEsSmtYlalpVy6iG3KFy+VycLzDukCrCiiJ5RgGqjGXZrQnlr4zaMSIsavcoXxWmYA1IeSBWDWt43frM4ADlhY4cJXzJ9bYEw9Qx2Drda1y8L19zUNjZI5K82CI/Vh6jUDzaO1tsi7B0JwGU5jX+v+MXMA+85nPAAAqBZ7D27f4N0Wd42/+Kn//4BH+/k9/z0fxH79AjcMbbzPzqumww2tFrh8f/sjHuP8tHtfMHMfH+k49rob4pV/6Ze5HaLeNt4U5rnlX93mNQ61flvWEyMNV7bc3Zr9a9o7dJ219tJ9ND+W67j15dpOsot3XII2T6bVmZngOpVIJq6sch3Y9rQpg5abdz7KH/g2VhTMcDu/KZdJ+JjIA76cWhiH6/X7ch8bY2NiOoghR3K+WIWVVOcr4ckzzfa/mapJpNGZW3RnPA5s71mxfHT88cGqMXRblRmzM4ARjbPcv13Xj+W56O6uCsGO0c7D53dGaau7No8DHUHMxKw1LTr/rjDhXJRNFbZr31EAVAsN+756sNFtPJjVl8XOM7lvx78c+atK39lV98sijfMZYu8ZnihMnyBTt7rBvT1l+XJRCSX1n/WmOqbb+D/Vs+/BRPhedf4j66Rt7/P3UXA27df7NzBxZ9h/4C/8FAOCH/vrfAAD0zBVaz2umx40dHFMp9OXGPKX13iq7Bvq8oFwqW9Off55a/JmF+XhsWm6rzbaB9Edbmt/W7Fz7oWU+FWPdfl7ZYmPpwC5fpINhbpHugzcuUg+2vb4CACjmHPiqlgiG3O7CNMdsweXPjX0+v7nKNy2o8sbT82Q2l0agQRLIlbmodXakPMRIFSHmtF2VS+84lY6fAwsay8aqz05/cw7HCVOVtKQlLWlJS1rSkpa0pCUtae+ivSeYqtFojNXbm3HWU0qBQiUhMoVaLkbLDCUxNxN7A63VjA0R4qWaVmRGGMNSvomO7m6qrtsyCtLKmjK9jsO3fMs2uXLxFXzoSaZ4B1kl06/zrb3b49t1T1qbmWnWrhoi1Gi3YmSpNzxcC57NKc1c2RXLy3yLD4Ry9Lt8Y37n+k1MKQvn0mVmhow89lVmikzF+z/In8sp1fLu8txyuQx8n2i4oaBFEUO5Arc/VVJd7e3XAABzM+zDfTF5w+EYpbLcFyOiBK6KUjvKjRq7fMuvC02wzKcTJ04ikCvV7CJZlD3prm5fo2tNm5cDlRLr73ekrZtfUA5L+sDNz8nwOBaW+e/SaaI6W/vc5vSCkL+A+3fk/NgdDpARy9ds8buex+8YWnXxygX2R1V5YmJqNte3UJ4XpB9Znb/Sxkvs0y+9SEeeZ58l8lyd5XG0GnI/ctNI5/m3b19b1TaExArNe/hholfZLP+2puvw5DMPoNdiP4eyPdxQPpXNg1adyO/MB9mHpWVe5OY1OUo6PYSq0bZciUDITJQzZ0v2QygdTNu+l/IRecoscgwNPzwf77+WApwMMgX20/Y20ciC2Op2p4kpzeWOnCVHuk6nT58EAFwVo5tVRkxW/RjAQ5AaaTtcF4olXtNeS9oSZQ2VxSyOtTakhWiGiOKcnkaDE8ST0+jCETnHiY0V+Iaasp6azW0MpLOpCfUtySFvx5DRCn/2B9x2XzqFkVDPa1cClGucH7msHJMyytQSqzJ1ghlHntZcuHJJcofwMod1F1mh7sbkhinTvCqLTkivzYlCoRCj3fbZpANrX0z6sZN026vv8riq5UqMuu7tkBFcFqo81P0iHXCN2d8lyzNssV/6Woz88RivynE1n+7ou2R9fvRH/0cAwI/9/b/NfpAjaHrAc1vQfeTzv/krKMtl8KNPMHtnpSFtsFinGzfJSlfFbBctf3CjjqoYbcstnJXe6//6d8yv+cDjzBY7cYxrYCQ0fmNdeS67dTx0jmzn1Ru8T8zOy8lvi+N9krW2vr3buc9YCEPEl5c5Zu9INxpr3PT9a9euAQB63S6KYvtMW2Wsou2v35eg1JpzoBvK6l7rTLAKO8r7u59WnggRRoEPR6xuVmznODxwXDV2JZ4LWm8sI9AqCEbB4ftGvlSMnzfsM5t/1p+mObdrZIySXbtsOhM7ZtpnXWlG7bsBLNPtsNZuPB7HjFvssjfBptm/dt3Lcg12dK/BOIBr95LwsJaskGZ/DAKtw1o7BwPTrZfhaz2x7TvqK2dCUzVKH3YHTIlX6PsBBtIQFfVYbAzN2UdZjfLqZbqLPnSGrPe53IcAcFw2ta7fkUPmiWPmQsy1YK/JtbOubY7EWM8WuYaOmj42y3K3Az+7cJVVA50x/zZUNcHsPNeyljRlGbnCBohQlkbYJoetnVm52toYm5rivDx/ms8cm/u7SKdUXaB1tj/msdolarQ4d02Q5Es4lZFHgTMO46qKoMd1NFXguNj2lfmqfMB0uqe/4Zq9Ux8ABWP7uK5MRbxmN++wXwpp6cXA8WGVIRk9ew7GPaRVtZFRZc/QNP+aQ76etV3X9LrGho/j9wDPNY2uGFPp077R9p54qQKAKOXEdHM8efW7vd16XB5gNLaFzeU1WTq6WYYqfXBUWucOHWRkux74/N1AIuXWgDfSWAiq/R8/Rpp3OGL3VEqDeFGyh1izcG8PtFiF9lDC49D4hOdlY5rUysrsHDKZqs6B/0auhTjy+L70/G8AAF595at4XELm+Vk+xJdrPLa0QwtPK2sp5hfUD9z/62+9iaVlfnbmYS4ODQWyXb/Bh4RSkX+7peNrtjjgz55hSdQbb7yJh88ptFGC80jW9QU9nA30IryUZ79sb3Mfa5v7qE2b8YVuKLKoTksQW1Lo3uYmb/z5kh4mlG24OD0Hx5Wtpmw2a3MqmetyMRsOVdaQ4/4LmqAm1CxXs3j7DW6/WuaiNT8vIaQepIoej2t1hd+7doMLpB9GOJfhg0vZTDzGh22GRyrZTGt82OI1kFCz2apjfpH7nZnhGLEyv0cffRQAUJHdZxDyZbPV1Mvo/BQqEoPaTavdZt/ZA44qn5DNS7xaUEBhhQvvsJMC9NDvqhw2V7WSVi3amnAmdD8IpXbjh61Ja9xJYfB909wUUKmgKpvwVMRrk/I5nlrdDkZ6yLD5u9Ph4r6/x4dWt7R8aJMWmt0fjlGWuUSpYP2jh6eRyl5cBWnKhr3Tkx261rnZ+XmsrfMmllXJRq7EOZc1q+kxj6Ojh58dlVI4qTTSmmMZvZjtbfK7dt1SvtZRnWPasRI/Hm+v38DpB7he7DeszI/7F64AVZxiaPbsKjFDkANCnkcaCjuV1reqkpUdPYTYTT+2cc4dhJLai5G9TMXW0jb2zPBHD/sl3VBTODAAKcigY+cO51RJD+Z7G/w56/HY2+rLrsCJubk5lAqcS89/6T8AABpm8ezyOh85ypiJvCPLd1mrlwWWbWzdQFTk/29t8kVjWmHgx2YJoL2pMpiSmQ5YabbrxXPLwL1dWaUfO86Hqguv0nDoo88wYLSrNaepB7gPPv40Xn2TVsarqxxLF2VXnZcZwKRRxN2GA5P239bseCyMNg6NnXiQBg6uq1nb21r3ysuv6jgOP9w3mzJeGg7jGJWWxkpL5Tj3ZXOcQ9bjk2V4nufFcoPJF5DJ0ra7/wbgvcbGir14GnhR1j3Ftn13yR5w1wuxH8Sf2fU0oNpepqOJUj77t9VqxQDIpKnM5NiJH/I9iw1px/uyY4kNM/Tz3aXAdr7Awbpw93ibHIt2vpMvd5P9EYZhfG+tqKxsqODynIyBZqZ5j1iY5wvTMcVwZF0PkcZxT2uxhSxvSHKQEgh7/QqfLWydN/Oqxu42vCHPZ65K8OQNWZj/pR9gtMLl12klv7ev50QBFFauWavVUFWp2qBzEGsAADkFZj/yCEsa63XOpYbK88ZOhKb9jcqOs3qWWb3FNdEkALmiZBxan4cy/8jn87Hh0ljXsKiQ56GFUGsot1RiGQhU8SMgq3tkTmSHI6nDtAD9osXacBPo6XhTGh/TtSpCPbOYr9ZIJENb5Y8jV9FHFp8kuUoaDqq6Z+92+Rx8ZGlZffXNxcYk5X9JS1rSkpa0pCUtaUlLWtKS9i7ae4KpchwHbtqLLURDoYz2lp3N5u5CePj2avatkaHpntHdfE/cl4VsPltALss364FZhFeI5lRqKi+TaM2C4PbrfAPO5gzF9rCvN3tHFsRm2atcMmTEcq2t8a3eULbRaBwLdw0lid/wJcjzxPqs3mJZWFGWqlMz/PfpZ57Aha+yNG/pE5/i/kRRLi+RhYocbVusnJfhW//84kJMge83+MYdSZxvAWhpGSUEQqLbHR7XG28SXQ2jPK5dJyV79swRfUZ0YixL0rIU73tCZiKhXovLR9HtmfhbqGSWf3tEfVjf5+83ZS9cm+XnN1fJ5KSyaWSFtHz4o2Ts0jKxGA0MpWAfm/W4CUUdl/va3+/g0fOyQgW/E5cTCc1+6QUiv0Oh+5EQm8ee+CDmZ9hHKyu8Rq7sxqdnOEYePE3L0FaLyE+zKfQ6x345deokXn6F6KyNnWeepvWwlcsEQrPeJxOO1bUb+txFT4iSocTlmvoyz34uFnn+nijKnNCd7Bmiabsb21i/Q/Zw7hgRtzWz+RYCVdKcstLGrixePc+7J6R1Ej2875ofAHt7WF8lY1F1ODdKmjdz8/PY3ucaMhLaWtUYs7kXqORkpPFiLEM6m8XYgiQ1t7tCjsea852A49kTH+8LYS2LyWm1WqhUiTpmhIIagpsXcpoSY9XXHCyWFN7d7cWGC7fe4RjKq6RoTuhbW9a2ZYm+B2J6I18l0V4JzSbHhydWzUJmOy3O0941IcZZs3jmGIlGPgZjmRtITB6XcqnsYtKm28ZTLNJPpeLPbN2MKwqE0KeMWVUwuNnIOymgYzkFFosx4Pldu0F098QSz+krX+acz0Q8zvlpotTt+gaOLpKV3lLA+qPvJ8vyT/+PfwoAqNbI5BfLnGPTZZYFVTX3hoUKNvdYJr6g8uWWWKSX17gWzMnCv66gybbub34UYK/BtdQsgx2h33u7nMenTnAd+epXaO2eV2RISeLrL37xeXzqe/4EAODXP/9FHtsUf7evoOhJgwPrW8/z7mGxJhmTSdb6IDRc9yLXRVPj3kwW3nqLgvVz59h3xg4Yc2AVHvX9/ZjVMDONSdajKQOm+6JFDP/9/Rj+KIriz4y9sWecyX42NsrYoWq1ek9QsDEhxsTcXVZ79+f2bylfiJ9LJudmbIcuptZaHHOTTt9lzHV4Pseh2mJT7DpbqZn9fjAYxOySbcv6IV+yKBz30LnYOd99L5pkVyet3SfZL9tXNpuNt29VL05sDMLzt8qWZz/ycQDAlJiNrZ0dXLxMa3CraHKVOjs25rd3ONbGTIc+97u0Fp+ZmcEDD3B9aRrzVOX688prZJs/+bFPAwD6MhT797/4SzpHjoepqSn8qe//kwCAN3U878j0zSzV55fJsmW1Rti9a+HoMmBM8Ku3BwAAIABJREFUobZvYch1mZ7Yc6SNy4aece5mJQcyGynLKKOmaphdhd13JA/xA/ax3fdCeOiKvTpRVmme1uy0lZn2VY5a43jQrRQF3R9DhAhVDRXoPWCoiq3SIp+TKzKWW9ezZUlr5tzMLK5cYj9PL7Hf27oO429S4pAwVUlLWtKSlrSkJS1pSUta0pL2Ltp7hqlKZzKxdWdsr2qIF5w4sNfQBAvZzSjs1ROrsKuAsvPnifb7wxF2hexVzZYdCqKU+L4m1N/qQF2xPf5Ab+L+EKFEAU6K+9vaJQLpuaq/HeiNW8LTMOLPo9E4ZhfsfOIAQIfHYejlUOGic0I1pxzqHnKZLM6cPQkAePmVFwAATz9F1iWVtvBhIgJbO4frP1NpD4MR+7VeV7hynttdEGq9tkb2pdk0PRj78uIlMihHlk/GbrbjU0IRbAfOYcZqSpqvOys8542tLTSaRNROP0T9lwnwLeSwUuO1TWf5b2dEtOfEaeoO3BxQmlLo8CLR+y0hHobOzlSJRIxly9mSXftAfTpVm4/9ZTsyYDD07KWvEsU104tzqjv2FD7Y6vbQavF8bompWlzkdx85T6HnsGpMA6+DIVHWOt0GqmIepqbYR4bsnzrFuuoDYb4YVRNmb+9ic5vnsyU7709+8uMADkKnI3AMl4XauBJ5NsWsPvR4FccfJpK+v8c+2mhyrtx6i3XeJoAeaCxb6GI6HRzU1cdGMTJU+H3CO9/7LQKcCG2tDdmCRMpaX/rjAKUy54kn1Mvvk02INMfzGQvB1eQI2V+FYhnra2REBmLSPU0YR0LegtBPC2ydMptyMRW5UhnDEb87DGSTq7nVavH6+Wkii0snZRe+wevYz4RxKHdJHhL9Huf+9h2hfS4Ry3HO2HKdgtaKTK6IW7doZrCwwO/mcxKBp2Qy0CLLd3tbhh1ag6ZnFtEdCDkfy2BG1QAWQN3uHRbOG2t8t64jDuadYEltDIYDraNamzsy5whG3TjcsdPkvCkWhIKPud/f+QK1TMsLZG2z0orWt+/o86MItb9ilXM9N8U1pj3kmBk7/LfrUMf52GOfBABcvkSBeT+zhNllslh7W9zulDQGQV7aFsVa7G7wOMcKxX3g7LkY9W7UudZVxDLkJdDuiN0ytqHfEXOYYX/44xA/+qM/BgC4doPI7N/84R8CAPzkTzKUeFK/49wVTWLXZtKw4uC6HBZwT8aZVKvVeN0whsSQetMpbCoc9fTpBw+di+t5aOv8U3YxJ/ZzPzXHSSGXy92jD7S+zWQy92iJYmZa94HY8Ers3mSA793N1ud0Jnfoc7vnTVrZj8fje4KBzVL6awVDA4d1SZP2+5OM2GSQt11D+57nefH+nAnr/IPKnsPnaX3oum58zJPN9mP9Pvm39nfj8fgedsvWYmOMHjzB+/Rv/sbnuRHTh+VzGOn/a9KFpy0+xwJ0tXvTmk8ylldXb2D19goA4Oyj1Gp60pafPE0G68o1/u3iPNfZP/1n/iwAYGaKxxeNfRw/yrX68m0ex8OPPQXgIAS91eWYaqsr5xa0HjmILfPNUC2vqp/bN3lck9fQmo0h13VjjbdV3fS7vFeN+1b1ojUjNMOQA4bV0TPz6WWup0VVjcQGIjJdsudYi6YJPDG5wUEg8VjuGgOratCzZmOTa+mimLtSRaHMrRbmpVUdmv5Kvg0WmP6Ntq/LVDmO868cx9l2HOetuz77ccdxrjiO84bjOP/ecZzaXb/7EcdxrjuO87bjON/9TR1N0pKWtP/kW7LmJC1pSft2tWS9SVrSkvatat8IU/VzAP4ZgM/c9dnnAPxIFEW+4zj/AMCPAPhbjuM8AuDPATgPYBnA5x3HORtF0deGOtTCKEJvOIjf2s25LtZUpTJx4GEoRPXgu0IxhPAtH6Pd8M4+kbDpUgG1Kb6NBnJiW5GbSbHGt+q0R8SlqmDKwVA21HIjcUIP80I060INW3KVi/QW7Yr1KiokNpMxC2w3Pg9Dcw6CdIkajH37V04oqje1t/pUaoAjR4U0tLj/fWmXyhWu9Q2h15bXWo41XaN70CFzqrPAUQuZvX6NaOqdDWm75Iy2uraNkyfZr195kVqAT34XrcOHYpWGEzXKRSEAqZ0xfGm11je21M9i16QBgcvjmVaYpbmvPDhDnVIQdfDoY2SE2tL5TE0TzchLLxcMUupDInHdHuu/czlZaDolDOS8Vt9v6tj5XXNs/NCHnsXdnehKp1bfvoNbYvOmtd/zjxA9Mj1eJMS5XLKwUaLbxuAFwTgOvrSQTEPPYrtXMRM56aTs+vvjCHv7PNYHHqD9/dod60tjX9lnroVJOgpllrNic6uLodiDY0fJAH76+z4BAHi9dB0AcPHiG9yfmJh0Vla6QTe2+Z207rXr/S1uP4c/5DUHUQT4QxRlbdzVvDLb1lJtGqsKecxorZmZ5RrgCF3rNdkXm7J4LsqCsdnZQUXzMqu5v6drHhrKL0e/llC3rmxkC7LE3dzdQ6jrv6Q1bc3YLyG209L/hELWimULzQSqCj1c2xD7bqG6QghHfTkaCrlLFRVRoYiI6QgIwHF54x0yVo8/zvmxeptzIRVyHtXkMDbSunX71lUUqxzrOYVADlQfL3L2HmbE2t3aB0NGJwM8rfmhavmNKBTT2m23kNLa7Up4NezyWDPSWM5Mc+1/+sO0Or/wZUYinH9Ims20i0hxDB2tX2PZIC8f4fzJlIkcO2me/5deoT6r1eI+PvLUJ/HCF34PAPDUo1wvX/7iF7j9Y3LWksPjtHS3+0Lr19fXYgS4JE2JuV3ZfSnW4WlumvW/aVH2WiPc1rUqylL/J37ifwMA/MAP/CAA4Jd/mcHChqDbWtTr9e7Ro9hcN/bJ9MWTmir7ub6/j4KOzZxv7ZoWFSRt7n/GoDzwAPv2+vXrscOuObh2dF5/CO3n8Ie83kRRiMGwj1Bfs76N19MoQLlg2jFdXzmm5S2qITyslzq8fek50xb5wTHY1vaNbY9GpkuUFl0PVEPPOWA8pU2MdevatgIT4v1HqjjxnBSG+htjoo1NQ/w3PN+YodJxWnVGkPZQkmNvX5UaFsMwGBoLxrGTkb66VD5w2jUXU2O+bP+TLLcjDbaxfkP1dRgEKKtCaaz9+qokmp3nONyVBnmzzrW82bd7e4DTD5BpnVnmWn1MlurrqpzKF3i+Z89xfalrnt9QbMNceQozCrst6Xm1p+33Na+KujfsWkxLwG2sbims2fOwsiv3X++AAQQOnpPt2bpQYV9HWuP9EPD1/DGt42jvcc7uqaLFqrXMHdgcXSGWv5TPYCw3P1sLdjVnPe/wuAykW/M1pseeA0/r2YJcdbsB95/W2DFuq6iqDl9VIEGP55gtpJGtcXydVMzE2Od3unL8jlQVlde9ta24kkzWwd6O3F0zpu+UxvCbfMb5ut+Oouj3AOxPfPbZyAzegRcBHNX//wSAfxNF0TCKopsArgN46ps6oqQlLWn/SbdkzUla0pL27WrJepO0pCXtW9W+FZqq/wbAv9X/j4ALkLU1fXZPcxznrwL4qwDgpV14Tgqh2CaLyYndaAoOAv1uNDTf/aJOQAyJx/UvJVQjHTuSOHB0mhY4ObXIOvcHTj5yaD+GZhh60tfbbWUqhXqDb+BpvflbgG0ECxMzFzYySp2WaskrDlJ6o+615awVqr5c6MGgS01CjcAQWk0iIeMxz7nb7cZobUHJvUFaKIbe/FPg76crPL6Wuaz4I4yl48jkhZpvkqkzDdf8HC9RJW/sjwKN2+yH3nCELTkt+R2xamJg2grStXyGMycZSLnj03Ws0x4eZNCIgcmKmSrmrHbbWC4iEsdOEK1sD7jtxx4/g2KNf5sWmmT6qLSubSRtSqzTElJudd+Nxhau3CAjs7Wh7Ci5zTx8ngxEe4vnu65Qy0aDCGm93sTZM0SeLNS405FOr8q+O3BuUuiyGLQ7q+y36eksinI9PKYgTKshzxiTqX7px9kN0p6VCvj0p+kUaChRQ45kFgzqClXZHZgOQs5JGjc3Vm7E47w8czho9fRH+bzgzvI43vgS8zEGe/x9ZaaIXnfC7S9Szkp4uGb/29Te9Zpz7MgcBp6HHUF3J5dZL+9KM9nuBphbIOpofTkWMuilTC+kcEqNY1tzCoUChnIy7Qq/DqT9s+sx6tb1s2q9NRZmljgW37x4Ex96ioHjI+lHPaF/3R2uFykFy/oK3y2Y5mp3F25aGR9zyhdTkGOnIW1e92UAQFb4c6bPc62k2A8LzjG0NMf8Ivvo2grn9P6IiF66PenoxeMrZwIEfaK6rSHH/8ISjzXqc9xmi6xp36nzXGaOcH71BsbmH+glfbmVegrMjbOUfHMvVfikwhtLM0VsS8OUlzOhK53o0JduIsP16/WLdMnKznLIbOreU0iXMNI9JyfW3YITu+ai2jDHM62NyuuqSsfyW//x53DyJLO+3t4k25c6ymsUyGErK6TcEyuxrFDObreNnjmJpVRB0eUB7O9JYycGI6VAbq8o99o96qea9Sa+67u/AwDw0ONcP/7uP/pnAIBLl6n7+gt/kRk4n/kMSRq79+XyqXjdHlhIuMI+zS02dmc0XdCEFjoIgkOaFeBg/EdiuRwxJh1pLkpjnj9SqdgKcG5ByHV/hX/rxxA5vk3tXa83xVIF6XT6HvfUu5mlSBUT5j43OydHW0Hflnloujtbzz3PO5QvBtylfRWNa3ywObgZG2U5n5E//JqOhHZsd+9v0unvblfISbbSvnu3qycAtMSuu9JR93o9ZHUPtxBryysNxocDqrNpW9O4zVwmjcA70AICB/fjyXxFC1C2nCxzDC1XKgiVt2TsoTeR23XuHDXhm6rkmZrj2rK+vo6GKg7qcow1fZRVmxw/znvsvjnp6X5t7Fyz2Yx/lxJDPj3D5wRb336/TD9rYRjG+WQ5BQJbnxlTfLeGDQBqcjBs9jro96QrlQ6qtSsvADn6ZXLmrCy3YK37zz1HLelv/Ob/Hfe7XX9Ha8akg6tpwANlUWW8CPks9zM3L1atI/fFtO2X2xwHpo/TxPDEhiGMs6VyWe1XrOd0lfurTvF8u3q2zUoXvb+7B99RdUNk2WViyIaHqym+XntXtTuO4/zPAHwAv2AffY2vfU0/wiiKfiqKoiejKHrSm5jMSUta0pL2tdq3as2ZkxV+0pKWtKT9fu1btd7k8oWv9ZWkJS1p/z9rf2CmynGcvwDgjwH4rujADmQNwLG7vnYUwPrX21aECEEQxG+zVu8ap2KPxzFDNBDC4yv/pNvn2+XGDt/ES/av3qLnx3NxdtD0NB+kpqWNaDeN8dd+s1bvLac5eewDDrqqDZ1dVsr4QF75Q6E2As98MWXlkuqj3RCRUEhXqEVfCMu0dBdWI5/Ocb/Nfe5rIDSHaBaPsWL6BaFWuYzptbjNnhDQoXRBg5EPV/qujGr/y2U7Hh7ryOf+XLmcmNmJabzCaBT34VyRx7y+YZouZVhIB+UKIWjK0XBjcxe1GWqljO2IhHw4QiC6QkZqs2Th1veZrfDEk2S9pqarsfujJXZDfTYY8LhSKU/9IBdCaYsMESyVSpibI/JzZ/XaoWPM5ciMmaYoJYS0KtefSqWCY8fosGb15MZimQ4KQtMPMkZ4LtPKAdrb28NY4ypOblfNuo17Txq3prQR5uwIRPF+7Zjtb0saZw2h5+YYNumU1G71YsQt7d2M+wQA8nnu98EH2Q+3LhKJ21uju9teo4uMarSHPUOcpSX7ms8YfzjtW7nmOG4KuXIJGUNu2+y3uQUynNF4jF7fMjTkkCaWcKiqoLSYlHLmsF5gODxAfSuqXa83iPoh0tgPjBXntbYckRs3yAadPHkSd+6QcahWlSWl41laEsuzS0b1iLKOAgV3zMzOo7EnJl3zIp3ntXbMYUz6DX/E42xpDkYO18SrV19FbkrrpJDzmpzspjTH88o86luuivSGaS/A2Ma0XFlNC+nqZ7Sb6g/lyEkjCrFuEbwDZFq6SCc02crhbadcIYwao2EQYmn5JLejmv3IGKq8/p3hucQ5SZqvHbljjUYjlHR+nq6vzb2i1oVI18NY8rTuH540ALWpdLyWLC+TqXvnHc69rBBiDHiOc/Ps65VbvP7jMIx1EIZgpz2OJcv6srWwLa1VT0zZlNbbes/Hr/4anU2Hv85///if+XMAgAvPvxSfJwBsbnK8/PAP/zAA4Kd/+qfjfBpri4s8h5WbPIeKtA0tY9x1v7Z1ZTwe35tDpflmHJMxNabn2b9rn8bkb0qPWNQ2bD91OfD+YbVv5XqTcl2Uy+V4Xbb+uFujaq64xkAYa1iS61mcwaRt3u0GOMkqWcuJkRnpPhhrY0em1xnHf2fXwuadHav9bJU1k7radDp9wAhNVBnZ8dg5GVMxkF7ZlS4y9FKx3se+Y066fa0dtg2ryohZD390D2c5yapZ/wwkBJrJyrXZ5nu3jzEOu1eadjUl3Zkdz/HjZPXXN8mGN/Z3Y8anJlbbsq3svm15ge9/jJoqpA87aWY8D4369qG/setbNm2bY9mcPGZjpey65fP5+G/s+cAYKstKtWtq8217kxUFlVoVA61VPVVoBXIBxsRzuTXr/1/8xV/k77PePY6t8XN77AKpZ3pjssz9NRpjaUnrW9Q8tJ8DttGyDPXsK823I+PHxWPzKMkXwXTQKWnKjYWEsmrtPlyUPW6usIjqPNez5i7H264qQqw66BttfyCmynGcPwLgbwH4viiK7lYk/iqAP+c4TtZxnFMAzgB46Q+yj6QlLWlJs5asOUlLWtK+XS1Zb5KWtKT9QdrXZaocx/nXAD4OYNZxnDUAfxt0wskC+JxQjBejKPqBKIouOo7z7wBcAinzv/Z1Xbi4F2ZVTTjXGMoVeV6cQWKoSVosR1VIcFdvr8MW30R3m3zLXL11B1nV7RpKY0jHmRNEHJaWyGAsHyEC7Joea2xuO3lUhCT3WzyOjN5HMxW5+PTE+oiFcVNi2woltIwRU+7RQG/+hg4b4rexTq1TLsPjHAdWQzpCLce38pLYrdU1Hkda2oCyMnWuXmX+yrTQ1HHgolVX/bYhrg1LVyeb05fbocAzLIqN29wiElhL5dFUsEHDN5SEfZORZsGzuldzgpFTTa5QRjbLY7uurJQHTxHxzAs1EsAMAbz4U5+iK50kRchm3Tj3IEwdOO4A1Mzx2A0d5ed7Ym4MIdnY2MDaOpGgXdUKzwsdvvTWOzpvHqexBouq5c9mc9iTE9xkvoUhMqtK6LY8iEgHPyUnnXQ6HaPyxp51xUTGqfchP9/fI1KTEprlZR3cunVL50kEyrIbLE3dmLEDdDF1aNuZdBl31ogwpwTtFAr87uNPHNfxcBzMLRPVMmR+vzfGqK8xk5PboM7Fd785FOcbad+WNScMgX4PVaGfWV2L9dvsZ69YRUPrUF4ZR6U854szgWiO4+tnzFYqRsoMZR2JCfNU057Jcn4sa+3ZFio2M82xV6/voTbN69DuEJGMc2nkYhn6vMZ3btt15TpXqdQQpYjAVecJqoeBsvmkLXI1P20eNfc4vnfq3JbnFtAbyrlKOs7eulhhobAzx6kX2twi2mmOo/lCGX2h7CNppHJiVHvSYo4a/H1a2+qIaa9Uec798RChf9hR1A8sU0uuqMYQyhcqnVcVwdCBp7mT1lrvCBHvSYNoi0upyHVyIOQ+lIsn3Dw8sfK+1p5AzoGGAg+VT+aqD0NPyLbY20JxDOg+cPMmx9UHH2O+4IU3pVtURcGrb9DNe0F6yzu33kFJ6HeuYC5sh1mtPTHuOTGmoawV37rMz1+7uINKlZ/tSdz3H375VwAAn3j2OwEAv/0FuhGeOUt31X/yT/4JAOAnf/In8WM/xoyr69e4PctbzGrOGHNgTFXs7Kf77NbWVjy+zN3P5kxe37GfhxN5RjMzM1hfJWN+TO60q7d5f+SWvnXt27HehGGIXq93j6bKWjqdjhko0yub+18uZwyVZTsddtjzff+e+5GxfFbRYxqevqofjJXJG9sb+PE1svHtTbAMxpTE11D79H0/vu8MxQjYs5xpeKzZefvSpUbGKKS9eJ4bU2O6l2m54dnfjpWlZ2Mrl8thOD58CSYdQ2MXPGXstZvSdor19cMIA/V72nRmOh6rPjHWZ26Oa/T2Dp+PjiwtHjDtei7MTpG1H6nvIBZyz1wwVZXkGvsUhHhMLJat45ls/tD+jU23vrVnHnteDsPwHqdp6wc7f3t+iTP/7Fm00YyrjPJak2/K1dZzDstz4jmt6qUZaf/6g+49GVaTzKn97TDkc2RVz3xhf4TjC6wGigLTOxUPHbOXtooAewfg50ceYoVNOuUgVG6qZd6mwXNJS2M26CmnsaDndl3zTD5nxUbIOvaewP2Y9v4bbV/3pSqKov/8a3z8M/8v3/97AP7eN3UUSUta0pKmlqw5SUta0r5dLVlvkpa0pH2r2rfC/e9b0u7OK5lkqkZRFL81puXWUSgI4VA9fUHOR7HriBCALDzYpnv9w3qUz372BQBAIIagUiGqMi9dxazctE6emMOUmKC0p3TnIvc/jiwjgPvfbRGJgFCmGeco0nJAGQ5VK1yTi5UQgMHInAqNQeD+uwPTSfXQ098O9G+pou/IwS9fVm1oiW/gaxtkTsqVaWxsEOk2tqm1b7ojntOp09Rk7AptGQkJOnqMiEyzM0ZTdftLx7jf7T2yPoUSv2No9h3VGbelN3BSHkahsguETjT6ygNo8/OnP/okAGBungxWCB5HGPAaVqvTMVNVN3ROSPNYjM3aNSLBbSHRlgn10kuszFheXo5rwL/ne5/jd8RIdcQY7je4jcVFMlSGiOdyeQQj5W9ZJow5REpjZPq3vf2tQ98LAsskC1CuqY57OMG2mf5Nx16v83jSObk7ZQO0m9z+3JyYhQa/s7DAPusr08KQqb29+qF9bG7U4xrkjvq9KyfHVtdQO46dhz/AzI0725QKnHvsFN55m+Np0DXNnhgx3KcmM1EEjAboi9FOjTkmey3+W0h5cKVBFPmMgdYUM9YZauw50gGlXXMlAgZyMxv1pIso8rpUy2L60lxbVm6yX00HY3lBI3+EHeWiLCyIQRcruLlNBqkyQ0cpc2MbSs+5s7ODE6fo4tcfWm4IT8LWMVdZJ6bJLFZ4rb0sa/+dYITGPudyADFlAecUejzPncjyYpRKL41XlK4jVyOrN5Tm8P9h782jLDmvOsHfjXhb7ll7ZS1SlXZZsizJwli2GYRZbNzgBcy03Rwwpzl4egbOGGjAdtP0NPT0HGim2Zoeehgaw/Qw0M3uZnN7DBi8y7J2a5dKUpVKtWbl+vb45o97byzfi3hLZmXlS+n+zsnz8sWL+Lb44sb33d9dVPYGYpc/L7bsmmsqEH9CJ36cFAFtiYbWkMheTrTAytZ2HY+laodLotnsRg5d1Zg6YZ5EMx5JPR2RBfq8NJoSjVF8MSfDEFUZ12XR2IYajVD81JYawswIe1uqCsOg0dKiMGbOD+7j5/Tzn+d3ztRe9umaVY26MAkvnuG6ZncdjPPCiMsW1oT1bDb5fszP8Ti8IPnLlEk4fDXf+2ZpFg89xsxj7I4m8+Dee+8FAFx1NWuHnxI26s477wQA/MAP/AA+9rGPAQC+93u+BwCwIv6afpS/mvTBz2O1urKCCWEqXCoyJgCsihyP/bBkDqlW+qUXX8TP/vzPAwA+8uM/zvWITNX399nTL2CngMD5nHTMOs1slD4iijXlkzLP1GdGfZ2VMYKMr/o2VavVmKHSuRf72ah8lvmlEZYnZdzb8g6ICAhkPULyPLXlXmh7YsshafOyRPwNgiCur6LMsPQ7ZgbEomJa86BJ2aFGh3MROvKs6LuzJP2+UNdobFkLgVDWXI4CRLKGU5bLZ6hiXx9hztuai3E6eU9XiMeENJeWmM505Xl//gTLt6OHWe7eegfnuKuUyvjLv/xzLl8sOISIQkfY9pL4La+LD/h+me9RW+TQTA2HqiwjVircvzWn1iHSDhnvpsydCbEMKIvP/FqjjpJECtT1kt7LFWGV4giC8q7qaO4/ClGKJJKy5OXT/HBhKNZXkv+6LWNdFgsw9eMOwzD2JUsiFUq0bmFb9R5ON2QNNMvMfH39SbzuKu7PrKzpNYdYfZHn6EFh/9bkHXHkZs5jOhkkOdpidlUi+Klvb1OsHEIZ2/WmWHuob3NjJZZbrSZfo3NXo3IOi7HYVBGQMf9TswJNoHZwYV+c5FRpuwMHeYCVPvWDXKjA+btPfwrz87ulHi5/zx6+tlTjAX7xRX4prUso68ck9PaMvEwffvShuJ4FcWa7/U42fTkgztnr3TUpgxcP997LoXrnp/fj2PV889ttLqMs4b7PnWWTm1l5sDtShoskoMQUm3lEnSWcO8N0vpqH6GL2eWn71DT3WxcJCHkSraxfwhNP8wuzXJZAEM/zNWtrB2U8eCHRkMkzNcUP/JQ4DoaLF/CWQ6/ncyQ5qOb2u7TCgn//fnHefIkXiavLkrhzpor5vTzuN7+WX/aHxOF99wI/RHtlE9tSZ8K2CDdZTbRajVT4WG5TTYTUkiyKb7v9Dh5TMe372Md+GwDwjne8nce208HRq/iBL4nJ5MVLPA675nlMJ6eO8XFJHD0/J4sFqoFIHkoRRpoEeHGRz9UFUJwwUQJpPPcsL2omJqZiM8v4HgnUemRNxvarj3L45aPHuV3T8wFuvJHD/69KeG0t48SJE1yGONPqs6MvpqaYY0aunaQokLCyp0/zQloX72pW0qpxX+7+Bk6/0mw2cfRGvmef+zQvxspiRtZYztL7OwZRF6ivY0UCSOzfqy99fnGsR904LKvoMeJkh03ZZc3JHNAN1PoyP6Mz0zN44QyPbV0CMszKZqrelLDJK5L0VxylGy2+B/sl0SSVCBelbfrSUqWHLmod8TV7ZIFeX+N7XapMxpuzJdnUqdzUF3GkSR81wbmY785IyNnm2kXs3iXwLMZAAAAgAElEQVTBSWTOnXmBw3CTk1Deu7jth8Rxe1mUQDP7DmCmyjJXXzDLspiAk2AtbZ7rq7JgCiSx55SYN7c6ATRi2ppuAHVTI2YgHV3AqSmLmMfNze+PF4D1lgTm0GSfsiDQBetecZxuyiKkKpuwACHW1XTWS9TaFjmlJs6hmBRp0BoNvFMiYFXMxdviXN4VM8fnRU4e2CcyXt4vd97xNQA4THNb5sppCVhSlg3h3KyYBUmai5YsnGYl+fTJszxfnnj6eSxLGPbDR/genbuYVbaovLj1Vk5m/sQTLHsA4MMf/jAA4D3f8R0AgL8WU0Hd+OhCPg4+Ie9gDXpRTiVw9k3JdPG7ImZq87t5vqzK96nZWfzUT/0UAGByRhMFc7+vlo3gTtpUAZRJlK5rHUW3243lsirdNDCCzm+9Z/GCORVQwg9zHiup9b0pi20NvrDW0OSrfH61XInHVxWGfpAHvWe+Cfz6+no8F1qy4K9I/wLdbMnzp/1Ws7/YPL1SiRe1fiCMmpxbkU1ObAYon5UgUdZoW3Vea/n6PlxvLme+q5nYerMRKwfia9c0hL0Eu5Lw5y+dZ9laEiVXJSzhhuNsPrskodXVdPmgrBf3HmbZ8NhX+fk6fBUrsveJm0alXMUlMb+M1IxbZPHqoiZZ5/kwJ5vfJTEpV9Zg165daHWyYzjpKTXiNAgytrpumahNxgrgWQnQdu6cKvjkHnnh6nWe6vd2u90TSl+/+/c0kHm3fpHr2FV2KImpqsTLQF3ed3PTGoCIx+fqI7xuDVr8vaqBg5xDQzdr3ewGvC7vmTlRbNfj5NSqSAjREUXxoiQ9bkv/piTIE3AGw2BTIdUNBoPBYDAYDAaD4dWOsWCqFKpdUS3CoUNshnX10f1wksB2ckpMskTRMzOVTYCmznvNJmsd/uH73xmzOktLvLNdXeFd87FbOCHiubOstXzgftYifOXLjwEALq3zLnoqnI81zWfErOpL93H47ZuPMfsyv5u1OAuHWVu4Vudru80lnHiCg0cI046lS+JoWdMQpXztiy+whu+8JKfVhLezs7M4c461chNTu3SwAAC3vo7Djp85y7/XhbqcnlFNTYAbbmItyqVLouEKWBN16iRf89WnWLt0482s8e4KJXpQnOhbrok1peA10VqFy1paFrOekMdBNe8IJFBFrYw3fR2blLzhbm7HitCqTUkgW5eQzaGGU44k7GZDzV2aWBeNe0dM8jrieK8hMZua9FC0xkeuZor+4GGeQxMTEzjx7GPSZg3JKWYGMpc0oMacmFa++CI7olbKU7HGx9fOqCZsUsy79u5lrcmKzDF1Mu10Olg6w/PsyJEj8TEg0ZpfOs9za9cuNg276y7WWh84PInlRe6fsq4vn+b5tU803Rcv8PgoQ6EO+VrH3r27Yy2hakBnZE6/fJb7efQwa7PP11lDdOzocQDAWnsVx2/kcTx09N0AgBckEez6edZ8ff7TzIbuGDiHqNWMnVCflgANgczJ6tw+VMRUpikmGisyll1hqtbUHEa0bgfEYbexuoRJz6lYE1Uuiwzat4fvW6crDvpyXlkCLJw+eyZmlTRAgJplOGFTGvJMnDnFDv1OzFfa0QqmxcxvSuZlSUIYrwmzWwrFuVi0sV1heWZ28TMfBCVEoZjigctdFcZoXYNurLG8OvOSsEETrFltLwOnnxEtr7R5Tkxt22uqGZbQ/KL9Vlbo9Clhvg8cQqCskXxqsBRNAdDq8FiF4mweBpreYS3WqjfVMV60+4Em/5Tx1nDw+gxGco+r1apaTMXa/7qYw6jp1uqyJHOXUOp75nnMncimp597DkcO83iek/DfMzPyfhIZS2K6ogxR1JJ2ksOKaL1rEjxjUUyuV1ZZc70sDGJdApY0ZayfeYEZ+Mn5vdhT4bafOqlRv7leNct7UurdrxYQ8l45fvx4zFh89rOfBZAwRCrzlJGan5fQ+qKNjpOMz8zEx2I5qZpzqWdS3tda7z4J295sNuNy9TeVW2984xsBAPd+4e+xU6DWOBOeqWTawma9mbA26XN0DHUewqlJlSQnbbV6zNy0DDUd7Uo9LWEjAjHdqgTy8utEmRDp6fp99ssPtlGtVuNrWp2sWWOtmjUHi4O8eOZ5zrm4zcqE6feOrD2cxz5U5MVdLVdQlWdQGWpts8qBmNXScZE+aP1ztbk4MfLyIsuC2NpD2J+uBi6Q5yKMknGYk6Ay18s7VANXqIVAKMGFbriZGWGEajUjJsxBgGhCEjhrfh5Jrq5tXhEXAxIZIdMg7qNzLgmAImbVuh7QdbFC1zFzM/w81pvrqAoTqMmnW21lc/oHo4rZpyBIMWBZNlWRBJqTQELSjv2zZZTlXRipCWVZg73xGB0+zpZrmnpGg0A16knYfg3hHoq5t66/Ank3qrnf9DTL6lZTrQvqePllZqhqsdznfq8ujhYax5gqg8FgMBgMBoPBYNgExoKpoiBAbWoahw+ytmyvhKHeL74+1Wo1DjNe0wS9ymq0RPOmGiBR5kzJrntyYk+srtk1KTvhg6wJUUf9uf1S1g0S4vrSkvzOu/6TJ88jLLMm4sKy2KRKwIpHnmVN340Bsw8TM9w+DQfZaLcQkGg2JPHk6bP3cVtDKTOUBKHikPfVx+/nds2zNvnS4nm85iYOHnD2jIZ3ZG3K8yf48+pjzDJRhffJFy7x7np56SzmVOMng3PpAo/VYdE8LhwRR3hh9KamxJmvLXbXKGPXtFxzgLUFjz7OrM/knDjVij/BCxJk4Q1vvInL2h3i+juPAQBeXhd7/rZq58VpV66dESfHVlV8F0Tju7S0hGuu4bCZF8SH6YUXWKuwf4HrabS4bxqEQRNlhmXVMlQwM8fsQKz5ES3GivgyaVhWnUuzu1i7c/7Smfia2NFSGVGxA26qQkbsoffJHA5fK6xbt45D0eHMtWckFLU63tdXeBzefA/7683s5j4sr7Zinyk1OJ6ckDD8p7mMC8uskeoQz08NPvGa17AvVm1uChfO8piVRXs21eZ2aDqCqoTtnxAb4nUJMz1R3YfVVWY41Hn5+htYI9c8tjP1Mg4cD7ktWsEVCZ4yrQzs4mmU25pUlufDPknCG4rT9ZKEoJ8QWaOaMwoDkGiAp+aZ9awLOzsvAV2eeYrZa9XGayLJ3WtiH07l2GG2JAFEpnezPFRb+qVFvifqC9doiKa5OoWaaPPaDZZlqv1TLV8UCMum80m0shDfnsmZKbgaz+3atPg0SQqGNfEdu3SRtbHnT3NKApJxCl+ewsEjxwAATdGqTpL6DUpwD9HshhPicyOyqSIaxmeeeBS1Ke7XwYUj0jR+li6dFz/BqshVqbdSE6asQyBoUk3ulga2IUjSx1pWYz0vibmjrjDt7S6aErDnkiSkbYp/lmrMm3W+p+df4nlQl8A/qjneu2sSSxK4SFmFi5JeI5jm+64+V+9/73sBAH/9138LAJiuTaArzEUojtvdljCEjvu/cIjlyVclSM+03EtN9Dw3NYlzT4mFg2h7W+JzEAc5kHadFVl0w40se06cOIGWl0BcE6qrLC4KD64s/vnz52NZqvJT2S8Nqe5rtvV5OHToEJ588slM+VqfBh/aUSBuf+x7JHJU0el00I2yfm4a4lyR+C3xeCjrFwRBPEbKvOhYteqJzxAATGpgBnlfaTumK7WYvVCGSlklvWd+uOyYDW4242v1PoeaBkFYfWXMlBFe90N7uyTBvc+QTc7yfNY5Eo+dMhbtJhBl+x8nuvdCu6tVyvmLLDvVBymslOOgDXsllcXikgTokWsXhanWJNRdedfXwlIcqOq8MGUXxAJgQu5p6MTnWWTohCQ0Vz/Q1fV11CWgV1UCYzTkGdUxqnisX1nS2eh3F1G8tmisS8J2eZ788Yh928SntlorI9DnuaUJgnUtlQ2CovepH3Su6pzxQ7kHkp6iLEz93tkqIgm6tub43IMHj3G/5yQs/4Sm5dAQ/zLXxM89ioDVVQ2ZLomBSa0Z1AefZbVar6kf7Jkz51AW/1rqqv+rBgoabZu0M1dEBoPBYDAYDAaDwTAmGAumKghDTE1NYbdEADog0eCmJC5luVxGFGmyV4n8pLbDkgisK7v8RpN/V81sp9NBp6O79DD7m4RZ1GhNBw4wk/GWt7wFAPDA/ZyQ8fTpxVhrotoSTa43XZWwts9zhKaO2KEeF5+eiBI7X/1ULUG9wVrKelM0oUJ3nJWQyWfOsjZl395dsc39yjK3sSpszoGDrIk4eZLrXzjI7JNqjHbv3o1a7GfGu3hNLvja17I/lgtE8yVkyIokWp4SrU+lUoEoNOJ6fFvZU6dY076wwIzZwmG+l6+5/TqsiH9ZW0KqB7KXj8ONisYpEJtl9SvQezwnyZGBRIun9v2q+dK5oxqKOLqPaHvCydlYa6NzKJ2kEgBq1Wy9M6moU6qJU82rRv1TtmtpXZhDSdK7d57vk4b27AadODStaiC1npqXTFPDwWvI7hPPP4fD+5gZiqKstvCYJMY80Nmb6a8mKtT2rqyuxvfspZfYv6IqarsZiSqkUeYCYVlaMl9CqqIpUS0XRWt/6TxrL6eEcdhpoLCEyp5d2C8+L/uE7WgL4/f4s8+hJEyRJvKuCXOq0d46FYlKJFqwUy/ytXO7d+G8+F6qZjgQ7aPKj5tfwz6Ijz/O2viJiaw/Qb1ZBwV8LzW0f7fD9StrqfIslonyXDfrDZx7mRkKTQsxKb6npQmNysXjUK6ybJgSBm15TbRzwQymd0laCvHpae7i/r0sUdckSBRmFllOn7+oCX2BS5paQfwColhzyvP0ZYkaur7Kz2RVE9iK5nbP7jmsyTUvS3qIKbGDV3aFIk20nmWQpqb3oiuyXX1JmsqOy/ti8QzLVg01D41spVrhSggnyZxJEp7XoD4PfHz3FN/Tw3vZ3/DseWbu1iTCWHVyIvZ9jZyG9OXqmhJptiv+el/4HPstXSsJ6T/76b9D6NoyhhLSHXx/Dx1i2fLUGb4f6vx14nn2rbv/YfbfonIZpVDmtTBUeyTUvfqWqRxTbbzKjV27dsWy/IH72XJCw65fFBmgrMAtt9wCAHj88cdl7CRMesqPw4/K9qY3vSlTn8ot9dNqNBqZRMAAcIMkKP7CF76AnQZHhKhaipO2l4URVrbBVUqIJCJfoL/Je1J9ZyL1B0SWyQF62Twdu7bTdZL6dqrPVTYp72pzHRX11RLhUJd3W1UiBzbjayViZoqd0nfHHnlXtzRBuji/t4Wxqkny4W6cAkSikHZasZ+0+hm2Y1kovlxCO5f0falsw3odjSjb/5gR8aLQnZcIvLNiBeUkxHqj0QLECuqCWAKoj9GEWEWValK20HwNUtnRxIz8Jt0DydqhUpZ0Fx317ZTktPUso+JcGxOS7LcivlqRrjm1TxodezrIlAUZa0RAJGOm80Gy0sRriUmZSxMSbXVdUm5UJmbRkXrLgfiSSdjbiox7R/3z4jDsmi5Gfd0AyLtR02GXhbEKxXJAEwk7uXeB3JdDBw6iFfG4zy6wX+XeBV7Tabvq+n6RqLxOZPlyh9fiNZTRloiAdakvlD1EU94NtUnxO5aBOS0yc3etjJKs1ZYlTU5Vfbpqg5m5NIypMhgMBoPBYDAYDIZNgHw72W1pBNE5AGsAzm93W3KwF+PXrnFsE2DtGgXj2CZg4+262jm373I3ZqswxjLnlTYvthLj2CbA2jUKNtOmHSNzxljeAK+8ebGVsHYNj3FsE7DFa5yx2FQBABF92Tl313a3w8c4tmsc2wRYu0bBOLYJGN92bQXGsa/j2CZgPNs1jm0CrF2jYBzbtFUY176OY7vGsU2AtWsUjGObgK1vl5n/GQwGg8FgMBgMBsMmYJsqg8FgMBgMBoPBYNgExmlT9evb3YACjGO7xrFNgLVrFIxjm4DxbddWYBz7Oo5tAsazXePYJsDaNQrGsU1bhXHt6zi2axzbBFi7RsE4tgnY4naNjU+VwWAwGAwGg8FgMOxEjBNTZTAYDAaDwWAwGAw7DmOxqSKitxPRE0T0NBF9ZJvacJSI/oaIHiOiR4noQ3J8NxF9koieks9d29S+kIjuJ6I/k+/HieiL0q7/TESVbWjTPBH9ARE9LuN293aPFxH9iNy/R4jod4moth1jRUS/SURnieiR1LHcsSHGr8j8f4iI7rzC7fp5uYcPEdEfE9F86rePSrueIKK3bVW7riTGQd5IO8ZW5pi8GbpNJm9Gb5fJm+1ph8mb0do0dvJG2mUyZ7Q2XVF5s+2bKiIKAfx7AN8K4DUA3k9Er9mGpnQA/FPn3M0A3gjgB6UdHwHwKefc9QA+Jd+3Ax8C8Fjq+88B+EVp1yKA79+GNv0ygL9yzt0E4HXSvm0bLyI6DOB/BnCXc+5WACGA92F7xuq3ALzdO1Y0Nt8K4Hr5+yCAX7vC7fokgFudc7cBeBLARwFA5v/7ANwi1/wf8rzuWIyRvAHGW+aYvBkAkzcbbpfJm+2ByZvRMFbyBjCZs8E2XVl545zb1j8AdwP4ROr7RwF8dAza9acAvhnAEwAW5NgCgCe2oS1HwBP0rQD+DACBk5eV8sbwCrVpFsBzEL+81PFtGy8AhwG8CGA3gJKM1du2a6wAHAPwyKCxAfB/Anh/3nlXol3eb+8B8Dvyf+ZZBPAJAHdfyXm2BX0fS3kjbRkLmWPyZug2mbzZQLu830zebF/bTN4Ut2ns5I3UaTJnxDZ5v225vNl2pgrJJFGclGPbBiI6BuAOAF8EcMA5dxoA5HP/NjTplwD8BIBIvu8BcMk515Hv2zFm1wA4B+BjQtv/BhFNYRvHyzl3CsD/DuAFAKcBLAG4D9s/VoqisRmnZ+AfA/hL+X+c2nW5MJZ9GjOZY/JmCJi8uSwwebMNMHkzEGMnb6ROkzmbw5bLm3HYVFHOsW0LSUhE0wD+EMAPO+eWt6sdqfZ8G4Czzrn70odzTr3SY1YCcCeAX3PO3QFgDdtnGgkAEPvddwE4DuAQgCkw7exj3EJejsP9BBH9JNhE5Hf0UM5p4zZ2o2Ls+jROMsfkzfAwebPJRpi82RaYvBkKYydvAJM5m2rAFZI347CpOgngaOr7EQAvbUdDiKgMFja/45z7Izl8hogW5PcFAGevcLPeDOCdRHQCwO+BKfJfAjBPRCU5ZzvG7CSAk865L8r3PwALoe0cr28C8Jxz7pxzrg3gjwC8Cds/Voqisdn2Z4CIPgDg2wB8txMufBzatQUYqz6NocwxeTM8TN5sECZvtgcmb4bGOMobwGTOhnAl5c04bKruBXC9RC+pgB3HPn6lG0FEBOA/AnjMOfcLqZ8+DuAD8v8HwHbIVwzOuY865444546Bx+avnXPfDeBvALx3G9v1MoAXiehGOfSNAL6K7R2vFwC8kYgm5X5qm7Z1rFIoGpuPA/heiZDzRgBLSqFfCRDR2wF8GMA7nXPrXnvfR0RVIjoOdjL90pVq1xZhLOQNMJ4yx+TNSDB5swGYvDF5ozB5MzJM5oyIKy5vtsJRbNQ/AO8AR+V4BsBPblMb3gKm/h4C8ID8vQNs3/spAE/J5+5tHKd7APyZ/H+NTICnAfw+gOo2tOd2AF+WMfsTALu2e7wA/DSAxwE8AuA/Aahux1gB+F2wzXMbrBH5/qKxAdPQ/17m/8PgyD5Xsl1Pg22Ldd7/h9T5PyntegLAt17pObZFY7Dt8kbaMdYyx+TNUG0yeTN6u0zebE87TN6M1p6xkzfSLpM5o7XpisobkoINBoPBYDAYDAaDwbABjIP5n8FgMBgMBoPBYDDsWNimymAwGAwGg8FgMBg2AdtUGQwGg8FgMBgMBsMmYJsqg8FgMBgMBoPBYNgEbFNlMBgMBoPBYDAYDJuAbap2OIjoHiJ6U8Fv30xE9xHRw/L51tRvr5fjTxPRr0jOAxDRdxHRo0QUEdFdw5Tl1fkzRPRNm+jPAhH9mfy/h4j+hohWiehXvfP+P8kurt8niOjTRBTK9w8Q0VPy9wHkgIj+JRGdIqIH5O8dqd9uI6LPy1g8TES1vHoNhlcTrqC8eUPquXyQiN5TUOdvENFrNtGfO4joN+T/m+SZbxLRj6XOqRDR31GSXDMjp+T7R6VvTxDR2wrq+i0iei7Vr9vl+D1EtJQ6/i+K6jUYXm24UjIndd1Vsub4Mf83+f2VIHN+PHXsESLqEtFukzmXAVc6xr79Xfa4/P8SwI8V/HYHgEPy/60ATqV++xKAu8H5A/4SEqMfwM0AbgTwt0jlEuhX1mXuz88DeJf8PwXOrfFPAPyqd94HkMr5AeAHAXxI/t8N4Fn53CX/7xp27ACUwLkpXiff9wAI8+q1P/t7Nf1dQXkzCaAk/y8AOKvfL3N/fj/1nO8H8DUA/rXfRwD/C4DvTn1Py6nXAHgQnC/mODjvSZhT128BeG/O8Xsg+XlyfsvUa3/292r7u1IyJ3XdH4pcyK3zMvRn22WOd863g5Mu59Zrf6P9GVM1piCi7yWih0RL+5+I6NuJ6ItEdL+wJQeI6Bh4w/EjonH4unQZzrn7nXMvyddHAdSIs0cvAJh1zn3e8VP0fwN4t1zzmHPuCb89RWXltPu3iOi98v8JIvo5IvqS/F0nx68loi8Q0b3EzNZqqojvBPBXUueac+4zABo5Q/RxAO9Pff9uJNm73wbgk865i865RQCfBPD2nDKK8C0AHnLOPSjtuOCc6xbUazDseIyhvFl3znXkaw2ctDSv3X+r2mbRLv9bIvoKEX2KiPbJ8a+Rvn2eiH6eiB6R4zMAbks952edc/eCE0f6+BOwjFHEcgrAuwD8nnOu6Zx7Dpxs8g25Az06/HoNhlcExk3mSJveDVbCPtqn3a80mfN+cNLconoNI8A2VWMIIroFnOn5rc651wH4EIDPAHijc+4OAL8H4CeccycA/AcAv+icu9059/d9iv1OAPc755oADoOzTStOyrFhkS5rEJadc28A8KsAfkmO/TKAX3bOfQ0AFYggouMAFocpVzZLVWITwQqAa2Q8AO7Li6nT+/Xvh0T4/SYlZn03AHBE9AkRlj+RV++gNhoMOwHjKm+I6GuJ6FEADwP4J6lNVhGmAHzFOXcngE+DNa4A8DG5/m4A3dT5dwF4ZFA7BI+ANcp5cmoUefOvRd78oqeUulsWl38p96OnXoPhlYJxlDlENAXgwwB+eoSu7GSZAyKaBCuc/zCvXsPosE3VeOKtAP7AOXceAJxzFwEcAfAJInoYwI8DuKXP9RmIAPs5AP+DHso5LVcTPERZg/C7qc+75f+7wRQ4APy/qXMXAJwbslyATYIOAdgL4FK6mTnn5vXv1wBcC+B2AKcB/Fs5XgKbHX63fL6HiL4xp16D4ZWAsZQ3zrkvOuduAb/gP0ri19gHEYD/LP//PwDeQkTzAGacc5+T4xuSN8JUt0TT7F83bP8+CuAmcH92gxdwAPAVAFfL4vLfgTXFefUaDK8UjKPM+Wnw5m11wHlp7FSZo/h2AJ+V8c+r1zAibFM1niD0PiD/DuxX9Fqw4Bi0wOCCiI4A+GMA3+uce0YOnwQLMMURpBijEcsaBFfwfx7qGLJfgppc4193EsDR1Pfc/jnnzjjnus65CMD/hYQ+Pwng08658865dQB/AeDOnHoNhlcCxlLeKJxzjwFYA/tMjAKH/MWHYlR5UwWbIm9U3px2jCZYk/0GOb6sCznn3F8AKBPR3px6DYZXCsZR5nwtgH9DRCcA/DCAf0ZEPzRMG1LYETInhfcha/rn12sYEbapGk98CsB/ryZmRLQbwByAU/J7OprdCoBcjYJoTP4cwEedc5/V48650wBWiOiNREQAvheJP1IuisoaAv8w9fl5+f8LYKoe4Ida8SSAY8MUKu0+COCEmOSFKU32JwB8CxHtEpO+b5FjfhkLqa/vQULLfwLAbUQ0SRwF5+sBfNWvd5h2Ggw7AOMob47LswciuhrsWH5iQD8CAO+V//8RgM+IbFghojfK8bS8eQzAdQPK1PbsAXDOOddGr5z6OID3iS/HcQDXg53k/TIW5JPA/h3qZ3FQjoGI3iD9uJBTr8HwSsHYyRzn3Nc55445546BXRX+N+fcr/a7BjtU5sixOfDa5k+9a0zmbAK2qRpDOOceBUeD+TQRPQjgF8ARcH6fiP4ewPnU6f8VbJ72ABF9HRG9k4h+Rn77IfAD/FOUhM/cL7/9jwB+A+zg+Aw4Og6I6D1EdBJsovfnRPSJQWURhxhNhyZNa6CqRPRFsM30j8ixHwbwo0T0JTCtvST9XgPwDElACyn7hPT/+4joJCWhTF8P4AspP4v/BjbVU1OCfwXgXvn7GaW3vbb+G+KQqw8B+AZtnwjFX5BrHwDbTP95Qb0Gw47GmMqbtwB4kIgeAGuh/yc1FSKivyCitPmtyps1ALcQ0X1g8yJt1/cD+HUi+jxYi6zy5nEAc2rmIpubkwB+FMA/F3kzK2V8A5ix7pFTMn7/Bax4+SsAPygmNH5bf0dMmx4Gmyz/r3L8vQAekbH/FQDvE+f6TL0GwysFYypzCvEKlDkAK5L/m5SdhsmcTYAS2W0wbB5E9F8B/IJz7m9kQ3SXLoZS50wCqDvnHBG9D8D7nXPvkt/eA+D1zrl/PqCeXwbwcefcp+T7HQB+1Dn3PZe/V8X1GgyG7YMsGN7pnHuOiFadc9M550yreR0RfQTAgnPuQ/L9RwCsOOd+Y0A9fwTWhj8h34eSU5uFX6/BYNhemMwx9IMl+DJcNhDRb4Lzy3xmwKmvB/CrQklfAvCP9Qfn3B/TcJH1HklvbJxz9xMnCg5dEv58K/CIbagMhu0HEX0SwMOOQwr3wz8goo+C33fPA/i+1G+/BuC7BtRTAfAn6UXGCHJqw8ir12AwbB9M5hgGwZgqg8FgMBgMBoPBYNgEzKfKYDAYDAaDwWAwGDYB21QZDAaDwWAwGAwGwyZgmyqDwWAwGAwGg8Fg2ARsU2UwGAwGg8FgMBgMm4BtqgwGg8FgMLo76dgAACAASURBVBgMBoNhE7BNlcFgMBgMBoPBYDBsArapMhgMBoPBYDAYDIZNwDZVBoPBYDAYDAaDwbAJ2KbKYDAYDAaDwWAwGDYB21QZDAaDwWAwGAwGwyZgmyqDwWAwGAwGg8Fg2AS2bFNFRG8noieI6Gki+shW1WMwGAwmbwwGw5WCyRuDwZAHcs5d/kKJQgBPAvhmACcB3Avg/c65r172ygwGw6saJm8MBsOVgskbg8FQhNIWlfsGAE87554FACL6PQDvApArdPbu3euOHTu2RU0xGAxbjfvuu++8c27fNlU/krwBgGq14qYna8OVTv5Xyj8v53z/XJKvsSrLxScWFxdf5LLf9aLsB9JqMsr5r6itA5rRByNcNeSp1O/kjTXSu3T0jsenkH9PtbXeHaDeQqng2rzv/m+91efPrewE7H9OUZ+yvxVcM/gCxGPh6W5dwe8u5yQX/+My5zzzzPPbJXNGljdE5IruZ59rco87bzAJ1PPw6xnlUhkAUKlUAABBGHqlRVJXEE+BTrsNAGg2mwCAbrfL1wYUn6s1J+30BZncqx5Bl4X2MQjD5Eq5KIr0frvM8aTfvf/1PHtDkgYUBANFQE/9qfvjvLk5alkuVZ4/Dj3n+nVR73M5PFeStHjw9Mye4D+XIOp5VxXVl6o1+SUu7vIRPdqeUcoseu663e5Q8marNlWHAbyY+n4SwNemTyCiDwL4IABcddVV+PKXv7xFTTEYDFsNInp+G6sfKG+ArMyZnKjibffclf4t81l0DACCgBcVvqDW4/qZV0apwosaXahoGXpNnkAvlUqZa8phKbe+vBeIX3/Rp39+Lih/UTHMYrFnATDE5qJ4U7GBtl+G+uMFoDfuoSxU9T6l76mTIvQc/dSyyuVybtlEFJdXVH9Re9K/Uym7iNb6/TL8dvWrZ9AY5i42vc8oinK/6ychiP/vdDoAkvmvx9/9nR/cLpkzsrwBgHK10lNQvzkb9myAGNr/9HmxzIl4jDqyITl44BA3+KqrAQDTMzMAAKcyrNsAANQqVQRS3fkzLwMATjz3HABgaXERAFCt8Vwtl6cAJPM9DMO4Tdpm/16Bsvfbn1Ozs7Px/61WCwDQaLYzZbVls6dIz7dkHKNMuf5YFW1UJmq1nnuhffHnoV6b7r+2Tc/x+6coKss51yML9Fy/335del0Yhnr7Czdiftnp474M8K/xPzvdVs952ha9Z8k1UeZ4MoYVOR6h23GZc3zvJP9e5qGorYUb09TxvPd3GpcuXRpK3mzVpipPUmSVUM79OoBfB4C77rrr8tsgGgyGVwsGyhsgK3P27JrtK3P6LaoHLfbzzo1fRB1+MZREg6yIF5OUJ9j52qosylw3++Lu15ZRNj5biVEW4v73jWgbN1p/3nmDNhf+yzhvU+VvwAaVlTf/ijbRRZsdIupZIAxT7yhj0+/3fvdr4DwY7xXByPImCIJcpmojz6U/vs655H+RI7t27QYAHDi0AACYnJrKlKEL83azHpcZtLncAwf4moWDBwEAp0+/BAB47FEm4vyNebp+f7Fe1GaFfm82m/GC3H9WEtnY228fyqb5z+Kga/PKKlII5M13v/xBm7keJUKqjLzx7VdG0SZgUP/844Pk66AxI6K+bF7e9+xx/171bc5lR9H4jvqMblWgipMAjqa+HwHw0hbVZTAYXt0weWMwGK4UTN4YDIZcbBVTdS+A64noOIBTAN4H4B9tUV0Gg+HVjcsub/pp7PPO8c8rusZFoo0MWCur2rC11TUAienD/Pw8JicnASS+DXpNV208+rRvI+zBVmIzDNXlZKqKyu5n2jYsM5UH3+zPN+kquk9BEPRooIdlqvLYrkFtz9Po92PA+vVhGAwqY5um6bAYXd5Q/vhshqlSZJgq+Wnh8GEAwJ49ewAkpnSNNptsQdmgShUA0G53oaZzZTFRnpDfrrvuegCJudnpl85KEYmJ3SDTrLw2p9FqteIy1P+ryPyuX11BkM/yFDFV6c9hzsn7TPffN3ssfA/ksD4+UzVI7vWa2CVsj49hzN8Gydei9qTrLyqjSJYnx7dfBhSxjKNiSzZVzrkOEf0QgE8ACAH8pnPu0a2oy2AwvLph8sZgMFwpmLwxGAxF2CqmCs65vwDwF1tV/igYZOd5Jeq83PUOq7W9XHVe6foMhlFwueXNRliffhp7PVarMvu0tLQEALh48SIA4MSJEwASLVm1WsWxY8cAAMePHwcA1OvMWFXK/ds1qC3bgc0wVVvRjmH9goDBzJDPQum8CMMQCPKvGcSQpVmmQW3s91nkU+XXnxeoosiHxC/Lx2aYxfjaMXequlzypp8/TOKwP/gaHeuJafadWjjMASoWF1nOhFWOdFoS4eHELWx6iuVRAIIGk4D4bNa9QBHHr7kWAHDTjbcAAB566CEAwIULF+KgDevr6wBYfgHpOcLtU78pnylpt9s9QQwoyC5Ptd/+eVEUpcaE57GyXcpu+eOkcjaxAgiG9inSTw2ooXVl+5u9RscnLd/T9Xe73bg8P9iD72Ol1+a1t+OyQV2Kghj516bnmt9WRRHLnSezhmHG/O8ZuQnAuSj3Wm2XH8hnmPp8aHvTfdVjel/HxafKYDAYDAaDwWAwGF4V2DKmymAwGMYV6ocwrPY975x+/jB+ZCbVmHXa/PnkE88ASBir6elpAElUrm4nwmNffRIAsLLM2t877riDy+gs59ar2sZ+GrxB/jF9/RXC/mOTjno3qnYvj/XzI4n105D61+b9n4d+bMswPkvp73ntCzwGyL9GMSicb14Zg5jSUe6BP1+JekMsDypvWO1wur6i486NxgSPP4pTBBResYF+asj0eBwDj00tS9h/JaW6EoWOkjxFOuxlCcev4dk7LQntLX6hr33tawEAn/vc51CvcxRBZVlUjqm2fxBTkRdBMJRHoYhV9SPocX/yfZqKUlikWZmiZ9Cv35dL6fdI0TM6aC5HURS3Udm1Qey275+Z1w5FXpuLMIhlGiZMfa+vJnL7FIbKcNbhxCEwCRWv/n7tzDU6p0bxfRqWsfL/3whsU2UwGF51SC8a0/Dzrei56c+i4+kXpAp+fSHoYuPixRUAwMoKB6bQ8MX6cldzwG63jUDMX556ijdgR49eDQCYny9l6tOX0EZeNn5fXqkYtOEo2iD1u7Zoc5W3uSzKJdVvsTOsqeBmTAj79XGUhciVxHYFW9kMCBswIyrYYPfr/4xsquotNiuLvAAW8cI4NrOU9mVMRXXBKxsSiKJHFEJrTZZdarp23XXX4YEHHojLARITtXgD5LIbBR95Zqf+b74ZXDp/mR8owt+Y9GzYvNxy7VSgjCKlVL8Q5/6z6G/uigLCpPtWlFurSBHjby6H2dwp+imxiuRZT2h7FJfp9zcMs/dMy5iY0PdkB+VS1iRSr03n4QKKzWI3gyBl/lmkvBu6rMvbNIPBYDAYDAaDwWB4dcGYKoPB8KpHngZ/1MAAeeX5msunnmTW6dDCEQBJyGNlqKqVCQDA6sp6opl0/Pn5z30RAPD2b31Tbh3DmHZsJojATsage1bEJKX/L2Kd+jFZNCAMuq9978eQ5iXo7Vc2ESV2NwVlFh1Ps1yDxqwIW6FRHqbeccXlYqr6jevkDJsRK9tSq2XN3AL9hMoBbVMQzxVSuzthqiohB7kI+ANOmIR0f+655x4AwIMPPggAWF1dzZxTKVcyfepnMpbH+Kb7oEjLMp/dUQsBvdYP/pBnWuyzXVrfMKZ0/nPsWxEUsU95fdCAFYNMgn0GqdvtFj6zfhCdPPNEv7xBaRdAwzNV8/O7AAALC2yZcegQB1JRE7+Jick4iNOlS5cAAM899zwA4MyZMwCAkydP9h2PfuhnEu+3ebPyZWdKJ4PBYDAYDAaDwWAYE+wYpqrVEMdH0Za88zveDgCot9hB8r772ab36LXHAQAXX+Ld7be84Wtx7PA8AGCKo41iSbQY65Jwc0WcxW+4+joAwOwkn9gJTwMATp4t4ctPLgIAujXezVYC/eQGTU+xJqBa4SE9uH9evoeYqLKWplLhnbhqDVR74qPsOfWFYdir2Yj6ay8VlUql0L62SCOUZ8NcpB3zy87rU9G1ZU97VXTeWrPRY1fbUxZl9QO5fiWlbMLVIm19t7WW/d5xeOIJDhqwvt6Qtmf7qW1XDZ1icpI1MZ1OJ2672gzH413i+eaPpdqlX7x4EcvLHJxg34GDmfr8ELYTE8J0rPL5qvU5duwYzp8/DyDRhC0cOgoAOHP2JQDAgf2sRbq0yP2fmd4NAPjpf/FzOaO08xFFUV/2oeiZGua4b5+vjtzNJo/97OwcAKDRaMp5PJ/0mZiamsbiIsucSqWauVbDr193Hcsrvfc699Ihfn0U2Ym/0pmrQfesHyszLFOZZ4s/6BrfTyEtt3xN+ai+fUTUE5i86No89EuI7Lf1SmK76t0UiH04/ecsHfK7H/OdLar33a/H5qbZp4o0uISsdapVfi+EMfstPi0iO7rdbuJgJSxWucRrmyTEuVxbzQaIWFtdB0L+//h1/E55+qknuI1SaKk80dPfdB/STI0/75Mxy4YnD0jWJ1RGW5oWB6TQd7xcqf2uimz0zwNcTOp2JaS8hvTW+koSuKPdViaJ4vPVZ0jP6XSUqRLGjLiM2C9IWqbH4TqxRYLmdu92+J+KJGPWNV+3I35KkgyeoL+3EUHb7K+TsrIpWWslgSTSQWL4HJe5NpKG6figoqynsFLdLrTWUFisg3t5DXHrLbcDQJzQXgOoqM/faqOOtlxDU9yv/Ud4rTM5z+zrcp39kZcu8ntRxzyeH84BlPUzU/g+dnnryDiYlJw7DLuVB2OqDAaDwWAwGAwGg2ET2DFMVUWS1i1eOsufosXVZGeq/a9UWIvQdarZn0SlwtqCuV2sLWkv8bm759jO89NPfBkAcNMx9m+YEDZqWTQSURQhDPlYvc3MQKkimu1Q2Ba1P2bFD9qddWlPFUHIbQ/KK3KuaBY87XisoRENhapOIhBItEf6GagmIrZvzY8QE1GQHCuwzY+1Ol5ZbdF2BQhUeVWIgJR1qfX8FkWt3GsiksGSa8NK/h6/tb6ISDQ6U9Wp/LIiL5pNqbfBXSnDBf2jukQyl1SbFzmHddGS1GqsaVGb7aT+rFYptqnuMrPV7rQRObnv4HOT5IZL2mq5lsdhdbUldQaxxqtU4ba1hKHqOv4sV5n50CLbnbrUwXU1W2toCgM3Pz8v7ZDoSZE8O3Lrjhw9AACYmpzPHZ9XBCirieqnwe/VIEfecWQ+S6UQLYm+pdBIWjOShLNb53mhDOSs3JN2U7SAEWF2hrV8KutUcfj5L90PAJiaZXl1cP8+AEAQVuPOBS5fm0+k2k15BpDtk0P6Or+M/q+LtOzpiTalcz4eQ++T9Ly4paCAMmfqj4N8mdKRzAb5ThVFFktbB0Tx8yryM1Q56jFUkjw1CIP4dw0ZXOQXpYx33u++NrWojH6focfg6/dYXhewbOVSKdamF0VjK0owOgyK/DXiCGipOvNCZ79SMIoPm6IoHD8AlGTOtDs8VuXAm9d6371Iaml2u+jexL5GXhLagHap+xWmxBzowH6Way88/xwAYLbCx2OmQsrU92ipVOpJlKv1+f5RflS4SqWCRoPlqX761ig6lj77kPSxd577PlZF7L5zrieEvN9WP6R73qfPWuf5PaXRL0pd0XNVVH8URYX+Vopeaykpuyzr1zBASX676gj7TF1zzTG5Rqx0OtlxKFV13hHaLWXC+HN2dhZAEtHyxRdeAAA01njN02pk37HUZ6yKnqk8n7JB4z4IxlQZDAaDwWAwGAwGwyawY5gqVVeqJuDsWWasLi5x1CzdzT791NMAAMcKCyxeeBmzFWakWk3xg5K95PoiX7trUjQeAfsk1MSpaV00lI5acCTJ7SqsSQ5LovEJxL5WtJN6vFLlMqs1h9qk7IBD3lmrBjLRDql9K2s7wiCrsUhrTZOIYPlaQl+LVS6XkRBVugPv5l7ja9yTKDDFu/VEAyD2qN3lnnOqE/m+Y11h8yJhhFRT4aM26aAuTJ1oJfeckvM0EFFve51oqTS/Qt45AFCtJRp/biewazdr2NSnKix7bRVGqOt4PsTjoj9HXYjSMM7ZoUpkcjwvJmpqd85luIDnQxRFOLCXNX3ryipV9WbxwExMct9WVpj1Ckvcnv0HmMGa3zWBgwvXAwB272YGpC2kyPFr93MbVZsVcVmNepaNeyWBvGSco/nUDL6mKJqcMuq+T965c+cAABMTfJ9rtRrqDZ4H6gN38RLf267c88989l4AwLvf+W3Sp5R2X5oSIDtPI7/NsbjwWYDUd2FgaFOvCy2vgKnqAeX81l8HOIzWf5A/VPozuZ+u8Jz0Z15Zg3JL9YvcN6zv1ChlDCor83tBTh2f3dsK/7w0S+dHI/P9cnYy+kV7LLp3ebmO9H/1N9l/kJmChsiQqu+/LGWoD261Wo1ZHoUyUb6PU4Dse6EUhug0G5lzbrzxZgDAjCQ1f+bZ5zP9Vfmnn41Go8fvRev1fUT9SHbpvID6qf6lyiCpRYD2V6Fzq93uFCa11fZo2Yn/Y+KD0+koy5JlyPScZie79uuxKEr59/r33Y8g2NuOLKOWrt9nk/0If3lMlT+/iuRLpao+ZjzG11x3I26//XV8TPx/1Ze4I91VAyKVEG11IIuAwGMgdT7qPbv+el6/nD55Kr9dRPFacpDc88chfe/9+WVMlcFgMBgMBoPBYDBcQewYpkpdBKYkMp/uJl/3Ot4Zf/bzXwAAfM3dHGXk/s9xNMCH7n8S936GWS3dFB9cYM38e7/jXQCAkyW2+52oMtsVqt9BILabrWbsG5NoGER7oMxEwFod9VNxmoU8IrRlm14LxZ5Yo7u08/MulNTnRzW1UZJDQvNKBIFob2KGRu1cszv1TrtXa1sc/c/3P1AfpKBwt+6XFQS9rFSngPCIo9ZI0WGQH7Ws0WrEkX7CMP8cL2VC3JeMJsKJxi1pfUHDspGBKADKFSlvVe+3Z8cc8X2v1ridqqGJiwxc7IvhZEAqak/ckXkncyiittQvfjdLS6iUxb54bi8AYGWFGbt58Qucm2NG6sD+qwAA0zPZSIdASnslPm7O86cRJVsSEWl4F4kdif5+U/3YjeJrgKx9tsLPl6L3r1ZjH6tLokkNSolGWbWM6qfQaPG8WGuKz90Kaz8/87kvAQDu+e84f5VDGyRzOLn7yn5Lu+Im+8+A3vud67+Sx1T1zeVUcDzRgG6ebRp0Td55RUxVXn/7lZ137jCsyFBsVs7xy+375L+3RvHdGh/0ygSgl7FIw/ex8SOXpdkGPacpvpplOScU2aEMSkXkjTIoWkaj0YjljDIPPnOldVSEblAmKaQQJZFbagWjfd27h9daS8vsz5sw8hOZz3K5HJfv+x8ptN8qM7WdrVZrYE4vvVZZH58xi7qAk3e4lhvPM42G18muk2KSpZu8E6J4alLmGv3dZ+PS8O9z0TrN9/FKP29+ji2f5SryT0y/s/x6dax0XPR7S9jJm29mVvLWW29BS95RLfWDU5ZT8i/6MkrrCsMQTuaoRvqWJV8qXgLPMWVQu2JqEzPnQdBrcCEoYqjSMsX/baNyxpgqg8FgMBgMBoPBYNgEdgxTVQS1ndWN9+olZggqspv+hq/7Jhzaz3a9RKwt+dTfsi9Cp62aCNZWuEi1Fp7Nqutnw53VRPTb3RJUm6Nx9b08JHEILC0znVOCvGN662iIT+9YXH+QORO+PaqyYC4oJC00l4OyTnCj7O79XAEF17pufI/g8vNU+Qr3JBqgaOwCQtd5OoQiW1kSDZ1q6x1hZoa1eKppq5WzOTySevka1eaUhFlrNptJroogO2ZRwFqcpuS20MhNmr/q0NF9sXauJNEH9+3lHA6q6YujZsWRHJkJ6XbT2iVtq35mmSrTsSRIaxJ9jbxGeizSjlar1R5NnGoM9T6q3FKNokY6WhNNc7vdjueB+lQpIlGHTkzyNSdf5Hx6z0gG+huuvxptiT4YxhJe28PfnPRBNbUanU+ZcBehxxeziNhN2pXM/Zgpl35TqOxJlkVRzaqOi57P45Yddx0r39beH+s8DMsUpc+Pr/F8h/qxC34Zvj9QUbv6MaVFffC1r0Xn5V1TpLnNyBGP7R8Ufcw/PgxjledbArC/a5FWfdjxHy/k+7f1XS8U/OazLel5plAtvsqQyRmWFaE8UxolsCU5h8rlcnwfNTqs/6zos9rSnHutJPee5iVKzuVyJ8Wy6KabbgIAvCAR3Hy/qXR//H4q/PueHh+fvVFWQ9kVHZ+sfEk/B4Tk/ad98OefskBZqyEgiNcbrmf9o2X2F57DsCJFPk9FciDvHL+sou/pa5QpUnmr76Nbb2GG6rprb4iPa7RTxPUKQ6hRq/VT30PyGbW7sbVR8g7KRqbUyJGx5cZ6PdN25xyCIOsPVYRhxs6f/8NiJ0ong8FgMBgMBoPBYBgb7FimammJI2HVRVsyPa3R2dh/KpDoZxMTEQDWCtebFwAA19/CWv6VJp/bDbmMVsQ+VE3VuIoWt93qxqxOLxOk2iJlfTS6Syn+VIaCQmFA1Ga1lPU/6tFa5kSiSrTGbb1o8Kd/TLUmBb4CPVoT6rXvVwSaBXtDuUqy/lGF2gVqJqwRFTBVnnogvkuZ9vhtK6hP73WqPWurrK3Zs5tzAqlPjGqoNLu5asbUlnr3rt1xO1TDXqtlIy/VpW979+7NlJHWkKgdcSX2e1NbcZ67cZSfkmqJ1e4ecl6Q6q9qusRnLvJtyIP0aa9oDMMUDPKL8TX29Xq9h3lRqK/d8ePHASRRTCdE+3b2PEckLZfLMYuk80E1hqo3XZM8HZH46L34IkdF2r1nHvOzXN6qRIPUemfF907Lrnv26uov4KIAXY+RK3jyYqgGc3JyslcTHCnrk43sdPr06cw4pGXAtEQOW1hYAADsl3xcg3yL8nyZNvI5yIdumE8/T5Vq4/0IU/3q9/vXr99FvxWd60cjSzNafp6qYbTbfl2+JrjIp8EvM324qIydBEIvEwOM9r4s6neaGV6V91LiH6W5pbLzTi1K9B0URVH8TKb9XIBEVui5Wtf0FLNfmOwiaqsvufhydtQvOHufb7+dfd4feeQRAMj4jSpr5fdT5YrvL5R+dnxW02/7uuR19OdfDFfqeRb9Oar150Wf3EzONr1Oy/BZY7/NWr8fQZaPZ+v3/e8UedH//Dbr+8b3qbr22msBAK9/3W0AgEZT3k/tLjrKGJY0LoFY50gSzPgdqu2QqImho9SKmttWmuB3UpxLTfqrTOoliXQZ+4ARwRXwREXypx9TtVHsmE1VbPUmgv7AAU5QOr+HB/ihRx7l4wv8oJ87yQO+Vj+PSVngTE1yIa2y0JgS/jsKePJ0SRMH++Y+Dsk08E2m9GiRWVpCK1MgD6PewMKXtRaqJwSp/1PHMt9H2FRp/SoABpiGIEjV39M/EUQF4XX7w5/IBRM7aAJiMhfHJffhyci8sKsg/4Er2lRpAuNkA63mWefO8cY82TTzGUlIVxYAkxJGv5sy4dJQ5ioMdeFdL+vLjIXTZK2c6UMYhokZlUuSJXK/JEF1V6OBaB+n5VrfTNSgGLT4Lv6t/6Yq/bLTF5EucnSe6EJhzx5O4HvuAs8rDTjSbDbR6WYFvy5q1tZYbmmixYlpkWeysHn8sadjJZOa5Vy8yJu1Awd4Y6IvlXKF58fCAstTnVdTUxNxMJZYDqRC9uZB5/fi4mKiBNAUGGd4sffEEw8CSMyA9LnSa9OmRmdOX+KxOcP9/YZv5HOKQnmnFzT9wpz75xb9nii3kHvuoO/9zEZ8Z/C8sgZtiIrqT9cxaONX1C4geddudDPT711QvJkq3lTlhY7eMaDhNr15v/lj47/bgETmxAthmbTNKBtcQN85kWQSD2uJebrKFx3f2NxPZJWO/+wUv1va7VZclj7nXalvvcFKnJoGFRAXikOHONT7+fPnAQAXRO51Op2BARpUlsbvwtRc1nN9c79hNznOUWrO6TU6zrphyyol08+37lmcy74jKFYCD58GYFBQsCJzX37ekfvboLLSZfrvG507t9xyCwDgttt4M7W69DJfK9eVyxNoqEIYWWVNW8YwcNk5HekmLAgRyPh2VTEt7x99l+g1SqgoYqVfEMTBtgaZO/p9zcNGA+6Y+Z/BYDAYDAaDwWAwbAI7hqlSJYGGBG62L8kvkkhXkq82m+XM+QDQXGXqd+8ca2mXZQMqhAAm8RIAYDpgbTLprlacxs9euoimYw3ynIRBr1ZEoyoO2GoGJ9ZXCGX/HqIba4u7HaFCYwpetRiU+VRTGcQaul6teaytVWfuOAgFMtfmMVWBlqVag27ONUhrMYJUsVmtYexoKm2OcsxZikxcevb0ReYNXYeKBoboFGlLswxW5DmMEoCwINmvj27g9z9CN2RN064DrFlfWWbtifZFNYBxuNGUKRTAGns/vKlqgieCrEYoYaHkvI5DEJufskYwiklPmWck2hwNlavUnVwWlIJE86LOocJuOQm/HQcuUQf1EU0Ydhry2KhhfisyJUhfq/ffD22rGl3V0O7bxzJJtW9hme/jyspKbDqhGuN2Rx13s4EA1LRvcVEZkhImJialLTynDh44CgA4v8iBVqaE3aqv8rVnH/4qAODw4cPS7jAmhdUsdWLA20L7NDU1FTNjDzzAqS1OnWS2adcuTgFw9OhxaSu3uVqtZcarVCqhUmG5ferUqcw4+MkvFWnmZtgQ6v1Yn0Hmf8OEVB/EYvVrR1EI8UFMVfr8Qf0tcn7vV++wzFVeOodBpoTppKlFz59v9vRKwaCx0feDz9Rlxlm0+oEw0NQWE2FJ/dJte+uHFpc9UymnAsCI6bIWW1M5xO+LS6tsBRRbXKSS87qWpiERRl4JGsffO2KOeGiBU3+cP3cx7qMGt1CGpNHIJkpPh39PIx1kI3a/UHpZU1mUeFyUAt4eWQAAIABJREFUyYL37ETUiZdhoaQ+6WoeHzFp1HWTpndJM2l6x9T8LV7ZKfPeyTfp03VD3rMUeZY0sRySNaf+HrM9YQByyuJn25gwadmgVIm5t4v7rWHx2x1+N7z2tjsAANffwPcscnw8qOzKNKzb7aJSm8i0MazwvdOkv/BC+XekPSEcInGD6GrQJLnNQTl7r9bW1uQHl/nsIor7TX6OnTiliFwi00OTNqdlTG8Qk9EYemOqDAaDwWAwGAwGg2ET2DFMVbKRVPtJ3gFXyqyRLYuGNz5e0evCeNeqn2ob2/acCxWJzTJ/rqysoDqzX8rI7niH0XwOa8+e9DW7My86loc8G+JB9Q7qQ57Wfiuchfv1bWCY3i32XVYNu2JmOp859O3Q0/ATwMZaK/l9I8nnirTHiTvcEGOqYfHjYCs6hwZWv6PBGrmsDXwyXlH8G+A/0/1DNjQajbgcZag0EMNXn3kWQBKE4eVFZtyVoWmvcVCdZqeNiiScnpnjc9XZOuhmHZbr4tsgykE06ms4c6aVOUfL16TQZ85k61WfpjNnznBZYYj9+1nmnTrJtvPTc+qwzjK3VmGZ+8ILJ7kvp87K58toiYp6RvwvKtKHSDSj2pc50UpPiZZ0ZlIY33IJJfEfPC0qy1CTjpbVySnLlqe1kEk4eP5UB3q9d3oLEzmuphCqaafUb4NZpaLjfjsSDarKMZUf6nyfyLckGbvLfC8qM+l/2kogy2okbVOLg2x70vIj6vFBzcKXU3nvhiKGahDrRUQ9PlQ7OVBFEfL6NCiYhz926XeiHzK8KNhEHFhBNPuVSiVmTTTMeknWUvpd57mWEcufej1pY5TPwJTlGV1aYpZLfUfvvvtuAMDffvqvMTPDMsJP9qr9VYbK9/mKoigVqCI7hgkTXs2MoT93S2Gph0UuCuUflx2/BgjlOGAZMr+pzAqDbF/89nW73V5Wu+D9m+dTBvC9Loe6/s2GlFdfr4Tk1Lml7QzRavH4avqY2267CwBw083XZ9qsDCIgwSd0fMollISZ0pdRMmbC1CmDFaeckYHqRj3WHeUg6zu7uLgo9TfkuMzxVBCWbqu/vPGR9pMuDGIyIoypMhgMBoPBYDAYDIZNYMcwVapQ09372hrvVtdW+VNtZptN0dSkooD0MjVig9nttacEUnbv4mNSr9cxNa8+TFmt4DDRlTbKVKW/D8NaFJUxiGUaZG+fN4ajtmcziKJooMZhq5WX/pio/XHCbIhPXRzSPOi5zvcFSEK19r8fw6BIeztM4rq4Hpf9/opmqiifRR4GgzTltVot1rpVKtm0AX4ESPVD0ih46ahV+v+lS5cy9XYkkpTKL9XC+qGHtS3pchsNLmNykrXCqvVcWuLofMrIdrtdXLzI9Sqr9vwJ9j1VH66pCT5+9iz7abXEB3VychoTEzyeFZHL3ZDrnZVkoNM1Pj5V1lQB/CpqiZa6FgToSgLjfXvEp0s05Kp91e/FPpsJ+vnOFX0OI9vz0K8M/5x+34dta7/fi84dd7an3/jnhbTeqejH6hXdXz+kOCc97c+u+NE49bx2K2F9tFxNbK8+RZWJrAzxy9w1Oxe3pSUsRiuVxDzdVj/VREV8v/bu3YsLFzgioLJYTvzAfGsQn8FzziWWIgVMXRydsCAsOqXek3ptkmYiy7okKU+Qal+Q6V9y74RB6yBzPC+kt898q1u4f7+L7nEQBCgJE6TjGkX6rtBz9SqfjSFUq/xO0ih/11xzDYDE78hPut7pSNtlUR6WS+paH7M1bRnntrCdoc/6y3ka8S/dP0dZVkvTbySMXr7vYRp+iH0fyfhfvrWtMVUGg8FgMBgMBoPBsAnsGKZKbeIVZ17mqDEXzrOdpW7el+scGUR35p12F+XJbKQ21ehO9LANyHyP2lxos9nEjNq+tjXKIO+8q6Kt9eFrV/Lg+zskF2fLGEWruBG780Ex/NNalEHIY0aGYUsGtWPQWPjjnGcXO6y2tojJS/+f+OdlNWOJxtBP0EcAfE0k/1KkiUrfyyLtZZG/gTK7fsLEvH71+F+5/HF4JYEw/Lz0MWhcOp1Oz/zzE/mqlldZIN8Hq9vt9iSDjLWclO/Lkj4vL5dNul6F1qt5tNT3a2ZmJsVicWRCjWy1vMyR/FYryoxxWVFX5lhYQlX8rfZI8uu5efbDKqkWVhJGkmqMVaMpeW7KAaEuflevveVmvtaLpOjL2LxcKxthqPRzmHM2W4bfnvT3jbR5UP2jYDuf/35j1++dOr7I3s88X7NB0f/89YsfLRbozdOkz4p/bpwDUXJnNhqN5F0lzVRfW10H6e96rZYduF5fYp8JKmKTO5Ik+OjRozh1in0zlbXXMove7WnfZL98HQc/uXXR3Om6qIeJ0/L1U/um32N/sVSido32q1D/sHK11Ldd6Xvo33/fl8tn4RRhGPa85/33ShHrR0EXc7NspXDs2LHMuW3xjy2FwnIq61WWdYsaujiHUjnry9XqZPtLXr7M9PrFf9+1ujzeGqlWI8rqWHc6vX7rMQMbs4nZsfPXVsk49M7RUXzb0zCmymAwGAwGg8FgMBg2gR3DVCUZqVWbLjajmmJHdpnLS2LvX+IdaLU6hSDQyE/ZEn0b1iLb7VKplNhmDqklHAbDXjuK1nQz9fYraxi/hc1io8wB0Ju7YzPt69f/+JwgpnMyn5Fkjo8jA1FeJBnX92u/dgx7Dnm/52q+48/Lfy/HH6P7KQ6LtP+czktlpNQ/SjWYyhzp9zybf98Pwo8e6edvcs71aF337NkjpfG5kxLBT+vV3Hh7dnPerFOnTsX+ASsr7G9VrohPkygIu22JyqdaSKc52roIxYdqfZ3P6TQ5quH8tOYC5DKaknOkWuZrp0VLPTU9gUBSER49yjm2Wi6r9dR+J5rLRBt7OeVlETZS9mbk9UZ+36lMFVDc9u1u1+XEMLm8/Hdv/LzljI/+r8+GMidFTJU+96VSKZZN6kNV1U/xf/Tfz3nWE0Xafb+tyZqL23Pw4EG8+c1vBgA8+OCDAIByOesHpb6cvq9Tui7fIkDlm98evy9EQc8YFeUYVL/pdJRCPzqwXjs1xTKzWc/6u/q+Zp1Op2ds1A/JZ1f0PO2r1lWtVuMIsLFMXBKrrMkk/yEAVKrZvi0sHMRb3/pWAEBd/OESxq4q9VSyZUtdUWpo9f9QWKyyjBWJ6UzgrTVSMzdh2eS+T0ruwtU1toxQnyr1F1OkWaiidaBv0eMjCIKB5wyLDa9iiegoEf0NET1GRI8S0Yfk+G4i+iQRPSWfuwaVZTAYDINgMsdgMFwpmLwxGAyjYjNMVQfAP3XOfYWIZgDcR0SfBPB9AD7lnPtZIvoIgI8A+PCmWxpH+lADTtVWqmZEbIjlez0JJtKrnSmwWS3SOKZ9iq4EY5R33lZoXgdpk0aJTHQ5sJn8AJezPUMxVQX1Xc5cKptpx4aYqvFXAF8xmZM3931NYhHSNv5qh+/bcGueJo2o5OdkqVarPX56/neVa3nySxkwX6sdil382lo9U2ajkbVPr9UmU/54fI2SZ2HIZbeb3PZY2y3RmkrlEN0uC+CVFfbH2jtXy/R3RiJIlYXBO3LkEACg3uJxeeHkSRy9+giPofhZ+T4WfjSudF+HlZd+ZK+83ID+GOadmwciGvhu8WVt+niRr2+ehr5f2XnnDLqGiBAMkAe+VngY9HvHAam5nvMq2AaGasvljf9sp+HPjUFzKa9c37fEZ2H02U3Xr7KJhPboyotBo775PsCUYv3j6H5Nlie+/xdR1i9L86g1W3UcPHgw0+aHH34k0/Z+EQ59n5lBvjT+fFNmBSiOCh1/j3PayX0JCWEpazVQEua9NsGyUtPFaRm+z1s6t6G+CzpihqX3w49kl8esEdQvSfvA9VarFamHz1XWT+/Xrbe+JpbN6tOmkSH9YJvdjvR/QiIr6nsoDNFUMwaNQih90miQylTF803XS1GvT6H2V3Mn+u9UZazS1xXdO3/O5N3bvHXvRrBhpso5d9o59xX5fwXAYwAOA3gXgN+W034bwLs31UKDwWCAyRyDwXDlYPLGYDCMisviU0VExwDcAeCLAA44504DLJSIaH/BNR8E8EEAuOqqq4aoJZ/FSDQPYv+pu+Yu27s++eSTmLmFy280fDvafE2Pr6HsdrtbYptfWJbLP2+z9RWVMUyZRQzJ5dQebiaqk6/V3WxW7EEo0jD30zxeyXb4TJX/v1zklbGFDb3M2KzMmRZb9y1qWw8D9fzzzwPgqHoAsLrKPka+HXeafdI5rJ96bZeyPlRq467ax06nE2sgVauXZKvnZ0y1wWvi06T16nEiiiMCKlZWm5m2+prTUlkjbAVoib/VZI3HeWmJ/TWuPc65Tw4fYmZqbZmZrOdfeoHrEPv52T27cM3NN/I5EtFVNaLDsFCjWhb42vBhrBMUo7wThrFK8Pvg/zZqmRvFZmVoP6Z9UN+iHKrqcloBjIrNypsiVjN9vMiXKu/cnLoy55w7x7njrr766szxfgyt+l2uCwOtTJWyKX4kwSTSbMIQKBPhR8iLvMhuydxKIuhpJMBjx44BAJ566ulMvcq+q2xVpCMnttud3P4WMRV570f/M+2rCgAUZP3GarVaD5vt9z9wWasC7UM6Oq+f/6sW5rNtvqxOj4MyVD6L7I+H+oC9/vWvj7+3JMqf+oqFgfpscd80F2xcf7k3SmWcw0qeX585UquYZK0rY1qihL3rZufIqVOnMvX468R+ViV556QxiowaFpuO/kdE0wD+EMAPO+eWh73OOffrzrm7nHN37du3b7PNMBgMrxJcDplTq1YGX2AwGF71uBzyhvpsiAwGwysHm2KqiA1k/xDA7zjn/kgOnyGiBdHgLAA4u9lGAkBAmu9HoqWIzX5L7D6npniRVAV/tmS3feDgQXRLHAHn/CrvcO+971EAwNu+iXfp5arY6EcSKSdSTcyE1FhCR7J7V0pqMytDF+gQRpnPMEyyPgei2Qi6ohVC1kY6jJUomjBosC18EfLs7QfZ7xehnwZ0FD+Tot+cG06bsLy0iplpybI+pONPvzb77RqkIcyDkzkSkGYuF+2Kap5Cyayeq7dwud98hnQUjax/b4tyfGQRZhoQVxfJvAw2zhxuFa6kzNko1tfXe/JBaWSt/ftZqa2aTNUKqjY2zf7ovUuiTpUy1/pzPB0VK9HcspzUKGBra2yfn+QE0fmiQoikrnLPsQnxD4ivFWuASKLyVaTPUxNVdJa4nmqN+3DNVZxrKhAN5qXlRWkXPyd7q6xYOzDBDNaho0ew2mbmrTrNbadOwqIN+rwcTNWw/lCbaYei37U+Ri1roxh0/SD5NEr9/TTLG5HPlwuXS94Ql9XzzvHzOUmdAABJo9nzXvB9xNOsdlvWKWde5pxPr7/zNgBAsyH5qzrCKEmENX22ms0mgqrkWipno2uq+kldiVrijxk/H2GISomvVRnk57Jqi09NXVhnRaOxni081V9lUR59lNdryqr7Ef663W4SCa+czTHlRwpNfLyUwZL3JJXjc+OIdTL+pTDLcslyDhWRh6VagG6b99p6b1qSx7TZED+gRivze1P6TWJ1UKsBk1PlzDHn+PvszJSMVSPTb9I1pw6d66LTlqirdS0fmf6SRMJ+xz/4Ju6LrDXb3UnMzFcz5bdjP2Auoys5zRyUhfLYTiJUZR6U1YdN1sfdcv46qdsmKauLjkRI1Byg9Qbf75MnT8pxaWtbWTjdEyTrpSDIbmn0/ab8kf8s6fEo6sA5ZSC137p2G03ebHhTRdy6/wjgMefcL6R++jiADwD4Wfn8043WkYU2VVeAOjj8NTFz4QkxP8cT5MSJF3D1AlOdrsk36epj/OLutmWBEUnYTd38BNlFbZpeHjpQwBC08nZhI+3YijZv5TgMs6naXHnZTYzvCDtMWYlJwuA5pNgO05dxwZWXORtDGIbxYsI3odNNlMLfKCmcc/FvalIRO517Zjlapp5Xr9fjl4b+5js7+8kg9YWtod8nJiZiE0U9RwNW+CYu8Yu5zXWtRW3MzbOzc6vBx5565kkAwJ233wEAOHaUTbLPnnuZ29zihdpNt7wGALCythKHVG6I8/PkkNr+vM1M+rdhjw+rdBqlHcNspgbVN0pZm5EXgwJxDGMeOKyM95VC6f+3S+ZdbnkTBEHPPUqHIPc3+OQ881ovME160+8vFs+fPw8gMQlW5Z/KEN38TE5NS12JjIjDXpMXGKJAkZpW4sTJbr2UEnHwBUnYqtc2m9y+UrkcbwC0/ENiIqyy6Zlnnsn8niyy2z3Ba4rmrj+WSaCeJPlxWFKzvqr039v46lwN0u3IrgO6onBqNSWEekc2D1JWMzazhrQnQDfynhVJz1KXDZK2tVLhdq6taZh2NXkkdOR/7UujweN7/jxv+l572y2ZcYg3nS6I54y+A9SE3E8orO3wN66lUqlnPaTvGZXv2sP4HRLKfeh0sbLEbdy9mxPGvySJ6OMk0wVKcL9deSgiFvKuKQoENCw2w1S9GcD3AHiYiB6QY/8MLGj+CxF9P4AXAHzXJuowGAwGhckcg8FwpWDyxmAwjIQNb6qcc59BkYod+MaNlltcYazGkAOqRckeru1mZ+61dd71njlzFp2WOk3zSXvneSfuNFRvJLSjsF76OYzWbFgTjaJj24GN1F90zeVkf4rKSjOFGy17sxjEVPmfm0lk7Nf5aman0ri8Mqf/nMq7f/H5Xf1NTRyyDswu6CIUp96VpmgkKyxz6pIMF2JiE8onxEwhTpIYOuzfx2zP6jqbyl19TEIOd7jsCxf4eLfLWuCLF9jEsFGvoy0MkQ5WY1US9ZaFjYc2g8sqi1ZyTrSU5XIZoedUrKYykZi+TpQ0KbF0QbSw9cYqJoSgm93NfXDLLGOfe/o5AMDZl18CANz++tcBAPZOsHZyee1SXGeg9QRqFpPPjAyjWfQ1s75jucLXwqePFcnvUkEAjSAICgMEDGKZgiDoMd0dxioCyMqiMMw6zGtAp8GmffnBIvLPHe3dmHdNouHv9pzjWwFcKXl4udc4ee1Om9H3zAHKsi4+G5OedzpGLWGm1GLn5ZeZCT54gFmf2ExQmBJlgdLzzWcZ9NMPx573PMTmbR4jr6bEvllgbAbdqqMtjHQcqEFkkppMLy4uZtqnVgCtVitlzpxtux8owe9TfF7HJf0sKyOSdemIg0qIPGrJurLSCjEzJabRHe53u6lmj7LGDKekPv6+LvdJEZYCdET2a/9JTDn95OZ+gIr0fdNb4Scsvv76awEAt95yK//eVVM7xHUqM+ibpPrm5nFwpSBrMaHWYtqW9LlB6JmwqjVYR80AO4kJp5T79NNPZ8rV+nV88piqood1mPXrIBk9LMx70mAwGAwGg8FgMBg2gcsSUv1KwN80lsSZUHfAGsAgcuw3pT7WK8trqFbZ12DfPtYWLJ5hbWilLDtTZHfRgWhg0+Eui8Ja6i7dVVymjDRjMUjD6NuKbsTXqV8d/s57I4EqirSDvka/J7R36tp+GtX0736Sv/n5+Z7xH6RV6GcrqyhKXuknTiyVSonGRcvw2lNURx7j4Sco7BYohNPhtjfK1PVju5Ix03PjH7zfDWkk8zX7Xdn0cqmKQJLsPvU0+wEoq9Rus3zwkwJPVFkrOyOh3o9edRD1Ol/ztrffAwCYn2P59YUvPQwA2A0+9+GH2ZG7JKxTWCIEet8l6IiG0I1c1g9LkWgWRePdWu95xlSDC6caSp6fDXEwLleE/QkmY22i9rMhfgGze+a5rIoG+vHmWmrubdQfqd+1gz79soe5pkgmuZyw7H6Zl4N16VfHINm7mWd8UAqMfn0rYvjz/JiLrtlJcOB54rNuee+HeB3iBbTyGaK8ZNfK7jSEqX7uOWaGDy0cyVwTsx3rzJhMTk5iZpLly8rKCgBgemJSysqG/9Y+pAPj+M+A7wcaiVWQ7x+k7Wk0GrGvkJalPp3qY3PTTTcBAB555JFMX6vValyv+oWpfFP5o31SaJ+SwAnp97G+/9X/C5ky1be0IlYGrbbD7KQEz5BAHHUJ5qGMVVTLltFuZeVvpx3CieydnWZrqyl5F2g//UTOOoY6Tmtra4Cw+Z02z5Wv//qvj8eIx0OZOZFdUudEmQrZfL8+bc+KjGE6cIr2T8c18c9SnzphtTRwiczTWqWC0hwHIzt3hn2pnn32WQC9891nHzNWBwMsh3wGLSkjhyneYHocY6oMBoPBYDAYDAaDYRPYMUxVAt5p7tvP2otWmzUDa+ucRHJmN++ilyM+7pyDbM6xLlqDkmiUA6caIAkaGqh9b3Z3O5zWMtvKYXyqBmkr+2kRR/HlGqXcrUBRP7UZgzQCeRrfYVk2v5xB5wBJAM288MpF9WzGh2pYX4lRMJQmeucpfMcCzinDSZmPJJx9hGeeZYbqpZfOAADaLWXSe7W8AFCrCMskkf2arf+fvTeNtuS6zsO+qrrz9ObX84xugBgJAgTBGZxFkZRlRkqkxFleGWwnK5GVaGklS85KnD+2Y3lZ0nIcaVmy7JDWaCaipYgzRYKkAAIgSAAkgJ7R4+vuN093HqryY+/vVNW59773ul83iAfW/tG3371VZ6pTp+p8397frqOjCXRzeVmmV9eWAADffebbAICPfvSjAID7IUlyX3n5jJadg7ruG4QyRCoVSc7F1a+YrDeqKJg1uby0X4qukvnP53OxPkSVxSjhfuwu8eFXlWATU7C6tijfa2JJm7FyHMeoLJsZbMiszdn5W2Gk7OMGse6DPjeTXh9WPnB7maphdUTbSLOZhdtRr223wlRtdMxWyn3DWiAJcjfzbIiarfbHfg9TAQSiqm/KiES8LQaV3VBmx3NdpDRGqcAErroW2H8jFVcW9X0fo6Oj5v8DTePDGIcUyqHL8dls1qjY8TdPleHINpEhoa2tSdx8oVAwzJgtt872sK12It/wPghZ1zCtBZVZ4wyha5Liyt+lUgYpZa2KmiLCrJWOMjSaYSNNNqxN9VVdO+CgrOtppaB9ycu5TGVR8gqxdoTxStruoGsUWMnumYTOVHY0rGc69ner1TJjZivDjiiDFKq9DlZYdBzHrPt9bI+u+2SoeE0rymQ1Gg3jrUGmatg7zEbvXMPWlc3UmW9m/dnMEqYqscQSSyyxxBJLLLHEEktsG7YDmSrZnZfKilrorrWqTNWuCdkp++vCVHU6PnqaHKzRU1RWUQJ1mYUTENlTlRVLqQYYHCsUtY2+36pPvq1ItRW26VZ89u8EWrqR2fXYcWmb1R/Ng3GzjNVW2jWoPrvdmylc2ejRZnVs5Zib6dutsJ02UzUoruXNakEg12qze3LQbyFCpv74Zm5QitTF1auibsc1ptXUJJPpeOLO/vrk+/W1KlIpKfe18xcBAONjqqSnR544cRQAcPSofJ46dRoAMDY+imZD88Ok4375rLdcFr/95RVhjPKFOILreoHJIUNVqLX1RfObtEPQRzJW7H8q7aLREMT0hRdekP7X5e9yRZDJd77r7dIeg6D3xzdu9V63r4vneX1o6jA2yS6DFmXHb9ZibNsW2z7o0/b7H4bQbrw2bozy2mtz9NP1NsZctxLzNOyYzZ6fEh6x/bivN6pt5ZnLftvM1EYKll1lSPjd6upqrEyeQ+aaXjr1et0k152cnAQQrhF2/GVXVyAyG7lczrBGYb5Q+TSJy3Uech2y81Y5bmByKrHtbA9zbTE+Z9++fQCAM2fOmLrYH8P8az02c2Y/nw2z12iHrJVLRrAYK4PHBrpG794tqoSjowWUs/r813xMRTJiHa1f2Sdey+vX5nQMGbefwcS4jDs9BLI6/va9arOP/CwUChgb2wMAePvbZX29cUPqSXn0KtBYNmtdTGeyRk2R39mqe7wO/ISOB8fF9/2wPP2Ox9bWZB7SI6Os+dEoHesijOlaXJTnzLCY+408vrYSqxm1kAXuZ1hvlc1PmKrEEkssscQSSyyxxBJLLLFt2I5hqujzT8UV7s5375kCAJw9NwMA8NT/tDiqfrCrXfhdQVFSEAWsblr+DrwxLUt2zVnN4RJ4gh4sa86BQmUEcAVpgMZTZFTdizEQ/KT6iuMSZfSAgCjwYOWfraCom+3SByGtw8ze+dtIzKAdun3ssN17VrOCBxlFVdwAs0vzAIB8SlhEr6doWUHa0S3J2GZqitoE8ntNu5DJpoyyWJhDIYj8CzjYWIkKAFzmRhii3majWlF0o6+/DBKxkRDE82/4AwQG++IbgsFosVEj6vWGXjN7DtlIXLRPdvkp9SNnnI9vTRl3B4YuvD5moVoM/tG532534fd4TeUznVZF0aCp38fz7PWUqel1dd6kUmgqzXX9msRSuZC17Zf//n8PAKhUJI7h5KtnAYjSKQAc2F+A58o89Fw5J5NVhkzjANIZqb9UlntvbW0l1rdqbQXT04KcttqyXu7aLf7583PKbqk6WLstbSc6XK4U4akq69iY+ONfuHwJAPDQQw8CAManZd2urasSa5axBf1mYqs2ZTf616u+sm4i1mozhHKrZd1KGcBwz4XN1Fyjn2/08KOtxFbZthOZK8dx+uKagLjCq51jydVnDJmTQlbuNyof8+nneS5SjsYfdeK5g4j6z81Lvqq77rpLf1cmSdelIJcyzMTM1YsAQmaoUhGGnHGYPpRJ0Vx8zWbTKNBxDXBVKTSbYf4mielZXxfGwiiJqq2vr8HRG51t5ytVT3Mq1Wvyfako9ed0zbh8+bxh00fHZb3J5ZnrKh37NB4EGnNqno+uZ94POL801Rfahk2S7ys6DrVV6XM6cJCp5LWf7JF64bjKHCrr76oM4JTmSq1q7Fsv8NHqSXmVMq9zyEABYVyUneuL3z/wwAPIaYLA5RUpq9nSOYRG7NyUHVvmOWhpnsFeJ86QV8py/Uupkdg53W5/bjnOITKkXKv2Tu8CELJsLMPE4eayGNG4vFPnzsT6b7+X2cytUXD0/aGxVHZZ9pqdoNN2AAAgAElEQVTJ53Hc+NuAnzawhKlKLLHEEkssscQSSyyxxBLbhu0YpsrsNBHPldBqyU5XQRVkM7KrD5TtaDe7KBbKWoagFVScsX1TDUJE0inqq2kQjcHtux0xPluxO1H+VlHdLZ2j+WfaCtl0/R7uPnoCANBcFUTlj//dHwEAPviBdwMAxiuHAAC+InMK7hvfbfcOjemw+Kg3Iri7WQzIZuftSMWsHWqe5xmFvBZjHMAcToy7IqKmDFWPCnpEnx2UiqLgtLYiZQQdYayWFAUkkry4IPmsDhw4pHW5EaUmqY4M6qjGZWWz8nuxxDgBYdCaTblH3/mut2HfPvHPX12T8qcm5e8vfOGLAIBGs6r1CerJJTKVShmmiij3+z74Aa1HDlpdF/arqLEG8NV/H+Ga48JmaOJzfiOmf6vM/kbs17AYw5stayPbqKxhzPVmcZ07ganaXNlv+NjtRKZqmA2aO3acR6gqGmcQGJfkeV7fb7aRORgWvx1VuLWZEX7PmJvAib8EjY2NmfucsVWMw+I7VcqK5SL7ZlgpzzNrRugNE5/3bA/f13btEvbjxo0bfbFcpZLmsMqQqZK/mS+w1WrH+pDJpPs8dmi2Gl6NyorqhpLJZNBoSh6sQk7619J1NKOMXEbHbFXXTA3vh5si6+TD8RhjHh8H9ontsK81/56cnEStLus449HMfKAzhXX9OZb1iDIlr5GJh7Ni30NlRcS+j+Zho3EshzFFbHuhUMDMzEzsmM08uLYSw2nn0htWxiDVyltVdE6YqsQSSyyxxBJLLLHEEksssW3YjmGqzG4V8d2r2WnLxhwt9SHttOlnKXlbACCd1lwwGmcAU5b81dOs3y7iCl29Xg/OJjEtd5Kp2oqK1HbLB7bWp83a0SXCqP7JaSeFqxeuAADmLspnb03Qml1jEqPRtsa2owhVR+GV3Fb6fwuI7OvBVA1q71ZZo+3kkhmkjJPY62OumzIInecpMqhrTtuv6jGKRhMg08sTaFxWs9FDXtmkripILak6VrYkvu2LC4KO7t1zSI/T+6fTQTodVwgj6lipKJMPsvWCfpY1JuCnP/ERAEA64+A3fuPXAQAf/siHAAD33its08mTJ6UvLWn0lcsSp+D7YVxfLpc3/weArCoEMhdNV/32fevejzJVjsVU2bfBoDyC5tybjHfaSnzWrZa1kW2l7Ftl3d7ItplyoPMTwlTx/ozG7RoWCfExicaORL/fylwhg0Q1NuZ14jB7ntcX88V2MF7KqM1pfHOoEtc0/y+VZH3JZOJlNeprsTLIVMXZofj7R7NRi51DpobnTE1JXObIyAiaTcaqDo7R47lkrPL5dqReAE7ajBXLYj12nHKgKtF19ZKaX1lDVuPc1lTltNdRFUAd56bGrLIv+aKMEx0X6s0eOr7UOyKkn/l7aWkp1lau5WSw7r33XgDCRgaIs9nmnU7jp3nd+WmYomzWqD1yjrB8u//8m8qR0XWYc4blm1hva0wH2bPPPgtgOLs0TPU0+je/Yxk2u2+/D22Wv+pWbMdsqkJSTQbl4oXLAICrVy8BMOqOePEHknRTNSewOycvOUBISc/NChVe3CcX3jMSmlzU4hex1+vBtSSPjUvG6/Bgi7mi3AGzA/5u5gFvT8ZOwIVRLsjKwgqunpTAw9/9538MAPj5Tz0sx3QYnK8uAureozH+aGtZ+S1sqm7lnthMJv922HY2VdH2De/3xlLqb6YXkNttQeDAJF90Bi++Yk7s0/d5TNxVyQ9kHrc763BUKMJx5cHUVKldbq7otmweAikFdHQTlkmnUevQHVnaVhmVp22ryRcRKWt1VV4+qlV5cBUKhci9rAHj6o7Y7ehDT93uCFKVS/F+T06O4xOf/CkAwNvf/ggA4LlnXpW2pSSguKQy7L1u/GHX7XYj7j/SjuayJEFmktAmd5MKfqX1RSE2b+PDbjac4UunG/t0ncjfRgiEKhfctfKlHQM/zd0UW3Ns6Wp+0v0w/nt8sxd/iRjmfhJ9ueZxfG71nxv/ZJLSge6HHv2MdDyMoI7ppv0f8+9WUl1gg+MCP7wmZkPQ46f18mvABQJbDjyP7vp8qRv+QrZTbSubqmEviHzpjZ2zyYbbFhBI5UP3OL6003XMfkE23+u6RJe/AECgbXX0GV6rC+DDa9frxF/Q8wUKSYRgS0M3UTQeO0wWnWvM1NQULl68GGuzSQLcDl30gDAZLt3/uNliWohofbb7I21+TfpG98NWp4O1OmXfVYxLxc/qkHa0VGyD4k+NNZPPB4Bstqb3SnmuCoD09KagOyY3e3STO3DgAIDwOjiOg2qtERubvApXFAvSHrruceNkZOKDwIwrv2PS32GbeabJ4MpRKBTNGLH+JoUoLNdtWw7+zJkzOHXqlOlH1IYJ89CiG2izaR/y/mOXYdxTB4jI3OpGK3H/SyyxxBJLLLHEEkssscQS24btGKbKsbDE0VEJ4i4UZVd96bIwV7t2qUuZSnd6QRdPPfUdAECtLkGK564vAABO/OKnAQCdpuyme77srlMOg8Z1l53JwDHBi5ZE4xC6eZBriv3dMGpyK65bN+PGspmbiI2QbSRza59L9IJIUK8rv3c1wfLijSX83u8IQ/V3//ZHAQB5lZuHxZDR7dLXOjIUFmm2YtKzg+3mGRk7ANMgMQPGazOa+GaYpL5jh3Qpej02Q03sa8hA2I3YLlvuPezvxgj0m8U2Sha4yYn8T+Tf0NLptJlbYZCxrgvpwXKwNvqcyaSNEAVRRR5LxNi48KgZV+h63QQb27+Vy1Imk/5OTAga6XqChv7wpVcAAKdOecjl5NgnvyluGUG3HCvz2jVx+2M7uQawfYP6ZQdZ32ow8Ea2HWZ/0Lq50TE3U96g7zf6e9gxm9V7u9jpjVx1gH43ne1Y/zNv+LF3Ys68HhZNYm+Yog0QcltMgGNjS0oHQRBJNYLYb7yGdO3i/cd3G68U1mE/B+33AZ5LT556vRo7DghZFQrh1GqD73uuaWyH4wx/L2J7eCxZkCijRMbLXsfJ7oyNjWk9jVh7oqIU0XWLYwIAy8vy3mik5XXdjTKFLcqu6zqfVfa4VqWUuvStUlJ2z6cnA5m7vHFnpGR+R12l5+YkgS9dOMmgHTx4EEA4lqlUatN7NhQjkTXbjFcm0zcnOadsd0NaPkuWkWxkN2S1unq9DVE+OCkw/7506VKfe6fNvtrvz4PcYIfNnWHnRFngW3oXGGA7c3VKLLHEEkssscQSSyyxxBJ7g9iOYaq4aSSKzngCIiL8nShCS2WA223g3vtO6MmCcFz/2vMAQknIMKgy7jsaRfxudtc6GPF88yH/tlSmq0xV2pfvf+Mf/wusSTgFpiaEXVyaE1bRy2kcBZFHvR4MAyD+5brupgjMzaDGG8losr7ocYOS/77RWJzN+pRYv91upsogur4fEaroly6O/m3iNlUkh2hdu53uQwZpRJ3JRkUFdQD1z5+eNv+PnlNvEO0UlHliQhDc6rr8XatKnVevLKNQlLV0ZUWCrNOp1ViZdrJwIpqtVqsvMWWpVBzY/9tpG8WAbrb2bsTwo08w49aZqpthrrbKVA2LhQUAuLc+zncyHnPYeroVpmon21auqVkbnN7Ac2ymynGcgch79FwyObZceJT14W82qm8zVmRMoswZ6+NaEQpXKCPSi3v4wNFYS2WScrks6ioHbkuY259krNiOTqdj4n/4/sd2jI9JAnOKPVC0zF47l1dWw3dHHRPGf3INIwvX6gij1dPjMtmsKY9rNoV5xieFfVqb1/p1TW01pEzGzY1PTkBDN9Fuyzi0u/HYMcbDcW3nesu+5nI5tNRDiO3hNbOZoT7Pm6A/+bSdZNhmQ7MUfNNr2262IsyjE6vP9pzg3+zThQsXhp47jJne6D192KfN+tqs5+2whKlKLLHEEkssscQSSyyxxBLbhu0YpsoGzYgIpFKCHqRVuQ8OlWlU7WRhDa4nO/7KiKClS4uaCI+hPUqRMEFmr6f+xhFfYaNAlBq8D91KIso3I1NFIwKw8JrEWfyjf/wbAID6CvB3/suPAwDOvSbKjHum5Dr4Ks3q6/h7cQJAU4oCbiS54TA/flv2c5B1u6rAYyEf/axBXEo1imK8UVX1bL93OAlecjM2SFFoq9fYRsM6nQ727dsHAJi5JvGbIfoWl6GldbqUJ26bMujjT4TURoyNPK8ljzsxMWHOYb1EjKvVENWMlrWoa6I5vjhukMOJMelLAGkbUU/bB359fd30YavxNjYavh3bKB4q2CJTtVm5mx17M23c6rGb/T5MgthxHHSDW0dg72Ts0maqXBvZjmTjNd7DjqmKvi/Y36W8eGqX4UWHY2kz5FwT7PgYMtf5bJjo12a7+Ml1wCRyzcbVlFuthql/YUHWOzJH1aqwSYVcMdbWVptqeSVtX8fEPXHdczUgh+uKvWYx1mlqasrEO12ZES8YThGWFaretWLnko06ceKEYaRYHxkgrrP83lElP7ItrWYVo+qFM6bMFGdxrSGs04Qq+5VUdbWqHgN5HcvJXeMmzqpQ1n6q1wDbyGt55MgRAGFMK5My12o1wFIqZQqNjHp22bG+Jl6q0+mLe7NZTzs5sh3rFv1tGNtkr39PP/00AOD69et9MV12/bRh95DruhGR18FMlR2bb7Oyg+q7WUvevBJLLLHEEkssscQSSyyxxLZhO4apCk2RTd0Bt5VuWm+rbyrpJ92Jl1ygouhwOac5AzR3yciIIrwrsotnHJCviEFHFVscLwV4GmfDRAMKHgWq3pJTVS+jdqJ5UjzHh6OxXEDcnzkaAxG1QcpYfco4xt2fwWZgxdKHgDRcWGeIdMeRvqwms3PYKfXDZ94d3+kgSAka0m0L8lNMS/n1BUFzxrLiu/x//Ks/AwA0NP/MkTFg2hEUPMhKGZXiIQBAKxB0KasIeDOt9QXKQiqTVV8PWShX0TsmJDTIiDY9pf7IRLlaek27bgGpriag0zGsKeI+NiqKkc2uqgutC4qVLQqaF/geHFXi8RSlqmU0v0+RPuNybkcVJDuKUBUzUkan20Uqq6iQ1hPoOOcCzUuh+FZP53hvgOpiYC48ERheS/m+R9k/l8kNZY53Oj4C31L188ju6jzTshcXpP/l0iTezBaNRYh+t5mFiB7HUe91vb+yWRfzC/Fkl74f9+HuQ+r1vuV8Hh0dMSpbRAJNvYouElklU8W+lEol838ikYwpIGJdLsu9t7i4GPve0/Wi02mbuJZmQxUM/Zr2L+4fz3PJYBE5jbaJ7bBZBn5vxiGCZA5TSx3G9kTjCocdO6ysQWUMY4JsX/5hTIL8vjHzMig/1TDbakxV1Iax8sP6PUjpdRjqu3kZoWqqHcOx+edwRd0daYGPbrcdGTOuxZw74XzPaawxE3gPu94cZX/ANeM6wpglmp0fyA1kDcmlu+jy+ai55VKetCPFfFnaHl/fp5j7rtFoRO59ed4xP51JIKx5q8aywkbRG6Sh7ctms2hrkvPKiLA+5l1Hx4rrzHRFmJtuL1T4W1qWd4x8QdY1skwB86Tp+9jyihzX0fYVtL2VSsnkyeI0azbjearIhs3NCRtX0HFAp2u8bAraX16j4yeOAwAWF+cBALOzGmCuz4GyMnq1tQbyeX0P6Ol7alOew4HG2x45LHmpxkbLsbLWui0zDq4n7yMjI8J2dTTGiq8JnA+cHz1NCppL55HR/pjnjL4PeDr+Wes502UOsEicns0esZ5cXv5mDJWj7ziXLp6T37NeJJZO3/eM55JeQ36t9YdxcWSbevB9vkvH35OYdJ5GbQbXDdfDUBkznh/yZm0Hr1KJJZZYYoklllhiiSWWWGI/ftsxTJXJ2K1/24ijDRaGaNrweBsbRdvIQoTP/juOJmcy+f6Th5S1PYszFIaxsvI1OX4UxVLEz0YYycj1bbFV0c91TTl+mz6pckRtTRCqf/cH/xcA4PqF6wCASXHlxbseu9eUc/26/PbAo48DAHo+fbGJvMUR15Yi5L12N1SeUaUZtmf+hqA19Ds+f+40AOCQZhtfWBa06XN/8RV89H3vAhBB5RWZWSoJenLxovhjHz+6HwDwjc9/CQDQ7gT48AfeK+XuFeWdrJ67uiSIGDOyN9QPulzRuLFI/AvnJNGbdo9MILT/0dEIxziIXi4L+B6GJtvX2HGcvsBEG0NnWWQ+bmcemjeThfnNND8H2Q2dmz0/MDFNXHvaet+QCbLjkVwdas6NtbU1g1wSITU+/IpyTk4Kk0jf+t27dwMAxsfHTfl2vpZaraHnTsfqD2MwlOFthcg5UeheIx6fQbPXz0qlYuIP7BiPYXlEbJXEaFzUZoppW4l52uo5t7v+m23rRnFhm/09yLaa3+5WbFAcYuz7AWzT7VBNfaMpr96M2eNg7v8BeXJs1N8uI3rtTLyLpQw4LKaF61KTSnPtNjqd+BrVbtX1WDID8bxEbEc+nzeeI3wOs75wnYsr+jHmKqpwyncoMvA0Hku1P8aDMcaq2WyaNbEyOhKr39WFlbFVZObZB65TUUaP6519PWyFP1omkzHnz8zMAAjzYrEsmp0fi31xHMe00Y5/45jx+6tXr8bKiHo8FdRzhmbHDHHM+Bm1YaqLdjySuabd+Ht1JpNBOh1nQrmukwW049P42el0+lRkbaU+ms3MR9vnIP58Ce+zrlVW/yffj8l82R5dW7WEqUosscQSSyyxxBJLLLHEEtuG7RymKsI8ASESwV0t/Y9pIQI6IB5JgS4iDr4iJOGuNo4iSb0bM1V2vYPMRou2g7g5UL9XjYOi/6tpjfqhRhkLV38lom5UXciU6M7cUQTeI3Xl+xjxpZ5nfvAqAODrX/kqAGBiTFRtrlwQn+Fdeso9e0QFp5JOY35RfJCnDggDVG0LElVxBd3RMCV4Thwtf+WllwEAtZVqHzpB1uvyZWGXalWNW9N4pZ76xa6tK+rkZfH7PxL/3f37pR30Sa5XpR0ZjZNKpwSR8hUJml9dQ6kgCNw31qUv9Nm+7777YmWtrQpi9+mf+48AAKVyJGZEY28cRXPIQBVyWl+YMkL6wFCnsATY3JE9l8y8d+KIzVaYqihqmtitm+u6yGg8IBHBXk/mmOcOic9x41cjmkOrL6bKipsgSvvaa6+Z46empmL1j4+Pa7lxpJTI8o0b17RsnS9uFyk9plttxOq185YQUWRdrusa1JUos22bxUkNYoq2xxAN+/7OMVVSxuBzho3HRn0ZduxGz5E7yVTZdWyFqbodtjOZKmF+7Xkfnf+bxf8R9bdZAN/3wxw/Whvfi+zcPzZz0Wq2zd+hp4R6V2TkueRo/FFX15+GUV4O73vWxzWKcZVcE8gUzM3NAQgZHT6LyUJF+8W4aCoK7tmzR9rcCmOIon0BQuaHbbtyRerhekTmiKwT611cXDTl8Ds7B+eVK1dkHKwcfI7jmHG2Y5Y4DmQ/6F2wsiIxrnwHrTdqxjPBeIhoLq98rhCr19f3o1wpjGmT8XLNudG4ViCcD2wfmUUeXyhUjIfKoDxo0XEw783KVEW9D1ierQLIY1gvvSvYdsdxTL28NjZTN0iNOfq9rAuD16LNYksH5ay8VZXR5O0pscQSSyyxxBJLLLHEEktsG7bjmCpsguL0KxT1q+vRzA7Xzi5t1RnNWWMjj/axdsbyQXY7mCoC2xGPUPkMOA6KLkT8Xh2TCEqPNYqGynZpPi9PGas08zZ1gB889QwA4K++9BUpQpmrKwuCBDldVT5TtZm7D+2Vw3od7D8oan+BIi4pRWQazCHRknYtzwv7s6ifn//3n9e++uYaEr0gekX36+kp8WHO5cSnuKa5M6bHBYm/OnMdnjJQtRVButYXBbXZt1tQfCIkl2dU3WdUc501gGf++lkAwOioZmRXEONzf/BlAEBeY8gmpoUh+My/+UP5e0qOHxsbw9G7jgEAqk1p2yOPPIJBFtwEeLzZXArvA9cgkeHcjZ9jclggjkAlFrcQwSKrw7WBalUOVhZlDjMfCjnGTDqO/hm0ObDZH88cQ2TQMMt6DNnR48ePx9p34cIFo/bH9YgI8WOPPRY7lrnbeF95moev3WmgVpNYwytXLki9vXh8FFHoXbuErSbrtb6+bvLP8J6y1d+Grdsb2VZZlcGo/5ZOvam4rK21I37usLI2qu9W67/TthkLFUV/7XPeKH14vcxxZK4PY6pcN2QZPEtBzr5HbI8C3/fNulFQtoFMBRmUYag7FWjTmXyYl0rjP1vq7ZHWHEd8T3K1HWQdut0uJiZEQZcxS1yzuEaw34cOHdIy4+tSsVg0a6Xpt8sYF2kXvVPIcpG5WlpaMgwMx4GeJFwjm5qfimsU28t41VarZRgwxvlwDPl9GMOlasVaZxCEMbQsP7DGiOp/8/PyyVyoZPJd1zX1mdxRjbr2ScajXpf6WFfa5J6iGmMWmVw5NoYcdzJ17AP7TcvlSn15ychchfG4UgYV/MZGKrEyU6kUisW89iEVO5fPI/5tnjcWs8Vyop/DzJ7TruvCt+L9wufNxuttr+fD96n+15+n9mYseWtKLLHEEkssscQSSyyxxBLbhu0YpiqMRVD/Xsuvn59mx0s1Kb/b59/JTSrRlBHd+ZudqUvFtjB2gblhgiDux8vs4q7mqwqVBjcf2lBFLI7IDMoHYiNcmZT609YFRclqDqTTpyRuaHFRUJ+XX3zZ+BnbMRlEIo7eJUj3gQOC3kyOqz+uI+07d/oinn/mewCA2qrGLikj5ioCT3Zrj4DWqKi/78joHqwonVTIS3nMg/Tcs98BAKyvCgJy6azER3Vaek2bmgW93sbYmPShrSjCtMZyjRwWpOfsGel3V8VvGnX1ca7J56E9+7CwLtfu1VduAACOHxWk5eBeUQo8c+qktH1E/J4XNPdFtwukXEGFju0/AgBYmxMELO8JAqOptYxC2pVrgqYtz8u4jIyN4Icv/ggAMD4p43zf3fcCABzNE+ZqrBUnaEqZxB6CCCozmJnivCAzEDhxhTZBjRE712bEbPUdW+XozWyDUPdQES+ucsQcdMSkfEslyEulUSnLvMwpO7u6IvdAuxX3ZbcZG17fdquHjuaE431647qgwOWKIINc166qf/qeffsAAAtLS+jqtdynioD33CtzjfPD8ZgLRZkqZXjZ18rIrjCGoCfnFApl/VTGOcUcNFLGWlVUqXbtnjIIbK0pfajW5N7L5Ut6rjJ2HlF3UjocBj+Si09Zd1DZ0s7Vp/eE+YTJtUcWEebQzRkifh8eY8fz2mXEfzf5y+CDzwGqkPX79nvW32HZNqszzDtiWM4tx3EwuHdbM5tdtOvdjm2Wp8pxwhhfxgESSd6RMVUaM7JRnN6wuA+TF4iqtbpWRFU4bUaYxncMMkJktY3aXWQoXYexWmTR5TnAuJdMOqff+7E6M5mMqZexnJcuXQIQshr794vnCpkj+3lVrVYNu8T1xdeYIjt2ylaFKxaLJmaULBPrISPVU7aH6qdkn+jxUi6XzfPOqPPq32TEWDaZGTJL7XbbvGOZsdT+Me7KbjtzYDF+y/UcHD58MFZGdXVNx6Ok9cVVD8lUsZ3ZbN7k/+LY2DFmw96Xyc4A4fOfY0S2jX9zbc9k414WcFy02jK+7U5T+xlnpmz2lc+2bjd8T7cVKzeLdYrnc7W8saz7LYzLij/T/aBr1KcZy7Zl9wbLtr2pcuSp8DyAmSAIPuk4zhEAfwJgHMAPAPznQRBs++3MllQnFTl/Sl4oWq24bHeJyc7CuWKM18BcnCF83SChCtfSHbcffIMCr2/W1WFQgKA9kTrqbjd7TTYov/Wb/wQAoJ5lpo8pH/C8uKgHaWS+2LzyPRGEmJySm7Sckwk3WpKFavbKMmbX5IZq62Yl7cix3bpKZWq7HnriAalD3YrQ6aHjyo3zjW89BwCoVmVBmW1KmeNlWTS6NQ2i16s8OSabG38qjbNnZZHm++3UlPzn4AHZ5Dz2DnGlO39ZNkyzSzIvxkoqbd1pYEXrzev6x8WIyeZGR2SRfOGyPIDqTfl+cqKIlLpCVFXCvdeUheZD75J69x05CgD40//nzwGEkuuj6u5VQhZNXZRbrpz7Z5/5Ezlmn2wQjxyRvtylD76MyrS7Kc+8HPIF/ifNfSZqr8eaMyhwdavWarXQbscl08Mg3LgMLn+PPtQAecgMCmYHAKcqZdOFw3YT3L17N/bpBovG9ZIPRtbLly2uDXyAZrNZcw5/65dJlj7kjctRKMUfuoyoK00+o39rwu0xeTCbhON9sin9i/LrLzKx9WNvtgy7PcPa92a1zfrt+/6mG6/Xy27HeuNYQhUbzYtQECAuA20LVEQFBQwwa92jPJb3vb1xcFwFduEaIKbZossgtAwFYDpMRSJ1cPPTbrdNubzvjx0TV3euL3QLHOaWtri4aNrMtpYVmOWaZEt78zP6Um2k1c3aKP1va59u3JiLtTP6sn/jhrw7cO3kJoqbvTA5rJRFV76JiQnz3skNGMeXm8pyWd4t6LrIvnBcMtm0+T/l2A8fkncKO7n62KhsFLlxpPhFIV9CTfvFMuhSyTLols2/2Zd0OjDX0BYg4vhyM2UEPFR8qVgsmO+jwhMyvvGNki0Xz+tUr9fNd7boyTDhlkEghOsOXjdDgDiIfbLMdDoVmZsDi9iy3Q73v18GcDLy9z8F8JtBEBwHsAzgv7oNdSSWWGKJ0ZI1J7HEEnu9LFlvEksssS3Ztpgqx3H2A/gEgH8E4Fcc2fZ9EMB/qod8BsD/DuB3tlMPAISODLLDJPV67IRQpj98RVyrpqYkUNCrCSuR06RjAPp2opsFzUYRMbNbtt2vhpSxHabKLqPb7UZYJunX+ry4nX3mM38AAMhnNUDQk0taXZfjirlC2E/VTi+o3LNxAejK7yPqqoSuoCuB/p53M2j5reihSHukl6VdH3virQCAuWVBbNJ5QSBKmTw6dUEcPvTBjwEAnn1WGKvT3xeGrLsuKEJey0yrK6ccqjcAACAASURBVOP8dUGOpo8eweS0oCRLS9I2V12P1qqCJvW6cp3HpgS1yS8IurS0LL+Xd1eMiMS50+LWVM9J/167IK6DgS+oTVUDdQk5tNtNrGgfju+S+fXQWx8CAJw8K+deUlcpAiU9la0vZ2WeugGwRxOu0s3v4jmRwHZVzvqVF38IADh6/C4AwINax4GDB5EtaFJpS2Z0OxaWwTm97SLvuN3ONWerUtQ3G1yfy+WwvCIoJtE0oroUhrDNRl/T6XQfMktUsaoCEmR8bQnabrdrEnkSsSwYF2eyWkwOLH8vaRJr9nF1dcGsl3Q/YaoJupQQhST6aBJeNmsRuWH2QT6JBrM9tHQm7v4o5sa+24rLHj9vlQF6vZmqYe2Luv+9Gc12LeTf0e83TS78OtjtWm8CdeG2r3PUlc3uX68XZ6q4lgxC8M24WR4tZKps4QayMRlN5+E6nrmPm2191ncp6T1YnptuaLVazfSDbSNDwve0pSVxsyO7Q+YiyliwbVxHjHS39okuflzvokl6eQyZD5a7vl6Ltcv2EAhT8qRN8nSuXWTRyMSTucpkcrH2RevlO5XNojDlD90RL10S8R+O+ejYiGHkyHbxb5qd/J1/c7wWFhaQ1mtChpDXnywTz+VnlEHitWJ/7blquwra7FO32+27n8ME0bLec93n2E5PT5v2cOzsazTs+TvYKwyxNtnX3S5rkFDSMCZsq7Zdpuq3APxPYKATMAFgJQjoZImrAPYNOtFxnL/rOM7zjuM8zxstscQSS2wTuy1rTrP1kxMvllhiid2y3Zb1hrkhE0sssTe33TJT5TjOJwHMBUHwfcdxnuDXAw4dCCsFQfC7AH4XAB599NFNoSdfEV5PxSNcaIzLugTztTV4KsN9orZkvQM8d1LicXYfPQwAyMpmHi2V3Q7STPIm33sqSuAEKuOdzqOtEphIMZme7NJD2cf4Tji6yzUIlH7FpK49k2hTg+hUIKOQlzraLe76HaQgKMJzT30fAPCtv/gaAKDbJRKgiIsG2ZVHNb7BrwMugyPVnzonvzHux1VtDyYHbtVlbBc0UNLvldFYlXp2qWRoS5PXMc66p2N19LgwVidPngcA3Li2ikcffxwAsLQmPsPT+wRZGTkj4zyh0pzVFUG3en7cp3d2YQVeTlCqTEnOWVQkpjkrqP3e4/Jcm710CgBQcjWGQ0mntYaHmTlhkya0v4Few0vLctD9B4TlwrKgepmOoDmT5RQ8oidZuXgvvXQaALDeEHSlrsFstWUZ45/++NsAAN1lQeY7aKM8Loh/rjSiYykTsbEuY3thRhir8z8SBuvqRUHu3vbIg3j4rRKrNn5I2thQH3EG63s6h9M5aV9H5a/DzM4uPIdzVecbBJFjILhjMBZFagbfuj82u51rzsRYJRiEHEfqGurT3bOSHtpiCN1u1yCBRIizGfqyt9kWACEaF2WogBCFBUJEkijf2Hjct53nsKxarYa5OQGq1tcF7SQyXVMGPwykbmg75T4i+txud/qSpbNNRDQZU2WzUssri5H1T9p05NBBPUe+XViQ9WPvXkGHA52nHtdTxzf1hkJD8SBnOz4jivTbbMZmzJWNSg5iKof9bdcfbVdf/K5aVA47+nc0pmiYpO+wNtsWBEHf3BxW1iCzkeLN0jb0J/91hiLXNxMnZf92q1LHN2u3c71Jp9NBq9Uy18wOxnddt28O2AIVkXIBhGuG53l9sZtmvmlZVWUGzpw9CwDI6n3OdSGVThnWhiyC78ta1fOlXWSo63VZU0qlkH3nuhYyVvJ8unZNn9MNOWdyQt4fyEp5rqwlpWIOyxqrlVPxr2uz4vVSUHGbRkvFfrpMtCt1FksjoTR3QUUc8tp2fUFZ0HU4XVAp75zUsf+wiFQtz86bdW1leVHbOqb1KPsUE6AJY9Lb7aaJa+JaTZEfsmu8VTm2jPU6eFCSH/u+j2JhVOtRqfSsXDuTjFjLnlVxDbJjr6koyNjYmGGRbJENziFb+p7zcG2tbhgvmyFjH+yYq2xarj/XbsA3MU18/vV6lKPPm34CYawZJei73a6pl4wg6xmWfmMQU9VtS//5jCbb6+q7dWC9p3c7ZBYzYeLs9GCBqq3adtz/3g3gZxzH+WkAOQAVCKoz6jhOSpGc/QCubaOOxBJLLDFasuYkllhir5cl601iiSV2U3bLm6ogCH4NwK8BgKI4vxoEwX/mOM7nAPwcRB3nbwP489vQzj7jrpXoQrEoCATR3JbuQLM5YI/qfD/11LcBhAljuZsOittHvm5FtcmxPol31dfUZzUlqMvTTz2DL/1/0naCJWPq1+uldcetCEBeFeOa2rdMOo1AYyF8R1VV9LL7RqpWp0Gg7JsniEie0qZ+AYVlQVjqDUEYFKTCf/1f/CIAYG7uhtYn9VO6NZOr4OxpYY8uXbsIALh+Q1CcvdOCmtQUmdi7V1AVX9EGojqe5xsf5MqIIBsplRPdvVvipBYXBb1hAlaiLlevSXvT6TQqo4K0HZtURKojI39R0TTGi5V0kJk3OZ/Nwe/JHHnxZUGF7lKJ2Ikp8QleOHNGzlX38/Pa58kRQWhyhZxB6WdmBIHrtMgWaIybNqCnEyHTEWTo7Cs/xAtPfxMAUFCk74mPfBQAMKo+yfmKoHlUczKiaso6pd20UdCEs12v3x+P3Yk1ZzPWYZBtFoOZSqcMukh0Vy+l+TsaDwCEqBvRwEwmY5A6Ing8Z89eWc+o5GT7iRcKBcM4ERmk6hT/JoPGc20Z/UqlEkPCgRDlZCJHSqoTWeQ9OjE5ZuIT8proO52Ky/QSySVSOjJS1j4VzPf0SqDZfvEcMxudj16fm12Xb+b4zdivrcRUbfb9nbbN2Kc3ot0qgnyzdlvXGyee4NdmmYXVjCPymYw8TOz4ELIRUYU/zhfeX4ZV13N4XzPUgkwFJdAHMfNkEdgesgv8nWtcNKYpKpEufdDYJn2nsZPksg+Li4smlodt5fpGqXeundevC8u1Z4+wbNX1mnlXGFWmylY5JWNjx7JFJb75f8b5XLgg69nRo6LCxzrWlP0375qtlukv18aQ8Ze+cL3l36yfLP/hw4dNeSzLpJ2wriWNY8ffm82mYdVYFsef9fGacWzDhMOFiKqrjEPIYq3F/ua5HlNbRJ4/lFcPlQOdWJ94LMeDzzTP8/ok1e1rxLHjONjt7fV65t4Ix0qfFVb8eP/6Gv49yNvsZuxOvF39z5CAznMQ/+PfvwN1JJZYYonRkjUnscQSe70sWW8SSyyxgXZbkv8GQfAkgCf1/68BeOx2lBs1b0jsEtED7mLrDVU10V3mxEQFvvr3dpvU0JeStqvyEbWtIJx0PSWJ4JI4QPwznZaYib/8yy8BAL70589D3TxRLGj8hG7EO534bt0BYzbk96rvh7t2VeDKO0xkrAiUJiYNDggCniuIr+7KksQ4VUZzKGm9Pc0tVS4LIvXt7wiDsluRoKn9hwEAzZYgEXNzNzChinylnJSxqPEU+YLGhmjfquuChO2e0oSl99wDALg8cxn5vCAqr56WBKMF9Y1eWKP6n/R7vab+zmn5fmpK0K2FhQV0NIbqyozmzpkWpCtQxIV+3lkdrr2Tgvbcc9dxfP3J5wEAzCZ0XZMrM/nz3cel38sL4gmSy8j4QOsslyt47vuiylsoKsKelXHOlqUdrVlBEVsa9+Jo3GAeDTz+4P0AgJPnLgIAvvC5PwMAVHbLuD/+xBMAgF375O/xcSmbSFDPdRG6/jMucefa7VhzNovjGMZa2SlV7XiR2dlZgwTn8zLH/Z7OT+YqUySVaBwRwyhjZRKZW/XcuC7MKn3Z6VtPJqlWC9X3GCDPJOFhfADz00ibV1fWY/Wvr/UrehGFZD3NZjwnCb/P57NmLIhcU/2PSCLj984ow0uUenpa14pSCZOT4+b/MlZxRm4Yy3i7lPsGlXuzn1tlqG7F0+F22o87F9TN2I+jbdtdbxw48Dyvj6GKKq31z4GNcxIOUiyzf7PHikzVCy+8ACCMlxkbG+tjREJPEXlA790r3hk2cx6N/+S6xvvcVqrjusTfzfOp1zOsClmWvMZFM5cd2xWqj1LtdNWsjcuLS7FjU5p0u6Wxz/ysW6xPIZMxaqbhWDKmTdq6a5cwWF5K3m24lqbTaVMf+2srCXKNJvvFMeXv7XbbKCbymjGXH88dlsA3ynDyPZgxXlQBtBVaOe+YX2tiYldf3CcZKjvnIftdzNOTiXGh/UxgEMRjd2lk9GjZbNYoFNpxxeyTzT7aubY6nQ7gx+c9bx0Pw5KvM4a1X33zVteZnfxelVhiiSWWWGKJJZZYYokl9mO328JUvR7mM3u2shpEPvgZKlVxh6r6/KUCdk8Kgrp/ryANF2dWY8e+Xj7aNDdOGJg4KU8/Z64IuvCtrwk7UsgC4yOCMKxonqasMhGdrvouZ6maJYUSXem4HvxufMfd0mChjKdIkOa2On9BWKCpivy9V9mn2bl5VMqCbMyvC0rz4IOSQ6muf1cbVACT63DunORvOnr0BI4eOQQAWFoSFufhByTe6tqsnHvlsqBne/X6kMp79ZTEJS3M3sCuvYKWTGrbelrPY+96JwDge09/AwCgoHaYy6IVojlHNMv7+vXz2h6pP5dVZCyvCN2ajOleVVlrVmuYGBd0bGZJ0LuaovRUPWq0NMeCMoeXLyuTpemlKmPjeMejwjadOito1XpNkJfZNYlH62rHyUL6mi+kMFLGyrywaL2a1PPAvfdJe1Sp8I8/+4cAgMff814AwNG7ZLzIElZGxuA79jx/fVS03qi2ERs1KEfdZvEnRNAWFhYM2sp7y/Nk7O2cUjyX6B9RuVwuZ8qzYyjor0+UkQzrxYsXTdl2zg/WR/SPZRGxpLF9oappRNFLVcAYW1HSAEL+zngoL+WYcm3Uj4pdHVXW5Lp9VlXJbmjOtlKphEOHRJmLSGmxJH2wWT1bQQ/YegzTdhiqzY4bZFst6/ViY3YSQ0X7cbF52zInHjc1SLnMNjtWcpBCJIAYA8ZjuGZEjwHC+5338Cl9xh46dKiPEbFjuLju2Gqjs7Ozfbml+Dfz0uXVS8Uw6JZaIRBRldM1qKOsQ7sVVz/kOWTMms2m6Re/Y1lmndV3nlX1vuE47dol3jkT4yNmzQwCadvoqIzH+fOyNj2uKsZnz2l8t45Xt9s1/TIqhDpGNmNPBonX8MEHHwQgDBbbwjKGsSq8DrYq3+LiojmG6/yCKgWyXo4TY1oZazY6OmquFa8NmUnbE4P1D1I75XunzfZxfELV2TiDVywW+55vNrtpxwvaecx830dgpS5wh6ifhvcS171+puqNFFOVWGKJJZZYYoklllhiiSX2E2M7hqkKkZz4btJWCmEOpvaKMAopLwe/LQjEex9/FADwwquCPDC+obB33KpDLKquYvsb27v3Ye2NnhvYKGSHWvrMLyM78t/8ZxL3Sh4hn8nDUbCmmFGFmLru0vUStvV37szTWUFzm60WPOajUgrE0818WeOkmqqUmFLlvsqIMEYnT0q+JDcNjGh+qJ/91MdkbJqCdC1pElVNLYVzr8k5j75DUJ0fvfgSlpcEASmVpK2nX5bxn5yWcX/bQycAAKdOC7t1/rwwdbt2Ce106OBh5DKy/3/rR58AADzzvOTrOvXKiwBCFaOr1wS1J3qfLwoS4jgOLl4SBbSMMkANRSlcRUSmdkkZXkvaoeQcHnvkAXz92xIPNbZf2KvxnHR47y7pw8oNYflWVmRwH3nPOwAAL78i7VxarWPh6mUpQ2O5Li3IOemM+ox3BF269y13AwBWF2TcysUCcqrIePSwsH6rylApAYJ0V67l03/1FADge9+QH4oVYdgq4xV8/Gc/JW2fFBTRd4nwENXTBG4/QTYsW/tGxxDdIiurZCVSKblGzUYPraYek6Kan8z9Qi7uF8/1xNX4Cc9hzGQHga4xRVXQcxy5PvUmmRn6rUtdrRb9+huR/sjc6nRUmVDnGunyQHM/jSoraxTFUq5BednGJY3HYEwD78kJzedCKxaLKORDFT8AWF6W9SJ02yeDJ7/v2S15rOjHX6/18OILkgtu5qr43x8/ITldDh6STxsxpVpWKpWC43JM5J4q5Cs6ZsMYgniONmcLCpmbxXZJ7iHoMcOSv7IM+SuuYLg1JtluRzzHFvq+Y9ui59oWBEEkbx3LjT/zzBiaPvjRw7dp7oD/B9bnzjHXcZHL5QwLwU8T4+i6fdcxrYHU/N6OsaQNuoZ23AnLJFNBtpfsRLFYNHOCDAjvL37Pe5PvTVGmIqriBoQMCeNkoPGYVH2zY6+KxaJh9zkm9ZbUk9Z19erVq9o+YV3q9XVzvGHetc0ZXaP4/az2M63viYcPHwYA3HXXXQCApeVZNDUPVjpNZl7aNqUqxTPXhN1hO8mgAMCBA8KqX7smTDuZICoJmvcRHX+yQFxjjx8/bsaC/WdcLhkbjhljr6igGG0Hr6utoEhjjBXjX3ndarUZM78YD8a/2R7Wb/KYdePqsIVCboAiay/WDvaJFsbFdc259rpumEsdH/af7ePzqdfrmXU7ZIS5FsP6jOdRdN1Un5rirTLiCVOVWGKJJZZYYoklllhiiSW2Dds5TJXZWcZ3xzaDxO99Pb5QyJlM2Pk0lXekpM1Q6kFxFUTl+nOi3Dx6xt28p+377J/+KQAgy921xoUVchmDCqQVjV1vx5VfjF+p+rRS0S7wu/D0MjuKGhTVv7mtWc73HxJkwlH2a2lREKlKWdCMa7M34HTlu1dfFsam1xa04rHHhP3rKcv19NNPSxlLcvy7H3scL77wPQDA1LigNof2CXo1Mil/P/S2twMAmmS9IIjU8qpm9vazyKc0d9W6oNYVRfznVwX5GilTmUjHRUHeYxpH9corJ7G4Lm0uKaC6/5gg3q9dUbSuLGh2S/OW7ZoSBP4/fP7f4z3vFIbo5CU59oCyWivzwn7lFFU8dpeU+cWvP6tjKHW9evIi9o8LWnP0qKBjFxZkjDxFxNqK9B47ekT6lpfrdOLgHrz60g8AAOuKpk3vl/ZcPX0RAJBVJqsrYBKOHBDk/6z6g8/fWMTnm58DAHzs4x+XMg7JmAWaryyluYTMPeS9uTGXW40fMeySGzISQIikpVIpo455TRHKlMYvZq1s7SHLIvOZKF2n04kpQwERdtxatrkEhZ/9/uFE9TqqhGrHUjHGIoqGE7kjysh7ieimHdtBlLTT6ZjfWIYdp2H7xdPY51QqZdrCtr30kqCcRKz37pN168SJE1oXmde26d9IpaBtunNxs280Jb+bsY1iqobFWdnX3f5+2O+3y+5UuXfaBuWiirOa8bhwMn/2OXbMTTRPlO1Jw/J5b/KeMvnzIip8ZJdYPlkm17xLxfMoRRkSO0aUrAbjPkdHSrF2cT2I5uVjPTyXbb6u3id2ji+jFpgvmrbwvrfHjO1iDA9jiTgO2VyYQ4yskj12rMNeU4MgMG3hdzbLxzLI+rAuquAdOnSoLw62Xo/ndrKfEbwO0Rgrlks2yY6RZR1kHXmu56XMWJj3Ur4HRGKWop+cO9Hr4qXi7JE9D8ky0XjuRvWxD7Y6IK9TNPcXY6pCFlXf8d3BHgF89wGcPu+zW12/d8ymyjZOjlyXrjE6aH58IIrFYsRdR76zgwiH2aBNFfdO/QN/8y9oTEg2e0MWnhszVdYGAMjqJrDVaBqpSL+jEy0fl8zmhODNvVcT412duQT09MVG25hTF6CsyiqncvoQ7Km8MxOH6o0xMjqO5sqS9peLlLT0K1/5OgDggUdFMII3Bunw+fl5k/w35Upbf/ZT4ob25W8+CQD4+le/DABYrcrN8f73vx8A8Jy6+C0u1DC5XzY4B3cL5X3h0kUAQCkvbaYbAyXUr99Y1/aJ2McTTzyE5ZMSYJrxZUE5f0HKgCf9ffZZ2bg8ckLquHRJXBnTKSCr75p7pqUd87PyYjeSlf5OahLgRU3oWxwVF4qgJ+O2b98uTOuideE1qffAIdkYLc+IcEZKXwCfeeqvpZ10nZq9gUpOruvoLjnmxpwGoI6JK8S1OamnoxvjlWuy2bz3uIpjnD+JmUsyz5596hkAwOMFEbVgQC7vqYwujJ3Om3dTFQTBLSX4HfQbH5zVqjzIZmdnkc3JSwRdNDptqo/EwRC2gZsPk5A8CPpcm3lMrRF/mNmuXK7rmgdeoRCXvc3n4q4kDChnWZRc7rmOqb+rmYsddRfmOba7RPQhywchH+7GZUTbwYc5H7520spo8D1fHvIFGdO2Akpnz8j9fOqkyLIfPXYYAHD//fchl2NiTjtw+vbbTtxM0TbeVMWPHSaqYZeV2GAb9D7B5/Ug97+eAiDDxjkqehF1gYr+xvLDl2e5z/mSz3Wg1+uZTQPd+3h/81i67rEsG1yJHmMSxFqJg3muLUoR/Y7lrtfjwgRcQ8plebnmxmh9rWo2hFPjE7GxMuuqSqm7Jp2IfBY0XKTn181zkJuZcrmopfjaJ1lTlpbCzST7wHWTbWX/uVaa5MT6PODfdLVstVpmLGyhCG4aGOLAddEWMIoKdkTdSoFoQuG4oIl55mfcPhfOaGLq6Pe2W17sOeXE3U45vyipbrv/Gen7VKoPcLMFUaKgXbQd0Y0b77Dw2aRfOCQf4u/tvMcAv28DmAhVJJZYYoklllhiiSWWWGKJ/RhsxzBVXWUA3IwGXmpi1GqNidjk70uXLgEASmCiyilA2ZV1FYIokwqtCnrSY4CtHuf2FHlVFiLtpNFr6o42q4gvZAc+ri506ZQgMCl6Jviyiw/cEnxqpwfSVl8Tw/oaiPyZf/NH0taMHLcYyO+eBqL7QQ+tDlEbbSrddBigqbvqqVFBSGYuvip9zEzCU5WLsgpFjKsb2lvuOgwAOPWaIL7zVUEtzqnowlhJUI9H7zmGVyXuEj84LceSISL79cpLIhjx0Q8Jy1RUmfJ3vvu9OHnqFQDAVUVzPnFMXNN+ZuTnAQBf/pKwXY26BnmqHPu0uuNdnlvBxQUZu5oC/gxwL6pgxI1l6f+NOUHZxicF1fAdQYS+/+JL6CojtdhRdmlMyl9bofy59JfXclwRsezKEs69JPMqPyb1EKW5/6G3AQiTm375PwgLtKLtrAhQiBvpNawrWvfWhySpcU3dHY++Vdwfn/mesGoZResPH5ZxunbxDJZ07ro9uXZTU8IEvnZF2KeZOUXz6dqZkfl67rKwbVPTu3HhslzEcy9LX158VhjEnCJyb3+PuFG96/3vlrEtCpP2ZrWopPrNWOiyQPRL/iIql8vlUFBULdD7sqFB1RSkIPpIdI6oHNG4RqNh5pgtu07E1EbqespIe14anufoOXU9R+ZNVudjWn9fWpDAZbpW7J5mEHjdJMPM6klEm48ePRqr15YvBvpdQ1g/EWXbDYYIa9RNkP+ny05TkdSquvEWipRtl3a8/COZz4sLy3jiA+8DELr33EGialN59DeybZwmYOP22+46g5DjO2F3knW8UxZA1gm6qLoupc5D5DyVijMDJpGpfrp0GQzUdbYZSp07mmSVQgypYjzdge3SZZiKCOtAVoWMCNcfnsM1a21VvCJaTQo7pFGvifdHV0Wvuh0NtUipxLc+H3OFfKwssw4GPlZW4mzW+Ig8/9bXVrTNdE+PMxiB6yBXkvs8UBWuhVl5l6iuSZkjFTmH74A1Fdq6cl3EowrFNCanpd9knRCwD7omaWoaO/lwoVAwDB3H7i1veYu0Q9c7qJvZ2Ghcat5zhamqrq+a+6dYkP7zWUBxCa6hXDu57pLtWltbMwwYrzfZJzv10LwlOtTptuE48fQbq6syv9LpuAthsSDn+EHcLb3RasZYM7YJAH7wfQkBofsfxynKRtneGzT+HXUVBUKZ+CgbV+uoR4RxKdOPri02xU99xvZ8UBjI6Mi1+1N1bMV23uqUWGKJJZZYYoklllhiiSX2BrIdw1TZRt/UdF52l7t3yw51Ykr9bG8IGu95ntnZ+qo/TVTUTiZm+5WbgFjXQaD7z66yRx1FTVquoqUqnexpcL+bbWkZoVRkuqsItyJPL7/6QwDAOx4RtqM+L7v4lZPCFDUaDMDLALqjdshetaS/PfUVbhPVHRUGY2FJfFdTQQeuCcaTY167rOIKyphNTwpqcOHyy1K/yoJn0oI6XLi+gKwGFe3bL8eua4zVxJgg3L/2q78CALh2Tdr+vedfkD50uqi3BfGYU/GKk69e1H4/BiD0HU6r2MWN64LMMMj1gROHcf6cIEotReeIXvsekREG2UpPifIwF1wvAEoFaevVK4JihYGncgxj2OoNuXari4Lm7Nu7G54nTMPeXRI7RWT/C1/4LgDgE598X7z+tMbFqct4s9dGRlHK+Vnp38KiXO8fLAurOL1PxqGrqOMXv/gcAOCxR/aiUpCC6JN86uSPpPyCIF8lVUNvKUPgekQ9VeCjVjNjRjPolcbWnTolDGFH2ZRPfeIYftJsUKD+sJgGMkO+rg0MnHVdN0z+q/clYz1bDblvif5GfcqBkOEpl8t9wecGVfTpe06/eDknqyyl53lwumwjUW7E+sKyaHZMZqlUMqgivxsflzWXc5DzyfbFn5iYMP2gRVm8aH12vESUsbID1yk2wX77Pa7bFEaQumZmruPJb0pc4n33SZLsu+8Rds3209+KRYOpo23eitkxLjeTSHgzhHQYohv7NLEEg9mkYWX6vm+Ekjbrm21bGR9bYMk+x/eDwf3ZoN43tgWxOE772vm+3ye2Zac0sOdhNLGviW/JCJth3jms+HFbOKYQkeDm85AsBp9xPJZl8F7lM9ZxHMMisD5b7ppiYfyk4JYDCig0UCrGxXNqVXlfMLLk16XtZChmZuQ95uDhI0bwoaHxUJxPZERoJ09L/GWnJe9Nfo8xl1mkdJE0cbCdC2ZsAGD3tLxbXrh8NTY+nuf1SZmT1ef37At/55pGJmtiYsL8xnMYB8VrSTaMzBTZIPZ1dHS07ztbDp1sMCIOPAAAIABJREFUJMswsUV+14whrx1TrIyMyDkm/i1gKpG410WtVjP1sO18JtKDjM8dez3KZDJ9jBTnnb1W2vcO53S73e6Lyxr2bm//7g1YazdLmzTMEqYqscQSSyyxxBJLLLHEEktsG7ZjmCqD6CryZpKbKarA3SrVR8KYhU6kDNlxGhQ1EgMADEfEXAQGYQnUz7ytzFFTmSp46u+pvtLdnqC35UIJKT234MoufXVZUItzL0pyy5LKYafVp3OX9mlmVlCMTjuAo3E+gbI52a6gCvmy9KGpbNAoUYwzUqcX1AzCUNAkovV16cOrrwl6cP8xYbfKZUG5Gposea2qyd7GU7j7kKBFGZWEft+7JB6qrcjQqdPCul1SFOdHrwiTctc996Fak3LW1mU8n/6u/DY1KmXu3Ssy5A8//AgA4Ld/+3cAAJOT6m+8soIR9Zm+cmVByyXyLONRq4mPMkEF+iEbhtEPgJ60nUqwRw/qOF8RNGVlRdioGZ0eR1VxcGFhAfv2CfMwOlLWsRI0af/+gvZXpOYfeljikl4+K/FL6Zw0aH21ib37Vb5Vfed/6sMfAQB84euCqr/lHkHVv/rkt2R8pqm+1sP8vLADY2WpjyjSrMqyV4ry/eTULgDAsoWMBUEAx5rf5aJc73Vl5qorMjCOjhMTtr5ZbRACtRWUnQhWWpNqN1pxla4gCIyCVkePLeRVDctS4wvVlzKx7z3P60OXaS1V4yPrYzPv6XS6TzmQ6DI0TnRE7/WSMq9ETNc1RcGePXuwd7fMJfaF/vG2+hJ9/Zk00vf9mDR6tA92gksb2Y7GVPUlMPWl7V2fvv5xFbRsJlQlu3FD7n8qBS5qAvKHH34YQMiyDUM/b5dtlq7jdsQdbZSAfju92uqYDGOUdkJM2etmAQYyVVFm0GakyDx3u/FxJAvOe4mJxQEgl4vHQfHeYNn5vNwjvDaLS8JGR+XRydRwfbHXEJ57/ryo1t59992mvmhKCCBkXXL5TOx7PpeirJzNYnfa1L+WtpN1KuSL5hwASLkOJpQ1ataWYv0taloYe7wX52V9KOh4FXaHjBZZHKOYyvQTKstNpiyq0sekv2wTkwu//LJ4/+zatSs2ZiyTdZXLZTMmHKMl9RRgPWSZ7PdTro9jY2ORuNtSrCyb9bEZs7HxUfS6cWbGfq6wPirZNlvVWPuAcF3nM+Py5cuxc1km53CUSbVV/+xrZicfpicF527UO8KOz9os/YM3IH3MMFZ5M0uYqsQSSyyxxBJLLLHEEksssW3YjmGqsln6E8d9gu2Eaevry7HjnnnmGfz1t2Qnu6pg7fhuojVhjgSg38870PiHdKuBFpW16Hup7E9dFfOKzMvQ1jiVuuy2r19fxPPPiSLcwlVpW455gJQhKOyVnFI9TfC7e0IQiUxGdvNXbiyjHagCT0sRGGXExkcEtZldEj/oF38gCnIP3PsQAODMy88iUKCbPsD3PyC/ffNb3wEATCmK8sSHPqJt/m0AgBJquL6wBKcj5ec16e70mNT76Z+RRLK/8y//OQDgyPF7AQCf+OTHAABf+/oXkVE/7717RE3uzCnxhf6Nk78FIEze+Uu/9EsAgHe8Q2Kt6DM9c3kerUCuYWVUxuRVTXp79PjdAIBduwRdcxRxWFnTvAyqXNPp+VhXP2pN+YT73iIqfFcvClNVUnVEV+O0qnU5Pp9yUSpJf5c1zmp9WZij8QlNAlzraD2CajSqDf1b6jp+ZBwVncP0437yG9+UPpx4AADwzLOq/pelApzMv7n5ZQS+IEuTmsuKjML9bxF2y9cYvxde0lirisa/rEg7D+wtGL/uHCXgNGdSu67qPZo4+eWXxO98alJirN6sdqt5qux4KNv3Op/Po9sLfcWBEBnMKapMn3sidkThyKDk8/m+3E1E6DLKONuoMNG2Xq/XlwSzqExmoOpcbDMRTRslX19fN/USZV1dX4v1iQw4y2D/6/X60JwjHAc7x42t/uc4Tl88UkfnK5HSblrjwLJMJBrGXrEtK8q2+kEjVv6jjz4a+9uOV7ldZsdF3QlGbFhyXuBWsicOL3fY77eK6N6q7VT1v16v1xdbR4vG0IWJwak0G+ayAgBfmRuyUlHVTQ4N2SueQ7KbvzMelGuK53mGCbJjp2w23Way1tbWzP1rcttZzHSpGFcyJfvEOhYWFgwDxLibNFSNzsSpSx3VptznB/aLOuDSwiwyGju8pmrQe/fIbxr2g5y2b7QiZTfW5ThH1eJScFDXPIMpqixqvQV99i/qM5d9Ytu73S7uvVfeeziGFy9elHZovPjpUxI3TQ8arp0TE8KkNZvN0INE+z9CLwddh69cuWKOBULmir8vLS2ZtdiOe+M8oLcBz+X1ajab5vrayn3j45Omn1KWjA+fWdE4Mv6f6oY0zhm2z2Yl0+l0n8ptWF88pxb7xusQjR+0vTs2VjeNxzLb7FWSpyqxxBJLLLHEEkssscQSS+zHYDuGqbKNMQBeNu4jmleNf39d9ouPPPIIDuyVuAEiDc++IIyAjYTSD5SIyfPf/jYAYGamjWxBEOTCuO7SHWFRKhVBRC7dkLKyKf19VZiStaVlkyum09T4Gs2dMFoStGLmqqjcVUaFSQo0r1RXmauU68NXlDalqNVYUdr4n/zCpwEA/+dvC7t044qiJ02Jcfqpj30MJ09L7BaRheeeE1U5oihf/yuJ6SG68uiDwv784Idy3pEjB3HltCAt/+Qf/QMAwOf+5P8GAPyO1vs3fuZTAIDrc4JufPe7TwMAHnnoXly5KuxOU3ONHX5UYqcuXxZWhWpDVLd53/veAwD4vX/9r2S81ms4cFDivuZWNVYI69pm8dndM6E+ypOC/JCpMvlw0hn0NO5s97SgN3/1NYldGhuR26Ba03xemoOL8ViZTAptvYZHDt8FAOh1pdwfnpIxu76i8Sw5Rdn0znrkfon9unbpAj70Ux8GAPzpH34NAPDzvyAs35/8ufztKTPZ0HnZ0niQXZNTyGsOs93Kao5Oy7VbWpV2nDor12p2TtrZXVZmryTzZW1tDUcPyxjWdP6taKwbfG2ssmpnzyojkX4Kb3bbDrpOpCyf13g7ReMuXb6KkVG5P9vG712V/DQ/FBkpG1Gkf3iv1+vLQ8Lf/CCumGYjnL7v9zH5Jq5S1xyDMraEwcll07Hjx0YrRuWvXtMcW+l4DCrbbCPbnU4nhp4DoRoUv2f/iZRG+80+2HFnCMgQ+uYY+V7u01IpjJMKYzXIYsnz4bSuhVzjjxw5AuDOMVW0OxlfNCyGSf6+c+zRZijwnerzzSg3vtHMVvQMWalwLEN2ScaP97KdayjKshoVtayyWUGc1eXvnWY8pjGqBsh7wI6/4TG8h2ua3/PgwYOmT3YMl61Y16pTDTcbGwddDuE5wOx1iUvqdeTePKgxmq56HfUga8f0tHw/NyvvYIVcCoHe377Ggzsgy1PScZH3g7y6qfhNaZ9HNx4/wKSusxc1DohrVLVBLxlZ38v6Lsi+Xb58Ge94xzu0vkLsNyrqMf7Hjj/leNTrdcPecJzzWhaNzwGyYbyG9HpoNBqmDJt14drM3/muS4+BQjGPiubl5BrtqPon28O1mgrM9Hzi/KjX66ZcXl/Wx1h8MpqDYv5sJVyey2cV57Ctjsm/0+l0LIY8asNiZ/l3lJXaLhOeMFWJJZZYYoklllhiiSWWWGLbsB3LVBnVFI3tWdHdeqA5mTod2T2PjIyY3fjYmLAYYf6HeJ4qxs2cOnUKAPA3PvwhKXuxi6zGuaQygg5cuCIoyZ99TjJFNxTlZ/qX8RHNHN7ohqiU7qjLivD6usPP5AUByKoaG7OO+6pG5ywvIaXsVUVzOUzuFsaCvqtjI4J4jJWkrIP7JV7o6ee+Z1CS+++/H0Dom0s1wINHD0s9gSAQ73irHHfhjKC6l0+/ioxmRv/1fyqxU4+//UEAwKEDgiqdPyPxN0sLgohkdb/+vne+Hf/gf/t1AMD73/9+AMAz3xWmbHq3+PUSzXn1VVHKOXpM2vPRjwqz89WvPo/XLkr508rUODeEqWyoQmGrJPWdOSPxQG5K84i1BLmYqIygqcyf35V+vu1t4gfNbOfnz8q5RLW8jIxlpVKE35VyXnlZGMBOS31y9VoWyzKWZOoymoejp8jNfcePwdF58LM/Jzmt/vp7EmuXzWmmdG1fq6nInMlnNotHHpJ+n3lNcmes16UPh49JH8gieFlF/KVnBsXxOx00a8reNeg7TtRQjh1TdiXfkzYvLTA+8c1pQRRId+KffgTht35Cl/9TVpqqUBlFQe+55wSaTZkvnNuuF1ce7VP0UzSObFOz2TTrEpWlDDKtSNrqksYFEIWLqDexnJIqZXENqreoGKbKTt24D3pH/26v1QBP+pNWNHVMc9IRobTjpKJGpNJ4EChCSUaKKCtRQaKS0Xg1rtuGsWrE12v2qa1xYoytKhaLfW1yIfdYPiv1fPlLEs946JDc8x/+yAe1b3JcOhNODr8XZwaH5Zjaig2LqRlkW2VkhuVRC4IgnLs+8wRp28HcXlYdRG4DoGvyGw6r2G4Hv9b5GMk11Z+HKh6H2P/ZQxD45v/Rzx0YUgUHqsZoxXxEGVI7txSVK+1+mxx4Dtco34wVGXGbCbDXnTD3W6gOx3vTjnex4yP57kUPk4MHD/blQ6IZNrsjzx4y4zRP185iIWcUlrsdKaPZkOdQWdcwrn+VMWGMyFRlUml0Ndbc6bVj/eaznEZvglRX2sF4rVKhgEDvczIzjCnydF3ftVfyVM2rWnCUyeN72KFDEje+Z48ce/WqqCFzbMmQcw3l+DuOY9gkxjvReCyvA8ed84BzanR0tM/7yr52HEM7J1bP75o5wzlCBszTnJdkyKLsGhBnwVi+rfrKtpr3ET/ubRC9D+xj2NZo/BXrA8I512g0hsY58xxaXxzobWTVd+DylFhiiSWWWGKJJZZYYokl9saxHcNUmQ2l/s1d8vh0XFWEaM6ePaJYtba2hr27hKGyc5NwR2zvWukr3NUYrMXLF7FH0ZlUURCZ0Zbs4v/+L74TAFCD7JandknOpWZbdsY/eOEVvPSiMF9tV75bWZad/f49glrMLwvrcmlByqyMqxKWw1iBnKETDu6Tdpy+IOh1rSHn3n+fMFPzV0VdJq2IzdxyFY89+jgAoKHqXbunp2KfPR2P3WXZ+V86JzmX3v6gqPIdf8vDOHNe4r7Gx2QMjxyUc3/04ncBAP/jL/8dAMBnf/+PAQBVHbt9u6fwofeK2uB3n5YYpv/274nK3+/+289K/YouPPvsswCAPXvl2hERu7GwiFQ2rsy3R1muRlUQovl5QbV0CPHgAzIvmi1BdebmFqDAH8aU3bx6WRi7WlVzCmmagz27ZBy63RAZTyuixVxPI2VpT11xibEJuZbqbgwl9hAognfttUV0VHEoR5ZVVR5XlM168GFRJPvqk0/KuTrnc9mQea22lGXKynx/5ns/kO+14o9/8mcAAH/0p38BAJieEoQoX8xhpKJKb225d1qQ+ZhXRm59RQYvP6Z50zJxn+7ExOz1ws75sba6gIqqLxJlrKuSZK0ux9gMAe+BKEpq+5YTfSQySPSNyGFUecvO6WHiMby4Xzp/JyrL4zzPGxrLQXSVn2TF6E8fBEEf6s7u8hwil7YqVTTmwsRSqUXjP4BI/hSfsY/M9dU114T55Ljmsx5el+vXBXV+5hlhjd/3vvdKmb3eHVcGvF12qyqW0d8HxiC8PmJ+N202y7sTzHGcmDqZzVj1er0+BrSh+djsHD923Eg0fjFk9RA7Jq0xLcXiqJYl91m5HLK+ttoa37H4Pd+xHMTb0+12zbrFe4W/sS+FgtxvZFm4LvCdrFAomHWE/csGbI+UMaIMzprGS/Pc9bmr6DaVeUrH82W1db2Z0PyNhbskJvq6q2PblLKCno+VqsZIaWz5ir4vPXzibXLOrL5rXJdPxk15nmfyT5H54TUh275/v7wXHjggcc3Hjx8HEMZazc3NmfHmMa2Iqh4Qz2kFwMS8RtUIWW9UiRXo9xTg84d/BwjzpNmqj1nVLeB6Oz2lsW6elBHVJOB1paphmHMs7plgx0dFY2jZX1vBz2a7+HtUAZzjbZ9r56vq/9s3c5Xfcf2/WUuYqsQSSyyxxBJLLLHEEksssW3YjmGqelSJ0b/LqpTX1d11Q3OUTDqCZty4JixE9uF7UWA275YmXkrrjlSVcTzumjX3U1tZiVRFaiuNj2JNGYj1NVWI2yVoQrWqu/Tl61qG/H1FFf1a9RX8zb8pyjD7NaarrnE+33hS8kTd9bCgFqfOStxQU3fbB48IUzS/tIw1zY9U89RHtyGX7sUXpZ4b6uf73/29vwUA+Le/968BAIcP7MXcNfE9ripDNqFxAzMXBF151/sknuBLf/HnAIDjh0Qtkbv+v/7+GRRHBCU5oEzZPW+Rz5lrEnf1J58V1unT//HPAQBOnxVVrVdOfQ+vnnoJAHDogObj0niTY/eI3/HUqBz75LdFhXBmXtCbpTXp8+6JNHqBMEF79gqL+PQVUXBUsUesNgV5O7xLrm2uJddpt+aluL66hryi4LWa5upRZaBSWdC7urJr1a4ctzanubncFMo5jYcrybwraMxca0WQnmll8FauC1M4rmVemJXrtX9vBnMrEl8zmRPEZWFB5uO1ean3+neeBBAiJBn6sFcCrOn1Le2TcZi9LgzlffeKUuNLL8l1+PL/KwzV2JgikHVBs0amxlFtKLIDVRnU+JrsiHz66g7PmIh2M+7/npgYkSyibp4XZ3TK5RBVDOMS5NqTqbJ9v23/8bGxsT6kmAiijVgTQSTSViwW+5SU+NlQZJb1sWyWGVVUYn+ICFeU6SQyaGe657nVatUgtrROp26NWTzXl51fpdPp9PXPdeJ+8SyDObjYp3w+b/pD1VTGBbCNy5pnDo7Uv7S4EutbLjeKnWLbYaps5HYrZf64zY6P2CkWjamyr0s+nzf3ApkIJVn7GGmTY0dZZ7/XMvM6lYrnkLNVBl1d2zOaK7NUCteSkKGQ5xLnBhU0fV8ZAc33yHatN6uAid3RdUZjnU0uq7quM2VZS3hP19tUUM2j1oozcNlRVaFTIs5x5XdHY586zXX9oYuOqv1VxmQt2KdeQL7HdUhjiVoyLnmNKV3X3I3V1ipOn70IAChWxAvnUErWgKVleQ7eWJBne0+VgPfvFwXearWKXI6KeWRAqJgo5R87Ie94IxPyXHBU9nBuLnxvrBSkjFJe40x1DTN5CPVt3dfYd0+vS13j1Cpjo1iZl/K43o+NlWJlhMp29CTQ8emlsKTMl2NyG+rc0Jxm6YKOIaQ+tx1nuev1Kgqaj8xx4oxZoyZlck13XTJI9D7wQD+0Xo+5DGWcuc6HDBVifQrjAh3ksvpu4ze0LDK3VIpF7NPkfgt8wIqe7t2iyOiO2VTZz4br12XyTHRl4nMRMS+kmbhEcNTMS9GQBwkXvDmVnB7Zux+vnbwIABjVORjohcypzKdbkZv4tfOXpP6CLIwHDh7D5UuyqTn9kggx1DXgmpLZlPV94gnZ3Pzu78uG6OSrEkTtpIGyTvCDR4/JdzXp36uvyIZlt7rMXVDqujgik+vBRx/C098RMQ0GflYOyGLgqCvd2XOntD3St/e8V9wF19Qd7OtPfgerKsN9xZeF9+oVcT/80AclYTB0nP+HX/5fAQBTu+Q6/Mqv/jf4h//wfwEA/MFnPw8AWFiUDcKHHn8YAPCVL4oL4V51y3vyS7K5+8W/JRu0yyfPozwSl5UmnX7limxagpp8n9INy6gG1e9RV87F7z6FqiZqprsjN42TI3LtqsvyYjU/L4tLoFOnUCqhUpDxJm3/+b/8stQzKe06e/YsAOD8RRmf9RF5edW9FXLZIsan5IHy0ssyR7oqdFApq5tdSubw+ddkU/nW+2TT2Vy+gQ988O0AgC88Le5+GRUzOaeS8nSD5dwualLixrJsDBcXV1GsMCGkfKYVbOj21HUiq+5sutnKWRLaP0kWfemx3XI8N+5+kE7HHxhra2tIp+OJxW3XGvvFkHORm4voumUHFfM3bhzsF6dms2nWQc4HE5iuqQC4UbKFIqKbIdv9ga4qbDs/bRcL13VNf9kv9sF2N7PdUaIB9fw/zXbLsOWDjWx0RNKdQd/Ly+ux/lJ+vatiRcuaJPj5578PAHj3u99l3E1sUQFbcnojs+fOsM2L/XsQBMhkcpuWD4TXfZDZbqabJeqN/b5J9zbrf7CB/6B9bpjYNhQFGdbWjfq70yy6qbXvwVRK5ibfbTinbdcm3/f7xsheb2x3Q45/1HWK5c/OyvOZLlxsl7m/nXgC16WlJbOZ8zJ0nVfhG3XN9ax7tqB9pDtuKZXqE1Pw9MXf76joRqBCNCobX/UpTtFBu67J1CmZrsIsBX22rq5XB/ZFdT0wP78YilhkZW1YOiXP9JdflnQyx44fBhC+t3F9ymazZp2z3Zj5absuT08LcH19Rt5frs3MYESF0ri5bfjSb4pfmM0090W+jp0KnS3NzvSt2Ta4Zq8HIdjWCdc7PYfu3E5qsOhJbaWqY6fgcz6LQDe32awlDGHtUOx1sdPpmLnINtkupLbLXuhaHj4XeA6N12UYiLkReHSr60zi/pdYYoklllhiiSWWWGKJJbYN2zFMlS2jyp1+qSI706uaOI7Slp1aKBVqm6HCh6B4tKoGdT7zrR/hkRNvBQDMXRBmKKuOiG85KChCIyUISDor57R0Z16r1ZHLy077nmPCclD++qtf/SqAMCHl88+LS9vBaWFZfurj7wIAvHZtFi/9SFiunkr9HtYEeD/8ociTj6sYx3e/L0jrw48Is3H2xeewviDMy6S6qD301vsAAF/++l8BAO6+RynptrAbn/8zcSF77DE57tM/+3FcuCqoyKqyTJcvqiz7XeIG+aEPPAEA+No3pA/NhqAO/+zX/yV+QRMUz1y7KGM4J9fo/2fvvaPsOO8rwVsvp84B3Y3UyABBEoxiEClSJJWzLNnSrMdyGHu9Xtu745k9M+uZM7Oe2fXxhlkf74zXHtljpVWiZVmywihRJkUlZjCAJEiERmx0RMeX36v943dvpe5GICCKkOt3Dk6jX7+q+r6vvvqq6t7fvb/EkxzvpB1/joYR7ZYhNYdesHGp1+seipLL27g/8thTAIChIWNz+qsUUxLlefnwEQDAOE1AyksN0KEePQMqiEsrTqYzFDvs82PThm50aOokkjhGC/2TtLfupIX6/LztNJm0eXjVLkPGc0RRJpkykErm0Ndr52zjBpubNYdIdNr69uxzdo7XD9m2lbKNeU9vD14mI5cv2fzSeBw5Yudh+3a7HoT2TNHKtZM2/evXb8Np2tAXS8aijpHtJXiHzZuMwZw8Zec4n35tC/QvJVzQcvpcdtTn+FvwZzQNwXEc7zz4qQk2t5Tao+LlXqpLwCACMGQzii5GGSKFn7LGQosB4XoUESyWwt/RWqjja1+Dg4MeiyThsFJchAb6iHrYptdxnBUIbRQxVR+ihdeDSGKUxVGaZTRVEkw50jEaDX/cWy2mvTgy+4iMC8KFVJ971lDpzs5OL4NgaChsJazjRgscrxZrFaG8kLhQpPS1nKoXh4XjOEilUivOleZdsPipV4YgG2YIoteSV4y1VvOYaDHduj9E144VrF/DZ1CE6qtNMp+IphcjqZQ+rTsF73i6RsT6aD1JJyPGCGxHJzNQ8oWSt57ouL2ddk9r81mrXaMJBp+BCmRQ5hdmUUzZmPT1bQr3k9d7b7/dl9ts88joVvsz1+UDJ07jZhp6vXzInh2KTMfbMGLtyHAMlyPp2G9729s8Vk9jpPVMphPDG0z6oOdW9XFy0p4PxsfHkRiybKMcM0gGtl1jfRq2rJwKS6IszNq9Y2neUsrLNMDKJBNosnREdC5FbfLVXp2PRsNFg2l+nTTx0Xemz9pxxGDqHDfKtm+fhSsiXxATyPIwtbAxk9q1Gtuqv2ld1X1mNVMXwJ/TmrfpdBoJpxI6rr67ltlQ8F4eLQT8SosAx0xVHHHEEUccccQRRxxxxBHHJcQVw1SJVFrr5VEIgZCB6bb/pqq31k4yNd7baySP33HCOew1JpU7hS4cPGV5ozdfbYzV7EFjrManDGm49tY3AgDmqNvpoG5lYF0aFaI1SdquC6V+/R1WBPYsC4SePmVsyI5rzR79wIEDAIDDp85g/XpjZF46bOzNcy+ZtmbndtMD7X/Sfs9RvHiAeqztI+uwd88eAMA3v2NGEKObjZG49567AQCPPfIdAMCWDYaioG4oy223msHG57/wRaTThijtvdr29dx+Y8SaLUNgxmhP7iFj1LS97ubrUGNhvltvNSQIrp3E7/5gPwCgShHhsRlDGbrJPpZb9nPr1q04esyYlxMnjeUS8iCkJ0VgqtBt28xyX5ovoxuHkJ4xxH1m3v6WJes1L1RpyJCZNMWuRw4YYnXy9Dg2Dlj/p2fseNu2GYp9zQ02Rn/+X/4/AEBXlyF0czSlSPMKq9ebePRRYxWTGWMrlpqGdE0vGGPUQZTx2mtsjNMUIh86dBDHXrL9FT0DBNuvai26rGR75IihSdftsflSoHakXmvjppvMsv3xR6wdPWxrMm0IkCxakxehGblyw10V4V9L+xL8mxAsn0la+V3NT6FoKgbcdsOos1A5oW6eKDmZ9D4TChw1iNC2QhSHhowJPXLkSEBbGt5/Nhc2rhCiKtRV7Z6YmPD+L/RbxdGjTJl+DxYcVRvV5qhdbTTXPar9CGpqvAKREZYpKmD2DTNSK5iwDl4HUihTFodGw9qxtLzIvhgKO3Fmyht3FQSOaj7WMh1YLdZik8617Sst/vtqRcyQXXi4rruqbbqnkwmwWL42MlzIVvM8er6z2eyKgq267qOoe5DdAsKW27pWdRx9V+UH1L65RRX0Lnr7LhY7QsfV/ai3155PGjUZ1YR1YWJSFhfO42f/AAAgAElEQVQrngFBZ6cdb4mmPtmMHUfGCctLdi+EV9Da9YwhcvxuNxmwOa5r/Vwbl6TxJAmcZbvf+a73em367kMPAgD2XG1MkYZ7TsWAOT4jI/Yc1Wq1PO2mxlN269u2mQY+nQuXpRBTpbX7xPHj3mdFmoe4DrMWWuF5oXWhRF21y9IvS3Mz6Owg8xdheaIZCXpukqFSOpFENk+WybrrzaVTfC4tcP1XyaFccmWfEkmZJbEsENfKuVnT42rdjxb4TaVS3neDBamD31EftI+oLXs6nUa7Hb6PRa3to5qqoF42el290nU1ZqriiCOOOOKII4444ogjjjguIS6JqXIcpxvAXwK4GvaC+6sADgL4PIBRAGMAft513bOX1MpzRBS9CbpHAfZmHkWB9ca7muNS8GeT+fj1tosEoc3jZDu6eyzPPtNvebDf+Lbpo3bsMBv0JK0di6USzpwxVCCbszf9OTrRdBTs9xkyV11dhpo89rhpazrXGduwsFDBjh22vztveycAYGrq8wCAf/zhXwAAfOYznwEAtGlns4P6rU0DHUhlrO19fYYefPJjfw4AeNNbrFDsvn1WnHfmlDnJ/aNf+LD1ge/cH/r5D+MTn/w0AKCQJdJEqOexR03btH2boRdvuMvYqKuvoW7rG1/Hu9/9XgDApz/9KQDACy9YceEll2hS09CqetL62KAd58kzNtYfeNe9+PGjxox5CAztlfftM+bw+efNwdBxrP+LS0SgaWnqOlVU6drTSTZLLj4LSzzPRM1eHjM2rL/Hxu322+/Ai8+YVkyWnULmPv/5vwYAbNkyyr6NAQC6SjZ2V19trOPZ6SmPNbvvPnN5fJYWrpOPG/uYJDL16A8f4zGoN6m2wdRvVMtEuOhuKFTkhQO2r+FhQ9U7cvaXGeZfd/cN45ln9rPfhubkCmFNyPi0ofX9/YYuziyU8VqLy73mnAttX+tv0eKjrVaYschkMh4iKPRR2zSJkEaZGaHEQVRa+4hqGoSKahvtW3rSbDbr6RO0D0WtHrZp1/F1XfkFH7MrUG5to/z8KLKo79Xr9YC+iXb9RAa1rfalvnn6qEBo/97xG2HmRm1dLtsxVtONaL8nqTHMETEuFJWV4NuwA74l8oEDBzDLDILhYWPwNe5qs8b4XNqn87E550JDLzSn/0IZrYs9/vni/EzVlc90X671xoWLZrO5pvtjOp1ewS4B4eeUKFO+mvtfFJmP2rCLSYmy7bVaLXT9Br+jfXmOmixTouutVCqtYMTV1jIL6LY5FUq0VPecPdmevo4Or41FMuMpPgekknL00z7s3tco25B3dfWgMmdrwcy0MUSFATJwZFemWZKmzVIrad7HN26257hay8Hikm1z9913A/DX7ipZtm4yaL08vqctajQ8rawcUuVOrMiSVZLWbLxs9+Djx+2Zq1qtooPf8cawbeehVbfx71Ihcz6XTo/btm2ygh09/d751HlWRNcInR+xUdlUEVWWJZonIxct+pwvht1QE+2wfmxxcR4NPstVq2GmKurKpwjOx+j8jt6jNN76nuapdx9YXkatdu5n/Gi8Ut3UueJS9/gnAL7huu5uAPsAvADgXwJ4wHXdHQAe4O9xxBFHHJcj4jUnjjjieLUiXm/iiCOOC45XzFQ5jtMJ4A0AfhkAXNetA6g7jvMeAHfza58A8CCAf3EpjbyYiOZMzs7OYoRaGYXebEvFcM2C6M8s0ZS066KVsrf0k0QY2swZTVTtjfja6yz/dmHB0I35OUNGzi6cRYFFZqtN29/IBnMMPHbUiv1KC1Glu0sLhogePmY6pUQige2jts3ffcEYqr1bTcu0PGXo9Pve9nb7+5f/KwDg6EtjAIDx420kknbcf/Ov/ycAwKc+ZvqfuZOmGerbOAoAuO/21wMADuw3Vmb79u3WrkYbRdZpahA1uf32OwAAX/qi1Z76s//8cQDAB9/3FtvH86Y5GxnZgD/6w/8AwLRRAJCAjd2Nu23/333a9F/dRSI0LOo3TG3V4cOHPdcchznZc2RR/vZvvwsA2DBo2w5ssLEcJGMzv8CCgo0EckRa5olAJROqcwD7yWxiFd0rE6F7av8zkIpkfs5QnLGjhhKNDNt5eO4lG8veXtt2H7VnE1NjAIBbb7sJ4Pn/0pe/BABg09DdbajWmdN0+ONVuWWz7bvQ249H99t4llLUprCY6utu3IpgCBna0G8t3rjN5v7hY2ewa7fpwCrzrGlF9nWe8+4sa5FVmoa1TC+/turB/CTWnNVqLAHnZh+SESQNRAr1s69vAI0Gt1dtlYKhbHOLplvL5cOsig4npqTZaHvFD32HMK5pLDSOiHOdkv+z2cyKOn3K8Y9qK7LZKDoO/t1nyhIsip5S0XRXBTttHgnJlhOm4yQ11ZFMECmn5iHFPPxGnfWzqvZ5m9Xdg1qoaO2iVpssW8svcgwAuZxd6+EaPCpgaX/r6wuzXtH7hEJMWn9fG0uLhtx++1umRX3rW98MABhiYdFyxa4bFUcVM+NADHAC7fbqbENUYxYd/6Ab1fninLqs85BF7nl+XlI47ip7kg4iXPNGpJbq3JyL1Xm14rKuN66tKVEth6LRaKzQihTzYZfLqHZRY+e67gpWN1q7TvM6mrUTLeAd3EfUdU1sjEMNdNIhk9Cqei6CzbobarOnP0zbtg0VbuXPrK7dloM0XZHrDbLn/ar1VORxbJvWEq8hpm9MziwiwW3Ws7iuin1rTZyeteexTjo6qwhxgixYwkmhxbnZ3WffGTt22PrAuZkWQ8LxUEbH4ODgCvZa7I7nvsdnD7HfCumTqpUKCmSqtN9hFu7t7ww7Oc6Tqerotnu7lw2AhFezKqhvDW6r9vhrtt3zG1XXu42pD94+KAwXkyVPgIwT1q2WSiVPm9tsSnfH52SE9ahRV77VmKqolkr9VNs15sHfFxelYa6Gto2GjhFdh4PxStebS2GqtgKYAvAxx3GechznLx3HKQJY57ruOBs1DmBwtY0dx/kNx3EedxzncRUPiyOOOOI4R1y2NUepn3HEEUcca8RlW29+lgoWxxFHHGvHpWiqUgBuAPA7rus+4jjOn+AiaHDXdT8K4KMAcNNNN71iCEqLVdBFB/DfRCcnJ/FUzRDFZ5835AEdYbQw0KbQT/Bt22214PJNtkbob57OPCnH3oifeNJ0MHJsyRcMmdl33Q3ecVQnqN6ybeUe88QjP7a/nzBmaq7WyX0xHzWTwfK8MSQEjXEv837PTJhey23bG/ozBwwJ2ThiqPH0QgMfeJ/VrPrK3xlD8va3vsnasWQ7myOyeuhlY1uWFg0Rlvap1NWLX/7IPwYAjJ82pH3doLEr7C7uvtu0VBs2GlOUYi2Ls7NlHD40BgAYZW2IQ6wD0UXdz/vfbu353P1fAAB0F1gnY8pqQvVcs9tDVKp0Epw5a/0bHDQ0q8T6O4cO2RjuvMpYmYMvHbV9lhy00tLdWZtTRWt8KmsfLLBOVoYOQm06g83NzSENO2ddzCefmLBzmeuwz5UrPThoKFNHh6FMB16w8/HjR36IGhmhD/68adm+/T0778+9OMltWG0+Gd7ngcOHUKWe5M4brwUAPPLIY6HjCfGRw+LuzTaHjk8bcjS8aSsOsR6a2BDQNWhxwVgM5UyPn7WxTueMMX0NxWVbc7q7Sm6r1booBzeFgzCCJohP+2g2mzh50hyTxIZKc5DN0sGKiF60jp4+7+zshNv29xf8KZZLmJhQaIcXY7vVxgLz4peX7VoWyqzvqu1nWYOkSadNOd41Go1ATn3YfVD9lH5AfdPPer3p5coveI5Z4X5G9a2rMUfRc9LZ2Rnqg89U5XhcX5cVRezr9ZVuT8E2Rx0Ng5oy7Vf6h75+01Sk0qtjkivuI68wLgczc17V00/ZOfCVsFGXoiG7yLhs600mk3GbzeaKaznIkGu+6dqoJaj/icxNbRvUMmodibJKiuiYaZ9Vrg+O43jb6m/R43jXe8LXjgLA/NmZFQ6BXr29uq0Ziw3eaxblssnMkgG/BpyOozWolSDb5pKBVmYJZ/XwenN6bpXnceaY3dtKdPnU2nB63gB7ue9pfc13FdhvOodWG56Gqlyx+58c8gb6rY2tJjVES3bvl27KY1sBrFu3zutP8HiVeriOWG83dWGskXk04Niqda6D2Q21qp2jqHPeEmtuSaw9OroRbj287gZrBwZjRe0xN1wjMXgcuQK3yFBqbP1sB2l/K8hkxYTWQsdJyW6VEdXYOo6zJou/lh4syqgCQKkUZujU/ygzfCmOreeLS2GqTgI46bruI/z9C7AFaMJxnGEA4M/JSzhGHHHEEYciXnPiiCOOVyvi9SaOOOK4qHjFTJXrumccxznhOM4u13UPArgXwPP89xEAf8SfX74cDU16L5b29nh22hCIas3ekmfO2Fs8WsauZOpENdw89lyzCwCQZQ6qGBi3zXo8RDHcZNgX36EbXTqbRS1BZirL3FS+6dao8Un0GQKBKUNX3nHHW619yTqeOfQsAKAyaczL4UPGnnR2Wv7vpi3mGHjspPVp03o7xsiwsS133n0XPvGJTwIANm8fBQB8/6HvAQBuIHPRZJvf8RZzm5sYN0RovHwKX3/AnPPe+7Z7bYia1s961Y5Xb9rbfeegsUz5dfbz61/9CgDgfe/Zg0KXsWovPWTsylCvjc19d5nL3yxZpcWqHX9y2tz4GtUGTpyye87uXeYyODllmpDKkiFCJ5562PbZbWO5sMxK7QPWjkq7jUHW6ZokQ7SRTNDYmKHHm3ZYO5yU6dTyjuEFGcIGHb0dcOfoxMa5tHePbfP0kzY+mZQhRHlqRpqURqQyWc+Zr0LXw+4eQ/YrzXAu+eM/tuMPUMuR7yTbk3Dx4Q/9HADg45/6GwDA3LKdh55h+059yRijKh0cxyft/Cwv1VEqGLI1MW51qDqpcevrsJ/X7LU5fv3Vpr3LlpjvPWKdnZmZweIZQ5iOztr5mGVtnuuvvtHG8phdF900jMvmbR+vlbisa44LtJpu+AMAbuL8LEPCWR0p95kSHzkmuOcz6CmbR8t0p0yQjRaQJ4e5ZrPp1fxoS+OZk7OW7XRw0FBRoZJKo04lM95+xHYKTRVSLCTPQ4Vb4boxhULOQyrFOnXSnVR58vmcbSs00ndebXnbCsGWHkxsl9bYc7kyRXVGUW2J+iKdgsY4nU57/RKaLie16OdRRFPodBDZrBFtV61A/S2VTq7aBw/8dV1cChEUM1Wrx6vV5su53riui3q9vgJ9Dzr46Zrxa8bZfK7UuK4kpEvhvCOT46Rc1Ft2jRYKtmanMwVuQnfBpGq7UYfJBaeR1fxvIsXjtXj/cb01gQ6lrBtF6RMKrh2jt6cPHZ3d3n4AoMLvionotluPd/2fOWUZJTOT9nNkaNi7Jp2m9aWYscyWWoVZInTULXbSQbRm45Tt60N73jIwJ3j8jgTZFNg6m2M/K6xj5CYk6rJxKCCF/m5jpFSXacOIab61RujzXbtYR5I17Vot12PIdA6lL9Xv0tXPUdtV4iBW5my9WT47gZFB268yFBYrdtzBdXyGYPZPixk1I+utz6mUfa9amUOpw55xsxJTspZXW8wo12GNZSVJl+RKDS3qPzVn5BTb1Sn3RelDGzzeMvvvZ4vpHBbzHdyGbsyL9myjiNZpTCQSa14b2n+U3Y26AqZSKSQSNXabLGtTczYZ2pfvDmjtSTmpy5ZhcKnFf38HwKcdx8kAOALgV2Ds1/2O4/wagOMAPniJx4gjjjjiUMRrThxxxPFqRbzexBFHHBccl/RS5brufgA3rfKney9lvxcSQkA2brS81sNHjSnpZq7q7HFjQTZsGIFLuHjjRnNTO3rUmKJkMvwmHI3gG3M0j1NWNPpOhW+3/f2GWMwvGKPy8A8fwmLdGJKdm6121O7dhqIon1gIaNu1t+qhYUMb9u+3ukIvvfQS9u0zRkrI786tVqn7s5+1+lEZ1UHoMvR6yxZjueZrZ/Gme60u0v2f/6rto2Bv7fv2GlNTmzPk47Y7zdEvS2ece+l21apVMH7S9Gg/fsIyIW69+Xrrb6+xbPNEXJpVQ1WeftKYtLe+5U4MDNq2ibSNw1J1zH7OhyvFC4EeGbF9qO7Oph3bPFZh/347z294w9UAAJqa4ZvfehIAsH3UEJIxOides8/yrqfmy4Hj2DZjY9YOgdJC3AucW/Nluox1dWGSznxdrHsxPm4ozsatNt4d3bZNR8n66BIpybmGzN2873rs3/8MAOCWO94IAPjiV8xVzHFtru7YaixTgts+9pi1r6sX6GQutli+a1n/6r433mVjRNdD6aV6+u26UB52q9XE619/OwDg6qvtvD9MLV+azjwjQ9aX+riN8eCwzcvXUly+Ncdd1WHtXG5AipX56PZTCPOJE6fQSeS2TNbVc+zyXI9Uv8PQ3jpz7vW9bDaLNh3z9FOH0xqgXHdpHXp7DaUuFjr8GitV268YK7XR1xyx5kgyrEEql/3rpYP1UcQEad9i4fQ9RaPR8I4j9krOXkIVpZGM1hMJRvSzbCZcc0fHFXOmYy4sLHhuhzpeLpdiX2x9EJMXrX0izUOw9k+HUwrt/+WXXwYAXLXX1vNERC/gQjq9FV26qHg1mKorMX4StWXWisv5jLNau4O14HR9aV6L7fHd1cg+cb6l6XDXaje860vX29y8sbcd1Mlm0+E6bCDbLeYW8Fkm7UPX+eysXUvd3ZZZU2Wtp97eXq994+N2X+rvN/ZEjNSxY8cAAEdP2DPXVVddBcBfs3SdPv300941uXGj3bO38LFMLJtbtXVvhG7Jbfapf/0WDIyYi16ZfUhwPBbLdIOja/NQvz1bLUyxnlXerv+OvmGvLcO87x2kBjmqMdL6K5alUCh4507rWlQzm85TO8R1Xxk3M9Qv7969Gx09Np7ddDAcXG/PqwomUaB/iBkDZToqeq54ZbQT1GUxK8vTx5HtbPK7Pb02pspyKJVrWGbmitbkpWX7m+NKJxV+TvacalW3KpFAo0EfAt4couuq5oWeS/T3bDbrjWe0llrU9VLtW1HHsNlEKmX7l+5L+1Q/NVbRGo+Xs6bepTJVP7XQBa8Hb2V59Pbaw8PCuE3WhcV5pNM9/I4tIP7JCJtcRCP4eVREp7uVR1Hywi902sk8fmoMAHDrzTdgbs4WuIVlm2hbRu2B9+ln7EVgfNxeAO659w0AgN//V/8eADA8ZH05efIk2vQgLZZsITk9Zi8qe6+2tK8Ci9Fed8MtAIDHnzAL7uv2bMHGIev/m++zF6G//fI3AAB3vuFuAMCRcXshOkajjNe/29LUwKJ381Pj6OEk/Hd/+EcAgLHnnwcANGEL/623WWrfH//HPwYA/MI/Mov3RCKBBIv4VZatD2NHLIVtoNtSCtdz8ahzOqrGpxa3xcVF7zy/97324nf0qC3WG9bL1EPpDXbhvfWtds/79P1mztE5uM4v0Ldk56OiwndMAdC8cBBOe5iYngOztZCnqcXOnXbzWKYA/rkD1p7BAdvHtu32AjN22Ao5nxo7AidjC+uBp+0z8Ka4cNbG+bhjN55f+8gvAQAOHfwYAKC3twdX8UXowFNmULHvGrPwX8fCpEX2ravbflZrLGpKsevV11zlLVb6ObDexv+Rhy39sbNh52l81h7WPQ/bn8FwXb9obzD0kuE4zorit9F0BO/FpBkW3WazWe/FKyr6rtVUQDdcDLGHN1QtL612DQneICtMs0jTJl03JN0g+vr6uC2t8Kenve+kUrbN6dP2oqybjLbN82avFyc/ha/uXUv6qRuTHirUR73UaN+1WmMFUBUtyh4Ud1s7w0Uig+kgiugLWLSAsPZRKBS8cffX+naojXqZ0poQtToOPgAr/U/9VwkM32Rk7VeXFfcNbRG556z2En+hL2XneslorWHpvtZxg+lo53t5WauwZvD3tUoWrCygHQYpHcdZkQZ0IYDHlRrJZHLFQ6JSg+tcM2Zm7EVEL1dB05kMTVO8otauDFrsIXdZIJ8Kd+e4DtR9wxidE90f9OIjYEahlx+dh0wmg82bZdDEwrgZu469B36aPulhVy8s80xlq9frWOA6N8GC9WrH6Ogou9QK7UNAUbPtvxxmCUA1qna8wSF7hpgnAHXmtD179DCVeZ7FgsvNhPdSpXHQ2G3bti3U/y5u29lpLwpLS0veM54PVjXYfxu7qoqscw1Xv4PFert4vhu8nyg7XfM+X7LjeqAey1Ms0LSrVOr01qh2y9asBl+mBODL6ExLVprGSWgCxNW8/vfzviJQT2ukXhhrTK2LvuQE2+wDbuGSGcF1XtsG07cBf/yjoF20DEAQjNC2Ucv2qMV6FJhrr/Ko89MwqogjjjjiiCOOOOKII4444vgHH1csUxW1001TNHzsuDEGfJlGPp9FMmVvnI122F4ySFuuFsG32qjALZ8Ov1U7FG0vtYxBe+pHliZ3z8234RRT0bqHDfEQSrNrl7FMW7YY3f3Zz34GAPDf/OKHAPgW6PfdfTeeedrYhN/97d8GABx47ikAQKEopoY2mwuGyMzOmoFDsl3Fl7/4WQDAr/6T3wQAXH/9dQCAR594FACwYdTade0NZlggi06oMF6pGxu3Wxv7+jax/zaGD377cwCAXI+Nx+/+M0svn5q2dLmTp5awaYOlqn3r68aeJZrcR17Fdw0+kRA0SUZnzx4Tbg4PbcRNN70OAPCjHxpT8+53vwcA8PWvfz3U1sUFQ1NOTZggdO8+6+vXvrUf2zbYfsVmulk7Z2dOGYo/OWnM1euuM4Hs1Iz9Pj2/jAFu0yICtG6dIWAt2rwePGzHu+tuY9Ke2m/n/8M/9w4AwCc/9zV86Fc+DAD49g/tfHT3WLrd6AAparKv999vY9pJgeg733IPvvud7wAA3vMuM0C59TbLSPHQeTKkSnvIuOH52mzWvSKlaRZiVErCW95slvazczZPb73DikAfHrP2/CyG6wLNQDpDFMF3HH4J8MopKNpu+PeoFW5XV4+HKs8ztVamCg6L4Tab4X1svspSP0+etHNQ6ugCaN3eYGmHOhkTtVvorNiW6Wmb+5lMxrdMJsqs73rrVWQNFPro9ykRKEZqx+vrNzbNS5lDmMELFnTVmGi/3d2GbvvodzV0vHOxIt65OQ/rEzTB0P78FMH0qv0UGqo+aZwqlYo3NkJVhYzK6Gho+A4e//yM7lqo5+UwXThnDaRX0Sgjyko5jrPisygjda4skei20X1cSeE4DlKpVIiJi/5cweoxVcxD8L3Cqfb35WWx0QksLtpa3eK2Jc5jR0g8mSoVrF5U5fkUi3E3GlhYYHr+ol0jYqTXrbN9qaBukKHST9/wxs7N4KBlUHipW2TSjlB68aa3vgUAML9ozMrM2bN4cr8908ws2n330Uft+eSxx+yeDzL3A7QtV/mQXXv2emmFOR2Pa3SibcftKNj9cYYlaCo1MWiqRtzwWB6tHbrulSWjorwyqGnzup+ZnfaK+Go9OUkjDn2eJCNUIMvY22fMUYPrc76Qxe69lu2TY1uL/bZmRjNMdDsSK6ji52fOnEGaphVZ3tuZYOMZuxV5npZYosdL/0y1PaMS+pahTrt3jxmj+UWGz1odXcVQn3M539xI81r3EK27weLuQKBwcbu9ZkH06Bqh6yFaSLvVanmGSDquZyok46gIY67jJ5PJFcWGXykjHjNVccQRRxxxxBFHHHHEEUcclxBXDlOll1UPtLT/KFf0BbI/115rxgkHFl4CEC4I6e1Kb75rIGESGgctHs+H2glFIhmAN7/TND2nXjiCXEFokL09b9hoLIeQnjNnDD3Ze5UhFfufNc3Nu95jRWJPHjmMLN/wP/qf/18AwJ5d1s9c1lDqugR4FLxfs9fYoRcOHEOFiMM8WazX334nAODX/9vfAgD89//8fwYAdBBNRpNIIBmjXIcDp2LHL3VZnm13v+kKrtln7NbM9Jjto8POxyDt2f/iz/4W/8e//08AgH/9L/8AADA0YqyPxvfZZ81yXsLX5w9a3rPQ42w2642REKnf/zd/AQC49y6zPU0XjCWQDverX/mB9fVu05g58JG3ZWqlnn3JGKrrrzVTj0MvGoq2tKCipoa63PO29+CBbxojlmnaWMq+GmlpUuzXfqL5LzxtzMQcEZrN24bwwsEjoTZW5uw4Oc7RrVuMITtJlq1Mke3YoUNYP2D73bXD2lpgGYAUmdpEirankA4orEMIFtcTEpMhMuXQQr2X53+BiH8+Kzvqn8VwQ+iYIlg0dq3CwMlUGIvS33U9t9srETF/WzFV0pTYOViYXwp9Xqu5SLMegJhVCYmTCVoKk+3yCmPzvLltx7t2/OK39dDvQiiluZJNs68FS3riYjGc09PToT5l0tnQNr6Q2Z9rUctyIZVr2dcGUcIoYtngtadxFip6IQWcz2dGJJQ6eo0E/6/1Q+iz0NdCIbfmcc933/hpWZpfSFwqUxX8f3T8o0zVarqstZiqKzFchJ8jdN5THvvkrzea37ls2MApkdBaHi6xkEwm0SSbLaOAdptzMhlmpKPmAtPTZ71jiAGLPlu5rtrK4t4Nm/dab5aWljwWS2Y5umaVSaRrVUx19O/pfBYJ6o2q8/Ysk0ra+qMCwsmkzaGpCXs+eODb37b2tVroIhM9PGrPPS6XXa1hLR5HD2jLfF5KcR08dOiQZ5Ch61rZBdJaaVy6qrbPnh5bD/L5LJRVkM2mA5/5a0NpwJi7bpaCGeplVgN1Wfl83luzk2TkpiZOst80weDYNerS9Nrnx5gJNT09jUS7Gmq7GMvuTmvrosZbrFTNnjE6SmmPmZufo0FKUs/DNDUp6p7CZ81a2FCiWit7c9Wbs2S9dB7khRBlm1Kp1AotVVR3Gw1PDxVYS6JMsK4p7Ttq2+7ptdxESE8a3MfFRsxUxRFHHHHEEUccccQRRxxxXEJcMUyVQCq9O+ot0neVss+Fnugls1jMeznvLiJufx7CVdAAACAASURBVGshYRE27ELeWFOunLJsHzv2GIPywwf+HldtM21Qpa7c2LBz4fhp/mRh1827jI147llz2Dt59GUMDRjSUFm2fWzZYjqor33N0JpnnjVL009+5v8GALzwkumXegYG8a0HTN+zc6cd5+hhY/He8WZzGxyj7anfGUMzakK3khk4aTqxyI8chmrMTFm/p8cNiXhhxvb1yGOmAdq0YQhLy4awfORXTQc1dsKsxW8kyzVLlN6lReq2bWGEemmpjKv2mIX6X/2VOeLt2pbj32zbuUlDk4bI6BBUwzJzlpMZYIII1wYWW04kjP0SeqauDdJ2tZfF/x586Puo1GzujAzb/k8cN5YrS+TpxhutL3JqWzdkKN/GUbNdfvixZzBE/dvdd5tm6eVn7PwmWja2CYdI3JShTPk885LLC7h2z06Ojc2NnHLYnTC62GIueRJCW8C++khnk0xkkuPbVrE/olaFgtzczo0UXcnhui4ajcYKl6LVtB7R3O6EG0Z/5f4nNH5+ftEvsktHJ4/FcsVqsYAuEU2581WqNp+7uotIsNhjf7/NpRwdu6qVMFIpLaKHNCPpsVdyBFT/xCr5WlSylUJhycbMzc16a2mxaG2NOualeZHpGhTCmM8XUa3a8aUz06Kq4rpRd6YoShhEHaMlF6LnI5hTr30Enahs27B1urZR7r36FLS099YfMoTqp87tTq7TYglWi7VYtMvJupz7/vSTZ3fOxSSdr8jvhYzDalqtKy0chLMFVjDYyeQKt1G5/mle9/QYYy09uYq+tt0majW6KlI3Lu1Uq0nNLdcOXaNtupyKsZ6bm0NXl2UqFFmoVn8TUyU2KpEMX7uO44RYKwDIZcOW7Rvo8Cud1I9/bOU8br7tVm8M+gdtnZulpqrVoIU2daijm6nrpvveCwcsw+XZJx/BzdcaQ9Wmm2GRbqZuxtpaadl9OUfGRJkmRVrOd3Z2eky81oKgvjL4M+qCWigUvGcL6a40V/2MAOrjxJg0bEx7evr49wQcZjHUuTYtsFCwtm1UbO0eO2p6eYf3Fv93Bxlaiq9neZRaxX5PsFxPk4WUe3rtuIsc67P1BsC2lEp8/quyYPwCtaoUW8lpcrkcLgOSyWR8d8mIk+XSoj23+oxpWD/VbDZXrPPn0zQFWS5AxYfD7wU6fvR4URfA4Iqy0rnw4iJmquKII4444ogjjjjiiCOOOC4hrhimyklEc+KFcOoN1D7tKBmT0GzS/S6ZhMu6Q4USC3BSq5AmEgJqAVJ8X20p75KamibaQJsoNb/TICNQ5y46sswdZs7uEJ3+brzlFvzdF02Pc9XeuwEAJ8+wVkK/bZzrNvRk4nlr8y46yr33/e8DAHzpbz6DvbtNb3P0sGnHnnn8RwCAwQFDl7bttD780R/+RwDA7u109Ns7gp2DhhIdpFZreL0dt7PHdE99G+zvbeZj603bYwVdAFlDyepl02XlifAIebn/i8aYJZOGEGxYb7W4PvyLH8Ijzz4MACg3bGyuu+2dAIBa2ZChTdsNZXriSSt2rLpVHnqcTuEsXf02bWGx58OWb9ybtvOwTJQJrNvk5A2patL9p7vkYIB1rw6PGbIvELe7i+N/0tiuo8dN+3Rq3vZdcwpIiAVgPvPIZhu7JaJWe7eazmJ4nX2eJXj9sU/cDwA4MzuPqWXrX0fJEKnNo9SWOYYqHTn8IgBgxzYbpx7q12656Q7s2GJ1qhIZ61fLla6FDo3RmkqJcH2aVqvlaV6UGz+/YOhRLxHKVtIYiSYRsH3XWcHpn8UoV+vYf/D4mnnUcusCfBcoMTUZMn6drBvCU4A8i9MWS0nk6AY6N2ssqBjMJotBV6pkB+vSJdnnV19jmsFqtYpJauuWFg0hlV5v4yarL/b0frueVQcuzxo1iwvL6CUSKUe+5bKxK3Dtu1E3U/3dR+faXh680Md1Q3ZtiXWbnpoJjanvOFj1ttF8XFhY9P52rhCSnkqlVqCJnqw2gjpGtVeJRGIFm5Himgo6WCU5x9ssBlNZDuu12u02WmSQ6zW6xxL9LOSNfSsv0zkwFy3+K8bMR/f9CGc/nAuMdZwLc5+6EOfEtepFrcUUJRIJtFep4xaMlYWbw+fFcXyHyGQi3I62ly2C8OdttdOB4yj7I7ztlej+h4QDJ5fytVRkkHNcU/L5vLd+iN1Q3aBg/TvAn6NeXUXH8QvUJmytUm0hsaiZrFglZeNwbvF6GB72meFJOsVV+ZU+FqOt8fkgx4yKdEZ60CmvdpNqLhb67R6e5noz0G/3uDfccRcAYP8zlq3yvW88BAC48ZZb0bvDWJ6etK1dB8csk+Paay0LZB1d/6T1uumO27zh/ZOPfwoAcPfNln3z/g+bC3G6wLEq0jmQa9j8nK1d5QVjagrFPJaWWPR4mfUrqVvevkOMNJlD3nunuP71dndhZtKe6ZRJtHO33a+HR83hmafFZ52ohdcj6OLZeRx4yhyeX3juAADg9Hx4fZX7n9ZZab10f9qyZQsaLH48fsqykg4esDG8eo/dV3bstvbM8X5TJmPZkUp5RZ5VVD6qgxVT59Waa1DbR6fBZsvFJNfROp81NFfTZJDSmfA8lCtlwkmh3ogU5OU4R/XBazn4NRqNQKZBKvSz1dK6ru8idKxWq+Xpv7LJcLFhL+ZxQREzVXHEEUccccQRRxxxxBFHHJcQVwxTtVb4b632uxBhAWH5fBG1qr2Npgu+0w4ApCI52heS5+1/Z/W/C+2RduH222/HV/7WmKrvfe9BAMAAUZxDR419efe7rZbR5s3WduVMP/TQQ/x8MxZZO0LuOkt0jnOIUncwhzibLaolAIADB1/Cra+3vOWzy6dCbds6aqzPjmtvABBAIIhaO6mAg1CEqXPoFqa6SNIUDRTtuDfeZCzHQ9/8ulcPadMWY6Tmxk139cwTpvV62zveBQCYZm2fXuYlaxzShQ7M0KWoWDCEp6uTNabGTaOR7zA048Rx6+PEJOdB2/Kur9q5A/mS7e+lI+McS7oLEa1gaQ0Poe/kOZ5eaqFOBEhIe7Vq/b/heqsXJbTo4EGrYXPoJdOtTUwYvLFhy3q8dJQMWZMoFWuF7NxpY7Vvn6FbmZyN4ZbNhpBdtXcnOorGJkVzlVerdwL48zOIJkfZLFWkLy/JxczGdF650v+AIJdoXaOgpieqpUkRXleFeSF63URrt42OotbgOtBQbTzbr2qBaBuhfy0ihp4mIZfz5r/mlkLnVHNR83VmxtrT2dGNtlciPlw5PuGkvf0D8L6nYwn1q9XqKxgB/a71Q0yyNAaNSF8B/9rSWEU1a2qHQuPRbrc9hFQhTWCUoYqu38lk0kdIA+xZ8DtB17Xg50Hdlj7T2Jw9a/uQFnZ0y/rQtivDvSDN0Fpxodqhc96v1vjOT9tRb62++eeyvaKNV7T7n+ui2Wz6bJtYvYAOsFmre/8HgGLEVTKqKTyX/jPLukgJUiTK1lE9Tzm3NWq+xkX6x74Bu//OzhtzoWtS2SmtpmoLsWZnPu+xJoUc15EuuutJ98X+bt1qGTeqp/XEE8bOPPKjH2D7Tns+uIpsyrY9m0P99tZm9lvtLRaLmOA1qRqgZdbtSnMMpRfuLJb4u61h68h6zc3NhfRlgL8Wak6qHdF10XEc7zOtidJWaX0rlGxbre/zzGAQK/XEY4/j4PMvhPpXJouj89zTY88Ac6zt1cvzpPbVW02UmK3Q12PsovqksdK6KJfCEtvrNCqezkz91j1K67v6os9LRbofqtaVm/CeE5OpcAZNnX4C3rN35DkmqJ/yWdfweEfdAFfMC+qkg/tQm/V59BwGGfLznecLjX9Aj01xxBFHHHHEEUccccQRRxyXP654psp/47Tf5Xqj32dn57w3/HqVb/TKFY04p70Spkq/C/noIlOkfa5btw533HEzAODh7xuKUiNqms7aO+0D3/kWAKBRNVTpZKHJ360v3R0Z9PcYorB7pyE9SToajs8Yet49aO2YnDRt0dS0uYndcufNmJu1/T36oDnuvHuD5R2fGHsZAFDoMa3R4GZzmPPQ9GBVcjecP58iQ7WRNVt6+g/b50umdXKITGwYHMAsWbVjLxoqUywZwiH04HOf+5z1be81ts2mUesTmZQTZ2Y8xOHIEdM7HT9u471+PREPOgfmiZ6UCsYQ7d1p2rLn9r+IZDE83aO1e0ZGTA/VwTzc47OWW+y2gYE+22+7ZajN4oKdu2KRuhoigE/tfxIAMNBrc+6WW6z22MnxSQyyQvosGbnd2yxHXBqn8TN2zq69bluo/11dHcgRWRLSFHXCirJQ0nKoj8F6bUJ2mmRHhGJVGzamYj4arSt+eVgzjLlLhRzj7KePYK1kAZnDzXFrUreQ4zlJcMznl5aQ52ddnXbOpVmqVIXghut0uLzWhJLu3LnTq0sllkX6iF7NRW5bJTuvqFQqSKWFANKpK+WE9qVtM6wNkyTzLEerZjPvzROhnUJhhVzXiazr2qzVrL3pdNpzXNW803GDdcBWi6DWR9tq/2LzhEJG1+mgC1TQVQoAMinpc5Khz4VKKm8/6Dy1FiOo7/rnLswa++1yV1ynF8O2XA5mJspUXdy97pIPv2as5Ya4muNuFM0+nyvYazICcxJYeV6azSYSkewCePUyhdSLCfZ1f/rpjZdb4basF5SRM1ua21IHQ/fRjiL1MqtoHTXPdR16bn8pscBkvSrz6Oujix2FKYtLdp/s7LR7WI7604U5ey7YtMGyZFQf7+++8lXPzU/alu4ee5ZStcSsNK66hqkxOjkx4X1nmSyO3E876Mac4f1TGp4WXQIH6ax67NgxDA3Z/V8ugPpdzyk6LzlmywQZFK090bXSczmleKpGp+MXnjE9rFwQjx4bQxc1s9KUn2VfjtGdeYn1szI8L9PUPl17rWW6jI6OosBJlCQzqDVL58djYfTcIDfUNpBKSxNszwO1OrML6FswN2/ru18/NJwN0Gq1lCDlMZRyqG27/tocjKCDpMJbo9rhtcqv7YjQ51of8vm89xwevUd4rpe8ZqL1Eh2nFdAZr35/udCImao44ogjjjjiiCOOOOKII45LiCseivaqUBPdUN0VfozvP/wYThw3xKN7wDQqXj0VIi1RJ6RXwlRFHaiE/nfk0vjQhz4EAHjkx/8GALBpqzERLli3qmKoSrHXRD15ar/e+AbTQv35f/ovuPV1xiJNTlA3QdZl3TpDWnqJ1aQoQ3jzPXcDAD71xS95Wo/3ftBc9wpEmpKwQXr6iccBAHuuM0YtmzF0I6naLnDhtirchkgI3Q43brM6TC3X3P/uedcHbB/UUU22EnjLm6zG1PQZQ4AqC4bWXH+boTr7nzaESjnVDdb9EWLS359APm/fPXLkKABgcdFYtq0cy0rb+nTipLE9PdRYpZlLftetO/HYS6ZpuvcWcw366jeslpbcbgoZQ9VaZCRaDdu2vNhAT06uYdZ/IT+9vWF0af16Y59uudl0auWmjeXsg3+PBpmGoZ2G0o2fNlavTQtJubpt3mj1sTZsMgaxnWwjXQhrfoTERBkqTxfXFKpp7c7n8z7LSFStSQS0zloWDTJVdbDGQ/IKRIQvMKRxUESR89U0Hx6qRSZXRlp1ztd5InnNegNd3XbNVYku+g5edONbXg7tM+ro5Lquh5SqBoq28WvxOaF9i0mrVRvI5VnTisxYkVqHbEY57mGW1qELnmq2aV0JhsZLbNZZukUJHdTctJ+NVfsXRQqjGlQxsY7jrGAmWu1wjZMoyrlaLryf0x/ur8+u1ULHEDvcaDS8v0lTNTMT1hx4DFq7FuqrP3fcFfeUC5lnileKlAbZHl9bt/o+12KMXNf1nPvWiqg+QvMjyBiuFatpKYLbtNsrNVVXJEPFaJN59TIJUmFtYzKZ9BwBNY/FKkkvLhdEfZ7J+LpAze/lWjjbIJ/qUAsAANlsztsGABLQM5D/KCj9cAczSsRMd3bY7wk61yVTdMXMZzB71rTNSfbBbdJdjmySdNLr6QpcrVs7u3vs+WHbtt/B0pJ9V5ktp8eYlcI1UeyT1gixQYODgxggE7a4YN89ctieD67Km+tdhZkCLbJ927aOhr7f09Pj9VO6r/Hx8dBxtB6LqZqm49/8/LyXDSUtlXSwDY7vyResPV//5jcAAD96zOp1vf+D9rz0/g/8HGZYM2ouwrYdPHIo1O8K7+079pj2bOuuHd7fu8j8Pbvf6pTedps962wYtmcL6cpbnEs1aXuX0lgqW/8b/FlnPUvd7/oG6FbM67Cjk7XAuE6kUkk4ZAaXynavKtMNsNkKM0Vi9DRP2+22d2149wYuXWux2NHai3Nzc94+tF/Nv2hmxEr2y/WyK9LpMBN8sREzVXHEEUccccQRRxxxxBFHHJcQVw5TFUHU5KJy+LBpeZbtVxw/fgKA708/MtSLO+64HgAwR+nByTnqfpwwAublv6aFgPq5lSsdplL8KaQnnLupN+BGw3/zzhVsH/PzhsT00H1u/QZjJDpLxnIcO2YuMJ/97GcAAIUCkCSSVGFV7RY1S7NLdpwjJ4yFeT1rN3zlK18BADz22BMYGDDU5APv+TkAwEPffQwAcN9d9wAAtvax7gpryaQ6jH2RbsptNZFkVfMm3YLA6t8OXYbue8t9AICNeyy/d4EIwdtfd5eXK548ZIhLec4QmBeeNnfDYbI8Qu1KYsiI5i0uLGNy0pCwA88Z4rNnD9GZtG1zzV7TLr34otV6KrPmxMGDdszuHNDbZxXZn3vO8pnFalarYee1G3bvAQAcnbDfE8kGkqzrkSPSPzxChpBjJ0R4ZMQQofFxcyP6u2+aw2G9VsXIkKFYg9RbNZp2Lg88Zezavfe+3vbNelpZ1qRKZ7NoI1yjJVpDIYrinAu197cJI55ZInCLVeqwmldgPZgLDserg3Gx4QHwmthiNqmLyuZz2LDetIYTk4Z2am4t8xqLhtiPfMHm/tTUFLq7yXYTKa1W7ZoSYyU2fGpyPrSPZDLp656ICHdArqAWYlilaRCz5Ts+zXv7FzOlOSc3qCjzmcuJJfU1HkIR18oC0PeEwgadnNZid6IRrMWm37Wme/rZiJWl52gWqUEmFjCXy3ltanAt13fkAqnxToQvxVCcj226UIe/c8Va4/RK9FsXs81aLPlaLNTlatuV7gIIrHRYKxQKAec+m2e5XNjtL7q26xmjVqv5+h4yRNMztt60Xdv/usHh0DbS3Lot/3lG+y8S5a9TW1Io2NoxP2/XfV/R1oUl6qayaZ8ZWOL61sPah+vX2z1XznInTo4BAPr7BkN9cbJpr3bfxvXM2OD9UtuKsVfoOsykkxjdbMc5cdqyTsQiTUxaO6SX7u60di6TkU9zvSnX6t61r7U6WgdJ52px2drTxfXRbTW9c+bp9/Xdqq0zZ5hBc/ywZdrMTlnWTlNuq5WqNxZRl8dN1K0fP251TMWG7d1rbsG6H4yOjuKJB/8+1Gatp2qPQ9diZMLscrPZXOH2p74ok0daM32u+1GWNRkzmaznE5Cilk/rq+9yG35+CTr66f+6n+j+vFa2Q7DtgF0HUZ3VWm6D6mtwrYoy7MF70cXElfNSpY7xviFa7ywLY3YZM4mNG+3ievkpe7lad10/Gk37bjdtJi9Pc1ZP6/BFfPYzkXC9ydDbYxf01Dipetp+Km2os8P6csMN1wEA9u4yevdrX/6SR8l/97s/AADcdJ2lym3eYYvliROWwvfiC2blvXDW0gRzqQw+/GErIlzIWcpasWCL1p/86ccBAL/3e78FAKhR8N7m5G4z/c1JuGAWnVcQWC9cZZ6WnbstPbHJz/tHrV3pri7Ul61f266yF64x2o7308N8mS+KujibkTm8detWfOc7lqq3a5el+508aS/GZ87YvjfwxazJdKctm+0F9Xd/6zcBAP/rv/0D9PIimZqyBS7BpyFq+r2L+izt29XXWtV/8ejts5e4e/gClOW5rXHxXGBqo0OR5WalejZqSLRsHjZZ5E4PrXfdaXPFZRqR0kBSFBMnkwXvJTacYrWalboWhOgLlLNK6lF4oXET1gfZrbZ/5onsV/ZA22YqjUMBbwLhl6v5xWWcPmMvU0qH0QN6PXLDjIpjFcvLyyjQDljrx0rARtbGNKyQoUKxE1kBFEz3UFphsdAZ+l1ToliSBbO1a3BwcIWVbRdf8rS2zc8thLbRTbZWayDPdEOt02ulWEcfvIMAVzRlI2qh6wNaK8sLRPefToXffHSTj+4zaOwSTbVVe3QufZDi/C8PaxlV/KRfEC50/6u/sFzcC+HleEFcLX4W0v8cx0EymVyzHEAikfALw+pBm/d8gW8q2Kvi0pqX9Xo9kBJlX2217LvT0wZGNlniQQBJmsBllgZPbtvxCjLrWSNbyIfaI+OAs2cNxHFd36jHezniJSGjnKkpe7kJFtUGAsXGaaDT0dmNjo71oe9meH9W2p1eLgTU6GVramrKAyInJm1dO3nSXkB6aA6VYjmGocF+HpdrNdfBcrnspdtFn+GU6u+n3Nt58h7CnZXyD/1+4oQ9hz5FicXY8WMcOxvrJ580Y6s3dnejzMK0XXxBzbA0xfVX23PTbkotPFt+gp/rWGbnqUcf9148t24eBQBsoCGIrOTLLPo7z2e9Bb6Yzp09iyrNO4odBIp5nG4Wkk/z5a1Si5QDIZiYqtcBkg21ul+QFwByuXxoDKOgcLPZXLGONxrh7/plQMIvVcG1VfebaLq3IgpMeOBfvbKKeZJfxPxi4mf9qSmOOOKII4444ogjjjjiiOMnGlcOUxV5XVRKzIY+QyiOnTBaNeHZjdr3JidP45p9xlClC5eOdEVtdKPFJPVWrTfmjo6C94a971pjl7553NLPBvqNMUqlDT0qEEV+7HETMX7nm1Y0uJjJ4dq9JrhkNg9OnzJKdsdVhgh/5Jd+FQAwdszSIe+49RYAwA2TU3DahjDMzhgqU2/ZcZJ5Y3OOHrJtbrrDUviWSPOXWHwtmUl7YlmljLlEJLJEVRbmrD0dRRv/XJZF2Fpl5GXysGxj0lMgzS9W8YihSkr365alJxGp55593isoqp9vetNbAAAPPvggAKA6Z6jVXbebQcTDPzYE6Dd/+w8AAI0m0MwbajczZ4hEV7ftq5fpeJlE2I5zkExaI5FBKkkWieNQ7GSfCOY+/ZSZbbRb9vmDDxgytftGYx0npo5j+yYakdDE44XnngcA3Pd6o/EbtGtXpJIF/swjkZAZQdjuMyra9FNwEPr7auh9yxXiSbv1ZBipuZKR4Z9shFkHFbYUY7W0tIR5XvOylhWL1MF0iGrEwljImZC9hYUFtNth4b+fdmbrmZA1zVetie2WnzoXTRWs1yTG5bXWbWuPkwinTUxPT3vb6DhKA/HQPSKlHpNFFPz48ZNIp8K249FCvtEijdG/O47j9VuIMZxw6shaBSSDBiRrpYHIkELH1TjJcKZer69IEVG/hWjr75ns2tjkWumOr0YqW/CaP1+szqCde9voGhRlX1Yzm4im51xI238WmCrA+uwVuyaTpPlYr9e9bGI/nSmMxCtbQtUxNIa5XMZf5xNKKbH9L8wbmzB+xuQBWkM6aDqRTtq1lUqnvbZ5aVW8JpqR9NdGXeYDdk3Nz88jXwhfv1VmblRogpRiWzvIgmQoz5D5y9z8PFwy/x1ck/q67b6sFLKelP3umQ/w/rW4vOj1f+voZgDAizR3aLUabIdl/bz8gpV1SZNSazZkspP30urE4kcLwnvF2Jn+KCeFVqOOzg4VCLcsl5Zj9/If/ehHAIDnn3sGAFDotDV6ZIu1c4FSiIcefBCD6+x5TM9FmaL1e+sm+67WKkkhHn/88VA7HcfxTDZ277DMIZ0zsUocYq+Pp2nGASS8gtFiChVKhxxg+Rg9l1UXTOIgw6tEogp6NnnFf5f5zFcu2zxYKx0vl8sFGCqlBK6efrlWZAKMqe6vamvUsCKYKm7Hz6y4J8XFf+OII4444ogjjjjiiCOOOH4KccUwVU3X3jyTjqH3yxV7q9w+ZG/PB48QmW3aWzVdwZFEEpkqmSAZL8hOsRXWJoAW4/p7jq/drUQb9Yx91iMRHVGziitUlGgSWAAzSX1SqoRmgigxh7vWMjRjcc7atZFGFY2KfV5M2vf33mlW5Bu2bMLnP/0FAMA8mapMmkLsiiEOnTlDWO+/3wwquv470xL1DozgpUNj9jcW2R0eMeRj73W2/ypF7GPHTGu04xozfWgpTziZRoMosbBLaUCEhHT3DXGsKBrnkGZSDup1FRxlodWcbXOa2qViUboGinjJhqWIWHUN9CEJQ1puv8EQmL/+0pcAAF974GEAwC//4q8A8PVYN95qhh3HTxsS88xzYzg9Rw0KoYQKkY/uTtpH12WrTL0YtXjtyjzyvTZGN7zObOcTDhF+Mme7dtuYfePr/9Xa8+u/AAD48UM/BADcfM3VaDFn+thxQ9F2rLdc5UTeJuvgkOU/t5U737Y+O+0i0mQt2hxfaUSUX++SwZL9qc5dhmYcyZSDWs36k8wo8d5+yHxECGQ7IVvrcyjwr/hwPebjYkOoqyeDotjb5XgVc51Ai7qfNJkJIqJLEfBf6GyjEdZa1BsNJHg9lMuGZiYShiQuLti8rZF1EpLr2+m3UKO2sJC39dFx2baCb8Nsxw1fx7WqtdNB2mP7Rfws0w3IR7S1D/splLZQyGFxyf6vEg/Nerigo0OrYa0J9Vo4f951AzoFnieh2wlqAdVHxWqmLDIQUqFK8By5sq/m57kckVUWj0+lk0jnqKlqhM00pOf0dFmZAtscZm4STgKJxOoJ+VF2Z7WICqWjbNKFlAKRwc1a342ycBfDnK3Uca4t7I7qrdYq5KlzGDz/UcT4SmSsXBeo19tIJGh4lA6zAa1WA1XeHxx+p9VksVte33A17zVGLGwdQOhLNBtq1MPn1zO5KZM55uHbKZu79WYCWRrNuHxOUdZFkXqcZaL9GbItade2YuCKwgAAIABJREFUddBEZxcfuKjRkm64DpZKyBszPF+234+cMMOpjRssWyeTrKNStmsvSW1xP428xHq0VayezwtLZ6nXSbZR57olbWhtifbkE/bdJ2bMZOH211uZmp4eu3+LdZ6YXfR1rzVZyNvxp6kLSyaMSVKZluA8n52mhTh18mICp46YcdbwsD2fdbG8TaFk18rMjLFO9foCDh805ufZJy1Tqe0ZQIQ1nFqrxVitI8N15513op+lMDppyFGltXlnn/0uC/nJ8TFrB/ddayW9/ojF0nWnDAj99JhU2vNrHQwaplBmhUKOlv6J1Vltv7B9c4XOSmyr1v3VNFQA4PKhL5VIeAWSq3zW8co8JHUf9tlFAHBkRuI20dL+efjEK9Rcx0xVHHHEEUccccQRRxxxxBHHJcQVw1RFI4piiWzynaHg/Z1AsofaKX8+lb4wJD5o7wsVCJOrFxmDAt/ERzeSbWj6KKqQBRrdYGnJ9nGqYXnOQnVuveUaAMDzLxr7suc609o8+sjTmJkxROUd7zTd0wZqep55xoq8rR81l7l/+7/8PgDgL/7qkwCAo4dOorvL0IhBIkz7dpiLTJGoVqnTUKRNo5aPK0vNAt0SXddFgm5yshf2bC858ELKymXbNkUUI5333XJU1FfogYfAEL2WHfnR04bANJZpOf7cc5iZMeT7tz/+MQDAl772LQDAu9/9buv/Ohv3yVn73nM/sFxmgvkYHu7EqTNsG9HzDhYIlmPO1TtHARhLAACnTplzz9C6AWSS1uZFIj8toiOFEnPkEbbUP83Cvq+7xez8x8bGMDdvjowq4ijHIiGRyulWYTyNTyqVQkpoXUIoJZHIZFhP0oicjyBCHLXilUPUWg5scawe3hgnyegR7Uo5smRte+tQb5exzgnSggtLzG0/D/tQqVS8fWiN09waWmfaAiGHYmyUN57P57FEllURtZ9VH+YX6HTJedLT0+21I5r/vnWrlRqQ65ZQ3qg+LJVKrchZV9s0p6M6GfU1OPeiWqnoHA/a8Qb/HpzzQXc1wF+L05nw8aLtdV03UJhYrn82DstlOw9CdDs686E+KVy4q7Yp+N0LKf671lx5rTgHvpo6sSs1HNgc9K5DPj9kM762JJUMa3h8a/Ww1knXo1eqJZcLsNThe6uszlc6q3HNWKJ+KJn0ndlEY9F9L5OhK56KXbfses/n2b5s0ru+PVtwPuxkmSnhtqWhMl2mSjromGdOnfG1k4yJx+y7mzdbZs16FrBdpsbHsy1fXPSYquPjtp7pGUZjddNNNwLwWRUVutdczaZTEKnskhGrUxfWxzUxn5VOyLKRpEFqtVpe4XW5/bmu6cSl6RncYExVqYOso2Ntl36qXC6jVtM6bsdtJm28Z2ftuUHntJ9uhHv32Hos7XdfX5/HuLfo0Felpun08TEAwCm6Iua0lpFZS+S6V8whhY4bZJUA/1yXOMaZbHYFA6X+q/hvdN/SqTWbTW9OrrUmRtn1oFOrtotqy6P3u7U0ncE1K8q8X2zETFUcccQRRxxxxBFHHHHEEcclxBXLVOntNIqq5zL2dp/P21tmtVqHQwRohq52lYq9vXZnwvqCFUEkH20XSYqEMtS2EG/AcLf975ffcbt9nom85TquVxOht4eOhesN+egoGjMhROSRx5+wz3ttn5//628AAIrFPmzdYkzUYtnYrdJmc7MZ3WZIx7cfMKfAJfZtZJ0d4x1334EqUaS+HkM4+notB3eRzjMHqNFoy5Eliqq220BbCABRMo6dQwalTvQ2I00V6yE0qrWAAxdzX1l/qcHx3TBoecDTE5b3vHunuSSeGDfGauL0OLbvNFTm7W98MwBgy3b7/flDRwAATz5t7nsZsjxDIyygy3zw8YlJdBEl2ne9OQQ+8bjpna693upAXLtrCwDg+9/9NgDg9/7p7wAAHn3iWex/6scAgHXrfFQIsPoOgI+4vOnNVlD5Bz+wemLpBAsmDmbR1WPbljlWyoXec60dP02EMMM5nEqqIGpqBRrssUxC2lhbKpp/LVYMjo/ERJF/hVdEtRlmw+IIh2pPeUwK87QdIncjwyMokX1sURfXqIXrZvguouH1Qj8zmcwKFkWIdZDNAoC+XhaiJvp77Nhxr6yf1klPM0XkUMhdoVgIfS72qVQqYXk5zFQdPco6JsVwDaqBATv+yy+/7P2u42lOlUq2DzlJRVH31fQz+puXp48wmxRl0vw6MokVDJWQU/2ezuRD+3DdsHurk/DbJCa5TM2HEFqh4a47xJ8rmSrXDTNV0Z/nigtlqn7S9aEu9ns/6XZdieEkHF7T1Maucv2rGL3mYFCrAvj3HM1hv+h2znfEZBaG5rVXizEdLu6tfRSob65Uq971vG7Ynh1Uj8hzTpNOl/cnfV6rtj2NSm+vbSt9brVC97eK/b2PhWN1/IUFW2+aLuDyGj1zxrRFJT4vaRxmp4256qYr6XLAnfDoUXN/Pn3G7se67RXptCtmpsnnkpkp+54K2eZSeY+JXiLVsI598dwPeQ/toW5pdtZYvsWFeeSyXEepXZuYMDZ/Yd6OcyZpz23bi/aMsW7I9tHVbWtpf3+/N64VPh80WaBZ/Vdmgup2aQ3X3xcXFzF53JgyrbOTZ0wnv8hn3/5+m0MLdIJWHavFpl8wXgyc1nA9t+n3LhZ2Rts+1/xstVzU65qzjdDPdCZcr1Ghsc3lcoG1OMwmRYv+RrMaghkNFbpbah9iastLzDCK3Gd0DVk2UPg+8kqff2KmKo444ogjjjjiiCOOOOKI4xLiimGqvLdGIhCeS5bHWNnnSb7dp4nQNN02Fpij+t2Hv8vv2HejKOla4bRdJOhS5VbsTThFF6m7b7E6ROmGXKPsTVzIULm2jCZZhev2mWbqS18wPZCQHjFZ26l1OnzSUJf5eUNVFhfmMDJkObktuhsePTZmxyO6oRzhYTIpM3OGkHzhK1/0cpLl0nXnHW8AAPT3GFP21nuMXcl1mmNNJlLbIOG20WiF3bI85qQZRr5kFZZIUXuWTHiMlPKO83lDZ7awpgKoKWu1bV9jh61vC3QKSsDFEN1z8iWrqfX3D5uWbJis38CgsT5l1s4pL9s+T00ZujU7V8eOUWOvnn7qSbbd5tTWLaMAgDqLgF29z1wRv/gFc1ysVmvYu9tcB6WDShESFEqzTMRNWqrBQdYSahj71tvXj/k5Q0uE9Ah5ymZV04hMVVo1fmx4Wi0XDuREKQQS/G6av4f1J5rbAoudhINqNZyzHEXzdbyYoTp3uGTyktQN5MiOrus3BHFkaBBnzzIPnudHOrkG3f60bkVzvoP6qSgiF62tpPOmvPzvfe973EfbYzkXI8idGBvNDzFTikIh77WrwX7quJrrUQZJiLEYrFwut6K2Ta1SCx0/WpcrqvVwHGdFjal6I+z+FGVCgut4lN2JftdndBH6qb65aHvbzJ2d4z6oA3PD+rRoeMfG+Ws9nSvOxwC9Vhih12q7XkuRSCRQKBS8OYSInjWo8dD4BTVTq4XmX7vd9uazhlysl+8uKu057+lyxSz4NZh0v9eakMmFXUUVWgcKBWYF5fKY4zOW6hGVCrYWJB1ltth1PU3NcwcZ8ibZjtPjExjdbOvYuhG71zdaYXZZjPGpU8b6VKgXcl3XX+f4nJbL0JWYOnLdP0+QyZF+WxkExVwO6SQ1mzU+yyX6OQ7M0gHrJbH2Vp0sXD6T9lz1pCErLxoz5LB/jvSZYoOo5xeDlsukUGJWTSbJewP73VXy12QAWDhrzxSe2yY/P3roIBa5Vnm1vVjzc5BZSlpLB/rCvzebjUA9tPAzXrQWptZ77/5ENj6TyyKVoZab2WGZOp8lqbXX3NG8V21Dx3G8+R7USAErnUGjOlWvflqj4d0/dJ/ROHj3m2o4UyNYXzZ6vKhm90Ljkpgqx3H+qeM4BxzHec5xnM86jpNzHGeL4ziPOI7zsuM4n3ccJ3P+PcURRxxxnD/iNSeOOOJ4tSJeb+KII46LiVfMVDmOsx7A7wK4ynXdiuM49wP4EIC3A/hj13U/5zjOnwP4NQB/dqkNXQuV7GR+rcCcyXHLxxVAWG80USgZWlFmLRim96LVEa7z4mtNeEyXCEkuizIdYXq77LvvutvqIG3uI7vTMEakQHSnxgYUCxnUiIbIbLBI15yubkNCxsbGAADPvWg1DYrM862zIUOD3Z7P/rFjhrQUt9H/n/m3fX0D7C8dcaiX2rBrC/pZ/yhF9GaZ+pt73nSvjUPOEKI0q4Ir/zQtjVUq5VVeV90VaQV8hpCIFBGwCl3yCl0tr0aOEKdy2RCAQbr5TB0/BgAoEVXJs17YydMvAABmpqdR6rQxGZ9k/ZuctePEKUNm1vUbmt7dZwxR76CxBj96zKqOZ7LAiePj3JZ6I85+5VXvGrVtPvtpc07sZD7u0EAPXn7pOQDAe95nmi4hHNJFPT9l+65UrN8drBPBMkXo6enBGWrE0imbrIODdv7FWDkIo/fJFN0Jz0xB+Ef3gJ2jIqutR9kmoUx+zZiWt8+oFsVzoiID4DpC+sPI1GslLveacy4kPVg3Q+dDiHG1SWcjIpYdrDS/dXQUADA9OYEsz0OzYfMhz22Xa2HnOh1jtbxxIWZRhkpInjQWx4+bo5MQu3q9gXIAxQV8dDHKymvuaU5UiL5ms1mvPo1C+5eWSHNfGgj/+i6v0HAJOVR/1QdFlJVrt9srdVduWFMVdYEKIqprzV19R+2SFlH3AO/aaPkopfLy5+aMfVQdoeg5i7bLbbtYa4pdCJuzlubxYhigtepPrfV5cPwTTvicnE8XFu3ThTCHa+k7W63WCq2ztvGcZ3/CcTnXG9e1NaVUorOr6gk2lWnTXMFAq//Sx0Tnl5/pkPW2Vej6Sybs8yw1hKWi3WOjDHU6nfbmuZ4TqnXWdeSpmeM2ui7n5uxcDg4MeLpKT39FHU4ua/usNanVZP0mXUtaB4eHh1FvhPvbSb2RrlW5jhZ4rWr9nZ2d9fVAaVtnNc5lOvXNM3Ogt0eaL9unmJJ2vYI6M2YGemyMFmZ5PGYZeK53JbIrfNY5eeK0l30jpq7KWld6HkilpSGz55V0egvbaePT0VHy7hE63tnF8Hlvss1nJmy91ZquedLd2YEROgirrVp3F5akP6MLXkL3Eq775arnPqxnCJ2bqJbPyyag83XwWta5SjP7RudSTJVCbRbDWCgUVrhaak0IamWDoXMe/LuyJeQLIOdEMZJqa/QYrUZ7xbqm76zpubBGXKqmKgUg7zhOCkABwDiAewB8gX//BID3XuIx4ogjjjgU8ZoTRxxxvFoRrzdxxBHHBccrhnxc1z3lOM7/BeA4gAqAbwF4AsCcq1LfwEkA61fb3nGc3wDwGwCwadOmV9oMD6XUy6QYGyfPN/SjJ3H4mCG597zpbgDA/V9+EICPjvq58WEWX2+xmVQaLnNy7739ZgDATVeZG1+1ashDpmQISCtBjRMRqHr1LNJ8d3WYkzuy3hDeiQl7ey/zjXt0u2mqnj9kCEkmTyS2PYuhIdMf9bESNwFvzDOHdnSLHf/YmGl6cmRDmst1sFA7/sn/+M8BAPlBY6ZqTdVusbf7ulAGIiU1oggJpw4Q+XJZU8oVSkk2Tz9zRC9m2a5aZwUuNUJVOhP29pnu64XnjUWaOWUONUtn7XgNOg1+/BOfse93pjFOZ8B20lCqX/ylDwIAvvG1rwAAxset1tQkjzuwbGM6R2fDbM7BQK/183/4Z78HAPjf/+h/AwAMDRhC8+LzBwAAd7zhTgDAM49b+3ZuWY+tW+ycDQ/bT1VMV9X1GaL2Ccf6ODxi83Cg036OjY3hqj37bEw4zrm8dE90fqMOsEGUr1G3fR05MoYlIk09g9aHm24yB8N0W4h82D3Od9Jpeb/rs+hPITK1hmoHCb1+bdWrupxrjuM459SOBZkiX59mc76L7PjQOmNaB7nmqEZJd2cHsswtX1yydSiTsnm7WA0zNFHHo6AbkuZJNHS+hDarTpWYtLm5eQ8pjuajR/PltX4Kse2kBmFpaQn5fE+o/2JzdBwhx6u1XShqlAFai6GJ9jWRSHhou+ckmFh9W+1TfQme1ygT4q/1YXfC1ZgctTnqhuWSyZ2cNOZ5566ta+xr7Tm21nFfSZxrHxe799XqtVzIcc63vwv9GWTFPMbvVa7PFTjO5VtvEgksLCx4DpKlvN1jO8ioBJkm9VtZIVE229PWkDFuNBoe41EsyjGP95gVeizbt1zZKmxPPaBHyRVsfPMeU23blMiM8TblsVJnZ+YwT62U2I6FeWZsFKkdKpRCfVG7pEWanpzwXO127zb330Zz2esfAPSxbubpk/aMozVmaWnJY1NGWK+yRqZoacnGSPWaEgjf2ypL9syxebjPd1WkU12BbfbYt2aN/bXx9zSk2TRyZLyl85LrYE+3raszU7ZWlKgba2qsuR7XaxW4LWUVWNtFc+u+4uk9eY0Us9LNJb0+18iiizFLU3Nf4LreX7J71hKP0WQGVqnU6Wm603xe07N0VAel7zWYrRR0Cy5z3nl6v4iGOMr6qE+r6Zeiz+c6vq4Dbevp2peXUeA5CTpjAkCzHtZQJSL3v5bTXqFvDOqtLiZeMVPlOE4PgPcA2AJgBEARwNtW+eqqK6Druh91Xfcm13VvEnUcRxxxxLFWXM41JxbRxxFHHOeKy7reJC41KSiOOOK4EuJSkpPvA3DUdd0pAHAc54sAbgfQ7ThOikjOBgCnL72Za4dqoyhOHGcdJ6I8kxO+ZmZixpBVgZXnRQuJ2LcbTfR0G0py9W6rD5Xly2u+q8CvcijJOtT55p1FG/WKoUF55irnmW+6fr3ts04noMlpy/+cmTUEpkIN2LbhThw9avWY1lFbNMg6VCBK0dNtL6brh+2t/Z3vfCcA4IcPfx9O3pD18gzdavqFjtFVhuwK9Bbf0q/sU9tnOVwRVHQxSkTeyxNiN1xfm+ByTPIlQxGUZzvQb+xOg4h7g/qwb3/1O9yXHezMmTOop2xMTo3bOfzjP/lLAMBN+7Zb36rGVAlFO3jINE41du23fvfX8aVPmVbq4x/7GACgg7qkKvOe5QiUoKtblbqwdNJBmyhS1E2myTxw6aPcto1/NxGqJOxcb9ywFcvMKz51yjRk0qWJ/Ut6jmiGIhUKrI7eamFiwvpXa9u5U650saSKafC+a/sOI7+u666ojeIxDK1oXYbLh6Jf5riMa44TYqOi7F0qlVrB5Gn8eomYbqRL1eHDdm3mqFs4dfIkypw7e1j7THU6epxwjalo7nuQURGrJKRUbJIYEm2r62huzlDf4LmO6jAUmse6XnxGx8Zj/fr1aBCZFSIrxG583K6tKJMkxLDZbHr90xiqf2pzdO2VPiSoCYxuWyjmQseLamu0ba1WW8GUCfXXOKit3d2dbFcj1J5E0vHGRIyc6tjIrVO1cV5/xy2hbb1wL83973xxIWzXKz26G2j7pawDa9XYiq5FK39319RbvYpx+dYb10Wr1fIdJNknH6FPoh2Zg44bRuajOkTpyfP5/Ip6bNom6vYZrYvnrQuOswKZV9vEXHhtbYYdZnt7ez1H1Lk5u8d100lYTEGSderavP4zmW7+9JlzsU1JOidnqZsWI68xO8vakEFXQLFYhaxq+VlTpWHK5pSFFHVbpCtfedlbgzwtp5xz6SiY5hrSpg5JbNPC/Jz3rKjnng6yfHqGqZRtny3ue5nugGLqEk4X3CavZz4Pjk/YtJJzYbMhHaidD+mFdL66urqgGTKwzp5H5hbp9sjPxS5V2U43qXnR9HRxWnejWuKoFluuf8FMDo2hnvGkmYrWLYzeB9Lp9ApmOspq6fxr7db3g2ysVzMrUmtK86wt/Tj3pW3r7Uag3lb4uBfLVF3KS9VxALc6jlOAUeP3AngcwN8D+ACAzwH4CIAvX8IxvEiq8CPnbpITsHqWKWucTS6LjzGTDOvXAXkOSh+vKxlGKEXGTz2xG7Do1HleTKjM461vtLS/bMouhmbGHjTyWVln2ySaZ1E5UcftVhpIsZieY7T16C5bPM5O276WFkkn52whGuiyya0FYXl5Ges2W8qcHixOHD9o/dtgdHK9xRTCnfaS8ReftBeI97/r7cj0GiVepC27J+xr24OHw246tGFuacHN8+KqLiBVo0UoUwZTtK5X2p9GMFW1BXBp1sSUvUNDcLgoL1Tsb7J7HdxgLzF/8/GPAgCSPB9//P/8BwDAA980C/zrbrkWf/qnf2rbOiwmyAdN1O2B5w/+xa8BAPoH7AHz9//VH1o7+LWP/Z8fRZMGFWXXzlWbYvQiUzeHOq3fC4t2DvtoT79+1260XLmXWL/LdeuLl87AB94sHyaTBRY55INJG3WkHJtfIyzk7AmSaQJS5s1qkWYB/z97bxps2XVeh61z7nzf3P16ntED0Bi6MRIAQVKEBBOiaMmSU5bDWIplK2XHQxLHqdhyUhVVKrZLZcdWnMQDZY1MXJIokxIZ0pJFUQBBAiBAzAOBxtDoeXjdb353PkN+fGvtc8++/TALYsPnq+q6/e5whn323meftb61Pk14MxuaeP24vXfypD1cdXrWN5JUNxHrb05EGnISH5oglGao/q5ig92+tQdS69MBAYJOfxXfZ/G+zTnNZgM333yzawtN/q5fAbh82VJOfWH4DTfcAAB49hkrOL2NhitzF6wvbt+2FRX+ZpV96Zp9luJ8mWmc/sOOv6AJw9BdO31Xi4lKmekffNjRw9Sw0Fc3YIUvgnepFExTzG4+FLbXau6B3bfUVVkBPTjpoUMpSP1+3/1fD4D+g5B/A9Xfw2Jh3fD0YBTF/dxx+GYHWnxNTEw4Ew1dVz0g6DjqjWqu7bawoGf28BePlCdQ++/dZ/Po8srl3DlcyVrcZUm/RRrgO4l38pDzVt9cL5XySg9V70fK4ttN/0uSdMRCWeEDBH+C8b7NNynsHH2goFLOirSrYK1LD+f8nKZh7nXYhhoA2u0egoBjw3t48ougah6o8uEjCLMHKD20Ke1O3y2NcfxrbLLQrSIoZalTVdlR84lkJea5xEHu+BLOTyGBipmN0+ixYHClZ+cZRbrn2pitVAkGMx23RROKOE2wY4+tcQYEU5YWbd7ptO07QWz3YyVtBkoPI9CdpD0Mulzg8z5Z1/nSHv4Ciw+Pce0nzclEvY4yH3zqXFFPbrIH3mSjtftKzz6/SCM1LnVwgSBxt9XF6rLNRXq4nOb1X1lb5u5sf22ZCZVovd+QtXiKUsy11pKdt4xKGg27d6WUCcScu4PE5sGxRuiObXyiyd/QbGI1//CmmOT9R2HHZw1cYnmcDRN2rSZqLHnT9tZvjFKpNHJvkqRBU1S355kd9fLlfBr1McQrSgm17QfwzDX4AFFu5MfJ2KAKNie6TNEPU5Vcemdz9LuendI0fQwm1nwKwPPc1i8B+PsA/m4QBK8B2AjgV97tPooooogiFMWcU0QRRXxQUcw3RRRRxDuN9+RNmqbpzwP4ee/t4wA+8l62e6VIWETOkbZ8fD1y6xEAwNNPmeW10jmmt9jT9urpcw5xEQKgB2EhM/rcR3dCPtXWqlVs22xIplBTifVkA6piwLLD7PFpt1ZrZPsp22dHbroNAHDhrLEOQUwR+6o9Zc9dNpRl/z5joQwRpoiR4tSQrJIK6y4uGzJx7qKhChO0YV5cXcPdHzFmpC7EN+VTOy28VYgQgUwn8gL9Thyju5KncRs8TxXQTYmupYn9ZnpqI8+5jhZFkwH3U69aWz3+kBVBjsiyfezj9wIAThx/DUDGup05cwaf/rSlst94oxXmffrppwEAL7xg111izu8+YYV977jDCi2fv2jo0t59B/HQU88BAOaJOBOQwdEjJoxdOGeppHtpjf3kU7atqakpbJi183FFTZmap2urVAy1maPE+xlV7SOu+m2LbeenhL1Mi/1BP8aGDcaIXj5uyNbJE2a+ovdrVVlxC3kTQ5XhJkmiwsHl3H4UWZFVClCT77/a4O/XnBMEKcrlLoLAxoLS4GaYzjvoDbBrqxV8TvosoNlnX2/b3zu3WmrfyyctDWzXQTMs6DYquLRo16nMgpJ9pthu3mKIqViwOFaOCU0R6kzVbXfQZe0HoWx6TWSdPiCjiXzKZ7PZQCXNC3MnWC6hRgMbzXlCARvNWm4bSdqHjHuUhqq5zU+788XG586dG0nvKJeVPpsXGfssyDAaGtG6XumoKlOg1BKh/UrtSDlHLq8sjOxfhUpbTMMZGyfz37T2lnBf46VcqqBLi2UVKK3RNnmeGQZKZJi/YH/v5Xzdaql4asWJzxVh4v2tFFylAgsUDQKkYZ6R80ktjec3S09J43U/sv2rRIbjtMigBqWR+Wq9FD6fORq+pusxUW9lU3ylc/rTSEd+/+Yba6dSKc9QD7Nx/vX10371XbG/+rter7t1iVpIY1Xsusabxoorp8HXfr+fWYZ7RgC+yUu9nmeqkiTJHYu2BwyVclBRYt7718jK9CiN2Do7MzQn5U0EdG7Hjx/Pfa57355du7BGwwk/hU/3ci36dI+VGYZS7YBllJkZojlSaflZGiTNh3hcauNqteoYb5eWTxZHxzM/b+sQlcdQOj9oktVeW8U4C6+rRMZ2GiF1+/lrtXGTnfeYChuXstTPMo99ltb5CdmeLue3cyzrskJGx5XrCEqO6V9dUxZOPkVS57ReH4qiaCRFdTCcIonsmvolRSYmJtx2lfmg9HOXQurKxORT+hS9Xm8k7X2BBipRpLW+baNKYxGXwREAdZ2vMnqY0urM2N5mFOrJIooooogiiiiiiCKKKKKI9xDff1D0OpGgkv+bLNI5FkILK7L9NcS1yafbuY4V1gOAWi2fo+kXQ/VRtQrtweuVCnbt3Mn3DD3qkH0JaaEehSziJ30SfztIYpcDHDG/eHKKaE7PvjM+YU/TJW7rsTNm5V3hOW7fvt2hAVNjhnS3WrS/pB36q6/tWEXBAAAgAElEQVS9DgD4i5/9SwCAF75nhXNjVDA5aWhEj/qOkL+JqYsK+YQuQwmBqTJsqNfr6LIQXkxEvU+f9ory7NsqdmefL1LUtu1gA3PzhsrMbmKxUiJOrctmKvLRuwz0q9PIokTUPCFTsrG+cUTgKIRl/35j4b754LcAABNT9v5Lr5reZZKM2QsvvID2mp3/JG1e/4e/89cBAAHsWtbq9r5YhEOHjKkIguAKBaLzQkf1IaFXDoGURqZScTnpCrGtDbGORG8k9hUruLx0GS++aHbvm7YZwi7UKEN+hVGyL2MUZfZRHFm2B1CRTzEi3Gb6/VX89/2MUqmEyclJZ72btnldB1nBWWkbGhVjSPbtNWbq5HEzapA4cxvnhh27TDcVJ5ErR3DuuDGo4zJrmc73j/WKoQ7rL9bTsri8dBZtHkYQnd0v+6eY1A4t3oUglzlPiakSshqGQ1omjjlpimT8o74uvcawKN7XiAUeyeBreXzb3DAMRzII9B3tV+cm5krvh2E4krO/HiPmv8qmulqtuv23uH0V8HTMIZHURx/7DgDg4LU2FwXdIRYiyOOWfnq+siESXVu+BHhrZsZnf64UwVvgpn8Slu5XMqdYz0p/vQiC4C2LDF9NEQQBKpWKY6oqZetb6sPVasUZUziznEqeAfZF/8OCfmcqwDGrceyzTn7baf/D853YHN/CWvPB8BgB7F7kM4tiZnQumjuclpTamzr1WZ12D2P1Gn9jx6g5y9/fLmqx+9Rg1atVzLCor7RCOh7NSbGMw2iCoeOT1fbsbMWViRGbksQ27nturs632XB7aU7UvKP9Z1b3Nt+qbIrOLWvjspuT3VzUsv3PL+Y1TVUabPVUYLmpUhcNtEi4S2+0uGTbkMao28szSWKFKkHWvq7IfVdmQ/msh6zURC23rSRJXP8S6+UMi8gUDZsZAdmcvbCwkDPcAIAozpuqqG19wwrFYDAYKdyrc2m3r5yV484lrDmGSuIq+bel4QekqSqiiCKKKKKIIooooogiiijiKmKqUh6qcJaU7mbjk/aUfnHOkIeQSFBMdipOhovp2a87rrbale2GXdDidHZmGqVABXxliUx7S2pZnP21s+wkc1Yfc0/UAzrnDZjfWqYr3u59psU4fcKstn/gkx8FAKxQxzS/cAnX7DN9kdCiAVmEuUuGYmzaYo5Ur71hyPgtt5pbYaVWw1laIG/bycLEXRbCI1NVo8uLmIpQDEXCdonTrF3pwNWny6JsNQerdFup2LbqTUPKFucuoUHUYO60nV+Tm79mlznCnKdGYTMtqucWDbEBnZEq5YpDNlQoWnaiQuS++dC3AWQoR8KecuK05Sdvmt2G2AgogJao99xperwBnQ2jSDbLzHtm7nq1Wh0pJpfS3cZHRkZ0eUMIoRAXn+3q9Ox4hGo99dQzdphkks6fu+iQvn0HDQ0/d84YWjF1DqwWIuyccslyJCmcgSGEpFM7RyBGLGtM16Uk+P4q/vt+RpIk6PV6I7oyXed+1HfXUFb70rilLEDdqOdLBAyogep227hw2sbc9k3mlFcJ86ieXwxRxRozN7ySQ/GEYPrW7poL+tT+CMmbnJxArWbzkfqUr5fQb5U3L02A0PCxsYb7zdiYvpu3dtZx6TdClMMwHLFuFlPlI+W+698w+jjCJvHaqL2dcxNZOaHSw79R+/qOgX74bdrtdt13ZY/c6q7ltrVM1u84rdWlk9g0Yyh0t9PCQCap64CdYqiclIppAiGA2Kf3vFjPrjz/nTcfw++lXtuVCiavd1zvdD/DTNVb7fdqiDAM0Ww2ndV3nYyJMmsqlcxS3b8/aEz49w8xBZOTk45lqHnFfn0dikL9fJi51XjXXKC/xYJpfNWY+aJYW1vLlaLQMQ1vQ/oUsUuTctxlKZJBZxU1suZiT5TZonvu1Lj9PUPdvPQxUb+Pi8xYSjwGROdSq+Q1NI51Z2ZLEGTuc3FfRW0HasRcW6kd1C79ft+tGXRNNCep3WVXLqZMrLd0VLVKGT26+unYlzmfpyrDwf29/oataQ5ca7qwUI6GUejEwS7bii6PTeqCqjX7stavi3TPbnU7WZFfV9da4zg/h+paa74XGzXMXDm2j31V9wp9R/11uASA+oruJxXnfple8bdiw7SvIAhcKRO/HEp2n+f9huNQ13wQRe7+pnUQPIfatxsFU1VEEUUUUUQRRRRRRBFFFPEe4qphqirKNSd4FXXoSFKzx8oG2Q89Ves1SYaevF3hPftTKK4iq/FDFxh+Py0FIk0w4NO8nqID58JnT+uVsj1N66l3Za2FkM6FZRbbrdWkd7An7CmiJXIoCUI7wFPnrPjb9MwsXqPb2z7WOLpwyRCYDRuN7Vkkq3X3x37QjkO1HHodzM8bKrPKJ/vZrUTP68by9NZ4fA26DBFVD4VQl8uYpvvdi88aizJNBKTCYy6xXZ49YTqpT3zSjuPi/Dx6fSIuPTvGl59/hsdu+99+0Jz6llvSqVFfQvevxdXMmUjMlHKYhVr/jb/9twAAD5GxmqHT44Bs26d++H6c/n9+DQDwI/d9zPZDhqpEh7ZpIsyDnl27o0ePAgCaE+MjGpFyNe9y5KOLDoGnS2ScALHTy1DTFOXRcbkbCTG6cMGYstOnzzq07uFvPwoA2LLN+sydd1rh0ZgujH0yiSnyBfIqlYpzOKs41M6u88Vzxm5WyszV7tm22oN8/vWHKYIgQBiGDkE8e85qyM0QcVxdXkVENFF1mRYXrP8uLNDdjf30yOHDAIA3ThoT22g0sGnK+ufGGRtTU5M25hfaxmYISRPK12Ouu/p5tVpDuZR33fN1QrqO0lQNO3nVWexyuCAuAKwQBcwKNtomVJtkGJXO+raNi7GxfIFejT2dgxC9YZbHaUEnJnO/dQi2dGteUe04jkfy3uWcJxRYiLaruzfEeun/WXuKGWjk2lIIsz+Om83mkGbJzsXV3pq3cakxKe3tU995HABw+1FzKB0rlxFM5etyVehC2FGhSTJJqlFUlo4owYgG0n/1a31dMf4ESZ23U5TXnw9997/12Kg4jtfdvu8+eTVEGJbYb3lN2ZczFqo+UsMt4f1BaL7QfoXmruEaP3r1x2am3coKyuu3QF5z69e0c66wHCN9ziHqd8POgXJY9jMAarV8kXo5CLZ1z08DjE3Z/LJli823yyuWjaLjEoPRqOscyNxFkWPGLvO8fVajJ1e+RjN3jmrzWrXhnAB1rE3Wp2pzbu6TSQqC/PGsrKy4ayNHwoMHD+babqFl6zfNOzMb7L6g6xSMNbP6VJqTyHyHcntl5kqNjrFrHdaEqtm5p4PQ3bM6ZGzOMUtpwHOI+/lxNz1N/VI/uz5xoiLUGquD3LnoHiGmSAx9p9PJzd8AMDtrTGTfK6zr97FGo+H6k9qyGuX7oz7X/h0bN7StQT3Pdim0blRtM+nGdW8dRCE6rIMViJHj9JO8Q5a9YKqKKKKIIooooogiiiiiiCLeQ1w1kE+guhaE9G6+yRiaCl336pU8qjPNejNpas46ABDH9gRM2c1ICNVQxRI5233vlVedpkqoieoBiBFKyYap3kjE+lXVenMERUr45J+4lF25iBnytLRqDMrsdnMV27P7Gnzpi18FALRIHhzYb/m0Dz1szMzHPv4D1k5Et5f5pN5LU2yeMfSkS+Sns2zMlRCZ8ToZO6I2kRAzPaGXqgjoTLj34LW2LbrnnH/VdCbtOUONx6ZtX+cuGGPV6nYwf9FYgEtnzKFwktWso9iuizRuTaIsZcKrPWq/6vVxh+gJ6RESJfT4NKuBH735ZgDApq2mz3r4EUOPf/sLX3DoxAFq2BbmDGGZmTZEapx1H1Kh+EMsj19/qhSqLlTe9ch3uVKtmVK1hgH7psBjkks4f8aYIqF7Qhd37LBzmJqcwbe//bC1CXPTp2fG+F1rl2aDDBVzpxPH2EZ8DdBqkU2t5PPOVYdBqNkKHRxfPWFM6X348EWpFGJychJLSzYWhDB2W+pzdQR0o3rssccAAEls7bTIvv2JO8218tnnzJnxyAHTPd5zzz34xX/xzwEAx162Nty1y67lSt/GjfLRM9Qtj4atra2hFNr40LzkMxNiXTgFDrlzLePoUWN/L1ywcTGcdz78GsfWF4QOZui0ZsGhKvRkXcuetklj8DxR0enpade3nKthJO1Y1r7AqLPTlZgLxwJzfGh/rv8yhnVT+kwaS2UuCLHUfvzjGW4f7bcrR0hP06Lk++kNhiyvXDTR5lc//1sAgH/2j/4xnjpvY7tcp1avK90qWbCRs10/1nPZe/MfvYMdvMNYV4vMiON4RF+13jGPfj5a40rxdhiy78cIw3Cof9G5L8rQfzkGO22LtK08X/V7zVXD7pwa3/PUGm/ZYusjZXT4+sQrOSr6bKLWUrovOXYxybuNDmf86FppXGmOWGtbvz9ATfDsrLnYptQxXzx3GlXqO6WXXlq2uVJOfQf27c0dn+51du55FlvrA433Oc5vvrYnc10FQI2xq/skjSx1YIHckZN8DbwwDB27pPBZ5n37zDl2cd7OTZqqFrNBLl26hLGGXPdsf9t4/w/pFClWLyJzXuO6rduz41lba+MEtWVymSxBDtM2D9aUKUBWJk2yGlSONYVcEPPskq6p65/8rc5dbQ+Muk2KsfIdS4edXdX/NBdL+DTMiOq7V9pWt9tFt5s/Nv877l5ayjs9DqKSc8GOlCEhpWvyzringqkqoogiiiiiiCKKKKKIIop4D3HVMFVOCMXHwJuut5zVcs0QX/TtCXR1oPxPVWweQmdKenq2nwjpyfQFeSe3TRssx3V87CxWlyx/dHyKLip84lW+vSrSC80YdkLqdLr8Ll3/eA5N6hgiIiEz1F/sY32kG47eDgB49ZUTuP0uOgIuG/Lz+BNP2bFSw7Vtxy4AwImTREbJziXVOqqB6a/QNZSmSQR+bcXOKe7a03p10s631DB0R4xJKU2AJlEZtuHGzYaElYlmPPmqsVBb9pg73yCy3/a7azhz2j6rRLb/Pttq9yFzKByfNoYu5vtx365pmTWXhuvuCNlX6NrdeMSQ+ddfMycu1Y556pln3bk0mU/9pS9+EQBw3y/8A56TrMns2gnFWhvKYRdaI5SkXLuyq5Jfb2g4L93Xmfg1t4TICV1XDvXLL7+Ma681hvAYz0/H45wlB8qVZhsmec1Kv993/3dV7lVTjce1smJ967mX7Hq9+MpxfFij1+vjjTfewJ49Nm66rFelOWFxfhHTU9bnPvIRY6Qef8zG3PZx60e//iv/FwDgzqP3AADCtrXfz//9/xETzJn/5L2m3/vWI1ZHbdc+cxJUv9EY63bzKFwYhiO5436NJV3P5pgdj+qrDaOm+o7Qz3pFzLpcBvO1l4ZrkQzXsBnev6/x0NhU29VqNXeMrtbaos1Bmlt95kwxjP6O1LJK8oil72ToMg0GA/dZ5gJmCLEYQh+p9sft8P9rzXHu1857llqWhUuGCjeon21dtPE7S1b/3/7Df4pbf+IzAID6rLELbc7B1WnVmctrT4YJy7dyKnxbsZ7t4PsQb4cp8xF7H0H2t5W9n67LVPnZAVdDBIFcMaX1zrNQa2trqJY957bSlfu376jW7/fdGJ2gtkj923cO9N02h106nb6oVsv9xq/5FF5h7Oi3OiZ95pgjit6lv1llhkBCpibutQGy5tdcY5kkzTHbj7Rj0xM2DuX61yCzgyRBnWuahMf2HO/767nASSc71hSzVXaO0k7/SGZeGSUBeeWKy1Yqc/eJa6PNm42Bk+ugtF6qFbp51s6l2zPW59JFnsvWLc790TFCbJtGgwxQaMezsmZzWJu6+oDL+KBUce6P7p6R5LMaxFTFYf76R4Mk08ZCbZZ3PFb49x+1bbVaHanfmY3//BhW26lPD+vy9FvVqfKZKj90vdrtNqJ+fnwN2KZu3cYxVqn6/bUCebDKuVvZI+k7pJ4KpqqIIooooogiiiiiiCKKKOI9xNXDVFFfMEjp4sJ8y1k+Xe68cS8A4PxrzwEAtuwyZH/x9Dn0YE/pCeuKLNBEqzG7FQDQ3GL5rpOTQoTsyXhl1ZDHH7nvoxirEaUIuS0+HS/3Da3cNmHb0tO0nq6r1bJjzYQ8ORcToSisd4OyPU3v2W6ohnOiunE/br7J9BrKN15ZMZYngG3z5EnTLT37uOk7rrnG2K5SHVghsLlp1tilC8dO2H7p/obAjnnnbmvDKTJ0ddZn6QcBxpNG7pgu0Pll7rKhJaXt9ts+kZGLx1+yz08ec9qssRljsXbvvwEAEE5Yvnd/kK+UnRAh6KfM2a6NIeV1Fiqv7yr/tdey49jJPOSf/um/DAC47iZrjy/93pfx2ilz4GmwuvilOWuzCTq11WbI1DHftkEXxHIFQMqaFHTQC8DPPMcmoUxCRoI4Q+7kXpayinufGqf5s4Y8tS6bDu7U6+YiJ5A5SgeIqPQ7er2heP2IDjUDuhup5lSZfbdNdyfCLK21VYTUV1V5fm+88gIAYHbKrvPnf+lfAgC28/o8+E3TEn0YIwgCVKvVkfFaFku9aRMWF4x5evhh07PdfttdAIDGnOmkPkJ29LXjdr1OvXoMAHDfJz6Orz3whwCARx+134bVPELsO7j5r4NBNKrF9BBSvS+0T7F161a89tprAEZrqiSVPPo3QfRXNfMyd7DykHbJkEMh2EI0hcKqzw+jwT4TpGP121uop0Mnh/Ll/fPTuFlPYyNUOkmSDFX32lC/1Xd97dcwC6Lvrrbo0BXIbcq+I0fDNp1X77vFMgue+6MHAADPn3geT50wZvkv/sxPAwA27LX5qUsWOliHdLkSwbSePulNa0C9BZn0J13zydc0rMeyXYmp8j9TrIdYf39HgAAlVFV7p2R9eU2ubHHqalz6Y0f3uEDaJi8LolarOUZIY/JKY2L4NWOSWfdyEKNSyWsnxZDomOW2uUg3Yc0pE1OTTg/m2BtevwGPOSHdI52wNF/6/vnz5x3TvvSyjZm9rGO5ebOxSs2aakRyLcZjj6M2Aq4Ha01bl3R4f47ZhnM9akZ5nywtWbsfmrVMhTAtoz5FV9MOXYHHqVlle1SYJLPYtc8vtMi6Viaxc4dpxTRHbN1pa50O1w0t6XSYHjI5ZdepRG1Ve3UVCR2tY+qdGuNcU7KOZUImrd3hPMisgzLXj91+5ObsWPMoLezEtkWsh+jcAHlc1XKI6Q0zPIe83khRrthcWW/YthcXbX3sHFybTfiOkfUG7ydRXp+lkIs2ghLCEt1rqWF1mmEvm0LZBldiuxOmgaXOZZM6LTJTyngrsX02TVp7rXQjdNnOAaw9lZWVrjdJrxNXzUOV04qxgbvsJZEEeVyAl2qWutZg8dmpqUl87nO/DQD47J83++mtlomBg7us0w5WbZLohexwXMC212yA7th/wNGEUxvtxysDW1iIXlX4N5HBYOBu3BVR8kq/0oOBV5iz7aUCVRt1ZxE5zf1v2GTCP9m1b+VktXmrpf/JRj0MQpeaeOxlW0TLWvvAAXvwajRsv8dfewUAsGWbbWvbDjPKqFTrWPWKk64ts2AuFy9TNHkop3bslymYjAFMTtmx7jlg5hqTszZJBpUrF9NTaFANF871B6WfsimrYk0a/S4fXOYuYQOLBu7cwPSGil45DDgBaQ/D9s++VagmEt0A/YWvWzy44w0RRXmLaF3fC3xQfo3FnzVpbNth/XOm3USZD0TjtLV++ZjdeKKBUjSt7VaX7Ld9imwjpmeuLF3G3p12PS9csIeCOaZiPPD1PwIA7NhrD+5PPm/mI82JfMmBD1ME5TJKs5txgSkWk0zLKHNxsjB3EeObbazNM7X1ga/9LgCgd8kstf/O3/y7AICIhP+eay0l+Ytf/TLu+9Qn7TfffBAAcJi261MUTkd6uOA8ltDWP1JhcJQRhBLK5kXH6vO6gWoO2LzJ+svy0hraLRWmlGEJi+smvdw2JCSvVPOGEVNTE27BI7E7eJPpss3U5yUGDwl8LC8uoZdwERNJzGxjzzfogEub5l9pZvlbLguooE2yZ4es7/aYuulSX+M4s5uHFpGV3Hlnw1PW1nbeGvOVSiUrqM3U2hbbptG0Md/ggmCMry+dJbDFtMDNOzaju8o0IG73wS+Z4VCJ94S7/oyVnmhzcTVgylOnWkGwauNTD1gC4ap12h/zZq8yHwJQymlWcDl+swcuvPlDldKiswV6PmXUGVWsk2KYhCVXuFSpmwLHRh4EdV34djh0X32r1MGrIlI7fvfw7qU/lSshKmH+PH3bc90nXaHfoTQ9bVdpZ1qvrFf0Ww9hsjaPosiNSf3GT+HVOJ+kGZW7Fw766Mf51Lkq0/FCV/w7f3+UHbcKq99www0OrNFi/stf/AIA4GaaT21nyp7WHls2Wapds9HAOFN0dd+/4UYrh/LgQ48AAE6fsHXRThYbPveGpbZffMPm9n0H9mPHTnuISwPOmXU79hXOP/MEkF85ZUZFVZpQrS4sYYHAyu69ewAAWwlQtwY2NjttexV4pAcnpeB3Oz3Msl1naC1/gXN4fYzAKR82NtIk7SLXeF0Vy601RtLvNCfr2g6ifDqoK9ibRDnjE2BYFmDtrTVoBozlU3vjOHZ907fwTxO+eutjRRiGmeyC9yStsbQN9Vn15bNn7TpoXJTLZXQ94K1C8wk9GAe6v7j9MsWxWXGlSXqRjMrYNuE7e6gq0v+KKKKIIooooogiiiiiiCLeQ1w1TBVC0slEHpf4NLuRT62LC/a0euw1e3p95Al7vfHo9fjUDxrFO9aw39571/X220bIV3uKnSUiUOJT7bZZQ2ijXnekaOSAfIYMIfS+WKnh4pZCBSKiR0J4hDTrt0IAGkxxEzKQBsAMGSptt1bNF9O7NG/U+ZFbjX1yAtjlDk6QARmQ1YhjQxFW14whOXHcaH0JQi+cse/PXzKktN4cR7WkInlEHMi6VPh+hcjbG69bCtQCUwV27NziGJCJjYakp0RaxMh2iJ4LtVF7yYQDyETrfgE4xxiRbRJqIXQ7ZH/ZumUW5y8bwzA+TptZWpX2iG44xCXJM0m1Wm2kwKhYragnxiHOva+/40joaozBQNanYv3EHthPL5NlmrtstLoQ8eX5y9izy/pwCtvGju2G0n37QWOZPnnfJwAAY+w77QU713n2i0tzF/DCk2YvPzdnn4HpA5cXDPG6OG/98DzzY7uJ0P4PX0QAFoIUdTKsa+xPi2eMxdtQqqLWZlps2RCyG/ZamvDUx2yc/B//6v8EABy9+VYAwAIFxD/+Y38Ov/b53wAATI7b9tUva15aWrWmKZiFtjmeOp2OGw+Z2DfP1gpBVMqPolQqjVgnZ8xAPu3Ot8UeFiX7Y6xcy6Phsp+XMUan3XHb9gsVt3r5FF/fGGNY7Dx8HsPv6beaJ/33h9MFR1MkVfA6b5Sh8xWyr+s0XHy2VyEzN27nv9qyebMCG2trLbsOHVoe/82fslS/u4/ejH/5q58DAPzLX/xFAMCtt99m22rZNZxj9sAhFgxebRmCP1GfwSKLcYsFmCJLvUxEX8yV0FZlzCVkeYIUSN/C9jzDbEdDdvup2y4nqtTRisjt2IvkTbY9UnrCS/8bzkhYz6jlaoqUxhvuXMhKOXOVKEUpzJ+fP/70t/q0+ni73R6xudb403e1LnEFqzkOlNLXaDTcPDJskQ6MGlfwlubuiWvtlkv303VTFxFTVSKbvpPZEhpnKvlw8OBBd4xaa91xxx25bS6R3XrlmK0xxGzdeuutSNh24xuN+To6Y6+rbd2X7fg2jzO1kWny0zzXTpLi8mVri16fc8Fxa+8O79s9sv7LbDOXadQfYGHZ1mo/eNhS50sNMypqjHH+qdicqeu9IkaJEotmv4+E43iFmUoJOY9alSYcbMOITJpLj4tk5NDFJNPZNPK6bRkhWXv3+Hen5fWPenUkVVR/t7zMqsxcoovhKJVKo+n07KMNz0BDfVnbHgwGWbkazwjDZ860DfUX7bPT6WSmHgpXWobnpnsqWSkmISAtlVFinwiZ9QY+ByTvkBgvmKoiiiiiiCKKKKKIIoooooj3EFcNUyUkpMRDfull0/9chD3pbt1rmoXtu/YCAK67zp7Yt27eiB2z9vQ6u5mI8zXU9CiHeI0F4ZjmL/vfaMDCaTNTCFL/Kd2ejptV6gn4xK8n72HLSH13guJE/b3WpsU5n7hrtAilZAFbiKLHcTyCKPv2xtfeeIgfSLdjJzM+3sT2XZv4GzufS3PGTAjpkdvlE088ace1SrOFBRUdnHR273GPhWKZQ1yvWHucPHHCzr9tbbeDiNTB649gbIMxVOX6BM/f9tfryRq5lnt1CHEvy48Viyb2zs8ZX1mxdpin9f2Fs4aAPf/UdwEAP/UX/zy+/g1jdW4/an1lfsXOf9fO7TwuIh79Ds973B2P2krXv0EUo9fJ8nmB0YKJvb7Ywdh5c168aEhXyOtx9ryxIy+89D0AwB4ez67tpm0btFYd8nT8DWMRa1Xay9bsOL7wm79px0EdxOq8tYPaLU1TnDplmg/Zvr56woq1HjtpzFU3ZnFD9um1Tl7j9mGKQRTh3NwljFGfMsN87ZC579976QXsqVgb76BOs3fO2mmFpRCO3GR5+z/0Qz8EAPjN37air/OLi/ixH/1RAMB/+MP/CCDrrzvG7dpOTIzxfXuVnb764LD9cinwCndSiygdVH+Q74Ot9qrLnQ9CmStQU5Tk/5bFrP+9Uqk0YoDho4x69TWRlVJ5xIbXt3h2ufyMYSt37UvnKy3Hqoeuan/SfOm3Y2NjI9uTdkS/8c9Nx6P2X1payhgRgp8a06sdO45xCuVvvukIAOBTd5p9/i/+r/8bAODb3/gW/tv/6e8BAB584I/teKilOPHGqwCA3/rcNwEAP/lTPwkA6PJaLiwv4I4f/c+sbZjb312hIJwarpAFyHVvFKIaO9YncAj9uwtpfMRC2LtpmF2jN4t0iI8+/WoAACAASURBVKl6M+v64W05JudNPrsai/+GQYhqtZqZUHBsx4Psvu4zsz5r5xdUzWyiyyNovthjjUONETcPuOvBOaTfx7lzdh/ybdG3brX7t4oOV+t5hmB6eholMsH6juzApR3j6Y7oYzQfHDt2zN2XZGJx6x1WykL3fGlt+swG0RojqVTQ4PkmNKiYmbT1yvVH7f57hhkIY7FtoxHQDIFz6NbGBNKByjyQ+ee1ml+x8T6/au2yYWYLj8feP/b6cdz7o38OADC+1Y4p4r2+Sy16Q9eUbarsmJDZOGMzmxBofnUMIAsjL13Mtd2AY3plLV+wvVyuuuwFOE3RlcsFNTeaKZdbAwYpTtHIyy/Erj7kF2zPdKsWwwZF6htOu1XNZ0ZoW7r+aZqO2P9LdydGLrtn2Tk5TTG3ubi4iM4qy/HU8rpD8UcJ8tr4NtOEBqUBYmpR00CPRfz7Ldn+fBRMVRFFFFFEEUUUUUQRRRRRxHuIq4apKvH5r5vYk/+B/aZv2ABDMRIiJfXQnnaR2BP4lqk6Duwwx5eY1uEdagIGXeYhU39zac0YnBo1VnOnzDGmvbYB191gubKdrtAMFohTnmuaR++GC8M51DTNI4v1Jt1WmOgphGB8wlCEQPnI5dKIE0pP6DSd++Dc5wxdKJNBKtUDGWBBz9DbdhtaLuZkadGYk3s+fjcA4PJl0wysMk/41BunsHCcbn7MLxY6rbq5Ddqd7tpt12XPQbMYrU7OIC3lkTfljstm1UcgnevhUDFPIflCYoROCL1aWbFrKnZLTi6zGw3BeubJx/GX/nNDfhfm7FwmpgxVS5G3QydAkUP1fI2GkA4hMro+Codqr2RokpMk8PXUWUOGXn/d7OcPX2t26bvpuvjSMUOzlxYWcfwN64sz1FYtz9t5P/Oc/faO22/kccnB0I7zse8+AwDYsGkzukRlTj1n7n7nVqlPtKGCmtP42TnVPDT/wxRBFKMyv4qmAZpYOEunNeac/9x/89/hNz/3ywCAdmzX9qMf+zgA4Pia9bUzF4zpE5KqvvH8s8+iz6KDB6+xcfDkc3YdVBJBBZ4Fgjn3yFTFYDMWoFQWyijkjGOcfVKor7RyY2NjDu3z9ShJkp+n3KvnrDbc5x0bTKZIYy7wivFGZIFKQeiQSN8G17dhF5LoO46laere85FTzROZC6Adh9D4ZrPpxqeQWF9bonPTuQwzZIAhqXpvsKYCmbD9BjZOGhOGWD993FDw3/naP7LPiXj+xH/5X+H3n7Dx+cv/7vcAAD/26fsBAP/Fz/4dAMDf/us/CwD41jefsHOlnfPa2jLeWLb9Hz1qjOjuQ/tz5xJxLg6pudDEkuiaxom73uuFnwHhfWrbwRDzhewek+n0POYo8O3RR93+3orlsvky3yf9a3Q1RZqmOd1IOczeB6x9fOdY5wzoaU18tH9iYsK954973ac1N7j981UF5oeLr+ozMUdiCpzGa7Ca238QBO7+J7ZLjrpyzFxdtnEmTZXGruaFubk5vPKKZR+pMG+f29y/3/r9Jh7Pjt3msLe4aOu1Pv9ZW9BSnudwwy2md9Uc+tu//H8DACKWYLnlRtPXV5IINIpDhdqm5VVqRMkMTVD/1O7Z31ObbA7/7Cd+ENdcZ9sBddp9skxin6RDdS7OXHtI0xb1Y+ykDfv583ZfmdpoWSYd6s7mF425kQbaFX/nnFYqlRCwH3TY7m2yWQppwFur1Jzz++PNursn+Zo+320yy9Ziew3Nw34mgj7TtcpKDdGNb8g50GemxLbq/qK2U7/zLd8rlQoStn8c5W3o5fQsh9g0UEke+20viZHKXZd9JeA8Hr+JNvRKUTBVRRRRRBFFFFFEEUUUUUQR7yGuGqZK6H6VOcAVPuE2WLAusId1nHzd6g/ccbMxSx+99TpcOG9akkyXZa/LK/b0vLZgKMK2LYaEXGT9nmuoaVlLY6wyV7NOLU21Qb2N6sBU8uiZnvaTJBmpYaTwkTghziASPYgj913prVzdiZpQKyJOLFxWrVAbUhHL0HVAopDGmAxRmQjnZNkQihnW5ZndYsxehQWXDx++Dk8//TSALN9atSLk+jczZajCNhbBa06ztk21AZDNS5izXFbtEh77gLUcWkTChUwrx3dqasKdt/KtfcfEC5fM5W52xs5hki54u3cYK7dvz17UCQ8eOnSI7WAoXl9FmMlQVSt5hqbT6YxoQBwaIUcyz6lGiE3mJpaiS5bzNdY9krZq7qzVnNrO+mDnz1l/VV2KQVJCJ7I9nnjhNZ6ftfcFGvnNXbb22LHD0K0zZ61vt2MigucWEFKLce6SHXOHJ9HhNLC0wHxknlrcyTu4fZiiFMeYXl7E2lljAH/mr/4VAFl/uu3mG/CNnaYluON2K+r6O7/3FQAZuvVTP/OXAQC/8Su/CgBY5Zj4J//4F/A3f+6/BwAc2G+1q8TQqJDu7Kz1UyF4KjgtrVWvN0C3k89Lb7BO0yCREyXz86nTkfNjv99zdZ8ajXwefLQO6ubnqadpPIJqd6hXVB+fJHLrGB0hm+XKCIoodFHj1mfBhGhmToeBmzed61uY15apTYcRcx2P70KleUvhO8n5rFcYhu584gXOw6pXwvmhR/e/3TdZofmtR4zp37TZ+s3nvv0I/swR6zuH7/0MAOCR16y/PfXP/jUA4KZPftraocMaMHTcLFUm8PIrdi87e97mif0nzdF2iZkVXbJQJ88aO6BzrjAzoNfrOYReqK9eNZ/t3bsXQDavqk2HmRMxpCXeDxxTFquN83qejKkadW1VrMdcueufZufzpsWNr5IQU+U0i5W8fqpUDoA4zxSpbw7rs4ffdw6/a2tuHImZzbSE9Su+KjqdLMNCfcIfVz5j3I/yRYortSrqnHt0HaWpyjQ7dg2P0blPOi1pfvft2zei5bpwztZhp6mH6vJ+uEzGYt9+y+yoV6royXWX42imZtk+XWYQ7b3OamQePGo1r06+Yvrl737PsjbuvX4/SrFbKAEAEupyEo77PjN79u61taUcmW+58w40Zkz3qbVjxPqYuqZO78n6qRMTtuYKShn7U+K4PXjYtjvg+qg5MZ1ryyUW3VWBdzE45XIZPbmaeusV7d85PDa5ThRTnUQjTOV6jst6X/1xmO0Wa6a+okwAieq0HnJuuEN1PrX+dQWJuX2XncU1lXPg9uqqhWGICu+jgy7vSfQYAPWnusRRzHsFp6VBmrqHDGfwDDlZFpqqIooooogiiiiiiCKKKKKIDyyuGqYqFFNFt6pBx56AV9cMqt+5ydiVn/t7fwMAsEzE4PyJY87dbrVlT/rSTNWYf7l5z14AQEWFk7iPCpGJbRs3jjjvpAM7oNW+Hcf45rwL4HDtFJdnqu2rIn1ZTA1ds4hiiZ/qEu0ZGxtDLASPx4Ywzm1L+qxuhyhLj7mkjdixWQERlzLR64Qm/UGVufNs47DB42TufGOsjh+8/177TNXdmZOrekxnTxu7EtTsOpSJhPTT1FXejom01Hie7cT2I53JyZPmbPfAAw/YtoiI1GqVXN0SIKtvoZzs7bssV/uaPZaXfO1BY6OmWZ18anIcY+N23uWa7V/GS92uIfDVch6tFppSqVRG9F6rK3b+Qo/03WH0EABefOmY+12ZLOfLL5lWSvnU9/+gaXVWmHf+xkk7t9WubWthrYvlVdYqISU7v2R/EzzGStuO68SjT9kxs17DSp81HSamceaisXkp++H8MuvQkMELSkRRQWeiQcaUftgiSCNUevO443pjksKu9cGdmwxB/bVf/tf4lc+bpuqf/XOrR3XNLebyllBz9r//C6s99A//5/8FALDCXPd/8gu/gLuPGkPx6LPmqHnHR43FUJ2xy/N27ZeYJy86eZhBkbtftWL91rFOcR7BV19T3xyuM+P0ThF1crU8q+PIBU6SymufnBwfcXdy7lvcZm0DXek81LFSqaDsOfQNM1DDfytG5tc0dfvPGHwxdjbXxa5OU5g7riAI3H6zsdzL/e3XOtKxD+fra3sturSW2Haqs7eLc80s+8xzrxhy/MIrJwAAhw7fiJfOGbu0ibqQGpnIT9xpzmbPf/c7AICLZ2wffc6bnW6AKLH9zxPBn3vSxnYkJFWMP5tSbV6R41a5joRI7cK8ZWNcvEANB/vKk09YBoL0FLt32zlt2bLFsQnOQW6DzaVOL5yq1lheD5gQDk6CK9VJy4fPRiqSJBnV/XmvV1OkSJEkiev3YiXqzB5AkKDPzACfIVLoXjes19ar2k9jJbt3Wr9Wm2kM6+/JyWkeT2mEGRhmbYFMs1jjvSXTd/fRnBjPHZv04ytkUS7P5TXRmqNmZ229cPbsWdcHN9KZbnp6Q+78x+mGHM7Z2k77vDw/j9nNxnhxyYJuTMadWTlNau7v/fSfBQA8Scb2y7/7RQDApaiFuuuL3Abvf41NpvE6TN3UkRtMF1kbZ526bhsXL9n9Q+sjNxcys2pqOx2GuS4bI2OktoxiIBUTTq7jMutVisGr8749wWuma+0YpDRBme9JI6sx7DIDqKmqVfIu1v1u231H7a/+p3uCz/4rhjMEfJdB3RtCb/g7970hba36vdZU+kzzvc7XP67y0DraOWXqWkL3SNtW6nSinLN4XOVqFVGSr8NW45o6eYfcU8FUFVFEEUUUUUQRRRRRRBFFvIe4apgqHWkvtv8cvemjAIBtMD3K4cPmCNO8ZPm3ywv2FHuxF6BZN9RgiRWzdxMN3ExkpNsy9Kbct6frKT7tNlgD6/LJJQSssbT1kD3FpwkRWOZd9lftuCr1vC9+qVJCypoESd/Q0ooQT2qc5DrST1h9O2AtAeWylxooJXK1Y30qwpXOiUXahDp/41DmGuJeHqWN4y43xf0ndCJjPmqlYecU0WEQkwkgokhIRCPv7rXjgLn+9Zg7u7JiyE3QjVAr0T2oZJ+tDQyJWOva8bz6qjlk/fEfPwQA2EUXnO9853H7e+sGdIk4LdCRJyjbNl8+Zdf5Ep0Kv/uM6RAGHasP9JM/dh8AoHPxHG7+5A+ABw0AmJm0fvDqedNuTW7dxpO095dXbNvjYzFiXsM1MkYvvmjH/NhTzwIA3jhNvcOinfctN5jOYvfWAwCAJI7x6GNWM+vmm2/idg1x+srXrVbNTtWn2rcXABCfNhegM2fOY9sW++4LJwxxlmJF+p7XThm7ldKiLKVOsD5u/eDM+ctYpmtRJOawTpYzpYMhJVRdQi2tJI/mf5iiXC1h495xHPmo5dpPNG0cTcxYv/7sX/gJfOuPrbbQj9z3KQDAk7zWL75s1/7f/NLnAAA///f+AQAgbmUV5stEHW+72dynlGu/dS+ZXOkkalldqOGIorYbnwIw9XrNHtMSKH/95Zdfzu0jjuNcrjqQzRPJIM/USJclt0xFtVodcn+SU5jqylVy23ROmGSDer0eQm//ckP08/Vd7S0PWQ+CwO1HOoDIq7ElJFPotxDOSqXi0E0hpcoWELrvuw4qNEcOM1W9qt0fxsY5XsZt2y++aON55dFvAwB2brd5K7hsc9F8d4D6FkPMv/offh8AMMtzefqpb1l7UN8bkPUpsa3L1RKYDIGAtWZ6clckU6Y2LakWDW+SUZfnlAToI48uqy5RrZav19JiFsdzz70AABgMnsYka/1Msb7iwUM2x2/ZYqzA7CZjLsaJ2IclMRu2+zgJ1mWqfBZEr849F8G6tayuSo1VmgJRD7WStZUybnpDWtw2nUeXWBdpYsz6qPqyXqWhGXZSU38We6jPOl37W7Xe6tRlau4Ig2z+yfS/1r5iSLIxYZ+PpxUee+yOPepnrplAxirUWTdqfNz60qZNzKBhfaYV1nGqNxs4fdGyjlbJEB3Ya/1teE4AgJ3bLStFLNR4tYHSQK5u1tw91pQa5/nKkXNiwvpuFFp7BA3T0Q8GE5ift/vtzBS1PZxnDuzgvXy36bGiplwo6exbilHlfvtsb4l3Yh5QlWuKmJkKiyt0UuQcM0Di1lYLy3bv1vxab+brd567aPf6M2fteFeode10Ohgv58eT78Ln6/Gc1q5WAcg0X7xgaxnVOk25+POzGyiFR2/IG8Bnk2uVvFNtrZqvcaY5OxokKLEeX5OO1qtr1jd8He56deuiKELCDC6x+AnXOt1QLJQc/mws9biACqOJkbbJjFPfWV28gqkqoogiiiiiiCKKKKKIIop4D3HVMFUxNQHSpaSwx+Tt2wx5qBAq6HWpQ2gaQthbuoRozZ7kt24wZG2CnvV6AvarjOvvkM4t1TLQXmNV7xV7bUzSbjCk2w0RJzFV0hpFSTKU15x/4u8TeVRNKZWmCbwE1LjbHanjEpbzyN566F3U6zk0wHcPUpREajnUmmxXasddTkMEQrLFbqmmQz2/zUZZrkbWPr12BzW2t2pc6VxOPGfI/4//eWOQOl1Dqh591HQG0xusvVZXL6FWt+v5mR+27/6/v/XvAQCTlI+sMTl2jcjXnl3GXP5/f/QgAOC2G6/BWsnQ4UMHTN/wnRPGajVYU+PZJ03/coC508vLxjqdOncKJ0+Ya9fcJUPFJ1hLrM+2euZ5YwmmWYz9u88Ye3Bpq+VFz87O4tB1xjA88fSjAIDDhw8DALbQLWzXTvs8piXNBbp+7dq10+UPC1efpMthh+fbJ6xSqxCBoR7n4ppd+84AGPCilTiGQGRShnBTfFtMarmWaXM+bFFr1rD/tkOY3GEXbHnOrmt/ztrxwW88hCPXmi4qOGANdOu1xjDuv870er/+b38FAHDvvaY3fPQBY1pvPXozvv7QgwCAI3ffAQA4fekC92zjyM8PVx2T4QrzQszEJjg9H5Fq32FpuOK9X0fNaVfSPJJZUnEWzUn8/vj4uJsvFuk2JebKd+7zWYc4ynLrXY2bln13PQZN5yJEvVqtOjR9wwbr6/OLS7nj0LFKk6l9DaPu2p/uGy7HXw52nmtapnkpuf0Hk9RWsZ3H6nRobJuGbokuZQ1pdhPb5+UTZ3CyQc0tEfP2qukax3mfmCDL06ZGOOS4XVlbdRrXBjMr6mpL3pf6HWYnJLqW9n1ZWoVp6hxv1R8c+8n7ls7fv780m2OuLVQj8PIjNj9PTtm8cP31huCLwdo4O53bVlgpr6u/8NFmvwZVGIQjv/X72dUUaZrmakHpVX15MBi49zQ3VFV709NY+S5pw06ZE2SEfGZCrJP6udjdKu8XaZq68aOxqN/6rxpvw3XydG00j8m5V+9fZAaHq61FxnbrJmOK6mNN7NmzJ3eMqnmlfrhjh7njSic0PMf5WhqNc9XS60kfTcZC+5I2++VkFasL1r+P3GjZCzPUe41T29Wk22nCtV1MZifqDzL9dUn6Htbz5Ll0yPqEXGsss/3l6jw2OYEFOsFOs9aW2lfjr+TV2pMuTceTJAmqpbxmVXOkX3NK12GYDVYfUt+R66fmJl+POvDuLXEcZ46pngZ+PUdLzfftdtv91mc7e56zsrat1+EshJAMlV6lnQoT7Z+svo4jVRpIOFLrzXfnfrtx9c1ORRRRRBFFFFFEEUUUUUQR30dx1TBViWqzQFXmDS2e7JvjUrtFpHlgT+JLi4bMRK02rt1rObg1KN9VrlraNp2pxALxKbfJp+igmeKNM5ZnOrXJ6nkIcZPrXp3OcrLF75NZq9ZrDgVWnZWQGqqyUEMICcozZsPuVnqvTBQh9iqyu6ds5Z0KxSqVMbGBOjBPP6Dq2wio+SICmsbSgxExCxPESb7uTLmZr9w+EGrNbTTpFFSpVpHyt43xfCXu224zRKi50d7/qZ/+UQDA/T98F4DMhebUy6fx+1//OgDga1/5DQDA1k2G5vzIZ/4CAODXvvSH/A3rMi0ayrVGRGihtYRLrFfWXjK0uEtXr27HXjfOGNL6H7/yu/b3JkOoxmZmEBLR27TN3nv8SWOiokBOgryGY4a8rXWo82Bu9cXFRZy6YMckavAFVpDfsXkvAODCeUOkTpwwlE9o2qmTZ9AkWo2yoUYLdAoU0NSUgx9pp8t0+anQ0bCcDlAn21it2jVjs+PQPtOShRxjDdJ/MT68mirEAdL5Co49au6M1+2zOaK1aG1fjy9gcdn0JTsOmVPb73zFnKLuvsV0UrccoVMa3aEefsxcK7/67a/jvs9YXaI/+tbDAICgrBo/Nj6FHDt3PLILYlSkVwCAAWvhITVEbnnZGFaNj11EcFXzqlzOGIK65+QlRznHkqd5jdPYmPXzmZkZd4y9Ht1JaTW5cWYj39fxLPE3hpIn5QAR9ZPtOF83x6+fI1RaLmBCI4c1VWLiLl++jOHQ50LYFVEUOYZK7St0d4puoNrmwsLl3PlLRxCGoft/0qEOJrZtrs3ldStjRLAXuku5c8MUMKlpk85umnN71JMK7RVyK1PXRjiOsEKRI+uQpbxdl3j/GivZfuU4NmD/GKRk3dIIpUG+lkwUe0iynPrIdKvXDbpdoJRHbtWWy9SvnjtryP43H/wOhuOmm4zRvf2eww5tniD6HsdyCAT3a68Zg8XrEPSQII8U6zvD9RuvlkjTFP1ogDXecwK2ra57pVZ171VYH6nGV19vKJc859zW749o0nw3Wn2u/SmGaxPpOvu1rLRNMVgI7XPNC+bOa/8Xq6w6fOozh663rAwxZKfOWObH1//QnHC379yBDZwDrmNNqY17NuTOQSF2ybkq12pufGv7YkDc+Nccwf4ul8uf/dmfBQB8/t/8K1TZNifnbbs7j+wCAOw4YHWpBgF1qV6NzCiKMudmaq9jMsQhF5kxNV+1OvVxJD8cUxulqFbFSNrgWOY6RYxdl3U83bxD9ltZUeNjY9g4ntfM+S7Jw31mOAIkqNfzOlNpaX03SDnF+gxqFEXuuwpf9+TuQx5jW6lURvSVjWq+xqLuFbqmYuoyXWgLIRfgKddBKZm7kqtDyPswa7RWy2LZSiM1C99tnby3fKgKguBXAfxZAHNpmt7I9zYA+G0AewGcAPCTaZouBrb3fwHgRwC0AfxMmqZPvaMjWidK0AMI/w5Jn/eto11i50F9Ez+3htm/ewdKnMFDDqjVTv5GJvHugBbjExNM+yBV2KiWMTtjN4XztP0+NGULi2rJLvzaCm0vG5wASJ1WagEqLH4bUdnX58LGUZPKuuMATLxUjHa7jUlagPbYsUqNfBqNOm3XK7aHoIqQfvRBeOXLHbviabyxc9Ev+81ypY444EDjxK5itwpqRhG64qLs1OUQCYWv8j2o0tK+zMmZmZyo0Qxk4yxvNOzcu/ZsxV//r/8qAODue+607bLRrmOq3j33mmX1sedtkv79r/0BAGDDRpsQl1cuI4pIE8P2v7JqKQkyMkn50BEyyW7vXpt4H3j4YfQ4oS4u88HciRfVtvbXxYsmHqUHBE4ct35Rq1Vw6Fqz7054/XXNNOFlNzhZRNu13Llri7tJTozbsc4vKt1Agn/a7NKERMvMChcv4w2AHiaYHLc37/9RM2Co8Hxvu/WonYsWeExz+qDjg5hz0hRIkgD3feqHAQCXzp0AAMRNa7+77roL80u28H7kW38EANg2a5P4yTdezL0eOWxpm1s32ee333oEDzxsJhcfu9v65fPfs4c331rcv5EML6D03U47b7KgGhF6yDh92hYosjwevrH5qQt+Ko9uSM4umeM7jmP3Wy1Q1laZLsoUQi2yxsbyBS07nVYm9kVeEO2npfiLweEHJPV5Lcz14OWPG32ubZZKpdz/gSxlUuFbOp8/b+NWC9bhFMparZw7Hv8B0aWLe9cwDMMRQww/7c23mB++XmmQL7ap/PBUyB27Q6wbCOeVSm1oId2z/WsB2h9kqULD5+AfTxgGKCVKzcvb4mtul029FoH67RNPWBr1peXTuOsuA8i2bLHfDqdo2m903vDaJxlZkPlj5v2KD2S+QYoYKdp8QJZdc6mamb6Ukrx5iCIzlcmntg0XP1XbRHFejuCn26qvau3T72XXX2lmGqt+X9UD08TUjNoNgC1m9VuVbti2zYCm06dtvXT8xMncb3T/Fkg8P38JGzfadh9+xNL0jx4x8Epj0jeoGR6HOuZFpgirzzSZyt5u5Y0r9NsDB8xIqtqcxIDrs12HbrT93/kxa6NYx0zDjk5WagUwUxldI7cQFyChsRlqkZ83EhO4s7y66tZOms8rLHWjdMDf+QMz3zq43455nPOeSgOtrq5igWYikgsIeNN5qv31oKayLr1ezxWPz9bFvP7ImwmpUH2P7TB8v/Ft19Xv/Pn/SvPeSL/nclV92L9n+AXju92uAwtjAsTQtatwfivJwILn4soTjKa1+w/zbzfezuz06wB+2Hvv5wB8I03TgwC+wb8B4NMADvLfXwPwr9/VURVRRBH/Kcevo5hziiiiiA8mfh3FfFNEEUW8D/GWTFWapg8FQbDXe/vPAfgk//8bAB4E8Pf5/udTe0z9ThAE00EQbEvT9Px7PdCwLKty0hp8Eq3yyX+cxhQLRHWjNUMxd2ybRZlPpQNRsE68nE998anyVkeow8CZGRx/9QQAYO9+o7Nl0RiSOarpoZ1P+atLa46KBdmeMTFhZVkSE11igTKZP+h4xsfHHZTn0gC9wsE+0ugK80UlZ+tZQiYozJ2vWA4hEjoFmk6kSDP7ZO8p3k8ZkO2qsxKtNRFH3C6V15EQiVDoRf7YRdkOiMxWmlk6wqHDTPuk0FWU8LYZO4dtdxtzdd89Vqj1zFlL29xz4Br0I9vO68eNzeoTvYpYZHmZgvyZDcYKvnrc2IW77r4Nc0wnff4FSze95NBbooUE8bdtoRB2m4lpVy4ZYrS6uoYN04bEXbxox6Q0h/PnrSzA9LSh5tePmZHG4pIdz6lTJ9157tthx7adFutKGxt0eS4sGNyoWhtfz/a6+7ZbkEa2jWsPGWpVnrL2CJk25NDOQCmm7w6pea/xQcw5zeY4jtxyJxIykNOzdr3eOG7X96MfuwfHjtn1X6HVcW2MAlaWWti925Dbs2ftN1u2TPD9BgT59gAAIABJREFUzZh+zrb71a98DQDwsU8Yw9rz2A1nWsNUmm43Y9EdyzFQ2qZtc2YDS0F085azmzdb6uni4uLIGM9ExvlUIl8UPMxYCUXNTCRszPWItvdoHyz2IUvtSFy6trPSrecZE5c+Xc+XZhgubKrPMvMO5M7JZ380zw4bAiiF0S+UmaXuKT3Nrt0wc+PSzZjS49iefp5p9tH/4RQX/x7ji73XM24AMttpveMyCTTXC+0ns93pa24e2taIuQOLMrvz5L3PZU2QOQxCBGS+fATZt8NXm/osVKXcREqBeLms66yz0TFy20G+nwZBZqnuo9v+8bzX+CDmmyAIEJZLjrFQcdwG2QEAiPtDkgFkY8PNEf389RjuZ84cpJQfC2o7X+yfmVXlU56GvytmSqyT7kHHXnkpdxy33norduy072jOfOTR13P7a5Ep3rzV5BMytFA6bqe9hq985fcAAB/5iKVbi00ZTgkePi7Nf1EUuWNTmzjbeZk4yNSC7IpfDPmOuz/qtnf7XcZQDWgA011lqj3bp8ISJCSuEKVJlsbGBaCOZ4lsugxjHKM2b1kyautquYzxZr5wc2fN5q5Tb5wAANx9p7G+M8xaeuM1a+Np/h2ko2l9Sv9Teyt0TcVgzV08jxZLC4nFF+vY7eWZQTFYOkf1pVqt5trVnxP9IvBXypjwTWt8gzVXFsQz0FGbTk9Pu+yNGFpriqGy846UWcR5Z6CyRnEwcox/kkzVlWKLJhG+bub7OwCcHvreGb43EkEQ/LUgCJ4IguAJUZBFFFFEEevE+zrnrDE/vYgiiijiCvG+zjdJ/KcDUBVRRBEfbLzfRhVXUnRd0Y8wTdNfAvBLAHD77be/tWchUQNVFlQ+Z5eW0kHM3NwLJwAAtxCh31CtotciOlojup/ab5y9okPebBc9aoma1Ar0O23ELNx7kDqbb37DROmf/vGftG1U8jm1NWqtKuWSU+N2VPy3THvLuhginpp0Y56oNAgCh7Toad1ZeA4hTMPn4kw3UHKoWBjIjj1vmJHEQsS0DSEGRLfiPgLvpiBRo5BQ6X+EEMh0oxRWgVQIa96Ks9Rg95NGgExeuS6xPvVBtQ3oM995ompoTkKkoTlu10jsSsT+UKaO7ZqbTFPVReishm/+iOVqd9qGZvW7KrZo6J6K2rVaxjLVG5UMLSfy2iHyc2HRvtMcMxR/jQWDXztmJgery3auv/t7X8bGGTu2w9eaFfH1LBD80CO2LSEzn7j3HgDAtu2G6q2sLLoCfJtn7L3FFTueaea3V3jNmszRP3HectidRiWNh6xS7dVpUVoSttu5tSlub0dXhY/Nu5pzdm7fkrajGMeOmzHFmZPGNpXYzU+eu4yDhy23fu/evQCAX/nVXwUA7N9vKN/3XnwOQGaPvZmW0tu2bsTefSZybhPB/M5jjwEADt9i2/StZRdiM5nIrL6TIa0OrzURyc2bTTequUDonPpoo9Fw/9d+ss/yBUWdoYWHivd6vRG2q1bLi5/LzOVPWc6g07F9rK62MEmzkxYfXgOhukPCZCDTRflGFaVSaYRd0jZ8vYhQ6WEEX98RA+Xb8fqMv+yaz5w54z5XG8ncw0f7/QwH3/J6MBiMaAvEIKynqdI26vU6SuF07jORTV3OV1FM5oJMZjnMF/qMosgVp2/3bIxPT9o2z10wG3jdJ2JpUBp23ZZWljHmhn9etytTi4xBoga0p3axz194/hW8cuwEAOCa/XsBAPff/0MAgFpdIniab3Bf0rVUq40R9s5Hwf+U4l3NN6VqJe33+yOsk673+Pi46ze6t+t+4NheV5pllNV0LB77qhgY/Vbje8R0gEvA8fFx9x0VERe7cZI68v37LYPinntMJyrdzquvHnPaHV2/zZttPLt7DO3/VcB6luZZ32Mh9R27d+GH778fAPDAA7a2ink/kt5RY0dzhea2arWamepwnbJp06ZcW2qdsspCuQqdYxRFmKYBzxunbQ5Yo2ZQbFqtzqLHXMet8Px7/T7KZKgijo3UrcM4djiGumTOytR6cUmCWrmKxx5jMXHqwm660dYHte02Nz36yCN2bmy766+zbCkxSxsmptDrWzuoPTRWHCPG66/PNXf2um23/tOcXK/nTScybR/4uZ2D2rjb7Y5kHvg6SJ/9GV6T+HpbV3ydx+7rj3UusvjvdDpIIDMb29aAa9+ULL40bYFu9Jx3SkEwwgC/23i3TNXFIAi2AQBf5/j+GQC7hr63E8C5d394RRRRRBEAijmniCKK+OCimG+KKKKIdxzvFor+CoC/DOAX+Prloff/dhAEvwXgTgDL74eeKh/2HLhIhqDEJ/N+W45I9ioNVLu1ihLoHuK0CVd23PKRMCGv1VIJY0R4l6lZmaCNrvI6p8qGHqyx0PDu/VYQ8fL8vNMpyM4zsyYlSijnI+Wzlz3GqlJxbJdDAMr5c8icuOjYJhQRFYcsIs2jok4DACF/ce41+3wAudG73HzP1paHjK6nS4sGcWbRHkojQPS2Fgw3AyJusyTIRNoAlFElstNasPYeI3rkbPfEZNKGsMtr3evQfnPzNoTUHQW8lp1FSzutCtllO/V5QTZuNbSrtXIZG2Zsf90Wi6NuJGq2yfQtKZm5csmYpAM7+T5dKD/72c84/UC3t5Y79BuOmv5LRfZ0vao1+8L2HTNYWbV+VaZb09R2yyuv1QxND/ibMTqV9UrGpqyuErGqjWUORdTvLF02lGpmyrYVk+2NWPQ5+v6quPC+zjntbhfPvPwK7r/PkPM6C5p2yTTObN2NP3rQivmuLHwVADA5YWPrpWPfAwDc/pHbAADlwPrmpct2/Z586mmHeh66luwnTMcn23NZ+vrOcWJHZFsNrK8/eoWW/NIYDOeC+2M8c/Sy9zUnJd68MozW+dqhUyfJ4iDvHCj3t2gtY3BaLeXb5xHK4WKn9tt8QWOh0MMugEIiQzFjHpLoo7HDxVDV3tqe3tf+pc0Usi+nsbW1NXfMYgiF4OpVbesXVde2wzAc0bT59xh9V7/N6bFC2qFzPpbza8r7COVxlg0BIGLBUWfFGsXo96xdmzzWzpq1x5aNdk5C46WB1Rw0OTGGiPeUrF/pHMAQJqv7Ct+V01laRjSw/7/4gpWgmJszlvPHf8LKZ2zabO0dc9vlipxP+yNt5l+7P+F4X+ebAGZ9n8ieXMWm+Xer3R5hr6Yq+fnXz1LR98VoAUC5kp8r1M/EculaunUCs0eWlpZGNOU6jmuZWaFtad4ZtmP3ndk0ZjJ7bBt/Zy9YU12cszEtjWertYovfOG3AGSlRMSY6Vy0xvEZ4Waz6frE2NR07rv1CrNe2GZL1DLpXDW3PPXEk9ix2/bbGLftin1bWTXmqNpmuyiTid8LkLF2ygKKxWdyLIhBa1GfJT3WAtePSwuLuHTexsbCJcs8OMXsCbFut9xyC4CsgLHmNrFtW2Y3YWbDRO78NK/660S/0G4SDzCgtlzb273byoyIEc/uEcpcyDtL9no9d68Sq+hnCPj3GX1/mKnK+hXXfF75Ee1X72tcRFGEbj9vO6/Q2k7azUo57/5XSsIRFu3dMlZvx1L9N2GCzdkgCM4A+HnYRPOFIAh+FsApAH+BX/8PMKvR12B2o3/lXR1VEUUU8Z9sFHNOEUUU8UFFMd8UUUQR71e8Hfe/z67z0Q9d4bspgL/1Xg/qStEv0+0vluOSPZGfmzeUpjtnT/cfu9Y0NJUuc5ejKqrUmQRl1qsiOhMkeUTGd2pqBELISuhFylu3132b7Gn5hW9aQdBbf8i0VcvMHT53zo5nfCxFOaIDTEAHLOqPGiHdquiyUiISG3Xzmi6kKfpEISMizRU66rVZVLIq971B/mk7KCWuDpZc7hwzRy1EKSR6wN+GrlYNEdCk5Igg10bKVVVRZroOjTGfPmB7xWmKUo3bId2VugMiAkqANYnkCMM6VnRWTGtVdKgjEBNWd6iCrinzzpuGVFXlsiVtSXfN1TpLqcebmpzheZKhUiFOFnTq9NjWzU2IJbhryiHGro2PZghDLW80lCfl/nv9PsbHqX8a25jbr/Krxybz7IEQyE43xhg1W6WxfN6v3OQS1g6KqPkqlez4psjArK2tuSK1QnjiCTGndszVOhHxxPpuvbkTfxrxQcw5aRAgroT4xncsT32STMaB3XsBAM8cO4EzFwzlO7jXtARHbzBnydmd1sZf+vdfAgBUAvvtK6+fAACEpQl0OXbOzTGHvyRNQ74ek18vqt9XzbgQvuuZcueXlg1dFRrs+sKQ5sc5jjIy1mXGbR/I0GdtYxj9EyMjNn5szFikVbKmQiyFnGfOdqHT/ThEnKG51i9O6tcx6XQ6I0VPu/18nr7PWAzX2HIOWhpDfNX5qr2F5Dpke0h7ovZUm/iud/5x+Dq1Xq+3bl0wha8PGGa9ypFYLTLHVdVgIepMvZpu4nIAXWI9sXq9jiZ1IPMLNIOieGmOmqrJGRY4p/asUWPNm1ZnRO/1Vm5YI8xSqT6k5bN+sLRoSP13v2v6kU/d/0keFrNIyOynYfldu2+90/hA1jhpirA7QMDqzjWOi/aSjbEgCJzbrvqAjBLLvGatLhkpou6qgdRsVJ3Qq1LP6+rcPYb3bTGxc3OWzaiEkzRNR3SOYkbE5oiNUVFo9d1areb2Iw2j368XLxurIk3TDdQDnaU77+OPP44a+9tWZk60+9K+226jyPp/R2OJjFFnreUclBtkpk6T9VFdqj4Z2eOvWMaAGPHX+Pdth6/D3GUbI88++m1rs8AcW8flDMo10FjF7sVRktXq7Lr6SMpCyrOry9RAi4k9f9a0vDu3mv/J6ydfRdSyuajGguk1DWwyZBdOmLPizEY79s3b7P7cZjtcXlvGBq5LNGdNz9g9Qw6hYjLn5y/yeK0D1GplxLHWh3bsMpDTfaeq2qvsJ2LKOl2tn2vOsVQFyStk2yM6JtbJPmXMFbV27Q7KXPeJcB8M6P7H/ckZd5k1YSEmS+xbWkGpKj0r32O/iHjtqlxjZ27izFYrVxB4tfvC0rtTR72/VfSKKKKIIooooogiiiiiiCL+E4vvK9HEm4VjBLyq4jERgu1btvJj1pjik/pwbr7TA3n5rnJoUd7leo56QIYOr5EhOnCNodhPfvsbAIDbPnYvAGBAVCmcnEGrn/K39sRfIjOVDJTfSf99PlV3yZg0GkTq0hhRn8dGl5kS3e2qrOEUq+6HTk01phJj2oCh+lSqRJ4IUdR5hrnPVcMkCEKnjZADV6r8a10WoZrcf4+6ncb4BKI4Xw+rwh/FdKTSdSkN1aix31p7xVHfaYfKcoARikCdUlBlLSsPCY7Jxg2iCANXIwF8ZfdX1e+moRdOt6Yc/jh251WqMFedOeLaX+ppJ5w7I69tEHYQlvLaD+eQ6GqGILcNoeatVsuxaNOsoSXEX6/ShERJngkZRuCFPGm7GgfqF75DkKqOfxijWqth94Fr3N8yoHzqe+ZGtWvTFmzeaZ9v32W59o9+5xkAwGpk9UGOHDEXyacefxYA0KSz2uvHL2B1jTntPdb0kE6vatdaaLCPKGe1V5IRndXWrTbHKcddzIwQw+E6H76Wx9dU6FWMlptPeRytVstt18/HV791fVDzWDVzGtScoz413szv33fQ07ade2kQjLDA6uN+PRO/Jk+r1RoZQzoO7cc5+/E4tI1hfYrGZVfOUdymr1dTaB/aZxiG7js+c+g7K2rO0TgvlUoo940hlENeCvvsI3dYNsY11xhSHbA/rK2oro1p3/bs3ouFZdXWoo6StW9OnjUkPyLDfYp/99WmtSb6fV2rPGOqyJip/N+6C8Vx5O4pYhJKRMxffPFFAMCha/cCAG697Sa2Q8e1h898+Uzh1RQBglx/8OuohWHoWCZ/rLo+Sze2KeoApTkeDHru/iOHYe1H6xXN/XLSk05HC4aVlRXn7qd46SWbC332KfWuw+Liors2+q7GgvYb0RlSWtLHH3889/nevXvdHCT2aiNdTsUy1Ztk97WMY3esVioYp5YooA5tZov9VpoqOQ7fteMTADIH09m2ZW985/HH3PqvMWHrjj/4gz+wNqT+tE534J1b99pxUJczPT3tmCDppqWXdvWhyMIskvVbYQ3Kl59/GgCwZ+cOpKxfeu6MOfa7danGDudd3QfkgCy6cXZmA0KeAwkZdDotHqv8A7Q+GMv9XQrK7p7kz6/+3Kx5WLpc3cPa7fbIvK4+U6/l52jNRwPeO+IoRp/1sJStMaC+090bSWHVuPbSnCmNWRT30WI/qzfZZ8l6VUs1tmk1d3zOhbeUzeW+x8I7jYKpKqKIIooooogiiiiiiCKKeA9x9TFVqsfAp9YO88ob43kEf1gr4Oezp3w6FxCvatdVskCOqXC5wwHK1GV12qppZE/6Qja3ESn53jOGwNxw58cBAK2VDkpES8KU/v9EPDotshlim4RaMkd2ZZmOVBs3QuSZAyeSfPVn5bCKfVPNqyhNHeMSeO4+Wc48c0jFVInRIcuSJoYkAEBIBMxtI5bLoKP/AGRoW7/bRVjO18AJiI4GYb77iakKlUvPl1Kliph6MO0/iqnPck5YUW4bQu5c25crqAT5WmJCUTMtiBjKfM54mvYd8i4HLAx0vtSY8S+5q9Wqqs1l13i8XHN9c2KymTuOPtFFn0VQv61UqqhWrT2X6AqnPGchUFUyeUIIm3Q47BLlm5wcc0iUUCKxnjr6clk5zaydQj3WhzHmSgl+caKNu1+y8Xt/28bzNUfN0e8/nnsa8ZJpy8LE0MV9+wzVvP7ApwAAv/mF3wEAHHvFUMeDh41BmJgp4+y8sVkD6mLiAdnA1OaJFeahT9etjTcpP541YdK4lyH01HFKi7m0ZMcjpFAEfK2mOS92+oOsLo3tv868+DCVO6b1zx7z1esNORy+hqVlaZjsN7VKnv2v1vKoe6fTd+2rsTUg29EjIpmSYWdzYGaGujDuY2klq6+ivHchoxoPTSLWQrYH3Ji+1+v1hxgBtkOFufbs+w1qjeoeKxAGmY5H7T/FbQ1K1v4tMVhk3AdUUo5TD1QKMmZFWlTpQ2bpCqm5X/u4+Rbrd8dfOw4AOHzoWtQ25nUnZW73zo9anaAvf/HzAIB7P34UALBpo+lVunT87PcuY9C3+WLzJnMl3UK3vbRnDMFNN97MfRiDsbhg23jooccRTFp9HFdjJp8E4LIT4pHMBt6DytkPBgOxKvZZtWr9/rf+3dcAAK+/auzaj//EZ+xctkQYsOZSTCRe2uOrsYxuEASoVCoj6Lf6XbVazWkC7TXPkDa8ukHDmkPHIXLNovuD9FBa04hJyuoT2T5uvvlmvPHGG7ntapz7DqXKitGxT01Njbi6nT5tbIvqvx290froww8/DCBjPypOL9N1LNqhQ1ZjtLVix1iq5h0MqyUxt+oJqXPABF+nyND5rpoV/vYwmawD118HALjx+hvQZnbRJOeklTXb/yLZpsTd5PMszOLiPNQrq2TK1B4LC3YPWVy2e69jrHltN9Ct8NVXXsadd9xu2+XVFMs1xeMZ8Devvmo6sB27jPWrsX3mLp5FkCgryn6DIM86yW0xc26lHiqMHXupY3faa2mMvFpT0trqHlOr1dz6I+vDYs605gSPI681rdVCtNvKltCajk7GnMNXFq0Nw7J0a1xr1pvcdoCA+tNSxfpuk/fEju4/0tXzGmo9nQRZZki27hutB/d2omCqiiiiiCKKKKKIIooooogi3kNcNUyVg2M9zUyNyaOTjaxmAJB3aBIjoBDLsZ5DVrbPwL2mUd7NpT2UCw0AG8btyXjpjOXqXj5rSM3klp1o0PUNRO56beaNQ06G1NoIKWHOtKpC91pdtPgUX+N5pmTqxmdYsZwIQZkMRcLjLYUhUrJMYnXc6Sk5WSxXKsYirzVK49ghPMrBdk/jgh7kCjjIt1MJJfedDMkkWl7xNEz6nAxWj9etEpRcjZrEq2cSBaztQSRCjkhIVRuLCEmpBLAdqk1D8dJIzoWeU1Kllv0GQKNad0VYhMQMkjx6IcTHdz0SvBtgCL0X8sFzKomZcpfD9iukqFyqokrGrUs2QK5Nao8K2UAxA6qxpjavVusgeOkQfmnKJsZt25cXmMtNRHB5yZC6bfjwxe7qFH5u54/g5y///+y9Z5Qd13Um+p2qurFvNzqgkXMmwQAwZ4ISSZGURFKmLJOmJDrI4Y08z8/PXrZpec3YfmO/kdM4aGxJaxyeJVmSR1agKIs5k2AmCIIEkUGgidCNzn375jrvx977VNXpbqKbCN2gzrdWr9v33rpVp06dOlW1v/19+z4AwCBHw36vSvt+/dKN+PF8Yg1SLRTlnzVKx+XP/+pvAQBrziI3wFtuvR0A8OZbVItn1+69RsuXZfepwEj+OF+cx7yteRLU63WkrLpHEt1dsGABgCiiLONEos9BEIxx94sip/2JdUT6OYkcsjtcdzcCZkeF2UzzeVKtJCPoorkZ5Xktk8mYiG3Ar8Ii2S53st/x2k4AzcXiNibRdRm3Mj9JJF2yBUTLFK9TZXQCTBnJb+Vz+c2YyG0QRDVUcrRMUOY2j1BfZbkYTVNzS6I/GqwnTWcyKBSW0T7kaZ6eO4frx/H2z+Ex5HHtr+WLqGZda2sr3tj3DP/P2o1mYrn6B6jW7OIlHNEvEvu0fDHpkvbuon08/O4RLF5P9RL7eXsbNpAOcN1GGpdbt26j/mhQX/70z90BANjR9d+wv3sb94W40iU1r6J9EGZOLp/C1jcaOqatSDrryjV5FkfqX3/9DQBAH9cO/MVfuQtNXAtSgZn8xolpHaYTGhphGJr9Dyz9cBiGY5whYUX7BXINauK5pdGomXNBHASNxraePFdlDpHzTvQ5Bw4cGFMPLK4NjEPmlHhWkF1DStYv5+6WLaRHlXNV7nFkm/39/abenrmW8riSGpiNmugiZd+ivsvw9TErGUXcR3YtJc0XWakjNcpZIplCHs2sV5b7vqYWavtc7iNh6KSGoMy3KkyjnxmpmrDnrBevjrJzKGcW1Vk3lON2jgzTednU1GR0XtIPJZ4T83zPZ5wUWevax26F4uiYTadQZUZcziPbIVbuB+QeI16bTJgn28lRIOPO1pLKuoMgGKMVlWNZE/dsk+nE1wdxdqxVDUNlritSbo+vpaM8Z+gyZxvw/OBLOoDyzD1lyFkDHrNdvifZaVI/VcZuxmzTzhSyNaSTxZnzUCUwhWE5zYpvTCUNTaji+ERgTwoeC6prUmQ1m0wBkZv+Mt9oVRp1NPjGQoSPQrOKIBH8m5WL6aK5+VkqHNq+aDXa5hIFPm8+WWHOaue0HaEmFZ94fDKnzM0LnSCD/UPonEMndqUqVXjp0A300InQKifiaGSnK+2T/WpYIkLYF6cxguCoL81JyOuQh7i0CDRrbJEsD0wqolJDeQTTSYVpRYSHGevGpiGmHPJ5zVyoJb3PtJ1TowK5OZTHajNMeNIIlSlaal5lghXBo0mV4puERkSdy2QQsFGFPKxJm3PcVlOYsZ6cgKhP+Tfch9LGXI4fIqVP82ILKgYSNaTFiEMKgvJdum/dWNf4aiHFqZsLkZhYLrxZLio8XKSLUz4lhVE5daEuKVtMs38AMVqp4PX9e3HDMrINvm8Hpe1+I00Xx7kvd+Gjt20CAPzNg98EANw4QjcC6dmUJvH171E90PYOep8X6918Dgvm0UNLdw9dAGuShqbZFphvLszNZYF+KxfOkhqdUKAf8Jwn6SFyQxM3JZFjLeNfbi4y5mGHU434NJJ1d/fS/ldqdfg8xuTmRdIwypyKawx9eBwXZrWYbYpg3jdP/zx/smA5utjROop8EyIXYd/3I+MH/o0xCeIbRjm3pO3xGzrpM7nhkBvyKN2EAwf84CbHY0xQBEAfW5UX+CFzXjvN41KIe+k8St3sZ0vk7iKtc1ZnJ4LGYgDA8sX0cCNpueedTfN5bw9ZW8uN0sYNtNzevbtx83V3AojmgYE+Ot6rV1Gaad/RxwAALW300L/5VSpKXanTvt70iU/hLU7D6j1MfdZ1jB98s3xccnTMNt38MQDAK2/TOtoWLcD5V9B+vfkmGRYcPEBpiEVOuTcp5zwAxOzFpAspz3xnPwiJ8VAf71Muzw/zR+l6tnnz67j++g8BAEZHeFzzHCtz65kEBQXf9835aMyKUlEKbSpMBlnFYtouxqutosBtbW0m3b1mmW3Jb2WekbRAOT8G+mmsxmUSdqFsc+2TlFqdvOksFotjTI6WL6dxLNbtad4XSTGzJQiHDh2KrOQliDQs5yQ/iPMcURwc4L5jo55jZQz102fZHjrfz91A6YZ1Tn8XiYcpRquTfZ3J58y128zBUmybx658HvD9Y6FA89LwwCCynAot7ejrJsvyYW5rtol+26jzQwXbsre1RBboSqQTfK2/+JIraJ1DtI4U32tJSuUxnju6uaCyDuumHIwcw+4eOXeorc3N/ACWFeMI+r5SjkooyPwqc5Lst/SVlMmwU/183x9TVsIefw15UjJmNvJAljLXAsg1ssHHgdffMpsMo2TOHhWPe53hdQQmzVu2J2nmrbOSZWykOH2Nx4efTsWur0Fi2anCpf85ODg4ODg4ODg4ODicAM4gpkoYCDZX4FSu2Zw+YKy+LdtbrXUi6ghE6X8Cbb2KsYMRJCoPabHgZRMJsXGUYmINjrw22MLy/LWrAAAvb99r0tqWLKLodXGYogOtWXp6HuI0K2FOclz0VwSLPpSJImTFIp4jr5K6dvQIRS2EslYcsQhjBTJt+3MYtk3s15NCY22oXG36Pd4mAKgzcyapiwWO4srzer3WgGciaxNZ8lpFIy1mMYQGB5YMQ5ZNS1SBj63HkXdhgWK/NfvA+xvWk+mghoUT2tEMtchSvmbobGY3vWS6kkQ1lEqagQiDCaVMumXaGGIQ6qPDvG5OPaokI7Hx1JCsWD9bkcE8RyArfLwl2iSpBM3NzWMi/BJ5itsQZc/4AAAgAElEQVQ4A1JOGfggx1zq0Diq6zj6HEXhV82lfnp2lNIm5uVrWLud/r+z8zIAwIECib6ffPAhAECZmak+Loa7ci4xBn4qjcIyiqq9y2zzooWUqhUe3Q8gisZKGlounbRT9jzPsLFyXKICuckCunL84jbiMi4kMi3byTAjluHUIUknHeV27ty1x7SvzAXXpVi3MCaRkUqyJIDY9JZKJVP8N53mMc95HsKmSeqMMElyrtmF2OOfRWmrzKpxFFzSuOU3WmuzrImccoqInAOyD9I/0u/C/jUaDXN+ZJk5rhfpnFs8mwp2Fg9SNHpRM42dz3325wAAT26hwrZ//7V/wobzVgMA9u+jfr326iu5P2h/L7yIIuq7dtE47B2gqHMDJRzZS8f72DFiD+u8DynQsZw9m1iwnj5ikJatoyyJhqZ9qjcNYOfbZPe/chUxBwsWtPBv6br55FO03aefeZ37i/b58stXo8xmFjfcyDbUh6kdhw5R+uHmzcTuCvMvaJiUomCM7bopG8LGKBKdlpRSGbc//tETKJdovF115SUAgOEhusYE3hloVaHonDbsh5hBpMbegkkfiJlMlGabPA86uQhsrVZDRUp4cNaNnY4u54HMFXL+QUcyCTl/7FRkOw1K3kfXPJW4zgCRdbuY6TSqyaL1Rh7A5/KcOXPM9oUhqZapjfksG+Pwvo1yH9b5nqMp34ymFjHV4BS5HhqrzZxmKPcgDSWZPrT9Y900xtNBAJ+v/8aWXiVZFmFIjg32837TqqqjJXQfpnNCy1zMmVNSnkYYaekP8DzscTHe1rZZKPB9X8AGUgOcGphl5krs0aX/29po7sxlad96jhw11wZZNmCzH2GVPE+MgJJp6PH5Vsaf7LeMWXtuto0d6vX6hFkEkZlNkqES+UK9FsauX2zkJYYkAae2ipGaz2nffC/ekOVUYFIGg3RS2iN27HJM7fZ5qWDMmHy/+ODeNTk4ODg4ODg4ODg4OJwGnEFMVRKmQCyLiOsccfVzSWFio9EwT+MCIQ8kEjmeaA8APC0amIaJAGSF9WqIGJd1QCppYDF3LkUNLzj3XDzwGAmOJTf04ssuBRBFTbMFioSKxmWIo6XCWGWyeQxy7rMp/otkVEmYumgnOfJbq495Krf7w2NqwmaqhGELQ8RovKQ2QQXCSEnOrESxo+UmkhWb4rqWmNYuiKrgG/tUiaKIIUUIOWaSjytW6iJUjCIkRktnFQItFERTl7QfjaI3Xsx+ntoaMu0nVvtVjhSKTb/kykuEnKIsSY2MQFs6DumHJo6ih2EYRd45J1qWkQiU9JlE3isc5ZJ9jO+PHZ2qVWn7EkUbZiFoufoBLv4bKiwvBjjM5QwuWEsi/+JLzwEAdlWL+Id//x4A4KOaGKhXF9O46FhLNrxiQRxw0d8MM1Xl4SKqzCqtZKvsPfvI9KKVj6Oct8Ky2BqDQqFgxqlAjrVYqotdsowbiUb7vm+OrfxGIshtHN2ui9aK7clfeIWKUA6zHXcIz0SEJfrbsBh+z5fIJb0fHIrE8VKOoSq6QC6WLvspY623t8+0Ob6tWq2OQkH0BvRbjaS1r+T2Cwsn/dDU1DQm718MXGz9lS3kFzZQa23Ok5ERWseq+cQMvfUKmSpsWELZCOvXk8bpNz7/nwEA//hv/woA2LFrJ/pHaf/6+0gr9P0fkh1yRwcXZT1GbNfKNSt5WxSdX7tuNbbtfDzRxuUraHtemvqjf5ii8bP4mIKPx0Af9cc7h3ZgxXwaqwvbKEti5xZizPyzaV1nLT0HADA6h7Y7NEztrZYqUMxUhnwd7JxDx6yd275qFbFwmze/AADY+jrpsfLM7AXZnNFQSAJBrZrMJBD2PsNshET200EWB/eTcL9vHbWtlU2ZMk1JJuVMgkT/x5QmiZmrmOuOWMlLCRC+1im+5shypVLRML7VRpKhipsIANH1wOijalGWiJ3lY2urDEMVJg00MpmMYaq6usgaX/SP0nZZlynYKlomuX+J7b/og+U3hr23bLhDnlsKhYIprVMa5UK4s2fzey6Bw4yVKbps5jZqRzqVMnOFFBsWFJjVj7SrSWMg1QjN/1lhORrJwrQjwjIaLS1dB8SwI19oQqFlVmL/RP8kmio5ZjLvd8yi+VHmrOaWJozUhhP7JYiY+6ZEPwzznN1cyI35jVyb5HgY0wnr/sG+rwDGsqs2Y6VMNhC4P6rm92J4M1xKzvfC7jZxdlrIx1zY71qjbjKXzD2kGMyJQYyXZKFM9R4Vxli0SCP2fuCYKgcHBwcHBwcHBwcHhxPAGcNUieWsRG/yEq0SSU2D3ouVdNx1LdIi8GOpJ4wBRy0539fnZ0yxBQ+MW50Hzb8RV3LRIUl2d44ZG8mVFdapKfBwx42UE/7CWxSt/l9/+yUAwM/e8yu0jk5aV0srRSaGe9kys4fzkjtakcnSesMKPaU32CGlwdGEVo5aDI/y/vtl3tcKQmZrxCHPqyeZGMU5q0XJs64kLec9rVEZpOhIhqNHo+x0JU/3BY64SG53aAoFKgQchZTOEvvzoC7OK2yrLPWdud9Fv6XrNbJmB0z2fmWEoieZgjjliWWm2MODty9F3xpQ7BajAnGxkXZRm8XRUcaBz8e4UasZtz8/I1EZjupJMctsq2yQPpdoBzOL1coIoEvcAZLfywwAa1NUkMxlFhc+nYqK6uWFPeU+FOt8+EmXrWyuwO2M3OYkmukHydz8IkfTmwrEtHhKbK/fn/vNmYB6tYojBw5geDvZoD/CRXfXXkgal+CxQ+g+QHnwX9GUL79MU7HF8mw6L265+RMAIsZK3PyvvepiU7BVoorLFtJv+7oPAIgYRYmoydwkc1W9WjOaxjgDBWBMoU1hZeR9S0uLOXftYuhVo7XgqCe7VfUyEy4ItYqKkVpW2UYXwXOxWA03KpHzqGgYxClMnD9Fw1XOJkshxO3QpT9EbyN9I5FiOwovMA6YtdoYq/TAjxyi4p/bfSnv0+m0WbbA59YQ29FL8fZnXiPtlOjRzj6XWJ8/+L3fBwAMDg8hWEgR8845XIyS56tqnX6zcDGdk7UG9f/NH/8wAGDevDno6KR9eO010jt1HXia9jtHrFaF9Ztb3yL2adUKYszyGWKlFs4/D73v0Ngtj9I+tLcS21YrU39099D4FI3TsV7qY6U0Fq8nZkqc+sol6huxUq9V6Rp33SZqc3OB2Io3t5FOa2hkxBQMVoqzQnjcGTt2Lc5u7MbGGrxSsYieo3T+HTpEjFVHJ+1frsBz7RkIOe/lviHuqFZgNtkwNqM0voeHaawsW0JujIrPqcPs/Nucz6FUkWPCrBafbzk+D3p7STtUZktvGe+pIK7lZCZKWNyqMAVynnmJlwVzF5j9Er1RWwuNGZl/5HyWc1fmMFvnns/njXZH+qi9jbSLUvRc5oGeY3QeFvkepForRZkbLJc+2k2MmeiTJKNEsj/EJdqw/H5qDLsv899ezhwSy/EKuxBKWYqj3YcxKqxVOukOnG+m7aUz1L4jrK1q7yA9fYYzrdpnd2LZcmJ+B5mtluu/nH81tpRv5syIfs5GMc7UuQKaA9ZcW0xcyFqy0ZGky2mDHV3f7eox9x3C8plxOJLMBCizXsvMZTVhtOuxEh7UVrn+5FOi4wdvl0u/sIPqSLkC8BxR5u+qUi4mJbo/LjXDc1VdS4kadrX208b9OLTyo2RMl5B0wDb3wF60vEnKSiX18pOFY6ocHBwcHBwcHBwcHBxOAGcQU8WQ6C1HQo68Sznp87MUIWm28lKr1aopaFnmeiNNzeImknQSNM+q/E/cFc3OTY6c4cQZiwvyNSXrw8SdqNatpGi11Ex56EdU5+aGW6hGSMgMUcNLOvtVyyFqVW57gSN+aVqmXKKoRsaX3FGug8GfN8Jq5I7FtSIqzGalmqVAbbKWjZ0PW6vVoiKllv6nYuk+pM9kXal02jjh1KVjRaslOiiOXggLVS9RBNQ46DUq8Lntsgphv0wg3NIrGfcjX4pP+lHFP1OmS7RjzGBxv5t1Sq5urYFMRo47bz9I9pEYUkl03a7h4vs+dEOKKvNuSfFCXtKuLRJ35JHxJG4+vscav0wyr1nGmlJJl6V0Oj2m4Gy8RgQAVFhLJeNzaGgYH1QMDQ/h8ScewYfOuxgA8EY31fN5+36q/XNhZh7WXHQ5LbuUIoPnexRdHJ5FY3H3jt0AgFk+RRuXLyGHtf2v7UCBdSVXrKViq/fd931a1ip+awrMWvns6XQalVJUTBeIoo8Ni8GS7+XcKxaLkStkPhm5zLN+cIR1Ae+8c9DaRuQqKbVchOBva20366d2SK2XZEFHzwsMEyG/zVgFQyVyLVov2x0qrvGI9LFJ106B7GO8rpes39Znyjkg+yvsbcXSWQ4MDETHhq8fsvV0lvq2lWsSvn2Y2MeNa6iQ72//xm8CAB667348fYT0V6PsVFZrsI6Wj13bHIrG/9QdPw0g0jwc7enBv3yLxowUDL7sWqpbk/JoGWiZz5NsWxsXMS0Xi/B8OgB79lA7tr/9JgCgo4OOZWsrZRgsXUYM1sJ19Op5HmoNypSQYqc5Zr/zeY4Yj1CPPPooab8OHiBWLMV17woFjZCzA4TZr5STmh9x9IoYVWZHKxU087VUah51dFJfHWbG4EyCUgqpVCqae637iSAIzBwvGsFGPalpNRoqzoIJYpF0GdeRZkkYQTpGhrkNk7pIP6ZTkmuHnE9+ILrspLNtMxe7lnUODQ1NOJ/ZTLmtm47ruGxXWsmYkDZHmptkIVnf9w1TlglYM8S6qFpJ6kaydnI269QaSU1lR0eHOX8ku0D6QSBzxLGjdM+Z5nlh/vz5eJNdBMUVWe55ZB1pZqSammS+S94/DA8Po48LCMsxGS1KnSzWsDEjVaomdbnFasQKackeaAjjLn0qWQ5V/lyYwqjmmJyT4jYqulfRy8m8L8fMHlue543RW5l7SWazRBcljrKm7igqGOZrUjqTZDlNfU9rDhfdro7NIROpwO1ixAIzD+mxGirRY8mxmiwcU+Xg4ODg4ODg4ODg4HACOGOYKgOrQnM/V6zOsYPZbI4Qx6sjj4nWNCQCKmwT66OYsTL6GT9yqJEnXXmV3xhve47qSPRIctQzmQyCFEc8OCd96QKKuA2/RVqM3dvINWk+V8pu4shkcwvrAJA2Gi6JVqQz4i5H7SlzTm9GcrYbkZOhiRpxP8g+DHKucHMHVTkXZxSJCJhc0lAjJREF3n6jJm6IrG0TPRSQaFdYq8NjRy+pEeBLVJyjSRlhDKtSMb2P95/2xdM1E+Go8YbSWfquwVuU8hMmtiEuhRIZ0Q2jeZGlJGahhTEzrocS7WEnqlj+tzgWelb0RMaBcZDk5RuS4+55MQccZjE5Z9gL5HOpSySMlYwxDZ8jzvVasj6WRIKMG6NhThuJ9+l0dgyLGIbJivG2K6HUo/kgopDK4IoFK1GeRX3RvJ/666wyzR8X3f1RHOOI4KwDdG7tL9K4rPfR+Pjcpz4NAHjt1VcBAGvWUC2qdj9rdE5Vzr+/Yj0xVvsPPg+A6rIAUdRN+locQRu1umFNJFIoY02cphI1rRDNb7lcbowjk+TJ9w+LSxbtm2ifjBsXO11lM00YKSbz75ubaP1yPtjzhERyy+XyGNevEY6um7pRWlhg0ekka21prRNRdADwU8k5WNpl19WJb//IEdLjZLhuiV2/y3Z8knXn8/lI28j9kOcagDWOHK/bQI6RIc/1Q0eIQfnC7/0eAOCKczbihhuvAwA89xwd9yIzgaLtuOvOu6l/RrmvWe+4deubuOH6zyX2vyY1EnO035UqaUuCLK2ztUnzNki7O3dxKyopOt7L8nRun30p6XtFWxNFZ4d4/6MIfjjsm74AgD7W+u7bS+zmyy+R1mtwcITXkdTNVXQJ6bSMGXZVDJPzpJmv6kkGpaOjzTAGci7Veb7ctW8/zjyoMfNrHNVq1bAnct4Lyzdv3jwAURaCccANIv2hjNXQOPIlNUvx+yEgxhixI26lWjKsoaBYlJpurJtuajHbAyL22/Mid9yJtmM7C9rfh2E4Zh2l0UgPHP+tXU8olUpFTD+L+Mp8Ppnadry9oWPCFCZrnfXriCkbZa1SvZKsi2fqd4q2i+vkZSx9GABUmBGS8zzfRFkObe0078t9a9yl+uCB/WZ/qJM4A4HZNjk3A86+Ec2PYdLLpUTNKCBi3ey+le9NTbQYy2TXARTGyow7/r5crZjfyqs9r5vjL/d43D+SJSRqpVQmC58dWuvGhZm+a4jDMTNTUseqXE06twZ+GrDYJnuese/Tonui1Jg+Edh1U48Hx1Q5ODg4ODg4ODg4ODicAM4YpkrXxblPXOU4esKOeRLV8VTA72nxdDprnkAlRzKbT2qHJIAkTnGhyaGUKII29VNMRMg4YokLXHIb8tvAT8PjiIICPb13rKaoxbw5FD3euYucwl54nJzILrnxRgBAaYTa2dI6C5kcR4cV65wqHAHkyG9ecnWLFNUY4ehGc1sbSuweJMhxzqpExUf5VSKCwu6EvG+5TCamP2P3FBMd4KgFR8/TgWhGhA2JGEBx4ImKA3DfcdQo4IhLE+9TXZwc0z6qHKX1ue01djvy2RlHqmEJ+wipRyCR10YDiseGjAflJXUssr+BlzwtlOcZV0O7lpSJ0kh0g49/aDQiwlxWjMugtDXNWhyJ3thRFeOyVaujzuNfouSig4rc/UQLQ+ssmgrqUa0xWYfowXLsKDnKtSrKZanhQdvI5wv4oCIIAnTO6cCKdooCpz5CzlrvcD2pc1qa8YPvklakmqZ+UKxF/Oyv3gMAePCBRwAAG8/dCACoDDOLWAKCAo2/TAfNT91vU5768oXksKhYg1lmLUCJo6Myz9UrdbTOonkil6EIce8xYkICnlvkuGV4bsqxK10qm0EgmgU5/pJTv4/a0c5MbwuIBfvlO34KAHDkMEUne/uGsGAJOxbyud20gJZdsIj66tVXttB22QVq8WJi2vfs3I7Nzz4BALj0EmLoHnrhKQBAZyex4gPMkgu71QhFnxXV4ClztLda5No+ckqPiT72J943Gg0TTc0XqP8LHD5s5euFbEe0BnJ5qfG81TyrE+AaSk2DXINOnE65n2++5hoAwJ/80R8CAObPoyh04BPTcKz6Lu6+6jba7zRfa9J0zq2/8DIAwOAo7VvvEer3/iEaDx+/8Qb0lZNMcdqX+Uoitsz+NJjZ1vTazOPlyP4+KM3asRSN80aZz21N7fA542KUI/s7tpNz37Ztb2Hvfm5TP/WvHcmOmPdkdNrUeWnKY4hryQR87Uvx2M1nqK3H+mgbhVmclZCh31508VJccQ1pjVMtpPPaspfGTD2/AmcctEaj0TDXHpnzhZWKM1XSj52zKWNFfhOws1uKMxskKyaMsXxy3ZHfRHXXkk6hhoWtyXUjMOdPucL15moSzad1if6wZmVLGFfl2GeyflvDIrCZg0zsHsPU8rK0xbIdqYGV4THkB55hpKRji0XR7vEGef9rXC/PHsujnjZtlXV5SvRAyTaDs0BGyzQvHvUOm36VOaOjhea5TIGO2dwFdP7J8ThwgHSYRlddr0W1w8SVl901w0byvGrwvFjhGoPNvI3R4jC8IOkCXBwd4r6ieaBSTdb7DHWk8Y2zVvF12HUAo7mTtdiViLGydUnGlZH7TFz56qzbLrHrZ62hkOEsM3EEzGalzZLFIPegUqOT5xRxXPR9hBYZbGt1Tc03lewnxNxuS6PJjK6p1qtyTJWDg4ODg4ODg4ODg8MJ4IxhqnyOAEiUoIn9/1s5AheM0lPlyAhFIqRSNUXRks+OErGXp9Q0R/3NAykzKDWuJVKr1ca42MhTbFQhWnJVwe/lkTmItsf55HV2sQpYJ3PeuVR3pJldCX/wg38FAKw/50IAwDnnXmicV9o48l0tS/SK123kT9T2DnbqKocNE0kwVdetp3UT5ZEWc8Qkrp2QvGb5zNR7MXVv2GVO8nt5m76fMjmygRj4MXOV4fpZSsg9X9zxaEHRhzU04EldDUXRBFP/hjVeni9tpfdKiE0/il577N+lOJzhmSg1M5JMb8pJIfqpWqUKxd6EpkK3lE2TqKxUE9fJsSZRFM+PakupUGpYMVNVlnx4icDLrzkS2IjWK+5YcgwlSiyvITslCWPrcZ58tVI1bS8x4yJjSgKNMk4qHCnqaO/EBxa1Eupd23DOJasAADt3kK6xpUqR8yf+7W9R4zo51914CwBgx1sUXfzBf6P6cnOaKGLa9dwDAAC/SP02y0/j2k/dCgB4esc2AMDsIv3Wy9F8JUzNwIBoWZJRsUzGH6N70Ejq92QOtJ1Ifd8340Pc9SQvv5emAKgWGh/v7qR2nZcmhmT5xcRO9TzzDBatXgcAKAyIZoj0SSXQODlvOdVpeXkbOcr5/HnfQC+Wr6Z+7ebaTsuWLQMQzR8S2TX6EUuzWq/XzZwjEUTfisLGHVbj/RKG4Vg3tIB0AdUyuwFyfTmf3VSbWS9S4Uh2Y6gcRdFTkcsZAFQU9eWX/+7LAIDVK9fwNmj5AZ7v335rB77//30dANDC59Lys+j4H3yLxls3s42Kz+vLN5JOa7jvKDI5W3cCeuVxINOEYc/58/6B3qi/DNsgrl+0L1U+x196kdjGH/3oxwCAEa7/56kApVpybrd1CLZOI3L0Y8ahVotcKDlLQXOUfWCYGNMgS8u2dtBYvvPTdwEA5nQ2Y+6iswAAz7+2HwAwWGQ9cUsyw+BMgAb1n9GY8OfxGjh1ZqpsDY9oKGezq2NchwMAKd83yzSJc5+lnRHYmie5XtB9jdSUKide5b5hmNn0JmZ/42232zRGl21t3x4rWmvzv5zv5RK1XXSYUQ27Oi8nTrsRyyAXZp+zb4QZEb24ZBRFrnTsVhdmzXdSskjqVkb7aGyD6TfC2CrPzFXzFtKc2MEa1jS3a6TI11Zm/YRt6zlCToLZXMakV4mmX+aTBl/L08xQDpfZobS/N7GchxCVitwXJm/t5b2cu/IqyKZzY+7t7HXYTN6sttbE+1KpNFZ/xn1Vrgj7x1pfvhcZHGQmO5tHwK6h4qBdLPG9GzdDtOaa74vEEdvzRUeYNbdfci9js6rvNWfZ+lpbZztZOKbKwcHBwcHBwcHBwcHhBHDGMFXimCZPgfIkOsIuKmqEozwNisRJdKVUKo1xyZKnV3kyN85T/GQqUQ0lW9P0Doj0VpKKKctkWesjkVeJrlQrUQ0JxdqHRp1dnLKyDvp+3dqlAIAhj6Ise/ZQFPnokT4sXU5sVucwMVCLuLp6vUZP65Uy9U9LK0VIhvrp86qqm/1rylJ0WLRL2Tw1YLhOUZbBfupLiaKMsDtfoVAwbFKGNQdFjgQZNktqWvG+iEOO9gLz27roonj7IUdchKGqipuQLzm71Ido+PDEq0+iQzV2xOG82nogdQ+SDj1akqxDjXpdWC2OdEpYQ14lEMWRMMS0G3bkT6LCdrS8YUUGG1Lt29Omjo8wUnZMQyJDEnWM55TLd/KZLGOOLUf+JWdb6hBJe1taWiJXJe7n4WFapoU1IsND9N5P0bqKpfHrAn0QkE4FWLFwNuqj5I5UGyFW6vaPXA0AeG7zMwjqNE66D5DLWaCpf+Y3c843O6YNlCnqnvXp3CjMnotvfO+rAIAhdhcsrKAI5iF2UDOsB4/fPOeTCyrliB03qfyiMWLXpXyafiMuTKJZ7O7uNox6gcfFsR6qo7K0yBHC3aSdOZvZ0oGHSD82yOfIT111Gbb/4HsAgBXLiL3aytkAN91Ejnbb9r0DAFgyl+mvPG3z3SNdGC7S/ik+/+pesk6IXZdL5sh6jPm252fbaVNg8uIZQRCMWWY4w1FfTzQntM4WPhUXNhFTUudocHFwCAWuy7R441raDp/zOe6zX9t0LQDg+//+XQBAM7MEH//ozQCAr3/967iGx9NrbxAz9XZ3F7WRMwmWXUBsTA+Ph+6AsyOaNNobMk+xwydPUGmJrko9Q+7bAalvZHQLDQRKNJhJtulVdqx88EE67jrkaHiK9rmnuxfZ5iQrLrCPnV27UY5T4IfwOKNgpEhMaDNrg9fwtS7L2RmXXXUlAGDRchpr6zdcigceeob2g+sVqZRkhZRwxoE1VYa5sXQrYRiaMStZNna03TC37EIZufVpc0xszW/ktsfsRzoZodc6YseiWpz0XaGZNVwmOyep+RL4vj/GEdR285R2yHJ2zSml1ISaHvtzU0dLXPC86J6lwvONP8iMNJJugyWeQ31hgUSD1qihyvoyc01HxrSN+o4131wjU/Q7uWwWXl0yDOg3cv/n85wserki16vrbCfmPMO6KA9K5Fgm28bTnB0TirtqVDcVAOpc+214sN9sc7jEtZ6EGebzb3Q0WWMquhembaakDiiS9VnjywqkP8RZMF4v0c56MrWlqjx3c7/XZU7jdpZKJWhmz/OcNaA1Z0OZml6iv6V1RwxSJKSyHTZt7Z6tBzXjz/PN/Znvi9fC+Pt/PJwxD1UpvjiId/acZSQOP9ZLDxHFEh3gfceo44+ELOJra05YPgJA1ht/t+3JQumxy0xkiyrC8LA5eRJ7nocGXwyMNa481AVpezUAgPbzV/IrvS+VSti8eTMAoG832bCf1U8TyyIWjXd20kW6WSVvzqqpUTQ10QlcL2cTbcsqtphnsSLydHPUx9fQqL0ZpAu0nQFO3WukSEQ/yA9eMvH6PtvHSyqlji7+kSODfEcXB3leyrAw0Yh4ua5wzffM84cnD0ByCPk1jHJjaDk5EeQYpoAaLAFibXwB4qgRL/IHClBy4vL2MvJgxi8ylVR0shhyLi02/g3U+QIW8k0Q6+9N2oFBltPuZPKMfdU/wgV5c3TzEabZZpu/H+bNV0O+EElKUn8FDebR+/rEopXGTK3BaWQF2q5MkrOak6kbHySoIIWgYx56qnSQX9hBBhXpudQH/bUQ7csphW3lWXTju0lQon0AACAASURBVH/PfgBA1xsUUJhzNqXHzf8QPTD185F6fe9+jFSpb+uh2PfzA8/RdxPtkId+O0W3p6fH2KCHcuPDAYNaRS6UnDoRyHGlOTCVSqFzEZ2fGU5tlivR8DwaF6/tpZv7v/jt/wIAaOMblAfu+yEAYEvxHewo00PTG2/TnJPRZMTw1S/9JQCgyDc7b3ZRkdh+sbhNpcyF2aQS8820MQ2yUizkfI0XwB5T/DdMBjKM+LoSFSwGkoE0SXGFX+L2SMFIPqs8TlMOqL3D/fSAnEt7WL6Y+n/XHkrh/OxnyUK/t4eW+fO/+GMAwF0/Q4V7JY38y1/5awDADTfcgFE+/kWeN9sXkJlHyzwaMy9sofS7It/sXdp+KbdXIeQxY8pE8A1SWuZvLkLcO0DtqdY4dZEvXEHKR3lYiizTNeCJx58GADzED1OVCqe681xU4/OhqakAL83zlbZS3b2kDb/chJsggOSiQ6O5ha4H69ZSWuPFF23k9tB1qp3NmgY5gFPlG6hHnnkVXUfpQSyfb+XtUU90tievcWcElAedykLLfCDBNy3pUgHyPO9W2ExEszxgtEJjuG+Ybp7z/LCTEzMaNJDlwJgEhGuWuUGabahTYlDAOW6FFF8DarUohZ8DxFUOXJqbfF/So4qmzfSaQqmUDOLZaX+KzVXEDnyEzbPiacrplFip87zGU5fnJSUXktIs57avAjQXaIwUeOyVCnRFrGWo7TJHFNUo9wdHtOU4hIDSUoaF0615LOb4wWdWC83NQXtSNhEEAeY2s6kQF/n1GrS9DjYQkwLawwM0R3eX6BoiD9Ce55litnX+rVJcliJL/ZxJ0/Hp7+egAt9XjYoEIp1BS4HWJ+nl6VTyIdY8XJgyQnwvMjiEdJZL70iaL3/nm+LutNlME6dja7GvZxkBPKS5dEW5LOU12NSDbwgrI9R2xQHInl46x9PZAhTPW5qvb6GkvSvblIvXwRmfDe6nUi0ERpNFlcWXPcf3llJPW+7jjTRF1U3QKpURsxVJpXSW6g4ODg4ODg4ODg4ODqcNZwxTFanVKGpw26d+nt6HnELGLATYQtaoehuNyIFCGIj6BBH4KVonJhB5rNOrPNYrFX3nGX6XXq2ilQaNJHMRViq4/ed/LblM3RLrynbtQnQqti5bcGfaOoEQzzA2OnKZGNNWqy/9kz+kNKLjojA+U6iRpBXHXy7Zr/Zv3uu3Y9c/vlh6rAu5KTGc+HVy5ZPvs1Y9yZQ8w7IJSxhOfXzbx/YDhIpW2FtLYfZiYps+9weUfvTAgz8CAMxduRHnbKCoukSsBrupP65cStH1N3YQg7Ogg6KRO3uJ/dl9dAQ9XZRu18zGCMuayaBg0RKyh961axevmyJ6UmBRIozDw8Po7KTop2/MVihSV+BIraS4CmMlkbZ6vY46Ry+lnEEzp7cNH9gNAPj4JWTp/dwPyaBgFduhp1lAfGDXAXS2k6XzipXLAQC9fbTOo2wDP8rpMsNcKqDKET0VaPh8zrLr8xhWzS5abYuitY5SmkwqdS1pbW4siDkqaaccARGb1cYWvrqfUuTybALRylHwDJsgnL+YsgSWzplnov4rL9tEywxTf7/x+IsAgBsvpvQ/r5+22/XufgDArVdTSYyR7mG8un8nAGDN2VwomAt6bn+RymesX0PjTzMLObKb0lDnzZ+DcjMzEXwM85x+lOOSIKPDNFa0mA2krbTIWN91dVEq+YsvUhFicOaH9Gm1mkyl8YMA8NgoIC+FpCUthtOyMrRsntszbx6l9EkR7IVLFqOFGalCk1g4c/qnYUz4GsipbB1zaB2vbn4DKs3p38aGndrRkjkzY8FKeYmC7gBMqRalFLKcViaR+Eo9aSUtRZWFofE86tu0H0AbZyaWKcix8pNZOgJJdZLMD9/3Y8twypQvduzJFPd61Xpfr48R+dsss0gO7FTe+DpsdksQL/Ib7594epq9PUkRFHZLfitsh23GUKtWJyz6KudQR4fMx/R9ZPQUmrbE9yf+as93trGHUpHZhjGVMOne720xH38NkTSIsDMB7FeB1toYWSlfJBRI9Jlsp8ZmcTnO1vElS6umTYqipOh5fN+oGlLYl7PBQim0y6xotYGAGTGfx2ZNTMCs+xZhHW1JRKVSQVpJ2qNV8sYyqhDEDedswyf7dbI4M2cnBwcHBwcHBwcHBweHGYIzhqkKxQabE23DKj+B+iLMZAtdzhWVp20/7Y8RSyI9/rOkLXj2xyEy7GVM+7zkU218OfszW9Brw7MIhVRLCtW6WAPz/vucu6yTOoOU9WO/kYmIEfuBe6LP7e8BABXrS94/32bMpvZUn9zeZH470TL2cRm7nDikmgjEJFmv8Zed3H6KsYnnedH+WWNogiFlLN2TH2Yntd0x8GIbmqCftSmKLLq1CdjJDwD8bA4ta8/BAdaU7Hh7PwCg3k7awS1HenDoZWIZ1q4iTdUeLsa95dgOAMBiLoVwUFN+/Ct9pJfqaRTRBxaVK7YZrxJztWSINAyRdTjnpXN+fnsHaQOWLl1qzEeEZSizsYunpOB1slimnPu5XM5EZkeGKJc/y1HQ228nq/ccswAtOdpGbw/l+p+34RIAwKIly/Anf/ZFAEBbQFqC7HzO7WctT5rZsEYvWfs2+ARL+x6yzKoojnI2c6FpiTqO0VwJcxEzfrFFxlkTOU9GfW3mqlqtjjEjyrZT0eVsK7WjwoYVWrQ9zMadfz5rdQ8eQpWPzWM7iYG8+MKLAABvDdK65xVonS287rfe2k/taFDfPvLM07jkCmJA//fTz9H6L6D+Pf+6jwAAdu/Zy78lW/rrNlFB4Ze3vol111Dh5KyI3pmpOcYaqpCLjyrONMhKlgD3Ry0Mjchbouods2n8HTtG60ilWQOckjkxiqRnuKizsKhiiy/v29vbE+/FJMdEf+EbHUjGGCRQG8vMpAywpfKqsy8GAPz4ISoSrTJpeA2Z/zhCXmTbcJ+NUc4gKM9DOpMzJkm2YYvneUarJpbRoveQe54SswCHuVB0rUb93tneYYwJhCGQdQTG9EHuOfjcUVJAWJgyPzJ+YCbSD6KiqrQ92v7I0CivM7pw2ZpImymQbAyZ58YaJtQMAyGwi3zLusXkJ85gGHMU7iuZO+W3wlzJ58IKyTr7ensNAyaQ9YuGS5iqmtGaRaYcNkNll6uRLAMpNi59XTPmGHXk83Jtt8yvLMZG2m4XWB4dHUWetUNRYe5GYj8nYqpCFRqDG2Ev5VytipaJ53sl2U85HqdctqE4WsEIF86Vm9gcm6NpT+rpsHEFz61ZNgPSpQrkcUQk5nUIy8hjle/1fc8yyuFzquFpc59mM4K2MYVgvMK+E7GKk8Vxl1ZK/aNSqlsptS322Z8ppd5WSm1VSn1PKdUa++5epdRupdQOpdRHptQaBweHn3i4OcfBweF0wc03Dg4OJwtqIubFLKDUNQBGAPyL1voc/uxGAI9pretKqS8CgNb6d5RSZwP4JoBLACwA8AiANVrr9xRnXHTRRfrll19+z3bUTWG05JOlPHga6cg4v7UlTfUJSAa7J8ZjqrwJfiu+gfZTqkbEacTM5N4T49GHYmYi+2Cb2010GN9LRRNJpsb/sRfb2ZCjVzZjI85QgpSa/FN9fQJNk41gkqzQ8SBRiuNFHsbrj6nm1U4FU1Eu2f090bHzTaHEKNpnF/EcY5Vq9XOtLi6Vxy+2qZR6RWt90XEXnAROx5wzZ+Fifcev/iYKzFSU2FVR3Pfmds7DkXepMONDDz4BAFi3+mwAwJo1dIZ27d8DADiyj3RKo33ERg30HsPwKEU9+4v0WuVIbZtP27MjZPkmilJ2dFD0f8XKJTh0iBgScfVLc7HLYbZhN9FIjiBKIcu57bOxfOky+n8usSjHuim63fcSub/deuvtAIDde8jhr8wT2LpzSPuz4YorcHiAtFOHemn7rz31IACg0EmasgGOpD/60kvgBgEAsp6PJo6M6yJFtQfZVU76VyyQJdoqY1Iiyel02nwm0d5yRfSzMMvEv49HdCV6K9vZPo/ZFC6evnw9HcsiF2Kf1Ub9PiKW9939SPFsPrtzAa+f18n7kOfo78ED+2mdi8mRs4kdwEqlEsrDNIbaZ9Nx6DpCY0R0ohIFH+HCqoq3EVZLmMNsXwsXQV+9gNwXZzPr08wMla9Fr0B9XGK6IoRCWBanz6SDX18f6bFE6yavwja1tLQg4Ki37bJoF5S1YYq1Bmk0mN3wWPOTzoqGio7dnIVkV/+Nbz9E7QMdf689haYs29yPcNvY4/SslfT5L33mt07KnHM65pt0rknPW7FuTAFlGcNtbW2GPTRzNk8RUTFcdrvj62aex1l7a5uxP5f1NXOJBiPtFqtxJFldOd8ajQaClJ/4jTAEsv1SmbY/yLpEU5w8lRqjb7HP67CRnO/s61alUhlTOFZYN9m+PQ7jzGh/fz+vN2npbl+3bZ2U7P+Rw4cxwmVi5DNhxKSty5cTmz0yMsivtHy9XjdMkLQt7uoHUEmV+Hu7vInv+4bxFZbdZqhkf2Ubg6xtlfmvWq2iwE6F8htby2pvXxCGHukoAdTr4v5H7Sjz9WW0JK6EwmjSOqSguPJTGOSyLH187YiYqrzpK1q3zAfU3sBPGz1YwGN4pJJkDuX42xqvOCuXEpPmIDCfxfssYjSTujSt9ZjPpK3y+ZE3HpvUfHPcO2Ct9VMA+qzPHtJS4AB4HsAi/v82AN/SWle01vsA7AZNPg4ODg6TgptzHBwcThfcfOPg4HCycDI0Vb8A4Nv8/0LQBCTo4s9OGJ5HT63aPAdKBCDpWBOE4+lQ+FVkQJPc5rjcxPtghKaK8epj+fZuNSa3xdAvT/idBHHUJPxKNNeZGNM0i5kKJ8k+jbuuiZab/CrfE+Pp3SYL+zd6suzZeAfTQjgVJm6C4nZjFuPX8XKGJ2LqbC2Z7cg2g3DCc05Tewsu+9nrsPkJ0nBcfgXdF+W4SOGe17cjx/VhPnweRSjbuZBvketyNAUUhRvoYzeikKKTfb1H0dJCbA5yFCmscNRvNutQ0qlkzTiJtB48cAQA0NM9ZMac5jktnZaIJTMYHI3OtXGEkZ2VFixdjJAjp3uGaL3X3XITAKD15s8AAH703R8AAH7ps78DANj2AtXBO3CAND773vxn+HViMw4dIA1Zf4E0ZF2H6fP5a5YBAJbPI63BEEddw2oDswu0/8N1iljWlnKEmFmXJStX034eISYnw/2R5Xo68+bOx8F3iakT1mt0HzGDcg7MXkAM0uFBLpwrtV+WL0GD9Ql33P2zAIDv/RuxbEvmkKPhoa37qa1D9JvZS+n+udRLjN78jllGy1TqonasP5vYrccfpxpPQY5d7xbQOl9+7lkAwCc/RXWr7rvvPhOxzjZRf9TKMg74c9ZBvXOIjnuBj+l5552Htx6j7I3sEmLbwgX0mwbrlI6VScvWxjXAAnbvyoj+1k9jmB36VNwNF0DHXGp7q11PKDafhKE4k9H2mpqkblZSyyYR6+iVdQ3hICrsatjSuQwA8G4PHasFy0mn+B0uOu1xEWAtDpdN8zA6SPtX6qe+8XNcc8mbjdOMk3KPUwcMDRQKY8JM5Wi1ijTrfiSqHmkG6fce14WS8S8mxlopw3xKXTzN40p0xCG7jKpAmApxw4u5w2nRMIruJ0gsKzW2RJ8k8DzPHHO7HpLZd9bdCEMkLECcZREmIrpOJ7XntuubYdBKpbFug5YzqK2rt7VGQMQE2YyFbFfaarsPaq3H6L9ku8J6hVr0T8KgicYJ/F6jWi0nfiv3uPa+TMRgeZ43hkWeqHCv/Xm5UoPiwdJgFklLzTOeT7RomXgdlZosJ/W9PISsnfK5MP1oNanZ9Ni9O+1JfTxmrlQFKT6eUtw8FSQLSsuyMj5F6xXp+JV9O2oYS3tcyjrjWTvSd7LsGC+GSeKE3P+UUl8AzRXfkI/GWWzcu0ql1C8rpV5WSr3c09NzIs1wcHD4CcHJmnOG+/pPVRMdHBw+IDhZ803YeO+USQcHhw8G3ncoWil1D4CPAfiwjsL4XQAWxxZbBODQeL/XWn8VwFcB0lQdd3vmP/upUd7L8+HxmYFJ8wJTIDROoeRmfOjJPQ+rcVVmU4eadGdMfnuT77KT5fx/cvoCwBiG7kS2ORmmcCrrAyZFkE0e6mTysO8fJ3POmTNvuX7py6/h3HXnAQD2PPgG/XghRWHnNtXQtoS0M36KXt/pOkgbfI0ilYcP0WYKnFNeGqHIesdsD3VwdD0gVmtBB7EMc1uJ1di/fz8AoDzMeiGuQeMxJT1cKpsItUQqfa5LU+PJpiTMBCgXP52hqHf30TIWr1gGAJjVTizHww9uBQBsB2u3Fq4CAPwl10taNJe0La+8Q1lQl159NYa47tbsTXcAAM6p0IPoY08+xm2l7S/gbQTdXFdFN5AOKBLY2kHby5e5HhezKprreN18EbnjPfccBf/9IvXH/nfewmLWhb29kzRrW0p0HIwLVwtpmFQnRTg/fdvHAADfvP97WLiK2MX/eIMcGWdliCF75MFHAAA3XX8DAODiSy8FADz5Mm2fDyVSHbMwwlHlMkddDwUUwWxaT+seYk1FFzs8rrqOan995cffBQBcdvVlOLKVHCS3vL0dAHDLTcQYdjNDt3sHfV9ooX3beN75AIAD+9/BnZ/9NADgoYceAAB89/4fAgBuvO5y6tsC162S2keKNZCsq6hrIBMmdZRxDcF4rwKKvguLZdfV8xK/sZkqQRDmkGfN4tEeGjsbLriS94WOw1CRnSvZjVJzJLnrQD9GBuh8amaGtsEH5+VXduJ04GTON6lck27EsmgUR/TrDZNTYG4iRDYuLnymXg/XOEunRB9Dy1WqITTrzjJNNH+lRmlMelJTjK9XckhDFpYHQeRabI6jZAGpJCOZSmV4nUk3PiBiBCaCsEo2QxV3AzT19qR2HW/PZoxEJxrXMUUs1/gufLIPwjLJnCrrrFarUc0qZipkHfIb+VzeFwpRUUpbw2XrfXRD+jtZpy+ucbLPUbuWl+yjXXMp7nBY5iwKcfs0+kZrWfu8T2XSqLBWtyJMFd/z1UPZh1jtVUR11GqcIZFBGnXNdf/yNJ8pZpdqFdbMFpI6WCGZ6roOX7NDH6LaXfE2Ggac+1RYQEGj0YDvjc9ICuxxkYnVirWP2fHG9ER4X3erSqmbAPwOgFu11nH18H0A7lRKZZRSywGsBvDi+2qZg4ODA8PNOQ4ODqcLbr5xcHB4PzguU6WU+iaATQBmK6W6APxXAPcCyAB4mJ/4ntda/6rW+k2l1L8BeAtEmX/+eK44k4VqcFRgTLmg5Oork/CUP76X2fibei+cSHkmG7VJrMv3JsdYBGHu+AtNYk99NbnD2JjkcsDJ1aFNClNo2/Ewec7r+Nscz2VyQkxyH04ucXp6j9TpmHPmtKbxn25dCs+nqOPmIWISbr/hw9SGVA5f+7dvAQCWrl4PADj7rE4AwBUbaI7p6yP26f7vEpOw5VWqJxXWG1i67BwAwJLl6wAAFY5UvvjyEwCA0So7GxlHUnZ8YvYpm82byOgI16cqshuS55OmSWoAjVaIuclkqT2F5tkYHKb/1y6bz+2gmkdr3iH26ZprqB7Sj+6ntmPkMADgZy4j5q5SqeAg11D61Id+EQBwbJRYn/Yucgxcu5bYrsPsflgeJOZmoFJB6FFEcMG6ZQCAg6+RLquN2whFEcJD7xJjlU4R27b+fDJX2rN7L37+F/4zAOBLX/o72u4iilCPjpAu590j1Oaz1lMfv/kC1YK64ux16B4kxu3wAdJIpdetAABsWEB6nBIzBQ8/S785Zw2t4xzWkdz3o/sxZw657X1y3UbeLh2Hd/ppTm2eRe258kpiX3bs2gUAWJJfAwAYeu4drFzN/7MbVlsv9ctrj78KAFjaTu1Zt4o0ZkNvE8O5Lt2CfbtJQ7Z4IUl2cny1XjCf+vRwF33fzA5bGdbLCPnhAQjC8SPTAoncjs9gJf1qo9+Or021I8o6DFAcpfVedNFVAICvf5/GW88ARar9FI8HrolU5D4eGixidISW6R2hY+kvor4aPHYEJxOn5x5HQXlBVHOJ2beK0Yl4kR6IGRrj2MfHPcXHNzBaaEK1UkeFtXrDFVrf0aN0XrVyrbFmjsjnpI4Ut9hPEbNFdeGEIRBbYKlTyHXiRHPEuhg53sVi0YwjW/djxgSvQxgKW7dSLBbH1I6SMdnLdfDE2dBme2q1WoyJoRYLQ2ProMRJ1a5FVCwWDQMujJkcD2mXuO2NV/tJ1mOfTwJxUpY6WtKuIIic67QWLVuSCRbGxDB4krlg6aXjbJutezsefN+Hz7qnqrBdwn5yLamQj2GFsw58rnEo16xqqODx2C2X2TkvI+5+XEdWWECmTEN2BU0FPnJNzGLVaLu1SnI/I5e/JBsZab89KDU+22c7Hst4EaYylUqZ8W07V46nS38vHPehSmt91zgf/8N7LP/HAP54Sq1wcHBwYLg5x8HB4XTBzTcODg4nCzPW3msMJnxYTH6RmWCp94WpmLKdxM1Obh8m+fR8kuRIapLbC04Fq3HSOvfktW3yJ84ktjml/ZvkPpxujd8ZBs8fRr7tceSzFDn8zGdIn3P0MOmF/FQen7yB9DZDwxRBO9bHGht20urtIubmP33ucwCAvmNcm6q/ghdfI93HkV6qrdPaQaxG6yxiu2a1JHO/e4+R5kQct8rlKtIpigQGXrJuCTRFVBVH7EZHWB8wwgxBA2jvYMe8QWrTsW5qB+ZS5HB/SKxS6wXkwnbFNZsAANkmYg7u/f0/wOx15Hb37++wdmyUGILd/RTJTHVRXZ25rcTozF1E+zLatRfVNPVr82KSnwQldsWaT6xLcwe74RXIDXHphbRPm98i9qWwag3+4DvfAwDMP/9CAMCmJur3d/YRU3Xl+aQDe/4Fct2rh/T9OddvwrWsqcpuJDbtxVeJseo5RhHife8Sq3TeVXSMv/sIMSj9XHFw7eUb0MNuXH/52H0AgIsvvhgAkF9DroNPcW3FLU9T3y7kfe3Kcq0cL8ARUNRVtdAxemkLtXXDteQ2WRyi3/5wD2n6Lr2AmLrdBw6i8ih9du65xJSeNZ/2ZWA/jZV3dxFTt7SFxlZTgfq8XqVjG6Si2nQTsUp2baA4YyXR9TH1DC09r7gD2u5/qUwH5rPb4o69xJAODnMUWLF4TVgPdkMbrVDbG/VBHHqXmNJrL6fjXysRQ7tsxVKcaVBKIZVKm3M4lyMmIR4VD8Oo7hMQaRYF8q5qHctSrWGOY44zUzRfofqGKZrPchm0tNBcViqxK3A+YqFktVILNNTCNjFDIs5polsSV7ZGFWEoTmy0P5rrk0l9pnKNnUF5Gylm2cslat/IyLBhCqSPqszmV5mhb2F9XuAzo8LzcDrlI/Dpt7X6KH9H7VFKdFCDvC+ioaJxNjxM471QyKFWE30XtSmVojZ6zGpLfSqpfSesi1LKsFly/girJmxKihlBSWkSFjJi2PSYc7FcTtZpsh0Gx3PySytmHvkGpc7HsMG17OSYCkMqfZ3Pp1Dlz6TGYk0o75A1fMyyNdh5uuHl+GtmgZRnxm7KyhirsC6rVGEXRL52yXmQy+eNTr3KrGu9wWxeijWijSQLGNUAi97XpI9Ed8jXIVi/ETT4/GtKp8130TGj307VBfnMeahycHBwOEkIdYDR+hwMdNPF9aEHyajglus/BAB45flXcfRdSgm846fIMCBfo4eJnhKlqt141S0AgP5eSrXx6nST2314H1Yuo5SJ/Cz6zeFuMopoztFDi1yYjxxhK+0cTeSSepIJMmjKk/FEPZu8AFaK9NtKmR4umth6trWdLj433bwJnQs4VY5vZhSnmQyWyGzj3W3/AQDYcDE9VOx4+d8BACW+Ufj5Oy/Dq9soZW9RB114OpdvoLZyu5awQcVzj1Dh1qWL6GY3P28+eobpBvitnZQqWDnM7WihC/WcJXSzvZcLLHfVaPmPXU9mEwP9Q9i7g26q5+bpQbRJ08NE6ShdbHNl2u/f//y9AIBvfvtf6fuDI+iu0rE43E3rX9RE6X9pTr9r19T2u5fQQ8zlFRJWH+Vjef6CCyCutOVPkgHF1q10DPe8+hYA4J5LNgEAPI5gzJ9F+/TsNtr22Ws3YsUcegDbs5Me4nZ20z780sfpt48/TIYN5ZAeNktP0kPlpWvWoHTVMgDRA/fofnqI3b6dzEWu/9C1AICwl2+Y2Pq4s5P2raf3EFKz6FhNlP5n36CNV6LBfuCSiI3cbJS4KGgmk7TLTrW0YaRBx+ixZ1+hvspSe1RN7LI5DYeLRPdxqtexg69jxRIaw/kcF/uUvDd+eD7TQGYQExsG2MdIbMjH3jxbBW1VAM96oPXkBp2XCa1UMtPvlShIF4qFuhT/5Yerhs+26/xYZ0sdwjCMFaxNjq/ocy/xvbRjlI1pstnsmIKt8YcWIErpkzkyblwgv7H7St7bdum2CUUu2zTGCME2LJBtyANU/GZbticPUxMZJMj3kbV3lMImx922TD+epbcJYqRSkMpqph0cGAq5krKkH0rpG2lXpaFRqrG9OY+7qphr8MOOGKXwcEDJ6helVCKdDoibayDxud3XIyMjY4o6ixGF/EaOu2zPfs3n82Os/W1DCjuVL26fL2NhIqOQyeJk2ao5ODg4ODg4ODg4ODj8RMIxVQ4ODj9x0GEB4cgVuPe3fgsA8Idf+AIA4ImHiCkY7FuIbBNFyrs5rW7vUTKimLOIUrZeffMFAMArL7wOAOh6h1LMbvzQR7F6HVlj795HaU+H9z4DADhnHUXqpdhvc04i9Rz18+h1zZp1Joq2d+9+AIBiIfHi5cT+SGbDH/8Rtb2riwwjnn/+Ydxy268AALw0MTAPP/oobf8QpZBddc8nAABf+eJ/BwCcvZZS6c67gFKtXn1jBxZyWt8sn1I0vv4AWXr/zKc+CQCol4nle3MWRVMYqAAAF5pJREFURUXDgCKd+UwKV64jBohri+KVPmJvFq+i7T/xCqXOlTlyePZGYsGeO0Z92XOkB1lOVcp3EPPSkSLTh6ZWtqvPUuT6D//kqwCAa68j5ubKq69CVw8xVC1zKPr47JYnAADnXkCpdAFH4feUiI36zmP3AwBu/PD1AIA3tm81kdLn7qdjt2nTJgDA/3HXzwOIbPGfefppen+Yjuk9H6X+eeqpp/C1p8kI45d+kcw+1l1Iphe/8V9/HwCwgAsY33777QCASkkMHFJ45F/+CUBkZb1yBZlpdOSIuTtvDaUjliokvi/XqF8GmO1ZOG++KYg8EWwb53j6n01aRewKvTcpZ8a2Ofl+/prz8M9f/yYAoL/ChXv5jmOE91PY2P08xkM2ZWnOAGevJuazMjrAv+X1c2HnMwlaa9RqtUTBWmBsvyf/TzJXE4nu6VhJQWC232amQoyNGiGXO2A2QtXY5KHOfanq0Cn6LM9lF+pSdDgUAxJuTz3JctRroRkTQmPV2ZZbUspq/LmwmmL5LQWFZ81qM4yQzHvCTIh1uezjCJcysI0t4n0St1uP951tSy4IgsD8xmaIJmI9ZB21Wm1M0V37mMmxtJkqsbiv1+sIgiQDJuffRPbw9jZ930eDJ9z+IUpVzHJ5BZ8ZKl/YQGH0ePsDoz60T+diro3TLHn1VU7/1GwuBD7/mhqRyYrsm/SVHF/ZPzHOkP23LfVHRkYSjBvt3/gaBrsP4+zgmO3zMRQTEulbu8DzYG/fGEt/2/Z+snBMlYODg4ODg4ODg4ODwwnAMVUODg4/ceg+cgB/9aefx4azyKBix5tbAABPPE1W15tuvB67e0kH87X/94sAgOs/fgUA4LPLyGTh2RdfAgD8zN03AwB0mSOnXgueeZLYi9dfp3XMbSd2YUiz/kpRJLG9TQTeFBXraKco4LJleZQ5qqtAkdpNm0jvtXgtRXTTrIFoydNvly8kTc/cm25HfZCtgtnads8W0uNcfRdZq//oqT8DAJx/K+3LmvX02ttL+z93QwW7dhEjdrCbon4Li9S2x//pbwAAl26i/vjER9jQo0TLpYMM3tm5HwCwqJ3YvsvXE3PXdZQZq3nE0Ozlgsod/DrUS/1y0+qzcO5qYs8e/Y+HqYuWUFSz0UOMXLqdTC5+7dO3AgD62fJ488M/wMaLiXF78MnHAQDzX6P2HHmJXj/9K8QcLVtM2xhgM4wCRyVf2r0DS5YRU7IiS1HO+gFigF7pITOTnqPETG5cSKYYiiP6e54i/VDbqMLa2YsAAK8/QZq9RUtovH3m9p8BAOzYRYYm/Yfo+KxaQ9bqTz7zNNrn0piZy2YPq1aSTf/secRybN9N+7J7/5sAgJXr6BjOX0wR58ODffCFsZgA76WpkuK/kRFFchlhW1pb6TgUi/RerOi/88BjONRPrILPWirR7K1dR6zb88/QeZJL0zoP7tkHAPj41RdjpI80gy0cbc+laF8uufhybuGfvue+zShojXq9blg8iaRLVD6u25DouW0tLvqbep01Tl5cj0W/rYVS7FdWRi+eYhtyDqP7XlLjpFQYsV3iR8Isj2FdAmEGqF21qmhOFNJcmLkO+k2lJGybxO0j+/P4OsWoIJVKwfOStuTC8tiFeoUpsnVU8f9tTZUwJbY+MG5KYGu6jMU9fy7HQ5iROHNklyQQXVBkfjB+8e3InMIbw24Jc2Xrs2ztXby9mvs7lUlql4T8LLGBR60uY4qPucqAZVeoi/6Ot9c7SOehn0oaOOSkhIPZfjnW73Is2byoOJTYB1u3lM1mx1jH28dIxs5EbKRSkTGPvQ5hoYyRhnXexc8/+9hM1VLdMVUODg4ODg4ODg4ODg4nAMdUOTg4/MRh1iyFj9+SwnnnkE7nyafJ2W2kTJqq3tFzsa1rPwDAn0uRdyk5+sTDpJNK+/TbI4cpGtacoYhZc1M/Vq+leNXWt0kjdONHScO0eO1tAIC+PtKJSPTt6FHSALW1UdS/++gxE/mP8s6J5Xr2IfpNwLnuzyvSeO14k9zyLrv4epQrA7xe+u7CC/9vAMBf//cfAAB++s57AADPPfYkratObMvKlaQp2vzwfyCbJ8e8Gy8h97sBkMX5nkPEYC2aRdG+gVFibF59YTMAYMP6jaj3EyOV5ojtVnb5e3MnOdfdfMdPAQBWXEkaq7ff3smfU//4DY1yH2mUDg6SC+HRHzwBAPgo654qo9QPz9/3FerLkPr8smuuwbZHvw0A+MxNNwAAfjug/ljPRX6fa6e+3XqUWJ7BNtqXg+8QC3bHx29FjYtcvjGP+v+R54ltmtdJ4+GKq4gx2bKVrM87+NgNcET3lZ2vY1UnMXLrL6UCwWJt/DQXHb7yWirC/OwLtO6drNO67RO349EHvwsA2LWb+vtQDx3L2z9xNwBgztx5AIDCPHKUrIKOQ40LbZZ9DVJHTIzxbJkBitZKEdIxTBWXdRDGQMbw/PnEqA0NUVR6574DADMYzMeiYw4xly+/8iJtB9RXu7ZvAwCsWkZMXrXUQCcXVx7oJ4ZwzTI6droeaWjOGCgF3/fNuRzXAQkqFjOkddIhTWLgnjceo5I8fmWxzK6xG1tA62zJsF6GxW2jbNvt+z6aPPpOdFkNprmEsQrqojVJutGlUinjlR56Sct4YTNLpdHEvrW0tHC7In2SLCssnmgaZZzZhXXjjIUsI6SV7dwmbJMwhYI4+yXHxHYftK217TIFvu+bc8O237Z1cLYbYYVt47UOzf5FrEl93N/K97LPMqa01sbVz7B30i5hEpmpKpaSmqOap1ATZ0Z2/2sI68OaTjF21MyUZmXO4HFaq9bH9I2wenJM38sOXthE089+UlNla9sE8aLjtlOfPa/ZDJmsMwxDc0xsjOeI+l5wTJWDg4ODg4ODg4ODg8MJQE3Vg/2UNEKpHgBFAMemuy3jYDZmXrtmYpsA166pYCa2CXj/7Vqqte482Y05VZjBc84HbVycSszENgGuXVPBibTpjJlzZvB8A3zwxsWphGvX5DET2wSc4nucGfFQBQBKqZe11hdNdztszMR2zcQ2Aa5dU8FMbBMwc9t1KjAT93UmtgmYme2aiW0CXLumgpnYplOFmbqvM7FdM7FNgGvXVDAT2wSc+na59D8HBwcHBwcHBwcHB4cTgHuocnBwcHBwcHBwcHBwOAHMpIeqr053AybATGzXTGwT4No1FczENgEzt12nAjNxX2dim4CZ2a6Z2CbAtWsqmIltOlWYqfs6E9s1E9sEuHZNBTOxTcApbteM0VQ5ODg4ODg4ODg4ODiciZhJTJWDg4ODg4ODg4ODg8MZB/dQ5eDg4ODg4ODg4ODgcAKYEQ9VSqmblFI7lFK7lVK/O01tWKyUelwptV0p9aZS6tf583al1MNKqV382jZN7fOVUq8ppe7n98uVUi9wu76tlEpPQ5talVLfUUq9zf12+XT3l1LqN/j4bVNKfVMplZ2OvlJK/aNSqlsptS322bh9owh/w+N/q1LqgtPcrj/jY7hVKfU9pVRr7Lt7uV07lFIfOVXtOp2YCfMNt2PGzjluvpl0m9x8M/V2uflmetrh5puptWnGzTfcLjfnTK1Np3W+mfaHKqWUD+B/ArgZwNkA7lJKnT0NTakD+E2t9VkALgPweW7H7wJ4VGu9GsCj/H468OsAtsfefxHA/+B29QP4xWlo018DeEBrvQ7A+dy+aesvpdRCAP8ngIu01ucA8AHcienpq38GcJP12UR9czOA1fz3ywD+/jS362EA52itzwOwE8C9AMDj/04A6/k3f8fn6xmLGTTfADN7znHzzXHg5pv33S4330wP3HwzNcyo+QZwc877bNPpnW+01tP6B+ByAA/G3t8L4N4Z0K4fALgBwA4A8/mz+QB2TENbFoEG6IcA3A9AgSpCB+P14WlqUwuAfWCzk9jn09ZfABYCOAigHUDAffWR6eorAMsAbDte3wD4CoC7xlvudLTL+u4TAL7B/yfORQAPArj8dI6zU7DvM3K+4bbMiDnHzTeTbpObb95Hu6zv3HwzfW1z883EbZpx8w1v0805U2yT9d0pn2+mnalCNEgEXfzZtEEptQzARgAvAJirtT4MAPw6Zxqa9FcAfhtAyO87AAxorev8fjr6bAWAHgD/xLT9/1JKNWEa+0tr/S6APwdwAMBhAIMAXsH095Vgor6ZSefALwD4Mf8/k9p1sjAj92mGzTluvpkE3HxzUuDmm2mAm2+Oixk33/A23ZxzYjjl881MeKhS43w2bT7vSqkCgH8H8H9prYemqx2x9nwMQLfW+pX4x+Mserr7LABwAYC/11pvBFDE9KVGAgA4f/c2AMsBLADQBKKdbcy0OgIz4XhCKfUFUIrIN+SjcRabaX03Vcy4fZpJc46bbyYPN9+cYCPcfDMtcPPNpDDj5hvAzTkn1IDTNN/MhIeqLgCLY+8XATg0HQ1RSqVAk803tNbf5Y+PKqXm8/fzAXSf5mZdCeBWpdR+AN8CUeR/BaBVKRXwMtPRZ10AurTWL/D774Amoensr+sB7NNa92itawC+C+AKTH9fCSbqm2k/B5RS9wD4GIC7NXPhM6FdpwAzap9m4Jzj5pvJw8037xNuvpkeuPlm0piJ8w3g5pz3hdM538yEh6qXAKxm95I0SDh23+luhFJKAfgHANu11n8Z++o+APfw//eA8pBPG7TW92qtF2mtl4H65jGt9d0AHgfwyWls1xEAB5VSa/mjDwN4C9PbXwcAXKaUyvPxlDZNa1/FMFHf3Afgs+yQcxmAQaHQTweUUjcB+B0At2qtR6323qmUyiilloNEpi+ernadIsyI+QaYmXOOm2+mBDffvA+4+cbNNwI330wZbs6ZIk77fHMqhGJT/QNwC8iVYw+AL0xTG64CUX9bAWzhv1tA+b2PAtjFr+3T2E+bANzP/6/gAbAbwP8GkJmG9mwA8DL32fcBtE13fwH4QwBvA9gG4GsAMtPRVwC+Ccp5roEiIr84Ud+AaOj/yeP/DZCzz+ls125QbrGM+y/Hlv8Ct2sHgJtP9xg7RX0w7fMNt2NGzzluvplUm9x8M/V2uflmetrh5puptWfGzTfcLjfnTK1Np3W+UbxiBwcHBwcHBwcHBwcHh/eBmZD+5+Dg4ODg4ODg4ODgcMbCPVQ5ODg4ODg4ODg4ODicANxDlYODg4ODg4ODg4ODwwnAPVQ5ODg4ODg4ODg4ODicANxDlYODg4ODg4ODg4ODwwnAPVSd4VBKbVJKXTHBdzcopV5RSr3Brx+KfXchf75bKfU3XPMASqmfVkq9qZQKlVIXxZZfppQqKaW28N+XJ9jmHymlrj+B/ZmvlLqf/+9QSj2ulBpRSn3JWu4Rri4u73NKqSeVUj6/v0cptYv/7sE4UEp9O7Y/+5VSW6a6XQeHnyScrvmGvztPKbWZv39DKZUdZ5snbb7h9/dyG3copT7Cn6WVUk+pqLjmpH43zrb+QSn1ulJqq1LqO0qpgvX9J5VSWvpBKXWuUuqf3+++OTh8EHAa73Hujt0PbOHvN4yzzTN+zlFK/ZxSqie2r5/jzzuVUg+8331zwMyoU+X+TsiX/w8A/NYE320EsID/PwfAu7HvXgRwOah+wI/BHv0AzgKwFsATiNUSALAMwLbTsD9/BuA2/r8JVFvjVwF8yVruHsRqfgD4PIBf5//bAezl1zb+v+042/0LAP9lqtt1f+7vJ+nvNM43Aag+zPn8vgOAfwr2Jz7fnA3gdVDdl+Wg+iU+f/dfAdw91d9Z22qJ/f+XAH439r4ZwFMAnrf64REAS6b7uLs/9zddf6drzrHWey6Avadof6Z9zgHwc/a9TWy5fwJw5XQf9zP1zzFVMxRKqc9ydOF1pdTXlFIfV0q9oJR6jdmSuUqpZaAb/9/gaMPV8XVorV/TWh/it28CyCqqHj0fdLJt1nQW/QuA2/k327XWO06g3f+slPok/79fKfVFpdSL/LeKP1+plHpeKfUSR31GYqu4A8AD3Jai1voZAOVxNnUfgLti7+9GVL37IwAe1lr3aa37ATwM4Kb3aLMC8ClQ4bipbtfB4YzHDJxvbgSwVWv9Oi/Xq7VujNPukzbfALgNwLe01hWt9T5Q0chL+Lvvg+aYqf4u3j9D3B4FIAcqxCr4fwD8KcbOOT8EcOc4/ePgcEZjBs45cdwFvh8Yp90flDlnItjbdZgC3EPVDIRSaj2o0vOHtNbnA/h1AM8AuExrvRHAtwD8ttZ6P4AvA/gfWusNWuun32O1dwB4TWtdAbAQVG1a0MWfHQ/LecJ70p7c3gNDWutLAHwJwF/xZ38N4K+11hcDkAkRSqnlAPq5je8JfljKKErVSwNYwf0B3peDscWPt39XAziqtd41le0eb1kHhzMBM3S+WQNAK6UeVEq9+v+3d3chVpRxHMe/vxQMwV4tUjQsSqJIsC1SKMMK7zIsSiOS6qaikDIKgoIwuujGCLtLCm8MUzI0JQMpi8jKSnN7BcGLDSOtFEmhgn8XzzPtbHvOnjk7vswefh+QM2dmnvPMLJyf+7zMs5Kerng7dfJmpNzoB64bRbkhJL0B/AJcAazK+2YD0yPi3RZFdpHyyaxnNDRzyhbTplHVwpjLnOzO0rTA6aX9zpwa3KhqppuBDRFxCCAifgemAdsk7QWeAq6q+mE5wF4CHip2tTitUw/GAdI0lNnAcmCtpLMqVP9m6XVu3p4LrM/ba0vnTgEOVvjMwq/AVGAycLi0v9v7a9sr1aFes17QxLwZT5qCe29+XSTplgrV18mbtteZR8n+kjSpm3LDdkY8QMqO74HFks4AXgaebHM/zhrrRU3MnOKzrgeORUR/xerHVObk3ZuBGRExizTFeE2piDOnBjeqmkkM/4KsIs2BvZoUHMMe2m75QdI0YCOwNCL25d0DpAArTKPUm9JKHmb+LW9/SZrDO7PCJUSb7VaOU/G+sjNzmf+XGwDKPS9t70/pQdA7gHWjqNesFzQub3KZHRFxKCKOAVuBaypcQp286ZQbE0jT80adN/DfL0vrSD3rk0jPgnwoaT8wB9ikwQfonTXWi5qYOYUldNfJOtYyp5hOXYx6vQb0lU535tTgRlUzbQfuLqaYSToPOBv4OR8vr2Z3lPQf8zCSzgG2AM9ExCfF/og4AByVNCfPtV3K4PNILSmtClOsrHcpcDlpAYhOFpdeP83bO8lfboY+L/ATaUGMjvJ1XwTsz1PyxmlwdbBtwAJJ5yqt1Lcg72vlVuCHiBhoc7xtvVXONxsDGpc3pO/rLEkTc8fHTcB3Fe6lTt5sApbkZzIuIWXc5/nezgcORsTf3ZQrKCmetxBwGyl3jkTE5IiYEREz8rUujIhduehM0jQgs17SxMwhjxzfRZp+WNWYypz8fkrp1IWkUayCM6cGN6oaKCK+BV4EdkjaQ1q15XlgvaSPgUOl0zeTpsbslnSjpIWSVuRjjwGXAc9pcOnMC/OxR4DVpAcc95FWx0HSIkkDpOHrLZKKxsg84Jt8PRuAh/OQPZJWa+hyyOXemgmSPiPNmX4i73scWC7pc9Kw9pF8338C+4ogyJ+9P9///ZIGJF2ZD/UBOyPin/z+fdI0oWIqwQvAF/nfihGutWWvVBf1mo1pTcyb3FGykvT93Q18FRFbcpmTkjf55/AWqfH2HvBoaXGM+aTRsq7KSdoqaSqpZ35Nntq0N19H8XMbyXzSL41mPaOJmZPNAwYiYkiHcQ9mzjKlZeX3AMtIqwEWnDk1KC2MYnZiSNoMrIyID3LD5Npi3nTpnInA8YgISUuAeyLi9nxsEdAXEc92qOcVYFNEbM/vZwPLI+K+E39X7es1s9PnFObN26Te8B+7KVeHpAnADuAGd+KYNUMvZ06u5yPS0u1/nMx6etX4zqeYVSPpdWAiaRWfkfQBr+Yh6cPAg8WBiNioaivr9ZcbNhHxtdIf7B0XLZZePoH63aAyO/1OVd4orS76TpSWYe4ip+q4mPR3ZdygMmuAXs8cSReQGoxuUI2SR6rMzMzMzMxq8DNVZmZmZmZmNbhRZWZmZmZmVoMbVWZmZmZmZjW4UWVmZmZmZlaDG1VmZmZmZmY1/AuoH4C2MycIHwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sample_test = test_df.head(18)\n", - "sample_test.head()\n", - "plt.figure(figsize=(12, 24))\n", - "for index, row in sample_test.iterrows():\n", - " filename = row['filename']\n", - " category = row['category']\n", - " probability = row['probability']\n", - " img = load_img(DATA_PATH + \"/validation/\"+filename, target_size=IMAGE_SIZE)\n", - " plt.subplot(6, 3, index+1)\n", - " plt.imshow(img)\n", - " plt.xlabel(filename + '(' + \"{}\".format(category) + ')' '(' + \"{}\".format(round(probability, 2)) + ')')\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/demos/image-classification/02-create_pipeline.ipynb b/demos/image-classification/02-create_pipeline.ipynb new file mode 100644 index 00000000..9260475a --- /dev/null +++ b/demos/image-classification/02-create_pipeline.ipynb @@ -0,0 +1,465 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using MLRUN with MpiJobs (Horovod)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we'll demonstrate how to create a pipeline that comprises of the following steps:\n", + "* loading data\n", + "* labeling\n", + "* Training\n", + "* Deploying the model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: ignore\n", + "import nuclio" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from mlrun import new_function, code_to_function, get_run_db, mount_v3io, mlconf, new_model_server, v3io_cred\n", + "import os\n", + "# for local DB path use '/User/mlrun' instead \n", + "mlconf.dbpath = '/User/mlrun-db'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "base_dir = os.getcwd()\n", + "images_path = os.path.join(base_dir, 'images')\n", + "model_name = 'cat_vs_dog_v1'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import and define ML functions for our pipeline (utils, training, serving)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# data import and labeling \n", + "utilsfn = code_to_function(name='file_utils', filename='./utils.py',\n", + " image='mlrun/mlrun:latest')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# distributed training function, using 4 containers and optionally GPUs\n", + "# update the code dir to the location of the code file\n", + "code_dir = os.getcwd()\n", + "HOROVOD_FILE = os.path.join(code_dir, 'horovod-training.py')\n", + "\n", + "image = 'mlrun/mpijob:latest'\n", + "trainer_fn = new_function(name='horovod-trainer',\n", + " command='mpijob://{}'.format(HOROVOD_FILE), \n", + " image=image,\n", + " interactive=True)\n", + "trainer_fn.apply(mount_v3io())\n", + "trainer_fn.spec.replicas = 4\n", + "#trainer.gpus(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inference function\n", + "inference_function = code_to_function(name='tf-image-serving-pipe', \n", + " filename='./nuclio-serving-tf-images.ipynb',\n", + " runtime='nuclio')\n", + "inference_function.with_http(workers=2).add_volume('User','~/')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create and run the pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import kfp\n", + "from kfp import dsl" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "artifacts_path = 'v3io:///users/${V3IO_USERNAME}/mlrun/kfp/{{workflow.uid}}/'" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "@dsl.pipeline(\n", + " name='Image classification training pipeline',\n", + " description='Shows how to use mlrun with horovod.'\n", + ")\n", + "def hvd_pipeline(\n", + " images_path = '/User/mlrun/examples/images', \n", + " source_dir='/User/mlrun/examples/images/cats_n_dogs'\n", + "):\n", + " open_archive = utilsfn.as_step(name='download', handler='open_archive',\n", + " out_path=images_path, \n", + " params={'target_dir': images_path},\n", + " inputs={'archive_url': 'http://iguazio-sample-data.s3.amazonaws.com/catsndogs.zip'},\n", + " outputs=['content']).apply(mount_v3io())\n", + " \n", + " label = utilsfn.as_step(name='label', handler='categories_map_builder',\n", + " out_path=images_path,\n", + " params={'source_dir': source_dir}, \n", + " outputs=['categories_map', 'file_categories']).apply(mount_v3io()).after(open_archive)\n", + " \n", + " train = trainer_fn.as_step(name='train', \n", + " params = {'epochs' : 8,\n", + " 'checkpoints_dir' : '/User/mlrun/examples/checkpoints',\n", + " 'model_path' : '/User/mlrun/examples/models/cats_n_dogs.hd5'},\n", + " inputs = {'data_path' : source_dir,\n", + " 'categories_map': label.outputs['categories_map'],\n", + " 'file_categories': label.outputs['file_categories']}, \n", + " out_path=images_path, \n", + " outputs=['model']).apply(v3io_cred())\n", + "\n", + " # deploy the model using nuclio functions\n", + " deploy = inference_function.deploy_step(project = 'horovod', models={'cat_vs_dog_v1': train.outputs['model']})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# for debug generate the pipeline dsl\n", + "#kfp.compiler.Compiler().compile(hvd_pipeline, 'hvd_pipeline.yaml')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Experiment link here" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run link here" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "client = kfp.Client(namespace='default-tenant')\n", + "arguments = {}\n", + "run_result = client.create_run_from_pipeline_func(hvd_pipeline, arguments, experiment_name='horovod1')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# connect to the run db \n", + "db = get_run_db().connect()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
uiditerstartstatenamelabelsinputsparametersresultsartifacts
\n", + "
\n", + "
\n", + "
\n", + " Title\n", + " ×\n", + "
\n", + " \n", + "
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# query the DB with filter on workflow ID (only show this workflow) \n", + "db.list_runs('', labels=f'workflow={run_result.run_id}').show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/demos/image-classification/02-infer.ipynb b/demos/image-classification/02-infer.ipynb deleted file mode 100644 index 446befec..00000000 --- a/demos/image-classification/02-infer.ipynb +++ /dev/null @@ -1,585 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Create and Test a Model-Serving Nuclio Function\n", - "\n", - "This notebook demonstrates how to write an inference server, test it, and turn it into an auto-scaling Nuclio serverless function.\n", - "\n", - "- [Initialize Nuclio Emulation, Environment Variables, and Configuration](#image-class-infer-init-func)\n", - "- [Create and Load the Model and Set Up the Function Handler](#image-class-infer-create-n-load-model-n-set-up-func-handler)\n", - "- [Trigger the Function](#image-class-infer-func-trigger)\n", - "- [Prepare to Deploy the Function](#image-class-infer-func-deploy-prepare)\n", - "- [Deploy the Function](#image-class-infer-func-deploy)\n", - "- [Test the Function](#image-class-infer-func-test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Initialize Nuclio Emulation, Environment Variables, and Configuration\n", - "\n", - "> **Note:** Use `# nuclio: ignore` for sections that dont need to be copied to the function." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: ignore\n", - "import nuclio\n", - "import random\n", - "import matplotlib.pyplot as plt\n", - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting 'MODEL_PATH' environment variable\n", - "%nuclio: setting 'MODEL_FILE' environment variable\n", - "%nuclio: setting 'CLASSES_MAP' environment variable\n", - "%nuclio: setting 'version' environment variable\n", - "%nuclio: setting 'IMAGE_WIDTH' environment variable\n", - "%nuclio: setting 'IMAGE_HEIGHT' environment variable\n", - "%nuclio: setting 'TF_CPP_MIN_LOG_LEVEL' environment variable\n" - ] - } - ], - "source": [ - "# DB Config\n", - "%nuclio env %v3io\n", - "\n", - "# Function Config\n", - "%nuclio env -c MODEL_PATH=/model/\n", - "%nuclio env -l MODEL_PATH=./model/\n", - "%nuclio env MODEL_FILE = cats_dogs.hd5\n", - "%nuclio env CLASSES_MAP = prediction_classes_map.json\n", - "%nuclio env version = 1.0\n", - "\n", - "# Input Config\n", - "%nuclio env IMAGE_WIDTH = 128\n", - "%nuclio env IMAGE_HEIGHT = 128\n", - "\n", - "# TF silence deprecated warning\n", - "%nuclio env TF_CPP_MIN_LOG_LEVEL = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "%%nuclio cmd -c\n", - "pip install git+https://github.com/fchollet/keras\n", - "pip install tensorflow \n", - "pip install numpy\n", - "pip install requests\n", - "pip install pillow" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting spec.build.baseImage to 'python:3.6-jessie'\n" - ] - } - ], - "source": [ - "%%nuclio config \n", - "spec.build.baseImage = \"python:3.6-jessie\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mounting volume path /model as ~/demos/image-classification/model\n" - ] - } - ], - "source": [ - "%nuclio mount /model ~/demos/image-classification/model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Create and Load the Model and Set Up the Function Handler" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "model_file = os.path.join(environ['MODEL_PATH'], environ['MODEL_FILE'])\n", - "prediction_map_file = os.path.join(environ['MODEL_PATH'], environ['CLASSES_MAP'])\n", - "\n", - "# Set image parameters\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "# load model\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Trigger the Function" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Logging before flag parsing goes to stderr.\n", - "W0918 10:47:42.093900 140119355299648 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2273: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.\n", - "\n", - "W0918 10:47:42.146973 140119355299648 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4055: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n", - "\n", - "W0918 10:47:43.388319 140119355299648 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/optimizers.py:856: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n", - "\n", - "W0918 10:47:43.422879 140119355299648 deprecation.py:323] From /User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py:180: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.where in 2.0, which has the same broadcast rule as np.where\n", - "W0918 10:47:44.969989 140119355299648 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:416: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", - "\n" - ] - } - ], - "source": [ - "# nuclio: ignore\n", - "init_context(context)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Python> 2019-09-18 10:47:45,650 [info] Downloaded file: {'url': 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/dog.939.jpg'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0918 10:47:45.650389 140119355299648 logger.py:100] Downloaded file\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\"class\": \"dog\", \"dog-probability\": 1.0}\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD7CAYAAABqkiE2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9ebwcV3Un/r219fr67e9JT4slWbJlecHGC8aAMWFNICyZ4MmQsIQMzI+QyUoGQiaZ3/x+k0kyMx+SQCYEBkJMMAGTOJCFLZiATTBeMGBbXiVZlvT2rfeluqru/HHOuXW7+8kGG080H/X5p9/rrrp169ats5/vUVprDGlIQzp7yfmXnsCQhjSkf1kaMoEhDekspyETGNKQznIaMoEhDekspyETGNKQznIaMoEhDeksp2eMCSilXqGUelgpdUQp9Z5n6jpDGtKQnh6pZyJPQCnlAngEwEsBnAJwF4B/o7V+4Id+sSENaUhPi7xnaNyrABzRWh8DAKXUpwC8BsCWTMDzA+1n8lCOApgnKYeUFAUFAHAcS2lRin8DhIkp/k5rDa2SnnOVssZKugCAQoHH1V0eCVBGMVLylRlfw7qOME7+cKzvkiQx00zkOJmbuTnAUW7P+Eo5SJI4vX4PaQwqbRop/5Y/0vPSca0z+o4/PfvvHy8dRNYZ1hKovrV64jkOXkZv8Zs8O3umruuZOegt1tv16PckjnvmkyRJOm8mOm+rdYa5Bo0x+FuSpHtBruE4vWNpne7ZreZqr5XsT7mG4rF0ogfmbZ9rr1r/tez3Qahcbq5praf7x3ummMAOACet/08BeI59gFLq7QDeDgB+Jod9lz4fmUwGsk6ZTI4m6AYAgGw2C3kR5IYdx0HMD9x16aWK4xhd1aBzPTrO90r0f+xChfMAgKuuoHHz8SIclaXxQNdUCCA8pxu16RMRjeV6UDFPskvXzrk+4oh+bzeaNIbnotlp8834AICIX/LYVcgFIzREt8v3m0Gz2ZS16VlMrTUUMj2/RVFk7l0etOu6ZqNFPB+becpv5tPVA785jmPOlTWFzpjrePyimY2otblGHHd65p0kycActdZwrXuwf7P/lutESMcYH58AAARBFp02rVuj0aJ1cWJMTNDv1Wq1554ajQZ83+cL0FybzeYTvqRyfXvN5LgwDAEAvu8jDOkeMplMz73HcYxcjvaTPON2JzRjyHf2uXKtgPdLt9vdcr3lOFmXWDvI5/M9ayrndbtdc59/ffOdj2MLeqaYwCD76hMFWusPA/gwAORHxrXv+0iSBBMTUwCAKOJNqWiKm5ubGB0dp8F5E3W7XYsT0416noewTef4WXq5VSLHxxhh5qL5eeeyBUDLBqHPRr2DDD8IWXDN10wSAHxuMVegcVttRMwQNEv4JAF8nx5uaDg3M68tXDH2pujflJ7nIY7Sv+V++19q2QBAurGEsch5vTQ4D60VHEckrsPjpy+mvADCIFqtVvqCoZfxaK3NRpVnZktPIaWU+V3ONQzCSaVxp0NrFHaSgTXSSYT19XU+jpiRrGkQBGbcwKc9EYYhWq2WmSdAL7UZr0+i2szUMEcAxWKx51py3sjICNptEgKNBgkl5bg958pxtiCwrxUmXXTDXkbpOI55Li5rDJ7nb6kxyPzlGZyOnikmcArALuv/nQAWTndwohOzmcrlMgAgxy+Y4kXL5XIIApLehgPGcY8UBGixIhZILUWLO1KksRxXoRuV+Zq0ccOONlLfUTRWPp+1Nqri8fnBdEIErJaKpHe0hhfQeLFwF63heawBxDQPT9Q+1zESRC6TJIl5+eQF6Apj0cowAfuFtzUi+c1mJkD68m/1osVOusm3Gnfg+DgekExJkliMoZchO47TI5FkDHm2IWtZcRxjdHQUAMyLmUDuKTZzk+tkgpzRGMVEyOXyKBRo3M3NTQDA2toanddpplI5TPeO7BlbsvYzVnsNtlK15cWV+5P7rVarWzI7+U72stbaMFHZ17YmJsfJvfeaILRG3Tg2Y8j1ZSzP8wb2RD89U9GBuwAcUErtVUoFAH4KwN8+Q9ca0pCG9DToGdEEtNaRUuoXAHwJgAvgz7TWh097fKIRhiE8zzNcTuw6zar8yMjIAKfM5XKo1+sAYKTAwsICdmw7BwBQa5J62GqROpYNRtBuEN9bWiZ1YWpuxHDPsMuS3QGiuFe13SxX6JpBBn6WuHNL7H+L4ddY/c5ms1A8zxarp36GzvMDDzrp5b/5fB6VSoXPzfMn/RbHMTJFkmSiWo6Pjxu1V9YjiiIj3WzpDZCksv0mAOAEAUTTEU3DdbyB44SUUgNSxfd99tcAEUt2oW63a6SmrLHrughZw1Gs+XiOh1qd1k0kX5tV/+JIIX3uXdEIYiMZR0tkInY6LXS7tGfabfpNTMvx8XE8/PDDPCdas9HRUTOurGOpVBrQAGwNRkyrHTt2AAA2NjbMPpWxZF6e5xk7Xe5pY7PcY+LJ8TMzMwBg9rKYPbSm4qtJNbB+R6znuQP+JPmt0+mcxhRM6ZkyB6C1/jyAzz9T4w9pSEP64dAzxgR+EFKKOKPjOKndxw4810ntJeF2toSSv4WLjoyMoLxO7ocQdHwuT/am4wA6ISlXqRD3Xw8agJIIA3HPZquGmCMAErUzXl2/i4118iuMjY2Z30R6ZvKkkZQrFTO3ycnJ3jFaXXgBOZTknnTSggL7NZJe7zmQSiSRus1mc8Dzbq9Hvxfa1rLkM4618XXIelPUQcbr9TnYmsZWUYp+b7vjOOb6tuNKhu/1E9D1W+xnyebp/zjSyOdprRpJy4yRy7JTtis2fgLfD/heac/UarQnVlZWrfCiNusnElqiCp1Op8eWtu9lfHwcu3aRm0t8DvY99Xv4baeoaAtRFA0cZ2uzojlo3RkYIyU94FzsJqnmIHMSp2Q+nzf+ltPRMG14SEM6y+mM0AQAZbzXIyPE9atVluzFlHPWajUAKZfO5XIolSgHQOy60dFRVDqkCayuUKrCgYOXAgAqlTVkHRpPhKxOQkxMkl2pQdyzNJYz9qfY7opDf9VqFcUiSRqTBwAgQW/oLFcqwWF7u1InO77TTENSrk9/S4jJ9/0BO9S2o+U78Z4rpbYMZ/V7+0XTEK3FnqMbpFGQdrtj5iGJL+k8lPnNDg3KtVM7GLy2qQbT75ug6+b4R/YJaC1RVzgeR4A027bdCK0WzU3yBHSijAYg0rNSXTfXkHsVCRiGofGe53I0/uLiovHByH2WSiUTnbLzJgCgVqulkQv+LZPJQOvetZLrbBUe9TzP/G6HMWX9Ut9HqlH1P+PYigSYSIYTDVxftJxut4vV1VU8EZ0ZTEClTqf+eKdsqDAMUShQgo0dnpLFFMfg0tISVhaO0N/rlBg0MkZJUp6agp/l2H2XrrO8vIKZWdo03XTvWtQbLhsfH0/DNR474TzXqF+i+pVKpYFkkbFZYlhxHKNcbfF90W/l8mKPg6p/DQoF2uziGMzlcgP5AUqpHgYJpOaD67pmE8tcPXjmeLl2kiRmI8nxsjmz2ZRpyDF2wpbj9DrV7PnY48v1+52YAL2cQPpyT5RSVVbGgHaM80yShbJZD648DyWOXnpOrWYHyHHimB+ZexMzQF6YpaUlcy35Tq5pM125P3Jm03EjIyM9v0VRZJ6VrJXv+4bp2yE/WQf5TieSd9G7lkBvGFOee5D3zHdyLVnjTCZj9sLpaGgODGlIZzmdEZqAUoDnK8RxYhw3Ihw6oUi+Atw2J9iwdGvrAComSeA2iYtHa4fhNZcBAJPsKDr1yKMAgIMXjyFxidt2PeLIj7UPYo45b4bzmQpdD64m7SB0iKMmms5zlAc/YO4sJoWOkGWVOcfmTBx1EdWJO0+WaKyEkyYT5WC20JsYFOTygCMaCR3X4vtF4KE4QpJxrUFhz/HJvdhYoZ/vv/9uAMCllx6E57V6xrXTX0W6mYQSpaA1HTcyYksLun6pJKmo9G0YhgPhQ6VU6hAEawduKskkw1ry+n3HgZvQgA0TFsya5J+pse0AYCXhROh0RDWnNR4dLWFikuZ78iSZfFGs0GzRs6rV2bnI+8RxM9gsk3lZzFN4b985h8wcV1ZoIYu5KSNBYw4Xe056LyJtZ2ZnAZD2eWLhFJ1bGoFNq6urcH1ee17Peq1pksRSCQ/zndESui2+31TLMmngnmP2ouuz1hw7yAW0XsZpyHvfVY4xQ09HQ01gSEM6y+nM0ARAtqPnOT2OL6A32SUIiGd1OiRBMlkH3TbZ4GscFlxfPQEFDhvWyJ4LE+Kcq4snsX03+Q46UgSiFJbXSNvYN8d1C80GkjjsOdcPiMNGUWTmJvZXFEWpjeylKahhlBawAGn4a3RiEklHnEDE4WcmprGyTmmuHvPmHNekKKUQaZIS9x8mP8cn/vJ27N5J0my8RNeuNkLk2P/X79iy/7ZDiv0pq1uVltt1GUJ2Crc5t68aUGs9kFOvtYbDhV0SOm23Q5MUk5MMKSbXdY1DWBx5tVrNzFukfRzHJulG5ra8TBphGIbGZl/lNZ6cnDRSf2xi3FxLzoliesbiWB0dHTXrkGEbe21jAx5rPctLpE2Y/H/lmipS26nX7/NyHMfY7OITcBwJFWuAHY9Sdeq5aRpwl/eO9pyBMK39PJ8MLuCMYAKJJmeR6/rIBL1xaHsBE49NBZ8+o04FiGiDVMv08KBDNNibLA/BdWmxlhaOY27XgZ5rt7shTs6TR3hqjDblRJAF71MkkcSXYebxROWdtpNOVDNfnIsck280GkCnVy3cWNtEzB5vP8vXRHrvX/nKtwAADx4hJrBj93lotWj8cXZOJY6LJOnN6LNjyv1zhOcNeJ+fiGz1VMi+zzgZLF+Vl8JUBUYRqnVi3IGfMd/NzGyjc5Pel88+V65jM2LbATbgMJPsw3bbvBx5diC7nocMMxDxnsdxjKmpKT6O5iNCqdPpmJd0YZH2WrfbNSq8ZhXdVvclciDLUSqVzDxMfohVhdnPDLROrMgP7yU/Y+VxpFWP/XUkdgTBOFRPQ0NzYEhDOsvpjNAEoEXCupYjhLicqHv1ehNRLOEpqXNvIGmRehd1OCsrbJpy3sBn7siOqKhTR4a1CY8dOcuLFaiErvHgI6S2X34ohyzH8bsNOjdbIM5qx+Jt51h/ZZfruoZR1+qkreS5mjFRMbbN7AQAzC+yM7I4Ao81gTCKe877m5u/iG6XJM6uXefRoM4oAtYsVlaPAwCe/4JDcKzQE61j1DNXIJU4rS2qy6Io6qlws+9pq3vfytywKzptTU4ozYxLK+pEMoad3tLZKIp6tCuA9oSEUe0KQDEX5FzZO3v37k3rLLjKM4ZGm0OIkzMUQg7DEOA1XV3f7LmnSqVq5jE1NWOuucZOxe3b5wDAmC7tdtvK8Zeah46Zk10Snu5xcl5K9qbWEYKgtzqw3W6bEnXRDjzP6QmlA2kWZK1WG4YIhzSkIT0xnRGagAZlRrmua0muXhs1CAIkDoOEMHxYxnURshMwy/ninSiBklAYn5s1NfUZ1KrE4T1FmkAmnzPJ7Buc6NPRLuImSZWm0QTI42bbxfIZBEGKSmOh00iVnCQyiY+i1Wrh8SWy7bM5uqdqpwvfo79XGBzjps98AQAwOTGKHSxpJrdTiGtto4OVzQ0AwOVXHKR7ctoD0lg+u93uACKN7dswqDa8dvbvUkdh01YgG0qnuAb9Y9gkfoIUzi1dU7Fl7Vr/fgQipZTJ3++vn7e/k2uvrKyY7ME0Q7KdIv6005CiaCTyOT09bdZFrinzaTab2LaNfAcCaGKvo/wt18nlSkYjsR2ydkKSPYbv+2bvCDaC7/tmbqmG5g74dmSNG41GTwbnVnRGMAGllEF1ESQVAZ6Qm8tms+hohhzjAH3Y3ESGC0M6jqhGPuSWw5BjvaJOesDmJj0sX9GmKI0UEMes/rJZ0O4mGM/QuGOjDIDBalYQBD1lmgAtuIE5U4PKlWwCgRfTWsNl5KK1Mm2sfH4Chx9+BABw223fpnsukpNqZGI7Dh3YS4NxmXFlcwHNGjGBiw9dTXOM1wZSSuXaruumIBSWx77foaSUshxTYg6kwBbiCLMdc6Y81u/NsgMGC3G01kjQC9xBwBrsJOz2zjuKooFMvTiOB+4F6E2VBdJoQi6XMy96K0rTuyWO32GzwPFclLjYTH5b3ywPzCPDz3hqZhYxly37XqZnDnbWp+yNVrtm5iFkw5YZABPOeKzXGgYERRCRHMdBNpPvWdt2p26YpnwnTCObzf6LgYoMaUhD+r+EzghNACBpEAQBXKcX4FFUGd/PIG4RZ4+ZS7teHitL5FibGie1rVbfwLN2MqhIjUI5LueLr2820dogybtzGx1fbigoBhAZyVK8+PC9K7jiUvq9kxA2o5+Q+bC2uYlzdu+muTGD7bRCdDvskBmjbLLN8iq8LH2X5aKVLmcEOnoCj6+RQ+m733kIANCqHofLZsn+HfsBAJccpM9sxseFUxcBAOa5KOlIpoKgxE63LudNJEDMjq02S3OR3NVqdSAP3VMeVF8BjKMd5LjARxxVgWQTOj68oLcewvEypmCnVhMsPc4O9P20zsPKJdDgbDY/zZnv8r0LPJvRHBwF10udsjTHFOtQqNVqgaOL5jdxuFXqNVTYyVoskoSubG4OgNS2m6njTkKDJjypPDgOzWmTS8ld5ZkckEyuF+iz0e4MALZq5cPPFHruBWFo1Hujwrfp2pl8LnXAWs9V5tQKO/xbBrEAjLBmvI2zGtfX142mczoaagJDGtJZTmeEJiBll51Ox2gCjtNr42itTagjiVIbRxw+zWYK9OBxqt3e2fMBACurpC34DQdtPteTUt5sF92WlHKyrZ90sFkhiTA5QVJf6gRKXgGVOnNgxbDl+REkOQYHdTnzbayEpWVKQhnljDSd0L0cP34U937nfgDADIebmu0OCgFJkzlOWNm/jfwA27fNoLFOc2yz1MhlPZyze6e5Z4BgqRKuYRDbVJxZruua4+wEon5ocrsEth9G2wYJsWG3B5B/rbBgf4KS1hoBS1tTXTk2Zuz3/iQxO0tRQoutVstoH/0gIDIekNrlrusaG1mecRAEA+sRhuGAhiHr2Gg0zHEyvu0kFo3AaEgWGnT6LMo962avmf23fS/965ckyYCPZCvfzqlTp8zx2b4szH4aagJDGtJZTs9IG7IflLKFkt510ZVwXR9JLKm+vbnhzWbbVKfF7OGdGMnh+MPkSd+5nbjz0uIj6HKNwXiREibQYenoZ1Frkj2nsgLXvIZ2i+2zhOy1Vk3BN/DfHN7JEiceGyuh0yJb+fnPuxIAMLd9ElMs7ZGj31SSwSMPkvRZm6fvHnrwPgDAefu34+XPfgkA4Bu3fRMAcO6eC7BjhuCrds7RZ5vt2Gq1AmeCpMmdj5EP4Rvf+RZ+4vUvpXsoE9efHCtgvdZbMWaH6PrDdXYYVqQ+Jbn0Qo2HUXqcnf4rx6TwY72agC21RHqOjIwg6VNAu92ukdR2rT5Ann3RALfqqyDXXl5eNueKVLaTnaR2QORet9u1cvC7Zr4itfvDdaVSaSAZKYqiHslv/2bDs6f3mUZN7BBrf3TAXoN+KDF7Te3wr518ZK+fPf7n/u7Ob2utr0AfnRHmgIBP+H6AZkPANgQsgphAPp83RT+uK5s5MSpirZ7iuHUZXKLN2Wd+zIyk20KeM/9qITkNfa3QjSWjizaP42ahJeRi1DZWYaOsQQ3++je+AwBYX13Hjp20ya+6jkwQpXP4h89Rie/uGapXcB1y0p276xzc9c/026t/9NUAgOc99yVYXqbwZa1M8yiOEGOZ2QEcW6Ny6E6L7jOXiZH1uUhIHEr11gBoxVZ5AmlILwUJkWzMbpSkL3VHHE+DhUOy6ZrNphXX7u2SJM5eoDe27vq9GWy+7/cwCXsM+8Xf2KCQaKfTMUxAMvTkHu052ghN4uQUxmczRDu7LuzLuJT1q9VqZlxBHyoWiwPmiIRHc7mcAZiRudomiI0Q3c9AxIyp1WpWD4oUOai/KGurfA+b+hlJPw3NgSEN6SynM0ITSDRVOiWJnenWC5PkOB7YV2gw6ZvNCHNzBEIRd8kBVq/NYyQv7cE41MIhxTjqIuJwSU7y45tFIOJWXSLBVASXawxcrj9wQSHDmW1zyHCVX5OzD8/ZvRcd1lwO3/cYAKATOtCKJECdwTOKrFXsmt6Oi+euAgA857kvBAAcffwUcgWSAHsvogzASpUkX6VWRn2etIOT8wSdtm/vLMI2qafgDEovk0GzSeuVqvSiWkYD0GCdbtobz6Al57KpOlpnyWoBk/S37gqCYMuegkL9mISdTgeZXG9PP7sDkTgyRerabbr6W37Z39H+6XXEiRnhuq6Zm8CRjY2NmbJhkexhGPao80CqiSqlzH1KFh+Vtwc9x8n9FgqFge5LjpNqCrYUl3nLuKLdZDKZAZNCaz3g6NsKfCQ1f9K1Px0NNYEhDekspzNCE0gRax2rZXcvd3RdHw5LZ83JPUp3sbBITrG15WMAgLFRD16VpGHgMOfOEZdsdjsI2ySdy+SHQqnoQUlaLHcqchwH6HIONtu5MXc6Pn7iQWybprBerUJ2ZjbIIWKp1q7ReeXaJkJOj81OkYRXnBJ96ugiKpzqnlxBxx869wLccuvXAMD4LRKGCltaewyVJl3rnD107dldI3AUA4Fywk+t2sDUNqotEIkj0rY0Mmakg8BpJRZyrQlBqbQddpGBXW1fggEptfLzU5u21961U5DFLrYdg5IkY9fqi/Q2CTGtlhlf7qnZbA5Uzc3Ozhqp3B+qpMo7us/JSdLoTpw40YMaLNful5pynYmJCaN12DUY/RWXMsdyuTygOSRJ2rdBfBTUYLQXQ0HGtHtL2HZ9f+2H4zjmHPmU+4iiaEsNzaanzASUUrsAfBzANlDR7Ie11n+klJoA8GkAewAcB3C91nrzBxgXQArEIDfjuhH8DCsupoFE3XhsxUEYhnXkNKlLu3dTvP2a5xPk+GMnT+Ert5J3PZullyVy1uH4tKgj7LDauX0vVhfJqVNkqJ6lOp3XbrWxucFeXE0PZtuOvXj0YVLT3Q5du+grjMzKwySOc+3l1J3ddwP86NUvBgDc+g+3AABe9/qfxAsuvRwAcHLtOACgHtGydapr+OzffhYA8JM/8yK6T13GJmcd+h69rCOFUeNgkxfd9nKL+msKn3J5s2nzhVStlhrYDpc0S8myXTchZMeo5SfbqdbvlArDEMVSsec7O6YuL7UU5IRhaJ6tmAyFQsHsC1GNNzc3U4bHjjWZRxAE5vh1LhG2i3/6X24gZUKPPfaY+a4/uqKUMvuv3+mqtTZrmyItR4YhjI+Pm3sX9d9upQ4Qc+pHIt4KJMZGIO6P7GzVBbqfno45EAH4Na31BQCuBvBOpdQhAO8BcIvW+gCAW/j/IQ1pSGcoPWVNQGu9CGCR/64ppR4EsAPAawBcx4fdAOBrAN79xINRGWoSxfC5ek+cgBJOjeM2chEDLGRIlTqyeK9o7cgFJAELuVG89nySjP/6+p8AAOzavQcAcO+jJ3DHXWQ+1FgFnISP5Tpxz+ndBNiRH5vBbpZ+V19C+fs3fZkq/LodHwvLpCVcccW1AIDI04g9rlyL0sq1l1xL4b9wg+aLGnHz51zzAnQ03ef+gxRSvPueWzHBuQ6LNco0/Ptv3g4A+O4DD+JNP0dLqh1yYp189AHksiTBCj6FuJwkxmaFq964YlHCmUAKb+YI2EUcIcPh1EPn073Pz88b7P9UQtLxZAr04g3a6mwhn9YpAEASa1MubCrpmnWjpYga7qrENAVJY+S0njMz24zjrlyummtK01aRgLXqgpF4Lda8RDUeGxszZkYuRxBydv8ICT3aACYJL9LUNsrBbzabJttUHH2dTgeVdTq3P7RpVweaeoSmRoORkB3l89xKmJkm5/ZDDz3EY6Wmk8xbINDCMBwwj8IwMtfvr3kIguwWrcx66YfiGFRK7QFwGYA7AMwygxBGMXOac96ulLpbKXV3Ej9xvfOQhjSkZ46etmNQKVUE8NcAfllrXd0KRGIr0lp/GMCHASCTH9FiP26FlgpwGIRbgnU4zNOq1pFzyU7kJEE4cRel7ecCAKohSYLji5zp5RUNB85K80p3HLt2s40qFWNRC9defQkA4GXPp8+RGbrO/3jfhzDGobz1Nep14PuuabIJxoKvNuq45z5KJlJNYnIvex7Z85PbZ5HnE2qc4Xf4gYexo0t1CocXSOt46Bid34xr2GQAkVqT6iCmp2dRrZDt2OZqMs8FYisUB6TSMAzDAYyB8YlJIzkkNDc6OmrWXKSPSF1pGgv0okALVSsk4VOpmzbbtCHHRDLa2XkC8Nmfu18uV1HZpHns5urNTCYzYCOvrabSTjSMtEVYjBMnKNlqfYMk8dzcnEEnthGuDf5CpjfhyE62EudokiTGtjd1LXzMysoK9u8nLVI0I0e5aZtyS/sQqS1rsLS8yNcJsX07aQmSiNVqdcwzkOdSq9V6HI1AL/xbP4ZBPz0tJqCU8kEM4Eat9c389bJSarvWelEptR3Ayg84JoDBLKckSQyabb1GN5Xzsijyy1xwBVdQ44HHaUMXp2jz7N9HzpgHHn4MuQIjzHBa8L7zLsP8PL3Mk/xAO5un8NOveTMAYMQjp83JXYTss2/HDOZXacGjDn1Wa900jVbm7UY4yfiBl55PZcCf+zIhBb3pDT8NLHGDlBma2yMnHsOxE5zFOEYbamYHPeRXXH01GvPHaXxG71leWkGWzQFph+YFwcBLZBes9Je2rq2tmRdGVPRut5tCa2cGMwD7VUu7I7MdmwaIEfW3xfI8D2HY7BnX87weaG8gjd27rsa5557T893mZmgYiTg7M9nAvNTC0OTl29zcNM7FnTvpRSsUCuZFlBfIjgBESCMLsi52ejFA5tIaP0dxRsr9XnDBBWa+8nLPn1oYaL22Y8cOc+/CDOzUbDHNbOSlfpzHKIoMs5Bz5d7iOB5oa9dPT9kcUDSTjwJ4UGv9PuunvwXwZv77zQA+91SvMaQhDemZp6ejCTwPwBsB3KeU+i5/914AvwfgJqXUzwE4AeD1TzaQRlq80W8GiPrk+z7ajd6Ys5svorHBTR85XHfe+efwiBgAACAASURBVPux3iFJ+tW7SK1+fI24ebPZRCekcXMF1ipCB8ql8Y4dPQoAeO6F23HqOKmPbkROpqXjNK+5mVloh501nJ3X6bRNl9w4ITXc9V2sVOjcW751KwBghFFk3/7rv4jfePP1AID5eQqFrXbqOO9i1hi++kkAwJ59JL3K6w8g75Lk8x3p0lxEvkhSM5tl9OBWxwBrpI09uK1WHA90O87n8z2NVoFe6ZPG3WHGkBCXnfnWX+5qh+okZGmXtsoYMr7ruuY4GUM0gk6nYq5fLpO2sncvQ60BGB3dAwA4duyUaWs2NsoaHUN/TU5MGXW9XJX+AKG5hly73W4bCSrmgC2d5b5E4ymXy0bK23BoALCwsGBCkKKZTE9Pm/W2u0SLViBmyY65nea8/v4KNjKzND4plUpGM5LnaOceSMjxdPR0ogPfAHA6B8CLn+q4QxrSkP7P0hmRMegohUwm02OP9ldWdTodIBakVg4FhW2UuNnnT1z/UwCA+4/eC4QkOh471dssMowjuNzhqNMmO7DbaaDOOfomHAkP3/oeaRG+Iq577yN0fKMdQ7F0KBa5w00UG3GpDepwmkSTHyHJt7q4wXN8BF+5/Q4AwPgkSZKjq49DLUpYirHpE4britpwIM0t0/bbDmswMfPi0clxtFucscj2qF2RJhqU2L1T0zNGKtvVaiI5JBFGrMYgCIxEkuPtLDtO8jSS0nVdI1nFXl9eXjbj2/n2d955p/kbsABmA2XGkwzNerVhJJ7Y87t2nTPQHo6BglEqlYx/QNCDm83mli3YZD2024ucbJfryhps27YN68uknYhWYTeAFe1H7mljPfVNyHHj4+MD5dYC0zYyMor5+XlzDzJX0To9BpCZmJgw87brIGSOdqXlVjSsHRjSkM5yOiM0AfE6ZzIZI/nFxhIpE8cx8i5pArNTxPXyzjTGxvcBAP78Jkqrff8nPoQPvZdyk3xHGpLSGCtr6+jGvaElV9URhsQ9MwzrXO64+Ozt5B+QvnlRlbjvgUPnYXmewEcX1ohLT45PwOHknJxHtmez04bkP5RZGu46hyIMa8tr+NSXvkHHF+kRZEe7WElI+7jiIvKGe232End8aAZLzWVIKs7NzWClQhxe2n6fs3cP2g2SKg8//DDNnyWgjakvUiiTyQykth45cqTnuQBpH0YbXtxuBCq2b7vFzVVn0tQQkc7yPPP5PFptmrdIr4ceeggXXnghgF4QDwBYX1zE9773PQCppGxWW2hJhIht/ccXj5g5zTLIpihlx44dT237IDL3LmT3AjTSPuq18W1NIK1ITCHHRLuR9Z6amhqoZZiamjLrnPo8OuY7mcfY2IS59vnnX9CzjnYDWNFkulHT/C6ahmhPURQZvITT0RnBBBQXQCRJYm6sf/PkcjlMFhlghPYONpa7pstsjTv+/slHPoZWjZxtEWedKa41qNerBuG2WiZVN1jR0JoetKhNzW6C+XViHPkSOdj2HaSN/shjj6LNjCRboAVfX1/Hjln6fYUZRNKN4IlTk3sMiIOo3Q6hR7lENUPzWa2cgpdnhhOTyuqK2qcd01DFdOZttAFGrg0YB//+++9H1OmNE8tL0mw2zUsn8fZ2J+zBrgPIVOgHw5CXaXR01DCStGVW2ghUXj45ZnNz0zgo7aai8jKLyrp//34znsxR/l9eXjVFP2mJcGHAtMmPTZj1lWs++ig5d6enp9NyXQZqWVpaMmq95EOMjIykoT5uCmM7O+XFFRSkdruNYrY3P2DPnj3mf3kGMp+w0x0oIJqdnR0o9pJ52WFdu6S4P0ejUl0z65CaFDUzxtAcGNKQhvSEdIZgDI7o3RdcgSiKTCeXiCvYWq1UVbrwIHG7zXUG7qiXkXSJc4cRO4VKLkZ97hnQIalZYJU78F0sLpAjJ2aJ6Y7noJmzNjl7b8fsdnQYgVglnD3Hzprj6yex+6rLAAAn7n8AALDNyaLLmshmyJj73RYKoLnXNTfg5DZj5++cQaVK0rJW52xGdDA9w6Ai+8hsmNlGkue88/Zj48RDZh0AUi3t9lkAV651004/QOqsC4KsURVFy6q0U8x7O4lFNAGRvOftJ5CTw4cPGylkHGhaGynYadM1zz+f6iGAXkcZQNIriumaMlapVDIORFGrRVJumxw1po2MGwSBqe4TVXdsbM6YjrYGINcWjcjJSLWdY4BrpOPP4uKqCc+V62kpLgC02014vrQVpznmchko1QsrJmscBMEAFJtdXrxVAo/Mv2CZKv0txKIoMlqQaV/G2jOAgdJwO9Pxj9//l1tiDA41gSEN6SynM8InoDXQiTQ8L4OuAFMwRv/ULIXQlHKx+vg9AMiZBwDVpRX4Dud6M2b/RHYSIbcp39ygdGDH4TBZFCHRjKlfSLHghbNOs+3m+77RBCREc+VznkefO16A2++leRQZjOSc7Ttw3333AgACcVh02xCGHjIKb8wMe2HxBLI5ctxMT9M1G80KalXi7EePULrxgw8QUMqjDy3jUzd8CgCw9wCBlnZbLfgs3Y6zM++2227DY0cpb8s4hmKBZ0srM2s1Wp/y+kYKK5anyc1OzWI0T+eamneWLgcvuADHjtGcRH9UjoNdO0l6Jlzb4XEYVillNA3RHBxPYXOJtDGxXxvNJvLyu6Qgs6TUnS527KDkoNVV0ppOnjxpknTuvZc0pBjfg5CpaizxvWUyOH6SfDVtfha7du3C+BitfYXXQ6sEna6Aq/Iz47qMRHehOSEtYFwL5WgEfi+UmWhqi4uLqb/C6pcg39nORdHoZD3ktzAMjQ9INKVsNmvWUsZq1OvmWYk2IWNWKpUnrSI8M5gAFCK4UMozTS2nJmVB6JharYZJftHbTXJ0dJNUbSyM0Hlr65sI2Jud5ZcubIvK66NWo0U97wCp3I1mG6EUJPFLXcqPGLVKvNb33kXQ5uHDPgrTpIKGvClWTy0gzyp5hhuYFqbyqK9S5p3j8kPgl7Ber6PZEvWRvezMBOn+pGiKPd+PrWDvAcombLUkPp9mnO3aS3N84/4LAVa1F3jTP3qETJYTJ4+izeuQ8LzjyGoeyqmGx489bu59fJTuU3ALtdY4cIBUclExl5aWTK6GRAcENr7bDU3zTGmsmSQJZmcpzz1tfJogDHu7UX/nO1Q8FaisecGM6j++DRub9OLWuWt0O+4MgHPM7aICnvmlTWgu3b7owkMAgKNHj2JlmaJCYjbkc0Uzp4kpZs4N2hPLy01M8XGVCjkgfd+H6/Sq/KKGj42NDUCIa62N89LOiBXTwEQJeP1tpiEm39ramjEzxGwrTUwMlBDLb6Ojo8PmI0Ma0pCemM4Ix2CmOKp3XvR8ZLNZOFzdpxOpJkxjsy++iuLPX/7iZwAAzdomWnWSnn5AEjg37iFokuqUZ4y8iUkK3zVaHZRZcxif5Fz5RtokImInoKNcZFitF0eV4vj7WtxAm0OK4Fx1tNrIsgZQ4Wv/1OteiZBbh3/mi98CAMQ+lyy3axgdJekpKuDmRsWUi3YYTTmOUmnxC7/yTgDAG9/4RgDA9NT0lmsp7dJE9deaHZxOjIT/PslawuqpBTz44IMAgE9+kuoVWq2W0a4kR7/STsuBDx4kJ6FI3X379pkKNkHyPXHihJmPrK0Jvzabpj28jRkoVYwSriuX6UamJkeNVJNrVyoVqykNazdJdqAtePpbYlUAsilU2TSahZhOr371q8zzFrRpkeyZTGA0gESn2ZJJ3FvtKvMvFAomf8I0PG23jWouczt+/LjRdGQes2yWOo4zECIsl8umclK0hMnZ2QF4MfnMZDJm/f7nBz41dAwOaUhDGqQzQhPIFkf1ORc9F57nGSAInzPvhKPV6028+VV7AABHjpDz69jD92PhJHHuvfsps6rW2cSeGUpaiSLicVW2GxdXN3DgEEmTYomzDrVvQDnmF4nDdqMYWQbeFMeg3yVufnRtHhEnH5UYGVl1u/BGyfaVrkBjOR+ve+XLAQC/+z9vBADEAaP3tmsocT2BJJc06i0jrfp7B2SzWezaR8Con//852mMJDFIyDa5mh0hprQrsT7ZGcU+FURphyCRyvPz8/jABz4AAPjSl75Eh4EBR4MUqkyAQIHUthfJJJL4wIEDJrwn42ezWXOu+B6KxaKReP1twKqV1kCtfLfbNZqAOMxe8IKXG6fcV7/6VXMtWat0/BRTQdahzu3eOp0WdjJuxI+8iKDjRke5Jf3aGkb4mUWxVCJ2sHv3OTxGvec+8/n8QA+FXC5n9pM48sbGxoyklns+yeFP3/exYwc9d3H0lUolk9Up91eamDDXkDWQ+eRyOTOn9/2PG87gNmTQcFRCzUE4P6BWoYVJ49cezuXsxwufTy/8yMsuxj13kbf65Dy9wI3Ix+59hJd3mL3r05P0YIvFGWzfRtlys9vZyTO/mGZ2jdGDCeMYy4wdJywyX2SHX6uAJnuQu+LcC3xTelpZp3lE1cQ42zIZeliVDr2QE6VJXHIx3cPJkycBAPVG1Xh9c3l6LPIga/UmWnWa26nH6fg9e/bA2aKIU3MjkqSPt8dxCiWeZaeioxxjeuS5yOrc4iQ+8MGPAKBsPQC48w7COjx8+DBuvJEY2rn7iNHWajWrEIi98nwfYUdj7x56FsLg2u029u5J1XqaW9yTgWjf+/TMHLpsFklLuL379uLHfuzHAAA/8zM/Q78FHpZXiLk0GOzl61//OgB6MUU116HPc+si4zMq1Tgx8I2NNayukLPwkzd+GkCam/CsZ12MyclZvhd67isrSz2l2kDKCOfn542ab5dJS0q1vJj333+/YYZy3EUXkRP4xIkTxoySCEO5XDb3YoPE2G3NgK2bppyOhubAkIZ0ltMZoQlEcYJypY7ZiTFkuTwyYbU65MIcJx9g315SC08sUPzfDbJ4waXEnf/iO/8IADj34PNwcpkkzO59FFPfsZuKjHKFArZzeG/hcVK5dpy7HfOPk3pX1qR9HHn4EexnBNiFFs0jt404/COnGvDYZImZg2fHS3A5/+CcXSSxM/kS/vF26kLsc9GP02a4qZlpo1Kedz6Fse684240GTRFCkgaNXb2AFhaIKn82Zv/DgDwrne9a0s8eQPP1qckuN4gv9daIxPIFuCxdAzF22J6iuYhDsUP/ukHjKq/sZn2NRDYty4X3dQb3C+h0xmAi3NdF+UK3Yvd6ivRJBnbnHl54UUkgX/zN38LV15xZe+8oaGMFsSZkYgwMUbS7/d/9z8DAN7znvcCAB595KjJb9i3j9Y7STLGCTg6OsVrlMXCwgLPjcZ68CEqBz784HFkuf1ctUb3d8UVz8YrXky4kacYSk5DajYCaM7R+O49pEmtLpdNOPKyyyjr9ORjj2GKNYCYtYNTSxxaDnw0+btaixyJq6urxvxKIdPmkGek59SMEs0qB88dhgiHNKQhPQGdEZqA53mYmpnG8WNH4LGTznVYMvGnm8tgfYO44Z5zyZ6++59vwfIDFH7bx/nt3SCDIiMQLzAI5GML9Ll//34cvo8yywKXxr3s0EXwMr1ZX1de8WwsclbbCGfSnb+Ls9tWJ1Fn2Co/y91kSgVkGIRimrPULnn2VfjHW8mB6bAjcXyc5tWN02pJ0ybc8wYyu2wMe7EhP/MZCo++7W1ve1IAySejrZCh4zgNmQooxl/8xV8AAM4991xjA9sItjLvTqfXPrY1FbFL4zg239vtvPqPu/tuat3+1re+FW94wxsAAFdffTUA4KabbsJRhoITyfrIkUexuSHgpL0txxaX5nHeeefxvOnZBUFgfBePP/64GUtsekmsEt8EVIKYQW3Eb/HNb96B228lcJh3v/sXAQBTrD2dPHUM2+fo+sePkxZy2WWXmbCkPM8DBw5YTXdpDzV4HdfX101mpCQDnXfeeeZ4mUe5vGEc6p5H9572QXAHwGf7aagJDGlIZzmdESHCwtiEvvD5L4WKuki4QuvB79zFvzKAQqDhcChn/4Xk4XfjKl5xBfUYENt2sRXgm/eSzyBb5JoBtrXrrSaybBt3uHpvujSJX33nv6NzT1DoZf7IYayvkvYgSR3/6lXPpekEedQ7NKd2TGONjIwgYo/x9ATXq69W8fGbvwIAeOAkRRrGOcGnm3QwyiFIgYPqhjEyDEQqSUPNRipZpQZANIiPfexjeNGLXjSwlt9v3wcZt5+01njgAUo1fu97yaY+eozy86vV6gDsm92BSLzmQnIs0Nujz+5BINTfc09CXt1udwBbolgsmsiCqaBUjrGRpZGqJC+Vy1WDoeC5Af/WMJJUEnx83zeagHyePMU1B+02cjmpcKU5djodbK7zPpqm4ze429Tb/91PY9du8itJ1eHCiZNGE5D1mJycNNqP3JNAm+XzefMsJJRsr5Foru12E4sc3pZI1Dm79/I6Zo0W8fu/96dnbogQOkbcrcB3A8zMkPrzEL+scYfLTtsRRibot8OP0kt+8fnbETqMx8dlug8cPYIgzwvNZZ7g7K98YRQBmxcee84WF9dx73200JccpIU7dvgetBscQ67SS7q0Qhtl73kXoqtoM9a43NTPFTDLsewCX+vU0hpOzVPmnI5k83BIx9psBiAijFGvpzUO9JkW4kiYTF4IiR8/HbJfUqGHH34Y991HDs077iBVl/cV4jiC8I00H94ZUO/FnLAbZdpkypx1ek/9zMs0z3DTDtVSyhvFIbI5ydlnpN52iJgrtCr8zNotUd/9nnAkQC9Qs0XPcfscOZc3NzeNY0+6Xcu9TE5OWmaOhEKzmGFzZGWFXsICA9985KM34vXX/ziAtEhs9+7dA85cu4BImFiHEamWlpZM2FCERa1Ww9wchbxFQI2NlTA+Psm/1824APDww49u+ZxtGpoDQxrSWU5nhCaQzwa47NAeVCtNtLlll+nqJQ01u11sMOiHlycH22aji117yUkYdrhVdb6MJW4rXmN1+pxzyWlYbzWR54an9Q2GLcuX8PhJCsnMTZMq7/kZZPKcsciqXJQnafHAyQ0sb9D4pxZJO3jucyfg54mfvug6yjT7/FfvNOXNGdZSTNectUXsmKWkEeHmuWwhLa1tSFssGrPdbhspIRrA3NzcD6T6n45stR4gZ9Rv//Zvb3mMfZydnNI/hu2I6pdCjuP0aABCdjsze3wp6bXHiuOu5VRkzc5z0OE9IPUnaRerBFoLLp/L1+uYeczPUwIW9WGg70RTEyixcrmMHDuC9+2jkDMBm3DWpuKMPSnNzmr8zWcpnHvRRVTl+cqXvtBoE5Lp6HmeMUvE1AN3lNq2bZuVRUr7RGtttALZE8vLyybpy+GikXqtyfcZm7qM09FQExjSkM5yOiM0AVclGPdqiL0WslzDPsktoTeYE8fdDhSnxFYbZPfkgwyaDGl16HxOviiPIJMje67D2ZLHWNI7joMap5aWOPTnuwECRhme4AShk6VJKJYqBZ80gi/fQWGeRx49apqPOqyvXPuCF+P8/VSn/rt/Smm1n/v6XXBH6B6K3DVocZl8GSN5H0tL9LdI9lazY6SahLE67RTxdn2dtI+Pf/zjNEZf37+nQrYtLjbzRz7yESNBU6cb+yqUQsLJW64nPoEU80EPmv8D4UK76Wz/XL5fcl13oH5fObaPQdKM0/bp/Z2vXdftgTeT48Q+F1BRkc4TExNw+Tl+6EOUVr20uII3v4WqOsdGyTcQhrRvavUEAa/fA4cJ7uzyi883lZky/4mJCaMVGERm6ZMRhqYblL1OogGINmS3VM+wppv2m2iYezkd/TC6ErsA7gYwr7V+lVJqL4BPAZgAcA+AN2qpZz0NOUiQddrwdAf7LyBv/7fupHi+yw+h03LhalokHdPNN5sxljmef8khYgLn7j2IL37+FgDA/oOkhineHHEYI2Dgjhn21Jd2lPCc5zwHABAEjGA7NgHxczfZ4XPsEcowLBbGUk92i16cc+e2428/TS//F++lCEMlVJiaIWfNEjMes3G7bVS73KmWX4jSyNgAKIZdduozUooUEF122WVmMzwdkmsIE1haWjKFL0KZXMJzVVs4+jRS481FP/WXtp7uZT/d946jLHNDxoBhRr4vZeDpvNIsRTneQZKwmamlW68LKa6KY95X2kE2m3ZxBoC5uW18jEbItR//9Xd+DwDwiU98FG95678FAHzqU4T8lCjG/XN91BryjGken/zkzfilX6JIlGQm2k1hJCLy0EMUjbFRhMQcmJmZMftEmHSr1TDPMe3SLF2PkydlAj8Mc+CXADxo/f/7AP5Aa30AwCaAn/shXGNIQxrSM0RPtzX5TgCvBPA7AH6VOxX/CIA38CE3APh/AXzwicZJ4KKTjGC04GH5EWrKcdV55Jj5pyWSUO3YQ8xIsVkOl+m2xj98j9T0HVdynL7g41+/5R0AgJv/5iYAQEZy/EsBIoa5qtSJ+++b2YY9By6m79osAafm8Pd//Q8AgBnOK7+2TJrDs3/iR/HxL1OF2XUveRYA4Bvf/BJGxqik9IrL6fNHXlTCjTd+gq6vBF6M8RMj36jzhSI5A1udEFl2RtabZAI1uEkH3BhVRid+3eteB8ByIn2/tEU6SLMdIZejLfAnf0qP6O577oDjczs0zn6rbJIjSmvAdXrbhGmdwGVtJsEW9sAWJIAnds5Bf+hMJJttstgwXXKuzMNVzkD5dMIZfq7rIuDwouYwoo4Bl0PIDmsw2SBrrlFrCCJy2gxHVOy77/lnAMCPv+bH8ZlP/y0A4J67KMPxyFFqILOyuIDRMcnaozHDsIw//OP/Ree++pV07VYLYNAW0Ui8gOHFOm0k/OAU5w6sb24Yk0Wkvu/4cLh/hSTajnKz2iRJDPzb6ejpagJ/COA/IC1anwRQ1tLNAzgFYMuAtlLq7Uqpu5VSd7ea7a0OGdKQhvR/gJ6yJqCUehWAFa31t5VS18nXWxy6ZUqi1vrDAD4MANu3T2nPd6ChkMsS9xwbJwn8zTso/356ZgTLFbL/TdPKOEazStLyrz7xlwCA/+e112NmjGzll73wGgDAZz9L3HpsZCcmthFPuu6F1Dj54MFDiLmCLZ8lTv9PX/0qsh7ZZ9/9Lvkmrn/lmwEAdx7+NvIMgjo6RY6/A/vOxR33MNDDDEnP97///dixg5I66tzKTOw6uwWW3cZKHEOSV253B5LwYT8gx/dLtqDtcMZjJuPh1ClyUIqjst1uY3SM1sG0KPcGr/X9Ovfk/owDz5LstvTvP1f8J0ppy+En19QDjkEJC/ZeO3UM9msavu+b7+yOP2KXS2af+Efy+bwJzckxCwsL+Ku/+isAwMf+/KMAgLe8hfZJJuOhWuOkJa5DcBzPhCgnJ0izjJMWWm3pskU2fr1Gzz/wM4i6KUArQH4AaUkuazY9PY4lrpMRwNZcjt6B+flF07vjdPR0zIHnAXi1UurHAGQBlECawZhSymNtYCeAhadxjSENaUjPMD1lJqC1/g0AvwEArAm8S2v900qpzwD4SVCE4M0APvd9jIU47iCXDZAJxNajqR28gOq/v3f4uDleJKYHYOkkNwUNiIve8MEP49zLKTkokyW/wvQIawbXXYfSOHl7p7gleLlWxcIi5YcvzlMEYPnYCRyYIY0hU6VrHXzuJQCAv/6zu1DYTYk+By95NgCgslGBl6VEI0HeOXTokEklFRKpWCwWjTYged02Rv9WJGmgV15JtfVRFPX0p/tBSDzTQTatqZdKutnZWXTC3jRWtYUut1XdwVYpwnLPIj3pvN604a0obVGvBlqI2+emdQiDYyRbRAxkDLuTj+TgZzIZc1x/vwTf93tqFwDS2MQH8HL1EgBplODVr34VoHp7NJ488ajpOHXTTVQN+rNvfZPR7oKgN7xXKpVMoo/Me3l5eaDB6PzSEtrcJ0MiB4UC+QS0o1BvtgYXx6JnIk/g3QA+pZT6LwC+A+CjT3aC1gnCbhuNaguT4+yMqtJiPfeaqwAAX/vm3ZiaoDh+JSTHWZLExum3wkAjP/v6N2HHQVrExx6jl/DHfulXAQBf/Mdb8Xff+XsAwFqZ1LxScRwB54vv3UEv9xuueSmefYAyEX1eov//4+8DADizc3jtG0nl27mPnIB/ffMf4ht3E5aePPiNjQ2zeUUdlFDN9PS0UWPloW1sbJgNJ5vN5M87DgrMyJ5q+XC3myBgBiv4dl/40hdx660EwSWFKo6TQPeFzjzLGZi+nNyAQ6keJx7QWxPQf3wul0OdQ2c29RcV2R2AJVc/LZcdLLt2lDtQhKTZOlWOC19KbLm4qNPpDOAraq3N2su92Jh9/cjJe/bsQZNxCicFvZqf680334zbbrsNAPAf/yNlYG7btgPFOu2BBq9Bo97GwYMEJ3bqFNWatFsN/n/BPCtx3wVBFrkc7RMx1wqFAjSbSjkuTFtdI8aSyWSeUXPAkNb6awC+xn8fA3DVD2PcIQ1pSM88nREZgwD1GQj8HOpcHxD4JPmk9PPCC8/FY0eIu4maGiURynXimsUJOu6+hx7Arv3Eg665gj6rDNP14y99FZ531QsAACvrlPc/WZrGeIG7B4GkwJ23fQ1tHvfYPGkYm5xx9gtvezsuuZLKim+6gTLHPvlXf4Orn/8KulYlhd0StVfUTkle2UqttR1t4qiyVehDhygj8amaAEHgIAzT1lcAqbwCuyXXSpLQeHK17nX+2U49W9VOc/QHqT9jsNVqPeHxtgYAULNQh1GdtWgaiQJ0r4YRRQk8T8al77JZ3idRBKVS7H+Zs13eLGPJ3qpwNZ4c4/tpWFc0jfn5ebzjHRSOVo70iKD5j4+P4aqrCATlhhsoy/PX3/XvUebOSUUuc3//+z+Kd7zjTQBSWLnjx48DoBbsBdZcxGRYXV03zj/REjphiCLPrduVMk+GQqvUsY0rXE9Hw9qBIQ3pLKczRBNQADzEUQKPe7vF3Gp8niXxzp078ei95AQUaeSN5pEpEB+bXyYO+/jqEu74FjUMfemLCUhiLMuhukoL2wB4gwAAIABJREFU+Q6du5/rr9XIOOIOSUZpJnNsbRF3n6R873WWmm/4t5Tu2dVZ/NM/UZ39f/6t/0onaAef+jQlBv3U9T8JgAA44jjtVAMAuTxpBEmSGLtS0nXtVtZil4pPIZPJ4Lrrrvs+13JrShLA43x/6To0Pz+P732PQqAl7pvQ7WrEiYTd6Ny4m4b3+kN+NvWDisZxPJDUo5QyfhObRAPob63tKM+EBiX91vO8HrgygMA0RKILsIZU1HmeMn+32mQfj4+Pm/W2x5J7EClr+wjEWWj7Pr72NQKOeTEDjkqlYRwDU5yanuFq0v/2395nHH3/6T/9JgBgdqaKP/9z0hRe/epXAQAufRY5nJvNptEKUtCQHFynt6X6yYXH0/4EYv+z5hNDwfHTfhFb0RnBBJRS8NwATgZocozUkzx+Vpv88gayfR71VthBbpIcIWGFXqpW3DWovVIz0uXShbibAKwuKUg3Yx+bnI3ne7Q5R2an8PhJYioVj46/7356cV77hmvxmmuoXJifNwBg1y5yKsrG8n3fbFpxCMZJir0vjMHeWP1OMRtVVlCE+ttSfb/kOECtljawAKhYSOaRvrgONHrRg6ItUITsl9t2YPb/JqaQvExBEBik5d75DSIWAUASJwMmiF12nDr3QqPKC4MVL361WsUkt/aCrpnriGkg3vYoisw1xGSyIxOyRimYx5jJI5DzBC3Z97KQRzQ2Rhtl165dBrPw2mtpD33hi1U0GMDm4ospc/X2279prp0yNlpHz/MMqIgwlLm5OVO8JeNLpqPvB2Y9TkdDc2BIQzrL6YzQBHLZLC46eD7K5TI2OQOwUiVO3OLSzKmxKfgjJLWqCUkST+UQz9NxIw3GZfML2L+dQB9c7mZUj8mkSHwXtRY73RIGcji6jFyBlqHNGsMXv/5VFMfJ0ZJjletNP/suAMCzLj0PxQJj/zFisY6zcDl8VSzSHDc2VtNSXObmUhrcbLQNVJZdtivHiXSW/y+99FJcfvnldM9PogGcNvKugE6X7q/F0qpRXzdhSaVJajpwEXOVpstZeEGQqr/SIUpU7jiOjTQWzUXuyfMCdLvSJUckqoajetVTrTW4KNBINIn7Fwo5o/2IVO52uwMhxWxuxHRdknqMKGbzxMui0eS5sWpcLI2a0GCjlbZ9E4ku9yIaie/7A/NYX1/HQw8JFBjlXpzLvS40NCSBVp6J8nIY4+a4Afei6IYJRkdovnlfGpNyPslI1lQ1mmrPcgtt1oTr1TrPJ4OI6yRKjIMYJ9IOzTNazeloqAkMaUhnOZ0RmkCr1cbhw4epcSSzTQHWdCzQygPnUyagfpQw5xuNBhTn/e+YJW76a7/4VoQM2Bl5DLmkiHM36g0kLL2RlRboHVSaZP8fWyMwkrkDe9FmDeCNb3orAGD3brLDsrkAgTivGAHYcxWqFbqW1ILbST1G4lh2pvgHRKo4jmN+lxx1kdKXXnqpsW+fDknLcMEkKJVKA/0PlFJGgxH7coSbt7bbbRQKvQCpVKsv4TGSQnaykAEcsVL65Jp2CLTfJ2BLers9PQCMjJQGfCOen0szSfvqCmwAFhljc3PTOP9s4FP5W+aWajWeVb8vMGYOdu3a1XMt6cIUxxpZ46Cka09OFhHHlD14zTVU11KrbuCfv/E1AGmIsFyumvUOMqkmQuMCj3P3rICzZKu1TZOsJJqDRsBjtJ5UezwjmACgkSTUkCPD6lqHS35r/GLQHqUFOeccytQ7fP+9GGf1+99c/1oAwPKpo8gH/AL6vFETfmidLjyJL3dZHddA1mWnlaIHefHBQ5g9QHH5C59Fani+QNeJ4xhxQudKDkO7HZlus+KAiqLIvPziSLK7+tptueRTXkQpFhKH2JVXXjngHHsyBNl+ajQ6hql87nOfM+Nvhfcnm6bfLMlkMgMvWiaTMXOR3+wXXv62cyP6VW47s7B/XcIwNAxQXr44jnuaccpv/dEV+3+7aEvmL8fZ9yQvmzBxO6dCxrPvb3m5NzVc7qNcLhsvvuQvVKsdhJySLd78d7zjHeAqYYRc2PXoo1SM9sIXXmsETblMICGOCswLL07zer1q5i3PWIqX8vnCkxabDc2BIQ3pLKczQhNwHBelUglhGCLpK+9M4ZVSxF3F3LYwUsTyPDlk/tcNHwMAvPSKSzEBCsm999d+HQBwyz98CQAwki+gwCprrUWcNRP4qK1SqKXEXql8cRQ/8xOEi5Ibp1ivIqGILapqoZTG9+79ds93YRiaHABbasr/Yg6ItmC355L7tHvY90tsrXWP9H4yiqIIX/jCFwDAtLbaWA8H8u0zmYy5Vn9vBDtn3zQTzeRSh6DTW+jjOA6yxV4INNd1BxxVruuatZHfPO4rMFJMobFE8/I8D6MlWhvRshzXGeh7IJTL5VCtkordryUAaQi33W5b2Z29hU9RFJm/5bm2220k7KS++eabAQDveMc7zTrKs/U5+1UpbUwsaVHebrbwute+HgDwtVu+CgA4dZKkuKN8tFs0b9FM8vkiWk26h7DLRU7FrDFV+u/Pdd0n3SdDTWBIQzrL6YzQBLrdECdPnsT4+DhCDk8JR7Y1gzzDLom0KI1NoM3Vhl2uBBzfuRdjCXHF//6BPwYAXPtsqiHQUQyXHSdFRhgenxxDdops8BMLVJX14MlFkwvOiVdIDJSuA0mbFzNXa+C2227l77ijkJXQIhLdLh/2A4aDctLeAv2gIjfccAMAGITap0Obm5vYto3CU9J2K5/L9IBVACQ5xN4WbUxy8O2EnBTdNgeRJWmmY8bcm2gJcnw265rcd9HyHMcxuPmjo7RWIr167Vm6TrPZHHCi5YsFs77yDGT+tVrNaDf2Gsv1xdeQy+V6wF3tOYZhaMazQV/W1mj/SRbmd79LIDjPfvYV5lrz8+Q3UJ5rAFuKDPrhQEGzj2mFAWlzOUlKalu+H/pcWlrAttmdfC8MOKJDrK9zxyx2ik9Pk6ZRrdSHHYiGNKQhPTGdEZqA47goFovIZrOI2721z7ZX2TOJG2yvZXMmdzfgTkUtN4sltvH/wzupXfT6MQLM2Lf7HPzZJyhP+9gydZ05vnDK2FuXXELAIc97xcuQMDdO2BfgsPSPIph0UM4KxuZmFY888gj/nnbm2cqbDJDEyWR7IaLq9bqRymKjXnrppXTfT7Fy0CatNW6//fae8bSOzfraOfsyb9EOJAW1WCxaGkAqdeUe0krENL1X7kWw9eM4NtLVrjCU7/qrCIMgMJqfXDOTyZjxtnOF3MraqtE6RFLLp+d5RtrbKdkiIeU+c7ncwBgi/Uulkqnkk6hJEATIMMCnRIVkDUojJRw9yjD17MXP5HOp5sddpjY3yyZteWqSpDc48SyfL4JzrUwnpm3btqHGCXWiYTaaFdObUdY7itKIzpO1Jj8jmIByFPxsDsrzAUbmDbvciZY7/8Y6ADjrbLRIN7++so6iZJFxoYA7Nga3SWP8+//yOwCA7TOkPj3y0KP4V6+lAp9H7qeYeSPr413v/RUAwDdvo2KQtfYpaI82XqVKizlVImdasxXC4SInMRnuu+9eLC8R0IlWXKeQtFAapY3t+gwgUme8uuykwZGrc1NTBR97zqFchA/88R8BgIkzAwnUlvCNW1FqtgBp/USjHmKaMRHzjGrcbtUMEq3koZdKJQPeUavRGtj1Bf3IvzbQiLxgtokhjjB5gaMoMi+WbOJms2nU734UoWKxaEwQyZ/I5XLmxZW8+KjbMuOKGm6XZMv1Q365XQUUGNMvw70LdBxBUhdLeXKKNlrc/stLzHhKagjaLYwV6B5e9UraV+fsPsBzrWN+nszL5WUyEa58zjXmJU0zEhWOHqOQ4MWXUB6Myw1EKrUyXI/NKHa66ijG+AgxFQGxVsggiaVUu1eIBhnP1IKcjobmwJCGdJbTGaEJCNlVZyL44k6aUJJKH+KOQRAgyIjjiD6//vWv492/QqHBX/7FXwYAzG0nTeD51z4PX/rKlwEAXQ7R/dKvvBN3330XACBbIIlz6uQCmqyuOVmpBWBJFaT55a5V2ipZaZtczUjzJYkhqmUY0nm5bJrsIlJ2c3MDl132MgDAFZf3tpBPdEK4+k+D1tbWjMlit9qS0JmpskOqikvSkj1XUavtUuL+bD+7G06/g891XSPFRRr6vj8QkrObm8p8ZY3jODYahp1xKXtH1luo1Wql4CBe6rSc5rbitnNWtBm5pny2Wi2jucwzrFeukDe/S+NSuxJUEoJE3S8UCgPJXnEcm98rG+s982632yiN0nxN+bznoS31L0HqzO138NommZhap6OhJjCkIZ3ldEZoAjrRRip4fm/lnc1ZtSOSlbhiqVRErU52YqVC9najUcGv/+a7AQDX/AjVbF/1AoIDKxVLuPal1wEA7vwWAYO877//f/jZnyXg0NlZAiHZPrcX4p9UXDUXguzjiWxaEyB2+rOe9Sxcf/31AIAPfZjCkkr5xsFTZe3A5yoxGxRDJNrP//zP453vfEfvupy+JvAHprvvvtvUDohEbTZrxikqdrSdGizON5EknU7H2O42cIhIqdQpJX3/UoefHNPpdAb65tn1CuJ8k7FE8wBSn0Or1eqpKASAOEnnIePKfVarVaPVpKne7YFQaC6XOu4cr1eDiaIIp05Rbck4a03jkxN47Y+TL+DZVxAK9CSH5paWlhBJWaOT9pbor0nodrvmHmUvyLyKxaLpEOUxNF272YDn9tZo2CnN/WAvm5ub/3c4BsG547YXvF+NdFwfnbbki7Nq5LvGNBBghlwuB3AbrVtuJUffnd/+FgDgogsuwuOPHQcALLFK50YtJLpXNc/mS+i0JUuOC1WyaVGKYPV5Hm3csbEiXvISgpy+6TMEOb2+voZWS9RdAUgpmk9RWQ8cIEeSIM3YlOLsPX2FbXZ21rzA9QajGfnKvACy9rYqLSaCXcwjz0M2rI2IJN/ZzkO7sQcAUyNiXysIApODLy+uvBjFYtFcX17CUqlkzBgxAZqtxgBmoIxfLBbNnITJzM3NGSYnan6SJObcEmcqNttpvYJkWq7yGDt27cQ11zyfx9vJa9Dka5aMI3OM25GVy2XDZDJ+iuAs995uCCAI7b1CoYCNDdqncUR7abRYMOc2GUrcBkjpf47j4+NW3cQd2IqG5sCQhnSW0xmhCTiOMlK4LfHZjpQSi+NPGe4mgjGXy5jqqjwjBnc6bTgcO5GyyhwDLdx3/z2mpdbIGH2X7bZxiFuYg0N/7W6CJvdHFMz9NOsqDU9JFqGjHOzcSZLgN97zWwCAP/uzj+CBBwm/T7m9sGHVasVk70lJ6ZbrYjSA76/Rp03ihKxV6T4mJyeN5Nu2nRxi3bBppKytAfQ3EbGdZHLvaQ5BbOL4onLbQBz9jsTTtR4TaSVagqiw1WrVrFuKwY+B7MBMJmM0HTERTP8BrY0Ujzl+niTJALRatVo14wpsmJ0DIVqB3OfLX/5yTM3QWtabXPPAc61UKmiHtKa5QtozQtZSoEZqtZqZx8wkOQjFFJqamjIhQt9jR2LYQRL1gs+oKAVZEW3MzsYcgooMaUhDekI6IzQBBQXP8+A4DiLp4h0xyIVIYK1MONDlY3xfmWq8FBwzQZc5MPt2UCsL900Q5Mk+01yjUFAlXHIROXWafM0jJ1aguF1UPmCHGSeWNJtN5Bk1WPL/kwTI5+n3F11HjU5zuQI++KeU9HP0GAGNiI3dDbVpMf62t73lB12u74tcLlIXSXzjjTfi4EFKRnn0CM2nkE+z8USyt9vtgZZdIlmjKBpIDBLbHEglr111aJrHJmlNSH9Gn0gvmndvVWMQBAP4A0EQpCCorGF0wsbAdyJRJyYmemzk/vsUDcnzPKNNGJ9AMwWCkXsWoJu77roL172IWox7HK5rcPcgOB6ynHCUQLo1Jeb6G2tpezGR6LJuUiuytrYGxlNJm9l6rtX9iX013dTxJ34nOwz7ZIA0T4sJKKXGAHwEwEUg/eatAB4G8GkAewAcB3C91nrzicZxHAe5XA6NRgP9yC4Je+CjMILWvY0sgPRBN9iporWG7/R1vWW1PQ678Bnuutll7MKJPVhapBjvdl78fLEJhz37UGlnYKAX0EJz0ZJOXGQ5y2ttlcZ94bVX408++IcA0rLR1NnpmXRXoSRJEWh+mCQv+ejoKO69lzLXRJ2F7vZ4qe050pySnk8bbViYi+/75hqy2STDL5vNmuNEDbbXz1bH5Royho063N+sxC4IMuMmacGWjCs9ADOZjInj2+AiphyaX5hKpWKuL/eknLQ3YcIqvBiol19+uSkmk0y9rSDZpchp1/aZgTTtYrGIAq/Xt+8kx52A5oRhiCILvrYgOfneQMzI931zz/3ZklrrJ40OPN1t90cAvqi1PgjgWQAeBPAeALdorQ8AuIX/H9KQhnSG0lPWBJRSJQDXAngLAGitQwChUuo1AK7jw24A9Sh895MMZjLJ2i1Sw8URYppQ+trER4XbOU4W5x8gFfcw9wWIFDUqBVJuHGpxVBWxWhbpRtx/vlHH5A5y0kUxt0Bzuog4DBgUSGq6CWeOVSK0AlavWB1TboSEBejkHOc5APi5t/88AOAP/oDMAs3zeuWrXoYMI/iK3HWfkB07APqbfTjYmodzNiMLz+kZygOYmBjjsl9gtMTOrPqSkVy2pBayy6EBUpdFdbZxAkXyi8Sxy3AHNLskMaXJtikhY2xslHuOb3dqA2p+t9s18wxZFQ4ymdRJKKYNmwCFYhH/m703j5YsrepEf985J06MN27EnfPmzTmzsjJrpIqqgmKeFBGEfohA24g8RG1pW+3XTs+nZT+H5dR2P5/SyqQiaEEDig0yzyBVUNSYmTXknHnz5p0jbswRZ3p/7OGciMisQuqpuVbGXqvWzYrhxHe+c86397f3b/9+GfaUYSS4gh4qXMLLZel6ptNZhNzWa7n9KEg4NopFijp/5EeJd/JZz3oWsg6N0xWxD27vnSiOa3TjloVyrqUl0Ii1F6qVdXQZATgxSfdasRCjJnuMmM0yPsUPQ01Ih9wY0mp2kGUFbrnHRPDE930YDCtIJ+3pRAJ7AawB+HNjzAPGmHcbY/IAZqMouggA/HfmUl82xvy4MeY+Y8x9zeblJblHNrKR/fPa08kJOABuAfDTURTda4z5f/BPCP2jKHongHcCwI6FuciyaD+qyTNeUWP6LQPfE/w+d6sFwMGDBwEA999P0mNhGMLY/R13SUz7YPlrc7OqdFGyF6s1OthY42QVr6ytNgtUBhY87tia305Ms7lCFk66fz1tttuY5whjaopKPzZnKn/wdf8bdnKJ8FJEn09u1sDfmKMfERKJhVjKGgDe/OY3a1fg/fdTbiCJ9hNrtVp9MuJAPxFHEuUH0HwPouCSZcfB4/u+j4j1HUSynXIHTf4tISHhv0F3qCch2U+gnYtBgEDkxISEVGTF63WUOQ9y+jQJsO7du1fBNuKdO52enmtpgjyvdCl2uy3sSCQVAdJekPZ2AZzZHMEaK8IYU6vJ9bGDmMRFclmtyUmcPE7gI0kaym/m8zFJaBINKWOUeZ6aKvQlY4H+fo64LHlpezqRwCKAxSiKBIb0YdCisGKM2cYD3wZg9Wn8xshGNrJ/ZvuuI4EoipaNMeeNMQejKHocwEsAHOP/3gzgd/jvx57yWIgQBAHq9S3NAeS5vJLstpKuLMHAjxfLug8VAo6lpSWscG/8oNePoqhfGBOAk83gA3d/EADwC79AKkPtdhtFzhLbhr0QHyPZDx93vllDGdtCNosbr78GAHDwGvp7002kNTc7PTM0Dt/3n4I85PLrtar3RHFuQfoOxEs3m22FuH71K6R1F0Yx+Ef5+x1HIwCJwpKZe8kJJHsOZD8fE2vGHYODOQdgmC49CRlXIVKRHA/iTH0sQ+4PRRjZbKw7IBl+OfdcLqf5B6mMdLtd/VySnDOVEnhxpe9cHMfFIQaVPf/5L9A5cE0/jj8JlJIIQLy07/txdSAXE5PIXGa5ciHXJFkKTUKilXqPX7tU6VaiiUwm00eqeil7ujiBnwbwAWOMC+AUgLeA7tYPGWPeCuAcgNc91UGiKEIQeCiVijEpghH8d4zd3tyki5XPC7qwpQ/ADTfQBTpz5pSWhiTMFwy3ZVl6wWWiu36Ej3z0bwEAP/GTPwmAQrUGtw53eVuSyTICyzjESIGY7XVjowWfQ9y56Sk+Kwtd5pG/61d/vv+ETQRrgCTkKeXFpGQJweUPS3a1Wm3kWapNmXd5VbjhhoNo1GkuDx2iuTr26Df0YUrW+AeFP5NiJIJES5YU5YZLtv8C/dJdSRKQen1L3wfoGjca/RoA+r2s27dQyveSDxtAyslZJmHZNjunYwOI4//8eWKS6npdfU8WqGZbtgUZ3YYKm3Fcqq7h3nu/CQB45u3UkDY3O6+9K7KgiMZAFMXJWZFiK5XyaLJYrihEp9PpvsYoIN4WVCqVoQU2k8kMtSN7oadzLgtKUvBGnoPL2dNaBKIoehDAMy/x1kueznFHNrKR/cvZFYEY5A0B3LSrq6FEABnG/bdbHfgD4b1IfwPA6ip1Yj372c/CX//NhwAA+/fvBxB7i2SSREEygUG9QaHiXXfdBQD43d/6bXRSTBaxzMovKhxagJ1g0wWAsfE86lzaDIKYgz/jxl6h38KYxvg7tKEEYgQFqnielD2TQCrZRtH/dTohtnMic/duEmx97PF7NUqSv3Nzcxo6DzL0uq7bh9WXzwz2BYj3TCr6SNmw1WopLZvnd/XvYDlSQDrNZlOvlcx3u93WLYsQckyXJtTj7ZjfzudM1/D0iZOa/FtZo/ukXC7rucRbG18lzwTFWOby3uzsLOpMBXfddbSt6/V8BZ9JZ2u8S4mUVTmdln6I+P6TDWS73Y4RlHzvx8lxb2hOgyDmhZR7IZPJaCQg8yjzAkD7VD79qW/iUjbqHRjZyK5yuyIiAdu2MT4+hnq9iSzj8ltN2aMydj/jIgpjsAgAIDK63yqO056s2/Hwtre9DUAsvJlMVIkp4CjtopCiZNH/+sQnAAA/8/afgt+m405zea/BGnKFQhETKv4oMtCeMiA70nuPEFE04O11Wx8C+KdFAoY7CiUH4vthnCdgMFQhn9UKoXgk5smE1/O1l/6hh6i7sdlsqjcRvPrtt9+Oz3/+8/Rd9kzJvEGyOw0gwE+sEtXq++s4jnqyZEefQHyTsORkAjh5fNu2dV8s8Otdu3bpb87PEzmr14zpvySqkcjg8KFDOHbsGABot+fp06cxOTml5wAQu68cY24bRRM/9EOvp/cKBVx7mHIpBSZn3dysYr1KkcX0zBSPG3xOQLNF0YTwIOSyeT2/NsPcy6Wizq8kvE+ePKnzMthXkMxlyNzW63Wdo8HeC9u2h+jWBu2KWASikJhcXdfRxIwj9Va9AX1Fh8nJZzM5FaHYYvae8sQ4ooge+le96lUAgA9+kLL/2WxWwyoJD61MEb7HTR8sKfWmN70J73/PXwEAvC7z2zFaLImfl4key+XgWjKVHLZfih04uS34zhXE6OPCuRgkueNkwZSHyULg9SeNYn7DAKdPE/V6PifMQi296Xfv3k3v5fOaqEpKngG0mMrxkoxPirM3cQgPUAh7KbXhbq+/ApDsHbB120VJvpmZWQ3XpR14+/btQ2Hy3MSUNkidPUvnmRQfkQVwi/EejuNoyN9uiZhIiLe85a00XzyPz30uVVQKxRJCYYpicFuxWMTS+RM89zLvccOUCIeKPfzQI7jlllsAACsXl/RzMl8yRqlgtFqtIRYmek76s/3ZbFa3ZINVk6TY6+VstB0Y2ciucrsiIgEYC5bhmmjUL8EtHtX3PJUtF28YBUCLkzUp0bAPAKS4ZsqCJC/9nlcAAB5++BGcO0srcLnM7cBtQooBQLNOq+nqVgUB+oU3J8vcX9ALYFgIIrQofOv2MkgbwuPDTTK7cuxuDbp9+8l5Qi4RJYSGS2fcpLBZacKy6Bw6XU7MGReu2683IBJXntfR6EcsNzaBg4dJcOXfvflHAQAnTpxA1+dIRzQfenEJUHD/vh/jHGRbEkaME+C+iCDsaot3MjyVMYlnzeZiEVQJfyVs37XjIMos3TXGkU+v1USa+RrzIXcF9lI4/diFvjmqM2N0EPrIF5iSa4t+Z7I4iRZfg3qPtgMv+97vw3qNthI/9Dpq9S5N0pylUjY6vEUsFei3W62OloS1c1WQeybe8BWZVOTZz36ebkOnp+h+Wlw8heoWycJtVGkbUNsSNKTbx2gNAO0wQGWTIgeJjJqtzZhWrCd9NYKzGEaFDtooEhjZyK5yM4MSWf8atrB9Jnr7T/0QfN9HlkE5tRqTVvI61Wy2YTE+X/Zd3Y4Hx4lLJwCBaowjlFBCORaX7cRrCXik52ewsUGJm4sXzgAAzpy4gElWxP7Q3X9D381S///U5DxmZigP0Q0u6jlkXQIojZemMGiXWomfbN4v+XkOHVqsruT1DAL2xn4gAJseXPaQyu7bi3nzBe0nAJeN6sYQxZYxRhOpklj9q7/8E/2MHFdZfoNgqF89KS82qFhkWRbARC0TXH6zLAe7dlFiUsYv5d2ds9dqR2mey8Unjj+moY6U5oLAKJNwLicyZxwOmR5W1ylKWF6i635ueR3tkLzn5Cxd27vuugs33XAYAOBo9JboxeB7RyJHYwzG8lJ+hp6zjEuiJS21BpbmKaobdC3OnHkMy8tnAACf+fRHAADjZbqX6vW69hgk8zODyVPPb2pOYJB7IdkV+q4/++i3oygawvWMIoGRjewqtysiJ2BZFnK5HKrVah+VNQD4XC3I5XLoBP0976lUCiFzuwvAYmOjouKMPpcPBaKZzaZQqVDZaOcuWv1Dk8HefeS9o4Cyy4unj6PH4J9PfZpaH179mh8DAKxcOIfqJvUmjI3zqu+m4GdFLn36OzrnyPwTkwK8Xre5/NbpxL0GvZ5kwbcwVqBzUV0DphdJac8PAAAgAElEQVTvdpuobm3wd2mvPF6e0iy8lNxs28bSEuVNpCR36NAhAMCRI0fQaMSYdECYf3jUpl+LMIoi9UxJpaAsU3Bv2046D9NTs9ov/+xnPQ9AfI3L2bLeE4vnl+lceoHSuQExbXmO+02Ed6LLlYCTJ0+jUmGK+RR58euuP4DPfOnbAIAXvuTlAAgGnFHeAzkn8LkAXk+AUrFcuuSnhM4tCWAbrHggCGOqNI+uWavV0qqAWJKrYZDqDYhLjnLPp1IGNmsVyj0fR2BPXYq+IhaBCHSSycSTlPzGuSbreQG6XMrRkkdk6eQkhS9TfDNatjRuMJqq00aGk4aZNCccbcBjjL/wGe7evRvLFyhJ8+DD1CS5naXM7rj9pWi3KJH02BJdjMM33pTAcdPQgiDoK6MBgBPfC2rKF5d48IOov7koiiKEnmAk4mYUwezbjhBstLG6yg+KYMd5rGfOnkDEx923bw+PJwObk4s+Qy9qW3UYJtAqjtG258YbKIJ86MGjSlYhofb09KT+lmX1t70mxyGSX9lsFpOThFy87TbidpzftoB2m3sHOPkmizWKW1hZY+ZfcA9D28P0Nkqslcq0fTjxxGmcPHUGAOECACDF87J71xT8gOr5IdPFTU2P4V3v+jMAwOYW3R+5XBEeM/lK4la2G2EYtwnHTsiRFhcM7uCiiN4HAJ+JM+uNWoJ4pcnH8rC8TIvu2BgtYrJlyGQyfT0DdCxfG+liKrNerL/QGubmGJUIRzaykT2pXRmRQBii2+0in89rBDDYLum6LuyuSF+JuKSjiT5BTNXrTTQb/Z1rNoeHruuoUpGGaI6FXofLU2k6hpNo4RRE2mc+9WEAwGRpGoUxCpOFJKRSWUMqVewbb7LdVVZzh9GQFDkKspCs0/UVoSelPIkcYIx6EPH+vZ6vCb61dSoxeV4XtS06hhxrbY3eu/6Gw3rOgqTLZCNN8CW5+uVzQoZqAgK43PbM4zh77pT+FkDszjMz5JUd1nQQmfOFhQWN0AQAc/DgQdxyI2ktZDmkT6fTGMvT+clWZKJMt2YQbsBxhKyUpuPw9dcpIcnp8xSNlcqTun0pZGn858+cpvGsnYKJ6Jw7DAyL0FOA1IEMhdXtVge5DEdmkTwa4uIjDfVjINtlQGGgSGAQLdnr9RI6DPya19FzEbRsBIpu2u22Pgdy3cfGxoaOe/78eezcSVurwcRgUlXpcjaKBEY2sqvcrohIIOTuviTd1SC5ZLudFLKMCSjS6X6Z63Q6DZ89u8WreQTycikrBYfzBSZM4uHJ83ZZdajb7WrJ6uzZxwEAkxP0Ow8/dC+mZqkLb8+B3QCAk6eOI5+f5t/iMlI3XvUlJ+Dyqu7YAFct+4k4eGwCWZUcRRgCPQaBNBkA02q1YHhDKuVOz2+jskkeb3ycIKvb5qnclEnnNJ+wcweNf6NSG+qryGRicg5Jus7OUD7kbT/2dmzVNvg9+szX//GLOH6C5kgiB4kEkopForS0sLCAyOcuRe4iPLt0AWfPEfwWrB4lEVuuCCyeo5zAz//87wMATp9eUzDXHpco4eABE2WKxlaWKJ/z5S8dpffCLdgOKwSx4O09934N3/9qyhPsv4bOL0yFsUgpU49NTXGtGAlJes0T+LCt/kdInK5lAZ0OzZF48SDw1OvL/bq2too2v8aYInS6sUCqPAfJxK18V+6dyclpvbYyRomMm82mXuPL2RWxCNi2g3J5Gq1WCwVmWk02nACAZUfIp2kiJOxst+KFIW5i6cDOME4gI+KMzBPY68LlGrInpBW2jQ6LSCpRRWEMlsVSUMwe3G3SjbW4eRav/9EfBgD83m//OQDi7zv20JcAANtnieHI9yJkhZWYEYZtZpVtdlpwQRcpKeIpi0XaoXBwa1Nw/z34nOnu1eiGCtsdVFv0cDz00AMAgOn5GeziqkeLk6iz83M8Bge5NI2nVucsoOujwxlBrxO38kpGucNVhzwoXDYAshme5w799o03XYdde+g3WhdoMVh4PlVZXNdBq00P/Plj1Jx15hEPltWfvDLGRhBIz0W/LFq3UUAqosVza5VC/2t2H4TDyMwUj+f+L/wX3P2hL9P8MlN0YZy2B2PFefjczNVZo+t4YMHCRJHVgKu0iDrp7drmXGB+QHmQk0KqguKzjAMYwUgICpJbhJsBXF5wLENj3KpWVbBUqgNh1NNKWK/b4nkTxeX2EGNRpxM3A/k+HWO8XNK25YzLvJD8/2EEOKknZxYabQdGNrKr3K6ISMAyBul0Gr1eb6hLLcmseqntgCAGk2G1pEGSrK36WwPddcVicagrK8mqKx1s7Yi8YWWzjqlJCrF/9M3EP3/kyBEcPEyvnTtPnmb79u3Y2iJvGTImQDp/w9BXPL4kfiYnJxPEIfQ5RZdVq0BA4xVRzMrmJtaqFHbv2U/y5uXJEuoVkc3iklGNvjc+nkNlnUJ5ibK26qs6H3KezWZTPZHh8SyvEzuxm7Zw6jTpO3g+ea31jYuq0uT0uIW3Ruft+z1tBXdScTINit/g5J/va7K3wNRxAXd0Bl4bPnePfvCD7wUAvO71P4Ycd0J+glGNp4/9A1yOFF1O8E5OUSSQzo6hw+i97gZTirXa+NznSLr+RS+iduHJfKx2lM0ybRmX5z3PT6DyXJ7j4cRgXJcPUa3SNRbv73neELdkUmEpkmRxgkBG/j0YEQBx2bXT6+q2S54XSf7Ozs7pc3A5G0UCIxvZVW5XRCQgPdXGGCVsFGnoJIuqEmUkyC4GufEdx0EwgNRKrr7y3SR5pnhjOcbhw4fx6KPk8WQfOD5HmPJW2+DRx7h70COPYGwXf/f3tOe98WZa9W+77TZMcMSQcclrBbwv7UU+iuVc32+GYZiQtaaVO8my25I9ckjjX1o5h9UNigSuuf56GmOxjIUyRQVByD3yrKq0unwS7U6d54HmMarX4HGZ8aEj1INfb1QUgdhhijdilxeSS/q8RE+by2f1moUcUHV88kJRBKQzWT4XyX3YcHMUVbmcvErZju6fpd9jbIa5Bty6Aoc21ijn8N53/5IiBtfXCBzlpGeQ4nnevov6DiIuDUdOFoZ1LOd2UL7iiVMP4hMf/ygA4NZbXwQAyBXmMVWihKpEAFJxs21HX5P5MwYItdQrnZT0XgigzoCgeoP+tlotVccSz95oNGKSV84TuJm4jyOp7wAIi3F/iTAMQ72v5X4S0NDFixefsovwylgEIiIVyefzGqZLCC8n0Gg0YBiBJQ9+basxRKbQarVQ5VBI6sbJhhbJmiZfk4dNXnviiSeGRB8anEy7/rpb8LnPfgkA8OY3vR0AMDc3j2Z7jU+GLsbJ48f04RCUXYFDWJg0ekJkwkY3SD+UWC5ss9nE2ibVz13Onq+tn8eePZQZd20a2+rFs2g7vAWJ6IZqtGhcaxvnUd2iRePC0hkAQM63lREpzTderb6hVQcYoRoX6GpLtwjNLXqoJ4slbUxKlwkLEJoMf28cjsP/LnLrdioNi8N1uRaFwhh60g4dxdcbABwnDcPjyGbp3AtpC9VNOq+JIt0LhbkDWuVJ55kzkPuH/CDCVp0eiinebkzPzKPVJhzB2VO04B++7s5YWIQTyDFteMwaJI1BQWC0bVqShQEjDjc2KkOswLTIc4svP6zValV/s6A4AZ7+S2wHkixBsghkcjGpiOAxJsoEHz979pw+B5ez0XZgZCO7yu2KiAQsy0ahUIDjOEPhjJbN0mm0esIZT2tXLpcbkrR2HB82f0c8vEQV7XY75uOXpBT3LADok9OSFVe88USBSm+dXhdLy9SW6jF+3g8svOlHiNfwJ37yLQCAPbv34bnPpzAz0rIRl8aMj0xeEk9xRCJji1GBcbgnUUSrSqH5VmUJZ0GJuCx7QGM5OFUlCW7RROhxaO75NXS6dNyZafKUW0ursJiKzWcCEdvpaB1c5qjTcfUapLk0V61QGD41OYNtc5SgMjyOhe30mTAwKBTot6JQuO88dA3NqcVJ3XY3QBjE7wNAwBiPdGoK40zikbYLfO6rKJaotj/L3H69VEm3HtKbEYVxG3MxL+VaZkJ2syon//d/ezcA4Hkv/DdIjZf4eqDPbBtYXqboI77XHLgZmr96s18S3HFT8Jl5OohiMVm5F9fXqnqsek2QrUxWkyBikd9KsgkLolS2zE4COavbS07IlkqloQalQRtFAiMb2VVuV0QkACZKaDQa6n0kqZdsG47zBNyx1wsUZCIe23Uz6nmFkEH2l7ZtD5FoptNp/a52AnperCnAq26XUW6bq2sYK/M+d5wFJwFsbJIHeOefvgsA8Ofv/Uv841e/BgB40Uu+n36LgRwrq5vauZZM+Mi5Ct5fxprL5VDghBmaBGypb55CryHkFpwoCkI4qX5iyqROQF7KhhWej2xW9Q887hwsjM9p15tERuP5bUPzd/2263TeVUbck3baWC6sF8QEowBJfhvGzacc7mD0Q6SZCi4MRIaO5t2OsihP8Ljb9DdbmFJZOJOjRJ4dtNRbCrlI5MVRVpqjjkaP23RzY0iluC9FSrhRG8aUee7p+K2W9KE42rorHtgYA5OiTkvG5qDTEyLYAA2meu5xxFgul/VaSWK61+sNJfocvk8cx0kI8sbPgVLe8XjqzcZQz4C0NqdS/RoEl7KnFQkYY37OGHPUGHPEGPM3xpiMMWaPMeZeY8xxY8wHWaJsZCMb2RVq33UkYIzZDuA/AjgcRVHbGPMhAG8A8AoA/y2KoruNMX8K4K0A/seTHSsMQ82Oi1cZFMUsFApY3dzg12jFzOfG1FNLdjQM4721fDfZkTioYZeEg8p7hUJBuegVSMQZ+MhykMlyyU9yAp6lpJnnTtGe/ftf/v14B0cFr3rlawEAbc5p5PIu0hDCTjpGr9fr0/ADYix+uVxGxBqNTzxMVYKcaxAGNMbCeJ7P19OaVlxp4P4Jz1XSj4kxKl3mpybhprhz0qb5zmXLyieQYu9Z6dZ0rJ0uRRE1AVuVSoi4/OY6AvnlnomMhTTvu6U8GSKEy2AvYe5IOyk0uYwm4C/xTl2vhkj6R7iiMlaaRKPFvRQeR3RRiEjITLhXRApj2WwGhmt3gcvdnt0VzcZvrlPe5J6vfw2veP2bcSmLorh7ULx4q9XC6spm32tyv9RqtT6adRpHVrsHlTTH92Nsf9hf6UrqUyZzWJIvk2eEaPD7qd0lmpP3n8ye7nbAAZA1xngAcgAuAngxgH/L7/8lgF/HUy0CUYBubwuTk9OwWOW1x3j/fJb5/NrJBg6a1Hw+r1hqeS8IIkUUSgkqKXIhJo1HGxsbupCoNJnnw3VpHDK5xqJjpY2rdeIjjxJmf252Fwzo84UiJ8lMhGfdScKV8vDb3BPQbQdw8/03VLcbo74GE4RhGKLMpbbMGJNzTO5GaeIggDgBmoKFDNfbhWkmywmxXhghk2YhVx4PvC6anNDKF5mgwgrR4Qc2zQtDBGl7bWs7bZnLgb7va/MK57WQ4jlDAATczBW05UEooO1JgpQZgFtt3boJ0s116RpmcmlYFo0DTd5u+EIvAhiL+4udDMBbj5DFWIoT4zo/Ur9Pp6ksiGgBYZ6O0mwTccxHPvEnuOO5dOuWZkSlmYlE2j1Uq7QApvJ03Hw5j3YCAwDE2ArLQixII1Js7a2Ew6HJ6nQ68RbYiEjuMNGM/NtJufBly1Sga7C1uRqPk3EI5aJwddYQJBaES9l3vR2IougCgD8AKQ9fBLAF4NsAqlGk6dBFANsv9X1jzI8bY+4zxtwnzS4jG9nI/uXt6WwHygBeDWAPgCqA/wng+y7x0UsyGkRR9E4A7wSAhYXZaHy8jDAAjN3/cQmXfT9QfHuDV99Op6PADVlN19bWYDvShRULaQK0LZCkinjP/p6EwVA6NgFhrK+vaiRw+jR5lYXt+5TXrl0Xz9BQkIYkkua3U8RRKOSQyvWXCCmqiXnnAPSRjKyuLfL5XdTx5LK0ho8XqUyWz41hi7dMUr6UduSMm0Kbj6+y344DsBdvcYtyp+tjjL2ydKZJaFksjsceLxGBKQrTTuk80/djFuIsMwU7joW8078V8n0LHvcHFAr9ILFararXNpYqi2Xf5BieF/+uKApJJDU3Nx9TsWVEustDjmXcC10634vVi4Chz/kevZbj69T1LMxto6j04gZdY883SPPYNGqLpKXXVy5C1WgI4+stjMWu6yLitmxoxBrwnGX1PpXQ3/d9vZ+lZdu1oyGlp6fqF0ja00kMvhTA6SiK1qIo8gB8FMCdAEpGNp/AAoClp/EbIxvZyP6Z7enkBM4BeJYxJgegDeAlAO4D8EUAPwjgbgBvBvCxpzpQEASobG6hXC5rIqkn5JU8wpybRYvLdHFvdQdp3ueqLuDYmIJGBjUDU6nUkLd3XbePQx+gfZSUX+TzSSJTKb+IGGo2m0Wn3c8F3+v1dPX+8z9/DwDgV3/t/wYAlMp5NLv9xBBhGOrqLUSS8puFQgFFl35rZYNAOpmsi8gIgYng1n3YDK22JBpiL2Q7MQ++sQUSDRRlb88Im0yuoMm5jQolvVrMWJwEZ4kZYzT30uD9vM1eOoiCPglz+bzs+zWxlbK009KSuWWeg8L4mF4X+RsigjB88vYfKSulbMCFgiRu6TNbW1vKU8BtEfTbrLRULIuHP4+TJ0i+e+euZ9Cx5pmfoR2rKVnMOdDr1NHjsmiVodPSI7Fnzy7lJojCONKMyWHIw3c7HqJQSpuiwxk/lpYSy4juREsjYgUSddvwgn5J+ojzLflCHGFezr7rRSCKonuNMR8GcD8AH8ADoPD+EwDuNsb8Jr/2nqc6lm3ZKBZLqNfb4KhwiBfN9334nGqQRF4UGrRa/TTkrpse0moX0c1kElBuzuXlZczOUrZ8qCKAfsVagBJ+sdAl4+cnJ3HyBNXvXUa6lcuT2Kpz5pgp0FfXKChKu0W4XGGYnZVtRl115OUmkGSZ4zh48ChhDpZXCa2Yy6cxOcFJQibWCEMboR9zEAJAhjHwISzYjBMw/KA5tlFyFUGphTA4fYYapKZmmC2JtxbVSi3eWnHibn19PcYzMFuuyL95YVwrl8W02+0CLB7T04SVQYqJLzq8KMoC0et62mYsWxDbtvX6gZOQKScNw+gBSVRaHJBeXFpR4dqsSIh1mpiaovui3qNrEPRsfOAv/gAA8FM/TX+nJui9wngews3h8sPnNm00mPhlbobuoXSamJQXL5zDtm302sTEFI+/o/dTuy2t72lFNjq8aAR+jD5UNmpe8PP5vG6B1Iyt8yCfr3IT2vaFnco8dTl7WtWBKIruAnDXwMunANz+dI47spGN7F/OrgjEoDEGjp1GaTw7RASiHVaFAoKgPzQP/Eh1CuKW4kATg85A0iafz2tYJcms/fv343puxf3qV78KgLYNigHnY8j2YG1tRSMMsUwmo+P1mxKF+Or9RKJaasTdTgX75sgzScCTSqV0hR9M7lSrVZXblvNdWNimCTDBK3i9HgpjTLuVZq/Cx2+1OrpVkO9VW1XtvOtw5LC2uaXl0RonYAvsdbvdrhJkSKnL90NN0kkZrlaPefS0nMsoOJhAefnkmlUqFfgifAAhfZEae1YjqTCKhVGDMN5eAP20W0LskWZc/9zcfIwylS7BbBpV7oQsFinkn5vZh8raGQDAJz9JkmA/8e//E51LKwK6VMKT8D70ewl8SqjnDFAHq9xDcr9GkdEIrat0bkYjl5iGrq1zHJetY6HRwS1ZiEgp95QMp0RR5OPHn9CI8nI26h0Y2ciucrsiIoEI8Sop+3dZRYWJNZ1x0eL9pazqaTebAAnFgAhJmMgKLCvr7OwsLl6kEpvsbVdWYs8eK+lYQ8ovEglsbq7r8WWvmslkFJ/9BJNtptNuAhNOx7r3m98AALzwBS/F4iLlC+R8Pc/TfW7yXABa3bcvEEPwI4/eBwCoN5va7x8y+CblptHp9usIOMxlkHIzChIq8VhrJtBcgMsJVtey4PDciIeSBJvjuDBGFJCkJyFLSEVAIzDbpjkLfF8zd5sbdT6GgyznDrqeCHU6CPhzEh20+ZiWidDjcXh+f98HjYM8a9qJiVrlN2Vcvh8oeKre4BzPeB4WA8CaFS7TpubxwGOfBwCMlWmev/WtLwIAbnn2y8A5P0U8VtdrmGQSkjHOvcj9mkrZ2NigHpAW34e5QknvV4nA9uzehyeeOMLnTuOx0zHZ7qDQ6KU0BLwghMX3Yp07VSX5GoYhrrvhxqHvJO2KWASEaTcZEstJywPnui7yjFYTRGCj3tLwWBaNbDavtexkaAZQ2CmZ7CTXoCwSyZBOwl35K8mVZrOJ6ek40QPQjSjHlW1BGAYIOFsticeVlWUeYxbVlWbfGHftmsPaGt2gkjyShef8+fPKuFNWJV9P0WERc/zlcuPYqhBOQKomSb5FNyMNOzE7kKhAbzJ7z8zsrIb8ksDzdfE1urjInBWLxTgRy/mqnnAIpmLK7Ak+l1qthii0dEwAkHIy8RZL2JeYdtt1U2g2+7dmrVZb57srZCR+rM0Y6hpKxxobG9PKgSy69U4NES8MnSYv5lYWIZOC5LjV+4/+3/8GAPiDAzdhYppYmzp1Gs/09CwCWVhLjDkIYqYrgVPX6tQ23Ol0NJEtdtNNN+GxR4/weTE+xIv5MpNw4fi4/UQjJtFoJAQvUkHI5/NDqtGDNtoOjGxkV7ldEZEAAERORB0fkZR8aGi33kiilffccw+aTQlBGYeeK+r306wx4Pk+ylz3ldVRQ8YEYlDadefm5vV9KQN6noc8K0GIVwaj1cfGxtBkvv/5eQ7l2020quTJpFzX7XqIOuRdW1Uq6y2eegQAId6ymX5aqm4rQiZFXsQu0hw0arSq+14DrRZ5eMuOhUwk0SjlprWNzbjXgRNnrstbp0xK8eXCb++kMlheIxISia5qlZoq8koyUqTYOp2OetKIm0ODyIabodBWPE4slBkz9Cpiz7YVb5/m7UMURfB5vD7jJxw+D9tKIbKFFJH+pJy0enZpG+75DmDxmML+enut6cU4EouuT+C5sCxuNLK59DiWw8zhlwAAPveZTwEAzi/SsT750Q/if3/bf6Yxcj2/Ffawp0T3yTv+iCKGn/q5nwUArGxuYKtC906jFfcTgAVXHI6ylpZWsW9/rPoMAAFHKL3Aiq8Z4wss21aaM+2lCUPNME/y9VERnyDAqRMs7HIZG0UCIxvZVW5XRCQQRiHabZKskr2hlHy+/vV/BECr+vg4eepkWUY8uyTwkog0Sf7JXsuyLD3+zTeTUlChUNSoIIkOHCQ8jffRgKydMsbHH38Us1NE+lnktt7Fs+dhseuKgv6STrWyDmMzJRhrYF9cXkKa9/21Oo2/243JSIWQJCac9LSsJhFMs9nU8l9OJK3aCfKSqF9a20nF3ZTl0iSfZ4jTp8/yucYts2KD8nBRFA0RwSTLq4PJziAINNJI7m0HZdzj+6AztAcG+nn76f+jvlxHcozJ40ouI5n3keNWKhXs309Mxdsn3gAA+Ma9VDb+8IfvRmGCIs8Xv+w1/Jt5VFky7sDNBI05+vgZAMBYIafRjbRWVyqVRO8KZxlNqHkvyR09wbJu+XweXqdfo4G0NvqBQd1up4/IBYhzaRvrm5ofuJyNIoGRjewqtysiEjCwkHLSCAPA92JpbyCGzjabTTi5fhnyra2tS2LTpYIknikGtvj6Ocminjp1Rj2HZpfDeHUWq9VErDSmHuu0mep7dRXbt1EkkOF9rpuyEPHxeqxBOF7kYxofFcbliyf2PUv14zRTziXAZrOhuHKLgTauawCOIiTyMbA1chnUY+h0On3/Bn9b5qNapQx2sTiB226jPIxEJkeOPqTzGOdIyNrttnpliRyk98DzPLiu0JxJjsJVWGySLn4wC64wYy/uP5DxJ0uESXo2eX0wSvB9PwESYwBUodAnIy9jk3+XxykiaLYoEuiG6/hP//lnAAB3/RpFRq973Vtxhjv5dl5D3A51BiAVrLSWNuWcut2uzp/wMmxsrmkVQapYaxuUp6FqVqbvGEEYKEVZkkNDzlWqQlIezefH9Lpczq6IRQAgnEAul1e0V8zCS5NVKBR1UiX0T6fTfQxBAF14SaIoy2+CQ1AWELnJ0um03lxS669UKprIUsTgFIXLy0sXkOIbO8+JyZXVi1hbp76ADn8v7Yyh0qB/T3AtebNOGIVPfuLv8NwXvIaPz2rA6ayiyUSR13ZkGxFq66k0wjh2Ck1m2slxH4LneZoYFF4dURb2/UCFNMaZUXezsqU3TYtDVjfVRRjId4TvnwVSt7b0ZktuEeRaNep0DJHH6nZ6CPgYLvcteD2vb8FO/gXiaybHtCwnFucI4oTfIGrOts3Qd5MouyS7D81L/H35fc/zdBHY5Hr/S1/2CgDAtx74AnJ1euB///d+GwDw67/62/jCPfcAAKamOWHK92urF6DL92vXi0t04nxaLExi2cC+fXv6zuUV3/MKHfdf/dVf0vyxo8rlM7GYDn++7XexYwclb6W92OYmsenp6eFegwEbbQdGNrKr3K6ISMCyLGQyGWxsbPTpsAP9IWCLS2GyKoZhqAm8a665BgBw6tSpPi7/5OeTicelpSU+rq0RwMmTJCYqnkx+F0i2Ko+rFJd00hHIiZOEjx2lz+VK8Jrs8bj77NRxKtU0Hz2Fm5/5YgBxKD8zvV1bk+X4hlf8RrOGMVHVER36Zk/LZKEtBBWZRMspIy45CpqcnEy0LYPHnY7BPDwHjUYDx449pvMFQPUKgPi6CMmK7/s6N26Krt3q6rp+Rn5fPFMUmaE5tSxrKKLTZK6T0Wgs+ZnBlvAka2+8PYnvExmHbKGIq79f5DO5pcgy/2CTPfbttz0HRx+lKOLb99H2aHpqDj/5Y5RAfMefkEx93qV5SbtFLbtmOHG7vHRReSM3OORvd5rxb3KUUizSMRqNBn75l38FAPAZLlk+/MiDukVItsivrMepJeAAACAASURBVKzQ8fg85foYY7CwsIAns1EkMLKRXeV2RUQCxljIZHLI5XxNlA2u5vV6Hbt2Ub+90HXl83ndY8lKuLy8jKkp7oMfKGdJLwEQRw6FQhGnTp0CEK+ezWZTk1FJ9lgAaDWasZ4hH3csn8HUNHnS224nMoqzJ5fQlW66pkCEyTvv2XONQoJrnEiqbm3GSdFAiD1jWfYCRwLinZ1UfD5CzZXJ5BJ0W/F3AUpKSUIwqUkgCkGVzSrP6ZgmH+tMlSYQ2uReXH472dUm3jvJqf9klG3KsgsMEYdoaTGyhkQ5oyjqU2eScx/U/kvuheNcgK/vye8P8k8AQNunvXVkyc47g9tuoehtZoo4Az77mU8iCMij/8r/8R8AAL/xGwQaapgeIKQiHBHs3LlTE7Bra3T8qampvpwEAHQZXDQ/O4cMkxh83/cQc19lYwN1LiE7TMAT2JGWF+V50JKiF+CxRx/Hk9kVsQjksmnceO1eBEGIFGvMP/AAhdWtBrPF5GZQY733DDfFNFpN5DiL3+ILOT4zCcfqbzRRkcl0eugmrte68HoSFrIARz6nk6ihKMdM44UyQuZBDJgRxg8jiBrGmE0Z3shfQ4uZcM9t0IW/6TkvBwB4vQ56TUIApjjT2w0ceCLBxc+L4UpDJjuOqVmqknS5Wcg4KRS42uBzI06z1dHtgpB0WCKo2uzqdqNY5P4J20WPKbvLrKC8vLysxCuTvC2qN1hlOLC0r0B6GDY3N3XhVjZjYbKxbF1E4+asFDwOyb0w0R4bCetRXA8HAAc+woHElmVZwqGhbb2dwBtaQGw3xgakHSFUYVYly0JH+lR4jHnekgJAWu8h2T7YqNTI+bzoJd8LALjm2uvx6Y//HQDg1MnjAIA3vpHee+1rX4tXv+qNdFwWSGlEtjIFL+yg6kOj0UCGEZeez70ofJ7NdkfJSkJGh+7dvQf33PctAMD0LPWwLK+u4MIFSjrHCxsda8eOXVhbG8mQjWxkI3sSuyIigVqthi9+4XN4wQtfjAa3egqRhGVx2axVj0UltE7qq8dTwQbLHpIrl1DQGJPoNuSWVU0Y9X8urptTuNwVOqh0Cg1G8hWy3GY8N61bBHZy2LlzB44vERuxYB2ERdZ13VhyyokxCuk09www868VxQyyscyaq+PucqedSHelUmmty8tWSLyi7/uKfdDuxyCWFZPIqFQqqdeWOZDoKTdeQKrEBCOMliyXJnUbIOFsEqOQLNOJJTn05PjiwQbxAsGl+PGixPYiMUeD7bbaTp0QutXymokTlHK+hGtg+rSBYyXbu2X72Gw2ceAg4QMefpjmoNuje+Nzn/8Cjh6lz931a78FANiqbSII+3tM0mlbxyH3kGwD/TDQuWzU4tb2vfv3AQDa3APSaDR0ezm4BT579uzQfA/aKBIY2ciucrsiIoEoCuD1GvjQ3X+BqWkqoUiH4AQn+e581g04cpQSHCrJbFvKaSXJNMvYmJ6Jy11AnNRLijnqntOxcMMN1EewvEz9/t1uV0kiZWUtZMkz1JtNTJSkU5C88+49C8hwZ2OB1WlWNpdwYYkw+Nv27JAzpTHato5t587d9JbJo9WWhCCDXcKYBVkQd2eYBDSbS2kCTspvqVQa9VosvgoAW9UY4ddp9xOl5PN5HYdEPJubm/pd8fBSMk2+J3+bzaZGGAIuku9tbW2plxUSVd/3YZl+zH4qlRryYFp2dPqFNsV8Lo8KZVqUiDQGlao8zxtKUIZh2Ic2lL8SOXUGePuNMUPo1Hw+j7BLOaAfeNXr6D2OVr/ylS9icZGu/+vfQMCwVNrBHXfcAQB44xt/GADguKESmAbMfiykLyljYYUTiD5zDFx7+BA+/9UvAwCaPZrnmZkZva+ly1PmsVKpxKSsl7ErYhEIgwDNrQrG8jlcXGKm22l6CHfvYvrt2gbS3BZbZNGIWr2pLDiSTbFTjtI5S3glia49e2JkltTnNzYqGqJxdycWdsxrCC83+Jc/R3Vax03B9+jhlwszUSrrb9U36LgXli8ine2v5wobb+QH2rS0sLCTxljMA8yO63JWXkhJoihSUpMUI+8c24nbaR26KRv1pj6IglwTBpt2u40JZs6VFuGJKVvDZEmIZTKZPkQmfZ5++9ChQ1qFkQpCJuNikysLg2i8Uqmkcx/DZS0NT+UaJBeBwW3BcE2BHu6ImY0keYooSizs/U1Ith2fZ5K0ZrCBaGtrS+v4ct1lQQuCIFZWTqAmA2lu4kfpuutJrRnG4PziGQDAI48QrqDdaeLI0QcBAO9+D53723/qZ7S1O5+d6pu/fKkY0+Enxi0LXz4V83DKtVpfp2qFLNy5XG5IsXjQRtuBkY3sKrcrJhJo1RuwIgvTHM606uQ5jjxCop/NZhPZPCU/ZrcRTro4XsD8wm4AwOJ55uMvjGFxkaIJCZEkqbaxsaEEGYKxbjab2Nqi7UWcENscEmyorVIJ5o0/8u+w7wDTTDGe3wkiZHhVfsPbSNDye17xfeixV+5y/T9kJuJcKg7PJGrJF8K+OjgQb2c6nQ6qm7TCdztS0+6qtxL2XkSRJgbFkg05cs4SEW1Wa0OJuCQCUDyebFnOnVvUBFSsvdDU/oPB8NqyrLi5yQg1nI1HHiFyFQld5+bmYk5JvlbanmylNGqSBpsoNCiNM0+iNDSZeP6kVi64j+R2IIkmlW3lmTNnAAC33XabztEC193FEyeThkmk3vQu+pyUTn2mTvNDC1MztAV62cvpnqusb2BtjSKpY8eoBP4r/9cv4k/fQWjDo4/QOPKlgs6VICmaNZrHXtCDsIpkhS6u0x1Khp87R89AoVAYRQIjG9nIntyuiEjAthwUc2VYACLe50pL7tQ4eYtmvYbaFu1br72W0H4XV9bh7qJ1bGaK9lNnzi3q/ki8RMwOHGBxkYQ9k8mjwXKa4zgaMXzjG8QQ/Ae/+Rv0PQPksixWyeKWiFysMRHHy19BSaB3vfs9uOEOIppwCzS2iEk015cr+MzHPw4AeN/73g8A6HQDXcUHx79r1y48elQYaYXVthF7n3SMOJP3xYMJ6s8Ygy5Td1WYVNRP7HPFoijSuZHIaN9eapMOg0g7DOUvtYFzOdfuL6dFUdRXGgQo0pBIJLn/l3yCmIxhdW0THfa8rU6sNrU1kLibnBjvE3BNHiNZIpTIKwgCTPE9IxFJEAQagUiSOJkIHRT9NMagF9I1ChktdpLLh8ZKa67J44TvDdc9G4Iqu/12ujc+89lP4Q1vpKTiO/74fTTevKgktVFmaXmL8wCOHanYrGp/B/G9I2NMsnYPslcP2lNGAsaY9xpjVo0xRxKvTRhjPmuMOc5/y/y6Mcb8kTHmhDHmYWPMLU91/JGNbGT/uvadRAJ/AeCPAbwv8dovAfh8FEW/Y4z5Jf7/XwRJkx/g/+4A8D/475OaMQaOceAFgVJmzbIQ5FmW/56enUUg2VkGC3ndDjLsNasMKXZdF12PSTwShCTy3mCJq91uqYKPrJitVhPveMefAABe9KIXAQDyTL8V+R6kk7tWZT55OwQi8mp791C+4K0/9uN4/0c+CgAoTVNUIQozrlvA7t27AcT711o9QDZHHkxyAXfeeSeAQYlv8hKZbErBPHEXXFr191JMQaU6d46jABXd5wbeJYE7Sf0FAHjsMeoqTGb7L1y4oN9Jlv9o/lp6LIlqlPgyAeqR65KMGOQYcp6zc3PD2PpuV8eRlHOP6dspchGNiSAIhqK9Uqmk35VqSLfb1SqPl6Ckk78yL/05D8rV5LKUf7iwRJWUYmEathVrWgLA6nIdF5dpr+5m6bef8Yxn4J5vkMaB9BNsy+/S40s02GQQXTrragVjcobuyZPHHovFSQe4F1zXfUqw0FMuAlEUfcUYs3vg5VcDeCH/+y8BfAm0CLwawPsimvF7jDElY8y2KIouPtlvhAjRNi3kxgpwUywc0hZUGzfwbHmwSnThV7foZths+vjMl0ios8aiC3v27NEasrC9Sg3cdVy9QUV3funCBsolel8SSSF6eO7tzwYAzLGQ5fGjxwAAX/yHj+H5z6IAZ8cMXYxHL1bhFilBdOQMtQu//wN/jUyej8fyaY5Lv9kOWpgYp4Xh9Al6mGZnp2GHdM6by7RlKfMNubqyjiCkG1BYaDyvh7ExwSvwYpTPwGcefLkZ5KYPQx+Ga6Apl1t528M19V6vpwkwudnbbWZNbhu0+N+lcsxg1Ok0+N/9rEa+7w81/2SzWTSatHhNiLBsZFBjfENxjCWzeN3reu2hLUXWTePxY4/S5/najhVzOl5pE08+wLIIlFiQ1Gs3MF6IuRkBUinw2iwZpmxALOyayQDcfGQbac7pwvPpGrU6dHxRebbtUM9JxrFSu4CuoeszOUGl7x07t2H7bior/vrvkKznX9/9tzRnvRD1dZqrdkuuUwSLtxmFDF2na6+9Ft/8JqkpSyOR/Gaj0fhnQwzOyoPNf2f49e0AkhKoi/zakBljftwYc58x5j4ByYxsZCP7l7f/vxOD5hKvDesmAYii6J0gKXPMz01E+fwYEJkhEcc3/cibAQCf/exnYRh8s7JCgcXk5ARE3VpKV77vw0oxP+EErfpN9jxemIIX0Cqa4Ta0yekpnGSyj/37WVa8VMQNN5F009oKhWgf50Ten/33P0T5//x5AEDuGdyb4GZx9iRFCh/9KG0BlldXcNPNFNZJF950gQAcnh8inSavtbxMXmvv3t0a+knYu7VF467Vq5pMO36cUJOzs7PoCWjJF317FxHLjgtJiHi5S4lb5nI59Rjy2vj4uHpN8d4SfgZBoCGxWBJ5NyjnlkRoJpmIk+E0AFSrNYyNkUeXCEbKd6XpSf2ceLSTJ0/qFkQiHUlKAnHiLtlLoIhBTmhuVevad2BZwyU0oy3EMfhK1K4kukmlbGSdfiITsV6vp8AqaVufmd6W2AZSkvuDH/obRadKMu8LX/gCAOB5dz5Htyo7dhDqdGXlAtbXWcKOKe+OPfIYduzYxe8Pk4usrKwNnV/SvttIYMUYsw0A+O8qv74IYEficwsAlr7L3xjZyEb2L2DfbSTw9wDeDOB3+O/HEq//B2PM3aCE4NZT5QPIDCLYiBApJHJimvZWH/rIXwMAbr31GVjd6odthogZfKXz7uLqCnyPPS9DJ8UrdrtdjJdjjDwAzM3tVc9RY0DG/LZZ9JhocvsOomb6+Cc+BwB441veho0mebovf4NIJnfuPYDPfo6EK2+8+SYAwLWHr8PUJHkrjwkCCrxXth0fThBThwECYyWvJh5BHNQNNx7Gt4/eT2Obp2MuLi4ix6Uk8VBRZHSPLJHUpfbnKvve8/s67QDyIIPJU8mjNJsxoYpY0suK10rqAwx24UVRpBBYjzvuut0uMpl+MpTkuAcx+xMTE/qaJsS8uBt0MA8BxBGD4d9OJgZlPpLW5XHkOW/RbDbhDNCRJaHHg0lD27Zx00036W8BwNTENs1XiE1NTSkEe+9e4hj42N8TR8GrX/lKNCOao8r6hp678AOcPENJ82sOXIsNiZz4Xi/weS4uLmLnzp1D55e0p1wEjDF/A0oCThljFgHcBXr4P2SMeSuAcwBexx//BwCvAHACQAvAW57q+AAx4a6uVzEzM4X8GOPt+aKmmevt6ONHMDFFbZuC2S+MjePMaarLbpun1MOhA/vxjFuoBvvud78bAJDPUsqi0eig1RAsOF2sRr2i/QopDqWzaQdnTtJrtRqF5He+/LUAgOOPPYJVoa3mpqFKpoKJAyQlNc3kFbadQhj0B1rNFi0y41kbhpOXN95E36tUKigU6GaRRWCRsefdXh3b5ukczp6j883mMsrgG4bxjTgoBZbMuqssl6DsLKfvYQMuXdtPirgM1srDMNRFVjAJyd8c5A50HAc+h+QijDI1NaVNUCvLFFTKYuOYdJ+smViyFwEAwihmCpbxJKsUynpkC/18qEhHQX7mcrl4sWByEyMLXC6v8yeLRxRGWOfwW6oVyXZ02dLEAiwRDh+6HgDwyU9+EgAwv20h3gJV6eF+9FFCVHa6LU0Ey3bg0UePYqxAyVPpmzl5+ow+6CdPnwEQL6Y7duyAm+nHYAzad1IdeONl3nrJJT4bAXj7Ux1zZCMb2ZVjVwRi0LJtjI0XMb+wXRNf2xcoGeUmKKs2uUNKQstCoYCDTLDw7QepU2tichJry4yI63DvAEtJ5zMF9UyyYte2lnBwL4X8klS5uHgK43lOOAX09/jjhPXet28fjh6llTrDSEDPSWuNv8fstG42gxZzDFY5CTTGtF6l8Qw2V+lzEt4HngvHpt8Sr5UvUFRUKufxX//4jwEAhw5ROcm2bT0HYRaemZlTpJskhgT52Ov1dN5kDtLZ/FB/RT6fT0h7mb73xsfHFZsg7xUKBe0PkM7FZEkqKQEvfzNZEVBx+XuRvj9IUDI9P6e/Lx64WCzqcZORj/yuvJbsV1A0KN/yluXo5zOZePtw//3U5XfDjZQY7jHKstlsKu5EsBhRFGmCUraXyU5KiWYEpVqrdvGpT32K3+fkdWlMxXKmpyhB+L0vfxkA4MEH78ftN1JUm3aZzKXr6bZxo0rzfs2Ba1UnQ3gqRbZuvFhW2rrL2ah3YGQju8rtiogEbNvC+PgYjh17TFl1Uzb9FVVqE/XQ5CTazMw0vxagxeCODCcU066LtE2r4s55WokLGabhCltYu8jlFd53b5soKcY7v432kmP5LGpbnDjcSXvxPVwZK4y1MXM95R86EEqzJlo1KsOEFo3761//KnbM0z6uzMnLSZaxrtfWcM1BKvmVytzv37CxfJH2kLLf/eZ9lGxcXDyLZz6TpMGEXKTV6sRswMxrv7Kypp5dcPHiPVOp1BAbbzqd1hJikttfPK+iEznhl8wrxLJebf237LGTMuTy+aRXFpNIIAhiQdJ9+/b1jSepJyDRQbK/QeYqm3OH8iCXohLLuHEOJNkhCFCX6U03EsFMRWju+NwDAKe5M0/mNpfLod2myEWk2x5++GE9N4maBLmY2lnEc5/7fADA+fPUa3LkyMO47nrKCwkXwM6ddH81m3X9/S3u9xgfH8fOHXTvLK/SPdfqdpVUpS2REc/t2cXFPlbnS9koEhjZyK5yuyIiAWMMUmkXTiqFbJ7LXTy0kL1AJlNElslHVXo6DFFjVhvxIK1uB8ce/BKAGOTS7cQeZKxAHiHw6Xvnz22ioPqEDLUMu2hI/3aLvFqBSUKXV84iw9qCrSZ5WSubRSDc+3yM7du3o1qh32gwXwEiimDe8LpXY3qO9n/NRj/WGxiWQ3/py16ME+eW+D2KHCYmJtBu0XfFc2fSOWQYAp2kVAPIO8rxJE9w/sLFodJWp9PRspt4Y4kWPM9TzyQ9/uVyOVExoPFL37/neUP6AGEYIuXGArH0PaO/L7TlqkDkxreo7OvT6fQQ9VnKtYYiGPntKME6lIRJy/kly42Dx0hKfSe1LQDqURCY7gMPPDA0jxJtSpVgaWlJv/vMZxL0vFgsosG5I7nun/70pwEA/+XXfh25HAuMNj39jOQhkibzcfjw4b5j3X///TjA/BeXsytiEQgCH5sbKyiNj6n6bqNBoZFctE67h5kJQkV1fQ6J23W4hj9foeRLt9vGNbuvBRCHnobZeH3fVyZXQRhWmw2srXPzUVqSRnGSK+SSUpuFUrsAwM1KEoZvrm5ibpYerHqN1YYtC4evoe3Af/zZn+MzZTXjXgd+g2mpfLp47e46Qodu2m7ELbwHKTn1yGMnsW12geeKabK8CFaKW4+dGAnoS/LPlQeTySYsB+NMVtFq0/jz2RSKnHyMWYEjdFocYguugec4m7YVnTg9SUkyYyJ43LDV6/G2IMV8jLWa3ozymm27YE1VLXF1u95QU1GSXkzek9eWlpY06SZ/LeOg22FdCuZsaTZoXJ1OR0t4QYrOpV6PQ205bhRF8AxTkoXxPQPQQnHddZSUFeKRMAyxsiGLFTNKi8Ra2EGjQ/+e3rYXYnK8e3nRuOnmW3QBkW3Uzu2EMKxWe7BZbDZX5nu5XgF4jNccoOeh2g3xwhdTo1ube2gKfG5hu4Vjx47hyWy0HRjZyK5yuyIiAdsYjGczCIOuejpLPC8z5Dq2jXorbg0lCy+R9LCGGIV1++D7uppLAieTLqhHSCk1VwgjnWJC8MitucVisY/AEiCPKUmgv/3Q/wQAfOmLX8bM9kGkFpfenCwKpVhvAAA6vS7qXF6URNJpbqOmzkhphWVyTBOixQSVDreshgHgCsiFf0vOvVKp6FyJd06NZRKinHH3oWghCGmpJPx838c4k7xI+Fmv17V7sFTismstRkHGZbiYdLXdE6JWkUWLBTVnmZJLIxMnpWG9gICSoCGNFDttFAoiZmvxPNIWavfu3QmZM+i8yLnLlshxnJh5mEFfMu5WqzXU5txqtbBeofBeQvRDHI4fPXoUe3fv1DkCiOBVtgiTB2j7ur66jJtvJACR0K41ajIXk6o8lGd06MLCAo4deUCPBwAHb75NkYgrF2k8GdkGmgjPeg61pH/qk5/ApWwUCYxsZFe5XRGRgDFAyoRI59JaAnNTtNfLak97B0HE+HAmFXGcFHrsTRQDb7sQCidZ/WPhTk+9qyS/GvWOJrY67Fmz2TRsOybBANCHEZfkUbu9yccq6qr8h7/7m3QM1wCsYwfxXKJvaLnKpS1eqNfrqceTPad4kBMnTiCfpfFKJGA5Njp87q5sgmH69rDJ45dKJZ0POW42mx8qq3U6nSEsfVIAVsaWpCWX1wQDL4nBpIS4zGO9XscEi7dKYjWTyWH/fkm2ipQ5R4JhDD2W6zg1NaWJSRlro1EfAglt375df1t+P5aYHxvKPxhjdI4MYopvQLQfgr5z73Q6eNGLXgAA+MpXvgIA+MIXyCMfPHhQ9QB37aLc0Le+da96dIEDp9MpVd3at49KfydPbPFvGxQK9BykeQ42V1ewkyHEz73zOTTP6QK2M+js3Bm6D4Ur4ZEjD2GBI8zL2RWyCBi4LhF+iEpupFUBSd6ksMkJLXmAa7W63nhy05dLk/C4dttJcNIBdOHl37Jo5PN5fXDy6fgCidSZIsD4oiXZcsaYAGNlZU2z1B//+N8DoJrzK19NLRW/918J7fdbf/jfAQB2FECyY3Ijnj9/Hj1mOJLtgGaowwAw9N4yt4XOb9+hobm8Njs7ixqjE2UxjRWZWwkJM9li5VRctVKp8zynEYXcdsvXIMuCmZXNrZid2JfWWRsph8Y5OVXum9swDPUaJLEJMqZ+NGF/bT8WzIjRfnLcXq+nWXm5F84vntHPrTAzdNwC7et2TpKXSRYh0VwYHx+Pt45ejDEAKPSXLZ+E/hMTEzjHvSu3cOu5ailYBhurFNb3+H7cu2snFpgxS+agWq3GuAZm1ZqZ4qRr0IXNysZSJCnks5gsE04hm+bxN5qoM3rwGc8gVeyPf/x/AQCmZibRDfoFXQdttB0Y2ciucrsiIoEIBj5sRLaLkOXBldWWS3V+BOSy7Gm4A89N5dRbdjnZVN3aVF7/JHccQGGfeCaV6dra0tXfSUlI3Mb4OMtFC6qMEzT9CLZY+knGVJ6gdtDjp8/gNa8h5uEZLu997APELPyyl70cTp7ORbxRtVrFuQtU5nzwQcKvv/SlLwUAbFQ2lX/OdWNG5GaDznligjxDs9nWyEjWd2Unbne17CkRTK/b6wuP6dw76qUG569cLvd1GwK0TRJOv9U1SkqJZ8vn80NoP2OMJg6lrLq8vKrJR/G8GrGFfh9iUY4l113wIbc+80ZN9u7fT9fggx/8IP3O3NwQWvJS0mfFYlHr+Pv3Uceqov1SKezdu7dvjGtra0OirUIaUq1W+9qnZY5lKyZbynQ6rdGDXIPdOyncP3DNHuTS3F/BCc2JUhkZKZ+y1Pz7P/wRPPggtZqDk6I5TpK2Om0c4Hb4y9koEhjZyK5yuyIiAWMsOJkcvMjAZo8QMMFjjyMCx82iuUWvyZ525655Bb7I3rBe39LVVlZs6f5qNBpDibMgCIbKjJVKBQMt9Zic4mSW3U7g7NM6nh6PN+LSkuUCpTJ951beL37jKyQkWc7l8IwXvBwA8NBD1P34+OOP44mTRHN266230jF4EJOTk9hYlzwBecWlpUU02+Rd919DXmvnjt144D4iOhEiCznfXC431Nvf6/koFulzUvKTvn4A2Npi8A174mazPYQmbDQaaDYpJ5Fy+/sKut2unkMfAo8rsVIWHB+PCT7GOCckkUMhl9HxJHMNJ0+eBBDj+LdqrkYkH/jABwDECUpjjHpeOb9er6fnpTqS9bp+TuTHJbl455134mtf+1rfe9dffz0s9vL7mf5NkqTdbld/X84znY65EWyejzvuuENJQiXx+YYfegMAYKJUhOEMMj8GSKfTqDPtnERoP/D9r8R6hcB1F7gsus69L6fPnsL5pZgZ+lJmkiww/1q2Y/t09LP//jUoT85go0KJsk6LiUMYxeeEPjx+qIVgYWlpaYgAo9VqYYwzsINJwCAIEsg4+l4mkxlKXo2Pj+vDI+/l+OYMgkAfBLlhPC8mtMgzgcPFixf1BpWLK1n2XC6HNm8vyiVKKBbH5+F5zFgj7DScG+v1OkhxWCgLxNmzZ7UiETMKhwituPU6+dvtdltD58cfp3btdMaF1xMRTzr+5OS0Zt7dlOAnaN6NMZpEkwWlVCppSCwozCSrkSwWcsMSB6Qw86R0/mwrzcftTwJarquLuWxdNjY29DcF9+F3a9rOu7Cw0DcHURTFSWJGm27btg2PPkqMxfKg53I5XZSvvYGaesShjI+P4557aIF93vOep+fSZJYpWZSE2SkpBKpOI11ExIxSGYZOX7xwDsbQeb3w+cTOf8sNtKC46RwmJnfwv+mec908VjfW+37z/e+/Gz/wA6/kf5MywLZ5SpwuLy/ptvJHf/gt346i6JkYsNF2YGQju8rtitgOWJaNbL6IzcoWsK5ThwAAGClJREFUekzJNcvlnQ0Or7ZPTGGdZchEQLLZbGppLslrL15KPIgIZczMzAwJTniepxGD1JzDMFTPLiHd4hIljAqFgnocrWV3u0PY93w+rx4xKYcNkBd1shKaiye24bBQvUiabzUocmi1mkgzruCB+x/SeSuOlfrOPZ1OI3Lou5JkSjILf/3rXwdAYSwAVKqbulWSSMC2bfWMF5cojM1xU1ej0dDEVxxe24rkk1BYIoLkVispkxVjLuLGLu3z4M+pCEgU6dZGwuqDBw+qIIpEBAtzU4ryE9qyVCqOkGaYs1KuSa1W00YqmaMLFy7gjjvIGy8yo3WvJ8I0EV7wAsLnJ0u42SyNU8qGyZZsSTJKOXMsn4PF7ec+YwjclEGZt2S7FmjeMxyBBUGILvcCWBHLua9vwud7hrlZUCwWdQt07bXUN/PFL30eAHDLLTcP8UIO2igSGNnIrnK7IiIBP4ywUffQ7kaY53JGjQlBxybIE6834o402VunUilNaGnHm20PETzKXn9paUm9lHiciYkJ9WqSH9nc3BySuZK9Xq1W0+Mm5ctjb8/YfgtIp2lFd0UCKyfotgYmJ8gDV7gV+vHjD2PffkrwRewhwd17U9MTuLBMURA3tyGXy6lkm/x2s9MGeG8tXjPZlvz85z+/7/PGihV/Sqy0dPr02SHPIXOVzWaHRF7b7bZ+XrQRxNsWCoUh4tNMJoOAEZ3FYpy7EYDSaSbKlIjDdl09F7kmvV5P9/0SVdRqW0MoSYkSMplM3BOQihODst+XSHH//v06znIpRj0CdG/Ua0zjNh0jER94kCTEpMws3v8Hf/AH+1CSAJAyKbjcTZnPsJZC0FQlq+v20zm/513vBADMzc3jhc8lKs9v3fttAMD0ZBkcMGJCREoTArpSbhT5PMuK25wvZ6NIYGQju8rtiogEjLGRyowjU3CRzpBnKo5xxxjj+Zu1LZXWHuTWB2JqplQqhWw65n4HYg/iuq6u7EkufVnFk9lkiR5kZQ15vSyVSgnsfdw1F0cpMQ2URBiDWnCtVgs284zIeA4c2INGk45r2cxlxh2B+Xwe2+ZZQ4/3r34QwuE9b5p1BxzHAbj7UeZDtfrGxvRcxHNHUaTncv48ecPdu/fqPKg3ZpWdRqPRJ/MOUJQg8yvXQ7z0yspKHw+/nIv0PAg9WlKaXLrsZNyBMRpNyGue5w2RoTr5sURVQnof4vKk6AJms2l9TSIGyZEYY2JJcpfO6fjx4wCIPkwikiwTk25t1XS/L9c/mR+R+0rySkHHj3MBYzSP1x7Yife+6x0AgH/72lcDAL74GVIgeve734vTJ6jX5eTjlAM5/Mrvw8kTJBDeZur7tbU1THEJWzguhHYPCHVOL2dXxCJg2w7KpWl4QYgUc8BJY5DhkGrHjh1YPEXkCMlSntzEEub3ej0VJBlU1wXim1dudNd19QZMJtPkptUElSAYw1AveFxbtzXRWJ6I6+zpTH/zjNyw6UxOb0pZIM6dO4fD198AADh1mrjsZmapFXX54hqeOEsP6c0336zHku9KonJsbAzNBifK+EGUmzrJfisPleM4SHFCUBKsSa2ABj+kVVbeTT7w0rp66NAhfThkPFJGLBaL+m85906ng5Abq2QLsry8rNuBwTJjeXpaxyNJ1yeeeELLnbIwVNfb2i+xuEhjk96BVCqNXE44DuP24cEFKggCHefxE1RGFWG9Rx87qknUiLczbtrBY0+Q9OYtt9zSdy2eeOIJRRhKyfXa/YfQZEm6zU26Lml08Uu/QLJ2i6ep5PtvXk2LQSbl4hvf+IbOEQC87g2vx6230n0iqNZUajqBiu3XhfC8Xp+C9KVstB0Y2ciucrsiIoEoDNFrdZErFtGoUpwc+LSyNWvkSbZNxVzzSV37QS64XC6nHmmQBKLX6+nqLx7HcZw+IIvYYAvszp2ERjt16pQeP4mGkySUzaCOarWq3lXek992szkUuHdAWoO7QUfD9QJLmm+fJ0/yxOMn8cxbic1WIhjHcdBh5GSWtwPnzp4f8qQyhiAI+vQDAMC0AIcTmRsbNO+ZTG4oGZrLxwQoEv1I2e7EiRNaHhvk8Uun0xqRiIdsNBoojveLj05NTaHXjUu8SSPSkv5rfOjQoSFR03aro/Owfx9FGBKOb25u6jZmq7auvyOviTWbTX3tegYLSbKx2WwmSFm4z8EK8YIXUCuxaAvIWKenp/W7krRr9iK0WEFXaMjOnzmNG3g7ct+3qPfhwAG67o89fgTL6xRFTG4n0NCJ1Qqs8xQVPGcnRUOmFv+uCtC6cck1yfB8KXvKSMAY815jzKox5kjitd83xjxmjHnYGPO3xphS4r1fNsacMMY8boz53qc6/shGNrJ/XftOIoG/APDHAN6XeO2zAH45iiLfGPO7AH4ZwC8aYw4DeAOA6wDMA/icMeaaSBgULmNBEKK+VUM2k0OB99vCwusymeby4lnMTJOXk1UvCAL1eOLdOp0OGrV+lRzVl0vIRycpwga165IeQbyneKEdO3ZoHkI8nu/76tWSySB5X/bRSSFLO2Swki9RSIgznAuwbPJot90m0coFtHv0uSDixGazoUmpe++9FwB5yG6Lxiv7fxlP8hwkukmn06hzbkKO1e16QzLbEhGcO3duaK527NihkY7Mi8C6pVQLxCXFXC6HBiet8vmCjsfwPlvGLbmbdCJSk+uYJGCRe6FYLOrvS6Qm701OTup9MpgXAeLoKkkYIzwLcqxcLodOh46R4nuy2dzSc5fzE69brVb1t2SunGwexTJFZoU03eeFVICvfJV6EpaOU27lZS9/NgBgenYe23ZQXujCKud9Zrbh+a/4AZ4/OsaRo1/H+fMiI0/X8f9r71xj4zquA/ydu+TuktwlV0tSJGVRpGQpNg0YjuQHpLRog8aRHMNNUKA/EgSoi6YoWhRFHz8aB/6RFkV+pCiCoEDR1GhQFEXi1E2M2DDcpq4stC7QKJVQx7WqSpGqZ0xRFEktl0tyudyd/pg5c2f5sBTbXLLlPQCxu/dezsw9M3POmfPc6apjLS01mt51LbibWoT/IiKjK679Y/Dz+8Avuu+fAr5ljKkCl0TkAvAY8G/vOoh0it5dvdyaLdGXt6JTodf53c/ahdTX2+snS0XeiYmJIFGGnbxqtcqCr7rkKuI6EenixYvcd5+1xRdc2nCkwWzJTm7a+bT35Dp9Gui0Ky82ecOKZZ25blwEpw97vvzOO+S6nb29326Aubk5LyKqv7/6qj/66MM0XFKOq66gxWDXXtJTdkFpOPBZ5xueKxbozDXb//OdeYzzg//wg7Gy8NI7VrmkirNFl249n8+TTjeXCYuiiJpbH9rn4mI5LkDqNqtEseZeF3uY7ccX6HD5ISect113d7dvS4lutVol1+F8LkrW56C/vx9p2Pmbd4pNH94dtZHPxgE+AF3pbJwZym3uc/9zwSsCs3m7OarOs669vZ15V8S2PXL46M75zalZpg31mGi2NfscLC01iCItlqJKxgyDg3ZTX7hgg7/Um3BsbMy3r8R3/Nxpv3HDkGJlErNZe++F49au39V13reh8/nE0WPIvG1vasoeC+6/f7/Hw2OP2bJlmrZ8bGyMSGJGsBZ8EIrBXwH+3n2/B7gW3Lvurq0CEfk1ETklIqdUC51AAgm0Ht6XYlBEngWWgW/opTUeWzNM0RjzHPAcwMjoHiMimHqNStkqx8pVSxiWqpZDzNUNkfOg0+i50DSnIk82myVKN/sHKPT39zeFwAJU68vsyDs7e0o5ZYrFuos6E0snbztvsYXJ2/5/Dz1mlXW7R/ZjIvu/6bTLjdghPPjgQYcnyzX19/j4JJXynLtmzT0nT/6AfXv3u+ebS3HfujVNe8bVnQ/EztB/Hyy3VY6xMuPywsJCk1+D7Ue8yKoRaYODg/64oFxLFWFLS0se9yqNLS8v+3ZVShkbG/M4DscGVqTX44YqF2u1WpOoD2EW4cVVx5N0Oi45pm0MDw/741acWdh+Tk1NxWHl3Tt8P6mo2YuwI9vl+62vKKQK8XrSdovFoufU+hketVbmpzx06FCs/M3FR6GVRUqOHLHHgfHxcT9uHVfo4art6m+AN954A8CHVUdR5HG/HrxnIiAiTwNPAR8zcTzydWA4eGw38M577SOBBBLYeHhPREBEngA+D/ysMWY+uPUy8E0R+QpWMXgA+MHdtGmI6OzsJAqi6gAa7tC6jHgPKaWOaUkh7izb3WO51tTUlC/OuNJDrlwue46jprPS9Awpl7JLkzVks1kynfaMf9uV/e7bNerb6t5huc/4hD2TmbasV6xduWyvTUxMeC6veR5TkX2nmxNTPPqIlQo0UcWBAx8KzH/2DKcSRyaT8Rwp1IHo88pVuru7vaOMcq3QUUm/h9GPyiXU7396etrjK/Z4jPx4VDHoFXeZjB+TSg6K95ALhU5avb3NCrNUKuU5nbalc2wacTFRvddoNDzXVClkaGjI9xWWPAfLMRUfN29c8+O+duUyAA899BBgJaRlV24u69oN6yb40mhqlgyKsSqutJ+w4KlGZZacFyc0ez8qvjQ3gq6lRqPh29DnVecQ4u/xxx/npZdeAmIJQN99amrKr/X14I5EQESeBz4K9InIdeCLWGtABnjNTdD3jTG/bow5IyIvAP+FPSb85p0sA2CR2tnZSaNeI5d1SqlZZ492XlGCoT3brKzp6Ojw1VcXXA326dKsz5azsjptoVDwSPVKoWwHNyasL0Kx4CwMtQa3K3YDptJ2g03O2dfoSUVkjGYPsmPrStv8iIDPlnzPPcMcP27DOZUYqPtoqVT2SkOdtHq97u+/+OJ3ATh69CgAN2/eojdn30k9xzKZjN/8KkJnMpmmdN96DSzxUu89fT4MFAq12rqZ42CreDMp/tTuLyJ+geqnWmqiKK4PqPbrMM9eWFRE21Uio+1XKhV/TTdL6AarBGKuUvH9al9etK/X48CnnoLv+8D99tjS5gK9dg7lPLHSvrTNN9980yuVtd0QbxrCG7qgK0FQj8FsKuXfWT9rtZqfM8WVKhkzmYxfw2oBOnjwoMef3nv11Vc9jsL8h/oemtxmPbgb68Bn1rj89Xd5/kvAl+7UbgIJJLA1YEt4DNbrDUrlCoV8niXnIVh3sQO9RZdb/8YNOnNWRJtzxRRkqUrZcWxVEHXlc96DTXPBhTZ/Vab4WveNyIfTLjhz2vDe/Zw/aTP+PvoRK7b/w2u2uMTPP/UkZcdp0mlXgCMdUXPBTerPXamUOXzYmmtUeXnrlhbuSHsuHFfrNZ4DqARw+rQNH92xo5f26ThvP1hOqUo/FTdtgpRmZZRyFyuG93pcghVZtT0VewcGBvz/xDEGcUkzfRflkNPT003+FWGfoZSg3Gh+fp6KS5ShWYHDdzl//nxT+/39/X6udI47OjpWcep0Ou3b8OnRHFfOZDJBDQf7zHLd0OZCcV/7Jxuwc/jwYc9J9V00ECtMHKOcOJvN+vvKiRVny8vL/nnFwfkzZ/w76BqtVqurwr4VVyLi29e2Ll++7CUAbaunp8dLxyFOwR4L7uQnkMQOJJDANoctIQmIWEo3/uPrDPdbqlktW+pVmbUUf64yz4JThO3da32rJyYmaHM6hJlp+1xHtmsV51CuGyrCVDpYnK+Tds4ouW7n7bdrD8V+y7VP/KvVa+50hTJPvP7PDN9jv3/ogFWmzZenfbmocsWePZfrS556L7n6BDsHXDHKvm7PaWIl3ZJX4GjdgUcesTkhL1264qm/cpUoijznU6pfq9UYGLAOM6oYUu4/MzPjuadyyHK57BNrKvcZGRmJqwz5cGF8m2oi1PNuPp/349C+QqeuleYp61xkcaVKrr6+vlURn4qXULEVJoRVzuvPx5l2L/npGTtM9eUTwTjPy/7+vFcuPvywxfPrr5/wFXwWnaOUmlyr1apX1Gq7s7Ozfh2p9KE6nnQ6vUofMjIy4nUTyp3DSkgqvSle9u3b56UDfadiseifCyNhFW+aek/nOJfL3dFEmEgCCSSwzWFLSAKIELW1MTo6ytWz1mVS6pZS9g9aznbvvfdy28UEnHUJFnp6euh0iR4bxKawlRxPKX5PT4+nikrVTb3NU3GN/x4fH6dvpzP53XRJRdzZfWBgwGunF1wSkPa2iOWacjLc88tNTjZg9QTgHGxctGEY/ahjCscBsGfPHuYX7f/qmTmdTntTknKawcFBUqnm3P+qZxgdHW3ivNqnph9XB5+ZmRl/XlW8aXHWqakp9uyxvuyKsyiKPLe6evVyU1tXrlzx0oFKJoVCgUYj8v8LzX72K7lcsdi7KglpmOI9rHGoupGwpoTiR6UlNe9evXbNuxkrrnYPD7P/wAEA3n7LrsPQRKhcPyx5r+NWnOoZfnJycpU5+oenTnkJRqWEYrHo30GL5Sr+S6WSX8thYhqdb32nY8eO+XlUC5DiPRzverAl6g7s2b3LfP63PgdtKUrzdqOr+NPuMuU0qnWuT1obby5nw1M78zsply3i2nCBHwvLXlGliAgr/6r4qGJ1W0cHfb3OjurMfMsmTXneEoupGZekY1csZq80zTUaDb94tRRXoVCIs94EVW91PNlMcx6/paWlVXkNr12z75vNZhkcGm7qM9w4Suzq9Tpduea6A6rIK5VKHg86/kKhwJkzZ4DYNh1Fkd8U+r/UNZagRJTSEmWuPsBSwxeDMak42EbfN8xApLjqydtFXlu2i3nm9nR8v66efXbuKktxbEKqzZkD58rcdsU1fGbjxThMXN8zzADts1I7P/r5+Xk/L95cHNQ4yGSbFci1Wq3JzKlzkHV7U9sKfTFC0y3A7ELFt1FbdKXdeuJq0cvu+XIlLvum8RhqppXIeOaiRL2rs8cTND2uhd6hOh9/9MU/SOoOJJBAAqthS0gCIjIJVIBbd3q2BdBHMo4QknE0w//lcYwYY1a5D24JIgAgIqfWElWScSTjSMaxseNIjgMJJLDNISECCSSwzWErEYHnNnsADpJxNEMyjmb4fzeOLaMTSCCBBDYHtpIkkEACCWwCJEQggQS2OWwJIiAiT7g6BRdE5JkW9TksIidE5KyInBGR33bXiyLymoj8yH2+eyG3D248KRH5DxF5xf3eKyIn3Tj+VuQOKWM/mDEUROTbrqbEWRE5shn4EJHfdXPytog8LyLZVuFjnToba+JALPypW7dvicihDR7HxtT7MMZs6h+QAi4C+4A08EPggRb0OwQcct/zwHngAeCPgWfc9WeAL7cID78HfBN4xf1+Afi0+/414DdaMIa/Bn7VfU8DhVbjA5ud+hLQEeDhl1uFD+BngEPA28G1NXEAPInNtC3AYeDkBo/jKNDmvn85GMcDbt9kgL1uP6Xuuq+NXlh38bJHgO8Fv7+ALWzS6nG8BHwcOAcMuWtDwLkW9L0bOA78HPCKW1S3gglvwtEGjaHbbT5Zcb2l+CBOW1/EBri9AhxrJT6A0RWbb00cAH8BfGat5zZiHCvu/QLwDfe9ac8A3wOO3G0/W+E4cNe1CjYKXHGVg8BJYMAYMw7gPne2YAhfBX4f0OR1vcBtY4yGf7UCJ/uASeCv3LHkL0WkixbjwxjzY+BPgKvAOFACTtN6fISwHg42c+2+p3ofa8FWIAJ3XatgQzoXyQHfAX7HGDPbqn6D/p8CbhpjToeX13h0o3HShhU//9wYcxAby9ES/UwI7rz9KaxYuwvoAj6xxqNbwba9KWv3/dT7WAu2AhHYtFoFYquCfAcrVr3oLk+IyJC7PwTc3OBh/BTwSRG5DHwLeyT4KlAQEQ0ibwVOrgPXjTEn3e9vY4lCq/HxOHDJGDNpjKkBLwIfofX4CGE9HLR87Qb1Pj5rnOz/fsexFYjAvwMHnPY3jS1o+vJGdyo2cPzrwFljzFeCWy8DT7vvT2N1BRsGxpgvGGN2G2NGse/+ujHms8AJ4hqPrRjHDeCaiNznLn0Mmzq+pfjAHgMOi0inmyMdR0vxsQLWw8HLwC85K8FhoKTHho0Aiet9fNKsrvfxaRHJiMhefoJ6H8DmKwYdMXsSq52/CDzboj5/GisyvQW86f6exJ7HjwM/cp/FFuLho8TWgX1uIi8AfwdkWtD/h4FTDiffBXZsBj6APwT+G3gb+Bus1rsl+ACex+oialgO+7n1cIAVw//Mrdv/BB7Z4HFcwJ79db1+LXj+WTeOc8AnfpK+ErfhBBLY5rAVjgMJJJDAJkJCBBJIYJtDQgQSSGCbQ0IEEkhgm0NCBBJIYJtDQgQSSGCbQ0IEEkhgm8P/Av7UiCtZaUFJAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# nuclio: ignore\n", - "# Select a sample for the test.\n", - "# Set both the local path for the test and the URL for downloading the sample from AWS S3.\n", - "DATA_LOCATION = \"./cats_and_dogs_filtered/\"\n", - "sample = random.choice(os.listdir(DATA_LOCATION+\"/cats_n_dogs\"))\n", - "image_local = DATA_LOCATION + \"cats_n_dogs/\"+sample # Temporary location for downloading the file \n", - "image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/' + sample \n", - "\n", - "# Show the image\n", - "img = load_img(image_local, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - "plt.imshow(img)\n", - "\n", - "event = nuclio.Event(body=bytes(image_url, 'utf-8'))\n", - "output = handler(context, event)\n", - "print(output)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: notebook 02-infer exported\n", - "Config:\n", - "apiVersion: nuclio.io/v1\n", - "kind: Function\n", - "metadata:\n", - " annotations:\n", - " nuclio.io/generated_by: function generated at 18-09-2019 by iguazio from /User/demos/image-classification/02-infer.ipynb\n", - " labels: {}\n", - " name: 02-infer\n", - "spec:\n", - " build:\n", - " baseImage: python:3.6-jessie\n", - " commands:\n", - " - pip install git+https://github.com/fchollet/keras\n", - " - pip install tensorflow\n", - " - pip install numpy\n", - " - pip install requests\n", - " - pip install pillow\n", - " functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlciBvbiAyMDE5LTA5LTE4IDEwOjQ0CgoKCgoKCgppbXBvcnQgbnVtcHkgYXMgbnAgCmZyb20gdGVuc29yZmxvdyBpbXBvcnQga2VyYXMKZnJvbSBrZXJhcy5tb2RlbHMgaW1wb3J0IGxvYWRfbW9kZWwKZnJvbSBrZXJhcy5wcmVwcm9jZXNzaW5nIGltcG9ydCBpbWFnZQpmcm9tIGtlcmFzLnByZXByb2Nlc3NpbmcuaW1hZ2UgaW1wb3J0IGxvYWRfaW1nCmltcG9ydCBqc29uCmltcG9ydCByZXF1ZXN0cwoKaW1wb3J0IG9zCmZyb20gb3MgaW1wb3J0IGVudmlyb24sIHBhdGgKZnJvbSB0ZW1wZmlsZSBpbXBvcnQgbWt0ZW1wCgptb2RlbF9maWxlID0gb3MucGF0aC5qb2luKGVudmlyb25bJ01PREVMX1BBVEgnXSwgZW52aXJvblsnTU9ERUxfRklMRSddKQpwcmVkaWN0aW9uX21hcF9maWxlID0gb3MucGF0aC5qb2luKGVudmlyb25bJ01PREVMX1BBVEgnXSwgZW52aXJvblsnQ0xBU1NFU19NQVAnXSkKCklNQUdFX1dJRFRIID0gaW50KGVudmlyb25bJ0lNQUdFX1dJRFRIJ10pCklNQUdFX0hFSUdIVCA9IGludChlbnZpcm9uWydJTUFHRV9IRUlHSFQnXSkKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6IAogICAgY29udGV4dC5tb2RlbCA9IGxvYWRfbW9kZWwobW9kZWxfZmlsZSkKICAgIHdpdGggb3BlbihwcmVkaWN0aW9uX21hcF9maWxlLCAncicpIGFzIGY6CiAgICAgICAgY29udGV4dC5wcmVkaWN0aW9uX21hcCA9IGpzb24ubG9hZChmKQoKZGVmIGRvd25sb2FkX2ZpbGUoY29udGV4dCwgdXJsLCB0YXJnZXRfcGF0aCk6CiAgICB3aXRoIHJlcXVlc3RzLmdldCh1cmwsIHN0cmVhbT1UcnVlKSBhcyByZXNwb25zZToKICAgICAgICByZXNwb25zZS5yYWlzZV9mb3Jfc3RhdHVzKCkKICAgICAgICB3aXRoIG9wZW4odGFyZ2V0X3BhdGgsICd3YicpIGFzIGY6CiAgICAgICAgICAgIGZvciBjaHVuayBpbiByZXNwb25zZS5pdGVyX2NvbnRlbnQoY2h1bmtfc2l6ZT04MTkyKToKICAgICAgICAgICAgICAgIGlmIGNodW5rOgogICAgICAgICAgICAgICAgICAgIGYud3JpdGUoY2h1bmspCgogICAgY29udGV4dC5sb2dnZXIuaW5mb193aXRoKCdEb3dubG9hZGVkIGZpbGUnLHVybD11cmwpCgpkZWYgaGFuZGxlcihjb250ZXh0LCBldmVudCk6CiAgICB0bXBfZmlsZSA9IG1rdGVtcCgpCiAgICBpbWFnZV91cmwgPSBldmVudC5ib2R5LmRlY29kZSgndXRmLTgnKS5zdHJpcCgpCiAgICBkb3dubG9hZF9maWxlKGNvbnRleHQsIGltYWdlX3VybCwgdG1wX2ZpbGUpCiAgICAKICAgIGltZyA9IGxvYWRfaW1nKHRtcF9maWxlLCB0YXJnZXRfc2l6ZT0oSU1BR0VfV0lEVEgsIElNQUdFX0hFSUdIVCkpCiAgICB4ID0gaW1hZ2UuaW1nX3RvX2FycmF5KGltZykKICAgIHggPSBucC5leHBhbmRfZGltcyh4LCBheGlzPTApCgogICAgaW1hZ2VzID0gbnAudnN0YWNrKFt4XSkKICAgIHByZWRpY3RlZF9wcm9iYWJpbGl0eSA9IGNvbnRleHQubW9kZWwucHJlZGljdF9wcm9iYShpbWFnZXMsIGJhdGNoX3NpemU9MTApCiAgICBwcmVkaWN0ZWRfY2xhc3MgPSBsaXN0KHppcChwcmVkaWN0ZWRfcHJvYmFiaWxpdHksIG1hcChsYW1iZGEgeDogJzEnIGlmIHggPj0gMC41IGVsc2UgJzAnLCBwcmVkaWN0ZWRfcHJvYmFiaWxpdHkpKSkKICAgIGFjdHVhbF9jbGFzcyA9IFsoY29udGV4dC5wcmVkaWN0aW9uX21hcFt4WzFdXSx4WzBdWzBdKSBmb3IgeCBpbiBwcmVkaWN0ZWRfY2xhc3NdICAgCiAgICBvcy5yZW1vdmUodG1wX2ZpbGUpCiAgICByZXN1bHQgPSB7J2NsYXNzJzphY3R1YWxfY2xhc3NbMF1bMF0sICdkb2ctcHJvYmFiaWxpdHknOmZsb2F0KGFjdHVhbF9jbGFzc1swXVsxXSl9CiAgICByZXR1cm4ganNvbi5kdW1wcyhyZXN1bHQpCgo=\n", - " noBaseImagesPull: true\n", - " env:\n", - " - name: V3IO_FRAMESD\n", - " value: framesd.default-tenant.svc:8080\n", - " - name: V3IO_USERNAME\n", - " value: iguazio\n", - " - name: V3IO_ACCESS_KEY\n", - " value: bd182781-6b24-4899-b2b7-a84608931aeb\n", - " - name: V3IO_API\n", - " value: v3io-webapi.default-tenant.svc:8081\n", - " - name: MODEL_PATH\n", - " value: /model/\n", - " - name: MODEL_FILE\n", - " value: cats_dogs.hd5\n", - " - name: CLASSES_MAP\n", - " value: prediction_classes_map.json\n", - " - name: version\n", - " value: '1.0'\n", - " - name: IMAGE_WIDTH\n", - " value: '128'\n", - " - name: IMAGE_HEIGHT\n", - " value: '128'\n", - " - name: TF_CPP_MIN_LOG_LEVEL\n", - " value: '3'\n", - " handler: 02-infer:handler\n", - " runtime: python:3.6\n", - " volumes:\n", - " - volume:\n", - " flexVolume:\n", - " driver: v3io/fuse\n", - " options:\n", - " accessKey: bd182781-6b24-4899-b2b7-a84608931aeb\n", - " container: users\n", - " subPath: /iguazio/demos/image-classification/model\n", - " name: fs\n", - " volumeMount:\n", - " mountPath: /model\n", - " name: fs\n", - "\n", - "Code:\n", - "# Generated by nuclio.export.NuclioExporter on 2019-09-18 10:44\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp\n", - "\n", - "model_file = os.path.join(environ['MODEL_PATH'], environ['MODEL_FILE'])\n", - "prediction_map_file = os.path.join(environ['MODEL_PATH'], environ['CLASSES_MAP'])\n", - "\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)\n", - "\n", - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)\n", - "\n", - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)\n", - "\n", - "\n" - ] - } - ], - "source": [ - "%nuclio show" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Prepare to Deploy the Function\n", - "\n", - "Before you deploy the function, open a Jupyter terminal and run the following command:\n", - "\n", - "`pip install --upgrade nuclio-jupyter`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Deploy the Function\n", - "\n", - "Run the following command to deploy the function:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[nuclio.deploy] 2019-09-18 10:45:19,498 (info) Building processor image\n", - "[nuclio.deploy] 2019-09-18 10:45:26,663 (info) Pushing image\n", - "[nuclio.deploy] 2019-09-18 10:45:26,665 (info) Build complete\n", - "[nuclio.deploy] 2019-09-18 10:45:36,884 (info) Function deploy complete\n", - "[nuclio.deploy] 2019-09-18 10:45:36,899 done updating cats-dogs, function address: 18.219.68.129:32141\n", - "%nuclio: function deployed\n" - ] - } - ], - "source": [ - "%nuclio deploy -n cats-dogs -p ai -c" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Test the Function" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\"class\": \"dog\", \"dog-probability\": 0.6951420307159424}" - ] - } - ], - "source": [ - "# nuclio: ignore\n", - "\n", - "# Run a test with the new function. Replace the \"function URL:port\" with the actual URL and port number.\n", - "# To get the function's URL, in the platform dashboard navigate to the function page -\n", - "# Functions> ai > cats-dogs - and select the Status tab.\n", - "!curl -X POST -d \"https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.123.jpg\" " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/demos/image-classification/README.md b/demos/image-classification/README.md new file mode 100644 index 00000000..1235a657 --- /dev/null +++ b/demos/image-classification/README.md @@ -0,0 +1,24 @@ +# Image Classification Using Distributed Training + +This example is using TensorFlow, Horovod, and Nuclio demonstrating end to end solution for image classification, +it consists of 4 MLRun and Nuclio functions: + +1. import an image archive from S3 to the cluster file system +2. Tag the images based on their name structure +3. Distrubuted training using TF, Keras and Horovod +4. Automated deployment of Nuclio model serving function (form [Notebook](nuclio-serving-tf-images.ipynb) and from [Dockerfile](./inference-docker)) + +


+ +The Example also demonstrate an [automated pipeline](mlrun_mpijob_pipe.ipynb) using MLRun and KubeFlow pipelines + +## Notebooks & Code + +* [All-in-one: Import, tag, launch training, deploy serving](mlrun_mpijob_classify.ipynb) +* [Training function code](horovod-training.py) +* [Serving function development and testing](nuclio-serving-tf-images.ipynb) +* [Auto generation of KubeFlow pipelines workflow](mlrun_mpijob_pipe.ipynb) +* [Building serving function using Dockerfile](./inference-docker) + * [function code](./inference-docker/main.py) + * [Dockerfile](./inference-docker/Dockerfile) + diff --git a/demos/image-classification/horovod-training.py b/demos/image-classification/horovod-training.py new file mode 100644 index 00000000..ab612ba3 --- /dev/null +++ b/demos/image-classification/horovod-training.py @@ -0,0 +1,209 @@ +from __future__ import print_function +import os +import sys +import json +import keras +from keras.applications.vgg16 import VGG16 +from keras.datasets import mnist +from keras.models import Model +from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, \ + Activation, BatchNormalization +from keras.preprocessing.image import ImageDataGenerator +from keras import backend as K +import tensorflow as tf +import horovod.keras as hvd +import pandas as pd +from sklearn.model_selection import train_test_split +import io + +from mlrun import get_or_create_ctx +from mlrun.artifacts import ChartArtifact + +# Acquire MLRun context +mlctx = get_or_create_ctx('horovod-trainer') + +# Get env variables +mlctx.logger.info('Getting env variables') +DATA_PATH = mlctx.get_input('data_path').url #, '/User/horovod-trainer/data/cats_n_dogs') +MODEL_PATH = mlctx.get_param('model_path', '/tmp/models/model.hd5')#, '/User/horovod-trainer/models/catsndogs.hd5') +CHECKPOINTS_DIR = mlctx.get_param('checkpoints_dir')#, '/User/horovod--trainer/checkpoints') + +mlctx.logger.info(f'Validating paths:\n'\ + f'Data_path:\t{DATA_PATH}\n'\ + f'Model_path:\t{MODEL_PATH}\n') +#os.makedirs(DATA_PATH, exist_ok=True) +os.makedirs(CHECKPOINTS_DIR, exist_ok=True) +os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True) + + +categories_map = str(mlctx.get_input('categories_map').get()) +mlctx.logger.info(f'Categories map: {categories_map}') +df = pd.read_csv(str(mlctx.get_input('file_categories'))) + + +mlctx.logger.info(f'Got {df.shape[0]} files in {DATA_PATH}') +mlctx.logger.info(f'Training data has {df.size} samples') +mlctx.logger.info(f'{df.category.value_counts()}') + +# Get image parameters +IMAGE_WIDTH = mlctx.get_param('image_width', 128) +IMAGE_HEIGHT = mlctx.get_param('image_height', 128) +IMAGE_CHANNELS = mlctx.get_param('image_channels', 3) # RGB color +IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) + +# Get training parameters +epochs = mlctx.get_param('epochs', 1) +batch_size = mlctx.get_param('batch_size', 64) + +# Check for GPU +is_gpu_available = False +if tf.test.gpu_device_name(): + is_gpu_available = True + os.environ["CUDA_VISIBLE_DEVICES"] = "-1" +mlctx.logger.info(f'Is GPU available?\t{is_gpu_available}') + + +# +# Training +# + + +# Prepare, test, and train the data +train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42) +train_df = train_df.reset_index(drop=True) +validate_df = validate_df.reset_index(drop=True) +train_df['category'] = train_df['category'].astype('str'); +validate_df['category'] = validate_df['category'].astype('str'); +total_train = train_df.shape[0] +total_validate = validate_df.shape[0] + + +# Horovod: initialize Horovod. +hvd.init() + +# Horovod: pin GPU to be used to process local rank (one GPU per process). +config = tf.ConfigProto() +if is_gpu_available: + config.gpu_options.allow_growth = True + config.gpu_options.visible_device_list = str(hvd.local_rank()) +K.set_session(tf.Session(config=config)) + +# load model +model = VGG16(include_top=False, input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS)) + +# mark loaded layers as not trainable +for layer in model.layers: + layer.trainable = False + + # add new classifier layers +flat1 = Flatten()(model.layers[-1].output) +class1 = Dense(128, activation='relu', kernel_initializer='he_uniform')(flat1) +output = Dense(1, activation='sigmoid')(class1) + +# define new model +model = Model(inputs=model.inputs, outputs=output) + +# Horovod: adjust learning rate based on number of GPUs. +# opt = keras.optimizers.SGD(lr=0.001, momentum=0.9) +opt = keras.optimizers.Adadelta(lr=1.0 * hvd.size()) + +# Horovod: add Horovod Distributed Optimizer. +opt = hvd.DistributedOptimizer(opt) + +model.compile(loss='binary_crossentropy', + optimizer=opt, + metrics=['accuracy']) + +model.summary() + +callbacks = [ + # Horovod: broadcast initial variable states from rank 0 to all other processes. + # This is necessary to ensure consistent initialization of all workers when + # training is started with random weights or restored from a checkpoint. + hvd.callbacks.BroadcastGlobalVariablesCallback(0), + + # Horovod: average metrics among workers at the end of every epoch. + # Note: This callback must be in the list before the ReduceLROnPlateau, + # TensorBoard or other metrics-based callbacks. + hvd.callbacks.MetricAverageCallback(), + + # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final + # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during + # the first five epochs. See https://arxiv.org/abs/1706.02677 for details. + hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=5, verbose=1), + + # Reduce the learning rate if training plateaues. + keras.callbacks.ReduceLROnPlateau(patience=10, verbose=1), +] + +# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them. +if hvd.rank() == 0: + callbacks.append(keras.callbacks.ModelCheckpoint( + os.path.join(CHECKPOINTS_DIR, 'checkpoint-{epoch}.h5'))) + +# Set up ImageDataGenerators to do data augmentation for the training images. +train_datagen = ImageDataGenerator( + rotation_range=15, + rescale=1. / 255, + shear_range=0.1, + zoom_range=0.2, + horizontal_flip=True, + width_shift_range=0.1, + height_shift_range=0.1 +) +train_datagen.mean = [123.68, 116.779, 103.939] + +train_generator = train_datagen.flow_from_dataframe( + train_df, + DATA_PATH, + x_col='filename', + y_col='category', + target_size=IMAGE_SIZE, + class_mode='binary', + batch_size=batch_size +) +mlctx.logger.info(f'classes: {train_generator.class_indices}') + +validation_datagen = ImageDataGenerator(rescale=1. / 255) +validation_datagen.mean = [123.68, 116.779, 103.939] +validation_generator = validation_datagen.flow_from_dataframe( + validate_df, + DATA_PATH, + x_col='filename', + y_col='category', + target_size=IMAGE_SIZE, + class_mode='binary', + batch_size=batch_size +) + +# Train the model +history = model.fit_generator( + train_generator, + steps_per_epoch=total_train // batch_size, + callbacks=callbacks, + epochs=epochs, + verbose=1, + validation_data=validation_generator, + validation_steps=total_validate // batch_size +) + +# save the model only on worker 0 to prevent failures ("cannot lock file") +if hvd.rank() == 0: + MODEL_DIR = os.path.dirname(MODEL_PATH) + model.save(MODEL_PATH) + with open(os.path.join(MODEL_DIR, 'model-architecture.json'), 'w') as f: + f.write(model.to_json()) + model.save_weights(os.path.join(MODEL_DIR, 'model-weights.h5')) + mlctx.logger.info(f'history: {history.history}') + mlctx.log_artifact('model', target_path=MODEL_PATH, labels={'framework': 'tensorflow'}) + + chart = ChartArtifact('summary.html') + chart.header = ['epoch', 'accuracy', 'val_accuracy', 'loss', 'val_loss'] + for i in range(epochs): + chart.add_row([i+1, history.history['accuracy'][i], + history.history['val_accuracy'][i], + history.history['loss'][i], + history.history['val_loss'][i]]) + mlctx.log_artifact(chart) + mlctx.log_result('loss', float(history.history['loss'][epochs-1])) + mlctx.log_result('accuracy', float(history.history['accuracy'][epochs-1])) diff --git a/demos/image-classification/hvd-pipe.png b/demos/image-classification/hvd-pipe.png new file mode 100644 index 0000000000000000000000000000000000000000..02ac8663100e57eabdb6f432ea04f3b39ce89859 GIT binary patch literal 239903 zcmeFZX;{)}*go7;W|>P<+U8c%OjefrzEPQ3Q)+7Nd*+sFDVic$np#;{nYn9bY3>@X zAdp#+x#xl#pqZ$kU?L(Q@cwY-|I9ekJnxtH!~5a?JC2S)2JY=Tuk*UD^S*EHT{1Tn z6WK4aVZ#Qo^XJZ3ZP>64wqe7TOIx=9@8B+c~c=?#@#GPA%Rn|)51o!YRW zCT07ohY;}hwvclUp&K^HCJFxilrr_*Yr_WqtMg}0UB2l$hZ630wn1U!v&4j|T<-HB zG}>;(C@D!r+cTCeagsukXG)g{r(QA%`diPPKc{^1z@wg>=WcC2ci?4eUQco(pRVh( zoC#eX_91n2WS%E5p?P(A3`2-{t~x#MY6YvDMs1j|)7Ek$%#@L~OGo#L?$g-(^S>TQ zQ_1*{FzCC~nE*>*!0Vn{c^g|)-#^*B?oHs2nWH;ojE|rH=iC4HFCeTf!X0xjOgmftq!#CS_qT2T{G4IRy>_0T62wS` zN>0>ks4N)$p)=3u9*?5C74dT#;yfy)3Mx%-{U^4<4nF(!pY1J)<~j4a-EaDPUBV5D z{qQ5@tH5;U-QE4YtZ+kqKmN$rgPYfh|&c*(qi<54X6%7O}CP95LCz5RP*m2Om$HBWh%l|BqduyNOSM+no;=ltW zo=LFqCI`dwsH8VPT4ku1&NLO;N>f4*URa&;)Jb&Ay9~akyf#lqkkTZJlu-P}{k-YXNzqNPdhYxkHt{^dHk<`p|n}&1hkU?j9gJ-vzelVs= z_bO(xvsJ>#o5!eH9Ql2{3qNgZSH@g9D=Hmmu0I>+eyNSoVXdrINQ-&f%pzqEpbA7k z68IqtF-iUP(8tGp_1nLo=h*xU7v>(zNBZ zqB2r-SEb(aUF%Lt6~+=@>htAdNWfr+t~ZBBeLOE4fE&GQoi~mF`-CeqwU4d6chu<=t$e)~`}mk9{3tp?q zct7i6Q`z^YCtm(?%}sXGViPm3rWd8hcu((qh{Ffv#RertPUkjO^p6Jf`yRwzy|Oe4 zj}4YCf!0>R4u)Nnb(-#Js(sjncesTbI5G~8?Kh*m3$5yygENDYvZvZzOaB<$@>uPj4qKJsuPeSA|Me=Or7h7CxIyGa5!2DZ&|E7t*tF$EKz2 zS*F1>ytsBYKV;N5x2SW>huK<)t3&T2#BlPxzj|6^s#`Q2$;#@>v%ro)r{g;SXZ7BF z!r2+GcTv5iX1WOFUO#eWx}%;g>U?@Mkku#K`LxZtkbyYtGFquGo6#iEnm8s4zN2_w zueCFm{-TLWj(rJZrqY5v>xog_GXw*5FGp+HZ($bwkApCVDHp-7;7rEn3&9$2pU!!8 z7eOiX*Aul7$h<&i{L!Q>@g`ocJt;EKeOx11gtmzRv%I~dFSR%;f)H68Rl7gRj8bdn zOZUJf__} zAA>5(Tn<2_=9nK|8bB!2>H#hyjWf?#^En++m zWGSS$(8>p}2JRqaOGBzQaR?Lje!qyq(U+1VF=cLZ0bM#%?`Gt&ha_~54n3Zm&gOL) zXei-3157q!m(bv77s_pjeCnv-{2kA3jbK!o`98&!aCY0CEe*KqO9Zepemg$3CwxyH z#OoUMx>@o*a$-H-)iiUqyZb?$msOutUfAkz=KR$e`nu3}i+U=goYTCzs7M+q3))6d zE+Gc`G^>;$z}LOIGIq^N>lO9uf~k33HhubgWKu<9j&9g3k~m;(eOXRr;?=lnyVYNS z8y?Ttcv8gO)50CjRHTpd;ipAi zj^t{uS?`d!H=jX-7~hLCb@VQT0UQ-u5ji^R>PH~&h;$hN(o7fpi>C1mz2{<$P~ZN6 z4x1_#zW1*Q0I!}ycF0hS9#SLAnB~@3m*K5KrFs*Y-RK~mO87n2*WA!J4^49U=1L(LGuFlsig;TyiqiNoP2Tu%qCv zbhnsS2ypi+X=|Ixay6UZzKYa0^aO>>2{L!*kghcE-WR_O97>$M8d84lW*MG28#Q_& zzSMNyp{1sIvi|FYaGtv>WS&8O{4jHQZpk<5b5A{*EM6RRl`NUQM`K+UeT#ZJq#W6i zrHgY8BMh`aru1&Cph&q9gc9n&-oP^GY3z-GCa{=cCZH?q6SZLo{l%P%8*Q9|o05kk zIZ$;fz&w^m$VJlByYEf|<(4hu9K)fvrKX4FG+-EHAp)DikJ^et!+%H6n%WPx%+n2) zZeg-Mh@A$s$G<&2ky~M4VNKl4=y$0kpd1n*D7Xb`hkl$R6CU=~cgi^7zF14gj2V>C zwqTe3hr$=*JQ=5duc&?z@0kVbbt9G1rAlV_Xyyjr0rnmw@d5h3-}UWZ}_c z#vFDj$6k?sW1VGAMgrhB2u6P|+NU<76iU7~Eljh_Ba3Ur^4^gx7kjl#5E)HmM?tv; zMA3P&Wt8|I0p{;35@j4RmoN+O(87%U22Xi+|LMKaV3bca+|jTKy;?-JgkUeH zMdGK(B_+qC6HxsR&0S`J!l+-Sk*NxfzbYVX#Gb#c$c7E&TY)vnyO&}p)ePh$oTUpL z))oe`IrUamhK7-)x+>eC(N=bO?SdiLMV=5PQT;w*3BRU6aMwr}` z1{1ADJHuzrx77TWoSx+pJ_ds0z0&y4!G(+&fDt{Yjo@n5hm?kH=T_CE{GAoTf1kxI zsaAlEJ58pwaTTTezyZ01%J6{U8=-9pxGgjbOQ{1$I6p-F+Iy%#`X~rYF7^LX$It-8 zEpwI21EnJOWp!tz=iP4a(P%boaBRFwmy~p9IvXYD0H_W1s|Pawnu*0W zn4v~cG&or!7{j#)1!9>UicEgF z(yQ6?Evl#_py~uBD5y!uqJvu#+E;I7B48z)4C3R9eOD5Dcp{}N+zz(V-zT}@WW>!$ zhIU7VwuETn{m++y@{+B#OD?y6>2g|bz3ZX$w9Iq@&kmSTx#`8I;ni=ILIP=Hv$6X; zJM+Gqyju6%_XRbe?!0mO>R+MW@Hd@$ioAr1x@(3F{@B@rzk;hpz|x%dprp)n*Qh3h zmrNF7VN4Mylv81#(c_M_FA-i@>26WKUCTt^@+CBtyPPgT>&^l`xJ_sQhvTl&*F71~c*^_UrB7M(1i)jMqw+GLV@Y5I#U=U5enm)P_jF&fYGHhJyetI4<=l)>^=u^%`m)EFKaQo{QD zys4$yuK2Rfyf*WMTCpM5aRG7vHFNCPpGAgsoaYU?e2{d)QzbpxH9?u21rVu9V=mAa zZ{W~i25;=aYox6&ggLal0-=T9TteWzQ$Vsg+fo>{;~Bgb5TJOdk2>;Kkf=ic2IeW* zVL|QngpuX_MIvR^6^VT$LeIVNu1QdRrUpuVYtJsV@_2K}S8Uzf^h_I!JqOWpa@ks7 zgzn_i?eWZ_Z1VoF6NZ_bJt$dGyMfUB@9jvry>y#f0okg_otY;tdY1e(jnp_#6TBe% z_?jbr1xVrLMU|w$`Gzo+3+aQEO~pdk_ke)*Vn+@JYN;tUGr23TT(0vB(~)UV8~C#n z$@;a#y3ru8PQfUzAigQn*wZ%G3D>g+P&6Vs)@t%se-2Bx3bjkrF5z-|m6_>@yG1b3 zgeKcNZqf$IS;y4FP?2QA1`&ZGId@{I9>{sl_2qS1oGB|Cm_f>)1NR;)jkBMW&$KtR zx@aK^yEhCc)k`j0Db)B^HtVX3O)X9Pob7W-TrTl>9lvkg$injekHXk;(o(x0h!M~< z7JW}vXgA_`sN0eg-Q^JWsaoz712?u`_5yYZH#>$%B%FLadn_eq>He^v+$vb#`vaJav*e*1-bRjr|CEEWK!@P~T^Pu3q>q=}egov{TFw!YCBM_UD+Zb<0n2$y9sAJL;lK9+)%^}Zxh00lyn=pH7aIM z)2Z3i{Lx`ErXACPiOif_x6CJ5YYcH)RU+H+5Y_1*88AM&1Hf{ice9EjyHiUdP<RK3 z>^oF=a+m``zH)$YgR>-JZWzOtF|pWk79+P45_A251GgKOWy72gwlxf?c3?a&@J=&M z%(fAimV(TDnyLH5rD>GWVhSU1gFYFW+MxbuUy5gkf;f7lJd}X)MqxmKgBS*Dh^OAk z-sEkU<2i`&JUdl4>y2_M%47s(1Pr3aW9aubRcXj`&Aj;C{Ql?=eAO1BqLxBfVpNOj zI@j883;l73BQKu#{`9p`^ryxT!NRS!!XVxo*1KD}Ezbu(&)||e)Qc}ho>*~R63DCe zKjBpfMg7!1Z$^H; z@8HnaGjO)Nl6o0c`)&D+1(iP9YtBWCr~GT3`Wn-edmFvVO3)|Ic z#GffdZjmeIQZR%Un|LWRD z%ZMvbB~E_Kvf(d3ip1?p$z-}M*0N?!guc67qgNS=y$GkilE}7@3rDd&N$>-B^L&o? zLX11~N29*Ut;2QJ*%4$!72Bk%ke$uF*y6l7Ns+1CsIROR4z)C}c5Oo;)_bF!Q;LI( zsBc9FIg86IVA^ikjNMp?qJ9+cLQ^EOfeF)lkhX7cd*ftX5wWr%D@OP=Whf&=r~G+Y z-om3uW@bvZgey14!KddJI2w^G6n7=EGIm-9P8IwwK1-B7Q56KFff>qSTjD&|V@6Ry zKx%vKp8zq(4KMQ9`wwYZX*(eTNAE_zJMLWF2<-p71oq6VZkG{u$n-&uZIAQJ^N%Gv zk)UoPgXJ}|mfmSZ*S+Ep@Vnd~4eqj>FIzSy<*0#|*C${p2h5{~$|Ju^(rZRZS&Xxi z8R##esO;h_3z_Sl8qg_W+^EjYd=xZ3JIbhq(5bjc^6%ji9Ick< znZ!LEh*rm~DPk_ZgG~SpJeH?kF=|wrs5yJu=fFSo=M5X?Ljau_5*>1pRuHfiX5$P& zRb?}we){l_-q;Myn6SpkZX7>=z)YL(glG{yG*g6=&dPqW#gkV@o7$Ld*%^pt+yv6T!j3MvXjNJX6B+-)P@(D}3MguTG>0rm_|w zn!#UIlByw&<0P* zSE>VW-76Yb_Z89&`4auLOK2hlU`1WO=d7MRS`tM0a^Cs%))#d2xjHg9bDruJAdql} z9QXCt&F%+RA7oOo`hFgClTk2Y@Ea=;#58THPXv?<*PKk_u~ z#>y3X&Af#Qe;EYYO3XJ}Uk?DYS=(I>gm zVr+KIsOxU=sI+-nl^Qp^X?RJW&2!&d?mz^yJxPbOyTyfDMH&gjd{z13Fl~AZ7_++> z1a(;N{=m7HeFjad`K0%4Ravx$8JI5@U0A3IdZ$}{lqRA+2(X_JQILw1VvMw9mdJPX zUH#efp#CL&(ruuxeReELeDBjVin!BG(L~L#Z))^=@s%3#Y|M!`W|8vte|Bb=WD?A4 zA5)#Kc-@M#+tMkP*n}uRJmAi@ydo_R2mi4jUpKxMaOd|FCmOrvUUI?m!cqZbWC-SF z2Vz;$3#7g8#Cr%i)7Zrwrm;2hE?9$q8tM78>h)nzr%<1(HU=46GwgnnSya{E6lN|+ zh6A_4>c$=UJQp~dq;Lo5;|8b93=?nqYy=#@ecT?`Qk@91zh;DHCXkHtIp-I6OE&*% z-)9jx!tlUpwO%)ZOz|$henEfa_C@TVZkST8^|b5HfR#Rg(bsJGZPzDm0o4nx#xO{^ zm@;(Tvy)tGaLq{79nI>0eNv_T79~f2B>HL}{vES8WxY5EES{lsLgV4%+~Ot=QZ}hk z!A%t-gZi{ee7kIXRWA|t$`d#{fxR#CzyX-h%>HaSKXzb5q|Ud2qY=%6OZuyMA$!Zu z+Zj$Aq_>pis|$Pyu+a_fPw-A`xZZGd2yMT3e0J5tWG&bS3cUpzAxNx)H?CnDr zF@-dVL_k4Lo0Qj}>H1hv`fO}h-xuIAB%tB&aqevLKb`om(<$Z}b>AKVZkFwX@~h0^ z6*a9iX?L*tuGE#|YRyO2I<`A2m^Ko_*ds{Yl3HDI!)W>diP5$LeS+(D$!k%>oc4<* zNL|mhPRf!9UQGH?mm8KO1IbE)oy1|#YXWcG zRJE0mk3RCx*$7S#*(b-0$HrV)!*GaQvEkLrDq9C@u@BX0$nm3aYR_*I?)E={t}hI< zaQgNL4hF7!1n24ednHzJMcxlPVcUd}dhVppSbtb~0*Q{eq%$<&$J__xD3NZ!e98qGl!MR03-=@CcPTl#U!qq=^)~~{ z`r~1U5xICEg_u{8NJ8q(<^eB(m>KV0(b)BTFy52msxcUSm5u`3s_I{7lzOZI7fGbC zNO^yxOA+8N_+Y@k7=^vSwy=e0MzE3QwMdn{gP*|4kfG?MbYY?YWf+_~mkxlF6@UXz zFOm3bY*|~^kh#{_e7`|yw8mah|8G%t78>%S)C>Ug|Fs$r%yO~RE}7BUvwgHjmMuH% z73+7&IPvAXvr}l1t^n<6{*(4LL;)iBNJyvh>c?_4i}-G$(%kVzNWi>eQ6@M^Y1@|8 z{pUl<*Ka2RpjZQw^v9N(U4kzlxC2GRQ-|UXR@<(=ebt=-PCPCSd{GZ55x%+61Zez^ z2GD$UkhXt7_(cHGeiAZrqPOe5X6><1rHHypiYH1fq$-Gu{`a?I#xYu&{;LZMA=PDl zaw>mBupL0O3|&4$Z@axczM%S-%Fq!Npc0`WTOj@E>-25`wAT>bDk#NCE+8F^KX9lf zz@ccICI#7bvm<)3OQ_|N{m(evX*qfUe^l*e3j1GY+SZ67uyL79)SwZrVg$pXLW^f3 zzCqWrgz&G2NV~Yx!p0sZ&dhhh9Z47#2SD_NA0v7e;4PmuM3aNrvZ{IjReVSx@~)^z z+P()X$G#WjvH}?W;}q4OBwnA&I)gPJ;mp#@Zb!6fw8`g0O?4c$rW;p0KCj$@Y zC|ESB|LYYsW(mB1F-)O4;bV-A)ff|ej@>Fk(Clq@AIF-`F#N;%~ch+9g^tHmJPQ6==;8WlixESlbULAw?BkK z&N|S0=V9W&!u)t7+t5HwXod+?-Y%eTCGG4O;gmI`5-Vd{%C)aJ2ymUYXF0N|4*=u#? zAJ2QagDo{XokQb^Sp)S3h5{DXCjv1^$6&3c%A9M1`@UQW2^cq^w@n5MEPZ80LiC>p z-LHE+9k<_B+0kfr2$F~B!x=#qpi!ue=Me3)Ki4Q`_ zhuorOHUBvp*oBbt%|t#XJ6luB@E5^oeiOzLB6!woR21(aCR;aF9)V9?TM}PkVB>lH zGi0_6mNqWTV-|Zql$VtgtP0W1i_M+tS_7_tVuA7>&|H9|J@Jo){a;#vsM9OuWp)Cs zj9^5!3W&s|*x-s$6uo0DNDFeO;C!AX02HC0Mu77ezpQ`4fh~dG8V6&eiOn3R*tN_< zE+Qkw^x-xEbnA>0vn1qhz#XRNkOI+7xYdKY9+3?{J%8GZ@3rPtsO2Q@CIr_ zW{l|raY2)5#->@C4LYBrSA=5$j{6==N;T!-%OS(9-rU^wk)MW3JQEb!1RHr$3jb2zI z%4sKnw*TPUynLB!gRa4oOB~L(L=ut5;Q$?v0#yp!uoGLa|1mmx+PV|Vk3Rc3g*)*p zeZq|Qh|nOh?LYfr#)e-2WY#Wmfz#y&sd2?+eilR-WGu@LKFH^sS}?o<{ZC7>Zu40s z4qOH7T38Usb;6<&0#M*Fy2IrR5J((tTCRLjaE5R_tltOy9#Z}*j-5iwjEIHM1Vqf6 zi0TU_wg^%kw12jGr?3$RJ`Q=$-dMY-MRonR&&(BV#{PZ-5Z$%>gQ~%TEIOjOYiZQS zU1js&egCPJsOjEmfy!b@ z&3aSR20;*QB*$z5zRgS@=d}L!biu~(K}_(K!J(ydeZk1~)`L~%je>YyNL{1-f%v3M zCU54}TS)8K|6DRHvfeVwE!(CZeMDxFd?yzDVM#waY%SH60arzKlT5b|r3d#smj$+M z);sPM?ca245z<+8IDVpoC)^XE4ED);mHV96! zu1EII$fGSa<|}OvJF?tX9y&16eZsvyf3}H*)<@#HQ`G%ezkl&9ZMy_W7ev&+QSbR! z;;*X&6}$hkhA}q*w-wOYL*Snu7n)%_<+cI>f8}=$y>LesKc*V}UyC5l0Wug5TjFYP z5ivZMqE|22--w8%C})ONG4hG(G%nA``yt5Hdu{7t>Mo??m?^=ZEo)d5^eBJ7hiKf}E1PMAwFhcX;{<#;HX2vX;G=^F*);h~X6$!u@6IY(z~CxL=^l;$xxSY@e*I7T zLR;Fbi?UQD46g20a^CNp0>ue!f0i+6uJd88ksd@st4eHXXdyMTjY5j21V|F( zLWKlj4vNi$lQN+a2FFFhG~Q?n8F_cd^v=aDO!RUPjOE)cfz>pCsiKoNW1lI<4jAxP zkB7Eba65kzmTy6s{*9I9Jb@v+0F?JpKzSbnDzM?2i4FGBl{LevEumMKo7eg>m6qYO z=7(!T<{^)UnYWBXQLCRRaoCxAN{+Q1IpL%x?{qwqnl|zDyv0RTZ!$Tbucz7!4Ym*CJq zq1b64A8sme;K7Jrbq4k4@3qu?-*wo;<6zT^R?p4Y&)UG@>VE6)tX&qmtz*#cz3`9; ztAF(LY<%ecV(J?66h#v4!c~AmF+{L4=%;wHeni<^mBwG{Zk>Ktd6V#TYGCV*lXT$N zkAD4587IV&SLjEFY10;Qn}>MDq}=}Ca00l>cmF3-ti=OYxW|rMpRe!RNR>!z#wH2F zV_CoSh3~Tp`D6$yD}qC!zgm-qcA3L~J!8HXF}}kFH|9&SgUtui5--a|E?p1(G=V)c zt;c`S{(`}HcQo8>;HZU#x9?UQS08LCzBMn%t4mrUPUkdj z?~t-{kw+<1;I4!7$u6k3YBW)j+w_2`o=gNpE5G1;wfg%Z7*5y0&DXm>?aI^da~A?{t>!ZDl71 zM`;&N>#sS}^ey95mGq6e-4^+2BiJpkYb&}6z5I+71(qQir|4*n*iHAc#wK$jCcG^7 zn&Jv^cuKE7!j+j}^%F8#sY%VTiur;`MaP0&zHs5AqyGJd^%He7j?185b<;~B-Bfu_ zb<_CQ_RbQYoL%$9{`!=$-m zU=?T96crkm+~xhyEaiStwKJdqbQ}ZrBt-ACDuEpqV4r_tL8ra9G@jONHO(d0- z*%o6Zn=ff(dDH9b%QnD*$EFQfweUjj*rTj4{otcvuPV*-QpCKaw!vnh&JnFA&MT;Z z?;~cP>A%3$x#Ge`WjCd6cvz1lA+le9qxf(iOom?NY0VMl-9rAgyjb+^u)f6tQ@K4A zeO!1I61P_`9Z~F;Ti;tB4l3!k$}cf;f_|jx$xe2JDm_>pP@UuSajmsAgc2n6r1hzf z`(yB7CP`RF6qBvrLyRBH1sJwBqQ4SyZ4rL{IY5@d=1{kJV!_~SsIeTN%*Mwv#&%9umq~3 zukA4DN#mi+jb5WJmSQlMpM|k#cJcW4YWNK&OBL`kor(-I_;zeb{?XKlsK6f^^wHD3KHGYDVTGAsAVWzfZO5U`z{~(bwypWE_ zZ*plaUn4B={F?&VGO@3|P~WVs>AY+Y-Wy^|=7GFQGu%v4Sb0=%R7zA;K}hyS|Dc|8 z$IdkPPZ{V{N`FaZ0O!(ckG_2g#UIG)*A2L9!EABC1p-vmfnvsdx-i0_5Fz@ELUcRZ z9LYInhA(x`L)Ba-DJ)10GqAa4Var zw37Mx2x_oG{$oAYvS~|Uqxn5-WDmEmKiARX-)s5?*=1K)avV1{-as;RBMy{*FKh** zbwfh=GCj5MKqfHO)C%C`R#=5Qer+9h3)WHE-g3v8zS)v8yK`VUk@;Yx=uwrTlHF3v zJ+*gZLSCNRd!}V~gxXu0&N(D8k0Z0!4E!3mAFqx~k+%}87xj8@^X%a3)GTC-m#UNu^5zF2 z?0o_RI&Gm(Z}!b^?#YFW{d~w@7DLw3Oxo&a2Ed;er9-t!LjIj}#@kd+p)-CuHG;6%f6 zO59q%S|M$Sdw;Tv)GE44o4kncpV@JAdmJ zK>**qEn4FSduezr+liC2bA=j*WdGu^169cwF&{-%`LQnuIiAM%l;dY~4v%hw9W9qa zgi{Wh%A{WO8lK4;;LK?ZQXH%1$H0R?U{2P1K1(3WET$mmeg?xJ%fquRP{hQ2@rP}; zR4BoRCe4l+;2eL&H2`k;(b3uDV?{Vku~#2O9vwYbB<>d!@z%DxZ-(tP15G-mxHa9KlRa%6410UORy>T&@*w;W9P6oi;s{x(84!kQ!1?tHwe$VB^M zRXN<={_^Fzv$07gdbgW!a~69_R9+bM6~eeq{We|Z+bO{~a^!v&3~;UN@73$WwQFVt zJsF#iY;37Pdp>?^YA7!YQYF8rWAcQv1z|-5k`p~L3>-rDDiI7;1DrpY52l(}9x$sK z?m8DcOmnA?g{rG@zBRoO!b(>6`kTsd?dV^VldU-4)~|N*9_19*Z2gE+H}WgkWBm!g zPd6_u`dd--=C><%z`7LwgpJf&I8$i}|A=}W-(!pFwj%2n(qKh*P{AFI9Z|ZTBxktW z)L!b-r?yZMS*dsuw6bvL$jPExL!sT>7XyJ=j`if|n-u|A|C=q&1pK<*76A0gx)Fra zq2E*$&KykD7Zz)OfDfc^RJTP|4NAyp7(_z5#)L@YtuUA?1_(-OrxZ$hKEF%2U|m%a z&{9*JAK5k6)P38#7)0|si-)>hlczL)HVoMmQE?}|9B^x93RH*vVDWT-$tI)ROR`wo zFu*0EXr=^ka9A+IWiVm{Z#wdP%5B;3lffGQnefClJ6~2#KY({xm?`_o8hy>18B3D8 z9@mH(cV68fkm9h9*LK*fHme_*{Mq^#ZL3_{SHjL3{_eQz2JQ3vV zGVO*WDLXg$`NH||QGbjt#*k@rVA$fIg7#fF-~=zSmb!Y zRSs}7P%mBV)-3Nx&!n7F`-lYv%m>SgY!?($FL1o5uYTwERx6Kmq3j}brFZn9a8Dnx zD@SQn=uJG-iJia|K_d+#k)WphY_5LKcSgk52+kWa7`(5qKI@v5wRvKFYDJ#U&|PHe zE&C+`6ZC88h^dDO%KTq}5x7_SKMr3g9d_;II~fu1k);<(o>B8JE>w1GJ_pRXUh%Q? z7E7IgnQG*Vh5PlE_OmmS<{Fa<7k`(<+7wiq%H{gPba^j-&3JLL{d{qrRBksh#!D1- z9=r!hp{kM|wWgdu?I;3s3F)1(Y*3CE4S#oGv8_1oURNQc9HK>SF}0?EjdF2YaJ9Kc zsX&!u4n9apu7}VD{N_sigB}#U>{nfKpul^4g7ryFyTxGV`JsJ2Wti<;XyZiNqwr&9 zX41pHqqbe1d~*h~oOxVAf3fk%>(@bd^u*UYeuw%t7?iD^zb(;YM@`0`6IVU%^zOjl zdGPLC`*nWP`sTOwM0xivb1S_3nzr!iQH?S#5N;d;K?jrE!!z*DUt@oCLE|A}HyuVYf;0v&`cBJnzF6F@wkL ztAA}2yOK#J<^_x9Wv^y0(jU`1<~}^+pSS_N+STrjxxT$KPvW==vpec&qnXwE zCO;ZJX|CeXT5!ATxdVKiom-NnZ2l|s(i!hh=^s1q^ z))t|?Z*U#U%q|N<3?oOL_3l2mp$R{pQRzl&rSe%kc&BV1JAC}HU>Qe*la&Q2#9yZS zdjAb@HBv?^;AN%})OO)!1^fLjYpdy*6BGCI=Bj7g3t?9Zh;L7mg;x|07Z;Zu(n&;} zkMqz1}0Wv%n?OU~Zi1$873j+(C(Yj*U7_y1L`qk z5mCoFX_?flAo??(^vrCa{1rUE@6GOWX&lsHNbk z8(in9eX)J&7veeKR^Uo*#>8FIbHR zLAsN@d*9r2=^f8_w}JD(=~32x>w~qOXFJq!cCebT$nboK5Be$^6i~@x1Fj+O7T^u| z-W({%gRGMkWad%dqxx;}KDYRUI;bM&LSNtr7p>=O9(G(-z1A%cAr3LKatU0L(<*gM z71LY6VY-Ke#8O_>xD?ONQ?l(~y030XFpR>w17<8}(-DQ!+2`piF%e&YSQsTYJFIo% z8@`R_`SF3K1<3HkigT8l*R{pDFH4UEf)9{i^o>CyR%PtA+Krm!8>tVQ=l%*dTpkYS ze&sXmnPR54eb2{J2Mqm-&7nq8I|mnQ{gkirTo&@%9K(xC!>al!`ykM7kFigD>ML7~ z+VP%9GJ+dxQJe2dr`71?&qg!x+FByo$kDP3MT36Q5%R-xK0Twdi>o*2AAYLyd7XEZ zstzvx9O~TN*@HI8j}3amL2b>`!AEq8l+v*&ZkK18ssb6!VfndHX4At(i^1to zXlg-d;cONjIwfRr{Cxf6*b;*zeCSgy?Y#C{2w9dO{L6!eFNVy`78f5LJrB~Uk7kuw z&b&?Bc$$ojl_q_O3`6&X+d>RuRE%%mOOlt%AF*}$9A-xKw=mk5bi`S~B1WsOQ@#6Q zdq7`0aHEUei{}wu$*;<1*lfSELQwaN)PQDk54wQRqw-j3A?(s2WKr|j+igehtWLQo zXHD-e!lWN^vk&6Yx<+Eik0vd0{cH|QG@9=5dMBP$bn)O;?dtI|Cg_(P2R_k7;cjv8-oDVW`IAMl@`t|}Sll<_*H-A+ z25IY!4R?@1vE1>DJeEjq6UUxmaQVP6l*-}wJ5>4MZ%Ygk8p85{bMd}Hh4WFe{E?$| zRR7!+=1b|Fg5NXgkw*!Np>-h(NI+(jBEj?}H#OTF+?Z=O?Wd`; z+v@fPaQ}7W)QZOza7yIL#I`mzl8V4}WH+cVjM#|QVr6Z&8yn5o9x>#&kc{fb592%m zJBdm4hn6AT9v}*aq1#ZbCJSMy z(LtHO@!LQ*Fd>ZJ8Tsah7%^;l;Eih^!ki2FBDR)p%t*Lylw7xwUwI^X3)Z_UCp+uo z1<<(SOD~+iL$1SIRG>bXymaK;bNMj@%Ayu>OwGZWghfE|4_fo>i>Y$hI zb=Hs0o1H51&sXuVdgEHKG2)tb`s9L+OgxFB;bnyd-aoq?zSxW$<+9dp5hf7)SsNQ^%%D z>KnQZ3@^yXuHL(v8)j@%aPnDRMOL0A?m6uKNS6dmGwSe#`6~ZDEkumjETt01Th?1; zmV2R|MdTKm66F&f);%ox*e{tzjbakzT=I+V*HV^fW+!Tkx}Nn}<0}0W8MJ%--x+dq z{kc|sp5z?hC&0pT!j0kyb7tMgA0i$MPk)q?crS~jX0xowk)`5SgI<3I%r^~+1qT?y z8LMC5-%VS;@U@0!pVSc~U`NMab)`ENQ*e=E421_(+!JgLvPG3od|4%y<@r(nr>fY? zmBT1)>eJj@_MgZ<&rBJU`d4Td#!B+O^t+JX|B@fQIQx3^zP!p!a*59q`SDjVmm_c> z`bD;BcwpJlfw`!Jjbw1|_2ONrY*nJz(V3{Qu1lZhS<^m6uqkts*`%ZF-}gS>2mICv zeUk{NEXNcyhU6%o8xNXHlv*9PIr8a|HY1}*W|T*8tp2^=|KaRC!kAln;$c|hC?`KpH=SrUTd!{7K|D8&ARmHJgaHH`!_jpQe{n)pYx|7<;jF@ z@j`9im{VN6@;y}db;y`v9erg4XVg2_)s%aHd3&=7NW;qTMQw{C+3#{?S@W>x1|Oq# za{E?Z$kbNWt^f+Ekd*vFkHY5+BZgvy$=G4&^zg#=4KRY?vEJrK5zigz{x$oh#jcf^ zA}z`$aUrEr^E8&!`KAnc>}9=1>eTaO^n&{fN7^(A ziEAEIq(2twVHMvSzj36k|n)Q#ylC*?U;%-p+>3 z;y~K<7emd0iw2X|POQomar1D>3!?p;RiU1~Tf-PNRxT`4HGP?z9t!O2r`i_#%X7}7 z+$wf38(=_@LeK~@a|!>lW-Z<#E2nstIwPQLQuG{DL8q`C53d`tt_ZAhF+W-Mo{Y?f1M{E}2+gQnl3ob#3ydvNhAwbE>XD z;(U(o-27(Ippqa8ZMvb*R5{|-8Q1r9_?>dP$nWB3f~p?J@$$7M#uViZp~vDV|JkJ5 zZ=EQcf`Y#(LbgU^o+%ot*qh@KsFy%c)s`J3N;JmRACY`(PI`CvSosvj=8v%_peE_F zvTIN@D3X4Ym>leZHKDvN9)T05$G&2@x!iVqr#+liiP`Gr30nQtyfxc3+i*(f=I+{z z=CrD7KOj;}-YI=w7MtG5SN>3I)-9=~(XzR*I0cgo-$({8{y8f%&qcM1JMuFjw5`!S z+X0mS3aV7zeiCmNM51(7sn_ea!XAx2b)YgRG$tsW*oGzah!s1Td45}&n7rE&IX17F z^J;y6&1iMTNaVER^*h>+N%~1L=%le%wNAfQX#qSGg0ZkKq|z`SfXT1I7pvE| zO%>+#QFa2i)DA!JUv$k1J-YGXb!_@f)wbM)wQpa+uIoU;1od&A`X$*Bqa)Y&voqf% z_zZV>EJV(4N3PC;kvcN(%l-WOjolViGm-Cex0iEFKYZ|?oP<}p;@v!Ns6l2-VP%0( zB#lz$YTIsn#icymZts!_ZgKBaqO_>&U`i;bR#d2tmN!T_OI)s%FIc^{9~j>8ywmpT zlJw*~J+IC2u=Mo@xNVl?pG^DMm*7n<$!qG9j$WP<7D*>~v~BIv6~8uAmW9xUMgCn% z2NbWHd5+=P482>W>1Gl(=CbdA+}4*T_k9IZa|^-n3yfLLBlRSoCqD? zI(;1|>gqsaufDmn!NPFIfU1Gor{%|9mh5{*deSrW5fECNh7SO_Y}k}H*7rL=XbbcFe-u9x+~45u7XzVn;j0FH!bY9yGfSAuwy zW;L_t-Qx$XT1jRr(3)xlhy8wG~^Cw07s$DdhYimc;n7Wmo7~! zqySvB^-gz$<((F8b-x;Ib<8Na2JKXzuIbSdn%igczU*1nI78CN5~>JTR*hj`9)bd+ zxMaANFtC<9SRBWBG|s^>C1Kk?AW)CNe89o}dM+o(54FrNTkj6_?LU##TS~rjun3s$ z^HC)Dy|GeifwCZF6>OXN#W-#`3-!V025frkMAXh?&eY6#U%HnhL%K>pS&vi&Po{=8 zC4ym~r%#;y(r`>W>l*Jolqki(@I>c&ds0Uma#>u>%6GM4ZT&Ux{6u7EXIP*ygVao@ zD;Of{$yrNLt>*o*x*t2#c%#>c>QJ9{PEOLh>2A(y4`W8jP{G~a$cj3ErWC+nN0h0& z)dQB7UDXeBJKU2nHv&&+CH1m&ICt)>+r+3O*?)G>j=eF}AnkEM4y`qg#RWF6jZ9-#7bAUkw%jO0d5<||>yP#B{aHyM_2!&@xleP= zpgS8%IQ7aVi=?~Va=4n!ciUv{U?|?8XM0H0rWrLk7Rr`MKq+Ss;2E$v4;IZ^$-DKR%JQuM+g=u1(_GL7A?ph7DL zDP0{lU5PrkAlkx%Q%_d1ELRwVP3M=hrkC%Tbd<8cV&a*~af^sQwd0=(rk&M>#eptG zck*bopi+<)$P&oPc8%0J7*KqCS1#d7Im=*72ww^GC=2Kpoi?Xdf+Se%Zt$JV!|y7Szg+gpQ+Pr+ia(f^U6PS_w{z4qu^_I)mynr&a#^#bgAD!%iL zRL*5HGRuRM6RA1uzO3H(KCB0C&Qv);VtGrOc&WB1BX8TG!qs)&8_UWSz3tOoy>W9Q zo_kQ&n(O;9*r1LdzF0%Kw!G5Yo7RP?yk~X@aXT272|59+qV63;vk%>$?v>P zMte7r4Q3azV4DLUye9pGMTWsRwH>E$B}eTfOzfG~?Y|)HPUHxK=#wV$FUI7PzNu)c zxaZWpy9S?eJ$mU5^VjCp`Df^H7t|8kuDrU0b>Dz>>-@3#hl#+sV+n;QZq_~dIAVo+ zN0&#^Qt*u=FcOR`CzH~F>I#u52rg|HLDk=$nX-CVS!1&~`s9n`26l%@g5mMkQ@PSq ze>0YM3=YI-W6ho9E4$Th_Xc&$b=%xu1k2xK(}&KhN#w~g1IM>Ci{4f30xlA3m{JQY ze-`e37rF;$F#^SEuZ4D3}Q}5X%vY_Z7afDt8x(cS4{@?=o$*E)g z-@cw`@5vCRFQc^+&V|wBiQ7_Jp9iB|g3P==ib`#jOpum?K8h+qBmVKrZj)_No+Jqw zhVY0};sn*iwLpW?xmRPQv_Ier*_B4=-WdA`Fg)IIbV)R4+Y9QhsfQPfNc z3O3gMNR_+6oz|mFt9w0uIpQ1UvI@&EHNn8OWx#2LczMyMiW4k2?+l2tQA+6*orHYiare0kt)EHCbSHTwg%v-*BaQn0f6qx{Mhl1~jT z*(VWn-5x0WD}o39Nmo_3paxfplSG%m?tG?CURa_Y*% zxQ*Tv5Ao40!iDDQ?m|;exrgNj#kK~{qjD+!ewkO-hmW-1liCU1$lKX=cdy!^u1vM% z`B9DBx*KC}jHY(^-M~vQvy1d^ZJn&W;yLPT=A7u=ky6_~?A*|9T{${$F8S?KZ2GJ= z{#%TZVXSaO6k97Asjz(? zd=**NWff0MG~2PB{Vd+?d2=*XTV1|Ej=EAj=7+Xhe1$+S{!x>%=7V$*oa&SBTDPNc zZ`(=^+m25^T=E&+(Oi)`CBNxMtFG7i8bQ`KIY+;#yJF6gsS=x+FZz1vDRE-~Y- znYu$Sr%v{#WS^$EMf)Y{=jzFgq7^>i%wCBSGPta zL=l8?}A-xoLt}iZ&Ab4(w@0R|G{4HOVdkWg7`ZE9< ziE#Q;jq2Pc41}dKDJY8ZXD9u|in-IqA3{M#ujD3~80~g)1M!M_>PJVoCFK`4YOmqq zkagNx1)CHEF&`E{bLqZGuUu@^%ba?P`0keV+&ug^7KxP@l-zbsuLyYk<2`Yy!{)zJG~dN^xFk3TBBc+ zJht7)2^_w-mhJE#z2gO3KbMt-N`*t45al~_=6iCvBXhaL-7)GkfBpvg(0=d5&4jKW zxm^AheGKvR{@9|};4?t_CtK2-p zSP7!Q{IP?x!}GZeuH{1lZ&LZskQ@L&v0}RR?aTedcE6<}+dFceoG4lD4AQmx-DCZr zzIXzDyof?|$ubd}@&oj=-KlKk@_K?x3y8&Ar?p{Qv05)_|=&D-#u4&SD%A|gm42%d#EVmf1PTKFNnGXcZlqtMrl?FraG)6&MIG8Pa2r%X1%VH)da%Cf zT1i~v;X9DVB%kUqk#CW%W$_|a`KEQL=DYE5@s8Vwiq0DP&m(#VC0VW)4ViijKC1vCQP4>Aa*NEKb?uff;a?`dl4OtY;>(}e6b25X< zEG_MYp7t!58<$8=)?Dz)kSUp2751M%b(e#g{P8x)iCkHxe42X&52EKv(KTf^d41*L zmo!En_?9UT-KMIQ@8yRxE$^skw=!*pTKlIKvQm=ed$1F+IpUOqwjhIqoWO;+U;Ao zu4=*SpLhy1xL+#Wf`5dLxVFwWe_gt^pK^6T6dC>y$V)s$~* z64{{)x(Hzk^SpzYrwgkB-#iv7P9{vHq?|&-CMxyUz9w{o`NK2zJ5**w<}rwkOqrWL zD6Q^P_mqT|7LjGG_J?n7lYO`bG07lB8@Sd`*JQITaKgT2bL(J4N`IefyqH9Zsdm}m zyVv#MWV(`GGjulPIUDTH-@!!(#>%k^(i3}l-I;NJ5o+TCAMzSUH@RUh9Y6`~3_mjhKajf_0kpouLMo3Z`Mjxn16icEdMG*@hdJV|=Tu>6!ttonKHn6%~9WRwYT}N<<9ylPxKP z(}9bct>C>v)%4`rk=_qlk`UT&-JUDR$9J3@R6nyXSg6mUX?xFhyOV<@liYNdEyHEC zc~);`D{_eaTqK43PV6Dre6rk8c|qHM#&jl`kxRPRA~Z(j<4g6|y^wXa^~LP;$gqVh zLsnUlV5Jx5>oX zh#L9`rSlkXW^dud?QdDl@JEXjh36wh)P*N&f@y(J1Yd&jnO6s%L=gqA>cTOdxDoJi$mV^!91d)_=jVq7Rr*f0a*1SQn zkbms$8*ST4xmBm2ZNE9soe>JpA;&4QA5m%XZqm%$*ABVaVI}|AO-jMy)fM{(D!w(F zua_}-r%38gZXhPM)%f?sNwwPwBHf0V{l1M)_a{<6+e{AFq&R&u`0xv0(NF#XSf;~3 z?KX}clrT8q-wf^wM#4zCsIWII2)DF7)Rjzt8UsbmAt)9Vh1Z&He8q++ z!z||~`@&P9FVXcPv~2FW-9`Pf!$w`L*_P+Ix|BTTafY-QJNLV@YVyOLoaSo@+n0;g zD*v&@wVmma*REBJh<8Y5Iexj*D>CRHD=J}m3!D^G`oXGS61J$>PjRzkj6Jo0 z*yh`d%L+7`@8`Q>og`9Op)P_Zhn!mpTD&kyRa}BDM@mv}_qqITk}xOfk(Bw)HFBJu zog?`7%awD;`$qFqJLVYPwD}T!d_aqbVgV`pZIYOVhm3UQb^KKAmyFMkuu@nak|60M z1-sR*JM=l^_4mcjfe$v3ZgN*3uflSP^OA!jCc@M=;n?Q` z^Z0{mi<(KUE8Fw4t|`9E9~hVU%0GsFa?cH7zAEQU^3W?<@PAila+oeBI*M_dUnFPj zEpUd)HLT%bMDT)3GKm3EF&eGD<J$-(k~X)z{5Zf}0h0>d8y>9Td$Q&qOI1denM% zLf1#7shkAWFGYVa92$gaJZ|$ypVM*9o$F-(0g{%#GfP?vwUQawGs6)kKT~&Cybhx) z#K93QljXyh)B{fJqxL@CQu;kKGtY@R@;=%|v z;Wg~8@EqLeY_3?@U*>nn(?6ULxt^fZx_FB)GZwcx7R20nfX$sGQ%kKg<#G8edg)*u zFmDB&408ey479nQvxt8Rn|K)X$B1U=}EsHxoOA`0*yD>6cM?71zqrpK~7VE!Od~;VeUGRnG{Jc*!NzYi`6!Zle`t_iA+^ zKbu1JC)!(45t%GU4*I|4{q$k>GM?{s&oejddWosc*`0^v;_;Nq?$xs6Ttl!t-}Ygz znRjWBGmYGy!&e8^kSI*6eY#CF;}bk(gwNJ>zC`N6`q>q3A?F(tfNJB8>qW%iO{@1#pIQ|krCWDI+E zRMcTX;po?NS@TmEK2lepVVi3dg0Z=Q>Wbx^>w(cwgYndmy{)QUH8AAD_^2oK5{|?I zjsDMV;+<-QDK)*BWNqy;o7{OUI)$@gsy-RV{vg%#f-f@fAkM!#D{(2SRxO=kx^|WI zewWTmkLr#^fOoQjDBH}E655%nYG`1f9J8z5Q_DeOCoZVA*pHL_%CcGz< z*Q;HW5nkMFEgDk;j+NXmW@T23#oh8+83S0UJe8Cyo2n)NUu>-FFA54fXE~6rKbw0$ znrXjcVo#t^C(vgmMsD*oMvI%>Qfrq18`j3Qt!C*Vqz*lFw#|!qk(}|(-t%S18p_%> z--nE;a7s17bK~R93vt{Y{rm&!l4Oreo26u*`RGBMUgv&a$5g73OMkxR?Q)}3HHBea zkAFl1&bxninLiof;WGLoRrC}#lNHTNb`3H|uGT}*;509f6m<}TIS$HhiD>ZIfAVlT z43?4SKP>(6lJf_P2CTncG1^qb-g=V}zuxs6z16=E@|p&p?olzjyJUrV~o17hoK_+4${mC6(uVbFOeSQ60` z%HwhWIA4LsCnxQn6WfZ@2$Csip}3mdl5skxW_*b182a{Zto+(^_d0!~c8pAouka?1 zE%GA>w)o=g&Gq*+p@p(WGvWks<7yz6d%8k4UlDi$Msb+A9QIw`VVF=`UClaQEEjYm9I9F zLu=OcbNtPlRbTXFQ$-)F&%SlMm8O~Bz`Q@W{(_?os>}VA<3*H4zG_lQpT*tTWxu#} zhe`QjOF@NF*c}NUwIRnc-z)gE${J1Sj5#;*P2bAP?xV_tBj+Wsemj+)7KKS~REq$~ zeC=qiS*LvP7|B-|ixZ^yjC&6Ec-CkVrPuvVRwsL>Xv%~5$j>sazRb@WsL4J#rpzRz zK-xOlEED|dO6gEVZy5Q}+G9PO8DWL|4Cj|hTB#1LTc*M8JJc6tB+1i75tur< zRh`uhinb`mJ;4Yg{*@Exjx;!%uF|CxZ!#J{y>W8uD-eZFSb~k zwEA6;td^I)5RVjd;A0{1$q^iFRVhQhvN@bDY*}=_`nPo)Ni4^$WTC1iVuqsOsr+0d z-tDj_&+dyarm`As6p$Fjf=5Dq+EaJUx0CpMa8zC|eRjQ8aC=*8@%EzHY}g~hYR3Sd zNY4kcS}DKsJBtOkLNA&q7ZJyIGY@uDIDWm1OKa~Rf|#lcc!_2`QXUN>!+oWO^%D*A zyQlD~*%`Dvlz27SpI4cUYCK#Unzm>b@HU7^M(CRc(jEedOr_f}?MqxZaI z`bZe(JNv#QRNErtmPsU*dvN^09b?aGSqbz)(Sj%6yYtlb%+7AQwyh~pk~-xADBlH( z67Lk4;11?n%rB~v+fTVi_yF!cpIqtMAnc}sMo8&m`-0r3r{?8?!n?~xe(kZd>;A!z zE#9K#`U_qrjaT4lnHqhw2@C4Is0|8MVe91K6V28m%7Ud!&`QpIhpQt2jVSD#NzP-H zV9fNvs1O(Z^@^)2O(n56YyMoeF84I_bf{ax%-rXY+~7p?~4ax~*w@p;Nq5hA6jgT#kC_l)h+L zB2iNB$0+ zbXL!4RygD5)Hi=8AhV0|LHkSusK+rptLW{^X)ra#oiSUda{J63W?WxhbP?BP24*<` zhCuuQb}l>%yf5R|{lLbk;4d^p0tV>6oFGsz0D~OrTNw9jvx5YO4$qupW%mP3k97`V z)AS;6h3D?`vmvWBybINrmYn|J%#3l=t4Tw;Wsz#RIZd2?@yF5&KX$QgYB{SO=kdA3 z5E5K(qN^Zh?I3aGf--LQ$wK6q6=)CQw9VJn!shX7j4%F&^yR&EBDD?Ffs~wOiMxh% z{FByGoM~_Akb~1?TYQS)DBo)>kfd+r&$dis@Y9>r#pk7-#JlT7j#6M{)g|vA$BvRT z>g0zW+#_l^C19h-+b`F*m5{w%!u}PI;_7`tGXA!eQKUnNnYcA^{v|)dzfs}$byz52 z11+i)E+9)<4;1PJ4zWU#CJ^!qPd>+yZ)J4ofO9~yYvcFsr_0(G*Z$ zU#UJ+L7A9YIFV3O@yEjUy#69Zd(9^NhxCp9DdpC%aYaADnTjV4V|_)&tQg@uFo`Rf zZWVw=wjW?-d7}|k?`S4$|4F?rBd43iwIB&XR?Ep`y5LcpW)Y`bf1p7e+E1il!Yv)eoaR$wor?}iI2Ux4ktdRUG!(IIqQzqHUDqR=q#G{?61~^2Wh>#Se!I_ z+mK}jqEsqaU$%7D5ZcyQhdFR&TR^#jj_ff1^LhN zWEQjcN6MEeu|?Droxz`1BlWl+^;P*3|GsHT7GF8lR}>9oYERDu#e<5h=NKJ~LLzFy z+6~vfJ|Dc}+%`|v{d}#m_t0H=S>++t?w!}HuXP^NmW#T_y2yl*fcL$O?G>1sQLw?^ z=rvjN^JIx5tRNP=&2}EnUyJ1&n5z~16#>g@*A;ZGq?|Zta!s4D>Kru7&cu|OYv*6v zaXUhr=~kqI9`_WnV$u!oVk`)~q&GXoiI<(yjTv{*Nq1=^&zfZ;X7S#R&Qn!(XaxPB zONnliVXR(lwoJZZ^w%mK^i(Vz1f`%(4(rD1pmU4HcTnK^gjZk9J-5;}T;axf7gWYK za)>or+*5=z%Yv<6rI8-SXigQlUrE#Wd-80J8IMTsqp#R!lSg6|*mEZGbU+h!M95_k z&K$#e=`6C-`}HdRR#d_1$D1qovADU`kD|eKlDzpak?9HKF5&@_={Ar|yG*P>uU;yh zY(}#E%6R!caSt$K;AMs4{sBNMb59=aVV>7BbMq~9FlA5OMLKqgy9#pVtvzD}p!W?k zPwRHbg}GC=J#P$E&RWISiPD7fBmPcr_nG-D7WuDi*-5-kgW8von3~}aWXjH(q$rU& zI;6*6f7X|s-?I6>8;aaEMW?Q`UY4B1fOs(2P`g9ry^Z7Z<)O)X&O?RvE7i8U&>id| zaJ0FZGj+Xsv2dszH87)Q0%!8Y>`-PpZ{T{C-{PSLt5q9y%>G>5_eME`&5RD4OQs{7 z_IGHJ-ao%)BSrmsuN@@5yAJ77n4xYM0PQ)e7@1_w7Q0fIxuE0;uG#lLhmrY22E;~c z?78dKupQ~snaAQd*;`QzJ{yXKoz_S^FK(}BZ6;_Dj@WOh8(h7W04`qbaEJ8YogLmh zSSuqi2PtC;-*52@ygLR@38Vz|Yn7pS8$ofvg^T@&UT~#YNnr^P47mO?KW>pzmv+T58Qx_p^=l;_m$}-_(l7EF>+Y z`j};`;ft*}9gAIxNuH7$HSyA4bNVDBFrzydTOZGAAzA6n#fZ$=qM_+crw!bEx4dgv zFQt0DhW^DOVjqtu$=As)@$BYQuWLG!azq~sX2Ekazadi0Z7QPy3L5tAP<@Mgx>2AT zR^}j?XCc2qy;;->MIt5?bg!p<7ZiXZIh?-Wz2?2j)wO(jC5b5B$75zEpy^+khTU6y z_Ds7<48A0f74%EJ9FFzwH1HLk^NC^jMBc6(nn{QRwZr?I@F#)R~x7_9yJ)eQC zWI24`ThjZteouA=I?KX~Q!i{x&Q)u{9DwZk*dyXD;$IFx$*_vyHZ zdj2HotfM5NlOHUaZ{;o2v9^I%8>bU>_KJz|F5ad|Z>>y-+X|1*uKKy>v8ZU`DR5%h zajovPtYi;s*KlxL{Ice;n>Yb7oJf@yw?Zux4F%s4C@vr^dOWQe+MFXrnWF*_pn;2w z^yurx-S7_^rEEvO7}tkW$s>Js>m}AgOVzfZTCUdzTv*GZ5fq`NE36;Xif<+oMoV{+ zoK{|EXDPj15dVENAX;7K(l_o-H(D#}S9kw)F#GEBL+|9-O4dQ)dk0NOF#D#i(bp89 z2Q8-*ttzEq^Bhkq%_syVTs4gcyK;Ul?Ro(R#dqD+iry2Cb}?6lN?m6=`eI|;u6+@- zjJ;p7D{s&@{MC0qaYW9-!QoEd1Wm@T>wkJjmd+BGn;;t6h$`Hgj2w5?M>0K+U50U; zE`kPE7taywopW_r>F(m|kS>SX5TLRMF3*_Q;-Ig$8!X^tL7CwVgdp4wWd-M?Cw0(a zN|u=0kA*Ox>I&XAn89obUiREmN+%N-ji!k^nuO{F{;GZe$K&@<>G)g^^K$zE9TwLf zX2RN|8kyvMbo=QU)l6qWi?u@Os2?S1Qm=N~!L=ibT&(LfSn$2Fu(=}MoA%(CGR_%N zZZY;QweGU?-~LGxq{-4W;x2ILxYoxgK%Fu(I#jkPu*RzOHw(W@k=$Vyj6WGIEF1b*;3nV-xz>A831(&o{gO~->m89sTl|12uYiF4z`0`j-7*5$u# z`iL+;mohzb8<)E)Qt37UiT1bB}m#$7=-0*a+Wr;xBs~lF6i@Z2@6CFV&Y=BHx zw}ljmjY%g*qDqn(-0*plhbH@4u-@EF!>9F)(XYOakzK)WO%PR2w{b*_cUb5itl2_7 z*3$~@%VY3)FjVfXm`|Qv)hTa9o0UH@mN;kKVClg{G!HFEoq5-^T!&0sytcNt@}pojk+8DhBfL#ZR=@I zt$6dY0h6oNxF-)9XsjnedAw$uZl&xEw3KsNP*&%&|4E~Q+^L#mFYmP+qeS1PQtzFm zWW_b7Z-GZHi*{b4JaQgYpBb6`uexpL>oNTs3fHYc3R(@kzro#Tee>hxOM)zH5Lpj9 zN1K8>kn+2&48e^OoTppqaCXq(%0daIfC0n2hPZlD`0P9BV=?X=MdNmma+D@|CUWY= z$2=YGm)yABR4J$}I6Iuc_yUitH#OAd6O!<-t3DkMK4T!9r%@3luMfX~;23-)kk7Wu zEiXuW#1kL1(S1N}YD2IA1#e{(#b_b-0Ip|k;!A&24zz7@zXxMT-Scc;cz9PqfiLTY zL)14WI-DK?n^2#4%u}}?ItcjmsRc$tKpEUN>O|0PxK*7vl%^W}`%ioHKQcjIk?9(G zxSQ%h0w9Q&HN^Q=ixIF@ND;kE-Ef#B`y@yyI#d^}@jY=(E+ykzAU|mDEvR$Z(*`a{ zPXJ+qogpNH93}nb)#2w5RK1DeN#aWRD<){OPBetd1odM)*f`7tbt&n{Yx3V?7&N9& z(0Hht7hF0YfrR#7D0AdJ8VXKT5-e=hHv{{{f4S{7HqLvHfz!8i^BVNMx#-_-agc># zkO+WlB)~?j*`yg{ek`F;f~O2`(dNNc#FUFbK|W$sN(csRy0gQE=0bV20EnzNae+6z zvMS3AgqlLwg&_2(rZXZ&f5$&VkT-RLt2yuhJ>kHY<58No+9cu&#V`y{2HxqLg0n7Z z^Dc#QIeBL9riu~|7iGmo^HlZC$$dIhv>HWy@g^>2HG%LTv8zVE2Gk&I)vs-=#8d-W zB5nMahRol8f6wY5Ae||q=NDRFxJSt4I#!?!Qri@e_n}Xk^Ux83ta3p9b36zTW+$jF z?+il=EV&!M#|uMlsq}i|84mhd`(tg3d~6Uj3c)&A7$9O)6d(e#k}Jmo^apF*s z$~YZ&BXV#4Tc+E3!DYZg;R7y~t8hKeJ*{Z`W4)dSLZ@)>AUm4^o$4xGs=2-~%_ z`+#N#n>OuikNSY}!!NUYU2Y^YA_h7v)jZk5_FHJK;?&#c`E*ZR+*?3~mAIf)0z{1# zRU=u~dR&bgv>_KZ$De~mMDIr_iVi(!1Fys)PZjNPyl6aOTbd~}gZySrnkjt1ZvXwS z`WC_fr-q{>IM1OVAVqNz1G$@WUlq{20&kzM+S-1wxksWPX1rFVYQuKR5$|K#RG1ZHYD;Ncg#60%@$f^rzncsJ5x|^ygF+v%*RImE@44L_Y^VE zk`G&4_M=F+lU%*v#ue{z9;)~L)Ha59avJMJv#nC(-Qg3!>f4$bF6wc#s(g+-O!?` z7BQ|tyY>4ZbzH604YItdDE7n9{qg7u#lnYkbWKY#2rJoeyq(M~6`ZIoGbqFQ{$q;O z)AF?T12`?FTYAA2TM0~08UykYJYF+C+0AGO%NZB0$t9RLK_;AamTwYV170OCR6Prf z4)(u`?Vja=VJZx9HrpcWsz&hIs%@r&k82bx_~qa%>+Nc zDH@CwE8*DEijWO6aL6i1sNimTjf9u}`}|+fPih)kAbpgOZ7maKAV|YH#(CC3_e*x8 z1D-ca*|Je4+zM=}53;Nqi!(#*6_drxe8)%NFH2khg^;)){>JEm(*|f7EGlQ46R}2z zvu^jeqOF6h3>`1rig7<)gy%RE!@o5_e0lqE8$ntm=H$7%2b&CEBf*P(2_}2|=mOgP zG?zIu*8f;~k2NF?1<04#A2}|5B0`YG@crf-#C?BRAyU^Jx7x-SGQiIVI5EHsyhmZV z^~Rd;CdXq!{VuAlcp~d$Pd^&iVTl-zu?fxSwhV>YV>tA34>q(+ix3RKmxd0W*55MJ z=59hlJ(11Qr>(hRHTou{_<12~6er8F;J;3*Hnc&u3}}`MGCYNt-EC5DcV~A4;nGm| zkPv2IkAbALE~nt!D>Mx*Mt4}2ekY2#bd9+*q6l(T3HYA`oo|8=dMliZxsWmIT1#Jx zOxd4{AH&LUHzFzF@QbSu3*k#dyE-N)9{6^I-En|OZw6PBbvaKLF#%4x2A2|HLrRLo z=&{m;?SpD2nH`B5ARb02KKn=f1QFB`kXQaThyptsea#XQ7!;l{kQLxIytlQ?^Yi0& z-0bvKOUQboctcUl!0EWWdgC0K4|y(Qt#oyEV7pkH87*K+ADW~gEK!yN%P7Km_${nJ z6?n?*R)V)c6`;Z;iuul~LFSrh50;{mOa;@Z8IiR{!5%zwh_6F`ecwZ9gkbCcFh<58 z=xWe?#P=AcSEN{INMqTbIGAG2)8e9k2CPHp6!pb>RI!L!x~|5VW)j7^W`Z z)Q$klE}=jW^nhhY>my|Zwq9XePUmKF>&-?1(%zc43Vca`W`uZk%MuRyCi21N;T(Qy z0uv%Q3#m$v>w!b_{@qu=W_u7s6&x?Ivk{+zmto9NDbdYKZx8Z3@Y)yV`tad!2G0!% zuA^b7dSl6Bx^jHh4n+<6R=MwDV_3=0Ve#BeRp$C2odj2q38|8Y*lGznAc9JB9xLjI z1eQ~ZUlhqicEzCw-o(v|Oh(Q~)6M^~qhh!Bpz=YqHYAhwh%`$(7<8Xz7Xuuj@9fp~ z-T$YVS=l*8wejLU=F`9wj27fFCbBmHF`{d>qZyVUOUy|j6z{pPSeOK-P_OHSTe{qW zbNKA1dNV(@eb8-b4FF3(=apZ?zWc1;{;d9G=upl{uCV=Pv~{ML z*9_kz@&968cgM>IUHp!<<>g%OACvxK1$l_l1V@cQau3$I0&p}2A|Sw8F4=;z2oUHd z@8DCn`|0ZHA$vh?q^q?DaB*CNhO-RR|~rb zG0>#xEq`Xt%b2U&P2}t^df29b{PzKP7j>GQl&D*x4>o^#qi-6q|Gr0Verya0c#lLj zNCyMxcn}J?S-0;H0c-_1#!e@ipMSo8_e&?bq)+SSrN^1g!ddR_gVwq5fuvNz&+kwY zP$2zC#rbHHa411YF_=hL-&_#IW=f1bO zaRRMoJ>`~{_}CUiCjWhW`jsJ$w%D4ZMwe|1>GIi!+Gi0Q%9AByzjl@K2|0b&0@Lfb0q+QSg%r-SIv8YO)x@85-y` zqeVl*-EZ7V5IY<-0Gx0RpqbhW0iym~*{P=usAKwAfun5nO`qmL9J~0-4wv0`NV>wx zr5z{8dbCoU>CwPxeQdfuEh>2vWS&EC`&;Kk*oYt)u|oV`_qiX-oo9jujh~JK>!czf z#jdLvkcWlek~pL*#m*LrEgUZ=Xwy{!%g7GEgb@7_`fj zh%5%q4sceJefxp;Az3)H$fhIF4F7t90)ZI;u@jJ04#ue61VBjr>iX#~V+-?SL4}7_j2m7T%G=~_QUVbI0QQLe&{u}s`~UT@1Q5-> zn(OaAy!#~(rC@dW?h*UVCD{ocp#|B7|D|dDX=bIg)xyGUW!OQEpCsBH%OzN}T_6@S{G$3WFmnXn9GiJ0y;prY<-FfJuD$PVOLceWz@ zt|Nlb1>&%Y%POuUff0eXJI;Ot0oz+p1x(P$!KT2_;TYF4OyK%osO{G<(XR$NS!BoG z>3MNC+25q0+#>)S1mq1$GkFad-V4U2kt3t+g3Q&?xiCxv4O+}0#%Y|6{ZHY6OgMu- zt#36)SKm{YFWvX*KtnE`IGZD)hXhI6)Qh_jpmk)OuxtlieJ;pjk2WM&4x#Yn(Q({@ zUox!91jejTye!M8QB74yYJm>$qkla%-~lN|;5)dOJ$u{y4oZj)uHyf%3GWDCW-<+Mos3sCo^8{d1H!MyOJP zlM94{IxTp<9oN31@jrd_Dj=l!2_AEFjb!56qBt~Q#1csU=sgC;tV?z}VV>+qJh^&- zC$kHg^l~>nKZpZKSj1t9VCW3!n8xLQFtOi$D@e4KML@#s1pkKywjsfNC@jc42MNa) zD4B3nf`r?MH$26RxvU4)ipCXkyQLSntRZ8qc?=H$SfheOQW}9ec>q;o3i5>(+?MN0 z%Pb$;oRBV~-+&7MExW-m1`R4%+KTyo<@$gf>|vv?zM>8YEDFYQs7QB>q5{AAKQIzw z7BZJ;p=tp_tU1@AyD||2z!CwT0G8+?4b%gg*|Y)Z8U`|k6>^`Y`cFWFL$<^;N|lCo zk&IFJCc};c&B$G=+f9dgSUlZ_TxEyHLOcLg=P=SZ%9q%fXc-|{T5JS?Kr^BVaNbYv z;zoh`)9jjwEY@v0fP16*FM9$3A0x*PS+v!do`RXsg1)w36VUvZ!6)RlbPmX&$X@*n zfwtXR0P8VMF8X)53~mz03dMrwso;l9&-Rm>+T+(6`3cXUYyD0LTM6 zCwa_z73cCn5ZNJ3^XuT80)VzlOhxR+KLSc^0s=f27s|#Igdr1_OGf{C=14D)oRgTK zrA2XYbNKh#5{)t#P7(G&y?(XD?^z>9MxQ3BB^*ZVa)v3Qodzg6(H1`tV8nD9dAP$V zgaSpZAC7F?z>O;gR=sv-*N>YI;HvEQL&AfP2o&_)3C zKn>;6%@P?$mEa1H^nOV?)1x{WmYUT$au0kfsg z&b$q=9CW|k6GZKLGed;k6~umv8!#^RyF^3h+>#uDUNOk|m-PQab92V@(GB{5RYZot zX|U#h+hQr9;(xK1R*gkVhzLu5EAi7XT5a8Ss`m! z`#Hck=^MdUTjZ6?jJFgT%^qxKS$l40#}!%+KvMH-kY{6-VG?{XC(dd21I={beUG`_ z1a-w!oeNYxfr9lH2CoH@N6W)FSMRfp4;%5k zQqv;3z?Q6FTx3wH+qJ%4#eDOdqCoC3E2V|3I6+9L6^bx{H#{a(D=_v-4**%NPc4XX zp!=qgvz=p&b{3z9R^`WW<4QDl@lO1|;T>mWO9+_2pbMbP{{wWs)Nj#dcuH_9W5TeV zuC;hrHA-maoHa_~n2`3j);y3+Xf>`}( ztv1)UGcI5|Dww_t6?M1)`1uM`1E3g@$OzIkNDMz2SzDgVbSnW!*MQ3#8+M@L5l}r~ zJ%fCFnF;!*{vD8h9E-#63ZAbK-Q=l!bD7IUI zGX%?(E2I0fg#me#km_>1tp<}1g!uhXAhyv;2f!(T+S|rW1o0E{QTWnL2@V`BTXSI; ze8AHaWx_xls(*f|=q%Gh_Ft(#?{jf$fuQ#&mY;M1nm97UNOJ` zeE!8F66U2rK^^}_Uz|pFokfH&G^JSo>zlZecAC-bGc(l97Q|S2urCK%;E5)zlR(}4 zTcaDdzrIU@A+t+%0zk=|0wsFnpU@B)NnAQ%ys3x=+Hrk8ReY@Rz`yZd0MmCdFioBN|0|zZU}*9QBB6YESPGny z)&HW*a4q$QQ-WJ&)!c!4HjrTKK`6}JXVK6LrK!?-{#?XibNw5^)jfC*7L-hyU#Mts z)iCmLe=JH7l-ZgT3&4T21x^v+vFJVX=0VU@Le#Gj=jl@`&O?X+b;|*SWerUP{+ZzY zzsV~Zffkw(xVka@3`cqEf(oZ?PV1JXvZ1x^MyL2{9)lQ$@Bw80f0?FrAQXr?cUxEO z2JM`4L5gvNNVhFsnWSqjHgR}!SbD0~ofq1jEzw0P;&PJU`EkL;m}*Yv>bPtsY!=ftfM= zLxOjD%@}0`>&b()P`4>l-$%(?`yXO4sKx74AM*L6>21zCPXK>r6c1Z?k^9w?B> z93mLf0F+!mH}3yMe}T(BvueT{7D--~l`h@+HW4iI+(AxGUN;UXyKtZ?m(YY@w+xuf zp%`}-SXzU=82-K(<`jLSonIsB_D#|ML)m+PHF>Uoz^%24qKIrEIFO<2Aqc@ywJ6&G z8Eiusm1P5j4b}n5iVCtpt1Ka51Z0C$Rtz92kT3;h%9br4_}wph&avm%@Be+hdR^5P zX?Wh}x$oco8_!E^BaC(j7eY;?cy{Y+(E6vE9Q zvN8&hmDj1g!!#$6wo!!K1KOiJQT-6tEfxqhZKfA#*amp{l@X@XkT~*ZtQG$PNM9Zf zlGYOwbys`&_5uzd3Cu%gPuJw{EFRI0ZKeBVL_NMQ0M?snt301B?I=*mt4%-of z(Uw~pLDvWYtkQK+vIIoQbp`?`WQVshTf!tjR>l`r$67gpzpV5T8VLSxHkVuK*drU1 zBh*^7n8h1_&Mu0wpptu?mprf#MePHUVcQC}AU{^Lh4g)5a#@tI2@!JtUuc-*FC+6; zAIw*+gY_6Gge1&+ne4SR8OXFQ|~^{<~~9Nj6nbe5DZg-5zX|(;vJ2ng;otGwmFXXIn#ts!ad0Np&um(}Mp# z^)`XtH`HAEF9QgmI_i%(+K>bR-{DP1#3fgJ8z#(mXKEA%)z6`v-!@$eIe!P4l@BC~J z$EI?$t+cwDELRu|0zo)OfZKnK7lULud<$f&>$V8tpmT<9<75#F?~96?RAm2_Sr2~1 zU0rYSw%fkD>DUurs2N8T-~UaybOC1w+Yz3i_}*xsk~2rda5iwoS#}VRG-%M@vPpl* zkZy?LsPK1{MZgQgqnChz`vZT$nVXi`OLD4qV9>XZxue{GpZWfZWp$DC-(|y4;qZ&> zadj+p>-E&pi!4ON1=`&Rk;NR75*7FXZ4zhAl>ySm## z;OFuMk;+DtDyhW#_jd_#6Q<{%(SLgM7LS^Q*x303fvrKnZx>KNJ1!Dt0TJ?g(_gNR zs&6q=(uW2L5dDchn5<=3`T(iSP-@g$p(o#)FgxBNe8$}`>g<=T$L5SU2wIS7!H;>J z_y(X|5wbry{yp@CucY5^C~hi<@dTj!PMyd*$50AnJ_%=2*9hG_Djp{~o+)*i$Z}l; z?HfZ?mD0wx?L@=@P}1nCUFT&XI6=|JL0^U4Cw>6i0T&bh!_#)o?g!ClUF8MQCj_(Y zXJFd2Q6K9!)@A~&0Q@;n^`b>=g6#U(NO%X-C89$DBED{g$h>>?Ra;4on;3kf&1zRr zMXh0SCH;6`n35^E>yDe*>jY9e;O$)sQV1>jmcPv_aa0itfviJzQ2v0o^tZpKX=xt* z`G+T)zB8W7>0?a(vj-g|!QTgbX`&Ti9++`q9OeY`(HEl6ITsXpAWsn$1k|!;q`PnN zrf!Dx4|97*(&}E z7C_W@)HUR49XCrL4E|+xJO5)2U798S6QCkR3zso5`i{gGF1|a&+70`e3pDD{72D!hj=9gUk zcR8hCb^a>*AQE2PxcYHzfyn~`Tf<5U0vL34^}_1*nQKH|flAv2N9)Y`C#1cyq+byd z4BSga$#~_$AkDDU_5RW>V}VeD>DR2UW=KauqmoeHBysZFI}N{zrf79Fb*?{5_=g-M zzl#6DFg5_Ap$Imp0+Qkv!-eVgYbJ<~pqr(u=u~+oCQj47!bMWnyFuSlU~``F9*a-W zB_n}tjqozBjn}QWUc1y`c)|qwP$B)95-aq9f33dxGS;rk&M(h3y!7eR?HSF`j!r*- zj7y*bG-8UdKUo2dwT;sq=4Sqnc|cG*^RaGH=N}q_LFEmAi0^i~mQt|TEQEmm+MW@& zH||Rf%-U4zinvpt-v7}^LCh^?pRX*eRhvbOHnyDp9Oc`#JQ;7BUqokuwZXe! z_!n%5&2~|SD?yg;IozEjll87WL(8779R*bojKW+}R+0C6JZO{hVf3g^$!8^56??!!RpfSSEQ0k70#XEJvKKuoBD?xrktT zxHJ)vS$_dV1*V>2af0@A+2&;Iz7lGdNAG#sO)jE$)Tcol@AG=POh|35Qo^G=)3F;$ z)C|QT%(YJdYj8xE?*zwzL3C^cw>~=&N209RwoxRiEbk=*M_s&Hb$++ zt55EYqtb_}a29g4x!O1Be%<0BI+M+=*fwKySca}}zA%3+`d(FgscZMuI|0}J_o3=c z8DY?vyqM^QPFwinvK`bcfemrtqT;@)Sl;JhyW;lR<>)PEwwep&lQ7~k)GaoPejiC% zlcUi%&F+PsGt8Z5FKbi$?1-B&L}K1W+b-j%B(zFS5~;(a(LpkhEEA!s3|miMF>;)r z4WGWY{e49>9xrj#wg4sg2tL0tZ{1ds?366l_$-R*f#TE*3l!V6Z*?PS+kdTMT?D+W z_GT=H05(fz^rwKR@>DXig`7{$V2MctF?_l1Xr?i5_0}I7IT(iaN>mlG2e6 z!hCE$4!)!FdqshaI7I=rzHm#i42hPXg)=%&qsiZxHpuhkLKJ3`X0!W{?-RONq0 zJN6dGG-t)@SgOfCxAMH($imylazt0C<#7=Ss(sdYd_hx|rY>qM8yD0>$P(ePM5hwkglOH9rmSos0rt6Vk=;?0q)amQ)cNr}7)?AzN{P27PnV&jT)da^ zrv0 zEy5Jd0`9ueQF9!!Y4ie>(xa>Jg;tWmC9&$!C$x{BK>hUhPxc2rC9NNCx#xpcuGdYv z{%9s8zw?HTd`=SwL-JZJ)h1i_MXds|0=$*Y!jz=ZP-|+%bc|;Ilmb3M*1SYc+G~4= zF)AU7X$c}<&b1D;CTjSsbes$gqeR<{Y@tXw!S>?EaU6E4{MG2O=J?wZUaGkLyw9E_ z1`{N26c{I~aA}6E_J^NMZNOGjtUpg*w5%pset%1C?86sSc7YBImNsZHXlr+79{8DS5XI zFb6vt1R0quDM5y-xNiYcK2$|(%h6J1^0`p`uPm{4*3X#oGwP+68mMj!$Nbm{tq%*^h}{NvgEY_mOe*AN{;)HHo<3|nFI22W^$TgyDU6VZlhP!qrP9; z!qx5C)pK@y#N^@dp-tA<@UMGt>s6>tVI6q**PH}dlqdWqP&KluS@@PU0R%S7i9gX3 zQ7@RGV?}}yxWnbII@VeR52rTAkcDJw=`c=tkYvSqtF|EzXN8M6O(E`f`y}1bkRy2~ ziYNz7#VVYfEfW&hZw>~<0mUnsx({;u@k&~@;s3ChHG+)Yw}J_Atr$`Jf-T5yqGu|z zT`i&-F;F=e*&NZB{V4kjIMXD$%r%T7`$S_Mor}m*K01oI>}+5;dSQ2@joJk3MVz=K znsFf7P24S`KXwZ-^JHHvn_sln2V|F97i)_{#It{cecHylu#pO8LHfp=Qt3Fo29p;x zIqu`eSyXC7(UU~BdwDi0o%L%jEl9L(ZCbK2$QsW!p`9|FrN8!0`u;li8%II)8tqN^ z1^NKfGMs$6&|I;)h7QM^nuXQM%hLr516H#?ZnBuKW;D}Au`>RbXlGvD=Z5~5jAm-$ z?YzeyMs-E#ymXlhL;wqa2r<)zq0|rc`>edLo1^Qhro`d$+4GJS&obJ|D^xo^2X8O= zMF6bj{LF14!VS=$@15^zNQJKKf)LA zG@s>W{Jl2(a8Y);Mu};TIUyTae!3O@n2Mj0Y$yB^!7|dfqO>PxMjIVirKP4Jgn3oI z+HPdotdhzkHAVsrm=$`*3?=BpZ0ECMNqhVfQ6gK3Ts(h$DwT|?p|!*+U9K(E7fMJX z^K?x-Br_8SSrezLlBq=!l>tX08J#t`SK=bKTueQ{P7o5nGR;k+2cppd4 z%EkLE1YK6rA8R9zA#;deNaH028ShyJXOtir0{cG`ppZR$Q8V4BAUj*Pr`grCWxCWg z5nGvz$6NfUuR5+6&EkTsldd_?*I!ng&6pYS_BtS^3JX=P`jej0YN(h z3UY#EJ96R{;xtr9IN!EiH~Ij*_@=T%?0I6tS9qD&DIt>VggSOB@n`4>HaWED{*!#1 zjJxXfJgvr;_s2$$W!flIF0{j0fgQ!is3J)M?~}1S{%3~t z1JK}A2sAJUvSI(ifRI+7NsjMhdJj}& z;~;BS+*{06f?BrVvk;2)QnB=nC}fe=&*fbO`Dth}@aZX3cs~yEy@v$(8D`0LtR-$eZWo+min&PR07L*px(yC%x2#vf9hqO$mYv27e>jT@U;kHl! zgM_TDgwyIx;yF*y{juCwHme7J0UWlYAs3_24SV#Ek>Ly+xPsH$8mw+Z2Oox1k8ehu08iVF{x z+W(r)OtBQGT-#Vs_RS2@Z5ED!oY0ogl;UwHHmC(kd0SK^8ZgYGLQ&l-y zd(zbrdVyXCp%EsXe;OnXV{Ff>5E=pTN~;RiIhiX&%=aLrwi4;eiCYM7urRAl#=hDK+uiSv|Y?pZV1C zGsHc^A;RQ-`y=#K^=LAWOe~=fuNFPd z!cxUdOyKZnP?M(hJi(dN*1CTZlf^<;7oN6=&SHrcsYbO?WcIXaem z2z%T7qjD7&(TWQ&LMjV#Osro}`&WPdPG_sjkcNR&m95j5bJ{PnK2{M~oJ%G=c&y4k zS{JZHv{d!~WjLU=pOC+^-6OLeD24cc)oX4>)$+vxtY)Zf1fG_Rr1HR&bT@7rEx*LjAp7JNM84Y_DLCc}V4cHbGR^#nuVHeD^1gn=vVIb7h zUUr}XZRLd#RAluYp_ANe=my>l`fvl(q7#kK@Oi89NU$h>A`@%2P&9TktRQQ@;9s;^ z{DBatpfEw^1;}NMh3bBPa9PQaE_<&oiBz76F#DlLv4sA3qz+v&V8Gt7?)QoskHXrU zLqs!PhwvuECcLp}qY`f;Y#-#)DyfxDK|`|`&N7%>e%oKXjlJIu=NBG?_u0_8piN4(Ea*CGBV!>aUtqh>y!9kWG;o_Y2!+B zBh+a)XbG88H(q>g^uH&vOqFQYZR9Jnry2SFJ83z${)e5Uk&rM<^L*sGhiN3$esU1oCCbpg^1Xqd zjy#QXFoMD7b+DG>~0~OvaABHvwK!Wr6}R zt})U1@&8-cF-&u^sw5n}6RtSCNSwWBT^{LRNE9o{M;X|h54DPwW%v*>s^K4=@-Z|e z>KeWXhLz}+cnTcEn!0J^C|ZDBnc?kx(iLZxHKEAfr3cCzwqKNSWC$QvjFrJ&83y1; z^~u(gLe#I&KwYq=s`HuX3a}nZKg1MNZlOKjNbj4!TTM(mL*u1KhJd zQ+h>}N3nk&Z|$U5C$&jj2BhfI*q|9Qcux%PAN3agQ+I|HQ-WS9?7_!5CVxUA<-vD` zioQ^yiaCk42ypMqPBYL#al%lU)0D|Jy-G8J0tX0mpbt+$PzES!Y00s;VPMe#pARTh zqEDJwQv2}GJ=OtnU=4J83yGYCB5JySxUGC7Fcd;pk9YQpr)+A`PH+=8YXv&)iIT2^ky7$n#Rld`^54oeLA=ZSbaRm00ByX@V%!`&un5_S;{sh?` zQX`Q9JmwN>BSPVot^;?n79D6ALR9CotYeZCTfU@PA0EJO9k5dhg7flYSv|kzg{TV{ zGcWEg*^8Bm*!kTtI|F3s+FXSfjp&z+CLVaHVhaLOzTIhwB%?FHcLJpkp1^{;=6eC905RSM+n*7rjb$72 zxb1po9QAXO(${`*u`k!UwsYY6ju=6jMVV5m=r>HpUzC*dD4E*aW$Aa+Y~+Wzs8XDs)%3!L5NdvQdHDU~#9(Ya*K zI8t<}wI(+g`!ijCgNVsZr7N<}s9Ed~>p<>k9SasIeW)sCr-#r=`k!f{b?C0BN3p#G z;0rGJ&jip(uG$|1^r{KvQ->ixv`^hch-Oh)!bzpei zn~W`p?!!Z|SCl)9c`#X{blCCu(h-f>s27Ge=`3c3g0o>^z_M0hK-Vx+>7|RVRm`WT ztu}^VDS6eaG*sCmJRas+8l6Ivq*N3Q=DQ~ut`sgFmj@AT9bn(u1#E)YUD+N0IR@Hm zGh^Dn=H=S)#MZ%{d>5_M8T@khoxHF5QJ80%5Y8q2jdNRYiUFQo9Yb|d6W|i7^ zdiBNLP~fd9<*Bx-b&w>RkhOA=jVbd-tz$uQteM2+Ko&n^D62hM_u{UEkikk&f%0bh zUqDH#f=@Xn)79Ceou1 zRiQbOH}{a8=B643i#ChiKQi}$$gB(RKf86UMbz`mOAVW4|NKWQ-|7tG92-coki_3$ z5+hn?H~4RkXoKCbn2CHe2pw}05BPG-FvE(hHv)EI(M;lPT2FMnr76zrYlHd^fn>^I zgB>2~!|S$_8Xsg{00a;8JWZu(BYl}-4Fzu% z`20`tI@TIV6FV8t_rmEC714xf_TlE(=^ZUGk~^;C9`q@nZd_ju%UY%WZccd}Hm!sE zsN_fUPh~O{j*G9VZ=WgZx;wsYSbeA0yFgqE#d@;9#kzNOhvAR{p6@7|VqF`e%G@G# ze<*3#q(xra(tGfQb^Qy*124&vwY1*!oZ7!BL%I7OL*duT)lC|_4dbx}Rn;1gN2Y23 zpotw%h1iY^rC_3u98ks)MwZ=)PM!BNhz-Y~bXpGfHDt|RJ?9DJyoVkEABiAZkHs2o<)qjCQ29Y>COA27<^FX!avDD5x zwf(%dPTa6Xiz-X@EhYRSypmJW5b4{~b7#H!G>5!kYAMhR)}|`f=AtU`#mXl6`vMxL z>(>|S9BO6$@(!J{EhTT#*SuCNnD5T)84ea3J)$=JEbuk)+KxUU4udJLnM?M*ZA*9d zOG>EN9gCHdsCN}WZ!tqrdy?m#j!<~ z=jv=&QV-H|D%(sH4$9h6D4%tfm(M)#zpL*{)^nXL+mqTHmlkYn+}rWV#C1U?!DyGP zuE9Jwv&uIK)iF?fYpy}#aZ z9ZG?tuV*?g(ydQl3+tuZU4ceW6hs{milMl2XbUCf_{PA4=q@m@6HfOYNAJFp%q5Hc?{P3T3seIPPIuKpKd6zw4e~dq=2DrbRE^GMmc^Eabrkl^#5COeIDE8H zZK-~>Ve8u5P|yIotu6gpT;Xa@;vh4kAoWwe*9*3LNaK}Br!m9GB`CRRIgS<1j>S{c z4^*K13SQRF_9a`)| za>xF3Gm?Iz)kkf*#euN$uW zD;p5Cbb zCi$iY!>x$i%b*b7f7+9{`1|srJ)_0n>jn9+)E>WFTJhnZ7x#U$Rl_zNMdV(psmhkd zx&kp1ds)EdF7wbYu5~OSz_bd6D#!RtWj;oClXWIfopoRA#{82gx0*v*U8|&N26F_U zkGwz8afY3Cmh-%>MTLBTzh0@8G=)5>u-oE6y>W z@brNPdo{z&yr>`Vl&QO4n(|`4R!Qq*S2eXzYPh^q!oRnpp-AGvfLu+h)L@9$A`VsHG|6_uU~c#EkQM@PRn%G_KT}gCRiSQ0tjuI0^@%V$t4y^Hb&0Y|QAO{|qQncpv`JA@V; z4@H5y`Tga5Ln~aN@0X`NUE*RkkS+PRP{hL{H#c<%R3u# zNwBy5<0WaYk@;$2H04t1>Clae!56cI7Q(&9c*vY82X!A|*d$rrzs8RSrrmU}Rb*O9 zmFJe+VH|5;Hh}@;a7xZixVTUQCQ<#9cxlSf_o2it^ktth-#vmr+-NqM7iJZ6&0?MO zQWYw)Gs#v1!!UdHaVi$+?)kr&h2P6o@2Utlln-d7obZ*hqpejh@7^XFo||HI=a zy&nTk8@+ZYz7K!6+ox-yho0ayGT3IcOU@&an@Jq4w^^CwAko4g950VVRVTGCf_4BguFCiCR&&&t2K_bEYTV!*1mLcFB^h3nS*4@bol zliIxvl4|dp6>2O^Ji^@f6ELjU6=0dvHlLGy*3zOxV&eWnvbRk6eD8y@BPNB}d~Fv8 zZp@rZQcp89ADtVlM@<_0Cd*MWx?a&bW{qACz9{O^OMmR%<|z}Q?Ns)*uc5;Kc7m&} z&r|e5^6jHh9`3GfWfwZNkH?fAkuxil_P;$VU*2k#b4h8wl}Yv|JnMMiuj;K56of=%BQk?NgqA zvz7^M2V0qPOo|esH3MaO`Ku82Z~n@EU!#M1l#Q8q_?x9?j6fkt?{UR+vuH9(MX7N@ zJvx{e*P1%dQ`t;PKUO9mnc@CPrl&LBCHdfPgI7MTFBbGU#?Gz_gSp6bn9^%U{-kKcdqC`;ohIxIC0jK^LXJ!{XTYL^^* z3@YT$H=;u_%sP0JUi#MLC$x~C3IXeYJvwx_?MX7;w1FfUM8=&uuU{ZOrViFm&apPI zvWcc?k4FrU`<*?-TkIP}G5UK&)V#NmXh~|M@j?ECij0G&;?puewQY`;;1q}%3lFu# zCyXzC$mAm*@pZ^Jo;1*!{;9usnC~g$?(Hl?HS|h$N3QBp$A-@;No)Egl`Gz#VW5vF z>yb`9G~Jl@f*CU@Q}%GRWwqf#M&p}Jr%xZCtU6R)Z@x5rNGpjnx~rwRNh|yLzUfmf zQyrw!(h41D9I8b_JKA;8e>kajWR6@IJ|L(gIjN>(=|3Tt(-oT%>)AV>UgEbFh%0w% zvybe4L|zS$e;1&(FQd*P=jFTlBb)aG=+9skZHHQ3mf!KXlIJ|9Q8$Bnc>J^;$}HdR zlxtnbupr}gZ+*A-4(~2)9?hjEuFE=$QwPi2x_#epXmSQE8hKUL9@C3dUx1;|yU(nB z@a&PLRyStO6<=-o_P=qTVVic6Xe$)!ORC_$h5Nt|sgb|236z9S{A{q2tr|yBeR&wI zqGN;GA4oEW-~6?eL^C29Vc4O>4!$Tt!9<}ams>xKC^;Dp-FogQor~v5vV!%-WdaOz z7Xljm6VyFsefLN`Snztf=-GthiKUR#KzGxs z{VKt+k}VmsYoagK48-(tS@0SNr&q;pu}MP9niTrk?(@ttDU-iKp0mEt`6uPLCCtl) z@V{vo8>^V#XK(@MMRU1?Hat8pKyjai_?zGj)#tv ziteM-9y9xRw507f*`}S##3wcMbAQqjW?X?;C|@iai9QaUaM3iUIfi4Z$ny3>H&R>R z;-mLNNB>j!fB3;CRg5w(4br_QI6&sXFj5U{_s72Wa{jJ}7R%1W#0A%zhDTQi<(N7O zE`}age)BIqD;+X;GB#WyfJH{R1u9DLGV)vq*n)5eeN@?{nm&9F$;o0-l;I>@e{O4w zqhye3Fwt7Pul=V6Wm02W%8`#F28hTk^~M(wV*I|)j=osmoQ&D_M`s?)E%3i7|CSH?C1>sxiH7(tIe%6D>Xh&%2aM9 z(Lh0^5KH*j0Dkxwd63E-i>PWwzf7aaG9<(J3-S%;%Q)ExWLAx5ji;;x8zX2RHg+f8{cW zdYo8IM!yF@WmpMGLf8}jioiPzv{w4T@5M312ogk@tSsSB)_3I6vQgFO5lEgY<2 z#20}%dD-(|$}{n?0Gp}XkBymI2rdv)0PDPF@Ig~UEqc=!!QaC|($#-vNst)@K1i#w znXKE*bg|b|zUmo}HRVBPfgFeUjS+H!PjgiL1rlvG-XF{n8eQ7EtX=WCb!;WBsc@nHLM z;;nOYx3#gb9^P1eAWC>?CPp-hE(er2^?u+VFmO1F&JXjfn;URE}H^nGkX;g!4H zA14_jW8ij?r;bIK^(tt_AI){@;y{PR9k2r}SPyJ-xh=8N#?sd>ndJ;c;Pu5tf@*5A z=@*5rLCrp3@`bqA;}qf|6JL|%l9Ij1cG7t|=`I(_G+TYj5WVc8z1F$2C7|SYTeNB# zdmm*&y|YG1=U|(;ryJcek+iVHj8_#Y@1K)VC{fn&;<8QwzIMfqe}!X<^*goEKhq9= zb`rtajV!utSI_fW%RFIvSYViAb>~`AMt*PNX2H`ilwDx09-DhJ zw%cnp+%w`jmu9KgYKqaz5JORsNrf#2Ikz{HWD^C{)clmYQi^L zn+r%MupbgK!jAHOEKIN!_MGQ?)n*32HaJ!yJ_UFj^%ka}>wJll6=#NP75LJUX7L0e}L z+y#*xefR?fwZFFJ5{3T@7R>|1aYs4Ycu3xgyC?}lKlmR)=&vnqDir}b0sq)7>vzRQ zDkLWZ3@U%#%^#fgEzP%&oz3%oFSbqm|W< zcf)G~7VeMgdMr1X8Leju3igT?-69e!-fp#dXB>4_74AOQI4v2>QrQ-)V?lhTxRFHD zbh+YoYUZ%vP5J3?lZMEWsmuCor{^izMYzj4@;(G-bXH24MP%z>w#rE*y%~1cqVBZK zvpxf6<*{?wJ8ttny@^g)oqjQ&p(vRhV4JjPvbF#O;ZIZ1j5DY%lKXy2Z7D^^l9U>g z%Ns$NeV%+abtOdVzMq=Lr^mz!VpyQMK)^AbL(8&MT+Z3H%1Wfx1WS&KORV{775 zXg!;IA0=L&UCe|l)XTzUlta#KIP$KhC8DS&;JAgD3)f5_WUH0?Gx z=Hw>H+qG+wJHPdwUp&NtresZP(Z9x#I3h~EW;4#W`4G2Q5y-Xja%I+d zY`Ff$mOQdBn5B6b*v+DhIiCZRtlkAJX|3A4iCKk+vKa~iJU~0_=I3IH_>{30?8{J+ zhgn%8hoWGbnvj+(X+Ve8vLTqHkBa0TV&|i$fSw+!$dG#JXX_|9yrShgIc8?`tU-M; zP>vaKJAQE`#VzTOt*vB`Ew~}WgD-;T@9AE3)C{rpBNEisPOteW zHH|5XOOnHXuI8?xPu}^RT;Jjt@p;#CqVsRQOdF3xmm0dN$T8gjdhWfV8m1xP& zivE}8Q1LZ%wSdBlw)-l#)X+uG9KhD5$nEqPj2KsP^w6kHOxZ!^%A0?qD9{({1+6dw zdSY>V(H1h+=%#8{QSVEMldl=MFM*MX=P1(;uhl5+s(Kz*dGUPP;-goEos6TW^?#wB zx{|)wb2z{KaCw`@4JfVCLuQ``vM&GhH@n>F>+B3^#I3IT4HRZzVt?x~*$y!U_?MVJTS1jFk8DY}1+$>+9!$4)OEnNf{h{%!LJ7x0%uCN_^%Klz zXD{mxDmW*w$RqdejVh+Cb~~m#lDG9yARmgHiwY(ZAZNxSvbidj^)rhOH|l{)7~Gq@ z&&98+o)59<@Dk#QEUmjn;ON6IYGAZ8A`3q4yH^5-YG%tM8iagM4c|GrQ~Jo z(nV@+a>m|0Q+`3ee-1bn!;!vxXk6vS1B1Mm$0{{mb+IixSCTx_A29uIpLmd5CKrbC zzdSp1eB9uH>CM6t`{l5DPq|jx$>%zZGm9$jIS4hTWslz3;|M$$?(rs9)R? zMXHh^QDS(^w#Y`X%+TWZVrRk*%cDbC?m|XUhwRA6GLIHd7iva~s0^KcUD|$(yzLY> z!^i&h&4h@fyUowXm0r-6UKw7ANqxiYF|mlsDCK9=^y{ff^d?qx^Rk}!z1mN0&X8dF zH(Guk4YOsMQS%l#d;5!}a8hTE6?SS`i4HSnapDT{i>XRi)eHOIV^O^HY@*BI{afUB zDEJ&fybmGHH#Q0}4PPEvc_ft>7Nu^dO^KlK=$i0k%Oe-FhLpDltoq3lUnifH+>CNf zDXR1jYPUE0_=-5fcYSi9^GZ{9;Om3poBb*83SaFhZF7HFYjfP+KE{HSb@-_5HUnFq zYJ(z)70q7itKQVKGQZIgLFr}_ubc^(*xH}OFP9f4HCeP6H<{%=p8v0r6o#EGNIYuY z-w8qlV)C9vQjL}Y7G}E~HL{@LaS~|RP3yj*E!G8n_@_OL8u~UJf~9}12;!Tsc+zd0 zaOX?TmK2GYZPuj?5V*mRnzanB4uZwr6JR41Pa{b~P7o_`6Pi$*v*SH6lVe=J<^d=l z%{+AtZ}CLF@T@3Om+s~V^q*mhPzzIp_kApgd>*rv|Mn2TQwNLsb7!ax7B zY3HWvz7>H_%g!x0>_1Z1B#9r{-BOX}Wm{f z4o~;Q$=D8*!{` zfUKG_&TU>R*QF-+ciNz34ZPt7XtF=B$u+1*#K0F>l^9}FM>~@T(s{zdC)OS^VlcFm(<6=9$#KFRq z1+QWUHTIXYd~QoGe!MBEV*lcl@Hdv3Kh7tMQTX|+@xcRGi1{{~nhNijYC?O0ckGLY zO=Vg}6zoFl{&`5x!zgf7Gl}BZD*+qzJ$QXuu*`O8Ry1-TQBkkhJ%@-aQE> zPgTilfdzceGFkk8N%xm8!$rHUnL0&~a(pDp2y0q^o75acgKARbW9|ZMX^urE6oVr! zzC{1L-fHUBLlo!DKVYyld_uR^tTWRVXPNNGwnCsw;G)>{+KOI;=2Yq7IG>qaU9)VuSW2P9+xL08OoJcGVFnTco|gixIj$0d@Gy7#a3Zz=}Z27x$y z9t3te!Sk~VT!wJt7#JJ-Pm0e{!R-S^7qF-A6}1QRc(@x#{hZ=AZ2Rwnv$kJS{7OlI z3`xIhn3a~I@2F&#S%1fJfbNo_qy%imH;)4Ol#r5s3Q5(UZPzX6%xF$0^H%*Iz&ZLR zm_PsK7IN87r_>d6ch35d(mZKtd+;KE$s)205yr<0~& z&|y(vqLdEPVn7sYJtzM!Q=Y^XRd&f!$nP^P*L|vRcLCpqj$6OxLE=02J3E~40$TsS z;FJ;MJ*qnQ?E%wudsfB8s&+sd4b%n%)v{iT-<}r>4+c>6zgIiJut*BIF#Qtpu=_gAj|+)8-U+BJL?;th6`eGMHbFjWg2Wx9M~+# zUzuB}OjB#>0;K3^kl)JKi~Zm}le3h^(&uhSQKatPv9yj(;%_mD6}m)gU`PJvDi0kb zv0HJ3BujJ4TdzuaIBWxHJ$42+Td+#vxTD{NIYP7#jN5xwAZ0}E7NgP32W++W$TeP+yng|RJQJ;J?xK_2}varG$61aSRi)uXGlKqulJMDOuW z(v<|Ahj|PQcCisWApG2>$S>G8p^&o2Fb_5 zXF}2sHMw3})fa|+_uLAxxc=*u#`o&G zxIAUommEa49D`QcffpK=ht%r+k72$+>=jqyVh|hanOOq$&5UKL;eZ z1y@AmNF+`Bd5&+jo?q`evHLoxboo2n(c#pjI#Y-sBW=f+C9LuuTAo5erI*Tn7k2;$szHfR#-3*L-xj0 zezY4&<0I?xPaD-F>OBTW6s^s3h(+w@h!Bhmwt~ZEI$08+Jh*Igt zFZ%?xZD4`UHa*7^prM_S_uKV3+EYMgEWf869qf&Xz*|;|wi1E|==AqT(iVjTF6o~@ z$!L6DDnM-NTf&q}v*}~o|Gqh@b@oEH4+$jV_#pEerrHX-7ZAMXdcFy+6guzDD$9%ih5f9~bhk1oY@6gQ;x29C^`HMA(!M+%3jB||-L0** zLrXc(OFW-ClnBImfqY>pViOs<*C z7@qH_t$x*Sf6wcA{@8tOuhsa@_xK#|&*%OA1bt%$Vu6H(`n^rP4g2mIIsh6IcMdnu zngGn9{L$lpqmSpZC+yeQ6Ni3k&3};G-D9;y>7WQP%4xiYTO$FsH`P%!mpa5HNSkck z;=cdZ+Iufh5yTVLKT!gvJ#ou;19KMR-u=rCl!CKvCnC zEr9;SwFtn10EV)qIN%E2)Zo|osb|BwhX{^0k6Fb6krM~+>;p(Jmaz#k2pS3OL_zWF zq=-b$JtqPDot758w5~Dc@TAFWGcAhR4oB--V zK;h=y%~2D;*T3z=b&7zCW&J$ji3x~umbs2h#c~9=+O>UKzXfl{xTz=%>Rlg+xuHUd zHJuPZ>`bf!xv!=em+-fYB?w1~wsf-CWw!u+p_(!pS$^Thov=f#BZ8fM$e+I1&GR)v z*VKAXO|Y`LDh2I={<(PSfNYe+V?kw)H`f<6vRV zBYn4b$^Pe~T(|C5Gl5U6XwXz%yPLmvJ8g|y52R~8`VbY7382FQ2tc4Ij2IvYc={pW zoz(}oGS`^vcaZ0rFi+&~fWK+N>plZCyfVP>YFM*c(qGey(vLyH3aq>tUWtzY%=CHb z*d9v=kb3y-$I)Y95fG^`bO3gV>o{yp*B2G?uz+<3Qf)hBTh_8ktN5UMA1-i7a-Lbi zhmvX@kD8&ffZh;j>->_`Z~3Wp>iU$;E9vV?KtK(kw19Pr0Kw&*rj%Yl(v~}j2kHnP zuN6pQ0c$wLl3EXxg=yWO5a3P=K74I%3$%q=dj%+`~>uU9@1{{FGV9r$CS zQ}NzAfKD=mbOyja5-=O~{UZ_f>xL1*e^v$7CwUi$MHRHHSK>+)d{S}X!hc7io!maB z=6%)^7XWhTMMtR*#o=X;s&lh_Ikh`Tk~E3Vc1ADe$=|Nr17C`F<}1G@VY z$475|%GpW&BC?gD)?Kvu1|99l8TZJ|H*N%H3WsolumzgmwoAmkNA zIf(+vtFFsj3AJG(_Z-kT<&g3XLDK-_CpS0oBi(hM_^v@2AOZg_v9<(c9j=j{O4{sb zCFN7ub9=`{|CWDlox92UE$&?Ujv0_OD!Dh7=hFe;p_3Xh@O}7G6PK{qdvlzdSC1c& zZ7$cnid?sDb-_^g_*n=HsFXYgY^}?RmKXL%^$@SOeWm>I-9karOlSIL2dN{-HOUQu z=W|oL@5vU&wZ2-fScC?G-q5YDa?w+3PIOH!2K{a-<~%8itEkWrD3p2B{>H~b7k>2cV7fVNYD*YsUpw_L~Z)Q*H@n2Y5Z_hP^jS(S@y37 zKn~!mx7ySxkGu)gdJsTGavvmSQ8E!^(EnUE2yX(wP}g6C#V-MUwI2I5I`TE36Chx) z1H>%RZlI4GRtgX!zMID`j@|@n8=ing`kM=|xL54;K6S-l?yjM8MZ5O2PR4RUxx(P1V;^}#7vyxG0BSKB=$@F&8R2fO#& zVjEX0B7dZgeGHSnGbhJH+^HaOb&@)=JwnNKsQWZvs($RQ_mmWP0pbl1RaOGi>9Z$s zsRtGYX!fAl-tG>U*e#H7a7MCMh&gonpt$PqTn;;cCV{A%9+z!zcpmr+OVBw@P1E5p-_u>$xgT-9=s=rQx z>2Tu4U>hp4ZT3X`C-MklwzDmEG`+1L@HnE>D(>q0De(AHC=uH^02-e5MseLl?U(4o z4oFpxpAqzHL4jnXo^?h3)>`%;Uky@DYe7FZsv?7=_mNZeF@O8^kc}%xZ2*_w<$Bub zO)e6=gb^;v0+Lr8@{P!?nwmo)^a2dzNPaVYo`y!GetYicJy`z@VK z(Rn}#umONAYbrrwB~?>O3Ve+~o&{j$08ioKT;l^DA#)IZ0m%HLa6mowmen!&DS{A6Vh=Z{Fz%0mA`vjgH;_`24zqv9m1u!VPBJ zhR)`27u;V|7~E;&!j(FG#c<>MO2tEQ-wym&d$tDy(l8hF*-h>{n@!eJ&48!^2-(&H zQ&nkc4U|m*9pGaxJ=ePfiV;wZhg2io8c_s6RL;~`Rz;%y)y-t6Q66g8k+!IN!|Bf#`FD{CO985wHw zS>NOP6RrcB=;I!#q<=7pE0lBOP&)wjUS3v5bLDUKB_S%D6MMCS_n0sZ;>KP;CAm+&BveCWy@LBv${{#@?QWeHI+`)3>davHrWJb4{io3f)^?iB9{-m<-#U=BjCM& z>u>M0c(n#Z)4y>uU7?4Y_yKcvN<7mTFlU|gG4yd@;GcYvOZk2~xA+t{auHvoXEtl`8))*J+6{!>K{VY3w111}YtHJ6 zSm+O4XJ7cr-%(>lWbOM#qPJP&P=;CKLZxGGuU9+q9LhWyq%nG59Yr&=yhrqZ8+#P6w^(G?8lznvaXVQ`)Sq zsOxnw`mR;9dPW@iFJJMEPb{ROM}RAF5#aG(teV>diMW}zTeefHf18Z7&u0vJfYX9?-%>`q+|Hmimi6}R+ zIKKCkMx)j4?!FjGaUU;>dpP*y4sPmbZH?Q=HSOMU5ffTwV|k8L?u7!j)p29Z-vBJx_`6t80BbKVoMn4 zoU=G-A=ZVNu6glw^ygAI1FEeZ3A=lBJ+i(MPgL9&!0*$V(h}Qo2XF7zdQ9xAY(R3r z=U~$Lmu5!bk+fpQ6oGj8^kFOHAcF`0b(EB3<>g_C$tOZ{*?TgqoMPwFmx1UDKc2)dCvE>3Nd#A{TP!GDITT< z4SaKaW1ddOt!=`c?R5b&11=redVt?=JST_uzAFz+H%ULdpCiILDk(;)!=B86i&vA* z@$DI3-;ze8{cFt{8dj zK2EhR4$p#m#WcEm${3o{3z@XVbgD>cBWr45C}SmKUp+nIZjYx0R5gRwK|<-m%j5-I zvsI}B%DV^JTk4o~AHnFSD5Yx^wNaKPvdrb{-#>F9BbcVu+9OdCowy{+BCGLpzw6wR zs}#krlZNm%rAN(lt^Xo*_G@#SG;%*D%FzJa;!elRFcxLu_=u@0sp5p#Wu9{j-j#-% zG&0okH_iwD-9QdwOEF1-j&tBwO}LkB?CSM2p|-d)A*4}h-=_7O4Ea+Xg56lB5UwA> zOnQag_v>B1(GyoA?HbQrM_5DE}guW zX$QX{nGHT-KgpVCPCVV2GFFKB0PPN$q+8HsuD#T(PFOap@lAZhhhM;Ho2$KDPv_V# zoa>PMvv6?q`i3pPVF;5aMF#7G{3-@7C}dd^XC6k19bohXqUl<(5tlaG(AYHwN4u7q z=30ckcRKrS<akU)f9f3X)9Grx;h#+41TOF>Fmi(LXE&+=bVuVND;9L z5G?xEaXY*2#3v_gI?vrYoq(!I@)Wp$?zbakleQe5p|(|a4yp|`dVU@6W6E#C zj1=|?b^_$@4oV3ahP}688m}gFL?m1$Rz=Sgn4s8&1)1qaI!=y|00BYJs;?hpqP5oPuFFC^kk_!S)P zn6t_8J+iF4G-b?5Rnmg z-Wr|2W1a)Y^=9W$%gZ;5F_*M0;})?9G0lDP&5TNBccUsf)X$N0q@on*G?CN((EXu1Z`gLuIg+GD zUuFHhMSU+O29fo=6r>E%B{2fIZ!N#S7J7J#J zEl5l5*vgKY$muZT+uwfnB*$k*&Oj8XBRTUuT99xAQjt~98VYFb(|pwafLIqDf>fHW zCoxmfX2J6ENq77k)3L3ZM2A)WnUFvntl6R3{f`y-$#glpihaSTXCbeg$tbND+6ICU zOC-Is4c#zkC=<)*U|#5&q}U%;Db*?uneIaf#ni=fjtnIK2`P|8*JLxiD>K^rs7i7T z%T+3*i5o1jh2ZJ1OKf4DoKc$s$sR0I`Lqm!bXlCaT!}(wXqD#&O{*kENzNKP`E3=s zaS4Ubo_UU#7I7wK%cJivyvy*;XHN+}{Bwa)kd+^9Zl~(nc7NGYoAo-mFV9nF|I0CH z(g}t7_c|+=1Cnr-`hxWLP@Si2)J2WR#*3W^B$@%oZem`Lmd6Rri z^GOx8$n1~+)c-W=?_u=w2{jmLE`)Etb=8Lb>E$eXk=e988^d=tr_14y9r)p)G zX64t=i|Efd=$VkoMTi|B{%ls{4V5bJeC!{60~wzdUmq%y~tLm0^tPdB))g)64{2Be;hH<(A4&DkZn&+oq_#a!?_E% zcWs{3-V%zYWuOP(9$eqj$?1`6du^=HkUT7a{S{+o5BDhzK|Sd;^|)=6f$nHb1r6lH z+`<^BiM(HUIdvs4SoP;jXXtBx@??$aYL%U9W4`;~LeSWu8QM=y4|BQ3%)$2&9 zNIN{#`$Y60pwVmJ@M)?0SYv!I4f zbwAv3;E9wvMd`D1!*(nwP^-l@)iwP5He{wQ}G(XB&DL0&gW4d5TDTrVu#KFUlNJE+tdc7>L@)IyB|rc zruglLGw*@Zu9PA?p)IS#rBzkNE{Ju85I65I>YBK7_Izh*TR$xjRTS-3)uw69)V!&c zgfJuFXk;Ukqi#k?hj%p6)hF&J9bH|XFEq(>mz{OaC1OlPy4Y@HN>_mZ6SeYgS_^49 zZWZWF5t&i$3mRDL349Q8f-2e8ADBHkkiOf6O-Y}`7HK4y8p=2mOXX=xlVNY@$EE`f zvXt((q1TL!{@h@%e^xw$`JjFGJ(G!t@|W7R*dDC@od_Oj)5ST_3cZOuWDvyb13kVa z7)mrjRrrV91`FSu6orkZ!4L{?_SO*%x=O%yk^_ug{d$G;MvHNdmre4B2@{9czb7l` z@!mzs0;bBNvHhM!M9CIA)ec370w<$@EQ5$=d6u_b&|wBb1q@jY&5O#H2qrgll zj!!i}G@}WVPaeykT>a{`&}CBjFSyhbdSr`GlM>@ z|C(Z&?DR3AoD^F#H!EkD=R3qQdo?SnBF6`$lY@6w3r7tGJ)e2}aM4Rfuo>}p=|+NA zv2rx~O?RB;*`7w)iD2v934%Mc3<8M8&kiL#*iQ>GYTLx@u+h2OTSv57wZcbitClb} z5i5&)X-5z6z(h_2L(6Oh*_jK90}U6`gZO5tpW=>ODk&Whj3z7=Ah$c$c^apFoZnHBn2oj75f!ZVq{@v(3?Ol;Y zy>#6sNiCnPyGq_q(f;jaHIv>cXL%9>&7xg$FxZ?$XmP?s*BCy23k1Y$b2UC zo&8kUD_||Ofwky0j5b334Voj0yKHg;LPUzbP7C=AMJ&?Cl(;z>MH|k;pCOicAo#Ud z@2#JsqyjuNm&51{%ub~A+l3o<`)&kiN>&oRYu?_ntCg-Q9d@1SE{t=2R#e)UPLl~T z=CwX2*(Dm#=M=|tZV?L!sv*8<@IpU%*e=npLzD_=fOGssE3?o=&AZy1vym-{aDNl# z@oKSm?&82as6LzIRKz3cV#)!C6m0v2!a4zy%N?`N{Hzz!;e}=Gnw=pAg>}fg*!H)- zNhuvS@2E{*_b#lhig|XLwE%&ho5tD=3|D7SZDfSI8@znl_wNjx8ZJr&X+a&vUE;K9 z_%E2lP#m@b74M8s>83O?4YYH3HQpJ74^GkiE>z$)vP%ltVnevuQ>R1>P5w@f$PF2c zlQo{I)<1+4M#Z2Lw2W1mHweC_tJ`B4fm(@u>J_93^!?oZmrbqQ*>XNG+)o3&YLwih zdiivICRyQa0Bk3=Kx&se^eT--uEWwR&E`@ENv8%4|EenVg-v)cqp##uZ(~fiGju2oqV5s3-~RtBvgQ zF}*c;@^E?N-$trLIez9mb?6`jjg6m#Yf7eWeYkM|PC9jvRuKacH%%(^E1xemo@O2J z%#saIsOdabO+sKzNkP3(ePhyuqTxeNNNHa~FC+6dR2)3Nr&7mJW# z4CdElS>UfIKcXM^wIR`C5InsE0%NmVUHsxw@h>^+AD!B2(Y)Bum-L|NuGf_zSbLRd4 zx>ApADA-jSA=-b?OQ7aGU1fQjUspw&GdYz617W`*D3ZxP-HA#TRL*<=BRCz=yU^j* zD)cQNx)2`9&$q|4Gws?@5dCxV)=u!)huvMB3vbSdR&`&~wRmfqc~qSw--LLBj%<`( ze^|2yshL|nKly9ORlDkV(P~P$O5O~Xa;-|t#W8fYnee;5$lHeM-^0S7uWZXN?jl)6 zi0M!f3%jxC8!1`^><8y2HN6{`-T}c`tthR(kWk0G8NX( zl>{h}y>1!UCb4JL4F%3bJd&OnY5d`eb^uh4R9|{1kt)c(Z$zTbzv}gjN_-8czjJt0xBcU(2CR_&rcH#IF}18u&WBvV(Y>C~pSJDErDz4z zX}YltNWWkv17`sCRJz=l3D6Eg>pf-n4fTrBWTSU(EV4t+5^AtdlU@be7qC450rMHp zePWTp);xmP=;U7lM*%fn@+kv9x)8i2rWxUF{YN#G7z;$1~&|=APhYQT+K!KfvLnLESR$@WtKn zzw5ksVZl6)5imS9*m5S&L-Rr7`)6Ca;KAn~yA^viEcPxue582174e1^P;fc;ifD*| z_e94wlGf3gch@`)ni5|lcFS!x8RX2yhnti}YsHrov6p$9G65iScAanDCOPBvQJTrU z?!i|}m})Z>U7hsjjIQJd5B>S;8jS`yJL()rLnq)u1kK#Z2KaV6fjT67BKJZ=K71fw zp0!;?voJ)wl6!0gGasCsi9MaK*~kURRC%+@4J=WPrhXG&Tvt7SZeXMOC;ST}x5iK8 zQ&>HD86gj8kk|#~0~pxAQs9lctdQ43YC^rxK0x`(Osr*R?TMbGVv{VW9=;==?M zH70&bV$GCLm&Z<8?77U&FHB15SZM=EXe5?eGXrQCY2r=zIk(3kQld_!=OEaq$7O>}fE+V} zVAmqyI>s53BbgRgTd~Zk@#+_x`vLV{`3A8c9o8W$3ri$}e&l@RN)lfMOxPK_Y>#Uk-qq|&-9D4*Y`WMUL8T= z>R)LUN?MJ?hiHoZ2WBXbgiGAo!+k=Nd1m(~^?08|CObLf9jd*c5UDh=8X_lTSBOEe zjZA$0b_EPVpZc~g!wb2;_E=d&enR&RcpeSgKReYVXwQ3Hr389@- zUV*A2hQWE05rJ=inZVNXXTqXLThM2-M|%jGQ`z~E)FTKxZRRNwyrLViJ;b~L9XX4c zT$UPe6K48VabJu+y~JRJDhwCWvl?sslHg*sdO$iOnC;*Irku(?^z8w zS~jkZd5+{=#t}1A>?#W>c8KDHwd{>Pg)2z>ZIK>+aOw|WpMdMc2uyopGsqj+>~6BT z#l%sa7fqm&2XJv4U+&nftN%$>3wFprt{U47wf^{;q+KGI?q3`eM76;o&~u313SN~wE0i_3J*V9@d?SWxEubMT zs&S+TrTa(5k<+3id!hUpWk#?GGtdA(&8RM+(BT!hNFMEFMRfqASUh|;p6b}oTNrD&kY*M8zd?=g=J*~>fC|>lNXfq`;I}=K0v`S-WCCY7T5-cIPsi{k= zVpMWc$BxPc2Z+OTU5{(8D=`=v^PU{c6zl3P;$nxOpE(gzx%*)~Erp5D~)h zbjP-DT+;034EF&a3oLFSR>e&`S`Fi71?vctR=-KKofup3BAQydLH|mJ^w$bC1rEDU zi*Qf>QdT~h7gdMOpeZ+`ve^ag&f)G#$8A;}uv9n+E;>E@rm_R#$#>fdjw8?l3;m`} zzAp#Kg_plJMMP3)V4)4d!`AT2Ax>-bXbKKql*EKVVwZEbr&4D@*%H3~E1T(|K;avD0x%48qvEIb!5m9<49&%=8}j zsP!@-$GFI(r5G9u)zqmdMOkn`o`(SVS{h*P;tik5_W~5X?i04rFw7`rQ7?vn*P%bp z1d;}jd46>tMq;`yXimf9`~6KLkcF^1_T<}H5W#hAe2GCsKoTDD-N}G#&YlUo6kJon ze1euysxZrr&j1hGa6N4zK&qgsoeK){XY0iF)lSV1EH&kBX-3BnYcQBr0@n8xr!_$? zk>G$w9T%|}+OEBacR$zp_}fnG98QH}<~vp_@=a!uZcQuilB?R)5@DBzKErxME4(|a zp@VK$O}=J&VnB}O>V}nxXgi&qvH6JC&~{UJxP{XIdcvS_-T^l8<`sh0!l{cxc%iZ) zAP9cuGISy1Jt+8$g?u=zdX(xVD8cYf&|9su##v%G>5Z?j;G}MI+G^=}bfcebNsE=p z6jJ95CvT<#K?*D)dnQT2CN;|49&Fz8Jmr{(#-Wt+Mj$7s8C9T{nIDKw`7r7bum4rs z6Q(>Gma`{p%{PMZ@(lJ~ena+M>WL?za8F z$-#lf$5q~>6TvZ%#7pNIvZ}gnTtIB!>>x3-jyH_oG7ctsG##BG)<|8ox(aFt{5*e~ ztB)tUfNCP8wy-PBA;z>WZ;`bXQU$Q~*z}QNbW+r?Im%+8vD0U1&J2;Y-joZfAcF#WBJ=e>RHRQ>>a1fwu z>63I?MVFbeV;8x7m$iMuiYVSC%S#JZimzB$!`pbKLf+IG*ZYT)&#K%#)xFUFtdH3% z_tv$8T7}qP3zJsUFJmZ>a|I_k7i|KIs+jtd*=Sq*_f0B&_nI&rI~(tCJMe0{c08WnxF_PU9*&RI z@P>XXOdD&c>TFml1aRgL2C5^1WOYyj!)#yk)@dNBJ^IfeFi>vYi`=HOpu_dm(c*CY zBkCO|=&|lXU7m4p!9?LdvED!DnNJWev8din&>#gcPw&7RC>-ZD4<8bPi%!AGYw#Z40>Yz9|6w;%{J|E(a+Bx6-fja-b_F$XHL()uDkx(n4h_pdzLthpMf zJR;~8gUF&Gs<=%Ip8Sn|pkE$5L?rAMoC~67Bb5yg(iPwRpe6~LHEuVdkDEvp!uH02 zXtgO8`->^)VE|9ZqH`l1q&GZd0XaL}0wtX&0r(#lcqPus$!Z;(5Njq)-R~lc+}7|b z__E_O)nqdb5+$q-xVj{6Ans^!i+&%pDj-cv@k%#luZo0wR!bz2nChDS-kmChrxspD zNVRbu!f~0QwCRxUU4(GXNbXBU?C5CO^R&0$#naON!2xKI2H&mMkWxf$mmT#{9=^cL zNo?R*h59bnG9@h(YH)WAT{-Ig^F-HbG4DQn;`8FJzSPFM*5B0-zG*r?(*+u~hNr5- zLqmPX3d3V>JNwX#w`cnL%`Iw5>&5HCHIU8U_Pc!BsN3n&`UG^U1TKH5)6Pg2@q35* zUAFhW-v(K9i4ZmtqM$RqL z7&JIsr=b4+gK($Yfx%%{pg#!$@qbuE-!)mO0I|KZ&h--bkQG+3%gdlHO*a#rzD9lM z>AF?VS>TeSj>z>{E)D_^LMg%?0LO06S(@Xq-%3 zw1hbuwsvp1zncn)vz=k6S^Y~#8MtpEpxS20yQLZP3$ktx_@xPPVCKTx8sg}e(OBQL z;LSE;NG1^k*-_C$D=Xnyi6W{qv|}Q53QL5aCiJRZkCx4*25y7IZTKb(_~zN%M8Za| z96WB4ohFME4QwM3m|+3V{vj^m)w8%fmT4TP_vgQwHvT7j2c(fL z{U0*4)9;HQT10pGc;E;`UGQDze89w55oYkwHEjCNb}XEFhOkHa*t&Ipz3A{R3WLFL z4eJzr*1XZ@OW6d5zt!E_lw{qKqqQ>rFjaCR>IzIQ66NoHXndIhu2+=B>JE|vUikIA zaQ?TO^jmY%X`Kg`Ar}A3 zF8s;2%eUN2@Jfd=0n_P}GpVJ*WYeA-1}6D`NPE0|`JO4TPFnt(C%D!&x64H^e&Fh< zk-kePvSJ*dUpo43C=2~k!cDFRkal7Bv1%oq7Y}%o3U6)Zv`keWVF+(s#|KEapEnO6 zTL=9`ghyw8!aJmjgtR$kbMKeS)CT4T-#!F|ikZ2IR85~yHGy%Hft^iCfAVhLc72D= zuPJFJDkgn&k7-rGb<%)U{2x{VEb%nHab@K1n4jIISH}9v=|+w7N&7oy3OSb5&uxl7 zmyrGh=>=FIA9sP^v)}&m{XOaU@aL%aqbL~nK+9gy^!2M$>p)r z&punvfB5FPf?DKs5qkIYtACGrFJJQYT@VTca`A|G>|XHrR`6ipibCzrwpw2rYK*wY zbi<6h{lJji;`wH$57Uu?!c?vvUIQMz|I?HGUp zw7$QsBHf^=DD)7eRYP{9Z#a@8k8S7y(T0S&*8qu91zv=D67G*G@fl7a!;a_%WR0;$ zKLudN08X^WYT>t>NKH_hv_g0alyMO#Ahd_f2=5j>cTY4CDN*z~y*a51Wm7}cY6RK*xJ zQPD`&6&3)b_9@Vz{w1CGa(8l`F10&|r#wCRY(my2j{sW$EZk&Ig9^-&Ft&>?=Q81@m zUcFN9J`hw46;pOACXSj{%v#rPhq2GLG>FBo(Qv=K0fVdVoRP6XCQTrv;pEFq9+A68 zaZ{BQ1Mb1`ee8IykNANd4>(T>FUwC|$V2C}*GMeAi$}(JkxeZpFgMI}sh8)XM7RX0n!=Hm=AB8G%xt57a8Mv-dT@gmeg#ex7fV_T zGBMOYN4+L5uVNpYIZy557bA{GS*+X%g|)-#Aj7(7z)eH{z$u-)E*r2IBOA9_ZuJEP z!k~w*)G~)TfBxV%a<9f?GP}Qftj3RqHh^ktykDMVkh+1UR?ZzfR*j}xQYd*6_<1v~ zpZ~|4SeCZh)xY4wu^yWKq0BEA(hJmze{}I?n=qvtM3V)1yp~5f?WXw-SF&XMM73u! z$Jncgmr+P!%;Ad>D12}bE?RNL=*?F#)Rza;;QNv<)v^hl@TTOj^gK_I%N0qjn zn=pTINlMyc@#U}|GVUd`;Z4lHtq?G&j?EO&u&(mqJ;kdGb29^J)Z)bLrpnbZcVT8s zPXi;PcV8Umy|t^P;~?kJ7*QYEA5@|zMjhcupQ&tfhJVRYlBW%PJV;nLfhU0NG`G66 zx}xpYb2WP`Ctk~FyT)|XLOEw1w;VFpd(L~}2kX6^TY74`)4jbkSPm z+XJr6phMSz0I7JDda`cOx7QQ%6xgjhhm`I;w$>?pwd?8Gj4@1t0qoXH7Y|_mJO{df zUyC2`n~NmbCmSgST^J&L$OsWl6}h^+En4;h>dNo}*d0e(|2fuxm%bD?NgSJ0rtPcp zQD-d-CV8(Ij94vx!1!3BTCQ^f-6%%`K+?VdiC1Y@)fEhvngk<|KOZ~L`BMZzM6QWR z{#44TNfuLk^{6fImCgv%(cbvO(jK@Un!Toi$0q96eFR3K%(UbH>g{M75;tlmm~U4r zr83E$^sY|yMGPzm)v}jueBPaUG{3!jVTJF4y@~0)vcL;N)Y(lGFxh9FR21w6H_o`= ze8{r2Dfh{dpkhZi6ZT-^e|xR_VsWdlED}fCYBdfxSNb`Y(N9|+7Sk4?&pppc;vj1w zB%)^TY!}TefIJb~%fVT71r^_EvtwlK`w|H^eRU3uOh1paw8u$!R!U36a2JEV@yB-X zq+2~(t3U>CO0^UNnfzpgFgHxY`qo!r@=-(HXZFWa8UoEV;+m^@@QIm+Q{EXcvo?MH zm5G=gcrN+ke)!Xy1l-DCc&>A&^{O9nY=DY3*IK?}Sfp0vIauXF8`_xUxXc_TtbQoM znN@QJi9tDT!)h87(ZR`oK;E1<8QXO8`SV!JUINOz}{Q078N9J6MxNJDXx3Ho!^ z<)N&8SAw1ZG!f12aL}gMClNb|rS)@D3o5gq!CxjuApDL<;BxYq_{yv-r8ac_9NAR+ zRc}e-rJgu72B2rim}@Pa^?ma+QaYTCTa_nS0V;1esG1~li96)7KM)Mi%6bqHKEqsH zUR^oR&xs6?t|t4qj@u7KOsqE0IlF5ohA9Nu()!y#C+KdPNsny7Q6Jm0G+w2(qn*^8 z5&W-bi^MVK`I2(XaGJX?1E&H@xz2P#P(SVi2Q=>c*&IO3__d_bapm#5aVsTf4Sri{3tW|5>P%hT4@E}9+5gK_aFqXCAq9(L zvlXNiaLYz4?D*55`4~ijsYW|rxg?6SEPyj18vbQh7vRZa^-q|{GSoQ>%3IzZ7@LGi z2bEa@at55*J2qxf<`=ie&`c*?D@hntuH{Dxiqd5C$=YK5-5T|U2)=MOMR|3RyzGgM z1%tdbxNlzaR`Zy=L^3`$!3efDpg!ThIHY~?Qr9_?suPm>nXE|3`@fyx=69Wi`*E0w zvC|ML(g5Png^pgiEmbl*LE@*D0yAx(O-79yL=Iw z$?^a+jce6eAPLMtf%KGjWu`4le}jTVZ;(fBXWH;91pS9L2;|~_!r)+ZS$w>CBPWUP z%o*Ear;rwy#^)eTC|9lO{L^PT#jF-pTv9!oR=1Syk=~-cLSZ-~_902(tG_g38^V^m zT*hBoE~QU3;y5$c3NPi?{M;wxnhEvaWwB8S-qT6dAypn;%*``X^J`W@MXo;xhTy^F z%NKFLDTbPst1+g_+jm)5Tpln(mFrE&{@&UfPR9kz=Z_twFK>xq*3GtL)T7<#fJ!1} zP7UZ^6eesG4^1mIOw91Et?cv8LWH3L{K^d!{o-RjUX{y|_gAMEPZM4>k72@cl^!y0 zqn;c5IQop8eS`e+8l;ehkIUR7nzOuc5{?!p=MtOtl>{~`Sz{ALq<@l&&A+?c(}**y z_K{Kyd}(MImr{@wBuz5w^N%AshQqLCN+L~dTj($+r-WE_7vf`*ohqAQIQd(S zyDEIju=xo3MHMKkE}bUoOL;sRhAv(R3}4L~166kdF*#vb(#d47W+Y8E z836>WjqfTrCNzqj6m6`CQv^=5+}`O`Rmx6yoBBlltKPy^O>4_IInR+a$%E&}V2muB zs!wVii{w*DEh`>NVY1oLo*X+T>>XQ6W(is~{U+Ngpm z;1SoZ;u%_Sh}l`jAEpap7^c|%A2?~QLeT;ErpsIboG+1RBKKSDjwYPGzQkY zH?`{bDZz^g$1aq*_wRaM5fAYxlt@LT=KFVdBkdF@t*8~Bie`)#I%Y(S`635tsI@ef z6l$7y(6&tS-qEF+vGC;{M}fg6MW5mfD#h!@C!->cy;tU&8~bi&%CA32(gA!3I;1}1 zREJJCDOnHr>M3r%P};z-o6A#Jwdi>3&S7l>yTFR^=QJ?Q%s0rIzI}wzRaPB64hB8T zo9=K-u`xXAHGXAF|c z{rZ4-{tyq;k&_!_KZBn8gp$>&d`4TwCU74v9N62l`3xK!beP*qBU7l*t3@I?%}c_* z@Ks7xx7&2Od#UVQAhM2Xo9i1jGeFmjJodK*#K!>T0Wkgv+Bj#vntuB{rUu$IU6U2Y zu=Qn8T=`2^SD4`jT7U%Lj~Zz#Q1oeS09;}heMxDHxL zxP)MZcL4B`(+u@)H*7?-duJcAQN83SDiJW<@gu;Dm#%g)Z~JjMu-Y#i^;2NACLM?G zNGpl@PQE4dmYkbcvE|pCGnlJhWz#zson(sF3=lKf!rb_#tSYT>%BYGPYna}h$PCe1 zqT-eYM+Cu?XnxO9jz_~C5B`f4%}N)ZUccGgoyMLCKgQCm@hQkj?#nMcvI~qzjV}!S z@HTNwgUl)QZ%_ntu{ydvUpHjhg|kHi`6nVinYN14_$T3Y^Ao4l58kR0bxBnc`0?(i zMJs}`>KF#juMDKF|G}2Ijt+CGEm3lDLAhO$Yf_EuR^P`v?&mr=1_>75aC>pefdQ)I z(z4cQqnn4RNU45Gdw8QPxu_Mi$|aG)Yg{on(BUdIy}ax8g}cY2V7!x(o&8}rR!?aX z;E<}L5-ra3GsB;RU}z&T3UZRAPhv7=T!~}k)lv6mh|@^g-X#;>bO)k}hSSUL1r@`~ z6OLD$=CoI)N@F1Rw%B%C?^UL$S;5eRJIQdLs7Swf%JuazDL(9t|i!YIBcZ2cQE(UM_nQaVzB2#qir0jcphE zED!2VTq5%Ut%#YgAXs5^=v==5A@ZEIDZls9;gUc2xN!5G=u~jIWdNtiy#I+4>?4JD zt+0eOuNduXJA+%wfhF-Ngzi?SWA(A`{^s+VVtvqXC%NPN61x;a6xGK^?h%;bKE6cu zwsV!+VPEHQTkS-Wo-91uq9DnQ4Kg3)(qN^ymEb+rfO&NRaIFbr1bmPvrb)GN3FWe~ zydiFNWBNw1v;;3%TO(Bcv(WcXBMI_#VG^X1iMA%kgp<|sCs$wi4+jaHZNio=cj2T1 zhh`^S0JnSTZkR(TC2y=in{%@|9*uu?lSc~h%}>mx=NI^2P>0Gwm8+HSp5z)dn72pa~VhI4Vw$Xu6WaI(}8KeyYv3i$gR*VIxlw5 z0m7g(Rn@~_mDvsI;P-JxFRth^mnp8OjAdUkIe(e)w?tw!IY`yfcoRj1r8@prFJ9W( zF%Wjhl~zBndTuCP#XTuTpHq z0HfEA(PFDIj#ibefP8dURv=lT^pR%U6JjGwqvzhM7{3n%V76wd_fTf(>#}!A?Mb9}B@1mmAgD8~U4H4_u(2(W z9OBq`@v6jTkGWZyJmLwfNutanhHhu|MY%%S-Lj?yuCVaaj%otK)aqiiKPZy-ig7Zj zfto{sM@iLhT{Tv-jV)~Z&oG5zMfW31pmpdEuLZnMUewr~1I#!u7diJfcljKgY3vaS zEGM@)3__5n>x$qgAl~{9`{?_+iib<>?96MzYW-m9lNBbIskih>pMEV?@-X32Km9{o|5m7)|)`CbEK{`Z)w)R#=&x(XWm+1E zd_|$ZAe+vU@`j%5?+{SMXJT5q-%cKE#UiL6JC87ij=^NA6@af0azhTXd$0OD| zq$Q~_usxbS5X)xb7D?i1)=J}HPHQOvoaYCLs4p3s|B))A>8btPrnTNuxoX2M5Qm%I z`yq(I=a>|x?LAC~?B13zC&*Mb$#xvlKi^}w8SWj<2X9YM6#4L?Uh1{u+quax6O0^6 z7UBOqrv*)a1_D;^kTQ4B-D2cMbmIPmxxC0mRC=Zo6u%GB`r(qtb-VUWGcQhOHM~`8 zFU8zl+#U3){EUKswcgl=ali-KPI?(i@pj@lSyWc|pglktOFciBJlIwsCOQt(fbjFj z{>p%NDAYS9u3GRL6?3aHfyZwn1I@!BkC2BM8sl-f1-b>ODdh!#!GG#OeuFg z3wNpQcp*DHQBqwBE!rRiZ4I5WGlQlwCx*Sm@-XPY$@PibR=!>{KZ3IFo(1Z0xk=9yDu%X$$Hu$?{@dz*3IcDx1onm#CMR5#|`OU&UXA8~-L~|H_W_ zg=M>xE3dMqCKvCjK(lIeSFd^@-u5Arav5-L8;hc2Ho0As zoK8re1Ow#H=+yPk9Z?>n`PHXklpo3OvCtdObk%{6D_8e!)!X0FIr}t~Z}6st+zT+k zEcX)o*2l${zOs7biEX8Ok_%6QE~=Ju&M>aJ}QE8&7*T(y(5 z%!Dwrl+ksyT$ikcdrqQ5hG#N|7^zQUXBydt{-5KKzxedtL%dNVAZ@dhUD#Ekda8hc z4>Kwwu9vY=^D*^oobu{}UWui*gVrOv>e?N$b@6LS6TtiA_c*0%Z!AC;7UAEKf)p$BSrM^l{k1z1oa^_CtP|c1|XKHEJg*Vv(w&9u6 zl~>Q#-tob7Et6{$lXNJQ^l**Pk?k!#2T(r!Pt`>JKxw^yc0a?9eXDJ2|>>BwZN?`+%rdwTcBPNW(nIrlWw~ex`A2H9R`02 zzBQFTcob!ZDT?e_mNS^ zN;Fb_A$zI2cNo=uuMo=Z>CCiQ?|ghkf|Z5+;J2D=3pJs1HoTo9v&bChWKVH= zXjs<6`Jtg2Y9M2ZqFq;=PH&l|=-&}x`J5LssjH4+4HY4Umi!*M71OU+jg>Gw1#p+j|$nYtb(hV_ShZFGQY4f5t1>pE!X)Do7(rN0iwg#Fr& zo4!S{0Q&<1+G2T75Zb7`vYyJgb1_${aTX>_UfoAsG+WJjxVvjbwp@x~8 zRTV@YPqntu0qlDZsgi)IYZFYETdroBL;Q2gZ9#D$zZY?`+b(D%_yDAz^|mw2!nli) z`~sy%Rh?R(@hdAxNx7&Tl zNR%~o^2yc~lD0rT0a~GyH81Fnmjc zlzO}z#D<6~4pawR4Lq!tou=x0+ZXnX+^fGj9XF9$KnfwrH>*myWFa7z7P}9iqMXf+ zY)+L5s2i$tiXh*KdX^I@cx34vIpXPuhcnrT_ch^NO4?$<;(>?ZR(ZTM8HV&JK;V@dD$p)-N|@Y*4YoBXM(BSj~LtoaGVCMT#vA_&?gH? zI|Y=cU+L+v%iKSus+KbchUuz99Zxf}6%RLSCl#9X?2VQlmsC6@IN#`LI|PP?jTmAB zLy_zq16rqC2QvAnVe>cR5Xh0xx;4s4Y2-RwLFFww;z#F<+2MmuXY8JYLG~{*4c6kq zpi@#c^XW7kt%UOK5Ivw|t%UG#P&^hsJrX`QY3sn1InY?o8ey$U*$-1(*ktG4W12=< zbj0cD>}|-p8Oo$D0?e4cti+(rW}b8d=SiDip*0|5zV#u5*#u2Ors z9GA)~fopXVLl#8c_x*(<1ic_t#dXB46R%c4`_+Em293U-i5M6T$QbX!$qs-D(72_r>9Esp0%@u04AY>FrbEFC@rCb;+Xg#S5XJ*$Ox1e>SBPQiY7$m&bo4yVJK!uV{pV7x;p%V!(EDd=g&Qh z)^WthADVea&{`P_2n*)wE$gWtV-;97r}#svv__;oMQFMhkOqSb?YBp!_?TEpH~MZ_oFKJ z*1X87{R!?(y{&^Qx@`p7;Pm1+B+7M@&;*AA__sz`dlP>s-k*B-0jS{m$^4D{!1-=3 z@1eU!L^Cr3{x&f1Ih#Wt2#pZ@h>($&zrR-nzqr++_#nFp2PhHgkj1&Ny4!&xARY}H zv}{?vcQz2W5WI6F1N30JXt1XzxQKM3Mdp5BD0^l*qva}+6=2p$eB5ugF98JgrD5jA`I(w} z&cVEh$nU+?^eVQ&H)4YI6V z6y=(kpB1pV6q$k5<;7TwdI1r`3*}xiA*Qt6$@V_}!0kOW?cj)88-c{Dd-DhG1IDp! z*iAa@MrM9fxN7&#JMl_jd&*{qy086lj^=`xJdY7bxylrjz8t%tQh#K1w(;N;C;f(; z6NWDIVD@-`oOmz4;;tV8)~PPnu?vHvO`(Ab=c*5s^niG~(+unDI=YGFE7fVN@6Wtf z5Bs^$w5QEO0E3o#$(hWa@}%xC`kpj$wOsbsGZGH#FQTXLtvsU!89j1;G+2a&C@8d6 zrsMoFuXcM*sdY23%B&2!CwZur7>MyQwrA?6+mm zeg)d)4h`}(y=l`-WW65Qb{Ij0Dtwg-{g$3owZJiBChi?)f)-}3QWeZ31%Z-|8v)ux z>#}Qowh1%_FmtqUb4Tt?Xm)yLh(X`f^xZ;D;NnK0w92e1?h925`92m}N2sfTP3!EM zkqeqPP*2oD1iA-sv3q#djsL$}x7vir12IN2@)3dW=dG`v12I8I(i6lXRa&u#j4+Wy zdy(9tlQAaPRzX0)hH9OkDJ2%Wj-?*dJ^jq(US?oloOt3UX~(3)Q&WLpAbT5KG_+#v ziJ>vpba)QYhn3OAPgD(7bfy3^CtGT{w)?bqs7~-l)tqtr2EKGFbA8-GM#V8`hTG`L zxO%=Mk8FPgplAk|;`+J_8;SD8`Cogp@(=f6Jr9i8UFXm%J$H%TpB=0_e5bp^Lx93% zBA=0kwb zRRwQjR{t@>c#3ApITiRG*|l|eeN~kyN;BwBlM$v4`~R4Cj4e8)*>VR_zBuGI)X%ty zC|C@0!$hA*zqU|FoZ9Jl2Sd02dcq;#I3j?R2~wG`(w=(*w+G!R74? z9VVr7wi=u&woa!T9UP|URqf(9M-obO=J7kYC2x<)+>E1(lOaL4I(D$eGUHY*c9yX7 zZCV$(neOHzR$4drV5pv5SZGb~`+965e+r3@@6PndU8mvyey_6Ded}apX z044^MI@D;1(xqwJ@~=>fm$2-?E7Q;DYqcoY$7eR-?@#KWkM(zzI6x&Dr`~FGclpo+ zwL$-vBI6Q^1Y~c6buMek(pHATY2kk}zP;$%Xpc;7u4c;%fn12x@7}A60)Dl|{MHL8 zw$h!T{}jI+7R-dBZBCrL{O4>YdkL_Y@)?0Mp(td|Wf}4XZm{ zwf~Vg^F={)1N8U5yZ0-%B%f}Grrs1Lrso%0%iPd4z?@QG=cpuWZ6pNZPU!Vp}da-n-srpyyi1%mx)a$zrsy^#!uBHAG@@nRa zP!OW*8G7_xV}iMkhWy79ZWsaQM}pckr;r=lWU#E(EM77?EO*Sd4e|d6ZLBs$~;&B`%!4GZU?S$4rl_Z}E%J9%)c;JwZUguT6$; zQ8U+xpZOTHXW?rlke>+x=Y}Z>vZsRbXh5>BhjQC>QR0!KdHD!yK2_T-aTlp23-E$i zYmYJ)sVNX=wK6CJi6Ek#4BO2OUhB5*tDDT~Xlb75rTgY`p9!L(SZ6UaqZQqYcb{eO zrJD)9ZsbGZ^urm;zh4RJAq^QIqQtD zrP#r`zG%r~$Lz7LZjWZ&_!&Ymm#`l=fz{;%!-#@4-B3EX!|LMe~H!_U2_IZ6>(h*XLFhY4P`u4wate6t{cv=EID)bT9S;6K^c3cc;;= zSe=9DqUKS`>FJTT_+9qA_%Yzh8QZe$a7Nv%Ul9pe*T8NJ(_XLp5$PB_5h2OZ`xv(G zW*lBUBKXtZtdA}pciP=@DY3O-Jep-<9iX#rpH6rCH`cK#q5UTE1Qg4Hnuy_AT6WSo z`I*@yKNEAp^os!LoGB$M`x1A;o1%XpBa7=Itt>gt9;=BY4Vh|udEUDUu|8QYX1`XA zmAykVsMFzb+fdzU3&VlPtYFPCTdUdu=)S=wjISxDZ|B<+73MuYh<&U(@eae$jE0EE zq~)s)o}p)kJ2shtj*LFz`t>`cwU*araYKAXK0Ve7qgdDPO;Yo{Xr%&Oj{KO26$ClF zDxa_FLH>Ar)3L-iCUQYW-w8;s5$TLseZb!+jj}KGq*t*em;I$H$uQ#;apAfyTIb$+ z!@9le+q!g_;n&{foL_y>4{`_jln$b_KO@2YBi*q&EEhpqVj;k!S&<>5GXu3tkNQ|P zJ&WXd7DS`fRfQfQ#wl4`^Rs=1ylxSV6dU!Uq3SV>Ko=}7UF9dxe7RXOL4;WsFa>c& zs-lA2_9-ec22qLN+vD;)3SDau4hk@Woj@nC0e#S$7|Lk1q_l4?y2`a9VnMZ(c2>G2 z#^M+$IIzltAHl1uf#C?}iAWUO- zNfJhUsJ5CM#z__PJhhpy;bTanppF93nINtU(X9Y$Dl9d-Vq zS&(i>Foc_u-|h$=ywi?Qr|!{Z=B75(Nl&O^EswC=uXm?T zJm7P0H-Dhwm_2e6S)(aeCA;GLW*`YV?9de~d$sVyn9b@XM* zz)>%fC{lLpt$OFwG}97aW%?{j5>n5Xpf@^k2}VWw-}3w%g9OJ*YA=dQgMc{Bt!#YpQ;<}WT;x2`d)6j+4_FU)w7l}cK&uWZbdjB$q&npXY} zs8wf1cB#%P$RcVYGh?8m9AK_1v-0n+hk8I9A>Cc3EW+|f`)SV~S9`DgNZZC^Bgilv)A4*cCK&8eh9!eG?BNKjB!6OM6 z&Vd=cJBEf^%=UfzgLg|`S2t6nHv56gOEpbL2zy@|Zt>AX^nz{Zt^r7(K7}S;O?AA7 z5Zcg@O1(^*bg5mz3%^Nrs~ZmW4*`L4WEqldp5bS!+UGFU4#7V$d~^za}$lz zIhy{On)vzxIOw1>S}7Qn=Bw|hDd>H2;6rc<)HysKt7UjNl;6!D@YcO;7shK@VIYIk zq;cYgUFs}{r1vPy(DUD3SX1tk*akJHdh9e|1 zuGy~u)cXZ+`K*2!D?0z$o zXC>O$1W>S**n`lNB{L)a8D>EP?9|rfUG<%~Aj?{_H#v$t+u=r4Mgr5JRziVM)RTY) zX(J`UxzUzVNc&5rU@lZLBxG%b>cl=fpG3)~m8hb^Hlo}~VqjmGBykzc#lFS{CkyUL z*?w54p?a}~sG^_vjC*Wc7yHrtx(qrQr*hG^8k+6k?MLI)*I8SeBp_d~qXI;wkQL3I z(O74)IgInnhkNx?%i{lJGX~X>HI(x-UKV((apKbx_-ow57MBw59#m^PECq`4tcX=U zh^1E_jY*}o3oh(Aj}}ep{c~iFD&T}mKNDC#H9WJ$;Q zA9$1jS)b}03ypqDrsPaqA1m~b$$FV^O&pb;*kX)$Y2}2(3Z10dBlg66KKIT}(xo>P5`%j+4DP*i>nRX^5PD_@Z*fa^ zd!WNE@`&+(jC__xJ;N2)8UhBmpHcw=vx<<$Lwu`Ie?oMrCB1tu+;X{{9|?wl0xxnU z^y@ujXipb=I4i;qv*Ydky90e2%#(vu7kFwmuKv5$`{1*C7%;P)Q*kgvbWs(%ch#6> zd{=udUMEp{o!Qb7jMO-~I_C#$;bC0q(mo+#D;t(o-7uc2+NPGZYKGqTI`dn=X# zC5aU-H-@p)OU}6Nu86f6aAvbKBEgvR#Oi2Om)>N3SQ3Vz)-ps9BaV@Vs?;ua_HnOs zJ)5lW7eJRUly&V)$)hc;2C*hRTXNMIN~JOSDUzzXoXdB7jE%uG&i|4a^g{hmbP{bx zYcbnHWc}!t^%PO@hj3bCeoe*VeiVC&Yy!6a;53f;%S$ygtJTvZl_re9E)cu2}z(M&L=kuN>;&}xAWT|sKt=QLi%8ZtZ3$ zy+$?bMq6LBAf=IM%a`xgmO}L^4^TJDGeEP8J;j8F1k9is!6P>o9gJE-mMTeBbIs(_ zHwNk$IJES^Hjps;=;J?^XB&V*$M6^NNE1yn2RWWjpIH5sIyWq!nlE^%X@7z~-I?(8 z5s`;>$&tHKP2|vau8A#os)rw#OXq*^qgSXGgb)+2J`Ov>&lKeDVAUivQ2v;evI776 zsl`IX`}Y1)i+~h3c(%Xda*>7ZYJh^~Wra#mOHhERv)Z>c@bR_H63)`L?Qg@L_4Fok zc-%Mn?l$&_V>*3k7T;3~QVu%K1&{Y9BD%bBR{_ke))aObwrFPtG<>*m3Ty4>}ysgrSF91?P&tnCUOj zU4I1|(G%rp-U6jeC1Rh||0Hm#Ff*Z$H8=krHtg~Kv_k=$gr){P?H`*Q`6Ui(^zxbEZnDWK48$;M6RUfgWiE# z?CUwIV^iwW-2U{5=R35s>&%C0U4NcZg~_8Tb5N&4-+8{-)H<636B=z~R(g>R8k#F~ zQ4G*MGpTQ8j+_a7Ce`X|cDX2zC6$`YaLzB?Z!Vd0sAqXVxVL{z`@mwV^&cBJ`_6qh7~@D3gP;@}$}*AMvD?2DEjt!MB1 zHU1gygg1i_{>7Q!2JDM+57B7kv2M?lP9uc>;`x?fgvP>9W#)Of_p3&Mv3ru?0z&<_h|K#N0s4O^!KR(abL(9shanU#k zH>J3g(L`Ag%p{JFtY4+;K_)YY4}5G~IeP3E|4!JMeMi*4-+p9a+xLfGy;VQ*I-Yz) z{f5?Wn_}Y+-f-3tE7nhyo^atVWh9J1qp(q%>DWZYcDl>@7LPXfw3YV&q@eQ8Nj#guCz`oGP9Hr z@`MT#-v{?35$LQBEob)$xRtHyu8ny`L_ImArfAx^wMdwFBMdR0QUCJ1zU(FWIM|C0 z?#h+X7sg#|lqx6Brc>6IA7z!>ZJpx=HRa`A zUvrVWkql9}o`dvjB>vQ8>x5zyOmb)97`Smc)aLOOW+Pzu8usnZkoe?C?r30EEN}#g^Pii?rKuI=ORq} z&C(>fa8MY0ST=xrKP7P%xbD%AZmwF~LWHT?-X(alB4Ozq!lif2PK(+~;GSQ8e_4Ta zPK1E`a88k#GJYtll#3CX&%#Lw%GEO!- z>ORu%#Ea>NX&}3Q$^DGn`zQ)Uj2jqKByJ+Rv3MW1e_FgzRawIND{hNy)%~txu%)$W zRsx&+{6=qwG$GJDCr?W@+{tau4y@zxmAIBCr8tE7Mdk3U$%KY@t}9~iXat%2+@m}g zjjd(W?j6OsaPfjc5F7uyvvbZl?LWy3-0u<;(nZYopqJR?Mk4O-S%Wv8K9D9XE!VwY zce&-SS~s8mJ0tKd<6d5h!mjW&b-|$QEa-|yXiJ`L`zlqBLg*1lzHp<76DCZ#d5()x zHh?Sr$TdUK1)#J?5y)D+VhN)@m6NGD_B@eWJ|DH z<9ZmYUA^l)NsdBjAT&y^zcyTOb+FXk!7qL1XZ?NZx4}v)Y^?NJlo+(VQ;$1#j4F>( z#=T`Daw54wt+9}2Q^Jty)dEs(=!?Ms#{%~BC*$@OQC0@$5PLz#=@RI&TF;yi3J~654AKTIZF_Z zpZ=86eSCwVUZ=OAOn89X^{m;@(ZDAP1d;+t&PDTp@W{D_WCTZ*`$kV?Jv5Ra5`T7G zEWHWp8%>bgCVfnpGtWYES4k}mc1q!qV{MrFb5ogRv$dnccWsdi8DI_)M|r4XvUNRT zyF%hNMJLR&pq1M9EP=lJvo5WSlA;wa#cc}G_o04g2Y%5gV!pbhz+KqEB_~4~Dp0jt zDIeugoCu@5m7O0x;!59anm^B0T-VVpsahtGCKqn8DSMh_*I7StaB`fqC?w*1E=Q+k z?xge#%l}m)lw-`f9?Oz_zLKWpP8p2Qy{I&z8i1&e))pq73bmBjbXxg*{uL|mVNk3| z?SjM>5u(hCE+oe(sP7n+D*Z-8U!gDtS%`c6cF%XeHEqos)1lYuaMjN%neNkp^{&y; z#~TcZw~QjbGcCoB*~z_#{64;S@K$B2lE!7pW$mV|fpVyr#fMs3;vI@id-K7E3f>B6 znO=hzZx<$h_nYNv`%QEk`B=y zHWl3Cg%Gj0?-nLPsCgIdDM{Yu@kzL8F7LtLo^vbGFaRGSz&kY`hkMs=TzzFy75d5? zT3O2I`uXO3sg-$`iQ9LkRX{(we>fP%l3~Op_eiACoY0t^+&v6=D*$l-^q;k-E&(^B{H06z^-AK?apu> zkLaZxmyCt&!^xrk_2_|uRi!-mFcbG_$l_g)R;sL|{b2-a`nE^>^aTGBBD!~LTDFYf zLs%n`*tA76i43wWPU>xrmP|Le+@ULlhtFp`1RwC=PQ2g9%b@HX>vp6cu_1k#!4t*vtBFEHPF4BfkY)(fRFoChx#ydT;VyrtQnnSwd(%cE zQwbehc~Gp{^73|am$|6U;q)VYL*LfnJgmm)5Z(DocHQiKqI|i^ZwmR{fMJ zG2;E^LGej7@Vnnux2phIY=^R9U1I|KX~K$M(SwQ_t^6Z0pC0jMhcap=#6eUafzjb9 zQ4Y(s%x>j+EBz(58~<_XkN;GTyb>_FMos>qE>HG%AEaspg?h{g!=`7%YtdOsL6?qr z7FR<*tX~)WimDjEr)#L$LOcKZn{uBuJTEGg%=t!4K8^;Za1 zkuu2kwrqc?CUf&YJkL2`o_K$)8;XX<9C9Dq4a@)Lc31#kbI8DTiZ;da!~9AAplg5L z`uNvx4XiQm&bjUC@M5{<{vl0&pe{7U_~d1QENRAn*=lO=c6=oZ-;f#ui%hrzJm-oe?xs$WFGCMx-d%?_SmaPS|T3-8^2ZG9I5 z3p>5BXjQ5*ag(&=H!rbi>=RUC*w7(cjklH3Sl2EV>v$Gdd}}wvZWxJQTXmb%o>UHaAuYY> z|6uKbNt|}9W2nZafhnExU-AB*7ASMf?%uV@T^?NQa-x)~}fFZGsJN^G@-%hEbX7n6yOo_Sz8&;2OE93CP=KlNh zgL{B&IbG?vTm0!aoehSUILtxi`0aMz+_(Lg*C|{U(%{smKN9ryX>OL4E}|P+Q6ClY_UD-FGO}H^VkJ`X8%=; z8TqC`ZknZpWBm%>lf83-7rEmQ&dEPt=hDMn-1U7+>N|eiFk#y#4+#-dg?Y$L7o74X z8)<#_=q?YwjY^5rE9cm@r_#lnuuU<@R0qyQuT?%Qm&4$Wq##+<$iMvFz(;v*_`~(` zxcROlW9Z=L&tqUApLW1}B)0yL=*(Z3a}rE?Z86yn<{jRLJpF$Ez0bD+gAr~YQICc7 zCL@1y;EY~z5>-STVhws>mL{RxCFoxgsWKizo4hnAi`sgrB4Y!d{asJct{?5>5~6UB zitkP2d7+A__y*TfB+q?!?{XOgqEs+itCgI(OhqDNxg%H94Q6(V^P2z*0KPn~+8GCHz{jx7ws+&-ci3u{#5 zKCf`vqsWo2ooukP+{NnfLnKjqZJ`|tG$_~MFY!OgTS+^0X3jtMp{b3^T@eW7tkfgm ze1U?vmi7Pf*#sn-ugF!Ny>=Z;U`*QlGtVUoT=6>RD{*w7^xdw3vx^WjOgty3{DgHMYCUhLt& z7iXuZjXr!xa^Rw&B+0D500kCzU=O%a=b=3CHJkPCG<2m(7s_6M`EzJVlbq z`nLV+O8eJMAEoL)P)JBdYMiLct7UM;0LcFa!KQ)wL%&?xB8IL%Rf??K9;dYS_0gNw^8SDgqH!2Kg0F7~E57nioano2{gs zc9K#LjDOBs3tO-!4uCzeuLH#Xw{M#Q2=?Aq<&H=b)^*TsW#!h`xco`pee=)HE!>$c zN6j1Bq-*#2ZbTxYNljZmgOe`>aZ?1c4cxWR6E@16%}a497q8b!BXK(kURpTzkM5?!0FdJJx^U=Ef6)4l2gWZBWi(qy+f!1&1iKPb3;1 zi4MG9fXa)7?X9@Eu``-3VUK?fT>f?$Q2lQyp=cq_TEZZ+xDYrxj9%0EGw*GB6xZYT zuNUuMZ-1m4SS*K1ZiD@KH5rte5s3RwrHeGF?cAA`D~H-{qkvE9ITM(}`-cs&3H*z%vIi-lwTY77iRSvH8UB2zg z&(UMM-TpJy{M!Y<5^>is+;ni5i9r@nt-q_c(5^lJxcPx&0^lkaLZdd8DiR$MiH?Xw z{~if$n09;2PG?Dsxct%dT$zL8({JjJCmarx-b;iR4g4l!B0_BFIw4FPZ2N}7cDLqX zqheu@wKoac9y}d4#muUM_@}kI37ali-zJT&~et&Y-NzaB)@=o4~EpPr>8ukZ^B|y1T4=$0c46PUk4= zNF3Gi^p+|2;{J&+{wB*tVIl$y*Hzev^6%tmo!+pLU)h=6q6#Qr{|M(cZnY;*4i&|d zuedzw9?;RxFBd)RzMJ^eTg=;qmEVJ12Y{=#R#J|&_^^@$2zafs1xX2J>e848Yb)j1_Z)c%XK z`-ZqJB{GaGZ)2s~5Y;z3J4YfqJN&o8;3o>byBalAuIsTD5mj;;Nx*F2{^{MeAgtYh zG*~5N6wjvg_5Jcz2eB_|RKu9Zq}zh@J```p_)!R|V$EwZsKC!){2NOkZYNRhiwhjU zKPh`;LC|+3OpaVqo4&tY(<3@Nz%A&Nsksv~X97;E9!^Q=3>x%XdW{)cu5=PM`KtTz z{Bmu*<5@E)=rqY|W61-9X2D(ZH$;+NE^A$H1ZPkU?X&AgAI13VCzsSMW>0@mFYOBI z_n6Eil`|+Qajw7@`2O8Bc5e_Azg1aE?0+DK>d3VQlI%bfmkR`P%rR%G! zoq{YqK}srbrCPj-@e`%f?}RX~swk}X->KCR5J%w*qryWr|E8S3zEp`ZDlZ|u|UnOe)$WY_qJEVenTq!Z=5iuWczKSAmk@a43TTVDM7fGD z86m@xu0G}%IG5GZZ6lW`d96En72XIApwy1_o2fGxy<6V;a25#7K z0oU+3`~hf_2PZBiKGb@Uzrit8+!@=A4Us{KMD1o>WQIxM)zAkXD0r3-0)kp?Q%`A3 zFFm*-9eXk77mdqn_HqxRZVWsnd9~tGmHME&X)|Klkdc!-=I9H+_JvkzTpjDD1jVT> zH%_NW2af*c+7~e(FYepP+mIn$ls&90o8lI8yD(T4qAkLI#N+z(AHmM}T#V)v;5?>P zjgy*V|7qX97yZPnhz+X_1)pE0`|E2I#0S2Qs-{}K8XG6#C^LVQm-lqCUS=}u<{Na% zvY1d!>PkL+;i26<*KRvcX=%c1DIPQb4bl7#*0m8+Cw1MXYAvyD&DgHMXZ@u&zt`;r zB35O{!!2lRO^}JB2BwT8DMRLOzampx zDgB7X@3d0B(k>h401s=4x~m@+3L^f_bbb9o?qmJCisA6-#XIO%LBqjIuc>|=JTo8u zyf%D0E2)cf###dKi2n|}zr4)gSqTAX7ij4B)@;Zm4b&79|uEokx;5!dF0H^V9 z0T;x-ML58xk;2P9DT{JokQfVvwaae&%|N5-)XJ8U|h;eStI5;?Dlmg zqR=_KC7;+9maGgdt~m$GMRV{;dUT-48G5j=bH7C0jWFp+3r zq>VYFQ?QO7_qxU04&J8moWy>OF2EB5WFj`$1%Z3h=N!Wb)KPJuA9Z;w&WRnmcq<7V z#cVCGNgmLbWCJO-yJ_ZozMFEl6`cp>uNPa(Bt0Lo*SOA9hgU zq(b|54(Kco>p&avrK_bsBhV-9i?3Vw$fKgp*~vw3pKnq{$aASy`i4BL_gmgW9@fGh z?6>&%5<80r-uWb%dA{>^BJ_c@$C#a^up+y*JRt#kd4m%F(hdO-KbSja=cKS!4ndj( zb=FYbQk)S6K_krz<<;J-D!PA;({dI=ckoy_clhb82xkH31s+}x8Z#=G;3r5$X*Xf7 z&6T_=t($qH*)rpUTp~quMLQwc+gFdaL6P^)ZWWk(dLM~iWzMcIs7~wXpZfg3N^0=p z)Z9ywL0QPL{#lZJQDA|HR~f9UelO2$(!*laLG$9x0xkr3n)mVI)FT?fU&VM{uJGxb z()ERoa$6@KN^@qTvpn4On8OPL`mEv)QbNYYImNl|bkOe5djY#5oz%%+s#c>DNi6t$n`u z0+!1bzz~6mQ|W&guyi{K@%#fK(n9!V!SHv@)5YZ)m;BZrX;KrSk4`t{mLb=P1==3& ztBhVv{9K3kWNYuhP&M>{g|Z{Q3o!tghYV=JESN>JBd~){YQ+>U$WK7wKvVw#9CIW^ z68`ed>SDzqGVR&8`75c_R@-^z;dmo?6nlz0BE!lckoR%}<)Wh!?WX|;bTW>;bZ%(_g zv0FKDM{virLdEsk=~XK79&f8gP?O8A^ro+)drrvYX^FPFifg*O)?;v35c07rHY>q? zOX-2D{zL0cRT0wmg*;#L{2Tx(JYzLYJO&2{Pt)DQ>8c~MGWt#o41gQ^zX!T`N3mMV z6G`0utSch(wIqU?4r|(fKA~9RNDhtH70_IF>b^HIE2v|`c%a4lo+63aVIB$kYvgs9 zh${J72qlnI?2OK;o?D+*9>SNfR(|J`N`(5QdTjyW;%IcAM`leK%L(oal481|*LuvP z9cK9kCP`poU9cN(g1ZYRcH#9&G)+nqMB8?ZwFz>FywY^z+p0sBC9`0B9hvPR7VD}x zvXVph+Tg3rW?z>RI!Z&<(b47uy$M`}5YtQycOI(aap?BgZlGxoEyX+QVo!uqihHU^h7{a-)1U~b{+VY~hd~zLr z`2;VAX(R7eNVVeMtp2`0>vSF}As_`lb>Bqzu2Ye%BGok(ui4Ao~HrPmiy}YZWr0#H|$W3&Hs*s6ox+%tOkc z-5({1&EpLv^t|wiwy9d8`L{)SY8n_;dsWUQ$C)lTtM9f3oQmeq)y|Mrni!7?@n-5R z@44R5e*nbk`YN|Kk47)%NQg=)Zgu0CgI}#8jbMd|q!aQcdT6js8aATCsvlS-N8#Sg zo0^xNsMMCTv;#rn926yq0@mdVM$OYq1+{sUw#FhLb-7wCnzAx?vx3&rR!R0}k~3X% zo-Y9tn=aOc(xFGL!(@ZWJ_+^lHcr*P@M5QjTUS?zel60_;(0G6$149S;HU=NQlM(G zlL^fdi%WcQpo{HX!bm3a6x9M019`I~gW9DPw_cnakA3J=qg%k+K&Itq-z&sAM~APb ztRhnH=Vf!tS=lp+ccLPRX~0HcLCM5EKr$j;MAT|kxxbr>Bcq=#H`Be|ngPj`>QG){ zSC;fv5UUT=pf;oE}qJNaSZvCKEO9QIr zwR@5zC-&5JG(wD+H{x{>+l0M4yJr+_0E}0}%I;30G*Xu}Yp9>jXf(WfD`9He798X4 zQ9y{u*vt7V2V%XJs-YhhW0-y|Eq%RP=%ogre0l_JZkAafpd2Z6swH@LwmhAbwm^)sec0;5yy_J0vzBqA zHK6gLWEnDaZK_krKWu?H%1O-sTcEQ#lPd9(Na%fI-dK)QqkJqQn!&l1=PF)&@9^1+6=?q(F{ zU}GpRkE-4dl>IUp{3S|Ew~-KF)TBCzl(}*@l~d7N1L}Z1j}Z-O#}We*eg?S`U}BY7 zqe2!F34D|1dR6M^+3a;{S73HanFl&TV+da0T-PP2fNCObJJ*E$B|Or7ZiVOD%}2K) zW^WSb6RvOT@*y;$26)=vsqUF%Cn3NcagOMyBoj}bP-8e!I6<87KmL3(k-Bqv*k9qr zdw_5EkK4%3v2UEw9(|y^3MmE|)KrvfDI(engf=oH)Pk&jqX@{;BMAeiT3i1PW zZY6hnz53jsYu$|lvJAYeYNAL&bU1wh`oRg#+3+%Rr%KPhtzGPHn}=1gXw|{e&^q4; z{olRyd9QcEs5o^@^xC`MqbH>K9d-lSZ+RxgjnVJVxTN7*|A*tYAHMr;cS@dI&~}A8 zn?aIhgDLaow-F-d`_CxGAN*XS@@2@&v!V?of1+ftJ0^@RUf1;S_%Z76!aSz@r>%CN zA7-|{lica3goJHTn3WpqR)ZpdOSgf_J~+QhXPKLhhlMV77LsD5jEX`McIZz$rTa^- zzcT}9Y`ddGhU!8D4j^eq6S6BQ{PO}tG+}2>{wrUYH417rd9FYaBr~hsTS}#Om5PZG zV@ZzfoaaI+Z5Rj$2TecLQ#||q#J9TUz5E(E1iZe@%9I82fmp)1rY8~1AxPNDs45j2 ztQ0;COASA-kC!{ma|s@!qC>u{e z+UiS|XsO&E>(ujuak|`hCpiGY+biix<<~?N`u^z?-pU6lTkjDNCKmmPP>N+xX4G^s zz?i{K{7(}E%Hn>)<7WdS%dB1c5 z_5f)m`C*$%FB-$Ff#ckO_kIBHz>g_k!U_@ld~0=vXtQ@#m&_z+0E{*p{Vn%k=P-Bj zwTu{#c)l__VdvvKeg2e-U9jHOh^mic9M20m6P3(+V%q|NnaYZR zG4!c09!oY(Fo^nGXE*OluD4yA^(WlBRfifF*G_b>OsC-!$Y?qZyCT-K3% zEgK%sae2(H;D??V_EpyGy#(1(?kqS4VDu}agK>lc^jh!<}u9Ra;-8<%zK zt$v_6`LQNF+@muC+&K4==jIBsf=!q>QKA^ZcMLIf_9w-IBY!4^_jQBZP0a0A2S5d` z*#>)m+Ar0WE+Acg9r_srM29Gr!|qF)vMXlPpwK-%(OD}AmOHNE6-Zz zv3r|V84k=G@03k_=R+Z8{eE@R9|jWbWdABg_?iMOh}0pLGq|rf(|C`%E?ecltW|~% zy!ecoQ44-vU%1j-o3`IS*1_O}rK0Ii;sJ;&5P(O{TI(Q|_{sqdG^GQXwy+BuZ(m>@ z>D$%Gh$~}uuXuD++?C1k;C{g6d@!<|6nfQ46vZF` zgXF=I3~RZ;AWVh*XIAnP$#r4zmV8iD3oI`0lYZ5J(96iU@1Ub?y}wn}$A>yBVsm3*vu5E^GG9{n7mjBxtCg%g5LS9udcSlXTL> zkH-fH^^xz__W{c>X;6N(9WaPJ`e-Ha!y`6>M51cNMy2zA(9X|4$fL{v1b1x#x$|km zYC*TsV1p=(>j|C-awnFCL#q~ID>rp9L|?n3?sN(AZ>}H<4j!5fXN|nX?)z^FJLyWw zfpXk}I>x#6x%?z+3GwWW_^i2Ju&3!n%M-cq5&S}VYH+cBU(s2OoczpWA zvC;jijYOOO!`*vFHI;qu!#d^TC@MCt7`Kie zv#ISkt8*s!G^q9$n7LJ4iOx`t?ulb~o9w>jz;}0)8W~IhYQ)T~bfJH%S2x146Kr1F zZ(3@8$#)adN^`h4WEoY@Bc72`JtP;Z7%C`txS154s~MzGDb(OH{|MC=5i`DWDz%Hi zA#v`n-@7>Y#T9VNU{kd2*XyCHl5dek??k*sP2HKIMBI8K-Q^<3p}<3n*yadDN2kFU zMz>#sL~vR262J(Kw>5S5Y7g8B8WbxI+uHIWiL`9-;v_(|OzF(2JQq}fk%D}|dO&6r z+Bf;7pA=QKujvCPmazd3Xk?FxDs5z(ndhKud8={kW&4Nb2cd?sX=*L|Q>jvyO)89> zP(hke7iSva)~sEdeheDw6WvNkX#ik0*1~_N zK;bqsGu8#FtvUYFs*Np;XK%dA1cXi4R)6a$Eg}TK>78z}cqwuDHYET2QYC@nol9S) zqFbDsWDoErIoD;xNk#Tk2*&%dkU|6hceOMf`P#R!qCTIj%P*R2ZmEB#jQmr;T};_4=%S7RBy2`p+TW8l1X#6S zwl<)`TV0>}9ji2<>-_t@+l4+QLqG*^ySg#3nl=hZS{%tM=&z6^gXC$9+;!i})MBM1 z7g<E581`2P;^KiSadhTGrJuZ%jPoG{e>R!sfr5vf}jsDfI-9Wj;MxF)R@~USx3T zZ=(C4HCiK<<|W{JyLwGJO<;yUl%^I!|0YngJC7D4i+ZV2NN=IN5%u2Cz~Svp z7s0W;v-*o0GTQf=E538xXuH6ob_JCZb&}JpU`s#Y_4XC@xYzhLoN5mc#paqyiV*Zx zuLH}-oNA;-x{{`tcfRBo_EJ@qR+p9>utBbf;S}L8}2ruHM z_S;Dcqpxqsg*j$TQQ`W{E*5d`TmW-q3J9)A7G%#U#cPRbC}{9M`1M~jjMy&z@O-z| zK$&OXA3>LD%NJ^~l4*^PwcpC$^!;L8ITR@$w7`YyoO<^o#9kVV;s&@8rA9REos^xg z?-w9<;1Tzs0ye3Ud>imMw+)sKC7vlr*mi_gNxqe6zJtno((|OYvp~^E(*5Or<3TM8 z>R`9DyT!6n=m(5@V+69j!f=WK*L}WbtwASjX*gS!$k5K~Ti@wbyvz#X3)LZHNA5%EPH9tIEO2VpA z{7&0>tu9hxjU+ncUVn1PW2-+m-iRjWi|FuUWw8bA{3=5li^n&gA!-W|?K5@Z~=(>HJ8%_<* za6|vT+wIM9RF7WWJln_QB+D|-!d8=gGI74wP9lM!cdM~XR=3N54lA?7OS83!)Iklk zAeb$Z)!wyD6Kw&XkA;3;J8AxL2%a5Swk5eYkqll(GH?&11*!OvQ|#LLpj%z^~= z@Z!WGX{@HMm`4A*u8x@OuD|SDE3MnV1DcsHCBD}K`Cdb9g%msUv!*<652wnYyt6e7 zQ?J!P@0e&v7A|}Hq8K+@_*wozDc9+QwQm|_0w*DJpyX_%tM|u;JZ?XN1Tdq-t~Ao~ zpgl!;o@fLYM37kT}Wo<=o#^(&j^_-sUlnrm$CMY*I*%#qd(eaelGj5K{}M zfXZ%}BVMZD-AB;}&mKJhg5!Z4;uWtmol9VkHEz(ZGn~3L(2zHDuoP!Iba#056H9)0a+v3D zp+GBfZn4$~((Kk^vF8U7+FrS2AQvE}C%>*~doNe&e6cP0A=5{#_OES(EpZAP{e4d( zMFFJ-Pkv@OL)wz6mJ76tyD)gX@<=VQ12|=LS-WS_My|Q1%rTeMXNenNhwf;}$Qf<9$P!v*i9BSKa zhoVp)1@tFbI`5R#M1Q`&nHv48%ICoV9~O5ZfS$ytenG8r8*#puDWoT&N9&9CI`%yA zwxx8*4`B8b{tN$fGE&0EIps{3#zHLx4R*i2Yo%Vx{pA5viKCJYo{;1Jq18Fi#UL$2 zp;&>tYpPKS+Do?T?t>+9^&uK>3Jk4{b~@?coZ=m;i0{6vyaQ6q;rd>a;g_%O{i5>O z$00QnPGlqi0IP(ov>erg1WQFC-^G)ujhXndvXN=iX*pm)WIrY=$w zap{ZJvAA$Lvv6`CFcM&0xqEg;mE)RIADGgygDnM*&X+F`rJ_PrDShqtjAYDxzccdS zfuU8SDy9Egy>jDU3-}`$Iw^h(24ijAcf@$l=Vw@W%cicYjEsOZ_AU%>Ht|fPi#N<} zfE?9E%!24J+p+o?DS*kA)MCGmXlaBy$K!e1V_He+Q|0i+Pz$di`@Hk}afAqNmd2Hf z^{)#j;D&!Al#iBWeqRMi<&8L1x6*uEwX}yXB+ZP~7F(>K%Dyc~0<|X6!n%WWsYbv1 zv0kq_?bG9a64|4AH~Cr@`q%}9jNqCIqI7_DEOqx6SxqT_I|MTWqnWW#F|nhX4@Pow zf@^p%TyF~-SBnL1)`C-p^Uic$|mbFM*iw|`7Z=M-LwA104woi zIQ9qYBdQ{`#xNP6VW%AxCstt{Uf`Z}){PUjDwrr51tLBa=A(f8;F4mm6Ir#LYE+c# zh-(IJ>7nf!j)Qahq5M8ueh}lX)tll_{ZJn&VIDe6mg4Kw;S&^}8sbQxLXCpI^O}}6 z)i!GOP&2eMugyR_n|z4&fLCJg*3U~e{r$s0ksrgL9;#k3;T1!w!!ZTA;uVI_a}Lby z%~P;}OnE0|Fi=xDB<0jWTg&7+uWFN4$3~=r|PW zT%Q-=oqT>7v33XC*r<(RV)WBZ9bV~$K?OfISh6Y{vM<%v=#kI5FuRTejD@^V2k+2P z(0l8)oqO7{3ZL@c~yT70Rs`JLN5$?^r}!&j?%*(Na(82zEZ8WDnf z3+r&82sNRImzujn7%l&eDm(cKdky6wpW&;e_h{QKij|Pt!n4r2reKXiTtbb=T%DAq zbqqR8poy7fWvP9VCfy)0L+!Q-HL>*i)_wU$0bWd|ykRGW*D zc^B)$O1w=Kn~QP*zf;>?WUh){R*ICJJiTuz&XwmBmD1fM$BJ10bevbBom1-l)*8w< z#b&k_^$>r#a@istZXE&iuHiI6`TJT?dzoXtTkDXJ81iO1*9yrR1UV6PxD0x|O9{p7 zxm3w*jJW@;CO{X)iokacKLr71gM6Xy#RfHF&6}&eTg6yEqz?~Up$;5r(TaD0u;0bs zWrsQUH}iW9&V={nBoXTBI+jmQVaGbpO$y!vw!VPUw`LNqI?&_n zp)3kF(T2|sYxgY1l~}jrp4IJaJTl5RpOluH$O5UXA#rFll^P@1pQzw`ZcogRr{pR% z^aNhY*TMTP30y#Zkd_TOrhv}!2Kq&^Me$I?K>pn7vwZ^v7yIf`B`>yzlaMzs&T~(w zh}GAQ=ss7AFF#kWIG1|G{y|zHlm~=AgdiORe{7PrA+5QD8ORso&MR!KX%XYO%?byl z73~8`LS+oO)Fc7A`S;*nE_=Pri6RAKz<|c6p32O!?8f}sJ_Dt#DaG5yC4H8W^y8v) zr~5NI_Xvsj!iD+si-bhZi_p`oA~UE`T>y}YfO1u&0X&!MI%9pBv8755PKenqE^Vd( z5RXwtxX{d>4FrgowN*Uzwn!5ckK{ru`>lXCcZsR9Q!b>e0`Pp(ZxwkJcWu^h>AjgD zb8)vWbeH|(YXRTwVy4DSe6Bx~Sg$Mf?eZI49MWl-^)xU3CbB!W&!b2@$d|OQkY{yY z$XuWKJ%J2c@_~D`V)i&rb$lbsY?9FTwuY4LS|M+yk%Dz)KX0Oj^{`j0GQ$jtlELtKb<6)+_6m` z{l=J+9PE3*T1U!rNW+J2iJ!1Mq?a^O_G6l}?WonnAy)HSx86)N!sI9y0;W3#niyLh zPRp$?IK|SE10*>jFfbYh=n`_CDW~aHGTWiSv1BQ+hNg$SV1E&NaVYDAuH+=}T;cU} z)ghQbY)2}h=FwmR?Muh}?m&*{b62h2XLkKvzTS*z3Qbd8y+zB9DP^wUE#G4QUGo0W zq~wm?ImXhJCk+h}wu>(@&)`Uj!wrro#EjmJ4=v0-t~7qw&ORsTj)5#elNj36rM`YWm#$X81Vs`1xfV+g zA4=9WRK7bPCXrukP2rZcl~Y@f$pg%STKUgQ2}mM@OA=i;q`xvce;h~;=O!BP8Slb3 zA2mE=*11{Yd9k{Mpi!~5Ozj^|5I}<_C{f_ItM#4dcY;1n^2ROa&$ttxlh@T^64{(P z{U)(sM$YE3(0)R+J4Sm0+}7_%Ia}o^;j)2?L0w;CThs&40jT2AZ1DH*PlnWkvEx~r z0(bgAaQ^C~LltN@c(IDeso70&+>RYCK|ul5=;7zq zj>mRAEYs)*Ch3uG{F*jRJX32;gbywLSBU3(^L^IrGTySek{xZRUBXREQ%N1 zhaAsknda#{QDxII)_QeB+Ns-BZ3cQ#qrIp3$maN?$js%JJf9BHM%xx;)P>J3-&<^3 zR+|Qcxr-RfhM%}c_G{&HE{#c$^|TaEcwG4v0H2rdQqT@pE04gufs zwz^xy=(&3X%%TA?L^~k|VHUkHmh2j7#FU=Tmr1TS*^WyD~`TUa2ldSZBFU2$Dm?sg31%g!Xb>P)(&pOWzYr=TWA6O%#G~ z`XC?WOVtPT9j!)#USW|h6I=#LK#1|Yx9T^}M#ac^i0wZlWeN_Xz=)MO!{%SvpR8!4 z*BRqGvG>#YKLcCSTI&-`x74CUbH6+U@vFavNp379A7xa32~UX-Jpdyr2%@$FjZF_p%D*oqc^8Fx8HbWQdOk0}WT<7_e ziU1iGYWCjbu+UsegH4dukUOi*asj({ScxbVPQV=Z5PeKaiFSeZ6yiPPH{P9}RoO&b zA7I{oS#at-ZoKPKn871k82pH5-OhV)XVgLjRMF9j?wiUSe`{NKEz64fbwS=6YN^_M zU)rDFi`LYNus)EAn$^y=wAK@9IcvO1)TpjOo}Xkb%2A@I{l_&C*jm$@6Kcj5E+7Ef zEA?HO(jx`KhbJ6*y!)TqkdZdjy1@?tH~w~sEjW<8Tt(M_bYSe(*#dkO93si{%qJV6 z_)NYb+vMO($>2_8ZbXiCy}Uz$0U%5t1a87^?@-)Sb5wYE)mL<^la+{0;9RX(`?o78 z^g!|=qYX*+FGerr85m#}kX`cA*Sy88ru4j$|D(Hz9p~B7g`869i}HZcW99;-EflqC zqrdf&^WZJ=j<6xlYE&)% zH#3>=%w3%z3=tFqC{CwNZE@|}TL+JXwlAX_3jKW8+JkDI4$B~F`nqF}J}N0Pu6%HK znaBowKM+1JcNuL$afwP*f9tyunN;&i1~HprNu)`mS*Lj(clCr88mKmu!(r{L*HoV#pv!aUBfRi1$`(Xz#JUZTrM>NzDS%zLQ=_W4=ki zpPLf<{f+E)%lySj$%CPI%*fk#+x(uaz1g3YAE~;1_+rgNAA=J|kG}az|Etk1?Zo{f-pbA zd{TTlArdw&MgZUPTr}Qet9kF~&Ih*m+w=H2)S5S%w?T-5MyLmg<| z+aCPg^KLz!t1^(u%V=$J-Yi~kiA9f|gsgNyINgWt<%3lny|2gL4hRp)2ow;g(-Q%* z63Xy2h%#-to-mG#+oy0}E^tBDm@lRw{+9oznPJ3waj@a5m8Th-%(FW^e^H(!ZZ$)S zpoqcxsYN;Y>m37eKm=2=tm7feN_|IL)qOP4T};t<4aw1^8RbGR8DE zd_Zd8wu$GPahB_N4l$;XH$%2C<6=w`)|=^{36x<(e+00)P@DpQ?UQB2#-sjwIfDrb zKBwi5NLqh@^tIY13vuR+KG}*Y!Qg?cMtiSceN}xSc=P*>fvGe^^(i_(NE$TWzN*?Z z_O7G<4&)S!>_zI%Sx(}sj-{t#QhDRanGid;u?>~I`%ONDA>(pLWn)hWH9QbeD zBcT3s5f*rKK2ZNz(t(EgGpor>ea-sDYt}x()dL*~cwJAzD^{O?qW3p3*QpCAw;AaJ zrqp%d{(tXNP{J=BSG5U?8%WGC(^;jo(H>z}J^V0SFL0 zC&&%%7GP3+zg`G`JL4fdX^~#<6P!{IsXD=k^Q&s3&I3^>40e5BmsV@Uh~=*Q}JJ(qLQsDKI&l< zuIeBW#kV?`YoK|s3$#pol@#*ZgMQSbQm< z3Nyx5(xIqy47m6&_fE8_WB?HM8g{tGOO)Q*|DP-gRN86-tQhORsuefQcY;0!;BEgn zGqSS65=7?SjT68B#dQkL6x>$d{8a~+0gg-w77{V6$_;qnQh&3f9`#{5_+zbOw2Xi8 z5TGvUx^a`M^k!Jb^RSHS!7uXuQRH#jo`W{y($jAJ_v$tG$8NKjL5*^vlsM|imXzTI z=(XL<_S+`zttO|x^%jDUJAI}CzRiGICGlt`?b~VR6Ifd{>l1pAdhwMW#zhmmH~;;4 z|DXIa@PuH$0Nw@`MI*F4{^gu(bJjf(4FV*g@6;GS&Zw0;^&W6I>zpFc8jWNZ-2>pe z9BrKB^DovEsk$-ski`+XTi^Pm-w+rqvOy2K!PK)s*rfRD@{LoEBwQkIK7<5VB|WH# zRG3kZbh@c7BaR5{{7n4jfY7C5@&x~WfKQ(>u*IMIR;&A~44+MJLL&l`r`hNB)8s2h z4q97|<7~g>asR={p>6e_UQekEpBe*%3`8k{2JKpvcQt^^+i0=-%E4qgq;$yoZU$M{ ziOTnA{HpIv(`9dHq+@!o&_Z0a!(v^@iRl>%1nkDL6Awl(2#Lfeut=44VMv626c+DW z-BF}!mRLG*4fPbFd9xWKe`uuA+F(Ocx`|qnONYpeqMp;NqP5=WWqzHH%<+*E$udFm zTmIX>y_&(8-IcLTp+M{S@Ck=HhY=gMcVFn$bxyfBc0|9);DZXQ_HVT}f9rKMj&shu zG_vR~FKRVzy4=-`EZ5E8Gy|!}w~if8iTTD;0zApm6^71oW;@KFxzV>jw5;M=o$WH> zo|q#N#9bjo@$monMDofq{GxVz=YM@%s-dI^)P2ML>*Jz;Re%NHU<>k{q9BmRm*gG?x8R5M5JYP!|g#&^aot*~bAX~$bOV}qGaO??sI1IOrA z{~n?4iE-AIl(p)w=WGfuHTc$Ty4PyL|6v1rg#8+*W*BacCiMRE0jsZ>&-V8Ajvi{* zGZ{9d$s2C-y!#xr@2?}!!}}0&HfRC!!#gdLU!%rh-VvB_T4U)7nD>CdODcm36bVBY z)jW2)RYlUfFb?fc-d23Ld2auti=iD5zcjt#*~@*$wKs1}feem?@Fo_{4t_o((lTTc z#qV|<%!%lHU?yqmk8_G*I^CEoDi1hfyMBX`qxxFyq6yFTeGQ#Ak+P_?A_Do{Q`V2S z>?m=UryPyjvdrWFQc|+|Fr}M28uN1@wzzoPhs)hnhDQi{byb?EC76?#E#3v6q7J#c z$BUwlIbDnxs%0(%8k}X zndXa6JC4EXejBeW;1}B+24)zs)^pZ z`*PeoZU74mID-aTt|i=7w=4Pu(f9dsImkd{gCD}_KK|#T#kYKy_S|hT?`+$o^I@FO zF}9msvVq;NV()Cv|3IQ7`dbTh!2pXkCyoFvvz>VPi)F?JTr&f(r=2yf|10EaEQ~GG zV`bU}SZC;D?8H&RxTerHKSdfF2my4jbk<{iTRws5b3git{%UCe)GJT)$VXQd*j}nh zt@TO>8VCcVBZl>^Vq5^RM5*PzbU4Zr#8?wr>tP@PA?uoTVO3b^|D;`Oy#GR!+yBly zn#cgxHG|y%+%OX2PP*(xS1D0yq7=@{`zrj%C>~`7N*s5bN_ur0poZ5Q4zGOQhAiq< z(}oWsCbF=GmU#-dZCDxl*xAy|Nuv|~h!%oCzJAPrSlF-^ zk%JFT{NLNP47SRJPUi|Yug*DU0!1$|dg@BKP4a_j_y zH}XIqb53#L#9TC?UT{IhdwK8kjHIhUvy1gu6|_tY zJvAS|p{8_QX|3;p7s^Tl>9`ryX2;6(qXo7Fply3H+4a>Y+}gVwLrIiGX|kr&o9K-y z!>)EgaEir9r@KA?W$GU!%f=3|fM)vp?c3Z|=58^fI*}<>YE*>tDl81l`B?*KFd4h` z@-_pdosmyOX}IXJPLzR`mAA>9Ly`^hQSk0;fCfd#87(Ut#}|Kf0UVw|!DYx*_?++n zfnjF7^>89~dP z%oDDOoROr(mOw#v02s`WZtx;%qy-81Hd1p0>S&RXlCwh*X+asj>HanAGbg9a2l+b} zdF(WI#jDnBLLmHPQnP3j$M6$!{py+VZ$)~0z!|Rc6yzTu&-OcybIs0YJ%8{+HM2@> ziw!r7txl|wk{Ie!$^f=rfc3$?!9xuAEV)7>;XszZGtD247hqTQMUCt$ckTepb){P~ zmivlMD4(FEjjKbCHJyYPRUH67fyI0BO(th?NSmIALP-(*Ax=b3a#jE6fS|A59gyW` z73Wn#J_0zM4aYxyh*CS#CN0p}8(=$*jPV601eK@R<{;wqe#?VX816u5!`P=obiL8k zvt>0o>Y%n-^r2YSQg&}tOQyRS-t8mXz76yInzfj4fXqL=6Vza55GBNrJ=qB~_U$v?dU{5T4sxs0(M|E9e-;VWRs!6<_CpRROdSP3%AXSDMF zb<>*yruypng5F)1pzzvX1mhhhh3;Sd7sA3FqG3A@F!=hqfnZMArw50xlp7=cVu2?3 z=me)}?q2s{uY@t(o2rokT3Nh}RcBzou+5RK1(2J-i@d-vFFYF3yvD`2#! z4T_b=Q>)F{UsbGu$YbNtrnPknn7#mq_sNE2EEmUD)}R+K)Pn*8K~U`(489QX<|kHR zcwdE8@pu+BZ6}`DB%7Abv&FZXK}-J6j?rEp$bR}G2-j^)?ovdQ+iAQ^IPKO^j6`Cg zN4tb=PmoNpI%gnL^64=Gjzu)X?MLT0OLrppg#;Q$qrem_WC z9b^!TRHzEOiu*Kra;&pw4FFv0d|ae5h0&gFAhVD=Ohf}=cJLj|9m{lQkeb~oK7jJ@ z*^X9ebeHn(ea`XmZR3B^=dI6g^_NWtterBpXi=Jl*|ufD#adsq=$`sn)hZ32f_w+t zP<#&ze_pY@luMNona-)9f5Lgu@WhUwgv(w{-Px45?x%0{nkdm{%{}7Xn?3D#-p7Zd z{FzIN>TsCB$K;0Qp)7AyQD8=`c0QZa;)l|v+RrWG4dU$hTmqlTiGV?DUHkWo;fn_= zEZA-hXTp7G)~GJ8_;w0TwI$wkn7YHCauiv3m;!)ZMf*dHRTjcdJDchy<^lYQJF^IA~6HC|n&ln?TZ(z&)t(N0CVbcNkv$*Nga zW&Q2I1+Zkb`r)Usj%6pC_8>5MRW(>&^B3(=8)M>$trK_aZZJ=MxWkL6<|A1MExp7eLiweSF9 zVoD4H=P6_AOndkvF1y~RPg}(dgUw>hwv+cL@PSDug%erhlys#`bf*~cj%P9UtzE3E zk$LOfrD;+gAOGSI`mEjH|c`?1#PkZ2QPg~1{yWYk!pe=uSu5}CMIBS)tNF5Cq0@Z(#7bF zG2PBDJ;?|O%R*GMrJuv9rt{BXs(_4O;0DBFQP-wqdz|Xf7l-fyRh351Gv-rfe@*k6 zzo(shE*pX^4#DlpJti*kXIQ#wmSxEmj`otCO`s=dNpZ2XLS!CqaCl3#w`Q0f-W(p- zdi!l!eovHs-aM*Lk4t=)>>b}?V;Os25*u{)ZiVOiQ+Fk8;@BQOyhW|7{mI$pp#~?4 z7LGFrGO3EQbJUhNij4Y2DY8it`Co_n?TxOnSYqnwV8>SzX~wl|Xk=hVl7EuY=^ zM$N^D6|XbwN`8dZ-;Fqsth9SMp_^UL+*pP~kHJw>I*Lpsy=tk9Vw28cq@J1o@k4Dp z(bpBXZp&w{qM9xVh&7YxUzZ+#Wrj$3Wr615`2fwkv(7)8J;w&#!F>oOLVn^mCCWin zPq%K~(yV!wc}7Q~=H<2pYN*#%S*ULgk11x|^)|dpcmZ1bY6PrUg%0jq`DyK1EvDHJ zs5BLNHQ#A9;h4{BPqJ!1?bu>&%8RJ*Sb1EIr=|A!&ZT}__M)EG;F8WWSvilC9h@DK zF#1%s-A}U+?GMB|gJ4orS7WQmNY3|x4Yz?eM2rK{&-X#5G!SnY{3p%$OC9t0XDpn{ z#G2OX$LuKlatIOTjFos^0ms{|Gb!;D%=9}!jg*V;G}ILn!EuM%g52X)6scx)XEh9Q zcSyxcXrD@VI9#42r^_7ymHViZuI~-WMeLqvZVjEI$BenT6Sgx{E>1=KGKG0;XNsAO z$lJQO3!O=vzMZW&`7PLLrkD79Q%Tcg%3I%N(OI)VVo9Jv1RO%_z1v)G_A$^Y>$|HM zhVlZ#E?kI4dlnuZQSVC$vXQ7Vb7HVjnA_T`G{ts%Rc-JgqMSRu`l)kl2RFD^ z=kkEEUIUEIOtPA>_ABmB)lcHQ+U?Ts>k+iEm{)A44{)tlKa7AxXa<3z)ZsOcT9 zDx;HXK`3IszLr$bs1Lprq@G9touure+^ce6~krfgU6wQ6zTGtY^PZ z+RP`=Jh{-Dp9b;@PFX3gpH7piJ$X=VuGo^t3utOJjyc?`ZrOdPsm%}a5+dFCb1s=2 zPKnpddI{mN4G1y2Q9KV#9p^XwNc#cKQrnB}MQLCzzTO^!Had5=)g&Ta?BSV&xcIPE zlbr0;7e3!@qVDo^07I=xBk)EzgI8FOD*6Yl?#hVIvu?@hbq)n=x#-Bln?5j%p<7a| zewRhVu3A}`6!7%mk;Vg|d0Bh>N%2C)#|A)a-M@BVh|x_IC;ksbpjxgHvSm3*R7?S# zHbz)hAitXk1~#D7QQ+1=Sy=SRLIQu$4DTH>BKx4r1` z6tP_i%8~|6bY2hr6tl_Q0)yg!_+FGmxxdS<3Y4rGVhBtIOgZn#H}a@f#HTvEB4rEK z0l6HRxogYl`4E!)!jKUL)5j$<77`x%TVD!9fvVD}1xud+MVMO)*}D%^3R9r+&A6iN zbb_=KK+WS|+-W&PR5!?QRt`0}Qye3uLluw6Ng59^v3zFJ>ElUl!0zbn!N6O$NM&Cb z?Cf!Azr3}H&TXc*j=L?q_eV9#6ZM$2)oO=Gq-&#~_;BfYG6GXH6PVPiR z;ghVY@_G2vUc)^^y34yVa)k)}B~C)yXshHZJ4kB%ePlvob9g0WPh+eK|8vFg2dLjx z_e>;nMvYu(FUZl360cpo>TpAV(%H%I<;OveQB&~CkOqOF;h7|zlHZ+W>c*(v0U~(@ z7)~3?4n!^f(7q)blhNeXU`zL`_3Ce{{1Fe9_+tx+bkhA~_RkVUHNkr7o7g?>glHdx z6s5Pm!5&wbZe`HmO*%LiCAw03<5N{CoL4M0GVTae3%MLnoqZ|D5o-N#3f@0_0Ugby zNWlER(SW%T5UDW4j$6z=+`75K$kSQwLQw&Q@#F^Cm*les4b)kuFJ2gOk$w76mBvP6 zaYWjrT9VJwD^g@MI=p@i6jUn5(V6BCB6?ty=uZzGrw63*t(YS%7h3Yl>@SlXxO=GBo4_Pr1SpfrDgav zX~HS5a4k$oDg$u*$NQuTcl-KJ)inq-1aa>Xr=bzZ-J~n;JXnq&x4@UNu-0?TLO0x!~$}z9N@l}Z^>s7Fv-NP-SY0A!)#+P3~Y~)zA+S zQ(@g(E?!{^hhDul-kEoX#gHH{50XKGZYz}~Ms(~cB!cF64Tu^Ysux8@2#?J*osykE z!R{cWXCp>Kd8EQE3fFxH?*(kBF!$~&tAXiIiYtZd$T$+JOoBnPuo0;q)Q*C)V)JY) zwFW*t&Uhd0y%iB}%1cOvvZT6a?Auy`GJ4~u6p*l-BZc+E#Fpq4ZPZ|=>$~C>r=RMG z>SHCwc^w46e)wua$E6H<+mq(Kc2eq$Je@wdWu<}IZC8-VG^Y@|a|2yH+vw&U>_!^H zBEqx#h7ZZ9RUJaQtE1C$r+GC1t4|c^9_K26Bz*{?Oq1mlF(4LeK`Yt2+cBs0ZMnC24(q}!>{JqrXX#Hh2Et0 zZNxNlAVjX)T(Z}|91)|U`o&i$(>aKc6)IwBf1Mh>1*eY*F9Rrn#qe@U)!wD6?Lez=BkqW>iL=p+fghH@<+) zI$FqqdO7fTzjX@$sET>iYVzf)nv!F6Tmj$D^-*j6qS0aI(+WfI3S(V2oihCU!np@n ze*hAmYwE74vibVpx3mg?unM|Xb+UmA+((B=Pb-lj1KCC^PKX~LnJ1V8Eovw!3ncrm zj4zp}E+Ri~D7mWj-%7doN2*zQJ9ciefbrt_*seh09$)-~Jlw=czNt7YCo@2wa4{srOE&Hn}FIAktX7-49E3^bMRlHaK z@h!G5{G4{=a}G86m0R6iZxpwE@>HpZ>sCo&(s7HjLgte63Ljp*y02+Evbp}xpkz4# zR@R*YW4wc3jEsw?>*@z$KlY8W?=}DeVA%wrcywK6BLk3G_P~^xpg3IB)i-CoN85Q( z1~1vnc2Js2nn%(t47+;ur2)*o5X$t9`DMVj2+*@&N!us)!rq3Ww3${z;XBY#au*Hv z=j_Qb>O}Mr!{8#H+DB1=IW02JL!jpaa9`BMfKlGgL{T`h$eWc!%|Lr#^A;h3jx8&b z>;nM4VLKhO;qXj2sRj`<6ng;*dfYLh)vph?W%HZ1l^YK!+BElW3#lP;}YFfV2d3_;dtMy+graxm`3U;8r3fJi)*P%@fu7*pasmZ7*(+ zHJbYZ9oXI3wL`$Nr9s`U8YxQGECypacu-i+7K~{|=`RnM*e`b#O^!|a&tV5tRa_T< zTm~p{Aj^HBn81iuIa5(-4igWwAowHui^=xeUv903s&HI)URN56cXeIhOC(Zu4+I5t z6ZJ8S5F(7}0rmNb6QYY17{!s47|{AKLmsk6@Q_p7RtdsOr1V|zF|)q49tyA#t3i5; zoNim0Zt9r3fluG`6JP$M8`+lS3S}>vj{a8QRxkhct6zhiFd|F2^_mia`(tHcf@X!l zf?vC}PzIs3kio{^&Ie(GdjZx=3Kom$QKQBLBZFUJ_u7e}{#ud7|9n5lO$w&Dnv8}n zLI%&&kJ`Qt?cGyGQ*gqZ2VG}P@wkJrpdh)mbM#Snw}XhWM)%XBLr^YNVE2a;3g8+W zrguQrQCYhHd;0b{*ehzS9|=Y+m>ihCc;jiK8ms?ktsS)iuM^jYj9e9CE&% z<@NEeIq9pM3Y5GM9YO960;^g_jED@nrNJlE3^jYv5!FSS<_9M{33zxWpqMIDxE^D^ zPRh_Ly0J`M0QqBL)%PIJ5E{aWd{(0vZ{}`>s5byCCHOMw)oD=Wp6#2_nAhV9QJYb15d7nKJrlZ1s)i@VJFc|u}@X)@(?JvVS z`E;2gLwi$yx}$0o3KAQ@l?Y=>*Z^lK3uXlxbdCE}M6G314)t>)GR}7GR-f6BOCmF+ z&LVTT2b4kQa_%IS*zKB3w8xr;uDkJePI+uQaud8&=!e8AkE$~!=H9Gu*i0>1aM5N)>UoNc? zG-OK4jMRglzx3UYZJ&yWsyXzXqXi8ZIwy-n8i$%d*tcQ|YY3H~1OlqzXKN2N1?W6b z6S(3_m;iZqU%n&A0u*o>d&4(w0_Bap3@QZ*`>s-V%a_S4pY!9q7v(-dpmcIcYMlG? zH_m3u{kH~X{{#PY(%T_nU&eib8Va{l_s4ubkIitYg=0m_B$;<yb@-9&<2=s7b%bM|6GCpSGa5`@xr*E_&$Zcr+8%wW|P;KOg@c6`tHejq246R z+`cnn;tiG&k=%m@rQ%xX(}ekekD`YWi?Ij8!Ij*@Rh~Dv^P41mrZiLQ#d9Cg3uDCw z5a^vmqiH|n&h($Z=79C62p|h~sW8ba{p$90qq_vI3!2+U>FXuu9#CghkEd3*9W zh$p7?mWbB6HMx?!v89Xm+Ms!TK^lACoS(9RH}(wkdRI|~_hkL?K3P!8!qAx*1^tLP zuaX5jY!nIy45%+LEnY97N+!=|^rD~>)-jh*M2++6(EYR^S*n&JeDyG>9$O$%K%EF^ zV+#zvAIsBjnOEpsS@fq6+BuAg&XW$*Hr5a3}nM z{lD%!cKtxI?)!(O%!YSb$A67lEQn42e0_NGra67_{qC>~sIf7d$p8j@?|HsX6gynv zklo}~xeNc8gT43D+vjzurr~G|93N(rNSx0Qx!`y4IQGlE+PBe0gC1Az3(Ndd=t3#s zkY71X!0VAWoB3^iV%GFqTr94;^UHJ9T)NUi)2bUJ1{$K?EEBrmerMnOy<@jEccHzaKqV-h@L< z!8#9C2m{6C3&8p8biVF(>95GosrC=Ywe*S@(f3~R4n z0f%}=^@U&;d%O9H_WK+Ic&d$Xj02EH zfZ>P00w&05;W;m%a)f}2mr$IJGHn*0-Xn||_w4@bqBGcVOe1so9A;sHSP@@i;MH!% zn|d&mFu5vk@KUv{t@VhhptC#~9iP;Y_MG`H01dSDvwwxn)0^JWsD=qiTTKNA|37Y~ zSWhhPUU2Fmcqe3?8<}B7!*TR8PF|*Q@0i#YuP*l@M(lAjNw0y|dou)WIS_#g(*n($ z*u7rbd{!;h_Nn1xBU_|9*FM>-vfLI-u+mF){x_rRQCvC256Y)XSa>VN4~Y3&qCmZ& zpT1bca$fz&AgDF8LZI%RYMQ+T%Mnz!B`yc$G(wFP)VhY3SKXN~FDP02R4xrUW#vTq z2s!;`{pHd7pN>XR55B%B>l!sGv2*8{PTZ>UslA1k!&fU5yJbW2vdE{R3raJ=t(|8| zn4R5e-l@(Vc*~%#5~)S=y%9IqPAo)_0g2bTA+Td*?sCj&xl*+D#QV10Nz^7f#vQ{+ z&2IkS`82VIaR{Op7;hre(n@o{m}Ok@j15gy2}_pnb+VDYM{icMwP87ukBk z;LKhVk1dkH>h8y8Jokqc1?QgK{6>VbN}JPLLWU7~_3}5n(<`@l-V*fjrGtELlNtc1 zL;I2#-xH%O>n*whG%;!Ty%=+u%d1`A9U+s7hB7&M_{~JXuJfY32J)Br|wDhu`RmuzN)+~D40SJF*n?)%#N4T5e=4!h9+ zV`KY&U)}ds23y?TAIb$iI!vL(>CSq@V3{9Wzsabeh;H5Ben4?-jJ=vegC5KRQ=L>T zxo|CD{;d1AK`^e`E)MemH*6>^68gelv!CWZ(p>Uw>kc}OGYBS**|4E9B0!^72G>lz zK>DoT%fw;Q?F@4N&wig0sEuVF(J)MSpAy0xOkx+nlqcv$&T!QyN0p$=V&&Wo_lN$s zp9d7YEaGf^+>1?a{XXfMy?d>PKkz--G|R`-4Th!-S86T4FAz=pBD=-SmsrFOAO_c# zC7l2%ui9|RH!hO!fQKI(8?O$ge&yj@>@0M9$k7ab9~z6Um3AylWz2t)2|7rIOT+Uj zbe=q^F_tpbJ)N@8SugeOZx?@8D zOUYVb=O2rBI=MsFEc1#w9$_=jS{zu8^jn(_id6Sq&1N_zE=qS~#tZ>fdx4 zr<7Kal{~V-&Ut>sd_-4JlJ~LGCfEM3XNsdhNzxhfZA+(83x(LBp&QKra?r~HqMO>J zw9WaJ{7B6%PI;z)N38qB-aoMCFUs zXKdzdh|yido5d}p`zV;^o^xeJIq}-i)y=N04Z*2y;0_Bj(iLw@U@@^@X!R$G3*RzR9nOp=Kx5}h z&}bMJ78HIOCk{qlHx--2^qQ$|l+j;rn&IYS{y*8FmfW8?zE(2Ph%90e+brfR4Puut zl!c51+unkGf%;l5-rGpC$dP*-;(rZyX1gSaGLc0T3SOy+n54`sH8}01b9p0Kwq$;n z7N4RS#B246-Ag|4f3mQIWxQ8j4QJeKkeSq3-tpW#os|25+A6{gs%TGBZOQGO(-G}B za+rzl=8bfdt9M{Ek?Ec`$n3$UFV=UDi9hrUT>w&Nb8RyZ|13h65BY$|ZMnrW`l1e7 zBie|IT)*<>r8Xv zx%tuhh$y<|Hnv2xVEQhjPx-G-u$D5LN_XuDInU6eA;iv*7rTn>6TqEMUwJ@^GK$*j{*B-E_I({DwW?eR=X?k zGoa@;5->Fkxzqu&mJ4|Ui~nX3(RwXjmDz>eXUI?>jO90dcksT9W5R)xrt8YO^o0_! zQ-la1?OYzZxeWh~fk)8CY#x&kk3D9)PnD|AXR5GRUOkxw^yp_$AFHs1HquN|gEPDu zk7kV}dxoUyOv#JBJWy2`t-69BoIlioJSg)1V%Nr6_|i_XBi!KEJQIW}Cx;De2H5=`#H5(LsSA^cnJ-I=N`zpRR@^z?JsoQZt&E^|Dy) zkX)p`P{gQ8IahwrdH%+uaPF2JuPC>^4|CksPf31vx}*-j0}(jQpT#N#%dMDAG?CwQlhu+Nb4iLCXb$)AQZ)))vSjLFp^Y{vLsQ%g!v1%A4K)cDs`EIa?`&ZuS+J60 z8r@*-TPHNSr(Sfg%)+tM&Z5@(*P>Ds&nv0OS)7z>4-UN5w?nEd8SVvbtI004S|p*W zXU#(O&vyz2485_-i-HO`{goN_((xF2oQ83P7TTL)A9 z-?rUzX-SE3fCS_8`k|`;n4c{dLhONzwC29Q_5FKedFKR==8fP?gI|2;xWDV;?uC^i zW)yA@GmkPLe@v2Hu8)aAru?!PcYj9g+oo2Np*w^OQ#*r5^}6D))=Y2ViF^O3AL5LObsqptZWR#q;}KtYWxq$^CS@ z25PdS---VVs7?xER?r>DQP5xBkacYN_@q05_h@HR_!xnvq2m$R2WGt|9;u4+o_Tkj z$#zflFY|oMXGk~o*N=`yF6^rVJ6r*FIHhnT(D}V|Y6NS+q_8Wj<5`J*>Z9M%x?E77 zmkC@DzPT9knV{tP!NnCQV^(W`!l}w|1wl=k`$-!8MKkY-sZ*gcj3ohjvk*Za;bT8G zJPgS#?l0jzgU@E#A~TP_gk>f#BVNSDv%Vi#?cNw!XxotO8ni%1Fh6%ll;0~#M&xMG zLod)5T!vDeu=y@wt;==&5%T@COzYfBdFy%Q$Wf%UN)*(?cRD-d99vwZ zF#qj~U1V8Zl%7ta6(2IGlDo%1iNS<<&N)V3xyZ79lp3vB#*)O#u`E21#g*FbcD2K zJ4|Gu#=x1rW}%wNn15do3`~?blRBZC;WqSeM`4ob64?ryyQ<>zcGYWA1Q_{-e6xbN^ez2ZgxyRsr;Me(eXMVfpy<-~_0$KvC@ zMD@gVreOe$!&Zw?H%xq-Z>Ohk8bmnPD!yXYtR=qtA09}|A(_67(*0@fo<+o}p95$A z5V47G2+%VNW#^R6+aLZ|v}D0|KMv1sT|PXwOKNy_m$}tV!;(1f{_-~sh99zVA=$|x z*(vjFxg&$ESq+XE>y^~BtxA8wTb0dw+!?XVImghp{V&yy1*J-7cb6%RoNh>LUA}(l zRqM;D&XBUsx>mgYXu{FPuGG_qHeUW=-Bs&Ti-@znt19LHJZ~fK(#AlpL#LC@P`hO2 z_v@GZFt7J}_`9@DtM~i5!crwSn#mep1<(8gn||D{;7w%YLXFxoFAtp93TD{B<&|%YT^_IgCoV>~Fo*UO(-q#xHAk-kF8| z1^!w#eUJXF>7XQ=NtXaFQ{v~hi9xQF2RyqDc#2dWc9^aEV!-DJM#8BfEAQ$%;)%1#Z*P7JZCuZrB3N)J)#9||*254OH) z9ePRLG4erL#Z~TbQh%YO^ZdqNAE`dHSw1rGeWUy4>zj^Oy=SVU{&6XGN`C*7VlWSV zP_k<)kN3zNu_(}4r9h41P;Co+f^K_q@-CacT)4Z8{tbqW=YEKbXcj7-s9vp6IchY^s~ZegkYOg)BqXX-9ItrN zu;#9sj@MbQUb@L3{7m8m`8~*BHL@HpC0kSV1apMqH1XJipFfYSWWau1zD^GO z_isbF-Z+h^c2w%i)l?^~NEUU3-;U!j(n%_ofi!wJJ2FXTAZe<}(O5EUlK8Z5q{N9g zV6&7>E<1PS5|D1PxnZk_R!*PuCUl8y_0y@M8T0g;-r0^zdY6Q2d%Jvb<$TwG4yiaU7^#JTsie>E^}Nt`*lkw;@AAXOOyewb?F@s4>R&jwZ(k9#5+t_Juu0$vFoK^eWMt9)?~5CGlkp;8 z#g?EH{br5c2H~YF_uP+fd#X?H_WfWX>C%>=U6OxW*juB~K?*b`>JaScQsY;B5HimE zV{Og%%I>{8itDsE`0O?f`||krs01|H`exKG=Q(o^=XDYAbXKe(+F*j)El`jUMVR1D ztDP&$!S>oBK8jepz;D;_MAYNW=Z=MvB83!E>y%EAJXW-fE%?m6x;a?IL80s4-Sh$A*ovXFOoGby^ZdT5r-8sz~M6RGC`vT)M(PR`sC))ATA42&R5|284 z(P|!D%Y2(59KCM~<6A#i81r<|EGUeq-}{x{n)6*@5yZ~(8v9z{arUK8tqD<-3a40u zvVBNMV4rwHpu*KtTYehI2rJ^;pCrZlkz4*mZr5yiv$E$Qw)bz`7DK6{o?+e?qs4#;n=s+ zWN37oAb>1R426G(L#D^aKwu+Bzdc8d_M6v*@k#Ejo`J6Z$~{Xin{zH&G|ZRSO2f(1 zOr}Z~dp!1f_W!&9;^k6TN{USgu-c13mV14&fS|y?%-ILBrN8>??ml==fo`E?i)!cV z+%a4s!JYVjJ_pZD^!I*iK$Xi~Nid2vkYSsHUybTrEYY?6G^Q*aJ$@8<6nlyF&KTP< zk{g-V+VvKwwtXCp<4&`_JB3ZUj1+n-VzqckRgDf*p+qaY_^Y2&X!>V{|Lb^z(0PHd zsJRz<=h$rG8S^l>U&LahFPgCb?DH=aH=jd$lHo%i4+S+D9PtYq4&>M$_0?aA>aQ=O z32Kes<3a0W+2*xgeB_15_r!I%4BLA3&&5Ug=e;+CDFg{MuDQ!SHvHcS@`WO9p}I7>ioEy)WjKDu0W_q%AQ1$AVqdbbf`=1X0M z>u-CIU?J`>?q9rKS4ycvc_|NXQlbN7b`#kuAFrkUx4X=tfD*!3+nac%SiSsUEw$y# zx#(@*_5a5=oEo>V2bs-|6H;_Dl=BqTmy_U!v)K2`$zorU^P$j*8w|(9zk;Vd6))|@ zk0N@rqrIv|im<(TaNRMvA-4u?x;XEGLsMK5Mr&0tI&ypWc(beiC9;dCF@MCyk$*ix z&=2a^1Ki{QvK%JOS@7Tg0zC%x%&qo06?*n^`_Bza)A`IHHQAAR_doqw4o`+TRL{#1 z3$S5z$A{(Hbm>7>}s5;|7I!?hX0|5#4ZDhQFEe%I|zRrmd%!z4ciVh7Fn@ zC`zmY%JE`v*Txkw+jL&y)yiv=fXk zdE>&bo*KOTQ?{rh*_RV5MPM4Xj@=%jr*QwQg9HzfkV3m@4bG!AgIl1Pa%^2185zk0 zdo^e{RBFb*tIXD_RpU6+P4O;U&$?5*BHq8gSuLIiyMvn=^g!TmN&N8#K8HhP)p@yl zqnicU`Avowg{@xMV**}!Ef*M|vQP!Z5V>4GC%g7m_R9H4Yx?7vuFUq2{DzdP>s z_VE!2sshon*MXUJ4?K19_Yx5-?X=4+-l)w0=qvkS2YWpxkV1CsD~ z3jEP%npzDV0~=((zTU2R6u=6Irv{wz?*xvXNb+%uK!jd5T(tRlAWO0*1JtjnFw(~e z`jEM=oH|Tqn-dc$B4>UV?-49yLglvI+CFAj9>-Qo5ISRoQPQdl`B)&mkQ3QQYq_1P=8PotI&UO)R24l0+Z(vp)m z{?51?qumB)_YdFD$irDi4;3y=W6{FQlT9Db?4-K*H_KLL8` zrMk7#u&F}2V8ep5PmaDl2LPW=5wQh9+ANKI=o(I zVv`u+@NNDxLKM4ZZawL;nf~~#WO5ESfMbUh=;pyQGua$1!iESp|2S744Pg;tdo@0B za+!T^ca<;lGR4Hdbr4^&*z<}OV`lL=?>kxND#Mnc9*LdPo7gz7;An6uy#L>G#UHnx zlh~xUFlK?kq?UR7%;O4ByvT>mH5fdy&S>**L`WDfc`8d5H<|X#w&vv?Q@V^d+NQWs zOpV^#UUT)YeRQSO&SkR2EP_eaSg$}QNAFaMtZxnG7JBIbBva}ih+O%lQI(Wt9spz* z^O$d5+H3J@SzAu}?A(U^yzA47dt(o7$-DyUoG|WdS+Yxx}fsqPcL;> zn5lsqU6%GJ#?W2fC2RmWc=gtWlDjmg5%@gN`2HyTVtAuO=WoixTV56eFV!eSlkV(6 z@AuJ1DLPUaFOg0#ji}DR?b8?0Se)0x^S*MsrcAn6!zy&1gGJFbNQtIlYtz)Y|No2- z&_k8GpqKbQU9O}L()@hTVU98j#EP1Wga@=AJGYevn>*JbHhwU{d^_a9Usxjzbg5KguzXTlo6!I=YD|gl zCw0k39xFuTyeh+G_1l0hi71t>X8b3dWx?}LcuZm7H2=y{4_pXX|VI0 zXnRpHL;ZFL_EFC)78~M*jBH{M4ZqX-wb>Hg4rNI)HE(5GCOqGj<1<7tShr_kQgb2BrQ{NU%qgtG5y`u@wTnFpqZX< zeAmcVvk$Y}V;|OTk+(07Df(ty5DB~+c|+z}7?fhyzrkg^VQ`oj74=URX=goW_i1<5 zk|$KPwfD|++jJ&`0eXEGU1AB+AjDoBdqJgP&4|S8W^G&V8@# z=R!VH#U?2RsHBQICgcNS81{&E5ob(4MT$_V3rsTh;{odj__f;Ecy!wosPLYZ zLH|({g_ncQVX@|40L2Ib^UaH3HHmj&8nbby5A`E&@CBWrB8ev@UaIcyE;cu7Em%`K zqotKrHbc=iC(J`n3%0w|Gr(6KBV7|X3^g68GLBRrm)JGcTp^5O*0l#^Nl5=+Z|j$L zN&_M=r|&_B+=>TGqGzZ{!G402$&*rquQ9?7m7`q;tkWwVV#B1BR_l&rK0qsrs_)mq z1PrWY*4jE$@gsKBNgmZz!iT30F6Wt)0uP+7Ymiwi{Xa%R$BIP%k0OMt5 ziMna?z^0E5X8SE1YhN9BF3yXMy>jLmTOj5dZ1e4TQFUxv#)0zil!fue8@k|*?6Ub> z3Gdm$VOZS_znYa)!?L}IORe8udN~gY;XWt1DsH^PE3KqABFB4NDFg3U=6o8%FVkW- zP9A19BXk|)SPv%B0dRNXuc}N4e0cTo!BRe&f=CahM$-RTMFLp$+q)PWaGJmEtep{B z8*-rHIRm~wm`z=Us~5?Wj}VN*uWTQxQhIj4n{vL?drr_Osaz;D!fHXxV+?EYO-a>k zCZBe8s*<+7qjtW8^TA$!T-)5Z|J^et-sEaGwJEIuVq8z;d3vS>6^Xzhvv8kbBxNnya{LXNA&}>!gXtR6&#&5rNFT|{U67Q z|KH~qBzA~Y02%~d-o6F1#LDMu=W_vM^JFNLTpWHV*0j^xh<#Mc`N2A^;$iW47Ir_A z8|yQ8T2$MwtzD3Ue#@NP4Pq01L^wJuFJzf^yM?@7O@Gp-`9pV!?g!SKsoL6cw$-IN zGrg4t-TsAU6Oqeh233Ckt@iSZFXm-d%jRX-Z#9YGlP;CB=tlS+zDyFxsp@%%#4mNj zsZ%ykn6x?6>@iwYdRAhw32%A_KgBNTP{|pSf{($S;)=?UH=BMCrw&TD@Qk@(>>OXw zQ+GOF!z!)-Gp40#lQG?oOKJ0Zj`gN~?vra(+ip(dVuRiTYt2f0y8y_&@$|1^@X{!z zYcHJX)}$ac0-I+3L7sdw{j$!U*Jg(Qc%gzVMw}_8Cr6ALoiA}B{`~(w>@R+d={WWi zvGPC*w7|6U+MO9W0`f=f>iGLOp@YO?IaWG zHb4D#40}LZOK+38zK%K;*x#)SSIH${(^_lBt!_K(H@;N8A89e}*lw_*%vhz!r>>Ub zuF)iP7{qSh4mZ;otjMm?^u~sRoy#TAqE;i+v1Knmcbil1(jvlnwbkxdWF{Ava^%zq zddBOK#$i)lewl`q}R*ECxQ6NEfslJX` zFyG&Vyix}gd%u9>lU(fyJg5L+mFX}rDCr;?Y|T^JCr4S#S?=Btp#tui)0*C9sa}ib znjg7&FGug2PB(2e)m3@aa~))9cV$D3x4SJG1Zo(0$jOFMFW#Dz6~IJDa51ei$lqLk zb4MCk`Qf~wLTppcbm%T;abRbMaYe&WgR!S$4|J$meq%EsydeFz!h0)|GFSIBy2!84 zS{qY$P2ksy4Vww6!v~sABzzj~rt;R62Ar{)`t(fz!4B;jH7Kf+x59V4M8na>)N7OrIE~t#Wuqqk z&j;&cw|G->ZY`BwoBbu|l0TW4|8c{E~19jOLwyT^kUjZ z^=lY>Zk$c>*7#)p%2~fqD&8cUN%lHvMhop$)4E+$#m8xW#+2=xyz(g!GEz1ve|BjVfLir?b264zF(#2A!E___=3FnAcY7 zWD8slFKLeHzdO+-De#e2-oohIotE?KHLpUhBSMAe5MhquJO=4pW4rppc+Y^Z)}qEo zLFWEr))L7Pb$fRv<^(%MMDc4y`2fP88D~hCX_|!zmxIUx{Q%A!ucPWFZw}^;(V5;=*jRzQllf+(`6BdCji%$jIWs71o%HJYE{K)cmZ*Uoim0Yw7@hm@n zt=5l{8@)8i@o;k0@w7C@^vZEh8&irkgtTLr9^-_}Rfk9687v${Puficw=!UQpZ2G# z3>!C^+GO1HWqnW*n|_Qdl1%k;C$Xca^!u<%B09-bm9~ClZs%^8iW+Z#Sxy@} zukY;wb;xe))5PK(8=r9n$^xDwKfc|%b%yC(Rov?OK+0l7T->q&#(vGrwlkzZ^w{6~ z1OR1{GeFM1V--Z0r#C20wOVIqkRHAP1atqVy4_LS6y4i zO^f-O)@+7Hhj|>Z{98E*coihW#2jIvxznRiT%4!;4z!5GSpkbH`zztHX3&WWYu0h| zawbo(uXCKEF}Sd-S9wa?@KIlExZLmy-U-u}+)^!@k@*AAL~Xr7)z#%PO%Y$`jCtvm z{G=`1{Uw?ZbOojE%=-Fseajw6*Zmu!$v%p)pQl@=+J zjg-r^z>cH%^kH-M;w8OPpjkV19R9^^YRm|>`9%QcJ$?rEwRs`oTfFc*Y0Re1G1$)P zT1c2!3>&ZbOb-LM0J9v|7IQ0~943i(!uX+1lgKPR&JZ!KJW|BAJL+aqVj{Vf9?P2R z_mW+1)T5gsl_#ZdJpHWiITv#ogfi>p_QlVNzO8rMi;I*W8UCE55?=opf7p~%ScOA- zKdreCM?R^Q#lu)bk&Tn(zdQ;d85TLrjt4JgFdeq4Bg;GU`kB6f(L8aL{WGKVL#WL@ zPQ|aK2&H#!8r#C76ezr|6k><#!!QmTN;Z zo4oz`=l?#%KW=-D$T^?iqTet_gJ-oj;)f8bC?W0?rDQ?IJ&28v^Z+Jka~z*I^uN(l zQ1{*w4w$|~DE$nV@ z2vXfO@QPHlG+%?J1e?#DZgT%z+t35yDEO1gsIYf#QQ>dgv_da#Xc^X8`uVos7Fs3f zT46(stQJ*_tUhw)p_b!Eu;W^8$o&C3Bv!CHbbBa`n%Sj|y0f)|l2?2#yr*V1TvWO{ zOwcopmRNzNY*|p5Trj7SK2IAuemN1@GL?vW^NAPRR=|rj{CF8=wd4X@uhhr(zaPQ& z2U%jLzuaM~+@Qqn^j!$est%y%Xh-roE)G$BNWaX-7dc^I-5=VZ`<6Bp6a3$pe+0|*8Yeg5ZBKtGF$y% zzK2yD9dy`J>)&V`rPKNzxd&UWvBe4Xb~7Ur;LsNu|AYMnrd1>8Zo2&TNN2h zd=QvpO)r*@k{*wHO-40T8pun`;FS<-69vPr)y4=bU7OqvVP2&Vd9&~u%?TRWrB=4* zLkldqgHC)CzS-~{>=SwTxaXlFiD)JoD7=+d z-SW=F=k>+vl*RE=oFhZcMIj!+%@E0B()rq|Gy;6DXtw0q)%;=rD)=Y!LI@6p&`Btq z_20X>{3A|8U9d%!EH6Q0ZQB!csK*xl#4gtC_2YXKB2U<^6y5bJlN%}|AAIyh zE^F*%{(keOvUVjZBy%LLPYJF3LFv$E9Ay$+L*Z5^FOXnRuR<*Hk#C5|R-K-5%>-V( zeDO_d*zSM>99Nwj{w}(euR(<2YWjUC?Xd~lINa{bcw z>*ApX{i+00VM1@dSzT zmp~Dgm&}@b^}tar>Dwd-8cpL47eW*CK>6X7U2!8O5Z6FVcj6h(sE9A>S7cpzJP82-HmC$uvz1ikDlLLaYdcKyqd| zzt$w9td>ig_Vm37b3vTnR7~dm%2$~_;nB!R<3MM>JH6RHwP~3jQbLfSq^|}`#EF?W z@r-M}CyR%U<#?mVy8ZA{K*L<01J(ZQSh4u#_FU;&0`C^<-z$Hq4J$tBzxQNy2~1;x zHvbLo|M96Cn8gN><$!{Kpny542Ued{ROdNGMJ}VG^!mk+g(qYE)d_-#%J<|{R?xtW za!Dzr>=Cv?4RV>OiB+nJI1>f%vS6+Glq^`&B5Ca8o0B)(Tb?sK-t>HUdpHC227hQo ztINYJy@n4q#J8>u)9M9&^VR*v+>@_<_%ZcWW~XWEn)=_(a-XP<4; z+vM5n=JcJ%VMixJN7kG!noOFpRpdnw0f&(BiPDOP)9K8iQ1?TwJ2eFY6~47pc9YBe z-Oa+vRK=!zXKG!`cuf6G9_cqz%(zX>)@IJ{)ee@hk(G{-&z&g^A0r!5?5<}cLJ-$` zOsQ40XyG67N<*J<3WWQk1x(^UWHZ#vd{J@?Y*meSU;9{Z`bVR)gxUk=g3WcGWJOle zm|%eYIMU}JavfxgKY0!|dJJwsfZq9Rc!)Pb@_o{;kf9#m9ZWX`WK+)wym^=e$FX!( z>L*8^DqTNCMJqT-PQPVJ9w+ySf^l+BS?2rt`79C|=XBpqULisxyVVrED?E!J4Ucm! z42uW}%stH!rlve#5lX2w!CqnR!1C}!GYhepqMb+)5J2D+O=atJ$J*qx(nVEu?vHn7 zNQo>HS}N{G0-z~(zD*7`eZYKwP37Q|wnLQ@IJkeexXLLt&e>{Ek6*g%L2aKtQ5`#Z zo{Bgp1a`1x_P@P;atX`{+Pb>*eZ6jVi{E=oqFn^xca)P{12lN{ipt6XruNRw6mc+e z<#59W@?At%wA}T*DUuy~QUEQsckgf=k5cjRB+i5=vvsp^SV!}RP zN8fiYURJ2e{@k#=Qq2ad+TzFbpxOuZ2e|aaK;hmy5k3{^LOW^Bua{*5YW+VMV!v~$ zJq<4X`>2l`%`!exX%}rjRtGEiGLWehuJg4Bz|PqD-Ykcn`QbWP7Dq(8q!VjN0AY_C zX4%IdeR8ano}bshXd zPNwcgEpmBq9JxmmiF)D_*q0q+7^^*FhgFPg4c8Uyr1Z*8wp?bK0{LNDvJAiwv}; z=jMt^$p4(`2*8RH+20NS$a<@jx&%pe3OAm}g}_}tDkPf zZ7i0?WnM6(%jYz#;pDR)0GodocsfpzCpID^fQJ}Mx|YV))W!6yrDkMf z8#sAQf)7mFP2v=0V#iw}x0q6$Hbd#c&LhkFkHh$c{$LC%mP$Yv_IwU;c_-oTrsQc| zHOvIf=fyc!H~J7`EfC9MiCX9U21G-dO0J%wwP=4>3FrzxB!h8Cz|Kdi)Bl zn04SA$!3^MEPQ&iN1S>~-jU!uR_u@}qDAmD{eZl7mh!6`3nvx3i&l{JlCELIx!Kal ztHom0SE?xYwfA`84*?Sb0vUPAti5fMcH2u9We(+Zk^iv`mr&)eYtNZnpdNqDNAnDg zp!twjT&Y<0Ca#6tUnStGag)p)J;&)%KK;+i6lifSHDCASb*14dhLl6vPzO zv@cb7&QQJBQ{??WH9WTT{Ah$i5;w8nkP`E`b+%}u$t!OUYPIq#@C>CqPx92c13qG& z+0_jR1IRbkP!#9kB-57{g-hnP;U}vzK7eFo7I`DHeQ`Z#3uD(jb~jQH2q7GvN+ewR zV<^aGz~K1hl+ewEA-_z-yv&1}1$;Ez1Z95OXi?@%9!;R7a@S`ldb^7(nuN~d2PK== zXVICqeE~D8TCLd#{Yyo&g%Xgle}+?=3gQCN+MBJlGqc+ol;0;p2|~aH6SMr)u%~ZJ7zH7wkczE8lYGCBFlkdyNig zb;dHHYkQ{;QO^^FTHCi;=-fC@jmF9b-o?tJu_3h9zvu*aX6&HUFwe>uGAVHAHg!@i+iY_%`wnwo?I1HvwTy3I5O~~9f&@GFs^-Ny59D|s?WdmG^G^J z%f=SoA5ko7m0!S5LdA5vQOVE5%P5Wic%+{B_MK`(31Qh*kB~$6L=jfud~QXwXLU#| z((4$EuZ2NAz!Z=cl==&FRjlpoib~GUb*E8k$?ayd`;SasnAvXA&Qgx=up-i}h?0^4 z%;@yw*t)9~J+d762UjpothUe(V4CV@;$rmC*{Ze}gc;&;&ib%AVa{Qy-KVId4SUJi zsN_n-FJ5^y5uGFhFoq9w<1b{Z79Q#@-42_S} zR!D7PI*yWFmG`DC4O^L{3e8z^LnX0umZ({2o>->#tP$_DydLOCh|fRl_vgf8u_f&90@*3aW0f;Cyw1P8 zDKKUtv`Yr|jEb7tNdH3saDX>tdyxX%ir}E08NjHl^2XrX2|33TVqz?vDzGGeS&`U*6)wTgnlHS}3DdZ1@h8_KVb_tk2pYGhZY~_0creV^})aqfob^lL@HyYC^q!xQ#emUdrrzt(1v> z!Hxyo>%^!;@KBK+Lym*7;E^ya7<`*-Zr8xooZcH3~RM7?805je`uE+XUos%OjTF5;p5`cQOh0Sh< z3Ez?q3uo@4R#Mq251{BHirj<5`T@hwRmDM4mr6C9 z1Wh(%!e>2RyOZCWdmj=tfl&qd#E}O5ed-D*D~$Z2DtHnZ=%wzL=;M}q^USG5lfP4U zr8Dz`jQE)@Zauy@eKuWuy@V%iYowd9WXfh5D(ZrNF4{`9&~V;ZkLP9c{-Vr^gb72X zu>F`_X5V9P)SS?5k)>-GjNstLc9DCKklU}chb(3>nTb^Ir+=eC+cd&1hy038@AV%&}?R0){$c3iE2ONlnb{kPjB@->{!%=osB*HKh<$BO4~9v zjvPB-XqD8|W@*)(Dml0_-5xiP(B^d!O(*8W6~!c5Si>RMnzGBe@^q^I^x=n#=$elZ z#;c5{p58d})jGYNXK<~aW!698%JVK+)^uinRlsW) zIM!rPs#KgoZPHJ|>FXug0CJohWXU=8H6yGzaWTB99TDD1FHbE_)=`>#iu}UUiq*8s z>pH`0{hP}gfY*~l1R}sp5f1fu`kQzd)Mmv3BCmrIdUY4}Dd6lj zE`}#c^uGA#!hUwNwaqo(!{4SdmV~+}YR%`RP4oaALhYkQG^3ON@8fnDx2LFsu#A&w zuH}*?cJs7jF~Qgq&=+08p*mbeqgHnp4z}u?pt6C|@#D3mLejt9;~}pZ-F}mwuj;enQ)gv;WKj`xuRI4?zY3x=V{IUn8Icfp2XM1zC(AI&f%Loyi1op_^xL$)rXG}m$Pn*tmCaVX1hwtfy{u8 zG^O5cjx9=`qNdI!+%%pMkJFv;l>}PFUR1fV2Pyl&iPx?aXdbD_DSlI+4*IwWhaxUT zU!X+yd!@}H;vv(qwNL#PK@b!IUuzG@YD}j-BqT&c?+rJ&=iP51GFOhc#*gV#^gZ6q znTnFws^8pSA>4|N-rOfFPU?Ory_Rci@Nd=n$AjqCq0kpmZ4RebFx8dT0^T<}6VTH= z2W>G|vRX8Ax<2Qqm(>4A($1q0Vv?>9tnGvuJz=Fzs&gy^tvNb zkpN2HwMjwX^l_&*Pm6geuC4)(vnZOk)*6$vGoCoW^(5~9-&f(LLl@TYJ30iY zhN9XB{fg8GJH#Bp%j;{B5&L^xtR^Fgqce45g4DzA9?=|8bAAQnBt;BIW0yxSN$zhw861|IFXCm=tRdvZ-0Gmx`dnYMm|d+rA5Aa z$M|8I>=mWfzL}rNBY?E}v8ygkM7q^u+nya36VlTFTu4WX03_3*<^)a?1N|%I9~u%R zrnhhI${VTvE%`sZ@_gUK7;Y(S*Im`3i)kA*QCrZ6VvW*256*jR1J9MMsl1Nuhk)`u zMS(V@jz9Wa#~G7~&j~MIF_iP{P2CzrXL#r{kX;ssFt{-?3q&nUxtpA&0a634vl$iL zn4YNRRwjG}2CUb7hz{L1IpTbW$x8A)#;QDkT z%=akCV?(0g^5t*UkkaPAY!$#@jhszbSobW0#BUU6r?2W0$(-Wi1}k6hCP;9^v}&zm zZMIj()k#Gp5zA}ijp8!`QpAzHFXuj|3WLevQw*8L@!PLeNzdDumluYdOLsGsk+p8s z|Jr%g6GdkfQ`}qRTXM#xLTAL+BE6a?vHgr~m?C6Ja%AzMW>cA)hnGP$Es&h4|2Ej% z)PC!Iz~q^2CrB1Kf1-Ht8DB;+Ig3JNXo$ODIiF$KYrXwsVw1nfa##~zn@_a7z>mSu zjG2JYi;YoX;$FExC(=gIBjvg3c2#w$@>`z^#>)O@YV5jAH@%^aA=fMhfA?C_84#w`TuIgFpo97V!)pB_y={LN1%FHWTNk& zOFD|1F|aAP2y57e1F5!j_XD#0RP@@axQn#HS-S04?#0Dp`uO$(j299pYo`WMzEk_F z_))>e96IL#T#4HdbPd#PZQ9tDvS`}d?th?9=l1tN?Q)~ELEL2^rN1ioaOG!%4w9Ej z1RE`&#N?eiti2M|ZrYl;bzJ-=CD%TibgL?HGJi>Tf7=JI9fEu&h(^Q?Lz_Lq=Tw*} zKFp?*yUBN6T-r7ze`Tk}^XBTYNpoHbJC#R$L1fbC#e>E=80)@*G&rQU$%mTV+$PTB z35^wDCZa0p?>bOl5tFk!Edf8tTJM8d;DPY1pkgr&R1Q!UhUSbV;fedzl1|0{oNurI* zYrcu$^<1DTdUfDv#vn}>(0GT7HT0-brliG#@z`1p!A=Un=w0Rh`IbH|KkwUMbdGep za>2N^EVcQ%iC_6f6QHk^?YIfn3zC@2mfcES{AQo@fHh9I>=}la0i>k3*QLH_`h6oj zqs&M{GToE)Hoq;)mFiCKO-WG-`Jd<}0Cy|O)On1V!*|#4gtk8dtTuiAjw*{Hfw*G- z?CGn)MZe*G4}g-TpoeFFI5;h+v_U&@KBd;B^BuOjoL#?mnt>f_*j{HArU5tWDmH;i zp+}sD-o3F(Hs9@}LGMK$DE2$;sSV=*Gl}*VM{)Vqg1AGyE{@k)e%GhXL|yG&kW zHoJCzz|<lAzt$--m1z@?+q*7Y&(0OL-Wl*-(?>0v_ zjHnRg$r2oKk~sOr^-Gt)c4}XouC9><%s|qjp3sB7XgKGIRnZQM-dP0dzL`BZ44#5^f1}EYz!}$kAC62X}*0uWipR&C*5n^Mf50#i@Ct5qJ9q| zONh?GaQi8MD9Dh4fxGHGG3Y0MasmaSL?7zwoH1-2j6;M1#K(X~NU4K2OO7V`c6q1! z{*QXpbn2l=cD)UI#S)mB>Vd-y9&(m#Qr!?>zqN3&|eklDb{x#p^SE-+A3R` z_=~_XB>oQ{leNng-}L&-=vE!uD- zE1sL1us}%A$T4A}XZ8v6(zUr&yg$tsgN}nqBsgTT+<(M9nL>erk}&A4*+Vm0^p+OH zSApv$4VQvsjGMk+1-DjH{WV>n?zk({e?J7wj>X*Z%QUi_cA=8Im8hCqq*w>|gv)0# zKwagG8azl7Fv@Q;nf5*cl-gJ4mnHyj&7m~|WC!iY8(c$fcful60!o`9-f<_2dUrnj zbXy_R==r`2D}Q$5r%pq_wE*c$_mA`M{eAS>T}rgEKxt_>w6ic@HtwW%jMT=f5Y&ix z1N;Y6bopez>dZyOCv0MxZrnPMd2}%~MywlD73ll<&A~!Y{WE!}kIl45 zAP4Bbl5;^P_f$OZvbEkWEo^0&wc6nOkM9l}C!1Ms(0U(W&?A_fsr-%ukRn$^rHrSB zu(QE_qI7{j2W)EevYJ{|)jQXJ8pg0*HN44iC5Sv$<9FL9k{KMXml_P!h8jJWut^#e z+GP*RJ>E%)py?+C9`4mr&&_F(6Dh^6WQhDMtX3fz)tsOipsSgZ3(Lvz``nRZTihIl zzHH6Z91xIJLf5ujoJvfmuvnJh>`rgZW#X2t_gGAl7@y*v>bVb@`{*FJMqEqwUIXnp zBSG=c0T#lAgd(~lw|ip=e`mY*i(5i-AFWo$;f- z2L9k zhZ}2z_M1~5Bc7-D!DjeF8~on4$x$QMLTw4*;>s-ygX_NdZt$&0juSsIQw>l;;5j&; z4$osA3n;h-VbEmJ{cFJfpBI3I4%m3S(vrKM9}XQoQ6x*4F}8i~@vb3L^5J1Lk$FjE zVTL}{SLbhZhI*b%Jc^B!r|1m{oG zmyLoKwcjcNM#yYNy>E+PDbsMlR-ptj^tLyxqT+z6a&vOhH;|=;|A1aB>LzK?25RG^|qt)e!Uc6RaYA<6VKMw z&W1$$QYH-bmT#)~S5eXA7VB+qWnaxZHKn=A6l8zXO98=gKF|5jVT^)m88CJ_#d`JC z@BU&WnO|o_&47j9c!yX6$a2Sn%*zra#T{SLaewvk$mQB`DgX-N44`C8kN_OmV8$s? zV#O&jUKIR;n$i@IQx_oB=fl@}91hJRLm@9{h25DtAC8gryi8hV-)H^Syf^Tpw$R!J zL;1#oCv^eO!fmO)644v4IOzy^`E{BC+;MQkkO=pl3xN1TzJ>SOcrPiM9AG+8#z$Ly;R1xs5Uj;ihnjRxfy6g>!QqOioMI7$srwV7&0e z7LYV4U*^*xs-;Sp_>g% zkP67IgGH6C>0NRxBC{_1(`N~oGm-+6Jq6Y4q(3|wNfbMoZ3#w{XpZGeh;ZojA;F?% z-o(@=E7jqHuX^N)l_`3Gf6^4Blo9=$xJ$AXGXfstE8Zu)M5^&d*6+TA#J5H1q2Ebi$)i`zU1U%dMI`tFu- zj61zfpD$+-&d-;Sj1eyXafPxZI09?O2ROC19o{HE>+0$x#TurWRL=!$b(uR63m zz=Z+EZ-Us)e;7mk-<9MprV7=#wx=-Y) z9a&9;&{YQiqX_?xOq9^R{RwpN16-S3lv?qnr z&pkxNmskLw4$iQ+XXX^r^s@P~8Sv@htkzl=cka0+kM(??tE$J>A(<+x_!yjjUDfQZ zYJ(Y~D-Xp=1Fhm1+k-*%%>mVG_33Ur#j&;r{gw_@4}ZGgZvamML$r5_heNghw72{} zne&@Mz63|5xMv2raBEQ~G?52^2`!$d@aZ+4?bzCM=(lJ(MTL(tqsgMNh0~3D7}uum z`z}Rhe${nT%6onbnXfVmSJE#EE7?A99CnN3@eI_mcE8WoEtt+zYR700eG13o`N(zZ z|3}$d21L1b-@_hTF_91?l#~_(q_OCdZa6aJPy*6*3`9V>Te`ua8-rme8R-TcKqLmF z24RT*bz?9dpXd3#?}zi@d^m@DuGrV!Yp=bQrB^M0m%xSUHHahv;D}$eBbPbEgs|eM zEVd}4JWW#t!&{=)%mWPr;-j~!)Oq$FO$99^B3I={BJ;66|C&=U336T*R_Nu5s=@CG z_x<^+-YR8n0m%f@`9zM!IJ1X#R=dV!&X|^kQI(npp1GdZd>HZ0<0Q~bM90J#-C`~6 zpSM=|!DNU!QdYw;6b%?S&Tw=?Ezm|d295F}ebzGr<_06Zg%L0BJzV`qp!XB^gr$dR za{!#n8#+#YrlUkW%yFY>1;?0&)l})0Y5lYA{o|1| zFkkHqj}z##)EB>U2HlH91k)(HGsnc=c+070=wkbfay41{ATp;!6InWyB@zCYdtjKB zIW$dZxX4xWxGiwR$_^S32VF`#(+5&^#l7@&6Di40>-ZO_s&=I?4}-HBeKM{W=my<- zNaC@X)a)`j-PFH|VP5Gq*x5T@7Nc_HCpFkl>5^|%npmfXCiA7Bl{K_ifsF63xu@S` zUjK-$F83$nr`+zi%z8FFyowKl3z zl*{V6tdSG^;W#6NF%51=%t|kgREBVIdWjft|cD=r1k!3Dq_%uy#}_x#lVh~-qAV7Q zUN07?ygb52rla28^=K>S-HRe*CuIX!zao`}J0m%CdY;1=No>Z?mD?m3@@fZWaxxG1 zb|r;xu`3=WcnpAmnOik0D=4ely<~h4VY0BOYoBNT*B+>OFLEnTUHaPl_mz|AFQDjs z44wa)2OJQh$EULa^Vn%xoL9w(%ed)`i@XK z+liQ!p_SB+-Hezf03pcD+M9I4=geAH_0VYABAl$jkIx6?6m|Ktg!r{gN(E6U`*P=0 zp;09JeH;AK)YVdz#A6^yJ!B_qkl^-mkn{R?Ipu$+=N}^@QDQ)^VR*bQ%lPlhojfzpLbB!vtvIrS z+XQ8y5P0zv+-Z0qK9BM)!Bc(W0*d`gW(s}Nhb-D2P^z1160|Y?ywZBrPBIrz#++pO zB$!nleX95snB(28%33d z%!sgUfGWEGg!@@}L5=D0#@K#C;%G5LRvR+CdnF9a%Ui|xavrf@kmvRoO{?DAf7AP>1Ha_6MN zDp?yRcT?M7{aiWpm?yeALZjO(d|?+gY{i+~6orgP8gHvsEYd*vbRJ!-0zfh?na}7} z=m~=&80U4j6;Zv**>P%)owH!)-bk&7^7}9{2E?ran_31)C2qRPl6G@DS571zwN8LF4 z?Ti4Bz<#?y=iPMNu2^C1)jBF-V$Jpfm>MCCuGa!6v|o|dmq;MuMu}GTKkrjhui>6S z2K|tk;sw`FO&cP1V0_8kvVAaAw8z}uVY@x&l><7NUoVj9EJ1`l4;09|j@F$nxMoTq z#P;u-aqqlP5jMpSR-jSFMlm2R1Ds!N4T?q2Oa@_#^lQb&CeQE@)0TUx{yl2C{3hD@ zA|to(y3+_}6Ne~c@k&5XsA-q-%d0|e_a>F7nH0<2?z$JzO}V^lcwRzZ?I&j$9RLA& z+QjIJe*e22meen%ALhP;!HaqzsDXjHzs@|QBI{uhABYq8(puUEZ@61ddz3cWvN{$7 zk?rRj@z?C+^S&2EI1Uypp%C$(zXuYZzJOZL{raHg=E50pLAH|R%2AI1?3$wgI!LNF zJaul||Ll!Pf6&w0yXZ@sUI-)AB%xxDF8!BRTL-w7na-Y%<)G~vtB?+@2#8R3;q=@< ze8a(0;uv@IMk^E&%)OGAz*u~y(B7uhFGxVdmb+kd3O=XMVTsP`oJ$TyEWdas+3OxYg|rDsOP21dfc^mqvEJ^>=mzRJ@BGA7>5=Ulew@LijRxux zV_{vMf8mE(PVvnqzR17L?FCR?m*l<6e#n&O!Z9U14Jpa92Yv1U6)!s5uD?OSyz^?k zGXi2QBvALN>KRnL%{@cL#aS!sCRZ+yO|+kYJM4h2d$JRDyQ`lyuvr z*cvthJ^OzrOgAMgRxFNz5lOGLHpWBb0sTW@N|@;=&`c}@3-7V%#iznA9IQtSv^dV4 zbsoDP(KtWSX_E&jST%P9k8_-7JWeuJS?%rHOg(H!W&5xO=Oxt&kx_xdhhLkaCzHQ; zV-LF!1Y&`@lzCz)x_;{}mX!UwlSJ$E-EQHsva53$N8t>DAx1V|Hd>mkTTbnt90hRt zgR`T=wqN4zu)P?iR9 zy|%~aO-9xMYt0{wDCgEaJ_cU76LSU|B>7q-<(&Fwv}?ASJT1TEb1G$rPWt>-IIMP; zF9PY51^2|W{~6;Xow~Vm3#eHR_KfF-8kMj1BN5o5yuWOrPHxRV9C=du;^7&R?*`ph z!(8AW#L}*sW&xlDVsSa%#oT=P{H%|AxmHD%2*{m>(6`eeowo$|ZnoY0{Bs+4-$%fv z1P6wknmM`GHaVWX;xYR-<3~;gJU;GWiyCn@1Q`)NTfmGx2f(7FtA2UZg`6hY^ ziesfj10a%lr${=EX-8UP|`M=cs{sgJt^!#r*vJ{z!>khR|8vgRW?r?l$cVkggp@uPOSmz zpcO;tc92^3(##zCekNBzMe?#hlZRY9E>DszI$o30?*+V}r(Nd6ktTw12&`{eJgr?W*yrL(?M& zH*XdCNV&1eD?_eS^>{o+a*Tp6ZtLGw$G>!`|H!TouUOmz0DZ!yiMCgoJF5YtSI%C! zM_Z@ghFO4*18+H}je$Uxq|boEYM43b^(#~2zs&)DL<6Wmf7r3OrhWNfgDp|~ymebY zOp&)AZS0eH2PnzHdHD!l1a2TEeExm{Q0<;MR${1fKmRU?!~d=&&apu%uPu*N84um? z2O?754_)VVZnbC$CYU=_IGxAOUs5b9R;u_Mz?$gv^aRX)cq}ct$6#mQaA7(z;V*0% zx+bmHJ42H7n0AV?`&L}TdB7#w*;2ehaE1TB9kz{*Z?s_S?(v-fuvE$784bJMtR zVZ2bkF$(Ib@$s9fJH=dM>IT|K7|hhAKCzaA;COvEmq>C3f{|pn*l2Nw2ucNZaFgEB z;I}X=a9&5kWzwVqXoIq!*!BUO9BV+Nw2=;y`5AO(?S&Pp!!AIel=P(0t zWbn&806VZCM<~^Ott{IP++cpurPW{|Rj_0XH8;OIg%lYjP!Hd7yus?v$AZ^O$Pshak4@lr2t&RCcICvwvsWg#cRSjKJh{qG~%Lzd322PG>$XOEZ z#Pnh%Ev%5AJsj2Sp^*P0Pq15Ns?YS?X^~E0S5BDKQgY7+qx*TGJx})Iz;|$KC=y9m z_Dd!9-w5eHAB_xOD?Q{XQG$b$+?fx{n9vlnE%JjMiI+4-`7)(_GAtt+gw2(ozR;BG zILOJrAYvktbPfPZEyl@YQn_0JI0_e|4*{P&Ve)-aD`luq!Ma&6_me|%02s;uNWAiU zt^&znoks%sKd&cHtMg53c%G6aCT2b!2PgrzS$~*^J(l}|?755L2;vwh%YHbI!L$5w6~Y2cE+W02S*7s7V!u|D{;@$D<-r>HOwhoB+Rh_dPz9cH}7q zsuH7*0QLpzK$P3}AsqpPcydKm4{;hlp?%QC54~>#g17wICr+%b5QOAD#@Tz zHt_0L1MoAoUkm6NH>e{9s{u>l{E zSKu$7ZqpyLBrm=(vgc;*@BhF+1>6H0xp>1A+|Nbk2=CeZjtQA1L!3=oey-1;I^JP zetjD4Yc;M@Va+aIvW61Oq}Daka!wN@tS(4yVE_myiD!G}6~|CBzVN~A>p%T*ifVyP zoiV?uXMvR$ZS3byjYqehc>Ii`yi47@qpUz{=^c#Fw_^IjzQl*&fLSkz${lGq4jWj4D>lvs9|c7Mhf z`&t)&B;*Dj4hyfGK5e4Hy>ldGwaNsgCIh#Fn1Zcymvym5PCMIfN_c>ZAzf;T^D?fZ)6|3ywf&RR?q_A+0{>>wTox&8bVr8Lxr)=>!OfduT;eYhf zo-;25^t-R%bcf9f+R1=Iumn4e8h}@dlfM}b9l_3JDQV%4{RI;K??#Vx-&DbbKGs3y zGe&Ar2S%;wd1t(h$a1T-kLz6!hgMl5B@r>f%|DOihPEmtHHJV@_>Y?XTMXbtc?Kw9oZ4(8;Wc;%6JaR~POVWi|YG2cuRcepQeSg8y>+&PRg-#%uzTUEY0Q>c_3`}o*? zu=`F>8b99zUhJLkFZRFM+swKS<=_uD;QMT4GZ4_YOpr0@Ndy9<>WLOh;>ZoxiQZFh zAm-zbD`PiO8&c%=cf-XQkG@taq4mJN=#Ax1i%|>SkXW_qSAq=ld&=-%*^eTzWpu*x zZ`WvrJ?J2jyu$ITRUcI<)5Dp9^cU90fo%QtKCO`ba4*O1df}Kh@c;%@pXb>jR+?SS zXMo>!8^UQOZP%B1cf7{+x!n5$T@ikJkregX8zNr*o4L4T^i>#D&}y`6JFf)#fJ*3u zbllY|_$gmLyLQXeljvL} zAC21Yc|L))=)V!ob8KcE`WJxGr<$8wEA8n#(0y4z6c!DsKDR_QAUKT-XLgev0Y1QA zCiQ^e_lp2S21c*#rnBG^^iljeFsb5oi(!-U+O=9fGUGq~deAlK?uU=De1-{~zI0+b$ zsA#eupJmHk+kV6^=JD>HC3`bLm;{|DuOZyef$V>W#Fwf00|`YZU{3HlZmAmcZC`C~ z4XNXHrJrp%?AY_(?DioM>$`=x-wu7&;kZw6We3mLq>MK$j~!9(34QY? zpmQ9iMs;WxBC7tIC#3dthBg^gzoJak=QWGSEyxQ@ILSz#6UmwBke8VRiGAH|teDuj z6^%N0bU*Z9Hr59#ER&09`*sS~s^Y--LvNw?x0<2K_WIiG*)M++riI|tb69`X&3YSC z^}qU{M>~W}Bboq3GzWL?K6!z-V7Y99N1_chN^_`l|rvlZlX@z+OYbWFvghaOmoC(7Azu*<_iH+WjVP+lPJ2QahABYb6I)W|(BMskw~C|~oH;w><=kGU z`L7Srq$=4HJ{#_5eW4A4-~VC}z5@J3pyR3uTe6Ge-%6;S_ptB*(M7P+w3HZ&en))N*QRw`p5?*clb850CmtFgbF-_J@-&XJ0kS68wMXV7(L(+YsWCzZf3civp8b>h3ch4~%1--fRZH^UBxn zsju`XJa?n$#L@!V(RF@Eg741kJ{}M)fSacNAf{;>zv66(&mpJj7c*2UFSu`QyJ<&c zy{mcSOmX?K^ZRdAd^2Q*d}s_#+H~rF>{+W(tCY5+MgI6|8vN|_Dxa#MBbF5SR2%}e z1NgQEmh64yfL%gQBwK#$0Kv88Htv3ayCRoo*Kz8tZPm2j-L)bHt_Ue6s$i#ep~ zXlM2QI{fk)K^&z5$3zJ)uMY-kD9;1l%ICi6xtT(RUa~98Cs&Z`%v);0rm9ZY`UzRj z|C?H413FfB^FAGW`xN0WYy+6Rl3a(kHWG!)i2CYuy~nFx=|6NS0-sZ>4`2eUcitny zJd2x3%=s=}WcyvdH~_}{>jz<;_0W`)HOr?N(t^?nw>(ypTLgtTlMxaj1tvE^;->?_ zalb82eGtdM$OYCGKQwIt**ibK)A9Putl^oJvz$Fa4n$_R2$H{labIKtPYt+9 zUU-Y45UiNt24=S*T2J=ujt^J?{x&H8jSVh(N`vwJT%3Q>p!;WY@_bv`)jP^xXWZeu zPm8L*UzzI`!xl`-yMX6wxD5**^P(TkYRJb$sU}lJMX+oxc`*gqf_@)fL685HBe(mckD4??|{1N%84G8rUa@Z>bE!kJXbRM^suMN8DKTlI}4cG5r6 zpx?VZG6hsZ4hAA$?V^+quMi9RCbX?ygg}tmAJ){KEgf9MV6cal>4o}C=^ggrkUU)O zMMy#17Z{s;n`)+oljmmvW+m>yk{t(_?5j~fozA%*6_=)gJ4zY4lN6@wq#pg!A=5F8n^J%(ilt;K( z#M@Lqkv?8#;O0!c_?;XjEgn^fhE6z?O)5^2<Iv{CPb*!+a# z>owry5eK}03}2FZ%K$F*=$<~YJL2tHg_5-^c{AQ0J}&4YqBsPnw%$!dFPk4zy_k( zZ7#L81a^T8+`}bpRdB9ihsev$6MzV@Y-VNXj%4|r$V!Skk*~-#oVz}UR}`H(`G2m? zwn)Pj)Kz~U$px5D6ofn)f4_2vlk-RDIz7JbT)Uqyxvp;nbS=v?Jt|kHP;tCYK=#9r zR&k3QYqSQT;bWXm4LJd@OEuY#_V@-rY7#H`F;NBlyj58)Adp|ArPWV)zYc=aIUnF` z@H@n!4KO>1>Gh$W$$t>c@DXyb)4e(jE3Z;|dJSED(bCLa6+EK_9s1B8_V!l%*oLb# zZqT9c1E{;vbf_G>=v(M$O$JlY)T#N)G`lZToDkJ3Lo{$(^1(Uq{EgZ6+=TCAz2xHX zIzvtTyx#JAJUkt%@B+5p3~&&--sQr08dRJ+$z2 zd>Rnn?-R2ttWU#M{qm^lS%O>nU}4r3>#*W`!J904_V2{{FNN>%Rxi}s!;TQ#%LjJt zx#?Pkz4v-Pv2p#3%E%g?m*~Oj07`K zdk*%dJJW)xii@L0Yd8nEoDt;d65a#~Q9r1Y5qJ_ySJv(i%jpMzdnF^KZW_$CI;16H%`#A{~X~}%O@sn@^Q1t^1 zUzIe*RfAoBr_kz8#mv3W9~D)DA(pWvkgx35$pO?G8y7cS1ue&g;S64T*&r&${qIMV zG71ER5+F0{WFJ=@>B^#=1i^qp=cl*y=L8`~St>CPt@-f=!};NgVDKy-q3gd_71heu zTiQo_`!Oh~q1`#hRs}QYOh>3<;d$qMgL%aII8}D-fFf(->rfv+M@$W(l;+q6V2#oM ze2>#+34ad%+p}-IpC+wEN+~C_=XV-2U?UXy8G+(885FN~mAt&_83khw9|tQ!8my-~ zMQN$y4(!rT{}_{toCvh-2Z$MMy9)i8>B6LLPL;O1=^rc4h3}Sd24`H}PY4j)yC3PW z4#j}L-6QRxom{5uP8Hi7UEFIvOAvi7XhRGGmpnhCXZu9CPM92wf`URLSzPh2%Sp!i zLg9U(mig|Zj86{>f1kF!OvcISE*0Js)c39ITlrUi%3eFe^s$(=GD_~REos#PPW)?} z$LW8yagmbUQ%aV};i~KH_vn|VgR0iy!F<>Ms%Xq-C)l9xbDME{@Ey1hw-cIma|XLE zdPf|*Nw?=6U)5wkEPJ~P4E{n&2bakp9&saLq|>uUTA-rAy}~Kft+B5Y>_*=sup8DP zl+x7uyTPisWH>owmM#zYSa9B*)o}r7_k1^6er5U`0{jg4N2r(Fy(nDw#eLrSi>TZx zRXHzXcl~;MWdlvi7}t5^`~X2i9@ALJ&$N5`K*(`O`~z8UlHtA$7U{;1k>peo>aje4 zasnfhdug9)UsZ=Yg>L33C8^UN<NgHP^f(1?1AO7CZz1YYtTz>A3_>dRSF*nI4zLK}t zJcXJ1YXwQP{W(GsH{~QXVvk!dS$q!bSUKU=aQ9rv1p~YGI&asX7M~=P#s>}%`^aR< zW(~~cTbyQkdKlcjJ!y+nsv_@rrXbRMt!&A5s354h$)U=WED90?W=#+Yq2%Cuf>4C< z08d3JT52OU*8HfasG58G&|<$TeGVawZ_*!j+M4^BSE;8n5&=nf0R0zBd|UkpO|>CU z>3vcZ>(?#S0sva|f~wD-060*DPG4t?aqdG1Tb&{QF<5*axI<*hz)-UztmGtol(8R( zdU){5xV-a+YNSBlt*HZknQuR62W?YB0ovi5U{tqjCUC$c02`C41+t$=&4^2HIG)KTU@r>599su$(S1 z8UHlh@JE>=5mJ!>c<;+hwV9HwpDV8K=-1rT|7?vYz5x#6mM+L!2o55*P60g2lfS;q zGoMmM1VBWYqPWV$3%$~_ulGOgLKWs>!E`xzkKhdvz##Kz0p|;!ieK-^b70VXK$@2+ zmNgL!$x3g2pW6H9Tx@Kt(Z|=1QWX=0FrR#B$$(7hIUpoP3fXR+wQU|x)Gjgg15(%8 zE9wP0>LTkS4o1M%yKhk|*THd-Oo1|-1u#_uquztlXi1(u>@jpJ@ZvYzvvUEq-BXCv z75KG{{e(L2qIldY5w>J0-odw58beWTl8zeyIkpCU&hO4gn1L)H)VwBlm|GY`Vs8+M z8&7~6!ax}=AE^lbjbZzHnbwsk>W+Kf6nIJZaWn}^r_}rkyf@cmO}E^N1(MIhy$Awg zP|qQURg`9tfj+P8m>#c1SL1A(^c9ZYDMSf4^^mlr+x#OeWD}A`$ z3h)zsr*j@n?)R$D!pT&+8J?UP+G=+K)z08o&X@;t(N|;;HeS@I0`^R1ohR*=mj7|Z z_;@+U(&O#jzj(ELP_cXA5Btak`B49-BXLV8JUW_rsLaw#{V))RHpuzF=#7&Cs>FT< zKr8lwkB?6uZaDRZJh{3mX$iV zI1FFp3!@}JlOcl1?lrSRAnCq81) z6!I(+MY04H`lHM1;9|5d=Kj7VyF63DFmkfUSWd~{NnDz z1=U)t879D88_oR1+V3&|=cUhpe8&zr+aB<1Vo=QhvJl5*8uqe!pxC{WaQ5Q0*TAD! z;>?8rGLGUVW~HS3^1G5dJEy3HO4~OczlLzdMg-Ki4gIpQlx}EFo=r}rlP^j4_0yqh z5hw0Drx|V#tn@cPQNgZ!tv_-$FSM0$;;k}P#2CVqCBq3u+2VOvgVw+d#)oaN_rCSn9{jO^T&E9R+_VSh0&8T_-aO5U zWlR8<4mqFdM(R6|4TEPBfFFFAK+qYoAkWILuOSaU5DK zL%*XobIJ*AoyJm6lsQyc?mU4rY!KwcENK`mTQGz_%5}bx4mIboHx;@6G4Dq+Bi33SKOHh@pW4kf}Ag_&VowD3))vO>#t0zZK z=eL^J55J(eoZeRLXJdzuGs%jZWp?7iHT)h7 zHu4+EaU!NeAR#_36Dhyp5r@ZGD)Xw!prsw3F?`2v_*~QjfzUO-X zX(MPT5Y}Nuz+o=hG9qw-)F z?m&n+$o=wX%55rvSP?P6SlZDr0{rjG0H_Rb6yN$8&X)q*zicHebUJRHAliQ+MN!KA)s&NdcU*TDxuZfA z&J&e5mD>OHtOWYLoE(owPOo!%!K5Dv3bXCT;J%v_#~6u}otXW};Qkd+kzp$WxX#rQe|A(yL6z}5IpFi_MqCm z!Ue}@b-X0+kw(r`-2cbv{^rtI%AC;SB#9S{7K#99*Rr2u1OzP@;yT3+xfd-KNp59< za;wx~PBUpB@i4&;yvQ0f2no3amm8|swMQYM0)FJ1(Lrq*xGCHN*Y@#xRl9aqv0ID2 zvPOy-+*ylb4Ygu>AO;5bh94jfl*!CB2L*x&Nj-*Q<6YXp z8OWDnrlJkWfEfg7JioPyuH(EvtW)ip9GT5zGO3g$G-X|AwXG7Uk)RY*(8DP|&a=YL zr*bs;MmG}CP71#)Ncda51i~A=GZ$i05{GH0w-f>yxCmmj8j{zfBUBXNr|1LI{ZRS-?!)I>GQ`c)IN?RRPb8N8|UT18Ti2<9{AyH5p4^d;9Ww5 zQ%WoDze}xVavl8G60X6<{I-5B%W38nWQ!vhIU|VPfPf4!1Kq6Uz&=OTrWOc9Q5C4# zM3jRPhb{0wCC0gQe(M~p8SG3Zyn+>0i@H7e580C{^6wG^MGDusW}r~6t^W3N zN1`rka7*%bD7}3vwMQHI^VdgITmlQrxf zg01hVER1J)Jn(jI&}c(tEN%dCm>_&QPx>?glMLN3twbTmyCC^tex1Oh>nfr-MO z$FlTeXb_I2lzy)(Zun>|YXT@#DC=lA0TjAig-vX*O!myX{=T9O7p{#T>+D#HiuES$ zw=qynYazr30B@YSCX9I79M4FKvZAo8`f`1lzB6-Jt+RF_rmMMrWI=6fufPR1U`a|J z@F`(2sut}tHS1hO-v_*ZCF8ZG$R)?PZ=`aq;Z5`TZ9|!fcO(cR^RG$?2(upHVsQ(k z7S@>j{5e;Ys`UbjVY$-p0yF&J;6HyIY6LC`Dzm9j!w`sa0i9+zgIH~8W}ef19Ss4N zXs+QI%)qBA_~niL+LJ9l(ahN*+1)#4%?wOhjeNspep~qF-Pf_!eIXf4z7e!QAJPCW2^xLmF5L4;3`LsEE zlL*KNk6aiJC?-0?(Z?yf3tG3m(iBt)Ko2cXH~Z1#KAKr%Wv~qo!BsIInKhmQs7Yr> z*$Vk+ukCZ& z8RXUtHyP)er2Rrf&RO1JGGDnwCoC)#n9jdUgsS(%BR{0PlX!A85b1y}BL_8+M%sbM zCo-AKab$UJ7pFM6mgoXono*}jef^K_pWOr3Ld9X}Oo55BUt=i!Xqkx=Eyy!WS{c2I zID_7AKBANsBM2p*Z5o0 z4|aFCR&xcyMv(qOXU74SvNC36enM8iwoI0n#@Ns;+?%^&>{nBjpqAUK26G z1{vHGf;4VtNTId+32gjLw=xJAQuCN%XMiN0sJqHh!e!e)$@1hZZO;^fsHLiWAL)~j z^s4vq8rwE)Du6S%Ze+=b_jhbeq_Oo#+Y@Y?Dkz0+KTfPjoUDk*@8kM)+ip%-rNQg^fe~-|M?v^o)Zz=#+Xt>C zOhMH#G_8+E8>-Q_v|VQ#hEH$3omGT0RQ=J{{Yh^FGNF+nvKXx|Rjtx*+5)$_I&&QQ zyFABS%?j71-Vx!~7s;KswmIiqTm$4>Z;`*G+xu`L{dF!IralvEHtJx8U?ezE11Kah zKs&oYr4FH7uN4$`%i{#1@J`}<#NH#|EH&uykOBONd8r}LRAm1W2egl_(DsNeMwxiz zONK@J_(qveZ*{XYkO5d&Gp&UH;836df(M`n_Qflk!AU7_`t9bzcH7){AtF%Z$sUgr zAln>jTK4Ej6t+EKyi9cJrUZA3ngJ~AZEHBnD6(mC35Otz*9VSgeED)Kbm@Zw`12l3?vowS z?O!?4O3~GQdC-ho*8429<@8v2WwI4PE(f5A7cL6GE}V2*(lY_1vNmptw-mD(O#NqK ziVyCIcnIX20v#uA5u?egc8i{8wdlH^oE4?Zluu;hxvmt&7Stjh(_gr)BGOyy^9{SW z^EXzvPSSerTU&Hdb{!RPIbwiLeJg;GkPD;kz$%YAALb3NgdcMpf63?Ym1o3(0!+b! zr4}V$zIsS4p~Sb5Lz-e)Np+jg)1-po-aU)M6^6WUFcC*%oovZvZ{Lx9-q&%iKRRiS zZTpzk^gXiT&Hfdx+N(64`8G2XZECKSxqQAJ3-$_@I}hcQ^Kh_?qG*q?-rW9T9EHGx zkTo9$%K0jJ6wrSdu2?*W3Qm4y;5)qQl(iPKEb6vCT9x|h)rX;RQBK2(3e=0T`jOa5 zgDn$_(dxB6OEYmz*ZhQuk8hrwZ@AflO{d=9*U82qWy*ZaXyo+U-fR z_!nFAcL4g?4%)qqh{x(+mSgFEM&D?V?@T|TZ!2}!{nVK3cU?1VPSg|-OkN>5!h6&y5VYdz_0jY}kM>UK zuF-A}+4q9vrywAPp%XKZa%cQ`uDYdGSAejJP4&d0v-U2(A8cb|`fgT-{=1+O`sv6O z-{s8@_cJC`+7VMM&d|FQ7H$Qe^+{y=PSKg;@u(mVDwdK#2ZQQ|GNm>v34Bb*0zS+7 zSLMUa+Xn8|4`!B1Owr2pp(hIHO#M9;mTRXr;+sq+9oUubm7GXy^VIt?$L@1g*UCOi zb5RUag4T>ask$JYBX`m+1*8!EIBJ7y3taSuXy>umygF~GVm=!oNq-OTZx!M? zo~}D7&0NOGUYpvDD-oz*nr){6Sd^6Zv~iaEdQu-+^QubaCI0!q=ctyIh%W8izr%8B zCH?O+Rka1_(v+wwTgW%@8cGn~NSMdH}E?1wmp9JE&7yMv+R-vY80)kL8{pIIYM=d1S* ztZ9K^z@2ruXZP&bMKWQnC%>0Z4565qga(CSr?`2#DK-{s(G__%1%JB$81R*hdT1Ox zzI&6D+iApw+jh)Dj=#8~2AOs*rA189COnwJEx}_Ryhw#Xth!X;%fTXJVj5z>SBlP( z%0<1NfG;uC2rJlU;55P`m1gf2-jniN7JI+3|EWAfi zB-d}#x8b?maxyeA5mu-8y(UkuI;#Hz9$){o|Pws-!qV8QD}FzuL=!^8fh( zx*+QtWT;vE>GXTUdqN9jsN2ETBk4I#c~TX6r5+n#*oZtX$-S^ny{x^71K7IM zbV0^4*=h{7C9YpTT;Wr(|7$gXt1l|3ZCF~?RgTW&n(kOwSWE=cY7$FropNp6@B(`sRq%!K*&1Xal2Rwd!kdK&iyG0PU;ONyfX~_?3YVWdhjaS?llb%F3 zZ?B6RTSt@56c-ogV~Jf8YU?sQM`92YJ<>7~0vkd@uw~Ek>4@f)@M()+Utn90YE7;> zLPTz1_+b)Dhh0Yusw(LkN~hiGxN<}c&uubQcF$>Hgk@*BU-<3k)7w?t+qFLRPANsV zctGQaHSGLwCIw^Bhk<1+_O6&09_-zMY79RUq-HcXXs-UV`gwMT8q>Tj-qnb(WUlo# z%sEb9QJ(P}P$H+k&`#ut(R5txJaY>w*IjyST zAtRLF{T-mol#|C}B<_{#!6mgfxfcKwucCAi3% zesh}-bJticWNw_xxYXsc6B1(2JlF*}*TeC?Nm;@vXvWp)0Z&UAmI3Rr+QHnLOuB>7 z^6~s>s~0zHZ!jww`}@-7m6yTMPBPZOJrfcc5yQl>bp4R1iY0%4QCm>RJ&Oiq`+lb`3wqjc8<4ul1@eG|-InW- z-`>CQ?oVnPIYiX+d>2Yvnim&&e&3VN{xI36DT@WP2;kbV!=h}*KI!pfgbRqwpni=5 zV;GcyT&H$=58V`*Zn+&j<0W02lfcU=r2FM9m}O1ASea!%r$T#ZsCumYvb^hU)$GFz zFgeW>9*t~s$BkvuIov!VJVL_zs%iN?Hl1=mJ8d`4j~;+*JHeHGF#f^dM7x5A;O1PhKeY1B%R^n zrh_SSX;&->#U1o`;)nh_W6!$BIBf+59r~>7Hdkj<1kr(8#REAGnwGn|Ufz~V(I3n1 zPlv_27Oy(JycflqBJ{NHRtJ77c`gff&eJGR)s*%PV?V+e zSB**m7w9Ty{k9F;4y+~4xAtq z(AvGU5o+FToof!f3N4HcZO)EzQQSr%zQzQxuzd&o!|(dRR35O%>4iOAxWLNpGgf#l z?kSCK(g%hUqf)YW!tPP9t$L)n(uCc!lkpc{4)$t6OrQ#ePq$)m*yDFH(riZEA~fRm zR+y1x-Rl+*nabc~(Q6rwA99ExcGF{EVULi;*K!-F&EU-Grca1^cUK119v|CP&zg-% z6yKTQN`1FNUC_@`N~xR8OQ9gYXw733mSZHtTalk{j&Ti;CFnT(^%@yG4f>gWOwQS% zt@L1#_P9yX6wO2eayz+gFipAo8;pnc8&X1iV|i(wjgG4aC*i;2GT(d zRod$ZsI2VT7#!6l=TSHG#G2}Exd!<4Dma^YFX?Iu2m%7># z3#@tctDV@Wi9|V9`S?VW7`ntj7>H|jJ$dqEV^g3Zh2b4nww8O7(e-7P4J1mu)=W?} z>+_yD&v$Av0f9U1Ii4z`Egs(TR3_7(Z?y094Sz$#-3|-4-*EW@&BH2y=e==V3N%U6 zhQg%E0y_5)_SR2rIKZ!QDWv>L`-{sb>YKo3R*EiLe6fpYW@}eX%V~kMaorWKufJEO z-yxv;gOVpu_V7jF)w(sqhw4;v8CsZ_xsAhhwlYR0jX&E?&?#IFcGA9|$6m##7Iq@C zVX|O-lH=Q?ldG_-tFEjd8B4Kj_|`ie6>u}?CIY=P6Hw?y? z)@$;y#mgER8c}7VOb^FCO!O5P8dmGqH)L{Yg*GBAx=kZ&qASuL?s`;R*c5V+pkYf+ zi}*NMz=lO(duxIj=Y7VSR?EeA)vX3zb-J8!nnZhvPxPsbHv2Gv~DpWCj6r&FEj0A%!DrM$m(_fc?%m{Rv# zTvgu}phv*qI8$AoH76*VBe?|)CA}f5kXO+(Y4qAs+b{?M4KZNX6mjm3T>Q}j00WLl z3I~rK{PhC1h`U(dl9lvVw@LqIM2xyU6)V0qOpA;v&@I4r-UDmfAU{ACqyLvY-R?bL zV5idRn$h5pcdL6P#JgSYQ}Y;VyE26?Apsxky&15!_+ePh4N6ZQGX(jx>cg6XO3I<2 z8NQh2AwGr6R7fs<%6bE=;=P%o)I~qP54pxEq!U)gCOmkj1eK5o&vmq}xkR-Z=u7|T z)kT-{xBlIEmxgWn+I#9E0_;6xY%=K5OBtBp_Aoe|CR0o3(tyr}xE))tV9NmwHWIgdZ1%ey;BtPXUlV)@(^V^Ok`OQ5~e|1{xVip9XI8*h!N zSxyXA5Jen}-Lk)OA`&r@+8f7b7(vsWX)QeGNF9c6un)q;MgvghJ#|fWvfeMBhm7(kQ1snd zD#Xjfz3g6s3uX}@zZ-MtUh^sYnW3py0iDV#pYFKzB8bKs%oq>;iW7Cj%SA~gKca4=24y$iVEWMWBM?WA zL4}Hl)ZRG#A!D9z%kcHq;X}{Ha?u?QCcxx9b(vR!f{6TBKWceyk29MDD8S zNK>QG3BqmClO9~3MCmo{1cbAt; zCM~0-L31{>nA0-eWo-_Tip-@+{j^LjC&9g8Tcr@x;wg_}V*Q!65A2>Nu{(8n8%XC0 z$MHsOtR8|l(%$B}+vefu77p_DB6mPnN#cgTHr&5*vN83}Q8-tP^>SQZ5D*vUOq+2T22+PU1q%*K0O zmPsvL7Bv6rnf9L3eBp}ijiL;+uEt!LdX3e{TXk)_T46_4f#|Q;nWi*gl z;QY6QQuW-B24SytYIoU*FiB>ozsvs#PY!o*W_f35uGM+<;B)nQ-i%%va9koCp;TSh z`-x2j7VF`je8RNl++|wOo0j%dP^t#9 zXL^C9kWWO(R3<;>tHQHY9Y)yM^H1uX3*}`m+Eq^18G=~2UHc;T#=tUfUqNBq>)dY^ zrl!d#>4O$&&kkJ~C1Vtm8WVj9vRsb9GA8t~zo@o*X8s z2BlA$5i+92zm8v`5Tx#O`E~RisX2;$8)cLR9mR*P!rzy~w&({aU&SspzQXl6L`6O#P1tMv60#I@E%WVHrbVPnIQ{&~6P}n7_i22w<7WPwvsn!!N ztU(0zDy*KySZK%R-hEd6vzqDm(rWezmU<*iw3LeZ8b*WP=@3^5Y_r4eAY8LCKYfWW z`ebkn3#um)zaZZEpsKF8oy7vGN7-*z zq`AV#zzgvwc#Y=K?(l>ctG>DC5XV#MplR=q;0;1eGEJOw!h2pioS3G)MDIML?Lamy zklSZST^T5)T?{;vR%f|q-nm14a0;rY%}#jC9yrGgfGZoblj>o<977Q96!!2@%vH4j zsfI6q`#M>xw%Q`=E{KC0tumiMou8CvonPge$!-h1aZhAfpWd}WR;)V*mH2G_Of)a| zn9W~RttL;EndCbdr{d@?a5i}g@kvl0EO*6z&iOr>+vxQSN9j+#ebIx)$PgQM;(jrD z3=YW_yzMZJ=^MWM0k0_ix0CygWq^50t|8~~s8Hd_sN9!_@djHQwIa%21vkf^jkfCB zqHF&mAZ5fLU1NWNmH#^TzYAU`aLrp+hQUFhKrAt|v>hA}XYA0>b^Ki8x#l0YXLvu@ zH~Z(16>>1ne*qkFvDD=g=)Nv-GapI3BPq3MNl_J4t)C7>0e59CY`F;VDPj0BW@qEM zcD~ei{aSq`k6$B8A@`~rFFaGq(7+_q4cyIc|J1Io_mnHB(^x1fEWDVW?!aRB0@bK| zhxFG7E)eyyPsB|<0}S|8hsx>hDql=xx`t5LK8=Gd3B1vb2R#4sW=nzVb-9ZJPS(_k zsO65(&#&T;2mKrd*MMCsWevJ;rY``5zw;vcbZ~ieSk83}Gz7ni#>6Gk#9EWc<1^6C z3qQZtZZJ7MR@+Md29VtL{%ze$(JT_kBut=ZA!eV*a4g_pD$WMIdUJ92NBmh%(@G@= z6YGA{FT*(lk*AaBf>z z5@m~V`w5a8-dEZviKs4TA%5Ze`Qf`EeJbGLD^#i6hi95p?qt|Unp6~hfm|v2>FK?u zm1^&+Ln)%TRoX=;uHfDaHXn4Xpp|)FQd49zZU?gQmGUnvSoe4F~dQHYc<7QW;GpuDz2l?(i-BU#~z7o8GwvH@M$36OpDAvs(S3 zRX!z9eM*~tVa+uBga``aiT(NUPvs*ptWm|4Xa$ZiLpAq1?pU<65T0c|&J<-YASvN- z+^z+;wZzcO+GxBYAbXYSRjtt4R$Va5cd;q8*=Xo;L_9URF`oZkF7ZaPqWqwT+$!re zvwVJMWKy5nB#UQQQ|Zb0RkxwNJObhwF)~KGPzN(isudI;11f7MLNa7DY@-HmFx1(> zzZP;uq}&usRsK9dIfBn{jWnls2kND_Mo5ilHK3O)Et~_V|gruYbC3Xzv?&@C1j#j%Hkp zcnp0y5#iCaZ3uLCN(I-nrS~Cnz6esnhb5K`ZjD~efS`JHh-DOK1f>fUHXnm?TRr9_8VE;xekI17N4?VWEMSE=Hc~vW5o~~c5@O437>E;uUZ3iGCmG7=gi!iT^y3#Lr z&W-XCx3G5k4GsoV!q@hA!IVT0-cg9;G5w#u0kis3{u4H(k2MIRgwLO!$=$PBd3QYw z2&~i}L)#9BtP}MS$*G+yoMK?nX(AS0P(lW43tPR>$q}a@eT2Kwc!59R_TOXnv!2P_ z&AL#gJTuQ?^*L4S*zr7@Hn|0Zaa4R+nckM~k=a8Yt~xNfW^=^YgSFFInrqJJPnDG{ z6bq(Ql^jn(JVT_dmim%eDO8pU`CvY{77oU_DyF?^<22e2mHA-3K>34 z#qBX?|6^~g(CYg)k-{1ScWlA6R4lzhd|2+8YiVhfPv+d6wjPk&P`HX7vcn}&q`b<< zICSqT>$be#3bx9jcT%bhu6VtAPP3$_L)Ag+bsRdk=wR(tBQgn3-r!>@@fm@mDqWR>X8NE)q7+4 zqfMF4gw%R&dHwCNuHzJHJ5bX~8*A48Q_!r?x{gJMR2P`L2$kxEMhE&WZ%uK~&JTdT zL!|L6$)5^=YLPkT9J_afM=%GTzr~!|C~!@D?UwiY`?@RQyNO~9=3Dx17C~}iDAh!L z3vy$_X*2d9ihKAp|Ip=An{k>r5tQZLEzlT6`7i$un`N|lLP~6_F4Xa+0?)U5CE1UIx&Q?^{`2M?Z4SRKsx#D6!0QV>PkfNc zpde$zy?4RUrFs$`g*Tc5Z$GSKWJoBozlelQ9A^aAQHCVM%PE7TRsBC6>Mr3b;u>Y#JqR*8ZTNNTENtABCC6#k8tmt`~7R}MZr%x+qb}wAqq&b#Q+}910p&L zhrygXP2sQgP1-?SeW7eRpP6W?v^1B(qO=X)Bm{+}IA{hs4VMrk$@R~y&)JJe7J{pw zZgXy;YVQegu8>N@CBzem&QTv9tPNeqUB`XlU;Z#vu_!9i@$?mE{^! zDW<2EjPX_=50k;JEDBg-cUL4(%MmXfj@$RlkmU?Jm4PK`hm*y3C|fQwUj6(y?j|c{ zbK@M;t?K3xw zJi?3H(JnO_YI#S>% zJ!qLhpzM6Lbhx>D*;$2%Kb|YDtHLNmjGraCI3ir-fliASmT%@m9+Ama^%;vnoKpU2 zZ)Fd9PS1}$N`rEgPc9EFdf^`*JLx}cZVv5glrXG(HR$NmGn{nE~fu96?@KyC_8@(60RTU3|2RqbC9;V$$Zm5{BqjSY{NvTSu^mH^sUb#KQJo9R+Os9mCz+ip$pvd!$Lwm>ff@I^BRDy-Q8i24p zrS>$A+Ck6i=NLm@bo+{b>`~67B6HH*+5>EGu|k~klLEAkpAhB$`q+o}qAE0I)ag0t zI^8(LUW#|jHS);;Dx!82R0>XT|bCB(&=1|)RXY!Kk*0?1SE z5E?N)TI1BL)9!gNbXt6lwXG1tR>f_4SWN$?x@;`tE8@})_aEhh>YUGyj`uT+-1v_A zO7_Zj&)Rr|G3-@qss0=c@w`$E%>&-+fVU8KN!ZG4?MWAqBh^)PrvZD2RvOm zp)P#Jt!Our(C2$Il3X&Q^10X3u(zx|rq#2$;F~xvE;;6(GS!0{N0y&Ek3PrQgS)`i zP+bM#W$3zZ&znET)a%I$!9fO{C;?y2LjJce$AOGQr&PsTl~*=E)`n)}TzR670i}i_ zrvFpvH=e96h!WMaR?jG$N!*>IrXdi!7<=@cYM3`$IhsJVf8{Nn9@@enRF%zpcV>;* zzu2Qj+}}Bs4YQ1~sv5mE(dvADbVN~gA!(at+n2e*zkSm}h( z>9w*l6hi56-}hAIPJ~O>kQVvMqO{54qSX~8a+r7ALZlDjh%&YiPQ>`#T@2`8HY}Fa zoY;lZQqTf0`G4g`o|-0f21gBSrDuqYPkNy*O3pr4>oj+qb8iA)Eq<{k&yh`9aQw;Ag}%WJcA2$VLzgRVu1n}XkvNr&%AqZE z)2bB&uP+K0oV;h`k@>;L*Z36{ry-^yW)bWzW7-bP4uZ8Cphd|tYp1-a^9>#?0;tos zAQl_d-XEE|Vj`GY{OPVmmv_y{|9JPXDHV_n{8`-oOSfq#Ou}UFD5i;(t-M!p<+5aW zwA8bNfc^^JbEEJ0`3<6*A=-iV8#R=hAaPP=TX1b-zai$tj$o*az?3Kcl9a30aMn;`BG22_sR{*Rs!Zq9{k9mt#5^6Li>YUP z4Q6VQq__Ji;i|G@gM4-nihZ2md-zZc`FlvWer6DC^vUs&(K0@M6>@PoYp4OSP(d{- zU8>#LQhZ0~gtu$m`1Z)|NmaC6@13XH_7!(2=TX|=v;JgcwrE`(fswq>{qO`t#GF{f z80=IKd`jp+7IwHRT$nsFL!O?@us0Xoe`QWAuWX3YFco_H(7*H*JfX3-wu{oOCD3-q<{KQt(Sx4U^_Fwr3Zm0z`mSmR8b7oz zc^iqisq&-eIw-Heq zCPO0MuX)oGR8AX0F7q2gF2i?qEU8_lioPFf#AlazUJwH(re5O5mD4ld6l9zwV!SIt zNl#Gqk6lEW_<9xlZIVNK1$O^aOJUkHtvYvQTnOKA>7Z<~(ueb;XDA6;peraTI8Iny zpUXM>Sc&;IEXC*-D6`+BzF0QiiM4WKr9HOFN9=m+M(%F1nX-?an+_*yyEJwm3D9dn z`n5o|XmypB9$&CQ1~f&Jig)K@^>VmpF#pzV7|VQ7IQ_OKr}5_?;jP&x*LwGIAJie?`GdlqhM&WJMu!` zJu&BPB^~#5a}El2=lfDpDP$z%)78tCRQcswE!UJXeD=_)RTqUPyWy!S87;!I-}jME zdnG!%{QEXZ{4SpqIT`*qT{Ch`&1XH`kApHN=}azKuI6}37G_I`i+Z}hGPbIki|Mep z(3ryOwrVt0bu2I1=_PqnFI95O!dqK`$+`%fCOL{-r>#*u!w< z=FYh$m%AQ$G!%2F$4`o<(Hm(AgDLF^2u$4A)C{js7MVJ1h>oX;KWBHQkg z3fLRiJBCQ-ad5O=Kh5xf)phB;H1bMbH~F8D@q-(BGvm8fYiQ*aTR~@K^m$E9kf6j> zx1DfOKlfVCz3a&hwKDf?${^0n^RJsik-e|#C9eOiV0r*Dx>@N7C|-{$rH164tHqejBBcduno zcK|x+TCto_>LO(@6W+^+*g91ufzva*lT;k+z=Hb%PUEd8&TpWogZIONXouP(Rn!Ke zLx0|G*x=c26!dex&>O#ZwKIBS{-Rf*N_(L=h4)+kp^@VeP&KkD205a1BqI;N?jv5B zbI~TcgSJQJ?<2x{i6;QGjo{?hmDNfhG9&MvJ2SLWKM%0%W|nYk#cje}uZ1QB`W6h< zXWQ8%qKk_L{lz?&CfNli$R4y;V%)eTx`Ll0zBE4yUr$*nTxpGJbJa_7IM^zm7^ps?Jpy+c#R7E&tbMd8ZqNM0f_!YMLUWZNLl0Eq z6#w_M>&lESdm7T$F`ijHEY*k+1j2n=D(6!}b@<1dPBt5Ap!AG8mARn{jXV_TLk;7Pik$tb2%i zeo$me?S3T;<%cd=N{n4pZ$iJ_R#i16TdBvY9E_0{k?lH=+Zyh%EtK~M@A^Mc@^WLx zB_GxxXxUT(-4=wx$dNgEM93j2Uz2dfocsuU2C{8$*aX|DFtl!8{WGDl{ZyM=3c>|* z&!*e1@&v^t1ykzQy$A{GCSPI+Gbpbyjs$XlMBpI=-?W1Lqo;cp0&j8-eh7Hct1x(9 z?8)7VLc4L8%coBTbLEpecmThq4fwTekhLzSYs(8lVjs#QT{~{Z6uCsJXzaDmE_mya z`*vz!?qg+90-meM4X!grR>Y;%FRMs0mQm)1WU06}38IQW zv93#5nSX5AT`NfYH^|EKdhKTi6a#U!Y3R~oQK-DmD-Rx z;wjrhBhDIE9xZX7PFRHTG2Ee55_C1lw+aarsg}gojnSu04kD(8?ow>h`O&WH;tv&4 z1lJ&lfu}#*%vu~@jvb+xWra!+2X`{2U*jw2<%kb{KQ%sSZa9U-TY7@p+eIt1xP@2- z&rfL*JS>vao|eBLR#2@x$O-Dal;8WH)zjU=!5Y^Iuh7eVU1r3z6vGRlvJ)%I=^1O~ zS)cYj3c5VY%ITg^J-NGeB7eUKESO9C=ajpnvC$U+%6QQ&#Qcx1!BJyqXjk2{r;S~q zUzmG!UvqA5lLS+2XK$;vV_#KVssdivVHcdehF(2}(L{T4 ze7B76=%u!(3077q>b>O-B!9;PlRhG_hi`*mvX5j0ZxTA7Z%^GqM(@65$1MZXN>>;f?=w!u zabY*P>^o9r`~9?&375Kart(}*pIT74bM`nj;keEoC0r*!6{U1BKO(l8xA-9)57r{J zD95J8dys`C6kpD}?dx7s5pp5^_=wXlkI>3EwMD&4T>waKRR8dCp3%?5M?LB0hgG6) zmZW<;ySX_^R-gDg7fH=8s6yrSd%Dht(zAr=f2_0#XaSfduvTk+}yjh0)2Mv z*PwskvUx5B9W)_`GSXo`$gWT!mo+uLPzi*XKXC5%C9F_~NTY*8tl*kS zwtrXfNq4F?J(P5Lv34JK1`)f+C>H9BjsPSVUIxP5kzHLC>w5#|!&>*vm9{y&_BF1W z5)0Pu0pxcI-gIRFi~poI@)Lil@Pp-P@XULY7mqNC;I<^8srM{*bdDsY_oW_Dq+>s_ zo;I9lFrT@$#~u0(Vc^{ z^Ft?eSa$Q@Z$;x)!H9$L=)BW#k?k0R9eO>9_p8jd4N$fkagibN&%B`N7FV@T$_rb` z@+eLjBJF;Gm}!E_fx^)}Fr|!yIdKU*k(!hsr|1wTS%u+{Tk)p!5*quEEWLZ$?H0&S zmI2Dl;avKB=QCndG^%1c$?^&pd*$XMcs)3IW+{tWGf|t{Rwx~q$LhFnyajP20*EGm zABtr6d&()<5Bk3x_=b2=M2p&zZZV!#n*u$f^7(RmJT-rwF;=2(A#9vI)iJVvk@gyN z#o+<;e7=e&aXBDV$Gb=SJ)8D-LQi(`-I;`db1yi*+_~N9`Jv-(pNSv3Zu(+IrCxDk zOaN=NdDBI*7EMM{iCS@bYBu>pB{Y|II=ylv=Iq-jF6&>5*rzv;^QUUq^~`i!#kX>}r+z6FVjmcKnN z_Kg2eLRCsugtp*w=|<8Ze9Ac1!*Ij(V{Qngsr%XZM9rr5{@ZdVy7Bn4oBole=Xt&5 zvxAasNfqlg7{MJadmup_k#!eX`R+|8(e#2Z>-Y{xa_OoryxgrXPGLEVW=@_Hw68oP zO#f@$Uns)qYe3_kHr`bcBcifs)fMOQ{m~T3?grZ~*NG=;oo3oosRaGLdPe zKe8m5sFVx%(Qg?vCE?ZCvId;RN5B_6q+Y!UmENoP;@|0Vp7e)XBp+6Ju=DkaFtmWw z;hm-=g#YN6kAxJxR4N3{NKEt^DdS7QJfo0t{`#QE%ivl>eDh_tTYUGaf2d+Z#8;tM zUTqo@kq;ywA`qBinfjpQ6h7N)f#ONAIc=byi`XzvneZ)A@9sAK8kpc72OlBD+h8Wf zbgmAhlK&Pfx!%Pbd{ZNAkbx>V={j&zYKJ16zKlz^E74cZmtQR1{S@BCw_2q7pHTxI zvXK!CQ!qcdMt2ZrZROvBUqSD_>U-_cslWwBE=IRC-*ENg!a$#OOMqWj#oJS6*tFQn zs^I+N0KTYimTti4GNT&6kgIFiS#g{sl!3MG5II~#5&UJDEETMdZ;U$Sfz}i`9%|x*?{EF?-C-4yQKbB&uXyGIfHijqWh*okRLBbAKaRDJ^uOzVx|Dj@IWmJYAW)p z!eEW&x0oAmPw6W?iBadpHSIvH(LB0y)v0Jc9V(C23q`-$Dm|}O=`|#&5&496yq+Pv zo&}O~-FK;w(z9~>lmNfSa|qFoU(gewylX?}NrZO2wDt_uu)sYzUM;e;0o9Iehf64y zT92H%pQtx7li+obwVr$DI|wQGMShxmBwB;n1Mv&^DU5nNU%>BhQBXY!dJT*)fOzBo zZX$T353>=q`Px+;NuQiU5oycPy$`g(=6RvO$?p(jm9~=e5TBcfb#=}%d9vnv%FB9| zktMdsM_$J@P`An{mV8{A0eNFQI}nt=W?YK+x6_-f8l6YlR&IbI-Y7FN!m>hWHFGRhvr>`}HU-uhV zEWbB2O4*sk$E~}qi zqEvx(q5Lh0UOs%x-dy5ib!UPGnw?-MPUD2im1f--vKzCvV`t$u*cU9^8F4OTgvIf~ z=Cw4<%Cc}5*<<0v{T%-dmTRD#yN_TSpM$xh_t2W&CvK3}rQqq+dTi-T4fPqZFup&F2=4tz%>HT%O4`>1IJ^baIm9`q zQRDx{G#95eR?d${H-nQsUat*(l*v~Q_P5iFMH*ssJn$6&MJA(AIaxx-dD1yQv5_t~ z?Cc0xaV7XRMHnbLq>u6Wd$jiI&pFhtX3pU)TEW;x3Mhdb)R~RWl+IEc5c&RqSJUne zbZOvs!l|kf6knyh?y9iOdT?gB^e6^Fh0~=iHc>H1jVVR@;=p3WDV3i{-2qipsn#~w z*rWpW;T!K?R;8Td`OpZjGUQSeXSu{V=xlyAfe?}~5^4!eHJ*x>=_lXg)XMbCo zl89ZBP&hhPvkAZtgxrGq;O5`tS^q1-PqSU-={i-eNhQ81h_p}AV-K`vRPHfrTj0LR zWkUt=jMXx(SMJqi@*L zw~UrqzSG8Zzs&r$`)k*sR3G$qWJ^^HGQ2!+=`rHezQ3;126n76%_~7Q=(6A>nH<0F zUz&`to9K^xtis<&t2cYsg@%QQ`QCW{ot&9-qp<&sPgEk6;+5aXW1Jo|AE zoa00%&5y36B1mUp0nv-fY!3$B@dpiXdea)+IfccV*!hr^=$kCzHWvE><|0*UV;zN_ z1k2AAJ5qH5GF2RKmWl^8QIaCusi%;KFjJyU*sPG-I6E1+Nda_Wun(ogkzPj@lx3qU zKMp|laW9_wt?NSpQN`KE*#r8|lxg$e9b@QE8yXU8SK*aYi~rWCcI>S{_>T)U-=Qbm zNQ+q;8p#xo{4v`)O8}Hp1}*D-G@9z2FY~~B6R0%v7~LdME6*EnPT|bg(g+)^RA(dV zQ$0;Hk#YuGz0^rZ572QOr&ZX_4?~5uC#OdBb|Jq`eCeYYH}pN9Y@9GL#yVT@*L3zNBc*>T^D)yo^zl`Z&^R7m#TVq63>Onf@+KuWT$T z>vc4*N9!XpE`qL7m?N^DH3*g`{~gP*JDfm?tXEu}U=|MQfin3?FDK;2W%_XI9q;~D za(f_i2YvIQ&tD6BuIGwV_dE&WFM7YNpN4 zS(BE+>_|DgtM0D$Zo2z^`bzBFH&gErLcdO*0eE%(^chvz38)FT7M znVqf9MKeH^B7I1!hO>niIoPn0e;)nfr@l_vS42n7H&HWpi&3}5;eTU2R=Nuu_*ie? z&G9aP;eHhMKpV*iS|0(1>pgjY5`W8xIv&h3D&EG`)0Z2LVs`hQ{xB?`j33zAfcD;W zrY_KkVc+HK;I6OZj4MBMFgZ)PRzpL7Qm#y5ik!==$mSe_d|U|s5qTdBN{&?&4UR0j zxZOk7eyJ_9wv!tuIkXVF>eoUYkbHT_kL2H9t2!VV{8Qf!LS!sEQ8j3tId3h&6e^R776)x} z=clQD@a&bjeN}ys9LB-q3sDd~hu1Cf*v7L*0yUMm31#6*n)=G*SL$PRbh5Qv#g(y{ z;=Q*w z!qk2|C6)YOMu!B{J%pmSo7RR-LIEqO4>k)))jYs;b!CHPP)1)Hbpe-2$T4^XGTlw2 zdhMc?9Ltpdt%5~d(6L8#K`aRv6216fCk7V5er{UPf{v94ZnL`VWm4ha6eN}_!BZq zL<2TZ@#ZNvwilaqQ4ng9t-33Gig%^{g~LtOH2YIB%2oYCCq!0ky#N{4;_IsqGAxPN ze!PycG7dnfOzdj)J>|u@qx8vdV_$oB&y#}}3oG&Ac(w0IW=fqEluiK$%mSg6&hCky zB1oE=uh$4n-=ehjCpB0E45uLf^m(DB=!~A z2b{~ZZ#y+bPGQa*)re9Rr&`_%y5sG+{H0`cxHQ@kNdySa7cc!{(w2TFRF8OhHzO%f zZA1t_fBgkJcAr|;AmkPIJlx+Y+$9ur(D>qu7f$LbK`|xmG1vbKj#>J-%?L3L!%|0$ zfSOgyd%b`Qe{QsFl)WfJ{gHjyxR=cm<05@}*J0v_tPtClRJ^QZS>TBqbF0NnJWZry zofE{@3#`DG>R{j8`wvL%ILX@fu*=s+DE^2P9{JrK7=%>k;#OU|IF87TW@5;zqEq%p zFwpI!Q0XWm!hob{L{?SfLyeGp!{w-HWYv4l%uh{Ned);F8>LgAj^8TFkoh-k+|a;6 zKMAN`1rp_ZXn{?hYeTJxfyZQTZe~>6)`$%8MZ@sNcXL-oB^-(+L^M8P`a&F6SKek# zgVuJS=#7?Uczh{B=t4x~u@@M4E70tP-$RyXx~i_GA)Nf~Q!2=#2y>3=lp>rIxk3@P z+zqlsO^Hmv;Ag6LC%Y4@$L)t2n?@f)A_$U}KUI$ULC>bJYcjr+jq5Cgp zNJgq9sSd1(f~WeL8h~OYBr$N!%9C^bHpF;m`mu`9*6fl2*@hSX==_8Qx`gVcP=CNU zBrn)3PwrX)`fDdv!v1{M<9HEx7bM4Hvvl>eGUMSkzxm^(*T&on)u9A1XL<$lvWkmA zoEds#736eBqT1D7bHGc_5HyGNI+np2|@DOI>@vu`__K?h0dR9383uEU8DsR z|7%qYXN8&?xO}i!fl0@M8$&tIM}2ARghdD(h&U|$d^8)F%MF-kRb$Lx7S7dM@0;4($yMGTPZ z>uVpy6BL`y+0k9w;V^nD{r=PwP{pr3!VLno9Xu;*DL8e7!}0w86Dv*uXJpHtw*t^M zAh~q(RC3P><@oL5MM*Gb;mKa7e@@FHW;+|R1afOYO=JY6(B@gqsLeJ|i{<#Tx5c%0kYWtiC_v1W9KDOZ^0s`N>p zi!#d~g9iJKxk~_*pLH!hZHN5TZ<JWji$mJ_$HOr|ugSQvmAepZGKYp+mG4d_>kY{v&$J z-n}|nI1kivz?rpco3y<~fde3j;}-29fhx4_lcT{CEv2SBD`F1HbDZ7qGKZU+3ZYot ziwkowyf{HJ(EhUg6uuF(Q`$ExT?g&n^{fp=tFK&0Lb#*l`by4G;C^WXpYk5jAjrlY zH8p0sKHPC0-+q;PK*2U5#6`V{Yb=E56rlHpaaiRVja&vH$xLOaXLm?RNF|y(o94q|4!x~7Kh>QtXt$`6+AUyUTDlm0Fjl{90k01@)_ z_?;PldL6dK_^3nd?7LQg?gz%@8-AJ58Rbs>Eq6Qv$$lYWm0#j{z~RDz$hsn5>s6-$ zLz3ehCox0Glae+t+hYXwqs-TD1%jqo8edE*Xdjva;Cb8py|O;ow;Km&aPZvu+?h%` zZ4qE651*N-^3wPhgAjW$1T1k{qn^k-9n9#R)QISNp67v%GFIv$KUP5KRrw%Gj;W|_2jH^ZmKYZHz9{F?*-v)-(7OT|w z5<<}{e(4UEyXqfw0r%1T%smd$cZE$3*QgW11rnCoE!M?3eWzvfBE+sT8`2==iQRHh zg!S#l^kc}v0Q>Dxc2gp2T zEj8QDSBU>h|Jor;U;WxDA02p_d4v8`)JL@U*fHyp?G>5H#e3|JG}=2%ByI0JUx~9m z@40mLoY*_5!iwj0jS=St2}isrkD1y_U^0Ji1e2X(eJWBE^hYh(c@MN9_TJ6$Q;yTH z-Rb>NgI>*{H|L-C3e}TwfR2PDut z_&RxHxoT%DT{675`>7hi#E~ch;FqpCvj;g8cbyQleV(Wo7`aF`m|+x?ibuoOhQcsO z5klySL$dY`hxs9@S5)qnndjO1gsnQ($`?_@tp)FWw1=evYuzWBl8xZyB*yYZc5vU|M9Add;iUo^1w@zGddr_ zbuncNXH+Pe2dJ@xY^Yy~Koa*FxA0V7TQIF$YC>vu0zLrA!h+(uVTb32D^f5KA9Z7} zm36D$e)7!;?f!%vmVXo4tr9y;jOI?uC*^OyUL;Su?5>i8MA2KeNE;_HHIpFo2_Q>Z zoS*jBRB;_Y6n)I?05N{4Js0tH4kN~X$er$`0S&ApNs+(qTenpm5THk)U6k@3#f<Xrql{lI_sM+Kcx8k?BmQtG8G zMg^BmS*!lA-~FloV|t`KOC71)#~7WDJKJ5R_sXd~1((kLmZP07`eA6ews2-Pg3@bx zYISsXI28Z9{EW4ub6|LJnC=+xT2*t-;I5NX`(|8M#7|-|Gw=(fR+aGfP9gpz)sR7*+FyVv_%@U@=#U0wSk*`VEl_dh?P}UffcvGWwsnJ z@?VO^r-6pPi2dST@4y#G>L=4RPP0gMe@}iLHWU3xFQvy6UB8`Oen$XZMw)_+YjPgvZ2@hMtkhw^+{ zovgWT()5wSvdTJ1;+c@^ zx)|pS5AYo5PN2W>d34D|YUpz8Y#UaPv+ho6-E-)~w{VUwr>hU+j|-ss zil=~h}=-7jC=9; zfmB;InMt%`{08)-fKs>SI%1+0TNFa?I{hqBuF_X6H;Cu5K6W_PNtfp7%XXK{})N4Oj zmOPlb+#ZWRsXFG;OwIuBCY}Slf4uGDqR`Gp>t8*~rpMO@7UbpvcAN^oUBGyf%S3ct z{bt%F+VeeW254Dt3oly)#mk9L=rc0uBRDC_s_`m61Z8++Q+k+5G$Fyz#`l7y_G#cl_( z#>F)UcK-2he_2V}*1&>QQol*5UJE*cY<#im?xP~g)XJ9$jfkW2hQ9a~;8@o7pEs)! z4^5QFZ`sk?X5eU~6JAOb5~f>^DNXw)u(m5JkR{;Go-nS0PH1D6az`A!M|LWKFtczP zHUxYrHa^QE4^>j=ia$g+(ms`tQN0w59iW>AB!&OBLSTVTMlo-N);#>ft9#?Jd$)oh zI$N3JxrL|m8Q0G}edf;ze5ptM!?F|yIkf-S8v2EM8I?*p0jF4i``KWr)jOw%BNR37 zKxt_uK#t5W?cutcT(LTimZIS{4vHby%@RQw&GZW`#}beV4;<%y82F+A4@1L+TXM-ObQ4}S#G7cq^1 z@{?jZ=e|ywzk7El?DV^er{4lJQn+nuFqX?h=lK%WSe?`a-osDL8GIgyVc?3d`1YiTi^lzqr;LdFm zc)sD-AG6VO;AeR8*Qk})#4q+bXx*lZ;Oer`R|dz!&xh@+&oWCTjkl#zgy(w7ymP=M z8F~~fRh=&Ta{Xk149YH%U?rqjE34oS1`_8}}tQ&Pk_KNfdl zht|$c7Sj-26=s8h2&pF)+M)oI8o%+2;OqbelbHeVDxJTp%p|zKBZq(ZQZJ|?mZrm9 z@=9xYYb}(z3Y`qHua@K~x_7>foFh59$~iM%{w6sJU&6fsEpE*}{wFN)}eylQ^c z9o1L^ldmtUEuxK4yv94OQhM7IHVE+On+uzk7i&58i%P&Moq!)EGtkTtrW$@W8tc3E zsd1jSJHW?9T|HdFPGn{LDbN-G^|0%>H)z9ufvipc`m9JwTSIRY_=6Imf5m@>Gk=NQ zzr2Sc4ka3~G}CVY?jvz*NlUyTiG{d3(fZOx0qRrLt@y%` zj8N~lYyVsnW0XfzzZrLYn;3tiAo+LW@K0OpDH#b>U zy-cDt*wUw$Ed;@C(*@QXsZ2$5x&=BDu#sFtN}Iecm-=QKP>guIBHRi4S3BP47Sp?7 z0aIe{0>DW1^`akWBEE|SUm5`tNo|cr;3N;@I!S@GndgsVBB1}cLR8NB!y=D9r2Km6 z9B)~Nys}{vMuVuV9i`6lq| zWvgJsu8mXE&=@oD>P8KD0a0d4X{T=GgS7{Ex9~};`(@rp*~hgb!+_Vc26Jvn?SR*j z72H9aLj3?c!^yF_3{ zU3Ci|YmRSJrIwq+K{S%!QyoLO4l)jvX=YvBYVJV(uvF>JUcsfme6TjTOgaC-uwxC8 ziVb-#$4ms4y2RNk-L6x+dR5;IYaCLCxvw={F3S{C$jZlg?{OFsd#Aon4tr){AJ>ck z!lpqN#@Wk=1#?E=ThrwE_23X=B@t}b*6RaYoSEcs+4_0S2l#L7;!f@_;?<9HOVR`v zoy$B&YEhFIqpZ`Z*S|dZ_SRBXIbih@v-7PPhc9g3=?3`MQE&xgV*XB4r`%@;X>#Gx z8^$~s&J4)DN@)epukuXPR0NqZe1vswkL@*X*az5iy%cAyKb?JWYPS=?rDQ28w|M34 zs1YG`4o+Uc+R%yKBpbT)Yng~8!|g1?Ku}lpO< z=|`1&^x@J40U!0D9&m3#nj4|aSS^E%ytD&6-sIeCkZw0w;sCkQ3sJOrvtEFwQ@5B> z4!dt&^TsEnF2Nlbb_l)19q?hFaNiQ_*#{qXdJ|l@r1jLjoYOM{sdJ#cUuZ>gl&U@= z)?ZBgj<-}^Zo>jNVf$NwP_9-uUpp`U7gY3@{c#wy@sOxXkfcIzqn{V4ZYMowsaiq) zfPTESx|eqsNTg@wT;=zFbUy)%GM3EAGA5~F!*>BS?{XFek6ZuA@gmF{#^%5HibkmBDvE$h^kp=Idcxx z%q;R(8R96Ohn9&qm1*+jPRn4E4h?*DEm1GFJRTRIe~VycU-dq5ZdKd13W@AuW!z1; zt|nw)QvBuetTQu=ml%EcYE&6#aotO|-@f0F$MhBX$DVp)O^x>huG<~k)BcB}|K}`d z)j_!iu49E+a9pdm;`%<^mXtD1@TiIlWBA?z$?sB*)v?&qE>>Ogd+u8}HO~XjX`;g+ z2PHbX@D`@R;ZRPoIj?EN{p-46v-Kf@oa!(k_=hBgy^UT24wea59e_)NvORe~iReuQ zG|W5}UaYO~(rY&2%Yfn=g^~2$6sD~jeHVT6>#d(L`Gv#=Ey~UZ_kL3w4w*%Q!zdnw z$JGCUivL*u5f&!-G4$mbi_IAi-*4Q$uMS-HGm!se?qR+d#7{{zbW~f^oSX&QTF|QJ zP`#o!AG?VVScqHMD8S>H)#f1w%;-QWeXwxamz$dBH9}o)9ryAmMy!+GG@Ogrq^=|l zbWdhhJMICUK1DdV{hnn`E96J}734KkShHPQV?=h$c2sQ5g|mNV=A=GlAcf%C!k=<~ z`oEqR^evPDQ@{2Lj}+-r73qWmw00YL85|cy$d57ORBjVjAKcvN2AihG#QBU@NhRrhdfQ(FwBN&dN7TfwlyzDDZ)8@qi8h?Qmg zmCqlxYHPjp8csS&5nfsOKCo#XpIWuIEP$()GLsepnoy+$MRvm{cdQ=Ix9z_k*&>BQ zK`YX%4shqYBIM5(njHUE+KP>owN}xxt_on021;QRYenwO>fHNRy(c@uLD-c#Ks3O< zPG}#cD~2Py4#_q@VN7MS$^}72D+-UEA#CeE9z% z?mNSp%(ifGY@=eCQF>EQL5eh~q1X@$P3a0j2#7Rk0*0z07K9)wRRSWtMo>UX$S6YS z9YPHvB|?BGF@ykty93r4m?Lwa``r2IIpq7ky;ooFdY9oaz%KPt7l(-10W> z!R5Yr%7Q|402wA}d68tinfiKG zu$?Z``>|zBxL6V}ne`^h1}+QpAG76z`E@0u6ic1@k5V)ALE5R64nm*1N6!N89lXiG z-0XXmi5NLBznMViNurTK!<`izy(Gl zW(fP$=Up-#_GQ`K`z142sz84s1p3h|F@^eX++O|HjkQQHA^`<1=i%9e6ID$K>b=sS zzw%TkUHU1L(Bp@jus6q^h%I{gWXLB+HCX`0vqO4G?%D}Z17i3B(Ooy-D)b5I2@Z4C z(jxh*_=ZdL5U+LBVfwSU$HPS%AM9At31kce(YASm6hPPXGdxV~SM2{!?{wWVbpklI z9j6taPES9sJTq`SoL&#EDqS6Vg~adj*_gWF;*-7YXk&5JKLcMYnW>cGl*<-L-jFR0 zTQDz9ul;*Kv78n%?dEv+yAadlS=lw^BW3)>Bo^aoX~0hdA>H9Gp7@jY@u}C^=SR*F z@wWi@>`3IK8P?Z$8`85z`Pks229>Y{?uFn+g%EThUU~D-53LPB0wBx@8dBLHAo(cZ zD`C!$+Ru3IW+A5ZXQFEZccS#XVf5p}-rbDP7*lXxKw8t7bv?zGlc#73a= z`LB*)rG5Lod8+xoN5M;}$#P1>^nm#ku!e;~v)A9F14$0uJW*J^=w~^jPCaJ#H0Ck< z(!$VV<+fW6?l7LY5UTH{)(#cO9q|m!D!9ksvcTztDsK-gkun~n(D*mk}t61za1tRO_in{6YL%D9L{;{H3 zG2V6KE~fqGSai7YyK@V(7^<@IqT0|xbxFgB*^Vf(Sm=6H7Guwx%5+5rM*^eh+{ea0a)M7xmhsPoyKL};AD+G95& zCmBR&W>2QU8Um1!k3-iCZTsH&0FY~=0DvR`0{yAP>C`E5$Z`ESQ;u|+IvhB z#6yZ{TZQmO`*X8%_H+ol3eu64pZ(aP$eN+F1+m;g{?KvL_R3oF4lH1V$-FAmx zvX`Vio8~>)DG18O6F>KqB=Zt>-qSaar+zxISdeDu(3dc6Ez`-{(Ll&Hy&vet{BaXdJcf42=*L(*HAizeiMSM^Y zAq)a08NO1X{awGSuK)Iz|Mh3lv@uxd3+!<%{kekj9MC(5A02#W8;T>`XUGw4BY*~p zPFl)=Ue|r#j&o;DhYm&D6`e_{>>=H&oqGtVn|5(f7b4f9qFvez)np4Yu93E=sn8nf z8!{rIq15wPSL~Rv;S4D6+GeJoaIfsTkbl!qTg9hLIsh}R5EsKr`@q8x4owPPn*Wa6 zy^=x`%RYNhcDgrKTJZi(hc+YWe$su37gIPY6`F)$G5*+6D{!DK;eg%s>rsZ?F>xV0xL>ohVHn`JPPSac(CCIK7nB#Y)lTD>#&tFs>fUu8%gr? zS%T&M5T7wIRb3Q#%C!6G$v^yP8lYqzx*g~ps7w}X2bPrX-WgLj7pMT(oE|sa%XEn8 zR2v7xGV7ngV7(CPh(cOHqPdlPyKiq601$5Zj^74!gCLLmaNI)wJ2M)?YDGR?DiAY0 ze0}2Zn!|_Jgq18jtaKGnGk^+9P5D`2E%X&g>L5A4%YB}R&y=vw@*>44?_qE|Zo)Dq zPw2vl>%Ys#zgnOC-!`9=Tes`MBma;TEOt)8SFD9PW9mN!993maTyLMAT*Gx!1AlmOl^y-73pz+;$ob2-Ap#1uu-U zCBKcg{(QNh@@x+-x2?X(l)w0PAjpL!Su>j9s(*Ik)dm~SQ!g>K{S3MW`lA?X#PY4A z`!@v#4K%JDI)|Tmd*;7a&1b!@goj#A;p+Zzom|2z|}Cu zXykD;i12BSe5bEm_9$c(KE3&kc9~wsPxifxC{K5(3Sc0}xZ%}kE_v^{_{y}k04l-) zw?kJF$!bt;!Cc}&V8GR6^Zqby*-aK|azLt0)%~GR*npPj`SC6KjRJy#4zPC)yyf=BrS-627BWNFl7OF0WWineuO8fGo)O99+bDBj) zcPfwN74mDlvl+u}E=5SUpf|fs$w|d^PxMEb;JHPTcH{LeX>rGs=kL>$Sw?$ER=j1jxwZU`S!}@HQUk_*Fbk4n^6er! z%k+R)G6vhWbUSB$Tte$H?)_^$jp?wI-kHN|cKpGh?cpcls{$8%{mdU%CPduVnC=@+ zt-3wh6y{pGFLxTpLduG*yd4gRv?`S*KLI8}l=u#Xl2e1zu^N_1H|4tlW#wQSM-;Vi zY&*a1eAOJ9Wppm?uDz{5F4%QdAbU4P;eDx2-4ANBH2CmhV2QixXM3_I6x2!=84fv( zsjXKGweeB+!Zjpy_4I>e2krywBE(?pv*Wbl^)aRiRUU}qX=LDCEKrr50~1^acItH` z^Lo(Ujz_7RYt3MW8`5@Q>0y;`%q)5Tn0Zqc^{v<(2A% zmOn8#j#aDYbu~-z06H4S2ijnnu*8Qv17G zPgwS^=O37_<_=_e|5-dRbNWSPz81f@_Aa=`lS(Y#EAhb}ggeawE2+9vacKgS&k_ww z(&?$bB%7F$YiaZE&w=C6j z04yu;8vc2mgpC(r?})rp_En5^S`Qq@&!8ixX_>xBOKwo(LTIljjph zUay1Y!d0czE!KNpnPeNR)9>x!TARrArQpp1K~OBN*!VikhBmu>I6C6mCp;o8b@3wJ z>+NYl{^GHsHO4q;aeH0|Y|h*gHS*uX1;zm)Zh!;a&H6gheu5etYIM*;xv&b5Ru+9} z$Fh5H!(K|aU+KYinv06;%CH!dwa+*{fYYRw#i-v%qJ__x>zxKzMStOr?NVF^46 zsJt$=96`Lzo)r|mtUjGA~{4n*lQ$L3~#=@@6!{F7P(ZyJcCpR zz$6wqvU{9sx0pxbdP-;x35nFoFk^Egl$T-UIGu3vj*9e9d#Q91u~97w)&)myY>4oz z>%khZe)O!R^I%JKR`O|UK{#+71ZlwN$o>#FMtX3QEujKrz}@~35cZ7SxtJ~I9>)(j zDr*!M0L7s*@7c6CKOchgeBljp)RTWr%DzkSUmLzVU7i6@&ya!SkI5_U^jm*ag3?i) zo~;{_tQV5X48?)lE(F)B55<1?-&X((Gq{2d#ww_9=>TdyE|I|*k@MR^Cp^R{9>N*yPu#8vH4{_d6XT-80Twe~dF~mS_q9^{qs>r$ zzUHS4QZ$5efjNAFD!LVL`(5!#eM%%k2`8*?IMv>(pESWna{SDh{7XNp4qRKv&cCh! z%!IbDFP!|knLe?v!b!A`GU^=eDery^cTb_gnm5)=j|vzX$nKoq`Hz3LqKm2vqKoGf zH-4tozXU&|oSti1P_^FF4AZt_B;H+Q%PrVzb$uxV<=kcc*AKRb>xVe!B@b3=4Ku6` z0f^98He-vnnF>*&x7K=@0s`TqI7*R6p^01B#}b_6r4xQBlH`@L$`yXS!#VT!isS;N z-Dve}=5g-!_y&!%-bBZGVz!OkQBQoa(k?`=7rC&t z&dYDOe}z)#H`n)fF%Go1Z|{$<&9+#-4rZ$t@~Why{M}7b!-tUn9P20 zvt-8Cg}-1rEYHdURvR!rBksk3k;~WB7k?AYkN54LuVHZS{msP0J87s%2wyiBjm-fZ zmy3t+VO%ua?)!kctxjAe?q@Z5QKZZSFcCoz5m$%>oU#%-|MtJRh}up2y& zBXMIT#&_=Ix^ohhEs|aW%16RAKysMWi+m)7Wrl?4QvtPpA@$^G$Cb-sOJ%ITYd7P4 z#e>Xwy?{Aho9KK0wF{hlM4_Rf%f{aFQi>!?@cIVKOJ_bC!^(PC7o8}>B}BQfEwl(n zk>k}KPesLVcQK z^-pT~tI#)9KY(Gs^F6efNrw!~FQ?>iqjcNqVGfER5g=6A)6g=v(%*%JA0`B2>o{AEuA7(p$ z)str2hL7*}Njer6)xR6W{>l~sFG(tDoF=LoqXq0^w~VtCgTolX7!r_72j`8+CqKot z5VVxSVFXD^Wi=~c?lOOpdxU82;))t+&UlYr-=Lc?!`piB(pfW%-jc$8S#-ou*Z&y+ z3Q|E>ygmf?l4}oo!Zdc%bCWg!k+uX8O@f(wFH>RG!dN4%TGn(wdxN;8eT$X%w6B0+ zRhG}C)4<;c5#;P$3wDOBM~%3VHWwE4qASQX&dlRKk~99z+AbgFY9T-nCP02OEH@R& z*;SZ9K-VB60eh>yQagxw8{JIr9K2e}OQDF{$?6m_8yms-Wbl%gp~Fyp6Tk6b0s6Z- z^hCvkEDyf$>hSPQWvC|)=&FYe$`G$VrRrQo}qe$ zUwSWM$l}7{;xjZLoM%TiO$pJGXMLqkc)cZY!i~PA2#PWA5eJs3%F9$CsL-90{I415 zKg~9*2c$zEn>uAQ0)V~6#5iSMC$?o@^w@U61dilvL%?X+E$V{vn@dVd2aNO+Jkjrn z8Fp>d$D|?`b~I0g%l8c}za+z;K45`xi=L|Kk{L^mZP{Ej-!&zW1Y*@N9ECUM9B1Dl zDU#dFwYp$|L>zkFr&Sqcqx$SA(Q!mMVNx+^1_~JMP1l___b{*|7D{Gn zu<;_z$plHmyjjCNDC_9H9xu-i&`~`2*YGnUP(Y76B(~v9L?D&DWd94@sM3K>8anP= zq_sP1v2nLeZQM7ehhNj-33Yu>h_GY>#1P_@##4IpkMPX}AgC}o-zRBs&{3rlaFYL) z`$>~}3NUiMcqW-gj_6u5=G_<4)vqyrmDSrvCS6@S9j8Y+i!?;h{tBcX((*JYDX4bs zB||<(9msp~D&F`lPP`lr2-MxVx702hK(3hQ3VO&_u-la6QglXS?N7;92sh#d3{R80 zPq2Je)DH%fnjM7^BQld|_}Q>5lJEz&YAY~_`yZkU+-FwGG`bqB_F+@PfW*I<9-9=! zUekS6w4nnOk!)J5jvk?kTl#_oILeCv?|qjFP6B4^R^of04v1gtzyT2t@NugO;g~_y z%2{0wgdH~7?&G6Umgf7bt6>fOHHjl)+x6fWa#TTy&()~}Ax(tIKAw&BVKZX4!9N2! z{{Oq14pCyrxCyTR$cW-q^QmoSEK{$n(_YkcSmCy&hU28`+R)v-3RQ41I;Bmu4`jI} zjKJ3meJ`O=X>5Lkt%ltqgZ)~~@eQ>lIIBA_{W!A^*Nk7RX{MH{BfUH@UZ-B; z!rmASAz=IDFa0LzkdpJ)Do>{xaKsORwH8CsTI$zwjG&1qh}*JE(j0We9Zs(eG?fRRjZ-*8Da4>rAjUPhVf z&gxpB*oAhw(oCI0-hDdLOYIT=7z;KyjS@$%0d@s?#)t91@MDbl-v!s9S&wT~ z%^+v^>RCAwUhsl-EUqTOw!BK&?$?Xc2!{xS0dxUi4TpZBXFdQ`#0PGeM8fNfnJz#M zR%txbf5)D-X1)y*zHHm+eAOzl)uH20vBv5ks8ATsWvdFX>_)*kLJ^x-v=H2zV%aMm z0lhqgl(YQoY18OwR8LLP3k~y~s}8hl%}XALAix_=Ggia&;k55A4HhtP?}CAu`wX*$T_fH zN{Kt*08#MEF&_qU6*6!*0{{FWA#MBW-K7Y*PH2$qs5{x*Lq<_U(J-Z zW?PKD^6ZnNL<)m2+TH!4Zd~8>jeM>M1=S3QU=fan6O`G0#{!fl-S_;A0A8_h_+`bx zfm(`_hELXON|`Xvjq@b6L3}lf|IoUYWFbT8vZbOjuDlYwil&yfDYv3ai26=L zXlpmEk96TS6Q5oPcFRj8^sKPHCqlKxqt`Y7#)*Xlfzoj$eW7=C*Y&J}c;z8>*hQoJRP1Dm0XNuTL(#ZZd!m037 z2@N%mWFk1?-iGcynm+ZTqfBD0hXFJ9&f5NOyR z`xzF$Vi1}V=#+W&1Y={+VB+Q{*%+9~kXvWJ(J)asdh&fL_}SY~LHTrb(R7~t$8{p} zowJ@3PPKe(vpOVoHS6FWp7PdhX3BTOQ9WBV#%q%%njDNS;iTM5{o6;;SswK^rq0_* zL}3$M>N!FmNIcq!>(zmh5;i(Up*EI*1zu6v+i$}PsBt@I?Axr9;z(u$l29`5jWiY1 z8Lm5gVKy-4I~JWQLV1?&K^!20Z4DjI>y))J6A@d15jAPDO(j#toJ3uHAN_^iEVDDw zDq9@v`W63t?zR5?Zgq&6VMw#y*>JY2aMG~=P{q{66=cdAnkJOGTM>(eNo;fT^ry9c z=yxVOh6Gxl$M7|G`EVZ}2?mS&egZnxkN4v{7^AYC6E#DGlNn3BLXnDQY4gU)? zmuQaQsec%I=NKczD*n}03V;g*OaGx^wL_O5Y;+ptbL@7ruo`T&avJ_4gmFW2@6em` zTm)YP5{Wkbk)C37`Z_*^PMdco1Uumm=SXMA6_edhlYcuz$ur==%HzC9#>fPBA!(n5 zQS=8CTMT0tB4M_4Xuf&?{Mr;n*Z|aSP4i|!(}aa|z^T;Nr%bjivHN*>nCcd78N-mq zlHrO!^r2?GHYu_@F$R$<)&_o+y-i@3|afT>KVfVb_fs2x{QEdJGEG2A@uz4aY0Io?VYwcqbsL3G0U- ztjzd&oHfd!y%XohZe7HitoKYNem+ZA(%TDG!HpXX2UyyI`p{84$mBDbD_p*_#{ZbY zA0B-7+F#1)-QhGdOsR=W)xPG`vjQA4wvV}$JzJF%oLVv3qY)7vcz8-{)&*Q)9B12H z02}mO#I^%Bzas~J?B3!*qbVk4c`s+Kdn}P)vJ27dfG-}^qa_zxOh0wl3jy?0G z)!2LKNG$jo6Tebdmb-9I(2>vnMoarG(84clIt|7utQumKUFu|T@;4$jW6$T?8*_N) z*|wdYB7p@QQG66qL!=}u(ID%5*qZ2~JDk88`&2(ZP!HFcU!ju5fG`}4DpcUEQ862D z9U8wfge2WDiXszb_y*sefxb-~E}XEACg7b#y-SNwo8Pp~o(+NPB@}6yl8}C&QCqLz z5#ncZg{0ce0UoA&4O5#SZm3sE(6|;xpKryXNm&h*VdtntYr?QE%5uht{{2Q0I(D8l zYr}Goft8fU zHta~mKPPWhTE)+_qV?|P+u^dS%_LHt$Gh^h9vGx(@pP8@6qDVA9GCA43UVW4>W@o= z9nrW~>pCHyj6@whApU%kdHmf_ENT5EFx6UIQhsrSQM7TMEsGxjyJx^QvzL?JE#O$5 zGMBQE@@^75IOTB)$r? zYF$YwnRlc3@1~^QZZC~g56n9XK0y%_!VU8|ZN2HEv1V6|uPxVD_%ir)f-$@M)_iGp zx4zJ<&S|vuz({M_qn(~e3ivp2Vu zkU@o3XzTgDeGvvF)?hP`2OmpA+TDZK(30F+xD8?1jP*WHGaoHrDHypoEHq z$Qg|;YUKG(aAs$fh7Gvwj}UaeG;c@b#*J@Y-NII16vZwZHtx<^cTAjeX4_6Op}_+Y z!l#O-p9V`m8CBHJ%b|D)HiT{!5c0>i zT~n*svuI9Y_9WoW__ueW2zB}&lX*9Cc$=EKDUpS$K2i#Sxsn0l)9V3%xd>e|ksxsg z(Yf0&j|U1b0i`j0=#w*)X$=a#WEPIwFY~W~lZ{#c)S>HT==TZ1w28(ubSVJdQC`6| zfPGK8Fei1%7C;)B>i*W&2WvFqw=i10LnC-C-+2*G7j$wR9zmBw7wnXs2pfzr!BA5%3?k5}H z9&~#v*Xay{tU)kXIAPeZog$<`IjO;dsEd-u(uE&OFW-mTxed!{%^z94`}X4O@(K#a z7;8&hTC;%i%biD|64tyOckl?q@)4|JJDn?-bdUBefFD>!ir2b0}jBwwChYq&QeP zog5q^@BD^tYo6+NhxgjMHH1%(DMVa^VC=P^uK-a=arwQs z!fne>-TrNGwKE5HXVKLssBc$r9S)jpo8yMKYbd&peK6@xJhc-(6lMsBxc4t_!NEZR zh<>^}V=sr%-=`(j=n8xi7q9R1NHcSZ1dj5ytM}aWrwPN!1b1=ZDUhznKrDh=;XUt- zmq!>Fz<-_{pe%R2$MQj@dL0Hl*k5s! zKeq6fMpKM9RziU#a!^iIeI=oo8tV-E6#2yyGKqYa3>)o>10%NbxX+_)HH8}!xt6~t zNs@fK{LV57YiK>Wny2Dm&D-S>Va;^dE$MKIB!A+Dl{;fnK`S*?fm!WF3tdhht{q# z4gAmFx^yxB0^9wk%Kk4&V|utE)CG)G2`n?mzGA`-malDDq|D=J(BI7pzy?p2AJkZ( zg1k5kg*AZ$!&iBnARWaOG5DsEFMf7st&#ax`0jFWJum{dD#VuL9TqN9O{f0ME!I5+FjuYXRKnQpLyB0$G8dSQYZKwjU7bfgv0# zB@}ac337Sc52i7ekER$6mSp$Zyp~A0)m;xV)2X)eRN7HT^?ktaxMlw)X`Pa@8O?*e zxx$d?3KkIz2xyE)+NDT3E*pt}>B<$rv%`Qr!$Xkq@M}zzbjCNQp8e*0~UcphxeDtkan z8hlac66fk3j8Nb%Hdq{8k%}?AZQ+*3c=R$P6e~&>Vh?vl;}#1r?>GS8zbixHWlN;$ zHyZh0f*K)Xz?k4TW73GD-v71HWvrw}>i;>14iX{Au|YqoDLZagEpX_Q7niP7>kDtJBV+BpgUbVL@z$nOS%dw0F3Ieb~u$xP? zq{YZ-m4-ooOn!L1B$x;$03eDe_y3R27leGJ{?j062`zT^B3Iejt6w}opW1a6{m6=& ztMt5JV=s%;|Bc)IFBsv@{>YRiPsG>_*HFaZb6s7tWGRf2UR+q@3>FssSaV%5x>?FW z!Pcx;x3vpn_21Uf{pueBe+zojs|O{3bwo3Um&rGt)gLWNH5-X-n(+@q2blotOn?*f)g{)M_={h8&wu*A zN4yi)WjLc6%jp#Rzqug`8^jX%buZet0yN;3SusRd zJSTFWS8o`;8n}{#s{QUlK#`D=o6VjLW$%g57p5clEek73BAQOQf& z8yQ#oKe0`Wbt;Qw@CxLctLVuyj8c?g%PQoWad6<=EG>gpA$W|b#}g+iJ_szXVEBLe zK>(;ccFuv33q=u@wwnEtW-xL;Yp~a98M>ks1W$4T6pky|ebzA+wf~YOVFaS}CDE(6 zo&WwZVSklC$w$s%hIG>UK>NO7#(B70^4E>t;%My@wo7y7R1E@_INN(BiR2SgUowr9I!BG_#X6qjoX>Q!*?N>3lIuo*GEcvPf*tU%8DAA1A z)NF0(6p^E35R;LemW{LaonM7mfZ?=t*bP~CPLaEL!@-nJC~HATJtTkhkU`Pb3*2~P z`$6GCfCDSc>^z)?vw!dsHEk^}O0EYD=u_o+u+6?mfK)n|_vEw4^z21Z`&9@Rz(Z;< z4b;qe4+GqM#1k(~xiRkWP3UK}kgYMqo`zz~j5XN(LSR!QDP9ddWG~%=cATb5t72AR zW1bHf{gyy|Rn=H;PEg1v$|?}&N9_WjW^El{7TCp#Xs&?SUU7L9Iu3qNrlCz>A7s1n zyIaQ2?(4|IKrSAFeF!t>v&jkd04C1ixiGIP9iq4j*#%q$!#Tbg@y!FVR$7tzAL`BY z5n#kcQ#nQ9$a(Z7|3sg1Rj-i0L_f?Z!EnW_RRBW8Hb<8n=KXc=#^9q2B0$oeGK;wo zG>A6~sRO{mSxB_(Op?Fk%qo070BqL5@<{UGA5-7ti1avRJ|KliQdjW<3IIcC$?F!| z>1?02^AZi>1!wJ3dNI(^SWQLwsn%{;oe|V0gWz<8=hsgH%f9H|LR1>Y`1MoVk5nNU2~8h z0V-H(jm8idZxv`bo0}P279`ib3h7 z*!bD>`J}sEiKog0gK`)%s?2D5719$Ah{qM~eVW6*10CdgXlO-fMk2uG8dK|J(p}qR z*7uolf!Af3^b9Iog{9vFT2{x`OVH<#;8bEWeitbj=t$_&GShDWqwMOVvOGE;iEU{B zBj#F)O5ra6@Z!zal!prm{|J3|yL^0ighSrxX)DUi>|o*GpEj+jp+TH7rxCo$qp^Pk zkCyU1-oJdq80M{)6lfkJaT`7ecLI54;o_=V8S zSr$c1)J>B-UZi?2a6fI<;7E&?S4tEeR z!s_-?{hMzukKba1A}zP=k$qL{f%rU zPHRB;Ya#pt7qUKC2>>DRCEdMe63w3!lS^Ya*MjgT#?9yPKi*ilL+2>_8_AP^h1^r0 zN>5+gBCgL+z?!pPt1o&v14d@U1W78eu16Wx^)eYs&3<6u5frAVxzQ30?F~fbjUH-O zAb68Vb>M^QNwZcHKXMVI-Q2qG)*i5LV6q-UI{D&K9e11RlaEJHvJPF9_jU^QES~=w zCdPlqZ!A&efcUaa2?eHDZ!&Dg>69Df!S>P@!ZBjVjp9zFpjts&L4RI8dn3l;By+j( zFlhV}d}V48Jdi=gP7uKLT?x|RF6C+n-dA$xS+=Wh?jLRomWWKA13O5U1Q*jBq%9Vfo%BX^7bl=Q# zlTOb_6THRAA-cGuP!31MR-r`g*@ARvs98tL+#UN;w*k?16$Y*Ud4>=1mJ|l|Jv4kIo}d+ zzVHyji-E|%R}<`q`tH3Rg~~mDira*U04xAFH}-uV%(0~7mI0;NoWUTyjK%%aFMnMe zqZl8txr9^3c5lLo;D-t7Aw|~HgIln>&Q5Gxe5MZ17q;w0=FH-jfH`09q{}9)!p501)y+`X-dvaU26n)2s}HYx$cmGjefPEPlE@N+?|Q8AD!q$H*D}E)AW2Y#-Ybh zP&+r$v35C37&DnaP{zwoO|UqnpkCFDRE5SMB7$N5t_wsO_frlD#GYF_j{d&q*7| zuV4C0{`TT;?63`!K$O1*ETc=u;3I)xSv$af>o`Ax-WhfApt|1sl1kch=NCv0qRTB5 zx;}9zZo#~3%N4Jx*RRalX@0@6onENmwG*T`RYlT1Yj?XumHHPAYogZ-uruCq$I(>% zH}b3-2iTV$aG3I1-hep>w&UpAoFgj3YTUYsIp(lD87mk?#;dhG%rAy)Ve9qfB_#%o zUj602^qxoSHV+ta2Z8$Q;(u)$2aF^o5Jyh#ec!P&@8sziHdTy0_lw`nF13zA_!h8j zQ9~D;eXU8#EnTji;FGDv&{ez?mk+7=_9#c~K;&$Aa{isWFn^DAmp25#7C-3sc!N#L zy~^)@U^mc|#NS6sBdi`fmeV5fUVl1gQV2|S*PWS{uB=tqocq4NGxO3nJe|47EwZ6P z^7lROJ9hKklXs`{{_k`9Qw~9?Rs*;45e|KuHIlHVsD{|!7v0u(EeS1ZY#YJxa9sG!`lg=MfIja0$J)!z=St&m(2HJyxG&Z65YB$s~S`l!EiCObQJcOqWi-463d1cEWck9G1SweQfE_@=mj3-(Tbg7Bp3sh(l@nPQ8drvh8{0T;j$ID>;TT-MErr>e3F z@T0yNYnZx%ff3yMNKiXF%Dg2ARwU~-suz(`T-;6fIx+XTMY{?>Iv;Xfd9^1>-q~Vu zyr8d$$Ta@@w|mU{D1Wu}vt>s|XO-r_@ZK^{w{dQ3!DA=19H$lJW!=|ZzU?lD@VPoO zFxWaGEmJSfk zfFn2IjVdc$m}0AX)?UEb%ERDS`~a z^V4FwZkyxSS855cpbSAJ)b|0LtKLB5{J4}=^{$A6{zlC73r^D?`>S3#57@f>_LA$H zL{=ye{I3En9KXm7ne8mJoSF-8yZyWqx#f{&xBK4N?dX`fArwh|1mmV@;|BMtNk8rW5cE}JEIpHun{|^? zlB4vYdc-r*^+OjM`MIQz`viF~xB#)=%!lrF2wnaC3uvFPe2=Og2|@(Q0Unv?yTFhi zOMunPdkJLza|#oa-XqZgBY|XzAefW#^(D)4>n<$DRplfwo;p?ok}gKCY?0$_ ze2xQycpaoPMJ1c<=h+h8+U6K7TPz*bjh63xHKZ0HZZLnoIUBvvq!_|>P_y2TrhjOA zdiJ4Y&I`dg6^h{-Wl$MbvD3p(wp6u`Lmt7mc=i;iJ4CkR3Be}<#Hu=7{ka_e80g5` z#|-&!eg|2?j7{A1ba=MOz>G~V`N=bQy688B+39eM_RfEM(Pdap-v>V5={<$uvye>| z0~NtQA(+xPRY+d<{^Cv7Rpi*zuhW%&>r}5m*c!L?&@ugB7@IgWy*oBH>aw|St5jQB z5sVgCEr+o2szprflTlW1JTe|DO>p0*j-Na85+SnBj`)aN^k}<^lFV-UI1FnFi9kVX zo;j*ffM8!KRes?+aQ)?(h*C`hl^6J6$xCtVBes!(csTXAl=b|xF6#cr72c%RWlgzO zSF<>=lcmo3;dmQL0sfQ3_~`}(O4f{#kLh~dL!8`0Xft*!=cDMho4_~>%Imoqs;|K^*(rvlP0s&TPoVx3B+U(+7s{{8B zheo$z4|esfrZ`wlS^@Ci=50|=QOzD|^TSR?>O~B-DOUWkuKfM?&5K;&U05T-t+ zr^vUSRc2i)YKSbFDh#gjSeP+96gM1D3!B-twLn-@GdQ`b&% z;{JIKvGbnCcz($&BYm{!+2z9-$}Y< zQ?7n};!E}3q=Vt8lt z9P)ky>NH;2Irm`PGpPf=#dOgoGt@_$_bNZC7B|V4qRsFvq@J0bpCvt#!z)IMet=hp zMGT95sPfh_#Tncnvx(J+>0X7NoN+YWGQF`L zsybI0mX{OpIn#>YBu%wdJQ`x_KO9+mHVzQaPw~>msc~nh-GzVG|7dS6)b zoUyBz9UhB+@jRyMb9rAw@r)Q4dB}(*qZcl2t_f?ZqN<*}yzm+gI_{FnXk6Mt8(hw$7n$=PV>%zhRS4Z-bA(o2zC3((YiAYmrApC5hnn0>c;R8{wVA!J8GAB;C$b4y2Ai&pRv~=-%-MezTy&EwUL$-ZI1=~ns3tn&0@Z! z(R{S+osz|)FqXfGocA3hMS%a!VhGhvd!F;+;Q_LTpsPVibdcX={VTrpTo4d>2yB9@am<;HCe6+6S4_-CvMDttQoHLEkEgfqM{9PKmpF%v_CK97%9 z9;OWx8k<>bw%r;i?3w!<1?fSoPSvJ}wqK(7b2MJ%6GJSJpE!+d^a z=(3%K))+2r>EYT79Ru}wjdKltQ*Fq+)NDfYZtv<7Ws7E;H1$!$u=Lvx&~XHo?eKb z9%>@1aKNwcDxcl`Q$C5~kHW54%_-n2shXs0ym=eS# zW$B1vX3kL!`qIT)aigxLE$q{7SiR4_4}G@Fc+~C?4d}zZo)h~-IB7o-fZ5l+;3;@$ z!Z-S{^{!@gYs8G>DOwml-5T@I@0exO1xlR}MWc@j#i;t8*DzQZqirG1)J(9=9;8)E zBMvwilSnx;#|9=asGLHZ@w0m`%=*|2q5;=(Fyj6x3LCw*_K`11-(bjsbiG2v{!UlO zmjvm$EhrdA4JJRi;sO?<=`FO?n7ne@!=dWy?NYW?Zm(m>rxOeMAgp|7%?)vWe_RTL z)|T(z-kVsc9ZB#TxO(;Kt4XjRb_BDz(f3PwSeRXq&V8BNE;EKlR{&u;l+g8%V&YrO zN9qY<=1|BwNN++!m~`#jLfy9@GhDT1NTC8`JUVIvkz&_vnv}xvK`%dEqF|fvSF&>J z8+JX5;p-g@!}X<_QrSdm*s+OW4VfhR0CBS26~zm05gV--74=drK4{b55pvOjsv8}v z9a<#He|!Fq!i7eWgUb1r=Z4MZN1I>nP7ClX&i>sj@Nv8%;9%LWX^Rq@7Csuv*Ll3@ z^~=i4fYuPStWZd=bmHflvwaZn@Jf-0dd$hcGI^1KB~2)R;g-%KIBo{f}R-aQBPQ>sS9o7MAeQGOJwd1ABL zmKVf_b(+Cy)6jrPtcHWm1<^XZb)H<1eK>VODEdJ@QLnRic3b$#o87} z&k0crJlB^V(gs9ZRqTw_gf%SvP%rtfe#4$=A;qw|HXz$M3eVhcWA+t=bUmdB9@885 z^jo+?x_6*KXm8c4G$D)g-cku?Gh%x&ju{KLKVn$S9~-J+AEg}_YdAzBoBXk>Px(_U zQG{}*xux_>@=G|^6gd>{805p%8e))=zcyd$VP7mi$y9(GU-{}Wt+)2!f}Gv-whqU* z<~NtKY*oKj5z_BD-gsu*-H;GEXw{Y;iAB>sw zJpX&JgPq``C{{tPU@gnrw<4>KJUnvD;df1yz{F>>MsblhPFJkq_x* z^#lB~iR{5CZX2KM07tRt*%ME42ljUM2w8By$Z2$)O_qB!oTH}I%%5vYC3ff7Iht~u z+P^{h$&Bb&P2^nRpV6=O`W35T=iuQ_77>Q(HBS$5A6u+ttRxxx*sYeZTCyfY$C}n=7XMm!e_Mk4 zD87`VVy}SNSRonDgI*A3leQlzjwh*iobXE7WnNXQSZaTv`(rokL~4gTR>K=^`&QoI zYJJu8egU`3_M!FOlX7gGHd>BIYt@W}4H=GY*ik!5VO)5U6!nE);(5Ap2_Hdd2CM|1jI()1f*-TDmXwwn8Jo;cB})Hpl5aOqOj!fo1q`$s<3 zkFg5}qnd{upsL-o>Aq(dIw&Pm9Uj8or0Uu`FP#s}7Dw%y)vCV6KI>IIuQdwIeKz5! zlE?QgqEPe0L?6-kKaHJtRMThM$KTf0`c!MBDilFzK~a$*d&6TjAWLNLnJ~giF$^Ij zsjVoI0J1m86l57j5CWtXB$6;Bj6fI>5D-F0O$d=d!u!Kk-{(E2&uRb5Ir$^G?)$p0 z@x4C3-(8iMCU2(yzHufW_@5h594vSNxQ=qa1^4JKy>d?hcsSk~5KNYb?tLv=42<{c zOwRoq@$;W$zf44(GqNvt%h)DaccP>?X2WdbF$VaAY90FGThh;)o!n2vNIypoE&kDb zx;!0pu|kPVu|96!Dy5rP;$H>vDxq&Vjt2%b{3U$DBGdworc=ewQsz`y9p;!aDC@1n z&66XfhUrhkmDJN9ODzwi!qdLZkd&ul?`|EzDGQa7a>e~mp1#J%hBXFZW}wrby6us7 zzdL@Xp=+0(Hnw9C5FF>r+{({;w61IJ3h$9UJnl;iJA4_0viiA z^Fqp+CBj+QK2}HF$QeJ{Pgnnzc(z+ipViij51T=}`Z3IFnTMuNE+t#m78|j{LTA3+_ZWFgt)p?fZRA?_oLLCridYa(Cm zmq(Dah0WPf{%}LB=f_@2JE^L?p0@FH@o3<;8JmobD$W1-Df*$TH0v+A;5d%Sy4f+;dvQ143$k@y_39~u8y;`)81=!z>7@o3>TPB9 z+tPKp(7flMnsp&rCB;HiR>_d5Z5CSs?gr$)uwR!vG1VidW3FEMT<-7`e7T>^=)@(} z0GpJYlE8SBeAR?19^9-iF_s6Wu4yb8nVm;8TzZUozde_rwdP@3)o(7jop45Z&vV@o zRKZzRckB{*;C}Az&JNotzs?gXM)Lb(mmoLNY@h2iyEwG{Slgxq^`h%IR2}E#Y-F9x zJ0CLSn!iTLFwu@(%!;-FeMiOTDAtN@plf9P((a#1+i2|Y1J4c=j>0mqO-TZXkack) zN1qmD)K<)}q1cb?_$SvuhUXIf;4{v1I}fTlMK)4|COE}mYl^#3FfnI3eSGT|t5J2E zi-SjE1=??<(wv;FVugh|sE*VPiJ|Gv6^n~GwBi<&ih-=(Qr%Y|w9aS+BSttBn2eES zQBzS>(H|P}eYN(|2D35b8AP7gk9c0yd-EH`{aqi(TP9@fs$SRS%TIc=i% zooCZZ=G6C2Z8e0LP8(!=UltB`O{zARoRTs2#-;iwA>5zZ=bY4fp}xCL-IZJr2<1~k z?o}lEz?W5T#%eOgOp;EWQFiB9ZFc)lXE>{bV3Wwp&hpbXp7Wf`0&X!_og1)#(L76&u@+A!4jW*>!;DMA_t>)CrrN z$HFF1=F43!4n0a!F11F!Zc}>aju#8;pn?XY*5xTWqBLylgth9H$43{k%iHniHA04s zfe;X_Ixc~brDoFhpkUg-Ogh;ZF^3$bPX{6VgvU%7E!U7xq`1A82{WIXc}^PzEDO{@{$f?Z}Fi zeV#f{+XhD}?V^IuEaWOH>`ePE@ep(HJ9d$m^WqK~EaVO-CWTi3SAo$Dz7u%AkK>iI zI*lHAdT9#N3ff^89lVp`t2@=-OtyA*TT1nG-gJ*yzX_#tM(~@3#9OY)R9D*zpS~gm z8k^(!DJAss4*xzX{x+(+PR}{gIG@v3I}+F0RWQ)IrZWgKpMKrP>8seOJsoV5>l8gS zrCa0iv?u_mRy}B04e=mB;}=M-KggcJ$y-ebaDp45MXBd$hQDWk?TR z5atYJly`k`bbN_oH^*I0_NI3ZA{tt5#n_tSTzTl}O!y!n z?gxb%AI6NwB0{4K7jm&K8i=Fqk&=}%`K?;*OB*UNLcEERb(N~|E2@=mFYbH!N9R%p zW;dvihxvxW1jxI0DX%5U13M6|v6VH(M9%=}j7Zoxmr3X-oM%ojlr4%~o)WXQ=jXMe z_~Rp1KDZUCns~&3P1{aLtp!MnJGvuSdSaP_vmRc3#01PX4jcJI0yk&_Tlqr_48YjA zL9mrOiow$M4vPB%;3^1m7*NFV=lNtN>?x?L-4l~xGmLV|arzh;{3XoJqHmADQbAI0 zldt*vizP>Xt!zr-K%hVa)KGT>9B_#q^P^9N0VcOB$Rg?Si7L_wQ`diu`un9vSl>N0 zEz|r*CNXgiQv%emh-Gmi);z6jOjXqUXgrV%WPAMS0D9pyg147}-*l+Jf;rs6RB-ok z&O8IsY-YwTapo9u`rD!}Hbm;SMaEon&D7TgF2V%SpFT685(a8RFfQxF6eE0@KgC0- zgfax07uD5%ts`=En!cj~&M(QR|zBN**kf!{pm9KA>?}*O z_KtsV5TzV2cqS7|3}|&G9V0P((;CEe{y0WW0T)n6qq>Q_}DP z%o8K6jUpE(lZSMjN<^e7)sDznUpRk zUylDA!Fy2<1yzuYgoNVY%1I#+hGDm7sN>-w-czyPYw3%NJb3aqFUX~Po2I|@=h0U@ z^w5WiEdr}pu5uL>bl7ao~wqvPR0a|WSsyD-Osp3PipH`6XpZza`t z;DtZqnTvNe6g{=Gl)UP*mwo=z>@{k3zNpR6%A3DiMQ^R!eyrDebFjI=3b>h-J300^ zaF_t2dr(4b<_t9tG?AGF4<<-ZaxFvWT;D(`DW&8`HbfW3Ew-d(if3Qs&Y44n?g1WT zQFuVV+<~Fe%?^W z*%l+A)Z$Dzj~a|N1Y;XrDrA?s&al<<m0N+tVK!{tVAi{Fa!90_hYrhFxh`V7>sj=`k2Y7O?L;Sae*M>yD_vM{Y? zm_oOB2gFesRBQO*-!jE(SDg}gkRM30$3QsPRU3odMl^3zPY4cB_B)%hW>4b%Z4UOgwcyKlL;+dM8nat0FF z%uL#>NVHLG2F6BoA#b`IMrdG8J%fShPjlUP>#_XSc5%E8TSzXr*L~kyvB|nJ)0qfi zXPc1DgoV_?lBk0Z}%)kP+Z+jEl(`_&NbdEZ)z?I7GM6sLaKB-JFg|{C5&?4`r z*AH+EK%}f4aYC;4kcMj|Yh`kAdab)J7^?rmf)7v_2E6St4tT?T`G^x0z+5J%TshRL z3uO@tZeF9hpN>$%W-pr=B3i)r2y=l!1&$$&-rb%6LsOd6r`9h%Qcu;& z?!z;Nj)W5z`icjMK)yXQtzsJ+*%G(O2v9gw{`pj=vsVn;tH!3z$ihCd;K%hkkI?vv z$(;o=viZfF%9uGLTaCHi%q^9y(>`B6YtwZyY< z3$Zx7->OpuZR_tf!O>|_3ay(lZ}2cqYvmcN_^*>QFu;#GSli7Mz%=g6@~$DTD(}5n z;mW6M)1FPTx>WU6WKRZFXW06!+Bd@H=Af2grn5Z|%ZLE$mt< zUAj$Q!;m%ljxkE!wo^ZsuMN6o+D9H$cIgvWNG*vc;>RDXrKMfAwT$%K?g8~T0fBGe z$YUFR`j(8Yhoz~ z_i=c^*N^3+iKfMt)Mi(-K)5$=_6V^Pa+|4P5|?hm_P>=@`a(zeBJtF;Xh>B;s-%Sv zI(URfz@F@GZ?T1L)P@&;JMPULko@Pbq0T-M~yo79{mAft-{{HrmoLEF5WKO9K75YKj0V7sR&%w9PdT<}Yh z%DJ9WDiG=V1!dvkeAJbbHNyi~wen1C$JSR4=>1{U7q9Qvyb&hFn;qn~ohg)mY%liR z=ox&;kP;@~?iQR#Tik}w|C`=o`LEF*RQ zoqueDQ?Ht*a|Z`XAn$iMUk}Wz4?T)zTi;E|msF+=0jOqmQ-qaWg_?3)-if8FVx4}m z$eKcqz`x+W+udWq^(R`*Y>WJ$;=IZM@j(AO5p{ad0%wr8B6zDS`%c7>(%;hXcP1uY z!aKyluVk-!S`rIBsA~KFvfB7hKFCf!g(vAp-!W8PnEd@MH@NSyi6Ks{HQuck$FTBv zFyQ(&pAatAbqbnVM3O@#Y=^`OfU~@cO9Z3hlonh@c9^?-v>TgK)4;gymT3i)*+tAa zB{X55bpe2*ba6>x*u}HTcltA*08^x)YYMAG8f<2ry2jbc_AmXWG{haTB^wz~t~?zx z5q6+PxmhWgJjyIqZOsDP`bu8}9>WryUbu9Ga^ZG7E6p}$RBCaOI z_cTiUSKAVGodTb%5k!~~jdYVJRs?iZ{PeZE$y#71|Rv_Je_0^qX0gq+GyE`c^BpG-P`yi9$D-fwTkLh%bR}2i4r4?;lC5!oZYc! zH*x{cGtY{(p)t9t7d6)2K;pFR{K3r)YyvRMS%6SmKXMxXt)vAMK*VtR$9|wyoyZFS zAfobgCmzfZh=X3}#m1XqfWHPO8D4~C-YiCwG7#HvO4M32REz!U9 zKdoT@T;`4BtWE_Pj}FF$F4Nv720NI zi*`9%?fqeBmwYSl8423~NS_+9v+TC(_Pv!*8x+zxhf;nBvMB3TWZ1sxpVOc$&10*_Rk%4Y=Z$TFh#XF z4~?dvY4RZ+UKtz`9br@mcrihe^usSCIs)*GMSUOu-gC)D2*2tE&*g!>wsYi|tbnNPDOGQ|% zCi!gLT2YBnH5a3zViET&hcUWUTs6M3Wx$qnL#wkGZ8wr)0(rd&0pvH8k`(>a@tFN3 z`#X9V;sXSiElEG6^lw%Q1B*hY2cZ}Np4G`r3p`liZSxPn>GlTsl!&?A?P^3^dPE%_dK-&AQMgzJm}W`rM26pFvc>h9Cjqhh zX(AXXyH5?Gjf(z$jVkbtOK4Ha9`ir`pOEW4t40g6tT_)($AbArINz6RjU2!W{sOk% z_sow$KDZCJx5e1Ir}68Unccz*oTxeo4D5Ggm73%W1;b7SN%fm?JxkNuhyE5FfAC2k z?l1) using a pre=defined tensorflow model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: ignore\n", + "!pip install tensorflow==1.13.2 --upgrade" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: ignore\n", + "import nuclio" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Install dependencies and set config\n", + "> Note: Since tensorflow 1.13.2 is being pulled from the baseimage it is not directly installed as a build command.\n", + "If it is not installed on your system please uninstall and install using the line: `pip install tensorflow==1.13.2 keras`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%nuclio cmd \n", + "pip install numpy==1.16.4\n", + "pip install keras requests pillow" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "%nuclio: setting spec.build.baseImage to 'tensorflow/tensorflow:1.13.2-py3'\n" + ] + } + ], + "source": [ + "%nuclio config spec.build.baseImage = \"tensorflow/tensorflow:1.13.2-py3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set function environment variables" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "%nuclio: setting 'IMAGE_WIDTH' environment variable\n", + "%nuclio: setting 'IMAGE_HEIGHT' environment variable\n" + ] + } + ], + "source": [ + "%%nuclio env \n", + "IMAGE_WIDTH=128\n", + "IMAGE_HEIGHT=128" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Function Code" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import json\n", + "import numpy as np\n", + "import requests\n", + "from tensorflow import keras\n", + "from keras.models import load_model\n", + "from keras.preprocessing import image\n", + "from keras.preprocessing.image import load_img\n", + "from os import environ, path\n", + "from PIL import Image\n", + "from io import BytesIO\n", + "from urllib.request import urlopen" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Serving Class" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "class TFModel(object):\n", + " def __init__(self, name: str, model_dir: str):\n", + " self.name = name\n", + " self.model_filepath = model_dir\n", + " self.model = None\n", + " self.ready = None\n", + "\n", + " self.IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", + " self.IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", + " \n", + " try:\n", + " print(environ['classes_map'])\n", + " with open(environ['classes_map'], 'r') as f:\n", + " self.classes = json.load(f)\n", + " except:\n", + " self.classes = None\n", + " \n", + " print(f'Classes: {self.classes}')\n", + "\n", + " def load(self):\n", + " self.model = load_model(self.model_filepath)\n", + "\n", + " self.ready = True\n", + "\n", + " def _download_file(self, url, target_path):\n", + " with requests.get(url, stream=True) as response:\n", + " response.raise_for_status()\n", + " with open(target_path, 'wb') as f:\n", + " for chunk in response.iter_content(chunk_size=8192):\n", + " if chunk:\n", + " f.write(chunk)\n", + "\n", + " def predict(self, context, data):\n", + " #try:\n", + " print(self.classes)\n", + " img = Image.open(BytesIO(data))\n", + " img = img.resize((self.IMAGE_WIDTH, self.IMAGE_HEIGHT))\n", + "\n", + " # Load image\n", + " x = image.img_to_array(img)\n", + " x = np.expand_dims(x, axis=0)\n", + " images = np.vstack([x])\n", + "\n", + " # Predict\n", + " predicted_probability = self.model.predict(images)\n", + "\n", + " # return prediction\n", + " if self.classes:\n", + " predicted_classes = np.around(predicted_probability, 1).tolist()[0]\n", + " predicted_probabilities = predicted_probability.tolist()[0]\n", + " print(predicted_classes)\n", + " print(predicted_probabilities)\n", + " return {\n", + " 'prediction': [self.classes[str(int(cls))] for cls in predicted_classes], \n", + " f'{self.classes[\"1\"]}-probability': predicted_probabilities\n", + " }\n", + " else:\n", + " return predicted_probability.tolist()[0]\n", + "\n", + " # except Exception as e:\n", + " # raise Exception(\"Failed to predict {}\".format(e))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Routes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(context, model_name, event):\n", + " global models\n", + " global protocol\n", + "\n", + " # Load the requested model\n", + " model = models[model_name]\n", + "\n", + " # Verify model is loaded (Async)\n", + " if not model.ready:\n", + " model.load()\n", + " \n", + " # extract image data from event\n", + " try:\n", + " data = event.body\n", + " ctype = event.content_type\n", + " if not ctype or ctype.startswith('text/plain'):\n", + " # Get image from URL\n", + " url = data.decode('utf-8')\n", + " context.logger.debug_with('downloading image', url=url)\n", + " data = urlopen(url).read()\n", + " \n", + " except Exception as e:\n", + " raise Exception(\"Failed to get data: {}\".format(e)) \n", + " \n", + " # Predict\n", + " results = model.predict(context, data)\n", + " context.logger.info(results)\n", + "\n", + " # Wrap & return response\n", + " return context.Response(body=json.dumps(results),\n", + " headers={},\n", + " content_type='text/plain',\n", + " status_code=200)\n", + "\n", + "# Router\n", + "paths = {\n", + " 'predict': predict,\n", + " 'explain': '',\n", + " 'outlier_detector': '',\n", + " 'metrics': '',\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Main" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Definitions\n", + "model_prefix = 'SERVING_MODEL_'\n", + "models = {}\n", + "\n", + "def init_context(context):\n", + " global models\n", + " global model_prefix\n", + "\n", + " # Initialize models from environment variables\n", + " # Using the {model_prefix}_{model_name} = {model_path} syntax\n", + " model_paths = {k[len(model_prefix):]: v for k, v in environ.items() if\n", + " k.startswith(model_prefix)}\n", + "\n", + " models = {name: TFModel(name=name, model_dir=path) for name, path in\n", + " model_paths.items()}\n", + " context.logger.info(f'Loaded {list(models.keys())}')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "err_string = 'Got path: {}\\nPath must be // \\nactions: {} \\nmodels: {}'\n", + "\n", + "def handler(context, event):\n", + " global models\n", + " global paths\n", + "\n", + " # check if valid route & model\n", + " sp_path = event.path.strip('/').split('/')\n", + " if len(sp_path) < 2 or sp_path[0] not in paths or sp_path[1] not in models:\n", + " return context.Response(body=err_string.format(event.path, '|'.join(paths), '|'.join(models.keys())),\n", + " content_type='text/plain',\n", + " status_code=400)\n", + " \n", + " function_path = sp_path[0] \n", + " model_name = sp_path[1]\n", + "\n", + " context.logger.info(\n", + " f'Serving uri: {event.path} for route {function_path} '\n", + " f'with {model_name}, content type: {event.content_type}')\n", + "\n", + " route = paths.get(function_path)\n", + " if route:\n", + " return route(context, model_name, event)\n", + "\n", + " return context.Response(body='function {} not implemented'.format(function_path),\n", + " content_type='text/plain',\n", + " status_code=400)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# nuclio: end-code" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test the function locally" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make sure your local TF / Keras version is the same as pulled in the nuclio image for accurate testing\n", + "\n", + "Set the served models and their file paths using: `SERVING_MODEL_ = `\n", + "\n", + "> Note: this notebook assumes the model and categories are under /User/mlrun/examples/" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/User/mlrun/examples/images/categories_map.json\n", + "Classes: {'0': 'cat', '1': 'dog'}\n", + "Python> 2019-11-10 19:25:44,372 [info] Loaded ['cat_dog_v1']\n" + ] + } + ], + "source": [ + "base_dir = os.getcwd()\n", + "environ['SERVING_MODEL_cat_dog_v1'] = base_dir + 'models/cats_n_dogs.h5'\n", + "environ['classes_map'] = base_dir + 'images/categories_map.json'\n", + "\n", + "init_context(context)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python> 2019-11-10 19:25:55,405 [info] Serving uri: /predict/cat_dog_v1 for route predict with cat_dog_v1, content type: image/jpeg\n", + "{'0': 'cat', '1': 'dog'}\n", + "[0.0]\n", + "[0.0]\n", + "Python> 2019-11-10 19:25:55,437 [info] {'prediction': ['cat'], 'dog-probability': [0.0]}\n", + "{\"prediction\": [\"cat\"], \"dog-probability\": [0.0]}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9WYxkaXbf97t73LixL7lnbT3d093TPTOcnhlO05YhmqJNCbZomKQtE7D9YFiSQYsgIALis58EGLBfbAMiaMMyLC6CbUqyQWlI26QEGeB4ZsRhs9fauiorKzMjM/bl7osf7j1fRlJsUpTYVj/UBQpVlRkRN+63nPM///M/59OKouDF9eJ6cb245NL/ZX+BF9eL68X12bpeGIUX14vrxXXjemEUXlwvrhfXjeuFUXhxvbheXDeuF0bhxfXienHduF4YhRfXi+vFdeP61IyCpmk/omnaR5qmPdQ07ec+rfu8uF5cL64/2Uv7NHQKmqYZwH3gh4FT4NvAf1AUxft/4jd7cb24Xlx/otenhRS+DjwsiuJxURQx8MvAj35K93pxvbheXH+Cl/kpfe4h8Gzr/6fA93/Si726Wwx6XQDyPAcNKCj/BgzdwDB0siwjSVMoQNM1irxAN3SKvKAocvI8pwQ+BZqmYZomRVGQpCmGbqDrGpqmla8DdE3DMCzSNEHTNErUpKHp5Ws0NAzDoCjKzy//LtB0vfwOGmi6Xt23oMhzDMNA0zTSNKUoCvTq/xqUf1ffK00Tsqx8Vl3X0TWdLEsxDANdNyiKHICigCzLAMiq71SrOeR5+bxUQ1XkBVAgwE/Ty3sahkGW5RTVmOTVZxUF6IYORVE+q1Y+R3l/GacMTdMpioI0S9F1HUPXybLr1yVJQp4X6n6apmFZVnnPolATKeNejvP1HJX3zbbGvxpXtHJsqvtn1fOlaVbe29BJ4hTPqxOGYTkv1Xst2yLLMrI0LT+XAtO0yfOcLMvQdZ0sz6s1oaPrWrX2CgxDJ00z8jwjzwuyPEPXNPK8qL6PhmGa2JZFXhSkSUIBGLquvn+5hjUoiutn1fVyWVc/K7+nTV6tafn+um6gaeV3ybIMy7bQq7EpiqJaV+W8lmNerdcsr8aarfHV0ar1VRSQ5xkywIvlio0faH/Qfvy0jMIfdLMbcYqmaX8R+IsA3XaTn/3P/iPyPCeOY2q1GrZtk6YpYRiyWq0wDIOdnR00TSPLMvI8x3Ecnj9/TqfTwfM8PvzwQyzLot/vlwNqWQCsVisAXNelXq8TRRFFUVS/N5nNZnieR5IkauDFoGRZRhzHtNttbNsmCAKKoiCOY3zfV9/D8zwsyyIIAmq1Gpqmoes6tm3j+z6GYdBoNNRrIFXfKwgCsizD8zzW67WMT/WsGp1OB9u2abVaZFnGfD4HwHEcsiwjTVMWiwWmadJsNrFtG8uy0LTSqF1eXpLnOe12mzzPSZIEz/PodDrM53N0Xef8/Fx93zQtjdP+/hDbtplMJpimyWazUWPVbreJ45jxeMzdu3fxfZ9ut6vGO4oiGo0Guq6r58tznVarhe/7nJ2dYds2tVqNLMtwHEcZYNfSMQyDnAJDt0iShCjNSLOMIAjB0InChG6ri23bLBczXNeh3WwQhj5JHGJZBroGvr+mKAqWQWn8dnd31bp4/vw5AJ1OB9M08X2f9XpNnufcu3ePOI5ZLBbouk4URcxmM3RdZzgsx6UoCvV8UG6+xWJBFEX0+31WqxWmaRLHMbZtV5uzwPM8tc41TSMMQzabjfoMWeNpmqo5y/OcVqtFkiRkWcZkMsF1XWq1GhcXFxwfH2OaJvP5HNM01e/SNCVNU/I8J01TptMppmnyK//Hb3zi5v20jMIpcLz1/yPgbPsFRVH8PPDzALePDop6va42e1EU1Go1Go0GeZ5zcXFBEAQsFgscp/SSsnlkkFqtFsPhkCzL1GbO8xzLsnBdlziO0fXraEk8eRyHQLnBxFvJe7IsY7PZqL+LoiAMQ+XxWq0WpmmSZaWnW6/XZFmmjE+e54RhqDZZnuesVit838c0wfd9bNvGdV216GQj27aNYRikKcznc/b391kul2RZRhRF1Go1er0eQRBwfn6uvnscx+o18ly6rmNZFoZhYJpm5d1LY1av1zFNE13X1Xe1LItOp4NlWei6rl5Tq9VIkkQZnjAMsSwL0zTRNE3dW4x46YV1hZ7iOCeKIpIkwTRN9Zl5nqsNk2UZmV5U7zXLcbAd0vUaNJ1aDaIkI4rWaJrGdDqlIKNhNKh51ZgHG5pND0PXCIIA2zbQwkgZA5mjZrNJFEXKaMO1Ma7X6xiGQRzHNJtN0jQljmP1R4yBrBPDMNRzyjjneU6v1+Py8pI4jtW6cBxHzXer1aJWq2EYhnJKYoCLoiBJEqBEH5vNhjzPOTg4wDAM1us1URTRbDYJw5BarYZlWcoAFEWxhXQLhZLg93no33d9Wkbh28DLmqbdBZ4DfwH4yU96cVHkagGJVb66umK1WpFlGb7vqwccj8foeulxdF2n1+vh+z6np6f0ej3yPGc+n1MUBZvNBsuy1MLbntQkSdB1nXa7r9CBeM1Op6M2mMB9QS9RFGEYBo7jlANomuXCLAo6nY5a3OXGN+l2u7iui+u6pGnKw4cPKxhbqO8gm2o4HNLpdG5s8DwvN/RkMlGbMgxDfN8vYXCWYds2zWZTfVf5fjKWzWYTXddZLpdoWgniJpMJYRgqI2Hbtlq4sig3mwWe5zEcDplMJqzXa7X5gyAgSRLq9TqTyQzbtkmSjCzLaLe7TCYTxuOp2iClQS2RheM4HB0dKW+o67r6W9M0krQMq4oiIUxSNHRGl+Xzo5ukaU6r0yXJC1zXKw27rrFcrEjSGKdWp9VqlQacAtN26PU8dF1ns9mQJAm1Wk0Zu8lkosa/1WoRBIEy+rZts9lssG2b4XBIHMdYlqVQWhRFpGmqPs9xHIUCxICKowuCgCAIME0Ty7JoNBoAakMXRYHjOLRaLRaLxY31mGUZQRBgWRaPHj3i9ddfxzRN3nvvPYVQfN9nd3dXIezFYoFt2+WYVs5T1/XSKWT5J27eT8UoFEWRapr2nwPfBAzgfyiK4r1Per14UNkIYnGvIXTp9afTKbu7uzSbTQXD8zxXD351dUVRFDSbTQzDUAu80+lweXmpFqh4AsuyWC59tcCbzSbdbld5kO2Ju7i4UO8TzmAwGJAkCe12W3nj9XpNv9/H930WiwWLxQLLsmg2m8qwrFYrHKfG8fExWZYxm81oNpvs7+9zeXlJURTcvn2bMAyZTpf4vs+tW7dYLpfKc61WK1arFUmSEAQBvV5P3ce2bbUR1+u1Wohpmqowx3Vdlsslu7u7hGHIxcUFrVaLer2uFpC85smTJ3ieh+/7HB0dKa8jCx/AsixarRZxHLNcLqnX6yoMkxDEdT0GgwHtdptWq8VsNgNQENc0y+VYaCaFppOkCXFUorAgSrBrdaaTGUmS0Ol0efjsEa+99hp+FFOsNZIoqBBCgR9GJElKkcNivsRyS1TX6/WIoojxeKyQ0GAwIMsy1us1L7/8MlEUKSQlG3y5LOdBwkLHcbh79y7z+ZzVakUYhtTrdTzPU156Z2eH9XpNkiRYloXneQDKe3uepxxNHMd4nqf2QhRF7O/vEwQBvu8TRZFCxPfu3SMIAqbTqUJkgmZHoxH7+/vU63VWq5V6v23b7OzssFgsboz1H3R9WkiBoih+Dfi1f5bXGoZZwTwbx3HUZr64uMD3fXZ2dlT8ZlkWURQxmUzI85yjoyPG47GCejKBtVpNWfE8z9nf3688b65iuTiOFeIQsipJEhUXynfSNA3XdSmKgsFgoGLP2WxGrVbDcRx1X7HKjUaDJEkwDENBZtkwEn5so5A8zxmNRoqou7y8rLiCjTKWpmmqeLTdbrPZbBQMlo0lSEbgruM46h6Xl5dkWaa8V7fbVePgOI56j4Q6woPIIhaYrGma8mK9Xo+iMCgKjdHoSoVscRypTdXt9slzaLfbLJdLNpsNcRwr79lsNtnb2+P+/fvl76KMl156icvLMce37pAkCZrhMJlO8bwGs9mM8XTCrdt3ePjoMc2GR1Fk3D4+5OzsFNsysc0SJsdpory6cC3L5ZI0TVUIWq/X0SvC+OnTp1iWVXIVy2X5GdXYbxu6JEnodrs0Gg2ePHmiDLHwVeKUBPXVajWm0ymu6yoUl2UZSZLg+74KqdI0BVChgKBOcX5JkrDZbJQhcRwHx3FIkoTd3V2m0ynz+RzLstjZ2SGKIi4vL9E0jcvLSxXuFX9IAPGpGYU/zpVlqVqc8/lcTZ54doE9ruveiHsbjQa1Wk3FrYPBQJEy4imh5B0mk4myqkEQqPfoeqEWjCx+8RRxHHN1dQWgNtBsNqPT6SjmXzaxbdvs7u5SFAXn5+eYpkm/36fT6bBarSpGPlMWutMpjYYsAokzHcchDEO16dIUtSAkBJEQQIyYkEriAcUIAIogtSxL3W+z2WCaJnt7ezx9+hRN09TYZVmmsh2bzeYGqto2ILJYNU3DtusKWQi0TtNUGVIZ+9FopMjSxWKhjJcYvbt377LZbDg7GxNGCe3OgJUfkCYZ56ML1msfy7a5vJrhtZo8f36O41hs/IAkTYnTnE1Qzt3a18tY3XIoCg0/8Fkul1xcXNDv9xkMBgpZNhoNTNNkuVwq4yeEo8yXoDwZnyzLOD8/V+tNNrGMV1EUXF5eslwuFQ/mOA6+7yuEkqbXZHNRFMznc3Z3dxVfIKShOMKiKHBdV4U0YRiqdStzXK/XgdKQCffU7/cVdyLO6P/38OGf5xJ4JASU4ziK4ZVNXK/XFZwHlOHwPI9Go3Ej1haEYJomYRjeSBVKXFnC6KaaKCEH5T1ivW3b5uLigjzP6ff7rNdr5bG3WX6BlfP5XHmD9XqtUAhwI6NRbihbLTzZlOKlS4OYKub6OmWoq3vKBpaNKIhKPJHcU8g8uZemaco4CCkmWQB5j2layjgKAlgsFsrQCDrRKA2VW6urZ1oVa6IwJs8KhQriJFKpySiKlMcVr9dut6txMzFNmzQNIa9SfOhlGlk3qxDQIAh85osFO8O+Mjqe50GeEoax8tJJNafiYCQbIuSizI2gInlWuEYJsp5kDYkxl9+FYUi321VjblkWYXhNYkvo4vs+V1dXNBoNRRDKvEpot01WOo6jslbT6ZT1ek2321VOURyErKflcqnmZ7PZKOcnSGcb7X3S9ZkwCrJQsyyj2+2qB9zeAGIthSkXyC4PHkURq9UK13UVxBKGXogxQRvCC5Sf4/H8+XNl/QVWOo7Dyy+/zHq9Jk1TFQ6UcLjLaDRSsF8mTMKEba+xXC7V4hBEEccxk8lEcQBFUShiC8C2bWzbBiCOFwr+isEKggDDMBgOhxiGwXw+VwhCOIVtjydZAiHEJPYfjUbcuXNHGS9JtxqGUZFWfRqNBmmakiQJy+VSGeXBYMBisWC1WinPKPer1+u89dZbfO9731Meq9lssre/y3w+V88qaVJ5BgnHvGaLdrfH7MkTWh0PP4zwg4jVakOcQRAnLFZXzCbn9Pt9Hjx6SLfd4eBgH69eo+45xEFAlMTUbEfpJcTpyMaWMFXCTOEb0jSl1WqhaRrj8Vg5pjRNaTabKs04nU4VAhwOh8oLSxZGeIQ4jlUGql6vK+QlhLcYciEykyQhSRLW6zWu67K3t6dCHN/3GY/HuK5Lr9dT4SlQhXLXYXYQBDdSn+12W82TaRqfvB8/rY3+x7myCn7Jho+iiOVySa/XA1CEzHw+vxbyVJtEvJB4Rhl8QQtRFCkDIAy3xGpRFOF5ber1uvL6wgC7rqsIKMliOI6jNr9kN+I4ptFoqOyD7/s4jqOIUwlNBOqLtxYOIk1TFecLmy+stqZpN7xXu91G0zSVOViv19i2rVCA53lomqYWtni77fGSlJdlWXS7XWXExBMKLyJpX/k9XEPSMAzxPA/P80rPrlkqKxLHMcPh8Ma8TadTxa5LWCebaT6fK9Ze0JVpX/NBq9WK6XRKEAREUUKuBSUvk6HuOZ2WoZa3qGOYGlkeYRsGFDpFJYQTzkmgthgIMb5CaMs8y5wJwbqd1hPjnySJMgIyPjJXEmZ5nsdsNiNNU0ajkeIRZH7kvrI+hcOStK6kumXuJH0t611QgCBgTdNUilMyDYDKsAnP84eVN3wmjIIs6M1mowiaZrNJv99X8HJbvJPnuWJVN5sN3W4Xx3EU4bYzGNBuNvnoo49wK/2Bv9koS29ommJ059Mpuq4TxzGd1iFRENGo13Fdm4uzk3LgtYzID0uP0BsA4JsbBcvDTYBj2ZiaQb/b5OnTp4qAjKvFLRthMBgQhqVll80gC1ZQiry2KApcpxS3uK6LoZUGptOqq7g0jkMso8Bx6yrXLeGGCKLk3+Kd47Dc7INeuyRUNwvqNRNTLw1BGEW0Wi0MLLK4YLKclZvJqKHbJovpisvzsTJYhlMqJtM0pd2pUxCz8efUXIONP2dvv08cx6xmU4oiQ9fBrOU0vBpRnOPUNXaGuyzXIWmaE24MPvrwPpNZmb589PgBeVGAlnNxdUmrVaZY/axgfTXBsQwupwv8KKQ1bvDqK6/QajaxTZNWqwF5gdvzmE9n1cbVGHT6zCdjNoFPr9vBNA1WqwlpYiieQSlYK56g3W6zWq1KRGCZkGckRU6ua0yXC2W47bpLHobkuka33SYIAmazmUJ8lmXh+z6dTgcoDVYQBKzXayV0cl1XCeGWyyWr1Yr9/X3a7TZJkjAej5nP5wppSmpVQocoimhX+2e9XpehWlFwdXFRGqXPOqega5qKp5rNJk+ePFExsugUgiBQMHU7zhWyajqdqnzybDZjsVjw+c9/njiOefPNN/n2t7+tYljxAALv79y5ozbTwcGBivN83wdKL9tqSk65TIN6lVCm/FlIHEdAQc31VEZD4GMYhsxmM6Vcazab+FVuWkhC27Y5OztT7LSo5wRqLhYLBSG3oeh27Co/k3hXQq7tZ3Ech8VsqbI7/X6fo6Mjzs/PVWpT0zRGoxFhcM20i9GVfL3k8OM4xnIMhfTE+7uui2EYSrHY6XTI6xlBsMGuWQx3ShQYRBGu16iMYin2WvsJjlvDWlt885vf5O692+RFQZyE7A6GzGZTwjCk0RkQRVGJqoqcJFiznM2xDAPLfJl202M+L9O494YdtY7+1L/6A7z//vs3hEci2Lq6XCoUIZ5WREau6yo+RM+v+a/tbINknGTzXl5eMpvNFLIUJCBpZTGswnPJuC2XSzzPUw6i2Wwyn8+ZTCYMh0PFETSbTRW2SdpbkMfjx49vcBMSfpdCq08ue/pMGIUsz6nX64r4kkkZDocURcFisVBZBxk0UW41m02VkvF9nzRNmc1mCsZNp1Pee+89Go2GuocQRRKKSDwtXlXkvhKLlcpE/0bGQWLTkgA0Kw9gqPSThDICNyVskM+XxSBIQbIVi8VCvUdgrngsIcYk5SrhQZ7nRJVmQ6C+QFsxIBJWAIqTEOJM7iEpSF3Xubq6Uqy5hEu1Wk2lM8MwVNyOZhTqsyQsE6Mtz21ZFlmuESUxhZaTpQUZlRa/0IjjtILWKUEQ0+v1sG2Tu3fvUhQZaZIQbHza7TbtdvuGilCvahvIU7QClfasOzVag5ZSxmqaQRiGPHzwmMViwd5woEIiUXlK2CZzJWHAarVSXEGSJGQUSvwUxzH1ep1arcZ4PCbPc2Vwto2+jNk2Ifn7w10xGtsOT0JaGV8JO7fHXOZH0pYSekrYIfMs6/czTzQmScKjR48wDIOPPvqInZ0d4jjmvffeU5tfILEgComLhLAbDAZ0u93KaxQqVfnmm2/y7rvvKlGTEI++Xy6we/fuKeXk0dGRMkwSc0m4Mtzp3tjcEhOmaYq+yUlTjSSJyDJTSUllciX9V6r/JsxmM+xaTTHbwvz3ej01cTs7O6RpyrLiUYRfkYW2TTDFcYxhuWpxF0WhdPcSY9ZqNUUkQrlxjo6OALi8vFSoRIip/f19HNtjuVwqIZeIxYSrEePqNtwbBrvV6hAEEYvFogqjNFarDV7NrRZ/jh+VYh80Ez9MAZ3pbMl8vuT5symr1YqPP37E7du3Kci4urqi0+ngWg7tRgO9ANN2yaosSF6khH65Ua4uL3k3zxl0O7z99tvs7e2BXs4/wHe/+11ee+01dN3EMAo2W9kIIXnFIKzXa0UACudxcXFB3fPoNMtwdjaeYBsmQZqRhBUZXoBjWkRpRrtd8laSGdtsNsznc27duqV0ESJ3FrQhqUWZY8Mw6Ha7KnW6bcQkHSlZM5HDHx4d4ft+mV0zDOLqGWVNf9L1mTAKVBBJlFeS9hJSZDQa0Ww22dnZueHhhM3PskxBaE3T2NvdZb1es9lsCIKAdrvNycmJEpwIzBY2VrIYMphCjL300ksEQVBZ/wxd18iylDwvB3e1WipG3/PqVSza5vz8XHkAKbQSjmHbO4thqVUGAlBFL6JuCyq9u6RcBabKs0pGxXJKQkx0+ZKKkj+CSFzXJfRLUY4gFMnwSFwrqs7AT1Sc7DjODa2/oKA4jqk368qriYcTr5qmKb7vU6vV8FdrsjwhB3w/wLTsEr0FGZZls1lHzKZLxa7L+N1/8CFpnLAzOMYwDKbTKXWnRq5rmIaJrhVEUZUmzAuVoRkDFxeXWJbDzvGAOCqh/cHBkUrJCgEscfm2LFu4BTGsYji63W5VnBUoLyyaAEGbYqCpEJimaYpTkLBKEIDMvfxsOzW8ncKVdVtumUKhMdu2lbMUByMIQ/7IPAjB+5knGsXjiqy22+2qYo8wDDk8PFQKs9FoRL/fV6TKdkGPpNukFuHq6uqG0Ec+Q8jL8/NztQjCMMRxHCX02Gw23L9/n+FwWMWVCzabDcPhUKkDBYZL1WBZDLTG930ODw/xfZ9nz56piez1ego6GpbFyckJm82GwWCgiEMR9Qi51Ww21XOen5+r6kaB6MKW1xtlpZ+w1o1GA9u2efLkCf1+v+QxKuXc3t4euq4rskpgpvAGkt5N4kIZgyiK2N3dVQt4MpmoLE0QRIpJD4JIIamyLiGuaiICHMeq4GzGau2z8UPQTbxGlzTNmc1XPHz0lDyH19/4Ah9//Ij5fE7NdrBdD8swSKMYs9DwnBr93R1ms1lZodls0nRd/CgkiUvjFIUxv/O773D/4SN+4if/XWXcRlppSKfjy1L8o1tKeLXZlHqZq6srhQo9z1NVpGJka7UaVlWVuFMhCdMwyLMMQ9fZVKlsMQZSZ+I4jor/DcPg3r17SnHoOA6LxYL1ek2n01GZKNd1FcIQWbyEw4vFQvFh8plSf7OYT0uVaoX0jg73yzWv65jGZzwlSVWMsk0girZ+Gw1I3C3lt5ZlKbUgoCSoVoUmBO6L5kHiXbi2ykICCZchWgdJz0l6NMviG2kpsebiFSQVKWToZDJRqVJZCGdnZyr+lFoL0QBILlzSWrKBt2XKAn8ldBLUFIYhfjhWJJeoNgX2y7MLF6OTKqJqG56K0lDKnpuNrjJWUmMhMa8YHYGvgk6ExxAoLBmV0oBapHkIWvk63TK5Gs8xTA+v0eLk5JQozND0gvF4rDQBrVaLLE6wDJONvyyzB70+/sanyHKaXgPTLpGmlhfUbJugcihQhqcff/wxtmnRaNTRdeOGWCiJYsV7uK6u1qFkbIS9FwJXnIqMjRCHIjDbjvPlj/AM2xWlvu8r1Wccx4psFOThOI4KC4IgUIpLUTFKWllety30K0luF8/zGI/HimT1PE850U+6PhNGQddK8mU8HlOrlYVC24MknvPi4oIwDLm8vFTst0yATEiWZdSqRSqLdbPZsLu7C5TSXfFwWZZxeHjI1dWV2mBSjCIxG6AmplTxFUSRj6aZiu0tc/oB5+eXKhyRnLLU2gsBJFWV9pa2XTZRXhGuMmlZlrGs1JGapvHqq6+SZZmqNNyW40ZhpBafiKxk8Uj2Q6pLiyxSYyoCGNHTixgriiIM3b/WylcEl3zmcDhUEHftB5ydnSkj3Gg06LRLWfh0M2UxXzIYDPCaHqt1mbpbrktS2Kl53Lp9j9/93nt84c2v8HvvvMfXv/F93P/gQ/YPD1hMZwwGfTqNJhfPT2m3Wniui6Hp9DsNYs9ViFIrwHPruJ7H6GpCkmSs/YBs6fPd7/4Ot4+PqNfrHB7skaYZbq2E+qEfsF4nuG5BFCXqOaT+xfM8VawmG/bZk6eYWmksDTTSan5lvdqGiZYXNDtthsNhVQTnqLGVuF7GXQyskMX1ep1nz54pPkrCRJH6h2GZIpe0tiBV4YXCMCRPIy4vFvR6PfrddlnUB9Ts2mc/+5DnmRJ4CCwSEk5SKWma8sorr1Cv1xmPx3zpS19iuVzy4YcfKvWiwPSg0jvIgEk5tUC/8p4lkrh37x6tVkvVGoggRwRLi8WiNDqaTRzlpEmpGbh393aZBl1HShTi2B6mVdYbiLRZ6iGExJLy4yCKaLfbCu2IUEieQd7fbreVjPbq6krFi/Iz8ViCWhqNBlEU8fz5c6XGlDhSkIFlFIp1Pzg4UHUTtm2r7/T06VPVH0JCLCmpbjQaLBbl5i6zBDb37t1T5bpSMCaoSQrKDNui2e7iOBZXk1Ky64cRf//XvsmHDx7z1vf9AEFQ5uDPL0ccH+zTud2i4daIwpBXX32V6dUYLc853j9gNL3AMQ28epswcCkKDXSdpEJxjUaLVfUMk8kEx7LZ39/FqzfZ+CtM06o4nbqqC7AsS6Uni6JELJeXl6p0fTt9KfyNOJjtoitJRa+qorUgCDg9PVXchPAJ22O+LUdvt9vs7u4qJaVwUlLiLTL8zWaj0s3iGCWtnUQblXETY+W6rkrHf9L1mTAKoKlUjsRr291s0jRV5b8iGxXYLNBblIe2bSu5pyj+RKcvHk/gn1RbSnGJWPDVaqU4Dglj4ihXAynfR7z6dDpV0JIwVaRemqZ0Oh2FOlzXZbValT0W4ph+v69QQUlcrlS4IHGhhCG7u7uKSNwuzJHwwKhievFGImUWQZhs6jRNaVR6h+0KPUE9Uv6raRrPTs7VM0t2QkIt8WxhGGI5Ndrttop9t0uAwzBUYYB4NwlnAHZ29vjVv/M/cnh4mzfeeIOnT5+pcYPrui/oJsgAACAASURBVIHh/gEaOXmSklXQu1azKYoqNHTKkAZdJ4giul2dPIe8KMiygk00URkM0zTRtfIZ6nUXXZPGKjUsy1FEsOu6dDodFouF4roEjQqHIq+V8EOQn0B4KW6S/0s4eV1NGqu0ofA60q1Lq0R2wl0J7yFrWDiL7RSjlHLruk69ZipDsl14Jgjvk67PhFGwLIv9/X1WqxXL5ZIHDx5QFAXHx8dqAbmui+/7jEYjdF3nu9/9rtKFCwwTAY14XTEoBwcHiiCTiRL2XHLH4v1EWahpGnt7e0r/3ql08U6tjl0zuZqOlJah2fFUyFF3muiaiefVq8WiEwQxlmXi+yvQEuJkQxQG5Fmd2XJDEmc06g7Dfkm4RVFElhY4NQcdFHw9Pz9Xxk44DCEkL8fnpQpPK0m2w+M9RqMRnV5TZS/Ozs4wq4W5nbPeJk5FxxEEAb3hQNUlaJrGfLUsC8eaDfr9sghJagPee/9djo6O6A96TKdTVUmZjzKOj49L9OBr3DreRytyJhdXdBwP/2rCXm/A973xZe4//hijVseoWbz2xpdYXo159aV7vPWlL/K//53/FUvXSeMNug6tQQeNFpPJhFarxXK55Hh3WPIypoFflKlgq9ckjmN+7+M1RVwwHs2ZLUI63T6mAWESslhM8FybPF5wdPeL2LbN48ePqdVM4thkvS7Y3e2jaRlRVHZp6vf7yquvVitFYm4Lmfr9Pp2woxzX7qCsj3jw4AH9fl/VkozHY3INhSa3y62Fj5J05rZsX9d1JWqS+hbJQBiGwSZIiFMwLJfeoCTg0xyipCCOk0/cj58Jo6BpZSpuW/Jbr9e5uLig0WhwfHysuATpaCQiHYHTQso1Gg1a1UBLfr/sS7AA+Kd6NmxLS6XHoIihzs7OlMUWAY/cU1JB0mhEoRmvRDP1ust6vVZNU6TJaRSHKqwRMtDfhNVzJ4RhabwcuzSCUdUuTgq/tuGneGZRv5mmqQqWJKQQL5Omaak9cBz0vFCoSDyPNOAQg+q6LtP5WvEyYkylVFgQnaRcO52OGgNBZ8KKb8PlxWKBTkWWaRrvvfcBr7zySslt1Dscxhm7u02+853v0G80+drX3uK//xs/z8HuAAMqXUfpiaOwbDgjxHCeVE1dGhah76twRpR8QRQqhBiGIXkWE0cbimoNBdV7xJvLeEsPDc/zrsVhYXYDggvnIu8RgnW7fdt6va50HC1VwyBefx34ivzVNE3VLEh4ImSj7/tKsCeVkrpe9gOR30vWQhCM8BDiQCTM+KTrM2EUTNNS3IFlWQpW/9iP/RjT6ZTvfOc7pGmqQgeJ/SSmEhZ2tVqVhmO9plYrIa0Us4hx2IZ2uq5zfHysqgylwEm4jE6no4qQvGZTtcOS+4pysoShdY6Ojgg3IWdnZximQLasarHVLDdQelPoMxgMmIxniuHWtNK49bplarRYZaqYRr7X4eGhUnkKyWTWHC4uLlSnp1arxa1bt7h//z7r9ZrJZMJbb72FaZo8+ui+gr0CbWVziYGdzWb0h/vKOwGKjW+1WlW7tjLsGo/HAJyfn6u+EkEQqJDs+fPn5HnOzI/YGfTJkpRZ1XBkupgzXcekuYld7/Dx0xPefWfN3bt3efurX+W/+2/+Wz7/8kskoQ+UCtYoLb2l53kcHR1xcXHBcDhkOZuXJG+WEzWbKoWXZRnddg1jbVAUGc9OnjC+ctnbH0KRMez30cnJs4STkxPFsUwmE+r1Ot1uV2WihMsh0xU/Jc5MKiBFoi8btSy8K9OaEjoIud3r9UryVy/DIOkqVhQF0+kUTSsb99ZqNXzfZzqdAmV/T6kFEg4iiiL1HaQxrmSjtkOdMlz9l9B56Y9zFcV1gZPEVcPhkI8//ljVJhiGoarMRFUnTG2SJKp5qcSBsrjFS8rrJCaUrjuSphRDIxJXyfmKhRWlmLRek4Ug3IZ8F9cuFWlZTjXpfVW4lec5QVgu1O0yVokvSy4jVykrSZvJs4gXF9h6eHio0I7j1HCsCnpmOXEYgV2QJSmWYRLlIc+fnapxE55FkJBAXxHwyGYXtlwktKZpVkVdoTK2lmUpsZikeWUhiscTGbiu65iOQ6fXJ40TLkZXtHu7vP3220wWG27ducP/849/nTe+8Bo/+7M/y3/4F36C+XRGEmxAy9ndHdJr9SpjbajvJwKePM+p11ySygtLyzrTqdFuNtCratvVasXe7oCaW1WIpmXtxSZcqmpDCQV0XVfckBhCx3TVRpOsgDgnQPFDwqHIZhVnICSuiJJEkCbaCNGMSJGbrBEhO6Vnh2QaJPPheZ5qPyAkr4jORJEq4ccnXZ8JoyCl02IhwzBULa5kYrZTL4CKoyRnvrOzo9I7WdU30TTL9u0iNZZQQyCZ5Oa73a4q7pEOQEVR8PDhQwXRXM9TElQhGaXjr5B1SZLQa/fKttujs4q5vqDb7bJYzMsQp1Z6cckknJ6e0mp2VIMXQCkFt3tICKciEDMMQ05OTrBtu+RDKqlyt9tV3MB0OlWh1507d1itVvR6PTaVrFuKaaQtXRRFqtvP3t4ehWapjS0EmtxXmp0KIrNtm1u3bqkU8HK5ZG9vTzWkWS6XaJaFYZRNWHTgo5MHFJrOm29+iQ8++ICT0xFJlvLn/9yfZTlf8Nf+6s/w7OPH+Os1+zs7zBfT0jD3usyXCzy3wdOnTxWRuTfcKbkkNNK4rJ9wXZfpdMp4tSLLM3qdDmeXl6xWK27fOsR1y/e0Gk2yJMWPSuMt4qH5fM7Z2Zmaa+AGcSdGVhCXOAqRy0saV7I2gsaEyATKdvD+dU2OaGO2pfSi1wmCgLt376oKSqUWrUKf5XKpMnm7u7tEUaT6MkroVGohPnk/fiaMgq7rPH36VFXTSRpvu9uRV21KafcudfDn5+c0K6jYbDZLqGXbPHr0iIODA2U0ZKDECgvJ6HmeamMmiEEMieM47O3tUavVWFRts6Qtm6QdV6uVgtNpmjKZTJRqsIx1U15//XUeP35EkiScPj9hOp2qhed5HoEvfRUzoqiMw2fTJyRJws7uQC1AsfoPHjxQ36PZbKpFm2UZaRxTr7I39VqNy4sLAIosY9Drqc5R0tREhE4CNSXFZZomB0d3VKZB5N/bjWDr9boixiSWlhj+4OBAGfQwDMvQqmq2cn5+wehqwqOnJxwc3yGKU17/wsu02z2+9847+Ks5Tx7dJ/R9+s02EfD89KREY3WHk5MT4jSi6bU4PDxUhsnUSmK57tbZ29tjs9koJn6+XNJoNtgslqznC9Is5f79h2w2G/Z3Ki7JreMVKMckDmBbQt9qlQVWjukyn88VcpQ1KGMpehEJCeLKSHmex9XVFfv7+6zXa77xjW8wGo2w3RrdbpfHjx+r14rjEIchXNvDhw/V31ITs1qtSoK50t1Ihk3SkaPRSK2hsvFO9In78TNhFLJKnyDx32g0otfrMZlM1IaQ+EwgrEBygXnSXSkMQ6aVGk3IMOmdkKapQhxSEiyfIZA9CAJeeeUVNamS3gyr1JHwCpPJRP1OauzjOCaISwsuPEWSRKzXaw4ODkrF4LKUqK5WK8WdjPOpSllCyXfYVk2VzYpiU4yWTLYUfW2nx7ar5yzLUm3vJfx6+PCh6iok6TBZ/OKNpLRcCCn5ufTElFblEsNK2CGEq9SwNBoN1SpvZ2eH6XSsDOI7v/cep6fP+cbbf4qsEP1Izg984+ucntzHNk2Gh/vEQchiOWPYH7C7O2S1WWO7Ncz0uuZFILVj2VV+Plbj0Gg0SijuufhhzO27d/HjCK0KC/QCkjhlPl+i5RmdfudavGVcl0Nvc017e3skYaZCI0ApY6VWQSpsf39losyFELiq+rTTVjUykp4WYns7fJBshHA6g8FAaSO2UZ0Y622id7vpiqZ/5nUKsLe3p5hyOblHPFAclyf1SP58G/JKr8U8z1Ufg6BCDVKBJiy7TIQ0MtkuCpH229uFJPP5nA8//LAUOX3ucziOw9XVFZZllem+6sCUOI5V56SdftlB9/nZs0r5168IoonK4W8rG8tQxqty4AW1WiU71stJ1o3rpqHSbEPkzkKG2bZNnmbEUcTz+eJGzLi7u8vz58+Joqg8PGbj31DWAaoIrVarqcKrdrutMjYSKu3s7Kj+DZqmcXZ2phrZStmw8C1FUSgp+nw+Lw26mdNs1JlOZ+X7BkO+9d3vcefWHeIs5R/9w9/i4OCAV++W9Sbnp8/YzJe0Gh6mXqLCg6NDWt0Oj58+YW+4c0OCHW5K8s2yLPwKpQyHwzJn71hcjSecja9oNRpM53OSJOY0TWi1X8XSNCynpjinIAhKwreqXJXMwnQ6LUVKRll5KmHDtmxZivDKvhueWsuiO9guVHvnnXfQNI2D4yPVh0LIxm3+Sz5bPs80yzNFjo6OlAZFWsRti9gkKydGQ1oQ/GGnwXwmjEJaFXlAWTIsQheRbsrgCKyyLEv1vN9ukCpwVYQkw+EQz/OYTqfKewmbLlZXioikNx7AaDS6riisKhNlYUun5v39fYVkhLSTIiNAHUYidRpywEhBpmSqUuiUxGllZLo3ZNuysYTMErZ5Gxoul0sODw/VYhHtu2yURqPB4eEhy+WS+bzkNZbLpeJTRDSzXRIttRzTaXlkmu/7qoJUoKyo6oIgUMZYdPvSOUiMDlRquzRBN6s0cp6zni8Z7hzghwHPnz/Htm2+/MUvsZk9YToZ8/z5M7rNFvWq1+aqImslnbo9n77vQ3XGZb1WxuqCIAFMHXaGAx6fPAO79PazxZzFojyxq1N1cxLeRJCBZKQAdeCO53nYRk3xUNttAgWhyPyJJkTmTfQzsjlnsxmmaTJ//31FJEr2SFCcIIXtGgf5TEG6QnhL6fs2hyaoRbgMEUt90vUvZBQ0TXsCrIAMSIui+KqmaT3gV4A7wBPg3yuKYvZHfA7rKo24Xq8VXBYvL/nhTqej0kwi3pFuQLJR8jxnMBhwenpKnpdNVvb29hTUF9JFcuniESRXL0fPiWUWWHxxcUG9Xuf4+Fid+ZDnuWqrNZ/P8X2fQbc87KSgHPynT59W5cetauKiGyFQkiRYpqMsfZ5XDVLcsjbh8vKSfr+vJjRJEnZ2yupA2eCmaaIVULMdtALSuDx3ol5zWS2WzCZlGst1arSbLZb+WpGSEqIIiSaHmkhjXCkfTpIyXSeQXI64KzmCc6XEy/Oc27dvYxhGKZaq8uthGGLkIXE2IU0T3njjDX7jN/8RR26dn/6pn+ZXfvkXuXXrFqenJ6zGT5hOp/Q6bXrNDr6/ZjabcPfuS9y7dw/brREmseKRhOPotkoSerVakSaJGq88zynSjDgrjdncD+l2OpyPLpjP54xGI9rNFrpmYBgo5axpmiwWCzqdjqofETQVrCOVMmy322ptXl5eqpSkoFjRb2zLmKFEx/P5vOz4NL0+AUz2hPABgjCLorgha47jWFX9yr6QsFGMiGTJRBOxs7NTGZ5PNyX5g0VRjLf+/3PA/1UUxV/XNO3nqv//tT/sA9yaqxRicjiIeK6iKFSXYzkGSzIHm82GxWKhat63F7dIg7ebjW7LfmVjivUX5l8mUNqAt1otpZEQ7ytxn6SrttvG5e3Sky2WMxXjaZrGkydPyknZHahFLCKqNCmt/Pn5Ba7rYRgGuzv7ZQvwyFcNVwQdie5euBa4ViZKmmob0o9GI0UkCokorcLEsG53bBISV8ZRQqP1eq3CF8mXb2s+AFX3IOlBSbHJJqk3WpyNnrG/v49hGHz+85/n3XffLcfVNNG06y5FaRQzHZXVkkdHR4xGIxabNUbNJopT9oYDJQmG667g8r0kvQqwe7DL+eiCi8mMVsvm5ORElabHUVpVqIYMdzo3PLKsCyGnhfD2V6EKuaQtXrvdZjweqw0dRZE6I0S8PqD4LjEYIioSZCHk73ZaXUhmKBvkbJfbi/ZAEKsgge1eHZJClvv+YdenET78KPCnq3//TeC3+COMQhLHpNWG1TQNvTryqt/vYxkGi0okNB1fqrp0KCFhqyOQOmY+jaqJuW7JJRay3W4zm83UQEqKabmcK6t6TZJZOI6F69bYbFakaUy93qBWFTTpQByGvPTSS5yfn5ekYhzjuS6YFpso5tnZJe12WzWktWqlCGoTaDQaXbQ8pu6WCEhztcp4XQurlqs5frCm1Wrg++uKAygN1TvvfE/lvI+PD9E0mK/nZWYhLFHAydkJnlcamJ2DHbV47LoNeaEWrvSPePb0yXXNRBjgr1eYVlkHgaahGwZoGkfHxyUxVvE5q9UKrQi5rPo99rsewWZBlgTkSYyfxBwf3y4Lkto2//dv/mMePnpGZ3CbN15+g3gV4N22yOOQZ6fPeP1Hfoj7foNXvvi1sgQ+zXDdGkkQcnZySnZ5yeHePq1Gk3SVk9kFLbtFOAu43FxS5DmDQQ+SHNOAYFMSohd5hOHY9Ns1njx9SsvK2SQZ/XaL+49PsJoD3GaLQW4TBhme18QwNPxgzWq9wK15dLtDao7L89Mx3U6Nvf2BQktyiHGv31LQ3ms4JHGmkIcUwwkXJUShpA9FBSmoV8JbQVtyzmWz7mHppaGYXpWno7lyrEBNU5kKcRrCqQnCLBHpp9dkpQB+XdO0AvgbRXmS9G5RFOcARVGca5q28we9Uds6in7QKw8k3S72kZRfv9/n/fffJ8syXn75JR48eHBDPit8gzDEpWdrq8Ne5bMkTBCvJ9kBx7kmIMWii5JNBE7SZ0DXde7evavSf5vNhpdffpnd3V2+/e1vl0ankj5/+ctfVuHK0VHZ6WdbFEQlXNku4jo8PFSxqTRRybJEISBJfQqxJWXgkv8G2N/fV5tVEMmtW7ewLIvxeEwcx/S7JS9z9+5dzs/PieOY27dvlw05qswNlJWkImDa399XRVAy3uLxkixR9QfdbpeDg31Go5HiibrdPuPxmEbT5lvf/i6G6dDdKXAcm3fffYcsjWi3m3Rbn+Mf/uZv4ftlEdXh4SEfP/yYw8NDXn/9ddB0gqoGoDBNak2P2bqEz4NBjy+8/gV0o9woy8UM27Spd1pYSYJTM8myBK/e5ODgiPPRBZfzS2y3QavR5Pz0GT/wr/0gcRyx2awIwnV5LmXFW+VZWXOyWfv4fohGqNS1aZoqsdLu7i66rqu04MJfKlXt7xcuiVZEZPWe59Hr9VgsFpycnNzImAFKAp0nqeJutrUmIsSTVLHb8JSzE85su9jq0zIK/0pRFGfVxv8NTdM+/Gd9Y7F1FP3L924X0nxC4iHZhBITClkixItc7XZbkULyoJIakvSaZVmK6BMiT4Qipqmr94maUSz7NgPcbJb56Nu3b2PbNh988IFi6q+urojjuNRFGJbqcZClKXXXwd+s1OJybJNup8XkanSjnFU8jpCVopJ0nOuzKATdSNpJUoGO46gDbeXZBEqKmEYWocDY7eP35N+SwpVYNEwLsjQm8NfEUUC71VDhUhwFWKZBv9+DPOLy8kpBUyF9BcaKwX76dESWlSdFvfrqq7z3/v1Kfh6TZymPHz1A0zPuHB0ShCGubbG7W2Yinp+eMZ5NSdOc3Z1Sfh2mCZugDB1ydOabFXmS4jU80iLFQKt0FRGGCUVxXXWpaRq3Do+w3AZXi4/Y29nl+ekJjVtDlSXQtIK6V2M4HBKFCatVQJFDu90hjhbKMErsv7Ozo05zEhJX1pSMgTgU+b8oIbeJWhHXSZGTyK6FoJY1CvxTMmZJR9q2zarKWkjVrehyVEXvJ1z/QkahKIqz6u9LTdN+Ffg6MNI0bb9CCfvA5R/1Obp2feKTZVlKtCH17FLE8fz5c5VdEKHSwcGBEh5J/L9YLJhMJhwcHGAYBrPZTPUSkME8ODjAsiwePryv8vWyiOU8P9mAJXSP1YY1TZM333yT8Xisil4Gg0FJltYtlVW4vLxUKSHZmDKp9+7dU6o34UeyLGN3d5ednR3F9sdxqH4nJd3ynURrsJ0W63a7zOdzVWDWbrcVXyBt1ybj8mzH6XTK0dGR0jIAahxM06TbLHUJ9+/f5+TkhFdeeUURpHI+ZK1WwzYdfD9QxOV8Xh7ko1FKzOU077TIGe7sM1+u+d7v/i5Pnpzw9a9/g/l8yvhqxPHeDmkaM766wLZtTp8+YbUOeenlVwiTlIPD26w2EW98+Ss8PXlGGq1p9vu4To24SBnNZrS8Oo6usX/7NkWWo00uscKQYD7F0HRcr4G1WjLo9fneu+9juXU8x+bZyROarQ61wqder9HuNJReIEkSdM2kKAyKHDodXZ0onqapIhqLolCNWMQwt1otRfQJOpVamW1eTBSNklURDkuyHdu9QQw0JSoT/qHf7yu0INycfA+pkZGam3LtfApGQdM0D9CLolhV//43gP8C+HvAfwz89ervv/tHfVZe5Ao6iZIRrpVlwn4vl5troUpF0smpTOJxS+GOUcXbx5imydXVlTo+TWSm0lRFshfbBI1MonhQCUME0p6envLbv/3bfPWrX1VGqt/vq4rI+XxOlkTEoa9Ku2WCJIxxHEf1FxSjJ0VbsrjyKj4Wmbc8g4RGIoWVCd+u0ReUJNASUAhDwjJhu0XKvVwuVVenXq9HEgX46yWNemmsQ7/sLaiTk6cxeQpx6LMMNxwdHSllaL8/UFJwIcCiKGLjB4RxSqPZ5oMPPsC2ayyXc+7ducXp00fkeZe3v/EN/s9/UB5W3u/36Q/K0On8/JIvffkrdId7xFHCrTt3IQ8UAtILcBwL07bp9npoOkRZiu24mJaDleeQZ+iGhmPZFFUzn7rXZDI/Y2cwwA/TqkQZBlbZOXk2L2sdak6dbndIUZ1teXh4qMIGgeaCAgAVGkZhpuC/hKibzUYRlsvlstzA5s0WcULOCrITQjOOYyK/bM3WbDbVGA+HQ0VEqiKsVlNVbEJZaSsh8acVPuwCv1p9uAn8YlEU/0DTtG8Df1vTtP8EOAF+4o/6IIFPUmxycHCgGoBIk8pSwDOg1WqV9QJVt6R3331XLewkSap0WckKT6dTpbKL4xjP81THIMlKmKauMhAS90uaRziITqfDaFSeUPzkyRMVwpyfn6s2cpKiOzg4IM9zLi4uVHWjdL+Bsmbji1/8ImEYlpV9y6Xq4SDtt4qiUC3rsyxRaSUJM6T4S/oHCmwUDkMau2qapmTaUVSm0A4ODmg3W0rqvD0Hot+QYi0JweSAGFFuCms/n8+ZTqc0GmXzGElNighnfDWpOhDFPHv2jA8ePSOMUv79f+fH+Jv/0/8MhsbV1Yj55JIvvPYaNdPgm3//1/nq17/G1dUVtuPy5a98nbOzc5x6m9Um4NbdFlpbZ2/vgCKPFDm3Wa357j/5NpPLK77/+7+GW6vantul+tRIC9IsxdVtGo0Wur/mzvExT09Pee3zr/D4yVPSLGcyCUjTmJpbks2aft2Oz/d90iTD90MMvUSOOzs7KlySkFdOsV6tVhi6oxSH0jhmNBop57S3t1emgZuNG3oD6Qgurd9lDQsi3s5OADx79kyFJZKhK/Tro/DEqYhC9g+RKfzzG4WiKB4DX/oDfj4BfuiP81lxFKvU0WAw4P3331dQSWoTXNflK1/5CicnJ6qsdLst1mQyUT31sqzg9u3bqtxYRETCEQjEyrIMx7FU4YywvlJcIjn6UoJdjqLEZ67rqjTj9sb+4L13aTabeG4Nre6q9vE6BXfv3mU+n3N5cc7h8S21qefzudq0kmsWCHhxccadO3cIw1ClWAeDgYo9RdM+nU5vwFUhnZ49e6ag5d27d0tthu6r0EIUmtKdWTT8EnLVajV2BqVOYqVrxGFAr9PmcH+Peq3s4NPv96nXPZUanExmN1KbksLUNIe80Pjdd95l6S/LysM0JM8yprMxk/MRtw6PGE1X/Fs/+uP8rb/1i6zWAXfuvsQP/pkf5v/91nd48vHj8rj6Z6esq6yMTilS6nUH7A13aDYa5YGvecbHH3/M1eWYllPDNnSKQk6NzqEoyJOUj957l5rXwI9C/CAiSSKarTp57lD3ypoEDQNdtwn8EMtysExDGdter6c0DHBd0JZlGflWibWEDsLLiDMLw5AovZY4l8TpQJ31KYIyCRefjp/yxhtv0Gg0+Na3vsWtW7duIGAJBYWXqtfrSsh2za998n78TCgaRRwkp+mIXl5kz1JsIwzta6+9xoMHD8pKvirdKPLSKIpYr31FAkpDFiFpNlXPPBl802yoFlXSMXcwGCiJqCCC6XSuWrlLPll6LsrBMlEUEemaar4iG1t0EaKbf/ToEaPRSMWrokBbLBbqVGwVP1bhiYQ0krKSkEJ4EpFCi/5CUMV27YLA3SSKFRsui3P7DEJphiL8guTORR0qHIcoFss6AVP1njDNiuA1rztD5XlOoemYps14NlfoJooihu02p09PeOn4NlmS4rW7/PL/8r/xfV/7On/u3/7z9Ho9fumXfgldMxmdn/HDP/zDvPvuu+zv7m01f0mp2TaWZRCHEadPT4BSvn779m1GT0+J8wzLLGshyHJM3aDdajKelyd7x0lGUmVXSp4pJU5KPcLhwTHrdYihmziOi65F6oi+fr+vxluIxe1wDrhB9AIKEQqkNx1bOSEhlWVsRd7c7Xap1+t8NJmqn0sWStYboBS0tltTnIPoVwSVf+ZLp23HVgrC0WjEvXv3ePbsmaqTl1TdBx98wJ07d7h16xZnZ2eqQlFCB8/zyLJMwXLpUeA4juqvJ9pyCRV0HRXXQRlrfe5zn1NnN4rYSTaudJTWdZ29vT0lJpKr3+uqNml5nmOZBpPJhGbD48H9jzg+PqbbadNod1XcKWnJfr8PlEZSGrgMh0N1SpHEnI8fP1axq4RZYuQEHYm6MIoi3n//fcVDdLtdyAulyhQeRlq9SXqz0WgwnYyJo5AsvRZt9brls2qGTt2tKeVikqS8/PLLCtGsViuytFClu8+fPye3hthuXXXtDsMAx9JxahYHB3sVaWlxdjXn6NZLAqZ9SwAAIABJREFU3Hv5C/yX/9V/zZ/9N3+E4XBIr93Bc2yKLOWtL72B4bbZbNZkcdlj0jJLhn2TLxgHpair1WjSqDcpgpjFrDx56mBngL2zy7Oz5xwdHXE2GrOaz6g3W6RaQlFIj4wU2ymPqndsl6IwlFEYDAbKoEt9gsyBOLeiKNCro+oAJYgSib1sTl3X0UxDCfYsy1IH0gphKMg1jmNee+01Hj16pPgvUduapnnjjM+g2j+S8pTU+qcqc/6TuqSgCMoUy0cffaS+uBShnJ+f88Ybr6uDXrrdLqenp4o4i6KIW7duVQPTUY1gpahH2PJtZVhZ2FOoDSTeUuJzOWJuZ2eH0ehKSZHT9Lohq1QqXlxclFCyfajq56VWoF6vK15EJlCq8CRlKE1di6JQhOJwOFQiFymg2iYsRaUpLdjE88rCAhTLvb+/z/3791kul8rDCokqaUNJiwZBcMPYSIpOiEtBSUJolv0dSoQxHo/ZbEp9RJrkFZIpjUrTs1kFZR/OnBwNaa+W89orr3Dy8DHHn/s89+68ws/8zE/zV37qr/CX/9O/xN/9e7/KrcMDhr0+//oP/WnCTdlDoOb1yhSjWyMLQ1Ve3djdpV67lhqLOKhm24wunqmGvqZpli3h6w5REtNut1nH/o36ABF0GYZBu91XLeDke2/rAASdSgrZsiw0LLUBt7MF8l6FKkAhQ0EJV1dXN3Qh2/0apKZGFKYSDkt4q2kam7Bc5zKngqbLGpxPvj4TRkHXNNrNsq/i4eEht44OGY/HJdlkGsynE7QiV+x+eVpvi3q9wXLhkyQLjo9v8+D+UzzP43vfe0e1zRbJryjJpJR6vV4rq9psNqvmFAuCIODhw8fcunWLi4tLDMNiNLoqm4RoGm+99RarqrfC9jFtd+/e5dGjR5xfjvE8T/X6ny3XTKZzVn4ZynitTrV4fOK4oFazcV2nakN3qyIsC1qtBpZlqhz4crlUxKnUgUhYVXrrC3S9QNdNNE3HcVza7VrVN2HB5eU/qU6XajOZlfDTrjksViWLfe9zLykptYQnha7R6nb58pe/zPPnz7l//yFWnNLwWnQafaga6fbbPSxNZzmes9PqslgtuDg/Y+/wiFXoczWb0tjfI5yv0dOUnU6HydUFb7/9Ns9PT+g0+9z/6GP6/T3c9i6Tp0/4q3/pL/OTP/7jzEfn3Nnb58/84A/RaDT4hV/4BX7qp36K2WzGgw9/h9FopHL+hmFwfHzMpCo2c73SWLquy2QygXhDbuq0Bn1qjk2z1abX63H3+CU+DB+Shhl2YfP/UfemQZJl53nec2/e3Pc9s/alu3rfZh8sMxgMYRAUF4CiqSBNAwqJhiMoR5gUzZB+MLhYP8QIh2yRtE2FJIoGuIBhahAAKZLYCAwGM4NpzNLd02vtW1bu+77cvNc/Tp4zPTQIMCxLMcqIierKqa7qyrz3nPN93/s+b6c3IndcIRgO4PKHCXpDWE4Y2wMcLihXD+j3gop8XS1XGA2GTEcTXIaBNpnSqTWU8QvEjelxiimWbY7QbROXw2Bqjgj63LQGI1VOgJggyHKh3RYjXqmvKJVKaqKwtLSkHLTyJCH7CKYtvD+yv+FwOEilUqIsnJ00v9vjPbEoyJGdXJnlCyOP4LITPh6P1J/fmfuKScK6a51QKEShUFB1cDQaxev1KhpRMBhUu53UnMufI3sIiUSCQqFAJBKhWCwqebR0NcqLT/49aQ+WfQq5a8j6Tk4N5BsjVWnyNCF3BzlqlF8nTVqySSR3F8lI8Hg8FAoF9TEcjqipijySyh0LUCeah5WfshchEWJyZCln5aFQiGq1yp07dxQ4pVKp0Gq1cLu9SksytcxZIywIukYqlSaaSNDqCsXlpNWhWCzy6Pn38c2XvkEoFCCRSHB4eMhkPFSl3/r6Op/85Cd57fXX6PV6XL9+XTESX3jhBbLZLD/5kz+p+BiFQoFarcby8jKWZZHL5ZSUXYq4pF9DNpelvHs46L/rd1XsBEvM9buTvjqeD4dDAk7hIXDwTq7kYDBQkxa3242hO97lldA0je5wIPQl1pSpPUMNplOiCatpDPpDpUuQWZ6yNPR6vepEI0VlAN1WWwmb5PsmexTya+RrIP/9gGIsaJqG9l7vKciFwO12s7+/r5iA0gsha9zRWByHptMpumYQj8cwzakIejE0AkEPg/2OUj/COzf8eDxWXAF5w8j/pOtPglNisRh7e3tqvCYdc8PhkLt376qsS9kAlMw/2aCU4yKn06mapnJ0KG/yyWSkbnR5UTUaDfWz5AUsa8D5+XmSySSlUonRaKT6GcFgkFarpTrVgLLzOhwO0uk06+vrGIah0qWTyaT6d0rZtPyZEmsvOt5DIhFxE3Q6HXK5HG63WyHn5THb4TCI+cXC1+m0BBtjNGQ0maLhoFptEgrHefXVV/nYxz7GN7/5DeZWFimXyywsLJBMJPE43ZRKJfb29vjN3/xNPvCBD5DNZvn0pz/NZz/7WR555BHW1ta4fv06mUyGt956i0wqwcWLl1UZ9uyzzzGdTnnw4IESw43HUkswxJraxGIJokEfmg29VJ9KpUan02N1ZY3s/ALtXptiscD20S6Gw0WpVMLtcbFgzBFJJ9FtS2QzGgb+WckbDoUUIq/TauN4aJPwh98RL8mE9NXVVZVE1mw28fl8ZBaWlSs3Ho8rvYsE5cq+j6Zp2DOEoCwTAFWiSBn9eDxmfmlRIeRl83l3d1csEt+jp+D4tV/7tf9U9/rf+vFb//J/+7VnnnwEl8tFIpFQARyRSIRgMChELPE4pXKeWq3KaDQU+PRKCa/HS6/Xne3gOpcvX6JUKiv0mtwx9vb2gHci3qW4RrrvKpWK6p7L5mKxWKRSqVCr1VhfX2d3d5dHHnmEZrPJwsKCcs3J0FcZhCsnBvV6nd3dXSqVijqZyP5FNBpRx3QQpUiz2SSdTuP1ehUuTY5LJUBDjkDb7bZi8gkB10BNAyQDIpFI0G63lWBFKtvAVlZeuVM+3D2Xx9BAwK8clCLaXkhuB/0h4/FE1amxaIxWW4jBXB4XO7u7aLrBSaFMrdHGRKdYrKCZ0O60qNWqtJp1KpUKiXgMw+HE0B3Uag3u3L5Lt9fl7NmzSsj23HPP4Xa72d7eVqK00WjERz/2USKxKD6/H4/PS7ffw7SmBMMhhqMRU8vC6/cRCAWxLZt6vcbNN99As8G2oFqtEQiEsNFEzoCmc+bcGUxzynE+jz/gw+l2MZ417EbDPsP+EI/bSyQWJRgIEovFcEtWotvDcDTCoTuYmCadbpfRxMTpcuPxeNEdBl6fH90hSjxdd+APBAmFI2Tm5pT+QE7jZB9HcjCkPiQ5Q85Lb4vH4yGbzSoBmtz4mDXTpZtTTkacTifXb7zNz//jX/z173Y/vidOCvJmkeM1Wb9L4YZ0oQWDQdFncLnw+4MMh0MuX7480yiMFQtA7rKSgSiR1+FwWIluJJX44emB3NFNU2Qk5HI5lpaW3iUSuXz5MicnJ2o6EYvFyOfz+P1+0uk00WiUk5MTBbeQ6DU5EZA7mNyppTpT3mDy9YhEIupzCU7x+/2KOSi1F/K4KssaSQCWJRigXkN5sbjd7+QWSm+J1BjI104ePyVRSJQ3YoGKRuL4fAE1PWlYdQXJdblcaLrB8fExhWqTydTGFQgzHJvkcjmWjUUis55COp3GMER3f2l+kXpdGKpsXTSSP/rRj5LJZPj2t7/N5uYmfr9f9Td+8Ed+hNe+9S0l95aNz0ajwfLyMoOBmBAtLS0Jh2Krjc8XwOvxq5OnUAhOMM0pCwtLlCs1lpdW1Xth2xrVaoXQzPMx6I/QvW6BQPO4qTcbjM2JkFmPx3THXSUQcmgC/uKfLaQC8x9SJ2DZtJblsJSWy4X5YRirEIgF1N+X43WpuJWLgywPZNPx+PhYjZFln0GWlvK6+W6P98hJ4X/9tY8885R6UeSbK19MqdaKxqM0Gk3G4wkaDnw+P81mi16vz2AwYm5unnqthdvtIpvNMhyKDAaZa9hut1X8vPRJHBwc4PF4qNVqajSZSqWUAEjeILlcTo0o5ThSoNUFou3MmTPcvHmTcrmsfA9yVi2bgnL02O12OTnJqfovmUwSDodVEK6cBMjvPR6PlRZjfn5eBYDouq76EG63EM7IbAzbthUcdG5uTs2lxQLQUyOxxcVFJZAxTVNNPKQgq1KpKuLTuXPnxZ9Ni4sXLxEIBCiXy6SyaarV0szyLWS/3d6AertHoVjFF4rS6Q7xGk7M6YRQKMhoKPokPq+HpcVlTo5zuFwehsMRP/ixH2Q0GnHq1Cn+5E/+hIWFBd7//vfj8/l4+eWXxekxEmFuYRGfP8Dc/ALzp07hchhYNqyfOoXP7ycWjxNMp9A8bhymxcbGaTrNFulEEnNiAhqhYIRgMEKxXMK2odvvUiyWmNhToYD0+6jX6/hmY0aX00m/16c77GFrYE4mDGZ4OjQBCXZ7ZrGBUxPN6aY/GBIMhylXqzRaLWLxBGg6lWoNc2rhdLvZ29ujXq+rk8LDzUNJtpKLeLPRUCe9drutTgEPTyJcLhe2Jnoby8vL7yo1dF3n5etv8gu/+D+9d08KsraXN4NhGOomkSaibrfLZOrG7wvicnqYTi1sG1wuQWuajKf0ugM0zaEkqXJXVQafaFQpFiU5+s6dO5w7d45ut6uEO0tLS8o2LFV5ciwlm32TyYRkMkmhUGD6EE5O/j955AOUSEjKXaU+QHodZA0oQS1yl5caDYmeLxaLilAld4N2uw2Arj9M6h0qaezDDEtZe8sYeenwrNVqAGrOLX0VDof+rrJCshkl3k42BzVD0Id0xHG1VK4SDIYZ5sqARqvZYTLrlsvfUwJgZVZCIZenUKhw4fwlajXBs3zzzTd5/vnn2dvbYzQasbm5ybPPPsvCwgK3bt0ilckqV6A1GzmfOnVKKF1jMcbDIbWc6CPNZTPcuXVLWMsHPUXjcru8DIYTpmhMLai36ty+fZuJPqVar+ENeXE6BWAlEAiAJXZmyyGa4pNZf8rpEP0l/aFd3+v1Mpk1i3O5nDoVtttt1SuQjVSpS5HXmNy4ZBNbXmPNZhPdRgnk5P0iF31Zpsp+18NCNrmhyTHz3/R4T5wU/o/f/s1f+9GPfhjbtoVIZYatvn//vrKk1ut1XG4vGk503clgMELTnJgTi/F4ynRqU6006XX7uD2ibkokEu+ISGbwknQ6TSQSodPp0Ol0WF9fV6VFrVZTxGj5AkoLq2ysyZtbqh2LxSKLi4scHBwoSXav16NarTKZTFRpIpV3csGr12tKESebiVLFOJqh0CeTCbVaTV2Q8uQkfRbJZFLdXL2eMFbJi00qJGVHWmYROhwOrl27qgAsUiMiL1C5qNXrdUajoWpCiqmG6GQnEyk6na4SiMWSUQaDoepqe9xe/KEQN27dJZcvEklm2D845tFLl6jWKgwGfYYD4XMxHDoH+4dEQmHOnj3PhQsXcXlcJJNJUqkUh4eH9Pt9rl+/TiwWY3FxEU0TixAOF+1OFxsNl9uD2+PF6w+geV3YE4vhaIzDcOL2eHFMbSbmmKX5BdrNJn6vH7fLw9HRMUfHOSzA7fbwrZe/xdLSMmPLxGHo5ItFUikxXtawGQ1GeL0+TEwMx4xzCaSSSXx+Hw6HgTmdYllTNF3D6fYRCofJZLO43G48Xi+RaBRN14nHE0wmJv3BgPFDDl4pYX8YOSinRaFQCH3WK5hMJgqpLz07ctLg8XhwedxKOzEcDtUG5/P5+MYr1/kff+EX3rsnBSnOkMKNer2uZrNylfP5fGg4cLkcaJoDy2oxGo2ZjMXNZGMzGHQxTYtFV0odw2TNKV84+bwcW8rewcOlS6lUUl19eXqROYwPh9devXpVhdKm02mF3g4EAiqyToatSnFWo9EgFAoRj8eVmlFKrzVNI5VKqWh62xYhu3IxAtQCJ0VbIBkB72Dq5K7QmB0z5e8t/04iERPmHtNUElk5tpPyZ+H3MHG7PWo6IqXn4rV0KjVjo1tn0OvjmoFOHbqTQr5Ic/b6OXSD0QxOK157U43L/H4/45GY1GxtbbEwv4Q+1pWCVOYgfPzjH+fg4OBdsmHDKSTxD58Kg8Eg/X6f+fn5d8aPwyGVXI54PM4f/dEf8eiVS4pIlEgk0B1utnb2OD7ZVjdfvV7H6/Mpc5nApYGNrZrXmkPHoTtUv0DSsmu1Gq1GYyaX7iukvrSoy2Zfq9VSPpbRUGxGEs4CqD6PFLs9POaW5ePDpaQ8Fcv+ksfvU6NO+XrLa/89732QjTNpHy6Xywqt/TCAst0RxqfhcMh4JLzhtWZDKNG64gUcDEbkcjnVaZdzXnm0lm+gXD2/+c1vMj8/r/wL8k0DmJ+fV6anfD6vduZms8nKygq3b99mNBqRSCQAlGPS5/ORTqdptVqK2ZdKpXC73ZycnJDP50kkYsrwJS23kiUhzSuj0Yj9/X1AmI7+elkjLbvhcJhMZk7p6H0+H8vLyywuLtLpdFRAjbyAisUi9XpdzdvltEday6UMt9831bxdvkfBYBCHLgRdUhJt26KGdczq2vMXr2LhwOl0kUikKJfLZLNZyuXyzOk3QLNNdUM/+cTT3HjjLX7xF/8JhXyJWFJY6D/zmc/woQ99iEKhwCuvvMLS0hJ/+qd/SjAY5JFHHuH1G6+ysbHB5cuX1cIAvMswJj0fyWRSvVbC/i03gDLDoQjsKVdrzM0t8Pbbb2MZtrrJup0+c3NrtJp1fG7hMRkMB0q1OB6JCIJGo4HXLco2yVC0ddEvkBoQOWHL5XIkk0ll8OvP7NRSMXr+/HlFkq5UKliWpezummUrPwugfm952pMp4ZIWLRdLSTOTPae/6fGeWBQ0TWdj4zy1Wo2trT1aLVFTLy2tzTT5YqfLziUIhd3E43E2d7aEky+iM7J6TJ1T0qlFdM3B9uZd1a2X5pJ4PE4sIjrz/W4f09QI+OJEfDo+l1t0eIPCV3Dl6iUCoRC9fodoWJQfXiOMzxUgHA4S9As+YTKTxJxO8cfE8a7b6xEJBYVlVvORTacY9nuEw2GuXr4koCZzWR48eCDgLENRJsgFoN/vk4jF6bY77O3skkqliEWiKpil0xKNUKfDIODzq4shnzth0BMqTXmkl00peRP4vR4sc0IiJoRKrpRTdf4nozEBnx+/14fP66PX6TI/P4/bK0Jrp1MTTQOPx0mvJxSQDsNkPOmIxdcbYtDtYY6nnF47h8fh4e7b99GwCQW9pBfnSM9l+cqffhkbyBdKrKysUK7WWD99lm9885v8xE/8BJphUWsVSSxH2bz/gNMX1jkuHnHu/DkODnLYGjjdHtyeAK12n2c/+H56vR5vvPZtgsEgmcycKIdcXqyJ4Gg2a4JZ0R8IcEsyGafVEZqRdDyBZdkU8wVKuX3iPoOdcpneqIbbGabRbWLpBp6Qn6N8Aa9Lw+dxMBq3ifqihNwhBVlp1jviJGVNiMcTVCoV/H4HXveY5YX0bKQoiMyjfouA14DpkHjEPzt5hTjJ5wnPYC2j8ZhUOo1lWayurfG1r32NZz/0IVHaVQqqx2NOh/gDbrJzSYDZQiMakHJCpuv6uxaOh5uO3+3xN8ua/jM+9Jk8NZvNKrWa1JJLx6A8ng8GA7V7yiOTbETKkWRvOEIznNi6QzSQ0CiUK1TqDTTDiTcQZGLZtLo9BhOL3sik1mrT7vVYXluj1RF5CocHx6p08fk8uA0HwaCfZDKuxntej4eA14dTdzCaHUkBVTLIHoOk9DxsipEnkod7FXKRkM0i+eYJT0FP+elBXAAyZk827yRxSY5w5VFXlhEP48AkOl5OXaRfXx4/M5kssVicTqeLy+VmOBwxGo3pdLqY5hTLsplOLaX3l7kRd+7cETdIf6hCfubmF1WJtLq6isPh4Pz58woRVqlUuH37Npqm8e1XXuX69escHx/z0z/90zSbTZy6gzt37vDoo4/y1NNPkEwk2L5/j2a1QjoZJx6JEvB6iEeimOaE0bDPaCwIzePxUAXpSCx8NpsF3gH5jEYC+qtZNi5DMAdGgyHjwRBrOqHdbKLZzMbmTiWhl/oS+fvL5+RYUYrKpENR9nceJjvLvo/slUh/xOHhoRK0ra6uUi6XFdE8Ho+r9zoSiahmoxxLSviObF5KhJu06r/nTwrYNru727PjqJtIZGEWXlLHMHQqlZKi3rrdbrLZLNWGaMDpgyHBYJT+cMJJ7oR2q4M/FMXl9VKbqfocre7MMXnCmzdvK+iE0+lkZx9cbieJaIT5aFpo9pMJNN3N2JySCgoBVSKaIJVKiaNX3yQS9DMxp3S7PQZdkbbsdbtpN9tcuHCB7e1t1UWPRCIcHQm6ssxxkCITGSgjjuG2cFQGgzz66KOMx2O2t7cV/l4KpcrlsmqISrBHp9MhlUopOrOmCZ6lNH9JkZRgNBRV81IeJWXdK4/htVqNZluIXtbW1pQxR5Zd8mILBoPYmhPTtJhM2jjdAr/e6Q146qmnePnbr3Hpscf4jd/4DZaSc0rVl0wmCYVCKqj25s2bPP/cc9Trdd737AfZ2dnjAx/4AH/4+7/Pk08+ycu7r/D888+z8+A+w4UFGvUWS8mocGDWawRCIeoFD2NzwvziMh6fX8BaGdEdNKlXhK/m2rVruAwng1nO5GAwwDUbIQ7GY0aDMfFIFEt3clw9wASSkRDJ+XmqlSKWy0nP28WaGu8Sfs3NxEcy01EyE+QESKg9OyqLUhrOQDQFo/EkumYTDgXwet6xUVuWRa/bJhoJcef2LXHT20LRKL+XnGhJj4ymaaKEcojGtRwvy6Rqqa79mx7viUVBjiOFBVf4D2TDTdbOsj7KZFJCszDjAVa2tvF6RSe3URdNJVvTMS0bl8erLvT+cARooDuo1htMKyJPYGJDv9PGH/ASjsXRHS7yJWG8SsSTeDw+NM1BpVyk3Xkn/luQi2Oz0eCs8WSJcVS5XFY3j/g3Z9SbIbkQspNs2/a7cHJyl5bGJ/mzpFtUKtkkoUcaxCRsNhqNKtafnGrIDIvRaKQUjg6HQ8me5XjS7/crOrBpmuSLBWKxGOnZMVZi3WQCtlxABmNYmKVUjUemGs/6AiK1Shq3ut0ui4tC3ry8vEylUhLH4MGA5557Tkmtv/rVr7KxscHnP/95Lp2/yP7+Po8//jjdVptMKonTYTAZD3Fr4Hca+NyCkTi/tITu8YgAnLbYELw+NxErxKAtdmCnQ4h8xrOFTXboez2hO/C4XFSrdYrVE8LBEMPxCCwbHY1Bt4cR8Cm3o9zhH4aiyhNePB7H7XZTLOYVI2QymSh5vOwHSTCLXChrtZra9eXoMpFIiJJ0NtJ0OjQ1WZLvlQSy9no95ufnhZq1O1SN1+FwSCqVUgv693q8JxaF4XDA8fEhp0+fZjIZUamU1E1vmmOeeuoJYfqJRiiXBb8xGBFjt8uXL/PgwY5SFY6NCflqE7PdU8wAaZ3N5/MUi0UikQiJRIJGp8/pC1e4d/c2nUafncMTKsUCg14Tv9fNtUsXWFk2CAR0rEmPfLEAwGQ8JT2XFeISS3gzXIZoanZazZmLUzj01tbWAIHLWlhYUPoCyRmYTCZKXNJut9na2sLj8XDp0iVMUzAKyuWymnpIYIbkIMTjcdXM7Pf7ahzZ6XQ4OTkhnU6LC962icfjBINBNfItFApqLCrBo4BSao4mJpPJlJ2dPd73vveRz+dVv6LbFYIx0Jmby+APBDncP6LfLzK1NZxuN1/60leIJJKsrp/ia994kUa3QSaVJBgMcuPGDXRN0KiS8QUlhLp16xYf/PCHhIhKd+B0GFw+dwFrOqVcLNFrizyQs2srtE9ydLpdguEQls/N0f4uU9siFIuTzSRw+n2U8nm63Sb7u3ssLi7iPXde/M6znVvTNFqdNs12S5SvvTHnz5ylWn0Z3TRZnZ+nXq/Snw5ZX1mdZXzYTLWh0lhIFa20ostydzKZUMybarGt1wXPQdrWY7GYam6//NKLPP300xg6xKNh8vm8GD/XKsQiISxzzNmNUyr+UMqgk8mkmhpFo1E6nQ77+/vkcjlSmQU1Fvd6vTQaDcUe/V6P90ZPYTZaqdVqavWVs/5Go8Hx8TH1ev1dEXHlchmZl7e6uqrqueFwSKvdptVuMzFNnC4X5UqFGzdvcpLP4/P7qdXrtDsdVlZX+fZ3XmfjzDkuXbrMm2/dxOnxEk+keenl1yiUqty9t8mtt+/icHpZWlkjlZljbnER05yytLgyc0m6yefzKtBWEpWr1SrNZpNKpaIkyxICK2tbad+WUw0JWjk6OuLBgwfU63USiYSCrcg6UuokyuWyOrqGQiH29/cpFosKmjIYDEgmk6yurqpa0+v1Uq/XiUajxGIx5ubmWFpaIhwOqylFs9kkm80qPPnm5qYSVcn+SL/fJxaLkUinKZVKMxKWKFu2t7cZT8REJZ/PY1lw6tQput0u0WiUaDTKlStXcLmE+vSVV17BsixOnTpFvzfg5W+9gq47uHr1Clvbm4wGAzrNJsGAn/XlZarlEoahk82kSCdTGJqOz+0hEYuTTKVwul1Men28M19AKBBAmy16Ur4tNSPtdptoPE57Np2q1RrEI1EW5+bxul3YlonX5abZaNHvDegPBiLHYjbNefi0Jl+jhyGp5XJZjcRTqRSxWIxMJkO/3+fg4IDhcKjk2FLrMhqN1Fg1n8+rsag078XjcVUGyx6F7CmlUuI0XalU3oXylxJ2MR5/j5cPlmXR7XUIG2Echk6311FHIofDg2VPcRi6gkj4/X4Gs+bRxJyi68J6WizUqdca1KpVdbzVNI3gQ29ePp8nlUrx3Ic+BEAo4OHLX/pzUR97PZSKRTbW11g/dYZvvfo6xkxEUms8w8bGhlIhYll85/UbjMYDqvUGk9GYCxcu4HCKmyaVShEOh9nZ2SEcFit/tSokw6dOnSIcDrO/v692eF3XCYfDisrb6XTMT9JQAAAgAElEQVRUmo+u64r0807mpKVuYLngdDodSqWS0h7Io60cs4odvqsQdpIo3Ov1uHnzpjKQeTwe4vE4xVINt8tLIu6k2Wjj9/vJHefFotc4xqE7aTU7nJTvkEql2D84ot5oUSyX6Q1EX8Pj9TMam3zwQ8/y0p//JafWVtXv1Ov1aDabnDm9jsvl4uDggNOnT+N0uSicnPAPP/X3efXllzm7cYbd7U1Ora3z9ls3aFfLhINBnG4vDsum0qyTzmZIbWwwqlXBshl1Rd7BsD8Q2pBAkEgojGVOldHIAmxNw+314nAaXH/lZZrtjlJa+vweBoMuqXicRreNLxRCNxy0egNCYT+1Wk0Rw5xOJ2+//bYqL+UoXDpnI5GIKtPkBjg3N8fW1hY7Ozvo2NhTU210kVCQk+MjdE1jNJilWfe6BAIBhSGUqlK/X/xb5DUhnba5fJlKpaJOgKlUilarNeszvccbjTbvZBhKsKQk4tq2rSSg+XwesN7JGjSFuKbTERSiWq1G/qRAq9VV38/hcGCORyTSadFcmYoO+b3bbxONRjm1mEGf9CkWi9iWiW5bHB4e0+/3ef/T7+P+/U3qrRF/9uVX0L/8KtceucSptVWuXLqI2+8nk0pTzB+zsChYA4tp4TPI5XKMx2OV2CShL1KlWK1WVXLU0dER6XSaK1euUK/XVT7m0tKSmn7IutflcpHP5wmFQjQaDSVK0XVd7QzyyDiZTFhcXKRQKHB0dKRAtw8ePFCIOynsikaj7O3tKQr2eDym3RnNRExTvF4/R0c5lT1x+vRphcvzRNzkcnm2tnYo5E5YO3WGyGRKpdXh1Vdf5Xd+93f5+z/7s8QMJycnJ4oP0ahX1cj02rVr7O3scO/ePZ778Ef4gR/4Ab74xS+iTacY6ER9PnRrSrteIeh24ovFuLW1yeOPP040mqQ3noCm447EqReLuN1eBr0hw+4Yj+ETCLp2R6R8z66BQqGA0+mk2W6xv7/Pzv4e5tSm22mRTcbRNJvRWPRjYrEIIxt6ozGpuSTmpK8Edw8bmcbjsdKqpFIppTLVdZ3d3d13cTAbjQYbGxvCdzJjhUhrvSwJ5Nc9zNpIJBJKFCf7RTK7U+pxZLNTfpSiJenElFOy7/Z4TywKhsPBcNinMktNksGu8heSN4ZQ9b0Tzy2Px4AiEo/HY3TNRsMCe4rhMAgFw3Q7LdVg8/s8DPpdDIdGcSePaU7xeVz4vH4CgRCDwYjz5y7y0rdewel0EYsnGIwm2JrG3bs7nOTLWNhcOH+aTq/LeGpiaxqaZquxkTRVyRwF+bNlN3pubk6VPNJHL3f0hxWPUnAlTwjSQZlIJJTxSu5MpmkSjUaVpbrb7bK0tKQaf4Ay2cjGWLVaZTAYUCqV1PhM6uglqUrmSxwdHSkgiDRpHR8fY7nctLsC8a4ZooHp8wdFOE0iSbsrVJ5Hu9tcOX8Rr9dLNpvlJHckUPAzSbjcwUulEk888QQ/+F99lL2tLV751ss8+xOfEAKmhUWcuoNUMsGPXr5Ms9nG4w/gnE7ZvHGTWCxGMpkG3QCPB/J5Wq0Wp0+fFv2WaAzDnLDi9eKZLRCtTptOv8fZyVn2DnPiGrQtugPpQ7HwRkLoFljYIkfCpSlJ+sPN2mg0qk4Jov5PK+Buu90mm82q06EUEw0GAyKhoDrdSqxeIBBQpY5kIoxGIyazMfBkMlENbfm1gOoZSEK5vK4kMv6/CHCrwyGOzoFAQOUlyNFOIBBQtXcgaNBo1JTJwzRNTp86xeHhCXatKZpVpQqDmYRXx8tU1xj0ROfc5xE0I3M8QrP92FOTZ55+guOTAoeHh9iWSa/bxh+IsLm5yT/42f+emzffptfrUag0MEdDOoMR9dYxxWKe+xdPEY9GuHzpDOVqiYX5LL1OVzUTJXI7Go0q66u8QHK5HIuLi7jdbgEamanbJHVJ1vVSvisbSpPJhCtXrmDbNtevX1dZmQsLC4r/WCgU1CJkGAbz8/Pq4pE6gaOjI5VRISXU8kLt9/vcuHGDcCSlQCyDwQC/369cpfF4XL1HuVye1157DZfhZmpa6JqTfEEkXXsCbhVXv7YksiszmYw6yXU6HVqtFoeHh7gMg6eeeorHn3iSF154gblsGsOy+dEf/iHe+M7rjAZDYXvXNazphN3jY3ETBvzYU4uN7AKa10u/XMMXCGC1utTKYuR7cnxMeWYuarZbtDptTgoF8sUCr7/1JolEQpxEdR2H06DVatDrNhkN2jg9bnq5HNmVVVweD+VqhUmvoRZmucjGYjHi8TjJZJJ4PM5gMKBcLqmbXO7ivZ4wZBUKBbLZLOl0mkLuiN5Mh5NIJOh22oxmjEW3y0mtWuHpp5/G7Xbz1q3bpNNp5Y14mBotQ2Pcbje1RkellC0uLpJMJhX38XtNIL5vo1HTtH+naVpZ07Q7Dz0X0zTtq5qmbc8+RmfPa5qm/ZamaTuapr2tadojf5tFQdcdvP/pD9JudtExsExwaE5SiQyWCUsLK+ztHDAcjDEcHgyXj3ZrgMcbYjSa4nA6CQS8NNoFBpM6Y8vE0mE0ndAd9ukN+soR2Ot00AGnw4HH5WI8HDEZ9HEbTiaDHvVamcLJHoYx4Q8++3/SbByztBhlORvh4rlV1pbm8Hs82JaDQr7D9e88YP+wR6vj5dadKt5ghN7IpDucMBpbnD1/gUqlhtPpptftEvD7SSYSaLqLqaVjazq7+wd8/cVvsLu/S2/YIT2XZPdgk73DLTTNQaPRot8XPIPhcMz29i71ehOXyyM4le0ut+/eo9Fqs7O3T384IpXJohtOmu0OtUYTp9uDren4AkEO8xWiqXkKlTomDsbmFK8/wOHhoRj/TsbUqhXq3TKbe/eotirE0nGcXi/lepN2z2RzJ8dk6qFUGdJotplaGol0mv38MX1zTHPQpVwt0em0WF9aIBONMDYtsksL1DsNvEEHtXYRzRhhaibNTou5pTVu3dnm1Re/QjoewGXYrJ8/zY0Hd+liUR4O6No624UK9aHN6noG6OPUJgR8TjRtCp02HiaMKidY3RIR5wB9UMIRDuEIhxg5dIxAAM3tod0fMJnaJBNpPG4fve6AevmYqTnA6QvRGE4ZuyOYRgivP4I2HjEf8qE1TnDqohR1YBPwuUglInhcEA66MfQJ9rSP36sr74p0xUqQrlyEJXHM5fVjuL0EwlEGYxOHy4OtG4RjCVrdPstrp/AFwzg9PsLhMK1WC8Mw1JRD2vxlTEAmk8HrduB1O5jLJDg62KFWKWCZQyzze5OX/jYnhf8L+N+Bzz703D8F/sq27d/QNO2fzj7/J8DHgNOz/54Efmf28Xs+3G43R0dHBINBgsEge3t7OJ1OyuUy586d4/j4WGCt94+V6s8wDJwOQ8VnHRwcKIONLCkmkwk6GpZjiqELTHt0FgM+7A+YjMZMzQGgEwqFiEQiDCcmhsPJcDxiOrWVnNTjdbG4NM/NmxVabbFLnL9wFsuy+PO/+DPOnj3L4uIi33jxkGtXrhIIiIToaqXO3MI8TsNBMBah027R6XTwB7wMhr0ZlUkc/3/kR36Yra0t7t65T7Ek5tuHh4csLy9zeHhIu92mXC4znYqQE8mfPDg4AF1AaWQOpq7rLCwsqCnIyckJ165do1wus762ojQGmUyG+/fvUy6XSaTSGC43hmUTjMS4e39LjIJDcSZTjeFggi8QIhSJcn9zG1tzzvDmPSKRCNlsFtvSODk5YTieKCWlIkxZmjop1WYlTbXeEI02hyH6CF/4Mza3t9A0jctXrnF0dMRwOOSll17ip//eT3P7jRtEZtzMzq260B7gxKE7CXnFzXL9tdfweQx6nTYfeu6DzC0uELBdSuE3nYzIpBLcvzul1aiRTQsX5NXLF2l0BNNgMJ5Qa4pG76DXw556adZLPPn4o9TrVXzRJIGA2JHjsSRnz20odeN0OqVarRKLxQiFoip4Vr4Wksshd/SbN29ycnKC0+lkbW1NCcPk9ZxIJLBtm7t376opVTAoyrNyuawiCw4ODpTOREYgLCws0O122djYYGtri0QiIaYP/zGGKNu2X9I0beWvPf1jwIdmf/4M8OJsUfgx4LO2KG5e0zQtos3CZr/Pz6BWq7GysqLkt9ISCqibPBgUtKV+v6+aKlvb25w/fx7DMCgVinT7PSxLGEUeRlKFQ2GYhZtg2cpcsrwyRygUYTqbvfeGA6qVGgFsTp3a4N79+9y6dYuVlTWazTof+cjzXL16ma9+9avcvPkWHo+HjY1TbG9vcuPGmzz7vsd49bXrfPD97xNKsmGPCxcugC1uEgFvmTIYDonF5tE0W8FYisUS+byAxkbCImAkFhYqxcPDQ+bn5+nNlHiTiYh/lwxIj8/7rgCRdrutmlwyQ0DyGhwOB8N+H49LyF4zmQx3797F6QnQaIsSYopBs9XBnGr0B0Mq1QaDgcg/SGfnGE9sKtW6ilIfj8eUS9UZIl803ZyGW5U8k4nIe5zaFqY1pd3uMhybxKJRpqatVJ7FYpGQF1ZWViiUS4xmo8Nf+qVf4nN/8Ic8+9QHWVlexjAMktEgGg567Q7D4ZiG3qRWq80AIza98ZBWu0t/OMB0+Mlm0gD0e10G/R4Bvw9sC2tq4jQcJOIxkqkIx/kCuUIRt9s9Q9q1cDps4pmk6vHIa7PXE/Jwt8dJKpVSidPS0SjDV+RUQYqW+v0+8XhcsRRkboNsDkqHayqVUorVUCjEyiwtzLIsBQeyLEuV2FJ1KonikhAtYUHJZFLIzf8TjCTT8ka3Rbp0avb8PHD80NflZs/9vxYFTdM+DXwaIBmPcvHiRdWEu3v3rlocJM76jTfeIJnKCPXYqE8mlWAwGnH54gViiTgej4vDo6e4c+cOR4ciH8GYNYBCwSCGruH2+nA7xYLRaNSZjEYUijmhKtMEaWlqw8LCAvOLS4xGI5544imy2Szj8ZCVlRU+97nPcXJywjPPfEA1Qb/2ta/NVHsu3rxxh1DAR63aIpmM89ijV2g0WtTqBS6ev8Cdu7dIpRIsLi6oBp5QCmocHBzh9wdF88wdYDyaEAmLpl6321UCpkgkQjKZVN4Qh8OBwylYfcfHxyq9OxaL8eSTT/Lqq68Sj8fZ29sjk8nQazdxYLGwsMxffOkrPPb4kzQ6PfoTm3K1xuLyKl/88tcxx8NZA61PpdrBtjTi8ST37m+zuLBMp9MhGksS0fy8+cYN0qksn/rUp/jMZ34fTXMQT8QZmWJyIbgPQpvR7Qbp9vrYtk7+pMzp0xt8+MM/wO/8q39Fvd7kfY9foVpv0u33GIxnmYmf/zzr6+vcevsG5mSE2R+yvrqAy+XizJnz+N1BavUm7XaH7qDPX37lL7l27Qq397bodrusZJeJBsVMX6ZztesVQj43GlN0Q6N0ckQ0HSfg9TCdjFmcn2NsCrhJIhmjXKlQrdpgmXiC0YeSuyaUihUVZCRNaYPBkO3tbTW2NAxDidok6UrmMCwsLCg4rs/nU7xQufmFQuLkeevWLYB30cOlGM3lctFsNpVydmVlhUKhoCZT0WiUUqkktDLWf77pw3dbfr5r8WLb9r8G/jXA2dNr9urVq3znq18VlN5Mhrm5OcWpazSEPboza8R0Oh2uXLvKdDohk03NEqTB5dDxOA1cbvFrOTQNXbNxYDMc9LAtE3MoZtDhUIipz4NpQbfTFQjuqQW6jtPpxtZ0vB4/sUQcv9/P/Qe32dvfIZGMEY2FefmVl6hWq5w9e5bnf+A5CoUC586dY3/rmPsP7rK9e0CtVid3csTK0iLnz57mm996mXQ6gWlalEolptMp6+vrjEbv4Od0zaDd6tNuNRSivlAoKJvx6uoqtVqNYrHIysqKQo2nwoIPWS6XSSaT6ij7pS99Se3CJycnIicCi5OTE6KJFIbTzQtf+AJv3bqD1x9Ed3nYPirS6A5xztx6S0tzMwaAsJ37vAHypRLz8/MMxiNajQrPPfccb711E81wks3O0+v3yWTm6PR7uF0eNHQGgx7D8ZjRZMpkMsXpdKE5TH7khz/BH//xH2NaU8LhIPe2tgiHw+TyJzz55BP0+30q1So3btzg4vop3nz9Oh/7yEeJBYXlu1lvMRiO+fqL32T/+JB/8On/jtYXP8+t+/e5s3ufQCjEretv8MyzH8DXc+FxG7zxxhvcvPEGS0tLLC4tsbOzQ7GQIxj2k82kqDaazC8tc/311xmORSZnMi5Om16PayZZ7qlJQ683IBIRXg6v10urJazp6+un2dnZURZomRwtmQ9ra2tYlsXx8TGRSIRMJqOER1LOL0s96Y/xeATjQobblstlMpmMamZLZmOpVCIWi3FycqJEUXL68b3SYP6/LgolWRZompYFyrPnc8DiQ1+3AOS/3zcbDgb8xec+h23bLC0tkclk1JF6OBzS6XQ4c+aMwGe53dTqdeypRSwSpVGtEYnHuHfvngqD1ey6ogxJvLYxw1z5Q6L+6raFlrzZ7YkxjWEIp5rDyc///D+m1+/z4MEDqvUGX/7yVzk82iafz7O6ukqlUlFUplwux+HhobiIczkS0SxXr17ltddexbJM3O4UlgVv3LjJ6bVVmk0hp41Fo1QqFXZ2dmm3u1y6dInjo5NZLZpQcFcpOFpaWqJcLqsYvJWVFfL5vDqSOhwODg8P1ShXHhuj0SjXr1/n2rVrCvpSLhYIBoO88u3r3Lp7n1K5iq05aHe6+MMuzKlNKp2lV68Tj8dnM/IZiNYfUt1rOT+fn1/kwYMHnD9/nsPcCbFYDKfLQyqVonjnLpFIRMzfx35l5PL5fEyGE1wu2Dh3VnXoI5EIzUYFuw1rp9a5v/mAbrvDyoLA0kWjUc6snyKZinNylKPeaNDs9Gl3ehRKRbB1tra2eOaZZ/D43Hzlr77EUx94P+NihRe//jXW19f5vd/7vZlD1WI6nVCrVdA0e+aATbJ7sI/X6ybo9ykKeCgYYdAf4vW58fmD2DgYjQez0kCg/G3bptcVfYPTp0/PvA9FZV9+ON1cBtNKxqIcN8uR5ubmplh0Z1AbyeQol8uUy2XloZGlx3AoJjOJRELxQjRNo9FoqGnY+vq6+lx3/P8/kvxT4FPAb8w+fvGh5/8HTdP+GNFgbH2/fgKAzydyBPL5vOoZ9Ho9CoUCw+GQjY0NcYyyLNxuFx63i+Ggj8Np0O126HY7BIMBUskEw9UV7tzdxzJNHJoTHR2n4SQ005/7Z+5IScmNRmNcvnyZdDbD/XubHOaO+ef//J/T6w85d+4cDza36Xa7nDl7ltOnzgh7a0jImGu1Ggvz87z66qusroqR0P27D3j88cdxedziTR32+fo3vsW1q5e5e3+HVqvFE489gtsVZC67IkaWkTQ3b9whlRJ4e4dhq0h4SeGV/obBYEAoFBJkIK9XAV7kwiQJvpVKhbm5Oe7fv8/CwgL7+/vs7u4yGo3IlwSopt3r0WgLX8R4CsOJiUkLyxaAklRcYPDm0nNYmkU6kaRarRKJRKjX6wz7OovzGba3t8TJIxoXI7fuAM2hc+PGTVqdDq+99h2CwTAjs0M+XyAajaNpTsq1Ek8/8RS/+iv/DK/PT3fQJ1/KEwyGaXZ7dPYPmVoTXA4HlgaXLl1gYWEOw9B5/bXX2Lm/Q7VRJxSOk5mbp9cfMpyY/N5nfp/1M+vUmnXuPdik0WpzKpGi0+vzgWeeZWxOCUdjivE4NqcsLC3jcLooFo7xuAw69Q5vvfWWuB6lJX8wZDATGQUDYTQcaDhmLtMwXq+HXq8jeje9IYbDhcvtpFAoEAqFFHz35OSEs2fPqrDe27dvs7CwwGAw4M0331TGqkZDnBYjERH0I8Gujz32GFtbW9TrdRYXF/F4PO9SzI7HY7UQjcdjFhcXVT6JTBf/j+IpaJr2OeDbwBlN03Kapv3D2WLwEU3TtoGPzD4H+AtgD9gB/g3wc9/v+wPYtqWaMdJH3u12abVa7xLb9Pt9eu3OLOKtQafVZjRbIZ26SHYOBALYM42AdJXJY5kUePT7fXqdLg5NZ35+nnA4zNbmDsViEdDxeQOKnDM/P8/ly5fZ3t5ld3efU6c2WFhYIhZLMD+/yMHBERcuXJoBY12cv3iOYjFPMOhnZ2+X4WCEZjjY3TvAaXiplBvs7OaoVlocH+Up5Mv4/QFlkllbXyGdTmJZJi7XO+BNmVMhYZ1S6NJoNMjlcso9KdVqkgItdwlpk67Vauwfn5ArlukOxqAbuDw+pSY1DAOnoeNxOwkHQ4yHI8bDEV63h16nTTadwuNyEg4GWF1eQrMtPB4fhiE8/hqOmRzdORuVady7d09AaPqCLiSmOT58Xj/Pf+Sj1JtNqhWBiXe73VjYjM0JY3OCwzAIx6IkEgmWlpbI5XKUyyVa7QZje4rm0BlPzRngVMh7z5+/SCGf59TaGmdObxCPxsidnPDmW2/xb/7tvyUcibC3v0+v36dQLDIcjXC6XNTqdfq9HpY5xTB0hoOeCtY1DIPp7LW00Ol0ekpoNx6Zs9OaAeiqdyATnqSBSTpWZW8IUM1FqWCUqLaHFYqSuiVFRxL/Byi1rMxBlQnq0jov+w7yfngYA/83Pf4204ef+hv+1/Pf5Wtt4B9931Xgrz0kdkyaheTFubi4qAAllmWhM6VYas/wWsKaevPtW6L7GvLj97qJhgWkpN/vg2VjTy2siXjTBjOPgcsQKT3JZJKRZaDrBgsLC3i9fibWlGQizcraKrpuEE8kqNVqbJw5xeHhIcfHJzMox4SPf/zH1Q24v7/PBz/4QTa33+IrX/kaxdKA0XDC4vwCum4QDoR568Ydstl53r61zVe/9HUee+wR3G4nhUKJM2dOE40GaDbr1Os10pk4LjcYmkclUiWTSWVokYlXe3t7hEIhFpfFRSM5iHKi4/P5uHnzJp1OhxdffFE4+twxRsPh7PjuQrfE6NXnduF2OXDpNrptsnF6HZfTQafTYXVlifF4SLVSmoWuBtjavEs6nSYUTuD3+2nUW7OFfUggZJBOZWl1O7z88qsz0K642bOZeSqVGqn0PA8ebIGtoxsOTgo5dGzWz5xnMJoAFktLiwSDftrdDjdu3CAdDtFpNHDrGp/+uX9ENBql1e5y7959kv0xlm2zvbfLE088wQ//8N/hP/yHP+XKtatc/9a3+OQnP8kLL7xAu93mp/7bT/Grv/qrPPLII6yns5TrTSKJFMdbt5lfWmZrc5NqUzAU3V4vY9PENC10l7hlpGV+OrUVq+Cdml8QoEUvRHhRFhYWFB/hypUrqrRwu91cu3aN4+NjJR7TtHdyUJxOJ6VSSW0I165dE7g4y1KNw0qlonwWkg5dLpcVnFdCiw3DoNlsisXmvW6IAhTWStbMkq8okdg+nw+Hjmqi+DweprOmi1z95PjH63XPtORTJpMR/UGXsBnA7/dijicEg34ikRDdbhuHRxyF05kMiYSDTr9Hv98nl8vz0ksvEYlGqdXqZLMZ9vb2iEQiLC8v8/Ef+3G+8IUvqBFTt9vF6/GzsXGKVCrFgwdbTIYmt269TdAfwhxZLMyvcPfuPa5cuozX5aTV7GFOx+gOQdxJpaM4XU66vRamOabdaRLwuBS3r9frKfutDH2RUI3NzU21m0iK0PHxsYrik/Vqr9djrE9xGC7cHh9OQ8BAHNZUpQ15PB6sqUmv3eHcxhk2N+9jmxM0y+bU2gq6rnPjxg0WFxfp93vKo7+/v084HMY0xZze7fJizoKBZV2s6/rMugwbGxt89rN/QDjgxWbKuXPnmE4ndPo90DUWFhYJhEMUTnIsZdP0xgJZ59Tg6mOP0Wg2WVtfJxiJU2u06e0fwlSMQD/87PP8i//lX/B3/+tPcOvGTVqtFr/8y7/MxYsX+fSnP81v//Zvq8Ceo6MjhcQbj8eKcBWLxeiOhIR9PHMaOp0G5tQm7A8o9P506mEyns5KOs+7KNwy/GU4HHJ4eEgsFlMaBTlql9Qmy7KUIe7hyVQikSCbzXJ0dCSus1nzeW5uTrFM5YlgNJqVN8GgCP+Nx5Xhbn5+Xp00NP09vii43e7ZzVcjEo0q6e/Ozo6AhkyndLpdUqkM85EEvV6PZGZRdGzDSU6fPo2u6xwcHGBoHhbm17ieu47XHyIYidPpjVkLZui02ixl50nF4/SaNQaDHj2vuMFqrSL7+4f80A/9MNs7+6QzUZaXF7l16xarq6u879oFtGFb9D1CHr7zza+iDdu879FH6XZFzNnv/M5v0Rh0FPxkMBiwtrbG1atXCQaDvPjii0SSHnaO7/LY40/x4MEDRpMBr77xBt9+6w3m0hk+8fEfZTQasbwQYGVlhVQmILIpLpylXC4zvygyDx57/Enefvtt0hknb775Jul4ikq+jtcvtAmd9pA337qD7nZy/8ED/MEAnd6QUChK1BEUwJNEGtu2KRdLZDMLVCoVHEOYz2RE46o3Ib0QoNxsk1lawh/ycmfrPsFgiOHUIleqCoHVrRt4fT5s3YE90XE6DVxTF7tHB3zgg8+ys3cAbjd6z4897hL2x5gMTH7mv/l7/NVf/SVzC1lyuSNOCiXOnz9P7sZNnn76abY27+OeTJmPJvDZDnrDCdn1BXweF7Vmg3Y1jzU8zb/73d+jPxqxtbvH8x/5CP6gwa/8z79CIBDgdz/zh9QbDU6vLYLLRalW5/9+4d8LDoLLSTIaZmdzi77fj2HoHBZKFKotzpzZmAUNh6g3WzhsJ4Ou4x3fQixKr98Fc0w4EaLcKDPVIjg9MQzLolLNEYvFOHPmigq6tSwxdZKBuEtLS8r0d/HiRaU3kAyQjY0NHjx4oHJEZMBxr9djbW3tXZg9j8ej/DZ7e3uYpok9mTJ0exn0evTtLqlYAoetgWmha+9x74M5s0TXajUWFxdxOp3s7e2JlbrbZX19fUbAzStyTS6XQ9d10um0mjTIiPlnnvkAR0dHjCZC03/tkSt0mi1Vp7VaLWKhEMFgkJ4h2AZTxoqOD6sAACAASURBVHz42Q9RPMnjc7qpVar81r/8TT7/+c8LoYhTI7uwyOVrj7Czs0N/NObilavEkilMG779ndcJhCM4g4L2JBs6o9GIF198UX0ejQqF2+3btzEMg0uXrvD2zRsKifbCCy8IqGm5KObSdwfUajVKlTqFglj5Y4kMb916m8ODIxHm0mhjTjSGE3Fq6XQ6lMpl9vf3sTSIJeIsLCzQ7or0pmZLuCLlbpTJZNja2uLHf/zHuX/nLvF4fEacTrC5ucmlS5cYDgdMrZGCtYSCEZpN0dsxZ27LWr1OKp0VwNBAgGw2qxpkkjAkX5NPfOITfOc731E06/F4zFNPPcUbb7zBx3/sx3jjjTeEN6LXxTB0XDoMxyNu3XqbRDRKJBzk4oWr/PsvfJE7Dx5guJyMrSkvv/oK2/tHhONxOsM+gVCE9Y3THOxv8ciVq+ho7O/v49Qd/ODf+SHyuRNCkTB3b99hZWUFl9MzY3L6OHV6g+6gj9vrY2t7m/5sciKTvWS5K65JB9hTXC4DdzyKxyOYFa+//rqaCHi9XnVjj0Yjhaz3+XxkMhkRR+dyCfHYTBUpaeaSlCXHyoCaTMi8z9FopDJBgsEghu4QorxZItj+4YFigdrfYyb5noCsaIjkoNOnT7/LzbW1tcXGxoZyRcpfSGq8h8OhqqXa7TaGYTA3NzfLPrDVG9ZqtYjH46rmCgaDnDlzhgsXLjCXyWCZJrY55f69e5QKRQ4PDnjkylX+2a//On/3p36K82fPks7McenyVYqlCqFwlKklqMR/9fUX8Xj9tNpdMlkR6ZbNZnn66ad58skn6Xa7rK6u8jM/8zP83M/9HOl0mt3dXQXFEFLYkAqFcbpcVKtVXnvtO7x6/TWK5QroDobjCW6Pj/5gRKFYYnNrl1qjycQEry9Ardul3u5QaTQ5LhQZmVN8wRD+QIj1tdMMB2OYanicXoXTz2QyqvmYyWSIx+McHR0Ri8WIRCKKATgYDBSApdvtquPo/8PcmwZJct/nmU9WVVZV1n1XV/V9d093YwZzAJgZAhgQBCiSokCQIlf3ilyJor0rWbIlOeSVvAxJQcV6l6uw5dUBWTZF0RQFS6IhkiABEAQHBDADzH10T0/fd9d931lVuR/+lQnAQVBa7YYD9QWY6YmensrKf/6O931e/bqoqkpDbVGpVg0BWrlcFgMwtwdzTyrudDp7MfY2fuZnfoann34an8/HpcuXmJycZHFxkSeffJLLly+L8J+eBkCAdToodictVcWqKFhtAu+/uLxMuVFjP3FIvlRkdXMLWRGsxmw+T6NVZ2Nrk7HRCV6/fIlKrcra2hrFStlox1qtFi6PG6fTSSAQYHh4GLdb4NJHR8eFSpE3w1nNVhFlqKdteb1e4vE4IG5U3enYbrc5PDwkk8kYwCA9Qbyvrw/gzaF5uUyhUGB9fZ1kMmnYp10uF4FAwAg1ajQahntWx+PpbZC+jrZYLPh8PpGH0rPW6zh/HSjb/QHW6XdJQtQffPY3/vn/Yqix6vW6YQ++evUqExMTbG5uks3mDOilnutQrVaNXe/m5iY+n4+21kW2yuwd7NPVuoRDYdbX1ikUcvjcbnweD1azwJ91220+9pEnqZYqpFNpJkbGsVvtjI2OUsqX+S9f+QqrK6uMz0zz0vnznHvve7l5e5H7HjjN2MQER+YXKJTKjE1MkCsU8Ps8xGJxtrd3SCaS9PcPkEgkWVxc4trVa6gtFbWlMjI2SaPZYunOEuPjE7g9bg4PE1jMFirVGl6vh2vXrrO8tk4ynWVze58r125Qb6rcXdnE4fSws3dAOltAtinkG3XqzRaFcoX9ZJJmq01XMqHYHUiY6OuLY5NtaF2w9OAr5WJJfKg9Xk4cP47ZbGZ0eIQrV64IvqHLi9vtottt02jUDVFYq6VSrdTI5fI9MpMgXrXUNrLNhkW2ksvnMZstDA2PsLW9g9PhYKA/9haIaYnFxUXW1td49NFHWVpa5Fd/9Vd57rnn0CQTtYogSLt7EXf7+3soDgculxvF6cBmV1jd2WZ1axNPIEA6X8Tp9dLqtDlMpwhFo7h9Xkq1CharBdlkYmt7hyNH5nG6nNhsdvZ2d5FtMjtb23Q6Xe7cXeaBs2c4du9xGs0me4cHVOt1Uuks6UyGZlOl2eNfunr8yVqtBlqHWCyGSRKbtFq1Ymy8nE6XIUDS4wrL5bJhknK73TgcYvvT6XRYWVkxoK+FQoFqtWpAi3Xpsl4pWCwW45DQU73eGrNY71XOSi8H0+VyGXOKZ188zz/7le+fOv2uqBSQBDUoEAhw4sQJgzNosViMYFidFKTruPUTUF/z6JNbh8NBpVI2AK+6Hz0Y9OP1eolGo704OdF7WyQTa8t3KRdLvOf0GdwOJ3Q1um0BPvU4XbTqDf72q8/wP/7sp7hw8Q2OHjuObLUjW+2kMzlsdgdmi5X3PPiwMUA6ceIEExMTXLp0yfBq6EDWfD5PJpPpYc26PPvss+zvC16iZBEp2LV6XfTpWDCZbdQbLba299g/SFIoVsjmCqTSeaw2hUq1TrlSo1xvIMlWFKcbyWzBZlNwuTy0mm3sNgeybEOWbcTjcYPV2N/fj9Vq5bXXXmNmZsaAjtZqtbf1t/o10GPwdLGN2+1GtlmpNepoEkbcnv6++3rVglNxGEE3kUiE5557zqhWlpeXOXbsGE8//bQxKJNlG1JPRl4slBkeGqVUKtNFQsNCrdniMJ0hVyqTyRfomiQk2Uqz3cHt89LoqHR7n6tmq8XtpTtMzc5w5+4ymUyGXCGPN+AHTEgWM9VGnbm5eUqlMmtra2xvb6OqHbLZrPAhNFq0NeGdsdrsxoDb6XQa1CidSaHTlgqFgtEe6C5JwEjx0mEroVCIYDBIJBKhv7/fGAhPTk7i9/vfhmjXv4+OVwOMp7+OH/D7/fT19SHbrMg2ETRbKBUpVcooTgdur4d2551Xku+KQ8HaExMlEgkuX75sEIn0fiqZTPLGG28YJVA4HDZ2svpk9/DwELvdztbWFhOTI/gDHhrNCu12g63tdSM38c6dO6ysrPSMRVVskpnNtXXajSYH27s0e2Xu4q3bxONxjh07xun3nOVTn/oUly9fJhKJEI1G+bEf+zFCoRAf+tCHDHJQMBjk6NF7UdUOiUSKfL7IwsJRHA4XNpuC1WrHbncQDkfJFopMzszS1rpIJgs7u/s4XG72dvfJ5PK0Wm1CoQiK202xWiWRyWGxK7S6EolMnoNUFllxgcWG0xugVK4Siw8QCIQYGBqm3YV4/yCTk9NIkplmvUWzoSJbbIbzU5/HZLNZ7rnnHl5++WVUVWVmZoaBAeErGBsbw+VyMTExYYBjK5WKQdpOJBJ0ul2SqRTRaJRStWLkO3hdbs6ePYvW6ZLLvJmJeeLECSRJMuYJDz/8MD/3cz9nOCjL5TJmq0wuV2A/kcSmONhPpmh1JZptjf1UhkK1iWS14wmGqakdhienqLdaDI+NYbZaCUfD7B/u4w/6abYamGUL+weH1BpN7qyusbyyxt2VNRrtDvlyBbvi5J7jJ1DbXSrVOoVyhUq1zvrGFvWmKmC5dgdWm93gIlitVjweD4VCwVB56i7JZDIp3KKNBslk0sjm0B2S+qag3W4byVH6gaqvKmu1GgMDAxweHhrZHPq1GxkZIRwOE41GmZyc7EUiFIxcER18rOdx6nGG29vbbGxsYOulS32/17ti0NhSVQ4PD3nfhz9MZnfXsMvq4Rj1ep2hoSG2t7cZHR0lHo8b6U9//ud/ztjYGIFAgHw+Ly5WPkunozIw0E86naFcqpDOJFFsDvp7se+6WMjWC+gwSaLH0mPUnG4XNruLTm8gs76+zsLCAsfuO45abRowDJ28s7q6yuuvv04+e2gAW/ULqNN+9ciuQCBA39AI58+f59y5c2w514zIOJtiN7BtktrC4/GRyWRot9uMjIwZ2oNGo8HMzBFsNhuHhwlmZ2bY29sjFovRF4myurSMq9cj9/f3Y7KYjXmGV/Eb76Heiy4vL3PixAnKvSj5U6dOUW+baDYFTj6dTtPuNEilUmi9UBRJEuEy2Wwai81KvlQ0Yux1ebTH6cJutVLprcJkWebMmTN84xtfM/IJpqen+dznPkcoFOrh43thtV3BkizXqihOF6GQg0q5iEm2Eo700c4mCYaE/j+bySNZzBTKoiVaX19HkiTjvZscnqRer7OzvUk4FKRcKOIPBvAF/BQLOUbGxzDJFmZmZlAUha3dPQ4TCQKBEKVKhVxBPGnNZpm+mBOrbDYkyzoZS3eiCiWizyAr6UNAnZmpU6R13qiOc3O5XG/jLS4vLxuuRkVRBEm6d5hYLBa2t7eNFa9ugtO9Eel0mlqjAaUSFqsVi9XK3sEBXSAQDP5/s07/93hZzGa8Xi8XvvMdgsEgg4ODxlQVYHNzs6ce0wwBhn5q/uiP/ii3bt3i2LFjbG1toSgKFbWKz+9lbn6ar/3dBl6v8JA77CLSO5fLYzeJC9Gwgi8oIsmbmoaGiXK9jiSb+eGf+ikONoRH3R0OQKtFvidZLRezWC1wsLfF4f4209PT9EUCzEyNGU+DtbU1pqamKJVKfPvb32Z4eJjr16/TaLRYunOXvlg/V65exaEoVBtNWo0Wit1OvlhC0zo4OgqZYpl4PC6YCLt7PV17i1azyfrqGmazWZSl9QaDoTBhn8h9WJidQTZJXLtyGbPZLA6LeJQ7d5d69mbNYD0GAgHaqsrx48fJptKsra0JRBrCIdnpdLh8+TJj40O9ktnFXvXAGB42u22cbhfVeg3ZYiNfFKnO9WqN0eER2i2VaDBEo1NndnaWJz7yAT772X8tsgo6Kq+99hqbm5ukUim8Xi+zs3P4e96QYi6PCtgdLhLpDOFAEIfDQbpQQXF5Wbp7l/HxUeYmJsnnRWamRod6vYbW6RLvjxEMBrnw2hsi6i8QRO3JmovVGodXr3P/qRP0x/txe3xIiDSutfV1TBYZk7WJ2uv/TRYZtbdetHgU0Zo0m9hkUYWWu23sdisCCUsvaMdk6Ap0MtPBwYGR0qRTyovFotFW6IeZfoDotmt9ZhAKhbh06RIgSEu61dpmszE5OWmY65xOp/Ez6oY4XQb9rsex6b1RvV43AjeTySRDQ0PIskw8HueNN95AkkwGxmtnZ4elpSWcTifT09O8+uqrWK1WSqUSuWoar9fP6dP3YzbJfO/li6TTKVwOF4pZRjaZ3zKVFW1IpwtOvx+Hy8NHH3scUw9EEYyG6XQ6JNbXuHjxIgBLS0tEIhEymYwRfxbyefnQ+x9neW2dRCJBMBhkdnaWxcVFUqmUoT8fGhoiGAzyvStX6XQ6LCwc5WtfewaP243VaqFeNyNbRKpUp9NhMNZHMnHYE3C56DQbRPxBOp0OQ3HheCuVSoR8HmrNBjYgn8ngslqxAKGgn3qzgcNpp6O1aXdVEokEk5OTmBFeiuRhgqnJSc6fP8/k2Dgmk4nDw0MKVZWFhTmuXb9MNBpld3cXr9dDo9HslboCctNsizJ4YGCIQr5EX1+celWs74ZGxYpycHAQr9vDxz/+cX7nt/93Q3r7W//6t/jUpz7FmTNnuHXrVi/A1sLW5rZRiiuKQrPVIRYfwG4XAa4Ws8z21iYT41MoDhvJgyQTE2MCRrJ0g8G+OIVCgYmRYV5//XWGR8dEpdaoIyGRSCUJBvy02iq+YIBIX5RkOkU+k8XldtMX72dlZQV373BK5fI4XS7sdgfegB9Tp24EvApPSg3sogXweVyGIGph4ZhQXRaLbGxskM1mmZmZoVgsGjRr3QRVrVYN09309DQAW1tbJBIJJEliamqqNzOrGFzIjY0N6vU6/f39tNttEomEoYCV7TbCjggOl/BSeHwCQhMIBQ2Z9fd7vStmCpqmCXoQGINAPdnG5/MZ5bge0Q4YZOJAIEAsFjNKbl1GOjExZhB1dU6dPqnVraiFQgHF5WR0bIyRsVEikQj+YID19XVye3uUc3kq9RovfvclTCbw+TxUq2X8fi+ZTIpIJMTExBjb25tcuvQ6Pp+HVDLDmdPvYXZmjqHBET765I/y3kfex8jwGNFIDJtVQbbYCAZCZPI5SqUS9933gOGgEweUAIKK1V6JcrnUk6mKAZ7Dae/tuxuGE3JjbR27WSYWitCo1jD3vCRTU1PYbDYajYaRnK3H0DebTex2u7F+1FWToVBIEIo6HdbW1oTiMxrF1dsE6KsufZKtdjsoLjEE1tsHnRysNsBpV1CsorSen5/nxRdfNNK/f/d3f1cEBt+9a+QoZHJZIwNDTz6Se9Fupp613WpXjOi0XCpHLBYjHA4L92NXM7ZT9WoNxWan1vPO6INgp9NJsdAL4+1AvdVkYWHBWNFOTExw7NgxUqkUSm/qHwiEsCp2sTru8R51F+5bV4SqqhqZoKqqIssyoVDICNxJJpOAAMnoSeI6el+vhPVUaX3wqw8c9VV2Pp9nbm7O0MTAmz4K3ewUCoWMvFLd86Ov6Vutd/mh0Gm3sVkk/B4nfeEAG6vLeJx2pK5Ks1YmebCL3+M0es7NzU2Gh4eN/u/GjRtMTEwY0VyF9SK59QJyy8Ls2BThSID4cJSx2VGaUpdyW6XQ6lLvWpFrJvyOINVinWA4imQ2oXaaBIZifPeFb/C3X/oCe8u3efbLXyG1uomlrtLvCzE/Oc/Q4ASjo0f48Z/+NL/wP/8q0cEpPv6JJ4lEA8wemWRmdoK7K4t0tRb3P3CC6Zlx5uanaXcaxP0e/uknfxZaDdw2mV/5pV/EjIRVsWNzOGkBtXab3Y19WtU2c1PzBD0hhmKDjA+N8fEnP8pgLI6mtnDarMycuof11C57+TSSw4bD48VidWDBznBsnFZJ4+zxh+kPDHPm4bMcpJJ0ZRstLBw/8zD5hkpDstBWbGxlkzj6/ExPTxvCo52dHZrNJrlcznBu6mhxh9WFWZNBs2A2y3S7GqlMGqfbheyAvsEYLr+b3Z1D7DYXhXyFbtfEr/3ab1Ap19G6JoKBCH5fCI/bT6taxmqGSNBH8mAXi9Qlm9pnY2OZTOYAn8/OrVuXcLhMaDRJ5RIUyiWWVza5tbhCvWUmV2owPj3HxSs36FpklB4qPZFI0Na62BQ7JqsZk1XmW9/5Nn/ztWfI1ypMTEwQCYfJpNK0Gk2cioNoMMLsxAxOmxO11iboCTEcHyISCOJWHJi7JqROl06jjQUJta4S8PrpC0colUoGXt/j8RCPxwmHw0bg7ZUrV4TWo1XH43YQCvoEJ/Rgl3wuTaNeYX5uBokOil2mkM/QaUv0RQe4s7RKrG+Q9z36QzQbHTzuAD5vCIvZjtvlxyrZcFpdtKoqtWKdwb4h7p0/js1kN7JCvt/rXdM+6AEm6XTa2Nm6XELiqyiK4BTuJY2+S2cG6Cz8dDoNCGrSUGgQVVXZONjBHwoyNTXB9165QDw+wEj/GJFQlJA/hMPm5KFHzvHC+ZeIjwxxcHDA5Ow00ckJvv5XT5PLZGn3shss9TbZfA5fIEij1cRuFWWs2+02VnDNpngavfDCC2QyGSKRCFtbW0Z4h6IojIyM9HT2KpevXCEYDPLaa6+RzmaYnZ3l0tUrdDodYv1xwzc/OTnJrVu3OH36NNVqlZWVFUOANDAwgM/n4/qd62JXbjIJ1aMvSK0q9tXLy8u4HG6+8Y1vGFZb3bxTKBYMnT9g5HY2m02iYeEgtdktlMtFtrbT2O02Y2qu8wJNVpuB4Bc6fCEiq1aroInqb3Nzk+npaeN6njgpeJEAZrP0to2S7pjVhUGaptHf38/29ja1Wo3bt29z5MgRHE4Lw0OjFApC8zA5MWP4X0KhEHfu3Hkz79Hc4x9KoiTXeYVFtWgoCRcXFzE1VEOhiUlUbhZZZWnlOi21YwwTd/f3OH7sXubm5nj55e+SzaVFSG29jtUiU6vVsFjMhKIi3bpYFH9PIBBgb2/P2Fro16PefVOcp1vT9UAhncSkV8c2m2Ig2d663dC1DZqmGQe3rrrUE7GsVquoIMzvfOu/K8RLf/SH//6zHzj3HjY3t3AoTkySmWKhhNYVpOdGo0k2m8NiFWsaXc1YKBQMoISec1gqlWhWmhw9fi8m2czu3g5Wm5WWqiLLFhq1Fq2mSkft4vX6aNZLeIJ+AtEwJ888QKvV5Ld/61/jUBRMXY0Pf/BDqM0W5VqTwbExvIEAIxNTxAYGmJ6dxmq1UK1VabUaPP30VzjY3+XGjRsMDw8bk/zBwUEWFxdZWlpieXm5F4W3R7FUor+/X6Dse8DNkbFRFEVhfWNdQDs9gi40Pj5uyGLHxsaoVqtEIhFjIt0F9vcPGBkZoVyqEvAFaTQaeN1eTpw4QbVS5tSp+7hy5QpDo/2EAiEiwSixaB9SF4IBP/Vqlf3dHVwOB9VymbGRKcxmE1evXsZkkgyyUCAQpNVUaTaFb7+ptnuo8zfnQ2KA5uFHPvwR/uIvvojVasNqs/OFL3yBsbExfuEzn+Zzn/scwWCAcFjs6Vtqk/2DffoikbcF7OrtTjAYZH5+3ijLO73DKxYTaLuhIYEfAwgEhZHN43Hh8/oJRyLs7OxQyBdwOh34vSKyHg0qlQqNRpOhoWFq9RqZXIH17U2y+Tz5Uhm106bT1fjJn/5pvvX8twhEQizMTuFyu1hZXaPVrOP3eelqXdA0FIcCmnhoub1ew9z31rZMzyk5ffq0eKglU2QyWSQkZNmK1WqjkC9gkkysr2/QqDeQZStul5v1jW1DR/LWdiOfzxOJRIw1p77d0TH0eoBzJBLhr7/2LL/0y7/8fcVL74pKQdM03D4v8UGhT1AcDkyyhZ39Pfr6+rDYrFQbdZxWq1Eh6CenPmXV34RgMIhdUshk0qiqSDCKRCKsr6+jaTAUH0NRxNOuUMrT7ISIRSIEQ2GajSZul4eQP0ghm2eof4B0IoVJk+gbEuiziZlZzGYJb8BPPpfD7nTwvdeeE4Rmh4iGP3nypBHH9v73v9/gTDocQsBTKpWo1Rp0ul0uXrxIKBQyJLcmWVwSi0UM8UanB2i1WmxsbxEKhag1G7S1LleuXyNXLDA0NERb63JwcMDQ0BAH+wkxoFO7nDhxgksXL5FMpohEIly69DpHjy4wPDDI9773KhIyo6NjdDoa1VIZqasRDYUpFvOEQgFWVlbodoV7NZ/PoqEaq7FQKEw2K3T2XcmExWzGKst02sIINjQwSLVSotvuYJZMlMolFKebYMiPyQxPPfUU0O2p+pzUGzUjWVkXpO3v7xuAUrfbbWj733jjDT7xiU+Qz6e5ffs2fX0DxPoEpWh4aBTJpJFOp7BarQwP92M2m0mmRGK3bBahOqbeASZJprcZ2FZXBVQnmUyiIaFpEm6bFYdk4pmvP8PZBx+k0Wxy5cpVBgZEnoZDsbG1sYLT6cDpEBVkSzVh7wUJ22w2o6rqdrt4vV6y2SzBYJBms8nAwADbmxsG5FZXIZpMJkMXoudDvlXarAfadrtdQ/XY6XQMY1Q6nTboXIqi0N8vhqeKotDutN/xfnxXHAr6BmF1dZXBwUHjHzI0NISmafT19YkPSkN9W1afLpl1u92cOnWKnZ0dnE4nQ7Fhsc/3OFHsVuoHFR48e5pkIs3tW3fJ5fL43EHKtSqNZonHnvywoYG/ePEiI8PDVMsV3nP/aXa3t5E6XdzhCIODg3Q7beGFT6dYXVmmWMxz/wMnqZXFAHRocJQvf/nLxCJRPvwLn+FrX/sah4eHXHjlVYaHh6kUSwwNDWG22uj2gkmXlpYIR8WTzBsQXMZWW3gKkslkz7Irk0gksNvFoCsejxsy2aWlJfz+IEtLy9x79DjXrt3g1/7Fr/Lss88SDUWZmBinXCpxZG5WBMEGQnz8iSe58NolGqVKT7kn2q+h4X4KqRSS2sFkN5FOZxkaGqJQyOF0ulDVFvl8gQfun2R62sLt27eRLOKp1e1igF1yuSzz8wtoCLJxJBLBapMZjPdjsVg43NvFaVeolAo0akIIJXU79IVDZDMZ/H6/sa7TU7B1O/iTTz7Jt771LT784Q8RiWSMNd2tm0uGMa5aKxGLR9nc3DaEWH3ROBJQrZYpZHPIspmO1sblclOv1/m7Z74GNrGqbrYErblWb3KYTTM8LD5TxWqFRqNBULGTTGcYGuinWi3jcHnw+jxYLWZMZpm+vvjbDrhUKoXL5TJ0K2azmVwuRzabxeVykU6JwNpyudqDrLiNGc74uEC7pVIpul2hiAyFQuTzeRYWFgiHw+zv7xstm67wtVqthqlQH8LHYjEODw+xyu8sXnpXtA9/8G9//7OPP3wGxeGgv3+AfKHA1NQ0xVKJbC6Hojgolcp4PKI6cLvdximoT1dDoZDR26ezGQ6Th5w6JcQ44aAfl8NNR+2QSmfxBwLIVivvffx9LJy4l3yxhMlkZmdrm/3dffoifaiNlmhhOhrTUzMMHz2CqrZZWlykpaqkUgkikTA+n5drly/j8XhYXLxFvdbk3Llz/N0zz7B4+zZ3l5fZ2triJ3/iJ7h58yYSoqctlMqGWUuSJGq9wJr+wQGhj6+Ip+bCkTmk3vop2tdHsVQy3HZ6rqTabqOqGqFgBNkiBEXNXpLxzvYWnW6beKyPSqVMs9nA5/Pw10//NW21Q9AfZO7IHB63m6XFJaamJohGwty8eR2H20+9XsNkglqtyt7eTi/Ny0elXKVcruB2u+mP9XG4v4/H5aZcLIKm4XG7mJs9QjwWY2tzA6ts4QMf+ADFQoF/8plf4PLl19G6HdwuJ8PDA6yu3OX4vfdSLhVoNJrMzMwAGFFpbrebS5cuceTIEZaXl1EUBZvNyubmNi6nB7PZQqOuEg5H6HY1oIvfJ7B5icQhVpuDcrnChz74AdLpDLLZzIkTJ8nnstRqdQqFPDarjVq3QxcwyzKYzJjMZoLhEJgkOloXVW0gmTTUegvZIlOpVjnznrNYzGbKpRKyTcbn8dFSVbp0DYmy2+2mhyTpugAAIABJREFUWq3S7XaFXwJxcx89epSBgQGKBZEHortXdSCLfhPr/MVCoYDZYjVEfbpKUudvejzCyLW/v0+5XDYozs1mE6fTyfj4OE6nk68++xy/9M++f/vwrtg+IEkEwxEyuTzJdIZcocjm9g6ZXJ7xySmaapu9g0ODlJvNCpGKPvRJJpPcvn2b3d1dw7UXiUS4du0arVZDRJG7nQQCPoJBPysrKzzyvkd58cUXMPXSenQY64kTJ7BbrUxOTvLGG2/w4PseJRiPsbchnmzWHgm63W5zcHDA2NgYI+NjjI6O8sgjjzI8PMx3v/tdw849OTmJ0+nk+eefByAWi/Hwww+LhOoeGEMfBnm9XiHYKRYNFWSukMcsW+iikcll0SRhIa43G9QadRqtJk21ZaC/Dg+TnD37INls3gBr6E8Om02m1Wrw6quvGrOMVqvF4aHwXUxOTtJut4nFYkZe5EMPPUQqlcLj8RhJ1uKGtBGNRo0VrziQO711ZafXcuS5efMmmibK29OnTzM4OMj3XjnP0NAQfr+faDRqxLFfuXKJra0tIpEIV69eNVB8mUyGvb09PvKRj7C0tMTMzAznzp3j/PnvMTIywszMLLVqw3AeBgIBHIoLj0fYlI8fP2kATq9dvUEkEmFgYIitrS1y2R6JSDLTaAi9SrujGSg0HVNnRsNmMeOw2XEpwsugdtrkiyWuXr3K6uoqUzPTtNUOO/t7gmFZbxkrSX2dWKlUDDSaoiiGRN9mU7DbHVitdoLBMHa7A5fLg6I4CQbDKIoTMBEIhAy0njBcOSmVRCJ4Lpdja2sLk8nEcC8bIxaLGRRp3Wnpcrl+YEKUpP2AL/73eh1bOKJ98+kv8NprrzE3NyegoZEI6XSa9fV1jhw5gqIoJA4OGR8fJ51Os729zQMPPMDi4iI7OzsMDw9zeHhIp9PhQ0/8CMnDQ1793suEw2HQusTj/XQ1M8urW/yb/+PzxAaHOThM4vMFeP/7HiOfyWLFxOz0DPefPCXKVq+btY11IUd1e3n11VeZnJxEVZvce+I47Xab3YN9bDZx0S9cuEBie5eBgQG+9KUvMTk5iSRJBAIBtra2BAuy57voyjKjY2O0Wi0h6241OTg4wB8KAuLGN5vN+JxuwyJut9uNQFKdiKzLY8slkdFw/Ni9ZDIZGvUahUKOe+bnqdUqOOwKSCJzsNlq0WyqPPieR9jc3EJRnGxtbYhJP23q9SomE2gWF7dv3yQY8rG2toLarqOqLebnF9jc2EaWBSFLQj/YxFxnZ3uPmZkZWq12T38hDscf/vCPUK1W+fVf/3VUtdWD1Epcu3aFubk50uk0/f0xMvmSYYnXNw96EK7+lB0bG8PtdlMuVUmnMyh2JyBs9+l0mqmpMZbvLjE6OsLlK28wNDzG448/zn/6sz/j1KlT3LpxTYTnFvLIsiwYB40aak+DoXV6wzqtI2z7ahNFTzFvt3E6fGidLmaLhKLYGOiPA106ap16tUY4EkJRbFgtJmZnZ/H5fIaGQJ+R6FSlSqVCJBSlXC5zcHBgAFOcTicbGxuG9XlxcVFI8+0O7r33XoaGhtjf3yeREOwNs9lsVNL5fL6Hnq8aYJjh4WEDy/aZX/9Nbi0tf1+x87uiUtA0WF1ZZ3JiGrfLS7OhkkpmqNeaxPr6CQbCVMo1Fo4eNaas/f397O3tGVBNXZji9/u5ePEiX/rylxkZGcHpUDBpkM9kaTXq5PNZFhYWWF1fY3x8nPn5eVKHCfLZHE5FODKz2SyrG+uY/D5qjQZDY6P816e/wsLsFM1qCa/bTTadYXt7G4fNTjw2xOFBmjcuXTOi2+bn54lEIoyMjLC+vk6tJqLLh4eHmZ2dZWJiwrCJ68IUPRfQarUyMjJCIBAgGo0iy7KBm9OHVrrQqFgskkqleM97HsJiEYGtLpeLvr4+IwpvcnKSvf0dY8hUbdRJ57KkshmSmTSZXA63z8t+4hCzLNOVQDMJZsXCwgLLy8uMjIwQi8UYGxtje3ubcDhsRPSpqorUS+KSZdkofXWXq90uoK5PPfUUX/ziFw1/iY7vn5qaIplMMjk5zv3332+ARvQMhJ2dHSwWC6urqxQKBVRVFR6BjLih1ZYA9eorvOHhYa5cuYKEmd3dXYaHRnE6nfze7/0eH//4J1heXmbuyEKvOvMb0QAmk/gc6WG8jVpNPIUVB16XG6/bg8vhxG6TeylUYDKLRKhSqcTIyAiTk9PEB/p7a3MM/Fk+nzeurdPpNKoHWZbx+/34fUGGh0bx+4LYbQ7aaheX04PNqtBpa6CZcDk9eD1+I3TZZDIZIUFer/fNIOZe/oNe2XV7yWhvXVF2f4BL8l0xU/h3//b3P/uJJz9MXyyGy+2m1VYJRcJIJhOr62tcv3EDn99P3/gYG3fuEA6HjQ/T+vq6YQXW33CT1UxLbWK3yszPzdFpqdy6dZt6o0lXEqaZUKSPw3SCB06e4ebVG9TKVdFTlqscO3GCI2ce4NqFCwyMjvCN577FI8fvxWYxo3U6HOztYrFYqdWbTNyzwHdeeIl6o8nP/+I/QeplNei8xHa7jcvlwmaz0dfXRyAQ4ODgAKvDQVfTDEGNXVGEVdvrFRSqXFY8lTodgqEQqXQayWSi0WxiMptRO22q9RqdbheT2cyVS9eZmZkhcZjE6/Xg9/k4ODjEbNLY29vh4YcewmyWaDYbxAYHeeKJj3Dr9iLz8wssLi3xI0/8CCurq3TpABrLd+9w+vRDfOlLf8Ho6DDBYIBGU+zeBwYGqJSrlEplstksEh0atQZej5u22uolYCep1arIFivxWIzpqUn29g9IJhOG8MlkhnA4SKvVYmpqgt3dXdLpNIpD6BNu377N448/TrVaJZ/PG6CcU6dOcf78eUZGRrl9+za2XtDu5ctXONg/JJvN8EM/9EO4XE6GhgTePh4fxOFw4lDshEJBquUKnW6b8bFxJAnDityRzEiA1AXZasGjOHC5FCRNo1Iu0qxW0TpdOpoFm83aSwaz09U65HNZEocHVCpluprYmkxNjhvbJd08VS6XDby7Dmfd2d57G++gXBZYP6X3uahUKgwMDBAIBGg0GwZBTPgrNAYHB8nlcgaXMR6PG+2jJElMTk6KyqhUwmw281+/+Ty/+A4zhXfF9gENw5Ou76Cj0SiZTIbh4WEjRHUwJnpGWZapVqvs7e0ZVCVVVbFYLAQCAeqdJo899hgbvVJ9Z2eHe+65h5u3l+iabZw5c4bf/3d/SLVR58aNGyQSCXxuD/FoH1NTU6J1Wd/k2rVrKF43bp+XSDhILl/k1o0bPPmxj1Go1Ak7HNAUUFWXy8W3n30RuV0lGo3yl3/5l4a33ePxUC6XuXFD9LOKotB+SxyY2Wym3mwYNnG73Y7b6zHWkpFIBJvNxvDwMHt7e3Q6HWPzommCMHXkyDxXrlzh/Y89zvLyEjarwNNPTo4BIoFIV9Z97Md/nOe+9QLVatX4sF67dk2U5lKHZFLExT/33HM89NBDtDtNw925s7ONz+fvYcdHuHDhgjhsGi0j0EXPLCwWiz0I7h7lcpm1zS2sViuVSoVA0GfYpG02G/v7+wbC/OTJk9y8eRO/388rr7xivEd6y/Tiiy8yNzfH4uIiTqcTv9/P0aP3MjY2wdLiHcqVEslkkuXlJcKRAG6323DYCqm0mf39fTLZFLLZQqUiID3xeJygWVQLtXIJi1nCabfRabeoVSs0qxU6Jk3Me8xCoShmW1Zk2YRit+PzuQgH/b0tQM2YGemCLJ3epM8WALxeL9sbe8b7pStF9fxI3fnYbrfZ3983Phu6vFmWZSMsWK8gdQjt7u4uo6Oj5PN5I3+iXq//QEPU3ztTkCTpPwI/DKQ0TZvv/d5ngZ8H0r0/9q80TXu297XfAP4noAP8kqZpz/19Z8LCkWnt6//5KbFWunULVVUNpkI0GmVxcRFN0ygVygZsRd/J6oq1vb09Tp8+Tb1eJ5FK0u12uXnzJrOzs4ZWvVAoGDbWmzdvoqoqV29v8cRHfpRMJsfZsw/i83i5ceUylUKesNfN5MgQ95w6RbtY4vUrV2l027S6Xaqqyoc/+jG+853v8thj7+fOnTtcv34dv9vF1NQUmiRx7doNnG4XaBKr62v4fAG+893vCq97R3gGvH4f127eQDKZsNllknsH2KxWIn4/dpuNZKmK1yfQdHbZysBAnN2dLaGvd4iniCjXMRiQ5XLZ2FVHo1HOnj3L2toaPp+PjY0N0okiVqsVu93KsWPHxHTf4+Kll17C7Xbz7W8/z0MPPUT6MGHo9qvVMorLSSKREG1Op2V4SaqVvHHAhcJREokETrebzZ1tAn6xP9ckmJua5/btm5hMgNQxhnnNRpehgVHCoTiZdJ5EclX4GGRFwEBMFtROF18wwNVr1/D5fMQHYrSKOaKRGHc2NnE4vewcJnH7vLQaNc7ef4JKuQBqTfwdXXGztxpNdre3GRsb42BvH6tZeCUURaFeq2GxS4ZgSh+WFgoF433W3Zs+t+tNu3JHpb+/n1APftJRmwadeWg4Rj6fF1ua/n7Dsq7ng5rNAqFfKecNTmd/f79BS1JVlVKphM/nw+VyiTWtx4HFLA4CEOa14eFRJEmirYq2wO12c5hM9hKqBQ/j/PmXKJVzqKrK55/6MmubO993pvCPjaIH+H1N0/7Pt/6GJElHgB8D5oA48G1JkqY0TXtnIBxgMQsjR6lUIhqNGjgpnUnn8/mMQYrdbieTyTA+Pt5TojUYHx+n3W5z8+ZNLBYLuz3RUywWo9FokE6LPXM0GqXZbDI5Ocng4CBLS0ts7GQpFnLEYlHq9SqlQp5SqcTs7AyPPPwQL379GdaXlljf2CJXyBMbGSKVSPDRT/wPXHn9DZL7e/zB5z/P4OAghxvbNEJeIpEQ3S4E/V7yRZE0dObsewiFQiQSB+TzRbpdiXgkbMA5KrUy4cgwa7VVJEmiXK1RLJapdTWOHj1Kt6PxxsULyLLM4OAw+XwWkwbhsGiZ+vsHWV9fp1QSxGkQ/ezBwYFhrvrgBz/I8ePH+fIX/4pEIoE5EGBjfb33ZyXe/9jjvPjii8wfWWBjbZMjM1Pk8/meuEfqZXaa2NnZMiC4arNFp6Viki3k83k6HRFqQlfDLluJBENs7e7Q6XT4zvPfxu0R1GSNNqFwmEajwdjsOMlkmu3rV+jri+P2KphljXZHPE1rdfHUy6Y26dQzdGwtknslLGqXO7ev4faFqVWKhAMBMIPL4SWRTuBU7Lz48isE/T5kq5N4PE4sFuPcQw9x4YJ4L4cHh8QB4PawsbHB+PgoHo/HkM3rZPHt7e2e6EwM7Er5nPG01TmKjUZDbBYkzchv0MOARbBuxdj2TE9P4/V6BVC3VKJUzLK1tUWz2SSRSBhqRb366nQ6RnucSiVBk3pSZ/B4PMLT0W7jcQsMnNlsJpPJoGliuLy+vso9R+dZWlrCbP4BMIV/yKHwDlH07/R6AviKpmlNYFOSpDXgPkTC1Du+zGaTMZyq1WpGhqJ+iuq9lq5ilCTJcJrpKb16KaZjsmdmZrh69SqVSoUf/+mfZmttjc3NTex2O5VKhVdeeYV2u82tW7c4Mr/A9tYG/bEBrl69ylC8n9XVVcJeN7LFxvDoCFaXi8uXL1OuVjgyN0cul2NosJ9cJktfIMT29i6zU5OMTI+wviYMW0okhNVu58knn2B5ZRWrTeaRh8+xtbNNq1njG998lnypSKgvSqGU5+rVq9x7770oVhvrd1do1OqoZgHTOHfuHKVC3hgaeb1+ZJOIFtMdi3quQl9fnzGACofDgMCSraysiHJWA7/Hi8NmZ6hfxJUNDg5w8eJFTvZo1fVKlXyxjMVqB0lDcTppV9rE43Hu3r3Tq7yEWcqEk06nQ7UhYtmV3kBL143orV2zWsGt2OlqXRSXQjgUIpkS8XabO7todKjUykQCAqK6u7tLJpNBtppxKg7UTgPFasEideg2qmCSObZwhEvXb3Lv8ftI5IvEBwfpYmJ4eIhkKsGP/8RPoCgKq8urrK2t0VZbJA8FC6KvL0pff4zdrW0cLgfNVsPYbnQ6HQOKopOYdQFQt9s1HJ1vnRNonY6oXjvCgaivHIvFIh6Px0C69/f34/P5jOAe3VWptwi6W7bbc8sWi0WDsah/fiPhKMFgkMPDZM9nYTV+Fh3wYzabMJksZDIZkslDRseGe0Nhcdi80+sftJLsHQpf/2/ah58FSsBl4F9ompaXJOnfAxc1TftS78/9GfBNTdP++gd9/6NzM9rffuH/xmazGYYZPehCN+jcuXOH0WEx+Z6bm+Pw8BCXy9ULJOkJf/r7KRQKpLMZQ+sdjUaZPXEC6nXUVovV1VWKxSIgpKIm2cV/+LM/54EzZ9nZEd6BkNfPwtwca3eXmJ+colgscljIsra2xqOPvY+m2haWWquNxOEhAaePbCqNbLHQNz5IMBTiuedewOVysXjnLmbZQigUYe/ggPFxQS1WHDJmi4WT951CM1u4fWeJl1/5HuViBY/Hg9NqRzaZKTaEcKevL0Ly8BBJkuiLRKhUS3RaKpKk4XQ6WVpaYmhoiJWVFUPAEggEWFtbM9Zoc3NzjIyM4LMLk823vvUtRkZGGBgY4OqVa3i9XuHDl2VmZo6QyKXY2toiFAxgMkGzJcQy2VSSQNBHuSyCaLRum2oPTGqxWDHJFvpiQl3n9vjY29vDZrPRLtSwKWI45/K68Pp9tNHY2d3HYrMTCIY5ODggdbCLx+0mlUpgkrpEQgEkrYsJMPWQQWbJRKfbolprMDM/z87ePidPP8jW3j6K28fVm7c4feYMVqsNWZa5e+0Gg4ODbG0JaM7m5iYWk9kQ9ug3pU2WjPCdYDBINps1Dl19M1Wv17FZzAZ2brA/htfrxdxb/ZUKOUDMCkJhL1NTU4yPjxths6FQCFVVOXLkCCsrK2INaTP32JSysbFwuVwUi0WKxaIxO5EkiWP3LvDC89/uZVM6yWQyxONiCJlJ54yE6f3DPdLptDHHUttNI5Lu53/lN1m8u/qPbh++3+uPgN9BBFr/DvB54FP8v4iilyTp08CnAWLRMPm8KNuPHDliZEjqrIDhkRFjX1sulwmHw4brUI9ir9fr5PN5mk3hdygWi4yOjrK/v8+rL7xANBolnU4zMDBAt9tlZWWFcDhMKnHA+vqquEjzR/H5fJw8dYqLr11ArZXZ2t2h1WqxtLLMqfvvo1SpIMtiZeaw2sgkU9SrZYb645w8cYKsWuVP//RP0TRoNGr0x6LYHApLd+4yPj7OztYGicQBjVqF0ckJLl68yOjUBE888QSzc0d46k/+A7LFQlNVaXSadDTo6+vj7t27+L2CRLW/vy+08WhkMlmsViuKojA2NobNJhyLly9fZnd315DU6v2oqqo8evYcW1tbWK0CBKpLxc1mM/fd9wBXrlzB4/EQ7hfuRpPFbKQeX7hwAZssUSmVkIByuSCemr2VJCC0FFWxgq1WKkaKVcjuQjZbMMsiqq9ea+Jwi8GyZpLYP9hGUZxoHROdtiSyIenSbKhYzRqybMVikumqbWw2BcXhpK/PhlmC8dERtrfWaTRUCqUK586dY/nuXSKxGHfv3iXuFolg7XaLO3cWBWG5WqXZqqOhEYmG8Pv93F1aNFgPeiaj3h7oSsNarYbVbDLYDHrb0FFVI6FLh7UCJJNJwuGwcS1u376N1+sFhHtScBCkN41evSollUoZzsh6vW4crktLS9Tr9V41kTYOGZ/PR6oX0KPLnGOxGA6n2Dr09fUZjJEflBD1j6oU3ulrvSEjmqb9Xu9rzwGf1TTtB7YP0+Mj2p9+/rcZHBwUFFpZ5vz58zidTqampoxQUrqS4ZK8desWQ0NDhg8iEAhw/vx5sYIxmxgfH8fr9fLSSy8Z4her1cr09DQej8cQw9TrTb7+zee5fv02P/zER6lW69hlO6dOnOSN117FabPi83mJDQ0imYQQJZVNY5Nlrl++SqVY4qd+8ifZXVmFdoer68tileRysrO9R6utIstW9vYPKZfLqN0Ofl+Qza1V2kjUmw1agE1RePCh93L16jW++MUv8hv/8l9xsLvH3mGCM2fO8PLLL2NG9OsBvxe/34cZQV1yuhSaTRFBVigUjPdVb8VCoRD1ep1oNEqlUmFhepZTp05x5co1PG4fu7u7TExMUq3WuX7tJufOnaNeryM7FeYXjvCFL/xHGvUaw0NxRoeGWb5zi43NVaSuhsvloFKpiX24BM2GimQ2iSe0zYbPFyCZTlGv1wk6RPJ3uVylg7C9x/v7yRVzpDJprFYZr88NbSc+nxeny0atkicY8NFuNpAAMzYsZituh5eqmmRkZIS9fRFcs59MMb9wlO+88iqlhorD7ePG4iLHj58kvbVBJpN5281RrlREBdNuG65DqdM2cjj0G1cPsNF6K2SbzUa1VDQYl32RELVajWw6TbVaxWLCCJSZnBoxWI2BQABN03j88cf54z/+Y4LBIHNzc+LvsJqIx+Ps7grxG2AAbo4fPy4+O6oqfk6Pg3yu0DuwPL1rLqTwDsXFyZMnuX37Nmq31gPeYAjBAn5hB/jIz3yaqzdu/f9XKUiSFHtLxPyTwO3e//8d8GVJkv4vxKBxEnjj7/t+mqYRjUYxm81sbwsM19mzZ41TWF+7RWIDuBoN8YTv8fz01U4qleL48eP09fWxub1lVBl+vx+Hw8H09DSVSsV4IuqDn1AoQDQcIhwOUsznqTdVAgMBnnrqKd7/6Htp1KscPXqMlfU1ZFvPRNLtcvfuXRSHjQ8+/jH+05/8EV63m6mJSSbHx0ikklgsVpKyEM843S4cig2bTSaRSLGyvITNYcPVYxPYrVZMZjOXLl2iVKnw0Y9+lGe//jW++tVvsLu7y/PPP8+pU6fIZ9Lk83kUxcbOzi7O3hpN0IVLxr9NVYWbUYfK6rMGfRW1tr3OxOwkIxOj7Ozska+UWNnY5IknnqBcb3Dt1m2OHz9OIptkc3tX4L3MFpoNlU5HRVHsSF2NbreNbLFgNovS1yLLdGXo9IZbojRvGZBStdvBJIv/Wm0KGiaWlpYZGR1gamyMrtYCk4mxkQW6Whu304Zs7adcLGCWXKhqG60to9idBH19yI5wj1cRF9DaaJS7y0tEQiFaqSx22cL46BgmJMqFPHTaeL1uWq0GZrOEbDXT6aoUyiLAOO6LEw+G31aNwpscxHq9bnAkTJogjauqanAeQoGAANpqYrbQ6XQMi7vubnS5XEYocLfbRVVVscb1udjb2zMqXr1S8fv9mEziIbe3t2d8D6fDRSaTIRaLiXmGJhk/q05v7tAw1p8Au7u7tJpi9tZsNt/5/v4HrCT/EjgHhIAk8L/1fn0M0RpsAb+gHxKSJP2viFaiDfyypmnf/PsOhYmRQe3f/OavGLiver2OoigsLy/zyU9+kvX1dRHG2ZWMXbXeZ01MTLC4uGhAJDRNwx8MGGVWIpEQISejo2xsbHD06FGcTiexWIxCocD1a1eoN9oUS1W++J//C2MTkwwPDIvdsEXGYpZwO13Ew1ExwFyY4/LlS4xNjPLG6xeg0+WRs2dJJhL43G6uLy1icyi0muLpU2+2SKVS7B0khD/BbmN3d49ao0apUgGLpVcpOHjg7MPcWlykWChjtyr09cX5zKd/gfvvX+Azn/nnLN66wZkzZ7hnfo4//pM/ROpqTE1Ncu3aNXx+lzHQs/Ys5oCRYahTfyORCJKsMTN9hFarjSzbuHVzEQkL8/P3YDbLIvZecVKpiw2QiQ52q4XLr1+gUSsxMz1Bs1aiXq9SKZVxOL2onXaPXt2i1mhgs9npHxzg8CAJZqGi8wTcdNtdTCYLrYZKV+0yNNBPwOdiaDCO221jZ2eLpqaitpvcf/9JHn3fgyJdqViiXlP53vnLrK5sUa10GRgYYHCwH5fdhtOpsLsjBsmJTJZcpcrdlTXKTQE8DThEcJBZtlCuCW2G8JQIMI9ZFlGEg6GouMFDIePprmMBdft7sVjE1cOypdNpKqUCbrcbp6IIcZAkWlun04nLbWNwcBCfz8fp06ffJlC6efMmtVpNIPOsb6LdC4XC24xfJ0+eJBwOc+HCBaFU9TpZWrzD5OQkmiYO/FQqQyqV4tH3PiYgv/v72J2m3kBUtI97ewcU8iVMJhP/9F9+lqWV7z9TeFd4H2YmxrS//JPP02yKVGF9s+DxeMjlckiSJKK8HW5UVTUQ3kePHuVv/uZv+MQnPsHGxgalUon5+XlKFREso1tJt7a2GBsbY2VlxbAi6/vglaXbmKx28oUKf/XXz2Cy2OjvH2Rve4f3PvIIz/7dM4yNjXHP+Cx2uxVJtjAwNMDNpZuMjAyRThwyP3eE5MEhit1Ot7dG9Xi8HCQTKHYnuUKey5evkisWKORFqEq9WaPR7oBJoqy2aXc1PP4w991/ho2NDVRVo1wsIfXIRZ/85CdZvHWDdDrNxtoqd+/eFe5Pl4tCoYDDKQNvkpMajQaqqhIMBtne3jYw4sFgkGC/cNv19cWRLQrz8/dQLtVIp7MMD43y4IMP8dWvPsPx48d46cVv0203CQV8lAs58tkkVjNUKwUsJolsLoPF4hD5iiZxKJgsFpT/h7k3j7HsTM/7fme7+75X3drXruqu6m6S3RxuPRzbw5nRSNHi8SjeHUuIYdkeCAgEyXaQCIhtyQakRLKFOPIYiTRRZFmakUajmdGIbFLchks3m72wu/auveru+3buPUv++O49khJJCWIj4AUIEmywq1n31nfe73mf5/d4fciqgtvlRVIV6vU6TaNJMpnG7wnill0E/SHS0QjzM5Pkz0+Q7R5PP32NxReXwDTpVs6xZBNFU9EHFrbt4vS0xuFBjrffvs9s9jLTU1PkTw9JxcPsbT8SSPh2i/uPNlE9XrZ29hlYFpgdYrEYuXyeUrWCruvMzs/R7nXR+31CoRDReIzGeRld14nHBRw3k8nQaDRbfebVAAAgAElEQVQAEWYb8QpcikyhUBDAn06LcrmMjBCvvW5h9fZ6vWguHILUiHswMSFclnNzc3zuc5/j4cOHuF2y0+1ZKBRIJpPOxFetCjv3yJcTT0Qo5IssLi5ydHSCZVmk02Ok02nOTnPU63UqlQora7O0mh0KhQJjY+MYhkXuvIBp2vyTn/l5Nnf3/tRD4WNhc/6lf/OLP/3F7/+c4/oKBsVKKp1OO803uVyOZqPJxYsXuXPnDl6vl60tId51u11qtRqLi4sUi0UurFwgFouxubmJqqrU63VOTk5IpVL0ej1nIjk/P6eYzzE7v0Cr1eGt777LwDQ4OjphbnaWfC7H5bVLdDodarkSLrcLC+jpPWRVRpIgGotSq1RoNhp4PC62t3ecuGwoGCSZSuNyuzBNi8zYGNgSH3zwAZpLxR8MgQSBYAjV7UYfmIQjUU5Pz8lkxqhVa4SCguv367/+63zhL/8Qzz33HL/9ta+JFqlhtt/n8zEY9BzY7Si1ONIRKhWhho/uxbOLc0PmQRVNczM/v0Cj3qTZbHHp0hqPHz8ml8vjcmmcnZ6QTqWRJRvJtqhWSujdDpYlcPSmZdLrCUqSqqmAhM/vR5ZlenqPYCAEsiSgrkE3tmmDLbF64RJ+n494JMKje/doNur8zb/2w4yvr9Ipb8Oghzvmx+WRURQb3TAxzQG27MEfCNEfWGw8OKJcrpCKR3nn3XeQsWg3mvQHA6KJOOVSlezkNMV8nvFMkmgsyuO9PaSh3wUJ2p0OHq9X6AimQeE0h67rjnjdbredcpVKRXgTer0eiiwJoKymEQoGaLfbuIfofFnCyU+AuEKM+KGj+vpRF+fe3h5nZ2fUaxXHGTtCt6mqSqUitgkjyEo4HCYUDuL3+cnn81iWoJJvbGwOSUtJTk5OxDq036JQyKNpgj0yNzc/5DYEufnmO/z9f/APPr42Z1FBpnB0dMiNGzfY3Nyk220TDsPJiUBIra2tcX5+TrPdYnp2hieeeIIHDx44d2p7B+LJBLFE3Gngefz4MUdHR+RyOf7KX/krvP3220xMTLCyssL774segKPTU84KJWZnZ3n+mad45513CPk9FAonNFsdNLdCo91E1Q2CnTBzY3Hu3LlNMBJkff2S8AN0WiiqwsL6Go8+OiAVn2TpwhIHx0d84/d+n1gyQaPT5vD4CG/Az+KlZdqmB08kwuneHoupaVYmJykWi2zcvYvX6yUTDSIP0sheL9/6g99jZmaGf/Yv/zmmafLijU/y4z/+4/zSL/5r7t69S6VS4fqTlxkMBpSLJcbSGVRF4vCwR+74gHQsTLNeJxT00e222b23gc8fJOD1Ew/F2NncJlcocf3pZ3jju2+RnZxidnmeD997ky9+8YdJxFOkUhlef/U1en2J/qDD9s4GyeksbVnDq/RQvV5sy0JSIBaOYpgDJNPE7AnXXsSt0tTbeDUfab+fkOzC7Pe5srTA01eyZGdiNLpbYBTwhNzItsmg1kZzhZFkN2GfDJJFNNLGwkDxhqBaZm/7Pju5R0wFIxh9C8XvZbuc56xWFkUsnQqRpI+TfAXzrEg0mRnSigxqtQpe1YVqW+SOj2g0GrhdorUqOlyHd3WdeCqJiY2kKvRNA1O36Zw1mZqaolwuYiKRSMTpdrs0mjUqzSaaLA3BM5ozzUWjUcePM7rqjQ6LSDRJNBoFYDw7TblSF1dYb5BcvsjJqXDpxmKiwKarN5mcFlu5k7NTZudnWFxe4Pbt22gemYHRo3w8zEaEFCKhGDIST1y9PCSG/9nkpY/FpPDv/u2//env/fSLTsZ8tKcdrddUVRgw1tfXCYVCnJ+fOzDQCxcuOH2Toz3v/fv3aQxhJHNzcywtLZHL5Zibm+Pk5ESg3b1eDg8PqddrhELhYUmGaEwuV2ooiophmEOxTuGZYZx6Z3cbv99PqVJC13uAKBUdIeFM3SYYCvLyzZuc5/PsHTymVCnTNwwKpTKn5+dUKmV0Q/4TBh/RKynurPl8fthlOABFodFoMDk5SW3Y6/i5z36WL3/5y/ydv/23RTmpqnF8fCCeQENRr9cV/ZXVilhZSuBkJjS3h57eR9VcBIIhgqEQSDKJZIrDoyMCfj+X1tZoNSrsPX6MMTB5/HifUqEoCnos8dQuFvPYlolliESkEB1lNFVF1VQG/T6KIjtCpKRKBL1+QoEwyWiEcinPU0+vM/nECkrAi2x1MS0bW5FRNDeWYSFZMpJLAySwbPS+gWkrDEyFwpGIB3eqbdLJNH3TxpZl2pZBriQQdKptYw9M1q88xerqKvG48G40GnVsWwCDDVOIfe12G5fL4zQwybLs1M6PNIXRk94aTgm1moDKVIcBtlarKfQcWVDKZUVyVptut9tBv48szaM4840bN8hms464WK1WCQQCSJJEpVJxvraqqqTSomV9BL5dX193QCu2bXPt2jW2t7eZGDIzRgyMkRVdkiR+5Te+yj/4h1/6+E4KsiJElk984hO89tprfOELX3DwY+12m2w2SygU4sGDB2QyGV789Kd54+ZN1tfX2d7eplAoUCqVePLJJ5046ugNaDabgiEw3B3ncjlM02R9fZ10Os3hwWPCEdH1MOpBGNV0pdJjQ7NHgEBYqMXXn/kErVYLc1tEeqvVKpYt7pntVguNIEdn5+RKZe5/9IAf/Ms/xHu3b1Gv1plZWKLWqIs7bCTt2GRH+YJut0ulUuHixYvkcjlKpRJer5cbN25wdHjI6uoqRweH3Lx5k0a1xj//H/4ZLpeLH/uxH+Nn/sVPMz4+zrkueAszMzPD8hPh/R/VkEciEaThE2p8LMNkdgyvP0il1mB7a4OV5SV29h6TfLzHrXsfMjczx+beDi/9xZfw+XxsPdpgcmKCdqNKr1nDq7npI/bqPq9X5BqGsdxRSnSUQAx6w1iDAbOT4zz46LssLy8ytpqlUzym1qhju1UebWzw1NPrKK4Aqs9CUmWwDLBsUDQwwpiWyqDvJpw5x+XzcuvtO6huN9FImnAiQcA9Ts8QT+JqvUkmJsjOzWaTldXl4YNGplwuOhmQkVlJU71EIhGHsTBqwdra2nKIV+Pj47hVhfffe49gMMj4eAbDsqkWC2BLKKqKaRhYw5hyp9P5E4CaWq1GLBYjGo2yubmJx+Ph3r17joYwOztLa7gurdfr6LpOJBKh0Wj8iZbp0Ybtww8/5KmnnuLo6Ijr169TrVaZnZ1lLJ1xXJjBoNDjHj58KK423d6f+fP4sTgU2q02KysrbGxs8Pzzz3NwcEAoFHJ+kBOJBJZlEY1GSSaT9NttksmkU0oyCo/s7+/jHd4P/X4/rVaLTqfD5OQkR0dHTp681WpRq9WcN+ns7MxZHVWr1WEnZUeszWybdDrA9va200T18OFDnn32E0SjgqfodbuwLRu3qrGxsUevr9Pp98mMZ/n9V24SCATY2t6l1e7i8XlJpDPO/8v+/j6PHj0iEonQ7/eZnZ11at0+//nPU2k1iMViFAs5zk9PGAx0tjYeous645kxQkqIw6N9AgHxZxxLp1BVld3dXVZXV50DsdvtOuQdj6Y4OPJOp0On1ycU8LG1s0cylaHb7bK7u8tLn/ss1UqNv/3X/xZf/uV/T8DtJZ1OM56MoWKxt/UITQK3z+/Uo4OwmstDXcU07T+aFCwFvdOgWi0TjvhYv7IItFFdCt5gkN3DM97/YJOLV67jGXiQ7B4elwtkG7s/QFI0XF4fiqmhKeAK+Kg3G6ApdPQeWruN7dLIXlhi0NOpNku0KlUYmAwGopi4WCw6n5kR+HfEkRwlMUcHwshyXK8LVFoikXCe3o8ebRKJxrFtk05H2KPjsQS2KQjTnXYT+KPpbFT9NhgMnFDfCBYrScKuXq/XndKiUdhqJIqPUPejUttRYfLk5KTDa7x27Rq+dJrNzU1mZ2fp90SuZkTyKhQKznpS+rh3SWqaxltvvcULL7zgfDMSiQSAszEIBALE43Hu3LnD7PKy0xEw6kNMp9MO3nvkSBvVnj9+/JjP/OAP8uZ3voPb7WZ9fd2p8ZqemhCU5E6HzFicarXKpUuXqFRqvPrqq7zwwgucnZ2xef8Bt+98QL/fc0pApyeyVCoVsjMzbGxsEA6GKNfFjrlwUiKVSTOQZDwBPxcuXabZbLK1d8jdR9uMp0SaMJVKOVy+arXqMPyTySSPHj3i5ddfE1gwVaQ808kkf+Ov/XVarRb3P7xLvVrjy//LL6OoYkd9fn4+FMJwKsXa7TaWYeD3ixan5NDdmc/nxVipqAxsiexYmvOzE6LhEEsL86hBjVg8wW/+1m8RTyS4dvkqr998lU69QrtWYTyVod/rYCF8/tg2Ho8Lj+ai2WqgKSqGIVBxvW6XeqlFdjLJzvYG//LnfhJ/xEu3cUJDV1C0AJYW4Z1be6ytN1m5kGF+cQIoATqS1gfJxrZ6DAwD3egytTDH48MDcKl0zAEhVabdEwddwO+nmMsT8HhRLYhGo5TLZSanssOV3TGRSGhISBZZBY/Hg8/rc6zAqqo6HESvVzRS9ft9dnd3sWWJdq/L9MQkJydHjGUnsG2TerUGikw0JlyGjaqoEBzF4INDlP+oTl7XdZaXlzFNk3g8jiRJjjA56oAY5UcGg4EDsG02m6ytrVEqlZiZmaFcLou4+fGx0+ExWturqsr8/DztdptSqSSIVx/33od/+z//0k//xJf+Pqenp84I3263KRaLqKrKzMyME2GNxWK889ZblMtl2u02Y2OiQLRUKpHJZGg2hQDk8XhQFMVRjWvFolPdNcKYtVotIpEwlmVzenrK6sU1sbXY2qZWq6NpwjOxsbEpuIymQTqTIhIOoyoyg75OwO+n3W4Rj0Qp5PO0+wNa3Rb+QIB6XVSp64M+Xp+fgWkSDId56aXP8qlP3nDCLpZlMTs7y6VLlxxl+t69ewJ37/cSCgVp1GpMT00J0apa5aN79zg9PaVaKeP1eJBkMa436rUhFl2MnoO+PuxeVJwwT6NexzJNIpEwsiLU83v3H5BMpVBUbRhQCzIw+xwcHIJpk0wkqZbKxKIxxtMpHj38iEDAR3+gEx3ixQVNSCYRj9Pv64xlMsjyELvv8VCrNoklQoxlE9z4zLMg65iyheYLgOLlNN/G5YsSdF9iYmIey7DxBTSwDaCLJfWRJBtJsVBVm7NSiZnpGY62D7BNi3g0ycA0Oc6dUygWMQ0DxbaxDBNXOEIqlaLRqA8fPCrt4fam3Wk5qU+/P+j0dBweHjpJ3dHVdrQ1CIej1OsNznI5Aj4/nW4P73AD49JcuNxuDMvAGvQwTdMpb8lkMs6Db3x8HMBpUFcUhWq1it/vJxQKOetP0zRJp9OOv6ZYFJHo8/PzYfI250BZqtUqV68KJJ9lmmxsbBCPx7Esi3K5zMTEBGtra/wfX/tdfuwf/qOPr6agDM0V2WyWhaUl9nZ2hj0Ft5ifn8ftdrOyssJrr71GIBDgmWee4eWXX3aKOU9PTzk9PXXuXSJDHnRO33K5LNJ7Xi+VSsW5b49gLbl8kbGhR36Ew15YWKDRbDu7Y0XTCHi9gv4TixOPRZAsE8s0GQw9Aa1mk3giiSRJ7B8e0Wo3SCZi1IeR24GuUyiV+LVf+zVSsaiTmvP5fBweHnJ2diZy+cMxVZZl6ucnjKczlPIFoY8oKhG/4PuFgkG0WEyIZZbtJEgHgwHdrtjqjNajtinS66NR3jAM6vU6tiQOi3g0TL/XI+TxgCwzOzNFtVPj6OCI7PQY6VSK1/7gFZ66+oRwkdoWsgUuzx9ZgEW010ur1RK7dUU8aUc7e8O2sGUbWZOxDQMp6MNjKrQNFUlSSCYTzM5NM5OYJZuFvu7CNrtIkgqoyBggmUOHpClaxHt9R0caDAbUmw0axgBJlkGW6LZ7eF0iR2CaJmPjae7evYvH43L6M/2BGTwejzM5ja6WoykuFAqxt7fnjO26ruP1BXAPk4sut5tOs0G+UODaU0/R7/fYePjI6az4416gUc4kEomg67oD0LEsi+npabrdLs2mIFr98d6HbrfrXHsqlYqzqszlcpydnTExMUGvJ9bSlUpFPGwMk5mZGRRFoVar4XIJLF46ncYYfMx7H0CEfKampnjt5k2CwSBHR0fOuJbLCdjHxYsXabfb7O3tsba25ryRMzMzxONx5ufnnQrver3O1NQUGxsbTtnpnTt3HG7D3NycmDCKecbGxggEAuzsHjhI8WbzjHK57JzwkiJj2haxZILFhUUCXg+1khjBq8PsfSwSpdxrcHBwgNvjI+D3kMvn8AfDVIs53F4fvU6HTCLumGNGyvLk5KSjgWxubjpvejQURNe7zMxMERgKXue5U/Reh2QyiWWYBHxejs9PKZfLpBLi9x0l8hRJwFTNoatRlmUkW5hg9G6XttYG4PP/xQ/y/u07JBIJh2S1+2iTs4MjlibneOv1N5idnQVg//iI7PQU1VoRr0um1+2TTqeJRaOcnh7jdYkfKL3bc75mq9kkEPdhqbB/eozkDdKtV/EEfWiqC1nSyIwF0dwujna3ePMdg+tPrQynBEBygamAjADSKBKJaIybf/AyxmDAQO9zWDkkkkxgDfpoPg8BRaau9zBkcKkuBzozOzvL9PQk5bIAAFcqFecp7dJ8TsBsFDR69913SafT9Pt956Gyv78/JCkJ0tHANIgEQxweHVEpl8nnC4TDQSJRgZ4bmccqlQqqqnL//n0Bixn/o36IS5cukU6nyefzZLNZ0XY2PDhG9K5sNkuheIZlWbhcLoLBINevX+fk5IRWq4XL5WJ3d5dAIOAQrD0ej8MhsW172Af6ZyNOPhbgVk1TnZNzbm6OUCjE3Nyc03coyzJTc3Pk83mnCSeRSPDBBx+wtLRELBbD7/cjDSGup6en4g32+ZxvzNWrVwXqPRRy4CyDwYBEIsHq6qqTnR+tRXVdp9frOSk5VVVJp9MOG2+Uthz0dMbGxhzIaKvZQO91abcaNKoV6tUq9WpZZDA8bq6uX0aSxH1/1PmwsLBAMBgU4Z7hm9toNJxy16mpKSzTFIh7l9sBm47WSyN4qqZpDoMgFos5U8PICTfqGFSHeQXLsuj3OrRaLYrFIrVKyTHoHDzeJZNM8dQTT7C0sMjy4hKNas2BrtYadcYnsoxPTRKLxXC5XI6xZ9Q1ORLqRpZrb8jLwBw+xTUPpiVjWyI85VJUPC6FSNiLJZcolbax7TqDQRfMAdga4AbLDaaGbGlUSmWODw4Z9HRHuR+BdGrNBq1Om75h0Ol1CQ/Zl1tbWw5WvlwuO6tHXddJp9PDz6PGxMQE09PT7O/vO27EWCxGJpMRus/4GJOTk0KgTqeZmJiiUq/x8OEG9Xqd9fV1Mplxzs7OqFarTufDqP15NPKPrpDz8/MEhsyFqakpACfzM/pvDMNwBPF4PO4cXqMJIZlM0mq1iMfjQlcJBCgWi2xvbzsw4HK5LMJSf86k8LHQFH753/3yT//Uf/eP2d/cdLrwRqLYlStXUFWV7c1NLn/iE9y7fdtpnw4Gg9RqNbrdLqFQiI/u3v0TpJq33niDsbEx6vW6syk4Pz/n0qVLDtAlEgmzvbNLLBajVhNsv5nZORRFxe0Ro3CpVKZcq3J6fML8/BxYNvfufkjA58XoDzCMAZWS2FM3OzUazSaSLIudvcdDMBDEtCwGA4Pt7W3GxzPYyM6HLBaLOahuAT3NOWRi0xyws71NLBbDrWrYtk27KWy1rUbTgdAk0ylRi6aqhEIh2sN9udslFGzvcNXqcrmwTANVVbFskBUFyxYQllg8jq73WVhc5OzsjPzJGZIFnXaH8cw4169f55133mFmdgrDGtDptpEVCZ/Ly87OztBX4qXZaNBsNQkGAvh8fxTNrnTrnOVOuLS2xuXVFXx+P5VqDduWaLTadPs6LpfK6lKa1ISfWNiHZXRQPB6wFLBUMFWwNIyBxP/+H36N85NTxmIZJMOiXmuxd7CPFgpQbzVpd9qEgmLMd3kCTE9Pc3p6gsvlIpc7ZzAQT/5WW9zHxXUhzoULF3jjjTc4PT11KNqjg+P09FRU2PUtcoU8yUSCTqdLX++hKDIet5v+oE9xqPQnIgHnST3KnrhcLgKBAKlUiieffJJGo0EoFOJgf9+hYo/CgIuLi7hcLvb29hzaWCwewev1Oh6Eubk5oZvVas46Utd1vB4v8/PzhEIhTk5OnMNieXmZX/2PX+MffeljDG6tVyp89N3vYhgG3W6X/f19BxUu8FHi6V05P6PWqNPudtAHfQzLZGVlhaOjIz68d1eEfXo9FtOL7O7uks1mnaftyDCSSqU4OTkRvL5+H9nuI1sS3337Dfz+APFYiIFhcXntAkdHj3G7wO2SUAOiU+DdD94hEY0RC4SIBPycnp5iGybWwEDv9mjoAwJKiEqjTqvT43t/6AcIhsN0jD5dfcDOwWMePXrEWDTFQG+ROzvk4QNh2/b5fBTzJj6PgiIZVEolJpLTLE0sUszn6ZsDFEXC61FR5CC2ZOJTPBh2i26zQSCoYRpubBMi4TQKEjISmmqhqoBtoPe7yJpIiXpdHTo9Hc0l0241SKTStAc2kfQkar5BOiQ6CZ74xHPk8mccnZ/StweUqhU0tw+fN4gkQb1UJJudRNe7mKaBooJPESagVqtNIp6hXu0j9SVWli9iWiD5NSrdJrHxCBIWPlNDb/eRMWg3NYKaD5CRZRdGp4fqcoOmgq7TrFZ57ZWb1PZyRN3iA19vtkSjk19DxiQTS4jSYa/A3VumTrF0yurqBR4+3KDZ6JJJZ2nWLRaX58nn81y7+ml29m/xh6+/wsRkRkwSmkxPF56B/qBHMOTFsvv0m01k26ZcEJHr1nBaSyQSjGeTHB0d0Ww2KTQGzM/P4/F4GEulCQT9BHx+mq06wZCbe/dvEQ6H6XRFW3SrXSGZTNI9rxMIurh7Tzhvs9ksxyd74lq3K5iPAAG/h9OTQ6Ymx1lanOPWrVvkc4K30Wg06Pf7zM/PMxgMODg4YGlpiYcPH2Iaf/b14WNxKLhcbnK5nLN5uHRJYBvOz88FuiqT4cGtWxSLRV588UXeeustms0mwWDQaQ8yTVMorpaF3hUUJsBp43n8+DH9ft/Z+5pD4a1azIsatFabZCJDMp2iWhPuyHQmxa3b75NIRqn3dFRZol5r0u/20YNdzJ5Bu97A1IVBxO/1Mp6d4CyfEw3D9SavvvoqtUYDU5FIpscIR8Upf3BwwOzsrNOaPaL87uyI7MTa2hqapnGWP3M2KYIr0WFgWPSNAbZtIssmqqrQH4jdtoSBYdq43BoyNgGfB1W2kBUby7SwbBnLEvd8l8sFsoKqubFUzxCGKzwMmWSCZETQih98dI90Oo0sw7Vr12g2apTyBVbW1vjoowdomoLXG6bVtGk0BL+h0Whg9AUu3jQHmKaB7FUZSDbRZIrDkwKz81P0bR3JtpAwkT0uZBtckoSiSNhGB0m2UdxuwKZ6ekjQH6LX6/DBB7doNi36fYNmW5TTev0B3F43oVCYSCyB2yt8Kc1mE6OvUypVUFUPxkB0ICwszg3zBj7c7gk8Xrco0un1HPfgyFkoGrbcBAKBYd1fw9kk6LpOPl9genqaWq1OrVan2+0RDIZwaxYSLixTodnoYQwkZqcXkCSNcChJtVqmWmmSSKTY39/H5/PhdnsZDEx0vY2quohEYrjdAtJr2zbxWMIpBWo2BA5A7/WRJYWpyWnH03Pv3gMH9DKqqO90OqTT6WFO5U9/fSw0BaQ/gkCM1iqj2uxarcZHt287iuzIVNJqtbjywgvOODcas0bpSIHylh0Pwqh8JJlMsnrxIslkknQ6ze7OIacnedwuv1OjtnxhkVK5wGDQZWIyhWX3nDthJBIhkUhwaViScpbLYUsQDIfw+HwcnZ5weHjIg0cP6QyZha1Wi+eeeZZENMbGxgaqJDsiqqZpzlXBtm1mZma4fPkyS0tLvPjii1xcWyGZjgu/vyYzjM0jSyqS7MK0ZFrtHqlEEsWWyI6PsbgwQyTsITMWI5mK4PFJaC7weGUCQSG4jWy3I/emW1Mo5nOsXVrl1T/4fVyawsMHH5Edzwjc+7e+zZUrV9jfe4zH42FmZpoHD+6zv78vqtSLRbHzH/QEWarXQde7DkdA0zTOyucUajWqHZ2zos5p0cSUMlhyHN0OILl8mC4NiRbdTgFJNWg2inRqeaxeg0g0yP37d/nyl7/MrTsfYJoWjUaTVquDhYRpS1i2RCqZQVE0DvaPCEfjTE7PsjB/kanJedqtHvF4glQqzb17d+npbf7uj/xN2p0av/07/4Hzszy2JSFLKudneSLhGLKkEgpG6OsG7VYXVXFhGgqNeo9atUNfh/GxGUxDoa+DaSj4vBFsS8MceKhVBjRqJnpXxhy4ODupEA2PYVsuAv4knbZJsSBEzlg0RbczoFJuEAkn8HqCnJ8V2dnep9Pu43b5kSTJaa22bZtyueysm9vtNuFw2BGqW60WDx8+ZGVlxakQtCwLRVb+zB/Hj8WkYFtCUJmdnaXb7ToGixFEZX9/n2vXrhFLxLl16xbLy8vCgDJsLhoJNoYhsgujVCDgtPL4fD6HkzcyoxSLRcbGsoJnmEyxu7vNydkpzXaLTCZFKCxalkulIqbtcdZCqiowZn/xpU9jDQyqxZL4d24Py2NrvHfrfVrdDpKssnd4wNzCAqVSibPzPBPjWc5y58xkp50/WyaTIRwOi1XRMPb88OHDYcJT2LQ1t0qtUcU0TYEVN0Dv9JxOgKA/hGTLeDQhmHY6HfRuD/dYUnQHYtPTW/QNkWh0uVxItiWqz2SQFA3dGBAJBdjc2iEzXmBg6A7E9ZlnnuZ3vvbbIpQUCtHv97l+7RqRcJDWsHrN7VYJBAI0qpWhqCmETYEqs3B7XIRDUY4OT3n2+Ri722f4PHG8XplBX8KrqmiSCi4DyxBTRjgcBtVDq1gBZG7efJ3Dw2NWV9Zp1Qbow3YqVXEhSUVhGiwAACAASURBVAogCZZAIMzVq1fxDWEky7MrmIaEbZ0BDSzL4oknnuDe/Q/56td+g+2dR1y/fp2dnS1HhB4BWQOBgHOdVRRFdFFmZsjnBTS1OxT1ksk42GIKSyaTeDwe4hHRdBVPRIlHorjdGpoqMzY2BpZotopGw5iWTjIpsISZzBjj48Jk1el0SSREWMq2xSZJkVWnxt7lcjmaw+TkpEN38vv9+P1BcYX6Yzb/EVxlJP7+aa+PxaGguQTYY2Jign6/7xST9Pt9stks169fx7IsPvzwQ4LBoFNP/vjxYyKRCMVikZmZGe7evcvMzAyBYaz0ypUrjqBoGAaZ8XESiQRbW1s0m038fj+X15/g4cMHJIfW46ULy3x47zaf//z34PG7KZXP8fo0tnbLQ21D1JX9xm/8JqlEkngsxuVLa6QSSfL5PGPZcS711ykUi+K+7vWgud34PF68Hg87m1usX72CKqlcuHAB27Z5/30Bpxp1WIyuN+l0mlgy5vQDyDYCbJo/F74AVcM0bRq6ztaDNouLiyh4UGWVJy5fo5DLiRyCLKaCaCTlXLNcmoC59jptJEVFNyySsRDtepVLK4s0qiXmpufY3dpkeXkZv9eHafRp5aq8/vrr/MD3f58DBdk8OSKeiFIonIsJodsWh5fiwjLBssUmwmp2ubd3m5XVy7z826/w3/73/w2DPmgSVFs69UYJzWWhKTqy5KZ4VCQYiHDr/bf41V/5dRqNFkFfFFUNcbTfcLoxQ+E4vYEIeEWicSLxFLsHh0xOTGHZsH75Cu+9foeTkyMSyTitZodgyM/Tn7jG73/n93B7JKamx3n9jVeYmpxnairjuGXT6bSz0UqlUkPLuE7A46PfN/H5gnzf9/0AL730ElNTU9y9e5c7d+5w8+ZNLMuiFspxcipISy5VQVEkVleWeePNl5mayBKJhFheXsa2Ily4eAk8HrrDsuNkIu1EqwN+cRC3223QbAzDYmJCmPRM0+T09BS32zvMa4gJdGxM/NkNw3CKgNrtNqurqx//Q8G2hACYHhvj4YMHXL9+nXK5zMLCAltbWxQKBad6ze12c3x8TCqVYnx8HJ/PRyaT4Y033uDatWu0220mJiYwDIOdoQmqWCzyzDPPcHp87EBEs9ks+/v7tOyewx+4evUqRyfHfPrTn+bmzZv0zT7j4+M8fvzYWZcWCgVkG6ZmZ3DLKj1dZ3NnW0BLZYmBZbK0tMTM7Cyvv/kWvV6PRqvFzt4efUPYWyvFEpVKjUKhQC6XY3V1VRSCtFpOcGlkp5Vdwn6bjAnXZqNeRZUlZFnB6Is+hKA/QDycplau0aw18fu9BH3C/dZuCwOWhI3X48IcTgqSJIl1ocuFaYMiCXyYYRjIyDx59TIXV9eIxSIc7h/QdjVYW71I7vSUqcms6EGo1fH5PcQTUSqV8tBS3aLf64jEoeom4A9hWSZenxt3XcaveejUWnSbx/z4f/1PubS2zt/9kR/mjVf+ENsskUyEqLeE3fvg4IjjoxyDvkmnPSAQiOAPxBn0TRTVRO8LPmW5XMbrD5AYSxEKR1lYXqE3sIjH4+SLJY6P38PjEk9OUS8o87nv+Qz/8l/9CxYXFymVc0iSqLAbHz44vvWtbzm+mK2tLRYXF53E5IsvvojPFWZhYYHLly/z7rvv8hM/8RN4PB6xzWi1SKfTgsnQEZsvVZPwRkX/Y7VWIBT2Eon6UFWbQumYgDfDnfffZ2Fhgf39fSYmJohnsyxeuOAcNqP3LBKJOIVIhUKBTqfDE088weHhIQCpVIqtrS0UReHRo0eEQiGWlpY4ORFAlnv37iEr/wkNUf9/vC5dWLLf/OZvUiwWMQzRLZDP59nd3eXq1avD8RdCkbDTN7i1tcWzzz5LNpvl/v37Do/w6eefJ390jNvt5vz8fFjfJcb+YDDI1aee4vzkhEajweLiIo/ubYg78vwc+fw5iVScWqPO7dvvMz45wfn5GW+//Ta5gk6j0eDVV1/Fo7lwqRrTk5OCnNsSVXEXLlzgU5/6JOfn50xOT3F0dMLJ2Rm5QoGtnR0kSWFze4uVlRUazbZzyI3o1deuXWN8fJx6vc7W1pYQwYIeFElmY+MRvW6bVr3BzPQkoYCP+dlZvB7B+zd0kcKLREMA1BoiS58vlIhGksiaC4/bj9vtRVHqYuXVbWP0xfq23mxh2RJXrj9Lt9dncfkCXd0Y8v9sJsezHBzsI2Hh9/oYzwoikYJELn/C8fER9VqJfr+HKotDzTZtbFvC7wsTi8QYi0W592CT/sDGH0rj8/pxedyEw24kBqhyh2a9wt6pKLPJZifpD2x6XR1kF7at0Gr3MAaWoD7LwjeRnZxmfnGBWr2NbgwIR+I8cf1pHj3c5OHGJnNzc3zjP36d559/Hq/PxeHhHpZtsL2zQTgcpFA8I5sd5/DwkIX5i3i9XidA1+0KIO7nP/95fvRHfxRZlvnc5z6HSxZRZIBKpUKjIYhaIw1lfHx8OO2eDUViH+lklEDARzwWxh/wsnZxmWpVmJkurbxANpt1glfHx8dMT0/jC4W4e/s2V556il6rhScep3K0T6VScZySuq47dKhRPkhVVebmRDwgkUhwcHDAD3zhC5SHrVHf+9d/lI3tP5289LE4FC4uL9rvvfx1ut0uyUyG1155hU997/ey/eGHZLNZJ/xULJdEEOSJJ8gdH1Ov1zFN0zEaxWIxisUiQb9Qi0d39Z2dHSYnJymXy+TzeWZnZ53159zUJGdnOeLD0hSPz0swEefhh/dpdtrs7OwA8PVvvMrh4SHhcJjNR4/IZrNUyxV8Ph9TU1OCLCQrXH1inWAwSG/Q58rlJ2g0Gjzc2ODevXvMzswTCIf49re/jS8YcrogR52EI63DNE0H7NltiPScpijMz04yPZUlEvbTalTpNKqEI0EmshmWVtZF5XivTafTodnpYtkS5VKL3d0TkDW8niiqoqG6+lhGH8sc0G42MAd9fIEgfcMkOT6FLxBic2uH5z75F0knkhweHggnXLnI2toa3U6LwvmZswHqD7psb29SLJxhmAN8bsGI9Lp9SJKMhIbfG8AluQhHI5SrVU5yORKpFItL81SKBdwuF7FgyImP981hLaAkocgaXb2PommomhiRS6Uymldsl5KpDKurl3jhU3+Bubl5/sd//W/Q+wbn+QKX168QikbYf7jB2NgYd+/eYXw8w8NHD6hUi0NnoMr5+SkTExOMZaZRFIVQKMSVK1f44he/yDe/+U2++c1vOiag+fl5Bj2dszNRKhOPx8nlcpTLZcbHx9F1nWKxKDIOygDNpeLzeUglIkQiYcbHkgRDfi6uLHB8fMjM7BTxyAzFYtERgROJBOfn58zNzTE1NcXZ2ZlzFc6OiUrFcDhMrVZz7NnVatUBIBeLRUxLdzSrkZ9namqKXq/HX/qhv8GDja3/rL0P/1lfHo/bISznz87w+Xyc7YguhrOzM6cEY2xsjEajQe742MFrn5+fOzHUTqcjeAQrqxwcHDin/UggqlarjjEERBBlY+MRsVicN996nWc+8Rz37t2jPzCJRqOMj0/Q6/Ud2+hovE4mkyiKgi/gxzYtBwjTaDTY2dkhnkry1FNP8Z3vfIcLFy44Tj/TNPnw9gesrKyQK5acGPeIuByNRh3YysipqBgGbs3FwtwskbAXr8fFvTu3iIb8vPjisywtzPPUE+vYXhVJlunrOp1ul26/j4RCudzlrbfucHpeolJuo+ttgqoI5FgyaIqMZKuOgFkbMjEb9SpbjzYwF/pMT09TKZd57dVX0BQB+fB4PE6t+UjkHbkm//hfsixhWzbtdpumPSAxkSWoQOd4l3pXwVanaOkt9k+KxENxopEIkmzjUVRMFNGNKNt4PCp9c+CsiyMJPz6fgNU+99xzBEJhvvrVr5KdnGR8fIJqrUG92cLj9xEKhXjxxRusr69zenpIdmKM/YM9BoMwsgLn56cEg2FKpQpul4Cg/OzP/iypVIqXXnpJWIsLBWKxGPV6nTfffBO/x8u1a9eQZZmTE2GImp2ddTZkoqjFS6/dQpGV4VpSxTIVZMlNr2vQbvVJJsfwesL09A61eoW5uTkCgQAzMzNoLoVINES702T/YE9E4V2K0/41qlIcfb5G2Z/R5Dk7N+lMCbIsk0qlnAJb+0+vYwE+JodCpyOw1qOcQyQScehIAI1GQ+QEhj2PoxErFouRSqWo1Wo88clPcvu117hx44ZYpQ2pM6MRL53JkJ6aAsPg3p07pNNpHjx4QCzs4Tx3QigU5PBon93dXVTNTTAYZtA3mJ6aQ1M9FEpt1tfX2dzcZG5mhq9//esiU4BNpycOmaULy6RTcR49euT4Db7xjW+QTKd5/PgxHrePWq1Gp9OhPRg4dtWRA3NkNpEkaSgcuVnMTjA5OUmpmEPvgd518T/93L9C77UY9Op4PRqV4gnelEtsFYJuVLeJ1rOwJYn0+BTTszP4AlFefeUdvvMHr2AZForLhd7rOLSqo5MTxsbGKDeqFEqlYZHOCamUmKCikRAej4eT0yMk2yQQEBHj+/fuoWiS8/6ZlkFfQtyn2z08Hi+hYAxzYKHbNsVGjXgyQigTRDfbnNWOMD0mql+l2ungjcTwKDaqqmCYJrYt4LZ6r4ttmciq+P5YtAmHs4yNjbGzs0d6LMPFi5c4y52zdnmF/TfeRJFVNM3N2tplfvIf/X3hELUGPNr4yHG+ttttxjKTIFn84i/+Il/76u/wzjvv8PM///OOJfz+/fuOgzCXE1HogM/D2blgIfYHPRRVYm39Ip/97Gfpdrt85StfAaCca9Hv9zD6Fq2GiUuzaTUHIJmUik10vcNAl3F7FC5cWBpOvBG63TaJRIxEIsY3vvENrly5gqJI+HweOk3x2RHBt65TNf/mm2861XMj89Lu7i7LQ9TA7u6u43n5824IH4tDweP14vL5iaXS9I0BjVqVubk5Bn1BnHG7NdA07AFEQkJX0Ls9FElGkRXOTk7pdbpcXFnl6OiItdk5vv3tb/PiX/iU6CDwuIf+eYW9nQ36gy6Hx/vMzE2haAHOHz1CklQKxzkuXLosbKfRCIWi4DgkklGuXJzn6OiYQa/O737jq8wuLLG8uoplws0/fB1fwE/LlAjaMrbHz3v3H4pDzefjrFIhNTXF5uFj8QTQNKRel3BCIL7GJ8fZ2dmhVCogIUbidCpBNBwh4gqiSQrzC5P0jQpPf3KNrlLG9hr4fBqWYdPtD1B0HdMcEIhlaLTr1Bt9klEfg26BQMiF7Woz90yY//LSZ/jKz/4KhZJB2JcCU0WWIRUPINFDkwf09QGF0yIrC+PkDzfwzs9huG0qxROaNRe63mZyekY8cTSFTqOKioRuymAqdAYmtq1h2DI93UTVuqJ/oNfgLGfg9rrwqVFcVoBOUSIaiqP6fITSorqt35cxLAs0iWaljG2BrIVQNJmAV2xNLl+9wv7jIyw0Wl2LCVeIXLFBT5f45re+w9zCDO8cvcfzn3yK3/zNr3Dt+pO8++67+P1+6rUm09PTglvgC7G+vs6P/MiP8Ku/8qucHh/Tqrepliqi10HvMjUxTrfbpl6vkkoGUFUTmx4Hhyd4PB4B9Ql4uXvvPd7+7qtYlsXP/MzPcPHiRX73d17md7/+28O+SD++oIeT3DnZsQybO/u88PyzFAo5FucWkfHTarSJhNNsb2+TTqe488F9el2DWq1BtVrnwoULpLMh8Hq58/rrLC2JWsPNnYcYts7y6iV2dnbo9XqUilUmsuM0GzWWlpZoNqKOx+HPe30sNIW11Qv2d1/+PQKBAL12i+Mj0ffXqFdZXltj76OPRFpRFv6ATCbD+fm5cyc/PT3lxo0b5HI5cZdFolQq4Xa78fh99I0BkXhMQEd6PVqdNteuXePx48c8/cwnOTo6olAoODXjIzTXxIQoXV1YWCB/ckYgFOSd997n/fdv88G9+5TKNSxbIp5Kow/6uDQPsWhwyOproeu6GL0rFbxeL8lk0hk1D4+PCIVCwtraaBKJRKhXqviHTMpUKoVbcxGQ3ESjYertPH/zv/ohZJeNRAdZMvFrbsz+AKtvMZBVXF4vCytPkS/XsC2LsEclGpDRQh5sSaIhqViyyltff4Obr7xJrzogGgpTKpxj0QYsyrUOA0PC7QoRTwSwJMFpsC2Jw+MjDMOkbxh4fH6HLZCKBp2n1sgrMgqTjSrrAoEAXVOi2WigaRrJZJJ2U9iH/R4R6omEwwQCAUKRoOP9j8aT1Go1Nrd2WF1dRXW52dvb4yd+6icpnpcIBoN8eO+hSLyWa5RrVVweNwtLgs15eLLPz/3czxHR/EQiEWKxGIPBgOXlZT7zmc8wvzDL3/t7f49qtcpgMCAZiw/JW+I96Q96WJZBtVp2RFzbtikUCg4IZWRsGzE2R4U8k5OTvPfuh6xfWsPt1kilE/ylv/Apnn/hORRsdna3KOZzNJp1PJrYbIiMjmfovxGCcDgisIJer3t4RWgxNTX1JwpqR5iA09NTp/RItgVNKp/PO9qXZVkUCgX+1pf+MR9tbP9/0xQkSZpE1NBnAAv4Zdu2f0GSpBjwG8AMohDmi8OSWQn4BeB7gA7wd2zbvvP/8DUoFcu4NDfb27t0Oy2CwTDHR6ekU2PUagJTlZmYBHCYd6NRKBAIcHx87OyTn776JOOTUxweH+H3+ykeHeEPR4jFkwTDIW7dusX+4TGa20un2RIpu56O1+VGlWS2t7ZhYQFNVggHghh6n4ODA9YuC2JTPB4XLkC3wKuNjCoXVlfQux3efPNN1tbWnGvAyKFZKBQ4OztjcXGRTkeAVX0+n/NhGE9nMIYY8BHfcHn9Mq1Wg0ZPRvO4UVQL0+4jWRJ6v4/e7WMPLI4LbZCaRDMWXd2Dz6UwMGwGAwvNdCEpCqrswrJVZpcu4n//Ic1KEUuSkV1uZEwGhhhFZUmYyXLFgrMH73R1seFRBbdg0Gw6acv6EJo7+nAOBgPM4dXNBhHbVhQiwRCuYWPRKJ34x9ejvZ6IWqfG0/QNg2Q4jD8YQtFUZgYGB0eHJDNjfN8PfD/f/v0/IOwLcuNTL9JoNATP0iecrY8P9vn0pz/NV77yFX7zt36d9StX8NlupqenCYfDHB7us7S0xKXLK/yv//5/4+7dD8lkMiQSCZ577llnDT4xOc7RkQDi1utVp2THtoWNeHQAigi1eGB1Oh2nBj6VSnHp0iq1WgWXWwXJ4Dvf+Q5vvf06k9kx0ukk83OzhMJBshkBC4qNjXG0s0Mw6Gd8bpLTx49RFAmPRxw+Dx48YGJiinK57NCkTFPg5DRNY3FxkZdffplkMomh95wrdKVSIRwOMzU1haZpqH8Oeen/zfXBQLRK35EkKQh8IEnSy4jW6Zu2bf+sJEk/BfwU8JPA5xB1cYvA04gy2qf/vC+gKCqzCxd4cPcOsWiS0NTMEFN1kUajw5PPfpJmsUilWSUcDhOZmkIvFh2kWjwep9frkcvluHLlCqeFMnNzc5SqTVrdAbMLyzQ7bWYXL4jp4NkbNJtNzs/P2dx8RK1WQ1EUjo8PCQQC/NW/+sPs7e2Rz5+jKApnZydcu/4kt2/f5pmnr/N73/o2E2PjeH0But0e/W6HVCrB/bv3CAQEWXpkrz4/P3ecaCMT0snw/t5qtfD5fMSjMSzLcjBdgIgiI3H37h0uX10nZERoNJu4fAqm3aff7WD1dRRJRUPjOKdy995DUvOfZnx8EhOdQjGP2TXIejSUUAif5qVnGCxf+QSzH+wxMHY43tthLJmgUTtmYFhYtoFpWrRaFboDcfi63G4MwxIuTQRXAsnCHHIN6/WWo92M/g4S2GAbJi7TQvUIjmb6j3EwR7ZybfhrI+I0qoytSCQzY/QGfYLRGP52j4VYHF8whKS5CEUjBDx+vvnNbyJJmgMfKRaL/MIv/Sw3brzE4tISX/ihv0yn0+H2Wx/idvlQFI3l5RW+9KUv8U/+6U8xNTXJ7t42Y+NJ4okwb739Br1ej1argSSbdDpi4puamiKdSTpIM1Vx02q1REZCUSkWisOadyEYT03O4HZ5OT87IOD3MzMzRaNRp1orobkSHB0dMDaWQte71Gpl+t0O+fw53Q9ucf3ppzg6PiDRbQx/vSoszRjIiujgHInw5XLZST6OWCJO9kTvDQXzcapDEnipVBLoAP0/Adw6rIM7H/5zU5KkDSALfD+iPg7gV4A/HB4K3w/8qi3uJe9KkhT5v3RP/t9ehmGC4qLZbBP0BQmnMhSOj/H7xAQQDhQ5OzvD5Re8gM3NTeLxuPjmT03R7XZZX19ndXWV/f19PP4I5XodSdOQXS4kRcXt8vCtb/8+N27c4P79+/h8Pp588ike3HmfdCrB2NgYp6enRCMhPrj9vmiV9gofQUnvEvB5WZxfwDBtPvnC86yvt7h99x7FUoV7Dx7AIUQTcf5P5t47SNL7Pu/8vG+//XbOuXt6ws7OzszOZuwCi0hEERLFIFEMEinJFJ1UCuezJYvS+SxKtq/sOlmlk8+6s3S6stKJokmKIiEBIAACWGAXwOa8s5PzTOec33B//HpesSxSdtlXV+gq1G71zs42evr9vd/wPJ9neXkZXdd57bXXaLfbFndh/6DodDoWAEVVVRwOB+OjY+zu7g6t0iI8JBgMMpLOMJ5Ic3Bqkin7GK1uB8XtoT8Y0OkPcNqdOJ1uuo0OB2eP8/alW/hCEabmUjRKLbRemXDEjc0OeruJ5pJwONzsVrscPvEgP/B9n+CX/oefpVhtgGGgGfpwE2LS7bVRHHb6gwHVZgOn042m62haH1MC05AwZYGTt9lt9IaeFHHI2yx2gGEYyA47PUPDaLUwh8O7breL1y0EOPseDH24wbh15x6nTp1Ctqv02m0RJGwIzcPJU6fodnvkSyU8Hg/9fp+x0SyBQICJA1M8+PBRfvYf/iJHD8/RaDQo7O6xtLTEL/zCL/HE06f58A/8CN2u8MIcmBynUMjzsY99BE3TKJfLNOo1gsEgPp/HSnzelwnfuX3POtgNQx5i/UycThdjY37hmDVNGo0OdruLblcjEolQr1VIp9P4fF72drdJpRPkd/fY2t6gkN8hm81aP3uP18Xe3h6qqpDL5ZiaOohh6FRrZUvhGw4luHPnjkUDP3jwILu7u7jdblqtFrdv3+a5556jVi7h8/lYWFgQ4bLhsKWBMPT/jyArw4Tpk8B7QGL/Qh/+Gh9+WQbY/I6/tjV87j//Xn9fkqTLkiRdrjUavP3aayIcdnUVBgMhjBlmQO73SfvAlGQyiWEYrK2tceXKFZLJJAyBI1NzcwTDIbx+HwtLixiYuL0eisUip06cJJhKc/DAJEF/gPxeztp2lIYfslAoZPWdDoeDSCQiZgzpNIah0e21KRdLFAo5nHZVsP2RsCkSm2vrVh/t94v+U/SnIpNxd3fXChGt1wWleX+N5B4CYfbR7v1+H6fTKUi95TKNhuhxB70+qurA5XbT6XRpNtrYFBW7CkgDllfusrNbp9OtYtCh3amAU8bmd2AywDAHRIJeHnhglkKxzG4+hzlMNGo0GnS6Xbp9gapTFHHP2I8s21+d2mw2HG6Xlaws2xRsih3FrmJXHdhVBwNNx6bYkWQb/YGGbFMsD4Gu60SjUYsx0O/3rRwDsUsfJxQSsNNGvUWxUCafL+L3+/nqV7/GV77yFYrFIlevX6M36HNoZppAKMjpU0f5h5//R3hcbgI+Pz/4Ax9ic32DH//MZxkfH+W3f/N3KZVKpFIpQqGQIGQ5HBSLZfp9zWpnEokE9Xqd69evW87ExcVlarUWkmSn0egI2XFPo9vp06i3KJeqtJodfN4A0Ugcu+IAUx5ejFFeeukllpaWBEJtVyh0W80ObrcXw4BkMkmxWOTObYGiBxmfz8fW1jbdbpdEPGUFCNvtdtxuscnad9YC5POi3Xv++eepVqtMTExY6/rDhw9b2ZfiZ2v/ntf5f/X2QZIkL/BVRGhs/a/LxL/5pd/lub8xzTRN83eB3wU4eeyoOXdklm996yVGUmlqlRK6PiAQj7K2sECzKS6a7byg2MzNzZFMJrl586YQE83Pk2k0SB46RHNnB5vDTblc4rnnnsXr8XDz5g2mD06xt7fHrbffpl6v8+gTT9Cq1zl65DDtloj5nj5zhl61SioZx+P3s7W+zoXzbzE1NcVffuXLfOgHP8K//53/k2g8hmSaRKIi1doE1tc3qJSLqG4xfKpUKjidTrLZLO122wq/3acq+Xw+RkZGyOfzLC0uAaD1BHfR4XBYbD/FMChVytx59wY/GHoWj8+Jqes4VSem08TQTBwON5gVPvujTzE1HWZn6wqS0SQZ9uBw6mA0QO9jmA76Oiwu1ohHkhiDPuFAkEIuj6p00U1TbGpkg4Gm0RnKqPvaAEwZA2Fykm0SkmFgYKL1dVxOFdMw0IazhEG/L2LjZRnF4SAcChEMBMimstSq1b82demiZSoXiqiqSjwep9PpUMoX0PsDZFnh2MkTeNw+Op0e5UKJ40ePoSgqKysrHDhwYJijmCAYDPLRj36C559/Hr/Xy/z8HR596CwzByf4jd/4Df7wD/54yN4cZ2trA13XCQUjjI+PAVAqlSjkqwx6bUrFGslkkpnpI9TrDdqtPbyeEAF/VKyPB3lGR8doNBroum4FIh8/fsLSKuyzPZeW7zM+msDnDeByOzC0AR5PgOzICKpDoVouEQpF2NjYRlEcKIqDdqtPJOwkEg6h6X12d3e5ePEKc3OzaAPhc+h2uxZJaWRkxEKz7WMNo9Eo/U7bSvwul8si2m4Yi2Ca/53eB0mS7MMD4U9M0/za8OncflsgSVIKyA+f3wKy3/HXR4Cdv+37dzodQtEwhw/P0G23OXfuTcbGxrh15RKpVIrlZg2H0z4Eg3rY3d1le3sbj8dDNBolEAhQLBYJ5HJ402ly6+t4PS46nQ6bm0Wy6RT+WARZMvG6PVy4cIF74r7/VwAAIABJREFU169RqVQIx4NEIhHhXVBVHLEY82+9RSwWw+PxWAowh8PBq6+8zKc+9QmuXbuBYndQqtTpD3RMw8BuF7i2RqdrlcPhcJiJiQkkSbJYgNVq1bJ/r62tDfMABT9x/y7a7XYtAG3K6UHSDdr1Bg7Fjt2mgAyyJCMjmIV2m4qi6PiyYZxqn0DQQ6/RQbXrOOyApGNqGvlSi+5Ap7Crs7u2xc1Lt9C1Ph6PC0NvY/ZFv9rtabS7A/q6ANkAyJKEarej6waGBKYEyjAnAcNElhTsisMSLemyjmITiDaH6kKWBMTV4XBYqsVIKGwFm2iahjEcmPnsTor5Es888wzVYpWKWSGdFOTjGzdvW4dppVQgHA4ze2SSX/1n/4pf+7Vfo9fp8MILL/Avfv3XkV3wS//0H2O32xkbz7KyssJbb7/J0aNHabdEv722uoHH46Neb3LgwAGq5Tw+n2/4szCR5Q6tZncIpnXi8QR45pkTeLwqY2NjJBIJkQTt91OpVMhms5baEKBYzLG4sMD8/F3W1lbotJuUimVcqoNwOIjNZscmq4yPHRi+B9BoNNnbyw0TqKpkMiOsrW6QyxVwuVxiTR6NWgpYl0sQwlwuF08/+yx4PNy7eBFFwqo6Q6GQ9TkOBoPYVfW//VAYbhN+H7hnmuZvfscffQP4SeBfD3/9i+94/mclSfoSYsBY+9vmCSAYjTevXyYYDLK0cA/VbuPg1Djffu0VNrdW8bnd7O1tozjdlntQlH1FRkdHyefz9Ho9oUFfWyMYDrCxty2SkkbHiCbiYAzoteoUtjfJRIf20mSM0YMHuD8/L2jPqoN+v08qniCfz6NpGidOn2ZrbY1es83MzAwenx+Px0W3NyCZjHN/cYmdnS1kWSEcDhFziAjy/Yn6nTt3LL/7PkFK0zQ2hzJt15AQ3Ww2aVRrBPx+/H4/qVRKpFPXGiiSzEgiRbveJuB34w8E0NFxyE5skg2Xw4vfbxBLJJBdXuz+ANVCD7/Thqz16DZadLU+3Z6dRtvgxsW3ufTeVVbvb5KIBAkG3LR7shj8aToDw8S02ZAlG4ox5DxiIMsSIKMNBtgQYcCqy4mqg6bY6ck9S/VpSjLGQMOUZfrtDrntHdqNJvIwumw/Acw0Taanp+l0OqytrorPXFWwK20mKJLM1vYW66vr+P1BMokkRn+ArEv86E98hiefeoy3Xn+PM2fO8Prrr/Pg6dP8yhd+mc/+2GcEHLc/4MjsYd689AadTod0JoFpGkwenKDb0XC7/YyNiorj7bcv8NCZYyiKcLCePfsIUzPjoEGnAy+++C2uXbvGxsYG7U6Je3fvMxgMrE3YPtErGo1aUYa5/K5AzKsqY+MjYJg8+dRjTB+c5LHHH+Hu7du0Wi3m7y2TSifJZidYWlrC5fRRKlaHODgn4bBQ0Rq6jVarxdbWFpOTk+zu7gqAryEMYJcvXuT0ww8z++CDlJaXrC3Xfgzhfsz93yJo/K+qFB4Ffhy4JUnS9eFzvzI8DL4sSdLngQ3gE8M/+yvEOnIJsZL83H/pHxCZfXZGJ8YYnZ3i/F+9yI0b14hGo1SrFcrlsrCxZrIWE2E/dmtrawvTNJmZmaFarVKv11FUma2tTVxOJ71+l1qpyKDbw+N2Uy0WCYRC9DrCM2/oGuIdMqnXa8PU3w4+n5ft7W3u37ktPPU+D4GJCW6/fd4CvBqyjMflZmRkhGazLQCaIbc1VZckiXA4zMjIiHU49HoitWega4RCIQKBAKVCUQiWhmx/RVGsXT8IZ6PL6WR1eZlozD+0TaugShiGCaZMp1GkLBt4oklsChj9Dpqsokomva5Bs6uzuVWiUK6zvryE2e9jDvoYuoZTVWi1BuIuL4kyQNc1kMQ2wZSAoZ5lv6Kx2exgEzoF2ZCsweL+f/v/D4ClHgzIMsaQbKxpIkkpFApZeZp2u+hzEzFBL75z+x4HDx5kbu4I6+vrOF0eioUisXiSbDrDk08+xq/88j/nUz/yo+zs7PDTP/3TNOt1zp49SyadYHdrG7sq8eKLLzI6myGZTLJwfwUJm0D+KR4C/iBXrlwjFotx5vRD/NzP/V1GsimwA3341//yt3jzzbeIRGLYZIV8Pi/mQVEn29vb1Go1ZFkmm82ytbVlUZoGgwHNZhOvx0+71RKE8WqdVrPJn33pP3FgfJSbN28yms3w5JNPUi4UrdSn0ewYkmTDNHV03aCQL4EpUy5V8frcHJ6bQpZlYWn3eKwt3OqQ8Xj90iXK5TInjx1lcXGRdDrNgQMHmJ+fp9vtWq/vv/lQME3zbb77nADgme/y9SbwM/+l7/udDxkTqddm/e4t+v0+iUiIg4cOcefWLbqtFg8+fppr165RrlXxeV3IUoxAIMDly5d57LHHWFlZwdD7+H1uJHSmTj1ALBYXAhOvD7uqUqpW2cwJMGo4HufunTvE43F29krUm0JktLW1BRQplUo897GPUW/2UJ1eciubxJIhFq9dIRiP0traJZ5O0+lq6Gs7zEzNcuPWHWxuJ5Mjk+zm9mhV9/B6vWxtbtPpCCipLMvopoY2FPrs7GyxtraCx+XF4/EQicTY2drlk5/8JIOBTrfdodwQ8WOqK8i9O/PUqk1+5NMfJhD0sNtZJRD0ItvL+N1hMQ23NTEGHdwOKJZL+HwZ2l2VTtPgja+9QqVcQ+tV0Ro1wgEFf0BFlw08wTQ4gnh8AkrS3dvDwI4sSQyafVRVoVVt4fV68Tnc2GUbhm6g1Tt4UyGRPdFqEwqFGHTFLEJVBXDELZs40anv7jE9dxi7Q2V9Y4NOv4eLID1TQsOGxx3C63Dh9PpIZEZQVDuVapWtpfuUG2JIpmPSunqBV779KjfPL+A2/NgNhU996of4xz//P9Ltdjh0VPT7piShuD20ahr1kpNes4PPkSEcCjAykubo7Cxnzz5IKBMGE/7NP/sX/Ktf+18oV0qEQgFUVWFndxOvx6RSuUelWkZRZA7NTHD73gKKYieZ8VAp19DNJplslEFfp1IVwzxVdZJv7eJ1ezAljb3KBl6Xi26vS62hktt1YfSr/PbVC6THxsR76/Px0EMPEQgEeO+99wiHwzTaDbLjWSLtCA6Hg2a1iWzIdJtddjZ2iMfjzE7NYrfbmZ+fJ7edIxaLsby6zQNnHiWfz9Pq6Hj9UYLhJKVKC+P9LnOWJJnNzS1GRkaQZZmRkSxXLl1GVVXOnn2YjY0NkskUDrebUqnMoTNnWL1+nUceeZR79+aHO1gdt9tNuVzhzoV3RIthV2k3W2wU1/H7/STjCQxNp9tqMz11CJuioHkNer2exdFvtVpks1kuvPIKmUyGeDxOt9vFH/TQbrfZ2tjk5q07PPTwY1y/fhtN64s98dQk5Wodl9tBsZi32huv102v10GWZSv4ZZ+WtJ+qNBiI1OPl5WUwJC5evEg6PUIkFEZXbIBBr6+RTGeo1Iq8/vpbJBIRDh85QKPaI54I0+2YqHYbNkOi1emjGyaSYef1V98kEpnihW+8gqkL0rLbJRMMhbCrKnt7e3T7PcLRKHaHyszMDIVCgbt37+ILhCyWo8PhwD7kSIIwk+0r97SBgWp34nIbGAaYpoTT6UYe3ks0A1qtDoOegIe6vR4xFygVURU7oVCIbCpDca+A3+PF5nWRTKcIBoM0hjj+8+fPC+LRSIb/4/d+h4//8Cc5EJvkV3/1V/n83/8cU1OTLC8vMXVoEkqwt1sgkx2h2egSDEQ5NH2Qxx9/lKc/8CQOVaFSKfPv//ff5mtf+wq1ahlVVVhcXMRUXKgOhXxRdLw2BbLZDG6vi0gsiizLbGxu4HYJcKquSfR6OpgKpgmtVpt+X8Pt9qLanegDg8JeAY/XRSaeEO1jv4PT4UbXTDweLzabwurqKsePH0eSJF5++WWefvppHnzwQZF8NjkJus5X/viPOX36NIZpUK3XWNtYFzMfWSKZTmEYhkX1zhcLmMgWxWx/JalpmuXG/F6P98Wh0OmKwdM+CLM+TFQ6cOAATp+PZFKQdbHJLC0tWWuxnZ0dYUjp963sg/2Vjd/vF6isTgdlmLIsyl6bVa4CQwhnzZKu7lthH3n8cZAkNleFd3329HG6lQrr65uMjIxQq1SYmTnEK6+8hqbp5HJ50RvOL/DgQw/xh3/0H5mensZld1oqP03T0IcILrfbbYldOm3hDTAxOXXiAYrFIidOnCKTSvP6yy8QjUZRbODyuDGlCG++cR6f30U09mmSySh+d5hKpYo5UHD7/GAKV6Jm63Lzxh3u33sF01DRdReBQAhdG2CaEtgU/IEQjl6Pfl/D5fHSqDVpNTsE/CEGw8Hf/ipyf4Oynwa1P8mutWvWmsw0DHCoqDZF0H0M02q3up2emCc4VJwOB94hWLVaroDfsFqQeDxOKpUSB+XSEoVCgWQsTqlY4t/91v/Gay+8QiVfRAuP8k9+4R8Ri0UYDERuQ7lcxjQk3C4v2gBOnTrN4dk5PvaRH0JVFTa31vnTP/kTavUKd2/fotPp4HEJl24ymSRXqeF0qkOQro3MSHrINYSNje1hgHEISVY4evT4MLl8k83NLarVKoqiEg7FhxuCXUYOCD6GXZFptTq0Wy2S8Rh2uwNJstHva7RaHSv+7fDhw2iaxrVr1/B6vYTDYe7cucPJkyd55JFHxGdVE23X/tB9b2/Pcv5KkmRpYro9MUPYb0UNw6BQKAz9RI7veT2+Lw4Fj8/HJ/7u59man+fOnTvMzc1hSBAazXLn0iVGRkZwetw43C6Lt5iZnuatF1/E4XBYPVIwGBRBmu22ta7c97Y7HA4ymYzlj9hnQUYCYUqFHIoMAZ+HUyeOoes6L33zLzhz5gz1apl0Mk6vUmF3aOtW+houl5Nut8cDD5zkm9/8S8DA6/WQG/rYT5w4RrfbpVDMYVdt0GU4fLSh6wPa7bZVNfiGB9/m2qa1riwWi+gDjdhoBptNolwsMTd2CGerwVHlQQb9Hm+8cpF+t4Nit1nJQ8GwD0VRyJfyNBotNE1G1x1IyIyPZajXGwQiYYvjWKnXGFR1BoO+5QoMBgIiebkrmAZ22WapMnVdR0Z88PZTm2OJhKiyGk1yuRwyEgMM9GEMuiLbUFUJfyhIuVpBlmX84Qhjo6OCTN0VB+bM7CzhUIhSo8KVK5colUrDwJc1fuC5Z/n0pz/Nb/7Gv6XZbJL0+CiVd5AkE28ghmI36Q/arKys8dgTT/FnX/oa1VqbxYVV/sN/+F2+9Kd/DMDYSJZTD5wgFPaxubmO0y1Wpjabje3tLUIhH+FwGEVRaDabLNxfJBKJUC6XCQXj2O12KpUKsmJy6+Y8d22LtJoidyQRz3LyhDhEPvvZnxTVqlsh6PcDBndu36JcLNBpNcDUkQwdWVJRbCpTU1OkUimq1Sq9Xo+RkRE2Nzex2Wwi8CibZXthQWzEsjPsbm2haRoPnjlLLpezVI6YMslEGk3TCAaDVtbJvr5nn8a1f4h8t8f74lDotFoUVzcIh6IcmTtGtVolFIywvbCMx+3D5fTQ64rS0263E48lWbp2k35PYyQziq7rVv6foUMoGOTGjRu4nE5Mw+DQ1BSKotBqNokOw043NzeZPnSIwl7BuijX19dZWVnh1EMPceTIESLRKKurq6LEHnRZXxOJvsV6mSc/+AOce/VVErEITzzxGJ1OjzfeeIOHHznLnbt3yOX2SKczSDbZwoYbhoEp7WPnRe7jfj6gaZqcPHkSl8PN3Nwc5XKVarWKP+4D3UCqVOgONAzThmHasCkO2rU+ToeXfruLxyUEV3s7NUx0TNlEtXvwenzk8hWOHZ1lZXmLUChCMBIWsestJ5Iiysh6s2GFrAL4vF66g76V0LX/0HUdh121xEyKohDwi0xPm2ynVmuIu9AQ2sqQN9EfaCBLuN1udNNke3OLYDhEIp7Crbqt+Pd6o0EsIQJTqtUqy8vL2G02IqEw/9M//QKXLgq16cTYOMVOTUB4HDKJZIxqvcYnPvEJPvHJz/Lt197k9//vP2R3p4iu60wdyuJw2EnG45TLZfb29shmhb1+ZWVFgGxlG76AH6/fRyaTodfrsbKyJrIyUUimssiyTDAUwzQlRkZGrGSvs2fPEolEcfqG79VwClfNN5i/f5dKqUwkFOHo3BH8XicOu0osGhRmq1KZUNzP6uoqMzMzPPTQQ1y+fBlJkpidnWVzc5PS+fPWgTQ6MY4pQa1RJxQJ0xnKmYPBIHt7e+KGo4jK2DAMvF4vBw4cGFay81bk/fd6vC9cknPTU+bFV7/B5uYmmUyGjY0NK1pe0zROnDhBs9lkaWHRuvuvra3x/PPPI7lcbCws4PP5rDXf+sYqjz32GNeuXePUqVNkMhlr/bdPy5EkSUyNk2kkSaJardJoNCwU3He2I/1+38oQ2NjaIplMMzKaZWN9C0W1c/KB07z11lu88sordAYab5x7k0BA2FQDwTAbG5vUW01ssp1Wp40k2ZAkcVH5fD4CPpGE7ff4WV5cYWZmhnK5ytTkQfzpAIlojH63x8riEqrdjt/hpdfpUCtViIUj5Pb2SGSEIk62Qb1ew0DoHXyBIKFIHNOQUFUn09OzNPvCkFQoFKjX66RSKS5fvozNZiMQCKCqKvfu3WO3KD5gsXBEtD5D0nQiFicWFmlD4XCYvVoVr9dL0Cci+eLRmIi28/up1WpsrK4BUK4ViUQijI2N4XC4WF5YJByOkspkh9FswvMxMpri4sWLKDYbboeT7c0ttjc3sUkybqeLXrtDOBSiYgiceXZsVKzbag1sNgfVWoe93QoDTSIYENyBeExCVVVrjqMoCru5HJVKxWqLgsEg8WiYbrfPkSNHOHnyJNOHZglEvBh9kEX8BK++dI6bN26ztbVFq9Wycht1XUe2YVVUAOGAD03TKJUKlAo5IpEwbpeDbrdNJpUgkYhhVxWe/9Cz3L17V2xzZJlTp07h9XoJDKu2e/fuMXvkCO+eP49zSFMCLPXlK6+8wuzsLJqmcejQIYrFItmZae5eElqfe/fuWbmSkUiE7/uRH+PazdvvZ/KSk3qjhepwcfvOPY4dO4amaVRrAmaaL5SGwzk3u7s5gsEgrVaH9fXN4YW+R7e7RiaTwe32YuoDnHaVkVSaV156mZ/6qZ+iUa3htKu4HU6+9eJLHDsm9tH24eHQ7/dJJBN0um10Q2NxSZRqZ86codlssrW9RzabZcQw6Pb7JA5OWXbbr3/tq9jtdp547FHOvfcu8XiURqOFaUrkFgTUtdVqCTGPTcZmE+7C/fKuXm1Qq9W4snmFo3PHSKfTzM0dZSSd4cLNd3C73XRbXcbGJlhfXaPaaxCPxsCQyJdrFMp12pqGJInciIFm0Bv0GU+JfENJVjg0PU2z0WZ1bY3ZE3NsbGwQjsaIxhNDUlCI3nC20O32SSbTDNDI5XKWcs+hqpYzdX+uI2zQCUu7f3JqWhC0dvc4ND1Lo1ZHtTu5ePEiqZE0jVqder3OqeMH8brc3Lp1B6/XP3T6AbKE6gCvR4SfbG+s02o2yWRSDHp9bJKM3W6j2+/g9DpptVpsbGzgdDqpVOu0Wj3CkZSInW+I9Zugdo1Sr9cFlMRmw9AM2u0ukmQjEApz/PhJPve5z+F1u4ZDZxlJgnq9x+rKDl6PsIe73W6e/b4nePaDT6B1QXHDoAV2D6BBs9FH13UCQRemAXpnQLMlZmSL9+fpD3oUiyL4aHN9mXKlhNfrZX5+3or1CwQCpFIpzp07ZylfU6kUtXJZbCMaDYLhsFiBdjogy0TjcWx2O+FolKvXrwvi2NYWiUSCYrHIkSNHuHDhAtFoVFRlvf73vB7fF4dCfzAgFotZuuxer2d57gOBAPfv3+fAgQPW/CAcDvOhD32ImzdvYpom0WiU9fV1NjY2eOihhzC0LlevXmVvb4+nn36ad999F0mSSKfTpCcmKBaFLuDo0aPcGHonVEXh1vUb1nQ96POTz+fJ7+6RTqcJzIb5+te/zg//yMe5cuUK9Dr0Om3iyQRgUCqVaHVaTEyMsrWzRbk8j6IoRKIhtIHBwDAY9HV0E5HjaPSHuPAOjZow2eyj286fP08mk6VarhANxllb2sDn9RL2hfD4/LgcburtDsVqjUQywdzx45RrRYrFIpVWC380zub2NrulOrNzR6jV67QHGtnJA9h2dri7cJ/Dhw8jSRKLCwvYkBjompD6FgrYJFkItTwe4QPpClGSfWiVBiyfQCgUwh1NEI1GOXbkKJqm4bSrTH9ymnffeYf79xdptNoEg2E2tjZxqg5KpRK1apWN9XUcNgWv24Pb7SYYjaEbBqX8Drqm0Wm28Pt82GQZ2a4gmQYGgC7j8QUw7Lahb6KJrpucOnUaj8dHMJTgz7/2V3S7LSLhJI8++jg/9JEPEAgG6fc1nB4FSYH8njhQJJud8fFxAmEF2QAMmfV1sYERytKyJU/fy+1iGAaZxCiXL19GloXtvd1pCoy7aicUClAoFMjn85jt5rDVkshmMzicdjqdFpOTE3S6bUZHR8hmM5x56AwgEP7BYNCKSwRYX1/n0Sef5NUXX2Rubg5VdVKp1KhW67TbXbrdLo888hjVanVo7Y8NM1DF5kGWZW7duoXHIxgYKysr9Aff+1B4X7QPp0+fMv/T7/+Opc1OJpN4vV7u3btHIpGwvOuqZKNULHLz5k28XhHcCVicwHq9zsmTJzn37ZeZmJggk8lw7Zrwyq+trTE5OYkyDGC9cuUK3//9349ig8uXLmEYBvF4XISZ1OuWR/7evXt4PB5ye1W+/0Mf4qWX/0r43qMRytUqjz7+CNhs/Lvf+i1GR0e5v7HOtes3KRRKVMpVEqk0lUoNZDvtVpdOr49iU+kPmlYis8shWhNTMxnLjg8TjqOsr67x8GOPCtORLJNOpwkGg7TbbaFQ03pWXPrNG1cIhUKk0iOEw1G2d3MEgyFu3rrDsZMn8Pv9wxi0EtMzh1haWhKrKk0nv5djY3WNTrvN9uYWPp9PbEWMFpVKhWpJDDFDwSBOpxOXw8nE6NhwfTzC+JETHDl82BIl5fdyXL16lXajSa/TtXI8dKVD0OfH6GvMTR/Godh56823GT0wSTyZwOH1YUgQcwnWQqlaYWVlhXK1gup0UiqVCEdF+zE9O8OB7AyGofHmW+dYXl6k0WoiSTZmDh/lJ3/i75HOjJLPlYnHo0haD7fbgeyCv/rmOe4vLPD6ubfo9frYVSfNdktQnxpiAOx0qezu7ojsTreDbq+FzSbCZh9//FHee+uKEFQ5nXzpz/4fyuUSr776LS5dfm+4rRAbJr/NRrfbpVoVr8Pr9yHJBoGAj3a7STIjNm5LS0uMjo7yxBNPkBji+x5++GGRL1oQgNl9F2at0WR6etoSyYVCIXI5UUErikIoFGJ3d5dyfg8QLUa73SYSibC4uEgikeCjP/55rt649f5tH7R+n2w2ixIIsLcsQjTv379Ps9nk8NGjYLezMz+P1u4yNjZGs9nE6XQSCAS4cuUKkUiEWCzG7u4uOzs7jI6OIssyu7u7FqNgbGzMYiGmDx6k2WzSbrfxhwP4fD5KpRJOp5NGo0EkEiEQj7O+sMDBgwcZHR3l3t0V9nZ2mJubs/pQw9S4dfMmhWH0e7lSotFo4A94abVa6LoP0zTxer00Wl3r99rAoNPVrXUqYN0VvvCFL/Ctb32L+fkFPvrRj7K5tU0qkWJza4PtbUEcVhSFXCknErQ6bXTDIBQJYrPJLK4s480XkG0qTz/7LIrTxQ9+5MPcunWLe/fusbW1RSKVoFKtitdcK7O7u4vf78fldFLI5anVaqK18tqsIaOiKFb2htftsWC6Ho+Hvb080WicaknE2J97Q3hXRkaEBH0w0On3NVSnIjI2EECVntGxlIzBYJCOpg+9H5o1id83T/V6PcLRCCcfOEUoFCKWTPB7v/d/4XI5KVcFaGTm8GE8Hg9PPv0c07PjIIPLGaXTgRdeeIHNzU3yhRKbO7tUqnXcPh9uj4NWu4tNtuP3BTFVH6ap43G7GBsbx+dzE4mGWF1bQlUVBoMe7753gYA/xvT0NP1Bly984ZfI5Xap1+v8z//8l9nd3eW1117F5/OidPs0m3ULdNtq1vEHherR5/dgYtBqN3n44YepVCriNebzBINBrl+/bg1gT58+zfb2NoVCgbHxg3Q7fWHLrtdFvF0wSCqZEQFJgTD5XBGvy8nC8DN88+bNYSUj4uu/c3j8nz/eF5XCyWNz5rXL52jkBBPxvffes7IlDx48yObmJvfv3yeaEGhrVVUZG81y4cIFUvEYvV6PZEIMt1wOJ2++dY6HH36Yd955h9OnT3P9+nV8PtETJhIJC53lcDiYnhlndVVYnjeG24WZqWkqlQo+X4Dl5WXcThf1bptYLMbq6iper1fIUUfFgOvixYt4PB6Rfn3nDuFQlLv372OaJusbO9hkOwbgdnmpNVsiJDQQY2e44tzPATQMwwrCqdWEUy+ezIhdfrXK5OQkFy5cYHJykna7zeHDgkn5wAMP4Pb6ePfddzlz5gxXL1/C5/MxPTXJ/Pw90qkUKytLjKTFh8au2oTibXmZkydPWqasQCDA7du3uX79OpOTk4zPiAtzeWGZXqfP7KE5XKqLiZEDJONpAoEAMjZ2ew3cbje1eoV0MsXVq1fQen3GRke4desW3/rWS0yMj2N3KERCYXxuD5sbGxY56MiJ48wcnmVjbwdd17ENhOW83W7TbrcBkaMAQldSKonDNxgRlUs8nqTRbmHoMuFolN7AJBZN4vUFmJiYFA7MkSAejw+/x4upG2BIBIJ2zD688Bcvs7G2LpytniiKojA1dQCX20G5nEd12Jmbm2by0DjmUGfSbDa5du0ajUaDVrPL7Vt3KZUqbGxs4fX4aDbbzM3N8bM/8zl+8Rf+yTC5qY026PHAA8fptts4nXZssrCtj0+mLUFYPBpjZ2eP8ey4mNvYxGB0fFTc2FJjY5imyeZ+1c0aAAAgAElEQVTmNpGICMdZX1+nVqvz3Mc+xsK1Gxyanub1N15ldHSUUNDPjRvXyKQStFpN2q0GP/2FX+Xmnfn3b6Wg6zqtQsGyGO9juVRVpVgsMjIyAoDdKfzkly5dwuV0MDk5SToRZ3FRbCUajQaqTyUSiVipzna7nbm5OYEX29sTWLfh+rFarTJ96gjlchmbJIg1DocwRe2z81VVJZaIY28KuXEuJySkk5OTgiEYCjEzM0Or1SKfzwuM+NauFdWlGzLtfhdTkhj0dZweL36/n92tXULhAIqicPbsWfx+P+fOneOdd8/T6/U4ceIEJjq3b9/G4/Hw4IMPWrvnbreLx+NhYjgfkWXZmrvE42KQVK2VWVkRtKfl5UVLyebz+eh0W+RyOWsmsO+wGwwG1Go1/EM2hdfrxRiI9alhiGRsh8NBvdVELhboDfo4FCdrObE18nm9uFwugbBzChfo+vo6sViM8fFxEinBnUQ3yOdymKZJKpWy8Px+rw9ZsVHY3LMQ5vsMhv1sTVmWLWdlzB6zeJrT07OcOHWadDqDPxAAGSQJen3oduH6rYsUCjeplitMjI/j8wZIRkXO5oc//kFhf+mBDtgcMOhAu6Oj6z2uXb/Kl7/8ZY4dn0PTNL72518hEokwNzfH5IEpnnv2IX7oYx/H5VPJbVcxDIM//IM/YmFhiS9+8Yv8+q//Os1mk3ffvUC5VOD+/TsEfD4cDgWHQ/wMQqEQOzs7OBwOJsYO4PU2GQwG5HI5Zg5N43Z7WFtbE05KRQjDRkezVKt1NrdE+FE8HqO8ucnYWJZyqcBTH/oQ969d4YUXXuDhhx8CQ7OMee/7SuH4kVnzxS//RyqVCqVSiYmJCUuSGRgZoZPPiw2BLlMoFAS5yOUkFothakL40mk3BTI9kWRzdYWNjQ28Xq+ljLty5QozMzNWurPf72dlZYV6rUgymaRWa2AYBqVSWbAMNKHcm52Zw+FwUKgWmT5+nHo+L+62djvZbJZWq8X29rb1A9NkmZXlNdY2N9na2mIvV6LXHeD1CyiHwy3k0npfGJAikYj1PiwsLBCLxXA4HESjUeG2tIkoso985CNcv36daFRIbVOpFC6Xi4WFBR5//HGuXr9mId3mZg+j6xr1SpVYPML66gqxWIzbt0Q0eSaTYX5+3oJwOBwilLbX6/Hmm29afEF/xM766gbNZpux0Qn6/QEg4/eEiMeT2GwK9XqdsalJZFkWrcIwnPXE8aO88MILbKyv8sgjjxCLxRgMhKJR7w9YWlwE3UDHZPTABE63CxQRvVfZLVIfch/3FXr7wNv9bMdAIIDDpWK32wkFIzidbpqtDq1WmzMPPcoHn38e1QXFXId8Pk+puGuFBu3t7dFqtdjd2kZVnfT7gllgs9moNzvD6kNYkze3Nuh0WgSDfgaaQMI7nU567Q7JZHJoBe9ZKc+lUglDh5MnT3LkyBHOPHiSw8fnGLS6bG6uc/G9dwiFfLz3zjtUqyUCftGS2R1i1pXJpOl1uwQCAZYX7pPJZDg8Oyta0FqVGzduYFNdli6h1+vjdrvZ3cnx9NNPU6s1uHNHkMSn5w7T6/XI50RbfeTwDM1mg8X7C/ziv/w33Lhz7/1bKQCsrq7idrtJpVLcvHmTbDZrrfLC4TBLS0vMnX2czc1NTp06xcb6GisrK7TqNR5//HG2NgUPcWH+PmcfeZhCoUC1WsXtFsKYj3zkI+Tzwiu/srJCPp/nxBNP8O7LLwxVhjrJZJJsdpRyqUomk6FUqhCMhKnX6yJIo1y2cgU3NzcpFosUhhVOr9dDkiRcHg+RSIT1YW6f3W6n2xH8hH3AJkAgEKDVatHr9ahUKuIAmp0lFosRDot/c2Njg3hyhGq1wgsvfNNy5D300EMUi4Xh1Plhvv3t13j40Ue5fPkyjUadnZ1tzl94C8kwURSZVCLJ1vYGU5MHKZVKDAYDJicnh7mKKvV6HYfDQaVSGQaTpsSAN+oCQ2JlZY1IJMLOzi5IYHc5CEbCYn0WFi2AqqqUCwU6nQ6pZFwARTVBj3IodrwuJzV9QLUkmBKdYRtlmqbQQZgGhiKjqHbMoMC67ezsiPfU5WJmZsZ6r/aFNycmTnD8+HGe/MDT9LUBqt0FThmzC92BQb2kEQi4CIfHWLjTo1qtIhsmE6NjGIbBT3zms7jdblZXV7l69Sob20KDYrfbrcjBdEZkQt6+fZNQKEI8JtKW3KqX9fVNq3pTFGWYUC3s/esby+zsbnDr9jX+zk/+BN1ul50dsSJ86qnHee6ZZ/j6179Koy5kyKGIoHC53W5UxcapB05Sr4j09FdeeRnD0Hji8cc5OHUA1eUmk85y/vx5KpUaExMTqA6F3b1tlpdWh+BfeOONNxgdHeXQ1CTVatWaJ4yPj9N/v4uXjs5Omy995Q+E8q3ft5hz+0O/XC7H0WPHuHj5Bpom8g3HRrMoisLBiXHefPNN3C4Hx44dY21lFckm02g0OHToEAsLC5w8eRI5EKCTz7O0tEQqlbJ4iXduXCOVEnvtcrlCrdlgZ3uPUCiCZJMZyYwSHhvj5oU38fl8lMtl/H4/r776Kk8++SSKopBKpURuYy7HbqnE8tIqS6ur1Ot1Nrf2qJRrlCoVtIGBZiIESwFhqNk3p7jdbrrdLrOzs9ZKqtPpkE4LBmUymbSCZ8+cOWPNWU6cOIGiKHS6fY4dO8b6+irf/MY3OHnyOINuj4WFeWLRKD6fh0xK6PDdbr9l6+52u2QyGatPvnpVgLedTifF/KYQi2k6it1OtV5HdbqpN1sMdGGPHp+Y5OjBaQxdH4p5GnRabaJhoa4zDQ2fz8czzzxDPJ3i6qXLrK2u4lDs9DpdkukUE1MHWd/axOX1UG3UMbqa5avYV+jlcjk8Hg9TU1PioO12GXQHwlDW1/EFA3Q6XZaWl/noRz/OyVOn6ff7XLp6hUK+SDufp1qtslfIo9jtyHYZySaTTKd48OxZHE47pVKJra1NUqkUH/zg8zidTu7fv8/y0irXrl3DMMT68dChQ4yNjHH06FG8Xi/Ly4ucv/Am6+vr9Ps9XG4HLpdIDNvZLiBLYpCczWYoFnL8g3/weSqlEnfv3uIzP/ZpwtksX/2jLxEOh4nFojTqVSYmsmyur1Ao5hjNpmm3m+Rzu0QiEbJjk6ytrWEYJul0Gl03KRbKlMtlRkfHUVVhbLu/vCq8ErrG2UceYXVxkXw+h6Hp/OTP/wILK6vv3yzJ0yePmZcvn+Py668zNTXFzo4YOM3OzrK8vGx9QManDjPo9Th//jxPPv2UMP5UK8LlqAvzx4HxCeRwiEGpZEWlr6+vk06nLXNULBaj0WiwurqKx26n3W5z9oMfZPPuPSq1GrKssL27w9zhoyTTAui6trrI+Pg4Y+PjbG9tsbOzY7kd93MaookEuWKRjfUtvvr1r2Oz2bh85QY723uYkoQ2MNARqcHNdoNut2uVwvuchXA4jH34mux2OzZE2Eg4HKZUKqFpmpWGXCqVrJyBVCZNsVik1+uR29uh0+mQTacYHx+n3WoIRZtTgGhDoRhut5tYLDY8JNzDbYnOlStXyGQyuFwuVhfvgSzhdHuYnp6mXKuL4WggQLsrtimyYsNjOEin02ysrVCr1bBJQpk4PjpCv98nn9vlAx/4AO2Bxu7ODt1WG1M38PmETwO7Da/Px04hh01RcNqdVhXRbDYtJaLIPnBZK7eQbzg7OjiJ0+miVq9z6tRpXnntVTrtHuWaSOPSNA2lpYk1s2pDk8RGw+5S8QcD1FsNUdG4VDLp5PCQ9qKqKjvbe+RyOR544DQPnjnL2toad+/eJRqIiVSvRhXD0DAMjUg0zHPPPcXExARXrl6iUqmwtLTF9WtX0TSNeDyKNuhx5MgMi/fv8/TTH+Dw7DTr6+v88Mc/zcsvv8xTTz1JtVJibW2JSinPkaOHqZQLuFwOLl18l09/5jPM353H7/fTbLZxOBxUK7UhXt8cgoIhHA5z5eYtstksGHDu3Dk+9YlP8PbbbzOWHeWH/s7f4/b8d8+StH3xi1/8//kI+JuP3/y3/+sXZ0cSPProo6ytrQkDlNOJN5Gg22iQnZlB1nVy+eJfk22cTuq1Gv5IBIeiUK0KhHW9VicUDFAtlaxU52q1SigUAsSkd21tjYMHDzI2OUktl6dYLtEqVYhEo4wfmkVRZMKhKB6fl35/gKI6CPq9GIZBq9m0YuNTqRR+vx+HwyEGcx4P3lCIeDTG1nB9pBtQKVcZaBqmCSZCUm1T7BiGic2mEAqF8Xp99Hp9XC433W4PSZKFHdzltfIB9/bEAG6fBr2PdEun05hIQzZgA5/HR6VSpV6rUa1WeObpZ+n1umxubOJwOHE6XZaJzOv1WlmE+2SodDrN7u4u9WoFXRO5mv5AAFV1kEgmKZdL+P0BksP9dy1fJBwKDrmLmpjiqwqqYkfX+6iqyrEjR6nW65TLZSQgEY8Tj8ZwOB20Wi0KpRK+oBi8ypIYgu2HAO+7NJ1OJ3Nzc0xNTdHv90mmRpCGs5D+YECpVGJja4tao8G9+/dottt4fV78gQCKIaE6VPr6AE3XsKk2QmGhKG11m+iGRrvdtMJiK5UqHo+HI0fnwJS4desW+UKOWq3K8ePHcNkdFAp5RjJpJiZGadRr7O7ssL29yY3r19EGfc6cPs3jTzxNtysqvUajTrVS5siRw4yPjfHNb34Dh2qnXq+TzmQ5efIk7733LslEnEQiRiQcIhwJcf3aVXw+L5o2wOt2Mz5+gPXVNdqtDqlkiuWlZbTBAK/by6HpaUqFIoV8nlgqxcjICP1+j+xolnZTZE86HQ7+5Kt/zs/83M//2ne7Ht8XMwUJifHxcavfrlQqwi49DIgFEbftdrvZ2NggEonQaDSEvNWuUCqVyOfzHDp0CJfDSWs4S3AlEtDvMzc8GHq9ntDoB4PYg0HodDA0kwcfeJArV65w9ANPUVxcJDo+QbdeQzfB4XIK7cPICNubm2RmZ7n33ntiXRiPc/PmTc4+8wz0ety6do2ZY8f48pe/gmEYPPHEE9xfWCEUjHD95k3qtSadviDyODx+ZMWGZFOoN7tiah+K4XC5kGx9a+oe8kTodDoW0Wef6z8YDEilUjjUeRyql5XldZHO3TPY3VrD4/HgcthJxDN8+ctfI5/Pc/rUSSsEt9VqWZJaTdMsUdd+aR4KhTAHghWh9XV2t3ap1WocP36cZx99AtUlJMbPP/kUr730bV5//TXcQzqzU7HR7/ZotxqC1CTLNGs1kZxVqzPo9dF7AyqlspUJGksmuHXvLqpTTN+/k4qtqiqLi4sYhsE777xDMBjE6/Xy1oV3ADhy7JiYHXk8dLtdRiYnOH76FJValcXFRXRdJz4qWB3tTpNmu4HdbqNcLWFv1ZFlA5fTBTaVTqeHoqgUCoVhcLCdZqtKIOhie2eVUqnEXm6dmD/B8ePH2dzcZHdvi2q1TDIZp9lsUi5VKRUrzN9bIhSN4/W4OX36ND/2Y59me2uDd955i/zengDSDAaMjY3xp1/6Q1wuFx/+8Ic5d+7bnDx1gtFDU2AY1GstbLKKods49+Y7AvsXi+F0ulhYWMTt8g6RbPCX3/xLJiYmcThcbG1vEItHSI2Psr6wZIXBNGrNv/V6fF8cCkgSBw4coNlsEovFLLNOIpHg8uXLREslotEowazQBfT7fasH7/V6KIqC0+mk3W7TrDdIZEfY2djAFY2CJvT72aFLbGFhgUOHDoGmsT10Sq5vCCjmlW+9gs2uojhduIcp04o/iKNUwdA0MhMTlFZXmX3wQYqrq7j9fqLRKPT7DIZ9f71eZ2pqik6/z8rKiliTqqoV6rkP3dRMxSLwptNpwuEwk5OTOBwOfD6fCImJRIgGEni9opTdt7s2GoI+nc8L0dDp06eJJeLE4xEkCVaXN9jYWEPr9ckX9tjdFuxAv89naTb2cye63S4+n498Ps/o6CgHDhyg1+tx7do1Al6xN9c0DY/NRrfT4f78PJVCXkTSV6vQ6+H3urHbbMLj73JSLBZxOgTTwj5cIZbLZXomwiVpV4ciKLdI2m418Ph9QpjWbrG+vv7/MvfeUXaf9b3u89u99zJtT++jkUa9WJa7ZXDDNoZjCKbYYB8CmOQeICShZOViIJwAoYSSY1MOwWAH4gI2xl0SsiWrjaZpet8zu/defuePd88O68ZwcnLvXcuzlpdtyTOSR7Pf+b3f7+fzPPU5SyqVqq8dt3Tr+XyeQCDAvfd/lNXVVY4dOwZABVkM/txO+gYFquyOO28nl8vx8x88xsLiPNdeezWyXGFpeYFKKY9KpcBo1KPWKEVSdGWzfoULBoO8+GKAoaEB+vp7ePXVkzicVhxOK1okzpw+yS233MJvf/s8hVyOdDKJXq+nkBW7TZ/Px/KGnyOXH+ZXv/oVP/iBn21DA3zoQx9gbmaGiYmLVCslzp07h9vrwuVycP78GcxmE3Nzc2iUChoaGrj55lvFatpgpq21A0mu1J2Q5XKVVCpFR2sHm5ubFHNFVJKCjtY2HGXhIdm+/4C4hinV9TDUH4apvUlmCrtHhuXv//3fUiwWMRqFIMRqtdI1MMDJl1+mqUkEOxzuJpR6PVQqFLMZQqEQqXgMj8eDvgbGWFlaBoVE1/btYkFtMJDZ3GRxcZGhoSGR+KoJPgKBAKp8mcefeIpmXwuhSIw//eQnmLp4kYH9+0gEgpQq4g9gc3kWo9GIx+NBp9OxsLDA6uoquVyO/fv34/R4iIXD2Ds6eOXpZ9EaDPT19TE9s4Db5UWt1aJUqFn1b/D6668TTRTrgSG9Xo9ara5/0edyOSYmJoSpKCqyG5lMpj6Jz+fztLa2cvLkSVpbW0W+o/YYmkqlcNjsqNVKFEClUkarEcSngb5+KpUS3kYbra2tKJVKnn32WSFaNRpxuwUcNJ/Pi1SjJKrR+VwGqSqTTYs5RntLMzqNuDIdPnyY8bl5Zi5NU6mUhF+xxnfQ1+jbZpMBk8lEKJmhUhLCl3ztUVapVOLraKdYLpHIZ6kik05m6oeCwLppxK/b3i4O1HKZsbExkiUFvX19TE1N0d3Tyb0f/CBjY2OcPHWSEydF3qO7u1toCf1xcvks1XKJO26/hW3DQwTWhUM0n01SKZUIhUL4NzNksincbhcmswGLxYDH60KlkpiYHEOn05BOp3HoHEiSAqPRSHdXLwMDQzz22C+YmZ5Dq9XR0tKKJEkU5BI333QjExMTXLhwDovZiMViYGlhgTvvvJ233HA98XiccMzP888/z549e/CvbdDX18dg3yBLS0sU8wVAwuNy1+LmBs6fP08ikWDnyG4uXryI2+0lGBCbsNZWIf/dccVuUrEYo+cvAtDX3YdKqSWXzfLWu97DhfE3bkm+KQ6Fof4e+YmffJ9SqVSvsFosFqrVal1Jn8lk0JuEqCUWi1Es5PF6vVw4ewaLxYLH7cRoNJLP5lCqxXpoa3C3VWy57IormBobo7e3l1gsxtraGvlwHKVKgFsKlSq7Dh4Qs4qmRsrZHOFolGq1ik4SgppSqUR7ezszMzP1x2ydTofRaAQglEjQ2NBMrraNMJpsrK36OfX662z4A8wuLDI/P49KI0AnNputPqNQq9V1eYckSWKNmRcVaIPBgF6vr0tjmpubmZmZobm5mXA4THOLOBwkhUwxX0CtVmLU6ymXS+g0WhxOG73dPSwsLFAoiarzVr23UqkQCATo7e1lfX2dVCrFwMAA+YwYdlKVyaaTGPUG1lZWKeQyNHuFezGXySCZLciVKrGYsBnrtGoqxRKpVBKzyURbmw+NRkO2AtWyOGRzKVEUSiQS5MslfG2tFCWZaDRKuVyth6dUKpWQDdfgM1sHmMViYWYtRDQa5cCBA2wGA5w69SpdvT285S1H+d2rJ5mYmMAf2MRg0JNLlFEqFditZhq8TixmE/FokEavhz27Rsim0xw7doxovEIymWTHyDZsdguFQoadu3aQSsWJxUNotRrOnTtHPrplRNeRTKQpl6tcd91RTr32OoVCEaPRjNPppH/7IKsryxSLRcxmI6VinlBogwP79jEzM8WVV1xOe3s70YSYF0WjUYx6A9lsnpHhEdbX1ynkRHHusoOH0BqNjJ45SUNDAyqleHpUq7Vo1NpahTtRJy2dmjglvpnanFSrVTrbOrHbXCTicW69+/2cuTD65j0U+ro65Ue+/012XXEFkaUlIpEIvX19jF28SENDA+72dmbOn0dRKdaDR6lUql7c2djYoLW1VfgGanKOUqlER0cHCrOZcg0qsQUFSSaTxGIx0TeoKLHabczOzjK0fZi19XXUWiEmyeRzSFvk5nyJqakpHC4nVqsVZY06tBEQd0Ob08HGxgbBxVWqyFitdlQqFdMzc8JTsRHA7/dz7MQJnE4nY9N+vF63IC9ZjPVVViaToloVZOd4IorL3kapVMLpstfDN11dnYTDwrjscjuYnZ3F47KI0phaVJvDwQjpdBa1UkNbSyulUkWEpewOQhtzYksRDNPa3obJaqFcER0ET2MDCqWSfL5IPplEoVDQ1t2OLMvMzc2QTCbJp9NIlSoKScbjdFGQFGi1WsoFsVJ2OZ1kMhnma5Kbq45cIbIX6aw4jORqHYG3RcAqFAoYzeKgUteSkUgSuVwOjU54G0vViqAImYwUCgXSyRJ/8zd/w6OPPlrvkOzfvx+Hw8HFixfx+/3ceeedNd7ACzXRrwhBWaymGglZbCisVjMul4vm9lb8fj+BDVEmctlE2UglKZArVbRqUR+vFsNsBkXbVqHU4nQ3IClUHDx0hAMHDjK/uExPTw+P/exH4grnX8XX7Aa5SnOjmx3D2/nXX/ySbQPbWF9f57qbb8Fms+Hz+Ugmk0xOTiJJEkNDQn/ndrvJZrPIskzPzh2ceeUV9BphMEvE4qhVKpqamlhdWiYYDIpymqbM/v37OX9ulFwuh8fTgMfTQDAQ4va772Vy+o2t02+K7cP3v/edz//tlx9ErunTtkCqkiSRyWRIxwTCy2Yx0dLRgX91ldbWVqxuN+VCQXwyVlfrwzlPXx9GhcgqqGQZtVZLqVhkdHSU1vZ2VpaXazx9NVqdgXA4THt7OxfHxuju7kZVWwlabeKw8G9soET8ATV4G1CqlKytrmIym4lGooTCYUqFIrFIlGqpQDgcoaHBw8LCPJvBDcKRIJVqhc1Nfw24EUapNWC3W9HqNMTiYZqaGimXi6hUAqFus1sE+l4nYbXpqcpFlEpwOCxYrSYBUqmWicWieDxuKhUVmWyRYr5MOpUjncyi1xlIp9I4XR462ttRqVTEEwmq5QJICjQ6LYlUhnKpQjKVJJ/P09TSTLFYZGVlGb1GiyxBMp2mVClRqcqolLW2ptnMjuEdKCUlZQmSySTJRAKr1YrX4xF4uZUVkfAri2CYSW8UiLZKhWKxSCadJl87DJRaNflikWK5TFUWc5NKjdlYKpexWCw43aIPk0ylaG9vx9fSwU9/+tP6NwqDwcDm5iYXLlyol4nSaaFt1+sNyHKF97znPWRzIo/R29tDqVRi27ZBotEoBoOB4OYapUKeSDDAYH8vPZ0d5DNpVBKUSwUUVKmUi2RzaWQU6PQG9EYzJouFtrZ2PN5GXnzxRbK5PLOzs+SzKQwGPdVqmXIpj0KSWF1ZYmF+nr179tDb3cvevXupIpFJp1EqFJiMRtwuF/sPHuT4K6/gcbvxr6/j9XjY8PuZnZrE5/PhsAnBSzaTQYI6wi+bzbKyskJTSwPBQIBgIMjVV13FytIKZqMZvU7PTx79Bf/1Tz/yhtuH/yOX5P9fb+l0Gv/0NJLBwMLCAkajEavdXpN1ilOyvbcXk8UCCgV2pxMUCvLpNAqVimK5jFxLE1rsdoKzs0TjcSqyTGGLlLy4yMDQEBcvXqShqYmp6WlKlQre9nYCgQDrm0Lwevr0aZxuN3a7XURF+/po9fmwWaz1gM/y4hIajYa1tTU6OztF+WhwkI6ODg5edQWDQ/0YjDqisTAGg55du3Zit1sFkadawmQ20NfXy/LKIoWi0L9rtWqcTnvtIBCpQofDgdGoI5WKMzDQTyQaZHVtmWw2i04nIr8eTwNebyMryxsgq+nsHsDlbCRXKJJOZ2lpbsXr9YJCgV6vpaHBg85gFIp3pYCtblXTC+USqVSKcDhMR0cHKpUGWZYJhUJEI2JF5/J4xe/L/G/V9a3O/la2oFAo1GcgitrhnM/nKWZzaJQq9CoNUk0+C4BSgaRQIKmUKNRi9l0ul0kkEhQKhfp2ZGumUq2K4ZpOo8VutRGPxoiEwug0WoYGBnnm109z6823YDGZeemFF/ncZz7L2OgFbBYr+WyO/t4+3nf3e3E5nLidLixmc/2v6UuTRIMB1EqJarnI0uI8dquFcrlIqZCjKpdRSDKFYrkGtRVQYJtVcB01Gg3XXnstBoOhrrW7cOFCPYnZ3NyM2+1meHiYeDxONBplaWmpFkYSIuKtKPqpkyc5cuQIsixz+MiRuk9027Zt5HI5nnvuOSKRCDMzM0QiEQKBAJVKhUOHDnH48GEB6a0IiO/42CSZmn8inU5R/SPauP/t9UGSJB/wY6ABqALfl2X5HyRJ+jzwQSBU+0//Upblp2vv82ngHkS/5GOyLD/7x36Nwb4e+cmfPCzy9s3NUCiwvrhYfxGGQkKXpdeo67y5rZlBuVwW9KKau69YLKLX60XKryZy7evrIxKJ4PT5SGxs1A1OmUyG+flFdu7axerKCuVKRcSph4ZoamtDLpdYXFxkdnaWvu4ewVUIBNh22WXkAgFiCaGAU9aGfGq1mt7BHlI1zFk6nSVXyDM5cQmFWkMqleJXv/41qVSa42fGMer1KJVKvvzlL/PII48IRNjmOgqFgu7uboLBICDT29vL6dOvs3fPQZxON/mcwKpfvDiO19tIT3cvXd2DdHV1MbJjWKwXzQqQYfT8BC+9+FtUKhVD2wZEmzESwWKx0CT9maEAACAASURBVNHVzhNPPMGZM2fEgVR7QW5xLcqFMlVAZ9CjUAAKiUI+S6VUpsnpRK1SYdQbqKoUzMzMoFEKBLxBrxd4vOUVNjc3mb00TVtbG51eH3aXU0Sr8+JzU6QqOg9qJVqdjngqiV6pFYalVKp+3VheXkal1VAoFHB53AIIsxnj/vvv5/nnn0ehULC0tIRer2dtbY39+/cTiUQYGBjg2LFjZNI53G43rW1ib69UKrn2uqtZX1/nxIljeL1e+vv7UVNmdHRUQFOR6psjrVZLOllzcGg0aM0mACwWC/39gwwMbkOWJcwmK5cuTRNLJgBwWAzEE1GGBvv4nz/6J7KZNDqNkAht3zaMXJYF4l8W6cStOdWePXto6Onh7Msv4/WKqLWmhuQ3WS34/X5cdgeFQoH+3j5ePXmSoaEhGj2iGyLZbBz/7dMolUqamppQKsXwN58vsmvXLoYvu4pLs/P/6e5DGfi/ZFk+J0mSGTgrSdJztZ/7mizL//3/cYgMAv8FGAKagOclSeqVZfkPuq9LpRLdPT3Mz80xU+Mt2mw2crkc3d3dNDU1sby8jNPlACAUCaNWqzE3NBFfW0Ot1ZDKpOs9hH379omwi0FPOpthMxgQK5z1NWw2G7/73e/YvXs3/s0NWtvamJubQ6EQ2jSz2SyGhuUygY1N9Fodne0dNHoEPrytrY2p116ju0bf3djYwGA2MT8/zxVXXAGlIul0mkuXLgmoxfwCXq+XUDRSL3udO3eOg/v3Y7fbefDBB7nnnnvqzomurq66a1GlUuFyNlDIV/G1dJFOFYhFlkmlcnR39XDwwJXsHNnNW996I1a7RLkMv/zlb5ibmWVpeY5oKMz1113N+z5wD1arGUlX8zAkcoyNjfG5z/4Nu3bt4tbbbiMUCjE2PkowGMTtdrO+vorX2UxzSzNGs4FwNEIul0FSqFAqZTR6HalYnGK+gMEmcGp6k4hub+Ht1Gq1gOnWYCCBDTFM0+h1yAqJbKlAWQEmpx2zwYBKp6UcixKJp+stPoVCQalUrr8YFxcXUdRgs7tHdvKjh39Qb3ru2bmLaDSKQgapKlMuFLl4/gJXHbmCl19+GZ1GxfzMLJIEHo+Hs6df5+jRowT868zPz5NOJHGYtQT86zQ3iBdioVAgnU7S2NCNUoGocktVtDrRqTGZLSApSSRSHDhwgNdePU1jYwNtbW0kk0lMRg2RaIinn366jrGTJAmPx0M4HKbJ20QymcRotaFSKHE5hPBldXmFaDiC1Sx8JamUSF2WCkXCiRgdHR2YDaKuPzo6Sm9vLz6fj+DGJpubm2IGkcmI2VRM/PelYhGTQSISCv/RF/x/xBC1AWwp51OSJE3xBmr533u7FfiZLMsFYFGSpDlgH/DqH3oHnVZHqVjEYrHUQSdmswCUrK+v07ljhyDOJBJEIhHMZrN45E2kyOWLVGMJqrKETm8kEAzz/Asv0d7eTiaTobu7m0KhwPr6Gjt37kRpd9DU7CMciaFSa9EZ9FRjUVKpJDuGt9fLQZjNmFMpofZqbSWbTaPXa1lfWaa7twf/+irexgYCm352tu1n3+5dTI5dxGrW09QsFGWPPPJzhndsZ2J8isuOXMGxY1+kUq3y7W//I9mKmo9+9KPceuutgmkYCOByeaiUJZQKLRazBZPJhMUoyDx2S5X3v++DeDweDHozKyt+Pvzhj7C2HOd/fP9nPPDJ+9BoNNxyyw0oFDcQi6b5p3/6Hh1dXZjMFk6ffp3f/OZpCoUCw8M76O3tRmMw8cxzz6HXaQkGN9HqRLYgFg6hU2uoSlCuVlhZXUepVVKsCNO0WqUhm82jUKrJ5gpozWJmsLEmjMdytYrf7yebzgg3Z2MjbW1t6CpKMvmcwL7rdKipYjQZAElIfmtXhOhmmGg0irrWipxfXMDlchGJx+js7GR1fQ23282ZM68jSRIdHe1YLGaOHz9GIpGgtbWV+fm5uhNydXUFl8tFIhFHo1HjaxVwYKfLylNPPYFer+Xeez/AsWPHiG1uMDy0XcwjshkWFxcpFstMTk0jqQRX0+V2ky0ruPzwFbjdboYGB9HrxCr98OHDKJVKTp9+nVOnThGPBZGpYLOaamlOGYdN9CdWl1fw+/3Y7XZ27xZcC7dLbMt27drFhn8Ni8WCXC2ztrZGqVTi0KFDZIriaSIeEZux9vZ28rkcc3Nz9AwM4u3vh3icpu4uxs+eZW5ujpFde1GgJBjcJBwKIP2RnML/UXhJkqR2YCdwCuGY/IgkSXcDZxBPE7HagfHa773bGm9wiEiS9CHgQwBNDV7UJhPampX49++kbrebciyGo7GxDt7Ytm2bKOyEBR14ixXQ2dlZ3+NvO3iQ2XPn2NjYqJN9JEmiEo/XtxBbM4uGhgampqZYWVlh+/btnD59mo72dhr7+6mcP8/U+ASNXk89XffS8y/Q5GvBbLWwc/9+EjWzL4g0ZlWW0Gq13H777fz66d9gNArS9MiOnbR1tHPvvfei0NuZnJzEZLKQzxdxu93o9UYi4YT4wnN6BBimoGHfvkPcdONNbGwEefLJXzM5McPk5CRdnd20tLRwzz0f5PA1g6RSRX7w43/mwtlzmMwG7v6Td6NWq7ntttvp7e0lGglx5MgRiqUSX/ryV3C5HaKSm06KR2KNjnQiTlGjYWhoiHS2gt3mIJVOY7XY0enEI2xwfZ219XXkahWpXEVt+DegazqdFlr6shh4ZTKZuo9DUZRBIb4YNQY9uUKe9t5ussWCKEMlE2i1Whan58V2Aur9iC3M2JY52e/3o5XENWN1ZYWhoSE6aqviDb9f9EnyeQr5PCajUbgwZYE0UypArVSxvLiEwSi6JU8+8QRXXnmE30UjnD9/Ho1OfB1aLBZaO9pFszOfR6PV4nS5GGzrpX9oG26HE29zI/lUnsXFRcIBUbp78cWXBGpPp2Tdv0pzkxe3283mhh+LxcL09DQWk5mu/i4MBgPj4+P09/czPDyMcDpTb9FuMTueffZZTDYb8soKU1NTbBsYrM9dHA6hDdxcXqZarbK2tsbwjhF0Wj0NDQ1Ui0W0WsHHdLlcKJX/H4SXJEkyAa8AX5Bl+ZeSJHmBMAJP8bdAoyzLH5Ak6dvAq7Is/6T2fg8BT8uy/Is/9LG3DfTJv3n0J6RSqbpmfG1tjcbGRsLhMJZactBud6A1Gjl76lSdy18sihBQPp9n+/btLCwsCBpNqVRn1+n1enFHrtGWtnL/RqORqiTXH+sUMsxcmmZtdZVDhw4R3BAdg0ZvAxfHzmEwGDAajbS0tTI3O8vE1BT79+8nlUmL35/TyeriCqGwQJw1NDSwUHNVvO097+XvPvc5FpdW2NjYII/4fUSjURx2FxaLFYvFwsEDl3HXXe/GZrPy7LPP8zeffxCXy0V7ezsOh4O9e/ZzzTVXYbLB177yMIFAQBSrTFW2bdvGDUePsr62wZ898AA33ngjH//YA4RDEWanp1msNTdfeOVlLCYzWp2GXEYUmLK5FFRl1EqhF8tkU1jtzbg8bjL5HDqDjlAohEQVh9VGPpmEqoxSkqhKYhCoVogKeiGfp1KpkEokKRQKDPUP0NHRQUuTD5/PR0WukisUhJ/AZMRoNhGMhLkwOopSqeTixCQ6nY7mlhbW19epIrgT65uCeaDV63jyySfZP7K3nl3weDxMT08Ti8UIh8P09/ej1WrR6/VUKhUkSUlvbzfj4+M4HDbC4TBKlVTrxQjiVF9fH4M9A7hcLp5/6UUqlQrFcgmtTofOaBCy4FYfIyMjWB2N6HTC/mXQ6WmsEb1eeuEFNtf9zMzMsL62Rji8yb79ewgFN7js4G4K+RypRISWpmZCgSCVYgWfz4dGq2JkZES0P0slLl26xG233cb58+dZWFhg//79BAIBLl68yI79B3G5XGSS4krhtDuYm50VV1+dQPyVy2WikUQt9NVKOBxGo1WTSMQwW4z817/8WyZm5v7zPAVJktTAL4B/lmX5lwCyLAd+7+f/CfhV7V/XAN/vvXsL4P9jH1+r1VIqCWvS5uameHEcPMjSkpjyt7S0iLRfIkFydZXG5mamZ2cZHBzEptHU75+jY2N4vV4ytTt5vlikpaWF+fl5kskkNpuNarVKd28vAKvLy/i6O8VvQq0mFwjWXQ8Gg4G2tjae/tWv8fl8JGJhcDjq2XuDSQwrT5w4wYWLoxSLRY4ePcrKop8b3voWnE5PzZWwzOrKCv/3X3wGq9XK2tqGIBAXijQ1NWG3ufj4A3+O2+3mm9/8No//669ZWw2QyeTw+Xw8/IPv4PV62dzc5POf/yzTMxd4/Kn/id1uZ2BgAK3BytGj7+Dvvv5VItFNQpENdu8d4IP330MmmUKtBbfbydRUleWageru93+At7/9KL9+6gV+/shP2b5tkEI+w/mzZ7j++usoFousri2j1joplcTVIBAS7MY9e/aQjsdIlEsYdXqUMmQL4hBwNzYRDAZr2xEdg4ODZDIZ2traBLa/Ck6vB4PJWL8jb6n6csk0lCts+DdQqVTMzMyIirNCQTQqroypVAqr1UqxWMTj8VAti4OnWCyyvLhEg8eL2WgSbohcnlwmi8Ihsg65XI7lxQUaGxuZnJigo6ODlZUlisU8pUKejrZ2xscuMntpicbGRm6743aWV1coVso0NTXR3d8notZGA2azmUpFWe+K5GpPRJFIhFwuz9raGvNzc7jdbgYGerA7rLT6mrh06RIjO7bT39vJhXPn2b1zF0adkVAohK+1GZ1O9GzUajVXXnklzzzzDLe8612srKxgsViIx+McOXIEg0MQwvIZoUV0djsx1UjNZ0+/zoHLLyefStHVqSaXy3Hy5AkCgQBWm4XGRi/5QpZS+f+FdVoSzzIPAVOyLH/19368sTZvALgNGK/985PATyVJ+ipi0NgDnP5jv8YWT1+j0dS9i8laZsHhcLC8vCyGKMEg20dGOHP6NFdcfz2vvvwyPT09FArCI9jY2Ii3s5NSPE5zdzcbCwtItS2E1WrF5XJhsdtZX1mp04sWZ2Zoa20lF4uxtrKCVqvFaDTy4nPPI0nCAqTRaNBoNCQSCfbt20coFGJ9w08wHCYej+PxeAiFQnzjG98gFk4xMTWJVivWSguLy1itVk6cfI3GxkYMBoN4hGvq4IorrqS7u5sf//jHLCwsoVSqGegfpFyu8ld/9Vd4PFa++rWvcvHiRfQGLc0tjXR3dwk0mVqir7+T5eVlfvij/8HHHvgIfX19PProo0xNTvLOd96JXJb5ylf+gTOnzpDN5hkeHGL//v3ceONRfvvbVzl16hR33HEHt97xVv7bR/8Mr1f0LE6ePIlWowJFiWK5VK932+3b6zYuYblSUi0Kg/aWqxOo9zysVmv90Pf5fEQSSVQaNdSkujqdTqj1akAcrVqDXBFU7UQigcPhYGZmhkQiIXIjDlEgyqVTNDc3k46JpqrNZuP06dN1EO5WiC2RSNRAsPm6+3IrKen3+3E6nVQqpfrHHxoagqoWtVasmwcHB8kVCxhq6Lstc5Vao0GtUpJOl+pr1UothRoKheju7uaaq6/m/PnzrKws0Nbuo621GUkuYDab62zMTCaDXiM2ZcP793PqpZe47PLLWVtZIRQSS73nH38cnU4n/ky0oqJuNpuZnp7GZhYhvmq1Wl/dNjQ0sDw3RzQaJZcto9drUShUXHXVVWRzGTo62nj+hd8iV//wDeE/spI8DBwHxhArSYC/BO4CRhDXhyXgvq1DQpKkvwI+gNhcfFyW5Wf+2K+xZ/cu+czx50nUklhGux20WmIrK1QqFaJR8Ti+c+dOisUiDodDFKZaWxmtacS2zEblcpmSArGaWl6hr6+PWDQqBogqsdI0GYx1ClK5IqrUbrdIF7obGylkMmxsiFbg1mEQ3ghhMpk4N3qB7u5ukpk0y2vrXBwbQ28yEo3HSKVSrG8IPHyhIGjNpWKVheUlfI0dqFUavvCFL6JSafjBD/6JpaUlfD4fOp2O/fv38yd/8id861vfYnx8vL4KUxkU+P1+BgYGatCVJt72trfR2tqKyWQiEAjw8ssv8+53v5tMJsePf/QTGhsbOXHid0xNTdPY0MzOnbt517vejVar5p//+RFi4SUGBgYYHh7m77/yZbq6urj/vg/x7nffVZ9+J5IxfC1tdHR0MH5pEpfXw8FDhxgdHWXD76fR5WH0/AVaW1qoKJTodDrSqRSBQACtWsOBAweIBEOiZNXRIf5fW700NTVhMZqIhgWBee7SNLlMVnyhT04JYG6rj7GxMXr6ejl37hw2h108WRgN2Gw2krWSWSaeQV17miiViqRSKcqVYq2mLKS3lYqQ+FZKeUwmE71d3XUTUz4rCmbV2gFnMpmw+9qQJDH47Onp4ciRIyiVSiH5rbERFUol2UoerVpXJ2rls2IOlk6kmZubY3pqWhymuhyrq6vIckWIcz1eZFlmz549nPjdMXp7eynk8vjaWknXDNv9/f0sLi7W6U86na5+2JjNZihX67MalUolREZeIfVJp4XPs6WlhUg0SaVSYffVV7F+6RKexgYuXbpELB7nw5/4a8Yn/5PgVlmWT/DGlaqn/8j7fAH4wv/uY9ffKmVS4TDWlhbyoRAUi4y+/rpoMyLw4n6/uIGYzWby+Twej4eNpaV6vNnu9UK5TKVUwh8J1Vdiy8vLFAuFOqRUo1LXAaWFQgGLVbQRZVnsi6nBPLY4+z6fD5PJxMi1O3j00UdRq9U8/uQT3HLrbZx+/XFMJhMTk1M4nU7CoQgbG2EOHTrM2NiEaFkqtfR29nLDDTcxODDEj3/8Y4rFMqOjZ7nxxhtpb2/nbW97G2q1mgcffLCOe1teXiYSidDc0czIyC7y+Tx33vlODh48iM2m47XXLrC5ucnQ0BC33nobf//f/wGlUsmlS5eYmJgUEBK7neuvv56bb74Zqw0++pHPsm3bNj7xqb8gGU9w//0fYtfIdgYGBnjggQcwGEz1oVdvby9erxej0Ugmk0GdSPDSSy/Vg06xWKw+z5EUEga9lrnZaSQZVCoFk+MXsVms5LJpCoUcNrMJJRKZZAqpKtcxcNF4nHQySaFUJJPPkcpm8BoMgsZ96jXRa/F48Hq9BCNhIpEIhaKwMOmUOgKBQC2AZROyEyU1P4JITY6MbCedTrO6MIdUFU8vW0+iZrMZtVpdD0X5fD6s3ibRyK2h0YLBIG01enK5XK73UraeELY6KqlUilwux6uvvsrCwgL+NYGSk/MbNchviXy+iEavw26xMjo6CoBeqyOwsVlnR77rvvtYnZxksH+AZDxRl+c4bHYSsTilQhGz0VRvBycSCQEeViqJRCLo9Xp6e3tFBH8zzL5rryXj32BmZganRwB0WyqVeu/ljd7eFNXpcqVS/yLbqgdvfdePx+PMzMzUdVmRSISzZ8/y9ne9i7W1NeDfnARbp6rP1wpaLeuzszQ3NfH666/T4PaIZF02h9lsxmwyUSmX6/h0tVpNKpViYWGB5uZm2traCIVCjI+PE4lEOMZxGhoaUOsNNDa1MDYxSWNLC7lsgfe+/wO8/vrrnD1/ERRKLo6PYbXaKRbLvO3229i7Zz9f/eo3+PUzTzM0uI2rrrma7z70jzz44IM8+cyv+OE//xij0VhnRsw+9xs0Gg07d+7ku9/9HkajmrGxaX75y1+Sz5W47fbrMZtsPPjQl4lEIhw6dIhz5y7gcDjo6OjgyJEjXH31FSgU8PDDP8Jqh9WVKJ/7/KcpFot8/ON/zqVLl7juumuIR2OcPXueufklrrvmamZmZti9Zz9qlZL5+XkCoSB9gwOUymWKlTI2p3ikTyeStLa3MTU9Tb6QFTZwrSAm+RobSKfTxKNh5EoJs15sJkr5DAspoZbX1OAqWw6N6cX5einsxRdfRK/Xc+XVV3Hx4kWy2SzJZJJCuVQbGorgWTwbr1foY7EYDoeDdI3p2dTUQLFYZHp6WhC3iiUy5RThYBiFQklXTy+FkqB2W+3iADBaLbS0+mhqaqK5uVmshC0WgPpBoJAExk2v0aOUxIDaYrEgyaIjc6J6oo7rr1Qq9HZ2EQyJYXlXVxc6nYELFy4I7J7VTKFQYGpqiuuuu45qtcry+DhtbW2g1da3Zs3NzVQqFZ599lm6u7uJRaIMDw8zMTHByMgIbW1tbGxsoNVq61SxM2fOUC5XGX9VzBMsFgvlQh5JqaBcKqCvpVHf6O1NcShUKpU63n0rv77FSBgfH+fw4cN1U07H9u0olUqOPf88hw8fZmlJAEWy2Wz97lguFIgHAmjUalAq6evuEad2pUq2mqFaM0pVKhXC4Si9O3czf/EixWIZk8lCMBimWCxTLlex28WwzeNyc+zEcW66+VYkpYKXT5wgkytQqlT51a+eRq3VMjA0TDKVB1nBtm3ba2m647z4wstsbgbZvXsvd999N2fOnOHa668jnRakH1sNfhoKhejq6qK1vY3vfe97tLf7WFsJ8NhjL+FwOHjPe97LysoKf/npL3Lu3DkSiURt1hLGZLRw2aHL+cAH3g9AoVBmcXGeD3/4vZx6bYy2dh9/9ucfE/mBZA6zxcTb3/4OEjHhJxwbG2N6do6DBw7Q1dXFc889h1ZvQK3WEgyEMZpN+AObdHZ2UypVKOdLKJVq0ukspUIKs8eDz9fMzPS08D94G1hfX0enUbOxsU4ikWCor78e5dWV9RQKBVKZNDqjAZfXg8Yg2rAdHR1IksTMzAzlchmHyynCT2shGhsbMZnFi8llddW6JBEcDjs+n49QOMDs7CyFQq4uUw2Hw5QLQtW+ZVvSaDRoDKLd6utoF41MrVjFejweEaWXJORyGUmphN+3bysUSFK1fgXd0hFUq1U+8IEPkEgkCGyIJ5h4eAH/2po4vLIZgoEQzc0+UqkU115zFeFgiBuuP4rb62FtbY3z58+zubmJ0Whk92WXgUYDpRKRtTX27dvHnssv5/RLLxOPC7jwyy+/THNzcz0MFYlE6OzspKenB7vdybFjxyhVylx55ZWs+/209vRgMpv/6JPCm6IluWfXiPzqb57k1KlT9ahnNBpl165dLCws0NTUhFarZW5uTvT1a08RRqORWC2tFQqFaubiKoVyCU9bG+tzcwT8GwwNDREJhdFqtWjUYiIbj9QKMLEQPp8Pd3MzawsL+P1+RkdH68OuQCBAd3c3kWgUi8XGiZOvksllsTk8PPGrX2Oz2YkmhX69UqnQ0TXAvffeyze+8Q3m5xa47LLLBW16zc8Pf/hDqhUE0ceorQ/atFote/fu5TOf+QzpdJrR0VGq1Sq33347agx88pOf5KWXXqoTmFwuF9lsloMHDzI8PMw997yfY8dOcuTIIUwmuPnmd5PNpWlo8PD1f/h79u7djVIpknSlUontw3v51re+RSIR5/4PfYj29laGBgaRZCEVKZeLtDQ1UyoXMZnNJLJprA475UqFzs5Onn/uOUrZPJViiUq5zMriFLt37yafzTE0NMSZU2KurFap6OnpgaroQ5j0Joy1QZvJYiYcjZDMZti+c4RILEq8JsBxWFy1erma9fV1imWxEZIVohGr1mgYHh4mGhCOx5aWFpxOBxMTE2xsrnPVVVexsrJEMBjE6xWOUjmVw+awMzyyA6PVglKtYtuuEZpbfbS1tyMpha9SVRHf8aXaAZCIx+tagK0fk6tVUAKysEsrlUqiYUHCDm0KBUF7a7vI2BRiGPR6UEAmEUOlULK2skiDx0s+lyIeDZNKpejq6cNkMvHYY4/VQ3xbw3CNRrR2t3ypTU1N9PX11ZH/drvIvGi12to8q0BPTw9TExNIksT+gweZnJxElsDb2EAqleJt77mPsck3ZjS+KQ6FncPb5F898kNKpRKxWAyfz0cul6tLStqHhyGdJlN7vFQqlYTDIqq51UEfHBwknRYd/S3+viRJGAwG0skUmXSazs5OpsYnkGW57jpApax7FmKxGIGaper48ePkcjmuuOIKVlZWCETDnDp9mmyhwI7tO0llCzz9m+dIZbK4PA0olGo+85nP8MF7Psjhw4fp7+/n6NGjPPDAn9XTaHa7nUKhJO7oOjVHjhzh6NGj7Nu3jy984Qvcdttt3HjjjTz00EN897vfpVqtsji/htPurPseUqkUX/rSl+pPT8WiQKa95YYbicfjuNwOvF4vX//6V3nggY8xOSX28qWSCLjc8JajHDp0NZ///Ocp1zwM/T3dHL3+Wl577TX8/nUcVgFhOXv2HAq1imK1wuHDh5menWF4eJiVpWVmp6dRIFHI5qiWxaowEYthMBhYXlwS8JSmZtrb2wXMVaHAbLJSqogikcFsIhqLodaJVKnBaCQUFfh5p8nJ4qKgcptMJpLpFLGYIG23tbWRroV6bEYbR44c4eTJk8zOzqDX67HZLfh8Prxed+06JkJug109eBsaKMtVegf6MdusmOxWtDodRpOJKlCWK2iqyn/39bkVJvr9N1khgywOWlmWKeSK6PRa4uEE1WqVkydOMjs7y8rSNGaTidbWFrq7OtGqlMQjATQqFQ6rEblSpqOjg2Q6w+rqKmazmebmZiYnJwXgt/Ya2Ll3L5fGxzl16hQ7du5kfHycVCrF7t27iUQEx2JgYICJiQlMJhMNDQ3kMhmsVqswmtVKZemsAPTe8p77/mD34U1xKAwP9suPPfSduhvP7XZjcbsZP3uW1tZWDAYDS0tLdfHs1lDHbDaTzWaJRCJ4vd76tiAQCLBj926Cfj8rS8sMDw+zWlvzlGsK7q2o6QvHX+HChQsMDg7S39+P1+vla1/7GiMjI8zOztbbehaXKJ8sr/pZXfcTjSVJZPL09g+i0ep517vezUc/9nGGt4m25LFjxygWy/X1nUKhECWkmrXqnnvu4R3vuJNPfeov2LZtG5dffjlf+tKXeOqpp2qk3rSAw3rayGazVKtVvvrVr+LxeIQ3sLGR48eP09rayr333ksul8Ng0PHOd76T02dRrwAAIABJREFU3bt386lPfVIIaipFiuU8bqebf/mXRxkZGWFo2wg2mw2dXkOjt4Fqtcx/+/M/4+Mfe4Dh7UOMjY0xMrydUrFKWa6iMegZ2bWTXEE81Zx+7RTVYon52TnymSzd3S31hGg4GEKJWOX29/XV5zQKGbQGPRaLBVPtz83ucqLWCpKRy+1mYmJCxHfDgiBldzrIZrOYLKKPcm70gliFqlTs3LmTQrrA5qbQujc1icSrTq8hFovR39/L8PAwPl+zQOS7G7Db7YQjETp6u3G4nEhKpeBkKhSUZZHC1KnU/7EvWklGrv7bgVHMC0DQ0rzI1hTzRTEvUcusryyTy2aRqyVcdhtKypgMBqwmHRsrKyiUEp6mFiqVCouLi2i1Wg4dOkS5XGZuTrAVm5qaOHv2LNlsFptDJFFNJhOvvPIKXV1ddHV1ibax34/D4SCXy1HMCrdGe2cH6XSaXLFAT2+viGPf+A4mLs2+eQ+FkW1D8hM/eaju0lOpVHWTtNVqJRKJEIvF6O7uFrtmpRK5NocAMJpMIEkk40KsoVaq6pkHo8lEMh5HIQvhjMkgpulOp5PG/n7W52ZpHhjg5Sef5MKFCzidTqampkROXZLqwhSN1cjC4hIXLo4JeQxq2jt7afG1cfbcKGazldvuuJNXXvwtL774IuVyGZ/Px2wtaWYyiTTkI488wvve9z46fR187nOfIxKJ8Mwzz/DYY4+RSqUoFgW0dSu66vI0MTIywr333suOHX1ks1Uefvhhent7ueuuu0imk3S0ddDU7GHv3r389Kc/xePxMDExhdVqpbGxkW9/+9sMDQ2xtLjCgYMH0BjE/1c8GuMzn/0r7nrnf+HmG9+CUqnEZjHX+QT5rEQ6m6Grt4emlmYSySQHDhxgYnycYr6A2WDk4oVRwnE/VrOlvi9vaRStvL6eXlEuk2WWl5eRFaIJGAgE6ko4jVot6NZKZb04ZdRZCAaDNPuELlCj03Ly5Ekcblc9J7B//35avC01jPocwWCAXbt24d9YI51OA1UOHDjA5ZdfRrlcxltTD2r1ekCAgLV6MWz7Ywo1gDd8jUgy1YpcLzhVSlVUKiW5tAhyqRQqdCYtVCGVTJDPpKmW8lCtoKiWcLsdhNZXWF9ZJp1KsvfgZYyNjdWLcVtrdmEgF3j/8fFxdDod/duGGB0dRafTceDAAU6dOsWVR48SDwRYXFxEVzN0d7W1UiyKVa1Gp6V3aIhMjZtxxa3vYnzqjSErb4pBo1KppK23FxQKqFYppdMsLCzQ0NDAysoKvcPDNNW4gVuhGdELT2O1WonHYthq24lqtYpKocRitbKyvCx4jx4P46dOiz1uVVwdLEYTVGWCwSAzMzMYjUY6OzvZtm0ba2tr+Hw+nnvuOWZnZ4W/UVklFBRXFqvdyfzCMn9+x51897vfw2y2c811R/nrv/5rPA475VIVp8vJzMxMnQd5zz33cPXVV3PXXXfxiU98gpuuv4H77rsPt9vNE088QSgaoq+7j3w+j81mY319HbfLwV/85adwuVw0NHo4dNmVpFIpvvjFL/Kpv/gESFV6uruIRqP0mtv40H338NRTTzAxMcaRI1cyNjZGX18fvpY2vvTFv+OXv/xXPG4vyVyQSCREY0MD73znnbz//e8lk8+QSSZYWSnR1NTE2voyrc1CLx8IBUEpvpvmS0Vi8Tg3XHc9P//pI2I+k0yjUGko5cV1JFcs0dfXSSgSZXF5hTZfK+v+Tfq29xFJxomlk+zZtZszZ85g1ImBoyzLNHi8ddN0pVJBo9Hw6quv4mkQq9GttKmyWq1fnarVKkajkf7+frGhSidwu910dLTVvZMNDQ0oNKKxCSIsp9b+WxKWqizEk/DHeKb/7m3rsNhC0JfLFfQmcdAE1oKcPTuH0WwkFg2TiMYwaFXYrSZKuTSlfAtz01NYjQaam5vrsuHBgwehVGKt1hbecnwqFAqam5upVqusrq5y7bXXilxEOo3FYiG0tla7nooBusfjIRIMkc5lBcpPq2NydBSzTTBB3+hKtPX2pnhSGOzrkV999qn6TGHru7zZbK7LSrxer7iLq9XMzc3h9XpxOp1sbGzUWHnaOoptaWFRhDyAttZWMpkM2VSafDbHiy++iNvtJrgh4tQFhSDWHDhwgJ///Od0dXVx5swZbr75Zp544ol6N/9fnnmSYqGEzmBGUqp5xzvfxYuvvEpjczPzC2K6nkilUEvy733Cq9xxxx3cdNNN/Ovjv2Dnzp089dRTJBJxtGWJ+fn5euhqfn6+vrZqaWnh/vvvZ2xsjLfedhsf/ehHOX36NB/+8IeRZZlvfvObQkOfTmMymfjTP/1Tvvb1L1EuV2uQkxJXXnEV119/AydOnKSjvZvHH3+cVEqIZdXGAnq9ngce+Chf/MKD6A1a5EqVfD5HS1MTKyviqqbGQaFURG3QsXffPhRqIb159JGfUS4UaW5opJgvoDLWAkS1EE0sHOHw4cMENwOsrq7icbq4/vrrefhnD9Pe3o7ZZEKn1jA3N0dXaztrq6tYTGYqxZI4sG0umpqamLw0xcbGBulsje8gCzmqRqvlwIEDBNeDddQ+yKJUZtDS1taGSiVKb11dHWQyGVQ174dGqaBaFcNClUowJ4D63+U3eGiQ+fevEQmZSllkFVQqFVtggGJOzHgKOaERdHncnDt3llg0TGuTl2qxQDoeZuf2YU6dfIW25kZ8HZ3k8+IqpFAoaG1vZ/ziRex2O8ViUXwcl4tCQajv9GaRyNxzzTW8/MQTdQXhoUOHCIfDzM3NiVxFNo3P5yOWFHMOnV5PJB4jk8nw3/72a0zNLrx5nxTUKhVWtx3KZZQK8YneiqQaDW7W19eJaxTo1Soq+TzDu7cTWF5iauI8rW1tqJQVMtkYhXJJiFKMWsqVPNlslmBYzcKCqN6ura2htWgpUKC1X3gmZs6PIVdlLpw+hcfhoFjI097ZwWtnXicny2DQ88KrJ1n0pxgaHCKdTjOyfYSfPfpL3vKWt1CtVvn1k49jMBhqeQkHxWKRoaEhuru7aW/18eMfPMzll1/OU48/zuTkJH19feiMRoorC4wtzNDS0oLDJ+K6R2+/hcOHD7OwuMjIZfu54S3Xsb6+zu7du9FolXznO99BpZYoFLMYTTqMJh3FUo5UUjy2Op1OTEYVd999NwMDA3zjG19neXmeldVZNBoNOr2MUqFDhYY9I/toavCxvLyI2WJEpzMSicUxmm2kMnmqlU3xCFvJsrYySyKRoKenh5tvvJbp6WmxG9drqeaL2J1OUuUqgTVxp3U7XSzMzYv1n17Hq6dPQapMfDWMrd2EUWtAj45KQaZaklheWhdtvkKF9cU5xmYv0d7ejslho6pSsL6+jkYjjOJKpZLR0VG8nham5xd45XcnMZlMHD58GI/Hg7uhikVrQlKpkRU6NHotUqFUK76JxQEKBXKhgqQWg8VKoYRSq6ZcydevBJIkISEhvwGlSCEXxKGCAuQKkqQAWYFapUCjUhPLxgiHovz8pz/A5XKglBSU0zFUSolsKsny0gLXXH0Vr544TkNrG3Pnx4QCripz/DfPoTMZBb2pv4/l5SWC8SgoJJq72okFQvR2d7N68SKRUIhGr5dwMEg+m8VsNKJVq2lqaiIe8DMxdhGz2YpOb2B6aZY73v4Ojv3uJPl88Q++Ht8UTwo7tw/JLz/xUyKRCD6fT2TodTqKSVF2qdSYfm6bg2AgQDQeEzxGnQBXSgoFSrudc8deoaOjg6WF1TrrsaOjgxdeeKEuJd2KiwqZho7oRpjZeQEynZyZIZPLEk9nyORyBMMRylXxKFtRCDvzfffdx2c/+1luuukmTp06xeLioujGr66KarXayDve8Q48Hg/r66usrq4yOioKU1qdhqamJo4fP47RZK5bnrq7u/F4PHz84x+nvb2dr3zlKzz99NNCH5dJc9ttt3H8+HFSqVQdOGuz2bj//vuZmZnhoYcewu3yEI1Gueeee9ixYwdf/OIXWVha4B+/9Y98+tOfZmRkhM3NTUKhEKVykeuvv55nn32m1krdRKXewqmJb3myLFOtiG+bRqORkZERxsfH62Ehi8WCLMtsbGygVxno7+8Xa0SVqv443NHRgd/vp6enRxzs4UDdSCWiyKl6IaqhoYFcTqDp1CY9qVSq/vmRJIl0Oo1SqcRoNNar1NFIql6DL9UMUVv8BrPZjE6no6enB5vNxkc+/OH6VU6tViOpJfF0UAEkKBWFvVxnE1eMraeDP/T6UFIEqbapqEhi6KjSMH5hguXlFeIxgVXbt2uAFl8zi3PzTI6P4XE7KeayBAMb7N2zm7npS+TyGdwGAarxNjUiyzIdO7YzNzmORqejdXgb5USchaUlrFYrSzMLFAoFBgcHWV5eJp/P43K56OzsFFdrq5Uf/a/23jzIsqu+8/yce+/bX77cMysrMytr36WSCslaLANCGgQE3XgdHGaM3XaE23aPu3GEY5qxewyN7Qg3Ed0d3e6ecXTbPWDCDNCAw6ZZbGBAMmAESCWVVPuWyqzc98y3v3vvmT/O/d133q0sgQ2SKoY8ES/ee/fdd8/+O7/f97f9p//EkYkxFhYWGBndjcKh3vLJF7roHRjk7f/LL3H+8h0MNN519LD+9J/+R1ZWVjh+3PiIK6UYO3iQ5uZmZLaq2Vrd5K57TvHCCy+YHAUpj81ymZmZGY4eP8bFixd54xvfyNe/8S1u3LjB4KBRS83Pz8fBWc6dO8ejjz7KF77wBeM16cPi0hKtULNVLtMMQlZWV6k1GqxvbZLJ5slms5y+70G01qytrXHy5Ek+85nP0Gwag5h0Ok1PTw9Hjx7lp3/qnVy/fp0/+7M/w3Vd5uZnOX78OFtbW4yPm0zB3d3dtHyfVCrFoUOHeN/73seZM2d4z3veQ29vL4tLi/T1mqzO//J/+y3+5E/+hFqtRhAETE1P8VM/+VM8/vjj/O7v/i71ej0y3qqbfIiR3FypVDh9+jRf+vKXGB4aZmFxgULe4CbvfOc7efTRR/nRRx4CYHT3CC2/cQtRCHyTpSkVRa7u6enB933uv/9+nnrqqTglX6vW5OTJk1y6ZOz9x8bGuHLlCvv378dxnDj9W0+P8SqcmZmJcaF8Ps/CwkKcvaurqwvHceLwdmEYkslk4vgaAkg2Gg2KhZ742UCcV1PkasEcuru7OX78BKdPn+bnfu7nmJiYwHHNRg7DMM68VSjkwQxfHG9SzJqTpVrZiPJWpHCUBzh4KZepyfkoJGCBeq1JMd3g/PkXWV5colGrkk653H3iOFub60zeuE4xlyXUPrv7hzh16hTPnX2edC5LrpAnnTfOUhuVMlNTU2ZzK0VPrseEp/M8Tpw4QSaT4fLly/FYiTv96IAh3Ckvzcr6GoODw2yVqxQKBX7uPf+S7zzz7LZE4Y4I3Koche+3aDYbrK6uEAQ+jqPYWlqkXq9RKnXhOIqRkVHOnT2HDhUD/UP4jYBCtkA+X+Qv/+Kv6O3tZ2lphXqrSbG7xOLKMi9eOG9Ch1UrVOo1evr7+NrffYNyrcr80iIzC4uU6w3wUmxWayyvrOLjUOjqZnjXbrRyabQCnChn4dGjR/nSl74Ugzz1ej1K2WXwg7/54l9z8dIF5uZnqVTLZLNZLl68GLtw57J5FheWaDQanDp1il/6pV9ibm6OD33oQxw5coRMJsPEngkGBwd55JFH+OhHPxprWaamp3jowYc4ceIEH/zgB1laXmLfvn3ML8zH/huiwRBvusOHDpPJZBjdPcqBAweoVCo8/vjjvOMd7+DQwUMcPnQ4NsuVDSABV3VkxSfBUzKZDFtbW5GDj2ZycjLekELIa7VanPZ8ZWWFRqMRv5erFfwwwE151Bp1tiplLl+9wvDILrp7e6g3G1RqVRqNRpwDpNVqdXze3NykWjWJVcvlchwXQ/JY1Ot1/IjgSn6IfD7P4sIy169Ncu3qDbY2K7QaIa1mgOs6dPUUKZTyoEEH5kWoIFQo7Wz7SmdyeKkcyvEINLT8kNXVLdY21ilXajz3/At86i8+zUc/+lEcx4ltb8SDVMy1xadiaX2VqbkZZhfmGZ/YA1F4wOXVFQYHB3nzW56gWCzSPzRIo9Vi99gYuUKBQGvWNzc5ePgwZ198kb97+mkeeOghxvbsYXNji77eftK5LMeOneDg4cM4jsOXv/xlVpcWb78f7wRO4ejBffrD//b3qdeNJ9vwsIlJFwRBrF5ZXV2lv2+EY8eO8eyzz1JrGNnP1yHz8/MsLC5y6NAhY1dQq/PlL3/Z6OKzWRqNBrt27TIGMZHzi0mbXmFpvcxGeYt8rshWpUyh0EW92cT3QxzPZWSXCTSyubbKL/7iL/L+97/foPM3b8a+/Y899hgPPPAAH//4x5mcvB5bWwaBjizTvDjVm+t47Nmzh5/4yX/M0NAQv/EbvxFHrF5bWyMMo2Apb3kLH/7wh6nVKvGGP3DgAG9961v5vd/7PaMGi6zpzIlInDoP4P777+fChQsEQcDY2Bg3b97k9a9/PW94wxv47d/+V4yMjABhZDOfAhVGxICYKLhOJs5+LVmqisUiWmvy+byJh+g49HaZEymXy5mISFFcRhEz5PTuHugBoFarmfD7kc9KPcpgnc0ar8N0qKhWq+RyuZgASDtE/DCZo7Kx6hoMDiUBcyRNgOcZ2KzeUHGwnYmJCXp6ejh27JjBiO65h1OnTjE2NkYmb+wUjEYhWqDbnKctHeAog1FobV6OAyvLZZRSTE/PcPnyZX7irT/GZz/7GVzlcO3KZfp6uylkM7gOsfiwVd7gH/3ETzAV5TzJFfLgGF+L4w88QH1t1cSmdBwmJiZ44dlz9PT0EARBbLczPT1tco/2GnPvmZkZmlvrDAwMMDMzw7333su1a9e4ev0aPT09/Nrv/D4Xr24PNN4ReR/+w7//d+//sfvvIZfPkUqncVyHow8/xFB3idm5OYaGh6hUK1y/NsXK6ipLS8tsrG8wOz/PtavXqDcarK6uMTn1EjOzs7iZLN09PdyYnKTl+3SVSpx57jmqtRrlSoXllRXWovBaTQ0aBz/wCXFo+T6VWh0NFPJdFLqKHDlyhK5igbNnz7K0tGQ2Qm8vlUqFvXv38va3v50zZ87wzDPP0GhWcV2H9fUNPM8lk8mSTqdYXzfq1Hy+wK//+q8zPDzI+973vlj8kDDmo6OjbG1tce3aNQA2NtbZ2tpCa82pU6f42Mc+ZvTgkZ+I60bRjhpNBgYGaDabeJ5HX19fHA5NApo8+uijfOQjH8GJIiTV65HrcGhOTHsjhGGI75tNJUFthWuQ084QvoCg1YojW0lMA/EHkOK6Ls2gs69yYoZhGNuneJ6HCgyBAWLuRUx4RewwDkqGe5DNrpSJvqyj8PFyCgdBgMaLr4l78dTUlDHyaTaZn58nCAK6S10UigVDB1wM5gCEfkgYhDiRxsL1HFqtgCAIUcohlYK1tQq5XJae7izNZsDo6G6+/uSXeN3rTrOxvk46lSKTSdPd1cX6+hrra2scP3aUo0ePMD1zk2qtZszKNza4+5FHuHj2LDnPIwxMAtxszjiczd2c5+TJkzQajViVubq6yvr6OhMTE8zOzlKpVAhbPpcuXWbP3j3U6nVQirSXIgxC/uqLX+E3/sV7ts37cEdwCof2Tej/8IH/g7U1oy4ZHx/H900E35mZmdiI6dBBA6ycP3+ebD6H7/u8dNOwsrUoNPZmpcz6lrEG3NraIpVKmdRk9TqAtaAMotxUxiFL62g3aAfHcwlDc/1/evwJKpUK58+9QCplNBmpCN39mZ/5GR555BF+8zd/M4770N0j/gxZstk8zYbP0tIK/f2DDA0O8973vpd//s/fg6MaJsdDJhMnys3n8+zatYsnnniCP/zDPzTJa11i24Xe3l4TkSgKcCqyrtaadCpLq9WKDa6azSazs7MMDQ1RKBSYnp6mp6cnUnGl0Frjuio6XVWMKQRBq20nkMrfUo9sUtn0QRDgYa41m8047L4k85F7lVLgGKMosUsQmT+fz8cnfiqVopDKxM/IZrMRgfLjBD7Sfwk7Jmy4EJdUKhV/F44hoG2oJNyEhGsrFArkcjmGh4fp7e5icHAwzuexvr6O53kcOXKEo0ePGq1RrcbkzRlGR0fZ2NhgaWmJQ4cOMzs7G4OZ3/jGNxgZGeGFZ7/J3NwMzXqDsd0jnLr7JI1qBXTA4sI8B/ZOsLm1TkuHvBAlI0qlUlQqFU6cOMHVq1d5+OGHcV2Xja1Nw51Wm3GC4XK5zN69e5mZmWFsbMwYj+3bx/z0NMvLqya58u4RxsfHOX/hRRq1OvV6nV/97Q9weXLqzlVJeqk0M7MLbGxsGLvvC5d57LHHWFlZYXnFsErnL1ymt2+YVD5LV59Z3OvlLWZmZ8kVCzSbTVa3TKSdgcHh+DQNw5CVlZWOvIn2QvX9FmEUhUYpF6VCquU6nueZRJ1+k0bdmFKPjo7S3d0dE62JiQn+4A/+gNnZWUZGoph9YYtQ++RyWZQyrPL997+ORiPg/vt+hOvXJ82G9Nw463OjYQjE4uIijz/+OJ/97Gdj+V07Jp3b8ePH+drXvkatVouRf9l4gsBLuLJCoRBbRi4tLZFKpbjvvvt49lkTZzKVSkeoehgRgvYG1rqd1AXa6Lv8LsRUCBBATE+j/9mxBuwS+D6B7xMGBqNBaxQQBgE6DHGUwon+I4ZFdv1A7JIMhvuw67VDqAsgKQROR/eF2kdHa6C+WaVaK7NV3sDzPNbWV8hLkF8dxv4wjuNwc+olXjz7fOxWXWn4fOC//msOHTrEE088wX//+MfjEHTVapWVpSU2o2Qvb3/723n6775JJp3iK1/5Cp6Ce07dxbFjx2hUK2xubpLOZnnogQdjn5xr166xOL/AgX37mZm+ie/7nLjvPr715JO0Gia35H333cfNm00KuQyFXIbF+VnK5TKXLpzj0KFDPPfcc2SzWUZGRoz7uOdR8X3C0N/W9kLKHcEp7B4e1r/+C+9mbm4ujg9w8+ZNXNdlbW3NeNUVi/jaoKtb5XJ8WszOz9EKTVLQ3n5j800YmbFGSHy9Xo9ZR8MVtPscOBF/GPnDO9o4UVWrdfbu3ctgv/FO26qZsGFyqv38z/88X/3qV3n++edjp5ONjQ2y+YBUKkV//yBbmxWCAJoNnz//84/zT3/lV1ldNQlkerrScYYlMJtMIhdPTU2ZtgUBw2NDrK+v8+CDD/LUU0+ZoKqVSrzg5fR0nUwcU6C7u5vFxcX4NM/lcjz88MN88pOfjMQKw947DhH77uMHzRhTALOBXCcTt0+Ij8jp9Xo9FiPSro5xBKWUCSRrcTNCgOtbBniV8HtioRhEREIs7aQOyTbleV78fOmzhO0T7YbRHhQ6rAztwCgtdMxxxFxiJGqJmlNrTVobsUwIS29vL7VazfyWThvT7HSarmIvx48fp7+/nxfPnaVcLjMxMcHGxhqZTIaXXnrJxNE8cZwXXniee0/dQ7NeY3lpgT2ju6nXKjQbdQ7t30c6Y8Sm/v5+5ufn2djYYGBggAP79tNoNFhaWmJjY4OJMeNyfeK+u6mtrXHmzJlYVLx69Srj4+MMDAwwPD5OZW2N+bU6169fp1Y1gW0X52bJZT3Srsc//Vd/wMXrk3cup9BstvjC33zZBOJotbj4oY/Q3d1NNps1UYIzedY3Kyyvm5iIxWKRUJmNX65UTJCLVIqVNeN81KobGVfTihaqY+iiAjdKJNKOoiOsLhBqtHJxHYcwaLF3zwSf/x+fNQFQcDhw4ACvf/3rOXbsGB/4wAdwXZf+/v4Y6DLtrZGLMj9ls1nuuuseBgeGede73kWr6RNGZtZdXXnW19cBYpCuWMwzNzeH5zl0d3ezubnJ4uIiJ06c4Itf/KJJKhNly4L26Wk2VUA645FKu5S6i1SqW2xtbTGxe5xcLsf6xirZXJpyZZNctjs6QSXpbhonEG6grYrT4a16ekkNL2HQtNY4KojtSdLpdAwYJksmnQatjTWh6+JEbH+xUIj9HlKpFJ7r4kd2JV0RsCligGAbAKnIalGHPkppPNfgDHKvjJFSKuIUQsIwsH4zr2w2E4c18+tNmk0nJjq1WiXmTMTEvl6vMzwwwuWL5yPQs86+ffv4ypXLZLIpBgcH6e3uJuUq5ufneeihh1iYm2d5cYGuoknT99LGGsePH2dzbRWNcY2em5vjwL79XLhwgdGR3Xzz69/g4MGDpJXLxO4x/GaLVqNJdWmRfHc3lU1DPDZWVziwd8J4BocBzz/7DEeOHKHsm6hSTpQdanBwkEzaoV6pbjs/Uu4IouCHAU7OoxyBYlpr6uvNmJIPDg7S8lsEWpHO5qk3I+rfCkh7GerVRgebmc5l0UArNFxBq9nqOLmUUngZA4LppkuoQ3TY1kcX8l0sLRpVULG7ZAyn+ntYX17g8P4J/vJTn0AFTRQuuZRDLpWDoEnGhWbNpe77pLQxdx3q7eebX/8aYbNCIZulUqlSKpTY2NiI2XyJc3D69Gk+8YlPxHb+XV1dpIIWBw8e5urV66yurpNOZ2NzZumvUq7BFLwAR3lsbpQJAygWSszOzPP444/z13/91+hQkcsWCHUdTYgmwA80RAShkwAoUCFi/6uBlu+DCmn5DbyUF528LULHIZvNknIcMl7KENxQGZBSG5bfcz3qnnlOKp+mHmiUckhn0tSkP26Kplb4UVq3XC5HEBGewHUIFeA6aMeJNqqi1miaZLnpNIHrgQuOcgharXgTe56HqrVwMYdDIzQqTpSHH8DqZjnmqJopzVa1bPCMlAnQ2opsHlSoSSmHQqmbpU0Tv8PFJVABV6evU6/XmZiYoNJqEFZMyjt3rcm18y9RLm9y6MABSqUiy4trdBV7mXppmt6+HjK5Ll6aX8Xz8jx36TpaeaxVG2S6e1nc2qRZb1BsGW1brVXH1yFnnztj3NoDPzaBHpvYY5LcDA2uyxfKAAAgAElEQVTy0s1p8j27efwtT3DxhRfitAZHTpxkYWEBN3V7b9A7gig0GiY+nVBwUTlpranX63HshGqlHlsmyiaXU0NYyzAM8UMDPsk9AjzZcrIQANeSXYVgbGyYoJ8LCwu0osUVhiFvfvOb+eAHP2gs36IAKcJmSltyuRzZbJY3vOENHDhwgD/6oz8CDBehlIpjHnqeF+e+FIRfvOTEIGlra4sDRw/z4osvGlVdFN0HOuV1GScg8hA09VUqFXbv3s3MzAx9fX0sLCwYTio2VGr3eTsx0gYVY7DQ+s3+T8zah4ZlL+ZNCHyCMLYzEA7Ctn8QEcR+yXjIaR3jAtHv8pvMr9QtBFY4Ba11HINRxAMBI7U2iWmUUgSRAdPm5iaFQiEm1s26sbFIe2b9pBw37qvv+ywuLppwblbQ4GvXrpFOpzl27BiDg4MM9g6ahDTFIi+eP8/wYD9+0KCn1MXwrn5WVlYol8tcjixje0oljh07ydnnnqdS3uT06dPs3mVyWoyPmzDwjgqpNpoMDO9iZWWF7lBz8MhR0t3daMcQwWq1yo2pJa5euBCHIxDPSgPGpm+Zbyl3BFEIw7bsZ5+AMnmysVvNILq/vTHshSnsrHinCKuZXMzJuu0NIhtMXFilHfv27TP5GjY3KRaLrK2txWowqSOWnSODpk9/+tMxqx2GIeUICxGATNojsr9gCQIS+r5PsVjkxo0b8f02VmKPgZyIEurbRDg2BG1qaipmzz3P68g4nAT07GJzVjYBkbHd7lqowg5RwIHYtDiIuA5bvWnXL5hEOp2J65d6tgM/bXwoSeTk/1IEu7B/b0ZgqXba4KZoRLTWOBjbh9CP8AuP2ChqaHggHuv19XUmJyfjvCKe53H9+nUTsMe7Rv+AccYqFQvMLS7gEJD2XC5dWiWT8hjeNUQxn8NzFDenptja2CCVdkmlXLq7CmQKObq7imysrbPcarGytgLKZWp6xlj2emm8VAZw6O7pM2Clu85DDx3k4sWLccaooaGhGGfxv5+8D69O2R6xloUiiT4zUYx83/djsE02o5wIWmt0ZKgZBEGssrJ95u2F5AS3mrIGQRAbJklYrOHhYZ555hl6e3tjz01ZlLb6LZvN8sQTT/C5z32OUqkUJ7np7e2Nre7ErFZOONE+aK3jDS+nnsiwUp+t+7c3lNgGAHEmrK6uLhYXF2NNQSqVMgFAWu0+C5cjHJhdxPBHNlwQBDGBS2pxRN4PIyOoeNwtWqOdNtch9fq+H3MD0idJwSdWjBJTMamJEKDR1kKACfqb/E3G255rWUutVlvd2Wg0TFSnnh5SjrHk7O4qGS/cZot6vW5iT+bSMafjeZ7JKVIqxWMqnEMtrFEup+ju7mJ2foaRXbuYm5tjfHyUk3cd52//9knG9ozz+GOP4jgOA339PPnkV1hbKnPvvadYWVpkY2WJs2fP0tVVMNzEwC6CIGBpbYtS3xDleoONSoNuL8vaVo3hfIlizwCVrUqcL+XEiROsrq6STpvM3TbIfcu83/aXqCilssBTGKtwD/ik1vp9Sql9wMeAPuBZ4Oe11k2lVAaTuv51wArwTq315HepJV5o9mIVQiFsc6VSiVRqqVh/bS/O2FxX6Vs2a7wwE6eOfRq21ZR+h85bIgwrZaIIix2ArR+XjTE7O8ulS5eiVPTlmJXb2NiIg8f09vbGC8dxHGq1Gr7vMzY2FoeDE8KzsLAQ+xiIBaA4DtknNCqK/Rjl4mw2m/T09LCwsMDx48e5efNmrLd33LbdgT1+yWL/ZosQNisv4LCw9C7SJnNPjCl4HvVWMzZCstWXQhRsQmGtvw4RQ4rYMMhvIooJIRAOTBLU6FabSwl1GM+d53m4TtuuQdbf+vo6LioO/ZfJZMilM/E4ifgiRB4wwUzSaZRSMeFPqSqV6gY35zTDA4PUGlXS2SyXrpisZc2W5vLlq/gtQ/iXeky+0p/8xXeztrAISvP8s2c4dOgAExMTzM/OMbb/GOvr6+QLy5S6+0zWq/PnqdaarK1vMTo2QTafwnNSXLlivGOfffZZ7r7bJM5dXFyMwfHtyvfi+9AA3qS1PoVJ/vIWpdSDwL/BpKI/BKwBvxzd/8vAmtb6IPDvo/u+p2Lr3GXhyUKRzWlYnzaAJItVFrjNGcjvwC2EwF7otpUcGJaxVquxtLQUG/8MDQ2ZwK/RCSDou/38IAgYHR2NFwjQYeQjEyF9qFQqcV9KpVIccWltzXiBbkZeooVCIYreVIzVffKSkzAMwyj5SRAv7q0tk0nJ932GhoZib0J7fOS0k5dtByD3ybiK3C4ETbgGUQvKeAuHIUTVcRyq1WqH/C/Ps+uTefQ8L+6LtEEMlaRddjYxW80o4xtzLtbzkyKGTeSEY5E+2GKTEBZps3CE4v8iHFilUomfJZaS1XolVr1WG1UWFhaYm5ujVqtRrVZZX1+nUCyxvLrCPafvRWtjlPXStRs0Wk1aTZ++wQE2Nrb47Gc/y/rmBpcvX6ZSqXDy5Mk4f8nY2BjZbDZWpy4tLjI9Pc3GxgaHjx/n8OHDpAYGIJejp6cH1709P/BdiYI2pRx9TUUvDbwJ+GR0/cPAj0ef3xF9J/r9MWUf1bcpyYmSd3uzJydLTiDbDFcWavL19ylSx+bmZnwiCZGSzSgnmywI2VBa69iDbXFxkVrNZGoulUr09JiEJVKH4ChAbOPf398fs3Zy6ku/t7a2YmIoxEApY9MvYKo8UxamxHoUq1CT3ToXG8nIphGiYHMgNqGU8ZZoQALy2ZydnNACEoszExC3TzZys9mk0WjE/7XnVoiF/bKJoG0SLXUmxU8BA8WTVcQQITxyv31YyG9J7ELepd5UKkW9XieXy8Wqc9/3Y/FBgE3ThiaNVp1ao2rGynXx0ilqjTrXJ6fo6u5lcuomjpvmc5//G144f5Hd43tZXtvi0pUb/N23v8PlK9fJFLo4ec9pxvcdIGj5LM4vQKjp7e7h+tVr9I7voVTsYm5mFrerxEs3JpmZmaFSqfC1r37V5FSZn+dClBpACPd25XtNMOsCzwAHgf8MXAPWtdbC59np5keB6WgwfaXUBtCPyVB9m9IpKyY/C3vuOp2yI9CxCeR/2jLASd7/vRZBsYUrSHIdQHyC2JZzImIIFpDL5W7hUmRDAR1cjqDfrVYr5ggkwU2xWIwXuIhOguprrUmns/F32ViyueRZQgiEfRfia8vZSVDRZt9FBpdxt/MexAQk6ourInFOtTkOza1AoLD5SbxAPtuHQ7xabgGL28Rju/44jkO9Vr8FUE4+65Z2JdpqEz8vlY3rVMpolcRqEIi5Ka1DHEcBGj/0CUKfoV0j9JRKNGp1qlFyorUtE0XLdTyy+QIH9u3jG9/4OvlCN6pLMzl1k/7+XvLFEuNjZqvNztyMCdxLZ583VrjjY3zqQ/83pVKJmZkZJiYm4oxe+bxJuzeyZw+NRv22a/97IgraONnfo5TqAf4COLbdbTK2L/ObPQG/AvwKGLWgzbLa2IL9MhFuOifbnmDbKMVq+y2LKtGS7fqLUirOzRcEAfl8HiA+dRzHia36JOy8cBSCCYiRkbjzysYUMUhOSJnYy5cvs3v3bvr6+pienjYenqEfb+q+vj601lQqlQ48ICnnx9iKtZGNIU4t6nLYOa60CZyMrc25xcZCqVQMAgK3iBxhGOLoNheUSqVic9owDHHTqY5TWcQJmyM0Y+J2qCxlrEEMtZx4fux22mtAvgsRLJVKMffUahlOBkd1EOwkdqGQddceF3lvtZpxoGERB2VuRbwx7t1bccRox3FM5Gjf59KVKwz09dHX14fruswurOLPLDA8PMzHP/VXTEyM09vdxcrKCrt3DTM0Ok61XOaprz/NqSNHGBoaYixKCJwrFFhdNvkjsuk0r7v7bs6dO8fExASP/viPszltgv08++yzMadjz3ey/L3iKWit14GvAg8CPUopISp2uvk4FX30ezewus2z/ovW+j6t9X2yOGwQMAkIyoQncQHppLDwSUJiE46Xe3aibR2ybLVajd24Bdyy2VQboPJ9P85XKGa7chraQJrN2UB7Ea+vr0cnv5HZZaHJYhez3Hw+H7sKC1cgz5F+2aeW7ce/XbFtAaRd0jb5TYhhcnxlzJJsuDzHFhvkZcv9yfndbn5sMSZ5CMgaEAJiE1ohiPJfW2Nlz7fUcTvR026TPMMu4rUqoqJk8EaFKKfNvQmxHBwcNEFx55dYWV1neGQXfQMDtFo+6xubBIFmdX2TrmI3xVI3k5NTOF6a4ydPkstnuHzlIpqA9Y1VLpx/gb6RIUbHRtAE7D11kp5eI65W5+bQWrOwsEAYhpRKJWZnZxF/n+3K95J1ehBoaa3XlVI54G8w4OEvAJ/SWn9MKfXHwFmt9f+plPpnwF1a619VSv0s8JNa6//55epIpzw90FOKvycXlUyArZGQyc9kMh2Lzpar7Qm3F4rNXuptABdb3pL7u3ImqpEEiK1Wqx14h9Qh3IAATXb7pQ9J2wm5J4yMaLTW9PX1GZfYjRr1ej3K65CPQb2krj9bNCo7SZ8np67I0kKQtNYo3Ykl2CKCtM11XZyoX/ZmFflZnpnNZmODKZtQ2GNss9l2n6GNNdicoet1qkq11h0YivRbNAASj0FANgFTZU3YMr5wV0A8b9vhCHZdMh4iRqZSKTzl4Ech3DKZDP29Ji/IoQMHGBgY4MWzLxg8qlhgcnKSbDYbq6gLhULMKebzJsFxV58BmatlI3oW8zkKxRwnjx0nlfLo6+3l6tXLdHd309NtUuFtrK1x7NhRGrU6w0MD1Ot16tVyzE129ZqAxtlslq4uY2AV+Jre3l4efOIfce7SPzzE+wjw4QhXcIBPaK3/h1LqPPAxpdTvA2eAP43u/1PgI0qpqxgO4We/exUqRqlt6myza0C8QOwJs++1T2Kb+9jOAMY+BZNFNoftpttoNOLFJwTJ5k6kniAwGarkXgGfbNTd5hLsdgOx0dLq6ipra2v09A/T1WXY1Hb481aHPK+Uot60jIrCkLQX+SYEIYEGxzDDhFH7BaRLntj25ojVeYmNYos9tVpt2/tsdbAAdPb4Sn1J9aOZ0zY7Lye62GdIW+X0t4mN3GuHcpc22QTAnnN7fch4JteC1GOLuBpFJjKNzufzcZQnx3HiyFStVgu/XObIkSMEQcDi4iLFYpEDBw7gOA7Xr19neHg4Tm7caDSobBk1diblkU53RzhSEwXMzS0wP7/IsaOp2AFr165dBC2fQwf388wzz3D16lXe9a538bWvfY19+/bxmc98hne/+91Uq3UqlQoju0a/K8b2vaSiPwvcu83168CPbHO9DvzMd3tu4l8dBGA79ixJIKK6OjiHpGwo98h7cjCUUuiXYaPsemxZXU5JmxOQk07Ui67rxtqLpEbF7oe9KB3HiQOXyAm/vLwcx0csFosdRM9mi32/vWBvJ0LJ70l038Zd7PGyCa78X9SaSdDVHqcOTszCPgTgtO+339uahE4cyHGcjr5K24TQJLkxez7sa/Y60RHeIu2T8b+dpsoWG4womYvFKlEZb21tUa1W2draioPc9A8Psbi4SLVqMnN7nkkf39PTY/wkKhUWFxfJFo1GSNTOpVKJlGfiLV65coWebpNdbGhoiI31Tfbt24fnGJ+TPXcdZumlG1QqFfbs2cP58+e59957OXv+HG9/+9spjIxQvnKNmZkZUl4mjmF5u3JHWDRq3fbPtyl2cnHZJ+p2eEPSz94mDiJS2LjE7SimzV7KPSnV9rewCYQsdsE1yuUy8/PzsRgDWACaEy8MWYwi90ofRN1XKpnovkFoFmolip7keR59PT20Wq0OF+rQWtAydrbNhs3RBEFb7JF22W2ICYrlOyIET8ZEZPhYM2RZFdqii/TxdriRLRLGdVvgpMyjAIzSFntNJLlBuz4pwokqpWJX+uTGsPsh3+3DxuYy1tbWKBW7YnFyaWnJRLqKxkX+f/ny5VgUtAH0RqNBoVDg2rVrpFIpulImB+aesXGmp6eZvHGNy5cvk89mKRRyNKI0dBsbG+RzBW7cuEGpWKTZbLC8uITfanD//fdTr5a5ceMGy8vLvPFtb+OpL3whWgshP/rWt7J6YypWK9+u3BFEQalbjYtsVNrGFJJEISkOQCdLaf/XZgXb/7sVa7XBqHhB0LbZhzamIYtLrkto8dXV1TiSkG1kJc+3zYrttgu6L3U3LWLZaNRwnFwEPBo3ZwjNy/gGm3ZbhCvmFpRtGdg+8ZJig7QneeLbokA2m40XVblc7uB0kpsyOT82ZyX9vGU+LS7l1rXSOS82R2QTattJzeYSbK5iu2ck8Y3tuAebixIxIfSN1qmrUDCxMssmcdGePXvQWrO5uYnWBpNZWlqKCWxvby9DQ0Ps3jOG7/tcvHgxxoWEsAdBQKVhDJkcx8FPGfB0aWmJnp5uMpkMx48d4XOf+xx9PSV27dpl1lGrRalUoru7m2vXbjB/+TKBb7AX9/u1U3jlS5tC2xZ50CnD2gZCNtWFW+VZaC8CWXjJid5OpJD77IUuz7SJlDzH1m6Ij4aoDuWEE8Q9ufDk1LNPdOEcBJdQumVYKa0Jw4DKlkmVl0mlaaVNRGOlIQg7VZKivZDQZ7Y9gdZtbMMeHynyHDEYs8dORCdJemuLMknCbPs0yCawN6tcFzFAtBLaIspyX5wyzlIbCmGTe2wVrWAlUr+tgrP7K/iKzKNYnYoBlmAZ0n4wKub+nt7YbqSrq4tsLmPS0UVqWzFGG9g1jOd5DA8PU61WaTab9PWZhEFHjhxhZmaG1dVVAmXSB/hNI5pVq3VSKZfBgWG2yhsErYChoV3RgbNsOJ9Uije96U2ce+FFsoUCBw8eZHnRBGl54Md+jIWbN6nVakxPT3P6jW/kha9/nZMn7jZexwnx3C53BFFQSsWDLwtY9NJyLXniJPXSdrE5guT9yROLsPM0vF3ZjiPZTgxJsp9CWOxTy2ZD7bbIJpPTJwgCNLLQ23X6QRMXl1TaJZc3MR4ztC0a0aB9E1TUjZhxpTE2BGFnnMWkPL5dv+1xTH6+HWH+bqKa1GurQSFyUgqat4gCMecU+Tckwc1kn+z/2/iB3T4RcSTgbE9PD4uLi/i+T1dXF0opVldXOyIxSdt934ewk/CLVkrUxul0mvX19Ti6ssRvlH5ev36d9fV1stksN6dnDSeRMQfFWJQQt9Vq0V3qRYc+L774IrlcjoGBPvbu3cuVS5fY2tpieXmZhdlZgiBgYGCAarXK6vx8HIptZWWF9akpDh06RLPZNFzInY4pQHuTCHgjKqTk4oJbWcZkSSLdssnku/2bUp0b43bPFJk06W+RJCg2lyGfbXk2SZwEZ7CfZftwqFDjOJ3xAJo1E8chm81SKhRRoabW8uN2QlvUStpDyG82lmBvdHuThbrtoixjJP4B2xG/5P/tuRJOLzn+tlm6EAjbg0/uFy5RIjzZ4y/jbZtuJ+u3OUt7fuX+er3O4uIi4+PjtFotJicnY58RSTcgY5vL5XA05PO5eBylD+IwNzQwiFKKzWqFSqXCoUOHKJfLrK2t0dvby+rqKhsbG4yMmIxQDX8V3/eZm1ugu7ubPWPjFIp5Ctkcly5dYGN9nV27dgEOq6urXLx4ESKO8PTp06yvrRjVdMb4jJw5c4ZAwe7duykUCiwuLpJOp9k1vDsGi29X7gii4EQoqi1rJ08WG7izicJ2ZTu77iSSLq9ay98WpEoWYY/tk0ueIWKA4ziUSiW2trbik0U2t83yJgmBLCrxBZDFb54hMreAmm2vwM3NjXhzFnL5mAOJOQ7AVZ1YBlp3iGHyntTYhGFIaM2DbRORHMvtAERbtLKNyoQI2eMieTjlerNV73i+zKkQwiAIYlsMe2yhrXq01cZKqThOQhLbsQlWOp3m+vXr5PN5Dhw4QBAEzM3NxaBqV1dXbGbuoigVu2LNiKvMM3IRQVtbWzP1RuHflpeXGRoaMvhApUK1arJBv/TSSwwNDfHmN7+FmZkZbly/GuXLTHHt6nXWV1c4dOgQhw8dYnV1NSI+TRNerb+fixcvUip28cLZ5+jv7yc90MfGxgbj4+MM7R6hWCxy7tw5yuU1wxW12jYrtyt3BFEQSh0vxgT4leyAfardbgNDp6mrjQXYJ7btWfhyahpZQPEJrtpYh7TJdU0IMbGBFxPjpBwscrSceMKC2gtUio2u25tSTnmR+72EijCJf9jFVknaWgn7//LZHuPt1JD2vUnikFx8ttXkdn1NXrPnaTvOwx4ze93YbU/OuzzDHiObG/E8L85bKSHgBc8QrkYphed6HSpRWWPCTUgwnGKxyPLyMl1dXWxubsYh/bPZLN3d3aRSKXK5HJubmyaAT6FEqVRieXEpUruaBDiiSgQ4fvxIHMDmqaee4vQ995LP5xkYGKC7u4vp6WlGR0cp9HRzc3o6Ar/zsaFVvV6/8zkFrYlZVR29HMeJw32be0w48OTiSIKKNsGwN5wsNBuolP+5joODRqFjW30VRePxxU5eOziOQjkuCuOc5SiTGKTVDAhdCANMpOnIjFVrTS4dRSFutY2EXF/TbNVju4NGo4ECMp4hUJ5yDAagFGk38i50Ik2C46CUiVPoaE0QhgRgQstHuvtcOkcQpGNbh5jYqUh9qRQ44HjRKY8mGtwYu1AKghAg2piui/YcFA5h7PwFjqNohZEBkmPuV8ohCEPclItyXUIid+ZmI4pf4MQq3Gw2a/wRfBOXERXG+JK9aYUA2B6POmqochyc6H43is2RchyUVqSVEXXKtTKhirKZuxE+QURcgwA/CKjWauQzWbKpNM1anUa1FhM3gMqmyWpFEFJr1qhVqm0i77gxhhAEAdm0AR6ddIaBAeN+L6nlJSze7t1daG28cRdmp2nVaywvLXL50jnuuecelDK5N1tByNrWFs3AHGJXr71Ed6lId3cXI8O78FIOi/OzlPIZVuam6e8ucOXcWSZO3o92cqyurTA02E9lY52wtkYqCFH6jscU6OAObOptX9sO0LKRZPu+JCubfK6wowISQVsOt01hY1Y77OROkmKGPFvCgQcRYNis1TsWuSygINCxW7R9+tsqNdd1SbmGUIg6SkVtR0faEUsel5PfPh2TYKC0I8lR3K4kxYLbnfT22CbnUopgEVKniAFyAiZNrbebb5t7CK0+iMORF2FEqch8PeUZ1r9QKBBEYeiCBFeRVIsmOR5b82SvF4fO+Ze+K6ViexMZn2azyfq6Ce+/tLTE2NgYy8vLaK3ZtWsXMzPTcdax+++/n9XVVUZGRjoiZ42OjjIxMcHayiJhYCJ6DQ30s7CwwNjYGHML84yPjHDy5Mk4KfP43j1MTV6L4kWWuHbpEq1GvYNDS5Y7hijIIrA3bXJBkvhuZOzOkGH2Z/kuZq+2Xl7AP9u6K0lQZNG7rkso6SGsjSHPEjHAcRwaUdTdpsjoQZRrwG9vJs9x0a6KA79KUFeRq2U8HMeJjWNCK2Sd4zhGq6A1WMZBQlRsDsEWd6Q4KHPCKky8xpg9uNV6U/4n8n4srnjtFG42ECn326pluSaxJIIgiJPI2gZQMl9J70epQ4q0UbAcpVSsxrQxDHuugiAg0G1xSSlju+F5XmyDEgTtTNW24Zr0V8ZE4k+mXC8+cIIwoFar4eRypNPpOFpYo2E4oEajEWfSHhoaolarMTExwerqKpOTkxw9fgzf9zl6/ATFUjd+qJmZm+fAgQN4nsfS0hIra+ssLC1TyLiUK5sQanKZNCnXY9fQIJNnnmFsdDeZYonhYZ8rU5P0jY+ya2iYWq3G6uIcSqk4UNDtyh1BFJSClGUtaANfNuW2T/DkqWSfIPYilWcI8bAtG4FYvSWLIolStxfnrVGH7RMxBrG8zlByjmr7PcREBB+8tgajXq/HYJYUexMC8UQGWqz+Og2KXEuuFmKQBASTHFeSWCRBwyQWsR1QZ5+k9oazn5N0Aku2JWknIWNqE+kOoibPsgiW1GckHYt7wVpDtI27zPMiLtKqM2g1b8EnbM7FXnehskRX2gCyzFWj0cBJtxPbyNh1dXXFfXJdl7GxMS5fvszAwACnT5+mr6+Pz3/+80xMTOA4DpVKJY47GYYh/UO72O3tZmV5ka6uEksLC1GIPheFw8LNmyilqFerPPvkk2ysreE6e+JoX61WA61v1bBJuUOIQhvBh04W3T79hbW3N2SShYdOpFxOpaQoIc8WIxW7Lba40S63stg2Yi+LJg58Em2UbCody+SxSKIcWrrTmlD05baTlai4HMfBS0enYiQz+6FhvUPdjgZlP0eebW9I6bcX9U/kcVvccJQigDi1W3I8tuMIkr75QoRtAut5XgzA2uMqOIjMhT2utk+CZIgSIu44DtUoVqXMeSqVIuUYgNCLiLgXxWbIZrP4EbvXCsz4tPzIDNtqj68N8Qis+fYck908DCMRMOWhNB1gXS6T7QgZuFHfMGOn24ZXpVIpdoXPZs39p0+fplqtUq5V6e3r49vf+Q6nTp1iYHCQb3372wwPDzM+Pk4lsn8Y37OHlZUlqtUyuwaHmJ2fZ9fQEEsrq4yMjjIzN0u5skWz2aTSgJ/6J/+Er332M1y4cI69e8ao1GukHBfPu32I9zsibVw2k9Z7hoc62EVhIcGKrKNudSSyF5DNRidlXMEQkqecrRqz9d1J2TKdageKlfaIWNLRbt/Ix3KSO5qOxam1Np6LqpMQAbFrtN1Ov96Mnmus5ZRrOIJmYIKv6Oj/2WjTiB9GtVqN7etFpIg3XcaozcQCTxycpH1yykmxLQ6Tp76w8RKgNgzDbaNNOY6DR1utLOKHPcZSZHxl09kilhAEgEYUL9LzPAPKptOkXc+oIbXhCpWmLSbqyIu1qwjA8tqqCT4TiXE2IZN6BaiGNoF1XZeM6xG0jGapWCyiAxO2zxPbDz8wmbhRjIyM0NPTE3MIMifSx1wuh6+hUqmwvr7OvhYVd38AAA/XSURBVH372NjY4J577uHZZ5/lrrvuYmxsjOeee46hoSHm56ZRaEZGhqmWN2k16hw5cICl5QUKmTTVqokbOTq+D9dVJiSg57GyssT+vftQDrzz136Li9fu4LRxrmNUeUm59VZwrNPIxmZD5R75TUoSAJJiy7s2WwttXbct18p3223YBiiTHI198oLJWtTmUnRsf2DXbwdVFaDKI4pQZHmS2uwyqm0rYW9QOVWT+IBSCi/y99DKAHNaRY7VBrbBxdwTbMMd2RxIUixJjrldhJVPGn3JRtxOJWyPvz1OybHOZDKxb4eiU8zwHLftyBXSQRzt+5Ki6nbrwi6+75Py2klrsmkTpTopCEl4PfF9EELoui49PT0sLS2ZpDI5k/n62Mm7mJqa4s1vfjNra2vsO3iIQqmbxZVVyrU66a0yynU4sG8fUy+9RL26SV9PL0sryxQKBaYmb3Dk0CGWlhbo7+1mdnaWI0eO8PzzZ+IDcM/4njsfU5DTE60xPj56W1zATbkdEyUcgpSkbGrLgHJf0gbC1qUnN2dHgFQ6ZUphkYWQCSrtppyO53oRMfAcK+6CE+DTKRpprWODJmGlfd+nr9RjTsO6CRbaaJnrfhBFFo7YZhFb5PSR+JJiKxGGYUwwgkicFA4g6f0pTk+1ZjsnY3I87TG04wwI2GljQrE4SKftgg3UClGwny/ci2xaux2e55GPwqF5nkcQhVpTkSu8g7mnVOxq2xi02r4sdqAaIUytVsukplPgug5aKUIFTioCvYFQRYZkITipduQvyR/qRxyuqFxFpLCBSjn4yuUy+XyesbExljaMuvOhhx4inU4zOjoat+nKlSvk83nGx8dN9OZ6i8nJl+jv7+P5qUnOnDnDQ/ffx4ED+1lYWOKRRx5haWWFG9eu8thjj/Hkk08yMb6HUqnEyOhurl+/Tub7yfvwahQZKLhV/dTxnuAekovudv+z77XvSf5HvouMbINcSRHDPom3e952JeYgXFCO2wEMJomUcCLlsslz6LiRFaSKuJ6wsy7bQnI7AM8WcfyWFeRWQELHiU7yWz0F7fG18Q6Zu+1O8lsxmfY82J/t4LM2lrTdnMhmE+tDHT2jXq+bFPdhGGtlVMTmC95ig9BBwnjHnjdbfLsdJyQco3C0MvY2mCz1Sn/klAbjUFUulxkeHmbv3r3U63WOn7iL7u5uvvDXX+Sxxx6j0fS5eOkKIyMjPPDgw1y9epUXXjyP67o88Lq7qVS3ePrpb1GtbLJreDeZXI5vf/vbPPSjD3Pp0hWGh4fxVMhTf/skW1tbPP/88+zfv590NsPy8nIHsb9lnd4JmEIundYHdu9GqbbdgO0vEJ/gTqetgs1GxwYtuhNdl3d7M0Nn4FAbiLtdcZTXQRSkTluk8DwPP2zFYoNSKk6OkvZSbT29Bu3e6rQjPh92e1o1437teCZnoZsyQTpqzYZJxgtRKvpbw9/DrZvYcRyajbafhIy1vRGE2yg3ah2cmP0Mew6ELRbOI8ldxL4WYad2R+Zb7ktyBbYIKf+ziadr1acwmEw2ZVD6TMoYRuWzubivlVqVWq1GiCEkwgk1o7UThiHK63TPT3KiMaaA4f5SqRRdXV1kUiYPBRGRzaRM3AyVSsdqTuEa8vk8xWKRbDZLs9lkYmKC/t176Ovrw/M8pqenjRt2lHRobm4OgNHRUUqlEi+c/Q6Xzl/gwMF9FHM5pqYmyaUcZm/eZO+ePezbu4discjMjSvs37+fWrNhIj7tP0i5WiGXK/CPf+FXuTZ1887FFELddtO1T4ukDKncToDLZldtim7Lz7C9hiL5PQl0yf+SrK59zXZSgkgV6iRUpnIKul7MViulaFhAqjzTDhkvv4mHXr0Z6fVTXrwB7T7b9gOyEW1sQ56rdZuFTrLnMp5JjKZjrhJE1YmAtduNa7IN9vzYxk/JZ9r/s2Vx4SxEdJJnyhi0MPYfSEStUMcbstYw/hJeuq3+vR1XI+3cToyVuc5lsrGnZT6KxGT3NQgCmq1qHCdR5rdYLFIul2m1Whw9ejQOqFOtGqJ1+PBhpqenmZ2dpVAoMDY2xtDQEOVymampKVqtFqOjo6ytreFi7HBajTo9PT3Mz8/z8EMPUK1WGR0dpV6vs7pugrM88CMP4m2mmJ6ewUvd6fEUFLRccByMTXnYDsuFbk9u3W/cslBFdk3KqslJttk6+x5bRZbEK+zroW472tjso0YTismoBqVv3UiO41DzmzihgxO0bgHb3AivcC3z5iizGw3d5oAqtSrlaiVmUyULcjqVphn4sRwrRjjSfuE+5N3NGbuMzc3NeHNIRChpb7PZpDubwfddGo0mrTBA+yEpz4TqFGZAKY9UqhNvSRJksf+gJb4KXsd8xT4MKvKMxcjt9vwGgeT3COI+Nfw29uM4Ls1Wy2gkHAc/DNDNRmzXUQtbsQWlaiSIJmbMlePQDMTQXpaeMSs33xVhCM2mj+84hFHo/YKr2KqUSaU8gmYTE/QmbVLmKYfA0bgqJHSVicKdy5LKZhgdHad/ZBdBoAkaPt2DRTzPY+rmDAPDwyxdusLh4/tIexme/rtv4tdaJixfVz8Te/uZn5vhwoUL9Ja6KFd90qk8u/aN87fffpGxsTHSbop02uPu+45w9oXn+MYzT5PLmAA5Ke8OT0UPbZbX1yb/oLGDt7AA3Zk0RN7FBkFYb8/zOmIzJDe3farYrGhHa26zwLcD2ZJlO6cqWwsg/7UJQ5urCA1hUO2EMUHkVyCoubRHnK+kLyKa2DYL4vMhbZLTqlFvR0hOjoXYAxQKBTxHRCQHNwwIU9BoNQmCED8+7RWaThEgOV7xWPnt6NHCoSS5OGlPklNMEvowDAl00DG2KVH7hp1OdUoZOwNoa5ZscaSDSIe3zl9ynqT+VkRo0AG+08B1HTKuRzodYQlBgPJMm/L5PMVSN1ob8/aW75vwbZUKmUzOsPszM/QODRiv0bSxdzh/4QJry2sM9Q9w7wP3MDc3R+A2+OY3v8n01CRjY2ORM1QfxUKBzc11VpdXcF2X0V39NBo1MpkMg4ODJhaFcFIvU+4QomCK1saHXxH5H2iLKIQax7vVXtvGC2zWVH5LssRStgMJ7UUi7bF/s+vcjrWW536vfW0/V7Jlg52bRohDTDQssSjZZkWb2AjR0NpoNOyYhHa/RTMBdOAjvu+TzWbJpMzGbbV8s1di7uZWkcsmANuNt9baOJ5ZLyFY23Fq24F90EnAbW5L6vU8z4CnYZv9B+KM1/aYJef05TAle77iZ9AGyR2lCUNDFKQdKIdMoUixWKSnpwcvnYmjXxeijF9CvJrNJr4OTYi1vn7CMCSfzzM1NYUKFccOH8HLpE0CmlyewcFB9u8zFo/PP/sMBw7so1arMTc3RyGXZ2tri0UnYGxsN7Ozs8zOzrJ3YsyIUbUazVbztn29I4iCUpasaa4AUVjyeHGATyf7bi8YSfqRBIfM89W2Cw7okPNt4hJvNqVuWXz291v7cuv17dSeHRvKGggZhxjAy7TRdjEOEkcq4SY8z2R0lv/YGYCS2gytNTo0YyDJZMIwjEPJgSEQPT09lIo5qtUq1WoNgnam5TD0Y0DNcRxC3clZ2UZASU4tyXlJxCJ7Lm1swRb3kv/NeJm4r1prClkTEblSLhO22hwBgON2+mrIM+3x9n0ftonZuR3xcBwnnjhDIHSHP4gZdye2idDaOMvVajXWNjbJ5fMMDAyxsbFBvd5kz/hehkZ2MbZvgoXFJZp+i30HD3D06FEeeuBhFhcWuHzuEqdPn+bM2acBYwPxzDPPcPDgQZaWFih1dbG6usrxh49RLBZ56folzp07x2OPvp63vvWtTN64GoeQf7lyR2gflFJLQIWXzTf5ipaB17DuH/b6f5j7/lrWP6G1HtzuhzuCKAAopb6jtb7vh63uH/b6f5j7fifUv135e+WS3Ck7Zaf8/7/sEIWdslN2Ske5k4jCf/khrfuHvf4f5r7fCfXfUu4YTGGn7JSdcmeUO4lT2Ck7ZafcAeU1JwpKqbcopS4ppa4qpd77KtU5qZR6QSn1nFLqO9G1PqXUF5VSV6L33h9gff9NKbWolHrRurZtfcqU/xiNx1ml1OlXoO73K6Vmov4/p5R6m/Xb/x7VfUkp9cT3U3f0vHGl1FeUUheUUueUUv8iuv6K9/9l6n5V+q+UyiqlvqWUej6q/19H1/cppZ6O+v5xpVQ6up6Jvl+Nft/7/dT/Dy5JY51X8wW4wDVgP5AGngeOvwr1TgIDiWsfBN4bfX4v8G9+gPW9HjgNvPjd6gPeBnweY8H1IPD0K1D3+4Hf2ube49EcZIB90dy432f9I8Dp6HMXcDmq5xXv/8vU/ar0P+pDMfqcAp6O+vQJ4Gej638M/Fr0+deBP44+/yzw8Vd6L2z3eq05hR8Brmqtr2utm8DHgHe8Rm15B/Dh6POHgR//QT1Ya/0UsPo91vcO4M+0Kd8EepRSIz/gum9X3gF8TGvd0FrfAK5i5ugfXLTWc1rrZ6PPW8AFYJRXof8vU/ftyg+0/1EfytHXVPTSwJuAT0bXk32XMfkk8Ji6nensK1hea6IwCkxb32/y8pP2gyoa+Bul1DNKqV+Jrg1rrefALCZg6BVuw+3qe7XG5H+N2PP/ZolKr2jdETt8L+bEfFX7n6gbXqX+K6VcpdRzwCLwRQz3sa61lnhodh1x/dHvG0D/91P/P6S81kRhOyr4aqhDflRrfRp4K/DPlFKvfxXq/F7LqzEm/xdwALgHmAP+7Stdt1KqCHwKeI/WevPlbv1Bt2Gbul+1/mutA631PcAYhus49jJ1vFb7oaO81kThJjBufR8DZl/pSrXWs9H7IvAXmMlaEDY1el98hZtxu/pe8THRWi9EizUE/ittFvkVqVsplcJsyj/XWn86uvyq9H+7ul/t/kd1rgNfxWAKPUop8Uqy64jrj37v5nsX/X5g5bUmCt8GDkVobBoDrvzVK1mhUqqglOqSz8CbgRejen8huu0XgL98JdvxMvX9FfDuCIV/ENgQNvsHVRIy+k9g+i91/2yEgu8DDgHf+j7rUsCfAhe01v/O+ukV7//t6n61+q+UGlRK9USfc8DjGFzjK8BPR7cl+y5j8tPA/6sj1PFVLa8FuplAaN+GQYWvAb/zKtS3H4MwPw+ckzoxstuXgSvRe98PsM7/B8OmtjCnwS/frj4MC/mfo/F4AbjvFaj7I9Gzz2IW4oh1/+9EdV8C3voD6PsjGBb4LPBc9Hrbq9H/l6n7Vek/cDdwJqrnReB3rTX4LQyQ+d+BTHQ9G32/Gv2+/5XeD9u9diwad8pO2Skd5bUWH3bKTtkpd1jZIQo7ZafslI6yQxR2yk7ZKR1lhyjslJ2yUzrKDlHYKTtlp3SUHaKwU3bKTukoO0Rhp+yUndJRdojCTtkpO6Wj/H/CPyt+k5pxYgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from PIL import Image\n", + "from io import BytesIO\n", + "import matplotlib.pyplot as plt\n", + "\n", + "cat_image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.102.jpg'\n", + "response = requests.get(cat_image_url)\n", + "img = Image.open(BytesIO(response.content))\n", + "plt.imshow(img)\n", + "\n", + "model_name = 'cat_dog_v1'\n", + "event = nuclio.Event(body=response.content,\n", + " content_type='image/jpeg',\n", + " path=f'/predict/{model_name}')\n", + "output = handler(context, event)\n", + "print(str(output.body))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deploy the serving function to the cluster" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# convert the notebook code to deployable function, configure it\n", + "from mlrun import code_to_function\n", + "fn = code_to_function('tf-image-server-from-notebook', runtime='nuclio')\n", + "\n", + "# set the API/trigger, attach the home dir to the function\n", + "fn.with_http(workers=2).add_volume('User','~/')\n", + "\n", + "# set the model file path SERVING_MODEL_ = \n", + "fn.set_env('SERVING_MODEL_cat_dog_v1', base_dir + 'models/cats_n_dogs.h5')\n", + "fn.set_env('classes_map', base_dir + 'images/categories_map.json')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[mlrun] 2019-11-10 19:26:07,302 deploy started\n", + "[nuclio.deploy] 2019-11-10 19:26:08,375 (info) Building processor image\n", + "[nuclio.deploy] 2019-11-10 19:26:13,416 (info) Build complete\n", + "[nuclio.deploy] 2019-11-10 19:26:19,521 (info) Function deploy complete\n", + "[nuclio.deploy] 2019-11-10 19:26:19,527 done updating tf-image-server-from-notebook, function address: 13.58.34.174:31680\n" + ] + } + ], + "source": [ + "# deploy the function to the cluster\n", + "addr = fn.deploy(project='nuclio-serving')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test the real function (with URL)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"prediction\": [\"dog\"], \"dog-probability\": [1.0]}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAD8CAYAAAD+D4bnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ya89yXXn94khM+/4pt9cVWRV8VfFoUVJhESKNrottOGWPMEWjHYbshfeGNDKe+tP8L9gLQx4Z6+8sRvuQZC9aBCQTMhDUyIpkTX+5jfeKaeIOF5ERt68971fFWl1dVcDLx4u3r1580ZERpw4cc73DKFEhNtyW27Lbbktn130v+oO3Jbbcltuy78O5ZZZ3pbbcltuyy9Qbpnlbbktt+W2/ALlllnelttyW27LL1BumeVtuS235bb8AuWWWd6W23JbbssvUL4wZqmU+veUUj9RSv21UuoPv6h2bsttuS235V9GUV+En6VSygA/BX4H+BT4M+A/F5G/+Bfe2G25LbfltvxLKF+UZPlbwF+LyM9FpAH+R+D3vqC2bsttuS235Qsv9guq903gk8HnT4Hvv+7m0Xgs8/k8fhAQorQ7lHqV6t917xWqv9h/2d2rdq/ufZZYOdvaZe//9m6FutYfNWhPEEQCqPg+hEBbN3jv8a3D+wBGsNZiM4uxZtA/jUKhtUYRr6dn62uX7St1K96vBt8FgggioI2OtSq18zulYjsAIYSubgZj+Jr3g2sSQrze1au1inWEQJCACwFldD9eWmm62xEdx0+lvvmA9x4JgXJTYq3BGIPJMjJrkRCQIGjd1SfgvEMbg/cBrRVKa7zzcfxR/fwppSCEvt8hhME4sDOXqZ/pmgxuSu2qHVrbznuigzTWO0UN6u3mEbl+fb/uWI/0lYgIIQjOO5zz3ZyCMYZiVKC1xmQ60l/qg3QNAUqrno5CCEgIaGPRSrHXY4arJIjEd2ks0hgqhTUm9g1B+nFO7YT4mCo91+64DZ+zn7G9sZMgBDX4Zfe91rqbo8F6EIVS0t0S2/dB+vFQ2hDy7r2AplsfEmmQrvuBSG9N2ZyKyL2b+vxFMcubRmhnRJRSfwD8AcBsNuM/+U//AbAlbO89zrn+mjahZyhZlmFMhjEG0JHpdJOqtcZa20/WdtI6JqMUIQRCCPjgur4kYuo+a8HoIna6IzLv/e7DdJPlvafyJUoLAUdZrnn2yacsr1YsXl2yulqiDxV37t/h7v1jJoez2D8suSpQSjPJpuRmQpZlkfiN6Rmd9562bXHOxc8ZjLIcqzRKAB+oXUvjWprgGU3GjJXFGINzru93nudkWYaIUJYlzjmcc+R53jPRLMvIsgxrbT9G2ALdMbq2qjFW4bv+5IWlbVt0U1F7x7IukczgJDCdTtCAbx1Hsyml2xLs4XTGvaMTXONpywojcHxwgogwfTClXK6oNiXNasPR/IA2eLIso5iOOT4+Zjqa0jRNPzbee6qq6uf6448/5vzslBcvXrAuN1TVhrqN9+ss0kDV1HjvmWbFlpkqFXms0X1dQYTgIu2kcRpuQOnlnOvpyxjTL+xEb23bIiIYY8jzHKUU3nuUUlhr+/pDCGhanAuIKAKKum55dXrOq7ML2tbhXGB6cMh733iP6XzM4b0ZZOBCS3AeFQSj4hqw4wKRlqZpKKsVbdsymcww2iKi0NriXNO3LxLXimsDWpueZlar+FtjDAcHBz3tt227Q7N1s+qfM8sKJNwg0Oi4pq02cey9j3QaOppvHW1hsdqgRJC2xWqD1uCCp/I1Lm2MlaB1ABVofI0XR+U8JstRxjKezHhqrjBKk4UM2wrGK8LKETYO6oAWTRhBXdd8+OcffPQ6pvZFMctPga8MPr8FPB3eICJ/BPwRwL37968Bp8PdOjENxXZ3eV25vkvfXF8i5PgdO9eRgFayU8+wrqGkkpipQghsmWoiIK01eZ71DF4rg0KTZRm5zkHMTp+3fbpBWunaa5oGj8JqAz7s9CeEgCdKIG3b9n0ZPke6f19qTX22NjJBpRQmDnrHOMGJp1WBlpYQoA0OPTKIaLCBzBq094zGOaGqGBWWSZ4x9pbf/O5v8sbDR5wcniDO410gU5rNckNbN9R1zWX7EpOP0SdgUGiB0WiELXJmB3MEsDVkBxmz2axn7MYYyrKkqip+5eFXebm85PnLF1RVxdV6xcvzM5bLJau6ZLFZMwoBtEK52K5zjqZpyE3eMz3dSU+tlV4yT98N53+fptLrps8i0gsB6fsopcexV0r1GgpolNY79DEsSTDQWiOqk8JV1BoS7Vlre6ac2kl0EgKIKNq27QWMkBiWj8wy9VMP+pHoJ42btVs2kr5LjF9hujbVoN3QP3vqj3OO4P0OjQbUDk44pNUtzbaIUYh4gvFgNLYwBDTaZlyul0xUwWQ0RqOol2tc00AT0C4AAUXABosPfGb5opjlnwHvK6XeBZ4Avw/8F79MBUOJ8LO+V0r3Q7r/m31mk77rB12la/uMMU7osK40+dfUYnbrGF7fYUzhulqslI4qalAEHCFElUIpM6gnDF5R3fAhqp0ahXi/AxOICEG20nnaXIZEur+I98csMfz0nUYhOv7GhYAXR0AQFfA6oI3p1MQWQsCHlmYVyEU4PDziW48f83D2kMeP3+fw8BDxcHV+Qes8eWZZ1zXtusK3Lb6pUCqq1z4Iuc0YTWbkylJgcMEzL8bkec4kH8XNQQRXNdgAI22Z373P8b373L/7gLKuOL+44OjsFZuq5tmrl3zy/Cmr9TpuPK6mdQGCosjHaNiBMZQk2GJXokxMOkmOw3F83Rgn5nDT5rjDCJAtfXwGozTG9C+v/A4sMJSEb1oPiWa99/3z3XTvtq/Swx1pfcT/nhAUIWw3h502ZEjru3Ta37NHg0k6N9qQ2GxmogS8v/6ipi+IEhCFx6PtCK0Vxlqa1RpZOLKppshyQhkITSBT3Tx3GwIC+nNs3V8IsxQRp5T6r4F/BBjgvxeRH/0ydQwnO4QtDpKuJ2LZV8MHfbg2efu7EiRi2P1tCKFXq7bqya5ElggsSQNKx2U2nMxeTWl0t3PGnVxE4b3gxSPBIL4h6NCrL0mlyfP8prHFO4egMEpHPEexuxDl+jMmSTHVMXy24aJKam26prTEl0Q8tW1rvAScOEwHixgBFRRFPuHuwQwN/Fu/9T0ev/UWI5tz5/AAt6mo6xK5qnCNx18tyExGs3LUl5eU6w1lWZJPNIWNm8jR/IDjwyPu3r0bpaPMkhU5s+lxL52leSqKoh+7qqqQquXR8X3a4LlzfJd3vvZ1LtdL1m3Dum5w3iMKnn70M/78z/+c8/NzmrrEEBlkgmV8J7WmMcuyrGeQQ1pIY5+Y7JCRDmliKIWlOodagdaaIAFjLMZktK8Rd4ZagDEmqradBAlbSVW4DiVprTHa4L3rtY9EPzetkdQ377caS3quYb0igjZbhp0k1X36HTLnIbMcSuPee3S3LvUNAsp2HMBbegglKE1eZDgX2Kw2fPLRxxyvTsiOFJPDnCk5QVtaV0WGqru6A5h/RZIlIvIPgX/4y/5uqDJmWbbDuIw2HRaSked5d0+Od1uxfsgkh4xguPP379UuQ0mTETHFgVp0A+MdMnJjDKio1gzbc851mE80hIBGKYNShuBBaYPSOjKd+NTd7q2x1vSfRQJKpT7G9tIvrLW0waOVxnQGAe9Dr1YlyUFr3b9PjDxhpElqds5hjOlxKK01BI9OKDgBxJNpTaYt4hxFltFcLLl3fMy3v/Ue3//OrzHPCx4eH+LLEldXhLNzFCtM42lDQHuYWqGu12yWG4zyiGwYjWB2cMjIZOTWcjyZo5Ui1C1FnjOezsjznLUWivmEEAKZCPkAh25DIBSW42JMWVcYr/ASqKuK+WhKlo+ZTRUueFrvOfrGlG+8/y289zz95BM++fQjnjz5hIuLs2ikC47letMz4qGUOWQWiQ6GqmpiskOYJOF+w40r3ZfUZcWeVjJgpj1DHeCg3nvQAwGBrTSsjNrBroclSXCJB2mteyw7YuTVlu5V2G6cWlAIbVPTugYfNCZECS1Tpse9tdadkU/t0FjrO/xWdVAV240DwDUtpii6jV921l96368/FC44WnGEzJBZi28Dbek4/fQl/qwi+Jbi0CKtw3sHKmC1xuhOYwJ8c7OEPSxfGLP8ZcvrJMMeL9FbaSjdu0+c+4ac/fuvqZ09s1Q7uI5SCq12Ja4hA75ph7tJmiiKgsLm6APLZDLbAfKNtp26rUA02gaMVRijsVZ3zDESJiogbFVjoyNjVF2/ffB4CYjRaBXrGErE++O7P07puZKU4pzbGnjEo8TQtjXBOe5MD1guLrHW8t7jr3Hv3j0eHd3h6+8+5mRcYOoaX1e0lwvwDUVmwRhW6xblAyOt8UZTVRXOuYh7BU2WF1hrKcs1wVj0eMJysyQzJqr7eGQDVWMIRydIcD0WppTCiRCUgFEondFsKry0KAWTyQhT5GhtKVtP2TpW6xIdwNgpl4sFmdH8rW9+m3cef41XZy95+fI5P/3ZT/no4w85MAe9NJXmttcoulfCCIfjOTTy9MabPQl0OCe9pM/2ufbsojv3vw5yGtYV5LpAkO6NfbaI+B3BIDE1pXSvZWgdpThjFFnWYdTkNE3Vba5FR/tb2jLG4F2SJNU1hpfWy03rqX++PWa5v4Y9GicKryzOBdra064b6kXN5vkavQJzpDCFQltF630nfCiyzAIBFzxBQVDXurFTvrTMcli01qB2d/SbBni/vhulyWFbW9+ivftuNrS8DuMb9mtYohRsMeOiUxNttOhjevA81TuEFobS6X47pHtRvfXwmjSN2mH0N43B8Hc3EWP/zFqjDCin0Aht0zDOcu7ducu/+Rvf5dGDhxhjuHd0AuUaX5YQhCw3nX4U8L7BqoI21PgAogxIhneOxkHrPF4MXhRVW+GIEs7hZIaZTCnrmsY5xChyPcIEoa2bXstQwCgveibvnMN3f0Lc+Kwx1E1NaAPSOqSu8a5lMjrgzuERymi8dmhvmB8dkk8L5ncPmR8f8uRnH/Lq1atugWXbjeQ1NLGPTb52s+ZmJqdkFxp6HTN5XR0M5vKzfhN/dr0/N62xIT6aJOG0uabNYx8jTWvpRtV72PfPeb6bnjPRawiCKA0IEgRxAVoFbSBzCmvGiPYRDDSC14IQsNqCVoBBSUBbg7bmWpvD8qVgljf5sQ0XrNYa50PPMKMU6LrvbH9PkuqGu/vnMdVhe9s+bKXYYUn1Da/vY1f7kuVsPMUejigmxY7aKwlrRGNtjtbRIpkIcLgYUxERlFa9Gi4Eggo7/cuyDN2GHfV6+Hyve8EW/xu2t6k3HM8PIMuYjsd8673H/K333ufe0QlHszmjIqMe51RVSWhqChsl5aADm7ok4CnGBc2VpakDSmschovzNatNy+JKInP0AYxGTEWhLU3ZgvdsynW0gFvLkXKcZCc0L0+x1jKdTinX0Q2qKOL4IoKva6pQUtYl3guiDMErxuMphbUUpiALEW6o157FegEaZnfnEYYoHbUPHD24x3fuHPF3vvt9PvjgA/70T/+UZ8+eQdefNK77FvJ0bTh/QynzJqly+F6r6MLzOqnrOr1eZ5ipD052jXWpzggdRFoX8Vhrr7W1s47QO2ss0XrSlhLsk5512KckWQ41wuE6vUlMitdVj7kOIQ8fPEHHX9UhELSgjI6amGgsBrwnbyw2KDa2xeceCsBHfFJZFbdSpVA2Q+uAdp/NDr8UzFIACbuMyTsPYpB+YjIggrjRB63tB2/rcgERE7wOtMOQwCITCV5QKjrwCmqLLQZNIAPpFkFo4yJ0gErMLhGhoIKPTyEe75q4U0lUHTNraKVmmo8Ro6M12QujLCPo6BqjsoDRBUpnRDEuSnPGmOg7hyfQIgiF1ljdAe2hida/LCpuRntGRoDs2qIcqokhBJQEjI1qlTIKF4SyKglWo0xOUBkmK3jn3RPuGkvhhW8/+irvPnpEMTtEckujDWE0oS3PyJVQjD25C5Br3MWG8qJEgqGUmleNwuZTvPO8evWCq+WC9XqNE4/JLF55ggsU1kJeUJUtdeUYZYa2dog4rsoFl5eg8pzRaITJNhTFGGUMYbHBS1yoddPQbM4HKm/0UV1dbSiKgvV63WOHZ6Fidm/GZDKhKmvwgaP8kMNMCE2HQ4cx3/32O8zyE/78//kBV4tLXp49R2tLVbeMiineNTv0m8Y+4YCJ6QzV3USXaUPrGapkka40ZAYaG5DQoERQQfCiIRO0JUI3HWOx2rIJLZgCMRleKURpHA3BGII2BGlQ0nbrJanqGcpkBFE0QDAGPc5RmUUyjRiNDwHnPOAhRCbZNA2SgwSgiEZO8QFshpiMNlha10ZhwAh1s6TyJbQJ8hnF5xcwWU5dtzGwwY4YG4VrA0FAdIZDISpDVIhW7OCAQBYycA4lgbEoNIZNs8GHlo2NjLWoQDceW0ChDKJ1lLuCH7j//ys08PxNy00qzPD/5/0OblZf0vWh+jxkKvvq6PA3QxX2dfWmXTcx8ta7aKULAd2B7/t9eF0ZGgbSs+3DCfv1bDeN3XuHqpCIdP543fuur0UHqmfWsllXFFnOWw8e8cZsxijAg6NjrLVkVoPRtEahvGNkLbQV+XhC+fRTNpcLqD113WB0gQtwcbHE5hnOOU5PTzm/vKBtWw6ODwkhUNc1IsJ4Mu2fx3vPulkjPm6CVb1BLUCPcrz32DyjaRxoTdt6vESJbzQeM53MKcuStnW9yphlOVXZIEFhdAYCVVVF6ahz4s7zHIXp1PloKLMyRVvh+PiYo6MTWtegzs0ObDI0n7wOprnp/02S5k319OqvBcJWIOhxeQ0++Osawx5MtK/K7tPVsD+vo7ebIIe+v3vf7be1fz1991nreqiNiRgE00XxgFEGpYEgaAHfbtff9nlf7371OtjhpvKlYJaK6wOYJiGB4qjtgA4NN/sTarTZUQNuIoQQhoOz61w+xO9SLNTOYKokjW77LBJDsEJSFzr/tbquWes1GM14OiG3FqNsL21oq/qwxWE70VUq9PjbUDpOKtS+6n9TSerRcEz7BZJZxOi4y4qggzAucq7Orzi8N2Y0zvjaO2/za2++zcl0gvWesRHGeY6WktBq8lCjaotRG7TRXH36EW6zIbcZ67alrFtaX3N+sWbp4PLqivVmRVVVjMZj7t+/R1Cw2qwZjXKKokCb5ILSwQJEY1cIjtVqwfJqQbCa4+M7zA8OKIroiDwZzzg4OsR7YVOVSADnIsOu6xqtNdPplNVqtSPRHRwcUm5KlpcvsNZSFGPybBTfZ3m30TnqqubevTt85zvf4fz8lDa0tI2nbhvOz67Q6uYNajiv+9eAHvO7Nnc2RqxgOgtxiHPu2boqDddAomOtNXqgRaSghRQRl8Y3rbwE7aT6kv9okoZ7ZuhVj7PH//GzMcmi30XN6eFaS/BYWj+7THeIY+4z0yF8FN2oTL+hhhAI4hHxBAI6+soRwnUPgmH9+9buBAf0XgifI4h9KZjlTWUfL2TAoG5ilDcx2331ezv5Qwt6bEer7e6VJnjLXCLzEpEORVGRkBGks6KFxOSScchES6T3HhWuS4mJ6QGdD6RGQoejdAvUe4/zLW7gOtR4R8QDujq16q14TgJt8BDAKBBFjFJJEojt/AUlEDKFzixGaXQQrChC1fDw6Jhffe9rjDPL48ePOXKaom7IC8Ph0RSUw1+toHXkyoK10K64fPmSw8NDNiFweXpG2QSevrpgVVZcrWpOLy4ZjcdobRmNclCB5eqKANg8o6oqVqsVeRH9VV3TRh9AD7rz5yyKgtxmjKdTvK+5vDplPJ6iM0tdV1wuLzDGMJlOcT6gM0uu45hWVcXVi+cR12Sr+o5kRAzrg9FoQlM7XLthNJowGk2oqjUaj8mgrCqOjk6YzWbUruUHP/gBFxeXaKMQv2shTxvu0DNj+H/4/TXpJlnFM43yDlT0kw3duhBrdjBC5xwBj3SRW/vMel9ivMbEB9fSfTHibDdsc/gM2/WzZxDsIC6lAkYHjNnfMEwvBG2DJrjW3+gyR/eKv41z5wliICRZ3sRItiCI8wS37asxBmUVSm2lzX3ekD4bY250rxqWLw2zfB2z6x9sj/HtW3uH0sK+e8Z+3bvge2eUke1Ok5glCErRM8oQ3OC7gZFnIFG2zuEkRFceEVwIFDrbsY6mtkUEHzyuiySQ1DcV2+p9+ETQKZRhqLINxiHWFWidQ7xgFXgJBDq/OwmQ+iRbQsWACQYrgdlkxt/7O3+b7/7qt/jZT/6SwpXMsRyezGFs8NUl9eYKqpJMFDiQdcnV5SvG0xkf/Oifc7lpUFnO2abmqnaUraMOwtHRnNY7nIsROtPJDO8FW+Ss1iXWWiaTCdp0UlBT432LVZqsYwxlueSiLKHDt7wE7t97wGg6IQQoqxjjHBDGxZSzszPquqYoCk5OTjg+PuZqueDevXtMp9PoVzoe9THK3vtOkNMsF5ecvTrl4cOHbMpLcom+vY1raFvPN77xLebzQ/7PH/6QDz/6OXVZ7dBllLZMvxATYxka3oba0w6GqUD26L4Yj5mrIhKBRMw2z/NOcwg9LQ2dxYe01oexura/PjTAJLpPjCkZbiDCIYjuoQqtutwBfqBddWKERhHEQ4eHatNJiUKME5ftOthuEDfzgvTdkIkNDT0Q7QIxMUa8L716J/pwXXMcjnviB0Nm+rrypWCWyeK1zwR3RPFOPRiWFE2xL7Ht7577/pbeb3eapFKjtqFfIQSMzndEemMUxmR43wKaIJ0vYs/QNcpuE334zEepzmyTKwydjzOdYY1FBQWyGyGh9C7or5TqpYZkVRxKFelZkwqVZ6N+McYop10VPzk0Z8oiKNraMRvPmI0mfOPxY55/+jGjTFOtLhifHIKvoVEYA1ocRkFWZFSfviBUDaPccnF2ysXFBRdly+TomPFszqfnn1C2jmI6o61L6iZuNnmes1ovCV6YmkO0oe9Ts9n0ySbquo54ZrPBOcdiscA1LRfrDZPJhCAqqtXW0NQtJov+rMVoxEqvCSEm9JhOp5ydnXJxcc6dO3fYbNa0bUNZluhNzng8ZTKZkEmUcEVgMpmQ546LyzPyQrFaRWY4O5hzeHDMq/NXvP3224wnE16dviC4GK1VFEUPs4hI7xA+1HL6eVY3Y86J9p3vaFgrsiLvvAIylBoxmmb9/FuzZS77UusQx0xqdh/Oiu0hn9R2eg2jcuKa8f17paKBJ8/zPuKrZ0AejLGE4GiaXfXWmCzCGq7txybPc4wxXWKULc2D78Yw+nemCDSt4ybkfNcn3cWxE/ukRNOYph/D4EPv+zlU/xM8te/N8lnlS8EsE2Y5dNcZ7rwAehC4mUTs/vfDCencb16npu8z5SGzHKpRKOlU/04N76S7FMEQpU4BUVHd7dQFT4dZdi8R6Qkq9V2Z6FIejT6aLMtRXb8jcwQhqSpC8J4epN5T5QgKCZ1UomNfpLvvGg6ro1UziGBRhMahlOHk4Jj33/wK3//Od7h68YzN5XMOppb7x2PygxFkAXyFW16g2grlWpZnZ7iyBhHOT085X6xYO5jffUCjDB8+eYrYDKM1m80KKw7dRZOUV2tm80Om0wmXi0um8wO01jR1HKemqdms11xdXaElRIMS0LroZH54NCOEwGQ0YjqdgrZMp3MOj4/IsxHaGl69PO83LqUUohz5aMyrs+f8/MO/YjKZAHDvjfusFucoZZhMJoyKCXXd9skl7t9/QONL5sUMhWFdllRVzWQyZ7OuOD6+w2//9m/zT//xP+nprq5rRqPRjovN6zCxIePsDRkdfAL0NFQUBccnx0zGU0w2JRvBdDrBZpo2VITg+zketjPUsqLle+vDmaAnpbfRXom5D9X8SEcQeinNk0J2tbZovb3XmqzH24NscU9E41qJFnUfI9us2YVEhozZZHvq/d4zRSlYE9QWr02CyDBqzWSGPN/N5LXDe9TWDjLkKTeVLwWzTLvMTb6NqewbX4ZS5z5BDP/D9aw7KahfdQMdJbddgo14TWKucacECJLwyq6fosBHou7V8YF0GxAYLIgsi24aWjQEQYUo/alBnG9iltG447pn3e66+2GYQ8kyyzIIWyIYGoiGKt/MWDJd8N477/Mf/86/z4P5IZ9+9HOePvmEtx/OmYyFk6McpgJ1SahKQllSWINvGyRo9GzGX/70rxiNRhx95Wtszi754OySi+WKynnQQtvWVOWaB8dHtN6hjWWSZVTVBq1hMh2jlHB1dUVVVUwmRZQWgcPDOeJaMqsJwVFVgeAdZpSRZQXHd07IbEEbPAcHB4zGBePxhNVmjbFRUsW1TCYTHj66Q9M02KxgNi96qfXVyyd47yM+OZ3Geo9OKKYZdV3z5NMPKGYFWV0wGs0YFZPIEF3LstzQuJY7d+7wzjvv8MEHHwAx5WBZltuMQPJ6D4t9qdMYE+GTjqd1aDmuw+iCirHSdJutc4HWd+5lIWA7DaZfE4O2tI6htcnQojs3u7wo+jW1j12mkiJ9EuP0PhpsksbUP5NTtG0dcwiEGmsNWkc3vJhwo3Nz6wIKEn2m/qWyHa99Rrl1eaJ7FkUUGBIf7P0xvY/rDL39POAx+1Dd63hPKl8KZgnXrVWJyHqcQe8CtPuZcYb4yxATSkQwJMgwwDGU2lqz07V43xBL6drVkbkNB1glZ9sERHfzOty/bgL54yRKbw2PPDdKrEZHp2RR0TjhpEsl1TF1oyLRhCCIVn0/k7HHDhjpULoZbji+dYyKnEf37vPOu1/j5//3/0u9KWnrmtblgEYbTTCB4FtcU2FcAB9YXC5ogpDNZsyOT8hHY1rRrH2gDgqdF4g0uGZDXdcYBWW1xnlPlhWMD8Zo2xF109C6Eq0Ns9mM1eoqMjWjMEZhM025WdM0DUrD0cEh2eSA6XTK4fERWltcCFRVg/c53rdkmWF6OGaz6bwSfIlSitEshyowHo+5uGhpGseDe/d640G5qSnLNeNxwUhNEAKbcsm6WXJ4fEKeT9hsNoQAOtNYm9H6GmMMjx8/5pNPPmG1WjEej3tDUipD+hvS/P4CjbSg0N1GPqTr1Sb6kmYWdFb0G39cK69ndM+lSsEAACAASURBVNe9PLZ92Rckhv14XV37zwGD0GOlCdISgkNp26+EIfOzxt7Ybi/wRF+gnWv7UEX8vYY9m8xwnLXWWGV3hIt9A9tN8/K68qVhlvtqOOzuEKitu0wCq28itpBUjMGgDHdaYI+JbNXwIVENdzzvI/6UGUO0kid3Fol442Cch5Mf2ILlSWrsJVcMxmqki52VbtdLBBUTamzHIBGPtbtEto8lKaWikUJFldxLwIduR+0WVCCmNPu9v//7fP3db/DBj3+CtZari0vefPNN3nprRmZrGFt8AZvTDW25Yt446rrlaH6Ems745OwUPZshJuPDjz5l4+H5xSXOR5eO4GoktMxnE1y9oXWhyznZ8ODhm3gnKG2ZzuadtOIZj/NoSKlLlssrlHgmo6Izsnlym1HMp0yn0ygV5ZZxVvDOO/eomprFYgGAcy15nqF10Sc4zvOcy8sLDg8PODk5pm1bLi/PefbsGd4Ljx494vHj97i8WOB9y5079zg4mOGUR7qlMplMopSlFdpM2VQrymrJ17/+dU5PTzk9PeXVq1dsNptesnyde1ei3yHWGELo3YWG9zVNw9XijKJYM515lJ2Q5xlKZ/jgqdt6x2Mk/Q8DY0cIIdJccuHpNvqUeSip4ak/ickkrHOYMyC1kdZIou+2GnitdIxZa7qEghaRwKgw/eYdf791P9JaY3SGUs01Nbxn9gNmmTD/4ZpI/Z3NZkyKCaOZYjwe79xzEzz3eeVLwSzTxOz6jdG7L6TsL0N1c8ssbT/IAEEqgmTR8dhkCIIPEtXnTu1o2wgADwdIa41WGUEC3gnOSm8I0kRJzjvBe0GFiMVICHjZdQsaJvfYhwNSERGMNTG+20QMKGU9j9WomMk6OHTI0GGbEUUrgdbHaAnnMLLFkqxR5Mpga8GJw4cVgTVeu3i/jFCiGeucv/t7/wH3vvqIRXXO5ZOPMOsNcyWMvKNaa4qHdxDfYH96yeL5M7TVhIlGzwvEKprNEhlNOZ6f8Omzp6xWK07PzpgETyue+XzO6fkSHwTnAnk2YT4riAltDaO8oMbR+Cjl5vmILMuYnUSH8wkFzridDXM6nfLmm28ytiO898xmB1xeLDDK8vLZK6aTOWMzxeQZ88M3WSwvybKMpqliOKYE7tx9wNn5Bc5Hg8HJyVs8fPi1nn7aVmHsCOccT54+p2kaDg8eMJ5mhNyjc0emDV481hTMJ8dkeszzsxd8+9e/x4uXz3jyT/83RvMJZbmO0r6OyWgRTe5bVOiCEzrLvc0sAfAiaGuwoQQMoi0ORStQtz5mFK8VXl8RpmDNPNIrDY3UXQYriUdqtFFbctQ9bQqGgEL6FI6eII5M0kYb0DrRcsSzY2x/dAZPJandKesRQNM0vWociOGHIhptNVrFdHC1b9GZxYcWrUy3XpNQovBNzHoVTItrOoOO1SjlaeqaPM/jGClNCBbnwNgRSAOhwbuG1sWExAbL/ZP7HB/cx2VXPRYrIgQPVlkIyfoPPtQ9Tvy68qVglsI2Lnlo4R6K6kGuRxUkKW3IkIw2O2mhkqqSxHulVJ8JfHgUwBAYFulMcHRMFICtc2/CUUQElEaFgcrrujpCiDYitWuQiRnfNQ6HUXFnNFqjBwaefexmuJEYswuGD9OphRAjYZwHrxxt8DiJ0vZ4OqdeVRzMZmgPv/H+r1FfXFFeXdIuz5hIxfzkmOnEMp5MQI+gVZytLzh59CYhOBbrKx6ePKRsGqBBguGDDz9hWS7YbKKF2hhD4x3L5ZLxeNxLI8V4TNO4DiMzXF4tsTbn6OQOeTHqDAWa9fK8N66MTIGyqjeWtG3L4uyKZhQdwl+9vODRozcQUcxmBxwdniCiOD095Sc/+8s+5VyUBuM5NfP5IScnd/tjKeqqZb2Oan5yM4qW8JyjoyOOjo64uqwYj8dMD+agNC74eB4QI7I84/DwkPsPH3B+fsrdkxPE1/zlX/4FVTXh6mrJqlmjyDpmtJ1brVW/QHcMGYkmBxvFUOvRbKXHRFPOOYzaeoz0kI8baGghRI0jpJhoFbWldtcdL0mK6X3TNJExmd2opbRunHO9tTpKoBU+tCgVyFQBOroU2S68ODhBVHQvis9sCD6toWhQxUV3t5QBnjaewVRV1UAiFYIWgi8heFxbohy40uOaEFO3FS2ioSqj98NwTeV5TnLAR322jyV8SZglA7xyiLXtRqq4fheIlrnkH9VJex3xaLOLP0YiTDtrJ0kmIk2vRHiB3pqs2BqGdN/NLnJCbaMMhkTbq1F7+MrOdx2zDKpzNA8K20UobK3hN28M8T99e7tDuFX/vQ5RaTcaHUXXfuNo25Y7B8eEdUOz2tCuVzTlgrvHE4oRaBNi0mGd413L4b17vHjxjLKtyDKFC4q6CYxHc54/f8X56QW1lPH8njynqmLKrvl8jsksq9WK1WbNarVBGc2oGDOdznE+zlsIgXWXDAMgs4J4qJoagLZtsJ2famZyimzE4fEdAJ4+fUbdRgNJvVzjQlS1N3XFZFxQloG2bajKdPbNiNVi3Vt6o5TRgni0EoyOkntdbShDYLm4pNysmM3uMhrlHBzMEFG0zlFfXLC6WvSMYzqdMp/NqKqS7/7Gb3L35ITF8pIPP/iYn/zkpzSNQyuLhG0MuVKqSxrNNZoJAw+LfUPeL1Mkik2RnobXYBdYv4GOhlBPPGai72EnzHTJdztvjbQ2BU8IPt6vQkwc3TmXKKJU1zN+6ejSucgwdcADbel3ImvS8RVlWe3wBYxHQkuQhtA0KIGmcvhGUbuSFQtCGxNLJ+k3rQXXeanEdv41UcPpCLdP8ts58e4D01uAepdZDQ1DzrcYnbItp926swZ3/1Po2I7kOsB1AFTY7qSagbN72Fro4mc6q/Y2xrr31eyymQ8ZYKzf43CgDVo0yu6q7YlA07XhTq7VroNtlmU7rhLWWmofLdEBA1iUGBaLFV999Abvvf0u3/7GrxAu1yyePqEqL7BywdG7B2S2YXZ0HB2+qzVV1WIyxb2334mSYbnm2adPsDZnvV7x/Nkp3gsuOKbTKUJcOBOjefHiBa2PkuRkNuX48KjPaB8Q2iAobbi8WkQVvBhHqRNPE6T3Wzw+Oop5L5uYiHaSjXn18pLDw0MOD+4QD93K2GyWfSy3Vob15pLJZEoxMkwnc0Dz/PlLLi+uAM3BwVEMaRxtw0KHjslp81qv16w3FXWzpiqXHB4eUxRj3nnjTdZ1zWaz4eLigrZqOTk5YpwXLFfnvP/4MRB4/2uPEe/50T//C3xoyXJL7wamNcp0ztEquXcR3WEGkmWiV0J8pUzuQ/qw1qL0rusdgO8S+ZLSkOl4qmGQgPHRP3hIc0m1HhpHI6a5GzW3z1D7/miPCgGhjV4hXncJNgTlA1ppXOu7tnzH+DoJtu4O5fNCKD1N0/RzkvKJJnw1rQGjxygdQx8JLa5yqGCjqxKazbKhzC6vYZX7TvhafT4r/HIwS7YO1bDNMt3vAM6hVBfF0vk9et923+/W06u6KvmB6Z65pVBEr7pY7oFk6LzDedcPXqbtgGk7jFHxOAeRXhoQEUIb1RClwSpNbmzMJynE4H521ZvkU9rDCLJV9/s6w254VroOoLTq8dohMcHWS8CpeKxnxG6iK8eD4zt8/9e/yzfff49cFK8+/IB2syQ0G+49OqRuSoydkI8mfPLBOcfHE9rGE6wlx3J+vkCJ8OZXHvOzn/2M9WLJYrmmdYFNtems1V2y2CxG41RN3c/H8xcvmc1iEt1iPGU8nkefWNEYk1HVERYJOqXhiwdmrdebfiObTCbMZnMKO+by6io6NFvDcrXm+OROn+X9xYsXMalCNz4vrlZktmCcF8zeeIOryzVX5xeICKNJPL4jz3Pms1k/ls45qs0qbkaq4fysZnVxxrOPPybPCu7df4OHX/0qx4dHFHUDIeP89AJjFXXdMJlmiMSzY3737/07zCZTfvzjH1M1Zb/xtcGTFxnL5ZKmc3ES8dELgRjdxDom+jAoRGsyY8j0biINQ8csTcJdW3RnkInRNzEreZ7lKKtoiYY/JECIZzYNhZM4/ttsXgmjVF1eBBG/VV+JmHuiYVFbwcMoYv5QfEqyT9u0aO/ZrMves0ApRVU1rFflFlusbl4L+xZsCSl1Yzx4TJzv/JJ1Z1sw+KK59vt9Zmk+7wAeviTMMqkH+2pnGqyorkivqmgTxf+USVwNHdZFgwyiagZ1buu+fsgU7E6OMbtWymHUT7J+9xNw07MMxv6aKrWnUnnvMQMpen/XHpb9e/ZdOUII2O6IWmMM4mJKrYPxlDcfPuLk4JBXT55QVQvqcoU2gdFowsHBSbQYiqFtIzbUVDV3795FK01h84jrVY6yrKi6nf5qcYEdaeq6pu1UpUyr3hE/4r9b53BPhAK0achRjCZjGud7Sboqm35urLU03eIJIeDdGu+eIpMjTk5OePjwPqvVik1Zc3m15OGj++SjgtFywaqExWLZ+dZZJCisjck1vG8H+SjbfoG2bcvx8XHPJBKuXbqSUT6KSTZMTlGMo6N8l7hBGxgXE1aLK1pXUtVLvMtj+jsVGOUFv/Xd3+Tr773PH/8ff8zV1VVcoMZweXkZXY1GBW3bUlUV0/koQkb7UpvaqrM76+cafQ98jHvcvGOsSuE7SU/Shq3stY15qK7u+4oO6W6fLnfw1e4YFXGCOKGtAm3tCE1NWZas12XPLOuqZbPZ9OvMttmA1gFRO8k9eoapFao70C8CbkmLA9Fd7gfRvYte/Bw9AZDkh/qLwRtfCmbJgDluDRnbQ6IACFtr3DBudT9Dc5Te0k6YduDOBaL7Lzr6+yjZOqd6CYS2iSnmQ0C19C4n3kdJIy2OxCwj2K62O1xnlU4GH0RQA5U5hBDbVTFpb7rWeIey2yTGsHXjSMSXCMToXcLchoFtMUlRLRIEjaGwI+49eIvvf+c7vHXnPu5qzenHn1C2pzSUPLp7n2Jyh2L8gNnBAZtlyWR8wOFswnSUc/rkCZPxAUppyrLmydVznj19gfMNi82CVbVm0SXjzYvoUC6bdRwfxUCKEqRuo2UVT2EMtWvRztPULiaJMIZ13fSMxAiMx2OCc+TGMBqNIh46nnN1uaLcNNx/cI+Tk7ssl0s++PlHkclmmsP5HVxzFt2XfDxTO+GVALoD9F0TraxaaXzb8PL5s53zi5xzZDOLa9Ys6paCnKYYU+iMRX6GnUyY3zkh85bZeEbTaq4uXvKXP/q/cL7h0aMHTKdT7t+/z513v8Ldh/+AH/7wh1xcXPDxk08JjKnrGt/N6Xw+pZKmo2O1I1VpiccDG70NTEhF65htKLMZVtsdI2emDcYoRnlBNEILzhgE3xlVi16STBvcjjakYrhtZP4dQxTXB3LQHb+LAtdGGU+rvDsXKmNTNlSbiqvzDXXdYDtDTVmWPVTmWt/lqe0Ml257wF7PILu+s3UVRYLbYXXKKIISkn1BVItRXTLtAaPdkSwhir2fU/5GzFIp9SGwJLqGOhH5rlLqBPifgHeAD4H/TEQuPrMetqmqdkIOt+2QnLKTkcPalL6tN1wDIDI8GjdJlrvW8IRhDusftpuiEoaTFXdahQqCNVtCciFEla/73ONKgzRw1yY9qf7OoYIi09fjt5NUs5V0t/eka/tWUuh2/BDI7QgVDBmWx2+9w7cff5OJslwtL6gvF7xafsy7b3+dN77yFg/vvMv88CGgqF59TLmueLb5AGs0qvUsVjVXixVPnr1kuSlZlle0vmWxPmcyjSGHVVVR19Eok5iNtt0Bc0UOqqBuG7QiqvchYHTG+fk5xuZMpzO01owfPADoI2yCMTRti7QtbUcn55cr7ty5Q5YblutNPIJXBWyRk2VZjB5xmpPje9R1zcXFRZdMxOFDDOXzbVT5xuNxr1J671mtVl2qtoK7d+8ymUyo1QppAvNswt35PQ6mByg7hqKIyXWdwwaYTiaYCu7duU9VLbBWc3l1igSHEmLI4qP7/O7v/i5N0/DTn/01Zxfn/PCHP2TTWXnzPKeqm2ho3PNkSRuzVVutC08PXWzpVG+NQ74L+zOawmaIFoL1KO9x7J4uOdRadAep7Ei1e/SbaLI3hGqN6BwTHOiIUVaVY3W1YbOqWZyvaeuACuv+ULQUDy5Bdb6Y3bNarrWb1P4dydIKyQQrHZ6PinCXmIA2OmZAV3tqvIr4qfR/9T5bulb+RUiW/7aInA4+/yHwxyLy3yql/rD7/N98Zg0DyWgoJV1TX7nuab+vpqZr+/cNS5BtSGJSs1vnaLsFkya/x2R8izE3OxXvtLOnQkNUmYYuTlrrHvOMmKLB5sW1TOZDQ9G+Or5P1An8TmNX5Bmj0Zhvf+PXadYN7z9+H/GBq/ML1leX1Ms1777/Ft/65jcpsgOMnYKeIZuKi/MN56fnHM0t06MZ5xcrXry8oHWB0Doyk87LFtDC85fPUW08KXJ+EGO8dRYxVZNtrfwejXIKa3O8eEajEZuyZj47pOwYY56NyLOomhpjGU+K6HY0GtO2LavVChOE0DZsNhtUqZjNJyile19breH8fE2oHE0Tz+k5OTqOmXDEs1otCL5hPBoBRe/2AnGe7t456ZnleFRQVyWNrZnlYw4mMzKjQTyjIkeKgqA0TdOQS+D46Ag/nfDwwSFf/co9NpsVnz75kOVyydXledyAx3lM4KE1v/Irv0JW5Hzve9+jcY4/+ZM/4Uc/+lFMwCJ0gQXXBYctNBSlId/ldRxGNu9gfZ3Go3Xywvj8aJX9zVjpCE3FeraH4gGD65rQWbpRQvCB1eWa5dWG9XpDuW6RAL4tO3rexo0rHTXBSNcKNXCRS/4tylzHLL13bL3S4znrQgCtMBbQgvZbj5cts4xO88lXRn2OjyV8MWr47wF/t3v/PwD/O5/DLJMRR0R640U8QnaQ6NRPo2SIQolBvCZ4j7YW1ODMmt6pdmu1TunWUoqzzHXhhAOmY52iEIvvYr0zM0aaFpRH6XisgSdmTsFYgo8ibZ1dRWul82gLVqteUmnalio4RgOgPFmMe+aZ4lx1hQ/xaIvW+XjEqPdA9AGLsemCZEe95KqV0LoGCZ37g44JF8LxAYcnjxiNj/jO2+9SKMVMCs7Pn3J+8QozDXjeZpS/SSbCxG/g/Mc0l1fMOOc8XLJ2Y5Yv1yxOFyzXS9oQc0JuypqmbiKT2QhhY8jDmoPJFBoH1qKUsFhXFJMp2chQe4WrL3qLbWE1q8tzUBbUGNoMLyNab/HZZWd0UEzmJ+T5KMYa2xrxmrJcorMldeuZTGZs6gYvwvzwiGI8ofUeNZ0R1Dk6i2GWq6sr7hwdY/OM0WjCZrlCWxsZtiuZzg4I4litVrRtPM8nRj85Do7mkB1wMJ1FmMY4ausR48itJZgC0SO0raiCj8EGVjHODxnNZrQC7ZMPqTpcdrHeMBHIMsPFxRkHh3OOj6a0bc07X7nP5fmnPH/1MY0LeDRGlZSbS1BCEzRWBKcyxqbA+6iSx0NluqNNlAfVdElVKiRru8O6DEF1GKJvYv5NBZlRuGAQD8EppHPUNjbHBemy1KvOrSpqDK1rca1gDB1D7QScoGCskcp0wRMtNODWJVI2aFqqpsIrG7HGLqBDdRolnWChBELnUjR0n1I9c0uCQ8zbMCxKhOgBovrQ5DZUA2azfbuTvtJ/8cxSgH+sIjf670Tkj4AHIvIMQESeKaXu//+peOhLlazbn2X4SOWatew1EmmqZ+jfOZTkqjomelA6oI2PqnZoEaO6CdoNSUv1D9tLLil9iKMx0VWEaAU3amsNV2hifnwVsc7uZPAgvnPU7RKIOE9uLKKFRlrqtokGgm4yprMZq8WaX/83vsX3vvkb3M+P8GXJhz/+EeenL9isLxHx/Mav/Sonh0fQNMhiwbOffchqccnL01PKtqY6PWNdbrDBsup828q6oqpbNpuK1scDr0SEVjQXiyUmzzFZAarlzoOHpMyJddPiGoluTyFiubZQlFWJhIx8NMd0OTybpkabAgnw6uyUmNEmGvFslnE0vsNqtaCtaypgNJmQZzmuqWmaCq01J0cH1HlgvVwCsHFrnj17RtGlA8vHI66WCy6uLuMxEh3OOZvNyEYZbdvQVHWMTbcWlMcgTCbRT3O13HC/mEXJXgnjImOc5T2GvNk0ONdgbIzff/DgEdbmbDYrtB0xNiMyY5iYnPXLC2q74OG9+/xXv/9fcvE7/yEfXT3hn/3gB/wv/+s/wuic4+M7vCzPsJnGWE3rSmbmYOtmxzYZdE97xmBNTtVsCF71IZQxH0cXV02U4lJAw7AMcfKo8QyMqAMtaXhfEgiCih4kbe24urhktYxO/1FAUegubSHJOX6wHkWia1T4BY0u+/3eX49DHvBZZWj3eF35mzLLvy0iTzuG+E+UUj/+RX+olPoD4A8AZvP5te+H+F2SLoc59vYTFbyuJCkuTXrX9k79EN0tUlRHCIEsCzGHZcpgLh6l4hG2WkcJF1R3qFXECYfMNllzk4Tcv0JAhipBD+LbzjClOjUnYqttK0jwUQdBEOcRnULFhHwypu7gAptnPPrqW8ww/NpX3+VAaarLU5aXV/hmw3pxBcrx9le/StiU1MrQrkue/tXPePX0CRenZ+jM4JVnUUdVabGOmXW899RNPE+ocY62c3QOEtC6oBEoVIExY9CK88UqxulrzXw+J1cZ1mqcb9lUGyBuIj7U1LWmbVd4Jzx485CmjvM8nhQoOqMDHueib950MqYsS8rVCkLAZLGuyXyGUYZ2vSDPNH6UUxQZRWZ5UW2i207nypWN4pG2q/WGoMA0caFnocWYGEk2HU/QKAprePrpxyyvFrz37nvcv/8wGkR0wGqYTwpmk3nnjB3iWdquwrmGxWrFRx8/YbNZo5Tiwd0TjmdH5DYe7rW4uiDL4Wz9Er1yPH7nXTaHb/Af/bt/n+OjN/hnP/gzfvKTn/Bp85RpMaMoDPko62nLZgbvW4ILqKAJ8dQ2YnhiHK8Y36hR3dk1WlmMSYlirgdVDDU66LBJvc2OlCLthoag3pfYCVVZ4sqG9XJJVTZdBFDA2jxKo2zd6IbrvYexguzgtfs2jH0+MSzDtf3LlM/Lkg5/Q2YpIk+7/y+VUv8z8FvAC6XUo06qfAS8fM1v/wj4I4D7Dx6+9smGA7Ujjr9mMPbv2f+cjEV0iRl2TmlU0n83BMuVihhnf86IUp16sMUVCbt+aun3+war/4+6N/u1Nc3vuz7P8E5r3nuffcY6NXRVdbm7ekh3OzEWF0AMiMHBjmzCJUj8EeQqSFzlNsgImSBEIoEIiiBBtGIxSAgJFGKT2KLd7m73UHXmPa75nZ6Ji+d911p71+mqcqOIyltatfdaZ+01vMPv+Q3fYRdgxC1AvI1ljRASJRUoGZ2vpQHXl1ox69zhUQVY55A6Tor7Se833v2AO8MRZrvFrGs2i2uCN7RtQ5EL3nh4H1OVbK2l3VZcX1+z3VScn19SjApkEs3BZKJpbVxEmjZOMK2H1nYTU50gZfTjVkrRGIcJNUJKRlmB1AohFEJppDwc4kXV8bKqOjEIyLIEMlgtN2RZjpBRwMS59sa+c86hSNBCYgFrTGzHKIUcebRQSEF3vOK+d8YitcZUFY21O6JAv+jG7H/fg86yjEGWU2QZ3kZO83K+4P7pXdIkZ7lcMhgf443F+Ja2qWhU2imXS4TIECJwfX0de6tCdKK9xKpCK5IsZ5jlCONYz+c455kOj2A449HdhwAk//cf8o//4J9Q1hVFMUB1gwnr6l0W1xMloO/zRwdUEXyE4bj+nIa+NSWl7PRS1e7c3p2HXdA4xDrHHl9cyOO53ate7e1O+iFq8AFTG0zb4roZQM8AEsJhXCeKvbuG9pDAXbAMXY/yc/RWX/ec11V5n7X9vAz1cPuFg6UQYgjIEMK6+/1fBf4j4H8A/l3gr3c///4v+Pqf+L0/oDcD383tMGD1f/NZA6IQwk71OTaNHUm6L6FDEHjriSek6LLPZtdrdS72LA9Vy2GvPZmm6c4z3B2oCXnhEV7gAgQrEUJ3sJAoqCqlixxb03YN8LjqWmsjfEkKtErx1jIaDHn/S+/yrT/35/hyMiarDJfPn2PrmouLCwap4O3H9xgNMoSzJEHy8sVLTNkyv5zz7MkLBsWY9WaDzATPz19FCppMd+razoMLoqNSRt1FYwzeSY6nRxH03+kUllXD6f042d5uawo0WilCUISOHXV0dITWCct1RQgWrRKmx0csF2usrRmNFAFBlmYo2YGsfcA0Bkmc7nrncdaRDRTLy4sdF9ymasfxnozGjEajyMbpbHCbpomBwYZOwSjQ1k1kuFhHQ4Npa1arFYNUcPfolOAVQSYcTSeMJsfodEBjHc7UGDdkkA7JsgyEpSwFX/nqV/mf/uffY1vWZFmCMYZXmwXLpmRYDHjn0WMmp/f48gcfslmtef70GYPREca2TI9m/NZf+ndIkyH/2X/+N/nRj34AXZAqihylRLcACYTrkweF92BNAO9pm2jlS5Cd1XQUtYhVi8TLKIVmDkzN+vbXjhXUD1wPpsnx8KvdNXh400Fi2xZXW2SQFGlOnTYI4QhCIYPAerMrw733O33Lw+rrtqjFzwt4t8vn25nlZw17+61PND4tw/z/klneA/777oNo4L8OIfyeEOL3gf9WCPHvA0+Af/vzvuDhlzrso/TyUIfPO5wK3s4cD4PrbWaMECIaiXmHDy4GoW4ql2Yxy1FeopQgyyKQ2to9yDeWzbG3dkjFEv5mMN4NedoW1e5dKp3bl+n9NNwLsF1PR0qLILkxBdeJpBcfjirWXUkeAm88ekS5XJMEwVfe+hLffv+r3CkdP/zh92m3GzabFa5dk08mTIdDnK05e/qM4CXz+RrTGMqmRecDlmVFG6BZbUEprDPMr6OKeJACgaJuW5SOwTx0J3Suh5xfXJHnOflwEFWGUh0HKVLSVhU+KLZlfHwwY+pxmwAAIABJREFUHLBYLJBKcXx80gGjI21zud4iE02iFW2XVSqf4ILBB0GSFySd5YAklrzBuw5DKSENhNYikgxvBSZ4sjzn5M6Eh4+ySE9cLYGIRnBlZB/Z7r2mwwGEmFWtF3Me3X+AFIGTO3dJByOc0KxLQ0gtQ+WRHcsLGXDB0loIGIQSLNZzfvkvfIeLy1f84Ac/oGxKGAzJpjOyoqCUniTXLINDz8a8NfuQoBSpSGi3Lcmw4N/81/4S3/rWd3DB8pv/1m8gdYLuFt8+2MfMNUVK1Vn8apqmxTuBd5IkiceLEAdspq3xwcWF4eCa6tW8+vuH4Hbnb2KaY1auAEMIFtmxikLr0EHRmIZgYTqZUG4anG1orKE1DiG7yq23SIFbgVd+AjbVv+enxYzD59yOA5/1d59n+4WDZQjhp8A3X/P4FfBrf8YXu3FwbmeOfdD7tB2w+zv8Jx67fT/iLPuyu9+57DCbEeDbl+pdrzRIAh4p+8l6pFntVrGDDPaw/H7dii26AY/vAPA2eEwwGNMS3SblQRkUuiFTbB+4g2pBSsnFi1d8+5c+5M37D/nK/TdZ/vQZ23LLixfPWK9X+NAyHBakmeDi1RPKzZZ2s0VkKdtNw2pd0hhFlo05feMeyUDzJ3/6PZIcFhclk6Njzi8ucC4wGA1JswyHiCBqvz8Wxlis3VBWm0jzlDAaD0iSGPidj9jYNIv0Qa1TmrbtBCZSimJMojOs8my36127xPtAkqr4bzZgDTQ2tiukAt96XJflt63FGIdtLMIpGCcdHje6H9ZtzWA0ZuAEWRHbFr5ZY1uDty11WeHbhsX8mu1qzXg4pC4rhEwIIkVnEybTOwQhGU2mTCaTeEysQWiN0gGEwXsTmWXCsS0XJIngm9/8kIDjrDHgOhqsFpxdXxKOAsN8iCoGhDRFGo8p64j0yDSPH7zJ9XrBd779K2y3W85evsQ5g/KKYH3n/hnJF86Bs4626SmJjixNEcSWiRS6I1kEpPJorRDC3xDIhY4J1lVWzrkoxuH37Q0pOwHuHhDa2VXooJBegnU0ZY3Kh5ycnDKoa84ur6IkW9ifxFrrOGrqBjvAzx3wvG4I84sEvV/0774QDJ7bu+Uw6MA+yB0CaD+tkXu7NLidcb6uYXz4HrAHuseyoP+U8YTYv/bh64Ybr3GobHM4qIqSRTcPVnyOi2HeR757/F6eKHkZfw+da57pXfwEPLz/kHEx5Ggw5s5oyvr8ik1dUdc1q82S45MRk+kQa1vWyyX1Zku1XFIFz+z4lDRNWW1rKrulCYGj9Jjp8Qmt2fAoz3CtBKFoTAsh0hVl9/mcjSrubd0gBZ1NQJwEB29JtCD0PTAJwstoYlULhkMV4Ueto7U1aTJmUKQIDaqtdguZMQYXLDIkIDQ6lfiewqdAJVH4wdsW5wwh9DJ6FYNihJICaz3SOMbjAWmSM5nG4URjDZnWBOdxLl78pm13595gMEAA4+kdBsMpWT4iH03wQeCEjthTbzF1jUgkzrfdAmkR0rMtt7G8NzXGRMUb4WC7LnHOsUWS6oy2rqPsWugM6NY1aZFTSIkntjZOju/w1/7af8j3v/99fudv/MeEEKKlsBTY1pMlKcb11VfUchXCI93BeegFMtkLuxyy5frzsW8lHQ57bpeyn1Xaxn5kDLJt25IkBWkaHSmVdjQdKYGe6Sb2GSbdVcZrruvXeeR8nkHOLxpQb29fjGAZPgkP6r9gX47fztB67nO/7XfITY7sIcD9dZnm4e/7gY5AyJtK5UL03iaRlhcb5NFzO36OiFGj61Hi9u6ThyW5UF3/R/bN7XhyxAwoELDdeRLl+RUKxD57EiKPn09FGttmviR/QzLNCrLW8+zJS67DksrUzDcLPvjwHYZFyrOf/YTr+SW2rFmdXdKmkkdvvsPkaMDsvuZnT88prePqyROEbPGyRUoY5EPeeudtrLVczRfMlysymURDtlDTli2+iayYVCs00aqj9Q7fNngRj6sRURXdeQhN9MzJspyqasjyGdtNgzUSNerBzp40i6D2pmmoSoOSOcPBFJ1nOGcQUpBmgURntE10gLSuxZoGXE5etJgUkixlMCrYbFqQGcVoCID1NUJE+NV2s+Hi7Ix6s2aYZdEbvK558OABTuXofECQGTobI9OUwWBEosA7Q5qmXK/PcCK6fy6XC6p6zWg0wtiaqtpibZRmG4oRgyyjbS3z6yUNFcvGUaU5bjJhNJxwMhgjswTbNiTJANMYVJrw9tvv8+jhW+R6xH/z9/4Wq+0q0nMVtFVFkmVIoUmylCKNthNZEDgbF/keuqNkAgmE0NFpbw00++uxlzTrJ++HQPefF6REiGIfWiqC99RlAwONVAmT6YzatBRW0zQNTVXfLJt3VzDs792ME5/nsc/znM8DFbq9fSGCZcSKv37CvSsLguluLq6QISDpViUp6SWugpedw11sZncdESBmiFE6dd/EPewx9qts5JFmuBAtGIQOJEkHbpcSqQpwKmYQVAQfdQpD6EC6IUJd6Mp9LUF6hzAW5RXIEDMkAU55XJCkWt9a0XumhcdZ8L5zwis8mSjIhWaWZ7z/5j2+8fXH6BD48YunfLyqMWrBslzw9W/EwUG18VycvaRprjFNiU0WJMn7zK9rmnrNvUePsdWapqkRumOECEvQinpUcbma07aW4GKvYjgqUEqwVgbXNug8ZbG4pg1xcdBSoVLFfLNCbQRHR0cIDaaxZGnB0fgUZyV5UhBQDPIUFwTGbjCbkiTJkCrBWMgHU5TOCUHQGEdtDKnam9Z5emrlEJTDO43UGU1zzcvnc05OTsgGE05PTxgUA6SRjENBVTZMGHO5vub6akNVNZydLclSTT7K0YMJWZbQyIQiOCapiovcaoUqRhSDKTrJaYXF+IQkXdPWDVmWc+/eQ55+9DM28y3bcsl4OGB+tWa5XPL07PscHR2RKM1mteXO9JQ0fYxrNbkKlNayOHvKYDTm8ftfQmQDZAg4YaPwRab5lX/pVwn5lu/+3nd5dX5GE+K0mdYxPTkhmIJcj7HGMZRTtvUGCFERSziEaiG0IF0cpph4DQkCqrMe6VV4pHQkSiJI8SIqH8UBZ28IFkiJUoVCgFEbjGyxuiUoQQiebbUiSEGaJ0yGGWbtGBc5Zjig3GwjB98YTNMghCBRGhvMjWTGe78T/LhRXd4KYZ8XMnR7kNPrRHza9mcPr/8/bbd3wqdBh/qft2+Hj8PNcv3zvM7rXrffbmezrxtCHT739va6FkH/t4flUA8E7wdL682SxeKa7XbNchUB52mmqaqK+/fvMxgM2G6qHTwpCu5Gia6sU/8+v7zg448/5uTkBCk0aZHvppHXV4tuh0jaNlqYNp2OY5qmPHr0iCzLyPP8RttEa81kEo3F1us1dV3uvlcUUNhDVKxt8cHS83d71fLIjd8rcVdVL+vlP3GDPfqgrwaqqope4zayc8qyjJPw3g5BBo6OjsjSWCaOx2Pu3buHs4HFYkFVVeR53hEJ4gVW1hWbzYr1ahEz72GEHSVKo1T0MX/x9Ak6UZ1YcGC5XqG1Zjwec+fkLuv1muvr672akuuSgBDQWkaGtNiXqP055UIk/iUy4df+hV/jL/7Ff5nHjx9T1zVHR8d7gL2WDAY54+79b88D9jf12n973XVwiL983TW0f439a/YaC4cZa8QwJyRJEimlRUFRFLvpu1KKILh1zu/f+zBY/rxr/J/W9oXILF+33Q5Qh2DvT+tBHE694WZvsz+gzu8FAnZg2lsH3/XWtz5iMSOlS9Mrsztn8D4aiUnZlzgHiu0HLIcbdhXdFu+LDiR887P2GW5vPn+oLOR96PxaHJu2YrUy/OSnP+JoNOP6xYbJ4C7l9oL33nuPsix59vQ5dVWyWlbUK4s1Addojk4GXMyvQGqWqy1333gDr6Pny2Q8ZnNVk2rNW4/eRZPStiZKvU1mmKamaStePX/O8xdPGRYDsiyjXG8iUyPNKLdb8jynSDOOjo5YVXOSRJFmkiQR5KnC+YYsHZIXCapTTljVkZoWnAcFdV2TZbFvmumYXbdt25VtXXulO55ZFjn2dbnF2nhhXZxfoXROkuQoteDOSVxAhoNR7LFicSHy0o/unDIbjzpIk0JJyWpVMh4PaULAmpaL8wus9TR/8j0GkzF3To+59+AuuIbFxSuSJOFoNuVnH/0pTVOh0yjisO5cK8fjI8bjKcF5TFuzXa65CC9JZI630QNnPMxj5eFasAahdGR4GUcQkOiE8/OX/Pq/8ut8+5vf4nf+5u/y/OIMqxx1uUUK13F0FNa1RHm2KG0oRL+oJATR0W7pS2+LoLeAFh0Co4PKuUMDv/2w8jA5ALAmCmKkSU5RQLAR9eFCwPmuFWUkSYcpTpIM3anjuyRHhBC58yrZX+exiU9r7Guu25sZ4i9SXgOxEvyM7Z+ZYAl7LNbhwbm93Z6a3wab3p6ovw5qIITYsWx6kG9vM+t89Gq23uG6m/dR2dQ5i20jcyMyh0AnEpnsMWv9+/bBss/gDhVeDvfB4XeKv+vuhPUIZ1hvaj76eMViOMVXklQnvPX2W9y/f5fnH3/E/GqBxGONYFMFvFXUdcLF048QQpHlA6QuaE2gInB69y4np8dM75xG1fW2ZL3edD3bhCcfP8M7E7OpPOP09JTterO7ePqA32Mz2zYyOGQaWC4ivChNNet1p4ajJeU29g29h7RIKfIhHoFW8d+TJInsk2Bxds8u6U8BITqtQ/Y6mGZjyPIM7xqefPQxWmrGkxkhOAajmFFba2lWEQKWpAntsqUsa6bTMc5ajGnJsowqWPLgUFlKWW9Yr7cUecr1+SXnL3/Ek5/mnB6fUlUVTVvhhGd6MiPNBqzrFdeLKy6uriKPv+pErIND4Lh7dIQQHiEtVX1N3WaMs2OUTHCmxFY5qASRDEh1Dh5c5bh75yHlesW940d862vf5mf/499DK4k1NSoNLJcbAGxryIq8g/nI3aAn7rdIeRSoLinoe4e6o1BGi13nIvbxdnZ5OCDaZaBu7ykuZTRi0yqW+HjR2T134HSAruzXaYL2evd662qze6+oUORI033fdH99vD4T/qexfWGDJdz84p8sIV4fLF8/9InbTr5KqE9ke4clM0TCQgidsnno7guPCx3eMVg8HuejRzJ9OdU5PyolulIjgUTc0OAMoWct9KZn7IRNb3//Qw4ugHGB1rYI51Ey8qmb1rHyjkcnb5Plks265Epdc/bynHKzQSLYbhpenC1pmpbr+ZqtXnPv7iOcm5OkQ4ajKa+u5lwu1xzPrzk9vcNms+H4ZMZ0ehdvPVXV8PCNN7g8P8d2yj3j8ZB6s+X6+powdqzX6zhdtp25lJCdJFqJUoqyLHn+7Cmzo2OOj4+ptnO2VbMrw2BMXcXFJi/GDAeCROcoLUiURAloTRdou4VGeBfLdtPsSADD8YhqW1PkOevrFfOrKwaDAcY2qFTgpWVZL9lsVxhvGOQDjk5mLK7nTKdjqrqmrmvu3xtSWsuQwKTIUalCKk+1XTAoFFpamu0lqxBYbeMFLlPBfHFOOswgEZyeHnP68BTnHGc/vWa5uqLcrGnbDceTISI4Eg3WeYwtOT+rOOYexXhEYhqE96Q6g6bBWU+wEpxjoAuqdclv/fpfJkkS/uiPv8fT50/YrNcsFtexr+skqAlSFYSQ7iiZ3rPTfXW+1009yNhcDGo7RhA3K58+wzy83mJwi+gDZ6O2JZ5YmgNaKYSIvXzvPc5YrIuiMJG1Ft8/1ynZeLjTE63reldN9NJufaKjxM1M8vMwcV639aD7T9u+GD3LW70+OHCk61agQ4T9YRC5nSUeign0Q4DXlfOw73Ed9lYO7SwOhXf7LKnvFfZak871mpN7FWedxM+VpnsO741AefD5bsM4bn+fPoju2UT772Ct7fQbY5m+2WwYj8cMBkOeP3/Jy+cvcMaymi+4uLhgsy3ZbCuWm4rVZs2LVy+5uLrEOsf8eslwMuXNN98m0QVaZyRJTpEPWS5XbMqK0WhCUxvyQcFkMiEgOL+8QAjBdDrdfc++F9VbhfQSaFmW7aa0TdPs2DS2rXcWpmmaMCwysiwj0ZqmjX3K5XKJc66jFO7Phf549wysECKF0Tt2XtHj8RhTN9RlSdvWjCZj1vWGV+cv2ZRLRuOcyTRaOty/f5/VdsNqFfuM27JEp+kO5/rg4T2UEtR1yXqzioZn3nJ+fs50NEYIdg6Ey8UCfOydOtOiBNy9e4/pdMpsNmM6nXJ9fR3bOSLiSYfDguPjY7xp+cmPf8RqOce2NcG2kQcfPLbZ4qoGvKdIc7y1/Opf+FW++uUPqKuK6XQMziJxCOnQWqK1JMv3zqlxv8VyXAodbx1brT/Xon/3TaJIf572LY/D664sSzbrkraxB5WSIPiDvn03SNE6Tu2llJHccHAN9ID0Xiovy7Ldce/74/3jh0nIvuL4JOrlUMzmMBM+vCY/a/tiZJY/Z1hyWBYT5I0AeOgRcrj9PGjQ69/2k+8Jfd+jExDtjMgQAo+LfiUxp9y/DtHnxAdL00YBCqlAqZQk0Xh5kNXGN9iXEoioqNP5x/TBuZequ/19fHARtOhjs7+qGu6OR+TZCIKCkFBXlrPnr3jys48ItqbqguTFuqZpPaQDsuGIuw8e4L3g4eM3qUrLdHLE0exOHIo0AeE1z19e8vjxW9impawadJbTtBWeQJ7nTKdThIkBoSgKNpsNbd2QaM1wOAQXLyLXBkpXI3UHrQqBy4sL8qIgKwbgPMZV1FVFmsXeVdNUSJFB5iGAMw2lMchkEC/Q7oJ0wTMcDmnqnLIskcSWQNs04DxForHW8/LpM95+70u4YFjXax6+84jtxRPW6zXnVy9wOM4unzObHDE+6vx4hGe1uGaQpwzygtPTU4o05cc//GPm1xe4jjyQ5AnLzRpPHA6pVJEVKeWmZLtdIzuxD+UHSAmT6QhBhqm2tHWDNYZKVyQ6YyInnJzeJbQtL58+JUkzBsWEi7OYHQ/yIY/u3kcEiyOQTCacHp3w27/xW7z77rv87u/+JxwfTXjy5AnH907RSSDNBEK47pyKoHLVKapLLYA2Cgl3fuFSRhys707zokiBm6iRQ5HsvXhySV034BXORC+r7qRnp8kgFEiFFkAud6QU27QR9C4kQXb4awFSp+iwR6rcsCzpRF766qtfmA+vmdtBvU+2Dp9jxc2/e932xQiW3XZYCt8Olj0lsd8OA8ntgPJZt77PcXuCdvN+IAS/u3l/OJVz3XCHyA7xFsJhWd+fULEUN9J9IljGsiYKZmiVIoK5kTX3Ev+faDuEroQKIJVmUAyoqxrtPccnp9SlAGkZDCbRIKppyDPNYmtwwSAHKUYEsk5AIgRJXTU0peXZ/Dm4GMziqi05ffCAi/NLsqxgNp6x3iyYHd/B2JqLs6c0TcM0zwEoy5I8zxkNhpTbLUVRIDoue9s4jPFI59FK4lsIXrBZbWlbGwHgQnB9fcnR0QlZmqOEQEii342IfvDGGGSyP16xX+ypqmrnDuqt6TImh1KeNMlo25a6aXj8+BHz1RxDy+Xygmr5iqdPnyIRTKdHVGZD3mqEUJg2sp8KLfnJj36IfE+Sq5Qsy7l7/w3m8zll1ZDlCUlSUFabyDNXKUpKXr04Q6eKNNWIDlebDsdcXZ9TbtbkmWKQphxNpoxHE/K0wFrP5OiY1XyLF4FJMYyBVjjq7TWb+Vk0L6tWZMMJXkruiMfkp6cAfOPDb/BXfvu3+bt/9+8w/eqHXKwvGY1zCIHVeolWWXcuKpIki4FR9C2gBlyfiWmg7fqY+2v0dvXWVztVVbHZbKjrFu8kqsMl7yxeuv8LBA4f6cFSkiQxCIsApo0ulEEIpNqHpizXJOmBGpJK9qrpdk879t7vvMD7wNn3PG9Xcoc6DkII+CTe/RPbFyJYBj6Z5b1u2PFpPczbwfP27zefe/N14SZUIYSAkwFHxFm60Bswxf8cAS9ulfUHQdY5hzcW0VMlD9hAn/iM3QHEH7rovZ6muT+4IVImhdz1lLwPJLqgaRxSd/47WYat6cqmBJ23OClwQvKVr3xAXVmaJkppFdkMgYtAYQfVNkKDXCqi/FiI33uz2aJkQSB0Q6uczWaDEHFhqKoKE/bHS9BJeskE21FRTdN7hCeEsM9KtNY7QZI0CfQ2HvG1PEJ1yuBde+awpVLX9a7a8NbsS7KOs58kCT7E4cp8vaDEsi63uPWcEAxZPozT+lRjnUGKWD3E9S0wHgx59fwFo2LIe++9x2a1RuoU27YI6/HB0FqPNtF11FrP6Z17rNYL1svV7rOORIT2JKmiNQ1J1z7BQxhJTk9nbDclKIlKNG3bQtvy7rvvgm25vrjkpz/+CTjP7OQOKhswOr5D3p1+3jreevMdvv71b/L973+vQ3V4dKLRaUbb9AuwJGqFCpRU9MZuzrmopSo+CVTvz+GdxkKXVfctIWNMJ47VXWtSxGQyRChU3G6W2kFGJ1TZV1NubwF9eA0opXYB8rAlJcR+8LRTjr/VPrstcNMnJH0yIqWM9sNwICz8ye0LESwPt8OeymFg8WEfzPr0/3V/92ctw/udeAhSDSHEQtvtLT/7HXy7N9r3LiV0kIu4ypq6QcsmMlvUoLt4b4p+yPgHu6DSCxnsAs1rgqZSAiein5BSiuurFW+eHjEspgQfJ8vr7ZxqdRVLxsTStjVNMAy9Z1k2HN89wrWGalMyHk9YzCvGgxOcgcvLa05P7nTfSTGfL7EGjmYzjInMm/X6GiGiWs9qteTk5ISnT58yzCNmrq2bqGnYWfEKIcizAQC1adlutwxkgXOBYlR0vtgxmxFdORU679S6scjtFoJEpykChXXVLqMUIsKvmqbpVI3i762rSXUCSEzTkuc5yXhAWZbUGObVktHRFO1HPHh4n6qqWC/XcWBVtyRaIaTGhpbpYEKeZayWJX/wj36fs5fnvPfl9xmOJlRNjfMBlACdYJwnSXNWyznGSI6nM9569DBmoeWGTRvL8jxLKPIR2+WCYD1tbVktKrTKyLIhd++fcrW8RgTBeDpmuZpzdX7GcnFN06zwdkKiJUkqkcGDtaAVaZLx1lvv8Ju/+Zf55V/+Zf6X/+P3ODu/ROuE9aYmhH2PPKqTx35mvwDdXsyllLFt8pprp6+E+sC5g/cR8ZY+BCSSHb1XRF2GNEnj+U9v5Rt/Dnq2nrU4sc/6blRltzbfiN3n6ANjHxvyruLpg6Yx5oYvep9xRgeDjrGHfe37wBckWAoA7wnO7SO8YJeJCATB+g6Q3WdSdD0MsHav1myd3aXahxCDPigqpfBBxBuh8wqPtg1RFTsa0OsGXBtLcLTAOofowLJaBEToVixR44OJJu0hxTSKchPwRtLiGA8lIusmjfQZrEcoibOWOEg3aLEP/n2Q7uFGh41rnCJLI+faeM+d2T1kOiboApdJrpbPmA4SloslV6+eIvrSXhQI6yjSEZsLw/cuPmI2m7EpL5hNJqw3F+RpTqEl7XqLFjmmbrk7nWLqkqsXGyYnM1QqSAsipVA4lGpo3ZC7D77EZr1lOJ4gdcW2PsPYGqc8QTuaytN0DI1iPO56wOCsREmN8Jpy3ZIfDaibBucDk9kdBtMRm3WNTjKSAINBRiYatvV236jXGiFaqrpzhkwFw1bQtBUyTWhTiUskItXMG4ORoG1B1hZM7v8SFy8/wtY1J7Ocs1fPmEymWF+T6CFGBsp1xemde0ifUm1qri/P+H69ZpBL7p9OOD9/QdMN2bZlEyFjqSR4S21atNGMxmOGoxEjV/FkU1ItKlolaGuHE2u892R5yotXgVpdszKvmNy9x8lbpzjv+cnPfsb3vv//4OqWcRb1MrMkYTQcMR6MofTUpkWmGl2kPDh6k/uzRzy8/5Dv/oPv8urinHJ9ifMBHTTKpyQmQ4sUG+bILlcQeVcByAghEgasb1Eq2VEjkSLSVpEENN4LjJW0RnTwIAe+QeQKF0B08nAqqEjf9XOkTJAijRc6sbLqE4Xat4Q9zT0GTCSpTm9kuABWzxC6w30GQyZjaywEtxONFiFHeg+6Jag6DmNlQPiIo/bBolwGgPmiB0s4MEjq7kcrnIPJ8UGJfJjdHQ5lYjm89wT/LIDq4Wv9vH/rf+8/Y6TYhU+Ugbe/h7MWeRCwb28724zuOeHWZz3MLg/vayGRIWCdR8o4HRyPxxRJttsPq9WKuq47Zep4FVSmROgE4aBqahpXRgyclAyHY2SwCNOiQ6R5mrYkBMFgo0gGeTyJ65pBkrOjutHZp5q9Gn3wcdiymCva2pKqyNZw9d4ITnWal33Z3GcFzrnYuzIGax3F0FDkMgLEhSQQIUJKmV0GeXgu9D0qpVTkJ4ce4N+RA7xnsVgwmk13x0YQ4UzYFoZ7wYfGWDyCLE+RZeyVHh8f8/LlSwBevXqFsSVppgnBEbzbybVZG318TBvPhaZpqLvvmBaa6fSIjehk4toW7yIchiZ+p2SacnR8wrqsubqcR/HffEiRD9l2dsKb7Yqmrcjagqra4ltL4yAXA2QmOhFiyb3Tu3zw/pcjaaCuuF6soRvq9FjY3T48KEFl57UYwicrtD5L7M9L0VU5WmsCFdY6hBQ3qr9+7hDvdIQNoRFoQtgL00Dn8y73Fd1h4rB7rV2pH3b90BAUOomaqfs+poWQETo5xihIk8AB7M97j/0cA/EvRrAUB8on/YE7OHhCCGRw3bClD2AxW4slrSDsvGw+CSW4vbmu72iDx3QMna5tCHFxPCj1Q+S4Aq0znSxVD5S1uI6mhthPCndl+q0y+uZX7g7xAaThdivhsBTfQaikpKpK8IE79+9x//Qes2IUe6YuMJ3O2Fy1GBM59Kv1Oga61lNWLa2Hsm6p8ZhNpP/dffiI06Mjrq/nDNOcqtogQ0KaZsxXC2QVhTOOxDEoUNIigHJT4V2DJMUYRzEYslmsO6bKlFSDdaYT8h3qHNfpAAAgAElEQVTtbDv6/XPYTjn8/sdHx9EFsDWsVgvSbBzFboVgvVniXXmjcd9TLZNExSzHGEgViUgirTNLQCuk97x49oyHSoIQhCxlcV2yXZdkSaBtHEU+juVbMFTGo0SkIC5XcRL9ta99jcvLS16dWVarhqqqYs9zmO0Wge22jiyg8bCDEdndAjY9HnNycsJsMqUsNxzPJgzyYvec4D1X8zWTecns/gOULnjzrTfZrpdMpscsr5c8efkUc3rMcDylrCqcTJDpAJ0XyFGKVsS2gIjmfP/8n//n+OqXP0BLxR/84R9SNx6woCzWRdhSGyw22KinIGREFPhusBoUzgeC83jnILDrc+IDUon4HazDGcvabXAulrypLlAimpHt+oM+QRBZW4KsvyKAgMeiVcDZaneN9efKbT8rAKVv0jdjpqpBHcL0km5BNthsSAiOpq27sr3tFs0+o1z/3DD1xQiW3JysAexNKvtVaV9S384aXzc1v93vu731F2y8OaR8/TjstfCisM8ynd/7At0OdJ8WLKGDKB0Eytvf5TAr3fWDvCBXGdPZhHcev8O4GJB4gW1bcI5yW0f1dANpmuOzAUIrysU6ulIS8EKyqW2UVlMwmB5xtV6xaRqGY8XZizOUSJlOp5jgyUcRRnM1nyM0+LZCy4C3DSdHYxarirqKfG7pFcvlkiLPiNJKEaQcTE2SJLspf88D7vthPb612pZUWUGiU7wLZOmAqlzRtpZiMNoNjHq7hv449Ji7/rWstTHTc5YsGSCVwgZFXZc8f/IkYvXShPXlJfW2QuQJZWpRIkRqJzDKs8i0kRFqc37xgvv33uDhw/v40DKfX+6YWgnRgG5YDCIdtKqhSEnSlNF4hko063LL/PqK5WJFohUnJyeU69UuQx4MBhzNZpxkb1Bby/HRfY6OH5LohBevfsrv//4/YX7xilGmeBlaatOS5QPerWruP3qbxAyYzIb4kEJIECLaD7fbikIl/Pmvfx2s408//ohV2eBFS1BR+MV3YPWYUUpk6C3zorJWi91BdkTnEnl4PWZZ1lUKXcbaGrbbGmtqAilSOpQKhC6TjL5Aml6/dT8slRD254Y6gNQdDlR31Z6tdhhRpTK8C0SXgdj/78U3hIxqS0rGVClNB10w7rHT0Td8eXXo6n1z+8IEy92O6O4LKXac6R6OE+NjNPSSMTnobmH3e/DhRrA85JT3mxeh8xXW0cNGqq51ElPLQJzOJUkSvUxCe7Aq3pya75rHzuyGT/tJnaCua9RwH9j7Ml6o3Yg8PleKG68tpdzJ0PWQGCklZtHy5ffe58G9+2gEzbqlGI0ZjcesFgtE0LSViZRM19C0Hl9Hlk/rHJut6dwYGxIlGA+GfPz8FfVmGfGkSIKGn370E07rU46GBaPgePz4TV6enXHv9A5Sp6QSlqslYqYZj0e07TVN03AyO6EoCi4vzjHGoZSmKIZgQ+fwF3ZBs1/wiqLY/dsgH1KutsCWfDhitV6SpZEi6V2DUgm1aUjSWGolaQTCW9eC6GyTlUSETghaBLJER3/vqiI4j/AO1xrOn7+kadcR4aChbR1FkVKVDYnSDPKCRClMdyy3m5p/+H/9n3jvefToEd/5zne4uDzjT/7kj0lUzdFggFIqiga3LfP5nHw4QCQCtGIwHFJvS4oiw1vH9dWco+mE0BEaRqMBH3z5A0biDnfuPeJ6W3NxvuDO3VMe3H/M6d27nL16xvViAWJC0gH8l4tL3nrrLRLtMW1FIaZs67g4pTpFBQjWM8lz3nnjAUmiWGzX/PTp89jTEwkST12XBCWQqcY2La510RnAeoQKnR8k4GM7CNUt9J01c5FGS407pzO88cjLOeWm7hblDGNaoCU5UGPfBV0vdgPSftbaVx5JklDX9Y3ret/GcgQZ8F4RgiBKejqEiApXSSJ3Tgt9htrb5yaaHRKjD/aftn0hgmVPpYqZYdwO4UTxp7vxB2H/l3F12k3bXk+LPJzuRXUbsQ+QQRBEdJSLmaPoTKBuYTy7SP5p2eLtla///Lcz1Nvb7X4ssFORybJsd1BnkymT0ZhUa2xrSDpWwyHiwVpP0xh8W9M2dWxnCEXwFhcAJUnTHCGiAtH19RxnGwZZirWWxWJO6AZYKCJo+/KSsizZbksGqSYrcob5iGpdIgoVwfeup6GB63xddotMOGA4daymfjE7zDSttyjZGVb5gFQBRCeWIaPB1h6uKommZqHLUPtKYZ+p9plnkmlapQimJdMJxluCt5i2RQhPCBk+KKyNkmTWWpqqYjCd4BQdCuAlxjSUZc18Pmc2G5NlGbPZjO26xrQt6XDIbDZjtdngSxfhVJ04iFLRWM4Yi0RQFEX0Ceq0A/oyUwiJUJJsMCQdTpnNjkkSzcndU+49uMfm0tE20UgOL1jOr7FtQzEaIgPY1sb2jk4wq4rVaoM1UVdzUhTkiWBc5BzNxtQXl5jWEryjSDSe6EHkvceF2LvUOmE/cblZ/UjZ5aLdQcmyiEBAe0bjAcGFqETvLSKIzpX1YPBKFLRmJ6TdeV+pdFdZ9efHYX+1f38fOq57dy73LCQgLqAQ1dndzRjQFX67cl6q/J+NYAl7hkvod5B3eA6sGsLrByWHQ4MQIhPm0FHxNlZLSokSPdxBdRP1yLiBm31CKWVUBQoyZpvcFPAIISBV553cZaR9ydB/tr4P55xD9QMpcbAY9O2ADqp0e7DUv18fhO8d3WU6mOIqR6pT7kyPyNKUzXLFqJhw9uICJTTj4RiXJtQqQji26y21ddTGIvKCRA+YjUfoRLBZrzmaDBFCsNmsqOotDx7ep23b2POUivqZYTKZsVqtEMMhiYyTTds6SjMnSwuEPBS5EJjW0QSLEIFgze5Y9fu2l3tzzu1A6cHFrLoPHmmiCKHDPIZAoqLFQ9tGkYu+d9m27S7YRPHlmJU7BHVTcXRyHIVBmoZRnvH81Rm+NbRNg8o121WJUoI0jQMT05T4POV0OsG5ljRTvPXWY8ptjVIrtts18/mcoigYj8dM82mERa03pIPo9DhLZ9jgWa1WMbApyVE+Zr64wrYmZuCXVwyLIlJFFWRJylfevk+aaY4nU2Q23PX0F4tr2rZkfDRgMzdUlWFra1xj+dnpj3nn/S9zdPdhNzDRtI1jMMgZjEZ4o1G+oV7PSa1FJ4ovPbhLguP6asP1coH24GXA+SjyYkKEj0mtUU7SOr/rUQYX/YeibH2HMw6BgO/olQmz2YRUZ3jnMK2LmaqIzCsnBNhYx8VrJJqxSQVKBxTJjetBdJVeP/TpF9u6iQIgdOpISoputhEX0ZZeGrAzDwyxv61VChzCkqJF8KdtX4hgebhS3Jh2hz0yX3FIR1LsV6foiviagfbuNQ9/F0J0pKs4yOlv0GEtO18d3e2aw8+zC+hiDxDfcVG7nLgHzh5e8H3Zefg5Qr8Q+N5u4vWfPU1TttstR0dHjMdjPnz7Q3TXXE+ThDSJgdIYx2gwpG0tm/NLgo/Yxu12jfGextg4DdcelRfMRppUa9JU0pRbmqpmPB6yXi6YTcbYpuby/Jz7jx5y7+7dyCsvtyx+eM03vvJLVEJhtmuE95g8DoqsEWhShFCRBukDTVNTN+Wup9hPrY2JwaLHufUXgTFm16tSsrM56HAt3joaCcPpjDSNpVnf71NKYq3pjqMl0YDvJPmc6WwvNIMiY71a4U1L4x1FUeBFYL0uSQcp4zCgrmuki/YZF+cvGN95wGJxzeM3vtSZxzk2my3Pnz9nOBzivGF7vebevXvoLI0iK1KQpSnrumQ8HvPi7BXr+Zpabrhz5w4ui2DxQZ7ijKVpNiyXSzarLfOzNW+9+wFf+eavMB3exXnHcrMgGyRkA83y6iXT4Vs4a0ikxBvLD//kBzSN4fH7X0Wh8bJgU5XIPJAOcmgF5bUj8Z5xllCblrKueO+NB9THgo+eP+XJ2RkVHikUVgt0GnGKbQB90NI6FHaJIPM93C0oh/PR3yr2LyXD4QBfBNbzNVW1RYqAdBolPQTDvmcZ94mQkKX5jWtO3yjdxQGsTkY0QojWLM5bpASlJLHy7CyBvcOZNma4QpEkluAFvYXvoX7Dz9s+M1gKIf4L4NeB8xDC17rHjoG/A7wNfAT8lRDCXMTI9DeAfwMogX8vhPCPP+s94GZQir3LW1AhXl/W3u4f/jwoUP/cw5+3H+u5wIf3Dz+H6PyOD1/9cOhz+NihKMch2f/TPtftKXg/Pc7znDfffJOjoyNyHXsrWZriWkNt9kDcqP2YsRUCITWxd7MfnKVJRpaBSBL0qGC1vMZaSVNWeOPJU70bltSupCgK1us1xyennYhFzupqzmKxwBnDQIooFSf28K2maTDGkaf57r13K/etoVxfgvd/e7gPej8aYz0y2S9cXjj8OtrcQtS2BG5kHc45tIp+QFrHVkb0+4k2CZvNNpp4iehVY1zTHac0Zo5So0TEaQqvCKsFx0d3aU3N8fExi/lqJ1DsnIsQnqCp65pUQJLFQZpSkUUV2ih4m+U59aqOC0KS4L2NYPmhxjnLdrtls9mgg+bq6pLtdsv0NFYVr169wpho1TufX5EePUQTCC5Qm5aRjdP0arMFkTE4HZOmOVI5UNHuRCkVPda7HqMmoLtJ9oO79yiN5eXiGtOxpqLvu4iVlxP0/n6yG7fGfC0mCh2BN3K6d9drp6MpY0DrExHnLSEIgm+7QU9XiZimuwYd3u11XftAeRsSGCvJFB96iFHPGItzDKCrDPuzbl91RjRN5KsLsa9OP237PJnlfwn8DvC3Dx77q8D/GkL460KIv9rd/w+Afx14v7v9CvCfdj8/dQuAEzGFdyGKVSiloHU7sHrQ6cHzVezBhbADxgaiD06fiR7u0EMGgHOOwvsuI/EIF3ABHB5nm517XY2LdhWAdhE4jgcZLBaHSEFpSeMdKk1iFlWVpDohtB5NxlAdM5YnTERDKgVGBergoi5msAjv0UJRSMGzumY06MpbE5CVI5SOX/7at/nGL32VZlkirMBIg+qscB3dcEoG6rqM0A1nGI4lL54/pVAB4StE8BS5pHKwuFjzxqO3efXkGa1tuJ4vmU3G1NsV15dbhDdcugtMHZXW3XDCerul2pYMUkOhJcuLc8orxSBLOT09RRm9a6JnaYJwju36Mq7+0qCUiDoNXWaivMQbj2sdOk1Zr9cMh1Et22tJi6eutl1fVRDsnmVVVxa/NiTJGvAoLZESyu0S61q0VozHY4QObLclRSEYj2Z4r6NKeh3VoyaTUcRvFhpXOlzdsnqx4PTBHSb3H7JcL6lUzVWw3HE1OTWJ3/LWB4+Z3Z/y3b//D2iDI8+GGAdn8zMutguSJKEY5rz5ztuoLIpFJF4yLFKU8NRG8fLlGVoqJtMROM83v/G1XUvh6ZMnGLFltb3gT3/wRxTpiKOTE+7fucvJg4e0oiVZPediuWBaFOSpxq5amlVFnW0or5fkyRBhDUlwJFichE1bcdlULG3Ly+tzlIBRprHza8hy3rgzYjZ5m3/0vS2L9RolNY2XnTYlxNAYoTkhZPShMkiNkAFCDEzGJSRSRbEYE6ssJRzOt6QJNKFGOIV3DY4onAGSbFAgXASI13VciA4RE0qpaFst4uDOh56eGJWqAKxNbiBq+kxYJ3I34IlZbN812MMQXVjyKXj0GAc+M5CF8L8LId6+9fBvAP9i9/vfAv43YrD8DeBvh/gp/qEQYiaEeBBCePlZ79OvGoeZ0OGtL7Fi5hEL6X0mKXYHNEITPpl5HhqiBWcxnco5Pf/YB2wv8+8tiUp2fO8eMP26zxVxaSBlDNBBxv6nloIkEagMGhnwIh5g1wF9rQEVJDrJ8U5xdzjGNC2plnzl3S/z4ZfeJ09y3LaO8mJN2bUm1L6vayzLqmY2nWJouLy8jP2cLMW5QGUNUkm0SGhXC+6c3uPk/pucby0n0wmL4JmNB1xcnnN8dETbtpTrLcPxiK0p+ejFOdN7IEX0b2mdochS1ttNNCdLJjx59pTRNOX+/fsE79luKyJyYV+qKSVQScfjDR3PW0jquiZXve1vQpqmWFvTdMOL3sZiDw1RpKlCJAVCBNq28w+XsVdcVlvStPMBShN859jYT0+32y2r1YrxZMhkMkFKwavrOfOrBYlUzGYzmrrl6mrOYFRwcXXJ6YMT0lQyny/RKidVBbPZjA8//JAf/ODHXFxccO/ePQInGGPIsgyh4NmzF2RZwvGdI0zr0CpjPEqhXtO0W0RwtG3NIEt58uQZeZ4zHs/46lembMsVbeMp8jFZlu96uqcnd9iW17z77rv85I9eUtctUsM4G4BUbLcVz549583JCW3dUEzGeF+jc81Ma2zbcHV+RpaPqJuSy8WaB/fvkqQpMs2QKXznm9+gcZ7v/+Qjnrx4hRRx4OREQChobItvFUdHJ92xjaLMAYdwgYabld8OrB4CrWy6ayY2rQ4LwDjA3Av7HlZZfZXXJ0E7Nhs3hbEP1YVgTx/uz69YxfR47Dir2EvJfbZa5S/as7zXB8AQwkshxN3u8UfA04PnPese+/RgKQJOuFjyyv3OccLhcHjh6etcKSJ0CBUZGYGww2TGQsDvgOL72Xrcgu8Dp8U505H5o++y8wbruuGMFyihdkOY3obCe3+jj7oPBnEaLxQI4VBJNHySOcjE4wcprVY0bUtjHQJJkeRIJ1hfV7z/9nt87Wtf5c7xCYOioNpUPP3Jz5BINILZcEqWxGngpm64uroiTVPuHB2j8pxqs2W9XuO6IVjVGBwBpRN8V/okWc63vvUd8vGU/+q/+y7V9QWZ1hA8bz56yMcfP2U8HvPwzXe5urqiEilZkrFYL5iNJ5RNxensmFGRU8nI7x0fzairLW1jefLxS0aj4U5cVgiH6RwNlVKRIdQtVlJrVKppW0PTNIxHU6qy4fLimmSU7cDIaRrpbVW13AWMyWSCN3Fxresa8BGwLiXD4bArxw2tNRT53oOmrmu22y3W2hgUmwZjWrwNHE+PMeb/pe7NfmXL8ry+z1przzvmM9+bw82qrLkqq7pdPZlG4EYCWsgI2eIB25KFLWFL9oNlLOM37DfjP8ASyLKFZDA2Qp66sRqaxm7ALYamqquqqyo755t3OGPMe16DH9aOOHFvZVcjhKVkSVcn42SciHP2jvVbv+E7dKxWG8qm5kjO6HTBaDgjDgaslleMBmOSJGOxWDIawWzmxYvnt3esVivWqy3j8ZhAxYRxwIPXHlIURQ9zs0jpoWWjSUqSKYq1v2dJmDAeHTGZTDDGsVos+cZbP8eXvvgW19dr5jdz8uGYtz94m6dPnzIdz9gU17z+2me4fPyYtumosAQywtiam+sFn3krot62hIHGhR4dEQUxR2cP+anhkF/+pf+NonWk2YTL+ZbTWco4zwiEZDSc0AGT4ZgHJ2fcLVc8v7ziadMhk5BIenhOZzviKEVJMOY+afHMHLlPHIRi3682nacUC+PbMtbeC9B4EY57UsZhy+aQyPByy0rtZgbiXort0HXAYz/jvo/p+vfYJWf4uOIEQZD+HiHvX/yA55MwNZ/YQBRC/BngzwDkgwHwo8o/L0Jp7nuSP269+DM/6snhv79TEfLltw+Cux7HPZTp8Pd5efh030uV+98P8MFeuZ5apTF0WBkjcWgH1viGwWZbkCcZr7/yBj/59W/y6vGY7XbLZrNlfrtgdXNHnmaESUbbVFjlYT1GGtI4JI696nVRbGjKiqqqANC2AylwQuGE68soRxin+w+tEo44EMSxh2dMp1Ourm64vb1lNJlCEGEbQ906EqExVpNnGQhLp7VnvwjQTpOkKSIJ2G7XRGmK9yMytF1N1Ta+ZBIW2QdOfy19thhFEU3TIkVAlg18z1DXKBnuVZ32JlYHFYLp+oa+7ghCSSAVWreEYYjTBoxFu3txBWPM3ip318zvuma/4eI4RglFUzV0dYfRDhlAFud0ne/VgqeRBtL3OpvGD6J2kmBtq2kaj2+1W8NoOiFJEpxwSOGHCcZYbFsyHI6Jw4jVasXNzQ2D7GOybMDX3/oGH7z/Pmk4oGstZ6+8Tr2tabXm9Vde5cnlD7m5uUEpRZYlpGmOkS20fdXi8MSAXm+srRqyPMeaDtdbEcfDCZ//wlf48KP3ee+d3+HBwwvqumDSD2UCvGVJHkYcjYaYtuMGCCNF1xpkoEDIg0n1C3vaC7xIhRSiT3x4AaXgM71doHh5diBeCJSH2eUO9bCrWPaiH8G91czLP3cv7qH76kTBDo/tfCqlZA8btL+3Rts/b7C82pXXQogL4Lr//hPg1YPnvQI8+6QXcM79JeAvAZycnTrki3xrP7XumQV4B8B9Cm7xkAX8H24xO8QlvrGB/3AIgQzkPoQ763DC9bjK+4zSZ6geniIkiJ5LbA8CpUB8YjC3zmKFz2hdP1AR0qs/awytbWm1IpQBzkpimaBQvPmZB/zRf+2PkiU5d1fXPPv+D5nPF37AkiQcpYlvbDvN9eUlo9EIpKDts1lnLHc3t6wXS7Is2w9XmqahbWrWVcUgTZiMp6gg4jQfUqw3qEYzSmJGgzNW6y1JPqBtK770xc/TacvNYsVwcszJg4zlcskkrXn91dcoyy2Lm1tEoolChXGa1WbFxcUF1AFHRynDQY4QjiSNcE7z/PIpbVujTUeYhhjjp91Ga2TXUtY148GMoqhw2m+qNM330/L1aks+8HCTMPTsm9Vq4UH9/YbYZZOHSul5niOF56gr5XU7m7rxfkFFsedrK+WHW6bWZFnOdHLEertiuyr53MM3KduS9WrLbAgqDVguNuTpACW3/aDIK6qHYcjR0UnPabcUVcHbb7/jB3OPXmWz2XJzd+dbCWxYLpecHJ0ym81Y3K741rd+i9/8J9/m/fc+4t/4E/8mscq4u17grgsGozEyUFRVwU98/Sdp2i1//zd+la7xGXKAoNuURCKkqhoWqyVNVXM8OaFuGtbLDaPx0H9m8GSPL731k3zha2/x3e9+h1//9V/n1YFX/scKklwSWDg5mjJIUs5nMwIM9dOWq8tbP4EPMo9RFJ4XvoPiWKkxgBISJSXWgbGux1b6tlGSJNS65d7q+X4gJMU9EWWn6Ha41+J4R428D4hVVe0D7K7k3qm4+6FRR9togoAebuQDahgGOHUAA+RHlZVeXv+8wfL/AP5d4L/uv/7vB9//j4UQfw0/2Fn9M/UrncMJiwolTlsf1HAYp9FW9xnBTlfSB0tn/ITRCS8WSo+J/CS64y6j2IOUMftA2WmNdQbjNHXrWSCRiHAuuf/9rC/t4X7SvVc26jpMP3AUKDpjkUGCDEIaI8hlgq0M+XjMw4szvvGFrzIZjRGdZX15xUd3c8pNyUivaaqKrusohCQIIwbjEVKFTKYDZD9ZjbXl7u4OXXu+tZpN+olsTd01GGeQYYiKIqIs5/jiVR9EW827774LUvHgZEazvGSYKHRbE6kIMAwmQ8bTGe9/9ASrNSdHR5yPDegO12niMCBUkuPZDHBUhe+jatPx2sPXMLbrs0AvhzWeHO8PmCQVLJdLiqLE1Q0qiJECiqLauzYqpWiNhxYFQcRgIHxG0zVeIV44HNoPH5qGrusIA4UUYKWHK1lr0Z0mHecAeyznYDAgCAKyLKNpGrIs4/nzZ1jjCKOYXbpTbLc4CXc3czrZ0eoam2fcXC98cAoirIWjo6P9ZgRIE9H3yCT5MON24fvH26337N7pJ45GOZVoaNuW8XhMW2lGgyldq/nhD3/IX/7L/wOfefVNzs8eMJ4cs9ouEQKCVBHHAa1QPHrtTRZRwbPHH1EWBVESYjqLCCV1XfL+u7/D7OiMLAjZGs1mvqAzmixLiNIIFWVY3fDVn/gpLu8WLN/7p9wtV3z+jTdJgwSVKJyTzLIhaRDx8OSMQlQkTlJVNU+fzUmyyIuHBIFvLQUK3WhkIH3/X3tfKt8O80EvDEPG4zGxarmd3+0zxiCIAIc1rk9QBIF6ESq028e7SmOXWEl5zwTbHZaHOpWe0aXwamIaJXZWGT1OtH8PJdMX6MWftP5ZoEP/E36YcyyEeAL8eXyQ/F+EEP8+8Bj4k/3T/yYeNvQuHjr0p3+v1/frIIMT93SmFzO5e8HRw6YvsA+CQgisMF5Rpg+cTkhvRtR/b2cHcRgorXsJNsSBwtBLpfjBddl/9SBYPOQCSacd1ljiQUoQ5cymOW9+9rN87c0vMIxTpHE8f/Ixi7sFVW8y36kOIf0k3uLQztB1LXmWUrcNWaaomxLdOAKp+l5eLzZgzd6Hx4vcGpIsIxuNsE6QjcbIuiXYlIDgaHbMXbv2NEFtqLVXfy/XK/LxjNOjCTLoldS7JY3WuK5lkKScHs+YTMZ0TYsUjtEwR+YxcRJSVTu7VF/mhEFynxWkEUMXkOaaaltRrjb+gx8IhO1xetoQxlkvJNvu+1DGeN1P2U9Dw1DRNJamqSjLvnHvhFcPwr93dHDfDr16kiSh0w1N07Ldbnt8nRdk0LXPsIztPLpAGcIkxFnRD5vifckXRd4Hxl9DTV2XZFm2H/DkubfY6Lq2h75YnDNIEaKUn8ruIDFx7DPj0WhEVZYs5zcIAVESMz0+QSpFlCpkLCmKDc+f3RDLGBlIlJK0uiXuoVNtW1Ns1pTFhiRJWK3XTKdTlLi3ZJbKc7sDJfnM5z7Pd5/9gLv5Av2qH3gGYYiQPkuzUcTp0TFiKBhGOc8ur3jy/nOyWULddkgV7JMJd789+vvw4p4Bf3i52IufNE2LORjoCM/XeKG0/5FIcdBi24HZD9cuDuye6x/vYGsHARjlB487KJH98e09+Gebhv+p3+V//aFPeK4D/qPf811f/jnrecOHJ8ZOeflelPSQFQM7uwc/obZY24tRqBeN41+8sDsDMEOntbcmxYNwOtv5IU0/zT7sje56MYevtZuMW+vB1VIIb9SkJV//xs/w6itv8PM/9wtcnL8C1TWXHz+luL7j/ct3qB7zBAIAACAASURBVIoNpqlZLO6wwgdI8p7qFgi0dXRG02xaKtMxOz7m6uaSPM+JTIjpvLmXCBSd1gRRSBQFqEix3W5xAuI0Q8UZm1ZzMTkiTrxNqdaaOJQ8PD/zpmF1xd18hbFQtS3t+o7AWOqiQ0tJkigSIQhUiBCOPElYL5YoHJ997RFt27Io5myrNXGckiRZL3g8pG00CAjDiKJsCNUUnGYwHPLKxSOK9QZsS10UbNZrmtYhQ2+FG4Yhbdv0gczL0oH0Fg2uI40VmASnO1pryOKEzXKFUorRaMIhcLlt/LAjiiKvClRuWCzuWK/XHM1GRIEjVJba1EShpC62FJuIi0cPiLOYzWpBno0w2mc9aZqTJAnn5+dsVmvu7m5YLG+Q6ogwEowGI/Jxwnabs1zd+ow0hKIsKIucMIz6Sb0jyxLK7Zau63j48CFd52jaNdsNPH7ckA4jZrMZt/M7jk6PuLh4yFe/+HXefvu3MLZBhoamqlA4VCgoqw1PPn6P09NTZrNj5DDld773PbJhxhfe+up9smAMVjneeOMNTrN/nb/+V/8aP/jhu7xx/hqnx8dkgxThWiSSo+kxgwa+/uhzqCDhJ7/4E/zNX/2/yfIhhdEEYYixXgrP6HrPxLN9VrlLcnZZ+GAwQCjJ3d0cY71liwqCPkreH3C7vXaYmByiZjyM6EVh4N3k/SAm0bTbXj+gB573QtOeMOIPvEDm/0Jwlv+/r92wwFpLp+99M7peEu1+cgXC2XsP756KaAWo/QCo6e0Aeq8N62/QLvssqxLTtbSdx1Rap9HWl+RCgXSSVmtCzL5naZ31TWDn2IuR9sEyTkKkcHSdZjKZ8m//W/8eP/mN30caDbi+XPH224+xz9/m9vkV1XJOvVzQ1FuKzZLRdECUhDgpuFrWxFFCGIYkWUoU+x7ceruCUHE7v+VmfkvSBEyOZoRhyGq1ZrndkOZewCEd5EgpKZoaoRTGwvnFOcOJt3gFQRyGYA3GdkRxgBAZZtAhw4iqqiirmmEWUWy91mS93jIajYhCL3OVqJCvfuMLrNdrLq+e4ZwjivykPstjjHboztLUJWHgg16ejXBty8lsShBK1os7NotbkjijrrR3X2zrve2pEDEq2HmldPv7HwQB1mnaqhfYDSU4b48wn88ZDccIodhsNjRKI/DDBKPvB32LxYKmrfdUxTgJQGgckjhSrNdzzh5eMO4FLj766BmnR6eMx34AN5vMaNuWwsFkMuH09Jj5/JY8zyjLDWCYzEZESYQKcopqjTY1YeidG+vKUhYFUggPGpeS45MZSgk2myVxrBCqJc0Eo3GKMzVF70BZVRVBEPD5z32ZNDX8yvOPPbA9DWnrhjzJccbLqwnbkUSKyWzCg9ceUm02XD95wuh4RqQ8nEv3Wd3s9IKjswuuPnrKK0ev0LWW8XDCQEKHpRECUThu75aouOEP/MzPcnz6kL/z//w6v/3BB4gk2ssXJqEiEH2w7DTWGMK+BVEUBU1ZEauUbJD71kgYeqiY0f1AyN9r+VKQhPtqb1dxCOHFcA4lGQ8HsfctoB5OaO+n5Np47GfTVH0Z3v3LESyFkyiXgrEoB1J4cCq262X5NNb5MhMHzmgcIc5JrPVaezIEhKClxhi1D5aH6jYeu9di5IYW7X/eSKwF5wKfikuJsIJGKrTTfiAUKKzwU0IMhCJAN4ZIBQSzU167eJ1XH7zGlx59mS+/8Sbz5095dvOYf/Ibf4/F3RXMN6xWK5IkwXatN3VCsbzdeAjQ8TGuKknDFKcF1x/d8ObnPs+22hKEKaubDZPcb9LSFehYYIQhHOW8cjKj2Pob3tSa66s78kwyilOEhdgqbNHSrEvqskBKX/aFcd4zOkouLi5YLedEeUKmHFVZkg98AFQnQ8aTKdZaHj95yvXzK+qqYzAYcXL8BkIInhYf0bYdlWvJBwPybMD8ZomUmiiOQLU4K1htC4RwpElMKzQOy20xZzyMiY5jbO1ItEPI1osbK4dzkvXaK84MBgNMZ9HGVyJeZBYwLUkW0VECHdo62uuWgUwxnaVqG4ZZiMwmdGZNUW+RMYAjP3qFzWLFZ994yM2TZ2RhihOKdDjmertm8PARs8GY1jmOHnyGLgpBKeqmIRvn5JMBTtR+Im8tVrcsbq45OTlBNw2hFphNhzWGVEY0gZdka7VhW8BgMEKFvpf68fNnnJ6eMxgcEQ4n3K4ajh6mXJy8xngyo2hrjOlIhxnZ+oR0fIyNtjR1STJQPH96xdnkAU2lsRvH8vGC4ckj5o/nOImvUJ5fcnp+RpSlBFKxXa1YqTWjccq1XlGuP6KKK1Z3BjWYEuVj2tYQ2CnJMKG1LRUV49OAn/5Xv8Ryc83tszWTYERZlrSje9WtUCq01B537DxKoqw2NE6gghQlY5Rw/p+1CCyhDHySZHvWWS/GvN1uCXprXi8h57lDKlAHVd599bkLis45lMiwzlOKX27z7SmcodlL8/1u61MRLH/cejmlPjw54MU0/ZPWDm6w+++u68AnV75HIrwviJ+S7V7L0rYlhvs+jBN+oCQd2KYjDgKkELz68BV+7ps/w6vnr5KIhNXdLR++8x7rxS1tVYLWWAxhHFDXWwDCSCBFQNv5oUVZbciyjKouiJKEwWDAs2fPkFKS5AOGo9yLUjQNSZbsp373DpM9ljKMOD09xegtYRDTti+aOXmAsO+VRYHPjnVwTyUMggDR29QGgeqVdxq0aYmjlIcPH9LUmrIsKeuGbVGRJAmzh36Qk0YppnV0nek9cSBUHi4yHI1p25q2bfzhqLxAxq714pz1kJ2X7t+hV3iSJH2Q1PsNoaSnsLVti3UexB6GikikL2Bhd2WgHygE7GxVlfC00rbyykA7+uSuulF9RdJ0LUdRRJpn/vOhWw97ChRCeTk9/95+oLRer18gMewsNZyy/XvIF5TipZQMh8P9+56cnLDZNDx58gznFG+omCRPiMZDbNcQqJAvfukraNOymF/z8QcfE6e5zz7bgqLc8NqrfriXD4cYqynqiuPjYzpraNZr0ixDRSHvvfehh22VJTLwWfrDh6/ur91wOCSMLLKRuNoLYYzyEZ/7bM67jx7TbN7H6YAgSuhE2yt54QkfwkOC7mcPP7pHD2cRu8dhX8mEvQvpTln/MBZ4+Jjet1sOg+Tha3/Sepk2udtLP259OoLlwd+zL3sPAuLLPYydb8chrur++fdT78O+1eFF1F1Pu1NeXt85P131RH4QVuDY+EEPgBEkUcx6Oefh6QOOjo/4fT/9s0RBwGsPvkjXaPTNin/4j/4u0lqeP34PnMF1Fdvr52jnGUfL7RylBGmc0JoaKYFE0omGYluR5zlltWW9KciyASJQtEYzCaYIqTg7P2FVrPebfb2+oes6qrLpA4ifmDd1RzhIvcePtQjhg0kUxmR5itY1xbbohxEBSRIzHPggKGVAknqmr7WOfJgDDm07sixBKMM085Cc1viNXWxbZtNjTo+P/QW2/v50dYcQjrarkISEkSROUoTrCOuApqlI4pSurfbK1UrcD/KstQyHQ+q6pizLfcCx1vZsn3a/kTydscHt/JkiRdnUdNZQtw3dlWXSNHRGkw8HRL0Ih21ritWCy+cBoyxHtxXolnqzwjQlJ6MhstZcP33ObHrM2dkZTVMRD4csbp+TpilHs2OefviM4+NjpJTM53M2m80ezpJl2T7wpFlKUVR9L95RVw3L5ZLhcEyWDZjP5wQ2YX634o/+4h9HpEN0UdP1z3/20RPqtuIzb77JcDRjuV4wm/4c69WK5x8/45f/xi8xmo14cvUEEQh+4o3XSbKEznaEaeSnwtIfHI3uWG3WxEnOhx99DDKk6TSvXpzf446dpW0qOhOACjDasXx+yytvvI5MFA/PH/Ktb7+DESFqmBGIDmR/SFuLUGJvm2FahzPsiSeH+3snQLNj/Bh7H0QP8bG75+/WbrB5yOR5+esnfW/X27zPRtUL0KRPWp+KYLlrAjv3Iq7qky6mEDuy/u5CSAQv4jN3APZdz+s+s+wwRqPdTvvO90cchiC8P/WkFHTCZwBda1AqIh9N+OoXvsLPfv2nGCUZttLUZcn7/+i7PH3yBID57Q1dtaVtNigFSmkenE+5KkpvKXB+gm4b38eJUqzRmEDQNDWL1Zqua4iSmNF4wOX1NXk+5PT8jKZrvGK08RPP7373uyRJwnR6xLNnz4jCZM92ubu74/hk7IOSitAWNkWBRZIkEU4IL9MmFRZBGMa02tAZS5xm1GWBcP6YsK7PuqOIum1YbLcIFAQBUeSIkpRZfkQ8OUEqWK6a3sit8w6XXYNCkKQRUjUUZeUPvs6L6wZBgJIZRoYYLcFqnKvYufR1Xcd26724fXDUe3hIEEhGo5G/R13ns+Uo6QUzDIVp0JZ9P9cYx3K59tlp3dFULV2nmd9cgm64u3pGdH6ORHPz7GOKcoVLQq4//ICIgO1qxZMPP+DNz32G8fExy+UdSZajlOD4/ILbqxWttnSmozOOIFLIIPTQms5Qtz4bjowjjr1ASbEtmU6OGQ6nvreWZJyfZQgT0Wn41V/7dX7+9/0BkiThnXc/wNiWbDjg4uIc3cJm23B1Oef6er7XJfjiV77M8w+fMTjOKbst880cu/KC06+98ciL+6qIQAUE0tFZQ9sNOX/wKlfvvcemqnnvo8cMx1PKTUlaNyTjGVE+I1OJRyJ8uGL18SUoxde/+FVuNy2/8e3vsywKBuHOOcsLYjg0RnuJNqsdgY2Qwf3wdcfW2u33l4Oec24/GNp9/3Cgo3pFr11pffizL0MID6fzu6/3fUq3T5Z+t/WpCJaH6+U0+rBZu7t4UtxPzJSyvVLyPUbq8KTZlTpwYAVh3N5P2TOuzAunEIDRjkDFBKnk5PiCL37my7xy8QqT4TF6U3P58TVt2yI2XtxUSolua2QI0go/oOhB6agER9eT+T1Yty4LlHBoAyBI85Qo8cBYg6f2BZEvMV0PiF8ulyRZ3jNQ/HsOBgOc9aduluV9nzZEoIhj/3ptv1GVCtkdJFk68DJogaCtG483DAJAgnREPZ5wVdwSGksYeZuJTVF5lXcpiJOE6dGM2nnMXV17CayuqYhjn/l1poPakKoQber+nnREQdjDpCCIA7rOAA2yN6qCXjijrvciCNbaPdTHGLMv1ejuRV+9JmWClDHqQCKPvkTb0e5279FUvo9bllu2qyVKCbZ1SVgFQMTjD97ndHRCKGBxN2e1WALep9w5h5Ne6CGO4/3nbpcB7aBBu2AghEB3BiUDojDGGEdRVAwGA5q6o6k9sgIVEyXePO29997j5OSMs7MzPvzoPa7efY/18pbXP/smxaZEa68fORh5ONfZg4eYqqOpa8q6QJuWpm0piorT8zOS0QBjNJ0xRIlXbwqCUz7/uS/z/ne+jTaWJIqpmhonerppsSXIp2hrCIOAPEpomhqLIEnHjAdDZsdHhGlKtyjQvb6ltdrTla3FauOlGLifJxwyrA5bJn4vyh8JcrtgePhvp6Z+2It8GQWze/xyED5cL8rOffL6VATLezxdDwXinh/qepAqvCih9CMUuJ5+FcV+Yupl6r0Cs+5FMBD99Ftbuk6jtUEqj3/zm9D7g1ijUGrKl774VS7OH/LwwWfIghGutXzwzhy7LTBVTNeBcC0uij09L43Ih0OGwRhtWqxtubq+ZDh4hSCYoHWL6TRFuWEUjTFa9+W/YTbxk+wwiVktN4wmY5wTNG2LwbcTxuMx69Vmf20WiwUAXeuDStd5V8Fnz684Ozv3svpxQqsLr5AuBLfzWx4+fICuvSxZEie0jSZMcpquIc1y6qqiqFqCICTOBwyHI8LAb+CTBwnWeDRClg+J05y29mK8p6evUFYbVjuR2vEIiT+Y7u5umEwmvnfYeB8UqQRRmOA6R6BaiKQv2XswsXOO0Wi0Dza70imO431vcffZCYOQ2Wx2n3kmQ/I8xznvShlFUa+47X/X0AucIU2H7V9zW3msZNU2WG1wVUNRNdwWDdOjEzrj+M63vs30+MgfbnGf4QQx+XDUO2oGiLoBqWg6L51nrKPpNOPpDCV9kLbW9znLoub46JxAaZQKcE5yfn7BN3/6ZxgNZ2w2W+7u7rzFRSCZjHOSKOTX/tavMDs+JowjnJAkYcIwHXD3/IrBeEA4AdtpVutbvva1n6Asa0yv3qSCABkEnkQQSAKb8dk3v8Sf+nf+NL/01/9Hzs/Pubqbc3bqM+04HLBc3DHLB2jdkCYxzXZNlg2otmtkp/lf/8pfRYQRf+jrXyPMFMvNkmQYs65qxC5AWoUixDpHWZYvwHwOg6e1XtMyOOin73rMh/cc2Avc7Fpuu3VYme4IATspw10APXz9l4PnJ61PRbCEF9Pm3aBl98/aF8U5d6Lpu0n34UnlCfO713m5cevLyyDwWoJS4VWfne9z4RS4gDAeMpq8zjB9nUidsLoLuS4KAhlQ3HXQWraLNXVREo4Nna5J0xg5HlOKlqOjGaMkoSxL3vrsVwjKnPl8ThRIHj9+TBRlYKzHWfa9qE1RMRpNqCtNlKQY60+69XzFZDJjtS64m6/I0+RgircDbocvcGOzLKNtW/JszGq58VqKkcdAjkdTsiwnnZ5wc3nlxTac5Oz8AZvVmtV6wenZBZuNn9SHXew1GZHkgzHIiKbVBEKiXcCTy2tmp5/lfHYMQjMcDZjNZrRNwWY1RwiHNi3n56e9yZhiOp2wWW38h1cEXm9QWA8Mr+7Fk3e0xN1m2dEay2oDvUVBHMfsBByiMCPPeic/pVC9FcEu44iiCN203iY39yZsdbNFt/7gJFJU24LxeIoV9BYbS2qxJEtSjApZ3N6itWZ2dsz5+BSHQcUJF+cPePash1KF8V7xxnvLg0BijRd7FijCICaJB0jp1W+y1A93RqMR+WhAoxu0bomikOFwwHd+61s8evQKTdXy3rsf8JXPP0KogKrp0MYwynKvYm8dl8+ekPSMr2I1Z3V7w/jBayye3+LuJNkwQ4YCKbz6v4xy1ss5R6+9wej4lMvFHa+cnlLUBZ3RPByMmUUJulrT1BXlds7V/JLuqmM4OWOC4Be+9DWeX93w7V/5Tb75B3+aV2cP+f7Hb5MeDdHGX1/dWXByT6bYuXLuFOwP48Bhhvhii63fyX1wMwfsvMOvu4B6OBQ+XNZ6mcbd89NksC/3f7f1qQiWO3Wf/b8fIdjfB0Y/ALoXBv2RCxS4F3oYu5LocAikrERIDUiENDinwIUIlyFETJacMs3PuL3ccPlsixA5g3TqhVqFYrFcUG1XSCzzj28oqxWz6ZjJNOfs5JTp5IzNZsvp0QM+/PAx7fwj0jTFaIUQDSdHIz8kiCdUVcxycUfdCtabks1mQxglJEnG0ekJYWRpO00U5oSBQ4juwFxJkmUZuvOla1VVXnA2zaiqholQ1F3NeDajXS5oOoN2YJyjKhs644iSAXFcEscJcuqdGVUUE0W+cd62kKYJUZphXcTR9Ix1UfoyP8163UFJZzuSKCCK4v2HP04HPiA6SVmUPiO1GoOfWud5hrMW03a+v+XYb6DdvW6aZl/y7pTRpQKEf7w7KI5mJ+T5ECEEcZzQKc8b7owBIYlC71PU1A1JHJP2Zl9hHGFyH5Q3mw1BklN1Ft12ZFlGsW1Iafjhd77LG1/6EnmSIpz3R3K9zFzbacIkZjAe+c8dvf93oGjqijiOidKEII7Qtd2zVqSEPBtSVy1hkHJ8fMJXv/pVVlXB3/47f5vpeMpkOGGzWfWukM+Yz28wuua3v/3r/OzP/Tytht/+7Xd4/dGbXJw94A//oV/gn2Yp3/mtf4qVku//1rcQWtJ9+7v8/B/5Y1TzmrvLW5IkYng6xDYVnQoZjWdUq0sWqw2Yis2w9OBxHNZ0BOUW6VqEazCyo1EtbVvD/JpvPHqL7Bf+CEpKFs8z/sJf/AvIYcSjn/4MlWvRfdWnnYcGAnvh5JfL731F+ZKFC/AjzxNCIA4qzMNM8uXp+GErbvcah2X9ZuMV7X/c+lQES9xL9ELsi8HzpZ4l8COnzP0FEi9cmJefv8tSlFW98IXvdYVBitUJkpQ4GvpTRkisdmzKJXe3Ht5zMh3Q2Y5Nve4VmgXr9ZY4irg4O8YZQV1qTA06gMvHt2ThhjiRmFaTRI4o9vqcQWiJjEVIr1iT50Om04i66diWNYO6YzLrQdBVQ6c7AuUzb2APu7nPxP0HZQc2Vkoxnc56GIrPFDvt1ailc6RpuhdWLauGLI0J4xjdWVTopdLOH77CdlPSNppsOgEVEEc5QkmSOCUKUwxgTMe2bIlab++gtQYXYK2m6RxZNkBrL+palyVREFBVlRdOMJqd2f3hfQ2CYD/t3N1jKSU9bRij773HvVDwAVSn0y/4IVlrwVjohwpdbycgAkUQBWjrMEKghKTVHTjoOk0SxuSB5PL2zveoxc6iWHiecxzy/PlTXNt+ojXBIU959zf5799P/dM07+9DyHy+ZHQy4vT0mMtnV0QqYDQaspjfoLUmDCRt26Hrgnd/+H2QAV1b8+7bP+TJR4+ZDHLSNGU0GKLblu1qSRLFXD79mI++9w4qTFkWK7I8YjiO9pWV0ZCOvGXvfLHllfNTdra2bVtTrdeISFKairIrkYGj0Q22sayvnjMSgvPjM8KTr/D66SO+88H3OF1d4Mb+75auD1C91umuLP6kEngXyHb7dfe8wzbcfl+/9PhlH6vD5x8Oe16+TwJFHP14mbZPR7DkpUavM/vHcI952y3BfdltrUWKQxqi9/4A8K5/L2aWxgRYAoxVOLxboHMC3YFuHcJZ2sQxTL3DnhSKIPAucjd3l7z3wS2jHPJcgdUs5luiICEOYm6u7ohFyHff/i6zyRELtpyNXyHOGtp2Q115U6zFYoM2HbrtMKYjiQ1SBAgUR7MTyroiiHozrs5ijR/OtK3uYSj0QrMpxhgG+ciX7OuNV9PpBzveu+eYIAgYDAa8+uoDFss7uq7BaBgOx4RhyGR2TF1uUTL0E+a65uTkhO12S1l3vPnm51iuNlxeXmNcSD4YEoYxuhfXTYYx4+GI55dPwfqBSpJkmE6T50OM6dDtku12jVKWJElQQuwFUrTt2GxXfU/3PohIKX1G3m+swxWGIUkcMBiMiMKEJElpGk+Z3W5Kll1BkiTeY0cbym0BxhIGAU1ZoZUPbiYIQIreZzxkuVoxzHLiPObm2SXj6RH17WNvI1HVCHzAK4qCsqj3tsZV1eC95z2PPEkyoijGuTXOiV5xyeC6jiRJ0Nrg7D2LZ7FYAd4PffvuhtPjMy4envP+77xDVVVEoWCQRCxXt0hhqasld3cS50I2hUbKjA/ff593f/A2r16cMxlmOOc4np3wrd/8x3zxC1/jV3/lb/GLf+xPIIxlfnPLtrjj4SvnREePUCHcXV/TdBonBev1mptAEYcJt9e3JKVFh455tWYtSoazCZqOyAmoGi6yEc3lLdOLAf/Nf/kX+Cu/9D/zl375v+PLv/8tL1PXH3S6F6R5GQ50iHbxVeN9dfEydRnug+Ph8OzlgLiLHfeumS9iKw/p1cfHZ4zH4x8bpT4VwdLh0LpGSNeLx/YS8G6HzOe+/+McQa96vFPPfuEC6RCHx1aGIsB1HPhuOGIVUNqSMIowWnogtFN0jaPa1EhhWOtrjBwihO+jdI2Hp+i2IlCGrrM8v5xjrSHsHNCyXjtcHvD8ecH56QlR1LG4vuLzn/88T68inj25ZJSGBBjKbYlpO9q+TSCZgP2AcmOotneMpjO2qw1ZOsC0FdZBW9bEQcB20/XZScBmXfDo0SMWyzuyLGO9WfDo0SOapuHseMrV5Q2PXj2jWN8wGWSs5yuEUbhGIRMLoWO9XflDBMd8syJJc8qiBhFwdHxGvBa0hWKczQgehMhAeIsAGZLFQ7JsiBMK3Tkm+YWfVOuWol7Q6q2nP5qKqtwc9KVgtfLSZs5KrA4ZZEcopbi6/LiXzPMBcr1ekmYJceBxlEIqTBMQuACnFG3jwBlU4HAqojGebTCMh1hjPRPICUIZe9FnDc4qhApxVtH2QVVJg24rhnlCU1dICdPTGfP5nDAfMAwdd+UNHS2KhOPhA0QNVlcMZE2pKpbLFbPZjCC2SNXRdppAGlzXMBsNEAJIwLqGMFSs1xsm0xFRHCKkoNULhuMpagFXH3+MMZrXXj1lvrjlww/fp84iwjhku90SjYbcLG4JAp+RKtkyHRq6TnNz+wHWnpBlGWal2awl/3BeIKOUf/iP/y8uXjsFKcijM54+vaNeFnzhs68znKTczS9ZL64ZhC1ae9jW+dkFtdJcbkq2bUu47DCXV0Sp4HoGhVnwx2dfRImW4vaK49//Of6Dz/+HPJZP+ft/91f4wmfeZFXV1LblRrbMzE5OTaONZ58hvMd8EEQehdJt0doP67yRhBeidELhQgXS+UpKv9jXPMReH/Y/d4fvYSDdZaFKKbTZEsX/MpTh9CfFC+nzjot9L/P0MkZq93OHZbrBl5g7WSjf/9i94r3c6Isl/i6DbbFY6qagvHnSW2NKukbTNBXOGPI8xmJwxqKURJua7WZJWxfAmK6pybMhqXEcn58znh7T2ppivSESjnJ959W8ezaLUoog9B7SHtbEHjdYNyVpnvVCuZooSrBWH0wRfUYeBjFpmpKmKWVZkqbxXpikqiovcBErvGqWP9GTJPNaf51GOigLb6Q1PB4ilOdUx3GKTiXQ4RykaU7rOrrGoGRHHPdwCylRSlC0rc/Ured4V02BRGNdQ9tU+2xCWH+/yrJECelprircf6C11j7z7vuwcRLtD8Y0TTFS7lViDvvWDoe1oi+X7zMP2+soWrEzoTMEYUwUhZSV3QfxnTp72wsD74Q3QimxpMjg3stlBxcy1sN39gpQ2vdjrTZ9IHvxMLcWojBGCAWuAieJIg876rR/jbu7O4ztqKqS6XTMdDrlhz+s2RY+GPshXCREAwAAIABJREFUkudUl2VNHKeMsjHa+vfE0qMjOoajGVVlKEpNmI7YbFLCO+El/9IxQeAhZFL5PuwwT6nXOy73hrZtydKccT4gSSLqtmNbFihnMFbCzDO+qnJLWFmUlbDpSE5n/OLv/0V+7W/8MjfhDSqNEZ0hiUNs6TG8TuBbJ9xrbfbS3FjpB7m97DdCKFyvzC2tREi138yflHEerkPu+CfFHV/q+3bWj1ufjmDpfEbprMc87mXRMJ4L7l7kfR4OdOD+hPA9KI9z3KfwQnglUQHWmr7E95L2xnQYaxDWoa3FCS/eevn8Q8L8lAfnD8mzAZ10NJstUghiGVNst2xWC4JAEQiDsIaiaFmv58ymU8JkTBxrRkevc7lqSeMpb37hLZ599B4qKlkvbsmz1ItdOIujJc99z01KicXDO+q6YbG4Yzw7wlpDUazZfRa8Wra3OQgCxQfvf0SeDzk5PuNu/twrfMcJ8/kdcZwwmcxIk6Ev4XVLt26YzWZIKVkvlgglCVxA29surDZrz3bJH/pNHwiSLKSzhjBsfZ+thx0ZGuI4ZTIZsVwu94K4QTTEdi1F2WF7tooxhrCf1EZRRNe02B73qLUmz/MeOuJFfMH2/izeM2lnnysDQZyEWGtoGoOxFhn69oOfoJu90G8SerhQEt1LrO0Ghmma7plBUsJicUeSZAgJm+2aPM+pNkvKtsZZQaetx0CmCdpCVTUvVD3b7dYfgNK7FnpLX3XfbzMeHjQcjGlqECIkCv2QbrOucFYwnY35zne+QxxHfP8H32M8HnN+fsoHH77P9fUlo9EAgx9O2bpDd4br62v/fiIgTQZEod8z27KgagRRGLBaLRhvYlRqvJC0Fjx88AgbC26vLtG54OrqOXGk2BZrxsMRWlc8fvyYQRqxdYJWWxLp6NoW3TmKlaStDc1oxcBlYEK4he6u4A++9of5b//sX+TP/1f/OW5kiXNDpjStVfsAKINe6NtoL60owBqDFQ4nAc8Ax/WyhL4FJ1E9MXY334AX23WH8WHXJ95N3neYysMkq239/OHHrU9FsNzpR4LnO1vrcXjggye8aFb0cjp9OMgBENJLegkhvATUQfNXa03beUA6ziGkReBQgUYGNUmkOD3PWSzmPH+68laoNkDYkKqsefZhxyDNvByVlNRmSxx7d0eD4OnlLYPJBef5EZ1IcT3rpt42bCtL24FBEUQxrWnAaIIkpKoNadqLBpQNDsN4PKKoKt/XTPvsSob9zXZ76MNmUzKbnaC15qOPnoCoKIqKKEo4O72gaRqur6/J0rovO3qll86gjQMZEIcKExiurm64uLhA1p3Hx0UhUeLByU4EdF2NFF5irCpqH7SHKdtNQaE1+SAnS2OWi2vKSqOE2ONXB4ORvw9dg+m09w3SHUkYEcUe8pMm/u+r6oLlckkcx3S9Sn4URdR1zSib3kOGAl+6SRUgwwClQtI05erqOXnuG/ZO+5ZNpxsvp+c8CB3AxQovpOIDdVmWdF0FhCjl6LqKOMmwAXTcG9epMMKYhqLybZKu89Pzrut6awdBEET94RDtabeDwZD53RqTCY6PThgOh7zxxmf3dE5jOoQwvPXW1/iN3/gHnEUnvPPO20ymQ5Ik2h8clW6QQUQQOJQKaBrv7aTbjig0IBVCKbSzdMZ5daWu5cnTx2zrjPF0SpYOmd9es1lcossZj6s7tpsl83LDKI9o64okyZhNT6jrLSLJkRLqZgttQxBHdG1JpEPK2zviboNbTxgGM8J8AJHim7Of4z/7k3+WX/p7/ydav41oSha9xYOUgiA8ZOYESOGrmrLy/lpeVeqAwoxAohDOX0+U7isy8wLT5+XB7mEp/vKy1qJCr1v649anIlju8I/Wmh7+4+1PpQTnvIahdS82eO+hAfePhRA+Q8Xb6eLA9kZZngljafoeoHMGnEZIr5WZpIosHZFlA26v75iOxzz5+BkgqWtHFo+oTEmAYjLMEdIxn89RMdzeXrPdbrFCMp4cUdctVduxKWrC0PHGwwvcZEpbF9SBZTod01TL/TT2cFjVdf73HY+9iVdTd8igI8tCRsPJHkaz+xAoFRIo+PjxUwaDEXk+RIUhWTZikI8Iw4jttsRZx/GRxxZu1lt0aFmuV1jt8YdVVTOZTCiKgtVqxWQyQUpJ3VZYDGma41AMh97sq6oqBoOM1WpF2W33/ty3t7eYTtM2JcPRkEBa2q70tMq2xZjOBy/hLSFwFtM2VFXRB5ZgXyl487F2L06xK4232zVBMPO4TRV6IdlOE8YJSimSXoykLL2Se6jU3s4ijj2EaDdFX9VFP4kOKMuSyWTE9c0lnW5IkhgElLUhSkJu7uaMpzO0pdfqNGyKAiE7iqJgMhr3gg8Fuu24ublhlHv41PPnzwmCgDwfMBxOKcuSR6+/wc3NHe++8x5ZnjKdTlks73j69Cmvv/4qj954jctL7xK5C+JKKZJ0gHIhTbNAO0dV1gRhTBonrFZbhPTc6jRLWZcVnRXMl0tUGCHalru7gvV6AQY+8+YIZzounzzm2eMfEEjL+HjK/OY5uu0IwwoVRMzymLIsifKMdJATbHzgMk3LNM0JV5qwC7AbQ3ddE45ySGH7pOUP/8wf4wtvfJb/4r//c8jO0WYBP/XTP8n3f/AdwlAilUdTKOU/4+PxhB+880Our6+Rwnudh6HCOF+2SwSm8+0OehGTQ+2IQ5D67rFSam+7snu8Y3ftIGq/FzD90xEs3U7M1zNsdssHyx4w/tI6zCwPU24nvE7fvsFLr768U99xngPug6VDsEvDWwbZAOcMH3zwAbPBMednJ6xXBa7zytlxFJKmGRcPzri5uaKuS/LeqtQ5Rz5I91Ne03bUZcHV8oqmWvMTb32Z49MzPlxf0TY1gQBkgHSih7jc+5kopcBJsiynqr2LXpYO9lm1Z/30Uz4RMB4PUCqkLGufzdiaJM68Ko70gPQwjDHa9v22hFaXdK3paZMBcZqhtSVN8r4v5wOKFY5s4GmUutckHI+9gtCzZ08ZDocEocIYTSACTk5OCJXig/ffZTKZEIeKotiwnM8xttsHryhU1HWFkuxbLg5DXWvP99bN3r3RYXsIUW9DQOgFSdKU1ug9pVX0QsFaa1QgSfrebdUHTeF8KwZ3r8y9K4+d8xP4slrTdW2/uSxaK5J4SqMrut7yQgTePTMIPNWxadmbl+0yzLvi1vchu44kSvflf9d1vWanPyQfPrzg//2NfwDAz//8z/a9a01RFIDPiNq2RgXsK67tdss4z0nSFGMtdbUhCLzoi+qzyV0byuAzT6kirxtrOpJe1qztaqSzBMpSl1vWyzm6a6nwf8PuvW9ubhiEp9RO0DlBV7SEZcnx7IRMGYrlmnI5Ju5a1KaiWW6JVEKixkwvjikXH3M6PeOrj77C33/3H9CaLX/uP/lPEbLj1/7ur/C9732Hr3/965yentI0Hb/5m9/i+9+riIVDhhJrellG6/eu92OXPb7XfGIceBmj+XLsOIQX7Wcj/HjloU9FsHSul89yel+Oi15B3DlPl/vdguPhEkKAtHTaN+x3vQohBLKfrGvjQbIIi5KHJ4lAa6+Ucn11y+/89mO++c1/hel4ymp5Q54PCYKIumx4+uxD7u7uKMolk7PX9xzrYZ5iO8crp8cEyvHh27/NG48+x7LYcHV3S5zFvPboDertirvrj3FW9sFNMxrOeomvGKENUoaEQcx0ErHcbAnDjtWyZFveMZse9yWfpSgK6lqTZwOsUQgC0mTE1eUN0+kR1gTUVUOapDgb0rUtaTpEx70sm3MIKTk+PmZnN1v1ikRRFHFXb5k/XjCZzDianCCk5ObmitFoyMnxhKouWK29Q2MceNUWJfzrXV1dEwjvhDgajamq0pepdUldFZRlQaAEwpl9ZimdL8PzPPcMlGKDw/YZW9/bNNoHjPEY20LXtURxuu9DVpV3u/QGVd7CII5jis22zyLafUlWu96szlqqakPdeHhXEILWNUGY0LQdy82Sk5MTkiwnH4w9315Jwjhlsao8FrYoaNuW4+NTbq6uUcoLEcf/H3VvFmPbnt93ff7DmvdU45nv7cHd7m633Z2441goSI6ChMSQGJ4ICB5AJBJBvPAESIAU+Y3hBQkpCIR4AARvEYMiISwllmPZ2IkbO+6O7719+56xTk17WPN/4uG/9q46p1vdLRuQvaRSnaraZ9feu9b+rd/v952O81g085wQLItlyeXbaz753sd8+OGH/PIv/2U++eQjfv3v/z2aZkeWZby9fENZ5pyfnzKagc3mNirOpMSYkecv1iQqJksKpUEqXAjM5kv6dkClWczGUZIkTUmTEiFEBGeUQAiHHQeaeoNaZAx9w5vXL8gkdPUOQgSLApLdbsfFK0Gbpqis50zPOKqWXF9tCMdzmpuGbr1DbOGZkhgNQTrCHEzrUXlK0zb8W//y3+B7v/IZzewlP/21n4bdNV/+V/8V4K9CkXHz8iXb7Zavf/4ZP/vlD/nVX/3V6KF6dYvQgup4xdVtTcDhhAd/B9rsu8kfhnr/MFrRXlp5GMuDhT8VxZKA82Yipe/lbnfL2/0S9j4xff8ihSAOIJAQMRFy/297j6G/VwnFHaaFA/oOQQS8g9aMVFXKfHaMkiW//du/wy/++b+AsR5Z6diRKHj5+gVKwfnDU6x3qFRRihI7jjw6e0CzvmI1X/HoaMGLP/xHPPrWN/n05ff5wuMzirLi+vItaVIgZIqQmsVshXBjXDJ7gbWOtjEMQ83J6UMEA+MAWVYhVHxThhBI04KnTz/g+WevGAbD6ek519fX7OqOB+dPcS6Q6JKzp08JAZaLE9brNdZ6ZstIvFfVbNIQ7/jg6TPW6zVp4cmLAq01P/XhQ7p2ZLdrGO3A6mjBzdXIZnuNkoEnTx9wvW3Y7eqDnDFRmt12i3MBxD7YXqJ1HHnqcaTe3ZKmMeNby6gSAhhadyAiD0O0njN2JIRA29ZkWUYiE65vrqJX42J+INvb4Om6GIBVVcWEcgsSrdntNmip8N7GLKNJJ2yEIpsMTOIInzGaliiLlUgJTd0RhOLJsw8YjSPz0W/A2Hj+tW1PWZaHbmWz2VBVFeNosRPtTMrIoURYvDd88OETzOhxbuB3/sFvcnHxhixXOK8RIvJIu65DyLiuGIYG60DrKPu0g2Oz2SCEYFEd4W1kFORZjhDq4PmZpBneSVzwVHlJkh1h3JpES4o8Y7O+Apcy9DXe9nhp8c6Q51HmilC0vceMHpEqxsFhvMekgiwr8UlGmmu6dUvepejcITNNk4zsUsNqlcB6QdJK3lw85z/46/8hx//iktvf/z2SFKzrWCxnrJ9fkWUZD+cFY5bw5X/2n+av/KW/SDuMfPryNb/+W7/D91++5rd+9//marNDCAnSI8K73eR+UvhhzdX9j/2ec/9zrR1K/ykolvCDYvYQYujX+0qeEAJe3P++OIxVIQScMBNdA5iCyuIHxBve80sMk+SRqK8eOoN3kqqa8+rVBcHDm8u3fPD487R1x+12g+k7BtNTyAylBetNjRlHUq3Js4zVYkEigODINJS5pqhyUqJ9mCw0s8WczVjHLlLsvTk1Wabi1VwMjMbHoKwhBmX13QBBIJM7i36to+xxuVxiTDTTcDaO8yBjtrgXGGOZz5fTKKsoywLKEbdzke8mJW40U7G7y0sRQtANLQg1xcn2XI+G+bykbT1mbOj7GBJ2f5EuJtni9fUGb0eUhqvLS7IsOg1VVYXA0jQ1BINM4mNSSiGn6cJ5c1hJOH9HKFZKkU6ot/N2Gm/BG884dgfXn/3uF6Kh714ueR+5DiGgtDrIR41Rk8gnIGUck4exJ83n4KYdKxw61izL4u/yETzY70vruiVL01i0iggyxb1wR1EqmjaqqR49fsqv/dqvcXp6QppqdnUsspHgHp/raMZDqqFUsVg6bw6/25r4pk+zDDmpkrK0YDSGfHJC2vNZ989XJ3mkeE1uW25SN4UQoq3epMPXWiOkJnEeOU1B0YTG0BpDJlPMYBh2Hc4sOTk6hlFHk5RM4iuNUaCFR5YFeVrx+OGHvG0+xvuRo+Up19e33LxtGMcW2+9jbTV6XjGfVczKCucDpydH5FXFJy9ecFvXGOvxfkSLuxTW++fh+8f7xfN+zRFCIJVA/CD2887xJ6JYhgAeRRBiAnLcHccqxDeg9u9Shtw4ZWYEjxAeNUn9hEwOJ00I0Ul732r3Q48dHc73021jUXHEUc5LT2M2PPvSQ77z7Y/Isorvf/Qpf+5n/yzffvmccRgikOPB+2iD1t++jCO6UpydPuSDL/40l1e3GK3xR3MePX5E3+z4uZ//FkNT021vsCJD5xW5aVHKYftryvkXJqQzRikQLIlKET6j1AXWb2k3AyHbRaeeENMdz89SbBZwruf169ecnz3EyYp13bFaZQQRWDdbtl3Nw4cPSSpBVaX0TrFaVPR9j1SeYqF4c3XLgwdn6OCo25ZFnpL2BRcXF+R5zmq1Yr1e89H3PjvEmm4bTT20SJVSLAQ6kdhxYBgbktJDiHnf8+Nq4u3F0ScpchZZircG7wzbNtKKCtTEU4yxBE5IhI6GGQ9OTyJJPDk9nAtt7WnCSFmWpHi89UibMi/kQe8tfBy5zGDxKgIGSsZIZZHAYOJOUyUSP0JZLafudiRNC2b5gl3bMU9POF2eURUZqwUk6cDZccHvtw5T39L4uP9NSMlVRq4k3bZlNC2PHj3g+fOaRC9wVrLdNozDc45WJ9HrdLnE+YHnLz6lKmekaXRON1M4XfAarTLyNIJYb9sLlMxJMoEZHKuqIkky1tua45NT2tEwSIm0hjKfIUkItiNLHSpPUYnGqgS1XJIWCZfXF4hUgHV4OxBsQKkUFTQLmfNcGM6sZSmgkA19qlFFRlYn+Jc93//4BdWHFdWJhb4nbxIYe8S5QswV424kHR/y5rOG8qynFi3faS8ZRMNyPiMRkmJ2htAZRhd0SKSL9L6j+Zx/8lvfYDSO40XJ//y//h0++v5LEIK+HZHB4IMgSzO2TUs1m0crviAOZiyIgJA2hhO6QJqUtM2IEAnWgFYJqf5jktKFEP8N8M8Bb0MIX5++9x8D/yZwOd3s3w8h/G/Tz/494N8gLgD+nRDC3/nJCua73WMsinshvIp54PtiuTda4M6Ew4e9h9670RP39xL7Mf79ncb+9++v/kdHR3zhpz7k2dOnrNdrilnBercmmTqHpmmo2x0qkTx69ITejDx98oz5coVKUp4+fYrO8sncocJlGfPFEhFgURasFksungdMBsH2jKkkhJ7RxNzwIKCoUszoMW6LtZ7j0zl5fsTb9Yh30dlZKcXr169Jk4Isy3n8+DFZWiCyqHCKO7I7g9W6aSJAkiR4ISjLcko7rLm5uWG1WnFxccGzD55gjOH169c8epAdKDFt20Z55SwSmfej7HK5ZOga2rZGDfHC07c149BMfweHFB4tJWF6/ZGx42l2W/qJBK6UIk/yCdiJHUBRFPgQu+bLyx0nJycMY3SWktPFLq5XhsmEI2EcO0w9HAjpcYcZs8KLtCCdguGUUnTSH2gl++dm7Di5FOXMZiV4xfn5OeePHpKmEfXfbDbMZmk0VJ7WQoducIg71aKoMMZgTETGvfeHLnYcR4becHx8zMtXG9brOAIeHx+T6PQQpTGOI1mWsVwu32FCVOUMhcRbR+f7iS2gDqT1LI+ep9Y4BiI9K89nJLmhmEnSskLoiuVihU+i7HIcDZmIvqZ935MqgxeSvh3RRYZ3BiPBZ0l0Rhossh9IesvPfvHLzESOSjRBSowL5GkKpYIU0iRBdiPtruOTj7/PmDuqzy05PjtnVubM0hxBig2CoGU0KRk7vBnJ83jh6MeB49WCb379K/TDwNXtDYyC+Sy+NttdzbzIEWEyG55e717E6QMk1tmppnh0EjPufQjMZjO+9KUv/cga9ZN0lv8t8F8A/9173//PQwj/yf1vCCG+BvxLwM8Aj4H/Qwjx5RDCj1wG3PEsw+HzvvOLT0wiww/aMMHdgvfwWfwg/H+fcxXHsGlXgSBM9vXWGIo8RUnLOFh+8S/8OX79138DIQS/8Vu/xsMnZ4z9AEjUlF+T5zmPnzzj+88/o6hmlNWcNMn43Bd/CiE1ZTljuVzSeIHxAhsERV5S6ZSnnxNcvIDr69fcbDoU25gj4z15VqIzQV6lrNcbqiqnH2643XYMLtInvDMsFjmroxNCiBy1zXrHdrdD50U0BQ6R2G2tnUjLEfRyzjH6O+VKRGAXlGXJMHS8efOG+Tz6QXZtP+18PdvdhtlsxmwevTfrukYqgZ2SGUWIY6IMCaqKqiHvLW1TM7QdQk6uMpM/5/XVFcE58iKnzOO4unl7NY24sdC/efMKndx5F3722Wek2fKQybPP7hYCrB0mdZNFBMfQdgdaSVmWzOdz0jSP6w3jENajZwXejdMqR5GmsUDtzZCl1PigKOcL0jQ/OLJv61sgJU8XaCUO7AStE8xoomfmZNWGiPzIsiwP52CSJGzWO25vb1ksFggRWG+adyS8+5XCvkCfnJwclE/OOdIkx4SRstQkKurV0zwnEON6pZRsG4NwnqFrUEcL5llFliuKsiIrTqjmKxyGoRtIZE6VSbzr0TphNi9BRH/YmRbkmSJVCquhMZZcpQw3Nbfffc7Db3yDyqWRuzsYTD+igyN4R5JqkKAfZKQ+I7ta0I5bJAV5Nse7QFt3zKoMJWPSKyIjzTKsFvR9zcXFawYzoqXjF77xVWQYefnmNb/7Dz+KjzeVfP4rX6AfLS9eviIFViencRJMp2YpWLSIxiHRiDpBEMiyhC/99E9RVO+O9O8fP0lu+N8VQnzux91uOv4K8D+GEAbge0KIj4BfAP7+j/kl7OV773x+j1h6n1/43mO822eGOwumve7zHYoAP7jXOIBDU3fgvcfjWKwqPvnkU46WK0IIjKOhyHLm8wpjIkHZOItSCf0wMPPw9vqKr3z9GxRFgUoykIokzVA6mktEcw6JTDO8TEAmyLQAZ9Bp3MXpVBOkQGiBzhLyqsCLFukEqUujasZZjIk0krKsDnsmKSUqy6LcsIsu3Gl6Jxe8r53dqx2KNBadYRhYLpdstrdTHo9kNjuOQMN0+/0uc58DpLVG6hhM5d3A0HYRQBkHjO0IztP1LcGaqP2f6DdKxNe8aVvMGNMRkyShqCrW6zWOqJufr5bUTfS+9CLG+wxjh3Vq2knfdXTOi2iQEgJ+cjjaU3aysgCp8cho7KD2EarvggNCKKTUh87VGne4EDvvY/zydI4MbccuEQxdfzB+kfKO53b/9++VI3up6uExO0c1qxAixA7eShKdHgwmpJSTFV28YOxf8zTNwfno5zih5HsuYVaU065SI3RClFYCk2rGuYCzUW8dvKCclTx9+gHf+8PfxdlAUZTYvtlnjiG0p0w0wVpGbxBpzqKcUYSU3qxZqBzVexIpGCIZjyAFNvi4X9YAHpd4XOZIs4LgakCjSDBjS5nnqCSJfw0/4pwmzRSZzhBuJAgYh46xa3ESHp2tqDJJmSxpJypdkua8ePGCWRG78tPVAo2nmwQc/eARwU1mKBnexyjlJFHkRYp1448sU3+cneW/LYT414D/C/h3Qwi3wBPgN+7d5sX0vR84hBB/DfhrAFmR/0CxjG5C8baRhzfxJYOPQMd+Lyn2lPaYORz4wfyevcJnP24pdbfJ3d8uy6ITjLWOoih5efWKp198hso19abm/OwBu03N+vqWWTnn2bNnAFinePb5L5DojMXxMXU7EoSiGQzaChbLYzyKLC/I0wIz5ZYXsyNUPiNfnHKS57j6OnYhQTKOI33fU1Vzqiplu92hVMJyeYbUFbc3MVY3STK6rqdUcbwVWnB8fIoNd2iqSmInOV8uQAo8AaSgzIrDa+O9P6Qm9v0dFaPve4o8OiMBrFaLyM8bR5yLOz1jorSwLEsW1YxGeLxLSDTs3txg7AjOkiYJWkucdHhjJ7Ga4PjoCCECm5vbGBHbD8zn0Zdyu93SdQ1CclDwRDpRRwiWfmiw7p6Ba1EQxuncCZFzWRYVQidU5RylEox19MYip67PBYtSKVIGUplhrYmFKJ6j9H0HMicvKsqyOujFBZ7r6yturh2vXnyKknFNkaYeZ6Mk7/r6OhYxHZjPY/Ki957LyyvyPEeg+OIXv8h6cw346PTUbBgHc+iYj4+Pubq6om1b3rx5Q5ZlLBYL1ustCkHfdlTTOqUsZ1zf3jJbzKd9a0o1myNMRlUuyTOF846hG3BCgh7QmeH2+Wt++7d+Ey0kZTmj73YoIoIOketI23L04ARZZDR24PLVNcdyjn+x5S995RdZ2Ch19ABBkEiNdyHKeYXDK4tcKPKQszRLbm1NkZeUxZzWB8auxw3XWAJjolidTln13mKT2OHHqBeB62oeLkserSp+5isPozgkSVksFry9umG92cW1zc1NZIdYuLp+y8VFyzDEBuH0+JS2MYyDp8gSLm8uOXt49iML3h+1WP6XwN8k1qm/CfynwL/OD1ei/1BafAjhbwF/C2C2WoTYsez5Uvsx+67g2b3cUchILPZ3u0gho6b0boz/4QTVAzh0jzLwPjJ2KDJlQu8GvvrNryMd/N7v/gGDNZycPaDbtmx2DWWW0w49xyfnNF3HYnWKzgYurm4oy5KslIxekOcZwTlm5ZzeQ+c8zhmWqxPyPOft2xecPPgqexLzdrtGaotHI5OCxdHy8DhTHbXEIQTKMuqo9/sZpRTHxysaE3diJ+dn0XA10axOouLF2mjBVYioi44Fsj+8Bkmi73VdMAwd5RS/a62deJ0RVd77YTa7DW29RSmJmVQ6x0dzikQdjD9uL6+wdsQicEodIjbGweLG4eA9KZRks9seOLdJoiL4NhlgKKWYzWY00/51v2vcS1n3Hpi5UhTVjNEMaCHZNS1FXuIQFOUiepV6T/Bx3BZCgPAzkFQDAAAgAElEQVSMo0Xs3xYhkKUVJEVUv0hNkqQkWUpd1/Rdgxk78jQhSWNX75yj6wZm1YK9MmSWRtf8+XyOszEq4+rqikTHbn6vSrq56UE4uimW9/j4GOcc5+fnvH79+mCMorXGjI4gJWmaM/SGeRmt8Moqp+sa0qo4oOeBqJIRQpCXBarIkYkmyMDV1SV+vOb68g3Hi4S6blFS4IKMbl+pJkkVqYudskJwfvKAYV1z/QevWbxwPP7mIzDH4AXl2RkXbcvp4we8enPD6uyI+SpDZSlj3yAzwcXVS0bbMpqBzz77jEVVIMcBa3qsN4hZzpZLyrKMF+2hpyoXJCrlzatPEanD2QjSKuGp8gTjPOvrS1IpOTteYG3J40cPuLy8RBYz3rx5Rd18gTSN65urqxs26xpn46qjyzU3t3sI5ocff6RiGUK42P9bCPFfAf/L9OUL4Nm9mz4FXv24+7tzFHpXzni/WL4/Sr//7/vf+3GypX0Y0g8W1D24BDY4HJFWcXR0xjhahmFkli/xQUFQNE1PUh7hkSRJRlGWpHmFDZ4gFVqltH3HTCsmh4DDKDaMccz0LkEKRV4sDgVpGD3jboexAa1znDcME/2lLCqEjNG2zkdvSCEjgJNKgUo0wvpD2uP+99030t2/qff0EGMldT0cdmRC3rPyl+8asc5ms4gwiyhtXK1Whw7VjEPUVYe4HrDjgDEDQ98ifFTM7O8n1QkWgW3iqCoC4PcOMBbnzbTDTbhTd00FUSaH53EfENw7AoUQQKnD/cXuTiO0QqFjsqWQBASJvAu0ChNfV+uUvR+B955+tGRFfOP6EA57UGOidNMZQ5ZnB83+nqZ0oCepWPCllDR9T1lWVFVFU8edal7EneTt7S1ZrrEmSlD34M4ejNpL8+IkYBE6iX9vcadw0okmyTTGjvR9wFGRpylexNWSEBqtJUmWoJKcbVPz5sWnONuTpgWulzhn8MZgfSATCpUqtHEwrZXGxpDZhLRXPJqdUsoKdAo2UL9+xfGHn6PZNpw+fhDXGINFeo0kXqCKUtH2oFTAiyl8Tgp8iIIGCIRxIExgkQyK1eoYM/TR3WpzxfXVxTtrNW8Huq4nzXL6scd7T1lKlsslSVGxmleMY09eRCL/g5Mzbm+3COLr+3sXb394V3fv+CMVSyHEoxDC6+nLfwH4venffxv474UQ/xkR4PkS8Js/4X0ePkdqZORH3r1pZfSzm27/zk6Td1vaPeq9Dzl6fwy/DxTdNwO9j6J3xpIkKa/eviXP5vwzf/mX+Xv/598FI/C+5fj4HDM6Oufp+hGpFbu642s/+3M07UhVVdR1SxkkiQBjB5rtJjrsuJFmu6NtNyTJBGJJjXEBHwRFFTPD+z5m+4TgqJvt1EHF5f3eKNZMb6z4ugWury+pR8/JyQk6SQ4ZMHXb4IMnzafYh3aYIiH0BHzoWBj6lqKIiH/TNKyW2aGA7elKi8UicgaLgqZpULhJxtfi7Bgt4voOa6IxhPceTECqKDsV004lT1Jq5yYT5Mk5W0tQEiEUKklohx5rzdQ5RwT95vqWsixRUh2s0fZSQ+BgGBxxxemCqKKBskoLkElMapWBVIiDICLqxwU6m1IZfZQlKpVycnqOmqzUuq6jKnI21yNu7KOpynRujaNlHC2b9Y75fMl6vebs/Ahrx2im3BqU0iwWC8wYaS3VLKcsS9oujUodoQ4XtP05ev+cTtOUoigJdu/QJSZmgkDiJx8ESBLF6Ax1uyVLCrJ5ycuL5zzKzxAelssSVMp3vv0cKQaGvmFRlthRMqIYB9AailmB1CPD6EmkIhsSqq3nOH/Ktz78ClousIOgHw2zByt2u4bF0TGffvqKJ2cfYm96HC1FOUe7gHEbnOjpxw1SKQY/0DcdUkQ3pGFsyMVIKSQyL0hVQpIWVOWSslryxsHNzRYZPA4mU5WAieLxd/b3VZVjup4i1Xg7IgaP6XtyAo+PTrA20NQdPliM/WNqw4UQ/wPwS8CpEOIF8B8BvySE+Cax9fsU+OtTwfl9IcT/BPwjwAJ/48ch4e/9rkOx3Nt0HYrapKXdH/cdRO53iIQftHObHtsdQBQkgnif+93noSiLqCgqZ3Ps6Kjmc9re0NQd3/jmn+Xis7fMsyOqcgGlRPQ9eVkgpeZ7n32fD7/4ZUIQFNWc69stdV3zYJFhrKFuWrx1MVvbjFxfXjGbFxyvVhjbM479gdYQGBjNjrq9pCzzaIbrRm7Xlu3u7iKAFAQTiddpqhmtQanYldx/7nvkew8C7AtKXIzrQ6e0pwRlWcZqtaLv20lq6A6OOkVRIGQk+KeZpsoq6romUZLt7gZFdJaPgNBI1+zAKYaxAyBRmr6JksRx6LF2jO5EQrBr2/1fON42ifG91lrGMRp4ZLKInZWIued5Xk7Fdk8DgjRTk52bQqaRkmKcRUmFkJNllxB4M+BswLloYqL3CLiPaqoszzl+8IjFYnFYPezqLaenp7x68TG77Zqj1YJdVx863b1apygi8NY0DUWRTYCPiBLILCpkDuuHaedqbM92swNi8Fye54efr1arw0UrTXKEdqQ6IXiHEoEkUSCi74FUEqUlWZHQjZbR9niRk6YJu90G40ZOHjzle88/wbmOslIY2yFEjrOBPJuh8xyV5BgLy8WC5maDHDy3l9dc/OZbvrr8kPNnx5jaIZdnaAFXL59z+vWf5/LFGz73T/0M7bbBuwHnBgoxp76ucaGmmqfUzS39YEiE5CQvGduG3owY5Xk0P8E0LYnSlLMjSHNIEzI0q6MHDP1I8J6b5pbRepD6sFrZn+e7pkPKgdxH9ZdSgrGuSZTCeo+zHfNiSeIFg+nhR+eV/URo+F/9Id/+r3/E7X8F+JUfd7/vH++P4SGEQ7e47zLfR8Xf30Xev6/9x33N6AExv1e+3/9/+9Z+HEeUiEvl1rV86Vtf5qM/+Jg0L8iOi0P+cRYCeV4CsNnVMaJV6UPyoHFR8jYMA0MXxwMRwoEDGX0Wc/phwLg4als3Ute7+LndoRIAj3EDwicYE3daaZpye3sbNct5TllGjmKaF4dOek9D2RfC+6/LHh1P0zh27t/UbVsfXos9l3LPDdwbLOyNhufz+XQS3WWrGBtzdvZ7sqg+SQ7dcWMs6+ur6F3pIodS7C9k+l0ZRTTynUw9fHwcwQuGPhaZ+XyOktFeSxBlrN4RC1JeonVKlgkE4vBGOpwjShOmC9T+4nPXyd0h5EUR1UVI8c4F2g49bduSzO4yw+NHPIeMMSRJEk1aZuU75+8wDOhJ273/W+075AcP4q5tvV7z8OHDQ4zvntnRdV2kDun4twvexa5JCKSK57ubolm0jsqwoY9Wh1pLhqFDpxqpFLe3t2w2t6RKk0zg1SgjKpwkGUmSYazn6uqGB4+eErzk+9/5mC+dP+LD1VPaumE5P8EqxeXlFc/OT+nWG84ePubyO2/QTzJUOo0S1tG3LctlRSNhlIHHJw9ZlBXrlxd3r0GRgw/YsceZIq5UtAYUQkcgqyiqScRgY7Fkao6iqB+hEoSIhijKO6zzJEnKMBpUGg2otVAE6xj7NvJjx//v0PD/1w5BQE0NaPB+ck2WTMA3oJFMRr5wN56/5y4EIJSK5PXpa4VASUUQARsEzlpGISc528TPnCgo8YgIYKg9y+OSREqO50t8LfjCo69hbz5h019wu35O02x59uhrhH5AZTk/+zNf4/LqNc+ePePm8iWLXJMkmsvrhlwH2vot3uxYzAv6puP0NMU72LYNwncgY7eDHfBjhzOG0Dt6epSQ5GmBdxvCXnLWS4L37NY3VFXFdhympyA4OjqJWmKRMrSOo8UZt5srmqZhcbSg7y0nJ8uYaKhH6rpFioSutWTZnKZpGIYRISRDb0jTlMU8j56LNrDbRvehoTd0XqKzBSIYsnLOMDQsT4+5vnmNJOCVp6lbTADjLM4NJFVCbxskjiBawCGkxFPG4kr0pkySgrHrAUGeL2hcQ6FLBjvg5MhmrBEmIAUUOqVIcmZpyeAVbTuQpgGVFahMg3RYX5OlOUprYMCNI7avGcYe5wxZPicoj5OKXiR4rSlsBvkcqz1ru2Vj13z8+7/HaAeOHjxifXFFcbSg956QKIIbSXLoxi1KaIwJdHWHUgnCxUKb5UnM7g6W9XZD03dY61Eqp0g1Dx8+njrzqK3P85K+jxcraz1FldD3Pa21KCHRSUbvHJnSZDJHWEelZnhXsToHLwbqfouzKW6YkYkZt5++wV+9YqElRkBWzIGSTGsWUhPaEawjJBZFx9X3PqIMM1bXgr/4+V+g2ErmYwkB+vaSR49LnE+wZcJlv6N68AHttuFoMWe7ewNHO66H75IpTRIEs97g3Y7Lt7foIuPo6WNmzrFrao5mS9Ca0Rl0tyPJBAiFKDTCSubHK4LzjK92ZLMKFzyurdm2HVJmSCeYF8eMg0NXDhPA45lNNECtFPXg6aWkrXJO8gXPL5//yDr1J6JY/qTH+8DN/S7poNKZOhS572hE1H4fAAEpJ7AhJkHuu1a4S+0DOF4dkecJ3hrqehu7qKqkmh9xc3PF7bonIFlvr/nqz30dlWS8fPmcD7/4paj8KOckUnHx+i1j0/HofEW93dI1l3Q7TV4knJ4/QqmEt5e3rG+jXtgaS7tr0VqiVRrdeZrbCRSSiDFGGIzOkqUFWVGy3a4PLuODGfF+X+AKsqyg0hoPSC0Yxz7ax9WW/OEDKAsuXr/hwcMzbm5uaJqa09NjVvMZJs+4Wr89WKZVVYVUUKTR+mwY497SGx9pPu0OYzqCt1xcvKat1zFHxVvGQeDGyIfz1jL2A0KEKc4gj6CDVIykDMOAcZam6ZBSx9gJqQ9CANMPWDdifIefHKS0VGSpAimRWlBlM2bzSF4PWpLmZVQNFSVKJ/QmqnSsMYxT1sseSOmneIahbvj8l77MowfPAI8ZOj773h9ye/2W9c1bHh6tqPKCG/82/h7nwQeWyyX1po5d9mhIZIK1HikDXdcfyPT9OJLmyeF8NsZEdZSIHXMI4WAKPJ/Pqes4ucznczbrLVlaTFzQgeV8Qd/3eGcxo6csolLp5qbGa0FeRXlqlq6o1yOploTgWG9uEAGU1BACgzUYH8+lJCuwweJCYNc7HtgZm4/e8FXzDP9qh05WyKMVTVMzOz3C1gabOvCBeTUjeMfp0wXb9SXzo5KLN58yWxSgM/KiiFQ2AaMxNGOU67Z9T1bkfPfNFelsRlbNONUp8ywhSTOY1GjeukOER9Ps8EQFXuY9PihG4xjGuAoZx+7Ax90njzohGIyPTAclWK0WfPrpn4Lc8J/kuI983Seh7/dE+5/tQZ8Dv1LGYngfTd9Tkw5FVgi8349i0VygaTestz0SwePzJzgcVVXx7IOSq8trHj36PNc3VxyfzHnz5iUiTfnq179BkpbgQ0wQJCU4WM0LgjfU62t2mwvWwfLw4Tkv2o48L1ienDM2MzabDT5YUp3Q9Q1KQCo9o+8JVjA6h7Cavu8iqCMDY9+hlMTbkbYNnJ2dYU3CzdUNR8fnFHl8IzgzkOqMWVlh/MCyUHz8yR9ydnbGcjVnu92wWFSkqeL6JlIolFIsZzNubm6ww0A70XTm8zkyBIa2Zbdew4T4ZmnMBx/7Dut60kSTZylD29CPLdYMB2BOKYWcDJ+HfmCfDSRktHlzztG0PXvmwn5nHUIgSzSCgBQBFQMVwVuk9EgtkIlg9BFpJVHROacbSLIURovzAWs93od7a4iEgGO0ButjVO1iueSDDz6gyEqUjKPy9cUF280tiYwXZDl5F9gxuvwYYzleFpwen3BxcUki4xguEZR5xenpjMvLS/qh5Ytf+hI6VThvqZSk72Nu/LxIDxlK2WSGMY7jAViL65IyZswnkiwr2Kx3zGYzRhdBpqqUOOeZL0qsbBmGDtN3fPjsKbM8ReIRvsXagVxn5FlJmuaoJMNrzU5HMCcESd9L6lYQ/vAVf6b4gG/ygA+Kc7wV7MxANl/gNgN6dYoPE0XOOUw/ULQJqfaE4Dk+mdMIaEeFmUQVeVEgE00mIn80zSPNanm0Ip/NSarqIPuUSoODTCeIvIgXlwcPUErQDT3rzSbu7vOEXGs8lrre4syWqii4Xd8czKTRCdaCsQ0uAEQA8Ucdf6qKpXiv6O3/fR/IuP/Ze08Q8kBUP9BKDtP8XWf5zs/jT6mKEiHCBDQF6q4mK05YHh1zefUKleQILWj6lkxyoOKkaUokqWjm5QwdOgRxCW/HgbFvaGc5UqcE70mzHVonKCnxJuDwBGfpx9hBESxSaZx3aJ2TaAUiEKwhLUoQCqUExg5Rs1ydTQT3uBtTKj6mXbubEhJj1ECSJPR9FzuhekOaanQSFQ0RZYY0mlETfMCMcVfqJss0JUFM8RzOmmivN+0FzTBivCHL4u5WiZbReZy34GJ3qVKF93sgyEyv9d3fWyEODoPe+0hwDgElPDZMFmSJQAiNEoEsUWgtQUb6z2gNDIq00EgpDv6m3kfTuCBiZyO1QoRouxbPmbgbPVkumc/nECJf1BmDClAVGcIZgvMT7eUubdSNZtoPJ5OV2nTx6waU2lKWqzhBuJHdbsfyaHHoavN8WnP8kOzrveVaJOU3MNFwnHOHCIsoE42dkhSRi5lk0UPAhTjO13XN0eIMicAHHxkKYUKQpUJqjRWBkCgM0Ylf4cCmiJ3jeDbjlBwagyzn9NaSJxp2BrYtrXKs0pQsSdjVOxZP5iReEhi5ur2iPE8ZO0umM9IkIysLEu/ZXu7YbDYEIQ7voz1IaK0Fd5fNJUXAW4e3jmEckDKe30kao62di16jSsmD5WPft5Pl3xgLb5oxeBiDwnqHVzHa5Ecdf0KK5b3IiD1xfO9dCYcu8P6xp1Psl+P3C99+DAcO3eK+GMJdpMD76HpcoMdxvCpKrOvY7m44WiypuzXDCN/6xtf46KOPOH/0mO9/9j0++uRjPvziT1HOKq5vLuk7y/wrFeVsSber6bueo0LSbTcIb7FDS54Ibi9fk+cV1xdvkAGaloh6+5Hrt1ccHVVcbWu8HZBYsI5MScosA+Io3nZ9zKfRUT9cVnMenh8jQhEzdsZ+6pw0SmWkSjKMHe3QcHt5xbNnzyiLjLbZoJWIxhdE5VSWJoCn3W7iG0mA8REwwBqsMREBTxL6oSbPc8auY2xrvLfM8oyAQgkZr+7DgPQ+cu2Ex+FxJmCtASEjkhkC0t2piXSS4UKUGUqp0GlMgGzGHmdG5oucREbX9fl8TqYzzDgZ3hYlq6MjAJI0p64bgohSQqSg70a881M3GPfUQkZjXZWm9NayOjkmy3OU0OAtwfYkE89ybFvy+YLg4vlU5dXkMyq4ubplNV8wL+d0oZ+I+1fcXt+idUmWZWgvub29xbgRROyCz89PadsWP3axg54kqLtd7BrX6zWz2YzVasXNtZtciQzO2Wi7B8xmUbCwt7gTMtLBpBZU8zldN5DImqPljM8+/ZQQDD7RNHWPFgk+SFyqcEoinSKxknO55OV3v8fXxBmPzJIFCxAJbrujfPqIq+tbHh0/BRtIMdhdTSsky0en1BeXzH7mhKvP/iFDsSOVFUdnp4fiv9lt4wUieBaLRaRwOUc+qygXS3SWI6oSVRSRZ+o8KjiKPCdLU0KZIbaBm3U3sTbiZBDECEKzWFb0rcFNiZ9Ns4sd6Soq6BSS4KDeNYzDn4Ix/H4hO/DixI9uie8f72u976Pk+7HvcKV+j9QepZR3V/L9R9v2CGl48uQJXhq6fk22qHj99vt8/ssfol94jOhobgNX1xuKdiQr51TFjGFsuV0bdte3KARJDxdvntPWN0hvwIEMBtMH+q6n3d5ys+7gaBklalXCxauXlEVG3Y8oBOmkFd6tbxmdxZqRYRxABqo0JUk0zg5sN7cE3zL0I0UZDRr8ekSnSaQn2QFwPHvymHq7od7dTvQUd4iQ9SGqepxzJMLj99EL3lNPhPQkScgzxc3NFUpYdl2UmAVvEQLGwYHzNCYixjr2cgA4EZCBab/qJ+RZAYFMaGbLEuMdXT+SZzmjMQQh4kcICKnRacxpqmYls3lJlqRIlVAWKUEqXFoyTB6NMoFyFqM3Ig9yJEwpgR5LNZ9HQ5ChxwRox4E0z3ny5EkUR2O5ub1krNeYrsX3I4s8Z2w7nI8OUNv1Bik1WZIjfGC7rTFD3M0u50uOFssDCn5ycoLzGjexIpq2ph16Xr+Obupq6qD3o/g+0TLP88mgI6EoUyqZR1R+HBi6DusM63VHWRUs54sJHQ4UMgMVu8T5/Ji+jZEdm+0tZZURshLRjmAhLSVOKmyS4RqDaA3tp1f8E8mH/PzphzxkBlZBt0Wtjuk2ax6cPKa9fE2pcspnT1lvaigLhHOUheS3//e/jStavvXP/ywbcRtFG0rQDj0ueJIsxQXPxx9/jLWWR48esWtq8sWCIAXGWrQxNE0b/S3NgG1b8IHZ2RHHOqZ9fvrZ99jVG3RaIlWCdQPDsKbKI/F8Pq9QOjZXTW8ZuprBRy171znG8Yfk19w7/kQUy/0Ri9n0xU9QLH8YXSi8/7X394w63v1/d8XSv/t1iEoI6wbatiEvUgbb8fryOULOefTwGWhHWkrevhwoZxXlfMYwDDw4e4gZe2zocX7AGEuZpPRtjQyeLE1IVMBZF0dp5+m7hkQrfDAMo0V4x6yazHCJVnXCi+lxqSgG8p7gGszY4/IcEVK0TknTBDNCXmRUswwpBNaP6BDf9CJ4Rjcwmp4kVUgZFTJ9Hz0d5ZTY6n0065Deg7pzqJcBurZlEDE8TAtJN7SYIY43aqLXCO+QCrx1KCFJExXHpxBQITmMkEbcW5mEqEMWQqCnPCJrLS74yItVCpVoRudi9jYmurH7OIYmaY5SCV5K0rK8EySImNW9t3SL7InpiarItIAIbsQ9oWK2WrFYLQ9O7fV2g+lrgreoENATId5N64zODMT1t0ApjZvc0WFPJI9UsXqYgCVnCRMImec5jsA4Runjdn2LEOLgGBVXKVHmeccv9odpqKxyikzTdR277Zq+DyQ6Tl+zfUbSZDCzN08BGIaevm9Ji3l0hPKBXCcYrbE+oAaP3XTItzWPw4ozNUMZAZkGMgiWVbVgd3PDcnmMaTsSIcG5SCmSgpvba4ax46e//nlu1teY2UBb1weruv3I3XUd8/n88JyWyyUq0eg0oVos8VqTphl5mlHXO/quQwnJ6+fPSVKJm9I5z87O2OwaxrHHOjFdoHpSHalye0d7lVku13XUiktFmpSkyR/Tdej/z+P+GP3jpEeH2/Mur/I+B1NKORXfu53l/vbxa3fQHO9Pvr20rt02LFcpXdeQF5JPPv0us/KEojji9HzF6iSnnD/Gt9G5fRxHNpsd7rHh6voivgGHgc16jc9m1Ls1ZerADgQfwFuSvAA/0tQbutGQZ+dIKenaHVIIXPCkKnpsjs2UK5SqKI9ME9y8AiFJdHzz4C14i5YyWoolCdZ57DDifCBgkcoxyxOa7TZqw0NgNP20L+uwg5moO9P9BXDWH17rWVUyn0WO22azoW1qEI6ARSvAOZw1CDzWhIhc27jLjM5Bk2PPOGKsAalJk5w0j2sWNRqGricIEAGGcWCwBhcijWywhjKdRdxGJDS7Djc4tMgoigw/UWDUbBbdegBrPUIYCHHnF8PcIjI/BkvXt0A8b9I04cmTpxyfnkdAZ3OLabe0uw1iaKOUVCiwDtsPjNZTzGZkOsFPIW95miGCxJlI7vfGH/iqe2s75w0eKGcF5+fnGO/49NNPEEKwWCzY7XZUVcXJyQlpmtK2Lev1Gq119OUsIyNhHBu2m44siQVGiHICy9zENvDMyhmjNcgkI0szumbDxx+/4vr6kjSTbM3I3ENwnkKnICB1YHcj3fevOXpt+POPHpKPit4ZmiKQKhj7hqLVLLM5m/qGxdExw2ZLeXLMcrWg3e44+alnZDf/gJOnD3njvku1KDh/+AClNe2ujllWXUff95Ezu++klYpRyMZyvjie/EWzaMIiJSdHx8g05XZ9xTC2CAVHR0u8CiAl3TByu665vV3HNFE8qVYxVFApun6I64sqJ0lzho1Gyj8FO8t3dpITnceFn6Rc/uBxHxmP6Ord+LdHy/292zoXE/OkfLezrMoZu90ti2VG1zfMZkuSVPHm4nnMCnlyDkry01/+Gt/+/W/z8tUbHj855+LiDQ9PjxDOc3V7ifCB68vo2+iUo6sbpAo09ZqT03OcNdixJy8SNuuru9CtdmBWxP2UmjJV9l6NdkLsc3Lqpj3Iu6wdub2NUkDdK7bbLcdH55RVhnGO68s3WG84Pz+jqqIrtE4k1axgN3lVdl2DTiRSldHabZIa7l/X3W7D7e0tSilOTk6mhTqEkEa1yi4ikm3dI8NeaUUkAIcQi9ck5zs6OmK0nsGMDNbgPZiuO2QndcZiAOcdHhHt7SbC+GbdsCgSSi2x1rHZbMnyinI5j7G71k6AR8bQx11UtDmLCYvWRtK2l3cXggDkZREd5YuSzz77DHTCUO/ItGRsHePQkyhBGGNR6wbDerslSeU927oYPzx0AzIQTTfajjzP0ZNYQciUzS6CGscnR0gVnd1nsxlZFg2XN5tN/BtN/pcnJyeM48jV1RV1M/Dhh88oijneGYKzXF2/IUvSaDziJjVSo6gSGI1FhugqnmUZdbOd9rUGoz0ojTcGM44M1nLddCSXA8UIXz57ynEvGfRIsSrpZxpnHPNFhWgDu/Uti2dPaExPkSxoh4Ht9TWzh8d8+9d+jZ//pT/D9cvnqCeCt9dvGT6LscDDMPCPv/PdQz782ckJ5TQRmK7j6MED0rKk6zrKVYxgdv2IZBIrTB336ekpUgtcGBm84fr2NuIOVTR6qdc1bb2NDBMdJoeminJ5TD0a+sHQNj1dO/zI2vInolh6PFbFE/o+kCOkjPQMKRH38njuK3Ociw5EIoAUEiVlXDOFmOS+02wAACAASURBVCuSZtkhg0WoSAlxYRorBQg15e3K6LLup84S11EVc4TXJH5B6CVt3ZGmjjcv/jHt9k3MZClWXLcvqVYagqO93dHpgizRVNmMoWvIlxn1rqcdevzk5J2mM7abDi0yutqwyBO6IVp4+Ym4/LZtOTk5weDoTI+wgiSp0SrFIQgEsizFec9ms2N1fMZisSLoAlkUmP6G682aWVmiteTR6cMouWsdGz1OkryCMk8RKkemBcO2jRp1GxBCM4roTSgRpOr/oe7NfmRb0zOv3zetMaac995nHmq2XS633aYLkIDuvoCbBonmDtEIqW/gAokLWvwFfYXUV0hGINESEiA1CIQsLIQEUkO72+UqlwfsqjrjPmePOcS8pm/i4lsRuU+5XC4Jt1QOKZS5Y2dEZkau9a33e9/n+T0ZpXZIVeDDQNtt8S6BXlMvTR0zYa4ePsDafrQfjlSkIFAyp8inCPQ46bTsmzW7/TIBhKWld5LeJ31fbwMhiETA8ZJCZvRhT14ZgvS4LBF1spMp2cmUoAw7O5DrBGLWyuBUcjuFEPB4fPQEFRBKoFVN7FuC7ZKOT2SQVeyajrnpmeUde51ze3ubtnbCkJc1eFjvHdFLyuyEnV1TZzlBZAwepMowhaTZ7SmLjNB1dM4yq6bkJsFRTuenCZLSjqT4qGm2DaIsqKqcSb1AoOlai7VtUhUoxXx2hilW7Jq0Xc9yhZQ5QhQU5t4VJIRgH/cMWxDk1CLj9bcf8v3vfYe75QsGH+kHSSwtQQnMJNkvc6kJT7fw0Y439QXfLB/QS8iUQjSeYugRWQWZp2FAzyv69g7pI830DbL9HdPK0F1/wl5+hHvvDYSYoEzFVThBnlus7dms7vjal99ivzvj7uUt3WoN+54JBUOdI6NCR43wIK2g1AWD9CzvlriuRRLQ1RSpAkJHAprtvqG3PS5Y1rstMQpktierPKLT5MUMoqSuz2i9Z7ADbW/JcouQu5+6Tv1cLJbwRbDvjw9s/qzHXpUKHVmVMjsupOmeqonDNuuemfnF1z5sv+8fSx7tEBwhSISI9EM7XvGXQCDPDROTpSm2lwxDT5EnbFpRFOAHtuslkyxVCpubFWVuEjDAp7C0gCT6FN51b3vzCNTIR8yOfm7nHLNphBgYXFpEhNDHgUtVVSwWC9ZNf0RRHdiYRZYm5kYpeuc4mc/pmobgHLmZEGK64CgRxwC3McNcJ4G7s4muk2lDXdfEWNB14NxAofNxazkGgQVxzCMXQtD3nqIoISZXTmYKvBvtaSpinUb3GiEjziU5jyexEFMap0AcSVFQFiWZ0eQKqsygtQJ/DwEWMkmI0tfHJHg3ClDjBfceCG2DRGQZnhQvUBTFGMxlUSanKCR9B95HhFDkZYqksN4mTa4UxLH3dvgbVUV5FLi7wR7hyweRudKaLDdkY4V3AC0ferRtm6bhB6LTIZricA7kef4TzwVjDDrPkDEJ3GOMGJnT7i0SmNbpPNhu1+x2OxBD+nt4gRSeKDXYiIieeLPj1Bsuyyk6HKR5pG6PBxECcgx3M1LiAwTvCc2OvCpZ3n2Ofl3z2ttvok+mFJ2jty2F0Wz7pJi4u7uDkAjz5+fnSAwgqfOabJaiTIbNBmU9eZVydfKioK5LNn2Dd55ixOt1XctgO85PT1hv12PmUk83OIzsYaReJbALCUIjxtgS4GbdHRMU/qzbz81iKWLy70ruHTfHBTKAFGqkoI9b5eNeOtF/g09NeqHvfaKvUtK/cAvxGHEAqU/q/YgJi4zffwy1j6mPmdwjhsHu8cEymV4ym5fY0PPVr36F5e2S7/2z38M8ehNrp0Bg1+wp65pqkiOFZrsSFHWFyRRDl/y9RmukVmya2yM5R6kkgbi4PKNp9sQgUEqMkIuBxO2EqpxQVjPS3zjlZW82K1yUeJczmVbYTh1PUjdOV7Ms4/r5Mx5dXRJCYLdaUeSGm7s7umZHpg1y1I2iBJO6oKom+CGyWa3ZtwO2b+n7jkldUc8LVFbi3HAcPmy3W+RIGy/rOTHIgwQzTbr7JPVwccDR48WAi46gNYMbUtxqTGTyOA6BjAKlNd73CBUPf7rxYqGx/UAIMFnUuNEXfZCoABwgx4cdifceqSqM0mhj6K1nOpmT5SV5VjIxJ6xefErfCebTS27tdcpHL0qc28DgQERctGiTj1BkPw7iUv/LZlmS+IyDnd2uY7i9ZTKtOC8SbWjX7I69OuctzjqEUIRw0FdqhqGlqiYYY9hsNtjQJQr+mHTZdR1CKkSXpuVhhJnYwRMjZGXO6elpqo7dQFmWDP1AZhSnXhKUwAvJsG7I95EvrQp+OXuDB2GOHiSqKJAyReOKqMArdssN1eKMwQa00RRVzdBtGAicvH3O//XRP+ZLv/pXePb0I7z0nM8rRN8RRULYdV2HELDbbLl5eYOSOdNqyjAPbG+f8+WvfY3T0zPK6YLgLWGUtZW5obg6QyHY24h3A8FZ8I71esnN9QtWmzWbzZY8L2iaLgFHvKBpdjgXMGWFDbBue7b7fUK16fqnrlE/N4vlq4OZV3uYPy48fxWGcHjOAbkPSYLy6v0gTUlBZkmQfL+d/+JQ6TC9PCzSh+GPjBIZJZnK2I+QiecvPme7W3Lx8H1O55dU2SXbd9+ma3o2uzURz3ad9ItaJY3hdD5DBE9WJGfG7e01EU9W5xQxO3IcT05O2G63FEWqINo2uXSUNOQmQTKKyrCYn2NdpBoXM2Vy5vMFm2ZP02wZ2oEwnryTcpKqPQQIybyusbs9UsLZfMann3yU2IlCIPxAu+/opWRoBgQGpQxS5EjMuOBIZovzcYFvkSoJ8Q8W0ixPcbYJU6kosvqYMaRUoCiyZFOLPc73RCwIj40RG2OCBAuJzAT45COQSoAKYwSFIjOCPMswRhFDoGl3yMGgdEaQEjOZpCRHrbF92sZ6EY/vq3OOzdYSbY+3Db31vHz5kkfvfR2TZSAGpJoymSagrmCFHPNcssJgncS5gUiHUsnTfjgeDzreAzHo0AYAjR+3ybvdjvliSmzS8NEYkzLMxxiEg374YHRo2/YIe8h0jpYm3TNDlhW0bctts6EoimRNNYaMFMollaF3HR/83p+wWt6RaYXr4WQ2p95u2XjP3g+0L/dU15Zv+0u+wil5ZyinM0SUEBQH14DHMzm9YLvaUs8XECLtakM51fjc8ccf/wj9RkVTWT7/9AdELM1sTi0k+zK9b23fo7Rku9+x2m1YzM9xCmwMnD664PHTz/no8adMZ6dcXV0xm80ocoPtG1bLa6ztqapzdCEgJnXJyWLG1dUFVZVkVf3ofLL9wH6/x5iA94HtdklWJ9OBCwGhp8xnpz91jfr5WCwjxwVJxkRDF/F+250WNvXFJwAxhiSreQXf9uPb9VeHNod/y5hsajI9YZRepsqWcQE9DpjiwU4ZcG4YEV6pnB+GDmd7+nZLWU65uDjj048fj0JhS1nlI+exIwbPJMsIQ4uSGqMzfEyBacdUwHExOZx0aZHUx5CxGBxFljSRh5+rKAqkSrKYtm2BlKnS7tPENYGVk5MhOI8TyWamtB+36ZahbzFK0uy2ZFpilCZ4B1FSVSXeg7ORvMiZTU6Ok2Rre+7u7phP62QZjQ5nPUKCMhlGZuPJLglOYr0fvbkDzncMbiDERFuyziU6OooQBX6Mv5CMiobDHhAQISaISkj+5hBEilEIBZGQxPhZ8YWLbwhJyG+tPQ5iYoxIErXe2yQR2uzXR+XE4AJ5MQFVsNvtiEiUEHjS0EopgfOBMPqOXz3ODovmFzXEqVo3QqQ8oh/b9cQYUUpTT2qeP39OOET4WkdZVkd8Xt8P1JMCIZKJIlW7hkBKVdQmp6rTZJm+o1f7EQItubq6oO+2BDfQtUuIEds5euHoRUStO/SyY5HV5E6ikQQhkCGmt1+OSaoi4DZbyiLDdT1ZXVHO5vQ3z9kbzYvdS778zb/Go1/+OuqFod3vyZyjziu2LqV+tm2L0pJ26OmGgXbooWmYLc4YrGUym47ONsN+u6PZb7k6P0NKR9c1dF2DtYrK5Qy+o+m33G5u6JpdKkJGRqvWadfhg0V6SYyC3X5DKTOKWYm1DqIm+J8eHP5zsVgKkcCs6XM1ntz3uKz7HiRf8ILfz4Lu8b8ClRBsMSHevEs9tBgEbiR+30++D5XrffV6sNt5f9jiHSSfh7hTRhBxpOtbnnz2EfvpOXU9YzY95Z1332K72rFvGy7OTgnR8+TxD3l4fokNUJdzdpstk1IyXZwRo8fhExQjSy4M5wKz2Uly35iCPLPU9TQtbl2DQOFioCxrhDRYF45pgm3bsO/WeBvYbVfMJ3NOFvOUl957bD/gXEAXmrbZ3LuaJJwukiPEDt3Y44PgAqcnF0ih8W7UOmpN9AMyChanJxAiWaYILdiuIfqIlIKszI9sxzA42r4dKzELwiKN5+blHf3QjlXVhJc3N6x2W2azGcZIhsFhlEoLpLUQBV4k656UCiMFWiZIx2B6UI6wixQTwXazPvaPD5RxoxXODscTQ+Ah9GjpQYyDlDJD6xzXRJrWgeoQUqOMQcqkkVRKjjnj9xi8QxV4YH+mbaZI2exSstlsqKoZTdNQT0qurq5Yb5ZAimyYFQVSSobeMZsuCJ7jMZHn+TEGxLuIDCAw5FmFEJKsnJDXM+anF+zaBodCSENRGoQwaGWwduC73/td2u2KosgwSjN0PYXJ0YNi92LLozDjPJuzkBMKmRPRDMFh0ASfdlnaZKAULjh0NFg/ELqIDJaYD/zw9hM+2T3hX/nl99gOa95++y183/H0gw95dveC+uEVXd/w8LVHfPzxR7R2YHIy5/HnT8iygo8+f0I2zfnFb/wSMkK0gdcfPqIuaoIf6Ps9IfbM5iVVMeNufc0wdLRuT7vfJTlRZ+mdY71eI2WGJMEykqokIwiDzA23t7esViuUmdL/ZXDwEJM4W0pJ9AlwAOMiNW6fDxXfq1fjn9SPDPH+Kn8Y+hz8pYctkdE6IeD8fYWqtPyC2yf4dNWO0WMylUTjwSNVgBiO0FZnI5/drfE+8vWvfYtcT5AKrm/u+OpXv8zNzTVvv/Ml3GDBRnzQnJ2/RttsiGLA+QGdK9TIbHTOETycnV2Mtr+AVho7BLzrGLoe7wI6z3B2i/WBLC9TxevjqC317PcbtID9fpuGDCoJtrXOkNHRdLt7crxIVZLSUE0LwmYAUjSFqadkMidGgYuRrm/G4VWgsztMZsh00mja6NBjRMIwdHQugTO2zRbfDPT9gUjd0HX74zBjs9mm7BeleO2Ndzg5PefZyxcMQ6Kuy9RHQUqBiQErAs72dGEgl5EYHHleIkWqOPu+p+1uOTlJFxxMRiCJsYchUewJ4+Ckb3DDGiUCIlqyIqJ0BBXRecrd6VxLa/dJ8D/64q31oJJGdCC5lOoR+tDs9igh6Pue/X6s6qQ6hp01t7cMtuMrX/0qJlO0T9sRveaYzaf0jWU2m7Fer5OPfNRoHlpFi8UCo9IQbRgsJssQ4+sXk5py6Nk2ewIwqWf0/Q3WO6rqBEhEdaIfBeRwd9fRvtyyuIVfmJ3zcDZjOkxxQRCjwyCJUSLiOOz0EYFHCwG+Q8QUEIePrLOeT+5e8PqvfQVbRF5cP+fmhSN6S16WvP/OO6y3qxQgdvOSvCq5rMsU31vPsSFye7OimJb8zve+w7ScoL1gdXMDwfFXf+1brLe31PMCk0m6Zoe3A873KWpCusRf6FtChLLIiTFPx0YcCNECCQDdtnuWyx3eR3QWsfYvgXQo7bIECQ5weITjYCXGkFiHIcl7vkAZSp8cHT8JfnqP4vc+jJq61CfS+otb9kPf8x4OPGav+AwhIkqmeM7g02vbocP5/njwDt2ervM4G/ne734HJUu+/e1/iTzPeXHzkrZtKbRiWs3pNy27fY8dBqb1HB8CWe5BO+zaIYVBoBAi0Ox7hFCJGIQb3xdJZnKiFuRVwnNttvtj3s5mu0o/V+zw1lHXE+KYNJjlGo3B+0gUCpEpZEjbK6nASAUKfHS46DCZRuUa18Oq2RKiICuLVEmqAINDaE8/dMdeWozxGDS2Xi+xNgWR3S1vCa1FyMRwVRoG2yRLpRPk5ZSmjTgfefzxJ1TTCa8/eJjgtHc32LYjRsiRKbUxy1EiEoKlbfcMQ4qH9b0EocirCqGysVWSNLQHgK/3lqbZjemJ4F2DiAODbUBLnG/pbEuGxEgzzg8dfd+RV5p+lXShWkVikKAyovux3qJojrrYQz/9mPWdeWazGftmy/X1NVcPErhZKUVZVSyXSyblYlQSKFarDcYYJpMZbdsfA86UENR16reZPCMEkvvLOpCa07MEU3nx/JbLBw+4fvGMf/adf8p2tyaTaSgaY2S73pC3hvz5wF8Rr/OlTUklFCYHr5JcqIgBxwFCExAhefsBlPAoKbBtujB+Z/8Bi2+9wdvf+hr/93d/h8FtuZrPqIqSUCpuuobly5fHnmxvewKRN956G5VvcS6waTockZOzUzJhePzDD2lWd0zrig8//CGb/S3VtGS+mHI6eZPtbsMwNORG8dnzZ9i+TaL/mCRvQhua/Yb5tMBk6dy/Xd3R2oxhiOgsVey73V8G6VC8D6xK/zx8vL/zyoJ2qBB/kpzo1a95lY7+6jBonLffu5VFQrTFg4NnHAoZo8dF0ePckLaCY//0GOIVDqLmNOFrmz2bzSa5OETy8+43W2b1PGkFVZb6TDLFF0ijU8XWDWQZI4pM0nWpkV+WNc6OshipRimTPzb6Dyfp4ffTWtO3qXrQWhMFx0yX3OQ4F3Cuu3/rDxX7SPdGCnRmSGBrj4gigZIBrZOTZNus6YeG3u6QRpLJyTgoCwxtN070Bd4n6ZHWmu2wpe9bEI4sU0gFm80GrQrqkwUxCrqu5+pswXqzZrvd8ujRo5FQ5JERjEm62z4EskxjtCQzAi3VuCgJXBiJ77U+HkeHKfiBOtT3/fH9s24g2u7IN0r91CHpJMU40fbDmDKZ4m5DTCqGMKoyYrwnGkHaIcQQjpXkQfx9sHhOJhO0SSL0Qw7SgVp06FUfYieur6+PQu1Xqf99b48XSWMMwmgYj287XvB9DGN8cLqw3t3djb93xEuJFunn0p3gVJe8JmecuIJcGmIEoURqdQ2WqDUgEPHAW0jhJ3IscuyQFj9nJJOTGeV8ymsnU/abazKf+sVPN3c0BOYCbm6vWW6W1NOavMh58uQJCINQKV01MwVKaeJowNis1uxWK/JcMFkUDLbD+VSNR5cC8paba7IsXbCiFPiROdANqW8Z8aOULEuDyagxBqRS2OD/ueaG/4XdBCAOpPQYCaS7JA16YhCoQX3hOa/Shl4VsgeVdGJE0onmfXrDx0avkXLcrgpklMnqGFWiHIUU/oQHhSNXqco7bFWd9UgZ0xZudLZkRPBynGB22Kblt/7Xf8Qbb7zBt771y5ydnxCD5OxykQ7qkAECJRRD15FJzdAGtKxp9z1VVdDb1OtKuTNp27hcXictpfJok6O8B5lkNkOfdHy5TlSW+fQkxdVKAyL1/bbDjvysIssNTnjaLiJIGeq5NrjBpklvD9JKyiwn2kgv78iKNKja7W4xZUHbp8opee8ly80tITiUBoFLDfj9jmbb4X1E2kgcHNILwBB8ZN/ueXj5CAj02xVXc40+W7Dte6aTtJW37Q5BpKxTbIcN6W+trSJaQdAakyenUW8HpApHq6bteuoip8gzwOGGAYJEG8nQ7+i6jr5vE+9RaazzYEEJi2w2CbE3PSM/e4PdtUVkgvWLx/TtChEdUZZURUHQOdE7ZqNvu8g162DTNFpovJBkVQ3tQHAOLyU2RnReUVRT1psOJSoiju2qZ1qes12vWN4sefDgAUu9ThnhOuPk/AxhMpquoxYV7TaSlwXOKmb1HC88mSohupR06CVRluh9x1v1jA+VZWk6rKkZtoHFSlMsp7z5+yu++f5XmZgp1mlwkXnQqD4Nj7zKMFbgcok1Gq8ElQXVD+AczVzz+LzlZr/hk7cFf/tv/hIRT24j+fSEm/U1i8sz7HpFGR3Pbz/ms9vPWC7X6NuMoihRMufNN9+mrqb8C7/6qyyXyyPUen4554MPn1GWJX/w+QdcDufoO8l0ueG1i8jVg3Menb/FaX/OR59+RDOs8E4gjaFpeoLaM50usPt04fV6QOuAkpFm5wnWYKLj4uKfT274X/hNvbJ1FghECASfIiYC95zDH78dLIzHIdArbcwfZwIeKk7Jn36x9HyTZBZSEsJ90/6wZUn6zvuKFRib+Z5hcDRNw3K5oqoqPvjgA770pfc5vzjl0Ruvc7u847UHb3H7co2SCWZ6dvWAzeqO08sHrK1jfmpGzaBit90AoJWg71vqokw9TCIhJoRZQDIEUKN+0vvE/9MqUbFjTFk1Sgm6zvLkyZNEwDYGJTTDWAHmdUluCoaux/lAnidvrh0GhiG1AEKEsq5o2o5gw9jPjbjQj7kunq7p6Ic9wTq2mw19Z4kust+neFypGHt3mqrQrNdL6qqkLkqEOGTwGLouTduVkAiZqnDgqDtMSD+J8wNdd4j1vdclKpUE/Yf30mSKLDNHl5H38eiGCV4QgkSKjHpa0TvB3d0d56aiabdoU3NyOuezx7cJOpFlaGlo2/3xeD1wBQ4RuXWdvPNCKYoio+s6Tk8XbLdb9vs9JyM6ztpEGdpsNkfq92azQZB6q7vdjrquj+aC3W7HIa44k4nUMwwDXgbOH1zgfULMyUyT5RqlBHMy/uT73+HuxRM2yw2Z1NAG1M4SPt9jrx0PZ1dMdInxYKQmM2LsjUkQjNEuafcnfUTGkFJYZMRFzyY4nqxveblf8vY7v8zV1VWiWynBfthymV9ys7xltbrjybOnFNOYLKUmp2ttgluM+UovXrygyJPe9AA+fuedd3j46II/+qM/wrpuzCa65ObmhkrPaPodzg10/Z6mTwBl7yI6zxl6h8w9g01sAO89joAqM3QwdN2KKCXT2RmTSfVT16ifJd3xDeAfAg9I4oHfiDH+AyHEKfDfA2+TEh7/nRjjUqQ96T8A/g2gAf5OjPG7f973kTGBE1J6zujfHre9IQai+dM/aoz3pPRjH/PweEwRE2E8049fk5ha3DM0x+qSQw90lJvEL8I5fryn+eNypFcHSpCS+X7/93+fh4+uKCZT8ipn3+7xMcFJd7uGhw8ukVmOMiVeaHSRTjKT58imwVlLXhWI4OmDp9nvqYuCOMqoYgSt5XF4lSDA6vgzaW3wI5LKGE1jW5p2h7E5MpfHg9F7T5mnifF+u0OGcIwX3bSOcS+PtwE8eOuOllFiZLVajduiFm+7UfDtENEjVOJ0uj5t/aVKviWkpK7K4zb1VVnQITfp6IKxB+irREgFMV1YI/64u/DeIhXH3/+Y6x09QuRofe8QI967exAKrWKSAsmcEAZePH9KWS+YZid0/YpMBaxN21epXmWluvF3TVKxw9/BGD1aN1PUQdclEXjf9/RdGjQdctwPE+4wvueJJuWO2+3DrsmNv88hA96FFIEsjU6L1iFYzllMEKn4QJBJlcLsJjVxpaDryLwhdpGs8bxenXCuT6mUGRfCtHM61BNRHHQmSXJD9IgU9k0MDpfByu7ZK0ecFkitefLsKcPQkdUFKoNtsz32tG0/MMQWIRR9Zzm47LoxOuP09JxPP3mcZFybFdZa3nvvHdbrxFUNMbmzyrI89npToSBAjReSLMPLBNQQQlBVFVVRIXNDtIYoI41vEWOEMOq+hfXTbj9LZemA/yTG+F0hxBT4XSHE/w78HeD/iDH+fSHE3wP+HvCfAv86KS/8S8CvA//F+PHPvsX0XcT4qYigkIiQqsqUIfYT7I4hHnuOYysXEMix6ok+ElwgRpBRIMa4gDRZvR8epR8hHKubI1hhXCSdc3if/rA++BFYe08wEuMk+7BoHmQjb7zxOr/5m7/Jg7fe4m/8jb/JzYs71quGu5slMUjK6QRMThckD9/+EhDw1oEfUPmE0/MJttkiC1hMppxMF+z61IR2zhF9ksV0QzpRy7LEZAV2aLi+vmWxWByrn8ViRlmWIwF9oNlFTk9P04K43uGKtPgV5QSjNJvdjt1ux3Q+B8A6x93tCp0Z+qbHBn88UK8enNPsNmy3nu2wJfgeN3S0bT9eqARKpjiApPcTlHnFgSyeROZp4e7tgNXuWLFnWjGM2T2ZKdJFLFNj2uP93+qQne6DpesGhFRjj1AcY4DTyWVGfWIkhsjgFEU+QapI23RoU/D06VOq6QmXr73J8uUNVkasa6knJVjwQ59yy1XSdyYUX4H3Sf+X5+VR5lYU5tivPMQOWzdQlDnT6QSpBD4ktcYwTmNzbZJY2jniKFmr6zpxIMdjbLVbMZ1OqU2NlGM1fHGGdT2D65P1sTDUeU5Uks9vbti0PcpGxMsd2dLxcK35tdfeYLaHYoiUQVHmJWo8H9MpJwlCputliGgiIiRNLBpehj1/sH7G6rWK6uKUr//CN7hb32GMZlJM2TZbbu9uyKsck6kE38gLXrx4gbWOPE9YtPPzSxaLU5p9y6NHj6jqksVixmeffcZv//b/g3VJMeBD2lV9+umnnJ+fE61GNpHe9fRDw+B6dk1DCBzjQ1Zdh4436FCgVUIVtmGgFTnWQWY0IVq0+elYyJ8lCvcZ8Gz8fCuE+GPgNeBvkfLEAf4b4P8kLZZ/C/iHMZVdvy2EWAghHo6v82ffQiD6VKlE4jHSU5CCxUD9hCcl0bISGnXMaBFHC2SMYvSxjtqjkNBvXnhivN9CxXhA0R+yxhnhDen/0mKZppvHvG6RFhfnHSHcV5+HZn5Zlnz88ce88eZrLFe3/NZv/W+8//5XMEXN+YNTHjx4nc16z2Adw87x4CtfYbNckRcV/X7LyfkV280aLSTnZ5c8/vTjBDmYJRBskBYTAt2QtGGHKqzvmnGrnTiIs9mMuq55+vTp01AhkwAAIABJREFUUaBrMo0KOTJCWVZMq5qXL18SY6Tp2mM2uMoNuyYNISJpOHEYGpQqvT9N0/B0+5LBNkQ/4OOAkIFymnF6NkUIwX7b4F13vKCIkETxQoDKNFlW4G3axlZFiZ4k3mWzT8Oi2WQ6cg8zNpsN/eirf+UYZbfbMZlMkEKDSAzLQ1U2DEmIv9nsOD8/p65TnreSFqxGqYjJFFU5ZT80qAjr5S1Dv+XybELbHXSnOT44PJYsMygV03aRlDOOCAxjTHGKBXZAaj/c3aVkzfPzB3Rdx2azYTqdjlni8QvDn+1qfZSRzU9Pklaz71Ejx1RrTX0+Yb1e4qPj/OqS2WKWIkNCZN8mcn1mpvzo8x/xbLvm4VffZ/eHLeLlht1Hj3kUZ/zS+Zc4txkTrSlD8oUPvk1Q5bIiIkdUnsALkSRCPiJwdLKjVYEftC+wr0+ZfvU1itM5k5Mp625DOa0TYch2FEXGx598wmaz4nZ5w0DHfHaCMdmRFaCU4vTkjGb/OT/4wY8oq4zT0wUAl5eXPH/xeVIFTC9o2z1VlbJ6+m5D2+3QWjJbTFC5xuR5olSN1bA3Hd3GYtsw7k4khdRYZ1jMK4r6DKPkX0hleb80CfE28C3gnwJXhwUwxvhMCHE5ftlrwKuZkp+Pj31hsRRC/F3g7wLkeZZgowkddJxVu3Hoo5TG+/CFKIgYI1qlH1/GFHkrSNRjIUTaSoSIFpI4OiyORJbDNhafpDQxbeWCT9VGVCCkOMIIDve+7wkxARQOlWWmFXbwR5Dp4ea9ZzabplCpuubTTz9lGAbef/9LFEWFo0VmntmkRKD47NnnKAHzbIYpC0ojmZ/MWV2/pPWOanGSOHx9cj8IGXG2P55kUspjBXWoZLIsLS5lWZJlmq7rOMBBpMyQEqztaduWIAJCpsU/nxTcrZY0TUNRVfjg0CLBRKQyhDDQ9amnZErJg6tL1us79vs7SjNFCZhU+TgEUizOp0Tfjz29SLAgok5T2qBwDspJAoaE3tK2Kcv7EDOQ+qZJApbneYo/CAFrk4soxkiWFWMI2Tg1VmrkWAqyLOW9eO9pmwGjC4oipyor8kmJ0ZIyz4jRErZ37JZ3bNc7nj35nC9/7avkZcb0Zorda9rO0ndJ7ZBlkjD2P3fr7ujtn0wmrFdbyjKla1prqScl/ZC8+5eXoyd/tzlKmJLbxBGCO/7eRyCylFRVRdN3xxCzpmkRWjF4y3q7ZnBdusBpgRKRTEtE9ExOZrTPPFoVzGYnfPJPPuBr5SVvmzOmIlXqaohoKdFKIqJEGoFDoOVIkxcACu8cyIhXlidhxTJYHpd71GvnnL97yZe//g0+efKYq6sLPv/8cz78+APOL064fHjJu+++zXJ5S9vuuTy75PnzF4QAi3k+9toDz5+/pG17Xnv0Bp89+Yg8T1g6gPl8Pu5K1JjouE+2zuoUFyZEPO3Q0A1jmJ9IUkOlNS56ggCTZ+QmSQKDlgy9pFJTsmJKt1om/e1Puf3Mi6UQYgL8I+A/jjFufpJs5/ClP+GxP6UejzH+BvAbANPJJIYQEq9wnOQEkaqlKMYeJElSc/99X31JOd5HqnhSNiCjxBNfEQqNzz/2rtK0O1Wtr0I6JIH7qvMnDYoO3/9wUB8rzi/+julrAygpub25YXEyYz47Sdviqh7bp4JClrh+wGRixLZtiVnG9GRBs1lT1PNkiRxTEAM90lockjhqG1N/1tN4KMaEwKQf24wXGo40biGT5iDEVB05l6QogxvQmSaI1LwPMkmPVKZo2z39vmU+maS88v2KsizZtXuCgKwqMDopBoKKqY8oEv3cZJKsKolB0DeWtkknXlaWaJt2BFIpMqXTdS4EEAJjMnwEGSNKC0LbEkXAZCkQ7KBfTBxJjXPj53l2bzf0ETHq66z1dJ0DhvQ96zItvD6ghCAzJdkoX3nx7Dlf/tpXqaspi8Upy/46ibMxGF2QZZIsK5AGpBxGZcbxfDlW3l3XUdeJU2mHeNRKppNfvzIoGo+tsSo+BLnFGKnqGmmH8cKQESJYbzn02Pu+TwO0oI+9/4Mc7/r5CzbLnKILFFZyricsTIVxGpMXSDsqG2SS1UmpCaQAt0ypBDIeLahSwCAct6HhxbBns/AsZgW7ruX5zQtKpWi6lijg/PyUtm24vb1ONKaqYDqr8SEymUxwLhx7y6cnF+x2u2Ol/ejRI9p2fwSTHPqTm+1yHLSl923X7LG2Oy6Wve3IigSuESLFauhao00ye7RtShIt5zVZVlCZKUqX9GKNlD9p93p/+5kWSyGEIS2U/22M8X8cH35x2F4LIR4CL8fHPwfeeOXprwNPf9rrR2DwqY9opEruGiHIirTlHJxFu3t9V2r230MKlJDHaXocBz4iRNzYrBYx3ePoFEIfKsDksYaDbCn9NCEEkPdVbNrOpR5YDPeV7eHjqwOfVyEc6UAA0QxoIcm14ObFE25vntD2d7z15rvUsznTek7ce+6unzMMBQ+vrjCV4cnTpzy6esTs8gG73Y5muyNIfRyQIDVZBsNYGRP8CDtONs+m3ZFlemwlWPLC0LaOpt0wqRWbbZO0g12HUBKhK3rfsLq+pSxLTs+nPN9skSKSiYyrh2cM/Z7TswUheHbbNZvNCpnV6EwjQobze2K0oCS6VvTdkGIRGNA6Q6uM6cWci3xB33R0TURnGcGnxUEhmZ2dEEJgu93jAWH0yDXVBCWI4bDV1Uynaau/XK5RSlMUqVJXpaKua4KPrNdrhsGxWJzSdxatDFKku/cWhMA1jkxplDAomeP9wOp2ydPPnpDVMxbzc1Yv1ohYsJhfUVc5JgsUebJtDsPL46LddQ3W9WS5xg5uPB48SklElib0QsSRJJW88zEejitPP6SJep7nKQs8pItaWSdd4Wq1Ynoy57y6IDiPtT0mU+x2O5QSTCY1MSRQce0NctXw9PnH1HcD3z55nzfvNGeuYiIyrI8onSWngJSgzLEqE2PeOQR8BBEDFs/LsOUTteY6d6wvK3b9im8/+kV+8Rtf44/+8PuEfeBmecPHH3/IZFrSDntWqzuUGP3gk5IQkjVZZxlZVnB9fc3bb7/Lg6tHWOuxfscw1Gy32+M2vK5r1pt4ZCcc/P5qvGhV84oYfZpzRIkNAe8ibbtFq4LpYp4KqOgYCAivqLIZNmRIUVAW85+6Dv4s03AB/FfAH8cY//NX/ut/Af494O+PH//nVx7/j4QQ/x1psLP+8/qVUYAjIpwjjPpHJXUKtpICqRW4AzLtFSvksZpUo8hbglJE53FECAm9lliHjK6PCOJe03m4cqkxmuFQQKaF+IsFsVIpgzoEOeLiOOo8j9IXvjgdlx60HtFuipRRIwTXLx5ze/ecoii5uHrI69NHTOo0tQ1hIC9L3vvKe6xut2gBQRvq83Ps04b9bkOMkcE5iixDuSQdUnqsrrw4Blu1bUNR5Ay2R0h/lBGFaFFSEnWyOfro2O5WZFUJOufu7gZrLbe9pe9btBS8vP2c9959i843ABRTg8kXPG8bnG0JsafIJEpnWNtgioqzk7SYdc2Su5slm+2WZrCcnyjOLx+gKNksG7wfHTAe2qZDhMDs9IRhGMjzVP1tN3tKM0lbd5v84XlWjqT4PA3yRJoyezxt2yKFYjKZoZQZp+pAVAy9IwaBzARa5wSX+poAxhTovGA+X3B18YDbXcNqtcZZmEwWSZ3QpYAw72Eyn4yVexwXQnEEo+z37fEY8d5T5PUo64rjsM19obqMMZLnSSqUZRkqS5zMruvIRpbmMAy8fPmS6bQecWwxIfEkeBuJVXl0yIRPVix/+Clh23HFnKsoeN2VTKmIUkFepKm+JOVnC8bs4/FcixERJdF7opbs+w1P/R39Wzn5w1PkZcb86oI/+IPf58M//gFnFyeJ+CMlr7/5Orc3L1OonUp24dPTE26bJk2+T85ZrRLP89t/7V+mH+VtH374MV//hfdGt1XDfD7l9ddf54c//CFKK8oyx43H/HQ+BZGOa5UJetslM8WYfeS8Q2qJbS23m1vafYfzAydXV7xc7sjmC7zPWS23VOX0p66FP0tl+S8C/y7wB0KI3xsf+89Ii+T/IIT4D4DHwN8e/+83SbKhD0jSoX//z/sGh421J0kXwljuH6s3IRIX/JUt8UFX+dNux21w/OJzeaUqvN9if5Fy9OpiGUcdnTEmgWjHwdOfdzu8dtu2I7jA4waLUJHc5OSZxjnLzcvn7J6ueOP1t5hMJpRlnZBoUifyjjI432CyIklQxnAxpZIsJLoEanB2GBmNSfZjRnlKlpnjlP7QxF4ul2kgcpBeuJCmiM0eFzzX19e0bcvj1ZKT0wWnixPKumK5XnF2Pk9Z0dHTCzgpTlguHcv1Lbt9m3LW4wAiMF9MWczm7LeQZQV9b9lvem6XS7rW8ZX3fxE3EazutgDUWYmephzu/b4dtYjVUaWQZRkqRrweM8RHwHBVVXh30GGmKXTX9vhoyfO0GEkjUUqTZ8U4KMnIypIyL3HDgBwvMkophtEQkGclpyclL58nU0BuDN722CHJX7TWlEV9fF8PFsdXMW1J75naBlLI4+NN0xx3R68iCQ/thUOcRIyRtuuOzp7Ubhjoe32kCe22A0WRHc+Zg4rj9vkL+l1DKQy1yhE7x9QU1Cpj3fWI4pWwvlfOOR8FIviULeTuiwbrPa0dICvwSrBtt/zSO3+VS7UgOs+PPv5R6gmGwG63O56jk0lKDdjtdkitWa1WZKZgsVgksEUILBYLzs7OeP31N/ne93+b09MF0+mUpmm4W748vr8HuZsQAmu7dOFXAuVECs8LHiUNxmQ45ymmBS6AD4LowXmZok+aBsqBGBXb7fb/v90xxviP+cl9SIC//hO+PgL/4Z/3ul+4hYh0HInXRI80Cq1AaYEUkY4BN/jkw/WpgpQKhJa4wuF1C1Jg0BAdPnigIbgBR0KhdSFHZQbkqIcch0QiwhAEwfljf9QbXmmLJrr24PxoF4wJtCrSAaWET/5t1yLigEAjQkRGRaFrnHb0OJTNKE2FQlHYLNGlg2cbWu5cx+1+z3wxpSg+4O133kxw17ygzzxMBtREYzrDTM/BBwa7T9Gfo0YsOEtdlNxuVigh6bcNU6Ox+y1DGDCzij4OlA+mDHbOi9UttukoCk1e52w3N+z2m3QAaoesA7/y5iMuLi4SASlLNrF+2BDJyPOcrM5Z725AR4Sasm41zqVe3bPrjo8+/4yvvKd5981TlBno9g1VHtiv9nTNjueffcisnPGNd1/H6Ixnyxv6zqNlzryomUxPCD7FEJSlINKASBgySYXSNYIkPN/ulwjvMaVDDoIiU+MgEIyMWNuhhCKGBqMzhOjx+3TIKQlDdPSxxWTghcPIALZFnFQMN5Z8WmI3PXleUoSedfMMbSJt3FFPMqyNTKdTlnd7os9QOieEPdpErNtisuT33u7W49AtG8lECms9VTUZISCCsjqj6wZqJmjpKEzG9u6Wocg4O59y9uYFd9c3hN6SD4JKeobdOm3jK6jmU6rC8DvXLzjfSd4xM77BjLfqS24bz1ZaZosTNus1J7lGxdSz9FHiR5hNZgyOSAwdTb7hMVseFyuevmuIb01QZc5FKNk/XvKh3GJMTjWtePw0zXeFTMPGs/NL+mGgF4pgCrb7Du8Du87StHcALO82/Mo3f4XdbpeKi7zms8dPUVqSZcmYXJSGyIB1A0iL9R3Nek9UEpNnZLJEStARoutxricTkuFOUNclsU5QHuczUCWZipzVBbt9x+3dNWX1pwn0r95+Lhw8kYjIIAiHHenk3jqMMEgD2pgUWL9rsb0jDomZGAFlJDpTOOGI0TOoQO96vLVJczc0GJMjtUYQ8OME+b5qHYXwY6RqjJGAw9rwipYSIFUAITpEjEmqhCBEO8qV7qUsWideZVEUYziVQhJQQt1DP2S6/njSdj2TOThPu9kxNPD5GIOxWJxidMFsdkq7bTidGoLyBDcwOTfY1qFiQOIQxrPvb6lP5yghabc7styQi5rYNgQDg7O8ePICIe5G0MTAej9wcXHGe19+A5MJmnaf7ItjhGtVVXjvjy4S17SItjtWTbrShNCO20+T2J31nGazZr0c+M4/+yO++ztr/vq/+q9xcfEuQ99S5m0K81pvuN3dse22nJycMn94iR2SQ2e/s+ANRlZob5FDmZQLbcfQB4Ym0jUNMQoqX1JkJV3viQcS+Cvk8sN2V+ts9NKPLROSWya1pZNQf71eYoPns89WrNdrzKRARklZVaxWA7rMiZ0ihuTH3u8GynLK0G+w1rNYnPLkyVPyIsUMG5OUB8FHsnzcDYzqit1ux+npeUKzDSkNstkNI/gj+cRDcCxOpvTDlu12TYgd5WnJvE6vs9lt6buG+WSKdILVyxvcascwDFzcOursnLeLM843AmVb5uUCITWxaXlYL+j9jkIJdIQiRBSaITqadkeUIDPF47jno2GJPS/hJMMbQz+ClZWUvHj5nNOTc3q7OYrrw+iGu7u7GwdTh0A3eXQrvf/Oe4l7IDTf/e53iFHwzW9+k/nplBDfo65rvv/93yVEw2A7ui7SuWE0FgQuLq5o7UAgMgyOejpJXFjhkyhfa/xg2e/b8fsbQvQgUrRuMhUE8kmOqf4SpDtGEZGlwMeU8xJFJMrAIHvAI3FInzzNQXmCjIRD3ovz+B6iSQtbpyODSl9nhcOp1KNUIW3xY4zJiTJOxqUUBJHKcyklMYg0DPLDUXAuxAHWOvr+Di4HATZEnEsZLWEUYL/axwTShDcEopA4BCERwNL23kck0O86ytIkMo9S7JZbjDE82zxl6D1ZVlCWNQ/eLHjj0WtEGQl6YNXdkBtDkWVM5xOGZY+Pjryo8BZEnfpcLlhW+yYpDvIpyliiDeRFhjYFVlqe3T1DSJjNJrho6fc7ts+uj5PIg4bUOXdshWitsTcNOivY71v2+7QN3m1bVNAjSxDyoua//K//Jy7OT/m3/61/k4cPH9C3DQ7B0O9p92uauy0buee1195CCkkxnzF0kabrsZ2lHV0q2qX3yShNXpkx5iCw36wQEko9AQVCq2NvW0rNdrfDGDfmGiVraRjiUWqilcLHSFmW6NF88OTJEy6nkyTWdhI9BsRFJFKWBGfp+ogOkbKcQkxRtaenp1ibNLAJllGSZXlyQo3KhbbvUEbTdO0o+0kWVG30KL62GGMoywIIKUGyl/R9h7jZoyYlNngGHehN5K7fM42a7cdP+ZMffIxG8M3VA95kQbnyvKZPqHRFN3iiAKMz+n2DmGc0veVMZZjBE2xPVhlirbE68tn+mn/SfUb11hXivKaZeERu6LqO86rm5uU1J9MpfbvHSc9+vxuPF8G+aYgkWV23S1EqSM3Dhxd0XcfNzTVSSrqm49d/9dd58803+cM//H85uZjx6aefUhQZITpubm4QMmJti3XJMQUBXRqEFGTGJK7p6KJLkjNLHyNBaIoyRynBfr+j6x0uRHY7h8pbnIvkdYEu/jIslkSkAe9f4VVq8FiGGJHOE6xLbhAgkBIDJWD/P+re5FeyNE3z+n3jGczsjj5FZAwZmVlZmVWiqKarCglodUNLvUHAAiGxR2zZsIIVfwASYsuqBUJiwYIWEgIB6kIgSlBkTZnVWVWZWREZER7u4X79TmZn+kYW77Hrka2qbKQGKTDJJQ+PO5od+847PM/viZWkFGYt2Oa8nkROoZymWi3e8lplS4sAbUG2cclIZXn0OlM1lCJ2PfX24NNHtVGVA/E4a6Ic5UOVkn9xDnrciKPVqs2s2JyEBh8VmPVzc8VqkWjUUjDKoVY2YwwZrSyH+z2qal68uENri/cik7m527PpJPq17XvmlFnmA8oaxrCA9zRKM8bE/TiyxMAcE8N4xZHQvt1t2Gw65nmk1MQc4lvpSlakMTwcjEdy91HqonUkxQOFgRAVKSmoQlQqCUpWhBAZl8B2c8k0wf/2v/+Af+1f/XugPduzC66vZ0wri4vD7Q0vkYr25PQx2ghWq1ZHm8XtoVuFilCURiUn5JsoFb3kqCuWPD+oE5SSn73rOgQDWDgqIDD24Xkw5khX2jCFhZx7bm9vOR8DjW+JMT8sWIzzNE1LxqCruK66tiFGqWS7rmVZRJDNqvN1zoH6xVyor8434woSjikBzYPcy1jR/Io5IKNVxSkJSitknG+ItWCx+KBQY+Lw/Iqz7oRtVJzYll6DTgXXOaa0gJLnK8SZYiSeQ6WKXvOpcskko5h04U0amHcOf+pZfKH2ngjgJDdof3O3ZgUdGZthNXesTrp1nnWs7pXVD2F8yyjJlsMw8OMf/5iUEsOwp9067u5uuL6OlCrcU6ksD8QUsFZeM6cs1Wh0TmQFZrVFH6HhJSVSTkxjJaZATpKuIF2TfVjEutZim/8XpEP/Xz+UUsx5ouk7zAwhRqq2hBowtZCWRI5CajYYmnXOmGta54wRlUTQHnSDXQfo1Vfa05Y8SjWkMrJgCetm24jnliqD/2Ncg/hz40pEl4M0pbcMTYXELMiSRYIaJb7WcEw0fHC85Ihac7+jArRs6ZaSHjR5NRdc0ZRUKaqSY8Y6g7VuRUdlcixcvbqiCY7b249pmobdpieVhr/89A1t67nbizg+hoWPn3/G+cUln/38GuMssSqq1hQrXmXnztfDvHJ7E7m7k9avFM00vs0Kn+b9LyzTjhXm2+pZsYyr571oXLfBGo2zVmJxS4ViWEJimuRQ+PlnN/wX/+V/w6PH5/ytv/U3OH/yDoe9wcwT7VS4ev6cWiuvmxdsN6dcXD5l03Rst1uUcUQlI5N5iMQhc7gfMFqxPdnIoqRW8iISElkEaLQ1dLZHa8mrltfcwIp3e8CfZRHtH3+/lBLXr1/x3V/5HlfjDeePTnhzdYNuetm+jhO1iHTt9GTH/f29zPu8Z7ORGZrz8iZsmg7tO1KU17RqJcsIEBF9jRhj2Gw6hmHPxcWjVaeZaVorUOJQxV4ZEucXz3CqsDiL146f/egvyJNDPx/4nn7KmdpwUTv8WOltgzGOl1dvOHn2BKUt4xTo+pbr/YA2Hc61K5A6kTvPK/Y8P7zhM3uP/94zDhvPQCJYJY4XPKcn5+xv7piWkVozU4502816baVV0K6YQyDmxLLqebsu8cWLVzRWgtSUhufPP2MY9jx9+pTf+73/ddVm9pydb/Hes9313NxU0l5C3IyxDIeJ8yeP0MYw50jJsNud4KxlHieWcaIxDmMUh8OB+7s3oBz97oTttmNJYvdtupZhHH/pOfW1OCwrlZATKormjdVKF2Mk10LMgTmCqRqrHEpBToGaC5VIzRnrpX0mKHTbCPZ/21HnRJwnEhI/qyi4piFn8XsbY1Faga5UJZrLUor4Y0WZREVyeo5tugjopQqpJT9UlscW/KsAjpTSujnXFFWYU0KVdX5WRSpfUnpwpeRciVFTEeJ3WDKlQAwr2eZOkfOE94F5u8pPsiUmuL55KReiLYxzgP3I/ThRjcZ6/xBRW2slRfNg0zwKm/erJvBt5aMwTqq5uubBhEU+5quHZU1QUKSSqCZQLGjVsDr914NXAVZE3dlTUsfLL+75+3//v+bv/Cu/zfd//ZsYP9KwQPWkvKYh3rxhutvjjafxG2qFeNLy7Y++QwozeiPEmOFuosQsAupc8TRYd3T6ZJYoYxW7tiC5FHIq9GtOUikKv84sQ5D0TNm2Rl599nPOd1seP3nGfpjIamFJBWccTb8BNOPtgVos1raUOgtYIwe61cn0+NFTec7alpyFuWlioqYEWjLsC5VaMqebnhDt6q4amBdQeiuHTw1iQmg0N/d3+H6DDok/+V9+n+nVLcPnA7+uH/O99gO2tqWrDb2x4mm3hu78lCEuGFPYdA2ExDtnjynDzJwyrvdkY3lpDvz5/JKX+Y7y3pa5BTpNVR5tHSorusYzDROPnz7hfrknYyj3gf1hbcONoularq+vANhsutXVVRnHA2dnZ0yHgevra7qmlWA0JTEcKAmgq2ScV7x8+ZLtVqynMYrzTqmALhW3HzDOopyl6VpevHhJSZntZkPftCgngXPn5+f0/ZZSDYcJQnSM48QwTDx+/O4voB7/qsfX4rAE3oZQKYXTVoLkjm0whqqPEgtxJhhjqFrE16VmcqniYV1mqlFUI15pvAWjUTqhtLTexipKrILHNxVlDLVK8BRosipYgxA9lGziauHhgi7IfkYpBVk27SVX+Mq8UmvJ6akUSFJFVBRJZSjrMWL0uj3SEtJVpWKKOVHXHKJCpVS92kAtZvWnH0cB4lBhlWuIQ6WzDmtaGS2I3Z6QZDGV8hpiVsXre5RVoViF3/pBliFV9BE6USipPrgc1AqCVShqtesy7AhdTvK8KcMxmlGwXqJ/KxlqMTjXYU3Hn/7oJ5ydnXBxeU530lGsIS4LKS4CChmiSMdKIsXCyxdXXJyf0TYN+2kkLrPQd6RGg1geRgYAWosc56uAXbEWlq9UlW8hKCEE0oo/m6aJ5f6Ou5srTs9P8J3l8vE5r169YZ5GCRVEr/IX5DpBvt/x60vwnOguW60ftLxflcAdb67y75las7SNJUGBEOQAPnIJYtWYUmmrIoyB5ctb3Fg5SS2Xtuc0NzTFrtIqIxzWqoVEVWX5Yaog2dJhkYWltxzKzJwj9z5yl2eWXmFOLLqxFCN6S5C5+uX5I3Zdy+3dG7QTQMh2u+XuLj78PscRhwStLet7wzAMYtvt+56maZiGmaZpOD09RSnFR9uP+NM//SG3t9ekFDg/Pxd+AcIUOD5vjftK6usafyxpAfL87vd7bFuY5+mtJFB7jPGkSbCKIQRhv/4THl+Lw1IrLfqnOaG8RqHxx1/aGAGQdnK4aTSNaTBeDAfTqBin8EAFaoxBJ0GmVIRqbpwBHNZ5AQGUCDVTaibmSC3g2u4YW0bWBVuPrWeWarICeaWOO0kgrFWCo8S2tTp4EEH9g65Oa0okpJMQAAAgAElEQVTW8iYyoIxDrd5zYx2ais1iyau5yJKrVlSUN67RjloNCiszoLigcgISYS5YDcNyjyuOthNyj1MtummZS0EZT6oCApGsHQ0potQiwAnkoFRKrXk/kldz1ANS5ZBRRUESRuPDQwmYROsGbQAVqKqIfCUO2OqFCKXBsKCLRPHWXMlRMQ0BbTZ8+eKO//Yf/C7bbc9v/s5v8NE336U9N9gaGe9v8HokxyK0JwNNgR/90e/zK7/yq1xePEVrw/3djHISf6yzQlmpukuURZA1byv3WisZRV3fwNvtFqUqwzQR0sI8j1StCGFZ6U4T1IVXr5/z6Nk7NL3j3fee8cWnLxjuJzrd0LUnxBXYUSmcnG7I5UwWFOvNLa+ZT8452la87Mf5HvBwuB8OB+Z5RGvJQso5M06JuubnWOfoLi/Ii2x5f/6Dn9BeJTbB8Fvn3+KDacPF5CX9Y6PRCVrbCHkrFbbeo4uiGRMntmExljlFJh05dIrJav745lP27xjc40umC0PnHcv6+TqKl/1ws6fNlY9//gn9sxPmvNBk/3ATZ3XsbDabtcJfODs74/7uDc4Z7u/vuc+3dN2Gd56+y93dDW/eSHZS0TOPHj1aeZ93NI2n73vR8Kq3tCmdM1rbh2iaYZhomg7XW1rfCPTZNKs6YqZWJX783GLnTCkjbdujV4feL3t8LQ5LgBgyhYDJDnTFkcnVYUsV+YJWK1BBkZRbqePi0Zb2yqIU2AJpCRQCSUtqZCoRo8SEjyp44zGNxcbIHCKZSlXiIi9qzRlfsRxUCasvFYw2+LbBWv8QW8uSHu5YRznK8W56PCyV86RSqF7htz3W6vUFy3JAjiMxV1ihqqkeBfEa56R9tlYG/qaMdK2XgDUg5cBmK2LkFA48ffoUvfQobylpphSNrpEpDGgFrbcsh0DO+1/4mZVS5FTAFWrJVDTKOEr2rDZ5VFVY/faSeRAw5/oQ7ZpLoqKJKWC08CeN1eQ5If26kWIzaxrfE+IAyRPqQvSaf/APf5fWFTa957d+43v85ve/S9N35Dkw3I5YbdnMkZIW/uwf/ZDLx6958uQZT5++zxygFk2IlWbVhUoomsz4uq5jGKYHOVGtEgUii6BKqgX0WrVYg10dUTUV/viP/pCbYc+//m/+W/imY7s95dmzZ1ypK26/vEWnhLHyZjtWUV0nAvLdbvdghTyMg7ymCpQWAg5apGRlNV6EGNdN+lF4veCbXrbpGNrOEVvPF598zv71LV/+5GPeiS0f7B6zDQ4/Vi66E3Su3JvMiXHoVGi0RVnLME545TlzPfH2QG48rvMEo3l++4qrfMC8e8LZR2dMTWRSB9Q0Y3dbutYT0cz7kf7E8urlS77zq9/hR5//hH7bQVUPtsxlmWX/oKTSN87y5uaazstc/+LiEX3T0rY9H//sL7m/ERLTbrfj6vbLh9eoaWRUstvtWMLEPM8P46TOWhqlMNZQ9Ntua1xG7m5uZZJmW+ZlZLvtBdI9BdBbrN2t790Ka7Hyyx5fi8NSgsFEKkFYfb/V4/DoZFDWMNWKypFCIZdAtqKX0q7CoshFYleHWtHVkqmkJaFUoPUGbTOpjmhdacoZmozSCds6ab+1JpQs7W1VKLWgtSwpwpywphMGJgpnPDFncsgUNZFVkJ+lgsFg1sNSeU3RldPFcpdHirWMekZbQ/UOu4DOQG3I5u6BnORXoAFATeKzTlqqIe+8bP+NQRnNHCpDkgRKbTe8ChmvI13nmZaFKe5RRlGYIFemolGtooxbahH6ta2WFCNeg4oWrRaqrSSVcZuGOM8S2KY1pUQMEjNMEQlX3nRyk6mWdfCAwpJTwiuFLhBLj1HSBjsbUOZWXDS6gqukpBluR7HhVQi3hh/ur5hedfzdv/fb3OYX2CcTN7efsbPvs+SFbdMyfPaSv/jZz3n8d7d0pzsOOcCJI92MlFiJc8bphlwUy5JRuWBKwtcJWzP32sg8uoqA2lZD1/RYLTk6cYqE3DEMB7a7J/z0L57z/ofv8ejJO8TlFuUXkrmDSbExHbVabO6I95a2b1BYuu2Wq5trcYGh2W1ECxhnsWOmcUa7Bh1kGXjTtGSbaNOBrUn0ppLDnqg3FOuI+oTpy5lP/uQzuBn4YNry0djwgWr5UHk2zhDLgHWW030id2D6jilnmph41p8ScuLLMODf3dFdaW7iwu1Tw89PIp8uA/kbO4odSbliux2jK5g6iTlBZ9hCcgPFFF6/ueLcbMiHzMKMXXOXolJsNxuOYGcodE3LcDjgvefubs/lh5c8fvyY5599zje+8Q6lFO7vrylGsdlsyTmufNiRFy++AFWwVrSqWhvmGdQU0a7SdJ5ckmiqW0M1Fu0c6fYKVQrjkKiqJVdNs+mISTEsMzEVaoBNt/2l59TX4rAspRJCpOS8UswrwtMxWKvw1VJLEPK2khaLUmmcYwwLS5I5nEgwJEgKoX8Sc8Bg0boIEdtoRi0zIRqPsQqrFKkWdJRtco4ZpSuZTDUifNcafOPJKTKHgaoV1suLBevCw/xiKW+MQjuz2m0VWVeMV/jOYzx446Xdng+kIHO+opQcuuvsUNpYiznyPLWl67uHXO9cC3ZZIIqO1BiJYghxlrs5doU4mLUdVsSU0NqxpIUj7ck6Ry5RAsucwzRrG24t22YLpbBMM/NhLxLTo94UpAJPEa0LpvHiZceQZlmilMSDRS2XIrShIjrH/BWDgFwLqwyrZK6vIz/84T1zvOZ73/+Ij77zWNBcukE/OuPNi5cUCm3b8Pv/x+/x6IP32T16xOX771HbSlAJoxWmtoT5BmUUOdaH60z5iouVtMxkwFuLUpWwTMS1zRvHkRIVrXd0XU/JmeFw4M3r12w2G77x3nt8+umnbJoNSRUZ0xoY5wMxL7hW42uDJq+g34V5WbeuSshM8zzSth7vJW7ELZk8DozzHbQKZ6BtO5EGmY6rF9f8+R//GfPnr9kEzZPmMd87fw8/ZPIh4X2HxgiAZrvB9A2RijZinz0Esce6bcPdvGcxDn2546evfsab3YHmfIM6PWXpDRaJBGaV0gEPzjaFoZZKqZWcqowZrCzYjFF0bc/9/T15nQ+LNhIab9nv98QYub8RclXrG7rdCa9fC6HIbh1GW9kHlEgIiSdPJKwhZwkXO848j9bOOheM0xilcOYYNqhoNhtSKlTlScURi2WaF67v91KlJvnZll+ehPv1OCxrhRqVEF8wctgFiClTrcKjOev6B5cOSybmyiEExmVhnCNto2SYXSo5xHWrLOLVWMVorxuFbgyLfau1Mk5aAlcqRCFW5/UELCVRlcK0DlUrcxmxuqEqWHIQ8EJN9NsNJVb28W5tjTMqJXwttNZRlaIaRVALJYcHlJpWhUpmSHtiEiydVYqycgXNisrKCdJ6d6420zmL8w3UitcBk1YU2ZIhZeZmwGSN2ciNJ5PR1sphUFcBvYKm73Da4JUnhSgSC2eIzAIKKQVtYdv165wvwyxZKQ9LIqXQWcwDzokg21pLaQuLTRAryyFQdaTqYwa8Ai2LkKPE6nhgaiMecnGjVpZ54Ud/8hP+6A//hL/9L/8O/+K/9Nvcv3yFbT2bs55ZF6bDQAqGT3/6l/DJc84+f8V3v/sd+u0JyxwJw8LJxY6SKqkuhP1EyBFVKioF7Dp/jvOMto77uwNCJ9/S9y2uNPi+o1i4/fI1d9dv+OY3P+D29halYHt6Qh4TqQa8dcQloFTi7v4WOxk2qScXkQWpBsbpFqMdxgqJaJnEulorDOM9J9ah8sShLmTb4H2Dtp54J+1neHnHh3eWu8Fz4Tp+/fR9xk+uONldcNJ35KRkdNW07GskBXHa2AKN69HakGphImNPNtyfZn52/TNedRObbz4hn3imnYi9tQKtPZXwoFs9jpkO48QRGdd0W2qtDNPIvMzMU8I6DViBcQDeSb79NO6pRdF3W+ZxJIQ9iw9cnl3SNB3GJIZ5xtpVz1sNzvbs7w9SAFgN1cM6Run7Htt4mZUv8zrCKKQqipqtlgvLNg5Mg1KGu/uBEDVd19AqzXbbP5gI/rrH1+KwBHC2WdMX5UdKKVFSlbY2WewS0bWSqUSdmUJAGYWxFtdojHcoq3DFk2ul5IhJsoCgiDRI8PiGpUxQFDpowix3H4cIz01J+JKJVkkErdJoq2TOphRhmSmxMgWB2W5tK228Ae0dZVlYUiWFhJ5BOQgqQKPQRgAQ2Ay+ENNCIrGYAMpKvozWKGMxWjaIRQHWCOhYK5IphBqxiCA3pYQuwsxMIRLmxH0T2J1uqGMla1mKHDFWShly0ehgMcpitaE17XqDiVQt0a+1ChXdeoVp5TXxQVxUx9A2rRROGVRaaBpH3/dsNr04Z7Jm02lygJt8w828p3iBJVtvwZqVvF5J5e3Q3pjjHBqM9nRdx5s3gdOzp/zu//wHjAf45/7ZDzi/OIMaaZxU+GGODFNBoWmS5vPnX3JxEemanvPLc/Z3e1xr2NJjfGUaJUO8q5lxmUm5UHMllsh2tyoJqPjW06YG7zxzCRASyxz58Q9/xLsfvE/TNXTbDcGMkiZaKq9vX3LebwhxIsZCRQ4Vay3Wdwz7A6XAputZlgAqMS8H5nFiGCcarcEramugb6Db8PzTK/KLmTYY0suBx1/M/PZ7v4YOlZPrxHtPv0WeFrxy4ERdURS0/ZZqBFvYKUMdA1lpqQC95i7u+Xgz8+XJRHq2gcuWxRSis5Si0MpgTYtr+geotKgjNNuN0I0knkOITk3TrcssSVjtu45xOrAshXGcqTVzsmtXUMpAXKOA51J58eIFOWeZW3YXInIPMzEqUU/YjaguKg9a6qIW5hhw1FVFUJhGgVx773FohmFAG4+tkaAsKYN2HSdtz+2aQIpRLNP/L6Jwj3crOSRAi4RGZXG7VE2dM+hClYAeqqnEXKhG07YyJLbWoidpNauyVAqmCAz4wbutDcQMpZKzoKhEmiRDdlUzJmeiPtLUj/rKSoyLbDuLMAmtXbf4OYtd0q5U6VqoZQ2ZytLSG+MEDmLXVsFpkRoZqJYHCnXVmlTFXplzBiNZ2dqKxGXRmaoKmYrVX8lER0EuIg5XC7W20prYr0R0GJFtYNYQrJRk+F6FFxljBCO09MTqNDKgzboEsvKmOy4iSq1kZXG1ygJt5TMqY7C+QRdHcplD36L3CtdYnPc422C8IU8re/Arj1IK1sj10DYdwzCw252QYsaajj/+wz+jbyP//N/8TbYnO8YqM60Ui7SyrqdG0YK+fvWKtuk53e3wnRXegNPk1lGqJyWNmRfqsjrCjOFwGLi4lNiJsm5OvRZQb00SrZxS5M3rK84vL3HOrou8HlIkx0QqWeyoZFTJ5CxZT0qBqdJCxpDpWs+yzCsb7Ui4TxSrUb7BmQbTdZimJYSCnjOuOFgU39o94WQ21CWyUw3xMLLxPSlkXGOgwJIiTahgKzEEijaoVEg1ixLDO+5uBv6SN9jTjtIbqq3UxonUrSrqmq5pvSZXkY/llEVXnGUMJO4kv0qv3vayR51xTm9JYWIKiPT9lqbpuH59RYoF4y19v13D2+D+7m6lKyWcs3TdhrJmFZWa3hKddCGt/bME8NV13BMfwgtb58G2KNega4MCOr9Fm2Y1HgTZsutfvBb/8cfX4rCsVKx3+MZTc6Um0QySoayMvs56lDdkXTjUEaw8UUoL/so7sdg5Y0gqQoloZSlKUvyUMWgNcwxsMpRsSIvkLDttaF2DVpGSIiEHhppFJqTWlL21ba+Wh1S4WopsjFcPuHaa7mRDrnLw4bTkmFup0Jy3uObYhVbJnzGWkjL725EQA1rJDDXntC5AHMZ4kfwYjekKyUQWFMuUmdNIJEGSuOCaKrkE5mmP6YUJWqpQ4osReXwsGVPgcH/AWUu2RRw3tZBCIpJoOkkObFuL93LY2t2W8WTH/npPNYqSJI7AKY+1TrbgFLSSxZtCEWuhNhXTW7YboZdbZQizRLjKBlqtonehoR+1eCkL01HiPApG96QY+P3/88fcvBn57b/5fb7x5B263QnXr6+5udqDkQiGptvy5s0b5nzg449/wm7bS4CbkcqizvIaFQ/drqcpME4Lm912nZtKt6NRVKOZl4W4LNSYsLXy+tPnHO7uOXt8wUe/8h1s69i1p1Azh6unXH3xBZuuYRz2tEaxvx9oNz3hIJnlOWcOByNkoVaqNonpdcwOIcF3LRenTzHF0i4vMYdAmyrP2PHNdEKrPM5saHFCNC9C0apVY7zBtQ3NLIXH1nWYnDFaUXvLpAtfhDs+TXe8OVVcvndK2ToWL1CbkBcav8Nbj0pwd7+XSs03+KZ9AKvkUsUamcvakmtQft0yJ/G3e4N13YrPk0LicJCWuu/7h033NE0PMiprvCw7vfx3XBUCXdegtMw8U0pYVx+o86pIllLXNNRq0cj7dJhGzi7PmYqlP7kA2zAuUgXHFKBkDuP+q7FOf+Xja3FYGmtoThpU1ZQgSwBtFTmJuFsbg+taVGNAJxE4GzkQbWNpXYvOUHMkR0Wa43pRQ6pVNIJFtrS1go2I3Q2PUy1WOXSVrWjMkSUX+Tcl3tEaiyDZShHXjTZYIzKjpC0qCQyEomg6D1riNm1nMU5TUJRSMVrgAijJN+kbwbVpNP2zhqsvX1FLRvtCWgJVVUKJom1r1pFEqygkprww7QcJ9NptabynpMr9zT0mFbFLeoOyhWpWgLJSZMQVPR0O3NzcoACnGxrr1ulmoerARXvBxjk67znfbTDGEtvEeHtgvN2TQ0HlSg4FWo91G6qqzClKllLj8J0Ho1Cz4tJeSKVclNhXQ6SQH4ALKWRqTWhlH3zFSomlVWnpMI4LhrRofvbTKz7++L/nb/+dv8FH3/qA83eeUkxDyZpms6VVDVvfiiRoGrk63HJ/84qPvvUd/OWpUIBK4SqOFCPGAKsMHotKGqqmazZ0TU+qwoz0ayJoJtMUy931HfvbW1rr8Kc9/tk7UBIffvhNGmOhZGKJaO8pzjKmwKk5Edp+1TjbQGtWRqPBtob33z8nUOi6DdMQeP6Dj5mvBppXEx+mHZeq5bHv2B00PZKho0vFOVEiUAvWe0LJpDngylZ+vyTdzaIWRle41gs/uP8C9+1HnL+/IzlQW4trDFmBLhmtMpSIqpJKaay8LjmLYN55i9Jvg+EkSWBGqSImjyopqDEsD1VhCIG2aViWwDwveCPxD+MwoVoBOaeYYe1CjJFF57IIGWoY96QUHmbcKRd0SqsJRJaNYV4o68cYpdn1J4SQ0X3D9uSSYjyfv/6Ui1MreUcxoOxXuBR/zeNrcVjKuhgBZeiKMkrQ/7qgq1mJ0Z7qBXpRsiZrwBiMEeV9SWI7zHOhxESOCYW8EStSDVaUiKaLSG+0b2n8FmscqMqSE0lpqnMrG09eqBAXqXjXP1Ax64wtq9XSh7SlANporNN477DOkEpenUgKVZTkoB85DsbQtj3sLPt9K9ZHa6h5FSrXSq4ZqHIgk8klE1NkzjON9/iNp/EdOSTUQWMx0g4f6e1KsmGqXmOCkfZpjgFyIalCsWu8qVEULVbDUiVEznuPdw6vHK2XVMiUi7SPqpCKkYC5kskpA4WaDRpLMRUaRadFhF2zaDutXVDFSr5OhqyOGdlfRafKVryUDMd8JVUppcUaw/1wwyeffYHvGz784F2aky3LEClarWAS1uVCxRrFNA1cv3nN++99SEliOXSbjpLWShKLToJd08iM16mGqSzrc57ISZaMNScohRQCLz57zll5ileG05MTDvv9Q3Lj7uQM2zncMhGLqC1SWsHFaxDfZrMTSs4c2Wx2qFjYuA2tS7w+QLmNbO4rj1zDhfLs5krnO0oRVqf3Xq53paTCL2I+c8ZKC6zBOkMgM5TETc18fPeGw9awfbQBb8kkrFIoa0RWlypK5VXwcEwRyOvMUnTAcsNJ1KoeNMVhKZQq8IplmVYcnlz/zsto7JhxDqshpVacfWviAEiKtbuS69iuTp0aFDkrHuRISoDNSim0dyxLxCpNsfaBTyuefzDK0rQ92IZcICS55oxz6zX2yx9fi8OyUlkIWGWoVsGqJ3R9g9UaXQ153ShnQFmJIa1KskHmeaZMSeIjZr/mUMv2T1lF8VCdonhFdQqnPN5tUKbH+xMhkddEHAKLzjhv2ZUNusI8L4x3I7lmobxkhNBiDLUI609riytQbCWHLBnJjcVvPNoqrPXEEjFOEWqEHCmxQAbrLNuzM3K9o5ZL4rxQU6auBJRxmUXCtNo15zxRouCniqrYvoNeo7wW2U5ssVO3ylTKelCKQFuo2/KGMKvMKccoMBFfULrirAegHAXBzrJtG7xt5HB2hrwElmEixYIzEdteon1HVjNzGkEpUszULDeU5szSLy0pCbzZmIgqEObIvF+IKT5MLksRKRnIz4OSyhJkpq0UWJ5we/2SJ++9z5IUr6/vOL08Y9PtONntOOkv6YeGOE2UGlhCIJZIYwxvvnxB33acnT6i9Z6p0czjQg2FnGec8Vhjsdqx8RtKyvRnJ+QQCRq5mebE3c0BQsIbzeHNDW/297xoWn7lO99m07W88/43mKaB7fmOWBN6ZU+alDjdCcSka3qu39yyvx+EA5or07iw7R+xf3GDuprwn020t5Xv6cd8uHT0ES6qozQCqhU9bkUZS9M0LMuENhqnDLkW6DxRZYKqZF0YGsMP7z7nbgP5u0949bShXzTGWTJiGRSdfKXmTCoRRSR7oS2B0Ip85xmGgSUsQtpfKU5aCSDGGBH6H4a71Y2kaRpHCAu6tlgjrXNzPCDLkebF+rFmxa1lUo4PB27berquYQnzWuEm2RnUCjlRcuSk22CtgxVqE0NFWXGoyTLR8OjJU8I4EucF7yRv/p/0+FocltSIKV+CUjjv0a0FPaP9CRXHEkUHucRIoBBb2TwD2ABq1JTrRA2i71KdA1vJvSLbDOtyxFqPVpbBTQRt6H1LdeKb1CFhqbRK0RlPPR0gKBQLNgds8sSlYpwCV8hNoZDpXU/vWsHFLYmUK7prML5B9Q3Varpi2OhCVBN5vqeoSCojQ0rksqAbTX9+xtY1LMvCMkpIlXOWNNxyff+aOV1jsaiyk69jM/q0MLuBk7MTtNWkQ6Xdbpk2cT3cZ3orgVi+BpxqSKXiTWGv7vG7xHI3EaeZqja4damA22K2j9AnJ1jTMc6R6CDkSKyFaYnkpNhfjXz7g3d53G5xScjaeS4sY6TxZ5hZNuTGOdx0y12Y5XU0hYOJZF84lJkNFpUraYrkU8NSE7ZoGmMpZHSjUc6Ak+q9Cy9Z6h2oC7S5ZFp6vvgyMM4/5dGjC77/a1tulgn92LK/uWWza9CTOD6mqfBmf8eruwO701M+2DSUzYZhXrhvG5YZGt2v9k5Ho1rqXDEZUvUscSDliGk8ZTkIKi4H/HUl+4GfXt3Tnm34y5/+Be988B7PvvW+3DibdfaaFN/ZXcCw8OMf/CFv3nzJz778BNe1vPvuM66+/Ixle0b3cmD3w9f8RjjnmbnksT6jtz21AAmgkFYPunYedTfSGGhVy0jl3lWy0jx6fUP39Iy8bfjj8QX/1/AZt+96OO9pH3cYp3H9KbksUEbSLPQga60sb5RlShkbDN6u2tiYmeYRVWHbbAghUIP44Aug1DFJ1WC0AJdBqFxt21OiX6tgqeqOS5m4dhfbbYtzh3XuCeMQWIIkWcZZrezYlUnrkcVoKSwlY6zhNg6opNDrorA3CaMyabnmzec/Ab+hbXfcLvdMOmH7DZa3N4O/7vG1OCwrilQNpSRiESpJ13botY2KuRKWQVwstqKUw9r1xUiVokWFKDSwjG8symv8aYPbuvXJlDtLjBEdZfgc6oTGYJTB6iqVYMxkvZBSpGZNyoVUIcYk/tTTHe1ZS+2kFbC1pXEeXXnYhGajqFahmioys1mE2EbL0F1XQyhZ9GlNQ9u2dE0vC5zZY4wVGUpOdE1L37QsaaLmgkfjm45ULJnwQKWe40wuBjSoWmUskSPgOUKIY1zIRUNOnOx21CXiClTTcrE9A6VpdjuStbTWYmol5sQcFpYSCdPMFA5kIplAu7Fsdh7tKm3fMMd70OC9o2mdvA66skwTy/3EYZxIqpJXeZj1jrZ3mGioJQJa+IzaCdXJaFrXsGSpqrtebJzqfsCXnqQyuUBMhR//+C9ARUpWbLovuNieoWrm5HyHygttd0KJie5EseTCsD9w++KKwTQ8evYu/WaH704Yh0xZZFyiomK8GzBWEiO9F39yLo6bq8Oql5UK3Honi6paZfExVv78x3/GJ5//HL/t8Zt21fBGrgOwBK4++4JPvviU7mRLr1qGz2/ZWEv+ZMQcKt/qHvNed0GfNDVWQgzs2h6dNDHPWO8IOTPEyKPTHXGcMav33VVxxrnzHV8Mt9wMgefmnrTxPP3ofUrnuEuB3okQv2m8VIm2wVq9Bp4JtMMYS8qBeRkfupS0CsytkpFTSklITiWtutm8LnDOGaeBeZ4Zx4PMoysPLXet4qV33q7ZU2Y9POuDrTHFglIShR2itP1dt2o204C1G2n91xHJMaeH9RBOKZGNIdZInCZqUtzfHLi+3/Pq1StiPOW9X32PV69e/RWn09vH1+KwVEqBNtS8erIFyUNdGWmFgjaVqhIgmTxQ0BzpPlY+XheyrhRVJMDIQdOJDKKUQhpnchSdoGgKF7SyD9ZE7REac0oo40Qqog3VahIVq0TPadoG1UBVCpssyiiocucUzk6hqkLREW0qSlmqhqoKx7AzrbVUtCvxJtVKIlHIVCVztiMwtnGeUuWu57VBW4OpipBl9pOq/D4pxgfwRSnpQQ9ZioJShCpfEiipWrfbLV4bqksyA6uVrmmhbXDO443YRkNNmCIXW6oZZSvaSZyE67TMm62mpIKxSkYCRxnR6tyJQ2KeAklVVHsk/xSqXT3Rvq5OI4vS8vmyTFmdH9qABWs13eUJ+x4dXskAACAASURBVGXCWvHqa20pWdNvdsxD5s//7BN+7bvfRpHpGsOwv+Yb7zwmkrGNx6bK5qxjWTRmttzd3TEvkcsn32C36xnyDCsfFQRwUfM6010fR2K8OhLvqVCRwL1SMKXQOEcJkTjNKMQk0VrHNA4QEmvIFFZ5Gjw+JJoJukPhKT3npcHmCkng0E3nWUJgg6csEesdjfeEnBiWmc4YDBWvRN5lFLwJI+2zC5hvubr7End+ju48ylt0SZhciTVinSgV8mr5BTnISi1YW/lqtvkRan38t19Y8PxjbqyjJ/7t4SiFChjhCZCh1nVmKEbZJcxQ5ZDMSeIiak0rvFm+7rIsQodSIvY/HoylpBXfph4wccqI/bLiqI1HWQ+LMAFKkqWjsYppHn7pOfX/JAr3feA/B56tv81/Vmv9T5VS/xHw7wKv1w/9D2ut/936Of8B8O8gi9d/r9b6P/zyb6JR3Ra1osGoGrqOqkUcnEqmc5KtnJAXl6TAVDQO5S2u69E2QTOTXCLpKEsY1qF3rWQTWcqEmiNLyhidsFaDciSlMY1IXmqMZG2YYpShvnOoraU/PWNzeYHpFboRsXqNShZKJVEpzHkmKTksUy3UVPH6YvWqJKo2VMCuEOCqJHZgVJWYw3ohZRotWjljDbHrcF4G3W3bo3wllciQVxHuMpJCYRnEFx+XG7wzeC1wgFIVkUCpgYxIk4x3nDy+QCVY9qO4f9C0XYPte1wnURKxBPGCm4puNd1Zw+U3TgjDgp6BdiFqy1wGsJXGe6w3aKclaGwJHPYD4c3C3eFAptJcAJ1DW8XmYkNrLXlpSSmS7wphnoQjakT4XmNBG4NvnTwfDk7ff8yj0ycMtwMvP39BjYVxH/h0+JK+b/nk48/51e9+i2dPHrHfHzhMM0pVdmc7iqm0255+u+EinUsLvh+J5RXf/c73YZF5akoJ3zqmcSGGwDSNzGs+0bHCqrlgrCPNhSrjdmxFCFmq4JRGh0JjCiZV9DIwDveoqokKzi6fEG9niJUnZYe/DXzn0PPe2RN2C/hUca4hpsQQ9vS2pZSFy67nahyIGtzJhpwLS4rU1YZqNSgqby49f/D5n/IqDjT/zAfYD8641QlTM7uupcyRIS9UOprWEsIiOe+rjjGn41JHr/Eb6oGOdDy0jjg6sedK6mjOkul9OAS0USvUeMM0TWJ/rJpS5KYIoE0hpolSDdM0EtMs5K62wzX9g8ur320B/SCQb4wWi6+SJZMg8YYHsrwkly5oZ0g6y00qB2qG/d09yxRY5pllGnnx/PN/usMSmZD8+7XWP1BK7YAfKKX+x/X//Se11v/4F849pX4N+LeBXwfeBf4npdR3a61//bpJG0y7Ra0XoVIG02zQul31lom4yEYyq0wtBoohpfywATS9QxWDbjJBiexmqjNpSTSrlhJbwSSp9koBnbGNxjQK5SuqE0F7Ux3jqClaUb3l7Nk5vd9JzvTGEwmoGrFIFTcuB2KJpLKAzWivHkTJsURmWhFtNx7vOnEC5YT1bv174C4MlDmhQsUnhakGr4y4SIym6bYYo3C+J6kFVMZrw34+kIsiLZVhTpA1Js9smi19I7+3QZGXLDQjrWl9g990D6MDE92DfMUYoCZqnClZE1wSeZN2aKc5udySlnPGw8RycyAwomtLnBOmFyKO0hqrFONhZBxn7q7v0LcNh/uZpDLJGFxNuE5oN37nKVXjipWbx6tRtuNUUgrMecaVSioyErC9o+83fPHqJeObmXk/sRwiyxRonWfeT+Sm8OrVn7Lb9Dx+fMrVq+fEEnnvw6dsLrZkMk+ePeZf+NYlWWl822K1YToMdF1H41ru4i1FFdrOQU2MU1yZkokQl3W7nwCL71pyLQ8EqhwjzhhsgeV+YGscnfXcD/eyqTeW6TAxhEJDi6sd27jh1Oz4rfYZZqj0qJUunuhOepSqTMNIqxumw8LufEt2mtsUsFpQhEXJXDcqsbT+w+f/CN495/L9D3jZJ2YbaPqGZl2AEhNt6zgc7lF6sxYWPLBlK4kQIof9xJMnTzBGWm6/LnxCeLt8kW256C+P7bC1mqs3r1FKcXKyfSA8SQUoTAKtNcsyMc8ymlK6stmeytePbzfam812zVAfHnKgjltxqSQ1MQ0rid2Ss8yJlTEUNCFF4mGi6IzrTiBXznYnnG3PKCkx/9OS0mutL4AX69/3SqkfA9/4JZ/ybwD/Va11AT5WSv0U+B3g937p91EybzPrk2e8IyxJaDdOk2dpr4/e1JwjTdOR50jJBessFkvSSgKfWFmVuaCCIhvxT/vGkseAV6JLy2RMVSvAIj9Qq41R2EakR1Y5QNP2DRmxRhlrheFoV6wbmaQKzhoiAYrAhLWGaR7Z7LaiHV2JPU3XPrQsIQSGZUCnikOjtMdWQ05Z2nFnca20Mq3rmUolhUhcIk3TMBxmaQVTwNmOxkprqrXgxeJxWyhjHJHvuCIQYyvtXVwSqhzTMr3Q46kSiBUCfgVrFF3RTnSH0RlCmGkaL17x1T6pjJbt8TyTl0AYAzY5+qZnTgvLYcT0W8Ky0KkGDHRtK9SfreZw75jHiVoh5YjvWnwrdtbe90RfGKYBVFlBxYa6KgwOi+Rt1+wwVMI0MuxnfOOZpsD9fWKqA9prUrkmfavQdC14KItYEnWpTMuKclOFGCIhvuUFpCQpjCKveosfq0mMBGoFOZSU8W3DPE7klLDGCGTWFEKpD3/SPLP1nsM487R7RLxPnGx2zDe3nF5e4Evgbpnotx2t85Qo8JAlJxJIflVJLLnS9Vv+b+reLda2NLvv+o3vNudca+29z6VOVVdVV3eX7cbtOL61LxExISCIeIyMAiISRIEHI5EgkHjjDYU8ISIhISGCgngBCRA8IARCAUIMtuMkyDhx3E5sp9117Tr3vddlzvldeRjfWud0CIVRLmovaatOnX1bZ+81xxzfGP//7//42RM2j+5zmmfi9YC58tySkN2AmRyZwpIbtoK0zLJGfLCvJWAq0GMcN1i7Ukphu91e4L3S5ToXUv4FWtwuoN+UUj+eV3a7XUflqZRojYntdksIgXOC6jiOxLiofdcKRhzBG6qtF9dOSsqsnaaJ0+nUvdzCus6vedb1qL+uKl3abDaqLhGB+ioOpWTNjR/Hivf+8tw+7/H/a2YpIl8Bfgz4JeCngT8pIn8M+Kto9/kCLaR/6bVP+4i/S3EVkZ8FfhYg7AYQnZeYpnMLTMMPqhM7nSLSFKwh1uDoguW0UBClcve0PucMZnBYFBd1tj5ZUSiAM5a2aeS1ElPBEzFYaKJ0IjF4RrJVd0A1RmUUNOxodObXh9KlaGYLRueMxlhWSTpWaK8RdNoBWwxSjRYWY6lN9ZgNpWDHeMIWQZrtVHar38dosFkJFnGaJTPIQDUFG4WUI8EJgw0wNrzVf4MxjrQ08lFjN4LzbDaqTwzDwGo1uK2JHq/HaasXcmkXGjZAK6tS3Kvrkh51CeWs7E0jSm4f/MDVdocb9fdwe7tnfn4iLQlZKk6cetTFEG1Cktr9TC1QMyFscMEyloEXt89Z88JymgmDwwzq/5YA1anm1FphGEfGa08ZGiciB3cilaxsUKOzXmMMcVm5e7nHhZHTKfDg5j7zcmRNld/68GN+7Id+GFIj7qPOsJBOuALjLSwLKembsYITS0U5i815vLcsMV3mZKUk7g6zzuncKw1uypklN07HSBPDmip3S+Szjz/lt44f8GHeYL7vR/jBR2/y4tlLvvLoAbeHE2EYmIYteUmMYcPGW9a7AyIBby2j6Jy8SOHxeuD4aMMv337Ay/nI+nvuM711nzJahusN4ivzfGSOM7XBNoyYeuanQquqR65ViUuNQq2RZdGwtnMxVc6mYhVrLZeiebYHW2t7cTsDbXQmqQU5XN5K0dFBKrkDVPT4Pi/7PnPUZZC3aivNWWf34zThvOd0mMm5dr1yIMaVVlUp05owzys31xOVAdqEHR9g3Yb9KepyrlSFKN8tnPafjx36HRdLEdkB/w3wb7bW7kTkPwL+FGqf/lPAvw/8K3ynqvhyzf0//qK1Pwv8WYDdo6umXUJCpFCrwnGd1adXyko6ZU7rivWG7eCBgjhLbYmYdShtGoR1YJBAlUwhYxV2Tm0FZzzeWNKky5Ym6n1ttkc2oPneiCHYl1SnAWKGQmuR2+NCzZEhWIJ0TFn1IAVapdSKeHe5Q9W4EuNKbCdO6Ug1BtyAE/Xbmu6xzjlS84rJUJtFsCBZXRAIKxVjGtno0Qyvgm/nHLksDNbgTMBvLN4OiHeYYqlzhU5xKrHA6LHN46rjGCKpaOEZB4cbRoY+e0unlZp1mWFNwZmG1IKphrhk8lppa6PlgCkKNfDiIEPcK426HDLtlLGrsG0TbvDkqnsT70RtcAVkKTBVgjiMVQjEZreh1oSYhnFCGD1uHDBOSCWSDwmbDWOxOO+hwdUbGx7evyG1SqLSalanTIEYAzlPHJdZYyLWDX4zYq3w4Sef8pNf/0lyD9LKKTH05ZI4ocXCMHhOTjPjW3tVrMdxpPZR0HbSY2k+d5fWkkphThFxhrUVlpiZiyVVw93tgd/+8FM+fv4cI4FpN/A4wi+++IDTiwN/4Gs/QvzsJV/eXbGmikmG0W+JpwVq4/p6owFdOWKrwm8XKvMo/MrxU751nbn/e97j6ksP1JdVIlvvqfHEzjmSwBwXclsIRm9wrcqFPNmqsKwzYjS2xVguC5nU55jOOZzXJY8YZRic5TdnVQBUlnUGlK5ea8VJoGRYW+wWSB1d6NZbtGjyqjAPQ7iI0lOyaCywpVaP6SqF2rLqrWu9RFacF6R3hyOtRZKBjcsgqpeWKlxvr7na7gh+ZBqvP7cG/o6KpYh4tFD+5621/7b/MD577f3/CfDf9//9CHjvtU//IvDJ53392g33IhpXCTBk1WaV0mhkcidgO6naHdoeG2EqNiilRkQYy4ZSM6kUIondMEHVwDFRBQ+rTcjklJgeVLzq7IjFaOhZEYSEHpoLKQu5bz/zvFI3VqMiSoYSKAYlIFmLGwaCH/WFUxcqhmQPxLySi6E2j/cBb8OFkpLWFWsqVgym49uqJATtYJaaaQlEMlOJCJFYdAsYrIMCtukyZDuM1GGDrQ6s0KxGQuR1wRqQWsmxsbhVLwwBIwVpkVK0SW9O/72tNaQVyIm8qMOpFRjchAyeHFUQTM2UtbDKolT5Wilr4d5wgx0cLcKaheMxIlVp68ZU2ppovlFnSz5FBZkUQwiOzW5LGJyOQyav4WPeEE8HxuYwQMDgRRAr+GGAEKhGiFQsd6Q1U7KQk0HYsqaJuc7kMmOqw40TT29fUDqhxxldHGyHDaCGgDme2BqVqo1joDpdZtCdSDn2rXh9lTfTpJKlIMaw1oyzntv1xLquvLhrfPyb3yKtkeO64seJ22XhWDL25j4ftpl5+YzHv/6L/MxXfpwXd4n7bsDGRjolgh2wwMv55cX+2UoltQqj51tPn/D4QcX/0JdZH1xjArhq8QlkSUy1YrYjkcIiiewMo9YraFxOD+cuOZeFUkvnE9jL5vv1tM/zTPG89c7dfqjGh1fv2263eowO9/uiKOGG8xY+9RGGOpLctH1VHyiaISXS0yJhWbXQrou6d6zxDENDJPTn1i7vHyaHuA3BbQlhxLiBUva01thtt+x2O0a/5ebq3ufWwd/JNlyAPwd8o7X2Z177+7f7PBPgZ4Bf7X/+74D/QkT+DLrg+Srwlz/ve5zJOfrnchmS6xZOf1zC+Zek7pNmUbKICM53MjmWoQ4sRd0xSuPptjc5fx/6QNpryJV5PZFRM6Dra476V/nfysDUY4lQkurJKELztlsv7UWKZOjPSfpWsXVHRM5q22umw1BV8mC6PdH079Ga3ghqR4WVVjXKVwr0IHmM9IyfSj9FYaURc1Z3UbUYsV1HN9HqSntN3lJ7qmOhKYOTgmtGQ84EHTF0i9t5A2rRjaNzINZQzcoZzV+LeuRFRKEOfsSjnvvSZ3n095ue+qjv5JLzY5qo3tQKNKd0p6DFMnVvtiQN8aot04p2RKAXmXjH4KGuB5wJlFIpq5AKYC2teVaTKDWRi1C6VU7td/ly4b+ei1M6sco5p5KwammiqZvNdhhtTlgErKU0fW1YoyDq3Co1V9YY+fbjl+xPR6YeTavzuA6S2U3UWMnN8uFnj/lN89t85dH38/izJ3zx5hGIAih2w5bYpTTeKkWrxIVcK7d3dwzvPaJdbbjLK5O1DG5A8NSoVlojhtSXMsY7pOjoS6+NV8XSGHO5js6Hw1fXyqut+OvX79kZdp5fQr0UzhDC5WPO19X5SB/8+B3SrLMdEtDoDRwaF6j65pRsn6VecTzuWdeVeTliDF2DafuoIGGDwdkGHYBjyH05pQU356yLx/z5lsffSWf508C/BPx1Efm/+t/928AfFZEf7T/F3wb+1f6D+xsi8l8Bv4Zu0v/E527C0eJV7EwsJ7JZ8NawXxPbfA/TPDZCdYFpdx8xjeOxEaZAw2BMAVMIHUhwM1+zsROHfCAeK207YXcTxhvWliitsWMkRfA+4MyAFPU1Sy69RZ/JxlJat0CZGSSROuSj1i3NDxr86Aeq0cIlpiGcgaXQ6gwc8cWqds1UalvUotUKRjypFHLxSKuUmBgwpBhJzmJFsIMn11UlP1hO4Q5vLK006mzUDRGbWhtLZb/fY6gY5yB42HoaOp+0RQfntoIpjsN8B74hI4wh0HJjWzbYOeDmgK+e03VhaIPChFcHsTK0DSYUDtuFaApX0UNxuDrokb8UjLjeCVSKW6E0jC2kVinZkFBgQzFCZsVwp/na0w47gg2OnE9YKXg3Yb0QGMFd4ZYjuRRcq2AzlUbG4WogNIOtnmrepUmk2kQdEphKTpoCaVtSNJ6xTFPis299gy8+fMTp9jktBNK44XhINBxX5h5luYPUaEvheJwvHVauhdQKkcr2ZuRwWkipslbDkhzBDKSSub295YOPvsVpPpBy4GpxRJuZH16xfeOGzSeP4XDi7vZD4v2Blifye/Afn/4af+vFc37Q3+NL7QqeH9hdb3j2RmNTPc+XA2Isc8h8ao58e91z+7Ur0leuWNqJYRp56AY1bFghDZbmDTFpkRhrICRHDaobLVmpPwY9WQgw2oncPHQIjBGDiBL8WxGkGbbjfYzoUT61l+TcKKW+NuNUq62glKGSjUaODJMubkrW4D5n+o3YQE3UlrsuGVKee2GtCoj2BaGS1hPW61LIuokYE/Oss0cjDiEoHFsc85Lw143BGV7c7dnf3vHFN99kayzH9ajjtL+XYtla+z/4u88h/4fP+Zw/Dfzp/6+v/eoThNFtVbm/ruTawGSWfMIR8GHi4XRftVUt0+QsYKUPgQ3e6S/Gbi05JUwRXHJ46xiMph5aHKkWkFFzckzoR6pesHtqYmsrzUGrDvq9TDAYkwle2G6umaat2ucylBov9zxBZzUtZ+bTgXWZNXq3NKpkalnAWISM9QERjW+ta6PERqKST5lsIsE6PIHqMzUXYoM1w1q1G2tRC2DLjZobaU6sSyKX54izjNsd26sbZWmKY7ud1DObGvY0U1cgNVKK1Jw7k9IxGgODRsvKaGhdqL8sRyQ2BqMazN0UGL1jm3oAl0ifGxXaGllLwjrpsimPiRZngCKU3DTQLEM7VmJNVFcI9xY2NwPiDUmm7tk1UFoXqBeCBFqN5AySe3JijjSZSbVhQr1sVnMtVArVNobRY4IhNHtRVuRo+eiJSoV3zlJIrETsxlCPkbAzzBTSGqm+qnjeVGLOeN/n4w1eHE6kpMul/XHh+d0dMSf2pwOHdc+8HimlMA4bnr53jQ8jQzS4pydeGJhHYTxV3n1caSSia5TB84unT/m15ROeLQf+8Fe/Tr09sr2t3CuJfbAcPPzVu0/54Lpx//e8x3JvxO4mHk4jvlP66eDhlnMPw1OhtvQ/W2MpUilkUspQdVGYs/IWcioYr0AWAOkbbOccxmgnmbKeMIw3eDfhrF4H3ntVObhOk5KgUSuiS9rayf3GdPF/y1jr9VqU2qNiLGJCD5fLWCeXpZG1fUfQzIWrmXNXzXQ4dquZZUm47Q5rLWvHvZ2Wmbe+8IjttOGjX/8NTvP8uWXqu8bB422gSMDmgdZKF5SrJstbzaHRJRDkWpWI47ouUF4dFYtJl4vD9uEzVTBVpUJBHMWM5FqUmCzSmUGq/Woktd51cbwAxliE1CG8hmHYKikISEtWGnbVr5FzppY+T1lnclEKumZ7oxdp022/HvkUWlCrJceZVismZcI4qNawJpCi7E5QpmLW72erQ6rDVFHdaYK4FCKzbvaLx7ekWDkxJNG5WrNN11nVkJveeKo3vdtqVFupph+xjJKgmq3EEmlLwnjNCrfW40w/nvaOMq0rOUZinFVLl7t7Iuhs0aJZ6aVxcTO1DKx9VhwL9pzB3gwlN4U+m6qi/lKVOlUaLRXICmAWqVTj8SI4hCUdL5k/VfRG5noGOq1gu3sq+8CL/YHBOsKbD4ilspSZ0W9JZeE0H2lEYlsVNxe0aOS1EJNKVlIsLDlTG6QGc0rsDyeOy8xhPdKk4PyIC5WrzQ3LNrA2GJ6cSM8P5J2QHVijyYx3dmXJlWogDY6DVP7i7Qd86fgOX715A/n4DnGO5hyf3j7l2VBZ377h7v5AuxoI1rDFYEsjmp482nPom7QOudZjdhNIfRRxlgyVlDGhj0n6+KR2KIter6+nIBqE9toRXi7HbGsrxliM6SOsPhM9J5eKaGKqFk4FcivdSPrSqFO8FJmlC7WadNnUHTvr3LtPMV1SWHVhWnvmljGdBqZAG+sCNEPKGe/95ch+XgZ93uO7olgaMTgzYNOKaWpdVLufYI0e30rV7TC9gGrYes/lbrWb6wuncKBZAQ/TbsLZAW8DwQQNP2pwbBFrMqZbAym18+9mGhnaCnmDnBmKXfNYq8FZzxA2l83Z3FbWWslEmhRKaeQYqVm7NWqhRC0mYttlJmikQcdCpVIox0yZlfgior88McKaF6QUjINKRaohLfni7nHG4/xAlUo0itbHRZVPjYbiKkUiGEOuma0oskuyg6jAg+YMOMimEIl6NEJ1cs14avDKrnQZMwiVqAaBdSFHlY5oMmUhnfakuLAuJ5BOsymWpaw4FwjjiFQL+xM5V0zRELGWhWrBT5l2SsoKRTWiCBSXtROtjVYdKUKeKy0n1WPmjE0JFwN+nMDNtI61M04TQnNZVJbVGpvtFu88d1L58MlzHj9+yovDQ774/rs8uXvKFx4FNtcD8XBgjZm1zZoAagAaJViO+xkKzIfIk9Mdp9NMXDPHeeFwWvr3HXSb3yVEpIL54BlhrvyEeYsv3bzDL9x+i2+3mRwG7mpi3lqssxQrHEbh7tox31j+s0/+Ct8v1/yxL/8E3zgd+ebxlqcusX7fI/jyfZ7Zxm4XsLFBraQlUncDGO3Ecqt6lEbngNLns6WUS879MAwUY4mr6iidtRohvMwXXeXZtrgsK+NomcYAXgtkrhnp0r5xGPuWPV5wh60qDvGyP6hQ+/M6O3CsFdVD951EzpmYNGQtpVWXrkn1nwYtcOc5amuv+Jqm3xALqtsuNNXCGse6rnzh3S9ggyOlSGkV6/8+6iz/QT0EwTWLFYdpjlaLIp+6NzfVRI7rq+UPeocs2maqOBjFwuuMxPc42RFnJ7zxGNRDLjXTCFjjO1sxI6j4uWT9RRjJNMlIfQWcBc3BaVUoWd/O8oiUkiZhZF3iDMZTDTQi1hpOqw68N+NEq3r8bK1hGrRWyXGFReeV0sB7Q6VqsZVMWVacgDjD6B1+58mxUFPXt6EJjSYMhKmRDMgoMAjVVTBWPd2mcqwrBoOrVRMks2CqpaRyASJkKt5WrFiC9YjX7HQ7eWUYLrqxv3v5gtPhSGgLm3FkcJVWFiwJbxqJovOrlDiNjutpwAbXdbITaVHXzRQ6+DlXbGnUpVFsYc6RKBC8o8SGHy2UTEmNYAYdD/TXRKKQ60qtag/E58v4xFowRhgHZX6mVDBZEzdztTgca1n5xm/8Bp/dPeMLX/gCjz99yk/9Iz/K6h15rUxj4Pn+SDWDiq6b4dnhQI2F037hNz/9kGWOtCaM0xWxNKwR7j94k1QWxBRKjCx3B/6p+Yrf//b38QcefC8mwz/x4Cv81vyc//Cb/zsv3n7AvL5kyBZfDFYa4gwHKfztIfP8dOL5r/557MOJt770Rd587x3yNjCIZecDLgkbP+i/3Cv93nhVFZScGIbAaTleFnvWKAlI9Y8eIwqz2Wx2l61/Kaop1YalXfzeu91OQ/vgYnmsufWipnbDYRh09AOX/1qr1kk9uhes2A7pUPtvM0ItBTGvCuDZzuicvPo8a1lOqQfoVWJUoPAwKGQjJ81vdy7gpoFY4DSfCMOG/WnPwwfvstlNxEVPR/fu/T1uw//hPBotLUp8lnCZJ+kB2aikxxRK1i1jzKs6b6wKtLUF70mDGLzp2DW9LAHdxuY4E2Mm+6attxVSatSqNjbdhjXEKvVG23N1wkgQvBtoWTWS66oXprREcFYBEtbTSiAeDhjjeePBDa1UXswHjstMcIOm7DnHmnTJI00I3jJOph/hNR61olqnJjrHcdVimi58BnHkUFmOkbWsmA5gbb5gNxCGHWGYsBuv9KOuJfCDYC2UJZLaih88drRUGygtXWRMqaxst4JxwmCcypzGhlRDbiv7uz1libx8+YI8J4IJLGnmOli2oWGC5er6mrXCKRZOqWiS5DQyhKAif1OopjAFrzNl1L/fzMyaMzEXjrkquNbZy3yzzis1eWrXM2IFWmW32xA2ARMcfuOQYQNnlFe1SFPajRiPMZ5BJlxzDEDNK6yNvAof/vZHzPtIPCyMLw0//tUf5n7Y8XF6zBosn93e8eJuz8vbmZfP7jjuTxxe3OGvN1w9uEbE0qpld3PN7e0t0zSwvLzjcLijnLJ8uAAAIABJREFUlMz33HuDf/n7f5r3Z8/Du0RNhe8d7/P1q/usPzTw733zF3lgQidGVVyFahvV6Snh+VT45ZB5EU78gXe/F/eFDTfZ8shMtLUSsDRvOYnCm01TdG/r9/z98aDmAGNIMeNQFUmtOjv0fsBgO+T4/MqRy9Fbi2Xu8qDCOG40JsN1yY/TLbZmE70qL3I5wsurY7M4mqgKRKMhRJuHVHTc1b3oMS5M00RK+ho9qxfObinn3GuEfXtJdq1Fi+C8JB7d3zAvjd31DUvS6+u0nPj004+xBmLJhGn83Cr1XVEshUarms9hbX9hGwNN5xeI6eDafszsj5wzvnZfs+Ey1HXm3JpbhXJ0oXlpmVwTpdRuvqfLdFTU3urZD2gu0gdjeoyEcRq1a/SXq89FpTXOVIJTvViuCTEDg/c82F0xH0+caiHGrDMpF7De6eIhVTBqHRxdJTZDbpk1a7IiVnWRTZTrZ2tPQAyeJhXjMnNakOr0p2iAUAnDhBk87Szqp/TZEdg++yumYAeH73PKNWlxrimT+8///LsAndtaWylGu5VYKqmBeIuxXoPNnOBHhzO6QGhRKUrWO8yg6Z3NNCXFm4I47aKd6c+/CqZ5oui6rGFoYrr8Co0GyeUSWdxQOyki+GDUnjoYrAec6h1NM5ANtvl+RHO6ORWHlYCXLs8Sx+ACgw+0JJhi+Ohvf8pPfuVHKKeGKZZ1v/Li+Z7bw5FPPnvCfFxYTyvGCPfu3aNWjW7QU4dcFl56ZJ21ax8Wntw94SZvuJYtXqDOR2SGH/jCI/7xR+/z0cff5HmcYTew1qIxxVPAWCFbYS+Fuxipg6MFh7Q+J+xaz2I0xiRRGdCxDzoG1mWLcd8hz7PySiKnYnz3Smfbr7XX44rPbp3zLPM8Nvo7P+51XeZ3XO9iLkWTfmS3xuvcEtt94+UiSXolresr1PrquZ/HCOcQsxACKalEL65nk4BlXhPgmKaJw6yz5mEYOC1HjDT2+z3X138fROn/oB8qv4t457B+06MUNNpVB8aDLmHaGcsf9QhhFS4aQtDtngiueZw4le/lQipagDVMq5AlawcpBSuo1rHqx7hRjf41F2qLmv4mWmzPd0nvHQZDKbkfpRd8X3QYMZTUuDfd42q75f7mhhfzcw5TZJ5nxhAwrtsRO6bN9MF0MLlzIrP6j6nQDM47BIhrJafE0WlKX21VA78kU0WtW7a7h8zmWpcXfeHUWmMKBtMiplq8SbCRi6zDILjZMM8zgx+7fESReZIqJBBvMG5kLidOpZBrhRAY3UiwGzbOMvoCLFQq87xytxaqcbjtDjdtyTkS40JtK5iEGx1uCFAz66KWUYcnIUQECaNmBxlLy5WcV9JxZpm1UAZnmTYe4zxmaBhfwDaaRT9HDKZqYXQM5KUS7IQLgWA91njGWhC31SWcgTAFDi+OvHX1LsdvH3n8W0+RkvHG8/TDlzx58Yy5Zp69uOV00o37Ww/eYF723N7uubm+z9Xmmv3+gDOVTz74JlfXG2yrlJr49Nuf8J8+uePrb32JP/Lu7+XtvcMVQ8yNr+1H/t3Nj/O3vvY9/Nd//Rf4ueNnHO57qgjb2hiAtVVOvvFWHHnTTGyK6lKPpmAmy2orraT++mmXUNPzw3jHmiKu6et5zQnfrPJeq6INDaaPmzT6olWNNjnDdM8wX+cCMWa2myucDX0pUzC98xOhU7Re6TdbaxgGbU66hph+LSiPQKG+rrt9zp1junjzy8V7fgYA11opuXTdpyheMGjUSkqJ49J49uwZ4eaR3sDiih8C77z3RfLpltv9S+72e65+txRLRJ0O+EBpwrImoCByJpyXyw/IV48VLpisEF5JV+qSiaLbsDVlYs4ay9q3YqWpCDglUX5krRhpGmNhdO5y3J84Z3I09Phf/ajHDKOABCWrNMTq/E6K5pwH6xjcgGueFhuTmwhNXT3TNPXQtFd3cWNM/x4LtYM/Grq9bDSc84ixxHgi1crBHbXrRAfjYXIXi511OhhnmKgCNWeFCLRGK5mcZqxxeBHYDEokshbbDKUELELYDOpAqapVO0cJe+ORIIRxw7BZ8ZKx1bFxgbpapusN16NQTpmSEzFH3DARpi0rRiMTloVcFvxQ2U4BYyBMhnnNzG3Wi2PxLFI12zo4JmdJKdPWiFlW1tPMvOryybtw8ZTbiZ7JDn6y2GHTY1srJEvr3Z61HiceKwNWjC5caqOmwnJcSKlQlsLj2yf80KOv8ulvf5uPv/UtooUnp5c096rjrV28//Lulrjo8a+kxLNnT5SRaC2Nwnw84Z1ht70Hd3v+mj/wqx/9GvHpU/74V3+atM5M0xWPni98cb1m98Y17Sf+IB8//Sv8wvFDjBXiMRGyLjetgR/bfZF3ZGKThDJa9qYQxr6wzAl/Zr32x/kYvt1uefJM7YAuBI2BbbmbG0pfmsh3CM1BY2bP3V0paweYCLvdjnVRTqme8M434Vevy/PXOr+5znE4m07EaJSrM+cTzYCxcJoPfUtt2e/3fbnUerS07QjBys3NDeuSeP78Oda6nk/ecFZrw9XVhiwLp3nm5f5O7ZFVLZPLXbwkTb4uhP+7Pb4rimVtkE+NqTR80rAs0+BUM1mEmUSzz0m2Umxj8BsGmSipsi1bhmZZ4pGcE2m8wRpdErWSkRT1qG0VHtskUmNCxFKzxfpJ83SaJdJIZWWVinUrc9kjWLzbUJ3yB3GNtSwc21GXQXHADArkKLLSpIKvpJaoMrA0qHXED9ekDNhKrpnqKqmcQCDlSJaRKEouSq30sQTkxTKOI0E2yohcHlDE4oNAmyk19tmSx9kN3m6YSNTsWeNIaBPVRBK3zGZhMRZrdzQzEoJDqJQccTvDciwQDBu/wZZrlScxs3EjXhwtVp1fAsVb1tGoKPiBJw7CcbxhrffJa2Ld7lhSJIjHTV4BF6ZQjMFMgdnrjClVQ84NZNCLIAstRooB0wIrHownVz1O3tqR66YJkW0ISJt0u75ahmKw2eKaI9YrWo6YnJES8a1gpOFsYwgjpTqWVpnMm7zMH3FMiewXyvyCnbvBtpHtu9/Dp4+PnKLjo08/YXPvmi9cTXz8+NvczAPxNBP8SCyFzZ1hv84cTi/YvvWQk2TEVmS7IS4RVzzL3Jh31+TDAesL/zN7Rj7lD775Nm+WE/PhwO3wjJd25K0Z/qj/Ms8ef8yTwfD4gfBYCi5Vvnyq7B/Ai7qQsmPHjsl6XONykso5qzq6DZcO0dtGXiLpeKRay3h9pXlQxTFMk55ESmZJUWU6wJxTH4FVjKjpIBcHLVCrA0asOy9eG6YHmelpTB08p9PpUji99+S04MOAkvFVxlTFEGPSmAsvWApu0HFBqond9TUxRk7zUbflQeeLdT5wOp0IfuTq6orj8cQ0adhgXDN3d3eM3hBjZLj/JqU1Di/2mMNKfHEk1sbz5cTN9gGHly8+t059lxTLxtw94TGrn7QaIbZMRcgr5PnE4CbGMOLDhMmOMahL5HQ6cVzu9AWSheQ8LSfiOmPQWFuplZwLuRaW5dQH8Y5RLBB0E5caJVVSKkpn7zIJHX4XUtIc5JgWUp71zpuichcLVBKtCYONFDEYFk7rSiJBqYi3F6LI8XgklQVjIJbIIMNF6xX8eLFKauc8XrqE5y8jh8MRHyzDaDqpRXVrRgK1CjFDzUKq2p0iGidc+9GsNg12Krn2gfpMaZVpExiCwilahtYM5IFmLIjVpEZrFD4iBXFdH+t08zpMI6PbKIh21fx1jJBKYn/Yayys09PAOPTOUjy5lEtMwbhxLCmT1sQc94zXO2zQDGjjvZ4i1kQYBja7PpsVYZg2F/undZ6aC+vhRE4RmyPVebbbLVYMtWnCoua7nLi7u2VZD+CFNMPuemDYbnn/a+8j3xf49V//Db7y7lewYpgHw703hbQH++YVp3Uh7o+sZK7vvYELntQadU36sypnm6fo87SO6eqKfFp4uZ/587/yl0g37/MD99/mJ+69w3E/86UXlpMzbB++x+lH/2n+p9/6FX7p8ISTSwytMe22XF9fK+k+BHLObDabS8qhc6+OsGLOigntGud55ubm/kW6Mw5b1oVLp3cmmpdSLt3W+euc4b+KONOlzPmUBJ2y1bRLtFa70RD0dfz60dn5rr1tckk7aKbRMKxp6cvaeplb1r7PGIaBRiWllf1+TylFc5pq5XDQzJ6hx+zmnKEpkIcKNzc3jG+8wdNbhano7/+cdR548fTZ747OktaT58qCq/14gwIRSqrEdMSiWCsv6FHQj53UvLCkI6mqNq9lJXtTVaw6BJWrlFqZTwdyLTRWBMcZ6RaCI/iBedbkxDxrMqGtDWtBSmWtSjTJzrDGvaKgWsE2tWeV1sgUrB3IokJu0zL7vFKS4uoH46lNxbemCZIBJ3hxWGu6n9UwhIkQNviOsaI5wLAsC5vtnpe3d8TUgIngR5xVJ4WREZphSYWcFKPWXFVRu0CqEcFiZWKgYnp+TI0rtRbW+UQaI7stBDcgRqhsWKqhZMipcJqP7NOsFCInGAtVYK2ZuSS8UUcLwaiOtVWOaSa2RO1HKESFwxZNmhyNwwwOmjAVSxoTe1k5pEJZo3brpuEHz7Td4IwSZo41EUy/8JzOwUqF4z5ySgfmw5FaErswsLuaKEslxpXaMnPSpd5yeMlpf2BNCmN+550f4OH9B3zPe+/zh37mn+FP/mt/kq+5md/77nvcPF346INPeFAi4d49/uKLD5gmR3j0AENjCsq4XG7vGERJ99561gZLVu5qOKpGePADcjPw9MUd/+fxlm/c3vLLw6f8Yz/0dcbHDTMGnr54zv7wMW9ieScJ9XrHZhz43rfe4ubBI7bb6bWRjs7ftcBp9LExIEaLRimVUlSIfdYkj5OSy88ay3mev2O2eC6ctdZ+gmmXxcxZF3nGo72KlGiXyI1zcTzrM8+F11kuTYguHg2xREqHf+ecesbWK1iHiPkOL/o4agNRo7pxztKlnEufq7qzjBlrhc1ux7jb8enTO+Kaubq6whrHPCdqNbz55iNevPjd0Fl23l/OmaVvm61xVHSwHOOshBll8FJiJYl2Ivv9nv3pBc2roJuhQs+2dsZepAbQN3U0miuYZrBGLXDBe11yWEtwQfWQFoI/i2qlW6gaKa0sy8waj0Blax21BGqpZBHEBJJ6j1hInMoK64r36vWWZkhVIENLXdphHdjO8TzPiypYOzCN192WaYjrS7y9hfMdN1XWU2YaB6wfCG5ExLI07Z504K4b9zVFcovqlzUVU4siCWoiR3UaKdYKwjhgvTIxSwuUmJmJrMuRnFaaF4YwEpxFDPjmaBmO60LNPcrXCOJFI4ZdAw/ea6c8TAEj0KJm2EipmsbXGoMNPLi+wR5P5MOeLErErxQYnVK+NwOcrGplvaVaR2qCkUBMkcdP71gPT3p2fCXshNVGDAVkJTVD7DCSnF5q59KEmic++2zmp/7RH+YP/aF/kn/2j/9zbHeBbz3IXPMpPz5e8WOb+wxZKJsbvjY94C/ffcJfmJ9wKguj9TgES8MbxZVZZxkGT7EKQ9mVQETtkqsYdm+9yd94cocHPubEz//Vv8C7D2645orHjx/zfHmJDQObeyNvvfUmV9sND2927B4+vLjWzqF1ZwfKeZ6obM1FlzQUZRlUVV8sy8oyJ3ISYjwxDMNrmmIumMELUEPsa3CbRggDZwzaMIys69ptjcPleaSkwBIFGbUucnfUuvROt2HdK6G7sV4zqFpjWU6X76/FX6+L7XaLtXqaLKUQ+uwyp/paZ9y35b1Yjn5iiZF8OKjldBx5uL3HvXtv8PTwknHY8KV3v6ie9M95fP57/yE+Chp3W5pmgVdBmWpSOzZNQ9KDDRhUk3g6nViWpTPx+h1M3XQYIzhvL7OS8+bMmFdyGn3ocbvWikGwIgSnG3VnPM54rDikgekEo1bq5a3WSuuDcf0+XYtWlW+ZOnrq9WG5aT0VTyxOHB7XaUa1XwDtQpZOKevXrFCyBtifqUQg/d9H/7f1N+cQ6/sLULFruvXXo5dpAiXrW67UUjSQvpwJOtoVrHnt+T06C0u5UgXduodAGAd8CCpVchoJUUoiVbUZZgpFKuLV3mmtKGU9KMjV9rmlNNRFVStriohAcIbBB5xR337tgmhjTCfHK+NSOkAZI51yb0ipEJdV3UWpUmIhLXrxlNI6DkxHLc5DGFRR4V3gjUdv8Uf++X8BPw780E/8MPt44E5mvm0Xnj+0lBvPMDge3iV+VO7z++99iS+6Ha6CbeCa4FFQRO2d0LnTcc5BVRBza40icGwZ+8Y1aTfywXrHYRf4X04f8vP5M/7WcCQ+uiLe84SrwO5qy3Y7YYPH+U6nQlmTjYJ1otpcyuXaaah2GLjIbM5e6rUvymKMr47t58LVjRPnzzuPgV7Hsb3+53P3+CruQR9nV875/WfZ0d+5+Hndbvi6U+gsYTtbMc9L3ddRcWe77etjhNffp6i5pEvZKp2ROeqpzHlCGC9Jkp/3+K7oLFuFVg0paxi692p5NA2kZEZxeDtyNV5BsUgVjoeZZVlY46yZOFU1joMLDKPFYmml4pxhv9+rH7kUFdn2XONhGJSwkmMXLhecFGww4LfaubTGuiZoKpgtpRKXqANz79l4S26iEbTGQnHUpBeh1MLVFBAZ9RfkAyk1MI66FgYbFHBcCykmcl51ljrosXccnZKoy4nTKVJbIa5HBRpbTcG04khxoRXNrBlGDyKMk8N5WOKBXGbIUV0RVqUmoVriuminmDIpRY1zRcUbiYoU3XxCRVpRu1iFYdrinMEFRYyVVC5FLMdCq4VEFwUPPQFwEMQbMCp5GrwK9PNJYYrLMmOxEIRhnDTF0QpeDJ5EMRU7OcLkKSmyGQKlNGJOSCvswrXS2KlstwPtNBLG/vJulhgLpzky7TaYwTFOvfNqidgS9x7e4+XLwk/9vp/g537hf+Pnf+nn+Nanf5PFJh5uH/BN2fORz/y+9x/xvfPIj/125f6Ht3x947l550f4cy9/lV/7m99gvLpid/8ez+IR6yxNmo5YKl3+DfM6Mw2etTuQTLCYMCAbw/OWoVjuWHjz7WsebK/YiOXGB66utoizpKstISjk5bxEeSWry1irN//TacF7R+FVs3AullfXW05HleNc9+XJOPa43n5yORfEnDPWKcfg9QKnG2l/+RxQbfO5CLueM/760V5Eocm580BbR/WVWvTvpPVxlMqTcs5dkK6RFsfjsVuCtQs+z2l9T6dsTcXx1lqOh1kxbBZamHoqLCxL5K2bLSllrnb3mXtDolCb//fHd0WxlCa4OiA1q9SjVQ0haw2KYxomhBFJ6iZYjwt3L24paOeGR+1+HZMGOp/JsVBi4bRGxBiqFTbThiQNK45h2GKt16OgFJCEdQ1aIhmlsOesy4DznTbnhpGR66sN0zRxFUbdIlZ0sI8wuQlvznk0I23SO+HoHWmdyTGxGTbUqoRwrObhnGc4IQS17LXM8fSCdSmsa+ovusgY1K45TRtlSNZIrhrkVKtDtjuMCXgnSohvlZoaYgaMDLhkqFG7ylaEFhveDlCNBrqIJzd94aR41OWUKBG9lu6KapZ10QtSemcwdjBBKYVEJJlMcwrV9cmrflYSuWWyCzjvSKmSlsKhZv0djAP+KuDFch03pFoIJIpoXK4Ew5C122+lEudIzQ0xCe8s3lveefs+626kZoUQz8eFCvhhBN9JSq5RpIEf2LqBZV5Y8i0/+yf+Rf6Nf+tfZ44L73zxHd4oD7HfeM701kM+8Cv/Y37J227gxZdv+Mk33mZ7jLz/2S1/+Ht/kK+2iQ+fPeZXPviQ6/feIjvDMS6U5cTVtCHOC35wWGPBGHxLLCnSeizrxjqutjt+4O4Nrh4+ZPfOfY1JqY0gnjpsiN6wbLaX+d/57XWB9rqulyI3DBMlN2oVnLO4HsshAs4LrWVSapfub13XS8bQ68fyc3d8/l5ny6MyIctlyXPu7C6mhv7x5+ens8qMpQv3+0kvuEAjE7POz88ff/4e0NhsNizrTM7p8nyGwV0sx2qzzD07yFIn+s1cRxOD99zdfcaTJ8/48ptfZrPZkV48JcaK2QxY87vBwSPCOG7JAkvRyNK86h3SiuoWjYzMp5VWhLT0Nr+07h7QeaVus9SORWl9RqlUnbPLwFrLmtWfegYKq7hcjyxCQaSqML1CSZVWGkamvhVsVBcY3YbRTTg/odwOg696d/dicQihKQykWN+fg1zgHN4FqAowsGJYc6R2B4ZzrncORmdpLVLq0h0VlRAGfGcEngOdGoXakmYEJQtWg7xMK52yo8ZPaerKaSXrc6kNaQpMqALWerB6U2r9+deixAPTHKWqgyJ3cG9NKAewClU0Tvf1xD1pmirprKU1BR83qTSUHpUpFAPFCoJlMY3oFesmRpAEplaaaRSjDIDBBWz/OtXljscrOKP/ZrfxDOJJMRNd0qykM2jWVhCFkrSaaQ1yiZyWI7v7A0+ffczuamB9eeouMsd+Eyi1sWsjpWVuW+SXTp/y4Pp93rneUk4H7s2NH3zzPa6GiW/tn7HkTGrQrNGF45owueImg+8RyC0ltt5SYqS2ynXwvHVvy/vDFfbeFtlomJutBleEKhaMp3Tk4CsXDJdi9brrRcEV9jt+H+ftso41NJ8q+O1rr7twKXavzz7P3dz5/1PvUEUaIt85zTt/voi5jMFArzlrNUVUjDYHdDdPaUUpYs1elqfn4qqFULfrWozpdmN9XVirTr3zCOA8Vrg0OUZY15Vr57i7u9Pgv3G8nBxpamH+XdFZWuN4+413OOWFp7dPdL6wHnHWM42e0VjmWLl9cYfF0bJCN8R14O4ghGDAqmPgNEcouok8z0KsC2T0DuPdBt8TEGPUkCqpCfKslCMyc0EZlNXg7NDxUJoIVyvUYsm5ETEM06iWSAuxzLCu5LLq7M0Y6mZSQrpT4e4YJgajlrJgdW53V/eI9BenE0JwfUBfkFMkZR1OW6lM067zAdXHVtuqUqYUcRlMPikw13pKPdHaAnml5Nrp6RVT9OZRpOJMZhgnioFh3OCsQgdqrZgatXYC1EbwnhYVexesw0+BUg6KTOs8wlIrYhs+GIpoxpCtVjN1jObAH9Zj/zkK4gZkO2KMI18N1J3H4pAsyBpxTRTDR0/M7AivViveGdVnmgJEjLEMwVPdjpQqMaSuCazEnCgSMVaVC7klXt6dcK0wbIXv/773+DP/wb/DkjKISrRujyc+e/+Ktx9HvvZpJUQ42cqTRwP/JZ/wttvy9R+85r2/uZCXI19wgZ/6wR/hf/3k14nOEKYRc4xs7cD773+VvLHs97e0XAhWGL3gW8W2ym4ceHB9RXNblq0lXVsGsYzFMtwJQ91SXOCYJ5qZL0XqPC8/I/+cs5rBXjIp9jmeq72ZWMhFM+TFZEqKLMV+x7zvdSvk61vs85H33MHd3d1p4XutWL5ucTw/p/Ox/lysNTuqXjpUAHGv5qkpqV3z/L3neWEYNOOo0S6zTecc6/GkH2de0YfO2/icOoDYDlgLn332Gc4F3nn7HaZpy+m0dHnRhDUBI78LEG1iLNe7NxlqIhXD8bhHqnpFK8KSCuuiaYK1ZAZjWNaZaTNgRksdIbPSKsjJd7RTw26UgbkdJ2oVfBmYZEcQ1X/lkrhd9pSSWdMJI10u0QxmmalN74TGBbKB0hqJhexWso3QHFLvsHXCGUewjiqJ/byom8dtSd7x4v+m7t1ibUuz+67f+G7zstbe+1yruqqru13tbsfB8bWjYIEgxLLkKELyQzB3hKKAw3OeeIMHXuAlL0RIkSIReLHAwjIiipFQYrDlJLZjQ7dx7E7b3e3u6u6qU1X7utac87vyML61TpWxKyaJUGdJR6dq1z5719lrzjG/Mcb///vf3eJMxblEsAkzgin69065kBeNvxUP1hnCPOKCSnZdyexKpa46FzpYT1pFYQdowd5WQytB9Z6HSPaJcYIwbNSikqe0Cs56Sm00e8cT2WOGiXnasxs89mJProViMrVs1HzU9rsBxiPG0ZyHLFiphCYM3XKY6htsx3u8g5w0YbF5IYoCDhBDXd/TJ7ezKilaCt4HjjGBbJido7XCiACF6oUoift4pNE0HK7Pvu6lYUvDJnCbIK2x2kS6rPjRc9wVdu97IhvVFex+ZVse8Dur7hNvuF81iuAiTGxx4+rxE7Ix2HlPu994661v8qlPPubxMPP47ivcR8MXL56obGW2PH1cCRgegF/3T/jq6xf86I/8af7Wz/0sr9UH/j3zHbx/8z4//4u/wDs3Cz/xk/8x1juWt9/j7trQcsZKYt4NbL0IVWM4jo55Z5jFMLQBZ0aMNeS96metbeyDRlUYqzIbQRUDqrVU0K13Mylqp9Baw4g9n+pUzuP677bDvRqtZVoz7HY7UkqkpF2L94b1UM/OMWstLgRKVtqVWHMuiB6ds1trGYYA0vBBZT0xrdAqUispJ2pp5/niusZzcfXuCiOVlBKxZqbxQscLUTsTMwwYgi64TOuRJQPGBw7rQRMQLIhTYv99PPL48TO+/LX3+NjVE64uHrGSGHwlxhsuJsu8v+T+K7/3kXXq26NYimC84HEaamSB+4K3FSOFw+0D2yHjnSWMgf2wY429RZkN2UdiyuSWNKo0DEroDh71nerG2bsd07jTk90UyC1RiGzbkcP9rbYnISsZpxpq5+0VE6ly7GAJdQalTRFqMgoue2qz5NioLVBbJNdKyyupRlYS0jIhZMLOq1Sob3hzbCzHhL0YudyNDMPANE1ILbRaWTtYNjXItal/vPSQLMnc399Tc8aZpmJ98aSWiVtBY0ZTb6c9zgUEh7OBmIUgBhMcu4tLwuUFTRp3hzvuDw/UVHRIIR100pFxwY8Er/v7YC2DNfg8kPORHI8qw5GKc3rxZmMgK0iEXuSaFEptHNdErg0fRkI4bV1BcPtnAAAgAElEQVRRdmFW6Zi0ChVarecTgykbthqGZrHGYkRwIWCcLq9yLWymckgrKfZfdaPVAAbuj/eksmEMjPsLLv0jLi4uqBW++7u/i9/54lf4vu/9Ho53kbv7W5pvpGoxxuLHATPAi5u3+fjz10jZc/nsFb7/tU/za5//Zb717lv8yc99D6WuvP7Gx3j07Cl+vuSV199gi5mlCMEBOUJdcV6YOqQY57D+5LvW98vZoJmjNWFQ1mNr6UMZ3kZenuROM8Jt21jXleAPTNPUF5UbJ2ju6b4bx5FatNU9ibK3rVtdP7DgyTlh7MuFTYwR1zs32zfOrYomEFjNfaq1sa4ru/3UtZw9e6dnrVd5OS5QXaUW1ZTUvHA60YK29vOshKMY4/kEexLln5ZIT548UWJ9p6EbC48ePaIpMIBhGBjHwG63I5dVR1ViySWqVfgjXt8WxbJR2dJK0kmSXgDOkkpCmkpYKI1p2rMbZ+Z5T4ierSaKTRSaLniaBSzGC8ZacBqApTeUYxxHjdXsAvBgLYcw0IpGKtTaaOWU943Ousg0iRTkA6Hwtb/pmSqGYkzHyTkMASSDjWgqZSaVSCs6pE6TwVSjmkuBIpqQOFQY/cw4DHjjSKWnXtamVByjv0Skh6y9bGuUOq0aoSaCMzo3rBWUKlE1WqIXS7GeJpbiTD8ZWCyi32sr5CXpU8IYTEe81X7RpqS56NUIzgpGBG+VC6onB30XKYUOJ9RljBt1nmYMtTRyqcSUKI2ul9T5cymFFiPGZBpG5U5Vb6rcBcihelrTOBHbIQx6snGY/t6tZeOYDmxxo8ZN7a+p0Rys65FmVVQ9znumIeC8Z9sOrMeFb771Fq88f5VaEs4a7tYCJmghE0vKCT9cYfyOMOx49+aWz/349/G3/tf/iY+99owYjxyXW3aXFzx75TnDfNV96RbrVUXRLNSeq22ModSKM0b/rhWC9wj2XAxFRMX5IpTaPlQgPrhxPlkdTymNp3l2o1F6QmIpp0CxjjorHyAQWXsunCfZzWmZY89CcXM+ZZ5IX2JE54d99gkvv96prRex/fR6CoWT80zzNFbSFv+lzvODMqPT7PP0kDi1+CfmZQihE8W06Cv3QU/Ty7LqAyZE7Sgu5bzMsj0scBzDR9apb49i2SoPyw2xNlKtpKpUm+PxoKTxWpgwXEwj834iBEtxDpMyD2ljLZHhcocLjpgtUkt3ihil1bTGYAU3GEzQuWYuwuQCkw+QC1fzJet21B8cja05Ss2qxiyNViKSC84rvV1agdJUgG48zc5I3oNxmEFwZaW0Oz0lFSEWDVKyJrNZy37eI95gi8VOFVMcs98x+JE1Jg7dTbElaONEjZFEw5qK9wYbLOLVmUBperpqQk6RVg/ElCkt472eiKZpxocJTkSZ2ZLI2CbUuLFlvRCPN/fUNXMxTXhvySjOqrbGmqOeoLsDo9jMVgxhPbKmW47LnS4zjChcBAs+YMUzPX56dnTkVNnS0jWPUH3t0o3KEg/Y4tXdI2oPWtftLE8xxjGUyjSMzH46X0OxRvWvW0c1hdt8x11+oNSEQeVJbTvCpk6mR1ePmeeZ3eVzjFTW9YFtSbz11je5fvcFdV2Ranm4faBMk8JcXODJo6cY05gmoZXGkyev8/TydX7mb/4Ub/6x11gOd2Szsrsa2dKRcbzi7rjw9OkjrA+YdVNyeC2sD42cFrxz5FSwRkEYcYN56hlIcgJiaK6QaiRfLnH0Bnp5sjzNHIdOKTdGST2tqWvqtDHX4qqRD2AZhqkXDkOtpRcu13XJiVaVoC/Nqu4VwTvTP8f0Qti6mwxU91u5uLhk21ZS7nrQrg8WMZyTPq2qNoRO//fCsiznoieiB5Xj8Xg+TZ7mnd73WWan5bcmzPPuvIw6Hla8H4nxhMpbub295dnzV1mWBWdHdrs9Yirj9E85sxSREfg/gKF//k+31v4zEXkT+CngCfBrwH/QWosiMgD/HfA54D3g32qtfeWjvkdrmeP6HmuCIjoLibngXdALuS44L4ir1Ba5jwvHuLHkjWwKYQpMu71q/1DbVilJUWrSkKLFLUvG1JVhnilJ56M1aXCKrZbZawpkJVFroNmIaSpXcUGfrN7qjRmXHtA0eaYGpqk2LBel0tCfqK1EvJ8pVUixcX936BeXY/Q7qhH84Agy492EkaCZ59myrEdyLgQnJCmsNbKzXm2dpiCSGeeBVgQnBlsdyagvVpKe7Lwb+xZ4oFn18uaaWYnUVLDFU8VANcrevLunbpGQC9V7ZNjU0ohQouoFmlOadexWz3mNpLaCRNrZjRGIOQKCcV6xcqbTlFrWls44pJ8MqEUBHS4xWqcn79yIWyQdNAzM+kCYPUOtzMEzDoHDupFK5pg37ApSEhubZs8MjWYFqRabK+uiLd4wjjx5/ozdbkcjkOPCthaGMPKbX/gNfuj7f4Av/cPf5lOf/ARfXr6M44p/6V/807z52T/O3cPK9fU1X/nKV3jzE2+wPBx4481X+Nu/+jM8eXzFZz77Jnk98I2vfZ1XX31NRzmtcXH1iHdfvIcfB4bYkW3bQjweMB5qqtrux4zIhHMjzlqc9XhnCMGzHA8am2vsh3KPThs4XcAoEWueNJxLTKOUCA3lYeaXwuvTYmgcBuZ55vb2Vv3XrXXQbjszImlNZ9GtYsSeNZSnk2YXR5BqokUtgj5YRLoMsCMUD4eDXk/9lOi8doPbtlCrxRhPCIaG+tBfmjMS8zyfnUIfFMGnlPrC1rCu8dyme+959GjkYakYCQzDwJIix+OBw+HA/d2B1sC7kf1+YF0/Wjr0R3HwbMCPtNa+H/gB4M+KyA8D/yXwV1prnwWugb/YP/8vAtettc8Af6V/3ke/BO4frhGj8UegDN5aFRVvEFzQRD4NnKhkk6m2kVs/xhtLcEP/SynVPEwz4zBrVGruUgmKFouydX1WIae+3fWDGu8B+izmhOTXC01hH8F6gh3wJmCNSnw0ulovgC0nYtp6umB3KDTbPbpCSoV1URq4seqGsc6R+6m6VNi2ROrtUmkVcUKYAmJFXTxN+Y9iVDIkBobRn10IMWYExYblCra7Rra0KqbOZKrRALVYItuyQKmYD2SF16ohabQGpeIFStb3I1httda4EtOq+rguwD6hyQy1S1QqJWuG+0uRs5yRco3CFpceLaDMUD1BFeKyopSSpnrY1gjB69//BBkGcF4thJ1a1Sj40RNGD0YjFLYYqa0hTj3NyxrP29lpmshbZj9fcPP+Nc+fP+fm+horwt3bN/zeF7/M3//ff4Fnu0tMbFzYPZ//5S9weP+en/+5nyPsBj72xsd4OB54OB7YXV6wxA2xhmmaePfdd3tutrapp82ztZZt1fds2zYu9nvFnm3b+WR1+v3kh4aXhe7Urp7yr/X0bfop0Z4/56UmMn+onVX5j263vQ+0BtYqjFmNF0E/fho9deaCbq1T/xgIFmdPaaX6UrdM6NrK1ufs0hUlL2fQp7llKRoRkUvs89WXDpwPnqRPf9da63lmeTplntBwp836uupcchjG7lraeDjckfLG4XDoCy/U8JG2jyxTf5Qo3AY89H/1/VcDfgT4d/vH/wbwnwP/DfDj/Z8Bfhr4r0VE2gc9UP+vV0XagpcLht1jaIaHB8vd9QPkgjeCHT3FVlYia1055EVhpd4zhgFThBYrplZMD6IzRbNsStPFyLEcGXxgq3rqkipnqyCtx+RWsGPQE6UxOHSueGL4rUtBsmGwe2yw1NEqil+g5APLuhC3B0rdQFL3bPQlk5s5kd5TtWwRNPlOMK6y1IxJwpIyW6msMVHLylASzjeCc5AMmA7FSBkxnloFUyu+GcRpOqIxiuUfdzsVGNtGIlEoNCnkJpSswWelLphoqTGxLis5RwYvKh7257cIg2dvgz4SOp261sKaE62qllMBDp0bWo0+oFoiy0vYQpZCzVm1ew1tx5paVJsRSt2oGeJhpawbJLUS4hotwwNHvGm0FilBwHsGG9jqSqyZdc00o5i/WgpxiaRlpTTF3e32j3DDDvEOX2t3MRWOhwPH48Lnv/oWr3/sYzy+fMaTZx/jM1evcvv+Nb/5f/0a9+9e88lPfRdf/523aLny4q232V9UxstL7pcjtMpghTAOHA8rzmWMnRSz5wfWutEWQy4FMU4jlatm19QCUgXj9eeU8taLkhaw4AdKcdRSmOdwuj/Psp8PCr9PxaXWxLoezmBcFZ5r0drtdrSqPuvTSfX0Z621bNt2Ljqm24hFoLbcM3vUCU9TqpW1FrEv3Te15h6NXPt10U0l20YptZeRl/PCLR5Z1sQwqLnhpJc8LZROD7YP/r/t9lM/+eplOk0T19c3eO+5uLhQ+r57zIv33tet+3akiVff/fvvc/nJN0mxcXg4Erd/BnZH0cfFPwA+A/xV4HeAm9Za7p/ydeDj/Z8/Dnytv5FZRG6Bp8C7f+g3aBUvGU9l5z3WDLQtc7dVak6E2cLkyLZRiKwlkm2mmcY4zeyGEZeFlgp1WwlisD4wuJGYEmGM1JqJLUOtrGlTUnRWYjnGMu73bPWB2Aq5FR0DdXJzrRu5ZIyxtGIZzMjjy2cEP3AIUVvItpDLRhhUC5mzkDYHeBp0bSfAy4uxmUYV1VTK6Em9AKxFl1Z94ESKC7up4bzBhiuK0ZNTagstH5HmSCWySqKYiAGm4Nnt94R5wg+BYzqwbA/EsoEtmGYxDsiGtCZcNKQtqwZPKgkFKu/NoLEFIjixKuWKhdTUiVPJ1OZAPN63DtdoSCmakw7QhLU6SknYvqhY8wEnBkM7Z4s3GlsOsGVMhvIQyYcC4jWNMGtsa3QrNjeWBVyYu3vLUrEYtE1tqVBSpuTM8fbA8rAwjiMye8QNLBnIGdneZ110i3/7/nu8/Y1v8mj/hN/96jd59Tn8wPf/EDdfeo+H9Zb904GHfMezjz8j/cOv8viVp2zbNdfbt7h723K8mNnPE21yNCu4YaSJbogBcit4P7A55UM651iOReNM4GV31Ge4OW/9FN1IqWBNADQnaZjs2d6YU2UYOoWn8gG3Waay9Y4NUsyAe6l5rKIdSdCArw/OQL0b9ORYT5+n75Op7qTg6oXLKwLQ6AnVmlPB1blo8LZnv78UzH+wmOssseCDuq9SSizrgYv9FSlpuuNLopA6i4YeUXI6jT558oSc6nkxtd/vyTlzc3PDfnfJ/SFyeFjOX2eYHDFqkJm1AZGTT/6fwTa86XHoB0TkEfAzwB//gz6t/y4f8d/OLxH5SeAnAYbZ4Ay6zElZ0whjIsVIzQkmo5CNmilUiqi+6vSmazZLVo/5lhCnZJ1TXI+1FiyUFkkFkmhsQm5Vkx+d3mSlBGLbFOPWmmaB96336WDsnGOwE8HvGH1gFYjpXk+SbcFZQ5gCJVs2AbKhWt30ntrQ1nQJom2JauEkGEou5NZItZzJ1saArUqx8c5gTdBojFYxRYOWDI3cGjarlcxJwIc+a4I+DM+saSOXFUrGB48zI2IblaK5OBQ4wVt7XnhtWeU+1WpkQ67Uksg1agSGVIp3Gionqmaw9EG+qC5ORNP69DsJVjRLKZeMNSDZqMFARKNOo6jbpRioGfpFXGulpYqbHNUKa0mEmnW5sOWzUkF6MG+tisGz2O4d1oVFE6P4OoGyZZbDPSltHA8HhmFCnOeNN57z4p1rhnHHUr9B9ZWrq0fYELhZ7nAXM8ccuX64xoYHhuPEfp5pOHJqBIFWGkUKw6CFQOxLDWKrlmKs/n+0pr74kzWwZd1efyBdNOeM8xpzIqTztX/aCv9+2+N5i3wK/xPF4ykxKHxIknOCfPz+r3Vy83xwe92kqcKiy5WstSAvN9cfWjzxUn6EnETutisAGqWchOvqthnHgHVCWtO5UJ7+/KmlPs0rf7/IXToaTkSYpuksnVKNqZ7gCSPev8M8z6capA+iWLChu9c+4vX/aRveWrsRkZ8Hfhh4JCKuny7fAL7RP+3rwCeAr4uIA66A9/+Ar/XXgL8GcPHUN2+AWlkO9xhJ3F0rZ7CWlTE0cqgUkzW8yybddjd1h6SywaK6rloV7FAipNhgMJighJatZJYcabtBiw6FYPoF2MOspGrUaimRUnSj3EzDiYp4wzQwhwusCQgB6fO+XA74sECF6eIZfpyJLlCzB6ctl0pjlEa0LAulFWoVmniqqcRa2FJjTVvPFIlM1uIHzzwJQ/A0mckSiaUhtRCXRbeTrRBzpdaGd55xHBgGz2GLpBJJJbEsB1JdEVeoq2PeB5xYNtE4hJJU+ynWUkxFSBwOG7boVnpyVRFzSf25WZKCHZoHgWh0DJJ1+KHLDYFqDTBSKThR61xrhVgivoI420PXKls1yDHjMlyaHVdXV1gzUY2hdDbk0dyRcuZwTFi/nm92b0UhwRTG2iNUcTzaXyFXjlJhmPd4N5KM3ty31y80nbAkdtPMx165Im3gwsgnv+M72VLjoazcbzc8ubrEMPCLv/73+Oxnfpjjwy1fevuOm3e/xMcffUplN7HQ0gOvPn3Cq89fQXA0qcSSkdKgt8wNqB9ofcUqBvB4PFJN6ci4xn53Cc0olGTyiFhyhNa2l0ue3D7QhveTW+2FSLKCYIAQRnIqXF09BmA5bpx4lacTHHC2GO52aoM8Ho8dhq2LSUE7iZK75MdqFo9OsTQfCTifFGutGMtLelDaoGdoaaE11JbOoWPOOW5vb8/fP+d8LtwngPGpuJ/tkOL6zFK11dM0dd6mOo3CEBjHkcePH/Pqax/n5vaAMRv73SWHw0JOtY/M/imKpYg8B1IvlBPwo+jS5u8A/wa6Ef8PgZ/tf+R/7v/+d/t//9sfPa8ECBj3cRr6Q0rpXW6vbyhZk/Py2hjNytYSxQtmJxQniLHUZjlumXpItALeVqoxbJKhJKx4gh+QZpn8TM6ebXuf5gpZ4CEEKI5gZ5zb42NilEuSe4t1XZncjGoetNXI3rPMlTocETZqfBeRA9ZkpDpssKwpceRAsRE/7wjJUWuiSWXrQ+wkC0WOGFuJ9Ug7JHKaqcVj64CQcCZR0wOCoR735Oi4GCvZOKQGtlQZ/DNNUBTD8e4Wawy1ePxsyf6BQiZXy5oawowTA+UGswA204zD+wv84770WA7EshIlUbBsNWI2i62OEjMOxzBfUN1CEmFtK+PDDcY6EoZkDGId1Viyt7o1r4KsFm80+jSRMHUg4AitIksiiMpeyn5FvN7w1SkLs7oGzlD6SWAXr3g43uAPB8TcggUmzxa07S1mYNkWdvMVdnSU5ICA0MAFrBFKPJJS4sItyDTT3GPMeAGuMY6Z2U+0W3jFPub20Xfh7oXlvbcYp8zhuvGDP/Z9FFf4whd+BXzj/vA21hTismc0jvZYWFedkU/2KdudYb+7pLKBNYjNEFf8MJBbl8c4IafKenfTHTATJT6w5Yr1jkPSM0fYj4SkLpvJjaorrpWaI4M1tKYnf4Mu1Sq9C8sw2pG86AlstANBPCXo+3xxcdXdQJlWLQ9LVTD29ISUV81CavogaVXIUjgsd4y7PVV02eoZMObk/VYAC5L7CbojF01fe1TNdqdmWm6UbnGc3B53EamlnQsiGHa7yy6GDy9HWa1xOBzAFJwLLEnTRJsWLbBCHGbWWvmOV17nB6+e471n+9I/osi7JPNAuIDlrpwfFv/ExRJ4DfgbfW5pgP+htfa/iMhvAj8lIv8F8OvAX++f/9eB/15EvoSeKP/tf9w3aCI07zk+bLx3fUveNCdHc0P0B3K/RJqrGGsxeJrmHpCLAmdL1Xnk1mbCGMAos05nXRp3O3iDacKxNGhKuTEkTGvYwWCdUbcIhZaTWuxqQVrDhbkb9ivL/R3x4Lt8QSGlCg+AuBXi8Z5cDeIHhgxb8f3N9eSim7rjdqTUFUOj5Qg5YzjlH+tsVqzm46wlM7ZB9ZGiCH6DDrqHcTjr1fIWaVUjdN1kMUHIMRJzpmSDbQ5vAsbM1LKwLRFvhMEOOOuQVsl+IImmA2Yqvmi+tK8GfzEyj3vG/YBPEzle8/Cwko0aC0o8uYUcbhwYppFmhBoTsShw+SRDak3JRU1U17f1U5HNroe0CaUalqypn9LQNMtaYG2sD0eW45EwCrYKGfB2wAbPkpLCN1LEeI08RUw/+SRyKtQSoRXS+BiHhuKFISNsxHygsRBt5dXv2vF7X/s0QSJfe/vrjPPC3UNi3AWKZGJcGf3Mdhf5xs238Gbgteev8N48UHPh029+ipQ3fJhZ1jvGySnXgI4ssw4xhVIzeYusx41VFqwfyElwbgYMYQi0ClhFnw02UJtuvk+nKHgJ4TXiNOKhwTjO2nY3oZSXuDR66F/7wAzR9UXNMOiIQPmwjXHYIeiDvmR9j8dh0G4pn77uyyxvmi6D4OXmHhrGnuDEHXUtaiBxzhK3AzFGllaQQf9eqq10+uAZIs+fvcqLFy/Y7y9pTai1qBunlnMb/sFTZwOMTfhgsa7y2tOnPDwcGcfAfr9nv7vo0PF76nkF809YLFtrnwd+8A/4+O8Cf+oP+PgK/MQ/7ut+6M8AqUE8Q3T7m9lnILU2TSvsEFwD5x+ECmQb2EKVivM7xt3+rLOq0hBJFEVOUlKmuXYmlohRhwro9q7UREp6wZWSEdGLIPie5WM6dbzj68VGnD0RzmuXO2WV6+ARG0mltyUIpZZOj+6AVhqlVAxa5EBbFucNrUAxavXLNYOI8huNo6Ih9c45/VrAifhTTaVa1FbYlNWn2riAN0ppKrbprLdmalO7Xe25JLXfSHLeVlplYA4j8+4CPzmyFSTdqdNJjTqKUasV0yoOOjnIEKVoKFVVpmIToYnFukaJkbQmmhFF2mWDC+op1mXSxnqyAgbNQjepaaFAgUcnmpNVPDO0opnlslEaeBnUjSToaKVPTxuV1Uw4CkYyplWEjZQOXd9bySFT88TgL4kb4LuwviyUlpnHQJRRg7AeDmTbGN/YEzMcjrFvjUVjl5OelozRPG4tlPZ035wlNMYHaqosOXF5YTBOdY2n5Q1NpWqFdqo4SnZyXcJmjV6LDRSD1h9OovrYwum+UnwffRSg96LGbYBGrhhj+8/aoQomNTVoMRbteop0BgC4c5xtz/v+gDjxdC+foiNazfo9xJCSbru996SoWlElwHPepB8OBx4/ypy4nCcp0zRNOHPKD/8wVBgR9hdjlyStHQK8sizLS7uoeTmz/ajXt4WDp9bKQ4wsMeHDyBSE490tKUaahWm/Y7i65H69I4tCQ4Xa2ZUZGRrGVVyDYfecp4+fKf08bqzLfbczWYJvLOVeA7iMO1sgLR7nYFkPbMcj63ZPywutifI1MTjZ6yksDEgsHI+LunumiHe6Ucux0aqn1dZXWkrtrlU1j1iDPuAr1htotp8qEi1mmlnU2+5HwqAb02GcqdFSimKsHmJkCh5jPbsxIBadf9ZEjH34bSJSMhIVpVbRG2zwI8E0FbnTWO4juRScyTTZtMhTMd7RvObruAo1GE1QdANmHGnW0IxuSmnCQRK+apSFdOnWUDXjR6QRMCQHy9qFzsGp3Ko7PUpSe14Rw1AGRn+JmEbKmWO+pxldPLVaaA12xTMYhwsjJ5K+w2JypeQVUkRSJeYFQqE5TyuqeYxx1Twf7zHANg2YdkDMhqkJiYXD9YZczNyvlRf3B3Z7+PgrH+O3virYULDe8Pd+5X9jCDP7aeLuduDh9h2ImkX07otbHu7h8ZOZi/03+WOfviJu9+SUoXiqVzG/Hwami0vFANaKOM8wCbkFSqus68q6JJxreNewzmlcdIFmE2pj1bnlsuhyqpTWkw+jJoSKzi/hpRPm5H45/544JyKeif/lBNhVOnmOiWEYsMYgRbukhqaKxqKzS2c9psWXD+DSNLHRdcdX6b5vG/oJNVEKOKMPsdoNCsMw6FwUw8XFBdsWefr0ksPDwv39gd1ux7alvhCMOqvssI7a+j7gpEP1nkLl4fDAFo+8/eIFtcI7L77FMF2wLBu1wuXl/qw//cNe3x7FksZhW6Fm5t0IqVDHgJiIHz3j1cRweYnsRg1NzwdE6jk/uJUVM1icsdhxwE0DpELMmbxlxi4CdgGs2C7B0NbLOYfBENPKsjywLnfkstBq6ttFwzTMWAchWJypCJWcdNMW5hNHULo412Gk0UQLdAMKGl7vvOk8SyV0iPZVbOvCYAw5RsQ4jNWnrrGFYT8SF2hRt+lVAgVL8B2XX3NvUyJbKjgnSE64qnkmWIMzgZwNJTaq69EXxtCaykJa1yMGGzgudxQau6sdxjkGGrFkahIe4sqQMzFuulir2o6Z0Dgcj4w2EJzezNA3uDg97dXCEDxiDWta2c2zitv3M4u1LIcjrTaseBoWsQYbBvaDgkGqKPXmsBy5MBqrYBj0FNka3njisukJyxumMCvUA2g50Zxml2/bQTPmXV8ehETKR0gbF25mcI95tnuVVAyDbKxHw2uf+ArvXn+Tf+1H32R38YjdxRN+5e//Bh97+il2LlONR/Yj5vKCWh0lQRs8N9cHrh8/IKbQqkIsaqksueGC5/Lqgi1lbm7uMG6kSWIcAzEblmVRh1eCUhvbEjEuUUtRDWLe8IOjUYkpkmtBum/fh4HajGLY8Oci0FojpqSFsUOCjROs11ja07JJ0X3pDNn1YYAyknPRxSOCs4MWS7GK7estvnQa+akQ60Zboyu0C8pdOJ7OwS6nlcZpi70sC2YMpJRxzjONO+KWmec9Dw8P3Rrb5VZdQpTXXvxrwQV1F51iKEpOXFzuePfFDbkeMHISytcOJHEUUzpk+A9/fVsUy9ZU6Bq8ZedHZGy0tkEYCYPF7z1unCjZqDUvL2cfbO2JfoIKoQ2psx0V4Est1Oq6REEjXVuTjqxSconBkGrs7XFGlJ+mR/QmiNW5zRYXmhn0pFi15Yxpwxmvm3R0rCtikdatYKJtSWt9VtMU1hGsbhNLSZCk2/IMtO5aakU9zUYvTgT/BZIAACAASURBVDoMBHEKvzAKHiixkqPS3EE/ru2T6bIRldEYY6gmUVpVUrm03iz1dilbpCTd+rd01v6NY8C0QN4qxcCS1rPUSN02lmLLh6Qo9IP1h7KP+ohBDGeAgzHohrUDJqRVHTEIQG8XrUGwGmCXNs1AMk2lSE3BxUZE55GtKu/QCt4MlKotf7/KSEXBJuLsWUTtTKO1BKbQRDjcV37vq+/z9NkrPH76mOtvfZNnT77F9/yJp8yPHvHlr72Dd5l1eY9tvaBut3gyV7uRWj1LFLZcMGbQ96zflFR1M7mqkcS19cxsYzEuUGt/8ItmJFlEGQkdmCFxZTTjWT+JUaQaqOLAWNt1wQKiHYsY00Xjmk0vIkzzjlwSpeoipLSKbS9BGqe2+VTAdLRU8F1W02olZS0sLqjbTaVG5tz6nuaFuo2O5691+viZoh4CMaoJopTcoS8donEaC7RGqR3EXUq/v+QM7i4nP7y8ZFm23xd/cVIT1IomC4j+XKfdS3CGXpP/HLTh1iq2ytEIg+omx9liTMAES9lV3DRCdmAdZoukvNGarvtVQJ6oBnK95/Zmo8XKWCzTqALWRmNJhWycaroG1d4Zo0sdnWPck+OC2EgLovk4GJqB1BItJw7xwHaIpNNFsC1YsXg3EdyeWoy2KgJinHrTW6TGRt8lQxWcGwkykFrCuoDzK81M5CIcYyGL5p5bHxmcRuMacbTmqMaD6IZ+WyIPhwMxJ8Iw4wZPEAO5KvQjeKQFsniOaSO3jVwX3Rp7p6etNeKijjfmi0kti1UzvTVkrNFKZSsrbBZjtcy6YNn5mRw71VrM2dLXcumwXTDOY6zOgI11BG+wQyfkxIQEGCT0m8ASqVAbWRrDNOI6ock1SySRyawpUrbM6AaMEdKmWTriYZp2PJ5eYU0ae1ttIrXM/fpAbJlxmPA7jWaoSQnePgykOjBfvcLHX7/gx37sz/BLv/RTfO67n/KZ1wLXtzf88q9+nt3lJ7l5cctoVp7sjuxeh9t3H3j/vQfEe4ZhZkkj98cDl1cTwzyRs0IoaIWWK6mgwXwVpotLnr6SWA8HDjmT16UXSCgxEVGKTkxHwqDCqBQzdjC00q3B4rqnuxdLNE/e2oGSwTnV+W7b0u2BnGlCKW2UGnD+ZIHUe1KRbPrQi2kllaxf0wleTjpWfT+lY/JAaFk6uOMkZ8qUcurSVDa1rCvrunB5sQNUIXIKTgNoVa2XOReSUagHqIW3tYZ3gdajeSn0h8fJnbT10Dt9IB8OB26O3V1EwDnfM78UT3dxsUOjCJd/PmaWtEaJK5MdsKL2OFxBBqENlcVsyHbAiQdjCWFCxLHGBTfo3NE4XYy0tFLTCqXh/SWPLy9w08BWI9fxgaVHUTgbuvF+JcfEcdGZhrSE1EiskWpVLJxi992mCqkxDxc8enyFiHCo72CaO9/owY+6WKHTuPOGtERrBo/hcr7EimcX9riqpPbbckOs39IscHGE4DlmpUKnDD44bJgR8bSiYfS5QcsFqaInVTcwXs3K0VwzKW3Y2eBGfUpLhSyJVI/gEmaYcc3rkmur+BJoueCb1e16MdhYyKGQSlXKzDzjvPrNqRqwVooGnrkmGinc2/slRbwIoxuozlDWA7Hnijs/AMpIvD/cU2NhcBqvkY3qL2vRn2dNDtu63794dm7PJncUU0lUWkoYOu7ONhzaCRg3M/kRbCW2hfV4TWoVN06M+wuqsepevyuMF+quqi1wc/fAX/iP/jw//VN/lf/0L/8r/PYXf5bbd17j9jbwxf/za7zx5iv85m/+Fm984grS13n9eeAHv+sJb7/9cb7wW9/k5vaeUrUF3DaFR2/bxmT155IW9fzXUrh+uOP5s1d5/MxwcJ5yuOewrWfraG0ZUqbhSDEyHwdEqi4+ML3j6cmJCqvT4L+qBCOxoJu+wu5CUyHfv7nl+fNnGAu3t9c05Hz6OgnPQd1ipzHGyThhTO3jJk1TdXbQVr8KTbSptr0o5pKJUalX66aFKOfCMHoFWixH7u/vz8sbEXBW70fg7E7SzbwmMOaT8aQ1HSF1QeK6rjTh7Lnf0kve5eHhgRfvVPa7S548eUIztlsw4e7ujnlSQtHgM+u2fGSZ+rYoltpOFZw1CB1aawriG9XBSmQGjFPvqbMjJQtGThawQml6gwVZcM5ixDANTpmEbkdpAmmhIIzjxDjOOBtYl7Vf2CruNt37mlrG4SlSNYM7VkwzXF1e8uTRU+KSzrnQlJfZJMGPVMlQk7Z9OROMumKmwXN1cYm3E7Z4Zr+DKrAZ3t/ep6wZN1qurh5RDko82lpD7ABGI4CHwXbhtaG12KkwIy5Y9vsr7tcjAyMPm6YslqL//7mizvBWMB4IHm+cOnaOhVFG8hJJR73wmmvEHGmicN4mhlwTtoW+VYyk7ahhaVvSpMkz8KCyxYgbR4y1VKOxELSMIej7Y3X4v25HJEOwRmGwtbJmdTBZN5DWBZPAi8G6idEOOs8Wi2mJdFRQhzvFGYjeaDFVhjngg+K/6gLWB8bdzDhPrN0eN6+e6BIpwZOnE3/2z/85vviVX+Un/9KP88V/9N+yH36H22885e4aHs1v8Hd//gtcPt6zHyY++50T87CRDl/n9dc/R5ie8M0XK7/2G+8gpnFzd8u2bRyPR4Z5RlDnEqhT6e7ujovLJ0xdVD/PM3VdaVEL1d1DZdsWTHZscQVJ7OOeqydXTNOVUrmMQi9y0lTESo+jNdIdS4b7+wNw5OrRBeuqRcoH9cmv64r9QD6VZmc3GkKMml/lnCdvGSlAU6iMd74zLS2nmOLT5l1BKjp2OME8zjNEq9AK7z2t5jOk5ng8IKi7aF0OTJ1+dEK/taaBZTndk/PLOIoTQKPSWJalb/7bWVK1xch+N3NxccHl5RNu7u5Yl8g868du724YhoHg/IecR3/Q69uiWFoMgxnIJnNnE3UuJCp2CBoFuxrWKSM1EZxjGmE73BPIjK0gJakw2wkpXhDMnjGoXKT5yGH5FuIDNhqe+Fd5J9wxz5dsOVPTSt0WhpgZ20zwAStPyOYdWhJKq8SMPhVDoK2J9LDgsFixHIpl21QCsbJqKmK357XcmMzEkt5mGGaMLTSlUjLNO7wIJSl2bkkZvOAHyzQ75rJD3MQ7L+6Z9gdsu2aaJkL6PkXmt0S2evqd5j1hmPFyCavlYG5ofoJatdDQMPnInCO5CEO8YJg+TSuRYhLbfMdij7Qpk/JClcToB8RZHDu1OhaN9QijpTaQ2ihFZ7xu1XHIKIGcdOFgxerpc3ugmUq1A1aUNHQ5G2pe8aawlgo1MNQdFMNYLaRbxBWcX0hlpSZVA2w2cbl7iowXVFmopdKqkuOdaczeMzjPY3OFawlnIlUSa35Bsit+NvhpB0BJt9QcCVePiYfHXIxX/Knv+F7+zv/4X/GX/9Kf4Xj9C8x3E6TvxTy95+6FQ8wTLubE8eZtLvaClXc5PtzzZPcIU3+H8bXA7mLlK29/GXd8k+PxMS/e3zFfOXavH7i//ybD7hPkFws2wcyI2wpc7inDDtk95/BiZdwP3F5/ndE/0NY7bBmgTLCNLM6wNwOHBo/mmVS0u8A6Yq3q/HGdb0kBgf3ljpwz26ob7WkwGNso+UhwiVL2AOeuoJRMCJ4h2DOZKww7UtJcKR+ElB7wbkCkkJPBiO9IuNLb7oZ1jXU7Mk0T67rqifK4EpwhGFjiQk6rnuxGR0oaA2H9hIhnGE4P33Ze1hgrmm/VHVjHJIRSCN7iW6OlTOgzYIkNNoi1YIPVUUM5krc7Rt9wphIFjPcUK9hp+Mg69W1RLGsfIhvrulWqnunFVtQ3LsTzUN4OlnEM5KjbrNFZKLDFDet3jHNgdAOtbBy2A1USroxsxVIYmPCY2Mhb0vCtnnvtrCEMvicrXpCz2tRKXim16pvpHIdlJXYgbQsLxozUaliWA7Ws7C6uOkZfn1ZhmjEmkKsoQiwLc8gsXU92TPq0d2HED3pavLzasyVtSe7v75kmg8USwqoRrk0J6mICfhwRMVzfvcvD4YAZFuZ5xlrPejwQczwPx70b2c2XTMNEwZIwWD9RRXV3x5ZYSyZVjYAoJtFwffPZzpEWqeOsnHMQeDk79grcaC6QaiJtSoyvxhKCwwWhUjtKrWKDZzAXODvSmhDvNI1RgBYL4nToX0rhsB4oEczVSHAeNwu4AK0QMEwu4IwScIyzVAo5JQ6HheOy4cMOQRdl3gakwZe/+g2u3FN++Id+iC/8g1/kJ//CT3Dz3ue5e+8bBNFr0kjklVd2vHhr4bOf3THOn+JP/AsXTOFbpMVDidQ60EpiP3n+1X/5T/I3f+7LXOwGDvfvcPPuzOuvPcGZK3JMtFKQZni4u8e+f80nXnnGMM4c/QC5cnj3bawPWD90PaP6n+/u7ikPjenRyOU8QFXZlFLR61mFYK3thHCB6mhVYS3awQVKUbD0MOwwaWGtL1tx60yfW8rZN04HEJ+0mCe0mrraLKWouQBQMEo/TeaesJrS1ovdS6o9qL1SjKpDWtc3lVIYx+m8yDo5dZxz3N/fU0o5wzREhCFn1sMdOcHghNoqIoZaKmtcuD/e8+679zoHte0M5GgiHB4W5kePGYaJadBu7aNe3x7FslZS2hiaiqobyi8sSR0ItEZKN6xtobpAkIExCEUCD8cI1RFjZllW7O6Oy/0V1WSW9cBxuaZJxteR3HZIcOzqiF0bdalMePUKtwaimsjSYLAq5XBNQQ8lAiYjeLZyZF0VETWbBk4p1MuydQzbCfGvQ+9i9SaNtXGMCSsNc7xjOy6sq/qOh2HAD6FzB1fs6HDFMA0TMd5RRdhaobWvYWRS90sdQAacGyk1s6YFXGIePVY0M0c3scK2KIh3GAaGcMmlCWytkJqSbiQoFcgYtA0EahNqjSCO1gTvR91+V4dxQ99ENrYKIGRJGkhmDbYKqSmlGynEmvECCeFhPRDjBs0Spp3qKtuskqYpqkfdJCobNWschzGQW6akheP9xjzPBGfxfsSK4WKakahymJgL027AmJWchMOSuhvGIs3hjO9eY/jEm9/Jf/Lv/Pv8+i/9Av/mv/450vUXee/t3yZ4QzQOXKDlA5e7PT/4A88xbiD4TMq/SzUHvLfUWLvTTDuVjz97xg9933N+4/9+i+VwpJZPk7cRcJR0j6XhjGEtlevra14rjXE3ID4gw8C0v+L+4X1avudgLGWrzLuRoUaOaeXh9o750ZUaLHp0hy4UDXQXmIaTCS0HKprBZEUwNNatIWREHD44tmgpfWRkne9zUM7C75Ir4uu50KWsetlYYl+YSBezN9zZnqj3tcZUbGdoRQiBVkzXYiqUpTWVQ+12AymqPtN78yGIxolTmVI65/CodE/tyjR1gNWUsd5hjAWnOU4hDOcFUggaIX17f48bHI/CyBAm1VXnj3Zl/1Hgv/+/vHJ3v+jTr0sXqv4yVEpdiPGebXmg5BVnBR+cWuGqempzLqS8kYouaFJNxBrZamQrUeG03uKrxWWLqcLgA7txYupPqlwTa1pphS66dhgsxjiCG3SL2JriAoyc2wS1gBmGwWu2eGf+NQr/D3Vv9mvbmp53/b52NLNZa+199q5zqrdTdmzjGJskjpAQQlEk0or8Byg3ESJcEkUgbkDiAgkpghuk3NBISAghIYhxLkiiQKzIIAwVx45dqSpXlatOs8/Ze3VzzjHG13PxjjnXrrKr7MgClYe0dPZZazZrzTnHO77vfZ/n99Qi/NpS5e8srTKFmSmemMNJgBQXDqFciVWTvkzvBzo7iN+2aEJ5IJaJVAMFaNqI1atkmsoom2k1U3KkliKvk3Nyf6XRa1KjylV+qVwwDbw2dM6tgU7jpd8lwMmzpvXcD/ruHBTtxB5VVspNs6CdxnUW6yULSRkpdiFH5hjIZ+mPsUJNN+JUkdxyCyuUVUwY52CuJmOzUrDqKee6687vC9LPyrKCKKtrqGTpfdHOr4HFaYPThu1+x1d+85/wD//B3+GPfvEF0/379A663pBVI1Jl0tsCXR+gvSEsH2FNWK2wAOuATwldJy4PvPfuhpfPLUZP5BDISUMdqHl1qaVMyUnkZ+uJb5zHDh2+H/DdgOt6Cbdb3wvvvUyzUyLHRM2iUlBNHFpPed1PU12lzUXSppWlIkoMtU7KFW51r5jL6hJYByjt8tq/Ldg+Lwa+n4j7fB7DWVakLgBjeIIZn+V0KT0FqL0dxfu21Oj7PS6qvrUaXn8fLZ8ltFrpXfUyKZdVuFrBxHZ1C517rj+4WP5QrCxZ34yYE721YMT61pqIuw2G1I7EUMlMjNox9OJ8qF1PyIkaBcqbc1iZjYqlBRYl28CmDJ2t2MHgF42qDYfjetyiVGNJnjePmTkUlnmiHM1FWBvmJNGdruEwGOd49s4e4xz5+DGoDppmu3sGzRCLuAhiDjhnmcmrnlNCyIqGuUyEPBFZ0EOj67YoI0OU27vX9FH8vrtxx6BlUNVKJZWPacag9DkDxXGcZ3Je86BL4OHxKPky4w7dCY6qFEixYN2AVj0sM3WZaTFhrFzxi1bs/AZVDCxHUs5AEM1eMzhv8c7i/JbaEssCMc1ULXESOWeMAqMNw2YjxJs4U5eMt46cAmEKoDK9H6TVYsSipzAobRivOsqcKNVSYqRUQdAB5LKQciMshtz3GNYwN6cJS5LXfIlsxpElzmidWWIgxgTOi762aazSUkSs5i//xT/P3/wP/m3+xl/7N/mNL/8CLr8mt5n5MBH9iB1GmB3eKHJ+wNmCNhmlG2FS1Gbo3TNqi2ijuOpGDtMtz7fX/Gv/yh/hf/pfvszHr77B57/wE+yurunHW2qI4qPPmtPDI5+8eg3a0o8bdlfPKfT0p1usXujuDigiIGQsbxykTFkyLQrO0Dhz2XrXZmgNGprWQCNhYrkUjDbkVBjHPSVHjqc7Bt0xDB1KLWj9VkZ4WtBa0HJd13E8Tlj7VMistZQsRU60tWcZk/Q8Lx7x9bBWGJIxRjb9SFZ5pbx7IFJKIywBYxzOeRkQrqBfkK1/3/eXC/QFQ1fW4WzNdNZgnBTKgkzfTyGSs5Kp/LIw9gIL/tznvsD+5iWHJePdgDWa8odBZymMPkuKla5TmOagVmIW4G7fDbQs+dElJFpfsGi00XhdOc0nUsjU0thYT02ZSFzxYOIyqArUSljWQROXgHeSath3HU1VnO3JBUKpTLXQYqOVRgyNlCtjP9CaYb+7YvvsGq01k8ocTwHrHM511NLEMdLKurUJRJXxDqr1Fxy+0k2o5VpE1jTppcScRFzfKlaBMx7nDHM4UXOhKoXyCJvQJAoB4yQp8fBwFJ9zzCgv9kaUOByGfsO4sZcr7DTPcgGgYrUFVVBUUlhQpuC0oZlKXCLedWglNOk2eMZRXidrxXNrTBJRvBZHT1Orta2E9TkauknwFSjMGctVKzEsxPpAbySBEqdwA1hlKXNHiJmaIkqB946YZ7xzeGfZ9D0pJKYpSSrlqve0rqPZwu3DJ0KUN9LHlBAtzTw90tojKS28ef83+Pf/+l/h2RCprx7BZlTtUE6D9WQCRj1DFdAtYnTFKA1tS+89rVhCtig/U3ORqJBWaeER6zNf+iNX/NKvvOKr3/wt3vsMvHetUE5hO0uJCqc0d29u6YcN+/0zFmay7ei214TpDoynUtDKoaqAUqwy1FgwGAkQKw1V1YVUDoa6rpRyFuBwBULKjMOGeZ5QCsbNnrDMaB0uxJ2c66XwymdYVnQyOZ+kD1/tymKVre1uu6NV2TbXlp7AGeopmfG8Bc5ZkHHaaFKSCbo1nlYVznVywdV2tTSGCyruTFw/++fPsRxLeqKb1yow6KYsxjpiDHz0+pbCjQyY1sJ/ff2M2oTqhNNcXd0wDIXj8fg7i9Nbxw9FsURpfLeTk1kVSs5opem0eK5d69h216QWWWoSukTRdMaRVOV0OKKBruu5GjYo7cipYjvPxu1IdcYoseEtYSHFzOl0wCvDsOlITU7Uob9CmwFlR/Smpy2RHCL5cKTGQO87mT7rHs85p8SR0gmFZZ5naGrtqQRKk6wZVTM5TkQMTsm2x678PW2UuHiUotSMdYah78k1UYulloxXHYMx5CYSKa08rWlUW+hGT1GVsjR0VJSk6VyHSgZdLEUhNrQmbp6UAlNYqC2K0wdFMYVQEsootBEiUy1CQiqlMaeAomG1Z+wNWgmlSCtLyeBboqZALo2qhCwTlkSplZybtC1SpfcjugNUpKRErAshR8gzaiNRpsks9BshPGWlUdrRjIIsGr/mssQYW02rldPpRIkyvGpZTtgMlPLIHI8UEqkEvB2lh1wzKZ+I6Z4UJ7blDV94d8PXfuNX6NIbtqajrRdrUzK0hVJ7Yoq0HNmOGzrT8XgI5ALGQWwzSkXZ4heLqXKhyXHiR3/0Jf/46w/ch1vccc/1c4NVlVYLWjs67bh79QaK5ktf/DGidrRNj513uH6L63pKbKQgQ0hdDS1FlmlmPkoC4rDdYpSYLax3KGupqayg7ITKUoh0JzxV3/fCP10C1smgyxpH4+3VoLy+IP6HsyMHuLiSWm30/SDFsVTO7MlzK6CuEh5r7dq/lFbCdJjRRWyc2ii0NuJGKwVjZMWq6xPYOEYZUI7jeNFfwmp5zGIFtdaiXEfKjWkKuEHTdM80ZVxfL6vRcdzSdR2/+qu/ibY7/OaanMC/2LPvxx9Ypn4oiqUChn7L1X5DzhMxCox16DcX/ZZ3A6pYqg60Iq4bbS1WG8auR626Me+0gCOU9BS1spAVTckUNoXGMh9Z0gLGkUrG5YzrPM711KYZracOnqQMTkkyoNIifs9VohFKKqC5vJFZZdAJ2lMWclNCcNFUaaeUvEboakk6bG2N55bimZvk0liraUmvXl7h9xnlQGuc2mGMpZpCNQ2UxEho1ejdKF5aF9cmt6DACo1UM2E6rqtaJWSidepZVjeGtx7I5BBIQSylOYn21Gi9CpMtrYmDw1qNNYGcBdTRchGrYmugG8atYVohoqpBY7FKUymUGmilSN8tL+LIqBDrCZOhNEMlP1lGlUKd+1fGrD1dIWqXVMTtBetgY82nplw0gCih8jQKKS/kJDEgW1e4v32fw/GWzbUjLgrVDLUqVItYnZjTglEVbWRlk1dIRFNKwC4u0mxZIxcMuhoUmVwDylXGfUfQiqWcUPYG49TFImpQ1Jw5HY5SoLGglfRynQBHqm+EJUNVqHVK7FIlTDPaWfphu1p/z1ZDC6ahq1CG6jr8MMZIPrk1lApoLZpX1GWAIu6blYp+7g9ikSGbvtiMZfDiLtvkcxhZo61vlzi65LCcaf1w7oee+49PCZEXcLF+6h+eaUxnO+bbNHZpCbDm+YimWBsn7r7UyAqacpzpRFp36zmneHg48OLdwjhuUUqTmnCoftDxQ1EsRdul8H6k7xzBCqLrarsTgXMI3LzYEqbE0R5pS2Xod9J76hWf//zn0d6sjpwjUQmKLOjIcUksIeC1whgIcyC0E+O+4/nVC/bPr8T94gaW2Gi14azFPN9RpgAp4jdX9LVSk6xIj9PMcjxSSuFxuZVAtNwwRRBy59WV/F0Fq7Lg0Zx82FvNK3tNIg+6zqFiWT+M8hwAlIVOb/HDQM2Qc2TjX6JtJqiJpI7QKiXL416N1zwbX+K7mdM8sel2uFEkPB9+8iGn6UDXecZxizGr+L/I36wakAshB46PD4Sa1+lnY9j0OLuhdztaNcxTpLXKMDq06tDN0VIkLYWWs5gHrGwxqU04ltVjmkU3aAVqFB6ppYEx2DXDPHPg7vERZQTIrJBYXG0M2kHzHbqX6WZKGY1AQUopDJsNwzCiteaYToR0oqz62773oCrTdOT4+BptTlADP/qy51vv/xrvPB9YUkDVAVcGTKs4HbGtMpuIMmBKpbVCbpWuH8imEMpEtvc0QRmjmqO2DktiHDoild11RymKY74n2WuurjaU5vC64zA1rjZbTiFyuj3gjQxhjO0Yxh3l6oZoA4corMfcBOkbl8Ddm1u0sQzjjittJOvHOFBqJQ+tCamhkFvG4mWAuCZ4eu+lddIE3weQ8lMRE/vkk6TnXCydeyqSIQQ678VmGALOi6JFa43vpAV0Jh1Nk1zchPD+NNQ5e7q1NuvgxcmFZl1Znmnr8zxfkh3PkRGb3SgmlZKIobK9HvHFobTj4bBwOAY+85mXF6H6Bx98QC0ix/O+l6gQ7Yh6JuU/BKL0VhM1PPDwsWLYjIzjFaYrFBOIZaK7alzZDd3NDbPbEo4J5zShnJjLgWodc+twusNtBsoyiXQmZoagyFND+UgxH+H7yDubLdY7uj5T+oXqVxjE3LBZtGLukJlDptRCcIrme2iFh3jH3e0ty/FILQXnFCAxDMlGmtW4ToGtKCLGNGwzeDfi3J5SN9A0KVWMTxhbCfZAVSeWtJBjwSTNqEdagXfe2zLuDY/mSNQnSrSU0ydgA9YqWr0mtZ6lJLorxbw5cvDXnPSE2T6yc4qWKroVOiU4upwzLkueePWVbBeqirw5Hqmp0ZRnYI+pBuxrrCoYIjHdoU258BRN7TmFI2luzHOjFk9m1fUZS8iVmBq1asbWo4pc4UNcKDVgjEBQjLZUU8kq000dNRSs8XSdUOq7QU6GQz1gr7eYbU/JwjLtvBF3kGk4f0LbhdAqx9QISsATm37AarBEltMBdVrolGUYdmSjYNYMdaDETCKjdzLlrrOCOtDrkZolJbRpTSaT67ImXkIXrzjWHlpAcY/VE4WGqiNev0PXLK6c8LojHBp6s0WPFRUrnUooVXAbw21+n/3zZ9hbiaDo+s/zOIDrZgzfIN4+UueE1zscjpIBpXg4Tbzse06nIxvvaHHGG7Gvziky+h6olHDA246c6sqJtFhtOYVHlNf0245wkKJslEE7Sy2GjKXmib7v6ftefq79JRXS+4C2MrxpAdmuK0PNhWWeyav0Z+g6aVERNQHBBgAAIABJREFUBTzsrEjUSqXUhtWgTRV+wbrVlh77TNc5SglYJ46sxroVb1V2nFHT9SOUic4uKNvR6sx+6LDuis32Cm0b0+kN3/72t/CbDdkceJhe4buRrhjIf8Ao3P8/DrWKXhuSWlhbxmkjomulyLUJIbtmcmko4yjk1U4YSaqKcwaN0oK3V6KnkC3NKus4P49Rlpoyc5sZxoxWCUuR2xtWc/5KIVoJzynXVcZgMU56qY1KKQ3rDNp7sB2ZjPcWY5uQqlfwrVKKVgq0RF2hAwrZWpR5IcSZErJ42puFKtscbz1WP8lC0trkbrrQUkNbueoX1GWI0UqllUIIGZMqJdU1P/kpmB4rvanWpAeUapABUgXFGl0KqKYu2x5J6Vvoxs2F9N1UFcyXFUSddQbZ4Um8Aeu/e9dT29PKQJmzja0KKOdMrlFnEHNFGfC9xxhFbmcJk0xeW0O2/lWmxLkmbDW0akklEOZILXmd7gp0JMXCPC/EEOi6Ac1TmNZZkVGptCxUKVMLdv3e98pWvlc2IxZUGSbK5roRQiS5leOpFIl62cYqo7DOQKdXMk8hLpIw6Jyi6wBtGIYBSiMOAydrwTahZKVzxpFahyZBBk9AaQ371sRYVoVqnVSXixzr/LOziPzsknHOPb0fa963fYt1eUavnTPLz/8updDWJIBz79M5d9k6n3maZf3/2p5ew/Ptz7e99EXbU4Da28fb8qWzNKmUQosR7FOP1Xt/ue04jtBmiR9WEp9xOBywS2Kr+z8cIA3h52mySmS1kFRFK/GeGi8i708eZ1pKqOa4Hm+4f7hjmh8I7YTtRpQuaJVYdCXptV9FxHiDScLU0wYG7zHBc3v/yHF5ICXLsN3x/JmVSaLRzGEhnwpNr1sQgVKiUWQam6trNuMOWsPlwrDZ4bqeqhX3pzuULRLZm+XDRzGiGdUzSmesksFQyVLsQwiUWvF2wBlDZzpM1aimsKbHqh6vC4NVqG1moRMXj6qEWFiCgeYZ+j21FCgRcuL+9Wse8kzLmjRZ/LjHKU2uUErCmIaiEpeZ03KA2lBF4ZWl6xxaWWISVmHIkRgSm63jnd1LUQIsJ7E81gWlM93oGHqJZFVOEUJBq4rrPDu7YV4KZYUYWGOAegmaErGwp2lD04FaK9v9jnG3ZVqOqKXQXKLZCnUr7viV/t5Uw5Dp3Y5aK4/3n3A6HOmGHt93+OZoSyUsgflxQaVKVY1kCiHO8ns0RUkzzY0ywa8VX8UDrfke7eJbheJ8+GIwymFoqNpTlASkTbHj/tjQu5EpNo7HI2Vf6ZxF24brFN5pUgo8PDzwqfppiQa2kkC62Y7kpaz54Uk0n1XIPqkUigJzmnjz+mOurp9xpvU3LQkC54ujtdCqIeeENT1aQ62rjdAZSm6SPGkN3pu1wBpojRAWrJeYXWjrfzV9P3I6nVBK7tOaIoXp0rO/DHpqvRQ1ay3DKhA/b3ulcD8VdoC+lzaC2C0Dd3d3bLdbkUWtfVsAo/PK0bTrFr9KqGHKlNy42t8wXl2hlDzmMsv7dm47vH79mobiOu148eLFD6xTPxTFEq3JtRFqwKiEaoYcPUb3AlZtPY/La8hNrtl24cP718Tlke3esN/1sOKX7lqUQU6Kon1zDW31auyvjOPIXr9AtRHfTXg3YrRjDlLY5hx4nB7ABlzXyZBCCWlnSQllDDe7Z9zs9jL9e33itJxEugE82+w4hXumEElhwTrZyvkOfFdQenUe2I75VKmx8Wx4jus8OWYhCZWK1g6NuvQIKRanB7KbUUWcKJUCxdG5Pcp6tOqoLWFypFeNOQRKiRgsz56/A2oQ65gfmdP92kgXxqap4n8nK8n7rkmoNvopJ3q733D97AbXSyzAND/w8e0HIqkxjqvhmq6X1c08T6R5QpInDcEc0arSWUdxPaWecE68uN54OuuxxtIGz9Z2kp3SGU7xwCk+EtJENTNZa8jiHbaux41ufe3FVJCWhTAZbPG40mGzp06NZZmJSyCdCp1yzCmSp8rheKS1ypIESVZUQVmNrtIbLFYRTuGyuvl+QmxjTpjVSFGaJTWP39zwnW88MBVHCYUQi/RZnafzHS1EltOEdY6N35AKzI8TQzcCEgfinCEtIpexVkwYXm8IPtJiEJBLK0yHI95YrJGwsFxXiU3vCSFJuiTSRmi60bSEhjQt6LPdbrMqMgKtnQXgCaUFrhGCWGittZep93nyfUar1Vrx/SBMydbIVSy0AEaJdCmlRLc61Rr2UlgvFsl1UPTmzRv2+720UTYbTqeDRE3op1CxsxWylLD62e2aHe5oRdQxn//8j9BfPScFkR7dvrnn8Djz/OVedMzWk3Ll4fYNNf0hgP9qbUAbYp6pUyRkzdXNM5nkpkLNhWY7gaQ2yzEnHpaZaXrEbLcoA3GeSXFhtgJ4rS2CFjteVRVVG5UqIuhFs9vd4HdXZBklk4oMJ+Y4M8eJGk5szA618hLz2tjfb7ZsrvaEXMlzoMXC3d0DmspuN9II9N5h9QbIhBzQzuF7i3OBGI+0XEjJs7E3NByb7ppnL9/j/v6WMJ+otTIMA13Xsd3tOBwmVJV8GWVmCWyjoLSjFsdmvJLpeV6LXphxqrIg0iWvLfv9Hm0EIlFbpNgzeDWTpkheZOBScqW0hZZkqqo7ob1ra7h554ZPvfuSmBYyGTdojK3UEvCDxY+GVgM5SSSuU0IBMhUO853Y0VqilIrzA62eJ5srtLUpkpKTRTvHYToyhyMhn+T9tLINzPPHVNvT270EejVLjpk8yxBAeuCVTIYqms+wFPpuZG4L1jquNlu89xxCwShDzAu9tUynCdV7UJZcCzWAWreC5+O8TfyuQz1Qm4B3c/PkNjIvhX/yla9zLFvm9JqqHW/uBuZlwXcWRWFzs+F4WoSWlBrzYaHzllIDJSVyjiyLELG89+gs7RjbOUzLGC053CUsnI6PUtC6nlQLMUdG79BWEWNmMw6k1GDNIELrNd5E2gelxhVzZlYnWUKpenGhLXNEaymQ3vUcw5Gh31y0j0ppapVYi3PbqLXGNE3EKKtbY5wMgtYhkWRdlUs8xnkF2vei4Z0mCRc7D3qsk9f9/H4oLTSieQ7kXElpYesdtTXubg+cTkfGkLjabtC6Y1ni+lpsOR4nutFgrMYVw/3d70js/u469XsVMqVUr5T6P5VS/1gp9etKqf9w/f5/pZT6hlLqy+vXz67fV0qp/1wp9TWl1K8qpf6l3+s5WoPtdiv9MiX8yBjjxQta6hr85BzaGk5xwQ893XZks9sKa7KIqDTGiLearhMhdUoJ0MSSL1IDZZDtuVsjHgw0Vckl0pCQpc6LJY7aiDGsV7F1cldkGjeHhTlMq+XOo1XDaAnMuli8tCGtfaGUBOtWq+DejLJ03tObjrREtsOWYdjgB8+w7dhebTHe0HRb5VTyoUwhEldveu8H8VG2gtOKVhOdEZeK9+sVXCsqsg3puu5youc1dqNk0DgMnpyeBM5iIZS+rF6DtWJaaLrR9x3GNpStGK9wvac0uTKfcVeqIe2EDHGZeXy4Zzqe1rRGK6L5akhBYoxVY8XlBU6nE6fTSbSrPFnkUko4V0j5SC5HDtMb3ty/4jQ/kAloU/CdZr+7pjXJ4tba4rqeeQkM2w3DZovrhap0WDIVx+MUcK67OFhqrdg1K+bcDztvI89F4ByK13UdSkcKCdsbQkxgPa/e3HF/PLHEQGoR66QHV2i4zqP8OX1Q+me6qUu/XCnWz6L+rt6g/A6eptbXKi50TiyQaQmrLnGR1V8tQLtwHmV1qi99QGPUarVUTNN06WmeTqfL39tawRh1yfCW81XOK+/9en5xeU2KnMSgxDUUYsRYi/NeUhzXIvl2hMX5Mb2XbO9zj3GeZ4ZBoBpnEfql572eX+dz/4nQLhEroAlBLsylJBplPX8qu90erWUVep6wj13P4939D6xTv5+VZQD+dGvtqJRywC8ppf7O+rO/3lr7H77n9n8O+LH1608B/8X63+97KBpOG1Q11GhEpK630Cpd13jn+Y4YBw6HREkZpcD0jrHb48eRXBWnKXA6LcxToI7yoa+q0nW9DDxkJEHTnjZAsZIlM2c5UWtupEUeX5dGXAKd7dBVicuGCk1zPN6TY8A0cQz0o8P0BtMUpmVKFVlNbRW0x1hFc/DmeI+loqusqKzuGLodRnXUWCg+cfPONZurjmoyTWc2m44PP3jF3eGEKuI/dp3mendNY6BocMpDk9XT1lewhrxYHqfIEk4Yb1BOk3QhZFm9lQqPhxOPD49QMk578ryqzKKhOk2uYs/UnTATtTLkmpjjhPOKkBYO0xu6HmwnUAtyJYaAqkYI5krSNJfjidqShHQ5hzWr1GSRonj2b3vvMVcO0CvlKVPWXBWlKtoprO5J6QjK8DgltNpg+g6tKr0F1Vs2w4BWz0TPWQqhZjqnUeoZhkZnDP1Kyf9/vvohf+5P/AibceCjD75C1w1Y60mxkJcgcciWS+/vbb3f2/zDbGdq7Tk8nHjxqZ/g//7VD/mNr7/Pw7GgrzS7caDfjNxcv8NpnniwjuebLUuccL2kVoaiiKfAwU+M3TU1ZIpuomddrX969W4rq9BOIkxayeQiGd/LfKI5h+49tpPV8Th2YqVNIloXsG8j58pmN0LqOJ0eOJVAP5j1wp6JKaw64KfV57kPmVJZ+QFixnDOyaQ8B4YVg3c6nRjH7XfpJCX+RC565Hppa5wXRqvZft1OG6ZpYrsdL9TzcdOv234poCEEUW2s9xn3Gx6nA7kGWhX97zB07Pd7bl+/ofMDN9fP2e2vOYTA7eMjxlpuxoFN/wdEtDUp82cfkFu/fpB6898A/pv1fr+slLpWSr3XWvvw+92h1sz11Z6b62uUlpTAzIQbMtud5+d+9nP85Bf/OH/7F/8eH3z4+mJL0lqTciXGyhwqS2ik5YhLFd33GG/BarQZcM0QW2HJ8Lp+hArrqq+KSLWmSjyKdKc3jk732CIebK01zWjQitPpyBwXei89sugSOgVyTcQcaDESmhB3otJUbTnlO6xxvHj+eXQylLmglkaOHcZ7xr4jqkzIJ0kydImlBR4f7rgNj4w3e/bjjYCCq0K5mdwW5hAIp4WyREospGqAwPHUeFzumeJEP2xQDkIrlLSgqkCT+37DdFxQytNrTwVSjJAdpusYhi3aiKRKgBp6XRkvNA1LODLHA91owWhxYGQAhcbQmR5dNUuZKTPgM85aOmcwGGqq5JQFO+c8veslxqMVGlp8x6lRkvSctTUo5WRKXxPKeEKtdJs9Q7/Fq47l7kDNhV03YMcePw6imDg9YDtZSSitUcZStKIqxXfu4Vd+/bf50rs7uv6akiJqibLaTQXXKsu6kjl/nQvGeStYa6XoZxizZb9/zle+fuI3v3rieNrR+xtQG7zaYWtHRTEvkcUH2rClmkbf9VinKCfJDT+pe8ZPbVcFh1DLnRf5DXWl+fSWfhwEoqG1nJSlMp8OmM2G0gZcJ2Fx59WfOHDEycUK5/XeU5PBuQ6lDa0Jfq3UfNE3GmNY5nIBeXSdx7nGsizsdjskxTQJLajvLlG7GH0BxyitsE5WoqaZte3yNMmGFZ3WxHd+Op0wxnA8HjFG/gb5MuvKUi5gMUYsmlpk1RmjaExDrnzyyRs+/ekfX1mZYUW9SexJTpXHx0cyAtdJS2A7/GAHz++LOqSUMkqpLwMfA/9ra+3/WH/0H69b7b+plDqX5c8A337r7t9Zv/f9j9YYu57r7TOudy+52X+K3o5shp53P/UOP/VTX+QLn32XTefprcEZfdmWxVIJWU4wpT06V0gVVRqqCOZNY4QPaBylwpxOzOlEbIGC9DfFCZKpuaCKeJNbQYLPknADnTVCvmkFlASbxTYTykRIEzFOxBKIcbn0AwuKojL9OLC/esb1/j32+3fx3Q1NeWjC6tNW0cjkFtevRRwfpuJ7i/YK7aCznVCZSpU3rxZUK+iayGkmzYenSaFVKCPyqdLEPx7W5jta3CFWO6gKowRV522Htx3W+MvEsK4N/0IFJezRWkWepY1su+QEebLK1dyISyLOkZpX3iJP0pBaxYeslLnY6FprIl8q8l6klKS4Y9FNvigaRY+iQ5sR323pug3WdsQMMVZiqGhv8L2jGztMZ+X301CtpnkNnQVnqKrn69/+iPc/es12dy1bzCARIlaLqP7t7feZdPR28VRKYfwVTe8IseP994+UvAH2qLYVobsasdVLLK3RYASDJ9kxZ4CFgaouq6wmXKnzOfhdxTmk5WmVW7IUTdplpVZrlWsr4uCqCrByvS2qXPLF0yqPU2uA39vv0fk9O6+k3/Zmv3278xb5bTnPeVt83jZ/L1jju0//7/4bzy2O82Oco22By2cb+C4pkzyngiai9tYax+NEinnNJ2qX9kpcY2LOvdPzz88Xle93/L4GPE3k9j+rlLoG/kel1E8D/x7wEYIN+VvA3wD+I8S9+Dse4nu/oZT6q8BfBei2HX3nUM0y+CuM0YR44Gf+hR/nT/ypn+C9dzvC6wNpOdEZxfObK6baMS9AK6SYQPXSj8mKtogOsbQGCvqrHcoaVI4sUejgtSY6NA1JfjNorO8wTrN1MvWrGspKVO19J1dHLWFO4hVUJJPJ8RGVMr5WdFHEXEhNU7XHKM0cZ7ZbyMVgzRbfGYZ9pSwHrG6kkghtRvcd1Qpq7bhI/7VqRWgTPQPGWsqSmZaJUIQCsx8HmtUkp9BFkG+227LdbDEtUrwCpckIuFcXhVstgeOwpZkCsdJtRGc2hZOE7GmRgtTWqKtNzTa3rvwDaCXOIyUrAdUsoRaIUGqkhMp0dyKepGWhNrKDKMWglWj9tDYryPWpgR/SA005ljmSIgybLd7Ie1uRmAVlOqiOzo90bo8xPTlmjO5pKJYl8/D6FTftOd3g6bYjU1yYTws9kvVi1l7ZcYIPv/IBv/1PP2D7Zz7Ni+uRZZY+3tX2imU6ENsTDAK4TG7fxtTNS8/t65mvfvW3+OSVxbjP8vhw5HEq7F54duMLYV/WyLIsnJzlZCxu3doCWKUpWlNqZl4mbB0uj//WuSiDDBIKGZjIFt2dwT+cuZOqilZ5GDqMceRc1r6f9HH73omwfNVS1pawTsTqLS9rAZcVX99vL0X8XKCcc8QYLwWnVrkgbzYDADFIHnxOlVYVRjfCkrBqhVGrc/FNFzhxoxGC8EpPpxPDMPD4eH9pRZx/1lq9FLeU5LU4Z2qVuLDEp5iTh4cHnDbERULXNpsNFUVYIlfPn+GcY9D60h//fsc/1zS8tXavlPoHwJ9trf2n67eDUuq/BP7d9f+/A3zurbt9Fvjgd3msv4UUWTbvDS2j6e96wvINJv8x7guGn/tX/wKfvX7OF1viF49f4TtvbrnZfomr+Zp8/w0MhrvTV7DGk/SWpj2zGVBNApNUbrhaUFGhi6GWiqtKuN9qoEwe7wZMp7BdQW81OUBcLLWD55uXlKUSQhSyS9/YvLfj1fsHTDaE40J+9obmRYoxF42p4vHOMbPREB/esLeWZ8Xjp4XeT1jboTaWZC0pLJxKYvGPNNOBM8xl4qgiS1uw1WGWha7NOO2Y7Cc8pHsolVE5lC5Yp/DecLgL+P0NuhWW3NHzOdGv6URMj1AarVhqepdt2nKfP6K4iL1p5JPFlQHbHMUfWPrvUHTCPm4Y+55xHOVkX44SxFYirRlq05hpIFRFTJ66ZIlKeH0gnE40C2W0uBhpTgLSDjVSRkvJlZurnr2G+f4N0+FIXa5RpjBahxnAuIKxM8poSiv4HkrpqKqi68Q8fUCcNSo2dE64WiE09DwJssx7uqs9yg34nWWJEzlHpuVO0F6vP8L3W2JO/O1fvuXnf/qaL7y8Yr/RzPmBw/Sa3ZWXuF5AGRmaPTxUfH+DVp7bu4lf/ub7fPDRI8qMXL33eV7dZ8rzgf5Fw42FU/kOBsU9GjNeE08PjF3mU9sXxJjRuscPI2GBTm0JIaD6Rm0Liz5RnEe7LTUnVMzc1O5ilDBWk0vF+I5coa3DKhDhetaZ6qBqjZLYJVpNtBQZjIY60coi9K+qqLWhkiEti0i/auWQHy4r6loz2+32MuQpqxAdhIuaFwkoG7yI51UttJYpMeJNozXNOG5obVUvtMaySAiaUhJzO88H+l4GbPv9nm9/+9vs99dYMzKfzog46HzlGE+AXi2i16iupy0B5T7kk9NvMX1bICPbzTXb/Q25VmKq5KCZbjMmavqtrDT/QMVSKfUCSGuhHIA/A/wn5z6kkrX1XwZ+bb3L/wz8O0qp/w4Z7Dz8oH4lAFFj3R1//C/9CPvtzxES/LNv/hpfunmXkhZm9x5/9+/+ZxxOB6zZQZJcnTm+wm0yV9dX5MUSloo53RDLTKuFFhPNicQHhMGujEN1mVpmmsp0XlIJB99RYyWpwv75jj/58/8yJnnuPznwrW/+NpM/UX3koUYaC8Y5+q3mWMXfXVQTlH/TaNXR+Q6tOmgIlRonYVJV0BXGaJquNJ1IaQIy1o4UMsfjkUSmrtBa1SyHw4yqC4s9oi1UE8lmwW93vPepz9KybLV1c7QGNsI47Ek1EPIJXQy0ytBv2PmRu+mB24c3NJe46XfimKBgN4aqGylnMhGle8btyGazIYZECpWmLKoo6imuW2VDonI8HqgPCy43xkXhqqclQzgaqmj4adbgesUwWqzt2W1G+uYoEWJ2TCHjvMN2jm7ryaZQUdRSCGv2tVaGnIK0Q2qH1QbfpBelWDOk9URI99QsyX3d1RW1FSyKmiTuoqSKtTdstj3eWOLjLf/oV77J164s1/uBH/viC955/tMca0RjwGpyUZQCh1z49q+/5jglvvPtj3lwnqvrd+iHLUVnhk1jCQnnRENKttSiOMUHfuvhlkFbng9bXuxfMo4deYGmJcvbmQ2qNFoG5zr6vlCXSOktsRamJVGLyGYwMk03axGjaFrOF6Bw7ztqy6hmZDBqFC03yQ5PTXB3nSOXQAjLWrCeJDxKnQdK9pK2uNlszrVBisjq3jkrB4w5x0/ESwsjxsjpNK1ic7WCeMvleaR9cNawVvZXG6ZpuvRCr69F3eC9J/HUQ04pSStDnTPaERJREKC2s91K5X9yIGkj/duXL1+w3V7R9z1Xuw2l/MFBGu8B/7WSrrAG/vvW2i8opf7+WkgV8GXg31pv/4vAnwe+BkzAX/m9nqBzPV/4wgt+8uc/zc32j1GWLc+3V2zpeGTidYh8/PHHaD1QSiCnI0s6UlWk6wydN4TTiZQyKRSRTOiC9gKI0LVJYmGtqJYIOgr+3mhKmclNcqj1StPZbz2aRgwLqlXeub7mo2WiWE2eA/urER0q8zxhnaXUBqvsSSmF0WbNeDHQktBXtKZdguIVjSow2xokI8hJk7uURMninaXIBFgryzqSX22NhVoyWc3cfOpdXrx7RZzh7s1CyQZVoemK6wbp2VZ5m3vfyUWhNpY4ywetFVoUtQda0ZwkM4YcqC0xOkXTjWlZyCFB84Ch5UYLDiLUKm4UURVECXrLYHMHxqLoKDmhztkuBoxpGCeSLbRB+xHVFZR9xDjxJVvvxNFjJGNbKQF0mAZZCezBWoszlk71sioyFem2HdC2UGsjpRmXB5QCqxW5CRbMmMa43UkxqxllN5iNYSqB+FjI37pl/2Zm6AxdP66Z15mcGu9/eMtHHz3KYIEdw7DF2g1ocRSlOpFLEpJ3Uxgk6ld3EJdE12m5INWCHzvhmUZFqxWnO1KJlCyTcK0t2igJ6dIVpQptze5+e9gkLlolZKtVw/p2/9Eo+11FSeyrhrKSmXKWNoPWgHoqlq211Ur7ZPU8S4vOA6C3e5bApcfZdd0qPXvbXmnf+r2eCOlPvdHyFnCjMc+nNT5XhjTVPFkiU0bODSXttFIKlcQ0iT/fOUfMCzQZSGk7Y03BOpHR7XY7CQJ0y+9wZX3v8fuZhv8q8HO/y/f/9Pe5fQP+2u/1uG8fn3v3M/zFv/CvU6+OzLxi6Cs/88UvoOIbeqf4e7/5v/HxqwPXuxuWtDDPC0s6ok0lBjg8HJkP0tg3bU+uEqZkqqLHS+Srbkx5IcdIUj22ky1sSTONyDw3NsOW3W7Hy8/sGXaaT93c8OyPPuez732Rb91+nX/05V9CP57YXn+WN995xcdE7o4LWim86Xj5/F00ltcf3El+c2xYt0P7hNEdpbESvC3WQciPNCJulIHE/fGWmCO5LFQ0RktkxhnkSlNrZngilCPDPvO5H7tm23seXkfUaImPmqY12mvZapSGNg7fDQymQ1XF8fGROc903SDRw6eK3RqaaSSTKTlglOhMlWrc3b1Bws5GOuMpSyNOjXSvqanH9AObvqe5wqROOCo1JEqyaKtx3YakAq7T9L1DDQndVWpbOC0JN2wYr1+C35NLox8HbOcZNxsSmdgCuiR0dfjOQhCWZEpZEEaslknTQzGoTjG4A7v9ljkEDtPMfHzD0G+x2sgQQDuM04x2B0AKilk7lmni0+++i9sM3IeZr37rFbo0rD3K5FcbSq4Y/Q7bz3yBnBthqdTWML1DucoSP2EudyivOBzuOaYtz3bv0rmeNjT6saMpzW9//CGqOZ791KfxG49WmtMx4tuOlB6Jy4yzZwJ5o7RIaRHlKkpZWGlMSq8yJqOhJOGHRtlC0xK2driSsKsVUi7khZoTzRrmJVyeo1a52IRVs3npf7JGzlbhDEggnllpQfrSszxPrc/FclkEtwjQdZ1IfUy99GJrrbLyfWuApZTicDiw2WzW3qVkVaUkdHW1gqMlTTKT1zzznGRAaFxPWaVOIefVHtqY5yPTUnC249nzl+yut9zc7Nnt9jgdJUbmBxw/FA4eaysvrj/LL3/0f/Hhx7/AEAt/6Y/9WbTZsNSJf/jr/y2OZ1AlSvPD1/ciMcCyZcvdq0de7F/iNh2bdz7H7eMnnE4PzOFWzqUCqmpsNhhtiepF9R5cAAAZGklEQVQdKJEcb9ltN5QIVzfPGDYbulHz3o++4Kf/xc9z495h759x5Z5z87mOF5+74n//tb/P137rK7x69Yp5WtDF0znHdtxytdsTJiFCn44LMVXGfofxTyj8UCNDZ4gtUkxCuwbdmtMcMiEGaisYr9FVqCpLnCA7QGFHR8iZcey5fm6Zw4lSHvj47sirN3ek0EOClA0hFoato6iIdxpjwCqH72Hvd8yvGx2W8pgYr0cWndBdIhwTN/21gHKXKgXPdZR1Skmz2KapU6QVTaNhtorr3TV6esT5gqPy8HoBn9EjuGsoasFsHNcvtjxOd+SUGPwVykrchuk8Ny+vJZNFKXJVaOMI80LKiW5wlBhRuVFiQWl12V41JWi8zhv6fkMdBsbRsaGHjw+8vnuEmFG2w3rH6EUFV5jpB4/fWbKG63ffxVpHAJai8S+kbz2FgPE9Y79B1YrzW3JStNjQtrHRW5SNTOGe+8Mtps+kHLGjJx4m3EZsg3MJPD6esEZA0P/s29/kSz/yk2z8hn7YEO8fGPV7dKZnzmJEqK2uUQkFpQuYIpyC0rAGUk1iUSwNDeRS8MlilFD4Q8lM84F+u8W5Dqc0WoFqmcf7e7bbHcuy4DvNPAemKV3SE0XwrYgxfNc0/jyUOm+Fz6tDEYrHy1TeGCO94dZwzq4rzXrhW75NVI9vRUnULPi38/b+DMYIIaDV06S8rvASs2ZMLbmw323ppgltLNv9jnoSIfyHH7xi3Ha0qjhNB7Tz3N2/oZTCi2eb79LN/q516v+zCvjPcYjzQ/O1X/+QN4+/wc/8+Gep9jVzVdwe7/jOR1/Fmj/JcZo5nBbee+9TjLuRx/tbalxweoc3I0O3wRmHnVar1aoNHIYBZTTe6zUnZo/RJyoyYetdj2oWN/y/7Z1bjGTHed9/VXXufZ3Lzuzs7C73RlIr0hSl0LpYFm2LUSIghpEAeojsIEYgwy9+sIEAgQUjAZK3vMQOEj8kQIIgQeAIQYw4kC3LjiTDkhXaMkVKpCQuL8tdinuZ+/Tt3KsqD3W6Z6gwzJJ0OLvD/gON7lN9MF3f9OnvVH2X/z8k7vpECx6qV2N0gZYZmsLpY3sSqy2DvSGTcU5VlGBCkAJTabLJhCzNqXWOkAbPd4Xcpqoo6gLf1ljblD80JTdIx9wj8FHKR8nadU00saLAV+SFdnyZyndxTAuOyVpgtGB/NGR7Z8D+/j5Wt0lUjNWmaf8CLQqkKIn6XWTtM5QTQj8ELyESPnEYEAQxnYWAKxvfcxc7Ck97SF3T6XTxAp+0rJpSEE1VNdnISiBkhi4Vvu+cqRKCsA0iLYg7AbInyds162dOsbK2TNiSXLkymhEi1KrCUiCVJK8L8rxGKh8/TPC9mFakqbWiNBl5kSNLixJua+r7PoHn4XmKlt/CEwqpQYUBogl9CCEIGwZuYSoqa/EC35XviNw5ainwY4nwDdZzDgLlWgNl6IOpKesanTke09haPCKMcHyc0kDZdGhVVYXxK+IkRBHhK0XQlngIFJ6THbYW60mUUKRFTqACPFnihwqTaQLPd/yq1mXJ6+nKSzoia8u0usCRN+umJEkqhScPGHzELGkiXPG6EGjlOd4Ba524ntEYow+t7KZkud4s5lhXB6u/aanQ4VKgaTxwKltb1zVVXR3qBDog7D1M7Ouc5QHJxtTJOtIMdz2FDbXbtLZyilm/Pi4fATgeTytR0qfT6dBp91BhQl0ZkmREu90GK8nLkiybMBi4srV+J8S+ecjy7nCWtciwIuVjFz/OjZ2Mc+sRI3WLV7dv8p3vv8D1F0rWqQiTiKTb4zM//xkm45Irz7/E17/8dSIdoDNJu9NCJAF92UeFEr2bk+UTqlpQ5xWn18/RarW4OvDZGzxPHCmkX+MHELc6nLp0kuX1FvE5w7Z4kd0socMiZ9vvAxHhB4qtWzu8/MIN0pHBVBJpLFQ1VTGmyCcEoUetS5AWoRSDwQ5LJxdAaGpdMM5yqrGm3YmJ2wqUwngWW/n4XoIQilpLwF186XhEkRusCRFGsiB7BDIhUAJRSqRZoCpyykKwPxjRbvlUE43wInwpkco4/WxZk+sU8Hn4sYf5yR//KR5cusRassqJZImb3OaZHz7Db/yrzxOGMXpgoTCcWFrjxPIKFTUb+xvkWUnS6WICg8k0Wze3CaKC0WhCrNqEnQ6xUrQUiAVJZ6VLdLLNiQsX+OAHPoRSPpNhxd5gl42bW+STmkm1S1XUdDodssmQslKsnFjkgYuXuf7D14j9FrVUDLd30LpCmIilpWUqXbikhXS98laU5JXBJyD2Q8LQtVNGfk3hGSbjgrzOwVO0+l2U8LCqIK8ylFHELYmUFVhLVTmxtboySNECaTGiwtSOEWkyygn8Nr7ySZIOSQXFJMXWhevhDhRWCbxE0V5qIf0MbEFiIiYTx/JjfYX1fG7v3nI9/KGi1faocovyFL7ywJTo5lqwSKxwNcN1rSl17eolpcAKhdXa8bT6seM21650RykPYzV5rl380xhU0/mjBGT5yCVGhGmSQI4cQyk70+NxvK1upRg0ZL/Tdlpg1sYbRdGsZCcvprFHd+PP86yJQ/K6mk3bbPGnLZllmWOtmrWeTrf1s6YAcRAflV7QJPsadnnpbj5IweraOnGnQ1BpNja2XNlQ4pKZkXalhcPhvuu/Hw/+auos/3+jpmZYvMCj649yefVvMzAbjLnGH33/d/n+07dopT/OiNvYokaGiq39F+h11jh5qk+/36UrEk60ExZ7bepui7BUeLEjBx5nKcprgbD8xMd+hksXH+DZ2yP+43/6Nr43wOBjVE3YX+TMw326a4qie4MCQzY0tMwibX+BbrRGmufsbA8Z7ZaIskWVFW4FUE8Q0mUKK13jqsUkfhCzerKPljVBCIPRDlnRcGBGikh10MIJOIncSVdI6xIydZ0DUGS5c6KBWwEE0mJsAFphihCddVldOk0oV/jhK7soaelGIbVVFGnKzvaEtB6ysBaxFPfpdfu8/7GHOHf2POfiC8SlT6h9RK347lPPkmUZD1x6gA8tXEZVkmxUM9JDhsU+SkhqnRL1uwTthEtnz5EOMq69/Bw76YS0wPFEeobllS7SyzHhCNYqLv/EfXSXSoZ7Y648c5WNjQ18P+b8g5co0xE7u5tgJiz0uggiLp6/wP0X7me4N+Lmxg2KckI5ymm1A1ZXLxDGHhu7G0wmA5TK8XzJ5mQDKk0n6ZBoWF9xomKtsEMmKoxn8X2BVtatsqzGhlCVBRLwRUS72wUj0MJDxhIRKoRsIQSYOqfIJ67ZoKwwJsWogNIYquE+WTUBZWi3OhQypSgLCgaoFljP1S2G9RJhElMUFWlZQCW4tbWJsLB4vkNdV3TaIcPxAD9wJMtZVqANhEnLsVXZCVVR4IeO2o6mygJcWZBjVrPY2mC1QUtLrWsMAi00pXSicco6scC6rhoHB0LSbKX1gZPCcatOEzppms52BVMd7ulKczJxWurAAcfkIUfnnLB3KNvukkhTnk23uvQYj8d0u13ArVqjKHJCZ1K+zlkq4aH8psHBur75ygqU8oiSpFmBu9bLVqtDGLreGT8M8cOQNE2bsIJHHAdv6qfuCme5N9rnX/72P+af/cK/JgkfgdYyT+/+JV976lsUu9CePEEdvcQ43cOk8Oz3vsknn/g7nDm3wkMPP0i+NUaVGcPRHvvZmDx3Oj5REvPZn/97XDh3P+PxhPPnHuTV6ze4deM6Kyf6XHqwzfbuKwhZcfK+Pp0TPrnYYVReI0srJtuanlnhYu8RetEpFhcWuHz5x3jqW8+TpSVKREjr4akIQ0aapgShpbfQBSRl4aQX1k6fpZX0ePa5F90PzR5Q8xd1wf5wRFAHBL6jstLaUJQVWlecPXOGvKgZpyVS+XTabZdlDGIWlhZ58OIj5FVJt7XMA5c2uPbqK6iyIXlQEtkQ+VprMMogQ8HW/ibqPtd2GKkISvjC73yBP3vuSfeD9nw6UdfdcSun6pjVJVVRErcT/tbP/k3uO32BoA75w9/7Q3zvNCuFplQxewMnS7qbDqijPfzEcPp8n4XTPhsbr7B9O+X5F68QBou0kz6f+PgnqPIBW5vX2draYOPVmjhe4Pz585xZP803v/Ekk/0xng8ry8ssLXfxvT55OcEYmv7kRiq3zhFWUFYp9QBa0YROJJBIuq0uviiQoU8lNPv5CF1rrJII42GFE60b7A4IVYgQHonfIgwjpGzjeZKySJk0/e42MHQT9z1v3t5msLmBCgPiTkySdKjKEqkso3KMl1lkYAkCj8AuOjo+bUnzDKEEWzubTAZDLq2dwTOudCeMFJNRjhc6ApSysgTdPqaqsTWI0s7IJ7IsJ8tT+r1F1zKojcucG4PWThenNhrlB7h+SYsRNcLKplVVNs7S8SdIdUCM4fu+W7k3ZTtu5VfS6XRI07RpUTxgZTqcFZ+SsRjjYo5BEDAYDAhDOTtXCKf97eKeckZAnIQJ4/EY3/dJkoTBYEAQRK9LBDmIpgPMhaqklORFwXg8RiZt+t0uo9EuRVGRJO1ZOVK724FKNgQ+Bl/8v13hXeEsy6HHxs4yf1r+Ge9f3QR8FjbPsvKDv4aRii35DcL8Am07xIqMYhP0oED4HsKvkX3B3l6KRZPlOfkwApsTLw9YXd8iiM7SkX38VsgrW09xY+tPeOQTCwTLFbefj4hViyRu45UhZdliMuxTj3zatqIdBBhxG8kqgi5Ju4sKFGFSUGQp5C2y2tVvKtOnZQTddgctKwblbZYunWDpQY+zp1b59vNPYoSmE/doeRIzKajLCnKF1JvUnsfEVlhfY9OaXtjmA6sfxKQtXrx6m63b+3i+IuxHZDrDBAVlOCLuKRilLJ6QbG0W4Clkben7PqKO8TCIQhGWbdhTLIxbrFdnkbHHjtrnheJ7/K/N/8l2dZWgSNHpiG11C9Mx7Jcpw7ogryxpliL9DdYeHrKwtMloJyLrpexuJSRLClPtYoqbFHVFHkER7tOKPPprIbt1j3wUk28Y/H2F7e7TPu/xavdbrN93kXRXEXRWiNoVUSIRUc7CmsfJs4tsDzZJWhFBVBK3oLD7GK+gHO2hKVGhh60rPFURJwmUlesZEwWF1vhhyCQb4i+HpGVKJQSVKMmyDIkrGYnChFLXaGMpMldU3WsrtJbY2GBEBap2jrl2dGp1KJFWUUcBaWdCFGn8UFBrjxYeMZJyovBj12FUSaiCHTxp8fyK3GiqyLKXWYzf4droVdaX1+jITUbbBTZsU2jpqjZsRSArlK/wpKIINBJFaSpKo/GDhElaEsUBlS4JlIe2NdZ4WK1Rnodnm7ZUgdMSt6ClIRIRaZq6jLZmFpf0/SkrkGtxLctpbNF1uzgWcldEbpqkTRBOt+ZNvFxPnLNUAIYwUjNqvlnMEsAqqtKiVEBV1ni+cPrmWlPXKWEYU5YlSZIgJFSlS0LZXDMcb5G0I2pjCP0+ezd38YOIji8R+R5COsYn31f4QYzvR3gqRnlqlmCaFti/Ge4KZ1lVNRsbG1y9epX1UyssqBXOnj3LQw89xN5ozIfOP4aZhHzt63/geA5HI/I8pxs6ZuzXXnuNIp8QRj4GTV7UCOtWZrqpdWu1Yq5du8rO7hb3nT/JT33qw+zWN9nf36UTLnH58kPE/RajzQk3b+wQ2Igz3QV63R5xHJKSUjUXhFKK0jgZhUApp94opgFsV3PmRxFL8RKrq6tcunSRTrzgCrsn+WwrkOc5aZ66rYmp8Kxymj9VxnK7w9/4mU/xD37ul4g4wd645vf/4I/45tP/nXYnwZaanZ0dXrt1k/sv3kdvYYFTp9bYvHmLrWu7VJOUUHbp9/t0wx5VrGdUXcvLy3Q6HXdz0Rlf+tKXeOmllyjqCZ1uxJkzZ3jggQcQQvDdp59nc3tEUThdlPvW1kiSBIlkf3+f4XBIHMeMx7vsDDYpG51ui2VhYYHVM31WV1fRWrO5uclgb0iv18Nb8lhaWsLzPDY2NtC6ot3ucPnxH2N75wb9fp/FxUUuXbrEeJQjpKXSexgmKKnoxB36RZ/hcA9rDe978EEevfwIgRfyja/+KXuTPcbjMUkUceHyJdbX4er1a1STCVXjDJyMRIWnvFliIhtnTAYpAJEf0ev08ZIEpSzWeK7GtdZYbVEiRFpFt9vF89dcn7tUDeuOUwvcHm4zGo0Iu+EBpRgHGWWtNUJbRqMR169fJ1ERvXZIGIYoFaNrgbElo0GGF0kC5TmHoUrqylBVmiBwGu7jkZv3jxJ9TFeOQRBQN7satwIUDb+rOZSwsYfihGK2UqzrGk/Z2d+abp2nkrnT1eRM2dRqtK6bZI/jU7DWxSmxh2tDDypFDtdppmk64wyYOu8p81AURTNqtk5vkbwczJz6eDx2veTG/b6iZp7TmCgw+zz3e9Wu5jk76EL6v+GucJZCCM6cOUO73ebmzZtkcc0Hlx/i8ccf5+Xrr/KhTzyGX3f5zveeRIsJaZo66qaOodPpzJb7AMYWxEkXT3pYBmxsvoYuT7O0mLCxeZOFhS6nH0pAjRjubbK03OfU8llWV9bZTzNGg5rJSOK3ptk25bg1swFFmWJMPfssJzxWIQIP5TntlapyBBqeCOh2u/R6Pba2tnhx+5VZZn56R50Sn4ZhiFc1F6JQ6ErT6/UIgoC8zGkFiiQJOHnyJAtLi8SthGExZG80IE3HaF3je4okSej0OrTOdZnsVfi0qYTFRhCvtuj3+/RbC6yvr2OMYS/bYXPvFk8++SS+77O0copuz5EO7+/vz+Y3Ho8ZZy5ONe3PTVXKxsYGw+EQURxIAkslEUoxykZ0vTbttqPoqouKqtIkSYv1952mbtV4PVeNsDvcp91a5tTSKURhuXHzh9Q6Z3t7E6Waro06o65Lxuk+tUwQnmgkDQR+EPDEE0/w0x9+HA+fOi155vvPkGUZy4uLfOQjH6GuDWmRM85z6qbg2RhDbdTMUfq+y6BGyvVk9/t9wjBkkucuwWErV85S1VRFhRKW0Itcb7QJqSqXRZ9pZytBFCYMi31EWVKWOPlfIShrA8LHeNALOsgadnZ22GhtsGRbtOL4oPulKl/nSKZwLDvu/yplMHMCh52lm4tCzjSPDjLR1gLWzjS/p+PT3+RhmoeyLLGemJX2TOOXh7XCp+PTz5kyCmldz5I61lpMw/r+RpntWYb70KpzGvdcXFxke3t7xsk6DQFMk0We5zGa5LNjx050cJOaTCa0OuGsbbPWrvKkqkt2NnecRs+b+ak3+hLebQghRsCVo57Hu4RlYPuoJ/EuYG7n8cN7wdb7rLVvKMZzV6wsgSvW2seOehLvBoQQf/lesHVu5/HDe8nWN8Id8VnOMcccc7zXMXeWc8wxxxx3gLvFWf7bo57Au4j3iq1zO48f3ku2/h+4KxI8c8wxxxx3O+6WleUcc8wxx12NI3eWQohPCyGuCKcz/utHPZ93AiHEvxdCbAohnjs0tiiE+GMhxIvN80IzLsRb1Fe/WyCEOCOE+JoQ4gfCacn/ajN+HG2NhBB/IYT4TmPrP23Gzwsh/ryx9QtCiKAZD5vjl5r3zx3l/N8qhBMnfFoI8cXm+Fja+XZwpM5SOPb138Zpjb8f+KwQ4v1HOad3iP8AfPpHxn4d+Iq19n7gK80xvF5f/Zdx+ur3CmrgH1prLwMfBX6l+d6Oo60F8Elr7QeAR4FPCyE+Cvxz4DcbW/eAzzXnfw7Ys9ZeAn6zOe9ewq8CPzh0fFztfOs4TD3/bj+AjwFfPnT8eeDzRzmnvwKbzgHPHTq+Aqw1r9dwNaUA/wb47Budd689gN8DPnXcbQUS4Ns4baltwGvGZ9cx8GXgY81rrzlPHPXc79C+07ib3CeBL+JaeI6dnW/3cdTb8LeuMX7vYdU2gm3N80ozfixsb7ZfHwT+nGNqa7M1fQbYBP4YeBnYt9ZORawP2zOztXl/ACy9uzN+2/gt4B9xoBy2xPG0823hqJ3lHWmMH1Pc87YLIdrAfwN+zVo7fLNT32DsnrHVWquttY/iVl4fBi6/0WnN8z1pqxDiZ4FNa+1Th4ff4NR72s53gqN2lnekMX6PY0MIsQbQPG824/e07UIIH+co/7O19neb4WNp6xTW2n3gT3Bx2r4QMxLEw/bMbG3e7wG77+5M3xY+DvycEOIa8F9wW/Hf4vjZ+bZx1M7yW8D9TcYtAP4uTnf8OOF/AL/YvP5FXHxvOv73m0zxR7kTffW7BMLRxfw74AfW2n9x6K3jaOsJIUS/eR0Dfx2XAPka8JnmtB+1dfo/+AzwVdsE9u5mWGs/b609ba09h/sdftVa+wscMzvfEY46aIrTGH8BFwf6jaOezzu05XeAW0CFu/N+DhfH+QrwYvO82JwrcJUALwPPAo8d9fzfgp0/idtyfRenGf9M8z0eR1sfAZ5ubH0O+CfN+AXgL4CXgP8KhM141By/1Lx/4ahteBs2/zTwxeNu51t9zDt45phjjjnuAEe9DZ9jjjnmuCcwd5ZzzDHHHHeAubOcY4455rgDzJ3lHHPMMccdYO4s55hjjjnuAHNnOcccc8xxB5g7yznmmGOOO8DcWc4xxxxz3AH+NzGx2kSfKQudAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "dog_image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/dog.102.jpg'\n", + "response = requests.get(dog_image_url)\n", + "img = Image.open(BytesIO(response.content))\n", + "plt.imshow(img)\n", + "\n", + "headers = {'Content-type': 'text/plain'}\n", + "response = requests.post(url=addr + f'/predict/{model_name}', data=dog_image_url, headers=headers)\n", + "print(response.content.decode('utf-8'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test the real function (with Jpeg Image)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"prediction\": [\"cat\"], \"dog-probability\": [1.1800089838134144e-33]}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9WYxkaXbf97t73LixL7lnbT3d093TPTOcnhlO05YhmqJNCbZomKQtE7D9YFiSQYsgIALis58EGLBfbAMiaMMyLC6CbUqyQWlI26QEGeB4ZsRhs9fauiorKzMjM/bl7osf7j1fRlJsUpTYVj/UBQpVlRkRN+63nPM///M/59OKouDF9eJ6cb245NL/ZX+BF9eL68X12bpeGIUX14vrxXXjemEUXlwvrhfXjeuFUXhxvbheXDeuF0bhxfXienHduF4YhRfXi+vFdeP61IyCpmk/omnaR5qmPdQ07ec+rfu8uF5cL64/2Uv7NHQKmqYZwH3gh4FT4NvAf1AUxft/4jd7cb24Xlx/otenhRS+DjwsiuJxURQx8MvAj35K93pxvbheXH+Cl/kpfe4h8Gzr/6fA93/Si726Wwx6XQDyPAcNKCj/BgzdwDB0siwjSVMoQNM1irxAN3SKvKAocvI8pwQ+BZqmYZomRVGQpCmGbqDrGpqmla8DdE3DMCzSNEHTNErUpKHp5Ws0NAzDoCjKzy//LtB0vfwOGmi6Xt23oMhzDMNA0zTSNKUoCvTq/xqUf1ffK00Tsqx8Vl3X0TWdLEsxDANdNyiKHICigCzLAMiq71SrOeR5+bxUQ1XkBVAgwE/Ty3sahkGW5RTVmOTVZxUF6IYORVE+q1Y+R3l/GacMTdMpioI0S9F1HUPXybLr1yVJQp4X6n6apmFZVnnPolATKeNejvP1HJX3zbbGvxpXtHJsqvtn1fOlaVbe29BJ4hTPqxOGYTkv1Xst2yLLMrI0LT+XAtO0yfOcLMvQdZ0sz6s1oaPrWrX2CgxDJ00z8jwjzwuyPEPXNPK8qL6PhmGa2JZFXhSkSUIBGLquvn+5hjUoiutn1fVyWVc/K7+nTV6tafn+um6gaeV3ybIMy7bQq7EpiqJaV+W8lmNerdcsr8aarfHV0ar1VRSQ5xkywIvlio0faH/Qfvy0jMIfdLMbcYqmaX8R+IsA3XaTn/3P/iPyPCeOY2q1GrZtk6YpYRiyWq0wDIOdnR00TSPLMvI8x3Ecnj9/TqfTwfM8PvzwQyzLot/vlwNqWQCsVisAXNelXq8TRRFFUVS/N5nNZnieR5IkauDFoGRZRhzHtNttbNsmCAKKoiCOY3zfV9/D8zwsyyIIAmq1Gpqmoes6tm3j+z6GYdBoNNRrIFXfKwgCsizD8zzW67WMT/WsGp1OB9u2abVaZFnGfD4HwHEcsiwjTVMWiwWmadJsNrFtG8uy0LTSqF1eXpLnOe12mzzPSZIEz/PodDrM53N0Xef8/Fx93zQtjdP+/hDbtplMJpimyWazUWPVbreJ45jxeMzdu3fxfZ9ut6vGO4oiGo0Guq6r58tznVarhe/7nJ2dYds2tVqNLMtwHEcZYNfSMQyDnAJDt0iShCjNSLOMIAjB0InChG6ri23bLBczXNeh3WwQhj5JHGJZBroGvr+mKAqWQWn8dnd31bp4/vw5AJ1OB9M08X2f9XpNnufcu3ePOI5ZLBbouk4URcxmM3RdZzgsx6UoCvV8UG6+xWJBFEX0+31WqxWmaRLHMbZtV5uzwPM8tc41TSMMQzabjfoMWeNpmqo5y/OcVqtFkiRkWcZkMsF1XWq1GhcXFxwfH2OaJvP5HNM01e/SNCVNU/I8J01TptMppmnyK//Hb3zi5v20jMIpcLz1/yPgbPsFRVH8PPDzALePDop6va42e1EU1Go1Go0GeZ5zcXFBEAQsFgscp/SSsnlkkFqtFsPhkCzL1GbO8xzLsnBdlziO0fXraEk8eRyHQLnBxFvJe7IsY7PZqL+LoiAMQ+XxWq0WpmmSZaWnW6/XZFmmjE+e54RhqDZZnuesVit838c0wfd9bNvGdV216GQj27aNYRikKcznc/b391kul2RZRhRF1Go1er0eQRBwfn6uvnscx+o18ly6rmNZFoZhYJpm5d1LY1av1zFNE13X1Xe1LItOp4NlWei6rl5Tq9VIkkQZnjAMsSwL0zTRNE3dW4x46YV1hZ7iOCeKIpIkwTRN9Zl5nqsNk2UZmV5U7zXLcbAd0vUaNJ1aDaIkI4rWaJrGdDqlIKNhNKh51ZgHG5pND0PXCIIA2zbQwkgZA5mjZrNJFEXKaMO1Ma7X6xiGQRzHNJtN0jQljmP1R4yBrBPDMNRzyjjneU6v1+Py8pI4jtW6cBxHzXer1aJWq2EYhnJKYoCLoiBJEqBEH5vNhjzPOTg4wDAM1us1URTRbDYJw5BarYZlWcoAFEWxhXQLhZLg93no33d9Wkbh28DLmqbdBZ4DfwH4yU96cVHkagGJVb66umK1WpFlGb7vqwccj8foeulxdF2n1+vh+z6np6f0ej3yPGc+n1MUBZvNBsuy1MLbntQkSdB1nXa7r9CBeM1Op6M2mMB9QS9RFGEYBo7jlANomuXCLAo6nY5a3OXGN+l2u7iui+u6pGnKw4cPKxhbqO8gm2o4HNLpdG5s8DwvN/RkMlGbMgxDfN8vYXCWYds2zWZTfVf5fjKWzWYTXddZLpdoWgniJpMJYRgqI2Hbtlq4sig3mwWe5zEcDplMJqzXa7X5gyAgSRLq9TqTyQzbtkmSjCzLaLe7TCYTxuOp2iClQS2RheM4HB0dKW+o67r6W9M0krQMq4oiIUxSNHRGl+Xzo5ukaU6r0yXJC1zXKw27rrFcrEjSGKdWp9VqlQacAtN26PU8dF1ns9mQJAm1Wk0Zu8lkosa/1WoRBIEy+rZts9lssG2b4XBIHMdYlqVQWhRFpGmqPs9xHIUCxICKowuCgCAIME0Ty7JoNBoAakMXRYHjOLRaLRaLxY31mGUZQRBgWRaPHj3i9ddfxzRN3nvvPYVQfN9nd3dXIezFYoFt2+WYVs5T1/XSKWT5J27eT8UoFEWRapr2nwPfBAzgfyiK4r1Per14UNkIYnGvIXTp9afTKbu7uzSbTQXD8zxXD351dUVRFDSbTQzDUAu80+lweXmpFqh4AsuyWC59tcCbzSbdbld5kO2Ju7i4UO8TzmAwGJAkCe12W3nj9XpNv9/H930WiwWLxQLLsmg2m8qwrFYrHKfG8fExWZYxm81oNpvs7+9zeXlJURTcvn2bMAyZTpf4vs+tW7dYLpfKc61WK1arFUmSEAQBvV5P3ce2bbUR1+u1Wohpmqowx3Vdlsslu7u7hGHIxcUFrVaLer2uFpC85smTJ3ieh+/7HB0dKa8jCx/AsixarRZxHLNcLqnX6yoMkxDEdT0GgwHtdptWq8VsNgNQENc0y+VYaCaFppOkCXFUorAgSrBrdaaTGUmS0Ol0efjsEa+99hp+FFOsNZIoqBBCgR9GJElKkcNivsRyS1TX6/WIoojxeKyQ0GAwIMsy1us1L7/8MlEUKSQlG3y5LOdBwkLHcbh79y7z+ZzVakUYhtTrdTzPU156Z2eH9XpNkiRYloXneQDKe3uepxxNHMd4nqf2QhRF7O/vEwQBvu8TRZFCxPfu3SMIAqbTqUJkgmZHoxH7+/vU63VWq5V6v23b7OzssFgsboz1H3R9WkiBoih+Dfi1f5bXGoZZwTwbx3HUZr64uMD3fXZ2dlT8ZlkWURQxmUzI85yjoyPG47GCejKBtVpNWfE8z9nf3688b65iuTiOFeIQsipJEhUXynfSNA3XdSmKgsFgoGLP2WxGrVbDcRx1X7HKjUaDJEkwDENBZtkwEn5so5A8zxmNRoqou7y8rLiCjTKWpmmqeLTdbrPZbBQMlo0lSEbgruM46h6Xl5dkWaa8V7fbVePgOI56j4Q6woPIIhaYrGma8mK9Xo+iMCgKjdHoSoVscRypTdXt9slzaLfbLJdLNpsNcRwr79lsNtnb2+P+/fvl76KMl156icvLMce37pAkCZrhMJlO8bwGs9mM8XTCrdt3ePjoMc2GR1Fk3D4+5OzsFNsysc0SJsdpory6cC3L5ZI0TVUIWq/X0SvC+OnTp1iWVXIVy2X5GdXYbxu6JEnodrs0Gg2ePHmiDLHwVeKUBPXVajWm0ymu6yoUl2UZSZLg+74KqdI0BVChgKBOcX5JkrDZbJQhcRwHx3FIkoTd3V2m0ynz+RzLstjZ2SGKIi4vL9E0jcvLSxXuFX9IAPGpGYU/zpVlqVqc8/lcTZ54doE9ruveiHsbjQa1Wk3FrYPBQJEy4imh5B0mk4myqkEQqPfoeqEWjCx+8RRxHHN1dQWgNtBsNqPT6SjmXzaxbdvs7u5SFAXn5+eYpkm/36fT6bBarSpGPlMWutMpjYYsAokzHcchDEO16dIUtSAkBJEQQIyYkEriAcUIAIogtSxL3W+z2WCaJnt7ezx9+hRN09TYZVmmsh2bzeYGqto2ILJYNU3DtusKWQi0TtNUGVIZ+9FopMjSxWKhjJcYvbt377LZbDg7GxNGCe3OgJUfkCYZ56ML1msfy7a5vJrhtZo8f36O41hs/IAkTYnTnE1Qzt3a18tY3XIoCg0/8Fkul1xcXNDv9xkMBgpZNhoNTNNkuVwq4yeEo8yXoDwZnyzLOD8/V+tNNrGMV1EUXF5eslwuFQ/mOA6+7yuEkqbXZHNRFMznc3Z3dxVfIKShOMKiKHBdV4U0YRiqdStzXK/XgdKQCffU7/cVdyLO6P/38OGf5xJ4JASU4ziK4ZVNXK/XFZwHlOHwPI9Go3Ej1haEYJomYRjeSBVKXFnC6KaaKCEH5T1ivW3b5uLigjzP6ff7rNdr5bG3WX6BlfP5XHmD9XqtUAhwI6NRbihbLTzZlOKlS4OYKub6OmWoq3vKBpaNKIhKPJHcU8g8uZemaco4CCkmWQB5j2layjgKAlgsFsrQCDrRKA2VW6urZ1oVa6IwJs8KhQriJFKpySiKlMcVr9dut6txMzFNmzQNIa9SfOhlGlk3qxDQIAh85osFO8O+Mjqe50GeEoax8tJJNafiYCQbIuSizI2gInlWuEYJsp5kDYkxl9+FYUi321VjblkWYXhNYkvo4vs+V1dXNBoNRRDKvEpot01WOo6jslbT6ZT1ek2321VOURyErKflcqnmZ7PZKOcnSGcb7X3S9ZkwCrJQsyyj2+2qB9zeAGIthSkXyC4PHkURq9UK13UVxBKGXogxQRvCC5Sf4/H8+XNl/QVWOo7Dyy+/zHq9Jk1TFQ6UcLjLaDRSsF8mTMKEba+xXC7V4hBEEccxk8lEcQBFUShiC8C2bWzbBiCOFwr+isEKggDDMBgOhxiGwXw+VwhCOIVtjydZAiHEJPYfjUbcuXNHGS9JtxqGUZFWfRqNBmmakiQJy+VSGeXBYMBisWC1WinPKPer1+u89dZbfO9731Meq9lssre/y3w+V88qaVJ5BgnHvGaLdrfH7MkTWh0PP4zwg4jVakOcQRAnLFZXzCbn9Pt9Hjx6SLfd4eBgH69eo+45xEFAlMTUbEfpJcTpyMaWMFXCTOEb0jSl1WqhaRrj8Vg5pjRNaTabKs04nU4VAhwOh8oLSxZGeIQ4jlUGql6vK+QlhLcYciEykyQhSRLW6zWu67K3t6dCHN/3GY/HuK5Lr9dT4SlQhXLXYXYQBDdSn+12W82TaRqfvB8/rY3+x7myCn7Jho+iiOVySa/XA1CEzHw+vxbyVJtEvJB4Rhl8QQtRFCkDIAy3xGpRFOF5ber1uvL6wgC7rqsIKMliOI6jNr9kN+I4ptFoqOyD7/s4jqOIUwlNBOqLtxYOIk1TFecLmy+stqZpN7xXu91G0zSVOViv19i2rVCA53lomqYWtni77fGSlJdlWXS7XWXExBMKLyJpX/k9XEPSMAzxPA/P80rPrlkqKxLHMcPh8Ma8TadTxa5LWCebaT6fK9Ze0JVpX/NBq9WK6XRKEAREUUKuBSUvk6HuOZ2WoZa3qGOYGlkeYRsGFDpFJYQTzkmgthgIMb5CaMs8y5wJwbqd1hPjnySJMgIyPjJXEmZ5nsdsNiNNU0ajkeIRZH7kvrI+hcOStK6kumXuJH0t611QgCBgTdNUilMyDYDKsAnP84eVN3wmjIIs6M1mowiaZrNJv99X8HJbvJPnuWJVN5sN3W4Xx3EU4bYzGNBuNvnoo49wK/2Bv9koS29ommJ059Mpuq4TxzGd1iFRENGo13Fdm4uzk3LgtYzID0uP0BsA4JsbBcvDTYBj2ZiaQb/b5OnTp4qAjKvFLRthMBgQhqVll80gC1ZQiry2KApcpxS3uK6LoZUGptOqq7g0jkMso8Bx6yrXLeGGCKLk3+Kd47Dc7INeuyRUNwvqNRNTLw1BGEW0Wi0MLLK4YLKclZvJqKHbJovpisvzsTJYhlMqJtM0pd2pUxCz8efUXIONP2dvv08cx6xmU4oiQ9fBrOU0vBpRnOPUNXaGuyzXIWmaE24MPvrwPpNZmb589PgBeVGAlnNxdUmrVaZY/axgfTXBsQwupwv8KKQ1bvDqK6/QajaxTZNWqwF5gdvzmE9n1cbVGHT6zCdjNoFPr9vBNA1WqwlpYiieQSlYK56g3W6zWq1KRGCZkGckRU6ua0yXC2W47bpLHobkuka33SYIAmazmUJ8lmXh+z6dTgcoDVYQBKzXayV0cl1XCeGWyyWr1Yr9/X3a7TZJkjAej5nP5wppSmpVQocoimhX+2e9XpehWlFwdXFRGqXPOqega5qKp5rNJk+ePFExsugUgiBQMHU7zhWyajqdqnzybDZjsVjw+c9/njiOefPNN/n2t7+tYljxAALv79y5ozbTwcGBivN83wdKL9tqSk65TIN6lVCm/FlIHEdAQc31VEZD4GMYhsxmM6Vcazab+FVuWkhC27Y5OztT7LSo5wRqLhYLBSG3oeh27Co/k3hXQq7tZ3Ech8VsqbI7/X6fo6Mjzs/PVWpT0zRGoxFhcM20i9GVfL3k8OM4xnIMhfTE+7uui2EYSrHY6XTI6xlBsMGuWQx3ShQYRBGu16iMYin2WvsJjlvDWlt885vf5O692+RFQZyE7A6GzGZTwjCk0RkQRVGJqoqcJFiznM2xDAPLfJl202M+L9O494YdtY7+1L/6A7z//vs3hEci2Lq6XCoUIZ5WREau6yo+RM+v+a/tbINknGTzXl5eMpvNFLIUJCBpZTGswnPJuC2XSzzPUw6i2Wwyn8+ZTCYMh0PFETSbTRW2SdpbkMfjx49vcBMSfpdCq08ue/pMGIUsz6nX64r4kkkZDocURcFisVBZBxk0UW41m02VkvF9nzRNmc1mCsZNp1Pee+89Go2GuocQRRKKSDwtXlXkvhKLlcpE/0bGQWLTkgA0Kw9gqPSThDICNyVskM+XxSBIQbIVi8VCvUdgrngsIcYk5SrhQZ7nRJVmQ6C+QFsxIBJWAIqTEOJM7iEpSF3Xubq6Uqy5hEu1Wk2lM8MwVNyOZhTqsyQsE6Mtz21ZFlmuESUxhZaTpQUZlRa/0IjjtILWKUEQ0+v1sG2Tu3fvUhQZaZIQbHza7TbtdvuGilCvahvIU7QClfasOzVag5ZSxmqaQRiGPHzwmMViwd5woEIiUXlK2CZzJWHAarVSXEGSJGQUSvwUxzH1ep1arcZ4PCbPc2Vwto2+jNk2Ifn7w10xGtsOT0JaGV8JO7fHXOZH0pYSekrYIfMs6/czTzQmScKjR48wDIOPPvqInZ0d4jjmvffeU5tfILEgComLhLAbDAZ0u93KaxQqVfnmm2/y7rvvKlGTEI++Xy6we/fuKeXk0dGRMkwSc0m4Mtzp3tjcEhOmaYq+yUlTjSSJyDJTSUllciX9V6r/JsxmM+xaTTHbwvz3ej01cTs7O6RpyrLiUYRfkYW2TTDFcYxhuWpxF0WhdPcSY9ZqNUUkQrlxjo6OALi8vFSoRIip/f19HNtjuVwqIZeIxYSrEePqNtwbBrvV6hAEEYvFogqjNFarDV7NrRZ/jh+VYh80Ez9MAZ3pbMl8vuT5symr1YqPP37E7du3Kci4urqi0+ngWg7tRgO9ANN2yaosSF6khH65Ua4uL3k3zxl0O7z99tvs7e2BXs4/wHe/+11ee+01dN3EMAo2W9kIIXnFIKzXa0UACudxcXFB3fPoNMtwdjaeYBsmQZqRhBUZXoBjWkRpRrtd8laSGdtsNsznc27duqV0ESJ3FrQhqUWZY8Mw6Ha7KnW6bcQkHSlZM5HDHx4d4ft+mV0zDOLqGWVNf9L1mTAKVBBJlFeS9hJSZDQa0Ww22dnZueHhhM3PskxBaE3T2NvdZb1es9lsCIKAdrvNycmJEpwIzBY2VrIYMphCjL300ksEQVBZ/wxd18iylDwvB3e1WipG3/PqVSza5vz8XHkAKbQSjmHbO4thqVUGAlBFL6JuCyq9u6RcBabKs0pGxXJKQkx0+ZKKkj+CSFzXJfRLUY4gFMnwSFwrqs7AT1Sc7DjODa2/oKA4jqk368qriYcTr5qmKb7vU6vV8FdrsjwhB3w/wLTsEr0FGZZls1lHzKZLxa7L+N1/8CFpnLAzOMYwDKbTKXWnRq5rmIaJrhVEUZUmzAuVoRkDFxeXWJbDzvGAOCqh/cHBkUrJCgEscfm2LFu4BTGsYji63W5VnBUoLyyaAEGbYqCpEJimaYpTkLBKEIDMvfxsOzW8ncKVdVtumUKhMdu2lbMUByMIQ/7IPAjB+5knGsXjiqy22+2qYo8wDDk8PFQKs9FoRL/fV6TKdkGPpNukFuHq6uqG0Ec+Q8jL8/NztQjCMMRxHCX02Gw23L9/n+FwWMWVCzabDcPhUKkDBYZL1WBZDLTG930ODw/xfZ9nz56piez1ego6GpbFyckJm82GwWCgiEMR9Qi51Ww21XOen5+r6kaB6MKW1xtlpZ+w1o1GA9u2efLkCf1+v+QxKuXc3t4euq4rskpgpvAGkt5N4kIZgyiK2N3dVQt4MpmoLE0QRIpJD4JIIamyLiGuaiICHMeq4GzGau2z8UPQTbxGlzTNmc1XPHz0lDyH19/4Ah9//Ij5fE7NdrBdD8swSKMYs9DwnBr93R1ms1lZodls0nRd/CgkiUvjFIUxv/O773D/4SN+4if/XWXcRlppSKfjy1L8o1tKeLXZlHqZq6srhQo9z1NVpGJka7UaVlWVuFMhCdMwyLMMQ9fZVKlsMQZSZ+I4jor/DcPg3r17SnHoOA6LxYL1ek2n01GZKNd1FcIQWbyEw4vFQvFh8plSf7OYT0uVaoX0jg73yzWv65jGZzwlSVWMsk0girZ+Gw1I3C3lt5ZlKbUgoCSoVoUmBO6L5kHiXbi2ykICCZchWgdJz0l6NMviG2kpsebiFSQVKWToZDJRqVJZCGdnZyr+lFoL0QBILlzSWrKBt2XKAn8ldBLUFIYhfjhWJJeoNgX2y7MLF6OTKqJqG56K0lDKnpuNrjJWUmMhMa8YHYGvgk6ExxAoLBmV0oBapHkIWvk63TK5Gs8xTA+v0eLk5JQozND0gvF4rDQBrVaLLE6wDJONvyyzB70+/sanyHKaXgPTLpGmlhfUbJugcihQhqcff/wxtmnRaNTRdeOGWCiJYsV7uK6u1qFkbIS9FwJXnIqMjRCHIjDbjvPlj/AM2xWlvu8r1Wccx4psFOThOI4KC4IgUIpLUTFKWllety30K0luF8/zGI/HimT1PE850U+6PhNGQddK8mU8HlOrlYVC24MknvPi4oIwDLm8vFTst0yATEiWZdSqRSqLdbPZsLu7C5TSXfFwWZZxeHjI1dWV2mBSjCIxG6AmplTxFUSRj6aZiu0tc/oB5+eXKhyRnLLU2gsBJFWV9pa2XTZRXhGuMmlZlrGs1JGapvHqq6+SZZmqNNyW40ZhpBafiKxk8Uj2Q6pLiyxSYyoCGNHTixgriiIM3b/WylcEl3zmcDhUEHftB5ydnSkj3Gg06LRLWfh0M2UxXzIYDPCaHqt1mbpbrktS2Kl53Lp9j9/93nt84c2v8HvvvMfXv/F93P/gQ/YPD1hMZwwGfTqNJhfPT2m3Wniui6Hp9DsNYs9ViFIrwHPruJ7H6GpCkmSs/YBs6fPd7/4Ot4+PqNfrHB7skaYZbq2E+qEfsF4nuG5BFCXqOaT+xfM8VawmG/bZk6eYWmksDTTSan5lvdqGiZYXNDtthsNhVQTnqLGVuF7GXQyskMX1ep1nz54pPkrCRJH6h2GZIpe0tiBV4YXCMCRPIy4vFvR6PfrddlnUB9Ts2mc/+5DnmRJ4CCwSEk5SKWma8sorr1Cv1xmPx3zpS19iuVzy4YcfKvWiwPSg0jvIgEk5tUC/8p4lkrh37x6tVkvVGoggRwRLi8WiNDqaTRzlpEmpGbh393aZBl1HShTi2B6mVdYbiLRZ6iGExJLy4yCKaLfbCu2IUEieQd7fbreVjPbq6krFi/Iz8ViCWhqNBlEU8fz5c6XGlDhSkIFlFIp1Pzg4UHUTtm2r7/T06VPVH0JCLCmpbjQaLBbl5i6zBDb37t1T5bpSMCaoSQrKDNui2e7iOBZXk1Ky64cRf//XvsmHDx7z1vf9AEFQ5uDPL0ccH+zTud2i4daIwpBXX32V6dUYLc853j9gNL3AMQ28epswcCkKDXSdpEJxjUaLVfUMk8kEx7LZ39/FqzfZ+CtM06o4nbqqC7AsS6Uni6JELJeXl6p0fTt9KfyNOJjtoitJRa+qorUgCDg9PVXchPAJ22O+LUdvt9vs7u4qJaVwUlLiLTL8zWaj0s3iGCWtnUQblXETY+W6rkrHf9L1mTAKoKlUjsRr291s0jRV5b8iGxXYLNBblIe2bSu5pyj+RKcvHk/gn1RbSnGJWPDVaqU4Dglj4ihXAynfR7z6dDpV0JIwVaRemqZ0Oh2FOlzXZbValT0W4ph+v69QQUlcrlS4IHGhhCG7u7uKSNwuzJHwwKhievFGImUWQZhs6jRNaVR6h+0KPUE9Uv6raRrPTs7VM0t2QkIt8WxhGGI5Ndrttop9t0uAwzBUYYB4NwlnAHZ29vjVv/M/cnh4mzfeeIOnT5+pcYPrui/oJsgAACAASURBVIHh/gEaOXmSklXQu1azKYoqNHTKkAZdJ4giul2dPIe8KMiygk00URkM0zTRtfIZ6nUXXZPGKjUsy1FEsOu6dDodFouF4roEjQqHIq+V8EOQn0B4KW6S/0s4eV1NGqu0ofA60q1Lq0R2wl0J7yFrWDiL7RSjlHLruk69ZipDsl14Jgjvk67PhFGwLIv9/X1WqxXL5ZIHDx5QFAXHx8dqAbmui+/7jEYjdF3nu9/9rtKFCwwTAY14XTEoBwcHiiCTiRL2XHLH4v1EWahpGnt7e0r/3ql08U6tjl0zuZqOlJah2fFUyFF3muiaiefVq8WiEwQxlmXi+yvQEuJkQxQG5Fmd2XJDEmc06g7Dfkm4RVFElhY4NQcdFHw9Pz9Xxk44DCEkL8fnpQpPK0m2w+M9RqMRnV5TZS/Ozs4wq4W5nbPeJk5FxxEEAb3hQNUlaJrGfLUsC8eaDfr9sghJagPee/9djo6O6A96TKdTVUmZjzKOj49L9OBr3DreRytyJhdXdBwP/2rCXm/A973xZe4//hijVseoWbz2xpdYXo159aV7vPWlL/K//53/FUvXSeMNug6tQQeNFpPJhFarxXK55Hh3WPIypoFflKlgq9ckjmN+7+M1RVwwHs2ZLUI63T6mAWESslhM8FybPF5wdPeL2LbN48ePqdVM4thkvS7Y3e2jaRlRVHZp6vf7yquvVitFYm4Lmfr9Pp2woxzX7qCsj3jw4AH9fl/VkozHY3INhSa3y62Fj5J05rZsX9d1JWqS+hbJQBiGwSZIiFMwLJfeoCTg0xyipCCOk0/cj58Jo6BpZSpuW/Jbr9e5uLig0WhwfHysuATpaCQiHYHTQso1Gg1a1UBLfr/sS7AA+Kd6NmxLS6XHoIihzs7OlMUWAY/cU1JB0mhEoRmvRDP1ust6vVZNU6TJaRSHKqwRMtDfhNVzJ4RhabwcuzSCUdUuTgq/tuGneGZRv5mmqQqWJKQQL5Omaak9cBz0vFCoSDyPNOAQg+q6LtP5WvEyYkylVFgQnaRcO52OGgNBZ8KKb8PlxWKBTkWWaRrvvfcBr7zySslt1Dscxhm7u02+853v0G80+drX3uK//xs/z8HuAAMqXUfpiaOwbDgjxHCeVE1dGhah76twRpR8QRQqhBiGIXkWE0cbimoNBdV7xJvLeEsPDc/zrsVhYXYDggvnIu8RgnW7fdt6va50HC1VwyBefx34ivzVNE3VLEh4ImSj7/tKsCeVkrpe9gOR30vWQhCM8BDiQCTM+KTrM2EUTNNS3IFlWQpW/9iP/RjT6ZTvfOc7pGmqQgeJ/SSmEhZ2tVqVhmO9plYrIa0Us4hx2IZ2uq5zfHysqgylwEm4jE6no4qQvGZTtcOS+4pysoShdY6Ojgg3IWdnZximQLasarHVLDdQelPoMxgMmIxniuHWtNK49bplarRYZaqYRr7X4eGhUnkKyWTWHC4uLlSnp1arxa1bt7h//z7r9ZrJZMJbb72FaZo8+ui+gr0CbWVziYGdzWb0h/vKOwGKjW+1WlW7tjLsGo/HAJyfn6u+EkEQqJDs+fPn5HnOzI/YGfTJkpRZ1XBkupgzXcekuYld7/Dx0xPefWfN3bt3efurX+W/+2/+Wz7/8kskoQ+UCtYoLb2l53kcHR1xcXHBcDhkOZuXJG+WEzWbKoWXZRnddg1jbVAUGc9OnjC+ctnbH0KRMez30cnJs4STkxPFsUwmE+r1Ot1uV2WihMsh0xU/Jc5MKiBFoi8btSy8K9OaEjoIud3r9UryVy/DIOkqVhQF0+kUTSsb99ZqNXzfZzqdAmV/T6kFEg4iiiL1HaQxrmSjtkOdMlz9l9B56Y9zFcV1gZPEVcPhkI8//ljVJhiGoarMRFUnTG2SJKp5qcSBsrjFS8rrJCaUrjuSphRDIxJXyfmKhRWlmLRek4Ug3IZ8F9cuFWlZTjXpfVW4lec5QVgu1O0yVokvSy4jVykrSZvJs4gXF9h6eHio0I7j1HCsCnpmOXEYgV2QJSmWYRLlIc+fnapxE55FkJBAXxHwyGYXtlwktKZpVkVdoTK2lmUpsZikeWUhiscTGbiu65iOQ6fXJ40TLkZXtHu7vP3220wWG27ducP/849/nTe+8Bo/+7M/y3/4F36C+XRGEmxAy9ndHdJr9SpjbajvJwKePM+p11ySygtLyzrTqdFuNtCratvVasXe7oCaW1WIpmXtxSZcqmpDCQV0XVfckBhCx3TVRpOsgDgnQPFDwqHIZhVnICSuiJJEkCbaCNGMSJGbrBEhO6Vnh2QaJPPheZ5qPyAkr4jORJEq4ccnXZ8JoyCl02IhwzBULa5kYrZTL4CKoyRnvrOzo9I7WdU30TTL9u0iNZZQQyCZ5Oa73a4q7pEOQEVR8PDhQwXRXM9TElQhGaXjr5B1SZLQa/fKttujs4q5vqDb7bJYzMsQp1Z6cckknJ6e0mp2VIMXQCkFt3tICKciEDMMQ05OTrBtu+RDKqlyt9tV3MB0OlWh1507d1itVvR6PTaVrFuKaaQtXRRFqtvP3t4ehWapjS0EmtxXmp0KIrNtm1u3bqkU8HK5ZG9vTzWkWS6XaJaFYZRNWHTgo5MHFJrOm29+iQ8++ICT0xFJlvLn/9yfZTlf8Nf+6s/w7OPH+Os1+zs7zBfT0jD3usyXCzy3wdOnTxWRuTfcKbkkNNK4rJ9wXZfpdMp4tSLLM3qdDmeXl6xWK27fOsR1y/e0Gk2yJMWPSuMt4qH5fM7Z2Zmaa+AGcSdGVhCXOAqRy0saV7I2gsaEyATKdvD+dU2OaGO2pfSi1wmCgLt376oKSqUWrUKf5XKpMnm7u7tEUaT6MkroVGohPnk/fiaMgq7rPH36VFXTSRpvu9uRV21KafcudfDn5+c0K6jYbDZLqGXbPHr0iIODA2U0ZKDECgvJ6HmeamMmiEEMieM47O3tUavVWFRts6Qtm6QdV6uVgtNpmjKZTJRqsIx1U15//XUeP35EkiScPj9hOp2qhed5HoEvfRUzoqiMw2fTJyRJws7uQC1AsfoPHjxQ36PZbKpFm2UZaRxTr7I39VqNy4sLAIosY9Drqc5R0tREhE4CNSXFZZomB0d3VKZB5N/bjWDr9boixiSWlhj+4OBAGfQwDMvQqmq2cn5+wehqwqOnJxwc3yGKU17/wsu02z2+9847+Ks5Tx7dJ/R9+s02EfD89KREY3WHk5MT4jSi6bU4PDxUhsnUSmK57tbZ29tjs9koJn6+XNJoNtgslqznC9Is5f79h2w2G/Z3Ki7JreMVKMckDmBbQt9qlQVWjukyn88VcpQ1KGMpehEJCeLKSHmex9XVFfv7+6zXa77xjW8wGo2w3RrdbpfHjx+r14rjEIchXNvDhw/V31ITs1qtSoK50t1Ihk3SkaPRSK2hsvFO9In78TNhFLJKnyDx32g0otfrMZlM1IaQ+EwgrEBygXnSXSkMQ6aVGk3IMOmdkKapQhxSEiyfIZA9CAJeeeUVNamS3gyr1JHwCpPJRP1OauzjOCaISwsuPEWSRKzXaw4ODkrF4LKUqK5WK8WdjPOpSllCyXfYVk2VzYpiU4yWTLYUfW2nx7ar5yzLUm3vJfx6+PCh6iok6TBZ/OKNpLRcCCn5ufTElFblEsNK2CGEq9SwNBoN1SpvZ2eH6XSsDOI7v/cep6fP+cbbf4qsEP1Izg984+ucntzHNk2Gh/vEQchiOWPYH7C7O2S1WWO7Ncz0uuZFILVj2VV+Plbj0Gg0SijuufhhzO27d/HjCK0KC/QCkjhlPl+i5RmdfudavGVcl0Nvc017e3skYaZCI0ApY6VWQSpsf39losyFELiq+rTTVjUykp4WYns7fJBshHA6g8FAaSO2UZ0Y622id7vpiqZ/5nUKsLe3p5hyOblHPFAclyf1SP58G/JKr8U8z1Ufg6BCDVKBJiy7TIQ0MtkuCpH229uFJPP5nA8//LAUOX3ucziOw9XVFZZllem+6sCUOI5V56SdftlB9/nZs0r5168IoonK4W8rG8tQxqty4AW1WiU71stJ1o3rpqHSbEPkzkKG2bZNnmbEUcTz+eJGzLi7u8vz58+Joqg8PGbj31DWAaoIrVarqcKrdrutMjYSKu3s7Kj+DZqmcXZ2phrZStmw8C1FUSgp+nw+Lw26mdNs1JlOZ+X7BkO+9d3vcefWHeIs5R/9w9/i4OCAV++W9Sbnp8/YzJe0Gh6mXqLCg6NDWt0Oj58+YW+4c0OCHW5K8s2yLPwKpQyHwzJn71hcjSecja9oNRpM53OSJOY0TWi1X8XSNCynpjinIAhKwreqXJXMwnQ6LUVKRll5KmHDtmxZivDKvhueWsuiO9guVHvnnXfQNI2D4yPVh0LIxm3+Sz5bPs80yzNFjo6OlAZFWsRti9gkKydGQ1oQ/GGnwXwmjEJaFXlAWTIsQheRbsrgCKyyLEv1vN9ukCpwVYQkw+EQz/OYTqfKewmbLlZXioikNx7AaDS6riisKhNlYUun5v39fYVkhLSTIiNAHUYidRpywEhBpmSqUuiUxGllZLo3ZNuysYTMErZ5Gxoul0sODw/VYhHtu2yURqPB4eEhy+WS+bzkNZbLpeJTRDSzXRIttRzTaXlkmu/7qoJUoKyo6oIgUMZYdPvSOUiMDlRquzRBN6s0cp6zni8Z7hzghwHPnz/Htm2+/MUvsZk9YToZ8/z5M7rNFvWq1+aqImslnbo9n77vQ3XGZb1WxuqCIAFMHXaGAx6fPAO79PazxZzFojyxq1N1cxLeRJCBZKQAdeCO53nYRk3xUNttAgWhyPyJJkTmTfQzsjlnsxmmaTJ//31FJEr2SFCcIIXtGgf5TEG6QnhL6fs2hyaoRbgMEUt90vUvZBQ0TXsCrIAMSIui+KqmaT3gV4A7wBPg3yuKYvZHfA7rKo24Xq8VXBYvL/nhTqej0kwi3pFuQLJR8jxnMBhwenpKnpdNVvb29hTUF9JFcuniESRXL0fPiWUWWHxxcUG9Xuf4+Fid+ZDnuWqrNZ/P8X2fQbc87KSgHPynT59W5cetauKiGyFQkiRYpqMsfZ5XDVLcsjbh8vKSfr+vJjRJEnZ2yupA2eCmaaIVULMdtALSuDx3ol5zWS2WzCZlGst1arSbLZb+WpGSEqIIiSaHmkhjXCkfTpIyXSeQXI64KzmCc6XEy/Oc27dvYxhGKZaq8uthGGLkIXE2IU0T3njjDX7jN/8RR26dn/6pn+ZXfvkXuXXrFqenJ6zGT5hOp/Q6bXrNDr6/ZjabcPfuS9y7dw/brREmseKRhOPotkoSerVakSaJGq88zynSjDgrjdncD+l2OpyPLpjP54xGI9rNFrpmYBgo5axpmiwWCzqdjqofETQVrCOVMmy322ptXl5eqpSkoFjRb2zLmKFEx/P5vOz4NL0+AUz2hPABgjCLorgha47jWFX9yr6QsFGMiGTJRBOxs7NTGZ5PNyX5g0VRjLf+/3PA/1UUxV/XNO3nqv//tT/sA9yaqxRicjiIeK6iKFSXYzkGSzIHm82GxWKhat63F7dIg7ebjW7LfmVjivUX5l8mUNqAt1otpZEQ7ytxn6SrttvG5e3Sky2WMxXjaZrGkydPyknZHahFLCKqNCmt/Pn5Ba7rYRgGuzv7ZQvwyFcNVwQdie5euBa4ViZKmmob0o9GI0UkCokorcLEsG53bBISV8ZRQqP1eq3CF8mXb2s+AFX3IOlBSbHJJqk3WpyNnrG/v49hGHz+85/n3XffLcfVNNG06y5FaRQzHZXVkkdHR4xGIxabNUbNJopT9oYDJQmG667g8r0kvQqwe7DL+eiCi8mMVsvm5ORElabHUVpVqIYMdzo3PLKsCyGnhfD2V6EKuaQtXrvdZjweqw0dRZE6I0S8PqD4LjEYIioSZCHk73ZaXUhmKBvkbJfbi/ZAEKsgge1eHZJClvv+YdenET78KPCnq3//TeC3+COMQhLHpNWG1TQNvTryqt/vYxkGi0okNB1fqrp0KCFhqyOQOmY+jaqJuW7JJRay3W4zm83UQEqKabmcK6t6TZJZOI6F69bYbFakaUy93qBWFTTpQByGvPTSS5yfn5ekYhzjuS6YFpso5tnZJe12WzWktWqlCGoTaDQaXbQ8pu6WCEhztcp4XQurlqs5frCm1Wrg++uKAygN1TvvfE/lvI+PD9E0mK/nZWYhLFHAydkJnlcamJ2DHbV47LoNeaEWrvSPePb0yXXNRBjgr1eYVlkHgaahGwZoGkfHxyUxVvE5q9UKrQi5rPo99rsewWZBlgTkSYyfxBwf3y4Lkto2//dv/mMePnpGZ3CbN15+g3gV4N22yOOQZ6fPeP1Hfoj7foNXvvi1sgQ+zXDdGkkQcnZySnZ5yeHePq1Gk3SVk9kFLbtFOAu43FxS5DmDQQ+SHNOAYFMSohd5hOHY9Ns1njx9SsvK2SQZ/XaL+49PsJoD3GaLQW4TBhme18QwNPxgzWq9wK15dLtDao7L89Mx3U6Nvf2BQktyiHGv31LQ3ms4JHGmkIcUwwkXJUShpA9FBSmoV8JbQVtyzmWz7mHppaGYXpWno7lyrEBNU5kKcRrCqQnCLBHpp9dkpQB+XdO0AvgbRXmS9G5RFOcARVGca5q28we9Uds6in7QKw8k3S72kZRfv9/n/fffJ8syXn75JR48eHBDPit8gzDEpWdrq8Ne5bMkTBCvJ9kBx7kmIMWii5JNBE7SZ0DXde7evavSf5vNhpdffpnd3V2+/e1vl0ankj5/+ctfVuHK0VHZ6WdbFEQlXNku4jo8PFSxqTRRybJEISBJfQqxJWXgkv8G2N/fV5tVEMmtW7ewLIvxeEwcx/S7JS9z9+5dzs/PieOY27dvlw05qswNlJWkImDa399XRVAy3uLxkixR9QfdbpeDg31Go5HiibrdPuPxmEbT5lvf/i6G6dDdKXAcm3fffYcsjWi3m3Rbn+Mf/uZv4ftlEdXh4SEfP/yYw8NDXn/9ddB0gqoGoDBNak2P2bqEz4NBjy+8/gV0o9woy8UM27Spd1pYSYJTM8myBK/e5ODgiPPRBZfzS2y3QavR5Pz0GT/wr/0gcRyx2awIwnV5LmXFW+VZWXOyWfv4fohGqNS1aZoqsdLu7i66rqu04MJfKlXt7xcuiVZEZPWe59Hr9VgsFpycnNzImAFKAp0nqeJutrUmIsSTVLHb8JSzE85su9jq0zIK/0pRFGfVxv8NTdM+/Gd9Y7F1FP3L924X0nxC4iHZhBITClkixItc7XZbkULyoJIakvSaZVmK6BMiT4Qipqmr94maUSz7NgPcbJb56Nu3b2PbNh988IFi6q+urojjuNRFGJbqcZClKXXXwd+s1OJybJNup8XkanSjnFU8jpCVopJ0nOuzKATdSNpJUoGO46gDbeXZBEqKmEYWocDY7eP35N+SwpVYNEwLsjQm8NfEUUC71VDhUhwFWKZBv9+DPOLy8kpBUyF9BcaKwX76dESWlSdFvfrqq7z3/v1Kfh6TZymPHz1A0zPuHB0ShCGubbG7W2Yinp+eMZ5NSdOc3Z1Sfh2mCZugDB1ydOabFXmS4jU80iLFQKt0FRGGCUVxXXWpaRq3Do+w3AZXi4/Y29nl+ekJjVtDlSXQtIK6V2M4HBKFCatVQJFDu90hjhbKMErsv7Ozo05zEhJX1pSMgTgU+b8oIbeJWhHXSZGTyK6FoJY1CvxTMmZJR9q2zarKWkjVrehyVEXvJ1z/QkahKIqz6u9LTdN+Ffg6MNI0bb9CCfvA5R/1Obp2feKTZVlKtCH17FLE8fz5c5VdEKHSwcGBEh5J/L9YLJhMJhwcHGAYBrPZTPUSkME8ODjAsiwePryv8vWyiOU8P9mAJXSP1YY1TZM333yT8Xisil4Gg0FJltYtlVW4vLxUKSHZmDKp9+7dU6o34UeyLGN3d5ednR3F9sdxqH4nJd3ynURrsJ0W63a7zOdzVWDWbrcVXyBt1ybj8mzH6XTK0dGR0jIAahxM06TbLHUJ9+/f5+TkhFdeeUURpHI+ZK1WwzYdfD9QxOV8Xh7ko1FKzOU077TIGe7sM1+u+d7v/i5Pnpzw9a9/g/l8yvhqxPHeDmkaM766wLZtTp8+YbUOeenlVwiTlIPD26w2EW98+Ss8PXlGGq1p9vu4To24SBnNZrS8Oo6usX/7NkWWo00uscKQYD7F0HRcr4G1WjLo9fneu+9juXU8x+bZyROarQ61wqder9HuNJReIEkSdM2kKAyKHDodXZ0onqapIhqLolCNWMQwt1otRfQJOpVamW1eTBSNklURDkuyHdu9QQw0JSoT/qHf7yu0INycfA+pkZGam3LtfApGQdM0D9CLolhV//43gP8C+HvAfwz89ervv/tHfVZe5Ao6iZIRrpVlwn4vl5troUpF0smpTOJxS+GOUcXbx5imydXVlTo+TWSm0lRFshfbBI1MonhQCUME0p6envLbv/3bfPWrX1VGqt/vq4rI+XxOlkTEoa9Ku2WCJIxxHEf1FxSjJ0VbsrjyKj4Wmbc8g4RGIoWVCd+u0ReUJNASUAhDwjJhu0XKvVwuVVenXq9HEgX46yWNemmsQ7/sLaiTk6cxeQpx6LMMNxwdHSllaL8/UFJwIcCiKGLjB4RxSqPZ5oMPPsC2ayyXc+7ducXp00fkeZe3v/EN/s9/UB5W3u/36Q/K0On8/JIvffkrdId7xFHCrTt3IQ8UAtILcBwL07bp9npoOkRZiu24mJaDleeQZ+iGhmPZFFUzn7rXZDI/Y2cwwA/TqkQZBlbZOXk2L2sdak6dbndIUZ1teXh4qMIGgeaCAgAVGkZhpuC/hKibzUYRlsvlstzA5s0WcULOCrITQjOOYyK/bM3WbDbVGA+HQ0VEqiKsVlNVbEJZaSsh8acVPuwCv1p9uAn8YlEU/0DTtG8Df1vTtP8EOAF+4o/6IIFPUmxycHCgGoBIk8pSwDOg1WqV9QJVt6R3331XLewkSap0WckKT6dTpbKL4xjP81THIMlKmKauMhAS90uaRziITqfDaFSeUPzkyRMVwpyfn6s2cpKiOzg4IM9zLi4uVHWjdL+Bsmbji1/8ImEYlpV9y6Xq4SDtt4qiUC3rsyxRaSUJM6T4S/oHCmwUDkMau2qapmTaUVSm0A4ODmg3W0rqvD0Hot+QYi0JweSAGFFuCms/n8+ZTqc0GmXzGElNighnfDWpOhDFPHv2jA8ePSOMUv79f+fH+Jv/0/8MhsbV1Yj55JIvvPYaNdPgm3//1/nq17/G1dUVtuPy5a98nbOzc5x6m9Um4NbdFlpbZ2/vgCKPFDm3Wa357j/5NpPLK77/+7+GW6vantul+tRIC9IsxdVtGo0Wur/mzvExT09Pee3zr/D4yVPSLGcyCUjTmJpbks2aft2Oz/d90iTD90MMvUSOOzs7KlySkFdOsV6tVhi6oxSH0jhmNBop57S3t1emgZuNG3oD6Qgurd9lDQsi3s5OADx79kyFJZKhK/Tro/DEqYhC9g+RKfzzG4WiKB4DX/oDfj4BfuiP81lxFKvU0WAw4P3331dQSWoTXNflK1/5CicnJ6qsdLst1mQyUT31sqzg9u3bqtxYRETCEQjEyrIMx7FU4YywvlJcIjn6UoJdjqLEZ67rqjTj9sb+4L13aTabeG4Nre6q9vE6BXfv3mU+n3N5cc7h8S21qefzudq0kmsWCHhxccadO3cIw1ClWAeDgYo9RdM+nU5vwFUhnZ49e6ag5d27d0tthu6r0EIUmtKdWTT8EnLVajV2BqVOYqVrxGFAr9PmcH+Peq3s4NPv96nXPZUanExmN1KbksLUNIe80Pjdd95l6S/LysM0JM8yprMxk/MRtw6PGE1X/Fs/+uP8rb/1i6zWAXfuvsQP/pkf5v/91nd48vHj8rj6Z6esq6yMTilS6nUH7A13aDYa5YGvecbHH3/M1eWYllPDNnSKQk6NzqEoyJOUj957l5rXwI9C/CAiSSKarTp57lD3ypoEDQNdtwn8EMtysExDGdter6c0DHBd0JZlGflWibWEDsLLiDMLw5AovZY4l8TpQJ31KYIyCRefjp/yxhtv0Gg0+Na3vsWtW7duIGAJBYWXqtfrSsh2za998n78TCgaRRwkp+mIXl5kz1JsIwzta6+9xoMHD8pKvirdKPLSKIpYr31FAkpDFiFpNlXPPBl802yoFlXSMXcwGCiJqCCC6XSuWrlLPll6LsrBMlEUEemaar4iG1t0EaKbf/ToEaPRSMWrokBbLBbqVGwVP1bhiYQ0krKSkEJ4EpFCi/5CUMV27YLA3SSKFRsui3P7DEJphiL8guTORR0qHIcoFss6AVP1njDNiuA1rztD5XlOoemYps14NlfoJooihu02p09PeOn4NlmS4rW7/PL/8r/xfV/7On/u3/7z9Ho9fumXfgldMxmdn/HDP/zDvPvuu+zv7m01f0mp2TaWZRCHEadPT4BSvn779m1GT0+J8wzLLGshyHJM3aDdajKelyd7x0lGUmVXSp4pJU5KPcLhwTHrdYihmziOi65F6oi+fr+vxluIxe1wDrhB9AIKEQqkNx1bOSEhlWVsRd7c7Xap1+t8NJmqn0sWStYboBS0tltTnIPoVwSVf+ZLp23HVgrC0WjEvXv3ePbsmaqTl1TdBx98wJ07d7h16xZnZ2eqQlFCB8/zyLJMwXLpUeA4juqvJ9pyCRV0HRXXQRlrfe5zn1NnN4rYSTaudJTWdZ29vT0lJpKr3+uqNml5nmOZBpPJhGbD48H9jzg+PqbbadNod1XcKWnJfr8PlEZSGrgMh0N1SpHEnI8fP1axq4RZYuQEHYm6MIoi3n//fcVDdLtdyAulyhQeRlq9SXqz0WgwnYyJo5AsvRZt9brls2qGTt2tKeVikqS8/PLLCtGsViuytFClu8+fPye3hthuXXXtDsMAx9JxahYHB3sVaWlxdjXn6NZLAqZ9SwAAIABJREFU3Hv5C/yX/9V/zZ/9N3+E4XBIr93Bc2yKLOWtL72B4bbZbNZkcdlj0jJLhn2TLxgHpair1WjSqDcpgpjFrDx56mBngL2zy7Oz5xwdHXE2GrOaz6g3W6RaQlFIj4wU2ymPqndsl6IwlFEYDAbKoEt9gsyBOLeiKNCro+oAJYgSib1sTl3X0UxDCfYsy1IH0gphKMg1jmNee+01Hj16pPgvUduapnnjjM+g2j+S8pTU+qcqc/6TuqSgCMoUy0cffaS+uBShnJ+f88Ybr6uDXrrdLqenp4o4i6KIW7duVQPTUY1gpahH2PJtZVhZ2FOoDSTeUuJzOWJuZ2eH0ehKSZHT9Lohq1QqXlxclFCyfajq56VWoF6vK15EJlCq8CRlKE1di6JQhOJwOFQiFymg2iYsRaUpLdjE88rCAhTLvb+/z/3791kul8rDCokqaUNJiwZBcMPYSIpOiEtBSUJolv0dSoQxHo/ZbEp9RJrkFZIpjUrTs1kFZR/OnBwNaa+W89orr3Dy8DHHn/s89+68ws/8zE/zV37qr/CX/9O/xN/9e7/KrcMDhr0+//oP/WnCTdlDoOb1yhSjWyMLQ1Ve3djdpV67lhqLOKhm24wunqmGvqZpli3h6w5REtNut1nH/o36ABF0GYZBu91XLeDke2/rAASdSgrZsiw0LLUBt7MF8l6FKkAhQ0EJV1dXN3Qh2/0apKZGFKYSDkt4q2kam7Bc5zKngqbLGpxPvj4TRkHXNNrNsq/i4eEht44OGY/HJdlkGsynE7QiV+x+eVpvi3q9wXLhkyQLjo9v8+D+UzzP43vfe0e1zRbJryjJpJR6vV4rq9psNqvmFAuCIODhw8fcunWLi4tLDMNiNLoqm4RoGm+99RarqrfC9jFtd+/e5dGjR5xfjvE8T/X6ny3XTKZzVn4ZynitTrV4fOK4oFazcV2nakN3qyIsC1qtBpZlqhz4crlUxKnUgUhYVXrrC3S9QNdNNE3HcVza7VrVN2HB5eU/qU6XajOZlfDTrjksViWLfe9zLykptYQnha7R6nb58pe/zPPnz7l//yFWnNLwWnQafaga6fbbPSxNZzmes9PqslgtuDg/Y+/wiFXoczWb0tjfI5yv0dOUnU6HydUFb7/9Ns9PT+g0+9z/6GP6/T3c9i6Tp0/4q3/pL/OTP/7jzEfn3Nnb58/84A/RaDT4hV/4BX7qp36K2WzGgw9/h9FopHL+hmFwfHzMpCo2c73SWLquy2QygXhDbuq0Bn1qjk2z1abX63H3+CU+DB+Shhl2YfP/UfemQZJl53nec2/e3Pc9s/alu3rfZh8sMxgMYRAUF4CiqSBNAwqJhiMoR5gUzZB+MLhYP8QIh2yRtE2FJIoGuIBhahAAKZLYCAwGM4NpzNLd02vtW1bu+77cvNc/Tp4zPTQIMCxLMcqIierKqa7qyrz3nPN93/s+b6c3IndcIRgO4PKHCXpDWE4Y2wMcLihXD+j3gop8XS1XGA2GTEcTXIaBNpnSqTWU8QvEjelxiimWbY7QbROXw2Bqjgj63LQGI1VOgJggyHKh3RYjXqmvKJVKaqKwtLSkHLTyJCH7CKYtvD+yv+FwOEilUqIsnJ00v9vjPbEoyJGdXJnlCyOP4LITPh6P1J/fmfuKScK6a51QKEShUFB1cDQaxev1KhpRMBhUu53UnMufI3sIiUSCQqFAJBKhWCwqebR0NcqLT/49aQ+WfQq5a8j6Tk4N5BsjVWnyNCF3BzlqlF8nTVqySSR3F8lI8Hg8FAoF9TEcjqipijySyh0LUCeah5WfshchEWJyZCln5aFQiGq1yp07dxQ4pVKp0Gq1cLu9SksytcxZIywIukYqlSaaSNDqCsXlpNWhWCzy6Pn38c2XvkEoFCCRSHB4eMhkPFSl3/r6Op/85Cd57fXX6PV6XL9+XTESX3jhBbLZLD/5kz+p+BiFQoFarcby8jKWZZHL5ZSUXYq4pF9DNpelvHs46L/rd1XsBEvM9buTvjqeD4dDAk7hIXDwTq7kYDBQkxa3242hO97lldA0je5wIPQl1pSpPUMNplOiCatpDPpDpUuQWZ6yNPR6vepEI0VlAN1WWwmb5PsmexTya+RrIP/9gGIsaJqG9l7vKciFwO12s7+/r5iA0gsha9zRWByHptMpumYQj8cwzakIejE0AkEPg/2OUj/COzf8eDxWXAF5w8j/pOtPglNisRh7e3tqvCYdc8PhkLt376qsS9kAlMw/2aCU4yKn06mapnJ0KG/yyWSkbnR5UTUaDfWz5AUsa8D5+XmSySSlUonRaKT6GcFgkFarpTrVgLLzOhwO0uk06+vrGIah0qWTyaT6d0rZtPyZEmsvOt5DIhFxE3Q6HXK5HG63WyHn5THb4TCI+cXC1+m0BBtjNGQ0maLhoFptEgrHefXVV/nYxz7GN7/5DeZWFimXyywsLJBMJPE43ZRKJfb29vjN3/xNPvCBD5DNZvn0pz/NZz/7WR555BHW1ta4fv06mUyGt956i0wqwcWLl1UZ9uyzzzGdTnnw4IESw43HUkswxJraxGIJokEfmg29VJ9KpUan02N1ZY3s/ALtXptiscD20S6Gw0WpVMLtcbFgzBFJJ9FtS2QzGgb+WckbDoUUIq/TauN4aJPwh98RL8mE9NXVVZVE1mw28fl8ZBaWlSs3Ho8rvYsE5cq+j6Zp2DOEoCwTAFWiSBn9eDxmfmlRIeRl83l3d1csEt+jp+D4tV/7tf9U9/rf+vFb//J/+7VnnnwEl8tFIpFQARyRSIRgMChELPE4pXKeWq3KaDQU+PRKCa/HS6/Xne3gOpcvX6JUKiv0mtwx9vb2gHci3qW4RrrvKpWK6p7L5mKxWKRSqVCr1VhfX2d3d5dHHnmEZrPJwsKCcs3J0FcZhCsnBvV6nd3dXSqVijqZyP5FNBpRx3QQpUiz2SSdTuP1ehUuTY5LJUBDjkDb7bZi8gkB10BNAyQDIpFI0G63lWBFKtvAVlZeuVM+3D2Xx9BAwK8clCLaXkhuB/0h4/FE1amxaIxWW4jBXB4XO7u7aLrBSaFMrdHGRKdYrKCZ0O60qNWqtJp1KpUKiXgMw+HE0B3Uag3u3L5Lt9fl7NmzSsj23HPP4Xa72d7eVqK00WjERz/2USKxKD6/H4/PS7ffw7SmBMMhhqMRU8vC6/cRCAWxLZt6vcbNN99As8G2oFqtEQiEsNFEzoCmc+bcGUxzynE+jz/gw+l2MZ417EbDPsP+EI/bSyQWJRgIEovFcEtWotvDcDTCoTuYmCadbpfRxMTpcuPxeNEdBl6fH90hSjxdd+APBAmFI2Tm5pT+QE7jZB9HcjCkPiQ5Q85Lb4vH4yGbzSoBmtz4mDXTpZtTTkacTifXb7zNz//jX/z173Y/vidOCvJmkeM1Wb9L4YZ0oQWDQdFncLnw+4MMh0MuX7480yiMFQtA7rKSgSiR1+FwWIluJJX44emB3NFNU2Qk5HI5lpaW3iUSuXz5MicnJ2o6EYvFyOfz+P1+0uk00WiUk5MTBbeQ6DU5EZA7mNyppTpT3mDy9YhEIupzCU7x+/2KOSi1F/K4KssaSQCWJRigXkN5sbjd7+QWSm+J1BjI104ePyVRSJQ3YoGKRuL4fAE1PWlYdQXJdblcaLrB8fExhWqTydTGFQgzHJvkcjmWjUUis55COp3GMER3f2l+kXpdGKpsXTSSP/rRj5LJZPj2t7/N5uYmfr9f9Td+8Ed+hNe+9S0l95aNz0ajwfLyMoOBmBAtLS0Jh2Krjc8XwOvxq5OnUAhOMM0pCwtLlCs1lpdW1Xth2xrVaoXQzPMx6I/QvW6BQPO4qTcbjM2JkFmPx3THXSUQcmgC/uKfLaQC8x9SJ2DZtJblsJSWy4X5YRirEIgF1N+X43WpuJWLgywPZNPx+PhYjZFln0GWlvK6+W6P98hJ4X/9tY8885R6UeSbK19MqdaKxqM0Gk3G4wkaDnw+P81mi16vz2AwYm5unnqthdvtIpvNMhyKDAaZa9hut1X8vPRJHBwc4PF4qNVqajSZSqWUAEjeILlcTo0o5ThSoNUFou3MmTPcvHmTcrmsfA9yVi2bgnL02O12OTnJqfovmUwSDodVEK6cBMjvPR6PlRZjfn5eBYDouq76EG63EM7IbAzbthUcdG5uTs2lxQLQUyOxxcVFJZAxTVNNPKQgq1KpKuLTuXPnxZ9Ni4sXLxEIBCiXy6SyaarV0szyLWS/3d6AertHoVjFF4rS6Q7xGk7M6YRQKMhoKPokPq+HpcVlTo5zuFwehsMRP/ixH2Q0GnHq1Cn+5E/+hIWFBd7//vfj8/l4+eWXxekxEmFuYRGfP8Dc/ALzp07hchhYNqyfOoXP7ycWjxNMp9A8bhymxcbGaTrNFulEEnNiAhqhYIRgMEKxXMK2odvvUiyWmNhToYD0+6jX6/hmY0aX00m/16c77GFrYE4mDGZ4OjQBCXZ7ZrGBUxPN6aY/GBIMhylXqzRaLWLxBGg6lWoNc2rhdLvZ29ujXq+rk8LDzUNJtpKLeLPRUCe9drutTgEPTyJcLhe2Jnoby8vL7yo1dF3n5etv8gu/+D+9d08KsraXN4NhGOomkSaibrfLZOrG7wvicnqYTi1sG1wuQWuajKf0ugM0zaEkqXJXVQafaFQpFiU5+s6dO5w7d45ut6uEO0tLS8o2LFV5ciwlm32TyYRkMkmhUGD6EE5O/j955AOUSEjKXaU+QHodZA0oQS1yl5caDYmeLxaLilAld4N2uw2Arj9M6h0qaezDDEtZe8sYeenwrNVqAGrOLX0VDof+rrJCshkl3k42BzVD0Id0xHG1VK4SDIYZ5sqARqvZYTLrlsvfUwJgZVZCIZenUKhw4fwlajXBs3zzzTd5/vnn2dvbYzQasbm5ybPPPsvCwgK3bt0ilckqV6A1GzmfOnVKKF1jMcbDIbWc6CPNZTPcuXVLWMsHPUXjcru8DIYTpmhMLai36ty+fZuJPqVar+ENeXE6BWAlEAiAJXZmyyGa4pNZf8rpEP0l/aFd3+v1Mpk1i3O5nDoVtttt1SuQjVSpS5HXmNy4ZBNbXmPNZhPdRgnk5P0iF31Zpsp+18NCNrmhyTHz3/R4T5wU/o/f/s1f+9GPfhjbtoVIZYatvn//vrKk1ut1XG4vGk503clgMELTnJgTi/F4ynRqU6006XX7uD2ibkokEu+ISGbwknQ6TSQSodPp0Ol0WF9fV6VFrVZTxGj5AkoLq2ysyZtbqh2LxSKLi4scHBwoSXav16NarTKZTFRpIpV3csGr12tKESebiVLFOJqh0CeTCbVaTV2Q8uQkfRbJZFLdXL2eMFbJi00qJGVHWmYROhwOrl27qgAsUiMiL1C5qNXrdUajoWpCiqmG6GQnEyk6na4SiMWSUQaDoepqe9xe/KEQN27dJZcvEklm2D845tFLl6jWKgwGfYYD4XMxHDoH+4dEQmHOnj3PhQsXcXlcJJNJUqkUh4eH9Pt9rl+/TiwWY3FxEU0TixAOF+1OFxsNl9uD2+PF6w+geV3YE4vhaIzDcOL2eHFMbSbmmKX5BdrNJn6vH7fLw9HRMUfHOSzA7fbwrZe/xdLSMmPLxGHo5ItFUikxXtawGQ1GeL0+TEwMx4xzCaSSSXx+Hw6HgTmdYllTNF3D6fYRCofJZLO43G48Xi+RaBRN14nHE0wmJv3BgPFDDl4pYX8YOSinRaFQCH3WK5hMJgqpLz07ctLg8XhwedxKOzEcDtUG5/P5+MYr1/kff+EX3rsnBSnOkMKNer2uZrNylfP5fGg4cLkcaJoDy2oxGo2ZjMXNZGMzGHQxTYtFV0odw2TNKV84+bwcW8rewcOlS6lUUl19eXqROYwPh9devXpVhdKm02mF3g4EAiqyToatSnFWo9EgFAoRj8eVmlFKrzVNI5VKqWh62xYhu3IxAtQCJ0VbIBkB72Dq5K7QmB0z5e8t/04iERPmHtNUElk5tpPyZ+H3MHG7PWo6IqXn4rV0KjVjo1tn0OvjmoFOHbqTQr5Ic/b6OXSD0QxOK157U43L/H4/45GY1GxtbbEwv4Q+1pWCVOYgfPzjH+fg4OBdsmHDKSTxD58Kg8Eg/X6f+fn5d8aPwyGVXI54PM4f/dEf8eiVS4pIlEgk0B1utnb2OD7ZVjdfvV7H6/Mpc5nApYGNrZrXmkPHoTtUv0DSsmu1Gq1GYyaX7iukvrSoy2Zfq9VSPpbRUGxGEs4CqD6PFLs9POaW5ePDpaQ8Fcv+ksfvU6NO+XrLa/89732QjTNpHy6Xywqt/TCAst0RxqfhcMh4JLzhtWZDKNG64gUcDEbkcjnVaZdzXnm0lm+gXD2/+c1vMj8/r/wL8k0DmJ+fV6anfD6vduZms8nKygq3b99mNBqRSCQAlGPS5/ORTqdptVqK2ZdKpXC73ZycnJDP50kkYsrwJS23kiUhzSuj0Yj9/X1AmI7+elkjLbvhcJhMZk7p6H0+H8vLyywuLtLpdFRAjbyAisUi9XpdzdvltEday6UMt9831bxdvkfBYBCHLgRdUhJt26KGdczq2vMXr2LhwOl0kUikKJfLZLNZyuXyzOk3QLNNdUM/+cTT3HjjLX7xF/8JhXyJWFJY6D/zmc/woQ99iEKhwCuvvMLS0hJ/+qd/SjAY5JFHHuH1G6+ysbHB5cuX1cIAvMswJj0fyWRSvVbC/i03gDLDoQjsKVdrzM0t8Pbbb2MZtrrJup0+c3NrtJp1fG7hMRkMB0q1OB6JCIJGo4HXLco2yVC0ddEvkBoQOWHL5XIkk0ll8OvP7NRSMXr+/HlFkq5UKliWpezummUrPwugfm952pMp4ZIWLRdLSTOTPae/6fGeWBQ0TWdj4zy1Wo2trT1aLVFTLy2tzTT5YqfLziUIhd3E43E2d7aEky+iM7J6TJ1T0qlFdM3B9uZd1a2X5pJ4PE4sIjrz/W4f09QI+OJEfDo+l1t0eIPCV3Dl6iUCoRC9fodoWJQfXiOMzxUgHA4S9As+YTKTxJxO8cfE8a7b6xEJBYVlVvORTacY9nuEw2GuXr4koCZzWR48eCDgLENRJsgFoN/vk4jF6bY77O3skkqliEWiKpil0xKNUKfDIODzq4shnzth0BMqTXmkl00peRP4vR4sc0IiJoRKrpRTdf4nozEBnx+/14fP66PX6TI/P4/bK0Jrp1MTTQOPx0mvJxSQDsNkPOmIxdcbYtDtYY6nnF47h8fh4e7b99GwCQW9pBfnSM9l+cqffhkbyBdKrKysUK7WWD99lm9885v8xE/8BJphUWsVSSxH2bz/gNMX1jkuHnHu/DkODnLYGjjdHtyeAK12n2c/+H56vR5vvPZtgsEgmcycKIdcXqyJ4Gg2a4JZ0R8IcEsyGafVEZqRdDyBZdkU8wVKuX3iPoOdcpneqIbbGabRbWLpBp6Qn6N8Aa9Lw+dxMBq3ifqihNwhBVlp1jviJGVNiMcTVCoV/H4HXveY5YX0bKQoiMyjfouA14DpkHjEPzt5hTjJ5wnPYC2j8ZhUOo1lWayurfG1r32NZz/0IVHaVQqqx2NOh/gDbrJzSYDZQiMakHJCpuv6uxaOh5uO3+3xN8ua/jM+9Jk8NZvNKrWa1JJLx6A8ng8GA7V7yiOTbETKkWRvOEIznNi6QzSQ0CiUK1TqDTTDiTcQZGLZtLo9BhOL3sik1mrT7vVYXluj1RF5CocHx6p08fk8uA0HwaCfZDKuxntej4eA14dTdzCaHUkBVTLIHoOk9DxsipEnkod7FXKRkM0i+eYJT0FP+elBXAAyZk827yRxSY5w5VFXlhEP48AkOl5OXaRfXx4/M5kssVicTqeLy+VmOBwxGo3pdLqY5hTLsplOLaX3l7kRd+7cETdIf6hCfubmF1WJtLq6isPh4Pz58woRVqlUuH37Npqm8e1XXuX69escHx/z0z/90zSbTZy6gzt37vDoo4/y1NNPkEwk2L5/j2a1QjoZJx6JEvB6iEeimOaE0bDPaCwIzePxUAXpSCx8NpsF3gH5jEYC+qtZNi5DMAdGgyHjwRBrOqHdbKLZzMbmTiWhl/oS+fvL5+RYUYrKpENR9nceJjvLvo/slUh/xOHhoRK0ra6uUi6XFdE8Ho+r9zoSiahmoxxLSviObF5KhJu06r/nTwrYNru727PjqJtIZGEWXlLHMHQqlZKi3rrdbrLZLNWGaMDpgyHBYJT+cMJJ7oR2q4M/FMXl9VKbqfocre7MMXnCmzdvK+iE0+lkZx9cbieJaIT5aFpo9pMJNN3N2JySCgoBVSKaIJVKiaNX3yQS9DMxp3S7PQZdkbbsdbtpN9tcuHCB7e1t1UWPRCIcHQm6ssxxkCITGSgjjuG2cFQGgzz66KOMx2O2t7cV/l4KpcrlsmqISrBHp9MhlUopOrOmCZ6lNH9JkZRgNBRV81IeJWXdK4/htVqNZluIXtbW1pQxR5Zd8mILBoPYmhPTtJhM2jjdAr/e6Q146qmnePnbr3Hpscf4jd/4DZaSc0rVl0wmCYVCKqj25s2bPP/cc9Trdd737AfZ2dnjAx/4AH/4+7/Pk08+ycu7r/D888+z8+A+w4UFGvUWS8mocGDWawRCIeoFD2NzwvziMh6fX8BaGdEdNKlXhK/m2rVruAwng1nO5GAwwDUbIQ7GY0aDMfFIFEt3clw9wASSkRDJ+XmqlSKWy0nP28WaGu8Sfs3NxEcy01EyE+QESKg9OyqLUhrOQDQFo/EkumYTDgXwet6xUVuWRa/bJhoJcef2LXHT20LRKL+XnGhJj4ymaaKEcojGtRwvy6Rqqa79mx7viUVBjiOFBVf4D2TDTdbOsj7KZFJCszDjAVa2tvF6RSe3URdNJVvTMS0bl8erLvT+cARooDuo1htMKyJPYGJDv9PGH/ASjsXRHS7yJWG8SsSTeDw+NM1BpVyk3Xkn/luQi2Oz0eCs8WSJcVS5XFY3j/g3Z9SbIbkQspNs2/a7cHJyl5bGJ/mzpFtUKtkkoUcaxCRsNhqNKtafnGrIDIvRaKQUjg6HQ8me5XjS7/crOrBpmuSLBWKxGOnZMVZi3WQCtlxABmNYmKVUjUemGs/6AiK1Shq3ut0ui4tC3ry8vEylUhLH4MGA5557Tkmtv/rVr7KxscHnP/95Lp2/yP7+Po8//jjdVptMKonTYTAZD3Fr4Hca+NyCkTi/tITu8YgAnLbYELw+NxErxKAtdmCnQ4h8xrOFTXboez2hO/C4XFSrdYrVE8LBEMPxCCwbHY1Bt4cR8Cm3o9zhH4aiyhNePB7H7XZTLOYVI2QymSh5vOwHSTCLXChrtZra9eXoMpFIiJJ0NtJ0OjQ1WZLvlQSy9no95ufnhZq1O1SN1+FwSCqVUgv693q8JxaF4XDA8fEhp0+fZjIZUamU1E1vmmOeeuoJYfqJRiiXBb8xGBFjt8uXL/PgwY5SFY6NCflqE7PdU8wAaZ3N5/MUi0UikQiJRIJGp8/pC1e4d/c2nUafncMTKsUCg14Tv9fNtUsXWFk2CAR0rEmPfLEAwGQ8JT2XFeISS3gzXIZoanZazZmLUzj01tbWAIHLWlhYUPoCyRmYTCZKXNJut9na2sLj8XDp0iVMUzAKyuWymnpIYIbkIMTjcdXM7Pf7ahzZ6XQ4OTkhnU6LC962icfjBINBNfItFApqLCrBo4BSao4mJpPJlJ2dPd73vveRz+dVv6LbFYIx0Jmby+APBDncP6LfLzK1NZxuN1/60leIJJKsrp/ia994kUa3QSaVJBgMcuPGDXRN0KiS8QUlhLp16xYf/PCHhIhKd+B0GFw+dwFrOqVcLNFrizyQs2srtE9ydLpdguEQls/N0f4uU9siFIuTzSRw+n2U8nm63Sb7u3ssLi7iPXde/M6znVvTNFqdNs12S5SvvTHnz5ylWn0Z3TRZnZ+nXq/Snw5ZX1mdZXzYTLWh0lhIFa20ostydzKZUMybarGt1wXPQdrWY7GYam6//NKLPP300xg6xKNh8vm8GD/XKsQiISxzzNmNUyr+UMqgk8mkmhpFo1E6nQ77+/vkcjlSmQU1Fvd6vTQaDcUe/V6P90ZPYTZaqdVqavWVs/5Go8Hx8TH1ev1dEXHlchmZl7e6uqrqueFwSKvdptVuMzFNnC4X5UqFGzdvcpLP4/P7qdXrtDsdVlZX+fZ3XmfjzDkuXbrMm2/dxOnxEk+keenl1yiUqty9t8mtt+/icHpZWlkjlZljbnER05yytLgyc0m6yefzKtBWEpWr1SrNZpNKpaIkyxICK2tbad+WUw0JWjk6OuLBgwfU63USiYSCrcg6UuokyuWyOrqGQiH29/cpFosKmjIYDEgmk6yurqpa0+v1Uq/XiUajxGIx5ubmWFpaIhwOqylFs9kkm80qPPnm5qYSVcn+SL/fJxaLkUinKZVKMxKWKFu2t7cZT8REJZ/PY1lw6tQput0u0WiUaDTKlStXcLmE+vSVV17BsixOnTpFvzfg5W+9gq47uHr1Clvbm4wGAzrNJsGAn/XlZarlEoahk82kSCdTGJqOz+0hEYuTTKVwul1Men28M19AKBBAmy16Ur4tNSPtdptoPE57Np2q1RrEI1EW5+bxul3YlonX5abZaNHvDegPBiLHYjbNefi0Jl+jhyGp5XJZjcRTqRSxWIxMJkO/3+fg4IDhcKjk2FLrMhqN1Fg1n8+rsag078XjcVUGyx6F7CmlUuI0XalU3oXylxJ2MR5/j5cPlmXR7XUIG2Echk6311FHIofDg2VPcRi6gkj4/X4Gs+bRxJyi68J6WizUqdca1KpVdbzVNI3gQ29ePp8nlUrx3Ic+BEAo4OHLX/pzUR97PZSKRTbW11g/dYZvvfo6xkxEUms8w8bGhlIhYll85/UbjMYDqvUGk9GYCxcu4HCKmyaVShEOh9nZ2SEcFit/tSokw6dOnSIcDrO/v692eF3XCYfDisrb6XTMT9JQAAAgAElEQVRUmo+u64r0807mpKVuYLngdDodSqWS0h7Io60cs4odvqsQdpIo3Ov1uHnzpjKQeTwe4vE4xVINt8tLIu6k2Wjj9/vJHefFotc4xqE7aTU7nJTvkEql2D84ot5oUSyX6Q1EX8Pj9TMam3zwQ8/y0p//JafWVtXv1Ov1aDabnDm9jsvl4uDggNOnT+N0uSicnPAPP/X3efXllzm7cYbd7U1Ora3z9ls3aFfLhINBnG4vDsum0qyTzmZIbWwwqlXBshl1Rd7BsD8Q2pBAkEgojGVOldHIAmxNw+314nAaXH/lZZrtjlJa+vweBoMuqXicRreNLxRCNxy0egNCYT+1Wk0Rw5xOJ2+//bYqL+UoXDpnI5GIKtPkBjg3N8fW1hY7Ozvo2NhTU210kVCQk+MjdE1jNJilWfe6BAIBhSGUqlK/X/xb5DUhnba5fJlKpaJOgKlUilarNeszvccbjTbvZBhKsKQk4tq2rSSg+XwesN7JGjSFuKbTERSiWq1G/qRAq9VV38/hcGCORyTSadFcmYoO+b3bbxONRjm1mEGf9CkWi9iWiW5bHB4e0+/3ef/T7+P+/U3qrRF/9uVX0L/8KtceucSptVWuXLqI2+8nk0pTzB+zsChYA4tp4TPI5XKMx2OV2CShL1KlWK1WVXLU0dER6XSaK1euUK/XVT7m0tKSmn7IutflcpHP5wmFQjQaDSVK0XVd7QzyyDiZTFhcXKRQKHB0dKRAtw8ePFCIOynsikaj7O3tKQr2eDym3RnNRExTvF4/R0c5lT1x+vRphcvzRNzkcnm2tnYo5E5YO3WGyGRKpdXh1Vdf5Xd+93f5+z/7s8QMJycnJ4oP0ahX1cj02rVr7O3scO/ePZ778Ef4gR/4Ab74xS+iTacY6ER9PnRrSrteIeh24ovFuLW1yeOPP040mqQ3noCm447EqReLuN1eBr0hw+4Yj+ETCLp2R6R8z66BQqGA0+mk2W6xv7/Pzv4e5tSm22mRTcbRNJvRWPRjYrEIIxt6ozGpuSTmpK8Edw8bmcbjsdKqpFIppTLVdZ3d3d13cTAbjQYbGxvCdzJjhUhrvSwJ5Nc9zNpIJBJKFCf7RTK7U+pxZLNTfpSiJenElFOy7/Z4TywKhsPBcNinMktNksGu8heSN4ZQ9b0Tzy2Px4AiEo/HY3TNRsMCe4rhMAgFw3Q7LdVg8/s8DPpdDIdGcSePaU7xeVz4vH4CgRCDwYjz5y7y0rdewel0EYsnGIwm2JrG3bs7nOTLWNhcOH+aTq/LeGpiaxqaZquxkTRVyRwF+bNlN3pubk6VPNJHL3f0hxWPUnAlTwjSQZlIJJTxSu5MpmkSjUaVpbrb7bK0tKQaf4Ay2cjGWLVaZTAYUCqV1PhM6uglqUrmSxwdHSkgiDRpHR8fY7nctLsC8a4ZooHp8wdFOE0iSbsrVJ5Hu9tcOX8Rr9dLNpvlJHckUPAzSbjcwUulEk888QQ/+F99lL2tLV751ss8+xOfEAKmhUWcuoNUMsGPXr5Ms9nG4w/gnE7ZvHGTWCxGMpkG3QCPB/J5Wq0Wp0+fFv2WaAzDnLDi9eKZLRCtTptOv8fZyVn2DnPiGrQtugPpQ7HwRkLoFljYIkfCpSlJ+sPN2mg0qk4Jov5PK+Buu90mm82q06EUEw0GAyKhoDrdSqxeIBBQpY5kIoxGIyazMfBkMlENbfm1gOoZSEK5vK4kMv6/CHCrwyGOzoFAQOUlyNFOIBBQtXcgaNBo1JTJwzRNTp86xeHhCXatKZpVpQqDmYRXx8tU1xj0ROfc5xE0I3M8QrP92FOTZ55+guOTAoeHh9iWSa/bxh+IsLm5yT/42f+emzffptfrUag0MEdDOoMR9dYxxWKe+xdPEY9GuHzpDOVqiYX5LL1OVzUTJXI7Go0q66u8QHK5HIuLi7jdbgEamanbJHVJ1vVSvisbSpPJhCtXrmDbNtevX1dZmQsLC4r/WCgU1CJkGAbz8/Pq4pE6gaOjI5VRISXU8kLt9/vcuHGDcCSlQCyDwQC/369cpfF4XL1HuVye1157DZfhZmpa6JqTfEEkXXsCbhVXv7YksiszmYw6yXU6HVqtFoeHh7gMg6eeeorHn3iSF154gblsGsOy+dEf/iHe+M7rjAZDYXvXNazphN3jY3ETBvzYU4uN7AKa10u/XMMXCGC1utTKYuR7cnxMeWYuarZbtDptTgoF8sUCr7/1JolEQpxEdR2H06DVatDrNhkN2jg9bnq5HNmVVVweD+VqhUmvoRZmucjGYjHi8TjJZJJ4PM5gMKBcLqmbXO7ivZ4wZBUKBbLZLOl0mkLuiN5Mh5NIJOh22oxmjEW3y0mtWuHpp5/G7Xbz1q3bpNNp5Y14mBotQ2Pcbje1RkellC0uLpJMJhX38XtNIL5vo1HTtH+naVpZ07Q7Dz0X0zTtq5qmbc8+RmfPa5qm/ZamaTuapr2tadojf5tFQdcdvP/pD9JudtExsExwaE5SiQyWCUsLK+ztHDAcjDEcHgyXj3ZrgMcbYjSa4nA6CQS8NNoFBpM6Y8vE0mE0ndAd9ukN+soR2Ot00AGnw4HH5WI8HDEZ9HEbTiaDHvVamcLJHoYx4Q8++3/SbByztBhlORvh4rlV1pbm8Hs82JaDQr7D9e88YP+wR6vj5dadKt5ghN7IpDucMBpbnD1/gUqlhtPpptftEvD7SSYSaLqLqaVjazq7+wd8/cVvsLu/S2/YIT2XZPdgk73DLTTNQaPRot8XPIPhcMz29i71ehOXyyM4le0ut+/eo9Fqs7O3T384IpXJohtOmu0OtUYTp9uDren4AkEO8xWiqXkKlTomDsbmFK8/wOHhoRj/TsbUqhXq3TKbe/eotirE0nGcXi/lepN2z2RzJ8dk6qFUGdJotplaGol0mv38MX1zTHPQpVwt0em0WF9aIBONMDYtsksL1DsNvEEHtXYRzRhhaibNTou5pTVu3dnm1Re/QjoewGXYrJ8/zY0Hd+liUR4O6No624UK9aHN6noG6OPUJgR8TjRtCp02HiaMKidY3RIR5wB9UMIRDuEIhxg5dIxAAM3tod0fMJnaJBNpPG4fve6AevmYqTnA6QvRGE4ZuyOYRgivP4I2HjEf8qE1TnDqohR1YBPwuUglInhcEA66MfQJ9rSP36sr74p0xUqQrlyEJXHM5fVjuL0EwlEGYxOHy4OtG4RjCVrdPstrp/AFwzg9PsLhMK1WC8Mw1JRD2vxlTEAmk8HrduB1O5jLJDg62KFWKWCZQyzze5OX/jYnhf8L+N+Bzz703D8F/sq27d/QNO2fzj7/J8DHgNOz/54Efmf28Xs+3G43R0dHBINBgsEge3t7OJ1OyuUy586d4/j4WGCt94+V6s8wDJwOQ8VnHRwcKIONLCkmkwk6GpZjiqELTHt0FgM+7A+YjMZMzQGgEwqFiEQiDCcmhsPJcDxiOrWVnNTjdbG4NM/NmxVabbFLnL9wFsuy+PO/+DPOnj3L4uIi33jxkGtXrhIIiIToaqXO3MI8TsNBMBah027R6XTwB7wMhr0ZlUkc/3/kR36Yra0t7t65T7Ek5tuHh4csLy9zeHhIu92mXC4znYqQE8mfPDg4AF1AaWQOpq7rLCwsqCnIyckJ165do1wus762ojQGmUyG+/fvUy6XSaTSGC43hmUTjMS4e39LjIJDcSZTjeFggi8QIhSJcn9zG1tzzvDmPSKRCNlsFtvSODk5YTieKCWlIkxZmjop1WYlTbXeEI02hyH6CF/4Mza3t9A0jctXrnF0dMRwOOSll17ip//eT3P7jRtEZtzMzq260B7gxKE7CXnFzXL9tdfweQx6nTYfeu6DzC0uELBdSuE3nYzIpBLcvzul1aiRTQsX5NXLF2l0BNNgMJ5Qa4pG76DXw556adZLPPn4o9TrVXzRJIGA2JHjsSRnz20odeN0OqVarRKLxQiFoip4Vr4Wksshd/SbN29ycnKC0+lkbW1NCcPk9ZxIJLBtm7t376opVTAoyrNyuawiCw4ODpTOREYgLCws0O122djYYGtri0QiIaYP/zGGKNu2X9I0beWvPf1jwIdmf/4M8OJsUfgx4LO2KG5e0zQtos3CZr/Pz6BWq7GysqLkt9ISCqibPBgUtKV+v6+aKlvb25w/fx7DMCgVinT7PSxLGEUeRlKFQ2GYhZtg2cpcsrwyRygUYTqbvfeGA6qVGgFsTp3a4N79+9y6dYuVlTWazTof+cjzXL16ma9+9avcvPkWHo+HjY1TbG9vcuPGmzz7vsd49bXrfPD97xNKsmGPCxcugC1uEgFvmTIYDonF5tE0W8FYisUS+byAxkbCImAkFhYqxcPDQ+bn5+nNlHiTiYh/lwxIj8/7rgCRdrutmlwyQ0DyGhwOB8N+H49LyF4zmQx3797F6QnQaIsSYopBs9XBnGr0B0Mq1QaDgcg/SGfnGE9sKtW6ilIfj8eUS9UZIl803ZyGW5U8k4nIe5zaFqY1pd3uMhybxKJRpqatVJ7FYpGQF1ZWViiUS4xmo8Nf+qVf4nN/8Ic8+9QHWVlexjAMktEgGg567Q7D4ZiG3qRWq80AIza98ZBWu0t/OMB0+Mlm0gD0e10G/R4Bvw9sC2tq4jQcJOIxkqkIx/kCuUIRt9s9Q9q1cDps4pmk6vHIa7PXE/Jwt8dJKpVSidPS0SjDV+RUQYqW+v0+8XhcsRRkboNsDkqHayqVUorVUCjEyiwtzLIsBQeyLEuV2FJ1KonikhAtYUHJZFLIzf8TjCTT8ka3Rbp0avb8PHD80NflZs/9vxYFTdM+DXwaIBmPcvHiRdWEu3v3rlocJM76jTfeIJnKCPXYqE8mlWAwGnH54gViiTgej4vDo6e4c+cOR4ciH8GYNYBCwSCGruH2+nA7xYLRaNSZjEYUijmhKtMEaWlqw8LCAvOLS4xGI5544imy2Szj8ZCVlRU+97nPcXJywjPPfEA1Qb/2ta/NVHsu3rxxh1DAR63aIpmM89ijV2g0WtTqBS6ev8Cdu7dIpRIsLi6oBp5QCmocHBzh9wdF88wdYDyaEAmLpl6321UCpkgkQjKZVN4Qh8OBwylYfcfHxyq9OxaL8eSTT/Lqq68Sj8fZ29sjk8nQazdxYLGwsMxffOkrPPb4kzQ6PfoTm3K1xuLyKl/88tcxx8NZA61PpdrBtjTi8ST37m+zuLBMp9MhGksS0fy8+cYN0qksn/rUp/jMZ34fTXMQT8QZmWJyIbgPQpvR7Qbp9vrYtk7+pMzp0xt8+MM/wO/8q39Fvd7kfY9foVpv0u33GIxnmYmf/zzr6+vcevsG5mSE2R+yvrqAy+XizJnz+N1BavUm7XaH7qDPX37lL7l27Qq397bodrusZJeJBsVMX6ZztesVQj43GlN0Q6N0ckQ0HSfg9TCdjFmcn2NsCrhJIhmjXKlQrdpgmXiC0YeSuyaUihUVZCRNaYPBkO3tbTW2NAxDidok6UrmMCwsLCg4rs/nU7xQufmFQuLkeevWLYB30cOlGM3lctFsNpVydmVlhUKhoCZT0WiUUqkktDLWf77pw3dbfr5r8WLb9r8G/jXA2dNr9urVq3znq18VlN5Mhrm5OcWpazSEPboza8R0Oh2uXLvKdDohk03NEqTB5dDxOA1cbvFrOTQNXbNxYDMc9LAtE3MoZtDhUIipz4NpQbfTFQjuqQW6jtPpxtZ0vB4/sUQcv9/P/Qe32dvfIZGMEY2FefmVl6hWq5w9e5bnf+A5CoUC586dY3/rmPsP7rK9e0CtVid3csTK0iLnz57mm996mXQ6gWlalEolptMp6+vrjEbv4Od0zaDd6tNuNRSivlAoKJvx6uoqtVqNYrHIysqKQo2nwoIPWS6XSSaT6ij7pS99Se3CJycnIicCi5OTE6KJFIbTzQtf+AJv3bqD1x9Ed3nYPirS6A5xztx6S0tzMwaAsJ37vAHypRLz8/MMxiNajQrPPfccb711E81wks3O0+v3yWTm6PR7uF0eNHQGgx7D8ZjRZMpkMsXpdKE5TH7khz/BH//xH2NaU8LhIPe2tgiHw+TyJzz55BP0+30q1So3btzg4vop3nz9Oh/7yEeJBYXlu1lvMRiO+fqL32T/+JB/8On/jtYXP8+t+/e5s3ufQCjEretv8MyzH8DXc+FxG7zxxhvcvPEGS0tLLC4tsbOzQ7GQIxj2k82kqDaazC8tc/311xmORSZnMi5Om16PayZZ7qlJQ683IBIRXg6v10urJazp6+un2dnZURZomRwtmQ9ra2tYlsXx8TGRSIRMJqOER1LOL0s96Y/xeATjQobblstlMpmMamZLZmOpVCIWi3FycqJEUXL68b3SYP6/LgolWRZompYFyrPnc8DiQ1+3AOS/3zcbDgb8xec+h23bLC0tkclk1JF6OBzS6XQ4c+aMwGe53dTqdeypRSwSpVGtEYnHuHfvngqD1ey6ogxJvLYxw1z5Q6L+6raFlrzZ7YkxjWEIp5rDyc///D+m1+/z4MEDqvUGX/7yVzk82iafz7O6ukqlUlFUplwux+HhobiIczkS0SxXr17ltddexbJM3O4UlgVv3LjJ6bVVmk0hp41Fo1QqFXZ2dmm3u1y6dInjo5NZLZpQcFcpOFpaWqJcLqsYvJWVFfL5vDqSOhwODg8P1ShXHhuj0SjXr1/n2rVrCvpSLhYIBoO88u3r3Lp7n1K5iq05aHe6+MMuzKlNKp2lV68Tj8dnM/IZiNYfUt1rOT+fn1/kwYMHnD9/nsPcCbFYDKfLQyqVonjnLpFIRMzfx35l5PL5fEyGE1wu2Dh3VnXoI5EIzUYFuw1rp9a5v/mAbrvDyoLA0kWjUc6snyKZinNylKPeaNDs9Gl3ehRKRbB1tra2eOaZZ/D43Hzlr77EUx94P+NihRe//jXW19f5vd/7vZlD1WI6nVCrVdA0e+aATbJ7sI/X6ybo9ykKeCgYYdAf4vW58fmD2DgYjQez0kCg/G3bptcVfYPTp0/PvA9FZV9+ON1cBtNKxqIcN8uR5ubmplh0Z1AbyeQol8uUy2XloZGlx3AoJjOJRELxQjRNo9FoqGnY+vq6+lx3/P8/kvxT4FPAb8w+fvGh5/8HTdP+GNFgbH2/fgKAzydyBPL5vOoZ9Ho9CoUCw+GQjY0NcYyyLNxuFx63i+Ggj8Np0O126HY7BIMBUskEw9UV7tzdxzJNHJoTHR2n4SQ005/7Z+5IScmNRmNcvnyZdDbD/XubHOaO+ef//J/T6w85d+4cDza36Xa7nDl7ltOnzgh7a0jImGu1Ggvz87z66qusroqR0P27D3j88cdxedziTR32+fo3vsW1q5e5e3+HVqvFE489gtsVZC67IkaWkTQ3b9whlRJ4e4dhq0h4SeGV/obBYEAoFBJkIK9XAV7kwiQJvpVKhbm5Oe7fv8/CwgL7+/vs7u4yGo3IlwSopt3r0WgLX8R4CsOJiUkLyxaAklRcYPDm0nNYmkU6kaRarRKJRKjX6wz7OovzGba3t8TJIxoXI7fuAM2hc+PGTVqdDq+99h2CwTAjs0M+XyAajaNpTsq1Ek8/8RS/+iv/DK/PT3fQJ1/KEwyGaXZ7dPYPmVoTXA4HlgaXLl1gYWEOw9B5/bXX2Lm/Q7VRJxSOk5mbp9cfMpyY/N5nfp/1M+vUmnXuPdik0WpzKpGi0+vzgWeeZWxOCUdjivE4NqcsLC3jcLooFo7xuAw69Q5vvfWWuB6lJX8wZDATGQUDYTQcaDhmLtMwXq+HXq8jeje9IYbDhcvtpFAoEAqFFHz35OSEs2fPqrDe27dvs7CwwGAw4M0331TGqkZDnBYjERH0I8Gujz32GFtbW9TrdRYXF/F4PO9SzI7HY7UQjcdjFhcXVT6JTBf/j+IpaJr2OeDbwBlN03Kapv3D2WLwEU3TtoGPzD4H+AtgD9gB/g3wc9/v+wPYtqWaMdJH3u12abVa7xLb9Pt9eu3OLOKtQafVZjRbIZ26SHYOBALYM42AdJXJY5kUePT7fXqdLg5NZ35+nnA4zNbmDsViEdDxeQOKnDM/P8/ly5fZ3t5ld3efU6c2WFhYIhZLMD+/yMHBERcuXJoBY12cv3iOYjFPMOhnZ2+X4WCEZjjY3TvAaXiplBvs7OaoVlocH+Up5Mv4/QFlkllbXyGdTmJZJi7XO+BNmVMhYZ1S6NJoNMjlcso9KdVqkgItdwlpk67Vauwfn5ArlukOxqAbuDw+pSY1DAOnoeNxOwkHQ4yHI8bDEV63h16nTTadwuNyEg4GWF1eQrMtPB4fhiE8/hqOmRzdORuVady7d09AaPqCLiSmOT58Xj/Pf+Sj1JtNqhWBiXe73VjYjM0JY3OCwzAIx6IkEgmWlpbI5XKUyyVa7QZje4rm0BlPzRngVMh7z5+/SCGf59TaGmdObxCPxsidnPDmW2/xb/7tvyUcibC3v0+v36dQLDIcjXC6XNTqdfq9HpY5xTB0hoOeCtY1DIPp7LW00Ol0ekpoNx6Zs9OaAeiqdyATnqSBSTpWZW8IUM1FqWCUqLaHFYqSuiVFRxL/Byi1rMxBlQnq0jov+w7yfngYA/83Pf4204ef+hv+1/Pf5Wtt4B9931Xgrz0kdkyaheTFubi4qAAllmWhM6VYas/wWsKaevPtW6L7GvLj97qJhgWkpN/vg2VjTy2siXjTBjOPgcsQKT3JZJKRZaDrBgsLC3i9fibWlGQizcraKrpuEE8kqNVqbJw5xeHhIcfHJzMox4SPf/zH1Q24v7/PBz/4QTa33+IrX/kaxdKA0XDC4vwCum4QDoR568Ydstl53r61zVe/9HUee+wR3G4nhUKJM2dOE40GaDbr1Os10pk4LjcYmkclUiWTSWVokYlXe3t7hEIhFpfFRSM5iHKi4/P5uHnzJp1OhxdffFE4+twxRsPh7PjuQrfE6NXnduF2OXDpNrptsnF6HZfTQafTYXVlifF4SLVSmoWuBtjavEs6nSYUTuD3+2nUW7OFfUggZJBOZWl1O7z88qsz0K642bOZeSqVGqn0PA8ebIGtoxsOTgo5dGzWz5xnMJoAFktLiwSDftrdDjdu3CAdDtFpNHDrGp/+uX9ENBql1e5y7959kv0xlm2zvbfLE088wQ//8N/hP/yHP+XKtatc/9a3+OQnP8kLL7xAu93mp/7bT/Grv/qrPPLII6yns5TrTSKJFMdbt5lfWmZrc5NqUzAU3V4vY9PENC10l7hlpGV+OrUVq+Cdml8QoEUvRHhRFhYWFB/hypUrqrRwu91cu3aN4+NjJR7TtHdyUJxOJ6VSSW0I165dE7g4y1KNw0qlonwWkg5dLpcVnFdCiw3DoNlsisXmvW6IAhTWStbMkq8okdg+nw+Hjmqi+DweprOmi1z95PjH63XPtORTJpMR/UGXsBnA7/dijicEg34ikRDdbhuHRxyF05kMiYSDTr9Hv98nl8vz0ksvEYlGqdXqZLMZ9vb2iEQiLC8v8/Ef+3G+8IUvqBFTt9vF6/GzsXGKVCrFgwdbTIYmt269TdAfwhxZLMyvcPfuPa5cuozX5aTV7GFOx+gOQdxJpaM4XU66vRamOabdaRLwuBS3r9frKfutDH2RUI3NzU21m0iK0PHxsYrik/Vqr9djrE9xGC7cHh9OQ8BAHNZUpQ15PB6sqUmv3eHcxhk2N+9jmxM0y+bU2gq6rnPjxg0WFxfp93vKo7+/v084HMY0xZze7fJizoKBZV2s6/rMugwbGxt89rN/QDjgxWbKuXPnmE4ndPo90DUWFhYJhEMUTnIsZdP0xgJZ59Tg6mOP0Wg2WVtfJxiJU2u06e0fwlSMQD/87PP8i//lX/B3/+tPcOvGTVqtFr/8y7/MxYsX+fSnP81v//Zvq8Ceo6MjhcQbj8eKcBWLxeiOhIR9PHMaOp0G5tQm7A8o9P506mEyns5KOs+7KNwy/GU4HHJ4eEgsFlMaBTlql9Qmy7KUIe7hyVQikSCbzXJ0dCSus1nzeW5uTrFM5YlgNJqVN8GgCP+Nx5Xhbn5+Xp00NP09vii43e7ZzVcjEo0q6e/Ozo6AhkyndLpdUqkM85EEvV6PZGZRdGzDSU6fPo2u6xwcHGBoHhbm17ieu47XHyIYidPpjVkLZui02ixl50nF4/SaNQaDHj2vuMFqrSL7+4f80A/9MNs7+6QzUZaXF7l16xarq6u879oFtGFb9D1CHr7zza+iDdu879FH6XZFzNnv/M5v0Rh0FPxkMBiwtrbG1atXCQaDvPjii0SSHnaO7/LY40/x4MEDRpMBr77xBt9+6w3m0hk+8fEfZTQasbwQYGVlhVQmILIpLpylXC4zvygyDx57/Enefvtt0hknb775Jul4ikq+jtcvtAmd9pA337qD7nZy/8ED/MEAnd6QUChK1BEUwJNEGtu2KRdLZDMLVCoVHEOYz2RE46o3Ib0QoNxsk1lawh/ycmfrPsFgiOHUIleqCoHVrRt4fT5s3YE90XE6DVxTF7tHB3zgg8+ys3cAbjd6z4897hL2x5gMTH7mv/l7/NVf/SVzC1lyuSNOCiXOnz9P7sZNnn76abY27+OeTJmPJvDZDnrDCdn1BXweF7Vmg3Y1jzU8zb/73d+jPxqxtbvH8x/5CP6gwa/8z79CIBDgdz/zh9QbDU6vLYLLRalW5/9+4d8LDoLLSTIaZmdzi77fj2HoHBZKFKotzpzZmAUNh6g3WzhsJ4Ou4x3fQixKr98Fc0w4EaLcKDPVIjg9MQzLolLNEYvFOHPmigq6tSwxdZKBuEtLS8r0d/HiRaU3kAyQjY0NHjx4oHJEZMBxr9djbW3tXZg9j8ej/DZ7e3uYpok9mTJ0exn0evTtLqlYAoetgWmha+9x74M5s0TXajUWFxdxOp3s7e2JlbrbZX19fUbAzStyTS6XQ9d10um0mjTIiPlnnvkAR0dHjCZC03/tkSt0mi1Vp7VaLWKhEMFgkJ4h2AZTxoqOD6sAACAASURBVHz42Q9RPMnjc7qpVar81r/8TT7/+c8LoYhTI7uwyOVrj7Czs0N/NObilavEkilMG779ndcJhCM4g4L2JBs6o9GIF198UX0ejQqF2+3btzEMg0uXrvD2zRsKifbCCy8IqGm5KObSdwfUajVKlTqFglj5Y4kMb916m8ODIxHm0mhjTjSGE3Fq6XQ6lMpl9vf3sTSIJeIsLCzQ7or0pmZLuCLlbpTJZNja2uLHf/zHuX/nLvF4fEacTrC5ucmlS5cYDgdMrZGCtYSCEZpN0dsxZ27LWr1OKp0VwNBAgGw2qxpkkjAkX5NPfOITfOc731E06/F4zFNPPcUbb7zBx3/sx3jjjTeEN6LXxTB0XDoMxyNu3XqbRDRKJBzk4oWr/PsvfJE7Dx5guJyMrSkvv/oK2/tHhONxOsM+gVCE9Y3THOxv8ciVq+ho7O/v49Qd/ODf+SHyuRNCkTB3b99hZWUFl9MzY3L6OHV6g+6gj9vrY2t7m/5sciKTvWS5K65JB9hTXC4DdzyKxyOYFa+//rqaCHi9XnVjj0Yjhaz3+XxkMhkRR+dyCfHYTBUpaeaSlCXHyoCaTMi8z9FopDJBgsEghu4QorxZItj+4YFigdrfYyb5noCsaIjkoNOnT7/LzbW1tcXGxoZyRcpfSGq8h8OhqqXa7TaGYTA3NzfLPrDVG9ZqtYjH46rmCgaDnDlzhgsXLjCXyWCZJrY55f69e5QKRQ4PDnjkylX+2a//On/3p36K82fPks7McenyVYqlCqFwlKklqMR/9fUX8Xj9tNpdMlkR6ZbNZnn66ad58skn6Xa7rK6u8jM/8zP83M/9HOl0mt3dXQXFEFLYkAqFcbpcVKtVXnvtO7x6/TWK5QroDobjCW6Pj/5gRKFYYnNrl1qjycQEry9Ardul3u5QaTQ5LhQZmVN8wRD+QIj1tdMMB2OYanicXoXTz2QyqvmYyWSIx+McHR0Ri8WIRCKKATgYDBSApdvtquPo/8PcmwZJct/nmU9WVVZV1n1XV/V9d093YwZzAJgZAhgQBCiSokCQIlf3ilyJor0rWbIlOeSVvAxJQcV6l6uw5dUBWTZF0RQFS6IhkiABEAQHBDADzH10T0/fd9d931lVuR/+lQnAQVBa7YYD9QWY6YmensrKf/6O931e/bqoqkpDbVGpVg0BWrlcFgMwtwdzTyrudDp7MfY2fuZnfoann34an8/HpcuXmJycZHFxkSeffJLLly+L8J+eBkCAdToodictVcWqKFhtAu+/uLxMuVFjP3FIvlRkdXMLWRGsxmw+T6NVZ2Nrk7HRCV6/fIlKrcra2hrFStlox1qtFi6PG6fTSSAQYHh4GLdb4NJHR8eFSpE3w1nNVhFlqKdteb1e4vE4IG5U3enYbrc5PDwkk8kYwCA9Qbyvrw/gzaF5uUyhUGB9fZ1kMmnYp10uF4FAwAg1ajQahntWx+PpbZC+jrZYLPh8PpGH0rPW6zh/HSjb/QHW6XdJQtQffPY3/vn/Yqix6vW6YQ++evUqExMTbG5uks3mDOilnutQrVaNXe/m5iY+n4+21kW2yuwd7NPVuoRDYdbX1ikUcvjcbnweD1azwJ91220+9pEnqZYqpFNpJkbGsVvtjI2OUsqX+S9f+QqrK6uMz0zz0vnznHvve7l5e5H7HjjN2MQER+YXKJTKjE1MkCsU8Ps8xGJxtrd3SCaS9PcPkEgkWVxc4trVa6gtFbWlMjI2SaPZYunOEuPjE7g9bg4PE1jMFirVGl6vh2vXrrO8tk4ynWVze58r125Qb6rcXdnE4fSws3dAOltAtinkG3XqzRaFcoX9ZJJmq01XMqHYHUiY6OuLY5NtaF2w9OAr5WJJfKg9Xk4cP47ZbGZ0eIQrV64IvqHLi9vtottt02jUDVFYq6VSrdTI5fI9MpMgXrXUNrLNhkW2ksvnMZstDA2PsLW9g9PhYKA/9haIaYnFxUXW1td49NFHWVpa5Fd/9Vd57rnn0CQTtYogSLt7EXf7+3soDgculxvF6cBmV1jd2WZ1axNPIEA6X8Tp9dLqtDlMpwhFo7h9Xkq1CharBdlkYmt7hyNH5nG6nNhsdvZ2d5FtMjtb23Q6Xe7cXeaBs2c4du9xGs0me4cHVOt1Uuks6UyGZlOl2eNfunr8yVqtBlqHWCyGSRKbtFq1Ymy8nE6XIUDS4wrL5bJhknK73TgcYvvT6XRYWVkxoK+FQoFqtWpAi3Xpsl4pWCwW45DQU73eGrNY71XOSi8H0+VyGXOKZ188zz/7le+fOv2uqBSQBDUoEAhw4sQJgzNosViMYFidFKTruPUTUF/z6JNbh8NBpVI2AK+6Hz0Y9OP1eolGo704OdF7WyQTa8t3KRdLvOf0GdwOJ3Q1um0BPvU4XbTqDf72q8/wP/7sp7hw8Q2OHjuObLUjW+2kMzlsdgdmi5X3PPiwMUA6ceIEExMTXLp0yfBq6EDWfD5PJpPpYc26PPvss+zvC16iZBEp2LV6XfTpWDCZbdQbLba299g/SFIoVsjmCqTSeaw2hUq1TrlSo1xvIMlWFKcbyWzBZlNwuTy0mm3sNgeybEOWbcTjcYPV2N/fj9Vq5bXXXmNmZsaAjtZqtbf1t/o10GPwdLGN2+1GtlmpNepoEkbcnv6++3rVglNxGEE3kUiE5557zqhWlpeXOXbsGE8//bQxKJNlG1JPRl4slBkeGqVUKtNFQsNCrdniMJ0hVyqTyRfomiQk2Uqz3cHt89LoqHR7n6tmq8XtpTtMzc5w5+4ymUyGXCGPN+AHTEgWM9VGnbm5eUqlMmtra2xvb6OqHbLZrPAhNFq0NeGdsdrsxoDb6XQa1CidSaHTlgqFgtEe6C5JwEjx0mEroVCIYDBIJBKhv7/fGAhPTk7i9/vfhmjXv4+OVwOMp7+OH/D7/fT19SHbrMg2ETRbKBUpVcooTgdur4d2551Xku+KQ8HaExMlEgkuX75sEIn0fiqZTPLGG28YJVA4HDZ2svpk9/DwELvdztbWFhOTI/gDHhrNCu12g63tdSM38c6dO6ysrPSMRVVskpnNtXXajSYH27s0e2Xu4q3bxONxjh07xun3nOVTn/oUly9fJhKJEI1G+bEf+zFCoRAf+tCHDHJQMBjk6NF7UdUOiUSKfL7IwsJRHA4XNpuC1WrHbncQDkfJFopMzszS1rpIJgs7u/s4XG72dvfJ5PK0Wm1CoQiK202xWiWRyWGxK7S6EolMnoNUFllxgcWG0xugVK4Siw8QCIQYGBqm3YV4/yCTk9NIkplmvUWzoSJbbIbzU5/HZLNZ7rnnHl5++WVUVWVmZoaBAeErGBsbw+VyMTExYYBjK5WKQdpOJBJ0ul2SqRTRaJRStWLkO3hdbs6ePYvW6ZLLvJmJeeLECSRJMuYJDz/8MD/3cz9nOCjL5TJmq0wuV2A/kcSmONhPpmh1JZptjf1UhkK1iWS14wmGqakdhienqLdaDI+NYbZaCUfD7B/u4w/6abYamGUL+weH1BpN7qyusbyyxt2VNRrtDvlyBbvi5J7jJ1DbXSrVOoVyhUq1zvrGFvWmKmC5dgdWm93gIlitVjweD4VCwVB56i7JZDIp3KKNBslk0sjm0B2S+qag3W4byVH6gaqvKmu1GgMDAxweHhrZHPq1GxkZIRwOE41GmZyc7EUiFIxcER18rOdx6nGG29vbbGxsYOulS32/17ti0NhSVQ4PD3nfhz9MZnfXsMvq4Rj1ep2hoSG2t7cZHR0lHo8b6U9//ud/ztjYGIFAgHw+Ly5WPkunozIw0E86naFcqpDOJFFsDvp7se+6WMjWC+gwSaLH0mPUnG4XNruLTm8gs76+zsLCAsfuO45abRowDJ28s7q6yuuvv04+e2gAW/ULqNN+9ciuQCBA39AI58+f59y5c2w514zIOJtiN7BtktrC4/GRyWRot9uMjIwZ2oNGo8HMzBFsNhuHhwlmZ2bY29sjFovRF4myurSMq9cj9/f3Y7KYjXmGV/Eb76Heiy4vL3PixAnKvSj5U6dOUW+baDYFTj6dTtPuNEilUmi9UBRJEuEy2Wwai81KvlQ0Yux1ebTH6cJutVLprcJkWebMmTN84xtfM/IJpqen+dznPkcoFOrh43thtV3BkizXqihOF6GQg0q5iEm2Eo700c4mCYaE/j+bySNZzBTKoiVaX19HkiTjvZscnqRer7OzvUk4FKRcKOIPBvAF/BQLOUbGxzDJFmZmZlAUha3dPQ4TCQKBEKVKhVxBPGnNZpm+mBOrbDYkyzoZS3eiCiWizyAr6UNAnZmpU6R13qiOc3O5XG/jLS4vLxuuRkVRBEm6d5hYLBa2t7eNFa9ugtO9Eel0mlqjAaUSFqsVi9XK3sEBXSAQDP5/s07/93hZzGa8Xi8XvvMdgsEgg4ODxlQVYHNzs6ce0wwBhn5q/uiP/ii3bt3i2LFjbG1toSgKFbWKz+9lbn6ar/3dBl6v8JA77CLSO5fLYzeJC9Gwgi8oIsmbmoaGiXK9jiSb+eGf+ikONoRH3R0OQKtFvidZLRezWC1wsLfF4f4209PT9EUCzEyNGU+DtbU1pqamKJVKfPvb32Z4eJjr16/TaLRYunOXvlg/V65exaEoVBtNWo0Wit1OvlhC0zo4OgqZYpl4PC6YCLt7PV17i1azyfrqGmazWZSl9QaDoTBhn8h9WJidQTZJXLtyGbPZLA6LeJQ7d5d69mbNYD0GAgHaqsrx48fJptKsra0JRBrCIdnpdLh8+TJj40O9ktnFXvXAGB42u22cbhfVeg3ZYiNfFKnO9WqN0eER2i2VaDBEo1NndnaWJz7yAT772X8tsgo6Kq+99hqbm5ukUim8Xi+zs3P4e96QYi6PCtgdLhLpDOFAEIfDQbpQQXF5Wbp7l/HxUeYmJsnnRWamRod6vYbW6RLvjxEMBrnw2hsi6i8QRO3JmovVGodXr3P/qRP0x/txe3xIiDSutfV1TBYZk7WJ2uv/TRYZtbdetHgU0Zo0m9hkUYWWu23sdisCCUsvaMdk6Ap0MtPBwYGR0qRTyovFotFW6IeZfoDotmt9ZhAKhbh06RIgSEu61dpmszE5OWmY65xOp/Ez6oY4XQb9rsex6b1RvV43AjeTySRDQ0PIskw8HueNN95AkkwGxmtnZ4elpSWcTifT09O8+uqrWK1WSqUSuWoar9fP6dP3YzbJfO/li6TTKVwOF4pZRjaZ3zKVFW1IpwtOvx+Hy8NHH3scUw9EEYyG6XQ6JNbXuHjxIgBLS0tEIhEymYwRfxbyefnQ+x9neW2dRCJBMBhkdnaWxcVFUqmUoT8fGhoiGAzyvStX6XQ6LCwc5WtfewaP243VaqFeNyNbRKpUp9NhMNZHMnHYE3C56DQbRPxBOp0OQ3HheCuVSoR8HmrNBjYgn8ngslqxAKGgn3qzgcNpp6O1aXdVEokEk5OTmBFeiuRhgqnJSc6fP8/k2Dgmk4nDw0MKVZWFhTmuXb9MNBpld3cXr9dDo9HslboCctNsizJ4YGCIQr5EX1+celWs74ZGxYpycHAQr9vDxz/+cX7nt/93Q3r7W//6t/jUpz7FmTNnuHXrVi/A1sLW5rZRiiuKQrPVIRYfwG4XAa4Ws8z21iYT41MoDhvJgyQTE2MCRrJ0g8G+OIVCgYmRYV5//XWGR8dEpdaoIyGRSCUJBvy02iq+YIBIX5RkOkU+k8XldtMX72dlZQV373BK5fI4XS7sdgfegB9Tp24EvApPSg3sogXweVyGIGph4ZhQXRaLbGxskM1mmZmZoVgsGjRr3QRVrVYN09309DQAW1tbJBIJJEliamqqNzOrGFzIjY0N6vU6/f39tNttEomEoYCV7TbCjggOl/BSeHwCQhMIBQ2Z9fd7vStmCpqmCXoQGINAPdnG5/MZ5bge0Q4YZOJAIEAsFjNKbl1GOjExZhB1dU6dPqnVraiFQgHF5WR0bIyRsVEikQj+YID19XVye3uUc3kq9RovfvclTCbw+TxUq2X8fi+ZTIpIJMTExBjb25tcuvQ6Pp+HVDLDmdPvYXZmjqHBET765I/y3kfex8jwGNFIDJtVQbbYCAZCZPI5SqUS9933gOGgEweUAIKK1V6JcrnUk6mKAZ7Dae/tuxuGE3JjbR27WSYWitCo1jD3vCRTU1PYbDYajYaRnK3H0DebTex2u7F+1FWToVBIEIo6HdbW1oTiMxrF1dsE6KsufZKtdjsoLjEE1tsHnRysNsBpV1CsorSen5/nxRdfNNK/f/d3f1cEBt+9a+QoZHJZIwNDTz6Se9Fupp613WpXjOi0XCpHLBYjHA4L92NXM7ZT9WoNxWan1vPO6INgp9NJsdAL4+1AvdVkYWHBWNFOTExw7NgxUqkUSm/qHwiEsCp2sTru8R51F+5bV4SqqhqZoKqqIssyoVDICNxJJpOAAMnoSeI6el+vhPVUaX3wqw8c9VV2Pp9nbm7O0MTAmz4K3ewUCoWMvFLd86Ov6Vutd/mh0Gm3sVkk/B4nfeEAG6vLeJx2pK5Ks1YmebCL3+M0es7NzU2Gh4eN/u/GjRtMTEwY0VyF9SK59QJyy8Ls2BThSID4cJSx2VGaUpdyW6XQ6lLvWpFrJvyOINVinWA4imQ2oXaaBIZifPeFb/C3X/oCe8u3efbLXyG1uomlrtLvCzE/Oc/Q4ASjo0f48Z/+NL/wP/8q0cEpPv6JJ4lEA8wemWRmdoK7K4t0tRb3P3CC6Zlx5uanaXcaxP0e/uknfxZaDdw2mV/5pV/EjIRVsWNzOGkBtXab3Y19WtU2c1PzBD0hhmKDjA+N8fEnP8pgLI6mtnDarMycuof11C57+TSSw4bD48VidWDBznBsnFZJ4+zxh+kPDHPm4bMcpJJ0ZRstLBw/8zD5hkpDstBWbGxlkzj6/ExPTxvCo52dHZrNJrlcznBu6mhxh9WFWZNBs2A2y3S7GqlMGqfbheyAvsEYLr+b3Z1D7DYXhXyFbtfEr/3ab1Ap19G6JoKBCH5fCI/bT6taxmqGSNBH8mAXi9Qlm9pnY2OZTOYAn8/OrVuXcLhMaDRJ5RIUyiWWVza5tbhCvWUmV2owPj3HxSs36FpklB4qPZFI0Na62BQ7JqsZk1XmW9/5Nn/ztWfI1ypMTEwQCYfJpNK0Gk2cioNoMMLsxAxOmxO11iboCTEcHyISCOJWHJi7JqROl06jjQUJta4S8PrpC0colUoGXt/j8RCPxwmHw0bg7ZUrV4TWo1XH43YQCvoEJ/Rgl3wuTaNeYX5uBokOil2mkM/QaUv0RQe4s7RKrG+Q9z36QzQbHTzuAD5vCIvZjtvlxyrZcFpdtKoqtWKdwb4h7p0/js1kN7JCvt/rXdM+6AEm6XTa2Nm6XELiqyiK4BTuJY2+S2cG6Cz8dDoNCGrSUGgQVVXZONjBHwoyNTXB9165QDw+wEj/GJFQlJA/hMPm5KFHzvHC+ZeIjwxxcHDA5Ow00ckJvv5XT5PLZGn3shss9TbZfA5fIEij1cRuFWWs2+02VnDNpngavfDCC2QyGSKRCFtbW0Z4h6IojIyM9HT2KpevXCEYDPLaa6+RzmaYnZ3l0tUrdDodYv1xwzc/OTnJrVu3OH36NNVqlZWVFUOANDAwgM/n4/qd62JXbjIJ1aMvSK0q9tXLy8u4HG6+8Y1vGFZb3bxTKBYMnT9g5HY2m02iYeEgtdktlMtFtrbT2O02Y2qu8wJNVpuB4Bc6fCEiq1aroInqb3Nzk+npaeN6njgpeJEAZrP0to2S7pjVhUGaptHf38/29ja1Wo3bt29z5MgRHE4Lw0OjFApC8zA5MWP4X0KhEHfu3Hkz79Hc4x9KoiTXeYVFtWgoCRcXFzE1VEOhiUlUbhZZZWnlOi21YwwTd/f3OH7sXubm5nj55e+SzaVFSG29jtUiU6vVsFjMhKIi3bpYFH9PIBBgb2/P2Fro16PefVOcp1vT9UAhncSkV8c2m2Ig2d663dC1DZqmGQe3rrrUE7GsVquoIMzvfOu/K8RLf/SH//6zHzj3HjY3t3AoTkySmWKhhNYVpOdGo0k2m8NiFWsaXc1YKBQMoISec1gqlWhWmhw9fi8m2czu3g5Wm5WWqiLLFhq1Fq2mSkft4vX6aNZLeIJ+AtEwJ888QKvV5Ld/61/jUBRMXY0Pf/BDqM0W5VqTwbExvIEAIxNTxAYGmJ6dxmq1UK1VabUaPP30VzjY3+XGjRsMDw8bk/zBwUEWFxdZWlpieXm5F4W3R7FUor+/X6Dse8DNkbFRFEVhfWNdQDs9gi40Pj5uyGLHxsaoVqtEIhFjIt0F9vcPGBkZoVyqEvAFaTQaeN1eTpw4QbVS5tSp+7hy5QpDo/2EAiEiwSixaB9SF4IBP/Vqlf3dHVwOB9VymbGRKcxmE1evXsZkkgyyUCAQpNVUaTaFb7+ptnuo8zfnQ2KA5uFHPvwR/uIvvojVasNqs/OFL3yBsbExfuEzn+Zzn/scwWCAcFjs6Vtqk/2DffoikbcF7OrtTjAYZH5+3ijLO73DKxYTaLuhIYEfAwgEhZHN43Hh8/oJRyLs7OxQyBdwOh34vSKyHg0qlQqNRpOhoWFq9RqZXIH17U2y+Tz5Uhm106bT1fjJn/5pvvX8twhEQizMTuFyu1hZXaPVrOP3eelqXdA0FIcCmnhoub1ew9z31rZMzyk5ffq0eKglU2QyWSQkZNmK1WqjkC9gkkysr2/QqDeQZStul5v1jW1DR/LWdiOfzxOJRIw1p77d0TH0eoBzJBLhr7/2LL/0y7/8fcVL74pKQdM03D4v8UGhT1AcDkyyhZ39Pfr6+rDYrFQbdZxWq1Eh6CenPmXV34RgMIhdUshk0qiqSDCKRCKsr6+jaTAUH0NRxNOuUMrT7ISIRSIEQ2GajSZul4eQP0ghm2eof4B0IoVJk+gbEuiziZlZzGYJb8BPPpfD7nTwvdeeE4Rmh4iGP3nypBHH9v73v9/gTDocQsBTKpWo1Rp0ul0uXrxIKBQyJLcmWVwSi0UM8UanB2i1WmxsbxEKhag1G7S1LleuXyNXLDA0NERb63JwcMDQ0BAH+wkxoFO7nDhxgksXL5FMpohEIly69DpHjy4wPDDI9773KhIyo6NjdDoa1VIZqasRDYUpFvOEQgFWVlbodoV7NZ/PoqEaq7FQKEw2K3T2XcmExWzGKst02sIINjQwSLVSotvuYJZMlMolFKebYMiPyQxPPfUU0O2p+pzUGzUjWVkXpO3v7xuAUrfbbWj733jjDT7xiU+Qz6e5ffs2fX0DxPoEpWh4aBTJpJFOp7BarQwP92M2m0mmRGK3bBahOqbeASZJprcZ2FZXBVQnmUyiIaFpEm6bFYdk4pmvP8PZBx+k0Wxy5cpVBgZEnoZDsbG1sYLT6cDpEBVkSzVh7wUJ22w2o6rqdrt4vV6y2SzBYJBms8nAwADbmxsG5FZXIZpMJkMXoudDvlXarAfadrtdQ/XY6XQMY1Q6nTboXIqi0N8vhqeKotDutN/xfnxXHAr6BmF1dZXBwUHjHzI0NISmafT19YkPSkN9W1afLpl1u92cOnWKnZ0dnE4nQ7Fhsc/3OFHsVuoHFR48e5pkIs3tW3fJ5fL43EHKtSqNZonHnvywoYG/ePEiI8PDVMsV3nP/aXa3t5E6XdzhCIODg3Q7beGFT6dYXVmmWMxz/wMnqZXFAHRocJQvf/nLxCJRPvwLn+FrX/sah4eHXHjlVYaHh6kUSwwNDWG22uj2gkmXlpYIR8WTzBsQXMZWW3gKkslkz7Irk0gksNvFoCsejxsy2aWlJfz+IEtLy9x79DjXrt3g1/7Fr/Lss88SDUWZmBinXCpxZG5WBMEGQnz8iSe58NolGqVKT7kn2q+h4X4KqRSS2sFkN5FOZxkaGqJQyOF0ulDVFvl8gQfun2R62sLt27eRLOKp1e1igF1yuSzz8wtoCLJxJBLBapMZjPdjsVg43NvFaVeolAo0akIIJXU79IVDZDMZ/H6/sa7TU7B1O/iTTz7Jt771LT784Q8RiWSMNd2tm0uGMa5aKxGLR9nc3DaEWH3ROBJQrZYpZHPIspmO1sblclOv1/m7Z74GNrGqbrYErblWb3KYTTM8LD5TxWqFRqNBULGTTGcYGuinWi3jcHnw+jxYLWZMZpm+vvjbDrhUKoXL5TJ0K2azmVwuRzabxeVykU6JwNpyudqDrLiNGc74uEC7pVIpul2hiAyFQuTzeRYWFgiHw+zv7xstm67wtVqthqlQH8LHYjEODw+xyu8sXnpXtA9/8G9//7OPP3wGxeGgv3+AfKHA1NQ0xVKJbC6Hojgolcp4PKI6cLvdximoT1dDoZDR26ezGQ6Th5w6JcQ44aAfl8NNR+2QSmfxBwLIVivvffx9LJy4l3yxhMlkZmdrm/3dffoifaiNlmhhOhrTUzMMHz2CqrZZWlykpaqkUgkikTA+n5drly/j8XhYXLxFvdbk3Llz/N0zz7B4+zZ3l5fZ2triJ3/iJ7h58yYSoqctlMqGWUuSJGq9wJr+wQGhj6+Ip+bCkTmk3vop2tdHsVQy3HZ6rqTabqOqGqFgBNkiBEXNXpLxzvYWnW6beKyPSqVMs9nA5/Pw10//NW21Q9AfZO7IHB63m6XFJaamJohGwty8eR2H20+9XsNkglqtyt7eTi/Ny0elXKVcruB2u+mP9XG4v4/H5aZcLIKm4XG7mJs9QjwWY2tzA6ts4QMf+ADFQoF/8plf4PLl19G6HdwuJ8PDA6yu3OX4vfdSLhVoNJrMzMwAGFFpbrebS5cuceTIEZaXl1EUBZvNyubmNi6nB7PZQqOuEg5H6HY1oIvfJ7B5icQhVpuDcrnChz74AdLpDLLZzIkTJ8nnstRqdQqFPDarjVq3QxcwyzKYzJjMZoLhEJgkOloXVW0gmTTUegvZIlOpVjnznrNYzGbKpRKyTcbn8dFSVbp0DYmy2+2mhyTpugAAIABJREFUWq3S7XaFXwJxcx89epSBgQGKBZEHortXdSCLfhPr/MVCoYDZYjVEfbpKUudvejzCyLW/v0+5XDYozs1mE6fTyfj4OE6nk68++xy/9M++f/vwrtg+IEkEwxEyuTzJdIZcocjm9g6ZXJ7xySmaapu9g0ODlJvNCpGKPvRJJpPcvn2b3d1dw7UXiUS4du0arVZDRJG7nQQCPoJBPysrKzzyvkd58cUXMPXSenQY64kTJ7BbrUxOTvLGG2/w4PseJRiPsbchnmzWHgm63W5zcHDA2NgYI+NjjI6O8sgjjzI8PMx3v/tdw849OTmJ0+nk+eefByAWi/Hwww+LhOoeGEMfBnm9XiHYKRYNFWSukMcsW+iikcll0SRhIa43G9QadRqtJk21ZaC/Dg+TnD37INls3gBr6E8Om02m1Wrw6quvGrOMVqvF4aHwXUxOTtJut4nFYkZe5EMPPUQqlcLj8RhJ1uKGtBGNRo0VrziQO711ZafXcuS5efMmmibK29OnTzM4OMj3XjnP0NAQfr+faDRqxLFfuXKJra0tIpEIV69eNVB8mUyGvb09PvKRj7C0tMTMzAznzp3j/PnvMTIywszMLLVqw3AeBgIBHIoLj0fYlI8fP2kATq9dvUEkEmFgYIitrS1y2R6JSDLTaAi9SrujGSg0HVNnRsNmMeOw2XEpwsugdtrkiyWuXr3K6uoqUzPTtNUOO/t7gmFZbxkrSX2dWKlUDDSaoiiGRN9mU7DbHVitdoLBMHa7A5fLg6I4CQbDKIoTMBEIhAy0njBcOSmVRCJ4Lpdja2sLk8nEcC8bIxaLGRRp3Wnpcrl+YEKUpP2AL/73eh1bOKJ98+kv8NprrzE3NyegoZEI6XSa9fV1jhw5gqIoJA4OGR8fJ51Os729zQMPPMDi4iI7OzsMDw9zeHhIp9PhQ0/8CMnDQ1793suEw2HQusTj/XQ1M8urW/yb/+PzxAaHOThM4vMFeP/7HiOfyWLFxOz0DPefPCXKVq+btY11IUd1e3n11VeZnJxEVZvce+I47Xab3YN9bDZx0S9cuEBie5eBgQG+9KUvMTk5iSRJBAIBtra2BAuy57voyjKjY2O0Wi0h6241OTg4wB8KAuLGN5vN+JxuwyJut9uNQFKdiKzLY8slkdFw/Ni9ZDIZGvUahUKOe+bnqdUqOOwKSCJzsNlq0WyqPPieR9jc3EJRnGxtbYhJP23q9SomE2gWF7dv3yQY8rG2toLarqOqLebnF9jc2EaWBSFLQj/YxFxnZ3uPmZkZWq12T38hDscf/vCPUK1W+fVf/3VUtdWD1Epcu3aFubk50uk0/f0xMvmSYYnXNw96EK7+lB0bG8PtdlMuVUmnMyh2JyBs9+l0mqmpMZbvLjE6OsLlK28wNDzG448/zn/6sz/j1KlT3LpxTYTnFvLIsiwYB40aak+DoXV6wzqtI2z7ahNFTzFvt3E6fGidLmaLhKLYGOiPA106ap16tUY4EkJRbFgtJmZnZ/H5fIaGQJ+R6FSlSqVCJBSlXC5zcHBgAFOcTicbGxuG9XlxcVFI8+0O7r33XoaGhtjf3yeREOwNs9lsVNL5fL6Hnq8aYJjh4WEDy/aZX/9Nbi0tf1+x87uiUtA0WF1ZZ3JiGrfLS7OhkkpmqNeaxPr6CQbCVMo1Fo4eNaas/f397O3tGVBNXZji9/u5ePEiX/rylxkZGcHpUDBpkM9kaTXq5PNZFhYWWF1fY3x8nPn5eVKHCfLZHE5FODKz2SyrG+uY/D5qjQZDY6P816e/wsLsFM1qCa/bTTadYXt7G4fNTjw2xOFBmjcuXTOi2+bn54lEIoyMjLC+vk6tJqLLh4eHmZ2dZWJiwrCJ68IUPRfQarUyMjJCIBAgGo0iy7KBm9OHVrrQqFgskkqleM97HsJiEYGtLpeLvr4+IwpvcnKSvf0dY8hUbdRJ57KkshmSmTSZXA63z8t+4hCzLNOVQDMJZsXCwgLLy8uMjIwQi8UYGxtje3ubcDhsRPSpqorUS+KSZdkofXWXq90uoK5PPfUUX/ziFw1/iY7vn5qaIplMMjk5zv3332+ARvQMhJ2dHSwWC6urqxQKBVRVFR6BjLih1ZYA9eorvOHhYa5cuYKEmd3dXYaHRnE6nfze7/0eH//4J1heXmbuyEKvOvMb0QAmk/gc6WG8jVpNPIUVB16XG6/bg8vhxG6TeylUYDKLRKhSqcTIyAiTk9PEB/p7a3MM/Fk+nzeurdPpNKoHWZbx+/34fUGGh0bx+4LYbQ7aaheX04PNqtBpa6CZcDk9eD1+I3TZZDIZIUFer/fNIOZe/oNe2XV7yWhvXVF2f4BL8l0xU/h3//b3P/uJJz9MXyyGy+2m1VYJRcJIJhOr62tcv3EDn99P3/gYG3fuEA6HjQ/T+vq6YQXW33CT1UxLbWK3yszPzdFpqdy6dZt6o0lXEqaZUKSPw3SCB06e4ebVG9TKVdFTlqscO3GCI2ce4NqFCwyMjvCN577FI8fvxWYxo3U6HOztYrFYqdWbTNyzwHdeeIl6o8nP/+I/QeplNei8xHa7jcvlwmaz0dfXRyAQ4ODgAKvDQVfTDEGNXVGEVdvrFRSqXFY8lTodgqEQqXQayWSi0WxiMptRO22q9RqdbheT2cyVS9eZmZkhcZjE6/Xg9/k4ODjEbNLY29vh4YcewmyWaDYbxAYHeeKJj3Dr9iLz8wssLi3xI0/8CCurq3TpABrLd+9w+vRDfOlLf8Ho6DDBYIBGU+zeBwYGqJSrlEplstksEh0atQZej5u22uolYCep1arIFivxWIzpqUn29g9IJhOG8MlkhnA4SKvVYmpqgt3dXdLpNIpD6BNu377N448/TrVaJZ/PG6CcU6dOcf78eUZGRrl9+za2XtDu5ctXONg/JJvN8EM/9EO4XE6GhgTePh4fxOFw4lDshEJBquUKnW6b8bFxJAnDityRzEiA1AXZasGjOHC5FCRNo1Iu0qxW0TpdOpoFm83aSwaz09U65HNZEocHVCpluprYmkxNjhvbJd08VS6XDby7Dmfd2d57G++gXBZYP6X3uahUKgwMDBAIBGg0GwZBTPgrNAYHB8nlcgaXMR6PG+2jJElMTk6KyqhUwmw281+/+Ty/+A4zhXfF9gENw5Ou76Cj0SiZTIbh4WEjRHUwJnpGWZapVqvs7e0ZVCVVVbFYLAQCAeqdJo899hgbvVJ9Z2eHe+65h5u3l+iabZw5c4bf/3d/SLVR58aNGyQSCXxuD/FoH1NTU6J1Wd/k2rVrKF43bp+XSDhILl/k1o0bPPmxj1Go1Ak7HNAUUFWXy8W3n30RuV0lGo3yl3/5l4a33ePxUC6XuXFD9LOKotB+SxyY2Wym3mwYNnG73Y7b6zHWkpFIBJvNxvDwMHt7e3Q6HWPzommCMHXkyDxXrlzh/Y89zvLyEjarwNNPTo4BIoFIV9Z97Md/nOe+9QLVatX4sF67dk2U5lKHZFLExT/33HM89NBDtDtNw925s7ONz+fvYcdHuHDhgjhsGi0j0EXPLCwWiz0I7h7lcpm1zS2sViuVSoVA0GfYpG02G/v7+wbC/OTJk9y8eRO/388rr7xivEd6y/Tiiy8yNzfH4uIiTqcTv9/P0aP3MjY2wdLiHcqVEslkkuXlJcKRAG6323DYCqm0mf39fTLZFLLZQqUiID3xeJygWVQLtXIJi1nCabfRabeoVSs0qxU6Jk3Me8xCoShmW1Zk2YRit+PzuQgH/b0tQM2YGemCLJ3epM8WALxeL9sbe8b7pStF9fxI3fnYbrfZ3983Phu6vFmWZSMsWK8gdQjt7u4uo6Oj5PN5I3+iXq//QEPU3ztTkCTpPwI/DKQ0TZvv/d5ngZ8H0r0/9q80TXu297XfAP4noAP8kqZpz/19Z8LCkWnt6//5KbFWunULVVUNpkI0GmVxcRFN0ygVygZsRd/J6oq1vb09Tp8+Tb1eJ5FK0u12uXnzJrOzs4ZWvVAoGDbWmzdvoqoqV29v8cRHfpRMJsfZsw/i83i5ceUylUKesNfN5MgQ95w6RbtY4vUrV2l027S6Xaqqyoc/+jG+853v8thj7+fOnTtcv34dv9vF1NQUmiRx7doNnG4XaBKr62v4fAG+893vCq97R3gGvH4f127eQDKZsNllknsH2KxWIn4/dpuNZKmK1yfQdHbZysBAnN2dLaGvd4iniCjXMRiQ5XLZ2FVHo1HOnj3L2toaPp+PjY0N0okiVqsVu93KsWPHxHTf4+Kll17C7Xbz7W8/z0MPPUT6MGHo9qvVMorLSSKREG1Op2V4SaqVvHHAhcJREokETrebzZ1tAn6xP9ckmJua5/btm5hMgNQxhnnNRpehgVHCoTiZdJ5EclX4GGRFwEBMFtROF18wwNVr1/D5fMQHYrSKOaKRGHc2NnE4vewcJnH7vLQaNc7ef4JKuQBqTfwdXXGztxpNdre3GRsb42BvH6tZeCUURaFeq2GxS4ZgSh+WFgoF433W3Zs+t+tNu3JHpb+/n1APftJRmwadeWg4Rj6fF1ua/n7Dsq7ng5rNAqFfKecNTmd/f79BS1JVlVKphM/nw+VyiTWtx4HFLA4CEOa14eFRJEmirYq2wO12c5hM9hKqBQ/j/PmXKJVzqKrK55/6MmubO993pvCPjaIH+H1N0/7Pt/6GJElHgB8D5oA48G1JkqY0TXtnIBxgMQsjR6lUIhqNGjgpnUnn8/mMQYrdbieTyTA+Pt5TojUYHx+n3W5z8+ZNLBYLuz3RUywWo9FokE6LPXM0GqXZbDI5Ocng4CBLS0ts7GQpFnLEYlHq9SqlQp5SqcTs7AyPPPwQL379GdaXlljf2CJXyBMbGSKVSPDRT/wPXHn9DZL7e/zB5z/P4OAghxvbNEJeIpEQ3S4E/V7yRZE0dObsewiFQiQSB+TzRbpdiXgkbMA5KrUy4cgwa7VVJEmiXK1RLJapdTWOHj1Kt6PxxsULyLLM4OAw+XwWkwbhsGiZ+vsHWV9fp1QSxGkQ/ezBwYFhrvrgBz/I8ePH+fIX/4pEIoE5EGBjfb33ZyXe/9jjvPjii8wfWWBjbZMjM1Pk8/meuEfqZXaa2NnZMiC4arNFp6Viki3k83k6HRFqQlfDLluJBENs7e7Q6XT4zvPfxu0R1GSNNqFwmEajwdjsOMlkmu3rV+jri+P2KphljXZHPE1rdfHUy6Y26dQzdGwtknslLGqXO7ev4faFqVWKhAMBMIPL4SWRTuBU7Lz48isE/T5kq5N4PE4sFuPcQw9x4YJ4L4cHh8QB4PawsbHB+PgoHo/HkM3rZPHt7e2e6EwM7Er5nPG01TmKjUZDbBYkzchv0MOARbBuxdj2TE9P4/V6BVC3VKJUzLK1tUWz2SSRSBhqRb366nQ6RnucSiVBk3pSZ/B4PMLT0W7jcQsMnNlsJpPJoGliuLy+vso9R+dZWlrCbP4BMIV/yKHwDlH07/R6AviKpmlNYFOSpDXgPkTC1Du+zGaTMZyq1WpGhqJ+iuq9lq5ilCTJcJrpKb16KaZjsmdmZrh69SqVSoUf/+mfZmttjc3NTex2O5VKhVdeeYV2u82tW7c4Mr/A9tYG/bEBrl69ylC8n9XVVcJeN7LFxvDoCFaXi8uXL1OuVjgyN0cul2NosJ9cJktfIMT29i6zU5OMTI+wviYMW0okhNVu58knn2B5ZRWrTeaRh8+xtbNNq1njG998lnypSKgvSqGU5+rVq9x7770oVhvrd1do1OqoZgHTOHfuHKVC3hgaeb1+ZJOIFtMdi3quQl9fnzGACofDgMCSraysiHJWA7/Hi8NmZ6hfxJUNDg5w8eJFTvZo1fVKlXyxjMVqB0lDcTppV9rE43Hu3r3Tq7yEWcqEk06nQ7UhYtmV3kBL143orV2zWsGt2OlqXRSXQjgUIpkS8XabO7todKjUykQCAqK6u7tLJpNBtppxKg7UTgPFasEideg2qmCSObZwhEvXb3Lv8ftI5IvEBwfpYmJ4eIhkKsGP/8RPoCgKq8urrK2t0VZbJA8FC6KvL0pff4zdrW0cLgfNVsPYbnQ6HQOKopOYdQFQt9s1HJ1vnRNonY6oXjvCgaivHIvFIh6Px0C69/f34/P5jOAe3VWptwi6W7bbc8sWi0WDsah/fiPhKMFgkMPDZM9nYTV+Fh3wYzabMJksZDIZkslDRseGe0Nhcdi80+sftJLsHQpf/2/ah58FSsBl4F9ompaXJOnfAxc1TftS78/9GfBNTdP++gd9/6NzM9rffuH/xmazGYYZPehCN+jcuXOH0WEx+Z6bm+Pw8BCXy9ULJOkJf/r7KRQKpLMZQ+sdjUaZPXEC6nXUVovV1VWKxSIgpKIm2cV/+LM/54EzZ9nZEd6BkNfPwtwca3eXmJ+colgscljIsra2xqOPvY+m2haWWquNxOEhAaePbCqNbLHQNz5IMBTiuedewOVysXjnLmbZQigUYe/ggPFxQS1WHDJmi4WT951CM1u4fWeJl1/5HuViBY/Hg9NqRzaZKTaEcKevL0Ly8BBJkuiLRKhUS3RaKpKk4XQ6WVpaYmhoiJWVFUPAEggEWFtbM9Zoc3NzjIyM4LMLk823vvUtRkZGGBgY4OqVa3i9XuHDl2VmZo6QyKXY2toiFAxgMkGzJcQy2VSSQNBHuSyCaLRum2oPTGqxWDHJFvpiQl3n9vjY29vDZrPRLtSwKWI45/K68Pp9tNHY2d3HYrMTCIY5ODggdbCLx+0mlUpgkrpEQgEkrYsJMPWQQWbJRKfbolprMDM/z87ePidPP8jW3j6K28fVm7c4feYMVqsNWZa5e+0Gg4ODbG0JaM7m5iYWk9kQ9ug3pU2WjPCdYDBINps1Dl19M1Wv17FZzAZ2brA/htfrxdxb/ZUKOUDMCkJhL1NTU4yPjxths6FQCFVVOXLkCCsrK2INaTP32JSysbFwuVwUi0WKxaIxO5EkiWP3LvDC89/uZVM6yWQyxONiCJlJ54yE6f3DPdLptDHHUttNI5Lu53/lN1m8u/qPbh++3+uPgN9BBFr/DvB54FP8v4iilyTp08CnAWLRMPm8KNuPHDliZEjqrIDhkRFjX1sulwmHw4brUI9ir9fr5PN5mk3hdygWi4yOjrK/v8+rL7xANBolnU4zMDBAt9tlZWWFcDhMKnHA+vqquEjzR/H5fJw8dYqLr11ArZXZ2t2h1WqxtLLMqfvvo1SpIMtiZeaw2sgkU9SrZYb645w8cYKsWuVP//RP0TRoNGr0x6LYHApLd+4yPj7OztYGicQBjVqF0ckJLl68yOjUBE888QSzc0d46k/+A7LFQlNVaXSadDTo6+vj7t27+L2CRLW/vy+08WhkMlmsViuKojA2NobNJhyLly9fZnd315DU6v2oqqo8evYcW1tbWK0CBKpLxc1mM/fd9wBXrlzB4/EQ7hfuRpPFbKQeX7hwAZssUSmVkIByuSCemr2VJCC0FFWxgq1WKkaKVcjuQjZbMMsiqq9ea+Jwi8GyZpLYP9hGUZxoHROdtiSyIenSbKhYzRqybMVikumqbWw2BcXhpK/PhlmC8dERtrfWaTRUCqUK586dY/nuXSKxGHfv3iXuFolg7XaLO3cWBWG5WqXZqqOhEYmG8Pv93F1aNFgPeiaj3h7oSsNarYbVbDLYDHrb0FFVI6FLh7UCJJNJwuGwcS1u376N1+sFhHtScBCkN41evSollUoZzsh6vW4crktLS9Tr9V41kTYOGZ/PR6oX0KPLnGOxGA6n2Dr09fUZjJEflBD1j6oU3ulrvSEjmqb9Xu9rzwGf1TTtB7YP0+Mj2p9+/rcZHBwUFFpZ5vz58zidTqampoxQUrqS4ZK8desWQ0NDhg8iEAhw/vx5sYIxmxgfH8fr9fLSSy8Z4her1cr09DQej8cQw9TrTb7+zee5fv02P/zER6lW69hlO6dOnOSN117FabPi83mJDQ0imYQQJZVNY5Nlrl++SqVY4qd+8ifZXVmFdoer68tileRysrO9R6utIstW9vYPKZfLqN0Ofl+Qza1V2kjUmw1agE1RePCh93L16jW++MUv8hv/8l9xsLvH3mGCM2fO8PLLL2NG9OsBvxe/34cZQV1yuhSaTRFBVigUjPdVb8VCoRD1ep1oNEqlUmFhepZTp05x5co1PG4fu7u7TExMUq3WuX7tJufOnaNeryM7FeYXjvCFL/xHGvUaw0NxRoeGWb5zi43NVaSuhsvloFKpiX24BM2GimQ2iSe0zYbPFyCZTlGv1wk6RPJ3uVylg7C9x/v7yRVzpDJprFYZr88NbSc+nxeny0atkicY8NFuNpAAMzYsZituh5eqmmRkZIS9fRFcs59MMb9wlO+88iqlhorD7ePG4iLHj58kvbVBJpN5281RrlREBdNuG65DqdM2cjj0G1cPsNF6K2SbzUa1VDQYl32RELVajWw6TbVaxWLCCJSZnBoxWI2BQABN03j88cf54z/+Y4LBIHNzc+LvsJqIx+Ps7grxG2AAbo4fPy4+O6oqfk6Pg3yu0DuwPL1rLqTwDsXFyZMnuX37Nmq31gPeYAjBAn5hB/jIz3yaqzdu/f9XKUiSFHtLxPyTwO3e//8d8GVJkv4vxKBxEnjj7/t+mqYRjUYxm81sbwsM19mzZ41TWF+7RWIDuBoN8YTv8fz01U4qleL48eP09fWxub1lVBl+vx+Hw8H09DSVSsV4IuqDn1AoQDQcIhwOUsznqTdVAgMBnnrqKd7/6Htp1KscPXqMlfU1ZFvPRNLtcvfuXRSHjQ8+/jH+05/8EV63m6mJSSbHx0ikklgsVpKyEM843S4cig2bTSaRSLGyvITNYcPVYxPYrVZMZjOXLl2iVKnw0Y9+lGe//jW++tVvsLu7y/PPP8+pU6fIZ9Lk83kUxcbOzi7O3hpN0IVLxr9NVYWbUYfK6rMGfRW1tr3OxOwkIxOj7Ozska+UWNnY5IknnqBcb3Dt1m2OHz9OIptkc3tX4L3MFpoNlU5HRVHsSF2NbreNbLFgNovS1yLLdGXo9IZbojRvGZBStdvBJIv/Wm0KGiaWlpYZGR1gamyMrtYCk4mxkQW6Whu304Zs7adcLGCWXKhqG60to9idBH19yI5wj1cRF9DaaJS7y0tEQiFaqSx22cL46BgmJMqFPHTaeL1uWq0GZrOEbDXT6aoUyiLAOO6LEw+G31aNwpscxHq9bnAkTJogjauqanAeQoGAANpqYrbQ6XQMi7vubnS5XEYocLfbRVVVscb1udjb2zMqXr1S8fv9mEziIbe3t2d8D6fDRSaTIRaLiXmGJhk/q05v7tAw1p8Au7u7tJpi9tZsNt/5/v4HrCT/EjgHhIAk8L/1fn0M0RpsAb+gHxKSJP2viFaiDfyypmnf/PsOhYmRQe3f/OavGLiver2OoigsLy/zyU9+kvX1dRHG2ZWMXbXeZ01MTLC4uGhAJDRNwx8MGGVWIpEQISejo2xsbHD06FGcTiexWIxCocD1a1eoN9oUS1W++J//C2MTkwwPDIvdsEXGYpZwO13Ew1ExwFyY4/LlS4xNjPLG6xeg0+WRs2dJJhL43G6uLy1icyi0muLpU2+2SKVS7B0khD/BbmN3d49ao0apUgGLpVcpOHjg7MPcWlykWChjtyr09cX5zKd/gfvvX+Azn/nnLN66wZkzZ7hnfo4//pM/ROpqTE1Ncu3aNXx+lzHQs/Ys5oCRYahTfyORCJKsMTN9hFarjSzbuHVzEQkL8/P3YDbLIvZecVKpiw2QiQ52q4XLr1+gUSsxMz1Bs1aiXq9SKZVxOL2onXaPXt2i1mhgs9npHxzg8CAJZqGi8wTcdNtdTCYLrYZKV+0yNNBPwOdiaDCO221jZ2eLpqaitpvcf/9JHn3fgyJdqViiXlP53vnLrK5sUa10GRgYYHCwH5fdhtOpsLsjBsmJTJZcpcrdlTXKTQE8DThEcJBZtlCuCW2G8JQIMI9ZFlGEg6GouMFDIePprmMBdft7sVjE1cOypdNpKqUCbrcbp6IIcZAkWlun04nLbWNwcBCfz8fp06ffJlC6efMmtVpNIPOsb6LdC4XC24xfJ0+eJBwOc+HCBaFU9TpZWrzD5OQkmiYO/FQqQyqV4tH3PiYgv/v72J2m3kBUtI97ewcU8iVMJhP/9F9+lqWV7z9TeFd4H2YmxrS//JPP02yKVGF9s+DxeMjlckiSJKK8HW5UVTUQ3kePHuVv/uZv+MQnPsHGxgalUon5+XlKFREso1tJt7a2GBsbY2VlxbAi6/vglaXbmKx28oUKf/XXz2Cy2OjvH2Rve4f3PvIIz/7dM4yNjXHP+Cx2uxVJtjAwNMDNpZuMjAyRThwyP3eE5MEhit1Ot7dG9Xi8HCQTKHYnuUKey5evkisWKORFqEq9WaPR7oBJoqy2aXc1PP4w991/ho2NDVRVo1wsIfXIRZ/85CdZvHWDdDrNxtoqd+/eFe5Pl4tCoYDDKQNvkpMajQaqqhIMBtne3jYw4sFgkGC/cNv19cWRLQrz8/dQLtVIp7MMD43y4IMP8dWvPsPx48d46cVv0203CQV8lAs58tkkVjNUKwUsJolsLoPF4hD5iiZxKJgsFpT/h7k3j7HsTM/7fme7+75X3drXruqu6m6S3RxuPRzbw5nRSNHi8SjeHUuIYdkeCAgEyXaQCIhtyQakRLKFOPIYiTRRZFmakUajmdGIbFLchks3m72wu/auveru+3buPUv++O49khJJCWIj4AUIEmywq1n31nfe73mf5/d4fciqgtvlRVIV6vU6TaNJMpnG7wnill0E/SHS0QjzM5Pkz0+Q7R5PP32NxReXwDTpVs6xZBNFU9EHFrbt4vS0xuFBjrffvs9s9jLTU1PkTw9JxcPsbT8SSPh2i/uPNlE9XrZ29hlYFpgdYrEYuXyeUrWCruvMzs/R7nXR+31CoRDReIzGeRld14nHBRw3k8nQaDRbfebVAAAgAElEQVQAEWYb8QpcikyhUBDAn06LcrmMjBCvvW5h9fZ6vWguHILUiHswMSFclnNzc3zuc5/j4cOHuF2y0+1ZKBRIJpPOxFetCjv3yJcTT0Qo5IssLi5ydHSCZVmk02Ok02nOTnPU63UqlQora7O0mh0KhQJjY+MYhkXuvIBp2vyTn/l5Nnf3/tRD4WNhc/6lf/OLP/3F7/+c4/oKBsVKKp1OO803uVyOZqPJxYsXuXPnDl6vl60tId51u11qtRqLi4sUi0UurFwgFouxubmJqqrU63VOTk5IpVL0ej1nIjk/P6eYzzE7v0Cr1eGt777LwDQ4OjphbnaWfC7H5bVLdDodarkSLrcLC+jpPWRVRpIgGotSq1RoNhp4PC62t3ecuGwoGCSZSuNyuzBNi8zYGNgSH3zwAZpLxR8MgQSBYAjV7UYfmIQjUU5Pz8lkxqhVa4SCguv367/+63zhL/8Qzz33HL/9ta+JFqlhtt/n8zEY9BzY7Si1ONIRKhWhho/uxbOLc0PmQRVNczM/v0Cj3qTZbHHp0hqPHz8ml8vjcmmcnZ6QTqWRJRvJtqhWSujdDpYlcPSmZdLrCUqSqqmAhM/vR5ZlenqPYCAEsiSgrkE3tmmDLbF64RJ+n494JMKje/doNur8zb/2w4yvr9Ipb8Oghzvmx+WRURQb3TAxzQG27MEfCNEfWGw8OKJcrpCKR3nn3XeQsWg3mvQHA6KJOOVSlezkNMV8nvFMkmgsyuO9PaSh3wUJ2p0OHq9X6AimQeE0h67rjnjdbredcpVKRXgTer0eiiwJoKymEQoGaLfbuIfofFnCyU+AuEKM+KGj+vpRF+fe3h5nZ2fUaxXHGTtCt6mqSqUitgkjyEo4HCYUDuL3+cnn81iWoJJvbGwOSUtJTk5OxDq036JQyKNpgj0yNzc/5DYEufnmO/z9f/APPr42Z1FBpnB0dMiNGzfY3Nyk220TDsPJiUBIra2tcX5+TrPdYnp2hieeeIIHDx44d2p7B+LJBLFE3Gngefz4MUdHR+RyOf7KX/krvP3220xMTLCyssL774segKPTU84KJWZnZ3n+mad45513CPk9FAonNFsdNLdCo91E1Q2CnTBzY3Hu3LlNMBJkff2S8AN0WiiqwsL6Go8+OiAVn2TpwhIHx0d84/d+n1gyQaPT5vD4CG/Az+KlZdqmB08kwuneHoupaVYmJykWi2zcvYvX6yUTDSIP0sheL9/6g99jZmaGf/Yv/zmmafLijU/y4z/+4/zSL/5r7t69S6VS4fqTlxkMBpSLJcbSGVRF4vCwR+74gHQsTLNeJxT00e222b23gc8fJOD1Ew/F2NncJlcocf3pZ3jju2+RnZxidnmeD997ky9+8YdJxFOkUhlef/U1en2J/qDD9s4GyeksbVnDq/RQvV5sy0JSIBaOYpgDJNPE7AnXXsSt0tTbeDUfab+fkOzC7Pe5srTA01eyZGdiNLpbYBTwhNzItsmg1kZzhZFkN2GfDJJFNNLGwkDxhqBaZm/7Pju5R0wFIxh9C8XvZbuc56xWFkUsnQqRpI+TfAXzrEg0mRnSigxqtQpe1YVqW+SOj2g0GrhdorUqOlyHd3WdeCqJiY2kKvRNA1O36Zw1mZqaolwuYiKRSMTpdrs0mjUqzSaaLA3BM5ozzUWjUcePM7rqjQ6LSDRJNBoFYDw7TblSF1dYb5BcvsjJqXDpxmKiwKarN5mcFlu5k7NTZudnWFxe4Pbt22gemYHRo3w8zEaEFCKhGDIST1y9PCSG/9nkpY/FpPDv/u2//env/fSLTsZ8tKcdrddUVRgw1tfXCYVCnJ+fOzDQCxcuOH2Toz3v/fv3aQxhJHNzcywtLZHL5Zibm+Pk5ESg3b1eDg8PqddrhELhYUmGaEwuV2ooiophmEOxTuGZYZx6Z3cbv99PqVJC13uAKBUdIeFM3SYYCvLyzZuc5/PsHTymVCnTNwwKpTKn5+dUKmV0Q/4TBh/RKynurPl8fthlOABFodFoMDk5SW3Y6/i5z36WL3/5y/ydv/23RTmpqnF8fCCeQENRr9cV/ZXVilhZSuBkJjS3h57eR9VcBIIhgqEQSDKJZIrDoyMCfj+X1tZoNSrsPX6MMTB5/HifUqEoCnos8dQuFvPYlolliESkEB1lNFVF1VQG/T6KIjtCpKRKBL1+QoEwyWiEcinPU0+vM/nECkrAi2x1MS0bW5FRNDeWYSFZMpJLAySwbPS+gWkrDEyFwpGIB3eqbdLJNH3TxpZl2pZBriQQdKptYw9M1q88xerqKvG48G40GnVsWwCDDVOIfe12G5fL4zQwybLs1M6PNIXRk94aTgm1moDKVIcBtlarKfQcWVDKZUVyVptut9tBv48szaM4840bN8hms464WK1WCQQCSJJEpVJxvraqqqTSomV9BL5dX193QCu2bXPt2jW2t7eZGDIzRgyMkRVdkiR+5Te+yj/4h1/6+E4KsiJElk984hO89tprfOELX3DwY+12m2w2SygU4sGDB2QyGV789Kd54+ZN1tfX2d7eplAoUCqVePLJJ5046ugNaDabgiEw3B3ncjlM02R9fZ10Os3hwWPCEdH1MOpBGNV0pdJjQ7NHgEBYqMXXn/kErVYLc1tEeqvVKpYt7pntVguNIEdn5+RKZe5/9IAf/Ms/xHu3b1Gv1plZWKLWqIs7bCTt2GRH+YJut0ulUuHixYvkcjlKpRJer5cbN25wdHjI6uoqRweH3Lx5k0a1xj//H/4ZLpeLH/uxH+Nn/sVPMz4+zrkueAszMzPD8hPh/R/VkEciEaThE2p8LMNkdgyvP0il1mB7a4OV5SV29h6TfLzHrXsfMjczx+beDi/9xZfw+XxsPdpgcmKCdqNKr1nDq7npI/bqPq9X5BqGsdxRSnSUQAx6w1iDAbOT4zz46LssLy8ytpqlUzym1qhju1UebWzw1NPrKK4Aqs9CUmWwDLBsUDQwwpiWyqDvJpw5x+XzcuvtO6huN9FImnAiQcA9Ts8QT+JqvUkmJsjOzWaTldXl4YNGplwuOhmQkVlJU71EIhGHsTBqwdra2nKIV+Pj47hVhfffe49gMMj4eAbDsqkWC2BLKKqKaRhYw5hyp9P5E4CaWq1GLBYjGo2yubmJx+Ph3r17joYwOztLa7gurdfr6LpOJBKh0Wj8iZbp0Ybtww8/5KmnnuLo6Ijr169TrVaZnZ1lLJ1xXJjBoNDjHj58KK423d6f+fP4sTgU2q02KysrbGxs8Pzzz3NwcEAoFHJ+kBOJBJZlEY1GSSaT9NttksmkU0oyCo/s7+/jHd4P/X4/rVaLTqfD5OQkR0dHTp681WpRq9WcN+ns7MxZHVWr1WEnZUeszWybdDrA9va200T18OFDnn32E0SjgqfodbuwLRu3qrGxsUevr9Pp98mMZ/n9V24SCATY2t6l1e7i8XlJpDPO/8v+/j6PHj0iEonQ7/eZnZ11at0+//nPU2k1iMViFAs5zk9PGAx0tjYeous645kxQkqIw6N9AgHxZxxLp1BVld3dXVZXV50DsdvtOuQdj6Y4OPJOp0On1ycU8LG1s0cylaHb7bK7u8tLn/ss1UqNv/3X/xZf/uV/T8DtJZ1OM56MoWKxt/UITQK3z+/Uo4OwmstDXcU07T+aFCwFvdOgWi0TjvhYv7IItFFdCt5gkN3DM97/YJOLV67jGXiQ7B4elwtkG7s/QFI0XF4fiqmhKeAK+Kg3G6ApdPQeWruN7dLIXlhi0NOpNku0KlUYmAwGopi4WCw6n5kR+HfEkRwlMUcHwshyXK8LVFoikXCe3o8ebRKJxrFtk05H2KPjsQS2KQjTnXYT+KPpbFT9NhgMnFDfCBYrScKuXq/XndKiUdhqJIqPUPejUttRYfLk5KTDa7x27Rq+dJrNzU1mZ2fp90SuZkTyKhQKznpS+rh3SWqaxltvvcULL7zgfDMSiQSAszEIBALE43Hu3LnD7PKy0xEw6kNMp9MO3nvkSBvVnj9+/JjP/OAP8uZ3voPb7WZ9fd2p8ZqemhCU5E6HzFicarXKpUuXqFRqvPrqq7zwwgucnZ2xef8Bt+98QL/fc0pApyeyVCoVsjMzbGxsEA6GKNfFjrlwUiKVSTOQZDwBPxcuXabZbLK1d8jdR9uMp0SaMJVKOVy+arXqMPyTySSPHj3i5ddfE1gwVaQ808kkf+Ov/XVarRb3P7xLvVrjy//LL6OoYkd9fn4+FMJwKsXa7TaWYeD3ixan5NDdmc/nxVipqAxsiexYmvOzE6LhEEsL86hBjVg8wW/+1m8RTyS4dvkqr998lU69QrtWYTyVod/rYCF8/tg2Ho8Lj+ai2WqgKSqGIVBxvW6XeqlFdjLJzvYG//LnfhJ/xEu3cUJDV1C0AJYW4Z1be6ytN1m5kGF+cQIoATqS1gfJxrZ6DAwD3egytTDH48MDcKl0zAEhVabdEwddwO+nmMsT8HhRLYhGo5TLZSanssOV3TGRSGhISBZZBY/Hg8/rc6zAqqo6HESvVzRS9ft9dnd3sWWJdq/L9MQkJydHjGUnsG2TerUGikw0JlyGjaqoEBzF4INDlP+oTl7XdZaXlzFNk3g8jiRJjjA56oAY5UcGg4EDsG02m6ytrVEqlZiZmaFcLou4+fGx0+ExWturqsr8/DztdptSqSSIVx/33od/+z//0k//xJf+Pqenp84I3263KRaLqKrKzMyME2GNxWK889ZblMtl2u02Y2OiQLRUKpHJZGg2hQDk8XhQFMVRjWvFolPdNcKYtVotIpEwlmVzenrK6sU1sbXY2qZWq6NpwjOxsbEpuIymQTqTIhIOoyoyg75OwO+n3W4Rj0Qp5PO0+wNa3Rb+QIB6XVSp64M+Xp+fgWkSDId56aXP8qlP3nDCLpZlMTs7y6VLlxxl+t69ewJ37/cSCgVp1GpMT00J0apa5aN79zg9PaVaKeP1eJBkMa436rUhFl2MnoO+PuxeVJwwT6NexzJNIpEwsiLU83v3H5BMpVBUbRhQCzIw+xwcHIJpk0wkqZbKxKIxxtMpHj38iEDAR3+gEx3ixQVNSCYRj9Pv64xlMsjyELvv8VCrNoklQoxlE9z4zLMg65iyheYLgOLlNN/G5YsSdF9iYmIey7DxBTSwDaCLJfWRJBtJsVBVm7NSiZnpGY62D7BNi3g0ycA0Oc6dUygWMQ0DxbaxDBNXOEIqlaLRqA8fPCrt4fam3Wk5qU+/P+j0dBweHjpJ3dHVdrQ1CIej1OsNznI5Aj4/nW4P73AD49JcuNxuDMvAGvQwTdMpb8lkMs6Db3x8HMBpUFcUhWq1it/vJxQKOetP0zRJp9OOv6ZYFJHo8/PzYfI250BZqtUqV68KJJ9lmmxsbBCPx7Esi3K5zMTEBGtra/wfX/tdfuwf/qOPr6agDM0V2WyWhaUl9nZ2hj0Ft5ifn8ftdrOyssJrr71GIBDgmWee4eWXX3aKOU9PTzk9PXXuXSJDHnRO33K5LNJ7Xi+VSsW5b49gLbl8kbGhR36Ew15YWKDRbDu7Y0XTCHi9gv4TixOPRZAsE8s0GQw9Aa1mk3giiSRJ7B8e0Wo3SCZi1IeR24GuUyiV+LVf+zVSsaiTmvP5fBweHnJ2diZy+cMxVZZl6ucnjKczlPIFoY8oKhG/4PuFgkG0WEyIZZbtJEgHgwHdrtjqjNajtinS66NR3jAM6vU6tiQOi3g0TL/XI+TxgCwzOzNFtVPj6OCI7PQY6VSK1/7gFZ66+oRwkdoWsgUuzx9ZgEW010ur1RK7dUU8aUc7e8O2sGUbWZOxDQMp6MNjKrQNFUlSSCYTzM5NM5OYJZuFvu7CNrtIkgqoyBggmUOHpClaxHt9R0caDAbUmw0axgBJlkGW6LZ7eF0iR2CaJmPjae7evYvH43L6M/2BGTwejzM5ja6WoykuFAqxt7fnjO26ruP1BXAPk4sut5tOs0G+UODaU0/R7/fYePjI6az4416gUc4kEomg67oD0LEsi+npabrdLs2mIFr98d6HbrfrXHsqlYqzqszlcpydnTExMUGvJ9bSlUpFPGwMk5mZGRRFoVar4XIJLF46ncYYfMx7H0CEfKampnjt5k2CwSBHR0fOuJbLCdjHxYsXabfb7O3tsba25ryRMzMzxONx5ufnnQrver3O1NQUGxsbTtnpnTt3HG7D3NycmDCKecbGxggEAuzsHjhI8WbzjHK57JzwkiJj2haxZILFhUUCXg+1khjBq8PsfSwSpdxrcHBwgNvjI+D3kMvn8AfDVIs53F4fvU6HTCLumGNGyvLk5KSjgWxubjpvejQURNe7zMxMERgKXue5U/Reh2QyiWWYBHxejs9PKZfLpBLi9x0l8hRJwFTNoatRlmUkW5hg9G6XttYG4PP/xQ/y/u07JBIJh2S1+2iTs4MjlibneOv1N5idnQVg//iI7PQU1VoRr0um1+2TTqeJRaOcnh7jdYkfKL3bc75mq9kkEPdhqbB/eozkDdKtV/EEfWiqC1nSyIwF0dwujna3ePMdg+tPrQynBEBygamAjADSKBKJaIybf/AyxmDAQO9zWDkkkkxgDfpoPg8BRaau9zBkcKkuBzozOzvL9PQk5bIAAFcqFecp7dJ8TsBsFDR69913SafT9Pt956Gyv78/JCkJ0tHANIgEQxweHVEpl8nnC4TDQSJRgZ4bmccqlQqqqnL//n0Bixn/o36IS5cukU6nyefzZLNZ0XY2PDhG9K5sNkuheIZlWbhcLoLBINevX+fk5IRWq4XL5WJ3d5dAIOAQrD0ej8MhsW172Af6ZyNOPhbgVk1TnZNzbm6OUCjE3Nyc03coyzJTc3Pk83mnCSeRSPDBBx+wtLRELBbD7/cjDSGup6en4g32+ZxvzNWrVwXqPRRy4CyDwYBEIsHq6qqTnR+tRXVdp9frOSk5VVVJp9MOG2+Uthz0dMbGxhzIaKvZQO91abcaNKoV6tUq9WpZZDA8bq6uX0aSxH1/1PmwsLBAMBgU4Z7hm9toNJxy16mpKSzTFIh7l9sBm47WSyN4qqZpDoMgFos5U8PICTfqGFSHeQXLsuj3OrRaLYrFIrVKyTHoHDzeJZNM8dQTT7C0sMjy4hKNas2BrtYadcYnsoxPTRKLxXC5XI6xZ9Q1ORLqRpZrb8jLwBw+xTUPpiVjWyI85VJUPC6FSNiLJZcolbax7TqDQRfMAdga4AbLDaaGbGlUSmWODw4Z9HRHuR+BdGrNBq1Om75h0Ol1CQ/Zl1tbWw5WvlwuO6tHXddJp9PDz6PGxMQE09PT7O/vO27EWCxGJpMRus/4GJOTk0KgTqeZmJiiUq/x8OEG9Xqd9fV1Mplxzs7OqFarTufDqP15NPKPrpDz8/MEhsyFqakpACfzM/pvDMNwBPF4PO4cXqMJIZlM0mq1iMfjQlcJBCgWi2xvbzsw4HK5LMJSf86k8LHQFH753/3yT//Uf/eP2d/cdLrwRqLYlStXUFWV7c1NLn/iE9y7fdtpnw4Gg9RqNbrdLqFQiI/u3v0TpJq33niDsbEx6vW6syk4Pz/n0qVLDtAlEgmzvbNLLBajVhNsv5nZORRFxe0Ro3CpVKZcq3J6fML8/BxYNvfufkjA58XoDzCMAZWS2FM3OzUazSaSLIudvcdDMBDEtCwGA4Pt7W3GxzPYyM6HLBaLOahuAT3NOWRi0xyws71NLBbDrWrYtk27KWy1rUbTgdAk0ylRi6aqhEIh2sN9udslFGzvcNXqcrmwTANVVbFskBUFyxYQllg8jq73WVhc5OzsjPzJGZIFnXaH8cw4169f55133mFmdgrDGtDptpEVCZ/Ly87OztBX4qXZaNBsNQkGAvh8fxTNrnTrnOVOuLS2xuXVFXx+P5VqDduWaLTadPs6LpfK6lKa1ISfWNiHZXRQPB6wFLBUMFWwNIyBxP/+H36N85NTxmIZJMOiXmuxd7CPFgpQbzVpd9qEgmLMd3kCTE9Pc3p6gsvlIpc7ZzAQT/5WW9zHxXUhzoULF3jjjTc4PT11KNqjg+P09FRU2PUtcoU8yUSCTqdLX++hKDIet5v+oE9xqPQnIgHnST3KnrhcLgKBAKlUiieffJJGo0EoFOJgf9+hYo/CgIuLi7hcLvb29hzaWCwewev1Oh6Eubk5oZvVas46Utd1vB4v8/PzhEIhTk5OnMNieXmZX/2PX+MffeljDG6tVyp89N3vYhgG3W6X/f19BxUu8FHi6V05P6PWqNPudtAHfQzLZGVlhaOjIz68d1eEfXo9FtOL7O7uks1mnaftyDCSSqU4OTkRvL5+H9nuI1sS3337Dfz+APFYiIFhcXntAkdHj3G7wO2SUAOiU+DdD94hEY0RC4SIBPycnp5iGybWwEDv9mjoAwJKiEqjTqvT43t/6AcIhsN0jD5dfcDOwWMePXrEWDTFQG+ROzvk4QNh2/b5fBTzJj6PgiIZVEolJpLTLE0sUszn6ZsDFEXC61FR5CC2ZOJTPBh2i26zQSCoYRpubBMi4TQKEjISmmqhqoBtoPe7yJpIiXpdHTo9Hc0l0241SKTStAc2kfQkar5BOiQ6CZ74xHPk8mccnZ/StweUqhU0tw+fN4gkQb1UJJudRNe7mKaBooJPESagVqtNIp6hXu0j9SVWli9iWiD5NSrdJrHxCBIWPlNDb/eRMWg3NYKaD5CRZRdGp4fqcoOmgq7TrFZ57ZWb1PZyRN3iA19vtkSjk19DxiQTS4jSYa/A3VumTrF0yurqBR4+3KDZ6JJJZ2nWLRaX58nn81y7+ml29m/xh6+/wsRkRkwSmkxPF56B/qBHMOTFsvv0m01k26ZcEJHr1nBaSyQSjGeTHB0d0Ww2KTQGzM/P4/F4GEulCQT9BHx+mq06wZCbe/dvEQ6H6XRFW3SrXSGZTNI9rxMIurh7Tzhvs9ksxyd74lq3K5iPAAG/h9OTQ6Ymx1lanOPWrVvkc4K30Wg06Pf7zM/PMxgMODg4YGlpiYcPH2Iaf/b14WNxKLhcbnK5nLN5uHRJYBvOz88FuiqT4cGtWxSLRV588UXeeustms0mwWDQaQ8yTVMorpaF3hUUJsBp43n8+DH9ft/Z+5pD4a1azIsatFabZCJDMp2iWhPuyHQmxa3b75NIRqn3dFRZol5r0u/20YNdzJ5Bu97A1IVBxO/1Mp6d4CyfEw3D9SavvvoqtUYDU5FIpscIR8Upf3BwwOzsrNOaPaL87uyI7MTa2hqapnGWP3M2KYIr0WFgWPSNAbZtIssmqqrQH4jdtoSBYdq43BoyNgGfB1W2kBUby7SwbBnLEvd8l8sFsoKqubFUzxCGKzwMmWSCZETQih98dI90Oo0sw7Vr12g2apTyBVbW1vjoowdomoLXG6bVtGk0BL+h0Whg9AUu3jQHmKaB7FUZSDbRZIrDkwKz81P0bR3JtpAwkT0uZBtckoSiSNhGB0m2UdxuwKZ6ekjQH6LX6/DBB7doNi36fYNmW5TTev0B3F43oVCYSCyB2yt8Kc1mE6OvUypVUFUPxkB0ICwszg3zBj7c7gk8Xrco0un1HPfgyFkoGrbcBAKBYd1fw9kk6LpOPl9genqaWq1OrVan2+0RDIZwaxYSLixTodnoYQwkZqcXkCSNcChJtVqmWmmSSKTY39/H5/PhdnsZDEx0vY2quohEYrjdAtJr2zbxWMIpBWo2BA5A7/WRJYWpyWnH03Pv3gMH9DKqqO90OqTT6WFO5U9/fSw0BaQ/gkCM1iqj2uxarcZHt287iuzIVNJqtbjywgvOODcas0bpSIHylh0Pwqh8JJlMsnrxIslkknQ6ze7OIacnedwuv1OjtnxhkVK5wGDQZWIyhWX3nDthJBIhkUhwaViScpbLYUsQDIfw+HwcnZ5weHjIg0cP6QyZha1Wi+eeeZZENMbGxgaqJDsiqqZpzlXBtm1mZma4fPkyS0tLvPjii1xcWyGZjgu/vyYzjM0jSyqS7MK0ZFrtHqlEEsWWyI6PsbgwQyTsITMWI5mK4PFJaC7weGUCQSG4jWy3I/emW1Mo5nOsXVrl1T/4fVyawsMHH5Edzwjc+7e+zZUrV9jfe4zH42FmZpoHD+6zv78vqtSLRbHzH/QEWarXQde7DkdA0zTOyucUajWqHZ2zos5p0cSUMlhyHN0OILl8mC4NiRbdTgFJNWg2inRqeaxeg0g0yP37d/nyl7/MrTsfYJoWjUaTVquDhYRpS1i2RCqZQVE0DvaPCEfjTE7PsjB/kanJedqtHvF4glQqzb17d+npbf7uj/xN2p0av/07/4Hzszy2JSFLKudneSLhGLKkEgpG6OsG7VYXVXFhGgqNeo9atUNfh/GxGUxDoa+DaSj4vBFsS8MceKhVBjRqJnpXxhy4ODupEA2PYVsuAv4knbZJsSBEzlg0RbczoFJuEAkn8HqCnJ8V2dnep9Pu43b5kSTJaa22bZtyueysm9vtNuFw2BGqW60WDx8+ZGVlxakQtCwLRVb+zB/Hj8WkYFtCUJmdnaXb7ToGixFEZX9/n2vXrhFLxLl16xbLy8vCgDJsLhoJNoYhsgujVCDgtPL4fD6HkzcyoxSLRcbGsoJnmEyxu7vNydkpzXaLTCZFKCxalkulIqbtcdZCqiowZn/xpU9jDQyqxZL4d24Py2NrvHfrfVrdDpKssnd4wNzCAqVSibPzPBPjWc5y58xkp50/WyaTIRwOi1XRMPb88OHDYcJT2LQ1t0qtUcU0TYEVN0Dv9JxOgKA/hGTLeDQhmHY6HfRuD/dYUnQHYtPTW/QNkWh0uVxItiWqz2SQFA3dGBAJBdjc2iEzXmBg6A7E9ZlnnuZ3vvbbIpQUCtHv97l+7RqRcJDWsHrN7VYJBAI0qpWhqCmETYEqs3B7XIRDUY4OT3n2+Ri722f4PHG8XplBX8KrqmiSCi4DyxBTRjgcBtVDq1gBZG7efJ3Dw2NWV9Zp1Qbow3YqVXEhSUVhGiwAACAASURBVAogCZZAIMzVq1fxDWEky7MrmIaEbZ0BDSzL4oknnuDe/Q/56td+g+2dR1y/fp2dnS1HhB4BWQOBgHOdVRRFdFFmZsjnBTS1OxT1ksk42GIKSyaTeDwe4hHRdBVPRIlHorjdGpoqMzY2BpZotopGw5iWTjIpsISZzBjj48Jk1el0SSREWMq2xSZJkVWnxt7lcjmaw+TkpEN38vv9+P1BcYX6Yzb/EVxlJP7+aa+PxaGguQTYY2Jign6/7xST9Pt9stks169fx7IsPvzwQ4LBoFNP/vjxYyKRCMVikZmZGe7evcvMzAyBYaz0ypUrjqBoGAaZ8XESiQRbW1s0m038fj+X15/g4cMHJIfW46ULy3x47zaf//z34PG7KZXP8fo0tnbLQ21D1JX9xm/8JqlEkngsxuVLa6QSSfL5PGPZcS711ykUi+K+7vWgud34PF68Hg87m1usX72CKqlcuHAB27Z5/30Bpxp1WIyuN+l0mlgy5vQDyDYCbJo/F74AVcM0bRq6ztaDNouLiyh4UGWVJy5fo5DLiRyCLKaCaCTlXLNcmoC59jptJEVFNyySsRDtepVLK4s0qiXmpufY3dpkeXkZv9eHafRp5aq8/vrr/MD3f58DBdk8OSKeiFIonIsJodsWh5fiwjLBssUmwmp2ubd3m5XVy7z826/w3/73/w2DPmgSVFs69UYJzWWhKTqy5KZ4VCQYiHDr/bf41V/5dRqNFkFfFFUNcbTfcLoxQ+E4vYEIeEWicSLxFLsHh0xOTGHZsH75Cu+9foeTkyMSyTitZodgyM/Tn7jG73/n93B7JKamx3n9jVeYmpxnairjuGXT6bSz0UqlUkPLuE7A46PfN/H5gnzf9/0AL730ElNTU9y9e5c7d+5w8+ZNLMuiFspxcipISy5VQVEkVleWeePNl5mayBKJhFheXsa2Ily4eAk8HrrDsuNkIu1EqwN+cRC3223QbAzDYmJCmPRM0+T09BS32zvMa4gJdGxM/NkNw3CKgNrtNqurqx//Q8G2hACYHhvj4YMHXL9+nXK5zMLCAltbWxQKBad6ze12c3x8TCqVYnx8HJ/PRyaT4Y033uDatWu0220mJiYwDIOdoQmqWCzyzDPPcHp87EBEs9ks+/v7tOyewx+4evUqRyfHfPrTn+bmzZv0zT7j4+M8fvzYWZcWCgVkG6ZmZ3DLKj1dZ3NnW0BLZYmBZbK0tMTM7Cyvv/kWvV6PRqvFzt4efUPYWyvFEpVKjUKhQC6XY3V1VRSCtFpOcGlkp5Vdwn6bjAnXZqNeRZUlZFnB6Is+hKA/QDycplau0aw18fu9BH3C/dZuCwOWhI3X48IcTgqSJIl1ocuFaYMiCXyYYRjIyDx59TIXV9eIxSIc7h/QdjVYW71I7vSUqcms6EGo1fH5PcQTUSqV8tBS3aLf64jEoeom4A9hWSZenxt3XcaveejUWnSbx/z4f/1PubS2zt/9kR/mjVf+ENsskUyEqLeE3fvg4IjjoxyDvkmnPSAQiOAPxBn0TRTVRO8LPmW5XMbrD5AYSxEKR1lYXqE3sIjH4+SLJY6P38PjEk9OUS8o87nv+Qz/8l/9CxYXFymVc0iSqLAbHz44vvWtbzm+mK2tLRYXF53E5IsvvojPFWZhYYHLly/z7rvv8hM/8RN4PB6xzWi1SKfTgsnQEZsvVZPwRkX/Y7VWIBT2Eon6UFWbQumYgDfDnfffZ2Fhgf39fSYmJohnsyxeuOAcNqP3LBKJOIVIhUKBTqfDE088weHhIQCpVIqtrS0UReHRo0eEQiGWlpY4ORFAlnv37iEr/wkNUf9/vC5dWLLf/OZvUiwWMQzRLZDP59nd3eXq1avD8RdCkbDTN7i1tcWzzz5LNpvl/v37Do/w6eefJ390jNvt5vz8fFjfJcb+YDDI1aee4vzkhEajweLiIo/ubYg78vwc+fw5iVScWqPO7dvvMz45wfn5GW+//Ta5gk6j0eDVV1/Fo7lwqRrTk5OCnNsSVXEXLlzgU5/6JOfn50xOT3F0dMLJ2Rm5QoGtnR0kSWFze4uVlRUazbZzyI3o1deuXWN8fJx6vc7W1pYQwYIeFElmY+MRvW6bVr3BzPQkoYCP+dlZvB7B+zd0kcKLREMA1BoiS58vlIhGksiaC4/bj9vtRVHqYuXVbWP0xfq23mxh2RJXrj9Lt9dncfkCXd0Y8v9sJsezHBzsI2Hh9/oYzwoikYJELn/C8fER9VqJfr+HKotDzTZtbFvC7wsTi8QYi0W592CT/sDGH0rj8/pxedyEw24kBqhyh2a9wt6pKLPJZifpD2x6XR1kF7at0Gr3MAaWoD7LwjeRnZxmfnGBWr2NbgwIR+I8cf1pHj3c5OHGJnNzc3zjP36d559/Hq/PxeHhHpZtsL2zQTgcpFA8I5sd5/DwkIX5i3i9XidA1+0KIO7nP/95fvRHfxRZlvnc5z6HSxZRZIBKpUKjIYhaIw1lfHx8OO2eDUViH+lklEDARzwWxh/wsnZxmWpVmJkurbxANpt1glfHx8dMT0/jC4W4e/s2V556il6rhScep3K0T6VScZySuq47dKhRPkhVVebmRDwgkUhwcHDAD3zhC5SHrVHf+9d/lI3tP5289LE4FC4uL9rvvfx1ut0uyUyG1155hU997/ey/eGHZLNZJ/xULJdEEOSJJ8gdH1Ov1zFN0zEaxWIxisUiQb9Qi0d39Z2dHSYnJymXy+TzeWZnZ53159zUJGdnOeLD0hSPz0swEefhh/dpdtrs7OwA8PVvvMrh4SHhcJjNR4/IZrNUyxV8Ph9TU1OCLCQrXH1inWAwSG/Q58rlJ2g0Gjzc2ODevXvMzswTCIf49re/jS8YcrogR52EI63DNE0H7NltiPScpijMz04yPZUlEvbTalTpNKqEI0EmshmWVtZF5XivTafTodnpYtkS5VKL3d0TkDW8niiqoqG6+lhGH8sc0G42MAd9fIEgfcMkOT6FLxBic2uH5z75F0knkhweHggnXLnI2toa3U6LwvmZswHqD7psb29SLJxhmAN8bsGI9Lp9SJKMhIbfG8AluQhHI5SrVU5yORKpFItL81SKBdwuF7FgyImP981hLaAkocgaXb2PommomhiRS6Uymldsl5KpDKurl3jhU3+Bubl5/sd//W/Q+wbn+QKX168QikbYf7jB2NgYd+/eYXw8w8NHD6hUi0NnoMr5+SkTExOMZaZRFIVQKMSVK1f44he/yDe/+U2++c1vOiag+fl5Bj2dszNRKhOPx8nlcpTLZcbHx9F1nWKxKDIOygDNpeLzeUglIkQiYcbHkgRDfi6uLHB8fMjM7BTxyAzFYtERgROJBOfn58zNzTE1NcXZ2ZlzFc6OiUrFcDhMrVZz7NnVatUBIBeLRUxLdzSrkZ9namqKXq/HX/qhv8GDja3/rL0P/1lfHo/bISznz87w+Xyc7YguhrOzM6cEY2xsjEajQe742MFrn5+fOzHUTqcjeAQrqxwcHDin/UggqlarjjEERBBlY+MRsVicN996nWc+8Rz37t2jPzCJRqOMj0/Q6/Ud2+hovE4mkyiKgi/gxzYtBwjTaDTY2dkhnkry1FNP8Z3vfIcLFy44Tj/TNPnw9gesrKyQK5acGPeIuByNRh3YysipqBgGbs3FwtwskbAXr8fFvTu3iIb8vPjisywtzPPUE+vYXhVJlunrOp1ul26/j4RCudzlrbfucHpeolJuo+ttgqoI5FgyaIqMZKuOgFkbMjEb9SpbjzYwF/pMT09TKZd57dVX0BQB+fB4PE6t+UjkHbkm//hfsixhWzbtdpumPSAxkSWoQOd4l3pXwVanaOkt9k+KxENxopEIkmzjUVRMFNGNKNt4PCp9c+CsiyMJPz6fgNU+99xzBEJhvvrVr5KdnGR8fIJqrUG92cLj9xEKhXjxxRusr69zenpIdmKM/YM9BoMwsgLn56cEg2FKpQpul4Cg/OzP/iypVIqXXnpJWIsLBWKxGPV6nTfffBO/x8u1a9eQZZmTE2GImp2ddTZkoqjFS6/dQpGV4VpSxTIVZMlNr2vQbvVJJsfwesL09A61eoW5uTkCgQAzMzNoLoVINES702T/YE9E4V2K0/41qlIcfb5G2Z/R5Dk7N+lMCbIsk0qlnAJb+0+vYwE+JodCpyOw1qOcQyQScehIAI1GQ+QEhj2PoxErFouRSqWo1Wo88clPcvu117hx44ZYpQ2pM6MRL53JkJ6aAsPg3p07pNNpHjx4QCzs4Tx3QigU5PBon93dXVTNTTAYZtA3mJ6aQ1M9FEpt1tfX2dzcZG5mhq9//esiU4BNpycOmaULy6RTcR49euT4Db7xjW+QTKd5/PgxHrePWq1Gp9OhPRg4dtWRA3NkNpEkaSgcuVnMTjA5OUmpmEPvgd518T/93L9C77UY9Op4PRqV4gnelEtsFYJuVLeJ1rOwJYn0+BTTszP4AlFefeUdvvMHr2AZForLhd7rOLSqo5MTxsbGKDeqFEqlYZHOCamUmKCikRAej4eT0yMk2yQQEBHj+/fuoWiS8/6ZlkFfQtyn2z08Hi+hYAxzYKHbNsVGjXgyQigTRDfbnNWOMD0mql+l2ungjcTwKDaqqmCYJrYt4LZ6r4ttmciq+P5YtAmHs4yNjbGzs0d6LMPFi5c4y52zdnmF/TfeRJFVNM3N2tplfvIf/X3hELUGPNr4yHG+ttttxjKTIFn84i/+Il/76u/wzjvv8PM///OOJfz+/fuOgzCXE1HogM/D2blgIfYHPRRVYm39Ip/97Gfpdrt85StfAaCca9Hv9zD6Fq2GiUuzaTUHIJmUik10vcNAl3F7FC5cWBpOvBG63TaJRIxEIsY3vvENrly5gqJI+HweOk3x2RHBt65TNf/mm2861XMj89Lu7i7LQ9TA7u6u43n5824IH4tDweP14vL5iaXS9I0BjVqVubk5Bn1BnHG7NdA07AFEQkJX0Ls9FElGkRXOTk7pdbpcXFnl6OiItdk5vv3tb/PiX/iU6CDwuIf+eYW9nQ36gy6Hx/vMzE2haAHOHz1CklQKxzkuXLosbKfRCIWi4DgkklGuXJzn6OiYQa/O737jq8wuLLG8uoplws0/fB1fwE/LlAjaMrbHz3v3H4pDzefjrFIhNTXF5uFj8QTQNKRel3BCIL7GJ8fZ2dmhVCogIUbidCpBNBwh4gqiSQrzC5P0jQpPf3KNrlLG9hr4fBqWYdPtD1B0HdMcEIhlaLTr1Bt9klEfg26BQMiF7Woz90yY//LSZ/jKz/4KhZJB2JcCU0WWIRUPINFDkwf09QGF0yIrC+PkDzfwzs9huG0qxROaNRe63mZyekY8cTSFTqOKioRuymAqdAYmtq1h2DI93UTVuqJ/oNfgLGfg9rrwqVFcVoBOUSIaiqP6fITSorqt35cxLAs0iWaljG2BrIVQNJmAV2xNLl+9wv7jIyw0Wl2LCVeIXLFBT5f45re+w9zCDO8cvcfzn3yK3/zNr3Dt+pO8++67+P1+6rUm09PTglvgC7G+vs6P/MiP8Ku/8qucHh/Tqrepliqi10HvMjUxTrfbpl6vkkoGUFUTmx4Hhyd4PB4B9Ql4uXvvPd7+7qtYlsXP/MzPcPHiRX73d17md7/+28O+SD++oIeT3DnZsQybO/u88PyzFAo5FucWkfHTarSJhNNsb2+TTqe488F9el2DWq1BtVrnwoULpLMh8Hq58/rrLC2JWsPNnYcYts7y6iV2dnbo9XqUilUmsuM0GzWWlpZoNqKOx+HPe30sNIW11Qv2d1/+PQKBAL12i+Mj0ffXqFdZXltj76OPRFpRFv6ATCbD+fm5cyc/PT3lxo0b5HI5cZdFolQq4Xa78fh99I0BkXhMQEd6PVqdNteuXePx48c8/cwnOTo6olAoODXjIzTXxIQoXV1YWCB/ckYgFOSd997n/fdv88G9+5TKNSxbIp5Kow/6uDQPsWhwyOproeu6GL0rFbxeL8lk0hk1D4+PCIVCwtraaBKJRKhXqviHTMpUKoVbcxGQ3ESjYertPH/zv/ohZJeNRAdZMvFrbsz+AKtvMZBVXF4vCytPkS/XsC2LsEclGpDRQh5sSaIhqViyyltff4Obr7xJrzogGgpTKpxj0QYsyrUOA0PC7QoRTwSwJMFpsC2Jw+MjDMOkbxh4fH6HLZCKBp2n1sgrMgqTjSrrAoEAXVOi2WigaRrJZJJ2U9iH/R4R6omEwwQCAUKRoOP9j8aT1Go1Nrd2WF1dRXW52dvb4yd+6icpnpcIBoN8eO+hSLyWa5RrVVweNwtLgs15eLLPz/3czxHR/EQiEWKxGIPBgOXlZT7zmc8wvzDL3/t7f49qtcpgMCAZiw/JW+I96Q96WJZBtVp2RFzbtikUCg4IZWRsGzE2R4U8k5OTvPfuh6xfWsPt1kilE/ylv/Apnn/hORRsdna3KOZzNJp1PJrYbIiMjmfovxGCcDgisIJer3t4RWgxNTX1JwpqR5iA09NTp/RItgVNKp/PO9qXZVkUCgX+1pf+MR9tbP9/0xQkSZpE1NBnAAv4Zdu2f0GSpBjwG8AMohDmi8OSWQn4BeB7gA7wd2zbvvP/8DUoFcu4NDfb27t0Oy2CwTDHR6ekU2PUagJTlZmYBHCYd6NRKBAIcHx87OyTn776JOOTUxweH+H3+ykeHeEPR4jFkwTDIW7dusX+4TGa20un2RIpu56O1+VGlWS2t7ZhYQFNVggHghh6n4ODA9YuC2JTPB4XLkC3wKuNjCoXVlfQux3efPNN1tbWnGvAyKFZKBQ4OztjcXGRTkeAVX0+n/NhGE9nMIYY8BHfcHn9Mq1Wg0ZPRvO4UVQL0+4jWRJ6v4/e7WMPLI4LbZCaRDMWXd2Dz6UwMGwGAwvNdCEpCqrswrJVZpcu4n//Ic1KEUuSkV1uZEwGhhhFZUmYyXLFgrMH73R1seFRBbdg0Gw6acv6EJo7+nAOBgPM4dXNBhHbVhQiwRCuYWPRKJ34x9ejvZ6IWqfG0/QNg2Q4jD8YQtFUZgYGB0eHJDNjfN8PfD/f/v0/IOwLcuNTL9JoNATP0iecrY8P9vn0pz/NV77yFX7zt36d9StX8NlupqenCYfDHB7us7S0xKXLK/yv//5/4+7dD8lkMiQSCZ577llnDT4xOc7RkQDi1utVp2THtoWNeHQAigi1eGB1Oh2nBj6VSnHp0iq1WgWXWwXJ4Dvf+Q5vvf06k9kx0ukk83OzhMJBshkBC4qNjXG0s0Mw6Gd8bpLTx49RFAmPRxw+Dx48YGJiinK57NCkTFPg5DRNY3FxkZdffplkMomh95wrdKVSIRwOMzU1haZpqH8Oeen/zfXBQLRK35EkKQh8IEnSy4jW6Zu2bf+sJEk/BfwU8JPA5xB1cYvA04gy2qf/vC+gKCqzCxd4cPcOsWiS0NTMEFN1kUajw5PPfpJmsUilWSUcDhOZmkIvFh2kWjwep9frkcvluHLlCqeFMnNzc5SqTVrdAbMLyzQ7bWYXL4jp4NkbNJtNzs/P2dx8RK1WQ1EUjo8PCQQC/NW/+sPs7e2Rz5+jKApnZydcu/4kt2/f5pmnr/N73/o2E2PjeH0But0e/W6HVCrB/bv3CAQEWXpkrz4/P3ecaCMT0snw/t5qtfD5fMSjMSzLcjBdgIgiI3H37h0uX10nZERoNJu4fAqm3aff7WD1dRRJRUPjOKdy995DUvOfZnx8EhOdQjGP2TXIejSUUAif5qVnGCxf+QSzH+wxMHY43tthLJmgUTtmYFhYtoFpWrRaFboDcfi63G4MwxIuTQRXAsnCHHIN6/WWo92M/g4S2GAbJi7TQvUIjmb6j3EwR7ZybfhrI+I0qoytSCQzY/QGfYLRGP52j4VYHF8whKS5CEUjBDx+vvnNbyJJmgMfKRaL/MIv/Sw3brzE4tISX/ihv0yn0+H2Wx/idvlQFI3l5RW+9KUv8U/+6U8xNTXJ7t42Y+NJ4okwb739Br1ej1argSSbdDpi4puamiKdSTpIM1Vx02q1REZCUSkWisOadyEYT03O4HZ5OT87IOD3MzMzRaNRp1orobkSHB0dMDaWQte71Gpl+t0O+fw53Q9ucf3ppzg6PiDRbQx/vSoszRjIiujgHInw5XLZST6OWCJO9kTvDQXzcapDEnipVBLoAP0/Adw6rIM7H/5zU5KkDSALfD+iPg7gV4A/HB4K3w/8qi3uJe9KkhT5v3RP/t9ehmGC4qLZbBP0BQmnMhSOj/H7xAQQDhQ5OzvD5Re8gM3NTeLxuPjmT03R7XZZX19ndXWV/f19PP4I5XodSdOQXS4kRcXt8vCtb/8+N27c4P79+/h8Pp588ike3HmfdCrB2NgYp6enRCMhPrj9vmiV9gofQUnvEvB5WZxfwDBtPvnC86yvt7h99x7FUoV7Dx7AIUQTcf5P5t47SNL7Pu/8vG+//XbOuXt6ws7OzszOZuwCi0hEERLFIFEMEinJFJ1UCuezJYvS+SxKtq/sOlmlk8+6s3S6stKJokmKIiEBIAACWGAXwOa8s5PzTOec33B//HpesSxSdtlXV+gq1G71zs42evr9vd/wPJ9neXkZXdd57bXXaLfbFndh/6DodDoWAEVVVRwOB+OjY+zu7g6t0iI8JBgMMpLOMJ5Ic3Bqkin7GK1uB8XtoT8Y0OkPcNqdOJ1uuo0OB2eP8/alW/hCEabmUjRKLbRemXDEjc0OeruJ5pJwONzsVrscPvEgP/B9n+CX/oefpVhtgGGgGfpwE2LS7bVRHHb6gwHVZgOn042m62haH1MC05AwZYGTt9lt9IaeFHHI2yx2gGEYyA47PUPDaLUwh8O7breL1y0EOPseDH24wbh15x6nTp1Ctqv02m0RJGwIzcPJU6fodnvkSyU8Hg/9fp+x0SyBQICJA1M8+PBRfvYf/iJHD8/RaDQo7O6xtLTEL/zCL/HE06f58A/8CN2u8MIcmBynUMjzsY99BE3TKJfLNOo1gsEgPp/HSnzelwnfuX3POtgNQx5i/UycThdjY37hmDVNGo0OdruLblcjEolQr1VIp9P4fF72drdJpRPkd/fY2t6gkN8hm81aP3uP18Xe3h6qqpDL5ZiaOohh6FRrZUvhGw4luHPnjkUDP3jwILu7u7jdblqtFrdv3+a5556jVi7h8/lYWFgQ4bLhsKWBMPT/jyArw4Tpk8B7QGL/Qh/+Gh9+WQbY/I6/tjV87j//Xn9fkqTLkiRdrjUavP3aayIcdnUVBgMhjBlmQO73SfvAlGQyiWEYrK2tceXKFZLJJAyBI1NzcwTDIbx+HwtLixiYuL0eisUip06cJJhKc/DAJEF/gPxeztp2lIYfslAoZPWdDoeDSCQiZgzpNIah0e21KRdLFAo5nHZVsP2RsCkSm2vrVh/t94v+U/SnIpNxd3fXChGt1wWleX+N5B4CYfbR7v1+H6fTKUi95TKNhuhxB70+qurA5XbT6XRpNtrYFBW7CkgDllfusrNbp9OtYtCh3amAU8bmd2AywDAHRIJeHnhglkKxzG4+hzlMNGo0GnS6Xbp9gapTFHHP2I8s21+d2mw2HG6Xlaws2xRsih3FrmJXHdhVBwNNx6bYkWQb/YGGbFMsD4Gu60SjUYsx0O/3rRwDsUsfJxQSsNNGvUWxUCafL+L3+/nqV7/GV77yFYrFIlevX6M36HNoZppAKMjpU0f5h5//R3hcbgI+Pz/4Ax9ic32DH//MZxkfH+W3f/N3KZVKpFIpQqGQIGQ5HBSLZfp9zWpnEokE9Xqd69evW87ExcVlarUWkmSn0egI2XFPo9vp06i3KJeqtJodfN4A0Ugcu+IAUx5ejFFeeukllpaWBEJtVyh0W80ObrcXw4BkMkmxWOTObYGiBxmfz8fW1jbdbpdEPGUFCNvtdtxuscnad9YC5POi3Xv++eepVqtMTExY6/rDhw9b2ZfiZ2v/ntf5f/X2QZIkL/BVRGhs/a/LxL/5pd/lub8xzTRN83eB3wU4eeyoOXdklm996yVGUmlqlRK6PiAQj7K2sECzKS6a7byg2MzNzZFMJrl586YQE83Pk2k0SB46RHNnB5vDTblc4rnnnsXr8XDz5g2mD06xt7fHrbffpl6v8+gTT9Cq1zl65DDtloj5nj5zhl61SioZx+P3s7W+zoXzbzE1NcVffuXLfOgHP8K//53/k2g8hmSaRKIi1doE1tc3qJSLqG4xfKpUKjidTrLZLO122wq/3acq+Xw+RkZGyOfzLC0uAaD1BHfR4XBYbD/FMChVytx59wY/GHoWj8+Jqes4VSem08TQTBwON5gVPvujTzE1HWZn6wqS0SQZ9uBw6mA0QO9jmA76Oiwu1ohHkhiDPuFAkEIuj6p00U1TbGpkg4Gm0RnKqPvaAEwZA2Fykm0SkmFgYKL1dVxOFdMw0IazhEG/L2LjZRnF4SAcChEMBMimstSq1b82demiZSoXiqiqSjwep9PpUMoX0PsDZFnh2MkTeNw+Op0e5UKJ40ePoSgqKysrHDhwYJijmCAYDPLRj36C559/Hr/Xy/z8HR596CwzByf4jd/4Df7wD/54yN4cZ2trA13XCQUjjI+PAVAqlSjkqwx6bUrFGslkkpnpI9TrDdqtPbyeEAF/VKyPB3lGR8doNBroum4FIh8/fsLSKuyzPZeW7zM+msDnDeByOzC0AR5PgOzICKpDoVouEQpF2NjYRlEcKIqDdqtPJOwkEg6h6X12d3e5ePEKc3OzaAPhc+h2uxZJaWRkxEKz7WMNo9Eo/U7bSvwul8si2m4Yi2Ca/53eB0mS7MMD4U9M0/za8OncflsgSVIKyA+f3wKy3/HXR4Cdv+37dzodQtEwhw/P0G23OXfuTcbGxrh15RKpVIrlZg2H0z4Eg3rY3d1le3sbj8dDNBolEAhQLBYJ5HJ402ly6+t4PS46nQ6bm0Wy6RT+WARZMvG6PVy4cIF74r7/VwAAIABJREFU169RqVQIx4NEIhHhXVBVHLEY82+9RSwWw+PxWAowh8PBq6+8zKc+9QmuXbuBYndQqtTpD3RMw8BuF7i2RqdrlcPhcJiJiQkkSbJYgNVq1bJ/r62tDfMABT9x/y7a7XYtAG3K6UHSDdr1Bg7Fjt2mgAyyJCMjmIV2m4qi6PiyYZxqn0DQQ6/RQbXrOOyApGNqGvlSi+5Ap7Crs7u2xc1Lt9C1Ph6PC0NvY/ZFv9rtabS7A/q6ANkAyJKEarej6waGBKYEyjAnAcNElhTsisMSLemyjmITiDaH6kKWBMTV4XBYqsVIKGwFm2iahjEcmPnsTor5Es888wzVYpWKWSGdFOTjGzdvW4dppVQgHA4ze2SSX/1n/4pf+7Vfo9fp8MILL/Avfv3XkV3wS//0H2O32xkbz7KyssJbb7/J0aNHabdEv722uoHH46Neb3LgwAGq5Tw+n2/4szCR5Q6tZncIpnXi8QR45pkTeLwqY2NjJBIJkQTt91OpVMhms5baEKBYzLG4sMD8/F3W1lbotJuUimVcqoNwOIjNZscmq4yPHRi+B9BoNNnbyw0TqKpkMiOsrW6QyxVwuVxiTR6NWgpYl0sQwlwuF08/+yx4PNy7eBFFwqo6Q6GQ9TkOBoPYVfW//VAYbhN+H7hnmuZvfscffQP4SeBfD3/9i+94/mclSfoSYsBY+9vmCSAYjTevXyYYDLK0cA/VbuPg1Djffu0VNrdW8bnd7O1tozjdlntQlH1FRkdHyefz9Ho9oUFfWyMYDrCxty2SkkbHiCbiYAzoteoUtjfJRIf20mSM0YMHuD8/L2jPqoN+v08qniCfz6NpGidOn2ZrbY1es83MzAwenx+Px0W3NyCZjHN/cYmdnS1kWSEcDhFziAjy/Yn6nTt3LL/7PkFK0zQ2hzJt15AQ3Ww2aVRrBPx+/H4/qVRKpFPXGiiSzEgiRbveJuB34w8E0NFxyE5skg2Xw4vfbxBLJJBdXuz+ANVCD7/Thqz16DZadLU+3Z6dRtvgxsW3ufTeVVbvb5KIBAkG3LR7shj8aToDw8S02ZAlG4ox5DxiIMsSIKMNBtgQYcCqy4mqg6bY6ck9S/VpSjLGQMOUZfrtDrntHdqNJvIwumw/Acw0Taanp+l0OqytrorPXFWwK20mKJLM1vYW66vr+P1BMokkRn+ArEv86E98hiefeoy3Xn+PM2fO8Prrr/Pg6dP8yhd+mc/+2GcEHLc/4MjsYd689AadTod0JoFpGkwenKDb0XC7/YyNiorj7bcv8NCZYyiKcLCePfsIUzPjoEGnAy+++C2uXbvGxsYG7U6Je3fvMxgMrE3YPtErGo1aUYa5/K5AzKsqY+MjYJg8+dRjTB+c5LHHH+Hu7du0Wi3m7y2TSifJZidYWlrC5fRRKlaHODgn4bBQ0Rq6jVarxdbWFpOTk+zu7gqAryEMYJcvXuT0ww8z++CDlJaXrC3Xfgzhfsz93yJo/K+qFB4Ffhy4JUnS9eFzvzI8DL4sSdLngQ3gE8M/+yvEOnIJsZL83H/pHxCZfXZGJ8YYnZ3i/F+9yI0b14hGo1SrFcrlsrCxZrIWE2E/dmtrawvTNJmZmaFarVKv11FUma2tTVxOJ71+l1qpyKDbw+N2Uy0WCYRC9DrCM2/oGuIdMqnXa8PU3w4+n5ft7W3u37ktPPU+D4GJCW6/fd4CvBqyjMflZmRkhGazLQCaIbc1VZckiXA4zMjIiHU49HoitWega4RCIQKBAKVCUQiWhmx/RVGsXT8IZ6PL6WR1eZlozD+0TaugShiGCaZMp1GkLBt4oklsChj9Dpqsokomva5Bs6uzuVWiUK6zvryE2e9jDvoYuoZTVWi1BuIuL4kyQNc1kMQ2wZSAoZ5lv6Kx2exgEzoF2ZCsweL+f/v/D4ClHgzIMsaQbKxpIkkpFApZeZp2u+hzEzFBL75z+x4HDx5kbu4I6+vrOF0eioUisXiSbDrDk08+xq/88j/nUz/yo+zs7PDTP/3TNOt1zp49SyadYHdrG7sq8eKLLzI6myGZTLJwfwUJm0D+KR4C/iBXrlwjFotx5vRD/NzP/V1GsimwA3341//yt3jzzbeIRGLYZIV8Pi/mQVEn29vb1Go1ZFkmm82ytbVlUZoGgwHNZhOvx0+71RKE8WqdVrPJn33pP3FgfJSbN28yms3w5JNPUi4UrdSn0ewYkmTDNHV03aCQL4EpUy5V8frcHJ6bQpZlYWn3eKwt3OqQ8Xj90iXK5TInjx1lcXGRdDrNgQMHmJ+fp9vtWq/vv/lQME3zbb77nADgme/y9SbwM/+l7/udDxkTqddm/e4t+v0+iUiIg4cOcefWLbqtFg8+fppr165RrlXxeV3IUoxAIMDly5d57LHHWFlZwdD7+H1uJHSmTj1ALBYXAhOvD7uqUqpW2cwJMGo4HufunTvE43F29krUm0JktLW1BRQplUo897GPUW/2UJ1eciubxJIhFq9dIRiP0traJZ5O0+lq6Gs7zEzNcuPWHWxuJ5Mjk+zm9mhV9/B6vWxtbtPpCCipLMvopoY2FPrs7GyxtraCx+XF4/EQicTY2drlk5/8JIOBTrfdodwQ8WOqK8i9O/PUqk1+5NMfJhD0sNtZJRD0ItvL+N1hMQ23NTEGHdwOKJZL+HwZ2l2VTtPgja+9QqVcQ+tV0Ro1wgEFf0BFlw08wTQ4gnh8AkrS3dvDwI4sSQyafVRVoVVt4fV68Tnc2GUbhm6g1Tt4UyGRPdFqEwqFGHTFLEJVBXDELZs40anv7jE9dxi7Q2V9Y4NOv4eLID1TQsOGxx3C63Dh9PpIZEZQVDuVapWtpfuUG2JIpmPSunqBV779KjfPL+A2/NgNhU996of4xz//P9Ltdjh0VPT7piShuD20ahr1kpNes4PPkSEcCjAykubo7Cxnzz5IKBMGE/7NP/sX/Ktf+18oV0qEQgFUVWFndxOvx6RSuUelWkZRZA7NTHD73gKKYieZ8VAp19DNJplslEFfp1IVwzxVdZJv7eJ1ezAljb3KBl6Xi26vS62hktt1YfSr/PbVC6THxsR76/Px0EMPEQgEeO+99wiHwzTaDbLjWSLtCA6Hg2a1iWzIdJtddjZ2iMfjzE7NYrfbmZ+fJ7edIxaLsby6zQNnHiWfz9Pq6Hj9UYLhJKVKC+P9LnOWJJnNzS1GRkaQZZmRkSxXLl1GVVXOnn2YjY0NkskUDrebUqnMoTNnWL1+nUceeZR79+aHO1gdt9tNuVzhzoV3RIthV2k3W2wU1/H7/STjCQxNp9tqMz11CJuioHkNer2exdFvtVpks1kuvPIKmUyGeDxOt9vFH/TQbrfZ2tjk5q07PPTwY1y/fhtN64s98dQk5Wodl9tBsZi32huv102v10GWZSv4ZZ+WtJ+qNBiI1OPl5WUwJC5evEg6PUIkFEZXbIBBr6+RTGeo1Iq8/vpbJBIRDh85QKPaI54I0+2YqHYbNkOi1emjGyaSYef1V98kEpnihW+8gqkL0rLbJRMMhbCrKnt7e3T7PcLRKHaHyszMDIVCgbt37+ILhCyWo8PhwD7kSIIwk+0r97SBgWp34nIbGAaYpoTT6UYe3ks0A1qtDoOegIe6vR4xFygVURU7oVCIbCpDca+A3+PF5nWRTKcIBoM0hjj+8+fPC+LRSIb/4/d+h4//8Cc5EJvkV3/1V/n83/8cU1OTLC8vMXVoEkqwt1sgkx2h2egSDEQ5NH2Qxx9/lKc/8CQOVaFSKfPv//ff5mtf+wq1ahlVVVhcXMRUXKgOhXxRdLw2BbLZDG6vi0gsiizLbGxu4HYJcKquSfR6OpgKpgmtVpt+X8Pt9qLanegDg8JeAY/XRSaeEO1jv4PT4UbXTDweLzabwurqKsePH0eSJF5++WWefvppHnzwQZF8NjkJus5X/viPOX36NIZpUK3XWNtYFzMfWSKZTmEYhkX1zhcLmMgWxWx/JalpmuXG/F6P98Wh0OmKwdM+CLM+TFQ6cOAATp+PZFKQdbHJLC0tWWuxnZ0dYUjp963sg/2Vjd/vF6isTgdlmLIsyl6bVa4CQwhnzZKu7lthH3n8cZAkNleFd3329HG6lQrr65uMjIxQq1SYmTnEK6+8hqbp5HJ50RvOL/DgQw/xh3/0H5mensZld1oqP03T0IcILrfbbYldOm3hDTAxOXXiAYrFIidOnCKTSvP6yy8QjUZRbODyuDGlCG++cR6f30U09mmSySh+d5hKpYo5UHD7/GAKV6Jm63Lzxh3u33sF01DRdReBQAhdG2CaEtgU/IEQjl6Pfl/D5fHSqDVpNTsE/CEGw8Hf/ipyf4Oynwa1P8mutWvWmsw0DHCoqDZF0H0M02q3up2emCc4VJwOB94hWLVaroDfsFqQeDxOKpUSB+XSEoVCgWQsTqlY4t/91v/Gay+8QiVfRAuP8k9+4R8Ri0UYDERuQ7lcxjQk3C4v2gBOnTrN4dk5PvaRH0JVFTa31vnTP/kTavUKd2/fotPp4HEJl24ymSRXqeF0qkOQro3MSHrINYSNje1hgHEISVY4evT4MLl8k83NLarVKoqiEg7FhxuCXUYOCD6GXZFptTq0Wy2S8Rh2uwNJstHva7RaHSv+7fDhw2iaxrVr1/B6vYTDYe7cucPJkyd55JFHxGdVE23X/tB9b2/Pcv5KkmRpYro9MUPYb0UNw6BQKAz9RI7veT2+Lw4Fj8/HJ/7u59man+fOnTvMzc1hSBAazXLn0iVGRkZwetw43C6Lt5iZnuatF1/E4XBYPVIwGBRBmu22ta7c97Y7HA4ymYzlj9hnQUYCYUqFHIoMAZ+HUyeOoes6L33zLzhz5gz1apl0Mk6vUmF3aOtW+houl5Nut8cDD5zkm9/8S8DA6/WQG/rYT5w4RrfbpVDMYVdt0GU4fLSh6wPa7bZVNfiGB9/m2qa1riwWi+gDjdhoBptNolwsMTd2CGerwVHlQQb9Hm+8cpF+t4Nit1nJQ8GwD0VRyJfyNBotNE1G1x1IyIyPZajXGwQiYYvjWKnXGFR1BoO+5QoMBgIiebkrmAZ22WapMnVdR0Z88PZTm2OJhKiyGk1yuRwyEgMM9GEMuiLbUFUJfyhIuVpBlmX84Qhjo6OCTN0VB+bM7CzhUIhSo8KVK5colUrDwJc1fuC5Z/n0pz/Nb/7Gv6XZbJL0+CiVd5AkE28ghmI36Q/arKys8dgTT/FnX/oa1VqbxYVV/sN/+F2+9Kd/DMDYSJZTD5wgFPaxubmO0y1Wpjabje3tLUIhH+FwGEVRaDabLNxfJBKJUC6XCQXj2O12KpUKsmJy6+Y8d22LtJoidyQRz3LyhDhEPvvZnxTVqlsh6PcDBndu36JcLNBpNcDUkQwdWVJRbCpTU1OkUimq1Sq9Xo+RkRE2Nzex2Wwi8CibZXthQWzEsjPsbm2haRoPnjlLLpezVI6YMslEGk3TCAaDVtbJvr5nn8a1f4h8t8f74lDotFoUVzcIh6IcmTtGtVolFIywvbCMx+3D5fTQ64rS0263E48lWbp2k35PYyQziq7rVv6foUMoGOTGjRu4nE5Mw+DQ1BSKotBqNokOw043NzeZPnSIwl7BuijX19dZWVnh1EMPceTIESLRKKurq6LEHnRZXxOJvsV6mSc/+AOce/VVErEITzzxGJ1OjzfeeIOHHznLnbt3yOX2SKczSDbZwoYbhoEp7WPnRe7jfj6gaZqcPHkSl8PN3Nwc5XKVarWKP+4D3UCqVOgONAzThmHasCkO2rU+ToeXfruLxyUEV3s7NUx0TNlEtXvwenzk8hWOHZ1lZXmLUChCMBIWsestJ5Iiysh6s2GFrAL4vF66g76V0LX/0HUdh121xEyKohDwi0xPm2ynVmuIu9AQ2sqQN9EfaCBLuN1udNNke3OLYDhEIp7Crbqt+Pd6o0EsIQJTqtUqy8vL2G02IqEw/9M//QKXLgq16cTYOMVOTUB4HDKJZIxqvcYnPvEJPvHJz/Lt197k9//vP2R3p4iu60wdyuJw2EnG45TLZfb29shmhb1+ZWVFgGxlG76AH6/fRyaTodfrsbKyJrIyUUimssiyTDAUwzQlRkZGrGSvs2fPEolEcfqG79VwClfNN5i/f5dKqUwkFOHo3BH8XicOu0osGhRmq1KZUNzP6uoqMzMzPPTQQ1y+fBlJkpidnWVzc5PS+fPWgTQ6MY4pQa1RJxQJ0xnKmYPBIHt7e+KGo4jK2DAMvF4vBw4cGFay81bk/fd6vC9cknPTU+bFV7/B5uYmmUyGjY0NK1pe0zROnDhBs9lkaWHRuvuvra3x/PPPI7lcbCws4PP5rDXf+sYqjz32GNeuXePUqVNkMhlr/bdPy5EkSUyNk2kkSaJardJoNCwU3He2I/1+38oQ2NjaIplMMzKaZWN9C0W1c/KB07z11lu88sordAYab5x7k0BA2FQDwTAbG5vUW01ssp1Wp40k2ZAkcVH5fD4CPpGE7ff4WV5cYWZmhnK5ytTkQfzpAIlojH63x8riEqrdjt/hpdfpUCtViIUj5Pb2SGSEIk62Qb1ew0DoHXyBIKFIHNOQUFUn09OzNPvCkFQoFKjX66RSKS5fvozNZiMQCKCqKvfu3WO3KD5gsXBEtD5D0nQiFicWFmlD4XCYvVoVr9dL0Cci+eLRmIi28/up1WpsrK4BUK4ViUQijI2N4XC4WF5YJByOkspkh9FswvMxMpri4sWLKDYbboeT7c0ttjc3sUkybqeLXrtDOBSiYgiceXZsVKzbag1sNgfVWoe93QoDTSIYENyBeExCVVVrjqMoCru5HJVKxWqLgsEg8WiYbrfPkSNHOHnyJNOHZglEvBh9kEX8BK++dI6bN26ztbVFq9Wycht1XUe2YVVUAOGAD03TKJUKlAo5IpEwbpeDbrdNJpUgkYhhVxWe/9Cz3L17V2xzZJlTp07h9XoJDKu2e/fuMXvkCO+eP49zSFMCLPXlK6+8wuzsLJqmcejQIYrFItmZae5eElqfe/fuWbmSkUiE7/uRH+PazdvvZ/KSk3qjhepwcfvOPY4dO4amaVRrAmaaL5SGwzk3u7s5gsEgrVaH9fXN4YW+R7e7RiaTwe32YuoDnHaVkVSaV156mZ/6qZ+iUa3htKu4HU6+9eJLHDsm9tH24eHQ7/dJJBN0um10Q2NxSZRqZ86codlssrW9RzabZcQw6Pb7JA5OWXbbr3/tq9jtdp547FHOvfcu8XiURqOFaUrkFgTUtdVqCTGPTcZmE+7C/fKuXm1Qq9W4snmFo3PHSKfTzM0dZSSd4cLNd3C73XRbXcbGJlhfXaPaaxCPxsCQyJdrFMp12pqGJInciIFm0Bv0GU+JfENJVjg0PU2z0WZ1bY3ZE3NsbGwQjsaIxhNDUlCI3nC20O32SSbTDNDI5XKWcs+hqpYzdX+uI2zQCUu7f3JqWhC0dvc4ND1Lo1ZHtTu5ePEiqZE0jVqder3OqeMH8brc3Lp1B6/XP3T6AbKE6gCvR4SfbG+s02o2yWRSDHp9bJKM3W6j2+/g9DpptVpsbGzgdDqpVOu0Wj3CkZSInW+I9Zugdo1Sr9cFlMRmw9AM2u0ukmQjEApz/PhJPve5z+F1u4ZDZxlJgnq9x+rKDl6PsIe73W6e/b4nePaDT6B1QXHDoAV2D6BBs9FH13UCQRemAXpnQLMlZmSL9+fpD3oUiyL4aHN9mXKlhNfrZX5+3or1CwQCpFIpzp07ZylfU6kUtXJZbCMaDYLhsFiBdjogy0TjcWx2O+FolKvXrwvi2NYWiUSCYrHIkSNHuHDhAtFoVFRlvf73vB7fF4dCfzAgFotZuuxer2d57gOBAPfv3+fAgQPW/CAcDvOhD32ImzdvYpom0WiU9fV1NjY2eOihhzC0LlevXmVvb4+nn36ad999F0mSSKfTpCcmKBaFLuDo0aPcGHonVEXh1vUb1nQ96POTz+fJ7+6RTqcJzIb5+te/zg//yMe5cuUK9Dr0Om3iyQRgUCqVaHVaTEyMsrWzRbk8j6IoRKIhtIHBwDAY9HV0E5HjaPSHuPAOjZow2eyj286fP08mk6VarhANxllb2sDn9RL2hfD4/LgcburtDsVqjUQywdzx45RrRYrFIpVWC380zub2NrulOrNzR6jV67QHGtnJA9h2dri7cJ/Dhw8jSRKLCwvYkBjompD6FgrYJFkItTwe4QPpClGSfWiVBiyfQCgUwh1NEI1GOXbkKJqm4bSrTH9ymnffeYf79xdptNoEg2E2tjZxqg5KpRK1apWN9XUcNgWv24Pb7SYYjaEbBqX8Drqm0Wm28Pt82GQZ2a4gmQYGgC7j8QUw7Lahb6KJrpucOnUaj8dHMJTgz7/2V3S7LSLhJI8++jg/9JEPEAgG6fc1nB4FSYH8njhQJJud8fFxAmEF2QAMmfV1sYERytKyJU/fy+1iGAaZxCiXL19GloXtvd1pCoy7aicUClAoFMjn85jt5rDVkshmMzicdjqdFpOTE3S6bUZHR8hmM5x56AwgEP7BYNCKSwRYX1/n0Sef5NUXX2Rubg5VdVKp1KhW67TbXbrdLo888hjVanVo7Y8NM1DF5kGWZW7duoXHIxgYKysr9Aff+1B4X7QPp0+fMv/T7/+Opc1OJpN4vV7u3btHIpGwvOuqZKNULHLz5k28XhHcCVicwHq9zsmTJzn37ZeZmJggk8lw7Zrwyq+trTE5OYkyDGC9cuUK3//9349ig8uXLmEYBvF4XISZ1OuWR/7evXt4PB5ye1W+/0Mf4qWX/0r43qMRytUqjz7+CNhs/Lvf+i1GR0e5v7HOtes3KRRKVMpVEqk0lUoNZDvtVpdOr49iU+kPmlYis8shWhNTMxnLjg8TjqOsr67x8GOPCtORLJNOpwkGg7TbbaFQ03pWXPrNG1cIhUKk0iOEw1G2d3MEgyFu3rrDsZMn8Pv9wxi0EtMzh1haWhKrKk0nv5djY3WNTrvN9uYWPp9PbEWMFpVKhWpJDDFDwSBOpxOXw8nE6NhwfTzC+JETHDl82BIl5fdyXL16lXajSa/TtXI8dKVD0OfH6GvMTR/Godh56823GT0wSTyZwOH1YUgQcwnWQqlaYWVlhXK1gup0UiqVCEdF+zE9O8OB7AyGofHmW+dYXl6k0WoiSTZmDh/lJ3/i75HOjJLPlYnHo0haD7fbgeyCv/rmOe4vLPD6ubfo9frYVSfNdktQnxpiAOx0qezu7ojsTreDbq+FzSbCZh9//FHee+uKEFQ5nXzpz/4fyuUSr776LS5dfm+4rRAbJr/NRrfbpVoVr8Pr9yHJBoGAj3a7STIjNm5LS0uMjo7yxBNPkBji+x5++GGRL1oQgNl9F2at0WR6etoSyYVCIXI5UUErikIoFGJ3d5dyfg8QLUa73SYSibC4uEgikeCjP/55rt649f5tH7R+n2w2ixIIsLcsQjTv379Ps9nk8NGjYLezMz+P1u4yNjZGs9nE6XQSCAS4cuUKkUiEWCzG7u4uOzs7jI6OIssyu7u7FqNgbGzMYiGmDx6k2WzSbrfxhwP4fD5KpRJOp5NGo0EkEiEQj7O+sMDBgwcZHR3l3t0V9nZ2mJubs/pQw9S4dfMmhWH0e7lSotFo4A94abVa6LoP0zTxer00Wl3r99rAoNPVrXUqYN0VvvCFL/Ctb32L+fkFPvrRj7K5tU0qkWJza4PtbUEcVhSFXCknErQ6bXTDIBQJYrPJLK4s480XkG0qTz/7LIrTxQ9+5MPcunWLe/fusbW1RSKVoFKtitdcK7O7u4vf78fldFLI5anVaqK18tqsIaOiKFb2htftsWC6Ho+Hvb080WicaknE2J97Q3hXRkaEBH0w0On3NVSnIjI2EECVntGxlIzBYJCOpg+9H5o1id83T/V6PcLRCCcfOEUoFCKWTPB7v/d/4XI5KVcFaGTm8GE8Hg9PPv0c07PjIIPLGaXTgRdeeIHNzU3yhRKbO7tUqnXcPh9uj4NWu4tNtuP3BTFVH6ap43G7GBsbx+dzE4mGWF1bQlUVBoMe7753gYA/xvT0NP1Bly984ZfI5Xap1+v8z//8l9nd3eW1117F5/OidPs0m3ULdNtq1vEHherR5/dgYtBqN3n44YepVCriNebzBINBrl+/bg1gT58+zfb2NoVCgbHxg3Q7fWHLrtdFvF0wSCqZEQFJgTD5XBGvy8nC8DN88+bNYSUj4uu/c3j8nz/eF5XCyWNz5rXL52jkBBPxvffes7IlDx48yObmJvfv3yeaEGhrVVUZG81y4cIFUvEYvV6PZEIMt1wOJ2++dY6HH36Yd955h9OnT3P9+nV8PtETJhIJC53lcDiYnhlndVVYnjeG24WZqWkqlQo+X4Dl5WXcThf1bptYLMbq6iper1fIUUfFgOvixYt4PB6Rfn3nDuFQlLv372OaJusbO9hkOwbgdnmpNVsiJDQQY2e44tzPATQMwwrCqdWEUy+ezIhdfrXK5OQkFy5cYHJykna7zeHDgkn5wAMP4Pb6ePfddzlz5gxXL1/C5/MxPTXJ/Pw90qkUKytLjKTFh8au2oTibXmZkydPWqasQCDA7du3uX79OpOTk4zPiAtzeWGZXqfP7KE5XKqLiZEDJONpAoEAMjZ2ew3cbje1eoV0MsXVq1fQen3GRke4desW3/rWS0yMj2N3KERCYXxuD5sbGxY56MiJ48wcnmVjbwdd17ENhOW83W7TbrcBkaMAQldSKonDNxgRlUs8nqTRbmHoMuFolN7AJBZN4vUFmJiYFA7MkSAejw+/x4upG2BIBIJ2zD688Bcvs7G2LpytniiKojA1dQCX20G5nEd12Jmbm2by0DjmUGfSbDa5du0ajUaDVrPL7Vt3KZUqbGxs4fX4aDbbzM3N8bM/8zl+8Rf+yTC5qY026PHAA8fptts4nXZssrCtj0+mLUFYPBpjZ2eP8ey4mNvYxGB0fFTc2FJjY5imyeZ+1c0aAAAgAElEQVTmNpGICMdZX1+nVqvz3Mc+xsK1Gxyanub1N15ldHSUUNDPjRvXyKQStFpN2q0GP/2FX+Xmnfn3b6Wg6zqtQsGyGO9juVRVpVgsMjIyAoDdKfzkly5dwuV0MDk5SToRZ3FRbCUajQaqTyUSiVipzna7nbm5OYEX29sTWLfh+rFarTJ96gjlchmbJIg1DocwRe2z81VVJZaIY28KuXEuJySkk5OTgiEYCjEzM0Or1SKfzwuM+NauFdWlGzLtfhdTkhj0dZweL36/n92tXULhAIqicPbsWfx+P+fOneOdd8/T6/U4ceIEJjq3b9/G4/Hw4IMPWrvnbreLx+NhYjgfkWXZmrvE42KQVK2VWVkRtKfl5UVLyebz+eh0W+RyOWsmsO+wGwwG1Go1/EM2hdfrxRiI9alhiGRsh8NBvdVELhboDfo4FCdrObE18nm9uFwugbBzChfo+vo6sViM8fFxEinBnUQ3yOdymKZJKpWy8Px+rw9ZsVHY3LMQ5vsMhv1sTVmWLWdlzB6zeJrT07OcOHWadDqDPxAAGSQJen3oduH6rYsUCjeplitMjI/j8wZIRkXO5oc//kFhf+mBDtgcMOhAu6Oj6z2uXb/Kl7/8ZY4dn0PTNL72518hEokwNzfH5IEpnnv2IX7oYx/H5VPJbVcxDIM//IM/YmFhiS9+8Yv8+q//Os1mk3ffvUC5VOD+/TsEfD4cDgWHQ/wMQqEQOzs7OBwOJsYO4PU2GQwG5HI5Zg5N43Z7WFtbE05KRQjDRkezVKt1NrdE+FE8HqO8ucnYWJZyqcBTH/oQ969d4YUXXuDhhx8CQ7OMee/7SuH4kVnzxS//RyqVCqVSiYmJCUuSGRgZoZPPiw2BLlMoFAS5yOUkFothakL40mk3BTI9kWRzdYWNjQ28Xq+ljLty5QozMzNWurPf72dlZYV6rUgymaRWa2AYBqVSWbAMNKHcm52Zw+FwUKgWmT5+nHo+L+62djvZbJZWq8X29rb1A9NkmZXlNdY2N9na2mIvV6LXHeD1CyiHwy3k0npfGJAikYj1PiwsLBCLxXA4HESjUeG2tIkoso985CNcv36daFRIbVOpFC6Xi4WFBR5//HGuXr9mId3mZg+j6xr1SpVYPML66gqxWIzbt0Q0eSaTYX5+3oJwOBwilLbX6/Hmm29afEF/xM766gbNZpux0Qn6/QEg4/eEiMeT2GwK9XqdsalJZFkWrcIwnPXE8aO88MILbKyv8sgjjxCLxRgMhKJR7w9YWlwE3UDHZPTABE63CxQRvVfZLVIfch/3FXr7wNv9bMdAIIDDpWK32wkFIzidbpqtDq1WmzMPPcoHn38e1QXFXId8Pk+puGuFBu3t7dFqtdjd2kZVnfT7gllgs9moNzvD6kNYkze3Nuh0WgSDfgaaQMI7nU567Q7JZHJoBe9ZKc+lUglDh5MnT3LkyBHOPHiSw8fnGLS6bG6uc/G9dwiFfLz3zjtUqyUCftGS2R1i1pXJpOl1uwQCAZYX7pPJZDg8Oyta0FqVGzduYFNdli6h1+vjdrvZ3cnx9NNPU6s1uHNHkMSn5w7T6/XI50RbfeTwDM1mg8X7C/ziv/w33Lhz7/1bKQCsrq7idrtJpVLcvHmTbDZrrfLC4TBLS0vMnX2czc1NTp06xcb6GisrK7TqNR5//HG2NgUPcWH+PmcfeZhCoUC1WsXtFsKYj3zkI+Tzwiu/srJCPp/nxBNP8O7LLwxVhjrJZJJsdpRyqUomk6FUqhCMhKnX6yJIo1y2cgU3NzcpFosUhhVOr9dDkiRcHg+RSIT1YW6f3W6n2xH8hH3AJkAgEKDVatHr9ahUKuIAmp0lFosRDot/c2Njg3hyhGq1wgsvfNNy5D300EMUi4Xh1Plhvv3t13j40Ue5fPkyjUadnZ1tzl94C8kwURSZVCLJ1vYGU5MHKZVKDAYDJicnh7mKKvV6HYfDQaVSGQaTpsSAN+oCQ2JlZY1IJMLOzi5IYHc5CEbCYn0WFi2AqqqUCwU6nQ6pZFwARTVBj3IodrwuJzV9QLUkmBKdYRtlmqbQQZgGhiKjqHbMoMC67ezsiPfU5WJmZsZ6r/aFNycmTnD8+HGe/MDT9LUBqt0FThmzC92BQb2kEQi4CIfHWLjTo1qtIhsmE6NjGIbBT3zms7jdblZXV7l69Sob20KDYrfbrcjBdEZkQt6+fZNQKEI8JtKW3KqX9fVNq3pTFGWYUC3s/esby+zsbnDr9jX+zk/+BN1ul50dsSJ86qnHee6ZZ/j6179Koy5kyKGIoHC53W5UxcapB05Sr4j09FdeeRnD0Hji8cc5OHUA1eUmk85y/vx5KpUaExMTqA6F3b1tlpdWh+BfeOONNxgdHeXQ1CTVatWaJ4yPj9N/v4uXjs5Omy995Q+E8q3ft5hz+0O/XC7H0WPHuHj5Bpom8g3HRrMoisLBiXHefPNN3C4Hx44dY21lFckm02g0OHToEAsLC5w8eRI5EKCTz7O0tEQqlbJ4iXduXCOVEnvtcrlCrdlgZ3uPUCiCZJMZyYwSHhvj5oU38fl8lMtl/H4/r776Kk8++SSKopBKpURuYy7HbqnE8tIqS6ur1Ot1Nrf2qJRrlCoVtIGBZiIESwFhqNk3p7jdbrrdLrOzs9ZKqtPpkE4LBmUymbSCZ8+cOWPNWU6cOIGiKHS6fY4dO8b6+irf/MY3OHnyOINuj4WFeWLRKD6fh0xK6PDdbr9l6+52u2QyGatPvnpVgLedTifF/KYQi2k6it1OtV5HdbqpN1sMdGGPHp+Y5OjBaQxdH4p5GnRabaJhoa4zDQ2fz8czzzxDPJ3i6qXLrK2u4lDs9DpdkukUE1MHWd/axOX1UG3UMbqa5avYV+jlcjk8Hg9TU1PioO12GXQHwlDW1/EFA3Q6XZaWl/noRz/OyVOn6ff7XLp6hUK+SDufp1qtslfIo9jtyHYZySaTTKd48OxZHE47pVKJra1NUqkUH/zg8zidTu7fv8/y0irXrl3DMMT68dChQ4yNjHH06FG8Xi/Ly4ucv/Am6+vr9Ps9XG4HLpdIDNvZLiBLYpCczWYoFnL8g3/weSqlEnfv3uIzP/ZpwtksX/2jLxEOh4nFojTqVSYmsmyur1Ao5hjNpmm3m+Rzu0QiEbJjk6ytrWEYJul0Gl03KRbKlMtlRkfHUVVhbLu/vCq8ErrG2UceYXVxkXw+h6Hp/OTP/wILK6vv3yzJ0yePmZcvn+Py668zNTXFzo4YOM3OzrK8vGx9QManDjPo9Th//jxPPv2UMP5UK8LlqAvzx4HxCeRwiEGpZEWlr6+vk06nLXNULBaj0WiwurqKx26n3W5z9oMfZPPuPSq1GrKssL27w9zhoyTTAui6trrI+Pg4Y+PjbG9tsbOzY7kd93MaookEuWKRjfUtvvr1r2Oz2bh85QY723uYkoQ2MNARqcHNdoNut2uVwvuchXA4jH34mux2OzZE2Eg4HKZUKqFpmpWGXCqVrJyBVCZNsVik1+uR29uh0+mQTacYHx+n3WoIRZtTgGhDoRhut5tYLDY8JNzDbYnOlStXyGQyuFwuVhfvgSzhdHuYnp6mXKuL4WggQLsrtimyYsNjOEin02ysrVCr1bBJQpk4PjpCv98nn9vlAx/4AO2Bxu7ODt1WG1M38PmETwO7Da/Px04hh01RcNqdVhXRbDYtJaLIPnBZK7eQbzg7OjiJ0+miVq9z6tRpXnntVTrtHuWaSOPSNA2lpYk1s2pDk8RGw+5S8QcD1FsNUdG4VDLp5PCQ9qKqKjvbe+RyOR544DQPnjnL2toad+/eJRqIiVSvRhXD0DAMjUg0zHPPPcXExARXrl6iUqmwtLTF9WtX0TSNeDyKNuhx5MgMi/fv8/TTH+Dw7DTr6+v88Mc/zcsvv8xTTz1JtVJibW2JSinPkaOHqZQLuFwOLl18l09/5jPM353H7/fTbLZxOBxUK7UhXt8cgoIhHA5z5eYtstksGHDu3Dk+9YlP8PbbbzOWHeWH/s7f4/b8d8+StH3xi1/8//kI+JuP3/y3/+sXZ0cSPProo6ytrQkDlNOJN5Gg22iQnZlB1nVy+eJfk22cTuq1Gv5IBIeiUK0KhHW9VicUDFAtlaxU52q1SigUAsSkd21tjYMHDzI2OUktl6dYLtEqVYhEo4wfmkVRZMKhKB6fl35/gKI6CPq9GIZBq9m0YuNTqRR+vx+HwyEGcx4P3lCIeDTG1nB9pBtQKVcZaBqmCSZCUm1T7BiGic2mEAqF8Xp99Hp9XC433W4PSZKFHdzltfIB9/bEAG6fBr2PdEun05hIQzZgA5/HR6VSpV6rUa1WeObpZ+n1umxubOJwOHE6XZaJzOv1WlmE+2SodDrN7u4u9WoFXRO5mv5AAFV1kEgmKZdL+P0BksP9dy1fJBwKDrmLmpjiqwqqYkfX+6iqyrEjR6nW65TLZSQgEY8Tj8ZwOB20Wi0KpRK+oBi8ypIYgu2HAO+7NJ1OJ3Nzc0xNTdHv90mmRpCGs5D+YECpVGJja4tao8G9+/dottt4fV78gQCKIaE6VPr6AE3XsKk2QmGhKG11m+iGRrvdtMJiK5UqHo+HI0fnwJS4desW+UKOWq3K8ePHcNkdFAp5RjJpJiZGadRr7O7ssL29yY3r19EGfc6cPs3jTzxNtysqvUajTrVS5siRw4yPjfHNb34Dh2qnXq+TzmQ5efIk7733LslEnEQiRiQcIhwJcf3aVXw+L5o2wOt2Mz5+gPXVNdqtDqlkiuWlZbTBAK/by6HpaUqFIoV8nlgqxcjICP1+j+xolnZTZE86HQ7+5Kt/zs/83M//2ne7Ht8XMwUJifHxcavfrlQqwi49DIgFEbftdrvZ2NggEonQaDSEvNWuUCqVyOfzHDp0CJfDSWs4S3AlEtDvMzc8GHq9ntDoB4PYg0HodDA0kwcfeJArV65w9ANPUVxcJDo+QbdeQzfB4XIK7cPICNubm2RmZ7n33ntiXRiPc/PmTc4+8wz0ety6do2ZY8f48pe/gmEYPPHEE9xfWCEUjHD95k3qtSadviDyODx+ZMWGZFOoN7tiah+K4XC5kGx9a+oe8kTodDoW0Wef6z8YDEilUjjUeRyql5XldZHO3TPY3VrD4/HgcthJxDN8+ctfI5/Pc/rUSSsEt9VqWZJaTdMsUdd+aR4KhTAHghWh9XV2t3ap1WocP36cZx99AtUlJMbPP/kUr730bV5//TXcQzqzU7HR7/ZotxqC1CTLNGs1kZxVqzPo9dF7AyqlspUJGksmuHXvLqpTTN+/k4qtqiqLi4sYhsE777xDMBjE6/Xy1oV3ADhy7JiYHXk8dLtdRiYnOH76FJValcXFRXRdJz4qWB3tTpNmu4HdbqNcLWFv1ZFlA5fTBTaVTqeHoqgUCoVhcLCdZqtKIOhie2eVUqnEXm6dmD/B8ePH2dzcZHdvi2q1TDIZp9lsUi5VKRUrzN9bIhSN4/W4OX36ND/2Y59me2uDd955i/zengDSDAaMjY3xp1/6Q1wuFx/+8Ic5d+7bnDx1gtFDU2AY1GstbLKKods49+Y7AvsXi+F0ulhYWMTt8g6RbPCX3/xLJiYmcThcbG1vEItHSI2Psr6wZIXBNGrNv/V6fF8cCkgSBw4coNlsEovFLLNOIpHg8uXLREslotEowazQBfT7fasH7/V6KIqC0+mk3W7TrDdIZEfY2djAFY2CJvT72aFLbGFhgUOHDoGmsT10Sq5vCCjmlW+9gs2uojhduIcp04o/iKNUwdA0MhMTlFZXmX3wQYqrq7j9fqLRKPT7DIZ9f71eZ2pqik6/z8rKiliTqqoV6rkP3dRMxSLwptNpwuEwk5OTOBwOfD6fCImJRIgGEni9opTdt7s2GoI+nc8L0dDp06eJJeLE4xEkCVaXN9jYWEPr9ckX9tjdFuxAv89naTb2cye63S4+n498Ps/o6CgHDhyg1+tx7do1Al6xN9c0DY/NRrfT4f78PJVCXkTSV6vQ6+H3urHbbMLj73JSLBZxOgTTwj5cIZbLZXomwiVpV4ciKLdI2m418Ph9QpjWbrG+vv7/MvfeUXaf9b3u89u99zJtT++jkUa9WJa7ZXDDNoZjCKbYYB8CmOQeICShZOViIJwAoYSSY1MOwWAH4gI2xl0SsiWrjaZpet8zu/defuePd88O68ZwcnLvXcuzlpdtyTOSR7Pf+b3f7+fzPPU5SyqVqq8dt3Tr+XyeQCDAvfd/lNXVVY4dOwZABVkM/txO+gYFquyOO28nl8vx8x88xsLiPNdeezWyXGFpeYFKKY9KpcBo1KPWKEVSdGWzfoULBoO8+GKAoaEB+vp7ePXVkzicVhxOK1okzpw+yS233MJvf/s8hVyOdDKJXq+nkBW7TZ/Px/KGnyOXH+ZXv/oVP/iBn21DA3zoQx9gbmaGiYmLVCslzp07h9vrwuVycP78GcxmE3Nzc2iUChoaGrj55lvFatpgpq21A0mu1J2Q5XKVVCpFR2sHm5ubFHNFVJKCjtY2HGXhIdm+/4C4hinV9TDUH4apvUlmCrtHhuXv//3fUiwWMRqFIMRqtdI1MMDJl1+mqUkEOxzuJpR6PVQqFLMZQqEQqXgMj8eDvgbGWFlaBoVE1/btYkFtMJDZ3GRxcZGhoSGR+KoJPgKBAKp8mcefeIpmXwuhSIw//eQnmLp4kYH9+0gEgpQq4g9gc3kWo9GIx+NBp9OxsLDA6uoquVyO/fv34/R4iIXD2Ds6eOXpZ9EaDPT19TE9s4Db5UWt1aJUqFn1b/D6668TTRTrgSG9Xo9ara5/0edyOSYmJoSpKCqyG5lMpj6Jz+fztLa2cvLkSVpbW0W+o/YYmkqlcNjsqNVKFEClUkarEcSngb5+KpUS3kYbra2tKJVKnn32WSFaNRpxuwUcNJ/Pi1SjJKrR+VwGqSqTTYs5RntLMzqNuDIdPnyY8bl5Zi5NU6mUhF+xxnfQ1+jbZpMBk8lEKJmhUhLCl3ztUVapVOLraKdYLpHIZ6kik05m6oeCwLppxK/b3i4O1HKZsbExkiUFvX19TE1N0d3Tyb0f/CBjY2OcPHWSEydF3qO7u1toCf1xcvks1XKJO26/hW3DQwTWhUM0n01SKZUIhUL4NzNksincbhcmswGLxYDH60KlkpiYHEOn05BOp3HoHEiSAqPRSHdXLwMDQzz22C+YmZ5Dq9XR0tKKJEkU5BI333QjExMTXLhwDovZiMViYGlhgTvvvJ233HA98XiccMzP888/z549e/CvbdDX18dg3yBLS0sU8wVAwuNy1+LmBs6fP08ikWDnyG4uXryI2+0lGBCbsNZWIf/dccVuUrEYo+cvAtDX3YdKqSWXzfLWu97DhfE3bkm+KQ6Fof4e+YmffJ9SqVSvsFosFqrVal1Jn8lk0JuEqCUWi1Es5PF6vVw4ewaLxYLH7cRoNJLP5lCqxXpoa3C3VWy57IormBobo7e3l1gsxtraGvlwHKVKgFsKlSq7Dh4Qs4qmRsrZHOFolGq1ik4SgppSqUR7ezszMzP1x2ydTofRaAQglEjQ2NBMrraNMJpsrK36OfX662z4A8wuLDI/P49KI0AnNputPqNQq9V1eYckSWKNmRcVaIPBgF6vr0tjmpubmZmZobm5mXA4THOLOBwkhUwxX0CtVmLU6ymXS+g0WhxOG73dPSwsLFAoiarzVr23UqkQCATo7e1lfX2dVCrFwMAA+YwYdlKVyaaTGPUG1lZWKeQyNHuFezGXySCZLciVKrGYsBnrtGoqxRKpVBKzyURbmw+NRkO2AtWyOGRzKVEUSiQS5MslfG2tFCWZaDRKuVyth6dUKpWQDdfgM1sHmMViYWYtRDQa5cCBA2wGA5w69SpdvT285S1H+d2rJ5mYmMAf2MRg0JNLlFEqFditZhq8TixmE/FokEavhz27Rsim0xw7doxovEIymWTHyDZsdguFQoadu3aQSsWJxUNotRrOnTtHPrplRNeRTKQpl6tcd91RTr32OoVCEaPRjNPppH/7IKsryxSLRcxmI6VinlBogwP79jEzM8WVV1xOe3s70YSYF0WjUYx6A9lsnpHhEdbX1ynkRHHusoOH0BqNjJ45SUNDAyqleHpUq7Vo1NpahTtRJy2dmjglvpnanFSrVTrbOrHbXCTicW69+/2cuTD65j0U+ro65Ue+/012XXEFkaUlIpEIvX19jF28SENDA+72dmbOn0dRKdaDR6lUql7c2djYoLW1VfgGanKOUqlER0cHCrOZcg0qsQUFSSaTxGIx0TeoKLHabczOzjK0fZi19XXUWiEmyeRzSFvk5nyJqakpHC4nVqsVZY06tBEQd0Ob08HGxgbBxVWqyFitdlQqFdMzc8JTsRHA7/dz7MQJnE4nY9N+vF63IC9ZjPVVViaToloVZOd4IorL3kapVMLpstfDN11dnYTDwrjscjuYnZ3F47KI0phaVJvDwQjpdBa1UkNbSyulUkWEpewOQhtzYksRDNPa3obJaqFcER0ET2MDCqWSfL5IPplEoVDQ1t2OLMvMzc2QTCbJp9NIlSoKScbjdFGQFGi1WsoFsVJ2OZ1kMhnma5Kbq45cIbIX6aw4jORqHYG3RcAqFAoYzeKgUteSkUgSuVwOjU54G0vViqAImYwUCgXSyRJ/8zd/w6OPPlrvkOzfvx+Hw8HFixfx+/3ceeedNd7ACzXRrwhBWaymGglZbCisVjMul4vm9lb8fj+BDVEmctlE2UglKZArVbRqUR+vFsNsBkXbVqHU4nQ3IClUHDx0hAMHDjK/uExPTw+P/exH4grnX8XX7Aa5SnOjmx3D2/nXX/ySbQPbWF9f57qbb8Fms+Hz+Ugmk0xOTiJJEkNDQn/ndrvJZrPIskzPzh2ceeUV9BphMEvE4qhVKpqamlhdWiYYDIpymqbM/v37OX9ulFwuh8fTgMfTQDAQ4va772Vy+o2t02+K7cP3v/edz//tlx9ErunTtkCqkiSRyWRIxwTCy2Yx0dLRgX91ldbWVqxuN+VCQXwyVlfrwzlPXx9GhcgqqGQZtVZLqVhkdHSU1vZ2VpaXazx9NVqdgXA4THt7OxfHxuju7kZVWwlabeKw8G9soET8ATV4G1CqlKytrmIym4lGooTCYUqFIrFIlGqpQDgcoaHBw8LCPJvBDcKRIJVqhc1Nfw24EUapNWC3W9HqNMTiYZqaGimXi6hUAqFus1sE+l4nYbXpqcpFlEpwOCxYrSYBUqmWicWieDxuKhUVmWyRYr5MOpUjncyi1xlIp9I4XR462ttRqVTEEwmq5QJICjQ6LYlUhnKpQjKVJJ/P09TSTLFYZGVlGb1GiyxBMp2mVClRqcqolLW2ptnMjuEdKCUlZQmSySTJRAKr1YrX4xF4uZUVkfAri2CYSW8UiLZKhWKxSCadJl87DJRaNflikWK5TFUWc5NKjdlYKpexWCw43aIPk0ylaG9vx9fSwU9/+tP6NwqDwcDm5iYXLlyol4nSaaFt1+sNyHKF97znPWRzIo/R29tDqVRi27ZBotEoBoOB4OYapUKeSDDAYH8vPZ0d5DNpVBKUSwUUVKmUi2RzaWQU6PQG9EYzJouFtrZ2PN5GXnzxRbK5PLOzs+SzKQwGPdVqmXIpj0KSWF1ZYmF+nr179tDb3cvevXupIpFJp1EqFJiMRtwuF/sPHuT4K6/gcbvxr6/j9XjY8PuZnZrE5/PhsAnBSzaTQYI6wi+bzbKyskJTSwPBQIBgIMjVV13FytIKZqMZvU7PTx79Bf/1Tz/yhtuH/yOX5P9fb+l0Gv/0NJLBwMLCAkajEavdXpN1ilOyvbcXk8UCCgV2pxMUCvLpNAqVimK5jFxLE1rsdoKzs0TjcSqyTGGLlLy4yMDQEBcvXqShqYmp6WlKlQre9nYCgQDrm0Lwevr0aZxuN3a7XURF+/po9fmwWaz1gM/y4hIajYa1tTU6OztF+WhwkI6ODg5edQWDQ/0YjDqisTAGg55du3Zit1sFkadawmQ20NfXy/LKIoWi0L9rtWqcTnvtIBCpQofDgdGoI5WKMzDQTyQaZHVtmWw2i04nIr8eTwNebyMryxsgq+nsHsDlbCRXKJJOZ2lpbsXr9YJCgV6vpaHBg85gFIp3pYCtblXTC+USqVSKcDhMR0cHKpUGWZYJhUJEI2JF5/J4xe/L/G/V9a3O/la2oFAo1GcgitrhnM/nKWZzaJQq9CoNUk0+C4BSgaRQIKmUKNRi9l0ul0kkEhQKhfp2ZGumUq2K4ZpOo8VutRGPxoiEwug0WoYGBnnm109z6823YDGZeemFF/ncZz7L2OgFbBYr+WyO/t4+3nf3e3E5nLidLixmc/2v6UuTRIMB1EqJarnI0uI8dquFcrlIqZCjKpdRSDKFYrkGtRVQYJtVcB01Gg3XXnstBoOhrrW7cOFCPYnZ3NyM2+1meHiYeDxONBplaWmpFkYSIuKtKPqpkyc5cuQIsixz+MiRuk9027Zt5HI5nnvuOSKRCDMzM0QiEQKBAJVKhUOHDnH48GEB6a0IiO/42CSZmn8inU5R/SPauP/t9UGSJB/wY6ABqALfl2X5HyRJ+jzwQSBU+0//Upblp2vv82ngHkS/5GOyLD/7x36Nwb4e+cmfPCzy9s3NUCiwvrhYfxGGQkKXpdeo67y5rZlBuVwW9KKau69YLKLX60XKryZy7evrIxKJ4PT5SGxs1A1OmUyG+flFdu7axerKCuVKRcSph4ZoamtDLpdYXFxkdnaWvu4ewVUIBNh22WXkAgFiCaGAU9aGfGq1mt7BHlI1zFk6nSVXyDM5cQmFWkMqleJXv/41qVSa42fGMer1KJVKvvzlL/PII48IRNjmOgqFgu7uboLBICDT29vL6dOvs3fPQZxON/mcwKpfvDiO19tIT3cvXd2DdHV1MbJjWKwXzQqQYfT8BC+9+FtUKhVD2wZEmzESwWKx0CT9maEAACAASURBVNHVzhNPPMGZM2fEgVR7QW5xLcqFMlVAZ9CjUAAKiUI+S6VUpsnpRK1SYdQbqKoUzMzMoFEKBLxBrxd4vOUVNjc3mb00TVtbG51eH3aXU0Sr8+JzU6QqOg9qJVqdjngqiV6pFYalVKp+3VheXkal1VAoFHB53AIIsxnj/vvv5/nnn0ehULC0tIRer2dtbY39+/cTiUQYGBjg2LFjZNI53G43rW1ib69UKrn2uqtZX1/nxIljeL1e+vv7UVNmdHRUQFOR6psjrVZLOllzcGg0aM0mACwWC/39gwwMbkOWJcwmK5cuTRNLJgBwWAzEE1GGBvv4nz/6J7KZNDqNkAht3zaMXJYF4l8W6cStOdWePXto6Onh7Msv4/WKqLWmhuQ3WS34/X5cdgeFQoH+3j5ePXmSoaEhGj2iGyLZbBz/7dMolUqamppQKsXwN58vsmvXLoYvu4pLs/P/6e5DGfi/ZFk+J0mSGTgrSdJztZ/7mizL//3/cYgMAv8FGAKagOclSeqVZfkPuq9LpRLdPT3Mz80xU+Mt2mw2crkc3d3dNDU1sby8jNPlACAUCaNWqzE3NBFfW0Ot1ZDKpOs9hH379omwi0FPOpthMxgQK5z1NWw2G7/73e/YvXs3/s0NWtvamJubQ6EQ2jSz2SyGhuUygY1N9Fodne0dNHoEPrytrY2p116ju0bf3djYwGA2MT8/zxVXXAGlIul0mkuXLgmoxfwCXq+XUDRSL3udO3eOg/v3Y7fbefDBB7nnnnvqzomurq66a1GlUuFyNlDIV/G1dJFOFYhFlkmlcnR39XDwwJXsHNnNW996I1a7RLkMv/zlb5ibmWVpeY5oKMz1113N+z5wD1arGUlX8zAkcoyNjfG5z/4Nu3bt4tbbbiMUCjE2PkowGMTtdrO+vorX2UxzSzNGs4FwNEIul0FSqFAqZTR6HalYnGK+gMEmcGp6k4hub+Ht1Gq1gOnWYCCBDTFM0+h1yAqJbKlAWQEmpx2zwYBKp6UcixKJp+stPoVCQalUrr8YFxcXUdRgs7tHdvKjh39Qb3ru2bmLaDSKQgapKlMuFLl4/gJXHbmCl19+GZ1GxfzMLJIEHo+Hs6df5+jRowT868zPz5NOJHGYtQT86zQ3iBdioVAgnU7S2NCNUoGocktVtDrRqTGZLSApSSRSHDhwgNdePU1jYwNtbW0kk0lMRg2RaIinn366jrGTJAmPx0M4HKbJ20QymcRotaFSKHE5hPBldXmFaDiC1Sx8JamUSF2WCkXCiRgdHR2YDaKuPzo6Sm9vLz6fj+DGJpubm2IGkcmI2VRM/PelYhGTQSISCv/RF/x/xBC1AWwp51OSJE3xBmr533u7FfiZLMsFYFGSpDlgH/DqH3oHnVZHqVjEYrHUQSdmswCUrK+v07ljhyDOJBJEIhHMZrN45E2kyOWLVGMJqrKETm8kEAzz/Asv0d7eTiaTobu7m0KhwPr6Gjt37kRpd9DU7CMciaFSa9EZ9FRjUVKpJDuGt9fLQZjNmFMpofZqbSWbTaPXa1lfWaa7twf/+irexgYCm352tu1n3+5dTI5dxGrW09QsFGWPPPJzhndsZ2J8isuOXMGxY1+kUq3y7W//I9mKmo9+9KPceuutgmkYCOByeaiUJZQKLRazBZPJhMUoyDx2S5X3v++DeDweDHozKyt+Pvzhj7C2HOd/fP9nPPDJ+9BoNNxyyw0oFDcQi6b5p3/6Hh1dXZjMFk6ffp3f/OZpCoUCw8M76O3tRmMw8cxzz6HXaQkGN9HqRLYgFg6hU2uoSlCuVlhZXUepVVKsCNO0WqUhm82jUKrJ5gpozWJmsLEmjMdytYrf7yebzgg3Z2MjbW1t6CpKMvmcwL7rdKipYjQZAElIfmtXhOhmmGg0irrWipxfXMDlchGJx+js7GR1fQ23282ZM68jSRIdHe1YLGaOHz9GIpGgtbWV+fm5uhNydXUFl8tFIhFHo1HjaxVwYKfLylNPPYFer+Xeez/AsWPHiG1uMDy0XcwjshkWFxcpFstMTk0jqQRX0+V2ky0ruPzwFbjdboYGB9HrxCr98OHDKJVKTp9+nVOnThGPBZGpYLOaamlOGYdN9CdWl1fw+/3Y7XZ27xZcC7dLbMt27drFhn8Ni8WCXC2ztrZGqVTi0KFDZIriaSIeEZux9vZ28rkcc3Nz9AwM4u3vh3icpu4uxs+eZW5ujpFde1GgJBjcJBwKIP2RnML/UXhJkqR2YCdwCuGY/IgkSXcDZxBPE7HagfHa773bGm9wiEiS9CHgQwBNDV7UJhPampX49++kbrebciyGo7GxDt7Ytm2bKOyEBR14ixXQ2dlZ3+NvO3iQ2XPn2NjYqJN9JEmiEo/XtxBbM4uGhgampqZYWVlh+/btnD59mo72dhr7+6mcP8/U+ASNXk89XffS8y/Q5GvBbLWwc/9+EjWzL4g0ZlWW0Gq13H777fz66d9gNArS9MiOnbR1tHPvvfei0NuZnJzEZLKQzxdxu93o9UYi4YT4wnN6BBimoGHfvkPcdONNbGwEefLJXzM5McPk5CRdnd20tLRwzz0f5PA1g6RSRX7w43/mwtlzmMwG7v6Td6NWq7ntttvp7e0lGglx5MgRiqUSX/ryV3C5HaKSm06KR2KNjnQiTlGjYWhoiHS2gt3mIJVOY7XY0enEI2xwfZ219XXkahWpXEVt+DegazqdFlr6shh4ZTKZuo9DUZRBIb4YNQY9uUKe9t5ussWCKEMlE2i1Whan58V2Aur9iC3M2JY52e/3o5XENWN1ZYWhoSE6aqviDb9f9EnyeQr5PCajUbgwZYE0UypArVSxvLiEwSi6JU8+8QRXXnmE30UjnD9/Ho1OfB1aLBZaO9pFszOfR6PV4nS5GGzrpX9oG26HE29zI/lUnsXFRcIBUbp78cWXBGpPp2Tdv0pzkxe3283mhh+LxcL09DQWk5mu/i4MBgPj4+P09/czPDyMcDpTb9FuMTueffZZTDYb8soKU1NTbBsYrM9dHA6hDdxcXqZarbK2tsbwjhF0Wj0NDQ1Ui0W0WsHHdLlcKJX/H4SXJEkyAa8AX5Bl+ZeSJHmBMAJP8bdAoyzLH5Ak6dvAq7Is/6T2fg8BT8uy/Is/9LG3DfTJv3n0J6RSqbpmfG1tjcbGRsLhMJZactBud6A1Gjl76lSdy18sihBQPp9n+/btLCwsCBpNqVRn1+n1enFHrtGWtnL/RqORqiTXH+sUMsxcmmZtdZVDhw4R3BAdg0ZvAxfHzmEwGDAajbS0tTI3O8vE1BT79+8nlUmL35/TyeriCqGwQJw1NDSwUHNVvO097+XvPvc5FpdW2NjYII/4fUSjURx2FxaLFYvFwsEDl3HXXe/GZrPy7LPP8zeffxCXy0V7ezsOh4O9e/ZzzTVXYbLB177yMIFAQBSrTFW2bdvGDUePsr62wZ898AA33ngjH//YA4RDEWanp1msNTdfeOVlLCYzWp2GXEYUmLK5FFRl1EqhF8tkU1jtzbg8bjL5HDqDjlAohEQVh9VGPpmEqoxSkqhKYhCoVogKeiGfp1KpkEokKRQKDPUP0NHRQUuTD5/PR0WukisUhJ/AZMRoNhGMhLkwOopSqeTixCQ6nY7mlhbW19epIrgT65uCeaDV63jyySfZP7K3nl3weDxMT08Ti8UIh8P09/ej1WrR6/VUKhUkSUlvbzfj4+M4HDbC4TBKlVTrxQjiVF9fH4M9A7hcLp5/6UUqlQrFcgmtTofOaBCy4FYfIyMjWB2N6HTC/mXQ6WmsEb1eeuEFNtf9zMzMsL62Rji8yb79ewgFN7js4G4K+RypRISWpmZCgSCVYgWfz4dGq2JkZES0P0slLl26xG233cb58+dZWFhg//79BAIBLl68yI79B3G5XGSS4krhtDuYm50VV1+dQPyVy2WikUQt9NVKOBxGo1WTSMQwW4z817/8WyZm5v7zPAVJktTAL4B/lmX5lwCyLAd+7+f/CfhV7V/XAN/vvXsL4P9jH1+r1VIqCWvS5uameHEcPMjSkpjyt7S0iLRfIkFydZXG5mamZ2cZHBzEptHU75+jY2N4vV4ytTt5vlikpaWF+fl5kskkNpuNarVKd28vAKvLy/i6O8VvQq0mFwjWXQ8Gg4G2tjae/tWv8fl8JGJhcDjq2XuDSQwrT5w4wYWLoxSLRY4ePcrKop8b3voWnE5PzZWwzOrKCv/3X3wGq9XK2tqGIBAXijQ1NWG3ufj4A3+O2+3mm9/8No//669ZWw2QyeTw+Xw8/IPv4PV62dzc5POf/yzTMxd4/Kn/id1uZ2BgAK3BytGj7+Dvvv5VItFNQpENdu8d4IP330MmmUKtBbfbydRUleWageru93+At7/9KL9+6gV+/shP2b5tkEI+w/mzZ7j++usoFousri2j1joplcTVIBAS7MY9e/aQjsdIlEsYdXqUMmQL4hBwNzYRDAZr2xEdg4ODZDIZ2traBLa/Ck6vB4PJWL8jb6n6csk0lCts+DdQqVTMzMyIirNCQTQqroypVAqr1UqxWMTj8VAti4OnWCyyvLhEg8eL2WgSbohcnlwmi8Ihsg65XI7lxQUaGxuZnJigo6ODlZUlisU8pUKejrZ2xscuMntpicbGRm6743aWV1coVso0NTXR3d8notZGA2azmUpFWe+K5GpPRJFIhFwuz9raGvNzc7jdbgYGerA7rLT6mrh06RIjO7bT39vJhXPn2b1zF0adkVAohK+1GZ1O9GzUajVXXnklzzzzDLe8612srKxgsViIx+McOXIEg0MQwvIZoUV0djsx1UjNZ0+/zoHLLyefStHVqSaXy3Hy5AkCgQBWm4XGRi/5QpZS+f+FdVoSzzIPAVOyLH/19368sTZvALgNGK/985PATyVJ+ipi0NgDnP5jv8YWT1+j0dS9i8laZsHhcLC8vCyGKMEg20dGOHP6NFdcfz2vvvwyPT09FArCI9jY2Ii3s5NSPE5zdzcbCwtItS2E1WrF5XJhsdtZX1mp04sWZ2Zoa20lF4uxtrKCVqvFaDTy4nPPI0nCAqTRaNBoNCQSCfbt20coFGJ9w08wHCYej+PxeAiFQnzjG98gFk4xMTWJVivWSguLy1itVk6cfI3GxkYMBoN4hGvq4IorrqS7u5sf//jHLCwsoVSqGegfpFyu8ld/9Vd4PFa++rWvcvHiRfQGLc0tjXR3dwk0mVqir7+T5eVlfvij/8HHHvgIfX19PProo0xNTvLOd96JXJb5ylf+gTOnzpDN5hkeHGL//v3ceONRfvvbVzl16hR33HEHt97xVv7bR/8Mr1f0LE6ePIlWowJFiWK5VK932+3b6zYuYblSUi0Kg/aWqxOo9zysVmv90Pf5fEQSSVQaNdSkujqdTqj1akAcrVqDXBFU7UQigcPhYGZmhkQiIXIjDlEgyqVTNDc3k46JpqrNZuP06dN1EO5WiC2RSNRAsPm6+3IrKen3+3E6nVQqpfrHHxoagqoWtVasmwcHB8kVCxhq6Lstc5Vao0GtUpJOl+pr1UothRoKheju7uaaq6/m/PnzrKws0Nbuo621GUkuYDab62zMTCaDXiM2ZcP793PqpZe47PLLWVtZIRQSS73nH38cnU4n/ky0oqJuNpuZnp7GZhYhvmq1Wl/dNjQ0sDw3RzQaJZcto9drUShUXHXVVWRzGTo62nj+hd8iV//wDeE/spI8DBwHxhArSYC/BO4CRhDXhyXgvq1DQpKkvwI+gNhcfFyW5Wf+2K+xZ/cu+czx50nUklhGux20WmIrK1QqFaJR8Ti+c+dOisUiDodDFKZaWxmtacS2zEblcpmSArGaWl6hr6+PWDQqBogqsdI0GYx1ClK5IqrUbrdIF7obGylkMmxsiFbg1mEQ3ghhMpk4N3qB7u5ukpk0y2vrXBwbQ28yEo3HSKVSrG8IPHyhIGjNpWKVheUlfI0dqFUavvCFL6JSafjBD/6JpaUlfD4fOp2O/fv38yd/8id861vfYnx8vL4KUxkU+P1+BgYGatCVJt72trfR2tqKyWQiEAjw8ssv8+53v5tMJsePf/QTGhsbOXHid0xNTdPY0MzOnbt517vejVar5p//+RFi4SUGBgYYHh7m77/yZbq6urj/vg/x7nffVZ9+J5IxfC1tdHR0MH5pEpfXw8FDhxgdHWXD76fR5WH0/AVaW1qoKJTodDrSqRSBQACtWsOBAweIBEOiZNXRIf5fW700NTVhMZqIhgWBee7SNLlMVnyhT04JYG6rj7GxMXr6ejl37hw2h108WRgN2Gw2krWSWSaeQV17miiViqRSKcqVYq2mLKS3lYqQ+FZKeUwmE71d3XUTUz4rCmbV2gFnMpmw+9qQJDH47Onp4ciRIyiVSiH5rbERFUol2UoerVpXJ2rls2IOlk6kmZubY3pqWhymuhyrq6vIckWIcz1eZFlmz549nPjdMXp7eynk8vjaWknXDNv9/f0sLi7W6U86na5+2JjNZihX67MalUolREZeIfVJp4XPs6WlhUg0SaVSYffVV7F+6RKexgYuXbpELB7nw5/4a8Yn/5PgVlmWT/DGlaqn/8j7fAH4wv/uY9ffKmVS4TDWlhbyoRAUi4y+/rpoMyLw4n6/uIGYzWby+Twej4eNpaV6vNnu9UK5TKVUwh8J1Vdiy8vLFAuFOqRUo1LXAaWFQgGLVbQRZVnsi6nBPLY4+z6fD5PJxMi1O3j00UdRq9U8/uQT3HLrbZx+/XFMJhMTk1M4nU7CoQgbG2EOHTrM2NiEaFkqtfR29nLDDTcxODDEj3/8Y4rFMqOjZ7nxxhtpb2/nbW97G2q1mgcffLCOe1teXiYSidDc0czIyC7y+Tx33vlODh48iM2m47XXLrC5ucnQ0BC33nobf//f/wGlUsmlS5eYmJgUEBK7neuvv56bb74Zqw0++pHPsm3bNj7xqb8gGU9w//0fYtfIdgYGBnjggQcwGEz1oVdvby9erxej0Ugmk0GdSPDSSy/Vg06xWKw+z5EUEga9lrnZaSQZVCoFk+MXsVms5LJpCoUcNrMJJRKZZAqpKtcxcNF4nHQySaFUJJPPkcpm8BoMgsZ96jXRa/F48Hq9BCNhIpEIhaKwMOmUOgKBQC2AZROyEyU1P4JITY6MbCedTrO6MIdUFU8vW0+iZrMZtVpdD0X5fD6s3ibRyK2h0YLBIG01enK5XK73UraeELY6KqlUilwux6uvvsrCwgL+NYGSk/MbNchviXy+iEavw26xMjo6CoBeqyOwsVlnR77rvvtYnZxksH+AZDxRl+c4bHYSsTilQhGz0VRvBycSCQEeViqJRCLo9Xp6e3tFBH8zzL5rryXj32BmZganRwB0WyqVeu/ljd7eFNXpcqVS/yLbqgdvfdePx+PMzMzUdVmRSISzZ8/y9ne9i7W1NeDfnARbp6rP1wpaLeuzszQ3NfH666/T4PaIZF02h9lsxmwyUSmX6/h0tVpNKpViYWGB5uZm2traCIVCjI+PE4lEOMZxGhoaUOsNNDa1MDYxSWNLC7lsgfe+/wO8/vrrnD1/ERRKLo6PYbXaKRbLvO3229i7Zz9f/eo3+PUzTzM0uI2rrrma7z70jzz44IM8+cyv+OE//xij0VhnRsw+9xs0Gg07d+7ku9/9HkajmrGxaX75y1+Sz5W47fbrMZtsPPjQl4lEIhw6dIhz5y7gcDjo6OjgyJEjXH31FSgU8PDDP8Jqh9WVKJ/7/KcpFot8/ON/zqVLl7juumuIR2OcPXueufklrrvmamZmZti9Zz9qlZL5+XkCoSB9gwOUymWKlTI2p3ikTyeStLa3MTU9Tb6QFTZwrSAm+RobSKfTxKNh5EoJs15sJkr5DAspoZbX1OAqWw6N6cX5einsxRdfRK/Xc+XVV3Hx4kWy2SzJZJJCuVQbGorgWTwbr1foY7EYDoeDdI3p2dTUQLFYZHp6WhC3iiUy5RThYBiFQklXTy+FkqB2W+3iADBaLbS0+mhqaqK5uVmshC0WgPpBoJAExk2v0aOUxIDaYrEgyaIjc6J6oo7rr1Qq9HZ2EQyJYXlXVxc6nYELFy4I7J7VTKFQYGpqiuuuu45qtcry+DhtbW2g1da3Zs3NzVQqFZ599lm6u7uJRaIMDw8zMTHByMgIbW1tbGxsoNVq61SxM2fOUC5XGX9VzBMsFgvlQh5JqaBcKqCvpVHf6O1NcShUKpU63n0rv77FSBgfH+fw4cN1U07H9u0olUqOPf88hw8fZmlJAEWy2Wz97lguFIgHAmjUalAq6evuEad2pUq2mqFaM0pVKhXC4Si9O3czf/EixWIZk8lCMBimWCxTLlex28WwzeNyc+zEcW66+VYkpYKXT5wgkytQqlT51a+eRq3VMjA0TDKVB1nBtm3ba2m647z4wstsbgbZvXsvd999N2fOnOHa668jnRakH1sNfhoKhejq6qK1vY3vfe97tLf7WFsJ8NhjL+FwOHjPe97LysoKf/npL3Lu3DkSiURt1hLGZLRw2aHL+cAH3g9AoVBmcXGeD3/4vZx6bYy2dh9/9ucfE/mBZA6zxcTb3/4OEjHhJxwbG2N6do6DBw7Q1dXFc889h1ZvQK3WEgyEMZpN+AObdHZ2UypVKOdLKJVq0ukspUIKs8eDz9fMzPS08D94G1hfX0enUbOxsU4ikWCor78e5dWV9RQKBVKZNDqjAZfXg8Yg2rAdHR1IksTMzAzlchmHyynCT2shGhsbMZnFi8llddW6JBEcDjs+n49QOMDs7CyFQq4uUw2Hw5QLQtW+ZVvSaDRoDKLd6utoF41MrVjFejweEaWXJORyGUmphN+3bysUSFK1fgXd0hFUq1U+8IEPkEgkCGyIJ5h4eAH/2po4vLIZgoEQzc0+UqkU115zFeFgiBuuP4rb62FtbY3z58+zubmJ0Whk92WXgUYDpRKRtTX27dvHnssv5/RLLxOPC7jwyy+/THNzcz0MFYlE6OzspKenB7vdybFjxyhVylx55ZWs+/209vRgMpv/6JPCm6IluWfXiPzqb57k1KlT9ahnNBpl165dLCws0NTUhFarZW5uTvT1a08RRqORWC2tFQqFaubiKoVyCU9bG+tzcwT8GwwNDREJhdFqtWjUYiIbj9QKMLEQPp8Pd3MzawsL+P1+RkdH68OuQCBAd3c3kWgUi8XGiZOvksllsTk8PPGrX2Oz2YkmhX69UqnQ0TXAvffeyze+8Q3m5xa47LLLBW16zc8Pf/hDqhUE0ceorQ/atFote/fu5TOf+QzpdJrR0VGq1Sq33347agx88pOf5KWXXqoTmFwuF9lsloMHDzI8PMw997yfY8dOcuTIIUwmuPnmd5PNpWlo8PD1f/h79u7djVIpknSlUontw3v51re+RSIR5/4PfYj29laGBgaRZCEVKZeLtDQ1UyoXMZnNJLJprA475UqFzs5Onn/uOUrZPJViiUq5zMriFLt37yafzTE0NMSZU2KurFap6OnpgaroQ5j0Joy1QZvJYiYcjZDMZti+c4RILEq8JsBxWFy1erma9fV1imWxEZIVohGr1mgYHh4mGhCOx5aWFpxOBxMTE2xsrnPVVVexsrJEMBjE6xWOUjmVw+awMzyyA6PVglKtYtuuEZpbfbS1tyMpha9SVRHf8aXaAZCIx+tagK0fk6tVUAKysEsrlUqiYUHCDm0KBUF7a7vI2BRiGPR6UEAmEUOlULK2skiDx0s+lyIeDZNKpejq6cNkMvHYY4/VQ3xbw3CNRrR2t3ypTU1N9PX11ZH/drvIvGi12to8q0BPTw9TExNIksT+gweZnJxElsDb2EAqleJt77mPsck3ZjS+KQ6FncPb5F898kNKpRKxWAyfz0cul6tLStqHhyGdJlN7vFQqlYTDIqq51UEfHBwknRYd/S3+viRJGAwG0skUmXSazs5OpsYnkGW57jpApax7FmKxGIGaper48ePkcjmuuOIKVlZWCETDnDp9mmyhwI7tO0llCzz9m+dIZbK4PA0olGo+85nP8MF7Psjhw4fp7+/n6NGjPPDAn9XTaHa7nUKhJO7oOjVHjhzh6NGj7Nu3jy984Qvcdttt3HjjjTz00EN897vfpVqtsji/htPurPseUqkUX/rSl+pPT8WiQKa95YYbicfjuNwOvF4vX//6V3nggY8xOSX28qWSCLjc8JajHDp0NZ///Ocp1zwM/T3dHL3+Wl577TX8/nUcVgFhOXv2HAq1imK1wuHDh5menWF4eJiVpWVmp6dRIFHI5qiWxaowEYthMBhYXlwS8JSmZtrb2wXMVaHAbLJSqogikcFsIhqLodaJVKnBaCQUFfh5p8nJ4qKgcptMJpLpFLGYIG23tbWRroV6bEYbR44c4eTJk8zOzqDX67HZLfh8Prxed+06JkJug109eBsaKMtVegf6MdusmOxWtDodRpOJKlCWK2iqyn/39bkVJvr9N1khgywOWlmWKeSK6PRa4uEE1WqVkydOMjs7y8rSNGaTidbWFrq7OtGqlMQjATQqFQ6rEblSpqOjg2Q6w+rqKmazmebmZiYnJwXgt/Ya2Ll3L5fGxzl16hQ7du5kfHycVCrF7t27iUQEx2JgYICJiQlMJhMNDQ3kMhmsVqswmtVKZemsAPTe8p77/mD34U1xKAwP9suPPfSduhvP7XZjcbsZP3uW1tZWDAYDS0tLdfHs1lDHbDaTzWaJRCJ4vd76tiAQCLBj926Cfj8rS8sMDw+zWlvzlGsK7q2o6QvHX+HChQsMDg7S39+P1+vla1/7GiMjI8zOztbbehaXKJ8sr/pZXfcTjSVJZPL09g+i0ep517vezUc/9nGGt4m25LFjxygWy/X1nUKhECWkmrXqnnvu4R3vuJNPfeov2LZtG5dffjlf+tKXeOqpp2qk3rSAw3rayGazVKtVvvrVr+LxeIQ3sLGR48eP09rayr333ksul8Ng0PHOd76T02dRrwAAIABJREFU3bt386lPfVIIaipFiuU8bqebf/mXRxkZGWFo2wg2mw2dXkOjt4Fqtcx/+/M/4+Mfe4Dh7UOMjY0xMrydUrFKWa6iMegZ2bWTXEE81Zx+7RTVYon52TnymSzd3S31hGg4GEKJWOX29/XV5zQKGbQGPRaLBVPtz83ucqLWCpKRy+1mYmJCxHfDgiBldzrIZrOYLKKPcm70gliFqlTs3LmTQrrA5qbQujc1icSrTq8hFovR39/L8PAwPl+zQOS7G7Db7YQjETp6u3G4nEhKpeBkKhSUZZHC1KnU/7EvWklGrv7bgVHMC0DQ0rzI1hTzRTEvUcusryyTy2aRqyVcdhtKypgMBqwmHRsrKyiUEp6mFiqVCouLi2i1Wg4dOkS5XGZuTrAVm5qaOHv2LNlsFptDJFFNJhOvvPIKXV1ddHV1ibax34/D4SCXy1HMCrdGe2cH6XSaXLFAT2+viGPf+A4mLs2+eQ+FkW1D8hM/eaju0lOpVHWTtNVqJRKJEIvF6O7uFrtmpRK5NocAMJpMIEkk40KsoVaq6pkHo8lEMh5HIQvhjMkgpulOp5PG/n7W52ZpHhjg5Sef5MKFCzidTqampkROXZLqwhSN1cjC4hIXLo4JeQxq2jt7afG1cfbcKGazldvuuJNXXvwtL774IuVyGZ/Px2wtaWYyiTTkI488wvve9z46fR187nOfIxKJ8Mwzz/DYY4+RSqUoFgW0dSu66vI0MTIywr333suOHX1ks1Uefvhhent7ueuuu0imk3S0ddDU7GHv3r389Kc/xePxMDExhdVqpbGxkW9/+9sMDQ2xtLjCgYMH0BjE/1c8GuMzn/0r7nrnf+HmG9+CUqnEZjHX+QT5rEQ6m6Grt4emlmYSySQHDhxgYnycYr6A2WDk4oVRwnE/VrOlvi9vaRStvL6eXlEuk2WWl5eRFaIJGAgE6ko4jVot6NZKZb04ZdRZCAaDNPuELlCj03Ly5Ekcblc9J7B//35avC01jPocwWCAXbt24d9YI51OA1UOHDjA5ZdfRrlcxltTD2r1ekCAgLV6MWz7Ywo1gDd8jUgy1YpcLzhVSlVUKiW5tAhyqRQqdCYtVCGVTJDPpKmW8lCtoKiWcLsdhNZXWF9ZJp1KsvfgZYyNjdWLcVtrdmEgF3j/8fFxdDod/duGGB0dRafTceDAAU6dOsWVR48SDwRYXFxEVzN0d7W1UiyKVa1Gp6V3aIhMjZtxxa3vYnzqjSErb4pBo1KppK23FxQKqFYppdMsLCzQ0NDAysoKvcPDNNW4gVuhGdELT2O1WonHYthq24lqtYpKocRitbKyvCx4jx4P46dOiz1uVVwdLEYTVGWCwSAzMzMYjUY6OzvZtm0ba2tr+Hw+nnvuOWZnZ4W/UVklFBRXFqvdyfzCMn9+x51897vfw2y2c811R/nrv/5rPA475VIVp8vJzMxMnQd5zz33cPXVV3PXXXfxiU98gpuuv4H77rsPt9vNE088QSgaoq+7j3w+j81mY319HbfLwV/85adwuVw0NHo4dNmVpFIpvvjFL/Kpv/gESFV6uruIRqP0mtv40H338NRTTzAxMcaRI1cyNjZGX18fvpY2vvTFv+OXv/xXPG4vyVyQSCREY0MD73znnbz//e8lk8+QSSZYWSnR1NTE2voyrc1CLx8IBUEpvpvmS0Vi8Tg3XHc9P//pI2I+k0yjUGko5cV1JFcs0dfXSSgSZXF5hTZfK+v+Tfq29xFJxomlk+zZtZszZ85g1ImBoyzLNHi8ddN0pVJBo9Hw6quv4mkQq9GttKmyWq1fnarVKkajkf7+frGhSidwu910dLTVvZMNDQ0oNKKxCSIsp9b+WxKWqizEk/DHeKb/7m3rsNhC0JfLFfQmcdAE1oKcPTuH0WwkFg2TiMYwaFXYrSZKuTSlfAtz01NYjQaam5vrsuHBgwehVGKt1hbecnwqFAqam5upVqusrq5y7bXXilxEOo3FYiG0tla7nooBusfjIRIMkc5lBcpPq2NydBSzTTBB3+hKtPX2pnhSGOzrkV999qn6TGHru7zZbK7LSrxer7iLq9XMzc3h9XpxOp1sbGzUWHnaOoptaWFRhDyAttZWMpkM2VSafDbHiy++iNvtJrgh4tQFhSDWHDhwgJ///Od0dXVx5swZbr75Zp544ol6N/9fnnmSYqGEzmBGUqp5xzvfxYuvvEpjczPzC2K6nkilUEvy733Cq9xxxx3cdNNN/Ovjv2Dnzp089dRTJBJxtGWJ+fn5euhqfn6+vrZqaWnh/vvvZ2xsjLfedhsf/ehHOX36NB/+8IeRZZlvfvObQkOfTmMymfjTP/1Tvvb1L1EuV2uQkxJXXnEV119/AydOnKSjvZvHH3+cVEqIZdXGAnq9ngce+Chf/MKD6A1a5EqVfD5HS1MTKyviqqbGQaFURG3QsXffPhRqIb159JGfUS4UaW5opJgvoDLWAkS1EE0sHOHw4cMENwOsrq7icbq4/vrrefhnD9Pe3o7ZZEKn1jA3N0dXaztrq6tYTGYqxZI4sG0umpqamLw0xcbGBulsje8gCzmqRqvlwIEDBNeDddQ+yKJUZtDS1taGSiVKb11dHWQyGVQ174dGqaBaFcNClUowJ4D63+U3eGiQ+fevEQmZSllkFVQqFVtggGJOzHgKOaERdHncnDt3llg0TGuTl2qxQDoeZuf2YU6dfIW25kZ8HZ3k8+IqpFAoaG1vZ/ziRex2O8ViUXwcl4tCQajv9GaRyNxzzTW8/MQTdQXhoUOHCIfDzM3NiVxFNo3P5yOWFHMOnV5PJB4jk8nw3/72a0zNLrx5nxTUKhVWtx3KZZQK8YneiqQaDW7W19eJaxTo1Soq+TzDu7cTWF5iauI8rW1tqJQVMtkYhXJJiFKMWsqVPNlslmBYzcKCqN6ura2htWgpUKC1X3gmZs6PIVdlLpw+hcfhoFjI097ZwWtnXicny2DQ88KrJ1n0pxgaHCKdTjOyfYSfPfpL3vKWt1CtVvn1k49jMBhqeQkHxWKRoaEhuru7aW/18eMfPMzll1/OU48/zuTkJH19feiMRoorC4wtzNDS0oLDJ+K6R2+/hcOHD7OwuMjIZfu54S3Xsb6+zu7du9FolXznO99BpZYoFLMYTTqMJh3FUo5UUjy2Op1OTEYVd999NwMDA3zjG19neXmeldVZNBoNOr2MUqFDhYY9I/toavCxvLyI2WJEpzMSicUxmm2kMnmqlU3xCFvJsrYySyKRoKenh5tvvJbp6WmxG9drqeaL2J1OUuUqgTVxp3U7XSzMzYv1n17Hq6dPQapMfDWMrd2EUWtAj45KQaZaklheWhdtvkKF9cU5xmYv0d7ejslho6pSsL6+jkYjjOJKpZLR0VG8nham5xd45XcnMZlMHD58GI/Hg7uhikVrQlKpkRU6NHotUqFUK76JxQEKBXKhgqQWg8VKoYRSq6ZcydevBJIkISEhvwGlSCEXxKGCAuQKkqQAWYFapUCjUhPLxgiHovz8pz/A5XKglBSU0zFUSolsKsny0gLXXH0Vr544TkNrG3Pnx4QCripz/DfPoTMZBb2pv4/l5SWC8SgoJJq72okFQvR2d7N68SKRUIhGr5dwMEg+m8VsNKJVq2lqaiIe8DMxdhGz2YpOb2B6aZY73v4Ojv3uJPl88Q++Ht8UTwo7tw/JLz/xUyKRCD6fT2TodTqKSVF2qdSYfm6bg2AgQDQeEzxGnQBXSgoFSrudc8deoaOjg6WF1TrrsaOjgxdeeKEuJd2KiwqZho7oRpjZeQEynZyZIZPLEk9nyORyBMMRylXxKFtRCDvzfffdx2c/+1luuukmTp06xeLioujGr66KarXayDve8Q48Hg/r66usrq4yOioKU1qdhqamJo4fP47RZK5bnrq7u/F4PHz84x+nvb2dr3zlKzz99NNCH5dJc9ttt3H8+HFSqVQdOGuz2bj//vuZmZnhoYcewu3yEI1Gueeee9ixYwdf/OIXWVha4B+/9Y98+tOfZmRkhM3NTUKhEKVykeuvv55nn32m1krdRKXewqmJb3myLFOtiG+bRqORkZERxsfH62Ehi8WCLMtsbGygVxno7+8Xa0SVqv443NHRgd/vp6enRxzs4UDdSCWiyKl6IaqhoYFcTqDp1CY9qVSq/vmRJIl0Oo1SqcRoNNar1NFIql6DL9UMUVv8BrPZjE6no6enB5vNxkc+/OH6VU6tViOpJfF0UAEkKBWFvVxnE1eMraeDP/T6UFIEqbapqEhi6KjSMH5hguXlFeIxgVXbt2uAFl8zi3PzTI6P4XE7KeayBAMb7N2zm7npS+TyGdwGAarxNjUiyzIdO7YzNzmORqejdXgb5USchaUlrFYrSzMLFAoFBgcHWV5eJp/P43K56OzsFFdrq5Uf/a/23jzIsqu+8/yce+/bX77cMysrMytr36WSCslaLANCGgQE3XgdHGaM3XaE23aPu3GEY5qxewyN7Qg3Ed0d3e6ecXTbPWDCDNCAw6ZZbGBAMmAESCWVVPuWyqzc98y3v3vvmT/O/d133q0sgQ2SKoY8ES/ee/fdd8/+O7/f97f9p//EkYkxFhYWGBndjcKh3vLJF7roHRjk7f/LL3H+8h0MNN519LD+9J/+R1ZWVjh+3PiIK6UYO3iQ5uZmZLaq2Vrd5K57TvHCCy+YHAUpj81ymZmZGY4eP8bFixd54xvfyNe/8S1u3LjB4KBRS83Pz8fBWc6dO8ejjz7KF77wBeM16cPi0hKtULNVLtMMQlZWV6k1GqxvbZLJ5slms5y+70G01qytrXHy5Ek+85nP0Gwag5h0Ok1PTw9Hjx7lp3/qnVy/fp0/+7M/w3Vd5uZnOX78OFtbW4yPm0zB3d3dtHyfVCrFoUOHeN/73seZM2d4z3veQ29vL4tLi/T1mqzO//J/+y3+5E/+hFqtRhAETE1P8VM/+VM8/vjj/O7v/i71ej0y3qqbfIiR3FypVDh9+jRf+vKXGB4aZmFxgULe4CbvfOc7efTRR/nRRx4CYHT3CC2/cQtRCHyTpSkVRa7u6enB933uv/9+nnrqqTglX6vW5OTJk1y6ZOz9x8bGuHLlCvv378dxnDj9W0+P8SqcmZmJcaF8Ps/CwkKcvaurqwvHceLwdmEYkslk4vgaAkg2Gg2KhZ742UCcV1PkasEcuru7OX78BKdPn+bnfu7nmJiYwHHNRg7DMM68VSjkwQxfHG9SzJqTpVrZiPJWpHCUBzh4KZepyfkoJGCBeq1JMd3g/PkXWV5colGrkk653H3iOFub60zeuE4xlyXUPrv7hzh16hTPnX2edC5LrpAnnTfOUhuVMlNTU2ZzK0VPrseEp/M8Tpw4QSaT4fLly/FYiTv96IAh3Ckvzcr6GoODw2yVqxQKBX7uPf+S7zzz7LZE4Y4I3Koche+3aDYbrK6uEAQ+jqPYWlqkXq9RKnXhOIqRkVHOnT2HDhUD/UP4jYBCtkA+X+Qv/+Kv6O3tZ2lphXqrSbG7xOLKMi9eOG9Ch1UrVOo1evr7+NrffYNyrcr80iIzC4uU6w3wUmxWayyvrOLjUOjqZnjXbrRyabQCnChn4dGjR/nSl74Ugzz1ej1K2WXwg7/54l9z8dIF5uZnqVTLZLNZLl68GLtw57J5FheWaDQanDp1il/6pV9ibm6OD33oQxw5coRMJsPEngkGBwd55JFH+OhHPxprWaamp3jowYc4ceIEH/zgB1laXmLfvn3ML8zH/huiwRBvusOHDpPJZBjdPcqBAweoVCo8/vjjvOMd7+DQwUMcPnQ4NsuVDSABV3VkxSfBUzKZDFtbW5GDj2ZycjLekELIa7VanPZ8ZWWFRqMRv5erFfwwwE151Bp1tiplLl+9wvDILrp7e6g3G1RqVRqNRpwDpNVqdXze3NykWjWJVcvlchwXQ/JY1Ot1/IjgSn6IfD7P4sIy169Ncu3qDbY2K7QaIa1mgOs6dPUUKZTyoEEH5kWoIFQo7Wz7SmdyeKkcyvEINLT8kNXVLdY21ilXajz3/At86i8+zUc/+lEcx4ltb8SDVMy1xadiaX2VqbkZZhfmGZ/YA1F4wOXVFQYHB3nzW56gWCzSPzRIo9Vi99gYuUKBQGvWNzc5ePgwZ198kb97+mkeeOghxvbsYXNji77eftK5LMeOneDg4cM4jsOXv/xlVpcWb78f7wRO4ejBffrD//b3qdeNJ9vwsIlJFwRBrF5ZXV2lv2+EY8eO8eyzz1JrGNnP1yHz8/MsLC5y6NAhY1dQq/PlL3/Z6OKzWRqNBrt27TIGMZHzi0mbXmFpvcxGeYt8rshWpUyh0EW92cT3QxzPZWSXCTSyubbKL/7iL/L+97/foPM3b8a+/Y899hgPPPAAH//4x5mcvB5bWwaBjizTvDjVm+t47Nmzh5/4yX/M0NAQv/EbvxFHrF5bWyMMo2Apb3kLH/7wh6nVKvGGP3DgAG9961v5vd/7PaMGi6zpzIlInDoP4P777+fChQsEQcDY2Bg3b97k9a9/PW94wxv47d/+V4yMjABhZDOfAhVGxICYKLhOJs5+LVmqisUiWmvy+byJh+g49HaZEymXy5mISFFcRhEz5PTuHugBoFarmfD7kc9KPcpgnc0ar8N0qKhWq+RyuZgASDtE/DCZo7Kx6hoMDiUBcyRNgOcZ2KzeUHGwnYmJCXp6ejh27JjBiO65h1OnTjE2NkYmb+wUjEYhWqDbnKctHeAog1FobV6OAyvLZZRSTE/PcPnyZX7irT/GZz/7GVzlcO3KZfp6uylkM7gOsfiwVd7gH/3ETzAV5TzJFfLgGF+L4w88QH1t1cSmdBwmJiZ44dlz9PT0EARBbLczPT1tco/2GnPvmZkZmlvrDAwMMDMzw7333su1a9e4ev0aPT09/Nrv/D4Xr24PNN4ReR/+w7//d+//sfvvIZfPkUqncVyHow8/xFB3idm5OYaGh6hUK1y/NsXK6ipLS8tsrG8wOz/PtavXqDcarK6uMTn1EjOzs7iZLN09PdyYnKTl+3SVSpx57jmqtRrlSoXllRXWovBaTQ0aBz/wCXFo+T6VWh0NFPJdFLqKHDlyhK5igbNnz7K0tGQ2Qm8vlUqFvXv38va3v50zZ87wzDPP0GhWcV2H9fUNPM8lk8mSTqdYXzfq1Hy+wK//+q8zPDzI+973vlj8kDDmo6OjbG1tce3aNQA2NtbZ2tpCa82pU6f42Mc+ZvTgkZ+I60bRjhpNBgYGaDabeJ5HX19fHA5NApo8+uijfOQjH8GJIiTV65HrcGhOTHsjhGGI75tNJUFthWuQ084QvoCg1YojW0lMA/EHkOK6Ls2gs69yYoZhGNuneJ6HCgyBAWLuRUx4RewwDkqGe5DNrpSJvqyj8PFyCgdBgMaLr4l78dTUlDHyaTaZn58nCAK6S10UigVDB1wM5gCEfkgYhDiRxsL1HFqtgCAIUcohlYK1tQq5XJae7izNZsDo6G6+/uSXeN3rTrOxvk46lSKTSdPd1cX6+hrra2scP3aUo0ePMD1zk2qtZszKNza4+5FHuHj2LDnPIwxMAtxszjiczd2c5+TJkzQajViVubq6yvr6OhMTE8zOzlKpVAhbPpcuXWbP3j3U6nVQirSXIgxC/uqLX+E3/sV7ts37cEdwCof2Tej/8IH/g7U1oy4ZHx/H900E35mZmdiI6dBBA6ycP3+ebD6H7/u8dNOwsrUoNPZmpcz6lrEG3NraIpVKmdRk9TqAtaAMotxUxiFL62g3aAfHcwlDc/1/evwJKpUK58+9QCplNBmpCN39mZ/5GR555BF+8zd/M4770N0j/gxZstk8zYbP0tIK/f2DDA0O8973vpd//s/fg6MaJsdDJhMnys3n8+zatYsnnniCP/zDPzTJa11i24Xe3l4TkSgKcCqyrtaadCpLq9WKDa6azSazs7MMDQ1RKBSYnp6mp6cnUnGl0Frjuio6XVWMKQRBq20nkMrfUo9sUtn0QRDgYa41m8047L4k85F7lVLgGKMosUsQmT+fz8cnfiqVopDKxM/IZrMRgfLjBD7Sfwk7Jmy4EJdUKhV/F44hoG2oJNyEhGsrFArkcjmGh4fp7e5icHAwzuexvr6O53kcOXKEo0ePGq1RrcbkzRlGR0fZ2NhgaWmJQ4cOMzs7G4OZ3/jGNxgZGeGFZ7/J3NwMzXqDsd0jnLr7JI1qBXTA4sI8B/ZOsLm1TkuHvBAlI0qlUlQqFU6cOMHVq1d5+OGHcV2Xja1Nw51Wm3GC4XK5zN69e5mZmWFsbMwYj+3bx/z0NMvLqya58u4RxsfHOX/hRRq1OvV6nV/97Q9weXLqzlVJeqk0M7MLbGxsGLvvC5d57LHHWFlZYXnFsErnL1ymt2+YVD5LV59Z3OvlLWZmZ8kVCzSbTVa3TKSdgcHh+DQNw5CVlZWOvIn2QvX9FmEUhUYpF6VCquU6nueZRJ1+k0bdmFKPjo7S3d0dE62JiQn+4A/+gNnZWUZGoph9YYtQ++RyWZQyrPL997+ORiPg/vt+hOvXJ82G9Nw463OjYQjE4uIijz/+OJ/97Gdj+V07Jp3b8ePH+drXvkatVouRf9l4gsBLuLJCoRBbRi4tLZFKpbjvvvt49lkTZzKVSkeoehgRgvYG1rqd1AXa6Lv8LsRUCBBATE+j/9mxBuwS+D6B7xMGBqNBaxQQBgE6DHGUwon+I4ZFdv1A7JIMhvuw67VDqAsgKQROR/eF2kdHa6C+WaVaK7NV3sDzPNbWV8hLkF8dxv4wjuNwc+olXjz7fOxWXWn4fOC//msOHTrEE088wX//+MfjEHTVapWVpSU2o2Qvb3/723n6775JJp3iK1/5Cp6Ce07dxbFjx2hUK2xubpLOZnnogQdjn5xr166xOL/AgX37mZm+ie/7nLjvPr715JO0Gia35H333cfNm00KuQyFXIbF+VnK5TKXLpzj0KFDPPfcc2SzWUZGRoz7uOdR8X3C0N/W9kLKHcEp7B4e1r/+C+9mbm4ujg9w8+ZNXNdlbW3NeNUVi/jaoKtb5XJ8WszOz9EKTVLQ3n5j800YmbFGSHy9Xo9ZR8MVtPscOBF/GPnDO9o4UVWrdfbu3ctgv/FO26qZsGFyqv38z/88X/3qV3n++edjp5ONjQ2y+YBUKkV//yBbmxWCAJoNnz//84/zT3/lV1ldNQlkerrScYYlMJtMIhdPTU2ZtgUBw2NDrK+v8+CDD/LUU0+ZoKqVSrzg5fR0nUwcU6C7u5vFxcX4NM/lcjz88MN88pOfjMQKw947DhH77uMHzRhTALOBXCcTt0+Ij8jp9Xo9FiPSro5xBKWUCSRrcTNCgOtbBniV8HtioRhEREIs7aQOyTbleV78fOmzhO0T7YbRHhQ6rAztwCgtdMxxxFxiJGqJmlNrTVobsUwIS29vL7VazfyWThvT7HSarmIvx48fp7+/nxfPnaVcLjMxMcHGxhqZTIaXXnrJxNE8cZwXXniee0/dQ7NeY3lpgT2ju6nXKjQbdQ7t30c6Y8Sm/v5+5ufn2djYYGBggAP79tNoNFhaWmJjY4OJMeNyfeK+u6mtrXHmzJlYVLx69Srj4+MMDAwwPD5OZW2N+bU6169fp1Y1gW0X52bJZT3Srsc//Vd/wMXrk3cup9BstvjC33zZBOJotbj4oY/Q3d1NNps1UYIzedY3Kyyvm5iIxWKRUJmNX65UTJCLVIqVNeN81KobGVfTihaqY+iiAjdKJNKOoiOsLhBqtHJxHYcwaLF3zwSf/x+fNQFQcDhw4ACvf/3rOXbsGB/4wAdwXZf+/v4Y6DLtrZGLMj9ls1nuuuseBgeGede73kWr6RNGZtZdXXnW19cBYpCuWMwzNzeH5zl0d3ezubnJ4uIiJ06c4Itf/KJJKhNly4L26Wk2VUA645FKu5S6i1SqW2xtbTGxe5xcLsf6xirZXJpyZZNctjs6QSXpbhonEG6grYrT4a16ekkNL2HQtNY4KojtSdLpdAwYJksmnQatjTWh6+JEbH+xUIj9HlKpFJ7r4kd2JV0RsCligGAbAKnIalGHPkppPNfgDHKvjJFSKuIUQsIwsH4zr2w2E4c18+tNmk0nJjq1WiXmTMTEvl6vMzwwwuWL5yPQs86+ffv4ypXLZLIpBgcH6e3uJuUq5ufneeihh1iYm2d5cYGuoknT99LGGsePH2dzbRWNcY2em5vjwL79XLhwgdGR3Xzz69/g4MGDpJXLxO4x/GaLVqNJdWmRfHc3lU1DPDZWVziwd8J4BocBzz/7DEeOHKHsm6hSTpQdanBwkEzaoV6pbjs/Uu4IouCHAU7OoxyBYlpr6uvNmJIPDg7S8lsEWpHO5qk3I+rfCkh7GerVRgebmc5l0UArNFxBq9nqOLmUUngZA4LppkuoQ3TY1kcX8l0sLRpVULG7ZAyn+ntYX17g8P4J/vJTn0AFTRQuuZRDLpWDoEnGhWbNpe77pLQxdx3q7eebX/8aYbNCIZulUqlSKpTY2NiI2XyJc3D69Gk+8YlPxHb+XV1dpIIWBw8e5urV66yurpNOZ2NzZumvUq7BFLwAR3lsbpQJAygWSszOzPP444/z13/91+hQkcsWCHUdTYgmwA80RAShkwAoUCFi/6uBlu+DCmn5DbyUF528LULHIZvNknIcMl7KENxQGZBSG5bfcz3qnnlOKp+mHmiUckhn0tSkP26Kplb4UVq3XC5HEBGewHUIFeA6aMeJNqqi1miaZLnpNIHrgQuOcgharXgTe56HqrVwMYdDIzQqTpSHH8DqZjnmqJopzVa1bPCMlAnQ2opsHlSoSSmHQqmbpU0Tv8PFJVABV6evU6/XmZiYoNJqEFZMyjt3rcm18y9RLm9y6MABSqUiy4trdBV7mXppmt6+HjK5Ll6aX8Xz8jx36TpaeaxVG2S6e1nc2qRZb1BsGW1brVXH1yFnnztj3NoDPzaBHpvYY5LcDA2uyxfKAAAgAElEQVTy0s1p8j27efwtT3DxhRfitAZHTpxkYWEBN3V7b9A7gig0GiY+nVBwUTlpranX63HshGqlHlsmyiaXU0NYyzAM8UMDPsk9AjzZcrIQANeSXYVgbGyYoJ8LCwu0osUVhiFvfvOb+eAHP2gs36IAKcJmSltyuRzZbJY3vOENHDhwgD/6oz8CDBehlIpjHnqeF+e+FIRfvOTEIGlra4sDRw/z4osvGlVdFN0HOuV1GScg8hA09VUqFXbv3s3MzAx9fX0sLCwYTio2VGr3eTsx0gYVY7DQ+s3+T8zah4ZlL+ZNCHyCMLYzEA7Ctn8QEcR+yXjIaR3jAtHv8pvMr9QtBFY4Ba11HINRxAMBI7U2iWmUUgSRAdPm5iaFQiEm1s26sbFIe2b9pBw37qvv+ywuLppwblbQ4GvXrpFOpzl27BiDg4MM9g6ahDTFIi+eP8/wYD9+0KCn1MXwrn5WVlYol8tcjixje0oljh07ydnnnqdS3uT06dPs3mVyWoyPmzDwjgqpNpoMDO9iZWWF7lBz8MhR0t3daMcQwWq1yo2pJa5euBCHIxDPSgPGpm+Zbyl3BFEIw7bsZ5+AMnmysVvNILq/vTHshSnsrHinCKuZXMzJuu0NIhtMXFilHfv27TP5GjY3KRaLrK2txWowqSOWnSODpk9/+tMxqx2GIeUICxGATNojsr9gCQIS+r5PsVjkxo0b8f02VmKPgZyIEurbRDg2BG1qaipmzz3P68g4nAT07GJzVjYBkbHd7lqowg5RwIHYtDiIuA5bvWnXL5hEOp2J65d6tgM/bXwoSeTk/1IEu7B/b0ZgqXba4KZoRLTWOBjbh9CP8AuP2ChqaHggHuv19XUmJyfjvCKe53H9+nUTsMe7Rv+AccYqFQvMLS7gEJD2XC5dWiWT8hjeNUQxn8NzFDenptja2CCVdkmlXLq7CmQKObq7imysrbPcarGytgLKZWp6xlj2emm8VAZw6O7pM2Clu85DDx3k4sWLccaooaGhGGfxv5+8D69O2R6xloUiiT4zUYx83/djsE02o5wIWmt0ZKgZBEGssrJ95u2F5AS3mrIGQRAbJklYrOHhYZ555hl6e3tjz01ZlLb6LZvN8sQTT/C5z32OUqkUJ7np7e2Nre7ErFZOONE+aK3jDS+nnsiwUp+t+7c3lNgGAHEmrK6uLhYXF2NNQSqVMgFAWu0+C5cjHJhdxPBHNlwQBDGBS2pxRN4PIyOoeNwtWqOdNtch9fq+H3MD0idJwSdWjBJTMamJEKDR1kKACfqb/E3G255rWUutVlvd2Wg0TFSnnh5SjrHk7O4qGS/cZot6vW5iT+bSMafjeZ7JKVIqxWMqnEMtrFEup+ju7mJ2foaRXbuYm5tjfHyUk3cd52//9knG9ozz+GOP4jgOA339PPnkV1hbKnPvvadYWVpkY2WJs2fP0tVVMNzEwC6CIGBpbYtS3xDleoONSoNuL8vaVo3hfIlizwCVrUqcL+XEiROsrq6STpvM3TbIfcu83/aXqCilssBTGKtwD/ik1vp9Sql9wMeAPuBZ4Oe11k2lVAaTuv51wArwTq315HepJV5o9mIVQiFsc6VSiVRqqVh/bS/O2FxX6Vs2a7wwE6eOfRq21ZR+h85bIgwrZaIIix2ArR+XjTE7O8ulS5eiVPTlmJXb2NiIg8f09vbGC8dxHGq1Gr7vMzY2FoeDE8KzsLAQ+xiIBaA4DtknNCqK/Rjl4mw2m/T09LCwsMDx48e5efNmrLd33LbdgT1+yWL/ZosQNisv4LCw9C7SJnNPjCl4HvVWMzZCstWXQhRsQmGtvw4RQ4rYMMhvIooJIRAOTBLU6FabSwl1GM+d53m4TtuuQdbf+vo6LioO/ZfJZMilM/E4ifgiRB4wwUzSaZRSMeFPqSqV6gY35zTDA4PUGlXS2SyXrpisZc2W5vLlq/gtQ/iXeky+0p/8xXeztrAISvP8s2c4dOgAExMTzM/OMbb/GOvr6+QLy5S6+0zWq/PnqdaarK1vMTo2QTafwnNSXLlivGOfffZZ7r7bJM5dXFyMwfHtyvfi+9AA3qS1PoVJ/vIWpdSDwL/BpKI/BKwBvxzd/8vAmtb6IPDvo/u+p2Lr3GXhyUKRzWlYnzaAJItVFrjNGcjvwC2EwF7otpUcGJaxVquxtLQUG/8MDQ2ZwK/RCSDou/38IAgYHR2NFwjQYeQjEyF9qFQqcV9KpVIccWltzXiBbkZeooVCIYreVIzVffKSkzAMwyj5SRAv7q0tk0nJ932GhoZib0J7fOS0k5dtByD3ybiK3C4ETbgGUQvKeAuHIUTVcRyq1WqH/C/Ps+uTefQ8L+6LtEEMlaRddjYxW80o4xtzLtbzkyKGTeSEY5E+2GKTEBZps3CE4v8iHFilUomfJZaS1XolVr1WG1UWFhaYm5ujVqtRrVZZX1+nUCyxvLrCPafvRWtjlPXStRs0Wk1aTZ++wQE2Nrb47Gc/y/rmBpcvX6ZSqXDy5Mk4f8nY2BjZbDZWpy4tLjI9Pc3GxgaHjx/n8OHDpAYGIJejp6cH1709P/BdiYI2pRx9TUUvDbwJ+GR0/cPAj0ef3xF9J/r9MWUf1bcpyYmSd3uzJydLTiDbDFcWavL19ylSx+bmZnwiCZGSzSgnmywI2VBa69iDbXFxkVrNZGoulUr09JiEJVKH4ChAbOPf398fs3Zy6ku/t7a2YmIoxEApY9MvYKo8UxamxHoUq1CT3ToXG8nIphGiYHMgNqGU8ZZoQALy2ZydnNACEoszExC3TzZys9mk0WjE/7XnVoiF/bKJoG0SLXUmxU8BA8WTVcQQITxyv31YyG9J7ELepd5UKkW9XieXy8Wqc9/3Y/FBgE3ThiaNVp1ao2rGynXx0ilqjTrXJ6fo6u5lcuomjpvmc5//G144f5Hd43tZXtvi0pUb/N23v8PlK9fJFLo4ec9pxvcdIGj5LM4vQKjp7e7h+tVr9I7voVTsYm5mFrerxEs3JpmZmaFSqfC1r37V5FSZn+dClBpACPd25XtNMOsCzwAHgf8MXAPWtdbC59np5keB6WgwfaXUBtCPyVB9m9IpKyY/C3vuOp2yI9CxCeR/2jLASd7/vRZBsYUrSHIdQHyC2JZzImIIFpDL5W7hUmRDAR1cjqDfrVYr5ggkwU2xWIwXuIhOguprrUmns/F32ViyueRZQgiEfRfia8vZSVDRZt9FBpdxt/MexAQk6ourInFOtTkOza1AoLD5SbxAPtuHQ7xabgGL28Rju/44jkO9Vr8FUE4+65Z2JdpqEz8vlY3rVMpolcRqEIi5Ka1DHEcBGj/0CUKfoV0j9JRKNGp1qlFyorUtE0XLdTyy+QIH9u3jG9/4OvlCN6pLMzl1k/7+XvLFEuNjZqvNztyMCdxLZ583VrjjY3zqQ/83pVKJmZkZJiYm4oxe+bxJuzeyZw+NRv22a/97IgraONnfo5TqAf4COLbdbTK2L/ObPQG/AvwKGLWgzbLa2IL9MhFuOifbnmDbKMVq+y2LKtGS7fqLUirOzRcEAfl8HiA+dRzHia36JOy8cBSCCYiRkbjzysYUMUhOSJnYy5cvs3v3bvr6+pienjYenqEfb+q+vj601lQqlQ48ICnnx9iKtZGNIU4t6nLYOa60CZyMrc25xcZCqVQMAgK3iBxhGOLoNheUSqVic9owDHHTqY5TWcQJmyM0Y+J2qCxlrEEMtZx4fux22mtAvgsRLJVKMffUahlOBkd1EOwkdqGQddceF3lvtZpxoGERB2VuRbwx7t1bccRox3FM5Gjf59KVKwz09dHX14fruswurOLPLDA8PMzHP/VXTEyM09vdxcrKCrt3DTM0Ok61XOaprz/NqSNHGBoaYixKCJwrFFhdNvkjsuk0r7v7bs6dO8fExASP/viPszltgv08++yzMadjz3ey/L3iKWit14GvAg8CPUopISp2uvk4FX30ezewus2z/ovW+j6t9X2yOGwQMAkIyoQncQHppLDwSUJiE46Xe3aibR2ybLVajd24Bdyy2VQboPJ9P85XKGa7chraQJrN2UB7Ea+vr0cnv5HZZaHJYhez3Hw+H7sKC1cgz5F+2aeW7ce/XbFtAaRd0jb5TYhhcnxlzJJsuDzHFhvkZcv9yfndbn5sMSZ5CMgaEAJiE1ohiPJfW2Nlz7fUcTvR026TPMMu4rUqoqJk8EaFKKfNvQmxHBwcNEFx55dYWV1neGQXfQMDtFo+6xubBIFmdX2TrmI3xVI3k5NTOF6a4ydPkstnuHzlIpqA9Y1VLpx/gb6RIUbHRtAE7D11kp5eI65W5+bQWrOwsEAYhpRKJWZnZxF/n+3K95J1ehBoaa3XlVI54G8w4OEvAJ/SWn9MKfXHwFmt9f+plPpnwF1a619VSv0s8JNa6//55epIpzw90FOKvycXlUyArZGQyc9kMh2Lzpar7Qm3F4rNXuptABdb3pL7u3ImqpEEiK1Wqx14h9Qh3IAATXb7pQ9J2wm5J4yMaLTW9PX1GZfYjRr1ej3K65CPQb2krj9bNCo7SZ8np67I0kKQtNYo3Ykl2CKCtM11XZyoX/ZmFflZnpnNZmODKZtQ2GNss9l2n6GNNdicoet1qkq11h0YivRbNAASj0FANgFTZU3YMr5wV0A8b9vhCHZdMh4iRqZSKTzl4Ech3DKZDP29Ji/IoQMHGBgY4MWzLxg8qlhgcnKSbDYbq6gLhULMKebzJsFxV58BmatlI3oW8zkKxRwnjx0nlfLo6+3l6tXLdHd309NtUuFtrK1x7NhRGrU6w0MD1Ot16tVyzE129ZqAxtlslq4uY2AV+Jre3l4efOIfce7SPzzE+wjw4QhXcIBPaK3/h1LqPPAxpdTvA2eAP43u/1PgI0qpqxgO4We/exUqRqlt6myza0C8QOwJs++1T2Kb+9jOAMY+BZNFNoftpttoNOLFJwTJ5k6kniAwGarkXgGfbNTd5hLsdgOx0dLq6ipra2v09A/T1WXY1Hb481aHPK+Uot60jIrCkLQX+SYEIYEGxzDDhFH7BaRLntj25ojVeYmNYos9tVpt2/tsdbAAdPb4Sn1J9aOZ0zY7Lye62GdIW+X0t4mN3GuHcpc22QTAnnN7fch4JteC1GOLuBpFJjKNzufzcZQnx3HiyFStVgu/XObIkSMEQcDi4iLFYpEDBw7gOA7Xr19neHg4Tm7caDSobBk1diblkU53RzhSEwXMzS0wP7/IsaOp2AFr165dBC2fQwf388wzz3D16lXe9a538bWvfY19+/bxmc98hne/+91Uq3UqlQoju0a/K8b2vaSiPwvcu83168CPbHO9DvzMd3tu4l8dBGA79ixJIKK6OjiHpGwo98h7cjCUUuiXYaPsemxZXU5JmxOQk07Ui67rxtqLpEbF7oe9KB3HiQOXyAm/vLwcx0csFosdRM9mi32/vWBvJ0LJ70l038Zd7PGyCa78X9SaSdDVHqcOTszCPgTgtO+339uahE4cyHGcjr5K24TQJLkxez7sa/Y60RHeIu2T8b+dpsoWG4womYvFKlEZb21tUa1W2draioPc9A8Psbi4SLVqMnN7nkkf39PTY/wkKhUWFxfJFo1GSNTOpVKJlGfiLV65coWebpNdbGhoiI31Tfbt24fnGJ+TPXcdZumlG1QqFfbs2cP58+e59957OXv+HG9/+9spjIxQvnKNmZkZUl4mjmF5u3JHWDRq3fbPtyl2cnHZJ+p2eEPSz94mDiJS2LjE7SimzV7KPSnV9rewCYQsdsE1yuUy8/PzsRgDWACaEy8MWYwi90ofRN1XKpnovkFoFmolip7keR59PT20Wq0OF+rQWtAydrbNhs3RBEFb7JF22W2ICYrlOyIET8ZEZPhYM2RZFdqii/TxdriRLRLGdVvgpMyjAIzSFntNJLlBuz4pwokqpWJX+uTGsPsh3+3DxuYy1tbWKBW7YnFyaWnJRLqKxkX+f/ny5VgUtAH0RqNBoVDg2rVrpFIpulImB+aesXGmp6eZvHGNy5cvk89mKRRyNKI0dBsbG+RzBW7cuEGpWKTZbLC8uITfanD//fdTr5a5ceMGy8vLvPFtb+OpL3whWgshP/rWt7J6YypWK9+u3BFEQalbjYtsVNrGFJJEISkOQCdLaf/XZgXb/7sVa7XBqHhB0LbZhzamIYtLrkto8dXV1TiSkG1kJc+3zYrttgu6L3U3LWLZaNRwnFwEPBo3ZwjNy/gGm3ZbhCvmFpRtGdg+8ZJig7QneeLbokA2m40XVblc7uB0kpsyOT82ZyX9vGU+LS7l1rXSOS82R2QTattJzeYSbK5iu2ck8Y3tuAebixIxIfSN1qmrUDCxMssmcdGePXvQWrO5uYnWBpNZWlqKCWxvby9DQ0Ps3jOG7/tcvHgxxoWEsAdBQKVhDJkcx8FPGfB0aWmJnp5uMpkMx48d4XOf+xx9PSV27dpl1lGrRalUoru7m2vXbjB/+TKBb7AX9/u1U3jlS5tC2xZ50CnD2gZCNtWFW+VZaC8CWXjJid5OpJD77IUuz7SJlDzH1m6Ij4aoDuWEE8Q9ufDk1LNPdOEcBJdQumVYKa0Jw4DKlkmVl0mlaaVNRGOlIQg7VZKivZDQZ7Y9gdZtbMMeHynyHDEYs8dORCdJemuLMknCbPs0yCawN6tcFzFAtBLaIspyX5wyzlIbCmGTe2wVrWAlUr+tgrP7K/iKzKNYnYoBlmAZ0n4wKub+nt7YbqSrq4tsLmPS0UVqWzFGG9g1jOd5DA8PU61WaTab9PWZhEFHjhxhZmaG1dVVAmXSB/hNI5pVq3VSKZfBgWG2yhsErYChoV3RgbNsOJ9Uije96U2ce+FFsoUCBw8eZHnRBGl54Md+jIWbN6nVakxPT3P6jW/kha9/nZMn7jZexwnx3C53BFFQSsWDLwtY9NJyLXniJPXSdrE5guT9yROLsPM0vF3ZjiPZTgxJsp9CWOxTy2ZD7bbIJpPTJwgCNLLQ23X6QRMXl1TaJZc3MR4ztC0a0aB9E1TUjZhxpTE2BGFnnMWkPL5dv+1xTH6+HWH+bqKa1GurQSFyUgqat4gCMecU+Tckwc1kn+z/2/iB3T4RcSTgbE9PD4uLi/i+T1dXF0opVldXOyIxSdt934ewk/CLVkrUxul0mvX19Ti6ssRvlH5ev36d9fV1stksN6dnDSeRMQfFWJQQt9Vq0V3qRYc+L774IrlcjoGBPvbu3cuVS5fY2tpieXmZhdlZgiBgYGCAarXK6vx8HIptZWWF9akpDh06RLPZNFzInY4pQHuTCHgjKqTk4oJbWcZkSSLdssnku/2bUp0b43bPFJk06W+RJCg2lyGfbXk2SZwEZ7CfZftwqFDjOJ3xAJo1E8chm81SKhRRoabW8uN2QlvUStpDyG82lmBvdHuThbrtoixjJP4B2xG/5P/tuRJOLzn+tlm6EAjbg0/uFy5RIjzZ4y/jbZtuJ+u3OUt7fuX+er3O4uIi4+PjtFotJicnY58RSTcgY5vL5XA05PO5eBylD+IwNzQwiFKKzWqFSqXCoUOHKJfLrK2t0dvby+rqKhsbG4yMmIxQDX8V3/eZm1ugu7ubPWPjFIp5Ctkcly5dYGN9nV27dgEOq6urXLx4ESKO8PTp06yvrRjVdMb4jJw5c4ZAwe7duykUCiwuLpJOp9k1vDsGi29X7gii4EQoqi1rJ08WG7izicJ2ZTu77iSSLq9ay98WpEoWYY/tk0ueIWKA4ziUSiW2trbik0U2t83yJgmBLCrxBZDFb54hMreAmm2vwM3NjXhzFnL5mAOJOQ7AVZ1YBlp3iGHyntTYhGFIaM2DbRORHMvtAERbtLKNyoQI2eMieTjlerNV73i+zKkQwiAIYlsMe2yhrXq01cZKqThOQhLbsQlWOp3m+vXr5PN5Dhw4QBAEzM3NxaBqV1dXbGbuoigVu2LNiKvMM3IRQVtbWzP1RuHflpeXGRoaMvhApUK1arJBv/TSSwwNDfHmN7+FmZkZbly/GuXLTHHt6nXWV1c4dOgQhw8dYnV1NSI+TRNerb+fixcvUip28cLZ5+jv7yc90MfGxgbj4+MM7R6hWCxy7tw5yuU1wxW12jYrtyt3BFEQSh0vxgT4leyAfardbgNDp6mrjQXYJ7btWfhyahpZQPEJrtpYh7TJdU0IMbGBFxPjpBwscrSceMKC2gtUio2u25tSTnmR+72EijCJf9jFVknaWgn7//LZHuPt1JD2vUnikFx8ttXkdn1NXrPnaTvOwx4ze93YbU/OuzzDHiObG/E8L85bKSHgBc8QrkYphed6HSpRWWPCTUgwnGKxyPLyMl1dXWxubsYh/bPZLN3d3aRSKXK5HJubmyaAT6FEqVRieXEpUruaBDiiSgQ4fvxIHMDmqaee4vQ995LP5xkYGKC7u4vp6WlGR0cp9HRzc3o6Ar/zsaFVvV6/8zkFrYlZVR29HMeJw32be0w48OTiSIKKNsGwN5wsNBuolP+5joODRqFjW30VRePxxU5eOziOQjkuCuOc5SiTGKTVDAhdCANMpOnIjFVrTS4dRSFutY2EXF/TbNVju4NGo4ECMp4hUJ5yDAagFGk38i50Ik2C46CUiVPoaE0QhgRgQstHuvtcOkcQpGNbh5jYqUh9qRQ44HjRKY8mGtwYu1AKghAg2piui/YcFA5h7PwFjqNohZEBkmPuV8ohCEPclItyXUIid+ZmI4pf4MQq3Gw2a/wRfBOXERXG+JK9aYUA2B6POmqochyc6H43is2RchyUVqSVEXXKtTKhirKZuxE+QURcgwA/CKjWauQzWbKpNM1anUa1FhM3gMqmyWpFEFJr1qhVqm0i77gxhhAEAdm0AR6ddIaBAeN+L6nlJSze7t1daG28cRdmp2nVaywvLXL50jnuuecelDK5N1tByNrWFs3AHGJXr71Ed6lId3cXI8O78FIOi/OzlPIZVuam6e8ucOXcWSZO3o92cqyurTA02E9lY52wtkYqCFH6jscU6OAObOptX9sO0LKRZPu+JCubfK6wowISQVsOt01hY1Y77OROkmKGPFvCgQcRYNis1TsWuSygINCxW7R9+tsqNdd1SbmGUIg6SkVtR0faEUsel5PfPh2TYKC0I8lR3K4kxYLbnfT22CbnUopgEVKniAFyAiZNrbebb5t7CK0+iMORF2FEqch8PeUZ1r9QKBBEYeiCBFeRVIsmOR5b82SvF4fO+Ze+K6ViexMZn2azyfq6Ce+/tLTE2NgYy8vLaK3ZtWsXMzPTcdax+++/n9XVVUZGRjoiZ42OjjIxMcHayiJhYCJ6DQ30s7CwwNjYGHML84yPjHDy5Mk4KfP43j1MTV6L4kWWuHbpEq1GvYNDS5Y7hijIIrA3bXJBkvhuZOzOkGH2Z/kuZq+2Xl7AP9u6K0lQZNG7rkso6SGsjSHPEjHAcRwaUdTdpsjoQZRrwG9vJs9x0a6KA79KUFeRq2U8HMeJjWNCK2Sd4zhGq6A1WMZBQlRsDsEWd6Q4KHPCKky8xpg9uNV6U/4n8n4srnjtFG42ECn326pluSaxJIIgiJPI2gZQMl9J70epQ4q0UbAcpVSsxrQxDHuugiAg0G1xSSlju+F5XmyDEgTtTNW24Zr0V8ZE4k+mXC8+cIIwoFar4eRypNPpOFpYo2E4oEajEWfSHhoaolarMTExwerqKpOTkxw9fgzf9zl6/ATFUjd+qJmZm+fAgQN4nsfS0hIra+ssLC1TyLiUK5sQanKZNCnXY9fQIJNnnmFsdDeZYonhYZ8rU5P0jY+ya2iYWq3G6uIcSqk4UNDtyh1BFJSClGUtaANfNuW2T/DkqWSfIPYilWcI8bAtG4FYvSWLIolStxfnrVGH7RMxBrG8zlByjmr7PcREBB+8tgajXq/HYJYUexMC8UQGWqz+Og2KXEuuFmKQBASTHFeSWCRBwyQWsR1QZ5+k9oazn5N0Aku2JWknIWNqE+kOoibPsgiW1GckHYt7wVpDtI27zPMiLtKqM2g1b8EnbM7FXnehskRX2gCyzFWj0cBJtxPbyNh1dXXFfXJdl7GxMS5fvszAwACnT5+mr6+Pz3/+80xMTOA4DpVKJY47GYYh/UO72O3tZmV5ka6uEksLC1GIPheFw8LNmyilqFerPPvkk2ysreE6e+JoX61WA61v1bBJuUOIQhvBh04W3T79hbW3N2SShYdOpFxOpaQoIc8WIxW7Lba40S63stg2Yi+LJg58Em2UbCody+SxSKIcWrrTmlD05baTlai4HMfBS0enYiQz+6FhvUPdjgZlP0eebW9I6bcX9U/kcVvccJQigDi1W3I8tuMIkr75QoRtAut5XgzA2uMqOIjMhT2utk+CZIgSIu44DtUoVqXMeSqVIuUYgNCLiLgXxWbIZrP4EbvXCsz4tPzIDNtqj68N8Qis+fYck908DCMRMOWhNB1gXS6T7QgZuFHfMGOn24ZXpVIpdoXPZs39p0+fplqtUq5V6e3r49vf+Q6nTp1iYHCQb3372wwPDzM+Pk4lsn8Y37OHlZUlqtUyuwaHmJ2fZ9fQEEsrq4yMjjIzN0u5skWz2aTSgJ/6J/+Er332M1y4cI69e8ao1GukHBfPu32I9zsibVw2k9Z7hoc62EVhIcGKrKNudSSyF5DNRidlXMEQkqecrRqz9d1J2TKdageKlfaIWNLRbt/Ix3KSO5qOxam1Np6LqpMQAbFrtN1Ov96Mnmus5ZRrOIJmYIKv6Oj/2WjTiB9GtVqN7etFpIg3XcaozcQCTxycpH1yykmxLQ6Tp76w8RKgNgzDbaNNOY6DR1utLOKHPcZSZHxl09kilhAEgEYUL9LzPAPKptOkXc+oIbXhCpWmLSbqyIu1qwjA8tqqCT4TiXE2IZN6BaiGNoF1XZeM6xG0jGapWCyiAxO2zxPbDz8wmbhRjIyM0NPTE3MIMifSx1wuh6+hUqmwvr7OvhYVd38AAA/XSURBVH372NjY4J577uHZZ5/lrrvuYmxsjOeee46hoSHm56ZRaEZGhqmWN2k16hw5cICl5QUKmTTVqokbOTq+D9dVJiSg57GyssT+vftQDrzz136Li9fu4LRxrmNUeUm59VZwrNPIxmZD5R75TUoSAJJiy7s2WwttXbct18p3223YBiiTHI198oLJWtTmUnRsf2DXbwdVFaDKI4pQZHmS2uwyqm0rYW9QOVWT+IBSCi/y99DKAHNaRY7VBrbBxdwTbMMd2RxIUixJjrldhJVPGn3JRtxOJWyPvz1OybHOZDKxb4eiU8zwHLftyBXSQRzt+5Ki6nbrwi6+75Py2klrsmkTpTopCEl4PfF9EELoui49PT0sLS2ZpDI5k/n62Mm7mJqa4s1vfjNra2vsO3iIQqmbxZVVyrU66a0yynU4sG8fUy+9RL26SV9PL0sryxQKBaYmb3Dk0CGWlhbo7+1mdnaWI0eO8PzzZ+IDcM/4njsfU5DTE60xPj56W1zATbkdEyUcgpSkbGrLgHJf0gbC1qUnN2dHgFQ6ZUphkYWQCSrtppyO53oRMfAcK+6CE+DTKRpprWODJmGlfd+nr9RjTsO6CRbaaJnrfhBFFo7YZhFb5PSR+JJiKxGGYUwwgkicFA4g6f0pTk+1ZjsnY3I87TG04wwI2GljQrE4SKftgg3UClGwny/ci2xaux2e55GPwqF5nkcQhVpTkSu8g7mnVOxq2xi02r4sdqAaIUytVsukplPgug5aKUIFTioCvYFQRYZkITipduQvyR/qRxyuqFxFpLCBSjn4yuUy+XyesbExljaMuvOhhx4inU4zOjoat+nKlSvk83nGx8dN9OZ6i8nJl+jv7+P5qUnOnDnDQ/ffx4ED+1lYWOKRRx5haWWFG9eu8thjj/Hkk08yMb6HUqnEyOhurl+/Tub7yfvwahQZKLhV/dTxnuAekovudv+z77XvSf5HvouMbINcSRHDPom3e952JeYgXFCO2wEMJomUcCLlsslz6LiRFaSKuJ6wsy7bQnI7AM8WcfyWFeRWQELHiU7yWz0F7fG18Q6Zu+1O8lsxmfY82J/t4LM2lrTdnMhmE+tDHT2jXq+bFPdhGGtlVMTmC95ig9BBwnjHnjdbfLsdJyQco3C0MvY2mCz1Sn/klAbjUFUulxkeHmbv3r3U63WOn7iL7u5uvvDXX+Sxxx6j0fS5eOkKIyMjPPDgw1y9epUXXjyP67o88Lq7qVS3ePrpb1GtbLJreDeZXI5vf/vbPPSjD3Pp0hWGh4fxVMhTf/skW1tbPP/88+zfv590NsPy8nIHsb9lnd4JmEIundYHdu9GqbbdgO0vEJ/gTqetgs1GxwYtuhNdl3d7M0Nn4FAbiLtdcZTXQRSkTluk8DwPP2zFYoNSKk6OkvZSbT29Bu3e6rQjPh92e1o1437teCZnoZsyQTpqzYZJxgtRKvpbw9/DrZvYcRyajbafhIy1vRGE2yg3ah2cmP0Mew6ELRbOI8ldxL4WYad2R+Zb7ktyBbYIKf+ziadr1acwmEw2ZVD6TMoYRuWzubivlVqVWq1GiCEkwgk1o7UThiHK63TPT3KiMaaA4f5SqRRdXV1kUiYPBRGRzaRM3AyVSsdqTuEa8vk8xWKRbDZLs9lkYmKC/t176Ovrw/M8pqenjRt2lHRobm4OgNHRUUqlEi+c/Q6Xzl/gwMF9FHM5pqYmyaUcZm/eZO+ePezbu4discjMjSvs37+fWrNhIj7tP0i5WiGXK/CPf+FXuTZ1887FFELddtO1T4ukDKncToDLZldtim7Lz7C9hiL5PQl0yf+SrK59zXZSgkgV6iRUpnIKul7MViulaFhAqjzTDhkvv4mHXr0Z6fVTXrwB7T7b9gOyEW1sQ56rdZuFTrLnMp5JjKZjrhJE1YmAtduNa7IN9vzYxk/JZ9r/s2Vx4SxEdJJnyhi0MPYfSEStUMcbstYw/hJeuq3+vR1XI+3cToyVuc5lsrGnZT6KxGT3NQgCmq1qHCdR5rdYLFIul2m1Whw9ejQOqFOtGqJ1+PBhpqenmZ2dpVAoMDY2xtDQEOVymampKVqtFqOjo6ytreFi7HBajTo9PT3Mz8/z8EMPUK1WGR0dpV6vs7pugrM88CMP4m2mmJ6ewUvd6fEUFLRccByMTXnYDsuFbk9u3W/cslBFdk3KqslJttk6+x5bRZbEK+zroW472tjso0YTismoBqVv3UiO41DzmzihgxO0bgHb3AivcC3z5iizGw3d5oAqtSrlaiVmUyULcjqVphn4sRwrRjjSfuE+5N3NGbuMzc3NeHNIRChpb7PZpDubwfddGo0mrTBA+yEpz4TqFGZAKY9UqhNvSRJksf+gJb4KXsd8xT4MKvKMxcjt9vwGgeT3COI+Nfw29uM4Ls1Wy2gkHAc/DNDNRmzXUQtbsQWlaiSIJmbMlePQDMTQXpaeMSs33xVhCM2mj+84hFHo/YKr2KqUSaU8gmYTE/QmbVLmKYfA0bgqJHSVicKdy5LKZhgdHad/ZBdBoAkaPt2DRTzPY+rmDAPDwyxdusLh4/tIexme/rtv4tdaJixfVz8Te/uZn5vhwoUL9Ja6KFd90qk8u/aN87fffpGxsTHSbop02uPu+45w9oXn+MYzT5PLmAA5Ke8OT0UPbZbX1yb/oLGDt7AA3Zk0RN7FBkFYb8/zOmIzJDe3farYrGhHa26zwLcD2ZJlO6cqWwsg/7UJQ5urCA1hUO2EMUHkVyCoubRHnK+kLyKa2DYL4vMhbZLTqlFvR0hOjoXYAxQKBTxHRCQHNwwIU9BoNQmCED8+7RWaThEgOV7xWPnt6NHCoSS5OGlPklNMEvowDAl00DG2KVH7hp1OdUoZOwNoa5ZscaSDSIe3zl9ynqT+VkRo0AG+08B1HTKuRzodYQlBgPJMm/L5PMVSN1ob8/aW75vwbZUKmUzOsPszM/QODRiv0bSxdzh/4QJry2sM9Q9w7wP3MDc3R+A2+OY3v8n01CRjY2ORM1QfxUKBzc11VpdXcF2X0V39NBo1MpkMg4ODJhaFcFIvU+4QomCK1saHXxH5H2iLKIQax7vVXtvGC2zWVH5LssRStgMJ7UUi7bF/s+vcjrWW536vfW0/V7Jlg52bRohDTDQssSjZZkWb2AjR0NpoNOyYhHa/RTMBdOAjvu+TzWbJpMzGbbV8s1di7uZWkcsmANuNt9baOJ5ZLyFY23Fq24F90EnAbW5L6vU8z4CnYZv9B+KM1/aYJef05TAle77iZ9AGyR2lCUNDFKQdKIdMoUixWKSnpwcvnYmjXxeijF9CvJrNJr4OTYi1vn7CMCSfzzM1NYUKFccOH8HLpE0CmlyewcFB9u8zFo/PP/sMBw7so1arMTc3RyGXZ2tri0UnYGxsN7Ozs8zOzrJ3YsyIUbUazVbztn29I4iCUpasaa4AUVjyeHGATyf7bi8YSfqRBIfM89W2Cw7okPNt4hJvNqVuWXz291v7cuv17dSeHRvKGggZhxjAy7TRdjEOEkcq4SY8z2R0lv/YGYCS2gytNTo0YyDJZMIwjEPJgSEQPT09lIo5qtUq1WoNgnam5TD0Y0DNcRxC3clZ2UZASU4tyXlJxCJ7Lm1swRb3kv/NeJm4r1prClkTEblSLhO22hwBgON2+mrIM+3x9n0ftonZuR3xcBwnnjhDIHSHP4gZdye2idDaOMvVajXWNjbJ5fMMDAyxsbFBvd5kz/hehkZ2MbZvgoXFJZp+i30HD3D06FEeeuBhFhcWuHzuEqdPn+bM2acBYwPxzDPPcPDgQZaWFih1dbG6usrxh49RLBZ56folzp07x2OPvp63vvWtTN64GoeQf7lyR2gflFJLQIWXzTf5ipaB17DuH/b6f5j7/lrWP6G1HtzuhzuCKAAopb6jtb7vh63uH/b6f5j7fifUv135e+WS3Ck7Zaf8/7/sEIWdslN2Ske5k4jCf/khrfuHvf4f5r7fCfXfUu4YTGGn7JSdcmeUO4lT2Ck7ZafcAeU1JwpKqbcopS4ppa4qpd77KtU5qZR6QSn1nFLqO9G1PqXUF5VSV6L33h9gff9NKbWolHrRurZtfcqU/xiNx1ml1OlXoO73K6Vmov4/p5R6m/Xb/x7VfUkp9cT3U3f0vHGl1FeUUheUUueUUv8iuv6K9/9l6n5V+q+UyiqlvqWUej6q/19H1/cppZ6O+v5xpVQ6up6Jvl+Nft/7/dT/Dy5JY51X8wW4wDVgP5AGngeOvwr1TgIDiWsfBN4bfX4v8G9+gPW9HjgNvPjd6gPeBnweY8H1IPD0K1D3+4Hf2ube49EcZIB90dy432f9I8Dp6HMXcDmq5xXv/8vU/ar0P+pDMfqcAp6O+vQJ4Gej638M/Fr0+deBP44+/yzw8Vd6L2z3eq05hR8Brmqtr2utm8DHgHe8Rm15B/Dh6POHgR//QT1Ya/0UsPo91vcO4M+0Kd8EepRSIz/gum9X3gF8TGvd0FrfAK5i5ugfXLTWc1rrZ6PPW8AFYJRXof8vU/ftyg+0/1EfytHXVPTSwJuAT0bXk32XMfkk8Ji6nensK1hea6IwCkxb32/y8pP2gyoa+Bul1DNKqV+Jrg1rrefALCZg6BVuw+3qe7XG5H+N2PP/ZolKr2jdETt8L+bEfFX7n6gbXqX+K6VcpdRzwCLwRQz3sa61lnhodh1x/dHvG0D/91P/P6S81kRhOyr4aqhDflRrfRp4K/DPlFKvfxXq/F7LqzEm/xdwALgHmAP+7Stdt1KqCHwKeI/WevPlbv1Bt2Gbul+1/mutA631PcAYhus49jJ1vFb7oaO81kThJjBufR8DZl/pSrXWs9H7IvAXmMlaEDY1el98hZtxu/pe8THRWi9EizUE/ittFvkVqVsplcJsyj/XWn86uvyq9H+7ul/t/kd1rgNfxWAKPUop8Uqy64jrj37v5nsX/X5g5bUmCt8GDkVobBoDrvzVK1mhUqqglOqSz8CbgRejen8huu0XgL98JdvxMvX9FfDuCIV/ENgQNvsHVRIy+k9g+i91/2yEgu8DDgHf+j7rUsCfAhe01v/O+ukV7//t6n61+q+UGlRK9USfc8DjGFzjK8BPR7cl+y5j8tPA/6sj1PFVLa8FuplAaN+GQYWvAb/zKtS3H4MwPw+ckzoxstuXgSvRe98PsM7/B8OmtjCnwS/frj4MC/mfo/F4AbjvFaj7I9Gzz2IW4oh1/+9EdV8C3voD6PsjGBb4LPBc9Hrbq9H/l6n7Vek/cDdwJqrnReB3rTX4LQyQ+d+BTHQ9G32/Gv2+/5XeD9u9diwad8pO2Skd5bUWH3bKTtkpd1jZIQo7ZafslI6yQxR2yk7ZKR1lhyjslJ2yUzrKDlHYKTtlp3SUHaKwU3bKTukoO0Rhp+yUndJRdojCTtkpO6Wj/H/CPyt+k5pxYgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cat_image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.102.jpg'\n", + "response = requests.get(cat_image_url)\n", + "img = Image.open(BytesIO(response.content))\n", + "plt.imshow(img)\n", + "\n", + "headers = {'Content-type': 'image/jpeg'}\n", + "response = requests.post(url=addr + f'/predict/{model_name}', data=response.content, headers=headers)\n", + "print(response.content.decode('utf-8'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/demos/image-classification/summary.html b/demos/image-classification/summary.html new file mode 100644 index 00000000..ecaaa78f --- /dev/null +++ b/demos/image-classification/summary.html @@ -0,0 +1,22 @@ + + + + + + + +
+ + diff --git a/demos/image-classification/utils.py b/demos/image-classification/utils.py new file mode 100644 index 00000000..08c2a17c --- /dev/null +++ b/demos/image-classification/utils.py @@ -0,0 +1,56 @@ +import os +import zipfile +import json +from tempfile import mktemp +import pandas as pd + + +def open_archive(context, + target_dir='content', + archive_url=''): + """Open a file/object archive into a target directory""" + + os.makedirs(target_dir, exist_ok=True) + context.logger.info('Verified directories') + + context.logger.info('Extracting zip') + zip_ref = zipfile.ZipFile(archive_url, 'r') + zip_ref.extractall(target_dir) + zip_ref.close() + + context.logger.info(f'extracted archive to {target_dir}') + context.log_artifact('content', target_path=target_dir) + + +from mlrun.artifacts import TableArtifact + +def categories_map_builder(context, + source_dir, + df_filename='file_categories_df.csv', + map_filename='categories_map.json'): + """Read labeled images from a directory and create category map + df + + filename format: .NN.jpg""" + + filenames = [file for file in os.listdir(source_dir) if file.endswith('.jpg')] + categories = [] + + for filename in filenames: + category = filename.split('.')[0] + categories.append(category) + + df = pd.DataFrame({ + 'filename': filenames, + 'category': categories + }) + df['category'] = df['category'].astype('str') + + categories = df.category.unique() + categories = {i: category for i, category in enumerate(categories)} + with open(os.path.join(context.out_path, map_filename), 'w') as f: + f.write(json.dumps(categories)) + + context.logger.info(categories) + context.log_artifact('categories_map', src_path=map_filename) + context.log_artifact(TableArtifact('file_categories', df=df, src_path=df_filename)) + diff --git a/demos/image-classification/workflow.png b/demos/image-classification/workflow.png new file mode 100644 index 0000000000000000000000000000000000000000..0e4c751d4fe290a9e484f5db45e980827712e911 GIT binary patch literal 35003 zcmeFZhgVZ+*FKDG9Q!C>Pz1(8*C2{Sq}dQb0|L?{0Szi3Bp3pOj%83uC~A-vnv~GN z2!tdw3jvW{gDEi5AtVf45(2*i`abXT&iej@kF{I|T-;~hdtZC+YnNmA4Kw3i+YfG+ zkdWAAa`m#Mgv4fsgv18N-+u#s5(de+0{pcBV`+R*qNwH2IPlG8mkZDf5)$O-9m{vN z0N-zWc-0;wA+h`O+Mf;eo;i0VBwpMwxqRWKpCezqwe+}c@RTU!ZmOsy5E}tO`Hl8L zT7nl3UAwAs`0)FWGMBx6d;0O1>{An^ghRXP9-V)*`OBYsH}AX1dU1>ZG5PZ{=g~XG z_mpGl=X-xg9*y|JWPXC_-dr^*EbgBy%G;fvCvr>e+3i`SVkO91ijGlbx;z^dtpa1^{0-E^0It-b`N_c#)+h)@$Cwn`YhJMnGssGK+1(hTr@eC1( zLu{?CjG{?DQkp>z)=Q6I)1tYW67S#!sAcM><=t~+-QOfAjrEZVwi1u354c%0!E3o$ z=SE_&xlw&nEfOS_jQT+cVVV%B4E{ks0@*No6mmkIwk=+P=H@ai-uWR~^6XJ{95P8_ zX-jf-Qk1Z2>&@r-Gno@(pvo%xc)o$X9H!2w`;H6TQm&NeCGo88d0j)K`BLv)j_b1P zAt-p^{SN(oD61i*+k3x2@mEkA_dn*8n&v9Za<<$~4C4Gim-St-lxo}~tSe417WX;b zgapjEb+;E+yrYj3H45eD$?EyGq5Q-NWPc^)+^WbhAH2eJvUXZE+47<7N88zUzjmrW zCp+W@cPOc#lChr~g<;!OCUT`)SY^UY!0v@3@L@Lr2D$QG|J&~J#9%|1W z3(vNxul}Lm4RsRdPF!(;!Q=w8vE+@42Nez~LkxxoyW2JVjD31DoU{)Z%lf~7#q6Z2 z`2J}zktQFE*R?e^oPN`NxB{FnzZ$Ndk6#df4bj;UpIXPXGQf1-t(04cCqU{HK>oxp z&<|#ZA<#>xjlO^=xtshStilVh!LB}CovrcLCq0*98}sVBmnKS!#Z=*QPe%v%KjKtd zry;OS+SS2JgO>-521govCH?QzP)E2;s)R(W`5<&qP^Vn&d1^Q9!%@hF;PWWl7wCC~mqb#-Y!^H) zL*P|25kFd0ct}zVo}K!V+p>Sp8lvpaY{sS!`b|L_PNoF4f`3EpEy6} z|Gp~T6=54n3Yb(bDgcYhg*&!>_^R*LYTezQ9gI39KkFphqyF|a@lo|*$Tr%xF=s5l_?=i&G9R626;=KV4&|&$sF?H@Ym*m|ananiJxc z2hqvfou8`WkjI*vYr@d8x@IYi(8>DZQm2y=zESeq+WPa_&vLJlWSyCjJk38L8$O>$ z0S+BpilVuFt}`&(jwq*Me1;VCOV7D7?{zn>jBoW#-+kN1ap{e_(xAnlmt{eJP?A?u z82Pajqa%z9&y(d2m~}^{Jbd7@h=n`y3-=s+v_fMFJgp%?bB#)aXW)NFo_+=B|L|eR zQpkpPB|XZJhMp(A7UiPB2027_k0jbwYxBE+gVA*7>w_3M0YdJ)g~w@h56IV;=_F;` zClC-qTYfB0t#U$gC3^i2rb5n&-Z%JlQ{_fAb^;N@^$WDxNn)~K{tHxAX(=~WfavZ& z88DGu?WsH>;oEXrqcUL7GlE}(KQpXoNO@kcXhe=b>$zNBp|py4ExNd&O~HJn$(k^I zuBUzj;2tMm5hdo@doi8QjvMB>t^ycY^w$79F?b%Nu!8a#8#I#>!wa6O;Ii1O(La(6 z^HF{aeG{MZL#^SK3dbbGS?GY?qHD^7zDHk0@t9k@Bu`!+Qj!SPTHtu6{Ymi$@sb5r zazP8j-PuLLu;hqMYd6};o5FVw`ZQt53zaIQA$#Q(hd$c5i4iOiWIFQml|yGl-HL`q zHF^?rDRudEg>{|*^1+8pVmO<39-wVIuMi1=+{2Q4L}zHS0-9&Cp7yxXfP~O_M&_Qr zBOuA^IPJRkvZI%}2h)4+4{(;tX1@^S0Q{Bi$j1hWvb&iR8oMOK+0y~e;*#ovH5p6Y z1mNW4IvyF2T>o?nkF?7_jbtc(Q&G7mjkX**lhE~}9c!7lW7(+eYS zkYZ?uK+i6>Eape)k6MbhY)q>`dA0OS{8Pd4Z0!FcNC&tPLE#73x%ZN`aH zu6?IdILE%42Y7hRf_t*7ivsGhX?STFoJ;7+#6-MH%9*bfc3I^{n!y`9j|{B;UK|!)+xX$1>tMkII%&mq@}+VLU~;`R zle=E0srE4f#_Z#6f&_!VgadrF;VemovQHL-74G|cV7H7xWdG;)_=@iaPt8yp>;B?w zPK&OKAyNSd?uqOta~O%ddlnvp-)6nhSW!dVMiBPH!^q)*D9+}H9qX>A2(fs#wa#b| zdk9NLoq3tw>j~ZcA#P&RhTDFCHbdM`r92Np8v{p&tsniGh_HxwqJPpumgcr|i>MIb zymoXljPr{42z?l`VJu^MLJ2hUB2deguM(%NaFbTq zZ3^%-S34uJLbsFD*yR0CuTQa=ZFQ@>FEx4czRR?3V=&u={Tu0kh>^^8kq`qnZZpnk zh0YHh?4&Kl<8;8jO*eN&h|`!b53i9efyx*r)zNIrm2xmi_8JQJo3)haqFC{Tj)p{&$KuFN99r;iZK1!S^^hP+c9XtEhO&F2)V+P&`MFOJ{6( zfqzqr*Qf@5{x=r+SkIP#Z0R zCY;1mW*m;@e&+@#aDg)&r7E$3!O4HGwqAU~ioV7YdrWcg&V&wZQk~@CZ5{tPwG8KAuwpFBlTPxv|+H=@**DEu|!-t4+hm z^~sg&qLQ6bjA!oujh|P3YG^j8X&O$H2)Ex!s1wiuh863xN84=8Zmnfk>m z1FoXR#?s&b2XWTiOW_V9O)?zW&tDlBYFL=SaD`*{|67pAH6SnCpe?-_iz3;ZcZ~%% zztU1}*x@q3%2d%N@*p?_9*Fl+7E%sJ!EWa2e;Q?FPHn%Xrk4AoipOvbOZ+#=wm-gjU@0gl+1T9#BHmd@B3udq?KayTs`!`?T-pO z<1OjbYEHJuWhL^x{mnxdq~e2;@k6GVGt6hgt6Mb6qfYw^RZ728E)-`iIF z%MIyrp)IbAl#O~WE$5V`EOaxXo9(=;E?am+#=OSiPlWR-v=P(SrwlX9PI?v++;Q!p z>W7EXCdc0^W+909=5axZRDNdR!t5vF80vio7pc}XOm_ABZ&6O23EnjL%@lj;ZRK3R|0`jT6E4dQ`JV3I&8p{HyXV zC$%E6z39=mx)Ai}!h!Rv{}ZK&9($nU^})8iv)T;hOn}AqH6bu_+d*s_khGdu5U;$-eph8eh%8$%!)x z1SG;GVNg|(wk283HnFCTdaTYg_eO3jb~@{bZO}nAbQptt@Rw48g8yveLa$r4yMrmm ziu$u6lhkqH_!H6$n1^jqFfs#gg!y-9mfrZBbW;jLhEpkLl*7^ECLrn9x&CQ!Qbl7! z*#YNcbxi}p?8eC7veM)6Z)DUv4VY!cAzoxbyNUEFY|?HmoC28r@*amU{RFm&Nm>;S zaS1YuONvE>z&}J8y0ji!a(Cc>o?f!>2>JKJp_Jz&4I{EPM;meiH(vBk1`;Vc-nUmEP~n<&cpzJGsBW*yJFkE}aEyAKMfsARaRS^@fGhJ{^-z+U;=#1*?LQo0@$z?02W+uAs^BV*Sul zw%$A=Xt_=}IbA0c59JJ|vsUy*e8P;CiGq5&U$F#EE&g=K)P%t}7w!M8$E8P7v0hIg z_VH3t>?F-Bye0s_5JU_Vy75=roCO-G*dipTIZ`~(!ax0J1)yYO8RStV$T#_ekmA=y z(k3u=2@avgQMnR5cP1H6+ejGk1#4UEHGvq8%?{ARQ}%l?NJ$io&8tGKP#^L>=X*95 zP24YUk*&^iLsk*(3!|F6+sA3D=_-^f>oR2xpzga5HPVjbKg)^CLd9!>zbdIh5GBROLOq1#Uy6_@p)`k z<^UoiPI|i~TD;h8($3(fnH@9Fm#im(D-qW!x0`_tqD@TMeJrE93QHRraJ=j*Gb!KmE_-4vu` znHtSb&ai#XMi3inZxY*_JN9nXoKuZ-zGnC8}TYqn?g1Cp)Klm?;DP#d_!#?L)n@B zkYA_MFiVmenRBdEecK2-nZ2MD?IkK?a?V9j3bkswf{sTcE1ETJNX^oOj!rX{Q+Xk4 zE3>8d7ZnPo82m9-6mt{7(eXJFiqdZj_59lZo7F%dG`W;R2RkCi^%;{zgchqE+myoj zN?;p)CZ!DeK$lSw+(vOQrrQHq2SsXiEP7O8tMlS&8x@UbG5#hwNv}tvWZA zwt}0t08XAIyA9@HGH#M-_u;{sfQeF!T5iGjk$mL#N6!DD1i9W8YA+OL`|8w-;0ZQY z8?*eRzi>pz8~<|hU;L>R=sm{?6O_SW;rFUG% zbuQGl;t;y8Yl?lX?um?W{+fJM%p#lRrds$%J;RZXE{pfrcwT}=_K`L{9J1&Fc#3Gh3n0`1WmmP~7E-P8lCTcg{FQysI;rs zfb*(GjfOcD+>f_T{7}(rB=eKA z63;-~(yv)uXDEW0bwI?HMYCZ|$BTN)CenLL4Reo@f0U#C$M44BHt9z?JoWz`GI?V4 z_DdP0QPvR4I7Y605)-l^c^UEU8;S!CMtP_Q2xJ$p56pZbt~eCG0q>sI2{5er(RGex zP?bH9Ffbs3d9?hDXw1iTenFY`t4_rgercXxpxn{~2{q-hKuY8M<=j8sGU3ZNXu&Zu z#ugrTyUZ z78_!g;a3P^dy%sgHs9xRkExv-S9;`E@?<5{!yHZavq_iT-4VG(N1B?r5VqYlO948t zfMbsUtbnbsnt_xPL-gp}BDhGHbLs%Rs# zw8CXD+2xk!tqWJC+~goFbN1ulmENM2K0A+VH^({xryCAg5Lq>D?9`kOq}B+3Gj=W$ ze&Hl&RX%a0qO>_3iBIiZ*!COJs_#mA@WW}|-Svq0+wJjn?D@;xkow&AibzKfR_}nK z9O3499G5SF6DIZskFA!gCc@+K@R%Uc>wBZ6qkmOg(+bCkPYoqGuzW#mV<`sxJAK=w z%&8Q+-(&8DuI^m(<~8eN^VTZ;U*{*?j2{~F0qvOs`dqRQfwk5Pbg}SDUjrOI9Vbds zlAkJ4{u9kj9-xplbdXCIJQaT`r!?q9VppujSrWF6zSt>XmtFO@YgMzxOytfwP;s0@3;hinFAN`M@b1k1X z7lv>dn}RQ`8?eStK-1P<{JLkVjEC#P@Cp*yl}>-CC(O#-s>&1XltY2hl1iza_dgW{TN4G*on{%WUVO#e z<{vxmPh{7y%j%1spYpPTEG@+WdCw%5nua-B_u#l2YzQq}4bZPs3YdDO!PO7P51JQ` zW3*ytdu-S^)wzgN^=$fzzXciD zKaa;lV=x20qoa?7Dxo#u_NfV8p?dd)hpI@1XIdTkDm?B$@K!0TygCFm(!` zEBOqxnKESc9#K_>eiK=_^_Vx4z3DGULs*_o%%${VL!&Q!S9#uzOqRs za{RN?ALD(rqF}Pql}Lhfj5&~#tE&WJ`vL9RMeC~xu`V<7o*p0QTAc4YdV{FTkUXfdr zPX0f<6|JQOdU}`EK^{7YMs=GBjxSf~i4}cJ>++3gY*xehG~iJ+6)P_epJO5d-@j1M ztSzhh9a==(pOD=Z#cE_b{bdPsWRMbK<}t{wpYEgnc=vG8POnZIsB%FkLK0fkamn!g{n(0g)WWqF!T1BMc&55 zz`K^%-XU?mL8q{&#*}d3(8&{!@s@3I&U8AvN`ZbN`}o&9jFlcU6KYWqvj-sy#YCvT zcU#Unboik9E%QNJ=X@;#gzi4WRx}Sv7?q6!!O%Hf3gI)C9@wrr(2tsn`b+sTaYSpW zMjtmP7|OaDuj5e9;uj-k7hZQ99bdw}qWIff08=VdN{WcDjYd@Ac*epg!$em^ z+nJ}b5Wb$z?6=*lG0Te|26xc?TJUDyUR&)CKxFqM8K_fo=M!t)hzO2ubFyTSe)($RKMd+n*Nrhr=m_li z?)W#vXO8c%qRQW=VT2AljOo&!ly&@gYfHoK4y3Pu%3=sLLtT zA4b5FygUP${@SD7=>Dw+Jt0?Yvp7RaYzbj86m@Xl8W@XAHp+d19~dGPno8~f?x$_G z8v_oxb>|Cog~Wigdv}Z)=++(6v@v=wGpOWS&^_65Wp1FKIrCYuh zP12%kd}UTK)l9FL9pMdgPHc{r6tGot9NxK^K31;+^1q`DXr6Vwja93J8aRa< z;NE`{>-xSRJWi=tFl&m?Ma_`XQ)Wft*5B~9EEl4hFE_G_Hj@5k*TkL zLXh3}pY$kcqa_(`l5yISTF?kC7Y?N@(EGU3qO>ks_`~d8Z@{OHD44%CGF$`6P)nJ; zQ5Y=uL!0+;YUNu@)m(ii=3urz`J5Mz+KT4{Kt;8~=i(|@bH+s`qAbd6d=9jQ-%-sL zfCrKh;QKvfwd4}8?_L%RqKI9|5V3Z7-ku|hY`A2)ejo^x|9b5 z;(oDAmeM-`hHmGB@)~6W+T{vc#WlDbazcGsv+S)JH?qTEciDGD_Hb@(A+yvRR)iTW zM}{7QvNXz)>n}qwMc!`xNUVd}69ac<$_YN5`X3Dka%0AJ`^S0G?JiGOujhvIt3J)p zU}KA&A3DmQX~Dq}uYsgM+;)rDTMKt9R|h*z6&ANa z*__fZPpVcJXBQ8^3(i4kvlttT!|irxp8IlbFWCRm+=0;f4({ptO!?F(9-XS>-1?>STmTsr~N(Yxc0EZD;F}yQ;$v7TD@VZF+y(gS)^T0vpbaW%ld7R>4%CG3HEh|o% zK(HT*3o*3}C6q%gaEUk`>Fz70`Rx9wYd<}&UyqjCx<1h=+E(frZSk5&d2srIyCjhs z-dJjKpRg^Fy_d`|u$twlP{RE&-W_~d?KPVZDtxRLLC4PKpJ z;YDh+LRDk|^jcdLDJoEqzHb4JM4E}@+jvAj{ZU-vSoarICU8&IslFF zA`m?`jn(*Lteh;QHofzPOS<;UXB>kdtrLf+CO3(_cdd;yp_4Q5u<_jl8BjlSv+0&c zGRzny8X2094fSB2fs6~*GOb*6CA}veL~uE8n)JoEd?IJY>THO2KtT z=wuSFq0&gxVuNa3+;-c6?dQQQ(u3L3;ig7p%M0Et>?4Ev!qdE>B70MYHny^KSJu>q z@M(O<8HggjG9)qEuXQb{&W@0(*ZN`^hB*>D+w``1w?|v#=`ZR)UlJ+jzRQI?Au&h8 zp`6RpttptINa-rjVD}YyOr3lv|IMQ3o4I&}6* zU-fpGR=vR1mBkJ}Uq;dMn!Ag!zO~5w9%yPVd87x=d%=^e4<h1tmP(J0|nq^mwMTX-zgsnjg@ ze7-Yr%01Wob?-uY6NVcz_g(YrFIrXpg3|@mYq3{BdzV0?r8~A1fZ(pfpu6;kva_3g z`!>_R)Jx3avqcd~014ioHU3u_(qljg*Qu1CIf`qn=v4BCGPI|rr9xe7B@;^-;oM5( z*V1anGk-6FysDQD3Gc74rU0)|2awuXD#p+)5dtfUH|qa58&N^s1-{>HL?&78RkPG= zV3dES=q6a-Hl6V)EzH_zBbmiV_k)0rIOtB_n(KrCTctI0s0y|q)2+Rb7hvWV$QrRN8*DkvTsYE1B<_P7=8g%x%p4vV z^J%TBKtU`MXEaQzULy_5!t*=Bh)LtuxD13o4Nvam;n5&nZ~WD?V7~~joiw*sB&Zz# z#euumVjSQFF*pR+W{KKxc}6gQ>`R#}TO^uYXz_tOjj2A$8Es8R9&k6X&-BN1rYmGj z3bz*80tJN*Gp1U!GBT-8;pVvY`LS&mzXg4F^=J|Dd?h1scHv%Bck{#)$oN_9C9qwL z5s>=u%k>w$M-xO5um1;7UpQUL0HBVUMa`|w5AzVArELRw^YXs zgiXeuI0u>EVnkMK(=bN2joE5~)HQ8XaD~q)qhD{FIQ3XC7H|`*!XL7Utnh z@Z0)KMS*H}yfxj6AP{&hW#v;s+Y*7Tj>aR!KOZvZSrWUJ6Q;D_q4iU<_xg6dxYN*z zPr}QU+#4bpq^VGD3j_-7Jg_57&xkyqR{zHUSz)l&uYH?$HUI!G)TfzR&ExcUJzPXF z8^eh0o$Gz+;L^jrXIE)7LRv2|o$0P38AaNf8#%3o_569%Vn~iSg7eagFybhv_{Knp zshCS^_fv=POVvtPa1g1ka#WQc_OVI~N0zX=+3Uz&;tBKVw?Puy8QxEfKi(A)d=)|HL$Ip-LtyzRlYOC~M9U0NA7 zDa_Y~vF(bCMoGy50C@ovd1|c!>_Zmo-sQR+V{mSo7m3zKf_8?jzeh7C_V81K9E17y z5%nGkG&kj4c`Ck+V#RhW3gNxX)}WA0BH~2d;eZN)V29_UQ{Ok%?e2cRZ!Aw?UAJCU zla~UKj{{?M^#@8PPB?vYVb{)_I11qd7hi))tPeM)U}8NfgndZ1IgU%PyA3~~3*k%Q z5IctC!wB}0^5tf^Dx_^Ufx%U)@_nJFG#qxvj6L5LH<_Z>moQ-6Wfjzi zl6>G4mQ-1Ix!A2DC8S5b0u??mxYCr)PwnZSI9i^3%e*+(P-?Kpr?j6{x12gAjVxhx zqLaE)5HmhTJUXDX`y1gyVcddxmFJ1Xcjx@U-n479i#il!(MPZ2>X1UArYW$c1#YZF zt?A70gz=l7*aLQfJQ@MJg{Ajy%zY^(nTtCC)&?u?y0$oK`B!K>A?I zhPBW{>ozN0B+e%BkCw#WC&YGlA7tE==vt}p%kEkYr)ci)F}iRDp_^tV0it`6Jw9`xPCDIOYW31rxGk``%cR5$cZyhPaaY`lEHg#?U|0yi+ zu8+nyGkh*1&xBiRPC{-;y_D)Foz1i>m+Q#IW*!btIC2{MH;ic4V7?Qh=w%I_%${`Tm9Qrwd=h# zdB0RsjoJt29iLD*p*Ebe=KlQT9+C=)cEteH7CJh`BR&2xNL#5f_{@EnwxBijh26Dl zW1@Q*Egwb}?hLj`GSAZOE<=`}0=@uE#k&@gtli9%u~{o3T6aEi!67vEQz5VEfq8Jg z*q5g*?WxipTA^KbVyRgU*SN@#a~GF8x|g)--jfEPdPB+~&7nJ7DVY=Qh#}LcQCcT( zg%@+r4kCzZd?)r_vZ~XyPaNW&*v-5=_i+Rn{yG+)tV987S_Inji_NR^w$n1hH!zYC zp5JJ0*3no3PyyI8dXwo^M0LnRr2_IQ6p+@s4Shv0$TLIyz;%7*62AJ za^%K?k_Np?vwxO{NV4RaB%xUpFbgpFS zcsUiQK?)BVk+*m$2M{E6i%ui;K|~d_>jzb{245S^t0uaN_Jy`;3puw^Jukgh{UQ@e8RX165Lp)b}|7Ln9rEvtH1t&aPagpB5g_e7F&o4ah&`MyR_#t1*0t-udV zDeX=%xP+u@19OWxeN_q>x0#NsfAiC%Ezta5p+T+aSLuFaBnP-M99zMgCXrDs7U{Id zBezjz-&Me=&cj_%4%y+B#E$v!v|8y1I>#c#Z88x#gFr{?;~!Q2i-|Ag>o_K}i`ZLY+}P^fa)%c5Jm?X5Ls{Qhz9u zUvswBd2fH5$ut=6)+m?Vp>y(b{`IuRAedVYZQG;rNls=1Y5OF&#(TQUCDqmN`PwDa zii!J|o+6qoeg^6*hF9v{(QcCJiI6OXd7n)e2^9%~g%~)2c%U>YBtnC0J%n=o657TL zc);`bEFLwtk6<0wzc9q|#(IxqW@LACkt&w{V{{W3wt}z;gEZC|FPy{;kEQu&bGo&&+yG<_QlWw*S{G* zWVzzavg+oATW?2zKcIHZ> zGto=bIm9`DvsS#p{gzeZ_8r_scfBRGzDpRJOpHy4_FBssHa^@^t5B;Z>5bULqKd&X zYH7H&h1$whjZS%4Z(uzu+ohI!Jk2h+h?48w`LuGRv-;#PD}n(QugV-1)NMr?M_@$7 zvU?G*0hDE1l6Ew@{zLFWI#pI??pB04cjpm-U0hV-sl|Kp`Cp;=S1ddpn<|(7y4qNk zjA5aQjoNKm?@-dY4f%dqce5zhYEYNSD!#92CD)L-$lzxPN4Rp7Zep!)HJ9Mi7fXF| z8$_-#4f}kVU4ZOb8R9{KT^P-|9a$AOczhQMX|K=Z2v2>nOsYw~#4uiW^ zCzLzTO)j8WzX9Q}zO}Kro0CM>ic9e=;4TfZ1Wy6yO+E?C?L@py?Jm=IV?|xcwEwk1 z@r4mYmexynL4|Yvu3#IFS?e%|tJ&>wS3HbiGY_tXTblrDO3cByXBqrJXYsu;)>RHg zTL=3L@ok&;w`i!+dVIJyOtRM3PI$Q%))#y_kAzPpZ;nBO1B?w zVf!GE7hAHgVk8-^TqTSY8cElUo4XaFoMh0*mD#&G2hH{CHtH*iS;>T^FU~4QjeL)K z4wTNoMrJsmZ`#o5p7i*A5qS5{(hSyq7Rp|E%<`kj6yt}RsPE0fCAL04N~db72MV(U zW>%adq5Li*1pDWzhvxyB+Z#aMb*ALcE&Zaf?@h)Wwt+MH1)!e9(+!p6a6A_CwpRL% zDds83uuHe7xg+S|{^qcO%7QLiWG=rFZt<$9A;i3*;jJoGk5l=+3)>l0#>=?ZWDmOY zi_a}o1M%2i)t}Z2gSoH*kbr8xzzX!TPrh_cQXf$HzC3JFkuS;H{H8vZ)x|3r=yII2 z4PJn!zISH}U$L=;JOt>DtyuA&F*wYr*vU90IhL+KT;?eoGDD(v zo`G!mXMZx$M%;UM9ped1DE>Hy=TzjK`f9zeGo=ObeCh8j3911WrYj+8RPC%r$qPmQ z+?>d#n6h(^z&erEPBd*`pmnL3aTbU83@j!Bn{!HQk{fHC9f^F?@h651?AwkYOpWp^ ziJArrPK0XWl`VOdRYPx5t3TCg;BZd_7`Vs4fQz*F*-q!zv2cuD?;XmRW=nq$4 zJFJ8I9vpJw{lnFEbNJ255`zN(m%%6{K(x`*okjC!_TZ+`E!jHI2)D-Oqi5pKhBI+0 z3#u-_?s3%EZ(GZw@X60nW^FDsS%?>W^s&H?N_)`h?^(nT3RYe(67EPds+|-fHY}8t+n@DkL9<`YyG@j8O;itozwh-0kbFWtgkS)cU`=KB8bBk&+ayX&I1S$Eed*455seVf|{|9OSLLg02?3 zr({35>2XxG8AB>Otsy8%TbX#W}61u4nbV>EA`WfS#1D=$eR9>rV7OWHrECs9&^_4R8|YBW?#ciKZ6poeufy z>Hr}f1k%0PconEqJ!XKRW1={TvrgSCXl~i^#OuILKK1w@echRWq0jcm|EqxQib^(| z%B!htZ6%O1yfP#vTC2lb%PYT&*BrIboO1^c&DNQ^y`-2(O#iL4huj}V;`Zujz9*P_~0nor`3 zVC#ug`~ChA&s>4}vppJGJu?Skw}!71FFc^T`CqQl&V=TN0EPrW#~eK63E*`QrjkuN z9}zvf4V0m?^)d7~!qKyljVpzxv^vqeTa5azLOaJX;&?|6vKoMVJxp8Q>~O$uD*i>9EU zx&C)}!60JZp3Lpw`a;J}n-xkf9AQTUXNi5$oy*bZ?zmS~CMOvjEt)kp@4M&x`~h&G z?loU(fnJiXuPD4X$_Dk-*>l=OnSJQlu>EBetD#;=(yQ}fRZdFV__@Qw z8^q-m2Dh|lENYGm>ElgX_6vv{`_y0Yz&3t89vFH8i;tOUOE*@eB5_v&-YeB9lAA3p z>f5z(f-eDWCKdRwk`CB)b{?>H$GXpdN^uC&U<^-P>oXKC2c=qjSXH1_a`{bcx36-0 zs`d{8%lDE1$L=(`te5K|eHKwUSEZsve~Bj;8mEp5HsV3SYKMkF&){Q?hdob+gOZ^% zXIsbmmOY~Fj z3eQ|Ew%x>f^9`n~7A_XzNuiQQ4|t&xNzmQ5vcRDIy3O$3s}bsac4-ivL4-h(X@A!% z5&OyxMxKGZscX;^`YsaKSJ33fiv|;^MvjmZc@O(XT7-A6(sIWavFx>&RFTsD13!)0 zJvv}IkYofSCXO~))p|jsYiYL~$oj$0@Wd;#bG>F(MXB(p17D`6yI#nrfVM-}gNmH+DpU z=rIe?e0_M7;W$6j#7)v_MbZu zN<~V6Dvl3jtk`$?5JHwQI@x&2s>F+*$St+3Ue6T=1Hm@1y;o9Y2XB7xBEJgx$J?;3 zLK}qMnkd?Ek$o`q1@aU3c87P35rgUQ%BBrj{KhJ{vdFc-*HX|tIC#zNP+sJb=tY!H&`}> z4qrR>=(#OYeq2Vn=_4H`joW$Y@%FPvkWU2%@ffwT{FN_@!SXDHdD{n0tNaCvROxb~ z)lil;6=NURDZg1)@Mb|H4D8zS|ADoyQ9&sr0+E*{ufU0pGVSpu)RXS3iF` zQBp7Nc5^_8CZ$t3A$#+JeaV*~o*TL2^-6@dqomh<^0>MbJUpvLp9x|Bi+EF;=85bP zOOKGpSySPsYpAVt2p#%}67&x^Y8;UQ{1SPDWVw6HbP(EKB`ERzN@(GnJJ2zt>bO|2 zaVf`1=*`t?O)gkp7Z}@Wo0(`+NwC}ex_ZCQ$<&{ND2La}pN@>P!|YP^{;B1%h57iy z^JJpl;@dySJ7<;JlGkGSC6w2Ie{UQHJ!zylSqY})ngij|xfxnQC6g4s!H%Ci7EDJa zj+*rVqtHvkA@4vSVve6+q$-h3^V`X;q~#W?;7)`SWnLZn8gqkNyc0RLTc7FcL~}ya z3G*lQww3N#JFkk0AANg6iuWwN_g!f-R4r$5oZN7?fabOz(xZaAvs38B)tX8!;3X2D z<#}_nD)TCC&HCe395BTl%aOzjb#5t~E*Ibxsj7T~KQ6t!JneL`8)oze2)}FM^rFo0 z@mr&R?U^h?E_6%sG-9a=0dt*<9O$g5ddvJ^QsDUT+89NJQVsljX zx9;MXFzLsEC6Q|Mh$xe9BVs+*^F0_$>1kM`g@b7| z(R4@1{4iigIHvQZ+s+DdcTAlJksNhrJdr4jN(Xj5d9Tl(x#JCTgE!9tKHS3@0zaTj zowI!PwanHs@gYtLf=bpp;4?K`dZLJXRgxL>8WIU!AVE*Er5Laz9+tT$04nBYKI$H_ zn>b7LA;w$(HC95RnQWOiFwjmY;Q3g^&62fJw2Edgnx!*m=Fi;mNYuEjx+C&zm{(@m;npMU|Hzif*JO&E<6n0$xXPXOZl^p_oqeROJd4V1nfYoTE zE5v@Qzm)Qqb_0~&*fk7D3RFpJk_v(*Ev1Nxg}grZJS{WeC6_YmubT!2xY}`EFxf2U z(ifC&^CJFRw?Lpg43)-O7#{lyM7G-nfVaJs0VaNO{rM6*Zx8_w-Ih}@FttDpmfr^< zw++=YV)g!JI4IO~%H2{smpmO7EOK`IXQisUc`9@!mU@}&A2`!g4o%&hS6H)JD^0Ky z1G`GA;#l+E9?ICfOuqIUP4x1MbaFcudZjXU;q`^Gx}S zjnuefws;YpqktTH+y*Q)+UMkD5+mofMbu6e70nl?(lYeXBO!m3C<=~vTz6{tg1?BU zwzg6tDys`U!UQhgboy?(Qeh!rDJ@q3k8*^l%jl&>vXKBhELKw;!XHD z63shn-tpLn0MF)5ws-O$E1dNWkzlE^S8IRrx%hoWxkpz9bAuJkf);|_-4%;9u>c<+S6b^So5XipNRNI`HNfGq0w#C zfhe9yEv^Y~;w09A<_#({^M_nqB;)bgBo>784i>@i2+nnk{=I5sZl7}ja3ZTcbFgqR7;)<4+|_PAwFBb8Fw^MPYGgDl-34!>6lXG^d65xu z#LExt0R8NsM1-vO4>14=<`G{Eu+RPoJkm$sF!b8hziI9FGJSBgsH9fJ6it$G>N$RC zz;le5zV-k~8DuHI&9FN%G5*}aY^i}DykSuA)A7o>{>3Hr#r~tiM=`(X0a`7bzCj9F zfy=ca#HM-U@d0g$I-|d(@)U54x#WFcsh&5v;`D{9FGBusPr--x$TUmCr681IDbd_} zF9sbN8L_3}$K-D)-GK0Oe8nWG$qtHZ041XWi&fllRY9jS9G9@Ji zvaiePU+r%tP=O(-_U}%mR|EBzTh`0Auvy$+K5N%?y%syRB@!__`^4ME-KCxBfyH^g z2>cvzbG?5XL?|~4>8sgy1y1O%_h{)Khd-T>Wv^=z7B@`KQe^Z|sI@R9{M^;OuSp(0 z7BE8K?1C8+H;TK=9didF`s2k@T&t;WFrJv4XUM>dFdyeLXW$1kgW-wob6MW5PgFdl z>4qNm4W@~yg8$~+Ua5&R;~_m&Zj&gk=*YqKGIs&4)_U(SP`W>8%CJf^Nnf|^bxRGOy{aNLh0lr6Imj3B-*JSCgxKuEG9x)x{pmM1-kp%*D!@j2~=_x_$_&(yhNrdhL;sX8c=DrT)1bi>+sT+KYr2n+Z3a=bo#~>wq>v2CxFb z6M|I|#c{N4^s>-&noE+2YuQX^q=cj76VF|6m+9$e{C+ zM~$4hIHVBl6xT^X&{Z8T(|lHVSzNuSP3@@GZfAY;b*JekDl`*vVfUE&SX)FluGSnL z3uMd+dngGH_Al?n@;1)$3gZS4GSRL72$}Q0x-~8gpFKNmW$EZrnAwkS*m+T9;gnmy z=Pv7H4MKmesLb8jFE$-R``o;o=UpWW-X~+irdPlz!Mm0H0PhIic72Z!zwH37=Pm{M zwg)UYOQO!h#OMJHpP5zBBr`tOl~_-GqFoC|=pZr_x07!asuNK`Dl?Jw8(z z?*F3lEWc85y|HudaZ}_Ye9NWCowmg>;iofOGS|@I`Z7@U9T(xDy!b^+Q@hW8aaxgz zU!VqJisVJdLpF7|^Q`P0X^JnaBU78!ZD!J`{b{|8Iz@_;{u0gBYJ9Mq5B9na5TCB= z`jLuwMfym{w-UET&y(js*23`EXnYDKLWM#-E_9r)y}jaTd#mEgnAWvV8qV~j$yG5{ zJfk0|ufqy#v<8Qnf!5$O8Pyqg3o$7bP1l5*21P9Q=1Cp)_Gwsj&>3@*ZiS}&oJ%-83-BAtg9|)NMiaTlMxWZdJn|v$%6*C3_oBe)t_6}I8$3UgLnhJeE4OgTO;dEXD zw)oz)!ND)^Awv%^iS^>5ufxRaIi^IJ;KH6n0j(jGvrko|OGCw{UkSrmPLX8STdE$(k9bXSLqm z8}m%Fx|vYJ-{U#Um-amoJWh;kJrDD98D8kDERvF@%p){%-ivP{hVYRh>Z=WZL$ZU} zV#`#9>e2^>>e|wS;vEswufL2;*|CkEIip`xK$aJdtMn0|NHIP8VxcBN#*0mL5Zs{k zDmt)hO|ue%+DQx&ocgZu~Uth}|VFMptnmerDgr{}1cC*lMRo-}EQ?Ww^!}D~_6sKDGTLGCqB! z{`MjcmmoX0>o6n*YMnet+Wu4}YIc`4vUnjE_Uc@EHtbSZ@wXgOg^-tXy7Q;+WS%xO zhPCisKXVTL-r|4{fUTd1%6CA~BdI*en4inM{r8&+?+5C* zq5;FK#s0M`hga0_C=8Km3-Pf)EQdlNVwf8nO_Jk!NsJq#AGPI^UZKwaQoW-;*Bs&|bm{uIQL$2m?SZ-6W>*6H2m`)!t6V)cG?*j!~s1ZWwokznYnot+*mA=po}{ zaQIKEMm9WZd|jFS=M)+8&`1TG%nC8x92FdEpkds-g)k)&`G7bWo} zOYR|IqwDo$M-Jr5q~68tr6L8qzN}uVw2VUOC`<@sPWnT#8Ma&ji4sbJZ-6;-=X_0j zyGKOyK!p=$8bh}^s4LZc>2V;pbX=z(?5Ss8;Ms`?{n1~<;zl>Y9l|`2hl9xRyM%Wv zw}y6o>uWLano~J0+BdM$da0)WR+)+gqqe`ne42FUhv;;0)ie85xu}H3xlSv*LHIm!isSxE}hJ^Zc-y6$Z4#Y%xpJB0%@KF@x zqAG1olR3Sg2#Z^c%eKiyF{3v?95@!j7m{SLU8x?qePUVQyam|HeYv%^Ro#4dJwW!_ zc!HPHuU*tD-D`ivPUpumel47Iwm7Bvlj0Pq$95l%ydv91NL+F`0-C{x99;M9as)wG7wc}9Lr zT^rBMV1G9Q!SfhUBHP2l28s74RV%`!_#uTj`4H>W9_j+9OEjh&>*)6&wL!5JaZm{C z%pjU`sPb9*L5^>IUv_#DY#o~8?vY2!#XAUE%dX;E{e-_r)u8-zJP$xtG^&daBm=|( zhhGLvvfUqJM5(|2PV+2M{|UD83e(?ktNZ<}4b&1RIpk$kPAlHFNue`{@ZJLc73BMe z0<5!-4pqR+ZKu4PzICnTvIkbmU%yR22j#td)_hjs?5J_!<$&MCjI?qWhjl?rq;Veh zUU$98?d{{&+Bq3DvzS(TD1@b0Y_dmcCm>Aqlj_9ztHJe|t68K#rWVoN5nw?o2NzGA z0ufP`DcIc+8K7E8l#&GXKRVyK>9T(1bAB13qa#KkD88ru2?~^pSY$pd#`^ZMhuc^_ z9nkH*NU;wYo34++_(aNhIg#qMT7?;BQ_!f1T}R?tCdxg+ZJ@QsU^dac#_m{@d}Y1x zh7$NUj0h`Bg>bkEM3+-g-|Vfliqm&CfCKcWyw@XSk@~)QlV@FEH}57*YfNI6wxukn z#&y;W7)WF`e56ltSgXjkxZ#Cyo_7NSHE$C(GjXWxdZhs@&PIX5m>W*9D9LLxG@Oa& zn@CXHrN_|gjs0Xfu=-O_8Kh|oxvy+d?<+2hV}(Mu>A&A_qA4|{}tzUmGV@D`{k@pdF1Wxdl&?A1pad;!^_v+4LY3_@?to!&ILUp zQsVBhwk%C9cKk)LGxbe3{P0(k4Pc~)rp7y^wZw+{>UVYID25nhNczZ6Z4I4Wl2Wh-^^&`I-B(gxTBd$erF3$f}rSP9!7!_56e1XgQ*PR~V2N zMG88UrR_-zg&EIxKFvcCCiM}Bf>~ptudk{bK7=zN5|eMkS&uwBcFvBaqY=3N@a~4Yht%0NrASh(GPr zAL~MwE!f!%mEC|sIiMga@1mBo%fY4diX3$!^PL!tK)q|Hpuvxgz@@0)?8{V$(#7Ms z?=7PJcYG9$*(-{yh>f)jSH&GuQBgo1X~GNc+gs=wS7ze+v6Zm(>O{COX|3Yu^=Rsj z4NbQJtMv$IQ}YsTy!Dez4Z(5i-^@(s6vZgEP}CQkRI(q_BC{HjvaMFTN-8^qb@Ex- zou}9JFIUEIwv!HCl6sUn`?}w;=6aNf7lOzCIAS^OTQka_vphN}DrnhWHa z^8(DJX!9O*7*Wv%_d2{(=c%|Z#RE$RjH=4 zAr}vpDR&|Q%Bl}0tNsL%gYMC*&{P)>ml2e54T3BEyg8x03QA#dI$()nTzHNaHm@g zP!nKE$nH{0Ubvabpje}8ka7l>MQM8-vTUr{3DXIi%OQ~j-E$M7M1u1zZN-Kj?mSus z5mk5b0SB_-1c2P2C`y=p-b8?M^~b(HaCZ?4sfDb(I*yYr^GyL^vp6Vu(ITF!l!2T*|CDxC3Ag3Ul8|k~&W{U|<;_Kq7Lg?LBbDa|1{#B ziBD^KZz8WVq816fn2?Kk^|%DN*&zCape#XO%!Q84x3)qTUn}4g0->adO1C?muWWh<|4pPo|BBfBMoWIGCWu_{ z%c+S~1rltu=-TMx+{WON7~gz8r55Q2N%76~%freDwBv<6e6g)SN&1(Faoh}MpR3d? zoH6k+b05++$DLs|i9@?k6EiLPIc6)<+8y0!jK;sQVmAHHXT{v^m5!BuP|AmiG72^F zRYfp^URB@scBAwF)Fc2~^^Eflk>07H;>RGIPDsFkazB?#>uvylJC;A;-PZ0L;nZBC4vUA>y2OUbp^QF+lC8e*!L(*BUzo`Re z#ucadbO}j=?FPUKT=;givwju%st_8wB zjIWr;g$@`_XMsKTD8q4ANBvt~d45+`zjemxDDOEai|S1ib~tPOPMY}a=j+kJV!3S4 z-fE;F|BJbef^Pd{#9mTgMwENTJxH|P7)sU`)B22KvAtbCHp9_~4a%FwA8vs26!gxM z8$}eS4?yPbiB~=Hp6ePY+g(*}&UvMAKGODcE6L1ds$$uExDVrR3sq;CyR25g{J0`j z*%~En9uIGBMrHzm;{q-IP5QtR8X^SB;4Rc5`nH*voUC6+IsNJ^V!1}AlGX6^!SxsCr-bRSiuCxmT$^;TROtV~r+;(wvSbJ^vus8DEcaAzjj6r+N?A*&JN)#6=eO1W zgoZ&nbIpwcfWM`-k6_9*WX0R*!PZZdeNUqdi~FC-9Wk7rH*k(RqcHF~BVFvQd)a$Y zGwT$x8A9REvnUs`ibI0aIjh3?T@P@7vY>i%x7l|W&cy9dcv5@%aRTSh2Wpj1hUbSu ztUkdqz0K0GJI%=F94`7ZCMv}p6kI0MD-1%UZVpk!p5tMlcFq#nZZ1IPqih}X>-IWT zzhLQ7*R*U2Z4jZ6{a}e>zre;sHXPTB*rDTa1FZr{(X%kV!M zcQE;f2JREg5K5aJtdD;mq1TD+y7Gy#S{wT9GbLxIY6upnHV|RTWkY=OK6WQ~mnYyo z5tQ44b5-O+$Quo=eDO9(MxBe~e5rJvjKCM^1gDr$>b?FiTF#p9jF{&2XG`(sw5f&P zhI0(IcmL&GZhNzPw}8r^D3ZKzMhxC?aF?ltOD;G!3z-0udz)kw$&js5h8OGqi|w6t z57elmB9ztg)AwMf8N`LB)_$8OrjV7lmGThIcgxAYq$pOeItl0IL7E!ws%;LMq5Qf0%~X(!9=BBEbr7YSU5 zM`dpHQ_J)y3 z`mW8E&E{H=@!JY2=tiL*s--~aYyYgV< zn>!?>FSsm&s~u|kUb)k-X5nc>&yIJ@Exs;TFhCN;i_!WuF`5yor|gJ7{oGxIL4G6&5o)4MX1xkD zV;U?4hE3HxAxAaJ-9(BV#DqIpf)nh(5NbYZaxpz*`Wj`RL@X2{(j8DchiYrQI6vgY zkW?KoSazv`Pq(nX>U}N2L%hx~n{QVhG_ouq;4e@Lv|+xhN?e{Mr4TnyjmP{doZsKEZ6;)%hNKtz!8SGK4^W{W$gv|iy5wD0ACSg#y~J|IF~9i%z=_) zeyPcO)f#W7>*f-s2i;VGz5k>e{sT}p`036AGxASlES>SWh>BvxC}}5IgWV#m!(BWQ zL*eE4TyEvD3HfLJi8vEjR<3`KMfi{bvWpFUp;BQEOB;c5G~)GSvSqWLI*wSYd6DA{ z%KpwldCea0Ihj`IRJm>){(G(e4*Y{EI#;`YFj+Q1*?^&SIr7^dyp5xPfD-lJXDWc+ z4$%KLLOl-a3Ge9tg$oE^ZT}Oi=YP=N08TQWBNwfvzLYoE*N?n$v&%)5Z#{ANKvhHv zvgPJF?C^|!ziLa=vd5UAhTN$+2E z=;nqtd6wk4T1ovT@Zl9AY-HD<+NVfaa37WR`}o4GtuAg~v9!0We-7Z6H4aoAXrz5K zcLs>kK^Lj-&U*q(>DwP?dLc$j1}mdmUN%m1-YFJ*kPI2Vc1S9uJm#nTnIgn=Gdlgn z!2B1wrLRHJtmng=7Le~*zGHgNE`OY4sQQ6`0p;f0jG%y$drW)P^)$G z*G_7$_74^BF_?Dked6h6U0=rs*QUMpR{_||AL=I&;gpu!eOa(2;SMFO-j$#cK>7)d zbv)u0b9Nm+qzVAF|NdLdE|~Y*CQrjYw;bFa7Uf=m_*~RQpi1N)i>-$Qe#rENNX(GY zg=uSqbh7Gie0=lJO!Y?X{f)_4Pmg}Xtrz#WsVrv+|Mu%aJU(nW z^Hp#S>%z_jXEt6g$8F!_PoZ;q_U8w(08-qTX76q(v}qt~7s`=~L|zh@AF4N8PVq6ewE}S+!`yhxR3vlneW=Q`PjsO|myG zvN}zSFl|kJy>_ynXSpO9+%fqDl4P%1Gw;wlgw9->75L(OAU9&V#^)q_k*6q~`QkPh zDe!9j1t91-0F-y_9yi|AhRUNkP~IQDv(|arV0C|q(WO!cD<3o*09k5GUZKWnh5U^4 zt7XCp&iKw_dtX_GzydqwO7bn%q4kr}^o%B1?JuI8V}@4a2z$7E2K_3w&LABvm}39X z@>=irS|HJW%WT{qzq~Zkun-o%4%on&`{;cgpB0-KDA4d{6W! zy|;Dp{!cH_8iuDVPPtaCW|W3tnO}bFtMEpF{>zyi<~di;AJqphQR(*zV0VA}13f_Z zaB$Gl{SFb_xqwAqLyvD?aq-2tAMAMPI{**+mh_;_%|OcEFK{I|ymfOf!hzfaB?oyv zzN^MpKLYHdpMDjsZdu%QC-v0WKo&E7B*(Tief7-Ysyz7L&cQ`{1_Lj%>&#GBSAGJ+ zCYDk}rWiB2IIs+WD!;8!Y1~co65Vo5I}^p$pH1w&+JQdLmZiI07m~b_I@c^!^G0_z zYtfRJrxLnnRgE~angQVIA4UwEg>U8DTm?C|DYSRy72aPq1$y<^dj?+|8p~H|;}JDh zrNMC))*{Y#nI`jpgB1uB3w_#c$qit?wB)@Gg(BYyOzFooA9D-48u+)`K{34pCA5ot zK=%tD%|~Qj#`Q^S!A7!eOG(EPI1X}JI~UHUtUhV+NPwT-bA^7>MUox0>-0NRc$|f4 z2gaR(X7?zEMM(H#Cm(0R?Igl$!)&#*8BZtgvc*1`O>PqeKRG1n*EiUL2Xi*G4Q^qW zOHcU<<7Yo%FefCF{mGoNYhhw$`o1qJce1owHD7Y!g}2Z5-`-9_^(EIhsusjt;>6P0 zNRxd%K>oMP5JW+=M_xPI3--Dl=Zwxt0(Ldt5>OhV8U|bsY=VOM1ewI^oKsh4BgD@q z>w}pd04I2TWQYg6Ypv;Cy(BA5WQrBgIQbHiWG7T4J6zl-P#8=6{%5U9dbC+gM-kf0 zC)`NplK@aOCiC{D8Q&3iGJOrIQ(1?RPg4G#o(y6w*|R^Ftk&sHFhuW&e!1O^*W+BL zn-gDwCyyplc;^=)#Qgyy(>K|vr}b>-!oiS`_U8cEviUf;qcYuOS0|UMww{eVG|%D4+auIdyL@`EtvM>q-ht4 z(VYug^=AV6O{88=FSYyHbu5!recZM>>c>>o)-BfdK2dGFa&nIi%5-~J3~6THl%S1B ze9W%8ZRjin4d*N&XLllyG4t;HKpiIr+q+}ot8d{RY9KVQByO!Vw2NR=WKk%jac3E- zPo>qd93mQKW?Qto0e8BW%p%pPt_4Q#UxV=0dIo*_g#6WO!@z z+99aE#B6_(C6P4Z&>mW6o_30qsU6=`J!3{EKA>v*mIOMD<_tAB2YxwbSr`iv3`OQ0 z<|WUgRsFiR6#0Si6@PfTXjOin?YePQNwHsQ9^2?9F*8tQ7s0B@s_AGhE>7bZqb~lm z&zLshDz%0RTso+l8Vy!hcO_k{sqcsph&9Lvs{E~qzIvf*P;!ORdlkz|nOVD*kE#0r zx8@Rksg;}|M*sbNf9uPjyNLeMpn)RJ*4!01ie9B*qQ&fVoqShJH5A-8&Z)qVujaK8fE`^C8_{ z&|qw2@^AHqOA^TT>%CMXKRfo9jx~JffDy#mfYxeMl7^Pw9`^F=k10mQQgwbOV`Fb~ zlkz{L1#yT=`OPnglymP4sqboBx39btB^-DCX1?Y~Ym3F&s>`-itiAb)|5zYA`J}2J z{VMp&Rjt&en1g*{;lj;ZOErlX4ybbiZD<#0@{k^A3Yfk_F(xo8Qw{@j!bt5OHFgYxWA)vxD5l)K;I7dhv*&0^{j9JR*Xh2Cl$kcEEE zQVaN&p|W=G?Su749QW(a0FN*Rk7ymuDs(hzIdhP}QQp2%r=6FvzjSQ)`2`Q@m{gNa zl)4)4HgNm>Fy3&nd55DG z+~?3YqVT?EcD0ek+Zu!iO+YK{3-w%M4XsqIOz;v8Iqr%x)JOs^UyLOF2U3rUe~(BP6%3ui=i)>-LP$ z)_T_3d7PxWCaCzJF5rg>f(+=E1(WxMHoo-s>Fc#&FLjTTpeC=lvDVWL`K@DP24d+o zDV^m(oT2(YFwDzf#1L(3$EuZDzq5e-S+=-C?*9AlLn++S+L=J65&q=1)eF{aH|khR2EL8IJ7f+Rg71TvBiR`p`xsj1Jj+tb4JA`p+Na zqv~mk|9yoUym7D6AKyt0^W3;n_`IMy`rR#n3a__kSziHI$7#Xs1fzdfOpsNW*=1f(Jin5iJ^A zX4Ir=y~2iS0x24UmGvt71WNmUEP~dyML;}#mnAtR=Am&(?UEhmotT!EjFMF7>o~#E z)SXx0h_Zq##MHi+FfkzkNAJz0GHZ4ST)8+nBWTBtM-QevIOQm^a$nW9SK4>bkyNR3 zR;=N+zu<=qfK#CWnJa3G*uL)u`D(SbAef_N( z{NIfUJ|KYl2l>VElz|zNh*^6TJ?t~0(aDwr*>(2Uh!8l z!uMAh9M495VW>1&4X=;QpgX@ z?uL*!`l4a={+o%dgWpM)_oW_0bn1+_ue^u(yR{?u)H@0YgnsIU60c|*myy6OdHXz^ z^L6vKs!8=obvY%#A)!B$P&XOQQe+E<`}8v^IMsD9 zXfOCG6j3H1FrTowtxC9!fY#XwPgwh}d_k;B=v(d+M21hddfN61HCo$|AobNN)o&yC26>A#gVvTduAT5KTEduwyZz>V* zHA_BICw($9#lq>ey>3uKXE@ZvAGs^?)1 z$`f5e=HYYOu)8ZA*DBM#X+n?1nG9zH4&5%#uNkIcRWDxdNzapzXmz~v2($ASFFjuP z`DW{to@qip8JA291k)~*j52Bo5~Qq&=Y1JS?~@i_Ro^yORj{VW z-%B&mZ7*ybK`&X7q9Ja-NTQHIPcwQZ5W7WrpZNhZX8l~;>e=#^H;Y9LZ6KQ3q&3+1 z^%7>(P1U#WoMe2HakIkUi&HSG)kSBKU=arHSf|>QUtvHyej(YZX+}v@-F@I_$9ahr z9Hu?4E~aZKrSkP797D#L;?)X6>!)LvR!y*q!H%XOnHsU=L$zI?$Wlv!0)^2TwbGKL zv(2yDp7)*fPT4B(^M_3dcUbe~Z_1`_O;2;rczV@Zr?e_4EKO&4_X-FCq zhN2;{TO{_uYQ4*0MjCcr!Q>2XD@Bg!D;Yo4l;Qs#)~dJmGOX-^SsqnpA40!`GdpH_ zHIm+Ow4+%C)ZQg~M$%oK`RVP{95ciTy}l+3`~ zX2*({k*=*tEHs=p*J}~A{O!J`VY4#a8N2X7zXy$2CV^7?_M%(>W9r-^r5hV%!&_ad z#rlfulc?=+aI)l1C9=W;7@EfcV&VR{XKRg=eK6la*Mk`Cv}{xyOoxLuBLzd-?kpWkf?TM|!qF$#+&ac#9V774V4=d_Xw5as&*scE)_@>O?qGVusbz__RXEZj@zkF()cPa zn3CbKj~3wCL|}&%w=P@1c|^NBxfs$OnM3!W^sAU6N8GV~l!0rVI&`x4d%%Wgv2;So zfFw4YzS{P(w2s$NMSRAw_Bck=g-13!d2}gv`<)QD62P}tKii1ZuCaKsfL@os|7v?- z*E%Zb_PW@J_S?{yjPtk2QWsvs3S|LX8b8megq1x2Hk#tDm*229-DY1-fSFw(6^I>V zB!(iz6nm?T-t13Mw!!6brslNn<5VcalXD(NT1kWWBIdb$xAZYw!)Be%rEn#Jg-&9T z^7oV~K=ks25G>5RpD+(Ftt#AJ#cAw0K!Ai#_TjhIHX-FCN~)+=y$=ao>DeT9gicT|g^ass=s`)jO+A9Ono}j8TiIXf*08wN%T6N2pBKG4|NPSZQBLTvBt@Qm zX4R*Na;iaQC#;I|`?UnXitGIV=kN~ehE?8-&{fDE0Si>kVt?6=)Td~1%ZyMcqK93v}m!3=j znWEc7yzoEZ5*=*zjqiKxv80$bsPGD*RRv;Zxlj9V7-IfT#TyyA!gC7TuK4F zbbn=FB(o!|p;{VsE{Q295FN*NjIKnvuedHTz`L(rsB4B<6ya2Wn^kL4k|@OjY$TD}|`Ta<}RQ>EX<(X`gP|0Kbe0@6Bq==IEk+0orj2X3#&|33sR21lN zLeI3t`CyzAL*jBNC}jlqdTLyDKeX8zb$xow_U^2w8`+La(PLFf2Mrqfk*C}u+l8yf z1FK+g1h?nLA!+lKn}ZDjW&;t7o!c#w!nO#|MmJ^Eu7elI-*OZ|?lp^&sz@F|Gz>>@ zMKkTNEJ;TfmxD%>TBQ3*tCXvk2SC#%5UQ9FDr9)r@PEC3Z3#MlJp2)&^<>9P-880F zGqXwszLFGZnCPA>VTLe+rqd@fpK7i+bOkk1K~HB{mmgC$c4!|KKj+xmn|r8E8ooiH z_aLgVEf}Yw>o%tiq@a333Klw=dAfWlkiR&_cTC(~xF;nRxFY^e#HS-a49(1BhWaHn zS0Ykh03k}l*EquBDE8(x9zJ{zH}`=%2GdrJ?Aw%BJPyJGCz2=xZvlZ8e8xFUR5?Qe zYS&wtoGUYf(Uuw&w|y@q@XnRNKG`{UV(Q zblh}tHSz7ES=N-AgQ~a70 z>klNOwbJeH_=$Aa*=c2jL+a%<${$hG;At+70H!Als%pv-)y9Sl8B#~OG`Vv_Qgw|I zT=ZgaQN?R!ojLF$Vb2Ubtj~TOSdc}4;bA`cAQsK&ij zyGtj>P(`^oF4>f(>6Vjf8OzaCnbd;?M|G~bEC#v-kcQirt2fUlp z9Ae@wQl>APQodea{u;c{-|-l1j;;#cEUF9FUi;a<-P>*WBs1I(wffaYlQh+U_is*R zz{HYh*9KR=@2e8Z9?0EEV{=RyZPiD9u$ABAyh5K^B4`8Cm!9-9F3hbzNi{ zIQPl3A^*+m_<|158*5UxuLw9I85ODKVyVr#%@9g^Mo05m%83G2&kYxPlFj?|)gYXw)aQyT#z7_UtDJ<+36tBXmMjpZC|q=k>Ve5$Yc3h-BmMY!wsk|r3A z6?cNXMc~&Tsx*u@#ut~_)NXhq%rBc)0^Y@R?$97g>@g^(n2iw@$}g_I=@3YL=2j}K zTc5LIz*2>G3mo#t6$dNhSIrE*_s|Kr9%5s!@TUqPgkI(DGG$~UBjPgU%QM^&3(l#T zJ{+-ugd!e2pO;Q+@Z$H0jYhn>lFhRps&?$efifu+zW+kAEk$h683XXZLfw$vBdb`V zL`T*9=$w z;{EcUck}6>tsUF=n*C?KyL-a8%yNy5-njJkf9_V+yehbHZ6nME%pTon(rDw-mGuZ7 za6Q8oKcMS%S-HFh4DY$5gQ?50fD|fV8qn=r%(dSQd$2v>Vf$l>z~pfFmGV}uPaQ@ z;J*IX{}18gS8_kE(|V`!%>V04J~da{%aeN2loNMqK>BY!)h5OkXNyl?x%Ynnq)E>v literal 0 HcmV?d00001 diff --git a/demos/mlrun b/demos/mlrun new file mode 160000 index 00000000..f984eaca --- /dev/null +++ b/demos/mlrun @@ -0,0 +1 @@ +Subproject commit f984eacae4211f19bb8a35ab67cec27150a2833b From fec08f9ea4b9d04209d22cf843c93b8aae4c89d4 Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 20 Nov 2019 14:26:54 +0200 Subject: [PATCH 09/15] fix links --- demos/image-classification/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/demos/image-classification/README.md b/demos/image-classification/README.md index 1235a657..c6a573fc 100644 --- a/demos/image-classification/README.md +++ b/demos/image-classification/README.md @@ -14,10 +14,10 @@ The Example also demonstrate an [automated pipeline](mlrun_mpijob_pipe.ipynb) us ## Notebooks & Code -* [All-in-one: Import, tag, launch training, deploy serving](mlrun_mpijob_classify.ipynb) +* [All-in-one: Import, tag, launch training, deploy serving](01-image-classification.ipynb) * [Training function code](horovod-training.py) * [Serving function development and testing](nuclio-serving-tf-images.ipynb) -* [Auto generation of KubeFlow pipelines workflow](mlrun_mpijob_pipe.ipynb) +* [Auto generation of KubeFlow pipelines workflow](02-create_pipeline.ipynb) * [Building serving function using Dockerfile](./inference-docker) * [function code](./inference-docker/main.py) * [Dockerfile](./inference-docker/Dockerfile) From dda61ea70cb7968e5b0f0623e30043952ad4d2f9 Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 20 Nov 2019 15:12:18 +0200 Subject: [PATCH 10/15] Adding a Dask example --- getting-started/dask-cluster.ipynb | 244 +++++++++++++++++++++++++++++ getting-started/worker-spec.yml | 22 +++ 2 files changed, 266 insertions(+) create mode 100644 getting-started/dask-cluster.ipynb create mode 100644 getting-started/worker-spec.yml diff --git a/getting-started/dask-cluster.ipynb b/getting-started/dask-cluster.ipynb new file mode 100644 index 00000000..8b8b9f6b --- /dev/null +++ b/getting-started/dask-cluster.ipynb @@ -0,0 +1,244 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running Dask on the cluster\n", + "\n", + "The dask frameworks enabling users to parallelize internal systems\n", + "Not all computations fit into a big dataframe. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps parallelize python processes and dramatically accelerate their performance\n", + "\n", + "Dask Kubernetes deploys Dask workers on Kubernetes clusters using native Kubernetes APIs. It is designed to dynamically launch short-lived deployments of workers during the lifetime of a Python process.\n", + "\n", + "check out this link https://kubernetes.dask.org/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: dask-kubernetes in /User/.pythonlibs/lib/python3.6/site-packages (0.10.0)\n", + "Requirement already satisfied: kubernetes-asyncio>=9 in /User/.pythonlibs/lib/python3.6/site-packages (from dask-kubernetes) (10.0.0)\n", + "Requirement already satisfied: dask>=2.5.2 in /User/.pythonlibs/lib/python3.6/site-packages (from dask-kubernetes) (2.8.0)\n", + "Requirement already satisfied: kubernetes>=9 in /User/.pythonlibs/lib/python3.6/site-packages (from dask-kubernetes) (9.0.0)\n", + "Requirement already satisfied: distributed>=2.5.2 in /User/.pythonlibs/lib/python3.6/site-packages (from dask-kubernetes) (2.8.0)\n", + "Requirement already satisfied: pyyaml>=3.12 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (5.1.2)\n", + "Requirement already satisfied: python-dateutil>=2.5.3 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (2.8.0)\n", + "Requirement already satisfied: six>=1.9.0 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (1.12.0)\n", + "Requirement already satisfied: setuptools>=21.0.0 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (41.4.0)\n", + "Requirement already satisfied: urllib3>=1.24.2 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (1.24.2)\n", + "Requirement already satisfied: aiohttp>=2.3.10 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (3.6.2)\n", + "Requirement already satisfied: certifi>=14.05.14 in /conda/lib/python3.6/site-packages (from kubernetes-asyncio>=9->dask-kubernetes) (2019.9.11)\n", + "Requirement already satisfied: requests in /conda/lib/python3.6/site-packages (from kubernetes>=9->dask-kubernetes) (2.22.0)\n", + "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9->dask-kubernetes) (0.56.0)\n", + "Requirement already satisfied: requests-oauthlib in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9->dask-kubernetes) (1.3.0)\n", + "Requirement already satisfied: google-auth>=1.0.1 in /User/.pythonlibs/lib/python3.6/site-packages (from kubernetes>=9->dask-kubernetes) (1.7.1)\n", + "Requirement already satisfied: msgpack in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (0.6.2)\n", + "Requirement already satisfied: tornado>=5 in /User/.pythonlibs/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (5.1.1)\n", + "Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (2.1.0)\n", + "Requirement already satisfied: cloudpickle>=0.2.2 in /User/.pythonlibs/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (1.1.1)\n", + "Requirement already satisfied: zict>=0.1.3 in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (1.0.0)\n", + "Requirement already satisfied: tblib in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (1.5.0)\n", + "Requirement already satisfied: psutil>=5.0 in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (5.6.3)\n", + "Requirement already satisfied: click>=6.6 in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (7.0)\n", + "Requirement already satisfied: toolz>=0.7.4 in /conda/lib/python3.6/site-packages (from distributed>=2.5.2->dask-kubernetes) (0.10.0)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (1.3.0)\n", + "Requirement already satisfied: attrs>=17.3.0 in /conda/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (19.3.0)\n", + "Requirement already satisfied: async-timeout<4.0,>=3.0 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (3.0.1)\n", + "Requirement already satisfied: chardet<4.0,>=2.0 in /conda/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (3.0.4)\n", + "Requirement already satisfied: idna-ssl>=1.0; python_version < \"3.7\" in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (1.1.0)\n", + "Requirement already satisfied: multidict<5.0,>=4.5 in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (4.5.2)\n", + "Requirement already satisfied: typing-extensions>=3.6.5; python_version < \"3.7\" in /User/.pythonlibs/lib/python3.6/site-packages (from aiohttp>=2.3.10->kubernetes-asyncio>=9->dask-kubernetes) (3.7.4.1)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /conda/lib/python3.6/site-packages (from requests->kubernetes>=9->dask-kubernetes) (2.8)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from requests-oauthlib->kubernetes>=9->dask-kubernetes) (3.1.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9->dask-kubernetes) (0.2.7)\n", + "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9->dask-kubernetes) (3.1.1)\n", + "Requirement already satisfied: rsa<4.1,>=3.1.4 in /User/.pythonlibs/lib/python3.6/site-packages (from google-auth>=1.0.1->kubernetes>=9->dask-kubernetes) (4.0)\n", + "Requirement already satisfied: heapdict in /conda/lib/python3.6/site-packages (from zict>=0.1.3->distributed>=2.5.2->dask-kubernetes) (1.0.1)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /User/.pythonlibs/lib/python3.6/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=9->dask-kubernetes) (0.4.7)\n" + ] + } + ], + "source": [ + "!pip install dask-kubernetes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When user runs dask the frameworks start one or more pods running in parallel on the cluster. Users can define the number of nodes and the minimun and maximum number of pods that the dask framework opens up\n", + "Scale to zero is achieved by setting the minimum = 0. Setting it to zero delete the pods once the job is done and free up the resources " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/conda/lib/python3.6/site-packages/bokeh/themes/theme.py:131: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.\n", + " json = yaml.load(f)\n", + "distributed.dashboard.proxy - INFO - To route to workers diagnostics web server please install jupyter-server-proxy: pip install jupyter-server-proxy\n", + "distributed.scheduler - INFO - Clear task state\n", + "/User/.pythonlibs/lib/python3.6/site-packages/distributed/dashboard/core.py:72: UserWarning: \n", + "Port 8787 is already in use. \n", + "Perhaps you already have a cluster running?\n", + "Hosting the diagnostics dashboard on a random port instead.\n", + " warnings.warn(\"\\n\" + msg)\n", + "distributed.scheduler - INFO - Scheduler at: tcp://10.233.81.31:43201\n", + "distributed.scheduler - INFO - dashboard at: :42621\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "distributed.scheduler - INFO - Retire worker names (0, 1)\n", + "distributed.deploy.adaptive - INFO - Retiring workers [0, 1]\n" + ] + } + ], + "source": [ + "from dask_kubernetes import KubeCluster\n", + "\n", + "cluster = KubeCluster.from_yaml('worker-spec.yml')\n", + "cluster.scale_up(4) # specify number of nodes explicitly\n", + "\n", + "cluster.adapt(minimum=2, maximum=5) # or dynamically scale based on current workload" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "to view the pods that are running" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dask-iguazio-4e54e604-bcfqrc 1/1 Running 0 10s\n", + "dask-iguazio-4e54e604-bldmph 1/1 Running 0 10s\n" + ] + } + ], + "source": [ + "!kubectl -n default-tenant get pods | grep dask" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "distributed.scheduler - INFO - Receive client connection: Client-ec580b48-0b0c-11ea-9bc2-019f8a8ab19d\n", + "distributed.core - INFO - Starting established connection\n", + "distributed.core - INFO - Event loop was unresponsive in Scheduler for 3.09s. This is often caused by long-running GIL-holding functions or moving large chunks of data. This can cause timeouts and instability.\n", + "distributed.scheduler - INFO - Register tcp://10.233.76.67:33187\n", + "distributed.scheduler - INFO - Starting worker compute stream, tcp://10.233.76.67:33187\n", + "distributed.core - INFO - Starting established connection\n", + "distributed.scheduler - INFO - Retire worker names (2, 3, 4)\n", + "distributed.deploy.adaptive - INFO - Retiring workers [2, 3, 4]\n", + "distributed.scheduler - INFO - Remove worker tcp://10.233.76.67:33187\n", + "distributed.core - INFO - Removing comms to tcp://10.233.76.67:33187\n", + "distributed.scheduler - INFO - Lost all workers\n", + "distributed.scheduler - INFO - Register tcp://10.233.111.64:33079\n", + "distributed.scheduler - INFO - Starting worker compute stream, tcp://10.233.111.64:33079\n", + "distributed.core - INFO - Starting established connection\n", + "distributed.scheduler - INFO - Retire worker names (5,)\n", + "distributed.deploy.adaptive - INFO - Retiring workers [5]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "distributed.scheduler - INFO - Register tcp://10.233.76.68:46786\n", + "distributed.scheduler - INFO - Starting worker compute stream, tcp://10.233.76.68:46786\n", + "distributed.core - INFO - Starting established connection\n" + ] + } + ], + "source": [ + "# Example usage\n", + "import distributed\n", + "import dask.array as da\n", + "\n", + "# Connect dask to the cluster\n", + "client = distributed.Client(cluster)\n", + "\n", + "# Create an array and calculate the mean\n", + "array = da.ones((1000, 1000, 1000), chunks=(100, 100, 10))\n", + "print(array.mean().compute()) # Should print 1.0" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/getting-started/worker-spec.yml b/getting-started/worker-spec.yml new file mode 100644 index 00000000..fa6912cf --- /dev/null +++ b/getting-started/worker-spec.yml @@ -0,0 +1,22 @@ + +kind: Pod +metadata: + labels: + foo: bar +spec: + restartPolicy: Never + containers: + - image: daskdev/dask:latest + imagePullPolicy: IfNotPresent + args: [dask-worker, --nthreads, '2', --no-bokeh, --memory-limit, 6GB, --death-timeout, '60'] + name: dask + env: + - name: EXTRA_PIP_PACKAGES + value: fastparquet git+https://github.com/dask/distributed + resources: + limits: + cpu: "2" + memory: 6G + requests: + cpu: "2" + memory: 6G \ No newline at end of file From 7482b0654cd32250181f7d4bbea9e5b0682bcc9c Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 20 Nov 2019 17:25:34 +0200 Subject: [PATCH 11/15] update welcome and readme --- README.md | 13 ++++++------ demos/README.ipynb | 53 +++++++++++++++++++++++++--------------------- demos/README.md | 46 ++++++++++++++++++++++------------------ welcome.ipynb | 15 +++++++------ 4 files changed, 69 insertions(+), 58 deletions(-) diff --git a/README.md b/README.md index 6a7157f3..5f101945 100644 --- a/README.md +++ b/README.md @@ -8,11 +8,11 @@ - [Deploying Models to Production](#deploying-models-to-production) - [Visualization, Monitoring, and Logging](#visualization-monitoring-and-logging) - [End-to-End Use-Case Applications](#end-to-end-use-case-applications) - - [Smart Stock Trading](demos/stocks/01-gen-demo-data.ipynb) + - [Image Classification](demos/image-classification/01-image-classification.ipynb) - [Predictive Infrastructure Monitoring](demos/netops/01-generator.ipynb) - - [Image Recognition](demos/image-classification/keras-cnn-dog-or-cat-classification.ipynb) - [Natural Language Processing (NLP)](demos/nlp/nlp-example.ipynb) - [Stream Enrichment](demos/stream-enrich/stream-enrich.ipynb) + - [Smart Stock Trading](demos/stocks/01-gen-demo-data.ipynb) - [Jupyter Notebook Basics](#jupyter-notebook-basics) - [Creating Virtual Environments in Jupyter Notebook](#creating-virtual-environments-in-jupyter-notebook) - [Updating the Tutorial Notebooks](#update-notebooks) @@ -28,11 +28,12 @@ The Iguazio Data Science Platform (**"the platform"**) is a fully integrated and The platform incorporates the following components: - A data science workbench that includes Jupyter Notebook, integrated analytics engines, and Python packages -- Real-time dashboards based on Grafana +- Model management with experiments tracking and automated pipeline capabilities - Managed data and machine-learning (ML) services over a scalable Kubernetes cluster - A real-time serverless functions framework — Nuclio - An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple objects), and streaming - Integration with third-party data sources such as Amazon S3, HDFS, SQL databases, and streaming or messaging protocols +- Real-time dashboards based on Grafana
Self-service data science platform
@@ -115,7 +116,7 @@ When your model is ready, you can train it in Jupyter Notebook or by using scala You can find model-training examples in the platform's tutorial Jupyter notebooks: - The [NetOps demo](demos/netops/03-training.ipynb) tutorial demonstrates predictive infrastructure-monitoring using scikit-learn. -- The [image-classification demo](demos/image-classification/infer.ipynb) tutorial demonstrates image recognition using TensorFlow and Keras. +- The [image-classification demo](demos/image-classification/01-image-classification.ipynb) tutorial demonstrates image recognition using TensorFlow and Horovod with MLRun. If you're are a beginner, you might find the following ML guide useful — [Machine Learning Algorithms In Layman's Terms](https://towardsdatascience.com/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b). @@ -165,11 +166,11 @@ For information on how to create Grafana dashboards to monitor and visualize dat Iguazio provides full end-to-end use-case applications that demonstrate how to use the Iguazio Data Science Platform and related tools to address data science requirements for different industries and implementations. The applications are provided in the **demos** directory of the platform's tutorial Jupyter notebooks and cover the following use cases; for more detailed descriptions, see the demos README ([notebook](demos/README.ipynb) / [Markdown](demos/README.md)): --
**Smart stock trading** ([**stocks**](demos/stocks/read-stocks.ipynb)) — the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard. +- **Image recognition** ([**image-classification**](demos/image-classification/01-image-classification.ipynb)) — the application builds and trains an ML model that identifies (recognizes) and classifies images by using Keras, TensorFlow, and scikit-learn. - **Predictive infrastructure monitoring** ([**netops**](demos/netops/01-generator.ipynb)) — the application builds, trains, and deploys a machine-learning model for analyzing and predicting failure in network devices as part of a network operations (NetOps) flow. The goal is to identify anomalies for device metrics — such as CPU, memory consumption, or temperature — which can signify an upcoming issue or failure. -- **Image recognition** ([**image-classification**](demos/image-classification/keras-cnn-dog-or-cat-classification.ipynb)) — the application builds and trains an ML model that identifies (recognizes) and classifies images by using Keras, TensorFlow, and scikit-learn. - **Natural language processing (NLP)** ([**nlp**](demos/nlp/nlp-example.ipynb)) — the application processes natural-language textual data — including spelling correction and sentiment analysis — and generates a Nuclio serverless function that translates any given text string to another (configurable) language. - **Stream enrichment** ([**stream-enrich**](demos/stream-enrich/stream-enrich.ipynb)) — the application demonstrates a typical stream-based data-engineering pipeline, which is required in many real-world scenarios: data is streamed from an event streaming engine; the data is enriched, in real time, using data from a NoSQL table; the enriched data is saved to an output data stream and then consumed from this stream. +- **Smart stock trading** ([**stocks**](demos/stocks/read-stocks.ipynb)) — the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard. ## Jupyter Notebook Basics diff --git a/demos/README.ipynb b/demos/README.ipynb index 222a2df3..6711c930 100644 --- a/demos/README.ipynb +++ b/demos/README.ipynb @@ -14,11 +14,11 @@ "**In This Document**\n", "\n", "- [Overview](#overview)\n", - "- [Stock Trading](#stocks-demo)\n", + "- [Image Classification](#image-classification-demo)\n", "- [Predictive Infrastructure Monitoring](#netops-demo)\n", - "- [Image Recognition](#image-classification-demo)\n", "- [Natural Language Processing (NLP)](#nlp-demo)\n", - "- [Stream Enrichment](#stream-enrich-demo)" + "- [Stream Enrichment](#stream-enrich-demo)\n", + "- [Stock Trading](#stocks-demo)" ] }, { @@ -35,16 +35,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "## Smart Stock Trading\n", + "\n", + "## Image Classification\n", "\n", - "The [**stocks**](stocks/01-gen-demo-data.ipynb) demo demonstrates a smart stock-trading application: \n", - "the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard.\n", + "The [**image-classification**](image-classification/01-image-classification.ipynb) demo demonstrates image recognition: the application builds and trains an ML model that identifies (recognizes) and classifies images.\n", "\n", - "- The stock data is read from Twitter by using the [TwythonStreamer](https://twython.readthedocs.io/en/latest/usage/streaming_api.html) Python wrapper to the Twitter Streaming API, and saved to TSDB and NoSQL tables in the platform.\n", - "- Sentiment analysis is done by using the [TextBlob](https://textblob.readthedocs.io/) Python library for natural language processing (NLP).\n", - "- The analyzed data is visualized as graphs on a [Grafana](https://grafana.com/grafana) dashboard, which is created from the Jupyter notebook code.\n", - " The data is read from both the TSDB and NoSQL stock tables." + "This example is using TensorFlow, Horovod, and Nuclio demonstrating end to end solution for image classification, \n", + "it consists of 4 MLRun and Nuclio functions:\n", + "\n", + "1. import an image archive from S3 to the cluster file system\n", + "2. Tag the images based on their name structure \n", + "3. Distrubuted training using TF, Keras and Horovod\n", + "4. Automated deployment of Nuclio model serving function (form [Notebook](nuclio-serving-tf-images.ipynb) and from [Dockerfile](./inference-docker))\n", + "\n", + "The Example also demonstrate an [automated pipeline](mlrun_mpijob_pipe.ipynb) using MLRun and KubeFlow pipelines " ] }, { @@ -67,28 +71,29 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "## Image Recognition\n", + "\n", + "## Natural Language Processing (NLP)\n", "\n", - "The [**image-classification**](image-classification/keras-cnn-dog-or-cat-classification.ipynb) demo demonstrates image recognition: the application builds and trains an ML model that identifies (recognizes) and classifies images.\n", + "The [**nlp**](nlp/nlp-example.ipynb) demo demonstrates natural language processing (NLP): the application processes natural-language textual data — including spelling correction and sentiment analysis — and generates a Nuclio serverless function that translates any given text string to another (configurable) language.\n", "\n", - "- The data is collected by downloading images of dogs and cats from the Iguazio sample data-set AWS bucket.\n", - "- The training data for the ML model is prepared by using [pandas](https://pandas.pydata.org/) DataFrames to build a predecition map.\n", - " The data is visualized by using the [Matplotlib](https://matplotlib.org/) Python library.\n", - "- An image recognition and classification ML model that identifies the animal type is built and trained by using [Keras](https://keras.io/), [TensorFlow](https://www.tensorflow.org/), and [scikit-learn](https://scikit-learn.org) (a.k.a. sklearn)." + "- The textual data is collected and processed by using the [TextBlob](https://textblob.readthedocs.io/) Python NLP library. The processing includes spelling correction and sentiment analysis.\n", + "- A serverless function that translates text to another language, which is configured in an environment variable, is generated by using the [Nuclio](https://nuclio.io/) framework." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "## Natural Language Processing (NLP)\n", + "\n", + "## Smart Stock Trading\n", "\n", - "The [**nlp**](nlp/nlp-example.ipynb) demo demonstrates natural language processing (NLP): the application processes natural-language textual data — including spelling correction and sentiment analysis — and generates a Nuclio serverless function that translates any given text string to another (configurable) language.\n", + "The [**stocks**](stocks/01-gen-demo-data.ipynb) demo demonstrates a smart stock-trading application: \n", + "the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard.\n", "\n", - "- The textual data is collected and processed by using the [TextBlob](https://textblob.readthedocs.io/) Python NLP library. The processing includes spelling correction and sentiment analysis.\n", - "- A serverless function that translates text to another language, which is configured in an environment variable, is generated by using the [Nuclio](https://nuclio.io/) framework." + "- The stock data is read from Twitter by using the [TwythonStreamer](https://twython.readthedocs.io/en/latest/usage/streaming_api.html) Python wrapper to the Twitter Streaming API, and saved to TSDB and NoSQL tables in the platform.\n", + "- Sentiment analysis is done by using the [TextBlob](https://textblob.readthedocs.io/) Python library for natural language processing (NLP).\n", + "- The analyzed data is visualized as graphs on a [Grafana](https://grafana.com/grafana) dashboard, which is created from the Jupyter notebook code.\n", + " The data is read from both the TSDB and NoSQL stock tables." ] }, { @@ -128,5 +133,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/demos/README.md b/demos/README.md index 71fb4e22..2184ef7a 100644 --- a/demos/README.md +++ b/demos/README.md @@ -1,30 +1,33 @@ - # End-to-End Platform Use-Case Application Demos **In This Document** - [Overview](#overview) -- [Stock Trading](#stocks-demo) +- [Image Classification](#image-classification-demo) - [Predictive Infrastructure Monitoring](#netops-demo) -- [Image Recognition](#image-classification-demo) - [Natural Language Processing (NLP)](#nlp-demo) - [Stream Enrichment](#stream-enrich-demo) +- [Stock Trading](#stocks-demo) ## Overview The **demos** tutorials directory contains full end-to-end use-case applications that demonstrate how to use the Iguazio Data Science Platform ("the platform") and related tools to address data science requirements for different industries and implementations. - -## Smart Stock Trading + +## Image Classification -The [**stocks**](stocks/read-stocks.ipynb) demo demonstrates a smart stock-trading application: -the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard. +The [**image-classification**](image-classification/01-image-classification.ipynb) demo demonstrates image recognition: the application builds and trains an ML model that identifies (recognizes) and classifies images. -- The stock data is read from Twitter by using the [TwythonStreamer](https://twython.readthedocs.io/en/latest/usage/streaming_api.html) Python wrapper to the Twitter Streaming API, and saved to TSDB and NoSQL tables in the platform. -- Sentiment analysis is done by using the [TextBlob](https://textblob.readthedocs.io/) Python library for natural language processing (NLP). -- The analyzed data is visualized as graphs on a [Grafana](https://grafana.com/grafana) dashboard, which is created from the Jupyter notebook code. - The data is read from both the TSDB and NoSQL stock tables. +This example is using TensorFlow, Horovod, and Nuclio demonstrating end to end solution for image classification, +it consists of 4 MLRun and Nuclio functions: + +1. import an image archive from S3 to the cluster file system +2. Tag the images based on their name structure +3. Distrubuted training using TF, Keras and Horovod +4. Automated deployment of Nuclio model serving function (form [Notebook](nuclio-serving-tf-images.ipynb) and from [Dockerfile](./inference-docker)) + +The Example also demonstrate an [automated pipeline](mlrun_mpijob_pipe.ipynb) using MLRun and KubeFlow pipelines ## Predictive Infrastructure Monitoring @@ -37,16 +40,6 @@ The goal is to identify anomalies for device metrics — such as CPU, memory - The data is generated by using an open-source generator tool that was written by Iguazio. This generator enables users to customize the metrics, data range, and many other parameters, and prepare a data set that's suitable for other similar use cases. - -## Image Recognition - -The [**image-classification**](image-classification/keras-cnn-dog-or-cat-classification.ipynb) demo demonstrates image recognition: the application builds and trains an ML model that identifies (recognizes) and classifies images. - -- The data is collected by downloading images of dogs and cats from the Iguazio sample data-set AWS bucket. -- The training data for the ML model is prepared by using [pandas](https://pandas.pydata.org/) DataFrames to build a predecition map. - The data is visualized by using the [Matplotlib](https://matplotlib.org/) Python library. -- An image recognition and classification ML model that identifies the animal type is built and trained by using [Keras](https://keras.io/), [TensorFlow](https://www.tensorflow.org/), and [scikit-learn](https://scikit-learn.org) (a.k.a. sklearn). - ## Natural Language Processing (NLP) @@ -55,6 +48,17 @@ The [**nlp**](nlp/nlp-example.ipynb) demo demonstrates natural language processi - The textual data is collected and processed by using the [TextBlob](https://textblob.readthedocs.io/) Python NLP library. The processing includes spelling correction and sentiment analysis. - A serverless function that translates text to another language, which is configured in an environment variable, is generated by using the [Nuclio](https://nuclio.io/) framework. + +## Smart Stock Trading + +The [**stocks**](stocks/01-gen-demo-data.ipynb) demo demonstrates a smart stock-trading application: +the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard. + +- The stock data is read from Twitter by using the [TwythonStreamer](https://twython.readthedocs.io/en/latest/usage/streaming_api.html) Python wrapper to the Twitter Streaming API, and saved to TSDB and NoSQL tables in the platform. +- Sentiment analysis is done by using the [TextBlob](https://textblob.readthedocs.io/) Python library for natural language processing (NLP). +- The analyzed data is visualized as graphs on a [Grafana](https://grafana.com/grafana) dashboard, which is created from the Jupyter notebook code. + The data is read from both the TSDB and NoSQL stock tables. + ### Stream Enrichment diff --git a/welcome.ipynb b/welcome.ipynb index 4b15588f..b1066bbe 100644 --- a/welcome.ipynb +++ b/welcome.ipynb @@ -19,11 +19,11 @@ " - [Deploying Models to Production](#deploying-models-to-production)\n", " - [Visualization, Monitoring, and Logging](#visualization-monitoring-and-logging)\n", "- [End-to-End Use-Case Applications](#end-to-end-use-case-applications)\n", - " - [Smart Stock Trading](demos/stocks/01-gen-demo-data.ipynb)\n", + " - [Image Classification](demos/image-classification/01-image-classification.ipynb)\n", " - [Predictive Infrastructure Monitoring](demos/netops/01-generator.ipynb)\n", - " - [Image Recognition](demos/image-classification/keras-cnn-dog-or-cat-classification.ipynb)\n", " - [Natural Language Processing (NLP)](demos/nlp/nlp-example.ipynb)\n", " - [Stream Enrichment](demos/stream-enrich/stream-enrich.ipynb)\n", + " - [Smart Stock Trading](demos/stocks/01-gen-demo-data.ipynb)\n", "- [Jupyter Notebook Basics](#jupyter-notebook-basics)\n", " - [Creating Virtual Environments in Jupyter Notebook](#creating-virtual-environments-in-jupyter-notebook)\n", " - [Updating the Tutorial Notebooks](#update-notebooks)\n", @@ -44,11 +44,12 @@ "The platform incorporates the following components:\n", "\n", "- A data science workbench that includes Jupyter Notebook, integrated analytics engines, and Python packages\n", - "- Real-time dashboards based on Grafana\n", + "- Model management with experiments tracking and automated pipeline capabilities\n", "- Managed data and machine-learning (ML) services over a scalable Kubernetes cluster\n", "- A real-time serverless functions framework — Nuclio\n", "- An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple objects), and streaming\n", "- Integration with third-party data sources such as Amazon S3, HDFS, SQL databases, and streaming or messaging protocols\n", + "- Real-time dashboards based on Grafana\n", "\n", "
\"Self-service
\n", "\n", @@ -151,7 +152,7 @@ "You can find model-training examples in the platform's tutorial Jupyter notebooks:\n", "\n", "- The [NetOps demo](demos/netops/03-training.ipynb) tutorial demonstrates predictive infrastructure-monitoring using scikit-learn.\n", - "- The [image-classification demo](demos/image-classification/infer.ipynb) tutorial demonstrates image recognition using TensorFlow and Keras.\n", + "- The [image-classification demo](demos/image-classification/01-image-classification.ipynb) tutorial demonstrates image recognition using TensorFlow and Horovod with MLRun.\n", "\n", "If you're are a beginner, you might find the following ML guide useful — [Machine Learning Algorithms In Layman's Terms](https://towardsdatascience.com/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b).\n", "\n", @@ -216,11 +217,11 @@ "Iguazio provides full end-to-end use-case applications that demonstrate how to use the Iguazio Data Science Platform and related tools to address data science requirements for different industries and implementations.\n", "The applications are provided in the **demos** directory of the platform's tutorial Jupyter notebooks and cover the following use cases; for more detailed descriptions, see the demos README ([notebook](demos/README.ipynb) / [Markdown](demos/README.md)):\n", "\n", - "- **Smart stock trading** ([**stocks**](demos/stocks/read-stocks.ipynb)) — the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard.\n", + "- **Image recognition** ([**image-classification**](demos/image-classification/01-image-classification.ipynb)) — the application builds and trains an ML model that identifies (recognizes) and classifies images by using Keras, TensorFlow, and scikit-learn.\n", "- **Predictive infrastructure monitoring** ([**netops**](demos/netops/01-generator.ipynb)) — the application builds, trains, and deploys a machine-learning model for analyzing and predicting failure in network devices as part of a network operations (NetOps) flow. The goal is to identify anomalies for device metrics — such as CPU, memory consumption, or temperature — which can signify an upcoming issue or failure.\n", - "- **Image recognition** ([**image-classification**](demos/image-classification/keras-cnn-dog-or-cat-classification.ipynb)) — the application builds and trains an ML model that identifies (recognizes) and classifies images by using Keras, TensorFlow, and scikit-learn.\n", "- **Natural language processing (NLP)** ([**nlp**](demos/nlp/nlp-example.ipynb)) — the application processes natural-language textual data — including spelling correction and sentiment analysis — and generates a Nuclio serverless function that translates any given text string to another (configurable) language.\n", - "- **Stream enrichment** ([**stream-enrich**](demos/stream-enrich/stream-enrich.ipynb)) — the application demonstrates a typical stream-based data-engineering pipeline, which is required in many real-world scenarios: data is streamed from an event streaming engine; the data is enriched, in real time, using data from a NoSQL table; the enriched data is saved to an output data stream and then consumed from this stream." + "- **Stream enrichment** ([**stream-enrich**](demos/stream-enrich/stream-enrich.ipynb)) — the application demonstrates a typical stream-based data-engineering pipeline, which is required in many real-world scenarios: data is streamed from an event streaming engine; the data is enriched, in real time, using data from a NoSQL table; the enriched data is saved to an output data stream and then consumed from this stream.\n", + "- **Smart stock trading** ([**stocks**](demos/stocks/read-stocks.ipynb)) — the application reads stock-exchange data from an internet service into a time-series database (TSDB); uses Twitter to analyze the market sentiment on specific stocks, in real time; and saves the data to a platform NoSQL table that is used for generating reports and analyzing and visualizing the data on a Grafana dashboard." ] }, { From 551531fdc3e839146fa9bd4867a5d4e11670ce47 Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 4 Dec 2019 09:59:13 +0200 Subject: [PATCH 12/15] Dask NB v2 --- getting-started/dask-cluster.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/getting-started/dask-cluster.ipynb b/getting-started/dask-cluster.ipynb index 8b8b9f6b..616c3881 100644 --- a/getting-started/dask-cluster.ipynb +++ b/getting-started/dask-cluster.ipynb @@ -11,7 +11,7 @@ "\n", "Dask Kubernetes deploys Dask workers on Kubernetes clusters using native Kubernetes APIs. It is designed to dynamically launch short-lived deployments of workers during the lifetime of a Python process.\n", "\n", - "check out this link https://kubernetes.dask.org/en/latest/" + "Check out this link https://kubernetes.dask.org/en/latest/" ] }, { From eb0c2a19eeb96e8fba96c56517cb499b83277fc4 Mon Sep 17 00:00:00 2001 From: Sharon Lifshitz Date: Wed, 4 Dec 2019 21:15:13 +0200 Subject: [PATCH 13/15] Frames GS NB: Add NoSQL ("kv") SQL read limit & regenerate all outputs --- getting-started/frames.ipynb | 2238 ++++------------------------------ 1 file changed, 237 insertions(+), 2001 deletions(-) diff --git a/getting-started/frames.ipynb b/getting-started/frames.ipynb index 8c9fa887..59115e0a 100644 --- a/getting-started/frames.ipynb +++ b/getting-started/frames.ipynb @@ -380,286 +380,6 @@ " \n", " \n", " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 149\n", - " single\n", - " no\n", - " 10218\n", - " nov\n", - " cellular\n", - " 2\n", - " no\n", - " 2916\n", - " admin.\n", - " 19\n", - " 32\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 1\n", - " no\n", - " failure\n", - " 699\n", - " married\n", - " no\n", - " 11219\n", - " aug\n", - " cellular\n", - " 2\n", - " no\n", - " 276\n", - " housemaid\n", - " 12\n", - " 35\n", - " 79\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 249\n", - " married\n", - " no\n", - " 19317\n", - " aug\n", - " cellular\n", - " 1\n", - " yes\n", - " 3553\n", - " retired\n", - " 4\n", - " 68\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 14\n", - " married\n", - " no\n", - " 17555\n", - " aug\n", - " cellular\n", - " 14\n", - " no\n", - " 1776\n", - " management\n", - " 26\n", - " 43\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 215\n", - " married\n", - " no\n", - " 16264\n", - " nov\n", - " telephone\n", - " 3\n", - " no\n", - " 3289\n", - " management\n", - " 17\n", - " 58\n", - " -1\n", - " \n", - " \n", - " yes\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 197\n", - " divorced\n", - " no\n", - " 13204\n", - " nov\n", - " cellular\n", - " 2\n", - " no\n", - " 3329\n", - " management\n", - " 20\n", - " 34\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 106\n", - " married\n", - " no\n", - " 22370\n", - " may\n", - " unknown\n", - " 1\n", - " no\n", - " 2624\n", - " entrepreneur\n", - " 15\n", - " 53\n", - " -1\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 205\n", - " married\n", - " no\n", - " 71188\n", - " oct\n", - " cellular\n", - " 1\n", - " no\n", - " 3700\n", - " retired\n", - " 6\n", - " 60\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 29\n", - " married\n", - " no\n", - " 13893\n", - " jun\n", - " unknown\n", - " 2\n", - " no\n", - " 3608\n", - " management\n", - " 11\n", - " 44\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 288\n", - " married\n", - " no\n", - " 10758\n", - " jun\n", - " cellular\n", - " 1\n", - " no\n", - " 1005\n", - " management\n", - " 1\n", - " 41\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 92\n", - " single\n", - " no\n", - " 11269\n", - " may\n", - " unknown\n", - " 1\n", - " no\n", - " 554\n", - " technician\n", - " 29\n", - " 43\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 2\n", - " yes\n", - " failure\n", - " 208\n", - " single\n", - " no\n", - " 16957\n", - " jan\n", - " telephone\n", - " 1\n", - " no\n", - " 3025\n", - " management\n", - " 29\n", - " 38\n", - " 247\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 115\n", - " single\n", - " no\n", - " 20453\n", - " may\n", - " telephone\n", - " 1\n", - " no\n", - " 4334\n", - " entrepreneur\n", - " 4\n", - " 37\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 523\n", - " single\n", - " no\n", - " 10378\n", - " nov\n", - " cellular\n", - " 3\n", - " no\n", - " 468\n", - " management\n", - " 17\n", - " 40\n", - " -1\n", - " \n", - " \n", - " no\n", " primary\n", " 0\n", " no\n", @@ -672,1647 +392,163 @@ " cellular\n", " 1\n", " yes\n", - " 368\n", - " technician\n", - " 26\n", - " 60\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 77\n", - " married\n", - " no\n", - " 12531\n", - " aug\n", - " cellular\n", - " 8\n", - " no\n", - " 2955\n", - " technician\n", - " 13\n", - " 49\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 3\n", - " yes\n", - " failure\n", - " 27\n", - " divorced\n", - " no\n", - " 26306\n", - " feb\n", - " cellular\n", - " 1\n", - " no\n", - " 2196\n", - " management\n", - " 11\n", - " 54\n", - " 84\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 107\n", - " married\n", - " no\n", - " 14752\n", - " may\n", - " unknown\n", - " 2\n", - " no\n", - " 709\n", - " housemaid\n", - " 19\n", - " 42\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 198\n", - " married\n", - " no\n", - " 11494\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 213\n", - " self-employed\n", - " 19\n", - " 57\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 8\n", - " no\n", - " other\n", - " 138\n", - " married\n", - " no\n", - " 13669\n", - " oct\n", - " cellular\n", - " 1\n", - " no\n", - " 822\n", - " self-employed\n", - " 15\n", - " 40\n", - " 136\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 118\n", - " married\n", - " no\n", - " 12877\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 4441\n", - " management\n", - " 17\n", - " 38\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 125\n", - " single\n", - " no\n", - " 11555\n", - " apr\n", - " cellular\n", - " 2\n", - " no\n", - " 561\n", - " student\n", - " 8\n", - " 28\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 4\n", - " yes\n", - " failure\n", - " 8\n", - " married\n", - " no\n", - " 22546\n", - " may\n", - " cellular\n", - " 6\n", - " no\n", - " 3332\n", - " management\n", - " 14\n", - " 31\n", - " 267\n", - " \n", - " \n", - " yes\n", - " unknown\n", - " 0\n", - " no\n", - " unknown\n", - " 166\n", - " married\n", - " no\n", - " 21244\n", - " aug\n", - " cellular\n", - " 2\n", - " no\n", - " 1821\n", - " housemaid\n", - " 4\n", - " 51\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 214\n", - " married\n", - " no\n", - " 21664\n", - " jun\n", - " unknown\n", - " 8\n", - " no\n", - " 3274\n", - " management\n", - " 17\n", - " 56\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 111\n", - " married\n", - " no\n", - " 10786\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 717\n", - " management\n", - " 20\n", - " 40\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 36\n", - " married\n", - " no\n", - " 12223\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 2881\n", - " services\n", - " 19\n", - " 42\n", - " -1\n", - " \n", - " \n", - " no\n", - " unknown\n", - " 0\n", - " yes\n", - " unknown\n", - " 117\n", - " divorced\n", - " no\n", - " 10287\n", - " may\n", - " unknown\n", - " 1\n", - " no\n", - " 899\n", - " blue-collar\n", - " 29\n", - " 51\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 60\n", - " married\n", - " no\n", - " 14440\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 3910\n", - " admin.\n", - " 21\n", - " 49\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 27\n", - " single\n", - " no\n", - " 13494\n", - " jun\n", - " unknown\n", - " 25\n", - " no\n", - " 1433\n", - " blue-collar\n", - " 20\n", - " 33\n", - " -1\n", - " \n", - " \n", - " no\n", - " unknown\n", - " 0\n", - " yes\n", - " unknown\n", - " 415\n", - " married\n", - " no\n", - " 18347\n", - " may\n", - " unknown\n", - " 1\n", - " no\n", - " 1887\n", - " management\n", - " 23\n", - " 33\n", - " -1\n", - " \n", - " \n", - " no\n", - " primary\n", - " 1\n", - " no\n", - " failure\n", - " 154\n", - " married\n", - " no\n", - " 22856\n", - " jul\n", - " cellular\n", - " 1\n", - " no\n", - " 2776\n", - " management\n", - " 2\n", - " 37\n", - " 388\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 297\n", - " married\n", - " no\n", - " 16178\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 3603\n", - " blue-collar\n", - " 21\n", - " 44\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 135\n", - " divorced\n", - " no\n", - " 10787\n", - " jun\n", - " unknown\n", - " 2\n", - " no\n", - " 3345\n", - " technician\n", - " 4\n", - " 31\n", - " -1\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 106\n", - " divorced\n", - " no\n", - " 10924\n", - " may\n", - " cellular\n", - " 2\n", - " no\n", - " 339\n", - " self-employed\n", - " 6\n", - " 51\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 1\n", - " no\n", - " failure\n", - " 172\n", - " married\n", - " no\n", - " 15834\n", - " apr\n", - " cellular\n", - " 3\n", - " no\n", - " 1805\n", - " retired\n", - " 5\n", - " 70\n", - " 186\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 3\n", - " yes\n", - " failure\n", - " 44\n", - " married\n", - " no\n", - " 22171\n", - " may\n", - " cellular\n", - " 1\n", - " no\n", - " 3231\n", - " admin.\n", - " 18\n", - " 29\n", - " 355\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 7\n", - " no\n", - " success\n", - " 245\n", - " single\n", - " no\n", - " 15459\n", - " may\n", - " cellular\n", - " 3\n", - " no\n", - " 1216\n", - " management\n", - " 26\n", - " 29\n", - " 97\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 94\n", - " single\n", - " no\n", - " 25824\n", - " jun\n", - " unknown\n", - " 1\n", - " no\n", - " 1031\n", - " retired\n", - " 17\n", - " 49\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 1\n", - " no\n", - " failure\n", - " 344\n", - " single\n", - " no\n", - " 12569\n", - " sep\n", - " cellular\n", - " 1\n", - " yes\n", - " 2963\n", - " management\n", - " 9\n", - " 31\n", - " 295\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 231\n", - " married\n", - " no\n", - " 14093\n", - " aug\n", - " cellular\n", - " 5\n", - " no\n", - " 94\n", - " blue-collar\n", - " 11\n", - " 57\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 87\n", - " married\n", - " no\n", - " 21515\n", - " jun\n", - " unknown\n", - " 1\n", - " no\n", - " 4014\n", - " admin.\n", - " 5\n", - " 41\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 157\n", - " single\n", - " no\n", - " 15311\n", - " apr\n", - " cellular\n", - " 6\n", - " no\n", - " 714\n", - " management\n", - " 29\n", - " 56\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 476\n", - " married\n", - " no\n", - " 17361\n", - " jun\n", - " unknown\n", - " 1\n", - " no\n", - " 3993\n", - " management\n", - " 18\n", - " 44\n", - " -1\n", - " \n", - " \n", - " no\n", - " unknown\n", - " 2\n", - " no\n", - " other\n", - " 102\n", - " single\n", - " no\n", - " 10788\n", - " dec\n", - " cellular\n", - " 2\n", - " no\n", - " 1870\n", - " student\n", - " 23\n", - " 25\n", - " 210\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 356\n", - " single\n", - " no\n", - " 11386\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 2461\n", - " services\n", - " 20\n", - " 31\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 2\n", - " yes\n", - " failure\n", - " 199\n", - " single\n", - " no\n", - " 23663\n", - " apr\n", - " cellular\n", - " 2\n", - " no\n", - " 650\n", - " housemaid\n", - " 16\n", - " 33\n", - " 146\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 420\n", - " married\n", - " no\n", - " 15520\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 1778\n", - " management\n", - " 18\n", - " 56\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 397\n", - " married\n", - " no\n", - " 14220\n", - " sep\n", - " cellular\n", - " 1\n", - " yes\n", - " 2962\n", - " retired\n", - " 9\n", - " 71\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 223\n", - " married\n", - " no\n", - " 16353\n", - " oct\n", - " cellular\n", - " 2\n", - " no\n", - " 922\n", - " blue-collar\n", - " 27\n", - " 67\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 74\n", - " single\n", - " no\n", - " 10907\n", - " may\n", - " cellular\n", - " 3\n", - " no\n", - " 4174\n", - " management\n", - " 4\n", - " 42\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 223\n", - " married\n", - " no\n", - " 16873\n", - " oct\n", - " cellular\n", - " 1\n", - " no\n", - " 64\n", - " admin.\n", - " 7\n", - " 56\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 7\n", - " yes\n", - " other\n", - " 167\n", - " single\n", - " no\n", - " 15030\n", - " may\n", - " cellular\n", - " 1\n", - " no\n", - " 874\n", - " management\n", - " 13\n", - " 38\n", - " 174\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 40\n", - " single\n", - " no\n", - " 12437\n", - " nov\n", - " telephone\n", - " 1\n", - " no\n", - " 548\n", - " management\n", - " 18\n", - " 39\n", - " -1\n", - " \n", - " \n", - " yes\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 174\n", - " married\n", - " no\n", - " 27069\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 3830\n", - " technician\n", - " 20\n", - " 57\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 95\n", - " single\n", - " no\n", - " 11797\n", - " aug\n", - " cellular\n", - " 2\n", - " no\n", - " 3177\n", - " management\n", - " 11\n", - " 32\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 197\n", - " married\n", - " no\n", - " 16430\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 2299\n", - " self-employed\n", - " 6\n", - " 36\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 3\n", - " yes\n", - " failure\n", - " 609\n", - " single\n", - " no\n", - " 11971\n", - " nov\n", - " unknown\n", - " 2\n", - " no\n", - " 40\n", - " management\n", - " 17\n", - " 38\n", - " 101\n", - " \n", - " \n", - " yes\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 77\n", - " married\n", - " no\n", - " 13229\n", - " jul\n", - " telephone\n", - " 2\n", - " no\n", - " 3213\n", - " admin.\n", - " 8\n", - " 49\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 29\n", - " married\n", - " no\n", - " 12186\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 272\n", - " management\n", - " 20\n", - " 46\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 164\n", - " single\n", - " no\n", - " 27733\n", - " jun\n", - " unknown\n", - " 7\n", - " no\n", - " 1483\n", - " technician\n", - " 3\n", - " 43\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 500\n", - " married\n", - " no\n", - " 11303\n", - " may\n", - " cellular\n", - " 2\n", - " no\n", - " 875\n", - " admin.\n", - " 26\n", - " 37\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 297\n", - " married\n", - " no\n", - " 14412\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 4032\n", - " retired\n", - " 18\n", - " 58\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 3\n", - " yes\n", - " success\n", - " 638\n", - " single\n", - " no\n", - " 13711\n", - " may\n", - " cellular\n", - " 1\n", - " no\n", - " 1779\n", - " technician\n", - " 14\n", - " 32\n", - " 175\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 258\n", - " single\n", - " no\n", - " 19358\n", - " nov\n", - " cellular\n", - " 2\n", - " no\n", - " 877\n", - " management\n", - " 19\n", - " 30\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 293\n", - " single\n", - " no\n", - " 14058\n", - " jul\n", - " telephone\n", - " 20\n", - " no\n", - " 4212\n", - " blue-collar\n", - " 17\n", - " 38\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 206\n", - " married\n", - " no\n", - " 26394\n", - " aug\n", - " cellular\n", - " 4\n", - " no\n", - " 3011\n", - " services\n", - " 25\n", - " 50\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 272\n", - " married\n", - " no\n", - " 11417\n", - " may\n", - " unknown\n", - " 2\n", - " no\n", - " 2682\n", - " services\n", - " 28\n", - " 29\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 189\n", - " married\n", - " no\n", - " 22196\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 3791\n", - " services\n", - " 21\n", - " 56\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 352\n", - " married\n", - " no\n", - " 16063\n", - " may\n", - " unknown\n", - " 3\n", - " no\n", - " 4369\n", - " technician\n", - " 30\n", - " 57\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 113\n", - " married\n", - " no\n", - " 11084\n", - " jun\n", - " unknown\n", - " 1\n", - " no\n", - " 670\n", - " blue-collar\n", - " 11\n", - " 40\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 1\n", - " yes\n", - " failure\n", - " 291\n", - " single\n", - " no\n", - " 13156\n", - " apr\n", - " cellular\n", - " 4\n", - " no\n", - " 4363\n", - " blue-collar\n", - " 17\n", - " 38\n", - " 331\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 36\n", - " married\n", - " no\n", - " 13044\n", - " aug\n", - " cellular\n", - " 4\n", - " no\n", - " 2039\n", - " management\n", - " 18\n", - " 43\n", - " -1\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 654\n", - " single\n", - " no\n", - " 26965\n", - " apr\n", - " cellular\n", - " 2\n", - " yes\n", - " 871\n", - " housemaid\n", - " 21\n", - " 31\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 1\n", - " no\n", - " failure\n", - " 203\n", - " single\n", - " no\n", - " 12607\n", - " aug\n", - " cellular\n", - " 5\n", - " no\n", - " 500\n", - " management\n", - " 14\n", - " 32\n", - " 84\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 132\n", - " married\n", - " no\n", - " 14363\n", - " jun\n", - " unknown\n", - " 1\n", - " no\n", - " 3508\n", - " housemaid\n", - " 5\n", - " 52\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 220\n", - " married\n", - " no\n", - " 13658\n", - " dec\n", - " telephone\n", - " 2\n", - " no\n", - " 2908\n", - " technician\n", - " 9\n", - " 35\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 465\n", - " married\n", - " no\n", - " 13342\n", - " nov\n", - " cellular\n", - " 1\n", - " no\n", - " 2316\n", - " entrepreneur\n", - " 18\n", - " 43\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 5\n", - " married\n", - " no\n", - " 10655\n", - " jul\n", - " telephone\n", - " 3\n", - " no\n", - " 3967\n", - " technician\n", - " 31\n", - " 48\n", - " -1\n", - " \n", - " \n", - " no\n", - " unknown\n", - " 2\n", - " no\n", - " success\n", - " 646\n", - " married\n", - " no\n", - " 14533\n", - " dec\n", - " cellular\n", - " 3\n", - " no\n", - " 1603\n", - " technician\n", - " 31\n", - " 32\n", - " 198\n", - " \n", - " \n", - " no\n", - " primary\n", - " 4\n", - " yes\n", - " success\n", - " 146\n", - " married\n", - " no\n", - " 12519\n", - " apr\n", - " cellular\n", - " 2\n", - " no\n", - " 602\n", - " blue-collar\n", - " 17\n", - " 50\n", - " 147\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 219\n", - " married\n", - " no\n", - " 26452\n", - " jul\n", - " telephone\n", - " 2\n", - " no\n", - " 4047\n", - " retired\n", - " 15\n", - " 75\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " yes\n", - " unknown\n", - " 115\n", - " single\n", - " no\n", - " 13683\n", - " jun\n", - " unknown\n", - " 3\n", - " no\n", - " 3878\n", - " blue-collar\n", - " 3\n", - " 34\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " no\n", - " unknown\n", - " 205\n", - " married\n", - " no\n", - " 42045\n", - " aug\n", - " cellular\n", - " 2\n", - " no\n", - " 2989\n", - " entrepreneur\n", - " 8\n", - " 42\n", - " -1\n", - " \n", - " \n", - " no\n", - " primary\n", - " 0\n", - " no\n", - " unknown\n", - " 42\n", - " married\n", - " no\n", - " 13117\n", - " jun\n", - " unknown\n", - " 2\n", - " no\n", - " 4440\n", - " blue-collar\n", - " 11\n", - " 45\n", - " -1\n", - " \n", - " \n", - " no\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 71\n", - " married\n", - " no\n", - " 27359\n", - " jun\n", - " unknown\n", - " 2\n", - " no\n", - " 1881\n", - " management\n", - " 3\n", - " 36\n", - " -1\n", - " \n", - " \n", - " no\n", - " secondary\n", - " 0\n", - " no\n", - " unknown\n", - " 272\n", - " single\n", - " no\n", - " 10177\n", - " may\n", - " cellular\n", - " 4\n", - " no\n", - " 1211\n", - " admin.\n", - " 5\n", - " 66\n", + " 368\n", + " technician\n", + " 26\n", + " 60\n", " -1\n", " \n", " \n", " no\n", " secondary\n", " 0\n", - " yes\n", + " no\n", " unknown\n", - " 163\n", + " 14\n", " married\n", " no\n", - " 10888\n", + " 17555\n", " aug\n", " cellular\n", - " 1\n", + " 14\n", " no\n", - " 4346\n", - " technician\n", - " 5\n", - " 44\n", + " 1776\n", + " management\n", + " 26\n", + " 43\n", " -1\n", " \n", " \n", + " no\n", + " primary\n", + " 4\n", " yes\n", - " tertiary\n", - " 0\n", - " yes\n", - " unknown\n", - " 117\n", - " single\n", + " success\n", + " 146\n", + " married\n", " no\n", - " 16874\n", - " may\n", + " 12519\n", + " apr\n", " cellular\n", " 2\n", " no\n", - " 3485\n", - " entrepreneur\n", - " 15\n", - " 25\n", - " -1\n", + " 602\n", + " blue-collar\n", + " 17\n", + " 50\n", + " 147\n", " \n", " \n", " no\n", - " tertiary\n", + " secondary\n", " 0\n", " yes\n", " unknown\n", - " 58\n", + " 60\n", " married\n", " no\n", - " 16992\n", - " may\n", - " unknown\n", + " 14440\n", + " nov\n", + " cellular\n", " 1\n", " no\n", - " 2386\n", - " technician\n", - " 29\n", - " 33\n", + " 3910\n", + " admin.\n", + " 21\n", + " 49\n", " -1\n", " \n", " \n", - " yes\n", + " no\n", " tertiary\n", " 0\n", - " yes\n", + " no\n", " unknown\n", - " 166\n", + " 420\n", " married\n", " no\n", - " 19447\n", + " 15520\n", " nov\n", " cellular\n", " 1\n", " no\n", - " 4338\n", + " 1778\n", " management\n", - " 21\n", - " 50\n", + " 18\n", + " 56\n", " -1\n", " \n", " \n", " no\n", " secondary\n", " 0\n", - " yes\n", + " no\n", " unknown\n", - " 66\n", + " 29\n", " married\n", " no\n", - " 10910\n", + " 12186\n", + " jun\n", + " unknown\n", + " 3\n", + " no\n", + " 272\n", + " management\n", + " 20\n", + " 46\n", + " -1\n", + " \n", + " \n", + " no\n", + " secondary\n", + " 0\n", + " no\n", + " unknown\n", + " 272\n", + " single\n", + " no\n", + " 10177\n", " may\n", " cellular\n", - " 2\n", + " 4\n", " no\n", - " 4394\n", - " blue-collar\n", - " 15\n", - " 43\n", + " 1211\n", + " admin.\n", + " 5\n", + " 66\n", " -1\n", " \n", + " \n", + " no\n", + " tertiary\n", + " 1\n", + " no\n", + " failure\n", + " 172\n", + " married\n", + " no\n", + " 15834\n", + " apr\n", + " cellular\n", + " 3\n", + " no\n", + " 1805\n", + " retired\n", + " 5\n", + " 70\n", + " 186\n", + " \n", "" ], "text/plain": [ - "[('no', 'secondary', 0, 'yes', 'unknown', 149, 'single', 'no', 10218, 'nov', 'cellular', 2, 'no', 2916, 'admin.', 19, 32, -1),\n", - " ('no', 'tertiary', 1, 'no', 'failure', 699, 'married', 'no', 11219, 'aug', 'cellular', 2, 'no', 276, 'housemaid', 12, 35, 79),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 249, 'married', 'no', 19317, 'aug', 'cellular', 1, 'yes', 3553, 'retired', 4, 68, -1),\n", + "[('no', 'primary', 0, 'no', 'unknown', 323, 'single', 'no', 11262, 'aug', 'cellular', 1, 'yes', 368, 'technician', 26, 60, -1),\n", " ('no', 'secondary', 0, 'no', 'unknown', 14, 'married', 'no', 17555, 'aug', 'cellular', 14, 'no', 1776, 'management', 26, 43, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 215, 'married', 'no', 16264, 'nov', 'telephone', 3, 'no', 3289, 'management', 17, 58, -1),\n", - " ('yes', 'tertiary', 0, 'yes', 'unknown', 197, 'divorced', 'no', 13204, 'nov', 'cellular', 2, 'no', 3329, 'management', 20, 34, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 106, 'married', 'no', 22370, 'may', 'unknown', 1, 'no', 2624, 'entrepreneur', 15, 53, -1),\n", - " ('no', 'primary', 0, 'no', 'unknown', 205, 'married', 'no', 71188, 'oct', 'cellular', 1, 'no', 3700, 'retired', 6, 60, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 29, 'married', 'no', 13893, 'jun', 'unknown', 2, 'no', 3608, 'management', 11, 44, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 288, 'married', 'no', 10758, 'jun', 'cellular', 1, 'no', 1005, 'management', 1, 41, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 92, 'single', 'no', 11269, 'may', 'unknown', 1, 'no', 554, 'technician', 29, 43, -1),\n", - " ('no', 'tertiary', 2, 'yes', 'failure', 208, 'single', 'no', 16957, 'jan', 'telephone', 1, 'no', 3025, 'management', 29, 38, 247),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 115, 'single', 'no', 20453, 'may', 'telephone', 1, 'no', 4334, 'entrepreneur', 4, 37, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 523, 'single', 'no', 10378, 'nov', 'cellular', 3, 'no', 468, 'management', 17, 40, -1),\n", - " ('no', 'primary', 0, 'no', 'unknown', 323, 'single', 'no', 11262, 'aug', 'cellular', 1, 'yes', 368, 'technician', 26, 60, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 77, 'married', 'no', 12531, 'aug', 'cellular', 8, 'no', 2955, 'technician', 13, 49, -1),\n", - " ('no', 'tertiary', 3, 'yes', 'failure', 27, 'divorced', 'no', 26306, 'feb', 'cellular', 1, 'no', 2196, 'management', 11, 54, 84),\n", - " ('no', 'primary', 0, 'no', 'unknown', 107, 'married', 'no', 14752, 'may', 'unknown', 2, 'no', 709, 'housemaid', 19, 42, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 198, 'married', 'no', 11494, 'nov', 'cellular', 1, 'no', 213, 'self-employed', 19, 57, -1),\n", - " ('no', 'tertiary', 8, 'no', 'other', 138, 'married', 'no', 13669, 'oct', 'cellular', 1, 'no', 822, 'self-employed', 15, 40, 136),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 118, 'married', 'no', 12877, 'jun', 'unknown', 3, 'no', 4441, 'management', 17, 38, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 125, 'single', 'no', 11555, 'apr', 'cellular', 2, 'no', 561, 'student', 8, 28, -1),\n", - " ('no', 'tertiary', 4, 'yes', 'failure', 8, 'married', 'no', 22546, 'may', 'cellular', 6, 'no', 3332, 'management', 14, 31, 267),\n", - " ('yes', 'unknown', 0, 'no', 'unknown', 166, 'married', 'no', 21244, 'aug', 'cellular', 2, 'no', 1821, 'housemaid', 4, 51, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 214, 'married', 'no', 21664, 'jun', 'unknown', 8, 'no', 3274, 'management', 17, 56, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 111, 'married', 'no', 10786, 'jun', 'unknown', 3, 'no', 717, 'management', 20, 40, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 36, 'married', 'no', 12223, 'nov', 'cellular', 1, 'no', 2881, 'services', 19, 42, -1),\n", - " ('no', 'unknown', 0, 'yes', 'unknown', 117, 'divorced', 'no', 10287, 'may', 'unknown', 1, 'no', 899, 'blue-collar', 29, 51, -1),\n", + " ('no', 'primary', 4, 'yes', 'success', 146, 'married', 'no', 12519, 'apr', 'cellular', 2, 'no', 602, 'blue-collar', 17, 50, 147),\n", " ('no', 'secondary', 0, 'yes', 'unknown', 60, 'married', 'no', 14440, 'nov', 'cellular', 1, 'no', 3910, 'admin.', 21, 49, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 27, 'single', 'no', 13494, 'jun', 'unknown', 25, 'no', 1433, 'blue-collar', 20, 33, -1),\n", - " ('no', 'unknown', 0, 'yes', 'unknown', 415, 'married', 'no', 18347, 'may', 'unknown', 1, 'no', 1887, 'management', 23, 33, -1),\n", - " ('no', 'primary', 1, 'no', 'failure', 154, 'married', 'no', 22856, 'jul', 'cellular', 1, 'no', 2776, 'management', 2, 37, 388),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 297, 'married', 'no', 16178, 'nov', 'cellular', 1, 'no', 3603, 'blue-collar', 21, 44, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 135, 'divorced', 'no', 10787, 'jun', 'unknown', 2, 'no', 3345, 'technician', 4, 31, -1),\n", - " ('no', 'primary', 0, 'no', 'unknown', 106, 'divorced', 'no', 10924, 'may', 'cellular', 2, 'no', 339, 'self-employed', 6, 51, -1),\n", - " ('no', 'tertiary', 1, 'no', 'failure', 172, 'married', 'no', 15834, 'apr', 'cellular', 3, 'no', 1805, 'retired', 5, 70, 186),\n", - " ('no', 'secondary', 3, 'yes', 'failure', 44, 'married', 'no', 22171, 'may', 'cellular', 1, 'no', 3231, 'admin.', 18, 29, 355),\n", - " ('no', 'tertiary', 7, 'no', 'success', 245, 'single', 'no', 15459, 'may', 'cellular', 3, 'no', 1216, 'management', 26, 29, 97),\n", - " ('no', 'primary', 0, 'no', 'unknown', 94, 'single', 'no', 25824, 'jun', 'unknown', 1, 'no', 1031, 'retired', 17, 49, -1),\n", - " ('no', 'tertiary', 1, 'no', 'failure', 344, 'single', 'no', 12569, 'sep', 'cellular', 1, 'yes', 2963, 'management', 9, 31, 295),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 231, 'married', 'no', 14093, 'aug', 'cellular', 5, 'no', 94, 'blue-collar', 11, 57, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 87, 'married', 'no', 21515, 'jun', 'unknown', 1, 'no', 4014, 'admin.', 5, 41, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 157, 'single', 'no', 15311, 'apr', 'cellular', 6, 'no', 714, 'management', 29, 56, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 476, 'married', 'no', 17361, 'jun', 'unknown', 1, 'no', 3993, 'management', 18, 44, -1),\n", - " ('no', 'unknown', 2, 'no', 'other', 102, 'single', 'no', 10788, 'dec', 'cellular', 2, 'no', 1870, 'student', 23, 25, 210),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 356, 'single', 'no', 11386, 'nov', 'cellular', 1, 'no', 2461, 'services', 20, 31, -1),\n", - " ('no', 'tertiary', 2, 'yes', 'failure', 199, 'single', 'no', 23663, 'apr', 'cellular', 2, 'no', 650, 'housemaid', 16, 33, 146),\n", " ('no', 'tertiary', 0, 'no', 'unknown', 420, 'married', 'no', 15520, 'nov', 'cellular', 1, 'no', 1778, 'management', 18, 56, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 397, 'married', 'no', 14220, 'sep', 'cellular', 1, 'yes', 2962, 'retired', 9, 71, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 223, 'married', 'no', 16353, 'oct', 'cellular', 2, 'no', 922, 'blue-collar', 27, 67, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 74, 'single', 'no', 10907, 'may', 'cellular', 3, 'no', 4174, 'management', 4, 42, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 223, 'married', 'no', 16873, 'oct', 'cellular', 1, 'no', 64, 'admin.', 7, 56, -1),\n", - " ('no', 'tertiary', 7, 'yes', 'other', 167, 'single', 'no', 15030, 'may', 'cellular', 1, 'no', 874, 'management', 13, 38, 174),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 40, 'single', 'no', 12437, 'nov', 'telephone', 1, 'no', 548, 'management', 18, 39, -1),\n", - " ('yes', 'tertiary', 0, 'no', 'unknown', 174, 'married', 'no', 27069, 'jun', 'unknown', 3, 'no', 3830, 'technician', 20, 57, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 95, 'single', 'no', 11797, 'aug', 'cellular', 2, 'no', 3177, 'management', 11, 32, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 197, 'married', 'no', 16430, 'jun', 'unknown', 3, 'no', 2299, 'self-employed', 6, 36, -1),\n", - " ('no', 'tertiary', 3, 'yes', 'failure', 609, 'single', 'no', 11971, 'nov', 'unknown', 2, 'no', 40, 'management', 17, 38, 101),\n", - " ('yes', 'secondary', 0, 'no', 'unknown', 77, 'married', 'no', 13229, 'jul', 'telephone', 2, 'no', 3213, 'admin.', 8, 49, -1),\n", " ('no', 'secondary', 0, 'no', 'unknown', 29, 'married', 'no', 12186, 'jun', 'unknown', 3, 'no', 272, 'management', 20, 46, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 164, 'single', 'no', 27733, 'jun', 'unknown', 7, 'no', 1483, 'technician', 3, 43, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 500, 'married', 'no', 11303, 'may', 'cellular', 2, 'no', 875, 'admin.', 26, 37, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 297, 'married', 'no', 14412, 'nov', 'cellular', 1, 'no', 4032, 'retired', 18, 58, -1),\n", - " ('no', 'tertiary', 3, 'yes', 'success', 638, 'single', 'no', 13711, 'may', 'cellular', 1, 'no', 1779, 'technician', 14, 32, 175),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 258, 'single', 'no', 19358, 'nov', 'cellular', 2, 'no', 877, 'management', 19, 30, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 293, 'single', 'no', 14058, 'jul', 'telephone', 20, 'no', 4212, 'blue-collar', 17, 38, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 206, 'married', 'no', 26394, 'aug', 'cellular', 4, 'no', 3011, 'services', 25, 50, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 272, 'married', 'no', 11417, 'may', 'unknown', 2, 'no', 2682, 'services', 28, 29, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 189, 'married', 'no', 22196, 'nov', 'cellular', 1, 'no', 3791, 'services', 21, 56, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 352, 'married', 'no', 16063, 'may', 'unknown', 3, 'no', 4369, 'technician', 30, 57, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 113, 'married', 'no', 11084, 'jun', 'unknown', 1, 'no', 670, 'blue-collar', 11, 40, -1),\n", - " ('no', 'secondary', 1, 'yes', 'failure', 291, 'single', 'no', 13156, 'apr', 'cellular', 4, 'no', 4363, 'blue-collar', 17, 38, 331),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 36, 'married', 'no', 13044, 'aug', 'cellular', 4, 'no', 2039, 'management', 18, 43, -1),\n", - " ('no', 'primary', 0, 'no', 'unknown', 654, 'single', 'no', 26965, 'apr', 'cellular', 2, 'yes', 871, 'housemaid', 21, 31, -1),\n", - " ('no', 'tertiary', 1, 'no', 'failure', 203, 'single', 'no', 12607, 'aug', 'cellular', 5, 'no', 500, 'management', 14, 32, 84),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 132, 'married', 'no', 14363, 'jun', 'unknown', 1, 'no', 3508, 'housemaid', 5, 52, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 220, 'married', 'no', 13658, 'dec', 'telephone', 2, 'no', 2908, 'technician', 9, 35, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 465, 'married', 'no', 13342, 'nov', 'cellular', 1, 'no', 2316, 'entrepreneur', 18, 43, -1),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 5, 'married', 'no', 10655, 'jul', 'telephone', 3, 'no', 3967, 'technician', 31, 48, -1),\n", - " ('no', 'unknown', 2, 'no', 'success', 646, 'married', 'no', 14533, 'dec', 'cellular', 3, 'no', 1603, 'technician', 31, 32, 198),\n", - " ('no', 'primary', 4, 'yes', 'success', 146, 'married', 'no', 12519, 'apr', 'cellular', 2, 'no', 602, 'blue-collar', 17, 50, 147),\n", - " ('no', 'secondary', 0, 'no', 'unknown', 219, 'married', 'no', 26452, 'jul', 'telephone', 2, 'no', 4047, 'retired', 15, 75, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 115, 'single', 'no', 13683, 'jun', 'unknown', 3, 'no', 3878, 'blue-collar', 3, 34, -1),\n", - " ('no', 'tertiary', 0, 'no', 'unknown', 205, 'married', 'no', 42045, 'aug', 'cellular', 2, 'no', 2989, 'entrepreneur', 8, 42, -1),\n", - " ('no', 'primary', 0, 'no', 'unknown', 42, 'married', 'no', 13117, 'jun', 'unknown', 2, 'no', 4440, 'blue-collar', 11, 45, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 71, 'married', 'no', 27359, 'jun', 'unknown', 2, 'no', 1881, 'management', 3, 36, -1),\n", " ('no', 'secondary', 0, 'no', 'unknown', 272, 'single', 'no', 10177, 'may', 'cellular', 4, 'no', 1211, 'admin.', 5, 66, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 163, 'married', 'no', 10888, 'aug', 'cellular', 1, 'no', 4346, 'technician', 5, 44, -1),\n", - " ('yes', 'tertiary', 0, 'yes', 'unknown', 117, 'single', 'no', 16874, 'may', 'cellular', 2, 'no', 3485, 'entrepreneur', 15, 25, -1),\n", - " ('no', 'tertiary', 0, 'yes', 'unknown', 58, 'married', 'no', 16992, 'may', 'unknown', 1, 'no', 2386, 'technician', 29, 33, -1),\n", - " ('yes', 'tertiary', 0, 'yes', 'unknown', 166, 'married', 'no', 19447, 'nov', 'cellular', 1, 'no', 4338, 'management', 21, 50, -1),\n", - " ('no', 'secondary', 0, 'yes', 'unknown', 66, 'married', 'no', 10910, 'may', 'cellular', 2, 'no', 4394, 'blue-collar', 15, 43, -1)]" + " ('no', 'tertiary', 1, 'no', 'failure', 172, 'married', 'no', 15834, 'apr', 'cellular', 3, 'no', 1805, 'retired', 5, 70, 186)]" ] }, "execution_count": 5, @@ -2321,7 +557,7 @@ } ], "source": [ - "%sql select * from $sql_table_path where balance > 10000" + "%sql select * from $sql_table_path where balance > 10000 limit 8" ] }, { @@ -2415,58 +651,58 @@ " \n", " \n", " \n", - " 871\n", - " 31\n", - " 26965\n", - " 2\n", - " cellular\n", - " 21\n", - " no\n", - " 654\n", - " primary\n", + " 2624\n", + " 53\n", + " 22370\n", + " 1\n", + " unknown\n", + " 15\n", " no\n", - " housemaid\n", + " 106\n", + " tertiary\n", + " yes\n", + " entrepreneur\n", " no\n", - " single\n", - " apr\n", + " married\n", + " may\n", " -1\n", " unknown\n", " 0\n", - " yes\n", + " no\n", " \n", " \n", - " 2989\n", - " 42\n", - " 42045\n", - " 2\n", - " cellular\n", - " 8\n", - " no\n", - " 205\n", - " tertiary\n", + " 4014\n", + " 41\n", + " 21515\n", + " 1\n", + " unknown\n", + " 5\n", " no\n", - " entrepreneur\n", + " 87\n", + " secondary\n", + " yes\n", + " admin.\n", " no\n", " married\n", - " aug\n", + " jun\n", " -1\n", " unknown\n", " 0\n", " no\n", " \n", " \n", - " 3011\n", - " 50\n", - " 26394\n", - " 4\n", + " 1821\n", + " 51\n", + " 21244\n", + " 2\n", " cellular\n", - " 25\n", - " no\n", - " 206\n", - " secondary\n", + " 4\n", " no\n", - " services\n", + " 166\n", + " unknown\n", " no\n", + " housemaid\n", + " yes\n", " married\n", " aug\n", " -1\n", @@ -2475,103 +711,103 @@ " no\n", " \n", " \n", - " 4047\n", - " 75\n", - " 26452\n", + " 871\n", + " 31\n", + " 26965\n", " 2\n", - " telephone\n", - " 15\n", + " cellular\n", + " 21\n", " no\n", - " 219\n", - " secondary\n", + " 654\n", + " primary\n", " no\n", - " retired\n", + " housemaid\n", " no\n", - " married\n", - " jul\n", + " single\n", + " apr\n", " -1\n", " unknown\n", " 0\n", - " no\n", + " yes\n", " \n", " \n", - " 2624\n", - " 53\n", - " 22370\n", - " 1\n", + " 1483\n", + " 43\n", + " 27733\n", + " 7\n", " unknown\n", - " 15\n", + " 3\n", " no\n", - " 106\n", + " 164\n", " tertiary\n", " yes\n", - " entrepreneur\n", + " technician\n", " no\n", - " married\n", - " may\n", + " single\n", + " jun\n", " -1\n", " unknown\n", " 0\n", " no\n", " \n", " \n", - " 3700\n", - " 60\n", - " 71188\n", - " 1\n", - " cellular\n", - " 6\n", - " no\n", - " 205\n", - " primary\n", + " 3830\n", + " 57\n", + " 27069\n", + " 3\n", + " unknown\n", + " 20\n", " no\n", - " retired\n", + " 174\n", + " tertiary\n", " no\n", + " technician\n", + " yes\n", " married\n", - " oct\n", + " jun\n", " -1\n", " unknown\n", " 0\n", " no\n", " \n", " \n", - " 1881\n", - " 36\n", - " 27359\n", + " 2989\n", + " 42\n", + " 42045\n", " 2\n", - " unknown\n", - " 3\n", + " cellular\n", + " 8\n", " no\n", - " 71\n", + " 205\n", " tertiary\n", - " yes\n", - " management\n", + " no\n", + " entrepreneur\n", " no\n", " married\n", - " jun\n", + " aug\n", " -1\n", " unknown\n", " 0\n", " no\n", " \n", " \n", - " 1483\n", - " 43\n", - " 27733\n", - " 7\n", - " unknown\n", - " 3\n", + " 650\n", + " 33\n", + " 23663\n", + " 2\n", + " cellular\n", + " 16\n", " no\n", - " 164\n", + " 199\n", " tertiary\n", " yes\n", - " technician\n", + " housemaid\n", " no\n", " single\n", - " jun\n", - " -1\n", - " unknown\n", - " 0\n", + " apr\n", + " 146\n", + " failure\n", + " 2\n", " no\n", " \n", " \n", @@ -2579,27 +815,27 @@ "" ], "text/plain": [ - " age balance campaign contact day default duration education \\\n", - "idx \n", - "871 31 26965 2 cellular 21 no 654 primary \n", - "2989 42 42045 2 cellular 8 no 205 tertiary \n", - "3011 50 26394 4 cellular 25 no 206 secondary \n", - "4047 75 26452 2 telephone 15 no 219 secondary \n", - "2624 53 22370 1 unknown 15 no 106 tertiary \n", - "3700 60 71188 1 cellular 6 no 205 primary \n", - "1881 36 27359 2 unknown 3 no 71 tertiary \n", - "1483 43 27733 7 unknown 3 no 164 tertiary \n", + " age balance campaign contact day default duration education \\\n", + "idx \n", + "2624 53 22370 1 unknown 15 no 106 tertiary \n", + "4014 41 21515 1 unknown 5 no 87 secondary \n", + "1821 51 21244 2 cellular 4 no 166 unknown \n", + "871 31 26965 2 cellular 21 no 654 primary \n", + "1483 43 27733 7 unknown 3 no 164 tertiary \n", + "3830 57 27069 3 unknown 20 no 174 tertiary \n", + "2989 42 42045 2 cellular 8 no 205 tertiary \n", + "650 33 23663 2 cellular 16 no 199 tertiary \n", "\n", " housing job loan marital month pdays poutcome previous y \n", "idx \n", + "2624 yes entrepreneur no married may -1 unknown 0 no \n", + "4014 yes admin. no married jun -1 unknown 0 no \n", + "1821 no housemaid yes married aug -1 unknown 0 no \n", "871 no housemaid no single apr -1 unknown 0 yes \n", + "1483 yes technician no single jun -1 unknown 0 no \n", + "3830 no technician yes married jun -1 unknown 0 no \n", "2989 no entrepreneur no married aug -1 unknown 0 no \n", - "3011 no services no married aug -1 unknown 0 no \n", - "4047 no retired no married jul -1 unknown 0 no \n", - "2624 yes entrepreneur no married may -1 unknown 0 no \n", - "3700 no retired no married oct -1 unknown 0 no \n", - "1881 yes management no married jun -1 unknown 0 no \n", - "1483 yes technician no single jun -1 unknown 0 no " + "650 yes housemaid no single apr 146 failure 2 no " ] }, "execution_count": 6, @@ -2634,21 +870,21 @@ "name": "stdout", "output_type": "stream", "text": [ - " age balance campaign contact day default duration education \\\n", - "idx \n", - "4047 75 26452 2 telephone 15 no 219 secondary \n", - "3011 50 26394 4 cellular 25 no 206 secondary \n", - "2989 42 42045 2 cellular 8 no 205 tertiary \n", - "1881 36 27359 2 unknown 3 no 71 tertiary \n", - "871 31 26965 2 cellular 21 no 654 primary \n", + " age balance campaign contact day default duration education \\\n", + "idx \n", + "2624 53 22370 1 unknown 15 no 106 tertiary \n", + "4014 41 21515 1 unknown 5 no 87 secondary \n", + "1821 51 21244 2 cellular 4 no 166 unknown \n", + "871 31 26965 2 cellular 21 no 654 primary \n", + "1483 43 27733 7 unknown 3 no 164 tertiary \n", "\n", " housing job loan marital month pdays poutcome previous y \n", "idx \n", - "4047 no retired no married jul -1 unknown 0 no \n", - "3011 no services no married aug -1 unknown 0 no \n", - "2989 no entrepreneur no married aug -1 unknown 0 no \n", - "1881 yes management no married jun -1 unknown 0 no \n", - "871 no housemaid no single apr -1 unknown 0 yes \n" + "2624 yes entrepreneur no married may -1 unknown 0 no \n", + "4014 yes admin. no married jun -1 unknown 0 no \n", + "1821 no housemaid yes married aug -1 unknown 0 no \n", + "871 no housemaid no single apr -1 unknown 0 yes \n", + "1483 yes technician no single jun -1 unknown 0 no \n" ] } ], @@ -2777,7 +1013,7 @@ "output_type": "stream", "text": [ "\n", - "DatetimeIndex: 60 entries, 2019-09-15 10:05:00-05:00 to 2019-09-15 15:00:00-05:00\n", + "DatetimeIndex: 60 entries, 2019-12-04 14:05:00-05:00 to 2019-12-04 19:00:00-05:00\n", "Freq: 300S\n", "Data columns (total 3 columns):\n", "cpu 60 non-null float64\n", @@ -2786,11 +1022,11 @@ "dtypes: float64(3)\n", "memory usage: 1.9 KB\n", "None cpu mem disk\n", - "2019-09-15 10:05:00-05:00 0.057680 0.864139 -0.844771\n", - "2019-09-15 10:10:00-05:00 0.174364 -0.566146 -0.780971\n", - "2019-09-15 10:15:00-05:00 -0.380715 1.346382 -1.492667\n", - "2019-09-15 10:20:00-05:00 -1.351383 3.514912 -1.476890\n", - "2019-09-15 10:25:00-05:00 -1.418901 3.645923 -1.368978\n" + "2019-12-04 14:05:00-05:00 -0.902722 -1.481140 0.388379\n", + "2019-12-04 14:10:00-05:00 -1.442563 -1.527384 -0.063397\n", + "2019-12-04 14:15:00-05:00 -1.635814 -3.987430 1.085080\n", + "2019-12-04 14:20:00-05:00 -0.320096 -4.944848 1.271489\n", + "2019-12-04 14:25:00-05:00 0.475710 -6.538720 0.503685\n" ] } ], @@ -2858,12 +1094,12 @@ " \n", " \n", " \n", - " avg(cpu)\n", - " max(cpu)\n", - " min(cpu)\n", " avg(mem)\n", " max(mem)\n", " min(mem)\n", + " avg(cpu)\n", + " max(cpu)\n", + " min(cpu)\n", " avg(disk)\n", " max(disk)\n", " min(disk)\n", @@ -2884,30 +1120,30 @@ " \n", " \n", " \n", - " 2019-09-15 14:33:38\n", + " 2019-12-04 18:09:37\n", " 11\n", - " -0.415523\n", - " 0.425815\n", - " -1.418901\n", - " 2.148689\n", - " 4.086927\n", - " -0.566146\n", - " -1.109473\n", - " -0.692562\n", - " -1.492667\n", + " -1.48114\n", + " -1.48114\n", + " -1.48114\n", + " -0.902722\n", + " -0.902722\n", + " -0.902722\n", + " 0.388379\n", + " 0.388379\n", + " 0.388379\n", " \n", " \n", "\n", "" ], "text/plain": [ - " avg(cpu) max(cpu) min(cpu) avg(mem) max(mem) \\\n", + " avg(mem) max(mem) min(mem) avg(cpu) max(cpu) \\\n", "time node \n", - "2019-09-15 14:33:38 11 -0.415523 0.425815 -1.418901 2.148689 4.086927 \n", + "2019-12-04 18:09:37 11 -1.48114 -1.48114 -1.48114 -0.902722 -0.902722 \n", "\n", - " min(mem) avg(disk) max(disk) min(disk) \n", + " min(cpu) avg(disk) max(disk) min(disk) \n", "time node \n", - "2019-09-15 14:33:38 11 -0.566146 -1.109473 -0.692562 -1.492667 " + "2019-12-04 18:09:37 11 -0.902722 0.388379 0.388379 0.388379 " ] }, "execution_count": 13, @@ -3138,17 +1374,17 @@ "text": [ " cpu disk index-0 mem raw_data \\\n", "seq_number \n", - "1 0.617594 -0.904056 2019-09-15T07:05:00Z -0.100935 \n", - "2 -1.161206 0.305356 2019-09-15T07:10:00Z -0.010497 \n", - "3 -0.177504 -0.941991 2019-09-15T07:15:00Z 1.214677 \n", - "4 1.234641 0.279839 2019-09-15T07:20:00Z -0.521239 \n", + "1 -0.686514 -0.578615 2019-12-04T12:05:00Z -0.306454 \n", + "2 -1.165091 0.103203 2019-12-04T12:10:00Z -0.662130 \n", + "3 -0.916776 0.541890 2019-12-04T12:15:00Z 0.121151 \n", + "4 -0.626842 -1.128642 2019-12-04T12:20:00Z -1.509152 \n", "\n", " stream_time \n", "seq_number \n", - "1 2019-09-15 15:30:07.145829941 \n", - "2 2019-09-15 15:30:07.145829941 \n", - "3 2019-09-15 15:30:07.145829941 \n", - "4 2019-09-15 15:30:07.145829941 \n" + "1 2019-12-04 19:09:55.255494682 \n", + "2 2019-12-04 19:09:55.255494682 \n", + "3 2019-12-04 19:09:55.255494682 \n", + "4 2019-12-04 19:09:55.255494682 \n" ] } ], From 0ce66bc960f5801b8eb9e0e6ca7e605c448fb026 Mon Sep 17 00:00:00 2001 From: Adi Date: Wed, 4 Dec 2019 23:59:36 +0200 Subject: [PATCH 14/15] Fix comments in spark jdbc --- getting-started/spark-jdbc.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/getting-started/spark-jdbc.ipynb b/getting-started/spark-jdbc.ipynb index ec934ac9..4697320e 100644 --- a/getting-started/spark-jdbc.ipynb +++ b/getting-started/spark-jdbc.ipynb @@ -201,7 +201,7 @@ "# Initiate a new Spark Session; you can change the application name.\n", "# Set the same `extraClassPath` configuration properties as in Method #1 as part of the initiation command.\n", "# Replace \"/spark/3rd_party/mysql-connector-java-8.0.13.jar\" with the relevant path.\n", - "local file-system path to a pre-deployed Spark JDBC driver package\n", + "# local file-system path to a pre-deployed Spark JDBC driver package\n", "spark = SparkSession.builder. \\\n", " appName(\"Spark JDBC tutorial\"). \\\n", " config(\"spark.driver.extraClassPath\", \"/spark/3rd_party/mysql-connector-java-8.0.13.jar\"). \\\n", @@ -624,5 +624,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 72b5b4cc97c63c31faf67417ce4c802851dd7511 Mon Sep 17 00:00:00 2001 From: Adi Date: Thu, 5 Dec 2019 00:32:12 +0200 Subject: [PATCH 15/15] Delete old image classification under GPU and fix read.me --- demos/gpu/README.ipynb | 7 +- .../01-load-data-cats-n-dogs.ipynb | 284 --------- .../02-train-with-horovod-cats-n-dogs.ipynb | 216 ------- .../cpu/image-classification/03-infer.ipynb | 548 ------------------ .../horovod_train_cats_n_dogs.py | 177 ------ .../01-load-data-cats-n-dogs.ipynb | 520 ----------------- .../02-train-with-horovod-cats-n-dogs.ipynb | 212 ------- .../image-classification/03-infer.ipynb | 548 ------------------ .../horovod_train_cats_n_dogs.py | 178 ------ 9 files changed, 1 insertion(+), 2689 deletions(-) delete mode 100644 demos/gpu/horovod/cpu/image-classification/01-load-data-cats-n-dogs.ipynb delete mode 100644 demos/gpu/horovod/cpu/image-classification/02-train-with-horovod-cats-n-dogs.ipynb delete mode 100644 demos/gpu/horovod/cpu/image-classification/03-infer.ipynb delete mode 100644 demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py delete mode 100644 demos/gpu/horovod/image-classification/01-load-data-cats-n-dogs.ipynb delete mode 100644 demos/gpu/horovod/image-classification/02-train-with-horovod-cats-n-dogs.ipynb delete mode 100644 demos/gpu/horovod/image-classification/03-infer.ipynb delete mode 100644 demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py diff --git a/demos/gpu/README.ipynb b/demos/gpu/README.ipynb index 1ea9aa58..36596ff6 100644 --- a/demos/gpu/README.ipynb +++ b/demos/gpu/README.ipynb @@ -25,16 +25,11 @@ "- A **horovod** directory with applications that use Uber's [Horovod](https://eng.uber.com/horovod/) distributed deep-learning framework, which can be used to convert a single-GPU TensorFlow, Keras, or PyTorch model-training program to a distributed program that trains the model simultaneously over multiple GPUs.\n", " The objective is to speed up your model training with minimal changes to your existing single-GPU code and without complicating the execution.\n", " Horovod code can also run over CPUs with only minor modifications.\n", - " For more information and examples, see the [Horovod GitHub repository](https://github.com/horovod/horovod).\n", - " \n", " The Horovod tutorials include the following:\n", - "\n", - " - An image-recognition demo application for execution over GPUs (**image-classification**).\n", - " - A slightly modified version of the GPU image-classification demo application for execution over CPUs (**cpu/image-classification**).\n", " - Benchmark tests (**benchmark-tf.ipynb**, which executes **tf_cnn_benchmarks.py**).\n", + " - Note that under the demo folder you will find an image classificaiton demo that is also running with Horovod and can be set to run with GPU
\n", "\n", "- A **rapids** directory with applications that use NVIDIA's [RAPIDS](https://rapids.ai/) open-source libraries suite for executing end-to-end data science and analytics pipelines entirely on GPUs.\n", - "\n", " The RAPIDS tutorials include the following:\n", "\n", " - Demo applications that use the [cuDF](https://rapidsai.github.io/projects/cudf/en/latest/index.html) RAPIDS GPU DataFrame library to perform batching and aggregation of data that's read from a Kafaka stream, and then write the results to a Parquet file.
\n", diff --git a/demos/gpu/horovod/cpu/image-classification/01-load-data-cats-n-dogs.ipynb b/demos/gpu/horovod/cpu/image-classification/01-load-data-cats-n-dogs.ipynb deleted file mode 100644 index d08237a5..00000000 --- a/demos/gpu/horovod/cpu/image-classification/01-load-data-cats-n-dogs.ipynb +++ /dev/null @@ -1,284 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Load Cats and Dogs Images" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "fe76d1d1ded592430e7548feacfa38dc42f085d9" - }, - "source": [ - "## Install Packages" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install --upgrade keras==2.2.4\n", - "!pip install --upgrade tensorflow==1.13.1 \n", - "!pip install --upgrade 'numpy<1.15.0'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> **Note:** After running the pip command you should restart the Jupyter kernel.
\n", - "> To restart the kernel, click on the kernel-restart button in the notebook menu toolbar (the refresh icon next to the **Code** button)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Library" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", - "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "# This Python 3 environment comes with many helpful analytics libraries installed.\n", - "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python.\n", - "# For example, here are several helpful packages to load:\n", - "\n", - "import numpy as np # linear algebra\n", - "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", - "from keras.preprocessing.image import load_img\n", - "\n", - "# Input data files are available in the \"../input/\" directory.\n", - "# For example, running the following (by selecting 'Run' or pressing Shift+Enter) will list the files in the input directory:\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import random\n", - "\n", - "import os\n", - "import zipfile\n", - "\n", - "# Define locations\n", - "BASE_PATH = os.getcwd()\n", - "DATA_PATH = BASE_PATH + \"/cats_and_dogs_filtered/\"\n", - "!mkdir model\n", - "MODEL_PATH = BASE_PATH + '/model/'\n", - "\n", - "# Define image parameters\n", - "FAST_RUN = False\n", - "IMAGE_WIDTH=128\n", - "IMAGE_HEIGHT=128\n", - "IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT)\n", - "IMAGE_CHANNELS=3 # RGB color\n", - "\n", - "# Any results you write to the current directory are saved as output." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "DATA_PATH + 'catsndogs.zip'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Download the Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!mkdir cats_and_dogs_filtered\n", - "# Download a sample stocks file from Iguazio demo bucket in AWS S3\n", - "!curl -L \"iguazio-sample-data.s3.amazonaws.com/catsndogs.zip\" > ./cats_and_dogs_filtered/catsndogs.zip" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "zip_ref = zipfile.ZipFile(DATA_PATH + 'catsndogs.zip', 'r')\n", - "zip_ref.extractall('cats_and_dogs_filtered')\n", - "zip_ref.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "7335a579cc0268fba5d34d6f7558f33c187eedb3" - }, - "source": [ - "## Prepare the Traning Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import json" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build_prediction_map(categories_map):\n", - " return {v:k for k ,v in categories_map.items()}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", - "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" - }, - "outputs": [], - "source": [ - "# Create a file-names list (JPG image-files only)\n", - "filenames = [file for file in os.listdir(DATA_PATH+\"/cats_n_dogs\") if file.endswith('jpg')]\n", - "categories = []\n", - "\n", - "# Categories and prediction-classes map\n", - "categories_map = {\n", - " 'dog': 1,\n", - " 'cat': 0,\n", - "}\n", - "prediction_map = build_prediction_map(categories_map)\n", - "with open(MODEL_PATH + 'prediction_classes_map.json', 'w') as f:\n", - " json.dump(prediction_map, f)\n", - "\n", - "# Create a pandas DataFrame for the full sample\n", - "for filename in filenames:\n", - " category = filename.split('.')[0]\n", - " categories.append([categories_map[category]])\n", - "\n", - "df = pd.DataFrame({\n", - " 'filename': filenames,\n", - " 'category': categories\n", - "})\n", - "df['category'] = df['category'].astype('str');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_uuid": "915bb9ba7063ab4d5c07c542419ae119003a5f98" - }, - "outputs": [], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_uuid": "72bf69e817f67f5a2eaff8561217e22077248553" - }, - "outputs": [], - "source": [ - "df.tail()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "a999484fc35b73373fafe2253ae9db7ff46fdb90" - }, - "source": [ - "## Check the Total Image Count\n", - "\n", - "Check the total image count for each category.
\n", - "The data set has 12,000 cat images and 12,000 dog images." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_uuid": "fa26f0bc7a6d835a24989790b20f3c6f32946f45" - }, - "outputs": [], - "source": [ - "df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "400a293df3c8499059d9175f3915187074efd971" - }, - "source": [ - "## Display the Sample Image" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "_uuid": "602b40f7353871cb161c60b5237f0da0096b2f47" - }, - "outputs": [], - "source": [ - "sample = random.choice(filenames)\n", - "image = load_img(DATA_PATH+\"/cats_n_dogs/\"+sample)\n", - "plt.imshow(image)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demos/gpu/horovod/cpu/image-classification/02-train-with-horovod-cats-n-dogs.ipynb b/demos/gpu/horovod/cpu/image-classification/02-train-with-horovod-cats-n-dogs.ipynb deleted file mode 100644 index 281e82a7..00000000 --- a/demos/gpu/horovod/cpu/image-classification/02-train-with-horovod-cats-n-dogs.ipynb +++ /dev/null @@ -1,216 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install git+https://github.com/v3io/v3io-gputils" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "!rm -f /User/demos/gpu/horovod/cpu/image-classification/cats_dogs.hd5\n", - "!mkdir /User/demos/gpu/horovod/cpu/image-classification/checkpoints" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "HOROVOD_JOB_NAME = \"horovod-cats-n-dogs\"" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'apiVersion': 'kubeflow.org/v1alpha1',\n", - " 'kind': 'MPIJob',\n", - " 'metadata': {'creationTimestamp': '2019-07-02T07:41:59Z',\n", - " 'generation': 1,\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'namespace': 'default-tenant',\n", - " 'resourceVersion': '1391131',\n", - " 'selfLink': '/apis/kubeflow.org/v1alpha1/namespaces/default-tenant/mpijobs/horovod-cats-n-dogs',\n", - " 'uid': 'df9b08a1-9c9c-11e9-98d3-d8c4972b0204'},\n", - " 'spec': {'replicas': 8,\n", - " 'template': {'spec': {'containers': [{'command': ['mpirun',\n", - " 'python',\n", - " '/User/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py',\n", - " '/User/demos/gpu/horovod/cpu/image-classification/cats_and_dogs_filtered',\n", - " '/User/demos/gpu/horovod/cpu/image-classification'],\n", - " 'image': 'iguaziodocker/horovod-cpu:0.0.1',\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'resources': {'limits': {'nvidia.com/gpu': 0}},\n", - " 'securityContext': {'capabilities': {'add': ['IPC_LOCK']}},\n", - " 'volumeMounts': [{'mountPath': '/User',\n", - " 'name': 'v3io'}]}],\n", - " 'volumes': [{'flexVolume': {'driver': 'v3io/fuse',\n", - " 'options': {'accessKey': '1e52ff93-a541-4880-abf1-d9b948af77de',\n", - " 'container': 'users',\n", - " 'subPath': '/iguazio'}},\n", - " 'name': 'v3io'}]}}}}\n" - ] - } - ], - "source": [ - "from v3io_gputils.mpijob import MpiJob\n", - "\n", - "job = MpiJob(HOROVOD_JOB_NAME, 'iguaziodocker/horovod-cpu:0.0.1', ['/User/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py',\n", - " '/User/demos/gpu/horovod/cpu/image-classification/cats_and_dogs_filtered',\n", - " '/User/demos/gpu/horovod/cpu/image-classification'])\n", - "\n", - "job.replicas(2).gpus(0)\n", - "job.submit()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "horovod-cats-n-dogs-launcher-8kg8c 1/1 Running 0 75s\n", - "horovod-cats-n-dogs-worker-0 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-1 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-2 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-3 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-4 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-5 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-6 1/1 Running 0 83s\n", - "horovod-cats-n-dogs-worker-7 1/1 Running 0 83s\n" - ] - } - ], - "source": [ - "\n", - "!kubectl get pods | grep $HOROVOD_JOB_NAME" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "apiVersion: kubeflow.org/v1alpha1\n", - "kind: MPIJob\n", - "metadata:\n", - " creationTimestamp: 2019-07-02T06:49:07Z\n", - " generation: 1\n", - " name: horovod-cats-n-dogs\n", - " namespace: default-tenant\n", - " resourceVersion: \"1386982\"\n", - " selfLink: /apis/kubeflow.org/v1alpha1/namespaces/default-tenant/mpijobs/horovod-cats-n-dogs\n", - " uid: 7d0cd80c-9c95-11e9-98d3-d8c4972b0204\n", - "spec:\n", - " backoffLimit: 6\n", - " replicas: 8\n", - " template:\n", - " metadata:\n", - " creationTimestamp: null\n", - " spec:\n", - " containers:\n", - " - command:\n", - " - mpirun\n", - " - python\n", - " - /User/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py\n", - " - /User/demos/gpu/horovod/cpu/image-classification/cats_and_dogs_filtered\n", - " - /User/demos/gpu/horovod/cpu/image-classification\n", - " image: iguaziodocker/cpu/horovod-cpu:0.1.1\n", - " name: horovod-cats-n-dogs\n", - " resources:\n", - " limits:\n", - " nvidia.com/gpu: \"1\"\n", - " securityContext:\n", - " capabilities:\n", - " add:\n", - " - IPC_LOCK\n", - " volumeMounts:\n", - " - mountPath: /User\n", - " name: v3io\n", - " volumes:\n", - " - flexVolume:\n", - " driver: v3io/fuse\n", - " options:\n", - " accessKey: 1e52ff93-a541-4880-abf1-d9b948af77de\n", - " container: users\n", - " subPath: /iguazio\n", - " name: v3io\n", - "status:\n", - " completionTime: 2019-07-02T06:56:20Z\n", - " launcherStatus: Succeeded\n", - " startTime: 2019-07-02T06:49:14Z\n" - ] - } - ], - "source": [ - "!kubectl get mpijob $HOROVOD_JOB_NAME -o yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'apiVersion': 'v1',\n", - " 'details': {'group': 'kubeflow.org',\n", - " 'kind': 'mpijobs',\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'uid': '1b58dd58-9c97-11e9-98d3-d8c4972b0204'},\n", - " 'kind': 'Status',\n", - " 'metadata': {},\n", - " 'status': 'Success'}\n" - ] - } - ], - "source": [ - "job.delete()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demos/gpu/horovod/cpu/image-classification/03-infer.ipynb b/demos/gpu/horovod/cpu/image-classification/03-infer.ipynb deleted file mode 100644 index 995a17ba..00000000 --- a/demos/gpu/horovod/cpu/image-classification/03-infer.ipynb +++ /dev/null @@ -1,548 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Create and Test a Model-Serving Nuclio Function\n", - "\n", - "This notebook demonstrates how to write an inference server, test it, and turn it into an auto-scaling Nuclio serverless function.\n", - "\n", - "- [Initialize Nuclio Emulation, Environment Variables, and Configuration](#image-class-infer-init-func)\n", - "- [Create and Load the Model and Set Up the Function Handler](#image-class-infer-create-n-load-model-n-set-up-func-handler)\n", - "- [Trigger the Function](#image-class-infer-func-trigger)\n", - "- [Prepare to Deploy the Function](#image-class-infer-func-deploy-prepare)\n", - "- [Deploy the Function](#image-class-infer-func-deploy)\n", - "- [Test the Function](#image-class-infer-func-test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Initialize Nuclio Emulation, Environment Variables, and Configuration\n", - "\n", - "> **Note:** Use `# nuclio: ignore` for sections that don't need to be copied to the function." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: ignore\n", - "import nuclio\n", - "import random\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting 'IMAGE_WIDTH' environment variable\n", - "%nuclio: setting 'IMAGE_HEIGHT' environment variable\n", - "%nuclio: setting 'version' environment variable\n" - ] - } - ], - "source": [ - "%%nuclio env\n", - "IMAGE_WIDTH = 128\n", - "IMAGE_HEIGHT = 128\n", - "version = 1.0" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting 'MODEL_PATH' environment variable\n", - "%nuclio: setting 'PREDICTION_MAP_PATH' environment variable\n" - ] - } - ], - "source": [ - "%nuclio env -c MODEL_PATH=/model/\n", - "%nuclio env -l MODEL_PATH=/User/demos/gpu/horovod/cpu/image-classification/cats_dogs.hd5\n", - "%nuclio env -l PREDICTION_MAP_PATH=./model/prediction_classes_map.json" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "%%nuclio cmd -c\n", - "pip install keras==2.2.4\n", - "pip install tensorflow==1.13.1 \n", - "pip install 'numpy<1.15.0'\n", - "pip install requests\n", - "pip install pillow" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting spec.build.baseImage to 'python:3.6-jessie'\n" - ] - } - ], - "source": [ - "%%nuclio config \n", - "spec.build.baseImage = \"python:3.6-jessie\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mounting volume path /model as ~/demos/gpu/horovod/cpu/image-classification/cats_dogs/model\n" - ] - } - ], - "source": [ - "%nuclio mount /model ~/demos/gpu/horovod/cpu/image-classification/cats_dogs/model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Create and Load the Model and Set Up the Function Handler" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "model_file = environ['MODEL_PATH']\n", - "prediction_map_file = environ['PREDICTION_MAP_PATH']\n", - "\n", - "# Set image parameters\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "# load model\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Trigger the Function" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Logging before flag parsing goes to stderr.\n", - "W0702 07:05:39.756876 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:529: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", - "\n", - "W0702 07:05:39.784578 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4420: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.\n", - "\n", - "W0702 07:05:39.814317 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:250: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n", - "\n", - "W0702 07:05:39.814856 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:178: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.\n", - "\n", - "W0702 07:05:39.815345 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:185: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.\n", - "\n", - "W0702 07:05:39.920376 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2029: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.\n", - "\n", - "W0702 07:05:39.987011 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4255: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n", - "\n", - "W0702 07:05:39.994644 140252009395584 deprecation.py:506] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3721: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n", - "W0702 07:05:40.865994 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/optimizers.py:793: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n", - "\n", - "W0702 07:05:40.875694 140252009395584 deprecation.py:323] From /User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py:180: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.where in 2.0, which has the same broadcast rule as np.where\n" - ] - } - ], - "source": [ - "# nuclio: ignore\n", - "init_context(context)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Python> 2019-07-02 07:06:07,287 [info] Downloaded file: {'url': 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/dog.391.jpg'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:06:07.287323 140252009395584 logger.py:100] Downloaded file\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\"class\": \"dog\", \"dog-probability\": 1.0}\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD7CAYAAABqkiE2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eaxk2Xkf9jt3qVt71dv79d49PcOZ4XAojkiG2mVRlgxJiSJAsmQbhhwrIZxYAoPIiGQHAQIrQRwgiUMgQJKJ7UABiFASI4m0FmuhSTCkREokJZLDGTZnpqdnen177cvdTv443/edc2+97iZnONQzuj5gpl7funW2e8/59t+ntNZY0pKW9PCS91c9gCUtaUl/tbQ8BJa0pIeclofAkpb0kNPyEFjSkh5yWh4CS1rSQ07LQ2BJS3rI6U07BJRSf0MpdVUp9ZJS6pffrH6WtKQlvTFSb0acgFLKB/A1AH8dwE0Afw7gb2mtn/+md7akJS3pDVHwJrX7bgAvaa2vAYBS6kMAfhzAsYdAs9nQq6srX3fjSikAgOd58DxF14xQk2UZ0jSV7wEgzzXd86CWjzsQlfP/hYEAAALfhy79tni2Fr9TypM58JjyXIMP5DRNAABx4gMA9vb34Smv0FaW5dLGceOVfx17yNtrWueFn7lN8t8K5p5ca1lvd0153PaauScMA1SrtYXxydx1Jl2nSUzzMs8O9Oxm8wR5aQpKeYgqpt1ms236znLwErXbTXOfl0ub8/lc+gcAD0rGzeOpVmvY3d0x/c5mhT4Lyyjr4q516fkv3n5PKj8jz/elDV7TLM+ddsstqoX+j6d8X2u9Ub76Zh0CZwDccP59E8C/596glHofgPcBwMpKF7/4i/+w8FLbTVL8BIAwDAEAlUoFtVqNrkUAgOFwiL29PQBAvV4HAMSxecH4ULgXeUgXrt1vHD49rE6ng5weEn+fZJncl9Hf/F2lUkGlUilcm8/ncnjt7u4CAG7sdAAAzz77LKqRmQv3Mx5PZD5G8DKk8+ILUqH7gRxQ2v4NQOsMSTqluZi2gtBu6iCga8FIxlitVgHYTRIEgawvbzR+PltbW3jyyScL49GqipDGHSQDc7/KcbDzGgDgqNcz46H5PvfyDUwT/q35XRQ0cfHsEwCA7/muv0HrMUZUM/P6gfd+l5l7zcytP9jHq6++SiMwbVSyCpIkKYz3ySefxAc+8AEAwNWrVwvjzpznyc8sCOz24efCa+dK2PyeuNfcv6tZUuir2myZPpWP0dSsc388o2sKGXweCH36WDgpj6N88Opxl9+sQ+C4w6/IG7V+FsCzAHD+/FmtlDr2EDju3/zye57nXCdulafIaFE1cZo8N5vL98MHDFrx2BY2Lj9wpRY5iOmjeAg86EA77kDiNrjvwzsvAwCaYYLAGzuzBIKqRhh6Ml7+vdbFdfMVS0NqgesDCu1Kg/62B4RGJn8DQDUy3DaqJPbgoRex1WrJ5nfHAZgD6bVXbxbGc+7iFQwGZvPXPXr5Q4Vq3fSxUTGb34/MYbNyOEad16M3oZHG+I7vfCcAYDw5Mm01mvinv/JfAQDu7FwHAPz+H/w6ACNZHR4MAQCV0LT/yJlNvPTSS6Yv2qSXL11Cu2U2YJrwO+SubfG5TycTmdfxUlnxu3sdAlFk3stqvVa4P0kSWUtedw0rMebyzBS8B8ob9t0p05t1CNwEcM7591kAt+/3g3sdAvzJDwqwC+L7vr1OG11niYiZ9arhtr76ekQlAMRFPd9HQBxPvspz+QyIc/DBEIUhtMMpzLjdfxSv+QrwUOQYeZogI5E4mZtT/5XnPwUA6FRG0j9IHA+bIbKMRMWU5ufbdeI1GvI+qzjrq+yLPZ0OC/ODyh3OZeY0n9n5suRVqZj16XZXZVMPh8PChCuVKqKoVlirnTu7mI6NZDHpGYmnUa9ipWUOozgza3Dw2h0AwPrGJkJSKd5Kon+tonB4cAsAcOHcWwAAv/Ir/xS/87sfAQDs7ZvvXvzqiwCAXq+Hr77wiulzbN6TP/69D+F3Pmruv3HDCK2/+eHfkAMtCgNag3sfArWoAiZZv2P+XZYSyn+ntF7DsZFcMk0HvuchSc1vfVo/nQOaGQ63oXLoN2Djf7O8A38O4FGl1CWlVAXAzwD46JvU15KWtKQ3QG+KJKC1TpVSPw/gDwD4AP6V1vor9/vNcWK0S3meCzdhHQ6A6NajnhELQz8QETjwDEdTFWMv8H1/UWTVWv6OqqxjK8eoaL6LY1YPNEKfOAFJGlHoQ2emL9YzM0el4D75NPc9IJ6zLm5+N5uORbce9M1cJpNDAIDnxahUzG+ZU2VZjDAw84JOaGw+WE3Nc3Ot2TJGsn6/L33N46nMjVUlHuvFixcwnU6LfaUk8USRrD3bL9j+AhgbgLtmYRjKOnL7rvq7sm7uDwIPcW6+7w2pb5JyMBxDj4xkpDwzjnFvhOnESArf9jajFnz5S3+BV6591bQXmuczHhkJpX/UAwkYmI7MnFZWu9jdM0bA/YM9GW+SmhsbjUZxDfJ00ZBYa2A0GsnaAEB/aLj4SqclkhG/o55n3z/XxpCQMZTbzUkyyLJMpDZN93gKYjRl0kpDl9SB47x+32p1AFrr3wPwe29W+0ta0pK+OfSmHQLfKN1LEnCvl62slUpFOM18OpFr114yuuCrr1wDgAXjituG1tbQ4nvWuMd9lY06WuuCYZLvYS7OfW2fPi3cYWXFuD89bThC7ikkfD/1MxkOcHhoOP8X/vzPAABhwxixQp2DVcwwIClIe2KbyOYkfWQZJikbQ3Nqd9/8LgxFh2zWmrJWFy9eBADs7+/L2lTbjcKce4OJzIM5H2uSm5ubIhWwvYC5XLValXGwN6HZsC7DHnkCBuORSB+XH3lL4f6jowORAG/fNLr+6fUV+MT5PvaHfwQA+OQn/i1m874Z56qZ381b1wEA9VobZ0+fAgD8q//zvwcA/Ovf/i3cvmE8EivdLgDjYVjtGLsDj8cn202z3ZJ5sbQXTydyP0sMF8+conEfYXtzo/DdeDyWudcc79AkJnsWfSfvmnNRs+dKL7q6lQa8wKyra7vith4UC7QMG17Skh5yOhGSgOsZuJ9t4H6SAFuy9/d3EYZ+4Xei8xNnPq5/wJ7697vHJeYMaZKiSnYHHs/+/r70y64o5phJkggXdH3sPD7mtju9jOZdld+yfjkeTZEM2UVl7RccMxCGxnq/vdmW73j9zp45L2M9ODgAALTr6wCARsPqss2m4ajVWl/GurG+CcBa+0cj67kIW2Zs1cjx5JBO22wYqSWexqi3zJhS0vsrUQ1nzpu+XnvtulkjWpdK6En7Z0+fNm1VWhgrDuYxcx8MBvB885ujntHxa3Wy2UQKP/ojP0TrYLj4r33oQ+h2TBxGRmsb+D5i4trsKuTno5QSXdyjZ1Cv1WSt1tbWZJ0BYGN9XdaIXYnNRkNsKixNJEki19jlJ9w8tVp8wM9Y3UOzp/c/IO+Razfgd3c4zRZ+Zto+CaQBX9Ng2etRuiXLMvilPRoqD9mcAoFobYZHfbTr5oXijRPUA2lDujzWXaMWrrHf3Y3FSHP+jmIH/Aiz1DHmABgnM3mB4jk/cPNdvz9Empg26Bb0ezHSlDe12UQB6IWZJTKOCYnJs+lMxEx+AYMgsCInjSMi11sURbLh104bMfXu3buotMxhwRv+8PAQ9ZZRQ85ePgsAODrsyNz4pWfRf/v0eemT14zVGt/30aLNNJmwulbF4KhXuL8WVpBOzLwubBvPMs+t3++Lka7bNmL7fDrDKh1GrDaooC3jyOfFt2euQ/zr3/ljAMBvf+QPzJrGMcKGmVeTD99h3wZ0Vc21gNyTs/EIG+vmoMxpbePRCCGtm0eGTZ9/73vY3TFe8YDcjdWogow2a5bNaY0UMtqvEtORWXVT3sPcqqWsGrpGbo+YUNnwuFQHlrSkJT2QToYkoO4dLMTkBgu5AURiAKHbtSr+fdwnUAxftHKAjXSTE5jHQTfl0Mi0jegCgMlwhH7PuKOY+49nU0yn5rRnbsVjnU6njpRQdA+59/PjabVaIlqyuhGGYSFsla+dPXu20F69YUTvIAiwuWmMVgcHRzTWVK7x2N7yli0JDWZuwt91Oh1sbGwU2q9Wq+iSYY3Xgw2haZrKPFdXVwEAvf0D+S1LMNVqVSQF13gGAJcuXUK73Zb7AGA0GIpEcurUKVlT7oOlGv5dlmW4ds0YiY+OzNyn8xnyjHM1zPxq9aYkCbQ4/4Cfe7uNQPI3yNg5HCOqGqkpqlVpbY20NZvPEVJAFXmqobVGSO9xWrHBSBLazUZAWp9MZSIBegG/H/adh0S4esj8YsQqS5PutVl/juNoKQksaUkPOZ0ISUDh/ok65X+7YcPMfex55pX+dj+P4//O3x4bJDTylHUxc8KmGbtcFGZzwyGnFN47Gc9F309z01e1soY6BR9xoA/bKA6PDjCbGc7HHLDXO5QTnjketLEJtJpt4W5sPBwOh0WjFX3Wa5wLYIiNTvv7+5JQxfc3m03hXKzjr62tLQTFPPHEE9Inc32+5+joCB0ysPGzcPMsuH3+rru2Kr9lXd/zPKSU1xBR/Pwaudc4AAmwUkIQBNjaPlWYp1LKBuz0jSGzPxzI7+YUks0ce33zwsLYQs9Ko7NZMelsa2PdujvpmZ29eFlsF/x6zuk98Hwni5X6bjRr1l3dt3YRDc6QKuaCZFngPAvHvZ0vbtvcKxrDj7MD7CxcMXQiDgHgwZs/z/OFpJs8z+UheL6ZSqe7Ill4rbZ5OSUOwFEp3BddROzIqgOclehRlNpR31jsZ9MY/Vt3AQBTEuVbnTV014zFOCA/fui1JAtvMjEvL4vXKytrOKAotZ5EB04kek8MPmIgCtAjdePMmTMAgEuXHpFNwQfJxsbGQpz62qrZTKPhBBPKRDt3zhrftja3qQ+bGNQm6z2360a+cTYeb/xWq+WkDofSLv97nYxpfM94PJbn4Prd10nN4IOBD8y7d+9KGzlnN0YVzGhjMXU6HUSsxtAGa5IPv9ZsICHDHbfrK2B1bbMwjqODQ/EOrK2Y+bGR89XXbuPxxx83362bA2h3dx++oihG8uhUKb9hY20FdTrQhgPTxnQ8RByb9vnd8JSyadQ55Y7E9lCwcSruvlgU4BOKAj1uHy0Ng0ta0pLuSydGEngQHacOuHH/PrlIVtY3sLbJMelmeuWoNf5tmaoRuX7SVIx6MUVzjYjrjsdT7B6Yk12RC69e91AjkIvAJ195pSIGoTRjF6Wif/sLUWRBUIHvmzZ8n42RZk7r65sirrOou7d3gPPnjb//zp071L5GvW44KXPlft9w8Varg1bLcLetrW26PxPxnlWLer0u68YGs+1ts56j0QgXLlwAYDn24eGhGPiYo/LzCYJA1p4zDRuUywA4cfk6hxdQ5ORsWhhPd3VFRPmgQrEGs/lCJieUkmfUoTnxWsVJgia5Klkl8hxVhd+L7ooSSWE8NuvmUX5Gq17HYDCi78wYvUoVgWeey8qakVZYyklmVgXhFHbf92VtOA5Cay0GaRb5RaKa2VRiFzPi6wMQgbRfznAs01ISWNKSHnL6d0YScDMAOWrOdUEp0Wktl5+XDGeZcyK6QRXMkXrEreazGLv7hkv0e4YjPPc85aYfjVCtGb2v2TAcB14NfkBgGASU4fkThMpwkbBCrjYKGur19ySDbW/XxOx7nie59+trhvOurhruEgSBcGw2Grr57ewKazQach9z3lrNjOvChQsSiShx/M2mSA57e/vURhPjsbEFrK9vFO7P81w4qZUWUuGersGRiSMj+bs0z8SA1yadOUkSmVfZuDgYDNCg+3lOnucJl3dzPFha4neCqV6vS5+8Zp3OKqpkRB0NhtL3dFYMfKoJvFeCg8N+YX5rpzfF6NsllyJH8uzenQsuxCFJHKP+geRvMPCN0taol6Vst6DAoyBCIDYxh/vrRd7NvxVgnNwGEuUltKky/TtzCLjRU8epAwr2mjWOFNN72cgHuEhA8twwJkPYYDDEyy8bVJ8BGQRZrJ7PY6ytG9GSN1+z2cT6mtkwLMp53pEkoezskiGRVIzbt287KbhmrJ3OigPrZQ65WtUm8nDEGBvyDg8P4ZFRqkIhwmEQSXox33/mnAm1nUwmcgjwIRrHsSP+jmVt+VCUNGfaGN1ud2HzpWmK27dvF9aZLfq+74txkQ2JnWZd1ogPl/l8Lv57vsaqxaVLl6QNpiRLkXKEHkXjpVmGmLAZQwL7YJXFPZQkjmM4xdbWKZqXiWtI5nN5Zq160UA56B1hn54jj3H/4AAVmsuobw6ojMKSkc4KhmgeD0cUHh5M7Hg4mYgOA79Ca5tkyHNOYS+2VSbtWVxCAMg1x894yB6gPizVgSUt6SGnEyEJaACZuj8un1exEXIBxXVPJhPknDDhJB1oXXS1wbduM4+MbgmLuEiRUTJKf2RO8b2DEW7eMcY/dqsFxG03WmuoUyoui9prK6sIybAViPsrQJ7xiU5JLn1z+h8c9NEiVxLDdJ06dVrE2c1N47q6c9dwnre97W0i/bCr8NIjj8hatVtFFQAANjbNGsWUcHHx4mXhTL3eIS2ZxoiAN6qUX/HyteeFc84oxn86MRLE3bvXhTOGjmFO1C8BPDGSQxRFMqZXXpnLfCVikNSdVquFTVJjmBNzVOPosCfrkU9N31ur6wtgHm5eA78noubFR6ImKXlNMont5/FPp1Ph8jxujn4M63WcunAJgJWaRtOZXY+KkXRA0mamfQtuQziOmQokWckPKQoy0Hjt7n5hHDm5A7UTG5BSzoExIx6DT0mpxqwOuEjI98M/BJaSwJKW9NDTiZAEgAcDjbpAH0xJkjhBPw/uI88tPqsFBglE/7xxw3CG3d1dMQjyOTmdGs4zHIwx6BtuEYbGuHdwcIRHLj8KwOqf83lfOMa1a9cB2Lj1zc1NsSFYo15LuOvly5fN55VLNK4bwpEYU79Ws0CojaaRIEbjAU5vm9wBtjk0Vus0/jFmxGV3SbdNZnMMR0bH1xQR2Ww2kJFufZckkTlBobluVbf2Qxl4he0GjUZD5sf3jEYTsUlwIM5sNkONjHTcJ7vjarWaxP2z7WMWT6U91vGn02nBWAkUjZcWBBXynWvX4Gtlwyc/s8lkIjYPsU05yL8H+7uF362tdITDtrrGhbp395ZweY8kwMlkgkbXvAuSmk7jSR3jb5ay7QtixMqdACI/KD4DyZjV+oEexaUksKQlPeR0IiQBlgIeVHegfK0IA/3gfjzPkyo1AnyZZcKRdu4a7nlwcCg6qZz6iq3+ATyvIu0BJrhHSd4BB8eMxKrNwTRsNVdKoVYtYsyfPXva4T4HNGDz3cpKRzj7I2QLSOJMAndefNF4MhqNOlJG1KRxMPf3PODWLQOtzUOdTEeoVhh4g9xw/SPcukmgrWJxLuYSuOuSZZlcZ+wAlmgGg4GM23p0lKxLGlJwVhyj1/sSAAjc2RNPvBUAcP36dVkXfma7+zvCsZmbj0Yj6fc0gY/YPIDZQiCT50iWzHmNO81megL22UVRJBmUbI+4dfs2ogqPrVhMJkkSsS/UaG29sCregYDC0lPto6GN/SEhwNhKsyLjYemD3Xx5niOOLZwcYDwjw6S0lQVe3oHIu0fM0Ik4BAAuKeYtxL67ySjsS3YjAQWVpTDB8olg/81lrmzE3hDXr18HAOzsGAPNaDSS6C1euClFsgGeiK5hy6c2Rrh167VCj3du7Ugfly6ZzVqhB//UU09hNC7i/b/08lWZF7/gA0KubbVa6HTMBrtxw8Tu12oNXH+V0GQoDj2OZ05+hVm//R0jXo/GA3nZ2S8ehgHqBDrC4ux42BcknIzyINzklAWDrZPPsbNj1CPeXEEQLKA5NRx0HV7bLMvk+fGhMRpNZO68LuMR4RBevozXXjPrbd2/nvRb/q7dbi+gJPueJ2oJt+9iKLJL01V1rOHTrHurWZd5sQrEtLq9ja2tSuG7ztqGHC4S81BtIByQekY4mbOxWYxWo446GZwZ4RrwoGvFCNQk0ZhWO4X58VhNHIdZh6JCZGmpDixpSQ85nRhJwODjLcr0LqeRqLN0sWbgcXBh9pqNnuJTnEXSfr8vJzXH/VfCKnzPnKR5xuIYj8fCtwnScTxFr1/ss9XqYHWVY8bZnUY1EkYj3LptkHPZ6BYEgUSRHR4S8i+pIC6a8WTCEok1rAk4R1QvSAWAxfiLZ7bWIXtV8ywTqK8BuQ3n05lkMzYYeTehdOrULewJWVPJ3yhVP3IjOnldhsOxSHTdjjF21ut1dOhv5pD8nG7duiXtcRHS8XQkfbHhMQxD4fy8HoygnOe5GPi43dWVlYW+Wq3WgvGZyQ1WY7Vna2NF+hS3KqkAcRzbgDR6/o1WBy2aZ6O9Kvff7pNRkXJHElrjW0cDqRXQoFoKoe+hRSjUFYow7XSqUBTMJkJvlasj2SpJzx9aF3JhbsdeXdKSlvTQ0ImQBBgM8TgXlKuTuUaX8n1aL+YFlCUBo3sWDT+jkcW8Z+kgz3M57TmLMI4PpX1rSDKfzzzzTnzxi18E4FTrRY6tU8aQtEbuQEZE3tnZkVBbLcCTifQZUKHROKGMumQmMGQM8HH79h2xHbD7sNvt4sZrt2SuAHDzpjEGhmEoa7S3Z+EluG5jQoCtURTKnIc9IyFNaWnjOBbObsOjvQXJTPRut1YkUaVSlefC620Kb5rvxR5CLsJmsymwYRwzP0+s7cPFVGDbDgddsRG13+8XYNkA896wTYCpWrWoziytiBEzTRfeHaVtxiXXNRiQLePmzZtOZSszp97BgYy31jCSQ73ZwmPvfm9hbHdumSKu069dRUISXX9KIKqzFIOc3bmm7/VWFw2Qq7f07n89QKOv+xBQSp0D8H8DOAUDuvas1voDSqlVAL8G4CKA6wD+ptb66L5tAfB1LojB1D4AgKQgJPMZIiqfnXCt6jSBpthqjs4DIB4ALtjAG80PNPKkqA70egPMplwsg9JMnRdba/PAOQ5day2blV+2r371eQEJYTp/tovOilneJDMHSEKppQcHB5jH5iXnoqJRpYEhleBS9FiabdNPEmuBEJ/NGJQiENCKXo8SVMZHGE9tGXEAqJCXIJtPRO3JYyvSl4umAFZ9GZLqEVJMglJa1jJN7UvmbnqzfqA2fUSRedn5Ba+HNmIwpYPNfJIBmNKzz52/CMDE9fOmu06AJrPpyKICV6ynhsugM6gMp1i7laT52R0e9CR2gL+Loki+Z8Ngo96icdk8iJw8MLfv7so4+H6m9fV1eT8Ekj3wMJuZ9lgVmY76mM7NBudnITkY212ZH79f8/lcVMhKhzAXswmaq2dpvUxkJDOB0WgkaiNgU+ldeiPqQArgF7XWTwB4D4B/qJR6EsAvA/iY1vpRAB+jfy9pSUs6ofS6JQGt9R0Ad+jvoVLqBQBnAPw4gO+n234VwCcA/NIbGiWKeIL8WYgr8FyRh92MxYKgWueYEL49R6bt7uyJ6DmdmvvcgqdlUdfzPItvTyd8lmUL7stTp07JfXfvFrPsxuORFDjlKDjoRNBvGw1z+jPn4XgAwBrCWq0WPLLw8ek/j6fCjXk8U8k56FnDoFNstax2uQVdeC6Jtki27pz5Whn2zV07lj4kTqCpZH07XYsOHEvEIkdcGmnlpZdekt/KPKvWCMj3jUYjUcXKWINufgM/dwXAD7iMHI0NGTTMvGp1W8QWMJiBUbVYOEQjkb/ZPSpp61lWcF/yJ8+d5xkEAZKsLesFWIPmzs5d4eKuq5wlNc5KzfMU49y8wwejoloAAGGtqPaU6ZtiGFRKXQTwDgCfBbBFBwQfFJv3+M37lFKfU0p9bjgaH3fLkpa0pG8BvWHDoFKqCeD/BfCfa60HD8pYYtJaPwvgWQC4eOHcA/GSPM8rRPktjsNxEZaCpVkimEysXnxIEYHD4RhpwtzNfLo5CfzpSiGs6wmnTBLh2qzXDfsjgQnjuO61tRUax1SgvtgtmcSpwHk1m4b7RFV7grNxzAVNvXLFGL5u3jSGpP2D/QLoCGBj3/f3920WZikCz6yfDf4p38eQ92EYLuitrsHWLUnObblFW/ket/QaYPRpzt9nzsuf6+vr0saAdHg34EjqN8SxzLUsDSmlpC+e0+HBnozXjXS8edMEGt2+fbPQRqPRELsQk5HGigZHHs9sZjMMWa/PskzWnMeTJAmUb6Mp3bVqNJrS/mjMdS0Sx5hspTHuK6OAI24jiiLUHEi34+gNHQJKqRDmAPig1vo36fKOUmpba31HKbUNYPfBDRX9sIB9kPygarWaE0JZjCoEbCql53mSAMNqAd8/Gk2wv2/Eq6MjsnxP5/B5IyZD6Vuw4JJiiKZ7jR+k+8CZskzb2olkc/M9I2I+9tjj2KXoRIYqj6ImqlVz/5nTBg241bURadwWW887nc5CEo37orIYyffM53O5TyDNHeKDrV6vFzYxABwO+jJvnrskuaSpPAcWcdngFoahqC88/ngWS/98IGutBRcyITVpJTKHXrvdls3tFp3h9tjAlue5bDYuSMIYgkopAYnhwzrwtXh3OC7DFddt6DPXjJwhSTgd2vTT6azIOrDKxv++fv26qCVu/cHjvF6McFQ+MJPEqpn83EcjG46eU8r8bDaTOoaM1cjPZBbPcfuuMZDei163OqDMSP8lgBe01v+z89VHAfws/f2zAD7yevtY0pKW9ObTG5EEvgvA3wXwZaXUX9K1fwLgnwH4daXUzwF4DcBPPbAl7cJ9HR+bXqlUFqCnigkttmQWR94x1BMb6F588UUxArLonWdKYtKPQ2W1rkIrdbjwZkyu6Gk6DxCGhmNsbXG8gFEHdnZ2BEwEJMGsrq6j0zbfM7afCmwkG2Pvc9ES11AqnF1VZK7ltWo0GvL3VJKKbLw9/87ti9udpVbyYc7ritxlNcCt0Osm5wDASscWN7lw8bK0y7EOCsWaBFprW92X8ApbzZq0y78LgkD6vXHDxEawJDCZ2PRl5s6Hh3eRZkVsxFxnmEyNtJQOi899OqvggCQGbmt9bSp/s1tSjJ6djnBs7rPb7Vo0Yke9PDwquipZejq15UlCGBuXK5XIFjyhpKJ6LQRycFcAACAASURBVMBkSrkI7B9nwOo3M05Aa/0p29UCvff1trukJS3pW0snImIQuHeVFD6lXTdPWWowxPq/Fl2JuQVzPjd3gDnlZDIXg8xx5ZzLfblAnEzH6XrIFDxls+kMsZ0hk1j509vG7XXlyuMSmOIx+ixMP7VaTTh1GNo2y4awg8PDBWnGNZy5xiIeaxmZd2dnR/ri+16lCLYsyxay1Gq1mnAuMeA50gJzStd+wdfYXbeyYgOCqpHRfbk+Qa/XE8Rit0YCp/WKIXY4lHGzbYIlGq01XnnlFQBFac+NEOU1Ldeo4HeiWq3K/HisSZyLtMQ2FTf6tAy24rpTpY0kcaJTGR3bSgscHNamsuxhGBYqNxnSaDYimQPfx33yOL745S/hOFrmDixpSQ85nRhJAChCVTG5YBC2+KPl3HKyUwCF1pnU8GMnwXxm2jg87GFKwUJZal1t7MqrE9CHW4uAYbfEA6m1LVdNWO+B5yP0i263dqcjnKvdMlw/proDa6ubEuLKHCQMQ1ARJdQouCOTmP0ZqhGXsqb49ckQOuesQApdbbWt1T7mgBYKMvEqNi9/aOwiQRDg3LaxavM6pkkiIbC1iLP9LJz61atfBWBz9seHPXhc0JN8ie1Ok8aaICKbR4XsI2FrVcYhdQJyhZVaER7ccviBBEWxm6XRaOPgwEgHYktQUwwGRhKwHJI8EvEczaaZk80FiMWtzLUDer3eQt1KycUfzguuPsBgUfB9LDXxv1stCxfXIJCQqNqwGZaM/gWNdp2kSPIAcN0Br92GJinhiELDvbQCr01uYM3wacnCvgEW7Vv3ohNzCNyrEKlbvLLsGjxObNewtQhcn22ZbASWJzUL+n2LJlQ2TLp9lkV/3/flgfOLffHiRdlMPAd+wd1SX/w796VhsbYS2ReKNze3MR6PC2IsU9mF56bylpGCK5WKiLMsktZrNRlvhUBFelOrMjz+xNNmfldMcc7nn39OxPpmm/zosfldtdpCQOm/M3q8VV+Jq43Tnuv1OloEbtKh9GV2M+Z53YlmtAVP+XlwdJ1SSubArkeOrTg8PJQ1ctWTMh6fm/5rwWrsZuL73PewjAtY7ofHC5hDpnwA1ut1TAjkhWtFcLxKrdqwwCchqxETSVtPUgYOSY5Nr/96aakOLGlJDzmdDEmAgoXcU7cciZWmacFwBxQxBlmE0sgLXJvvA4rBLjbwSCNNCbTCKVVVjqrj09zt0xUdXTcQ388GLea2DF1Vr9dx5cqVwv1BEAjHY0Mbl6pO01Tad42SZc6ntZb2WJrodrnMeGCLjnZt5aTVNXM/Bxl12x0Z74BSiR9f50jHCe7uEm6eZ57Lo+fPY4VqKAxJYvB8DjaqodUxgTsRZSKeWm/YDEficpVKRTjdhLIg2TUWVa0hrD8wklrgW7ek5bgaBwdGKuB3ZkrRcysrXQyHA3oG5rmvr69LQNVxGIPHGYSZXGzCct4Ev1f9fn8hctGNMHQlNpYKuKIUO90m45lIsVweDdALuR1hGIiL/PXQUhJY0pIecjoRkoCCRRt2oamAYvjwcRxe9DMGV/VsG+VT3TU8Wn3eEyRh1lWPC7BwC1+WpZQgCOQan9wKlQU9nkM/K5XKAvotYCUR5uIc9+G6rvj+Wq0mHJXbV0ot1AW8dfuG/I77r9cNZ6pWKxLAZCv6hOKG5Iy6tz+yJWP8+CeMu/DuoQmO2Wq00eFqOlQJ6StXXzJtwYeaGWni/FnTRtiIRFfn9ZlMJiLBMNAor+PBwcECRx0O+2Lg489WqyXPjNtnN1yWJTJP5pjXrt1cgENLkqQQ02/WI5K+y+7USqUi/XOfrouRbUK8toeHhyK5sOTlgq7w+Pn5N+rWFsT5J4AWAzLXjMiyVDIiXw+diENA48HIQm7yhfzOzR2QwqT2AfKLVPb5uu261V5ZLEvTVB4c/4YfVhiGC4AWzWZTHqoYhsK6FfNKB1uj0RCDlltpme/jyDflLVp4y+g27jjyPLdGPbpWq0UyNz4sWs2GzGWfUIa57739HXnxRyNjsPr1D/8/0uejjxtko+954j0AgGqthZTW8NHHjMejs2I2xCvXruN3fv/fmHZvXAUAXHz7M7CWazZsehK/b9O/zefe3o6oPZzUs7KyJuXkWJ0ZDoeyljdvmWcnG1NbbEQWq9005+PSqMtivta68H7wPbzROWaDGUO32104IMbjsVzj5xcEASpciNTjNOOWzMlNYDJ9J5jHNjcDMIwszYqJQ+U8hPvRUh1Y0pIecjoRkgD0vWOc+USL43ghZ8D9jZUc3KIgxbTULMsW7tc6Fz+7e4qWsxhdNyP7pl3RjkVtbqMa1QrAEe44arXasaoNczzuy/NtGrObQ8FUTut1x8sch8uWGaMoqTuwaLXxlAxPxJl8z/6mvmki7hIqxZ5lGQIql35nbJ5FJwBWV00cwXMvv0b3vULjS7F9/hIAoDm0tQ543D6l0DYadYl/YOmD59RqNbG/b6G1eM14vLYMusKQ4h9YnGa1x/NMH6aNhtxTNv5lWbagSvJ6u2nUbtQff88cm6WoZrO54DZ0jbp8n+d5YkC2eRMMRxbZ8u0xG6Et3+Z2Z7MEQXCv0uUPzNJfSgJLWtLDTidDElA2jr1cGuq4gB9XJxMJgDLCPO2BGCg80lV1QhlhcQZF7sCAoq08VYGvCBqsZt2BYZNcVsRRq4HV9TgmnXVEpZQtYU16WpZURI9bXydDGLm9VldXxCXG3Gow6CEhIxq3xZmOw9HQZqcRR5uNhvCckto8Do+AV+sUWBMQ5/C9aCHizYBtUmASfad7Y4znd2hspq+Y1jGOY2htxmiz4W4UMB/MuM16R1FkjZbEqb785S8X3KiA4ZqMFMzPmdufz+fC2ZmOnByJGbkBtdbS1/YpIx3sUB799vY2KiFlIk5MWwf7PQF5ZW6poBHHZi05N4EltVq1iZUug72aMa6thQXXsUtxnDpSBLuelYMtYJ7BcHiEFYpmlMC0nEFFLHgKu4uhcqQ5SSsxSQwVBV9xRGkZafveeTlMJ+MQoFRi11fulhoDGJb6wRGDfC9gDxDX08A4fja+IEWS0YvnpJayD5kfAsNXe563UHMvy7KC9wAAtre37OIT4q99sRbh0T0vgO8XvRlu2Supw0cpq6PRaCHEFbCRdmzYZCPT3bt3LQ4eLEDJysrawnqLFZwgvscEe+0a05jCMJTxspGMQT3iOC6k1gLA9unTEmHIovzBwYFsLBaNeQP5vi/j4WfSbDRkvDxPNxmK14APpYODA3kn3CIkLJK7EZfl5Bw+8PM8FwOfGN08q3qUkYsrlcpCCbYgsKoQv0Obm5sItPX4AMB0YtUebpdVQ6h8ITowDEPkaTGknsmNcL0XLdWBJS3pIacTIQlorZEkCXzfl5PYhWTiz+NAP8rc0I0JL4tBSZKgHGJtjIAUT+7b+1xUX8BypjRNF07WarW6AKOV60TEU+YgzHGGoz5yGtvR0UTaYKAR9pXzGR3HsZz+zBniOHYKdXA03MhJObZx9oBBNY4qNkbezD1wCrl6cl8ZXiyk8mmddhcdSml1wVak8OpFYwRkru/me7AEdnTUk/TY3V1bq+HKlUcBWEmA1TDTNhtxzb1ZkmKdCrqwBOHGkYy4kCtFMiZxKmndnMTlPkO3ECyrYqxiua68MizbdDrFfBZLH4BjuNVKrvF6rq6sLcQaRJUq8rgIV8cS482bN+UdSjMyKirX/Udp5aGHFGVk7a9fHVhKAkta0kNOJ0ISABYNK2XXnMuBy9lf5m/L4ss6JOuxYRhCC24+twukOelgylxrtVq4dOlSoY9yGrNL6+vrOH/+PIBi/gFz5ZevmUAZ5jha64Jkwd/xb2fEXbjvZrNZ4HiAkRbY8MgSgQvnZUtwc8SbEgPV3t4BzSlBm8qrzyjuf3VlQ3R1ljAiYiTtdnsh9r1Wq8maMPd+5ZVXZW1Yz+Xx7x3syzx5jYMgQLdr1mZ11ejgPLeXX35Z5sxwYbdu3ESfCnBevHgRgHnmVnow9zE+/5kzZ5wUZbMuL7zwgrwnrk2A2+P14z673S5efPFFANaWEUU1MB9tNm0+BmAkGrYnWCN3inrdfG/fdw/nzhlgWX5PWRpaW7NQbAGFxM7jqTzvGQU+uW7xMte/X10IpqUksKQlPeR0IiQBrQ0GgHtileP+XYvocXoPM2jXGlqODR+Px4BexN7PqI/zF8/J78ogEezWcq/xiby5uWldbDSmvf07NlNRU70/9gpoW+uQx+rClnueGduZM2cAGA4hhU6dCkduHjx/x/YHth2wNGQCjsxvWWfXuZK5bG+flnVm4NUWua6ORhactUq1EAKKZb9zZ0cs9CwtuVDbcWxh3AEDp85rxfDio+FkIdyZJZMzp89ZDwMBsYZ+RSQMzpXodruIYyO51AighN1wgCd1HsZjW1uSOa8LZc/9l/Mb5nMLKsK/i6JUbCphyO+Tef4rK2s4d84AtjDwaaVScfIgbN5JuUoTezA2NjZkTas1e/9sNijcP5tNUAmO9wC48GL3ohNxCADWsFMW9d0osbKoc1yugWsgKkd/NRoNzKYsLjMGfw3nqYhHmo/ld/ySsVjKRiGttbjAXBcTu+7YkDSeWF+2jTAzYw3DCtqUbMMvbJYtgpW4mPpsoHSx+gRDnw6GyWQi18S/XeM8gdRREazRcETVn8LAvIgXL14UIyfHELD42+/3ZcPz+rh+fL7PLc5SjsqbzmYLbrU0TbG5aQpVsSjMBrp6vS7j5vZXV1ak4AqL37PZTER53tS8LkdHR9Ie9722tmYLtNIYB4OBzI/X0cUOLFdCHg6nwhxY9OdN3u/3ZTNz37VaTYy+LkZi/8C8O3zIsGo5HA5lHFDkbnRchJ63iI61VAeWtKQlfcN0YiSBMqcvBwG5lW6O+w3j0LmZdMwlmLPdvbMn4huf3M1mVzjG1sYZastNuzWfLvcvR7C53FDKkaVTW5+eILYY1TiKooWMyGazabkliQwsrUSRjfZzXVeu0RQw0hPfx+NgbhtFESiYEFHE8e6WM7HEc3R0JK4nVhvmFMs+GlpJY23N8I9TW6exsb4l68bjAIAwCAucGgCqtYZTL6Eu37Hozqi6p04Z9aTf72Nnx4zx7FlTfnt/71BUA1YbfN+XICQex1NPPQXABFjx/ft7hzJf5vIs0cVxXEBRBopwZOWy31GlJetWo5wK/neWagm2mozN3M+cPieBQPxOTMYzkTJ5XVz3OKuEX736FQBAd6UtUtNwaKQmqBw6K7oemb4edWApCSxpSQ85nQhJQOsceTxDrjOB+grpJM4pZBVZJpVOpEioE0SjIgZ8zCWA42DfcMEeVXipRm2snDIGn7XVbXN/kqNCKA0rHcOZiqCf5revXX+JhpEhJ5bKRSIrFVsTIU1ovLqGiKHRkmKE0nyWQVcYsdZWDGIOxtJHlnEeRY40Ne0eHho9M881Go1WoY00nYnrTCoPEXCnWylI7AYecPqC4bgxTPvN9iq8Kt2XmvlNCa253ooQRCStxGQbaK5ifYWrIxXdmAYjn55PQFKRF0IS4Rg7IA+E8zLOwqvXGW+/jbVVw4GnE9Pn5qkNm3lHAV5hFMAj41iNoMz6xCk3ttZx9UWDkswSoHdTo91pFNaj2aphMKRaDrQzVqtkREWK4Yj6JJyH0eQAg5GRUra2uTy8+a67UhepM3Xg0VZWTXts79FaI+OCrzRuAstGtdXAkCpOnb1kjIzz+RQDyn/wKow2HEt5dc9f5OvZMUF2Ln0zqhL7AD4H4JbW+seUUpcAfAjAKoAvAPi7WuvjZRWHtPIwdzYLA1XcpaiymoOCKxFTfoCAABnijPMF5uj1jcg8JCt3Sqvc6a6hwRbvHhvdNB65bET9M2fMCzIc9nHrlrHoluP/tdaIYxuFBxhQDBYjeWyT8cxJhy3mGgCLngsXr64sVruqEIuO4/FYVAMWZ6Mokj54Qybajpv7ZDGf23b7ctOS7djM3ObzuYj3TIeHh6JysOjMBrwkSRzUYDOOtZWGbABel/X19ULhVHccw+FQRGwez87OzoLXZjQaFQxq7hp0Oh1sb28XxugWOnWrXfM4eB1dTwf3yTkYvh/KAcKG4W1SY06fPo3plCz7gog0LMQRmDZ8zONilCfHcxRU4NyC23D0oPKsMdC/BxjK10PfDHXg/QBecP79PwD451rrRwEcAfi5b0IfS1rSkt4keqOlyc8C+FEA/x2A/4IqFf8AgL9Nt/wqgP8GwP92v3biJMWN2zvwPE9Oaj7hJ3MqJRaPFoqDVioVGyOf2KzAm7eM8Ycj79gd89ijj4sBan3dGFd837duISrqWK1V8Lan3wrAntgcLQYswoWNx2MHkISBQ0IZJ3Mc67ariVjqIgwzt2TX1YQKpbTbbcdYmEobzFFd1+KCtJQXcffMuph2oyiSPplbtdttG6XGmYWkFrQadRwdHhTGcfbsWXkGPE/mWqHvoVlno6hNRxZpyTFeljPjeE6tVkvWg6WEupNFyHEQLgYgr61Vk9KFrNStrW30euxvN9/t7e3JmnMEIL9Dly9fkVJmrhrG7+urr5ooyesULVmr1SRDk9d+b+9FUfU4EnFtbU2eGUs8bKx1i6zeum0AW5Jkjo1NI8mxRLCysoJxv0dz+dZLAv8LgP8SFjRuDUBPa81P9CaAM8f9UCn1PqXU55RSn5tOF4uDLGlJS/rW0OuWBJRSPwZgV2v9eaXU9/PlY249NoVJa/0sgGcB4Oy5M3r7wiUMh0M5za/fNu6eg0Nzwg2Hw4UMs9lsZiOwtOFkcRzj0UdNRtpbnnwMgNW/x/2eGKBW2hYWKvRMnyFlE8ZxLEYgzv1fW7Nosv2+4SAMA+V7Fj14TrHp/VF/oeIPU5IkC+7ObrdbyDtwfzedTgv4BzwO1qldAFNX5wUA7Vv7Qjkazs1vZw7i5sDzdxFFw/kKaJDxijnqq69cE27Ma7tzx0Tx1et1sQ8wHfUn8jdLH240HhPbLW7fvr0AJTaZTqVPXoM8z8WOwO8HB+lorReChVZX1kR/z7NbZr7tREp7c1WqJnH9ixcv4ivPPQ8AqJDO3t5uiy2AiSWYL3zhC7hIpdfdbFJeU3k+WqNJxVf5PWVJZjgcFmpVAECa2i3rvh9u/kOZHiQdvBF14LsA/AdKqR8BUAXQhpEMukqpgKSBswBuv4E+lrSkJb3J9LoPAa31PwbwjwGAJIF/pLX+O0qp3wDwkzAegp8F8JEHtTUcjvCJT/5/2N3dldPcBRilPmzeN6HlNFpt4Qg56W6+1nj3t30bAODtb38bAOuOeeGrzyNPyHNAoZp5o4EarUKuuJ6ATxliiyg/aZoiIS8GB9/M0hnm8yKaURAEC3ooSwuVSkXGxKd5tVpdqLDE8e4uSg1zOc/zCgE+AIePFm0Co5mZb6fTES7lShPlAJj5fC5z5eCbitg5augdHRTubzabgC7CYzHn7vdmGA2Loblnzj8qXJ+fXRRFhfh9t41GoyFzdyHnZH5O3kIZW4LXxbWyiwdGaSkPPxhwG9YzskZ4BSxpnDlzTmwHeW7z/1likSpQpBhnWSaQaU8//bTMqRyO7Ba/tYhIDfluESxXLdSqjKLwgQFB96M3I07glwB8SCn13wL4CwD/8kE/mMcxrr3yKq5cuSKLyi8Bv4huvfcBxbTP53N5QR45b0wPlSjAhTMmsixlF1HTLPh7v++7kZErkX29u7u7+NKX/tL0wZVitZaXgEXWkKrqGjcc1Rto2Bh7jrLjh3Xr7i1b9otEOX4Rp9OpbH5XLOT7eWO6UGt8nxvJ6GIt8icb/SS9mNxIBlDF3M9rnOe5bCLX6MqHF0em8SFwdHS0kOjT6/UKxkp3DZRShcIogDmQyxu+1+tJe+UN4ao4ly8b8Xp1bU02ArvrZrOZ/PbOHYMtyEa1lZUVWXvJx8gSSeHljdnv9+V58xpxxN4Xv/hF+U5QpEMlKqrgTZIaYYBmigVVWq2ORQ+eJbLG9YZZb37X3TgLqV3hszpYwXRG7uIauxR96OSBXvh70jflENBafwLAJ+jvawDe/c1od0lLWtKbTyciYtCDh5pfw0svXUd71YhoGxcNNz/iUlzdNlZahhtS8Bl2X70Jj1I3xzSVJAvxh5/4NADgLY8ZztFqGq54enMd9aq5r1GjjK2NU3jsR/59AMD1A3YpxVIRh1NV9/YNx2m329jaNIEnUYOMWVmK2YyCbsgweGrrnIijfXLfiBiu0wXIMcDNlyCxl9x7rZUuJnER1TafWWmCuX1/OLDl0Ck/oKlscArfz5xSKSUqBf/O8zzhssyxbxJqr+d50ARSGlMasF+pIawWRXNB2a2GqDaKMG1Znkr7U3LHVSo1dLurhTZ4PEmSCAd+5Rq53+qR5HJwzYhatYpTZDgsg63OplMcUCSiRa3ORR1xq0uV8zG47/39fbzrXe8CAHzlKyaO//DwEEnCqMdmrXg9+/2hAJiwRKV1hk7HrINIH4MDeLmZe7vGhkwKlJoOMZM4O5L6fKBGZeIU6aN5nBfqEXyjtMwdWNKSHnI6EZJAFFVw+fJFZAo4Ghmd7StfNHp6jdwnFy9ewLWvmYCd0ZExwgSpxgbpfZcIECSKIkyojZu3DQdjI1avPxROypyp2Wzi0StGYjh/wdgBfN+XstY/8IN/HQBw966RCD772c/ihatfM/dRXv75c4+gSXUEJAf/9GnhZrdumdx3AUNBJjp7EDA8VdMx/pCRMbeVcVgPFdCN2UwCTphcoFa2qfD9rVZrAa8gSRJxnbkBObayTTF+w4UvY3JDlcvVndy6ENyWRi7319ca0i7bWXjNuOaC53lOfUfDlXd274j+z9w+SRKZA4+Ry7+7eRnc1s7OnYWsvSiKFoBlOdx4Npvh5ZdfNuOmZ3fr1i35m4nXoN1u22pUJE3s7OzI31uO1GKN3xwabgFqJKuxTkVidS65CD5JZUHgwfdf/1Y+EYfAdDrFc899Cc2VDtr0Ejz1+FsAAEf0YL/wmc/gNImAjXWz8Xv7B1K48mDPbPhOpwNFhUI6FLHFC/niqzflodYCwr5DhL2RaWNn/xoAY5jj4iDD6yZS6wIdMj/10z+D/+l//Ofm/h3jYWh3hqhVzSZd3zCi38bGhk3FnRdRgaKqteY2GjadlcfZ61EUnLPhyyXH5vO5vLy8EQAsGO74oAhDWyjDRQBisdTFPCzH5TN8Y57ncr9b20GSlRq2xBdgXmJeA0nImozEmDYc7Mq6cOpwubbEdDq10YOU91GrXxTLOx9iAPD8888X+rLlzvyFA61Wq9kK0k6+AB8CPBdWLe7evSvf8YHiok2xyM+/G41GC3UNqtXqguGzUqkgncc0Xiqcm9OzyGJ4nLqiGBErREQHCQOJ+L6/cDh/I7RUB5a0pIecToQkoDyFShSgUY0kBvprV01O0vomueoA3L5mYreZa22srokf+urA+s8vUBHMCWVxsajkBRWEkTmpucDjcHSEt7/dGHwunTPxBb3+IT7/+T83bVD66l988TkA5oQ/ddqkdb7z3d8DANjfO0I8Nxys2TZGnsuXL+P0acPdXnjBSDDMlZN0Ln9LLfpGw4l+M6f6gAAoTp06JZyRjVlbW1viemKR1MXFd2MB+N/lAplaa5EieBy9Xk++Z046J6NnvV5f+K7RaAg35v7ZaOf7/gISsVLKQrWRgdf3fZmXLezqy+/4eXP+hudbN52rEvH6sSrEc6tWqwtFQafT6UIJ+0rFYhcyMT6g7/u2GhBJAu9617skZ0BKtjnSR7mallLKGkjduIyRWZuwwqXXzHgGg56oi2GFUrGrISLwGAk+TyeiTi3rDixpSUv6hulESAK1Wg1PPfUUPv/5zwvnOn/aBGkwoGSlUsGlcyZfnE/YGzduCBdKZuZ3QRBgSKALQWQ4DvPHdruN/R0TkMF5Ap7n4fc+8lsAgO/8rncCMByFo/UY2ur69Vel/Srp/+fPXQQAxDONq7eN0WhjnewWjYZwNw5akcoyt14TLrSxYe0WrCuz0ahJGZRJkhTKoAOGc5cDq0xeQ7+wRsz9j46OilF+NBfu0w1eKnM81n3TNF0IRvJ9X4BAOOadA3JqtZpIQ1J3YP8QTHt7+9IGV18qIy67tg8OmErSuawf358kiXB+vp+5+KVLlxyEYIu9UK5jEQSBtMf2BZ4TYO0PLodnqYfb53m2Wq0CYAzfXw4Iy7IMqmZzVgBgHjPEWYRGkwOwrLGV3YF+wIZeTzJ0Xk/k4Ik4BOq1Gp5++m14+um3IaWSTM8/Z8Tv27T5smyGOS+qGMli7O7uUCsc6eXhdNNslOmU/N0UOtuqVZGQEaY/MC/6SqeLOlV8/a3f/igAI4J2ukZsa5F3gnKFMBmOEVaM//+3P2ruv3jhMXznd32vGQWJutvb27JhZ9S/AHaoXKLV2BK8t7cnouKf/qmJcwhrpm83CYdVgPl8vlCyrdFoyObkvl56ySAieZ4nG4A3S5Zl8oLyht/a2pIDh6PxysjPgBX5m82mxFIwucAjHJPA/cRxLP2XQ5zdPtzirHzIMI6f59uDj+d748YNWW8mxiQ8PDxcKCby6KOPSBwHj9f1fvA1VmPa7bYc5ryBx+OxzIUPfD5Au92uMDQX4ZjXw40/aNWK8PasksSxlg1fbzC4iS9qgy04kgme4YNE/+NoqQ4saUkPOZ0ISUApjTDIESdT5DCc4Mw5wxV/7CeM8W00GONg34iZ4wG5oGYNpKnhUmvbFwEAgR/Cz8ypefmC8f8zeMTt20dYWzMi3SphwikvxyNPm5Tj7z/7mIzpgx/8IABgNiSOQ1y5EVZxep2iGSlewcs0Lp0z6gtziaAa2Sg/ajPmOgRhVURLjhdXQQ3VhuHo22epDDrFizcajYXEms3NTYu1SFzfLWHO3104a1xXBtHX3NdpmjG6iUwWKGWGGWEnRkGxbkIYhsJ5WSLpdDp4/PHHARi/mZ7PIgAAIABJREFUuTvGNE1lfizqZtoadisVKnzq+0gp+s3GCVCBz2qITtgutBv6lQUAFs/zFmociAF5Y0PGZo2HcylTxqpHu92Ufg8phZ3H88QTb8UXvvAFAMCNG6atrbWuzOtoz7g7mYu3alXMSDJnSSCARo2LlLDbGBo5wW9knApNCMqdTkvwL8OApAXPBzRX2uFkqKAANeZ+lv8+jpaSwJKW9JDTCZEEfFSrTSjlQ9GQGg0G5KCyV16Ieo3cKxS3vn1qKnBhd3aNfnd0uIfXrhsj3bve9e0AgO/4TpPPtNpdk6ivj33sjwAAm5vr+OyffwkA8NKL5oS/fPkyuh3j6mPwShc/n3VgvvbYY1ek+k2rRS6umi2lzYCTbhALc2AOMnnuuedsCWvKK8i1TW1lDsVZbYeHhwV3F2D0TNY1WffNSRo5OjoSjs7cbTKOBT7LNbQxWMqcUIbDqun79OnT+L7v+z4A1vj3yiuvCJdl/dgt7+XaEUz7mdgm3HTaMrgJ6+vValWMczy3m6/dsvkJTrSiC4gCWPuCW+LNBW7h5+emKpfBWHldptOpGKkvXDAu4v39fRlnGbjj6OjI5nY46egsSfFaRVEkQK42Dd1mhfJv2c0YhiEqUbEvN1Do9RgGl5LAkpb0kNOJkAQABZ1VUI0qqEYUu00uvMnUcBVfBRh7hvukHum9UAABgbQ6xv2W5htIKBDoj/74NwEAn/qUOfH/wX/6fvzgD/01AMC3veMZAMCnP/1pHByY03w4MJ+f+bMv2Jz3G+b0Z6niybc9he+m05w5yNbWBiiNAEMKLurvD8SazCGuL7xgAqCeeeYZOeE///nPAzCcld1pHNp89WvGTdXtdoVrclsu0IjLUcv4AOcosKlWbYmlu0e2jDiOhVsNh+Z3q6urOP+IkX54/E0GfZ1M8OUvf1nGCxh9ly3eLJEIyKkTHMNjVX6wENZr6hNYeHXASkh5ni/AkIdhKP2zR6DZbMr6CZwc6+JOoVY3V5/H4WIdlOtH8j1pmsp9DDjaqlUWYOVZQnGxHVji2N3dtRWKuIpRFCFJi+HLbsAR3+8GHJVtHzxf4PV5B07IIWCJS3UpxUYbflB2oooLMQYZMoqum4svtoKIHsSVR8xmalDxz9/48AdRjcwD+Vt/+z8GAPzkT/8MjnpmA5w9ZV56WzseACV1sD/9/PmzEtHHRq/RdIgNKmpCOR0IRqGIxWwE/MEf/EEAZrOwuM7i/dbWVqEAKWDjCqbTqbw07C68efOmg0RjDoHxeGzLfZVKW7344osL6ETnzp3DD//wDwMoGuRYvP/d3/1dswSOyO3WJQCM2MvGUG6DN59SSjYfv8zTebzw8o7HY3E58m95I+zs7Eh8gODtVRuOAc9GUPJG5HWR4rDjcaHUGGA2q1uiDSiiQXGMgRuNyaqhIBxNhjJ3dmO6BV74ubgp1rxJ3cSjMnqQ1haRisfLaqbneVBesYSd+c2iQbDc/r1oqQ4saUkPOZ0ISUApgOx/YkyzBh/DuT0o4cCJxym3c6SUdlsnd1OqM2QpoRFTQc/xhEA9dISDnjmx/9EvvR8A8Nd+4Idw7WXD+b797e8AYDh2JTJLw6L5F0kMrrfqEr2VgcpzNZpIck61Mx/VaoQoMiItSwzM/YfD4YLRaDqditjI4vX6hi3PzVICGyW11mKgYnddtVpdqE/w6mvGEPqzf+/v4NIlk1PhBukw1x8MDUf98Ic/LOL3AQGr7B8ROMdsJkY6NohduXJFxsRrxRJBq9USicQVf5nbc1udTkdEbJZ03AhJlhxYahr2RyJZuGI4r0PZRaiUKrhWgaIq5BaC5fGWJYdutyvtuwZWvsbPgp+Tm0rsVmEql03XWosrmNeIA8hWV1clYpDLkCulRBJmyvP8vojCy9LkS1rSku5LJ0ISADSgYmitoFEEppC6AlETWc71ASguPpuJDjSn0NzAC6ACusZuJ2ojmU0E4z0amGsvvfxV/OUXrwIAJpSJ+MlPfgrvf/8vALDuOtbrh8Mhul2jo9qw0KEUDOVr26fOCyY9n/qs2x4cHAjXZ667sbEh18o18k6fPi1cjfXMo6Mj4Z4ucOh3fMd3FPrsNAxna7VaMgfOxlNK4bOf/VMA1tj1/PPPOUAjVFEI1iZQht1ywUTZBsL6rud5C/US6k0rHbjuQ5YKygjNnU6nYEAEjI5tsw0VPYPxQi1H7tMFqXVtAtyXi5JcrmLEnLtSqRRqOAJALQpEYmCbEbeZJMnCuPnfbrtaa3h5URKo16sL6+eCt7KdygVxeSOSwIk4BJTyEFbqmM/nyCm/VIXmodXrRtxLkgSasNXEch90EAhijRG55/M5ZnOCfyYxS3lsXAkxHBLU+Ny84Ddf2UWNio3e3DWHwZUrV/CH//a3AQCf/NTvAwB+8j/8CQDAaqOGF/7CoB6FpJbUqzX0yEDVPyID4lt35CGxkenJJ01knZ6PkflUBHNmxjqeaoQgAxvZjDRtvusvviIqxd0dI3q/4x1vx1vfYpBz3vHM2wEYhCZGJWLjX5obsfmjv/uH4p3g9NdarSYvNm/Mp9/xHrn2Z3/2ZwCAoWP04nbZc+DCaJfLrs1mMzzxxBNwiQ15gFtQI0XIKcp0mLP47qICMcb75csXZT1mMwuK4hb5BNw8BGug5I02m8bI8yKeYKPRQI+eHx8C+3tmvO1WVyL0xKA56WN1zawVqwVSeHVtTUomcxXrRrO6gLTseT4yev/Yw+9RuEO1HcAjVGxNjA9KwW5bWpcMyBWpo96iEfD+NYmX6sCSlvTQ04mQBAAtePf38nP6vr8gvgGOATE2HKFR1xiNCf12QlFzjN4bZwC7XzIuIT6H75PxhSCcXn3lNWysGQNSRLh2f/gHfwwAWO128Z+97x8AsKd/Mp3hmW9/N/1tONjNox3UqGSXIr/hc1/+qplLoJAkhkuxCO37SsRFibwb2ohANmi5WIPf+73fbcZNh/9wOMSdOybzj6Pb/uCP/gSAcWGxQY458Orq6kJ5riiKxLjF3JDX2y2HzmN1pQN+di7sFnNnvlatVsVQJoVj8lw4Ixv8XKMac96Z4wbmcTC3D4JgIb+C5zmbzURysAa/dKH02Ww+gSZjb5XSe7srNn05Tkz/fk7jOcYly/8eDoditHQjO8vlwuI4hkdZgRz/X1aJ3HGbtWFXIqUXKyUS9OuhpSSwpCU95HRCJAFl8gaUQrl+qWsgjCK/cK1atVV4ulSaDACOeoZDZ5nJ9huODLd94fmrGA4ndM+Ueq5Ak2EmmRluuLGxgbXuJrVhOMPtu6bNOM7xS//kvwYAtBpUSNLz8JYrpggqc+DW5ppEsB0cmN9evWpsDuPxUPTu2dzCorFksbFRLFv+oz/6o1J9h7n+aDRAvz8stPuZz/wJPv1pg0UgwSi++XSDV9gNl6ap9Mnk+75wIJYExNi5vS1SCksLs9lM2mUuyHpvtVqVObDEMxgMpA2WCMIwFGmDg27431mWibRnIcWOCgZBvp/n7CIy8zyZk8rYwkheNZ7fwe6e9LFDSNXc1qg/QLNWL4y7Xq8X/gasAXk+ny+AlqRpupBL4XkeMqpdUKtHhXWv1+uoVKyh8X50v4KkD6I3dAgopboA/gWAp2CW9O8DuArg1wBcBHAdwN/UWh/dowm3NSjlgfMfyhFQxgJaNHoEgY+AkIWnXCHY99FZMZF2164Z9OAXXzSGuVu3e5hMCODDqe7qkXjVrJsX4Pq16/h826SN8ub7T/7+z5l7mk38+od+DQDw/NcM9PhKp4M9Em0FU+/VV+F5f1kYb43AIxrNFWyeMj719XVjsHryySflRZ3Pp3S/Lf911DOqzdeoz49//OOygacTt04ivdmUnlo30iza7ba8qC4aMBNvtMPDQ/FilKsBA3Zz8mbp9XoLyVB8KIRhaAuNUFu9Xk/mKUa62Uz657Z487lIutxGENgUaBc7kMfNqoobxlwukaaT1IYGE3BHPJtiSNDKUgqO1MfRoI+Iw6jrBPqRjm35MQdmnftxEYUBo+rwPFmFmk6n8FAECXGjCXn9pByZ5zk1Ec09aZJL7MpfRSrxBwD8G6314wDeDuAFAL8M4GNa60cBfIz+vaQlLemE0uuWBJRSbQDfC+DvAYDWOgYQK6V+HMD3022/ClOj8Jce0JYTN318DPSDTraQIvx8B6AioQIWc0o9znIF5VGCh88lvzSSjDmHOZ0feeQyhkPDaa5dMxF3V18yHPidzzyDn3//z5s26OTu9XoSNcen/t7uoXCHS5dMNBm71VrtptRLYK41HA7FL88++zg2YvPHP/5xEW05gWg2tT7nKLJGqXUyaLJLLGpWaZ550ddM13gtedz1en2hEjO3NRqNFiDBKpXKAua+i3TM47Zc3OLs8Xe1Wk04I3+6Yj736UJ+cR9u3L07JpdcbESZZ9XWYUhJHN86tWGRiglYhXH8/EBhMi1iGGZZJuvnSjVMbtIPrye37+IaBhVb/ARwqhPXVxfQid1U4WKRl78aw+BlAHsA/i+l1F8opf6FUqoBYEtrfQcA6HPzuB8rpd6nlPqcUupzPOklLWlJ33p6IzaBAMAzAH5Ba/1ZpdQH8A2I/lrrZwE8CwCXLl3UHIghyQMlbh/4/oIE4HKyUA7/HNWamRafoswtgqCCMKTTNjecJk9SaCr2aPW/Q6xQlaODQ+Ny+9//j/8VgMGa53afevptAMwJzsUqWVe99MgjYgxjDnL1ZXIR+gpf+pIBMrl92xgSb968iRnZAgSoIre4+Fyznt2YtVpg7Q9j4nJhHUFgOH+PMiPbJPHEcbxQQlxrvVBRSGstHF3KrFN+QZqmMnf3Gbhlzdw1SJKkEPTj/sYdhyn7VuSQ5TRpoJjeW477d3H+y4Aj8/m8UPcAAIKoApRqESDL0CBXX87SBHHgiu+j6aRsA0Du9MnkZuy5EhdguD6vEX8qpRCqSqFdd/yuxGDJQRkG4IUeoGxpefez/Pdx9EYkgZsAbmqtP0v//jDMobCjlNo2g1TbAHbfQB9LWtKS3mR63ZKA1vquUuqGUuotWuurAN4L4Hn672cB/DP6/MiD2lJKLQQKlU80N466XPgSAGYUyNFotDCk0M8XXzZw233iTFoBfkA6JNUa9MMItZqxBM/6hiNMpiMcfI1cgsQ93/Oe9wAwcOBnzxu48Nt3DYe8ffs2/uQzxjX3yU9+EgDwUz/x0+LuevllE6vPwTFPPvm4BK+MJ1bPZC7CwU0Bcb5Go2EhygJ2daUIfLagGw5Sq9UkX0Hi83PDAbMsE47kAl+wJZr1+p2dHVs8tLTO1WpV5uAGC5WBNThAKEkSaYu5rVJKJBJ2k45GNiuwrNe7+r3FSLD59Nyu1rpgY3DJ9/2Foqlu4BPbGrIsW6jN6H66dgoAyD0793INyDiOpX0LPW9zXVxrf2fFvH8rq2Y9CuHUYdGOcxxXNyXjv3FYMaY3GifwCwA+qJSqALgG4D+CkS5+XSn1cwBeA/BTD27GJkDczyBYNo64UWJVKs00G83xta8Y1+DOLbMh4gkBj0zmSH3z92rbIu6CjCrdttlgg/4I0ZgLdJrv7u4YN+Op7TXklKcwnlKiTz7GV0i8J80Cf/Lpz8pLk2Vcxsu8bDdu3AAXkW21zLgPj/bFJwxFPmFKo/b9AHWKYHNThSVJqGtesiiK4AdFBGKtOe1ao1plkAvzolerVcc1N6I1tZuON+vwyGz8ZrOJOqHfKnLJJnkCn9y0e3eKUXmh8lBrGbdduEqp3tlcnrUUMokaMpcmzdM9sORwpIM+coyLa127wep1TtQpGhkHg0Fh0wHAxPOQai735qAU0fkSEc4/v2tZniFTZGAmoy4y65rj8XIMhFJKDgRW18x1in9I6YANFFbXzRxWV9t2HCimCD8IGISBSF4PvaFDQGv9lwDeecxX730j7S5pSUv61tEJiRhcpPsZM44zftg0Ul3AlgNcDD694OIyOQtFkSuKqsgzNlCaa12qSFSv11GpMj78iNoC9vaMAdH3mJNlUnmII8E6HY4ln2I8KQa7GNGvKLJyWvVgMFhwibmx5K6RieclkGNUcandbouhkqsfeZ63AIvl+76AnzAIieLa5E5f3P90OhWXVplbmZJt1cI8EVtRnucbBNbIWS7iydKfO6fpdCrr4UYpllOwWaxut9sL+QfHGRcrlYoECXFbPA7fMUxz+57nIQy5ZLhZd1ftKee6FFGBzafJI7Fl3nm8hTVDCfLuGHrQ9/ejZe7Akpb0kNOJkASUKsItuZ/3IxeX3fPYzTIXDnbtmsmb5xO2VqvJ6S/6N2w8viL3W7fTQCVgV4459R97zFQnOn9hG6/eMCjAARkX744PRS/n7MThqI9anesI2Np1gCk5vbm1Qe0bztFurQqn5uxDnVqjqAuVBRThyJj7uAFBLk49YAJQ+Bob98bjsXBLrll46dIl4XRsf3AxB5jr81jDMJR4eakyRL93g2lcDl++5qINM7n2H76/DFoCWInEBQ4tG/VczAN3HRnIlTk16/PuteNw/OUZTGLEfrEepKACKLUQvlyrRTIvDsBaXV3Fqe1iXQXb1uJ63IteT70BphNxCGhd9De75Io5ZXHT/Y4f4HQ6l/j6MjTzbDZzsO4sFDanjSYkquY5oMloxKLZY48ZQBA/SLG2bl76w0NOf61hNChCZhuQDNMvJxC5xi4+EHhOYRih0yki+tRD87IHQbDwEjSbzQWU2iAICpZlAJjO5jTGhtznouuwEcpN9eVNJ4cnibyrq6sLVYnn83khBsAlz/PkgJLiIr5eKDSSpumCOOsi6vB9bs6Be9Dw2vIGd9F9eG7HvQvlEmwAHGNusZybOw4mLk0HYAH3T+scDD3NmIFZljjJUGb9Gs1IrlnvkF2LMlrSvaiMQMTPX2u9xBhc0pKWdH86EZKAUoSieh/Rq/x3+d8scu3vH4rYyGTj4psLLpc0TdHrGVExDAxX1LktHcYuMxZ502xs/6byUXfv7DmiMEsHHetP5ogxOvHb7TaytBifPxmPLAfQRXgsV43hE14pteCjzrJMjHpi7KoXo/8K43FcbS5GPv/N4vVsNJR/H5ayJUej0UIGnWsQKz+zeWzx/qQgiVILEoabSszk4hq6pdd4TlKw1IntB4xEUB5Ht9uV+13VoxxV6baxoCKo0IlYZD8+SYRZLLBiDBaS6xQpGZzbHZbAOgUDqTt3VyV+kLhfNqy69y8lgSUtaUn3pRMhCQBvXBJgnTZJMsnWOzw0EsGc9OJWq5hdVm6HucCgP0RUMfperdoo3NtoNHDYJ/BHPqlVjpAgoipg+KqZY+ApSgSz2UwkAeY05l6WUsh46VmE3HIk3Ww2K0gAPB6Xu9If8m/u33UHliHH3ExBaZfy7d0Co8yBGRbOHZur05YNvK7Ry/3ObQ9wSpM7wUISuJNlC/UM4jhegOXi8aRpWpAieP3KklqWZQuBTK47sGxrcMefpvwMWBJIyS4AKG2fT52wCBhROMsSeF5R+jnunf96DX9lSfdBNQmApSSwpCU99HQiJAGlPIRhVACcZOwnVz9yOQFg9HX+my29+/v7C9DTnmd1vnKwUBiG8CnzbjaiGPxKDapi+jp/yVS90XRPnANRzQTbtFocrnuEqbpL4zY6dppGSDRLDLb6DgDMpvMFva/ZbDo592Q1p6UIqjUbqMKZaZ6P8aRYANT3fficYUafNYo9H40GwhkZuShJ5sIhmVnE8czhshTEomzQVTox4xgS9kKz27Gutdzqz7zebsYiAHh5fmzJ7nLtRDczsezeiwIl7tOEcwfyHCrgwB0K8KEYYD9QmE+K6eqpVy3UATC/qyB1OL8ZB7muASQ52T4IfDZR8cI7mVHmZ47cup7Jc3Dx8qOCJLW6adCaoigCvCK3P84mcL+8GuMaLkq5XGuj7LU4jk7EIaC1Fp9yuejIcQYiJleF2NkxEXu1Wk2w/VgdcNNTrchoxM00TaG8IqDJysoK7pJbj33kNqUzFP+8r+wGpupmBfdaOfZB8BC73QLwBmBcU+5DNb+zvnXeHLwe/X5fxuGKjPeKUkvTdMHt5YJtuBh2vEnLEYxJkixU7R0Oh2JAZJWMDzs36Usq7SJbiH50Ix3///a+PUiT66rvd7u/9zevnZ2Z3ZmdfUq7klYvP5AsCckQbLARxsYgquxQYBIClRSpJOSPYBd/OKkKVZBQhKJIAa5AMCmwMcbBjsAxfgU7jiUsJFvSSivtrvY1+5qd2ZlvZr53d9/8ce+59/Tt+82sdtnRwPSp2ppv++uv+/bt7nvO+Z1zfoeHtgDlJrhhz34/NtdJwC3Pkeh0CNTNZtFx8hrXfUjYAuWS3PCyaKOEimHGhOcvMi2s1EpsdnbWZI3ybMXQIR8hkVKmCujcueL7DeIg5HkWgyR3B3LJZZvLlrAESINxkhA3T9sHlvCw14MPKt7/s2fP46lvPgPAah8OClnKJxsitI0g1Yod9S0nPYXc7jfJMe1M8kqpVMqGAwuFzH6kyTgARVqu1+tlykwpWzFJErONyEVHR0cNqMfz810NxvPVXTIPKaXRbnzcNL/kVnGtRefiRKB0DT6KrQxQKa25zunIuFvE9+fzYkC9XoQi0tV7SZJAaNZoSZV6rLzWaE9dvlkQhVSeP10LXQOfNxKXtozagfFrT1ud6pwUUq5Wq8yCYRmdgR/049YvDw37gL5BwCG3rgdJbgnkkss2ly1hCUgpjQ/tpgbz9FA3GQWwmuDUKUUI2mza9tLG79YL6thYyLQa85O05iCap163ZQgyiECUJ7j0+to3Zas+aVc6Z2O5zXx769/S/+layFrhVYGknSlUyBODyO8ulUqp0BbNC82N8cEZ2YWr4VXIKh2e6vV6xvpx05KXl5cxOzur59mmPXMaL369YRhmePYJrANsqncQBOYzXZ8vNEcAYbFUMcel/RXdehpUJOGAMEmv1zPXznELt7KQ10O4xy+Vi5n5pqpCwOJJ99xzDwAiXbEWF507dnAWX1iQWyHXQyHGj7WRJbAlFgESHxDCSznpxvsekAMHDgAAWq0OrlxWD/HZs3Op4/Ne91FkO8Ymuk6g1+mZc3acWLAFpbqmVRUfK281BQBJYhF9F6zj7gM9nO1221yXNddtTNu98e122/Ir6gc3CALzoFrgMTL70HF5wY+7UAkhMhlsxFZUr9czLce63W4GGKQ54EL7TE/tzJT1JkliXAMS2qfVaqU6AwMqMhIkamzNjj1XnNjFkM9BGIZmQeVKxQXTeE2Ci9DXarXMPej2OpkXl5cx0yLAgVISzj/osgb5mLO4+BYJF8TlwPNGxUe5O5BLLttctoQlEAQBhoeHU8CgW1UWBEHKZAbUqueGlAALOBnzTZtg3NzjQN5aU5mifa1UyqWq4SKkY5DWqterkHrtLOsY/K5du3DpvKo2pFWXt/Ny4+K8qw435d2xdbRlwsEgHjIl4gvOkcfLYdUxlOYeHR3NVN4VCgXzW65B3L4DVHJbqVSMK0GlsI1Gw5jVbn4GB2Kpi1HI4tac65AsDNdE524MmdwyKKJWTd/jIAjQ72kauYha0Q+bcbhav1wuZzRuuVxOaWiaD/q/mykYx3Gq1RkAjIyo+ZydncXs7Iw5Lp2Humjx569QzDYgpX3ca+e/JRGsbNnN3qTw+3qSWwK55LLNZUtYAgICAkUEQhpOBsryIyBF4QXpcKFEhJomhFxt6Hz7YglL15Q2LIdKW9R149C1pTWjHQqkkZIIZd3zoKv950q1hOaq9qUD5Ud/8X99HQDwxBNPoLGqMIeWIf0sYI0AJF1NViwFhqS0sXJNj0ONp92RmXAT1/YioNx3CzqFYTrc2Gq1TAiKQE4pY9PvkLSVtWCGUwQjgCJAjaKV1Dh4nv3qqgL/duseDJ1OB6N6LqFz5UtBCKk/F/TNGx+12IAJPervulGS7R4EgTXdUSmSa6nv1HUQsGp7HPoSn1wiFR7uI6vG8DcULAZR0VhJt9dm5yWtL8x82+xKjRdEXbTbulegrgkY0eQy+w/OGmvJVxNgwNNCCYGg+54Oi1NnJACGWXqQuFYyCbfGBsmWWAQkspliEulFYHh42IB5NJndXtvEzY+/9DIA9aAeO3YMgGXQoZswOrUbjYYyWaMeZcp1TYORSC8yc3Mhrs6rbMPJKdU4dNeUShX+g4//Lh55VNGPHz6iGIxKjQize/YDAK7Mq262om+zuFyqat6Fl4Q/IBacynLw0UM6PDycyXjjFN8k9OCS6wDYB6ZcLhszkhYoDhaScAZdFw3nRUu0H39BfU1CSMgF4G6JW7jD8y14HoILHPMIAKdDd8doXLM4MPsZ4pN+L1V0pI5hn8uufmYMuJz0zXHvvvtuAKpzM6DcJTfrlQsfmzvfnCTGBRwHyk0wC+XuQC65bHPZEpaAgIdj0GR7qVVSFQhZYA0AiiXbd2BuTvUFWFhYxOI1ZR0QSEOr//LyktGIKzrZf2ioZlbxnZO6sUciMTqie8RXFeB39aoyoRcXl7Cyon7bWNYx+2IRhUBTX2n8hmdqkUVA18jDTVyjuSEimajvKpWKl2aKg5BAOvToi3NbDUM5AR1Gu2VdCjsmW0JM5+FgHh2XZ7Pxv/y3huW3WslkgfIWYu618TAwt0J856LfkMvHqcJcwC9O+iY0nEi6lj4oUZCuHdCUZcUwkydQLBZNGHDfvn0AbG6Amss05Rff5svn9xGDuOMeKLklkEsuudyobAlLANqf46tj4qyYKkNOLdOUvPKlL/+VwQQSrYKba20D1qzp1t6EDSRMG05OKrDrjjsP46d+6ifVcRcUlvDqqyfx8nFFVkp9BH7kRz8IAOh1I0DQtKmxDY+NYXKnCoF1WhrgGrVakIA4upa1tbVMs1ReRWiy5rRW8lXvcd+fjtVut00FJc3LHXcqluSTJ0+mMAlAhfdIf8TU+oxpvCFdKl0S1koz802dnyoVo3ECBIrcAAAgAElEQVRd/z8Igowvy+sEKHmp2+2mahGAdPiQPhPmUK1WjS9O546iKNWXgB+j2+2mfqvOUzQYE5VM12qWZLWtQ6s2qUuYcCsBtjPT04bAhjAVbrW4GAUXbtENqvLjyXPrdSASQhir5nqyCTNjWffbDUQI8QtCiGNCiBeFEJ8QQlSEEAeFEE8LIU4IIf5ECLE+rJlLLrm8oXLDloAQYg+AfwXgqJSyLYT4FIAPAHgcwH+RUn5SCPE7AH4GwG9vdDxKnyQtUgiz1X7UVpzy19///vebFf7MaaW5z58/b33vslqdFxcVDrB8bclozZ0TStueO3cWJ06qyMKdRxTCP1KfwJ133A8A+M63XwAAfOVLXwAA3HvPfZiYUtq211MapHFtEYmuJ2ivKc20uLTKqhMVQk9aq9frGUTarV+nuVBicQCXurtWq5kQFB1/dHTUzN/DDz8MAIgTIhItG+T69OnT+rj7zGeeIESkmYTBkKysrBgrhWtdmlNL+27bkRvuBUoD7lmtz1txEykMaVaSTqdjrB63ghGwiVJJkmT6HnAE3g3JlkoFJEmaDi1OImZ5pjGqIAD27lUEM7N71f2/8667MlqWRzVc622QXA912HpYAq9FuRFL4GbdgQKAqhCiD6AG4BKA7wPwj/X3Hwfw73Edi4ALDllGFDWRKpxlc80B9QDQQ3Dk8AEAylX434UvAQBe+PbzqWMMD9dRr6uHl4NSxE784gv2YaOH9sD+2wAAK7rh6IkTJ7B/vwoN0sN5+fJVnD17FgBSBTNmQXOyuBqNRoZjnoN/JDyrkI5FGXX1ej3Tz77T6eBtb3ubvlb1Yp6fO6Pm58gRUzNApmuz2TQvDi1Q3C2hF7PVVWYwz7KjxWtyctK8/G724fLysg3n0qJXKmbckn6/b/o70F+an0ajkWEWXllZyTRekVJmFxwWgqRz0bZOp4OEuP9AmYMFxhpMZCJ2saauwbQQ8ixWusc0nn6/n8kAHSQbvaT8GNxF4L+7mUXght0BKeUFAL8G1Xn4EoAGgL8FsCypcwcwB2CP7/dCiJ8TQjwjhHjGpQjPJZdcNk9uxh3YAeB9AA4CWAbwpwB+0LOrdxmSUn4MwMcA4MiRO6QUAgGzBjKkIkHB8LdTLQAPmzTX1Kpbr83iR39UAX0//uPpTKzjx1/Ey8cV+FfULcTqQ1WgoqbhT//88wBUw84HHngAAFDTWnPXXqX9L126gK/9v28CsF1kms0mri1foHnR4w7R7erQmgYXh+pKk3Q6PZRLNT0Ode7h4Tr6uo9Bs6lz8AN17tW1FWMBLC6q78rlKnbv3g0AuHBBJSgdPnwYr712DgAwvkOFOG87chcAYM+ePSYMWNAceYuLC3jLW9V1/t9vfA0A8PB3P2IAsAsX1DUtLMyb+T506JAam+mcVMSuXfcCsBRvVIo8tLNqNO90ZQoA0F6LjdVBYbW5uTlzXKpTIHDy/Pnztv8B9SaolwHdJrxas4Aiae1O1zIVA7pUXReGlMrU5jxKtWgHlMlPVkdATWp12/UHHnoYu2am09derhhyRqHd12rdZiu6FZqcbo2DpzJO7+eGj/l8SKn+qWMQaBkgDNLAIT83VVcOkpsBBt8J4LSU8qpUOZafAfAIgDEhDHw+C+DiTZwjl1xyucVyM5jAOQAPCSFqANoA3gHgGQBfBfAEgE8C+BCAz250IMqb9yVEcAJKdxUtFm0HmKhnE1DcJB0Kn9xzzz24487D+rfquGfPnsVyQ4UQb7tN+f9JkhitQ761TWsWLLGJkT4U00QmpVLJAJmmsZD+W61avv+6qJmxRjomSJopDGx3HTou+b2NRsNU7dXraowLCwvG36/OVFPzx1NtaR8hBM6ePQPANlydmZkxIVVKfDl/fticm4A7muOxsTFzvFKJGmpaOjXS4nRv98+OG21LGEWSJAYLmJpSFgNhFfPz8+bayd/mlYW0LYoiYy25rdJ9VZtBEJi5pPvZ6dv+Dvv3K5B4hwZfd+/ejTE9XpOuHfUGgno+GjBO+sktgSTx++zr8QVw4e+OL4lqI0zihhcBKeXTQohPA3gWQATgOSjz/i8AfFII8R/1tt+7nuNRnoA7Sdw9cC+GU5RzdN3upo9l4vMtVpSjHoaJiV2YnFQx/iOH7jPnohcRQh3/4O2H9Xlsq6q2pt2+cuUK2jpScPmyoh7v9vsqpwBAHFOsl4qcqujq76j8tdXqmAIpapDKATGTD6+Ptbi4ZF5Iuva1tTUzbnqRe9rF2L27Y4CtiYkJc527dysT9+j4UQDqZaLvSQ7qLs9BEKRqF+gvAYP0O3qhebkzLViILfsRbWu1WubFfe6551LfDQ0Nme8oGnJt6aox9SlKsbKykokicHITN4eh0+0yghmd8VgIzZzefvvtAIBJvShVq9VsA9ggG/1ez/QHspl/UsoML+R67gBXcrzs3n1feAbuRtmGNxUdkFJ+FMBHnc2vAXjwZo6bSy65bJ5sjYxBLbxqygUGpbQ88TyP3uzXz5KLWDIHbVbLyIBjZEaOjgwZ01xCaYtarZxpUU188XEcI06UximVlfm5a3oa+3U4TejKv1MnTkJjShgeHtMj0lz9Ky3Dl29CikKCQpm2Eak65+qqzTnoabBxcnLShPDIwqhUKibcKXRb7LmLqqZieXnZEHsY87fTMZp0aIjcnn6qXJnvXygUUkQddO6pqd1mnIB1TzqdjnERymXNlnx5EQsLC/q3NqPu5ZdVrsaePXv0PVBze/Xq1QzHoJTSWB9kHdRqtUypNH9e6DPPYCTLgZ6nnWOTmQxAX6zftDkrhClt7IrLQO3bT1U/+l9Dn0k/yBJwf/N63IG8diCXXLa5bA1LQK9u3W43Q8nFOfVdn4mv6mk6JX8edRDYLC6ZaD96tYdKRWkuCUrgASrVdOJLt0fnEigUdf55QefA14dwz71Kc03PqLDX4sIVLFxVfnmrtaavSWnY4eG6IRyxpJg9E/IpOuQVURTZ/HNGckEam3xfThI6N6dIVsta0y8tvWLarS8vKwui0VjC/W+6V4+DQm3CAFV9bV3RuYeGSgh04Ic0sawJs40iUVK360pioK/njf4uLCxk6v157QDVJvBEItfX5/UEvG8CbaM5pe+klMbioe+WFhYz1sHRo0cN/lEb0rUAjHS13UuzKfOaABcv4NRghDlwTIVECIEkSofwfJqbA4OudeLbn1vEfz/YhjUgyMEXulCaaH6hPtbWPrshLrBCL1c6884i5LZ82YIp9CBDg3UUhxWBRBTpqENC5wlNdGBslMzTislPkImNXNC1kZlMD2C/37edbZvEWGT57cw1S3sMvrjRuAkQpPHfpl2AK1euoNlU5vT58+f1GGu4clm9dPQil8oFlErqpaMMTQ7M0TVbWvSC2UZuzJpOnVaAHxVxLelj2vvEs+vcF8tEdth1Gj7BUKbKimmu6EV3SUh4tIdzDdIzRkzVMzMzmdRkwZ61DGtwkm1QwsU11we9jG5K83oZfrxEnST1DDu/vZ6U5NwdyCWXbS5bwhIQzLxzgROX7onvw1c9zlJrv0+fRxV1qM8WcLThlYhZEMVKMfVbKjtNkgSBRvwSyh0IQoiCOkZ1iPog7DNaau68yqSDJq8YHqp6CCrKKBbTrlC3pzQ370lQ0CBgtVpkFF+6kKnRMGE60uyvHD8BABgarhkXgbT4ysqK4SSkOdu1e9Kci4A43u+B3AD6y8O0BBoSOLm2tmZAQGricvXKfKZ2oFgsmjHZ/g5WY/PeEwAQxd2MdpVSmrCiW7glhDDXYiwYIfDEE08AsLUAteEh23OhpM1vPQYhBCKZbfZCkiGEYQ8fWShCiExxkxACSZx+5n3PNw8juqHHmy0gyi2BXHLZ5rI1LAFkfRcX9HBJR4D0qhjzlY+OJex+gE6q0PUHoQ9Miax2TiLHlyIwho2pyBheY6ci7fbDd6GxovzQK/NL+lrUvp3+GvPjNYVXbLPPmiu63ZZmGBYIIJD2i6OokVn1e70eLl9Oh73KVZ08tNTIsM72owALi+oaCOQMQpudaAhGS+q7hcY8xsbG9Vyp6z1/4TxKGlQsakbcZ555FoAqqybGYrIIWt0V41vzbEzXAqSxlsvlTDJNEASZhqG8twD9JcuAZ9SRZfndb38Ms4cOpI5bqVQsDuN51uiJod4BfMy0jZ65VNhO/zKJE4Q6hMzrX3ifBpoPe9y0hg/DIPMeqNb16eaqr0dySyCXXLa5bA1LQAjTYNPVCNw/GmQt0DFov0FI6aC0ZPpsEGEPP/x6fpqPKmpiYsIkvryk6dDNCi8SkyKcMLJQ265chSejnkXP6be+Bpn0XafTyfjPsfZjO52OSYAhHzhJkkwzUUUqkm3eCSgMgTQ7WQKXL88jANVvqHFQCHJ58ZolGC3afgg0XvLT+fncHHnVcyFMfZdI23yUh1FdGjeuRd3mraOjo14/nuf0vx5Zb39fog//G3hS5N3f8qQ5HjkBiLtgMP3YRrIlFoEkSdBqtVJFF27Ml4eRSFLuAGOwdSeauxbuNn5OvkCsB/S4N1xKmVlAisVhUxZLQg9/IbT5CgQWlsvFjInLx+Orm3DDXjzeTi8MlfXW63WzCOzdu1efs2zKeWnchw8fNoVDdPy17prZ34gGs44fP46zZ84AAM7qugky/REnWG4spY5fKNleB/TSEnBG4wTSrcx4KBGAaTgDWOKTOI7N+NzWYFEUmXoGuieHDx82YDIHIdeLva8n6+3P+0O4z1qSJIbncb1FgCscl5k7DEMTzr0Ryd2BXHLZ5rIlLAHuDpC45jdfRX350W6SEf+er5icVoz2cTOw0mHGbHjFBaq40LZWq2Xy0Inbj0g6on5iQpUUHiqVZIYCa7iuNFW73TbaijcVdU1cABmtGbF23WQlPPbYYwAUcEaaka6pWq2aOTJZdlXLCVirKaCx31HnmZmZMS7NmddO6TkggFUiCNOZkb1+3xyfgEHAhngpvMjDiK47wFu18249ZGHQuHliEvFSEnlJrVYz4+ANQ3lC10bCQ3O0P69qdQE/n6sqhDCxbJ8b49uW6dHBLFEfv+JGklsCueSyzWVLWALQPi8niyAxfjSrMPStrLzJJQeLaBvtT8KTNXwYwqBUTg7M0KrLe/qRJq5UKiacRjRgxleWsSUaCbKax62WBJBJplpZWcngIXEcZ6wlOtb4+DiOHlWcAZQf3+12M0CcD38A85Op5oH87rEdIwiE0rLTMypFmXo79todSKh5CXVHn3Jguy9RCFJRg6XBLt5M1MVxiqXAfCaQM4qijDYk0pBDhw7hPe95DwDLdYAwSIFt9NfUiuj7yDEq10rgIdf18vd9WBPX1IV1egq4x/eB22EYotttm898bEmSbNjHcEssAgK2LHhQ7rMvA4rnlftuCJl5rqnmfnbBGgADQToprdnOc8ldQLPT6ZiFgcpd6YE9e+YCiErdFN1ImydASDoxf/MuvJx63L25vMjKuDiaK49HK2iMlUol8yJw8NTw2gX2oTPXrKMOUdxDr0Idf2kB1/MopMmNoO/a7a45J6dbJ/IRenF9YC53I8hl4pERd7GnRe+BBx7I1BWA5Q7wa3eBOBLfsznohQTS7dk4oYmrtJIkQaGc7iTte9Z9io8vjq6LwJUcnX+Q5O5ALrlsc9kSlgBgzdBBOdCcJ44kDMNMqA0AJHG20Uqp8+jDAgv9Bfb4ArTK0uqZJZCgjLAgDLKmnxSmaq9cUhpntVVFk0grQrXSj4zu0OOYg9Rt00KdFVgQBQSCylH1ePTfREr0dDZjqOPBYQEItZaPdbZYoVBAos11U+sAZX1cW1pFrBucJlIfIwjN/hCUeZkYoEro84eCtRPXFY6UJVgolCBG1XEP364auz7/nZf0vMSmsavRTEETlRL1YaCS3yaGRxTg2NP1EqTlRqoj5r7QvPcjiaKe50BnKQZhYvL8Z/ao5iDveOe7AKSbhMLcW4FCIavtB0kcx2YcdM+4q+JmYwZBYJik0y3k1TnKZba/sXT0b7nb4ea1IDHZhqbCUYQIgg1al68juSWQSy7bXLaEJUB+iw+44+CXC451u13rOzLt7UsS4sca9Jn7gT4Qks7thmG4L26pwarGHyZgkLTzqZOvotvu6OOm54GOpwcEACiGlpyTtEuv27ZkItKGAaPE+rf6g/eaaR+zH8Nj3fTzYtlyH5gOPpHN2KP5oPHQWEWlYnoYED4yOjpqvicCEf4bHq4D0gSfdIx2u220O2cbJsbkd77znQAsmzEHm+lzq9POJKTxcDFPUiNxMSb+zLohRR6O9vnzXHyJYABZH9Kci/b1ZR0OCltfT4hwSywCJBzo8wEuhhXWEINYpDlgnXNdINCNtbqffTfLXUg42QXn3ANUbJvi3CamHRZNme6IblIyPq5M82/9zVNoaeKNfl9zByY9VDRnIaUNJyzKYZtPkDlZtuXI0rLfCOMJ6fnTL/DU1JQBKPlD5i4C6iFLz9GKzuwrFovmOgPYhTOO0qg88TMmUYSCjgrQS7u41MgAZv1+fyCYyxmU7QtazrQ+e9vb3oYf+7EfS+3HF3X+Mqs5rqUWBzVnImPW85fPPS53B9yXkOdx+J47N4rDP3OWIt9L7ComKbOMxXxR2mghyN2BXHLZ5rJlLAHiTndDM2TuJUniZRs2v48HZ/b5ikJ85j2JTyPwVdc9/8TERCbUJoohEk0/RXReV6+q+PnQ0BCWSyokFsfanO1HqXAXACTUCotdGi8gcok1wjAECjROfU16jDt27DB5+fRXSmtuStjxu5YUZfa1221jCfDipqbWytSU1fA9hqHxRmiMQ0NDqfAYoLStmx/AtairxQuB1dA/+7M/C0CxFLsWH58rV8umXCEtXKPSb3ncnTcuoe98ITm+Dx2X7+N+7wrX3K614nMpwjBMFaLxcxWL2ZoUV3JLIJdctrlsCUuAgEFfJxWeaOF+l/Z7suW/rviyz3wagZ/DTQIKwzAFJA06nwLM1HZKEiLtzDny6RJEIlKrNwD0DddpkvGZO+2m0eg9Db4FQQCyaYzPqTXD0NCQ0eJ2Htl1pzROWnP1GFkHAYNCh8uq1SriyJYaA1abF8MwQ1/W7Vuri1t2PEOQj5+Db6YNOfq47z7VLYpqAQBrQbnMvz7futvtZolD+didBBuOE/lKj93MS1/bvEE41PWAdxuJDyy8XtnQEhBC/L4QYl4I8SLbNi6E+KIQ4oT+u0NvF0KI3xRCnBRCPC+EeMvrvJZccsllk+V6LIE/APBbAP6QbfswgC9LKX9FCPFh/f9fhGpNflj/exuA39Z/NxRK/Bm0evJV17vaeUKE7l/Xt3SPQZ/jOPb6f/R/X9TB5RPoS1vBRscglHvXrl24OKcqClstpb3K5TLiyEkp1UkplXKZoeW2nbbbIahYLAJJGhMo6nHV6/VUSrO6JnvtxI6lxpquSSCNybVyr6PCgXNzczhzWlUPzs+rFuam7oLdT1+tBu8pwUlN+NzyCIZJd67W8O53vzs1Vzyl2RV+TpJiuZSpAExFS4DUd/z8/FoGhQh9JKSDMAGfhbHeb10JggCJHMyhsRE3woaLgJTya0KIA87m9wH4Xv354wD+D9Qi8D4AfyjVyJ8SQowJIaallJc2OAe6nX4KIKLMNP5ikvkbsD4CdIE8d9o3mUB6Qvji4k6S7wZycRcBbjoattw4QaD55Oo1BaxR3Lr35jZefP55fS4dBuz2TLgwXlOL1U7dKFWIBNQYVa8LaLdtQ81eTNl+EQolqjtQO66tqPDexPhO1CrV1HfFQsjmwRYhmcxJfemRaawaA7rDM2WtIemg3VrWY9Psx4wZudfRmY4GcItgOfrUIbrdPsgobTZtE1YAWF1dNnn/FGac2jWNHeMqEzEs2PAkkfZmzG8hjLtjQ8oB2q100U0QhJYP0MlEVdeeDhH2ep0MkO3rFeFTIHyM/S6xRmfrYOjpozmT0jIz8UXddDbWfwJBXIYBhnUYdZDcKDC4i15s/XdKb98D4Dzbb05vy4gQ4ueEEM8IIZ6h4pFccsll8+XvGhj0oRFe1ENK+TGoVua4++57ZRiGqQwpMu04oQTnvweoj0C6tNUX3uOAm2sWcl5Dn2vgS+pwQ5W9Xi+TSFIQBcP71uprmi4WSuPjBRRY2On0zPEAm1E3MzNj9iPSjVKpZNwBAvyAbAksafhms2nm1oTwEGesJmU6p62lXp9x5GuN0+urMS4sLODSpUupeaHeCKEoAMiWXdN+ppUZC82RBcArMOna3/ve9wIAHnrke4x14APyXJeSZwLy7FB6xriZ7x6Pu3zuXHH3wwV1+fnXyxIMgiCT6LNe2XAcx2aO6HemqS2yNQxE3bee3KglcEUIMa0HNw1gXm+fA7CX7TcL4OINniOXXHLZBLlRS+BzAD4E4Ff038+y7f9SCPFJKECwsREeACh3jVZa12fnCTRuwocPZOLCyUcBv59G1Yt8P54wwwEq+r+bSMLzuTmQkyTpWoBC0RJhWO2jwcBuZM5hiDcDm5ZM+xOuQBaBe52uVqnVlLZaWFgwpKNErFEscUwAZtxkvNE1mVBkr4fGstLejRV1/nPnzuG1115Tx9NaMNaViTLJUmEFkJn071KpZMKLZNXwZqFEDfboo4+qeS9aa8KEMXu9VFNafnwgm9bbarWMNUa/K5VKmSalPi1urYmCN7mJ/+Xf+b7nlsB6FqnvOwK6y+VyhkDHB8QOkg0XASHEJ6BAwAkhxByAj0K9/J8SQvwMgHMAflzv/pcAHgdwEkALwD/Z6PiAegCTJEl13zXMsvqhKJVKGaSULxqcgtp9IX0mPb/JNIE+rjlfXUHF6RrsMxWLlbJF6EP1Ukdx2tznUqlUUC6r/egF70XKzJuYmDDn4hx8NCZaNNrtdoZCnObl5MmThk/w7rtVyW+rvWbmlxYj9RKkr4XPI+ciBFRuAG8KCsCAa+rlCszYACCBYKDfqjkG1QC4jMGzs7Nm0aJtEyM7M66Nr+6ER4NcevhSqeRlj/Jlj/K/vu/4Ofn/fS+u6zaGYWi6ErsA9aCsRh8jkrtY+J7NQXI90YEPDvjqHZ59JYCf3+iYueSSy9aRLZExCKjVrFgsZsw8np23Xh71eo1A1svn5p95jvV6JZm+1dmXkUaWQKmQPv/OnTuxf/9+AMCxY4qAo1wpm/CY64IsLi56r8EFx+I4NpaAdY/U/q1WC6+88goAGCqvStWCi6bqUAgTIrQtuQJzTWVNBEIt0E+cOGHulWke27fZf2GYpmKLe/1MM9YwDDMNSWkObrvtNpNxSWzNhVLdWDC8Z8Egk5hbCSQ+Vmoe7nPvMc8dsZZGnDoO/44LVVUODdmGp7zxaiFIP7scBKTjcSDZ51L4rI7rlbx2IJdctrlsCUsgCFS2F/fHaFV2200BafINt2KM7+vz591j8P05YHU9viDHKNz9VKhSrfrNNeXHX7ykWoM/9dRTRlMfPnwYAHD65GmjLV2tyJmFOW+Bq8GKxaKZLwteqkSl6elpsx9p1KldE6ZCsFxWWrzb7Wbag6+utc3//+oLfwkAOPWaankeRz1jrZV01WNfU4RBSnMtnA/Bzdzkuf30DBARy3333We6JM3MKNqwKLHcEjwkyvsS8Hnh2pNko74CrrXiHg9QIVZe28LHz581SnLilmYqpBk7lhcLN9I5CTPhmECKsXidepacTyCXXHJZV7aEJQCoFazX62XCb4QMt9vtjN/f7/fNqkhhLC7u6h9FUcZKSJLErPpuiGnQON1Vn28zOESQoB+lIxwHNd//zvERfOHznwcAXF24rPfvIU40dXdRaTJKKY5je53ttsUvaD5s78AW0+xqPlYbKuFoYV6C2qH3+8pH7bSq5hydHqXL9tHuKe39/AvfBgA89/S39O/6JsxIvvj45CSmplTC6PHjx9XY9PT1+7a5aUun6HZbbVNdyXUx0UHsnFDHOnznXWouKjVc001QR7o6BRmJuVdkCQghTPKRj2Lbve/9fj/zPPHEMXomOIrvYg4iyPIfkHALgqwhnqzGrV7CBNzITqfTMRbjes8k50vwWSYb8QlsiUUgjmM0Gg2MjIyYF8ZttunLCOONRgh84bFy10Ty0U35Sj75MfgY6dzuDfdxzSk242zIB1CMxLt2qbqAM2dVjL250rA3HJTlR3z+diz8YfDlK1DYjVwL+ttqtVCv27ZfQLqhBs3Vc899Gy+9osDKZksd68CBAwCUif6Vr3zFHI+u9/Tp0wAs4EjHUuCoGi+9COViEQUNlK7pY0gpUa6q+04mP7kDd955pzGFjenPmKW5ie62K+Nz5ob+SqVSxu3hIVD3ZeJiQDjYELVbvMTBYlqYfQVyAAzfpHsvyuVyisqM9vFRlNGzw5uwkvhyaLjk7kAuuWxz2RKWgBDBQGDQBQjV/tmMKm7Ku/UE3HJwV3iecMQJLV3wihNOugCOECKzLQgChMYd0au//l+9Xsfjj/8QAODtb387AODPP/NpnDx5EoANv9EYOakoaX9Ot0Y1BoVCwWgdU2lW0WG7KDFkrEPaImg0VnHlpCoDntKWyaOPvh2PPPao/l5p9tVrygU4ffq0sbhoTk+dOpWpBeD5/26mnro/6Wq5YrGIsXHVvPWHf/iHAQD33nsvAKBar2fMWT7fdIwoimzGopMpCmRdQ04Yawlekky4k5cZu+HrJIm9ViTt4zPhfUlo5Mr6AD9fmNuXRejWopAkSeJNTuOSWwK55LLNZYtYAqo1eafTyRBIkC/JtTjXLm6ShI98hCdcuKm2/Hik5cIwzKSU+kgreQpoJlkpCEDQl4xJkxE2UUC7TeCP+nvt2rJJCXajV7zTEteoLvU5xwRoHF09fzPTs4avgLCBqakpHLlDAXAJKMGnj1AnBBEoO1xR/i6nBqf7Mjw8nEkDpu+klBmylV6vZ5qalvU9qNVq5n4QeEqYyVJjJVOhF/ds4g7v/edqdksGUxkAABczSURBVI7TuKG7UqlktvkwAZL1ksQKYTaVncQXluTVjJxAt1JK91rgVYE+sNolZY2iyFgTbrp4EAQbYgJbYhGQMkGn00mhpy5xAuBvLOoKj9n7Ou7Sb+mB5aAKPYiDYtmAn3WWA09mAQpCU5QjnArrKIoR96nwRV3nzPQeU0SzsqK79bIOwHQtBJJFUWSuhb909OIalFuTejQaq5icVMj77KyKu3e7XVBjVGp9FYYhYp3pSKxH8xfOAbDmvjsvtN09N52Dz1W5VDaLUVnPuxDCZAUSCMnPRb+lbdVSNWOu+/ImCKjkyoVHkVwQkJvfbrm4L2OQiD74fj4XwO0ZwfcPgsAoGNctHZT96ssYJKDWVaLcfRgkuTuQSy7bXLaEJRAEIer1eipX2hdPdc18vlK65anub2l/zmILKE1ieP4ZqOe2w+KgjS870M0mS4Qw9GKBbgBKob8kYuGjIRXjn56eNqE2qsKLY5u15rYmr1QqrH+ArZpz3YHhYcpWi7G6otyd5WVFB1atWNCNyJrDUEKa61PHoJbmly9fNtYKaUqyQgCrZVs89OfMI+IEUmbDWCSmexFp+IJty24qHvuJF3B0W4dRxyUpZQY441mK6fJvv5XJnx27f5R5Jkk4MMjBS193LHIHXOHvA3d73XH43C7uCucZg7nkksu6siUsAdLG/X7frGDr+UW86s/nw3GiCWDjKkKf/0caiYT7WC5Rhg+gTBAgCF1NA3P8YrGsz00kJ0WMjCi/2M1g5ASspAGnpqbMOCiLb3h42JCOkIZeXW7q8xRN6PH4y68CAO655x5Uikq7StPmSJrqRzrnX3/9rwEA3/zmNzExMZG+ziQxvjpZCWRllUqlTEefuNc3OAinHKOsR7eis1quZDP1QpEhBCkUCpk6EzpnoVAweA8Pl7nPE/+tGw70cRPw3/l6EboVgENDQ94KRzdZyPeckkXlS1bjNHuudeUDuV3ZEosAiY+1lxNa+MpB3YeGm23ujVFlsmmiEb5o0M3iv/UxEblADx+3LYFOkGhDK9LAYKLLahGGiKUuzmmqF+jVUydx8aIqMCrqjLoYlkm321UvdbVa1+MIzcs0Pa3M9ZWVFc3cC5OaqwmGkSQxiiU1nr/+2lcBAKVSGffef58euTZng77pJNztqWjF3zz9rB5XFYUwzQHY67ZRLqkx1aojqXmJIsuWVCzosueuRK2qwM1mh4qLJNZWqXtxem6bzTYD5NQ5K8WS92UaZJpzUI9n5bnPGG/86i48btdsAKlO2D6iDxIOYrovq5QShZJ1TQEg8hQhGZdSSsRJepFOkgSlQjZyRt/dKo7BXHLJ5R+IbAlLQAirkV0gxMcU7OZY8228YMLli+NFN7x8mM7JQ4Q+fnj+f9rPPQYvUEGoTUoC7nSD0l6vg3Ixra0mJydx5aIq8SWArVxTWXTLy8tmPJxIhCwQMvPHxsYM6Gfy9/vWWqlok/KFF15Q4+5L3HHXnQCAmj5ns71izPurC4o/9tVXlfswPj5uQEK63m63m7GWeFGPD8SisVHhUafTM5mO5BZYOjJr2ZkSa5FtJ8eLuDYqE6ZjudYB5xjkeQ2ACim77eejKNvo1GfS+wg/+LPrunr8GaLvuKvFW+K5x70RyS2BXHLZ5rIlLAFfco67wvpCHTwEyDWC9SebqWPwLDFOX0bbOBmFC/6RFuK871zLueNNZamZMarvarUa4r6uqivbhp2k0U22H+uzQFqftNHy8rIZG2nUbrdrqu9ovBebKmEmiiIUNUAwNKSOsX///kxtxs6dO1Eoq3ON7aiYbXRtly9fNscDFIDrct3zMGzGR+3bMBlde70+bBiLz5w5o8eocINY2vAoEaUm/cE0cDRfGwm/x/w+0jzQ3NO811kNA69FWS9ESOL+ju+vyGfSFivPhnT7Mfj6ZIRhaNrP3YjklkAuuWxz2RKWAK2GvkpBzq1Osl51FkeJDfEl613gppt2u12z2nN/0M3V59qfV/LR/q4/KqWEcNI7E2G7ApHfPTqifOHV1VWjvYeoqgxVMwc0D5yggsbLLR6qP3DnoNXqIYnVfj/w7u8DANxxxx1W++hxLy6uoqeTlPqRGiOFBefn5zMWT7lcNlrTrWUQQmSQaV8EKI4tTvD0008DUMlTAHDfm96SSuyi3/kwGhJXs/J+E5xAxK0tkdJ2QuK1Je53JEkSZ87vswz4eHy1BoNozjlfhi9pznfNLrFKoVDYEDPYEouAlNLcWHfAblsqLnxffoPcSfUVkvB4sC8ry/2t7/8+ggj3mgALDMqAyqOtCfjcc88BAJ599llzrQQCycCyJtGLRsDf8PCwmRNunroszZQ1Vy53sdJQLyQv+TWmsB53pVqF6KttJ0+pbvSUh9BsNo07wkNi7kvHcyzcDE1Vr6BzQerUaKRk5uirX1Xhy0OHDgEAbj9yp5kXWuDGR8cyITmetekuSjw7kJvmmZAfCy9fD9gWxVlA2PdMuM8cF1+5MD+W6776FE4URegn6lngeRN0DF837tR1b3ilueSSyz9o2SKWgCWFcLWyL6nHF5rjmVq0evpWRZ+p6IaFfFrARz3Gz+1aH0mSAIFrPtqVmwCwb3zjG2aMJd13PNadh5oddcylpSXjBpAW54lNXNu6WqJct2HEQKj5IEtjdXXVVNpRRV+r08GleQX+nTp1yoyXxmjaqzMrxC1tpXnv9/uYn59PfVcuFG2lW9U21ixQmFFbDAsLCwCU9ifrg4DBfqfr1Zqk8dz7yT9zTe8Swfh6Eawn67mlHCzmZCc8XE3ndPP+Sbj7wJ9hN+EtDEPT3pyE19L4OBe5bGgJCCF+XwgxL4R4kW37z0KI40KI54UQ/1MIMca++4gQ4qQQ4hUhxLs2On4uueTyxsr1WAJ/AOC3APwh2/ZFAB+RUkZCiF8F8BEAvyiEOArgAwDuBjAD4EtCiCOSktEHiQBEIUTMuphHOjWy07K9CV1SkWKlnMkTl4GA1CVxke6kE1JKrAB6cTq3WgQC/cQBZsD9N0rh1dZHnK184yu2sUgigWpNh99aypft9pSv/Jd/8Vm8pqnEDFmoEGjrVN8rVxRdWFCwICZp/rU10uIyFdZTcxSaZJsw1MkuiRrD2M5doJbjRGPWbDZx/31vBgCMDlOdfYJaXWno+TNKi4cFNa7dOyfQ00zEjRWFTSwvrZix7dw5qY9rrRYKeyb62jqRZSCeWVVWzY6RMdx+UPVfMIQaevpPv/oahnSaMaUeR/2+2Y/z8bvAHYnPIuDgoi9X3xfW87UrJ/F1LHLrDvg5uXb2VbvS79wQLg8pkkRRhGo9jdXw6k7eut4n19OL8GtCiAPOtr9i/30KwBP68/sAfFJK2QVwWghxEsCDAL650XkAf1NJknK5nAFteHYgPYi8CYWbreZ7GLjwba7rwYEo3qUXUGY1vYicRMPHdQeoG+Rmtc3NzWHp2rI+rq6DKNjMMLo+MpN5fgOPadM2IvgQ+qWNI2le0uUlVW587twZXL6sOscTy+9tB/chitR1XV24AgAYHx8z5yQ+Q3Ip2u22GRvlEFBEoNeLbOYfXW8IJLrZxvnz59V5ilcQ6gWqXtOMyIGas7948klcuqQaW7/v/T8CACiXi+Ye+5qE+FB/9zvOROSjHHdZfn2LBo86+Ex5F2iuVCoZQJODue4YOVDO93cXqHK5nOF+5FGim3YHrkP+KYDP6897AJxn383pbRkRQvycEOIZIcQz5Jfmkksumy83BQwKIX4JQATgj2iTZzdvKpOU8mMAPgYAR4/eI2kVdk0t3sDRtQ54uISDK+7qTL8b1KrMxwXHxgkgDRoROEf71ev1TBlr1E/grrGU6zA7O4tLuhUYHX94eBjNNaVBGw2lqYdG1P4LCwsZ5mReoUeLaBAEqToCALjt0CwAoNvpYe6cOu7+fbeZ+WhqjsP9B5Ql8MhjDyFK1LU0v6S0CYFOCkQlCiw1351OB7Hev6ddN95YlfYnFy1B31CZDQ8prR+KAEuLyvUoE0+g5jUslQJcmDsDAHjluIKl9u47YK6Pa0g3FMe1rptnz3NBfLUG7v48O5DOWSqVMiY/P5ZbU8EtBxpbr9fLWBE+C4ZbJu5xuVXjZldyAHSQ3PAiIIT4EID3AHiHtKOdA7CX7TYL4OKNniOXXHK59XJDi4AQ4t0AfhHA90gpeUrY5wD8sRDi16GAwcMA/uZ1HDcT4toos8rdn+/jZpr5fH4e8uMrvbsa+37LyVBda6JcLho6MbIAQu3jP/bYY7ii/dxjx44BUP4iATh33aVqARaXlCZeWFjIEmswTcYrI90swiuX1Bo8O7vPNkjVnYUCUcDEhEomOnDgAACgWq+g21PXPDauwoGvvaqAxFqthiAgYE1pvr1790AbNcaCSRLL7UDAnWGP7qwai6ykKymDRGCoruZoeEiBkh3NKxAgxlpTzcPEhMJdFhcXzXVyMhJ3Pnz9BEh8/BQ8Wci1Jn39JuLYhobdtmU+0lweSjZNXFknJPeZ84GHPquFWxi+Vn0bVVVuuAgIIT4B4HsBTAgh5gB8FCoaUAbwRX2hT0kp/7mU8pgQ4lMAXoJyE35+w8gAAAm5ocnCC4N8C4SbE0C/AbIgD/+OZ/b5wCU3vsw/+xqSGHdGCBSKGtnVhCARi6NzKnUAKDH2G4uRqPPs3LnTPOy8wIVeMHIV4jhOFUsBgNQvdGe1g+ERKkJR19TqtfETP/nTAIDbjyh0vlQpABpk/6H3qsXo1Muq9PjZZ5/FweJ+AMCuljI3L128goMHDwAALlxQC87+/WqfcrlsxkELYb+7Zq69sahcl3KhgpZetCJdWFUqEgtyjBHtNjz55J8BAI7e/YChJidORV4G7C4GQBbgHZS95xbxkHBXlZ6JdrvtdUcBBY7SvaLFfVBG4iAw3OcO8O0+NiHuqtB1DIqakFxPdOCDns2/t87+vwzglzc6bi655LI1ZEtkDEJac249UpH1Qj48ROiCL77Vl2f9uZx+/Bw+U8rVKs1mMwNojo1OGH59U6dQ1CXCnS4efPBBtU1rr5ePHUuFfABAaDqyarVqVnsKzfFrWE/TjJeVFh0bnjC8hp2uGtfs9DT2ziqQsKS5BntRH4HJjVDHf/Ob7wcATE/vwte//nUAMM1TpqamcOJVlVk4PKwsk71795n5XNIujSkAk00EQlkko1UVOIr7EcQOBfQtrazqY+nuysUQ+/cpcPMH3qVyzyLUjUtBx+10OgawpfvIi75cy45blvxeu/tx4M+1BCqVSuY5pfmvVqvm/NyqcEHqQXUn/C8XX1iSN+ZxQ6Y+4NuVvHYgl1y2uWwJS4AwAR+IQdqu0+lkkjtSq2hB+z1BgJjovJyMwYCt/kTWKIRAWNQc+n0LaJmwjicsabbp2oD66FiWGippmyw56FbaYUwr9xB2zaoqubHzCiDcva+B5WXlIzdWVNVei8pCwxIKodY0db1udxMIzRBc0lqgWCmhS9ZJW4cbNWlp1Ab2TSoNHXbU7x55x0MYm1Tam0hRy6hC6s+ksTu6keno1Bj+0fcrLODkcQVovvSdb2FqTGlt0dUlzdBVayLE+KQCHons5PjxPto9Zc30dfZlqVxAEqlxj+9WZctBQOecwtAOhU0sN9X+ozuKgCnPVqeq1Guo6W0UJqXsUK4pOYDmamVlVegQrFN5FxRC02DW3OM4MVmYFByPErIWYL7r9on1WNj9WfWmm5hmHzmRsUwQBEjst3psBXS71hLmx+LXOUhySyCXXLa5bA1LIJHodrupyis35AFs0NNN0zbzhCBOHMp/z3/HQ218TXR9Pe7z+XzJTBhS2DGa/cz+wNCQSut9/PH3AABeO3kIr50+AQBYWlKWwKrOz28srWDhikqmSXTobHR01PiaFU1DXhseAuHEU7oisd1UGqJYKpmU4ze96bsAqKiD6cwTUq+ACtycr1ZLWST9bg8TuorwrW99KwDg4L5pXL2i0oUvXVaxwmMvvaSOWSjgtttvBwCUNbVZpVLB8pLS1JfOn1PHb65idFwTjGrKdKJWp/kFgH37lCXT6vjvI80zpXDz++RqwyiKUlz+gEoC8+X20xhcTICnbrv3n4+HW7BuwhG/hvUwL3csfD+OE7j7+MKjrmyJRQCwAMagOC3fxm+GC+BwoM9tJMGPxyfN12CUxLcYuAUc7m/UeWDcAHqpZEKLQYSiZiJeXVWm8YMPPoiJSfXwfvnLXwBgi2N27pjASF19vnpJvXBXLs2bcxJT8O7paZSoVRclamp7eXpmxoBtlYo61vz8PA4evJ1mAYBeKEU61kxjFSX7QPU06LnvwG3Yu/+Aur5YLcBHjt4NALh48SLOnVcLA5GhSAgD4BF70NpqDT3dgOP+++/X41Hnntg9g6ldCkCk3AcRWgDXxyfoywB1t4VhaGouOJDoNlD1CQeB3dJgH4vweuAyV3zrLQK+TtypEGLBX8PA35FBkrsDueSyzUVsBBpsyiCEuAqgCWDhjR4LgAnk4+CSjyMtf5/HsV9KOelu3BKLAAAIIZ6RUn5XPo58HPk4NnccuTuQSy7bXPJFIJdctrlspUXgY2/0ALTk40hLPo60/IMbx5bBBHLJJZc3RraSJZBLLrm8AZIvArnkss1lSywCQoh36z4FJ4UQH96kc+4VQnxVCPGyEOKYEOJf6+3jQogvCiFO6L87Nmk8oRDiOSHEk/r/B4UQT+tx/IkQorTRMf4OxjAmhPi0UD0lXhZCPPxGzIcQ4hf0PXlRCPEJIURls+ZD+PtseOdAKPlN/dw+L4R4yy0ex63p90F51W/UPygem1MADgEoAfgOgKObcN5pAG/Rn4cBvArgKID/BODDevuHAfzqJs3DvwXwxwCe1P//FIAP6M+/A+BfbMIYPg7gn+nPJQBjmz0fUOzUpwFU2Tz89GbNB4C3A3gLgBfZNu8cAHgcimlbAHgIwNO3eBw/AKCgP/8qG8dR/d6UARzU71N43ee61Q/WdVzswwC+wP7/EajGJps9js8C+H4ArwCY1tumAbyyCeeeBfBlAN8H4En9UC2wG56ao1s0hhH98gln+6bOByxt/ThUbcuTAN61mfMB4IDz8nnnAMDvAvigb79bMQ7nu/cD+CP9OfXOAPgCgIev9zxbwR247l4Ft0qEaq7yZgBPA9glpbwEAPrv1CYM4TcA/DvAlIrvBLAspaSiwM2Yk0MArgL479ot+W9CiDo2eT6klBcA/BqAcwAuAWgA+Fts/nxwGTQHb+Sze0P9PnyyFRaB6+5VcEtOLsQQgD8D8G+klCsb7X8Lzv8eAPNSyr/lmz273uo5KUCZn78tpXwzVC3HpuAzXLS//T4os3YGQB3AD3p23Qqx7Tfk2RU30e/DJ1thEXjDehUIIYpQC8AfSSk/ozdfEUJM6++nAczf4mF8N4D3CiHOAPgklEvwGwDGhBBUl7oZczIHYE5K+bT+/6ehFoXNno93AjgtpbwqpewD+AyAR7D588Fl0Bxs+rMrbL+Pn5Da9r/ZcWyFReBbAA5r9LcE1dD0c7f6pEIVWf8egJellL/OvvocgA/pzx+CwgpumUgpPyKlnJVSHoC69q9IKX8CwFdhezxuxjguAzgvhLhDb3oHFHX8ps4HlBvwkBCipu8RjWNT58ORQXPwOQA/paMEDwFokNtwK0TYfh/vldl+Hx8QQpSFEAfxOvt93DKA53UCII9DofOnAPzSJp3zUSiT6XkA39b/Hofyx78M4IT+O76J8/C9sNGBQ/pGngTwpwDKm3D+NwF4Rs/JnwPY8UbMB4D/AOA4gBcB/A8o1HtT5gPAJ6CwiD6Uhv2ZQXMAZYb/V/3cvgDgu27xOE5C+f70vP4O2/+X9DheAfCDr+dcedpwLrlsc9kK7kAuueTyBkq+COSSyzaXfBHIJZdtLvkikEsu21zyRSCXXLa55ItALrlsc8kXgVxy2eby/wErKTdYB4FPSgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# nuclio: ignore\n", - "# Select a sample for the test.\n", - "# Set both the local path for the test and the URL for downloading the sample from AWS S3.\n", - "DATA_LOCATION = \"./cats_and_dogs_filtered/\"\n", - "sample = random.choice(os.listdir(DATA_LOCATION+\"/cats_n_dogs\"))\n", - "image_local = DATA_LOCATION + \"cats_n_dogs/\"+sample # Temporary location for downloading the file \n", - "image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/' + sample \n", - "\n", - "# Show the image\n", - "img = load_img(image_local, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - "plt.imshow(img)\n", - "\n", - "event = nuclio.Event(body=bytes(image_url, 'utf-8'))\n", - "output = handler(context, event)\n", - "print(output)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: notebook infer exported\n", - "Config:\n", - "apiVersion: nuclio.io/v1\n", - "kind: Function\n", - "metadata:\n", - " annotations:\n", - " nuclio.io/generated_by: function generated at 02-07-2019 by iguazio from /User/demos/image-classification/infer.ipynb\n", - " labels: {}\n", - " name: infer\n", - "spec:\n", - " build:\n", - " baseImage: python:3.6-jessie\n", - " commands:\n", - " - pip install git+https://github.com/fchollet/keras\n", - " - pip install tensorflow\n", - " - pip install numpy\n", - " - pip install requests\n", - " - pip install pillow\n", - " functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlciBvbiAyMDE5LTA3LTAyIDA3OjA2CgppbXBvcnQgbnVtcHkgYXMgbnAgCmZyb20gdGVuc29yZmxvdyBpbXBvcnQga2VyYXMKZnJvbSBrZXJhcy5tb2RlbHMgaW1wb3J0IGxvYWRfbW9kZWwKZnJvbSBrZXJhcy5wcmVwcm9jZXNzaW5nIGltcG9ydCBpbWFnZQpmcm9tIGtlcmFzLnByZXByb2Nlc3NpbmcuaW1hZ2UgaW1wb3J0IGxvYWRfaW1nCmltcG9ydCBqc29uCmltcG9ydCByZXF1ZXN0cwoKaW1wb3J0IG9zCmZyb20gb3MgaW1wb3J0IGVudmlyb24sIHBhdGgKZnJvbSB0ZW1wZmlsZSBpbXBvcnQgbWt0ZW1wCgptb2RlbF9maWxlID0gZW52aXJvblsnTU9ERUxfUEFUSCddCnByZWRpY3Rpb25fbWFwX2ZpbGUgPSBlbnZpcm9uWydQUkVESUNUSU9OX01BUF9QQVRIJ10KCklNQUdFX1dJRFRIID0gaW50KGVudmlyb25bJ0lNQUdFX1dJRFRIJ10pCklNQUdFX0hFSUdIVCA9IGludChlbnZpcm9uWydJTUFHRV9IRUlHSFQnXSkKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6IAogICAgY29udGV4dC5tb2RlbCA9IGxvYWRfbW9kZWwobW9kZWxfZmlsZSkKICAgIHdpdGggb3BlbihwcmVkaWN0aW9uX21hcF9maWxlLCAncicpIGFzIGY6CiAgICAgICAgY29udGV4dC5wcmVkaWN0aW9uX21hcCA9IGpzb24ubG9hZChmKQoKZGVmIGRvd25sb2FkX2ZpbGUoY29udGV4dCwgdXJsLCB0YXJnZXRfcGF0aCk6CiAgICB3aXRoIHJlcXVlc3RzLmdldCh1cmwsIHN0cmVhbT1UcnVlKSBhcyByZXNwb25zZToKICAgICAgICByZXNwb25zZS5yYWlzZV9mb3Jfc3RhdHVzKCkKICAgICAgICB3aXRoIG9wZW4odGFyZ2V0X3BhdGgsICd3YicpIGFzIGY6CiAgICAgICAgICAgIGZvciBjaHVuayBpbiByZXNwb25zZS5pdGVyX2NvbnRlbnQoY2h1bmtfc2l6ZT04MTkyKToKICAgICAgICAgICAgICAgIGlmIGNodW5rOgogICAgICAgICAgICAgICAgICAgIGYud3JpdGUoY2h1bmspCgogICAgY29udGV4dC5sb2dnZXIuaW5mb193aXRoKCdEb3dubG9hZGVkIGZpbGUnLHVybD11cmwpCgpkZWYgaGFuZGxlcihjb250ZXh0LCBldmVudCk6CiAgICB0bXBfZmlsZSA9IG1rdGVtcCgpCiAgICBpbWFnZV91cmwgPSBldmVudC5ib2R5LmRlY29kZSgndXRmLTgnKS5zdHJpcCgpCiAgICBkb3dubG9hZF9maWxlKGNvbnRleHQsIGltYWdlX3VybCwgdG1wX2ZpbGUpCiAgICAKICAgIGltZyA9IGxvYWRfaW1nKHRtcF9maWxlLCB0YXJnZXRfc2l6ZT0oSU1BR0VfV0lEVEgsIElNQUdFX0hFSUdIVCkpCiAgICB4ID0gaW1hZ2UuaW1nX3RvX2FycmF5KGltZykKICAgIHggPSBucC5leHBhbmRfZGltcyh4LCBheGlzPTApCgogICAgaW1hZ2VzID0gbnAudnN0YWNrKFt4XSkKICAgIHByZWRpY3RlZF9wcm9iYWJpbGl0eSA9IGNvbnRleHQubW9kZWwucHJlZGljdF9wcm9iYShpbWFnZXMsIGJhdGNoX3NpemU9MTApCiAgICBwcmVkaWN0ZWRfY2xhc3MgPSBsaXN0KHppcChwcmVkaWN0ZWRfcHJvYmFiaWxpdHksIG1hcChsYW1iZGEgeDogJzEnIGlmIHggPj0gMC41IGVsc2UgJzAnLCBwcmVkaWN0ZWRfcHJvYmFiaWxpdHkpKSkKICAgIGFjdHVhbF9jbGFzcyA9IFsoY29udGV4dC5wcmVkaWN0aW9uX21hcFt4WzFdXSx4WzBdWzBdKSBmb3IgeCBpbiBwcmVkaWN0ZWRfY2xhc3NdICAgCiAgICBvcy5yZW1vdmUodG1wX2ZpbGUpCiAgICByZXN1bHQgPSB7J2NsYXNzJzphY3R1YWxfY2xhc3NbMF1bMF0sICdkb2ctcHJvYmFiaWxpdHknOmZsb2F0KGFjdHVhbF9jbGFzc1swXVsxXSl9CiAgICByZXR1cm4ganNvbi5kdW1wcyhyZXN1bHQpCgo=\n", - " noBaseImagesPull: true\n", - " env:\n", - " - name: IMAGE_WIDTH\n", - " value: '128'\n", - " - name: IMAGE_HEIGHT\n", - " value: '128'\n", - " - name: version\n", - " value: '1.0'\n", - " - name: MODEL_PATH\n", - " value: /model/\n", - " handler: infer:handler\n", - " runtime: python:3.6\n", - " volumes:\n", - " - volume:\n", - " flexVolume:\n", - " driver: v3io/fuse\n", - " options:\n", - " accessKey: 1e52ff93-a541-4880-abf1-d9b948af77de\n", - " container: users\n", - " subPath: /iguazio/demos/gpu/horovod/cpu/image-classification/cats_dogs/model\n", - " name: fs\n", - " volumeMount:\n", - " mountPath: /model\n", - " name: fs\n", - "\n", - "Code:\n", - "# Generated by nuclio.export.NuclioExporter on 2019-07-02 07:06\n", - "\n", - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp\n", - "\n", - "model_file = environ['MODEL_PATH']\n", - "prediction_map_file = environ['PREDICTION_MAP_PATH']\n", - "\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)\n", - "\n", - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)\n", - "\n", - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)\n", - "\n", - "\n" - ] - } - ], - "source": [ - "%nuclio show" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Prepare to Deploy the Function\n", - "\n", - "Before you deploy the function, open a Jupyter terminal and run the following command:\n", - "\n", - "`pip install --upgrade nuclio-jupyter`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Deploy the Function\n", - "\n", - "Run the following command to deploy the function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[nuclio.deploy] 2019-07-02 07:07:08,424 project name not found created new (ai)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:07:08.424754 140252009395584 deploy.py:317] project name not found created new (ai)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[nuclio.deploy] 2019-07-02 07:07:09,507 (info) Building processor image\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:07:09.507237 140252009395584 deploy.py:274] (info) Building processor image\n" - ] - } - ], - "source": [ - "%nuclio deploy -n cats-dogs -p ai -c" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Test the Function" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run a test with the new function. Replace \"function URL:port\" with the actual URL and port number.\n", - "# To get the function's URL, in the platform dashboard, navigate to the function page - Functions > ai > cats-dogs - and select the 'Status' tab.\n", - "!curl -X POST -d \"https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.123.jpg\" " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py b/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py deleted file mode 100644 index f00b9973..00000000 --- a/demos/gpu/horovod/cpu/image-classification/horovod_train_cats_n_dogs.py +++ /dev/null @@ -1,177 +0,0 @@ -from __future__ import print_function -import os -import sys -import json -import keras -from keras.datasets import mnist -from keras.models import Sequential -from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization -from keras.preprocessing.image import ImageDataGenerator -from keras import backend as K -import tensorflow as tf -import horovod.keras as hvd -import pandas as pd -from sklearn.model_selection import train_test_split - -# Get the images path -DATA_PATH = sys.argv[1] -HOROVOD_DIR = sys.argv[2] - -epochs = 6 -batch_size = 64 -os.environ["CUDA_VISIBLE_DEVICES"]="-1" - -# Define image parameters -IMAGE_WIDTH=128 -IMAGE_HEIGHT=128 -IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT) -IMAGE_CHANNELS=3 # RGB color - -# Create a file-names list (JPG image-files only) -filenames = [file for file in os.listdir(DATA_PATH + "/cats_n_dogs/") if file.endswith('jpg')] -categories = [] - -# Create a categories and prediction classes map -categories_map = { - 'dog': 1, - 'cat': 0, -} - -# Create a pandas DataFrame for the full sample -for filename in filenames: - category = filename.split('.')[0] - categories.append([categories_map[category]]) - -df = pd.DataFrame({ - 'filename': filenames, - 'category': categories -}) -df['category'] = df['category'].astype('str'); - -# Prepare, test, and train the data -train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42) -train_df = train_df.reset_index(drop=True) -validate_df = validate_df.reset_index(drop=True) -train_df['category'] = train_df['category'].astype('str'); -total_train = train_df.shape[0] -total_validate = validate_df.shape[0] - -total_train = train_df.shape[0] -total_validate = validate_df.shape[0] - -# Horovod: initialize Horovod. -hvd.init() - -# Horovod: pin GPU to be used to process local rank (one GPU per process). -config = tf.ConfigProto() -K.set_session(tf.Session(config=config)) - - -model = Sequential() - -model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS))) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Conv2D(64, (3, 3), activation='relu')) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Conv2D(128, (3, 3), activation='relu')) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Flatten()) -model.add(Dense(512, activation='relu')) -model.add(BatchNormalization()) -model.add(Dropout(0.5)) -model.add(Dense(1, activation='sigmoid')) - - -# Horovod: adjust learning rate based on number of GPUs. -opt = keras.optimizers.Adadelta(lr=1.0 * hvd.size()) - -# Horovod: add Horovod Distributed Optimizer. -opt = hvd.DistributedOptimizer(opt) - -model.compile(loss='binary_crossentropy', - optimizer=opt, - metrics=['accuracy']) - -model.summary() - -callbacks = [ - # Horovod: broadcast initial variable states from rank 0 to all other processes. - # This is necessary to ensure consistent initialization of all workers when - # training is started with random weights or restored from a checkpoint. - hvd.callbacks.BroadcastGlobalVariablesCallback(0), - - # Horovod: average metrics among workers at the end of every epoch. - # Note: This callback must be in the list before the ReduceLROnPlateau, - # TensorBoard or other metrics-based callbacks. - hvd.callbacks.MetricAverageCallback(), - - # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final - # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during - # the first five epochs. See https://arxiv.org/abs/1706.02677 for details. - hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=5, verbose=1), - - # Reduce the learning rate if training plateaues. - keras.callbacks.ReduceLROnPlateau(patience=10, verbose=1), -] - -# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them. -if hvd.rank() == 0: - callbacks.append(keras.callbacks.ModelCheckpoint(HOROVOD_DIR + '/checkpoints/checkpoint-{epoch}.h5')) - -# Set up ImageDataGenerators to do data augmentation for the training images. -train_datagen = ImageDataGenerator( - rotation_range=15, - rescale=1./255, - shear_range=0.1, - zoom_range=0.2, - horizontal_flip=True, - width_shift_range=0.1, - height_shift_range=0.1 -) -train_generator = train_datagen.flow_from_dataframe( - train_df, - DATA_PATH + "/cats_n_dogs/", - x_col = 'filename', - y_col = 'category', - target_size = IMAGE_SIZE, - class_mode = 'binary', - batch_size = batch_size -) - -validation_datagen = ImageDataGenerator(rescale=1./255) -validation_generator = validation_datagen.flow_from_dataframe( - validate_df, - DATA_PATH + "/cats_n_dogs/", - x_col = 'filename', - y_col = 'category', - target_size = IMAGE_SIZE, - class_mode = 'binary', - batch_size = batch_size -) - -# Train the model -history = model.fit_generator( - train_generator, - steps_per_epoch=total_train // batch_size, - callbacks=callbacks, - epochs=epochs, - verbose=1, - validation_data=validation_generator, - validation_steps=total_validate // batch_size -) - -#save the model only on worker 0 to prevent failures ("cannot lock file") -if hvd.rank() == 0: - model.save(HOROVOD_DIR + '/cats_dogs.hd5') - -print(pd.DataFrame(history.history)) - diff --git a/demos/gpu/horovod/image-classification/01-load-data-cats-n-dogs.ipynb b/demos/gpu/horovod/image-classification/01-load-data-cats-n-dogs.ipynb deleted file mode 100644 index 9081de7b..00000000 --- a/demos/gpu/horovod/image-classification/01-load-data-cats-n-dogs.ipynb +++ /dev/null @@ -1,520 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Load Cats and Dogs Images" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "fe76d1d1ded592430e7548feacfa38dc42f085d9" - }, - "source": [ - "## Install Packages" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install --upgrade keras==2.2.4\n", - "!pip install --upgrade tensorflow==1.13.1 \n", - "!pip install --upgrade 'numpy<1.15.0'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> **Note:** After running the pip command you should restart the Jupyter kernel.
\n", - "> To restart the kernel, click on the kernel-restart button in the notebook menu toolbar (the refresh icon next to the **Code** button)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Library" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", - "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint8 = np.dtype([(\"qint8\", np.int8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint8 = np.dtype([(\"quint8\", np.uint8, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint16 = np.dtype([(\"qint16\", np.int16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_quint16 = np.dtype([(\"quint16\", np.uint16, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " _np_qint32 = np.dtype([(\"qint32\", np.int32, 1)])\n", - "/User/.pythonlibs/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.\n", - " np_resource = np.dtype([(\"resource\", np.ubyte, 1)])\n" - ] - } - ], - "source": [ - "# This Python 3 environment comes with many helpful analytics libraries installed.\n", - "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python.\n", - "# For example, here are several helpful packages to load:\n", - "\n", - "import numpy as np # linear algebra\n", - "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", - "from keras.preprocessing.image import load_img\n", - "\n", - "# Input data files are available in the \"../input/\" directory.\n", - "# For example, running the following (by selecting 'Run' or pressing Shift+Enter) will list the files in the input directory:\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import random\n", - "\n", - "import os\n", - "import zipfile\n", - "\n", - "# Define locations\n", - "BASE_PATH = os.getcwd()\n", - "DATA_PATH = BASE_PATH + \"/cats_and_dogs_filtered/\"\n", - "!mkdir model\n", - "MODEL_PATH = BASE_PATH + '/model/'\n", - "\n", - "# Define image parameters\n", - "FAST_RUN = False\n", - "IMAGE_WIDTH=128\n", - "IMAGE_HEIGHT=128\n", - "IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT)\n", - "IMAGE_CHANNELS=3 # RGB color\n", - "\n", - "# Any results you write to the current directory are saved as output." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/User/demos/gpu/horovod/image-classification/cats_and_dogs_filtered/catsndogs.zip'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DATA_PATH + 'catsndogs.zip'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Download the Data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 65.2M 100 65.2M 0 0 13.9M 0 0:00:04 0:00:04 --:--:-- 15.3M\n" - ] - } - ], - "source": [ - "!mkdir cats_and_dogs_filtered\n", - "# Download a sample stocks file from Iguazio demo bucket in AWS S3\n", - "!curl -L \"iguazio-sample-data.s3.amazonaws.com/catsndogs.zip\" > ./cats_and_dogs_filtered/catsndogs.zip" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "zip_ref = zipfile.ZipFile(DATA_PATH + 'catsndogs.zip', 'r')\n", - "zip_ref.extractall('cats_and_dogs_filtered')\n", - "zip_ref.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "7335a579cc0268fba5d34d6f7558f33c187eedb3" - }, - "source": [ - "## Prepare the Traning Data" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import json" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def build_prediction_map(categories_map):\n", - " return {v:k for k ,v in categories_map.items()}" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", - "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" - }, - "outputs": [], - "source": [ - "# Create a file-names list (JPG image-files only)\n", - "filenames = [file for file in os.listdir(DATA_PATH+\"/cats_n_dogs\") if file.endswith('jpg')]\n", - "categories = []\n", - "\n", - "# Categories and prediction-classes map\n", - "categories_map = {\n", - " 'dog': 1,\n", - " 'cat': 0,\n", - "}\n", - "prediction_map = build_prediction_map(categories_map)\n", - "with open(MODEL_PATH + 'prediction_classes_map.json', 'w') as f:\n", - " json.dump(prediction_map, f)\n", - "\n", - "# Create a pandas DataFrame for the full sample\n", - "for filename in filenames:\n", - " category = filename.split('.')[0]\n", - " categories.append([categories_map[category]])\n", - "\n", - "df = pd.DataFrame({\n", - " 'filename': filenames,\n", - " 'category': categories\n", - "})\n", - "df['category'] = df['category'].astype('str');" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "_uuid": "915bb9ba7063ab4d5c07c542419ae119003a5f98" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
filenamecategory
0cat.0.jpg[0]
1cat.1.jpg[0]
2cat.10.jpg[0]
3cat.100.jpg[0]
4cat.101.jpg[0]
\n", - "
" - ], - "text/plain": [ - " filename category\n", - "0 cat.0.jpg [0]\n", - "1 cat.1.jpg [0]\n", - "2 cat.10.jpg [0]\n", - "3 cat.100.jpg [0]\n", - "4 cat.101.jpg [0]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "_uuid": "72bf69e817f67f5a2eaff8561217e22077248553" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
filenamecategory
1995dog.995.jpg[1]
1996dog.996.jpg[1]
1997dog.997.jpg[1]
1998dog.998.jpg[1]
1999dog.999.jpg[1]
\n", - "
" - ], - "text/plain": [ - " filename category\n", - "1995 dog.995.jpg [1]\n", - "1996 dog.996.jpg [1]\n", - "1997 dog.997.jpg [1]\n", - "1998 dog.998.jpg [1]\n", - "1999 dog.999.jpg [1]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.tail()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "a999484fc35b73373fafe2253ae9db7ff46fdb90" - }, - "source": [ - "## Check the Total Image Count\n", - "\n", - "Check the total image count for each category.
\n", - "The data set has 12,000 cat images and 12,000 dog images." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "_uuid": "fa26f0bc7a6d835a24989790b20f3c6f32946f45" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD9CAYAAABQvqc9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAANK0lEQVR4nO3df6zdd13H8eeL1aGMuI7tsoy2s9MVEU0My82ckhBDDTAwdjEsGSHSzCb9Zyg4E1f9ZxH/2RLjcIlZbNiwKAGWSdIGp2QpEGMMkw7IYFRsM2G9trKL66YyF5i8/eN+Ctfb21/3tOfCfT8fSXO+38/3c8753OTkeb/93nPuTVUhSerhJau9AEnS9Bh9SWrE6EtSI0Zfkhox+pLUiNGXpEbWrfYCTueKK66ozZs3r/YyJOmHymOPPfbNqppZ7tgPdPQ3b97MgQMHVnsZkvRDJcnXT3XMyzuS1IjRl6RGjL4kNWL0JakRoy9JjZwx+kkeSPJ0ki8vGntFkkeSHBq3l43xJLk3yeEkjye5btF9to/5h5JsvzBfjiTpdM7mTP8vgLcsGdsF7K+qLcD+sQ9wI7Bl/NsJ3AcL3ySAO4FfAK4H7jzxjUKSND1njH5V/T3wzJLhbcCesb0HuGnR+IdqwWeB9UmuAt4MPFJVz1TVceARTv5GIkm6wFb64awrq+oYQFUdS/LKMb4BOLJo3twYO9X4SZLsZOF/CVx99dUrXN50bd71N6u9hDXla3e9bbWXsKb4+jx/1sJr83z/IDfLjNVpxk8erNpdVbNVNTszs+yniCVJK7TS6H9jXLZh3D49xueATYvmbQSOnmZckjRFK43+PuDEO3C2A3sXjb9rvIvnBuC5cRnok8Cbklw2foD7pjEmSZqiM17TT/IR4JeBK5LMsfAunLuAB5PsAJ4Cbh7THwbeChwGngduBaiqZ5L8EfC5Me99VbX0h8OSpAvsjNGvqnec4tDWZeYWcNspHucB4IFzWp0k6bzyE7mS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1YvQlqRGjL0mNGH1JasToS1IjRl+SGjH6ktSI0ZekRoy+JDVi9CWpEaMvSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0ZfkhqZKPpJfifJE0m+nOQjSX40yTVJHk1yKMnHklw85r507B8exzefjy9AknT2Vhz9JBuA3wZmq+rngIuAW4C7gXuqagtwHNgx7rIDOF5V1wL3jHmSpCma9PLOOuDHkqwDXgYcA94IPDSO7wFuGtvbxj7j+NYkmfD5JUnnYMXRr6p/A/4YeIqF2D8HPAY8W1UvjmlzwIaxvQE4Mu774ph/+UqfX5J07ia5vHMZC2fv1wCvAi4Bblxmap24y2mOLX7cnUkOJDkwPz+/0uVJkpYxyeWdXwH+tarmq+o7wMeBXwLWj8s9ABuBo2N7DtgEMI5fCjyz9EGrandVzVbV7MzMzATLkyQtNUn0nwJuSPKycW1+K/AV4NPA28ec7cDesb1v7DOOf6qqTjrTlyRdOJNc03+UhR/Ifh740nis3cAdwO1JDrNwzf7+cZf7gcvH+O3ArgnWLUlagXVnnnJqVXUncOeS4SeB65eZ+wJw8yTPJ0majJ/IlaRGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1YvQlqRGjL0mNGH1JasToS1IjRl+SGjH6ktSI0ZekRoy+JDVi9CWpEaMvSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUyETRT7I+yUNJ/jnJwSS/mOQVSR5JcmjcXjbmJsm9SQ4neTzJdefnS5Akna1Jz/T/FPi7qnoN8PPAQWAXsL+qtgD7xz7AjcCW8W8ncN+Ezy1JOkcrjn6SHwfeANwPUFXfrqpngW3AnjFtD3DT2N4GfKgWfBZYn+SqFa9cknTOJjnT/0lgHvhgki8k+UCSS4Arq+oYwLh95Zi/ATiy6P5zY0ySNCWTRH8dcB1wX1W9DvgW37+Us5wsM1YnTUp2JjmQ5MD8/PwEy5MkLTVJ9OeAuap6dOw/xMI3gW+cuGwzbp9eNH/TovtvBI4ufdCq2l1Vs1U1OzMzM8HyJElLrTj6VfXvwJEkPz2GtgJfAfYB28fYdmDv2N4HvGu8i+cG4LkTl4EkSdOxbsL7/xbw4SQXA08Ct7LwjeTBJDuAp4Cbx9yHgbcCh4Hnx1xJ0hRNFP2q+iIwu8yhrcvMLeC2SZ5PkjQZP5ErSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1YvQlqRGjL0mNGH1JasToS1IjRl+SGjH6ktSI0ZekRoy+JDVi9CWpEaMvSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjUwc/SQXJflCkk+M/WuSPJrkUJKPJbl4jL907B8exzdP+tySpHNzPs703wMcXLR/N3BPVW0BjgM7xvgO4HhVXQvcM+ZJkqZoougn2Qi8DfjA2A/wRuChMWUPcNPY3jb2Gce3jvmSpCmZ9Ez//cDvAd8d+5cDz1bVi2N/DtgwtjcARwDG8efGfEnSlKw4+kl+FXi6qh5bPLzM1DqLY4sfd2eSA0kOzM/Pr3R5kqRlTHKm/3rg15J8DfgoC5d13g+sT7JuzNkIHB3bc8AmgHH8UuCZpQ9aVburaraqZmdmZiZYniRpqRVHv6p+v6o2VtVm4BbgU1X1TuDTwNvHtO3A3rG9b+wzjn+qqk4605ckXTgX4n36dwC3JznMwjX7+8f4/cDlY/x2YNcFeG5J0mmsO/OUM6uqzwCfGdtPAtcvM+cF4Obz8XySpJXxE7mS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1YvQlqRGjL0mNGH1JasToS1IjRl+SGjH6ktSI0ZekRoy+JDVi9CWpEaMvSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0ZfkhpZcfSTbEry6SQHkzyR5D1j/BVJHklyaNxeNsaT5N4kh5M8nuS68/VFSJLOziRn+i8Cv1tVPwPcANyW5LXALmB/VW0B9o99gBuBLePfTuC+CZ5bkrQCK45+VR2rqs+P7f8CDgIbgG3AnjFtD3DT2N4GfKgWfBZYn+SqFa9cknTOzss1/SSbgdcBjwJXVtUxWPjGALxyTNsAHFl0t7kxJkmakomjn+TlwF8D762q/zzd1GXGapnH25nkQJID8/Pzky5PkrTIRNFP8iMsBP/DVfXxMfyNE5dtxu3TY3wO2LTo7huBo0sfs6p2V9VsVc3OzMxMsjxJ0hKTvHsnwP3Awar6k0WH9gHbx/Z2YO+i8XeNd/HcADx34jKQJGk61k1w39cDvwF8KckXx9gfAHcBDybZATwF3DyOPQy8FTgMPA/cOsFzS5JWYMXRr6p/YPnr9ABbl5lfwG0rfT5J0uT8RK4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1YvQlqRGjL0mNGH1JasToS1IjRl+SGjH6ktSI0ZekRoy+JDVi9CWpEaMvSY0YfUlqxOhLUiNGX5IaMfqS1IjRl6RGjL4kNWL0JakRoy9JjRh9SWrE6EtSI0Zfkhox+pLUiNGXpEaMviQ1MvXoJ3lLkq8mOZxk17SfX5I6m2r0k1wE/BlwI/Ba4B1JXjvNNUhSZ9M+078eOFxVT1bVt4GPAtumvAZJamva0d8AHFm0PzfGJElTsG7Kz5dlxur/TUh2AjvH7n8n+eoFX1UfVwDfXO1FnEnuXu0VaBX42jy/fuJUB6Yd/Tlg06L9jcDRxROqajewe5qL6iLJgaqaXe11SEv52pyeaV/e+RywJck1SS4GbgH2TXkNktTWVM/0q+rFJO8GPglcBDxQVU9Mcw2S1Nm0L+9QVQ8DD0/7eQV42Uw/uHxtTkmq6syzJElrgr+GQZIaMfqS1IjRl6RGpv6DXE1PktvPYtq3qurPL/hipEWS/PpZTHthvPFD55E/yF3DkhwD7mP5T0Kf8M6qevWUliQBkOQ/gL2c/rX5hqr6qSktqQ3P9Ne2v6yq951uQpJLprUYaZG/rarfPN2EJH81rcV04pm+JDXimX5TSW6tqg+u9jrUV5LXsPCr1Tew8IsXjwL7qurgqi5sjfPdO3394WovQH0luYOFv6cR4J9Y+L1cAT7iX9S7sLy8s4YlefxUh4BXV9VLp7ke6YQk/wL8bFV9Z8n4xcATVbVldVa29nl5Z227EngzcHzJeIB/nP5ypO/5LvAq4OtLxq8ax3SBGP217RPAy6vqi0sPJPnM9Jcjfc97gf1JDvH9v6Z3NXAt8O5VW1UDXt6RtCqSvISFv5u9gYX/fc4Bn6uq/13Vha1xRn8NS/L5qrpu0jnS+eZrc/UY/TUsyf8Ah043Bbi0qq6e0pIkwNfmavKa/tr2mrOY43+ltRp8ba4Sz/QlqRE/nCVJjRh9SWrE6EtSI0Zfkhox+pLUyP8B6MsDCi7ECA8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "df['category'].value_counts().plot.bar()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "_uuid": "400a293df3c8499059d9175f3915187074efd971" - }, - "source": [ - "## Display the Sample Image" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "_uuid": "602b40f7353871cb161c60b5237f0da0096b2f47" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAAD8CAYAAAD6+lbaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9SY8k25Lf9zM7g3tEZlbVHV8PJNQNgguRWkufQIB22kpaacWVPoD2+hZcaCloL4CABAGE1lxqgsgW0Ww+vulOVZWZEe5nMNPCPLKq3wQR0JWugDoXhZsZ4eHh07Fj/8Esxd35ND6NT+PT+DR+/9D/rw/g0/g0Po1P46c8PgXJT+PT+DQ+jT8yPgXJT+PT+DQ+jT8yPgXJT+PT+DQ+jT8yPgXJT+PT+DQ+jT8yPgXJT+PT+DQ+jT8yfrQgKSL/kYj8HyLyVyLyX/5Y3/NpfBqfxqfxYw75MXySIpKAfw78h8DPgX8G/Kfu/r/9P/5ln8an8Wl8Gj/i+LEyyX8f+Ct3/5fu3oD/FviPf6Tv+jQ+jU/j0/jRRv6R9vvnwL/+6PefA//BH9pY7155evUlahOxibszZ4c5wR0ZhmtiOZ/QnCElyBl3BxfwW7QXxHd8TtwmfduxMQAHERAhlYyn2NpwkBTvI7EH+ei4EHCHaczW8WkIICIIgmQFEcyd+E9iTyIgiohgboiCS7znZuicYIYy4/sE8IyZIZqA2/aKH+eFCGV23I05B4qRkqFJkZSYnjEThgni4G64GSJK0oKb4W7AACaCI0mx4/sViWvoxHVVsCyIFtwFdeOkgyXBkh1IuC44io2OACVnBCGpxj5wPC4IIo67v7x+3A5EwONLEeSjz1lc+7+1veDH/ZHj+hJnEvf+Zc2X2Ccfff7Y5nbBXcBE43XR+LxmHD3ugRwfncfxCSqKihzHNxAMZzJHR+bxnH307/adbnEd4lw5jinGy3Hy4TG9HaPI7Xni5f65+8vZvez/ds5ufNjRbX8Ct9dvD5smNBdAsOGYz5fnet83kiYEYc74Pn7nmh9nJ0LMvOM+HycgAnbcO/fbvT1ewzCb6O0ZdY+PpbgHmhJ5WWOOye/OSUSOe3BcFz+utvtHl1VePhRnrIjoy30Zs8fcnI5I5pvvfqC1hjvfuvtX/Nb4sYKk/J7X/hauF5F/BPwjgPT6K372n/9XLM+P2PP3zLHz/t1vGO8fkX1nferI68/5y3/4D7j78gv0yzdwf8+UzOiObE5qjjho+QU8PsO+8/Sv/w2//D//itZ2tGTyeeXh9SvmV3dMg3fXjXx+AFVEM6qQE6gI5sKqGW8Dfdx4/PmvufzwjmQgDkmE+y/uyTnztO0MUSiJnhTTAlkpy4k5J1MbMwuyFHxv5Hfv8MsztT+SaydVoY+veXx8Zrm7Q1Ih1TMmhUYCV1wTX1+/oe0bj9/9mru18/nnUE5Kvrvnff+c573ydDmRVJn9Qmsb2QuFM3NvOI1a3uHyHhkDWwv7KuScqSqcp3B9eqTPwen1Pf3LhXr6GpsZfXrPv/f6kb/3ufPvfgku97yXP2OflbK957P7VxQ/HuBp8RCaYQJ1WShZcZ+Yd5CBiJOykYsgEgtjccF8xKI0drCG9SvYwC2CUEsdIZFzpZSKSkVSRShAfgmUTSaYI7PBjAXDUdCCpwqS6OIsy4rrCpLx8oDmO2R5ACmMCToeMQPvkKSypoLNnbZ9Dzwi7Fy3t1QTkg7cB2M8owqJBCb05owxkZdFApwJwBiNeUzaUgpL0UgCJOEpgwpzTka/MrYL3jcco6QCnnFiUe3TGdZxDFVDi1C1xuI0B6qKSqI8fMb66mt2qTzvO3p13r37gbtT5YcffmC7PtMvjX1r7NfBqZ6xJQKW5kLSjGpG0kLKC2jGXTCDkhxVxdTZe4vjHgMfg4ywP13o8y3Xx/dkM6w13EYkLssKufDwxRf87C/+HjlnlmVB1EkpRQIhoKqUUo4g6sd3G304170jUiKQakIkkTFquaPmB5yOM3h6/g4zaLvwL//Fb/hv/rv/EbkY23X8q98XzH6sIPlz4O9+9PvfAX7x8Qbu/o+Bfwyw/Pnfd52CtRErmxmaC1ozNiZShHJe0KKUIpQl0TNkdZIYc3S8dQxn90bOQtbK3Vdfkn7zK7ZfP5MwkmXa9UJqCypAG3gZaMro4uSUUAXEEBKuiiRFT5X8cEa3jTknOp3WO+drY6bJ2C5YzujMlHWh2043SALmho8rooKwUszIbkwb0Eas4qb43Yq3idYTokrOmelK6ROzyfSdMTpjDKaDaCavlVwTRmEOxbuCFaYZaKaUQt8HbldIg5Imy72QUqZthYt0ZlZSFQylM9nGznRnzUoWhd4pLrTnC30dtFHoljBXtu2Za7vwZlGulwsmCeuD2QelFFBBckJUwSqigmpFJAOGzcY8Hnww/EgtJUFRBS+4Cm6T0TZau6CmkVX6BO84E+fKx8yRu9MkIR7IRG3GJCPFAqYLronVdupYMU2YJzwVtNyh9QySEHOyXwNMNGBGUFJxSnvG/RlVZ2HwbIVhA9wY3UgSGZq7M4fgkyPLEhAjEuVJ73s8UwlyUUDpveM2kGykWhAn7oUmhsiRYDtuBqIRAFXImhEFkYnkD+hKtZLKQs6VdX3DtsHujo/EN7/+a77++mv+6l/871wuF2x29svOHM6pPjB8YpYQgTwDfbgLJSkkRUWxI9MfbY8gmQIRpHSgIoRkgY50N+zSI6DPQRKgHFhOhXI6U6qSs5LLkQdqnLMqpCS4z/jdJi6KuJLcqHrLvI9jcsN04OqYGr2PYy4pe5vYzPzP/8tf8fx0pZRKoKzfHT9WkPxnwN8Xkb8E/g3wnwD/2R/aWBykT+iRDQqJ8909XjI9P4Ff0JrwBJZioZ2+R6DIoGUy8o6ZMZIx0qSokM8Lr/7kZ3z33TeMObiziVrHni+UZaW4wxgB15dCSgnRiXtABtShCJCQ+0qxe+beSAa0RnEl58SdV7obMGn7lVxSTIghjLazjsFQkGRkgcUnwybWJ7jhJHou+HJC6oKb0dpOzRUfO8yJ98GUHaNT1kI9V1KtpCJMz+yb067G3CcuxnJKkCujTdwHKQ20GvVkSB54eWBukynGFBAmVZxcK0nAxZAu+PWC6GC8+559UeabE5dW8OF466QGl2uDujBdUCIjyppiQqWYxGM4KQlJM8IEDEjYGJgELWA+IkNQJ5FIAqXe4z7RlJFUsO054Fk3bLTjCTqg7xGUAlJUwA76xlBzXBSVgqcFkUQVQfeOHXAw1QUb70i2ggZMFmvgTpoJmQVMuW4bmQhG8V0gJaCqmaE+mQSU9BtkRSlSIqiYM45txZ2SDmg9Bvuc7K0zXcjLyqKR6YsewVAEXOj9oDhqjfddcEkgATuNyOJEBJXKWu/I5YTICfXE3AbbdefLz17xN3/9z3n39jtKEpIIp9MCaGw3Ovs19lNW5VQcSUJrDTUQHbg7ZrC4I+6IKLWszBlziVyQYRiZSkKnoCa4CXkpbMPI54zWhXRaKFUimdbJnBMbt4UgvUB8d8fGjGsvQT7UlDGJkOYEfPcU748xuF53xmiknNmujetz51/99S/IOaiuPzR+lCDp7kNE/gvgvwcS8F+7+//6xz6jM4DSDCaQlDPmhVkqpnus9n8LxB+MnTuuE9GJYKgKpoK7MJOQ1xOeM/hERciizGFotQh2DnZwmkLARPcJJPTGIybBsyI1gxvqgrihBqkkimd8xirU50ASqCvJB26NZBZcw4xVUYhjxQIuiAmaCrkatVbGGJjt4AN8RGCfHSsDVdAsaE5IyogKPgWC5oQJ3Ro5K6KO9UGSHFAlOaLxLyaeB6X7ktk4mg7O1YFhMDpJBekDG4Ufvn/PN2lFmgcE7M7DaSEvJ2brpJzJx4QWDS5IRRjuuB/cnwTnB4bFAYAo0weahGSKq2AILgaaSO7M5KQ8gm7zGffJjWn+cq0C0k60HKScT5JbcMOuuBIBhQJSDv57HAziBJuYg1hksHYEObeMuIMlzCauCUGDixZAAgExByi4S3DjL4HDbnMDsxGT34N2CK4v3htzvgQXN0PMEXPcYtrfeN0bdws33vHgbI/XblwgaCAizZAyta68e3pm7IYiZIX3P/zAl5+/Yd93Hh8fEQJCt+vOHIKe7gPmTsMmqDjTDGOgajgBeecES5HVutjB3UfgNtHgez/iGlGJzHNOJB3Pi6bjmvhHPPZAqce5ppeA5sfi5kdgUM3BT7u+cJLGIVuYM6YzbJJ1wVzY+2DbJ6qZ1m4L7u+OHyuTxN3/CfBP/m9tbM5C4XLtLDUxKZhOyhqp/fXpCjmhteIcK2sKqUR1ggxG7ug01A3NGXFlqDGXhfXhFfvTu3g4B4ynwbzuLOc7rttGOp1IbpHKi5FzIlkEQteAzMvDCRdD14z0yVoT43oFdUpdGI8DH5OzOsZkujNHo8wdf25MBrBQThnbGmodFJ6fG/MkXHvn/v6Obd+w3ihiMK9k6Zh2yuLkPPEsICnOTYRcFnrrjD6xXWnXFitrHmiGhDD3RtHgCucc1OyoQNFE905yKCIUN2wYOSsFeL7u3JFZVbhcn/j254P9odCv95wc/vzVl5xLRafTrzvnurxkkX3fkZSo5/WAjyG0qRJZBPMlQIBiGEMS0kLMyklZsjIV1A0Xp9RMyesR2HZGu2KzozJx74e4cXB9/YIi+NhRSTdZ7iXAaDYuPWPiEbRV2PdGLoU0ekwu9xDYVMklMRt0G1hWtglLXUkpMYHZ3uOjx7M/QyyJTHEy5sCZFCVolNFIClkSc4aIllOm9z2edY0F0N3pvWNmlBy0hDovgTvn9BFfl7BjMZhzMLyz5hVcOd+9op4fEMlsrZOSoN7x1vjVNz9nSUq/bPTRyZp4+8MTvU3efPY1ZsbdcheLHsL18SkCvQtlXY7ABKUU3CMIjtYDDqeCayKhzDGo6x3ZnjBVhERKmWtv1LsV0UxZT7z54vNIJCQW05RgdDu4x8ju4z4KScqxyCqSC06IlEGVxTYOTFPmACShaYlFUDO/+OXf0MbEFHKu7Pv+e8PTjxYk/22GOOgw1rSQVEg58TTfYwnqacVfvWLmBSczJbKTpRT6bPEAWgMmok7ZB9MC7nqK7e++eENOTn/8DpuObQ2XnZILua707Uq5O5GQF3i4jEO7PBISq0o9L8yRSMNgGLKAiTD7hKsxRkPnZKkLl+3KsIbi6Gjgk/1yRb1i+0C6x0RCMTJ6cCjqA6cjdDRPkjaYg5wEzQEz8pJRVboYyYxlWcD34AIBbw4yIEE2GM0xdaY7oxg+JlmuVHcoFZlOGh1/7uTrjovQ9x3Oryk6UWssfeDibBtsY2VVx64tguPrBxYU74M+JmPbSUslScDC4YYemcW+XzidF2qtiMCchogfvGTF1BA3xi2gJ0Nxas6kLJDWQBrzhOWKzEHfHsESzobN4G3HvKLEvqZyQM8QFYIrc4ZAeBwim3cB7529e8BUVVQruDL9cENoZE2pFDSvmDv73mhzY/SBSkBjiExy2sCtB3RsO2ITGxE0ESEJkam7HW6MSa4JFSVrIqmGW8DGC98754jnbsaCoKq4KGbzZU6pKjmtiCbKcoekiotyfb7S2sZ2fWS7PDP3CKaX7cr+vDGm8frVZ4hk3r9v3N99znje2baN9+/fozmevVQyy/lEKvG714p5QlLCS0ZdKKeKuEDK5JJwS7ShnL58w/O7H5jTyGsINuv9Ha8/+4xlOVHrcRKu5BSLbiywNTLT22KnmYCXih2crUqNlzxcD3N0RveYo6Lxvm18++23/PznP6e1Davlj8ann0SQhIC7NWXcG66KmWI2yDmT1op5rBRmCiYkhOE3+GIv/I5MQw6SGAgeKhUkKdOMOTtqiYFhfZDXMMQoAUNv5LrKwUn5R5DmWOFUFRRmTcd3OiQFdWzveJYg3ucIgcgmKoaNwZggcwaf4xIPt4O4cQBMFAOZiBqaDJKTkgVPIwlLBbPIJoaH2quqaAIfYdexMQ8LBjDA+wFpW8A09Y6qU5GDVhPmvkEbxAXM6EkRc6ztZJySKks9k/JK1gjyPntAcwj+jQgmeV1QjWs+5mCphTC8zBfIdbP1fLD3HDD/4CfVw2WAHPfI5UXNRTxUapS8nvGZCTtMhtkQaZgH12MWGatbTJwujg7DdX85Fr8dA0EE6BGcIjoah/LAzZil4ggj+L858DlCvQeSr8jBj8Y1iXtxe06d+ZEV6rCjHa/fxgskhZdtb5+/vXZ7BoImUTRwPpBesjHVyO6mW0DOMej9Cr6T0wTNXPuVvjfcndPpjus+eXp85LPP/5Q5nO+/+ZbWGvu+s5xWANIoqDg+Sjx7czI9Bw3klVzX4GcPDlEENDszZ2RZkFIxabgKkpRSFlKJYKUHr3izZuEB/1UyQoaD5hgCJsciJxEbhkRW7RbnLKa4pePzCVUHyTw9PfH8/BhCrf7/IEi6GcmV0/mex+sVdaeUwjDDVHn1+g1vn5zpyphGb47WSZbMPmHfd/Z9w5mcLxvmGU+OE+ro3htbb4gbW9s52YqY8/j9W948PHA6yG/V8A06k2IZmxYeM7eXACkanKm6sC8K5qgWlnmiJJhuYJNVHBXhab+QNLGURNPB6FtMdgf1TLeAuNWN5BNn4AyQgaZJTgPBqTXUZtWEeWHfB53B9fkZ+hWzM0UzY+5UUUYb+CEeJA+ynG54i4dJZWJ0unWwQeoGjxfkukUm/fqBsqzo5Yn98ZF5vUKt1HpmsjC9kdzI02mXKyMVTnWJRa0WkFBp54Dl7oT7ARtLKNu97+SspKQRaMxwSYiWIwBJWHgwELA52adhR1BLmkkFJC9kVtQHtt5hfbDvG2OfzD7wsdNbB+Pgq273MFP8Gt5MSYe1UKiyfsiO3OnjWFSskW9BNCeMjgxQd3TukTHeuG0JUcJGiCcqHRVegtrx1BMZ0WQMwvoEJD0ySDmg9QghTrzjIxYYdcFsYrOHgKJK1XwE2siUUy3IUFQz06Bdr4zpbO2C2Qb+jNnGvkO7dlLKFBPa1ukdvv76z/jNb97z3Q9PvJHEKpW6FsxGLGZ94m1gDmhk2poVG8HR2rYjeUFVUInFXQXkbkWSc5bXzNGwtnM631OP4Du6sdEOq0/FTZkjMnu7Kd0W19BqYvqxyHjCXPAjwJrBNKFQQCupFEQM0c51f2LrG6f7E6+/eMXT9vscix/GTyRIBqHazkIqC9N2anfWVMlaQDM/M8G7sGnhb0bnL5fP4OmJVxdFr5MffGMKPCZlMQ3yf/T45xMfA326cqcSBD+gNsjvr6yfVRbX8LPlgAfTNtwcc2hTmCKILgwdtHElJ1jsTWSSZWD3lV4KoyppOAzH94Ztyn66Iy+Z2p+YfaMWGN7x3rkbk4XB7DuLrPQMXiudUE+LVKooD1JodYsV0Qc5C89Pwtwr7XkicyO5I3blef0K2SBZZpmgYyPVsFhsXujzjtf5hLZv2b79a2qe1FRoVngygcOL9vnze6wPmhZ+del8+Ub5k1R5Q0L2zLWuuDp31miE68CzU07C9fqE+aDWzGLGbokELKnStyttdO7OD5xOJ/YWPsHz3QMQRlRlhFfQWngPj0wrbQQpnxKkgLYmkTJ6usNyR+ukltf4nLT9B4Z+x359S8JZMpwzpGRc1lcRcFN46lSVUk/cbDhzTlZigg5J7Co0VyQnaloiS5kTyZly7SQ3VCDNwX69gE+yKe4VG+BpHufkDIvgm0rGVZgzhMaimZwqgmOtH8FDaKZMLWy6Mmxw5plJh/GE5IIMRw+hJmkmW6ZR8emkcaFfntj3HdWMeubxSRhjoc9GXe/55S9/SRudV69e8ebVie+/+yXI5M/+dGG1COBb67Rh5FLJZQ3x6vAjmgg1B9R1FWw05nbBU0W0kjTjnnk1HmhzwesDszpXuVLrwsI9uWXG9xvvT58DSl0XPClvn57JNUF2cpUj4AlvXgonPBYVS3xkfIqFWt+SyiAfopXqPcv2in/4Dx74u3/nib/4i1/wi++/xd35p//D//R749NPIkiKCG0fnB9WpJzxLpxqxsfhjB8eCLAbOgMaPj1dODlIKeh6ZlwubGMndUco4b+y4OTUDwTZJiYC2Rg4rQ0en96xq/PZqzO+pPCgmdFbZC7DnW4SJhOzIPLHICellCDN5xihhAohGqkjCgklnTsmBUmFku4Oy80AD57FpjNSKIZIqNeuQVprSsGhCjQX5lwOyAV9n4xtsl12tsdGlYWshdNScYxpE5sT93yo4MHHmQKiPG+TpZzI51dc3/+G59FY0iuSKG7OKQlLabSxUfLgqy8WTnWCPLOUiqZJkgPuYZFheJD4Zkap6SDyo3rqdDpRluD3xiEQ3KDgLYv/neH6Ai/lcD3ceLg5b8KPUGo++MNQOEUS+ZQwG6TS0TRYlshQC0qS2H5d1yNIloNiyeScDwtYVJwUm0yz4FZFkFJIvz1tVMi10LbwPI45Q/H2D8qqu+OHwf7j5/6GTm6+wnoOVBPCw0QVhg3a9hTnLpBw5jwytukgM8SxoxooOB6ACuo8vnvPtl1CDZbJ4/u34as9hLSnpye+/pOfUWtlmvHNN9+Sl8qphOfWtrjOqSgFR1RpbZBrotT6QSixGTadQ3gCfQliLh52HEukUnApiBmLC3WpvHu+vFiW0voU12I94UlJpTJGYbm7566u5CVIy1MttH2Ed3ga02dwuKlQayXnwm5hdBdJkBZcEqk6ee2sM/PF18L6+gsA/ik/8SBpeJxArgiTrMqAsD/4wMxo205tJ6or1geeElOUVBe45oAsfWN6JyeBKO5Ap8R+ZsBhyYaZYz7YWmNcnngYnWQVnwmDgDMWVodp4ZUM7umA30kPLs+ZdrNkBCyf7mgSLIfqhhQoJeCGXVFRwnRC+AQVVCKa3/gwtCAapXnThe6CjQgaNpzRjdmDg7S9h8Uie5DdOhExXpCd5oBIgQUxnD4NTQlJBfISpmtJlKR061hvnOpClRTBwguzP6G+UPIDmTDz+/xgU5HDGI8NSkpHhc1EPKojxO0lQ4OgNexQj2OSGbdMMtCohb1D/KikMW6Zws1QDQe/mAK+3gKP5pi8one4DzynQ8iJ3WMf+Dq9WZYIN0U8k/oiKJl7CCeHSn6zIInxct8jEABO3P/jPgZ3eAgNdthT3D/iZSMT8ygngRTeviAHlGE9YPtRwZJSOr7fD4HoI35Swj5jZrEYEebu3vtLxvz0dKG1Rs4LmLCuC2NE1QvA8/Mzp/tQs8ectMuGT2MSSruTUQ8oyzCkBek9cdbDbZLDwoDLZByiGdoxlHwkEnG9lFwFT4m9PYcNR4XX64maE+d1wXOmLieQxOnunvu7ezQFhzgZTAVP6eCuHVLCJfy5poJbZdpkdEN1oups187lMtmbkfLKcuO5/8D4SQTJlBLr+R7TQloKNVfGvOAzEaq1omXw9PYdqyr3X36BK+zTAhqeXpHnTt6u2LsrbbugydGp+HXA7qSmsXrOwVgmmhJrXWm2066Np+f3nNZCTwUXmPs4Sr3CX2US6qJ7wL6O0W2LiZQEm4bmxLCBEfDDJMH5hPodngUpmVTCsqSjhKcuh2sySUfUouogJSyF97H5pJnTDKSX8NC1gQyDPZFnIk1B2AmzpLOcK3qqdHFsJ8rHSgq/p7YQL7KytcZdPfPmqz+nmFAGWOts1yf6u+/YF/iTr39GLXekr+54evsDtQwWPfhISZgaWlY0RU1ueOacclMMp1NroiRjjiujNUquwZX1wdBBKidUlH4LksAtWN48lW4NcyHxITDcil97n9AtMtIUmWmX8J6W0wN5qVi/HAbkHv7Featl/yiAiR8K8Qcv3/RQqOec4X+djtMBp9s4Psthw4kKo6qxUEDU+neM2Y+M+CUofxCMUkovAXUkY/gkETaisYWosj8/huczH9c1h/KbUsIQRjckC6oZm+AyY4E+TPbbfsXduV6v1OVEyQs2IyP//MvP6H3SRufNmzeMm1/zsgXHfCrQO2NE5qiS6ea4Ja6XdohHQi7hv/U0cFN0jbKfPnasHFzubuRaXgSnUirdJlLPpLJyPp958+ae0+nE13/6Z+RyYsyw7OZyAi2MoyrvOhs2I8DJgb6mC8Oc7dJw33EvvH37zDfffMfz0/VIHJR960eGKaj53xLKfnv8JIKkqnL/6oGr7CAZWQrWHCHHZNTO/RfGL//6e3j/Hn/aME70BL3AfVlZzp/haaHX7+lPWzxQFHwztAlMIZadyvRBLoWHuxPv5465sV8vlPaKmRPTnMvWmcOj9noCFiZgcWPIgJlIOQSmZc3MlHCicseng0cVhKLIOAUkVUHqHS47zARzYO6RH6WBJUc9spokhe6TMQmD+DT0OYcAMZxlOnk0+m4Ud5YKKcUxprSx1JUdeOweRngth2ARJt20LBjPaD1RVqcKvJZKalf64nz/3bfoppxVqCq8fnjF3/nsDUUTd6czz09PMA9XQcmhGrJHNugFIdwJwmRdzjw9fx8qcyqMNmjDuH/4glvNsmp6IeTBUBKQwTvmkznDFhTB8QhIR9MCO1T8OPcUx6CT7BlNlVwKojWyr7xjfQTqaI+RbR6ZhEg6TNghkLkIrT0yPOqG82HTYsCgHwjiKMHLmRlqHBCNSvKxP+OoHPGEao5jPIzUfYzwGh5p/1zAeosSPotzul6fmX0j4/iRhZusZBfmdAwL5VfSy3Vxd/bLM0CU99mk7Tv3d2dUFkY3Ss6Umni+PDGGkVJhvbvj+XJFDJbzHS6FuXVKqpwfwhfZ9sH17Xv2bacdYlJOlafrW3KqlG1gnqj3I5rJtJ08FqQqdYTTxAnHgkQ9Jue6opp5ePOa0/3r4IHzK+5ef4EOsGunmdJ2/6jxRuKlSQYchvZAJ7dAOvqVp8eNtk/0ULEDohtjDFprpP6xoPa74ycRJBEo68K1tbB6qKJlYc7OnHAqhaRR3/r+8R1z35C1YObUuzv2GTc4p4qVzDYnw4yaIojVutLziamJ3jptDHQ2Hu7e0DtY74wZjvu+7QwLk3brV8ycdDx83QP6IBPqB07tZt+4Qag5jFI0VrZs4GE4vnWwiYYaNWq0T6HcpgStd8oa0GLaUSHiFiowZZQAACAASURBVCq7CYtG04W5b5gbBWFvHWWiKKphuNYS0LfUTF4SuVZ0WfDiTAaSM9Kd02llqZ31ZCyi5OnY1sk6+fLVStbJ2BvnZeVcFk7LEsygwXk50/eGidFs8PAqRBd3Z1qn9yhDzCVxuT4zxxbmYMl0m9ScDo5M6H2g+fbQHyacw5Kz71GVAvqS7blJ1KfLh0YaopF1zum4d/KamW7MaajmEBo84PPuV2ab1BKK6selbrfOQjGBBqN/yJQEAT86N9nNbhMQT4BCwQlejqMi6AbJXWCpy0vGEob4GQvEYQi3ozKrLGt0Vjq2cXf2fSelxNBJSRm4VZ4omkKwCJgtUREzj+dRbxlbZJ05V56frqzLK9Z15ZsfvqO1zrKc0JIPB0JhMuiXDcNZTuvLNWg95s+0aGJhI667jZ1cDwrr+QKphmcyKakIYwQ9ID2KNm62PIhsNi1rnIconleQxG6ZSweVwmUO7MgozYMWkTZ/yzEAdlSeze6YOa1dwSclJ2zuuMEckUQJk5w8qsleOij97vhJBEkRyBXwxJUJ07ExWDRR18ypZESunN6sjO933v76V3x+ruj9GS8JsrCmwpoq29dfsP2wsW9htE55RfKClJVZVropLhuoUNbMq/tC6Z2LO5fnJ7S+CXvQtnO97lg3sikyI4s077g2uk6aJJxBLgtizhg7Pg1rhlgJb1gTRt9DmFECggNgwSMeE6rTEFcYjvhgDiF7Qpsz98HsxvYc3GzqDZmN0Z+pTKjC6VUKk3mOBlq5ZMxWWBb2kVhOBUtRdje9cyrCWoXTqiRvYEZCqakjvnN3LqzLG/btmR1DXj/gM1GWhVpWSkrsl+DJrvM9bh1VKEVJWcjJDp5vREZpV9yFbgO8oumEipNzRWslaWHrg5xjQZp9Z9saPgXHCAthwQ4r0Zw3z2DAbPCDd9XDfjPCmnKoryXVowwzMuNUCrk/cQuOx5NIb9E8YU4/uDQ/7m10s9FuwZ9rRZYlhIqcUBNM5EX4Y964ZUheWERwU266jb/AO6X3+RKcspbw7BKCzxxROZJzIdccLdkOQ3spy4F0wiImmkMEbYPeO6fTEjYaBnpM9bdv33N/fsMck9/86ld4EbQKWg4/pRmXvSGSOJ3vOSFs24aKRMu9a8PHRJNwOp1Q4n6NYTiDNib90liK8Lw94hmqNRYWMhkxYQ5hzoGkhOHU8x31dEIP69KgYtO4vnvku7fPjBGLgc0o+x0jFo51N3pvLxlkcODjtzLK9/Te2fc97qHF+bTWjms30TH+36/d/rcdIlBPgrjQ+mT6pGZFPGCcZMXuhNdf3+O28e2vf87y5QOlOAsLSmKVMLLam1eUN4+0t1f6LsykzFrwZcXW01E1ffSrxHh4uOckZ+b7jW3bOZVoiWXaozOMh0giY0Yttk88TXqCsUTPy8VDpBitY21iDXSx4Jpm4mm/IDmRszA1mgFMEnMINjNiTq9KlhrGWXPydPLk8DZObNvR5ogNUh8wr9j2PjyVdUC+J58y9WEhewLPtK7IZvgcSGrU5KxLmOtPc+d0J5zXgrUr2oz27h33cqXWyRevIyP96quwybT+A6XcY9JJBcpyQjTqdVfuww+YovbcGaR0tLIioKp7o92y8KRAKPnR1y8Cy/l8prUW3Vp6QEjXW1vR8KP6HOBhEL5lUmNYuAI8iPlQzBviGRkF1Nm2Bhgph0dZVcm5HhndrT5bjkzUAsYaZFWmT8wGtjvdG6Ckk5D0hGZFSkKmROY/oc2JeTQzuXGQnlIIbX5UGJV8KOhOP7LFWhKFgiI0i0Qh0HXcs5RLBOLj2OecIdTloAc0BWcdZaBCLZmUlG0b9NbCNvPqNb1Nnh6fOS0rc419mQeXjCifffF5XHsSrQ1OD3fM3nl8/0Qb0WQlL5lalZoOf2NrbDpIptTk+PXwI5jj20Z/umKWyVUY3kETqJLE+fLha776k58hqXC57vzw/a8ZY7AdXbdG349M+6ZkHzXx7UMdu+itjOFDoxP3ScZhDNIYyBEIl1WwOj6IZzNKHv/Q+EkEScSRArokzKImu9lgyYdipZO9NJbXK2/6K3749Xc8vnvLsiSqviHn5aWT4FgS6+sHxjZ59/YJ1SDxe1IoNdLzPrn2jfdP7zh9fqbWhfN5xXt0hymSWMoZb9ClkXwcVT4EB1U8jNAlCunHrTmwO9vjM3Rh2kJKAiO4Q5GMTA1LEaGu96HYMbnCBgQFJSPBxZqTCW4riVJ0x6zR9kdmvzL7BdTofqVYYsmF8+s3JEvMseAto1eFPmjbM6qD09o4rZmv7hKnO1hPC8wz0iabbVx//WtSHjCV8tB5/fmJWisqiZqNnAepbGiFmoMLzNwRnVb6EVB7CBN6q4SAsfWwZSkMn2BHVpxS1N3qbyuMGgo9IXLYhLbvYP1QcyPjQ+wlSEZgtsNsfo2abY/vz/kIShL11Mg4Gon48X9jjgNWSzqsmOlFcQ+XxYxWbelWMghyVBVlkYN/DKhrM0Q0IGijPhBfXmAwR/lr7z3olyOz1BHNSJLlUJIlo1Jo80IzI6WM5OA160EhcKjzNwiPKw8P97R2Zd/jmfGDF61l8sP3T3z22VdxTW2L4G4JEeXu7g4nIRScRK2ZKReQRF4TJxZqz1yfWmTLRweenJXl/hTH7TGnGbFwDbtGt60+GH4hWYa8kHKhiHFajrJcwjq2trfMPkh9i9Zv+fA6u0HpL7y0pfUFTcSCPI+fb3FF0HGKMtURiAY4Aq680CtRC/+H/0jDTyNIcvOMHQftjlgcuBwqoGHULKSDC5wWJ33zx4VIctTclgxJ2UenlOgtB1GiyDEZXxqCHhaOlBLJUlhEbg+dfmQTkaMbuURTVNWwbNzsGHp0YRljIF0OcSDh4yhrJPgiZjQhMI7a2xnewjksfIwpbmI2P0r0Do72EFyiD2OH46bb7Oxjo+5X2jxhTGpZEJRpmVKFZZHwQjloEkpO4C2qTDy4LxRev37gNV+xpk7yH0jZMQvodXd/F337VMgFNIWa6iYkS7EgHGWH4YT/0N1G5KPSTgnVFj4owjlHh5p2ZDspJXzMDwT9MeZ0ODrX3+qURf2Dl/Jm/1GNzysMGQg57GRyBFGN+ng1f4FcN6VXD8h6299v0/kiciRBt8AWzRc+3u6W3UzCCmRmDJuUj97/eFu5fVf4mvg4p5GDnrk1l83pw/HdWnzNY38vWdUhhu37I/t+Df9oivdba6zryvv370la2HOPhUgELYlSCk/PW5RfpopIirZ+HPypK0MGu7ZAAP6ha/wYgzmMuTt1JJLF3HOP6rN0VBhhKRrRCC8LxdPTU3grc2ERmEkgkk0UPRqBREXRzQHRdDIOdAdh0/oYveBgI0Xf0tEP/vLW7Pj2u+Oz//SFGxel1zMuwtYb++jUNTFzYRPjlAt1/DtkfaTXhJ6EIoNlOqercioJrQPPhvAlUo311eBUvyE9f0u+dHLb2FFaqiz1L1EfjOfGeOwUMoso12q0ZAzt1NmwOqPCJu+MtaMeJbyrVxat5D0yAtOwgyjOm1LY375DJWO1UR7uaVtYScRCyKgWE3LuFzjEhDSFu7SgKXoRXotjRbFLw9PACnQ7YS6oNXT7HvdBLpXz6TNOrJw2483WmOs9bSjWnP3qtN05L1Elcidwnk69XzitlbNWVoVSG4n3PPzJiZpO0FYex057TmTPLK9evfgJU0rR4l8keFZ7ZIqQ1gj80ZosoFvOGaay+D17G+wKui50h/uHO8q60PaG22TWQcqJZIRwNSdjv4Q3dUzqi20ngsa0qIePVPEQLw6h4rl9HV7Zw6RffAcM3Y344wSK1x7FARY18zkLY+wI/Sg9HXR7zfTO1CteOq6KlsJQRQ7RIpcTXUDGhvgkeyNpLMIzqlTRvNLFaNcrNcW+xcJxMfyE5oVd7ynlxOjXWOT6BcY7qg5mbVALowpaE1VPdOywjQrz4OLGbJzPC9v2Pdv+A5qIuuiUKXnh++/fUusKhLVpUUWtRWZ23fn+cuHu9CZKIaejuaJeUC3cvwo4f7lcjvLS4Pf268bT0xP7dWW0aM4ys0UnKyCpkSyRWyLdPZPShBT8MdJ5/+4byuVtZHu9s7IFzWXCHOE26f3orEV/CXR9jpcuSb2FdetWbPGCDno+6tU/+HNvP9+4y9nXPxqffhJBEoSsARcXzZgOCk5NmUUjiAwfL23oT6c7WjPqCMglqUAZ+IRzWiinO/Y+uawrj998S+4gw8gGPp2shWmw7cLj+8o+Mn6uSEmktGNzJ7XJCWdqTPQh8bdbkkERpWhmalQ3jHw0F7X4GzoDZ5udbAk5Ss9UQEqmYR+UTA2bx23cVrOUEikr0mdkRTk6DQ+JTkczS3SoTtFBpdy9It2f8LVwMeFuXPHprJ75LIPeVe5XoabBw6nzcE7IKXF3MqpG/XUC0lpY1Cgpcf/qgTclcbmEvzCEgNNHrfPl5XiVaJ6AhNVEj4ofd8ElaAjThC6Jmlfy3Ss8VfJyh6eMCUycnJTRQk2Otm4zqmE0araftyfa5RLX6shQXSV40MN0L6YhXkk00x3TgY55i3uh4EfFzS2Tvf18mzy3jtq3TONDtisvr08biGaSTEge3e2puDo5nbF+ZR5BElF8OPP4MxW43v40E65CKQnJGrvv77F+xceAuYW4pZmRKkpBPJM9U3Ll6I1xHGPi+fmZnCs5V371q1+9iGDrcsfz85XL5RIK+WiHmqu06467UPJKLgt3p7sjmDhIZFhlWT4Y4xEe7l9h56A5crmynu44/1/UvbmPPNuW7/VZaw8RmVlVv+EMt+9taIb3XISDcHBASLhY4GIgvX+BZ2O9f4H2cJDAeQILgZDwEXhIz0DQaui+wznnN1RVZkbEHhbG2pFV59zT9/br8XRIpRqyKiszYsfaa/gO92/5dHZ6bV9W+rIggxJcB6ZVg6ESbtWRqLOftvPKr779c+q2UdaFdfXzVLbOVoRWYRkog9q3we7ytbcHQ2+5xJsu6q7J2fv3OfO/LRzim/zvOn4iQXLcbEN5JYgShqSVik9Jm8HWNlfQUWUpxZvrJqAOKehDq1BESBpc17AU2JzZIt2IO73QFLGJWg5IyUiJvnuG4mo8Q8ps150xVZIGUNBRcndxD5fdTKurl7LqE4nBonD1kS4OpqWO6egoNfYWwU1AQ/zuEZGbQgrdGT6E5ljMECjqZmikyYG48wmdFckzUQrNClmMuxSQunIXYQrGm9R4yEKNlUOAKJVorlKURMkaiEGIOUMSRA64dqGyixHzwjvx68YOyeFFUagPsHcfJWSIJA1omuni/S5NiVJdiSao2y201lxs1l7WRK82ps7igOKx0RCcFVNqJ+c4oDBQSyNIJURnGak0ei+D2OhtHcVB4IirBPXuFFHrL1AtjyOedQYLN3ph70PEt/fBlwZXYnIaqIUIdVhCmKvSDKknwo1ps9MCPTOXwVAKbNS2YL2A+VrHXKkdlCiRKO59w75RjRaVBgd7l9q5XFfevXs3qIbqm8WgK9ayDy0MqksTenXgZW3tO9OpEcLQLR093R0wb9XbTTHPaOzE3OmxUdfMNogBjUrfNWKku3jJ3spyQBVqwuePn/jml7+hLCtlXSh98oBYYdugdPN2FJ1ulTbEQHbKI3hlobLrhQpm4dVjL+ca49ae2Svs3wX/gZ9IkOzdXOMwKpNGTCNROjlEspp7xYjxdDmjyxWaeeM4PvP2eeXw7sQmftKTKAXPxk6nk+Mer5W6bNjSmHKmWURCRuM91+sD1xLQ0mjpE/F0hbChZ2eEFAPJmXw4uKgCDpHrAUiRHSxMc+n7lBL5MJPmAz0likJSnzJKDLReMJVbKSrd+zXEQY3b+b7iLAJPfYILCh8a2jPt7sC2TWi+Z7p/Q3z7lnQ/kw9KPiUmuzprpwghK7l1TrERpDCHK0dxMYJDSsS43+hCsEyUVz00E45zftV/M1pxvJ6GcHOtU2u0XkYm2fF5VfWgspdccaaJl04xz8R8x+XSEK3klD1o9Mq2XpFuPixSdY3F3iEE5rs7WLxMuqyL6zIKhBhorzp5EhSRq98QrbG14sM3MScrqNxcKUspt970/nF7HnGokNEQhbZ114hsjdoN1UrQ5G0YURBna3WdHfdpruCUQmKtK0GEPibTEiKYeOY3ZQRlbQUr31KvZ1cw6q79aeprIIWZHGamOLkGwe3+cV3OnA+oRL778B0P919wmB8IIfD4+GngTV1VvZTiXHa1IZaLs3rWgvXLSAsUjbP7JG0bMUbm+QgmXEpxoQyJxDwNbGIn2+oVSa9IX6jiDp5r7UhWJEOeJ9BExzU8W+m0pbM+Lt7HXxtPzcVvWxVKG4O/5r3PIZ3v77u8SMuBUjvAoH6O69dtY7R6ncwgQoo+wEU8yAbdn+fH1cl/EkFyL2m0dQ4hkVVodSGJMgXxSWhbqcsVO1/YLhvb40atzzx9fObw7kiaE0jlFJVpmoZ4aeJ4f8evf/2nHEP2LKkz3PUmSjuBPSASKeuFbanE5ROnk5DLkY/fffSsYD6Rpns32gpuE9vUaKV6VtgrsjltcTuvozTzoFgUUvbvqwIxIH1oPWq/DWdC8Al2CGEIFzhve8oJidHZCbNArbRrJj+8RfM9LU7EODlGzoButODeN6pwNOEuZQ6sJIWkBrZyHzemYExJhsxX8/81bEMDgVoWUhTCK9AvMIZY0AZe7ZAiNnxPdi52DDKyM1frbuaDmXj6AixyuW5Iypg0DqdESomn737F9fxECIHDPNNpzineGl1HeacZVTjF5LzmXolToDR3HdQYRkugYa2w1ZUp7UNB9UyfTl2bZ0S220k4MNzvP71lJP1VlQPcICiY65/GEOitecAMAQhUDTQiIWdoHawRxcV1TWe3JhlCsjFlnDVUoBX6+pl6vTruUALWlRQSIbkjZIqzw3OiOj+7OPMnJp/inp/PxHwEXDbsuha2ivP3gct6IaWJw+nEdTlTl8KyLHT2DC9yPN6hQyl96StpvqcsK9v1wjQffZhjGxKmIfbr5mdihRxgqyt1WzFz2T/RhgYlTJF1XYlZkTARQ6Ztjc8fnihXP6dtgyaudlW6D8XrCMIMQzARX4fpVeYI+MZnngHvHH9YfbD0Kt5s5foqyzRC+AegJwnG8+MT85s7TmliLYaFRBQnp1k3N8TaNmxdac8r9blwCMJ2LlyfrxwfDA2da10AQ1Ig3x05vLknz7MrE5dKCoLKjGmmh+R0PYkgkX4V6qVQNqGFK1KMshbKthJzRaYZiYPPG4wgm59825BtQUpDtkoygZRoOVFSwKahcTdUsnsQpDOwk8OVUF9EDxAgqLNnmoOZQwjUrmhPpPJA0YDIgTjdkQ8HjhSmXkhrpycvzhLG/SHzZuocYyCFwBQzGk4c5EyeAjFCtzzYHWVkjR4IY8ij39NuU2fvRfYblEVV6NvVJcOaY9GiJkZxxM1zhUpOkd4r27rSSDzczcynO0pZ+Pj4LevzZ6IKMSjSGzlHlqth0hwN0HEmyl4qBm89LNuV6Zg43T0MVILBljFzO17tBettTFdtlGZQ6k5vDLcJLXCDBonoTYy3NaP0duuB+azWWYjabHDiIw0fWEnwlksXI/SC2EZrQgoJ0UgZdMZuDPhQo2wX9LpQ1o3WlTAdCPNMMyHEiZzS8Ab31+5Oi97jrK3g/Y6IaOJ0OnG5PnpbICht84Dw8OYLYlSenp5ozQgGU8qkaR4bdKDUzrqccS3pyPr4LQAxTa7PgbB1obazDxI1ojFj65Xn85mnj24LHYfXTYpKCEJrK1G8fzzlmRgy33x75sPjmbWBElyWMBYcCOii1ISdtTR8b0b8a93xFJ4RgkgfXaAXOE//MQfEgTbztQDld1fbP5Ug6cK5cz+RNFDFDYEGwMbfzLa5aEBttGWjr51eGm2prNeNuiU0eaCMo0zVKTEfD+R5orSrw0bCwDoaQKdpd5Xt3QNmcYWcchySXNWotbNdKzmMtB1xnxLz9FytILWipcFSXI2FFyDxrTyAWx/p9ri4Ladzfl+O299a90xTXcRVaciUidUI4UQ+3DEdMqdgTNq5G+orqTeSwByFU4JDhBwhT26bm8nEpGioSA9DSRv2l+tdowE78p0AekVD8KFM72M6+eIbs7/uHzuEYbPazSf80S0c1uXiwH5r0AbrJOyUxT1zM3pzOMyyPHtPMTBYIp1pTuQcxw002BhTQiwh5v4m0nRcK1cb6s1bOK+VgF5TBm8YuoFa+rG3FXjRM+ytOKMH17fcKXe7wIRgWNtpj845N/SlR2fikK7Sqc3/bwppZIidkDIaE7sb4kuwjsOqN3K9jCFMmrwXaB2wV//DyGnmer1iPTDPE7Jb2r7KlMtW2Upx8QwR4oDcBDrSNprBcllpZDRGGMPVxw/fcblcqMvgmQc35guqqDgcKoiiQ0m/YTxfzlyXjTrOZ73lfK4HKQJiimofvX9fl4xguWeRNzorOtbrEELpvx3iXq9XwxDd/SL+FsptEfkT4AknjVUz+3dE5D3w3wL/OvAnwH9qZh9/33Nt20ZZVnKeyRqG3wtY86ljuV7cp3pZqc8rskTaU2F7vrKdDywXQRPI3YyqEFMkHWaO797w8P4dT61Tr2PLaA7A8kHNRo9G0k6OmXUNlEvhuV+Yp3taayyrsl5sYDShtpVaClN9BsAoSHW6VrluFHPdQVSwObEOEGsbE23Ey7hdxdqxd+oRiiGxNX4nBte90TG5BSNoYj5l7uY3aMwc58Sb1DkKvMvK8Y0wmSME7oMxy5UUPWPRYXjfQwbFKX/48CmmMNwGDbpR6nbrDe7TX3ewcyjOzbK0g5gPJYwh/7ZP8G+DDaNLI0/3TIcZiTPL+ZmQIpFOp3A8TFj37DQMDOZ8OrKuhfPzleuyurAvfoNodKxgmoUQDU1CyoGUAtMYsrTieFcxB3e3rVE2l5tjemn1vJ5yfy9ggsO0dvzmAHILzoVWPLBUW+k4KH7X77Tg9haMTDIwO5umNH+elJGYaObaAXW70lcjhgOSMvPpPRZnHxDpsCyog4YnDTfKiqhGsMC2XZmmiRgmnh6fSLO3dUIQpukAwLpW5ume+7v3rOvKcvm1Dxi70XpjWa5c1+LqP1Okt8YkA06zbCx2oXZDLBGDUbdKqVeWUohbJYtXAnVdPKMYw9QkAcT785oSZd24biu/+fCRImBpwoCtJGrNY0CmtOb95jYGT0Kjq4H9INj1vW0CL6U2g7H0/WNn7PiltUEY+IuPv4lM8j8ws29fff9Pgf/FzP6ZiPzT8f1/8fueJIZAWTdCSF4WDdBx3zUItxVqdQ+b1gkmbMsKxd9kK34hl7ySc0JzZL4/kabM4XRkfTojaWDT2KeCbdjRCqbGPB+pTPQC67Jw//ZIo3Kphlp0G0716emyrswXhw6YVrRuaO+E1b2T9TChUYn3B/eohpslbs7ZJ77V+dJBFFHPNG/MiwFUz8kNtax1JjnQ6katn6nd/VbEGlkCDzlyH2e+ODbmeObNHEjWOErjEIUg3nOrQ/vvEu7pDAvWwRUOIbhdgHVabQMuUm+l9jzPN4jMDgvyQPR9lznrfagB+bVxTrDzfY/zxLJcuWwXwvyAWfYAhxFS4vn5mWQTx3dHb9yflxvsK8aZenn0fyKNlAIxKSkLp4eZu3sX0a29uFJUcXsD6XXYwfr0OoREFKFQx5Tsxf+mVd+E4BV0ZEc0pOjrTwQsjmHNsFO1ZUyPjRB04EidpePSavV23mqtxOxDkWadbV2o64VtXVFR0jQzzV4lbOZDv14LtVxv1sUEn5DX7jYV5+eFebpjPhw5Xy+kPFP7o+MA6+DIa+SQD5gJ16WyrpXj4eCJQNlYloVPnz/x7ouvCCFQmntMtcuFWrrTSmPGULa6svUAEkEjU5roSyF0WK4L0ouLWNjQHDW8H2xCjokPTyufn6+cLxc+P29sm2Nst2VjCqM91bwd0WwEO3WQeB/khCavg+QLaWFHXYD3NH/7CN8LkjH+ePVzi02/89G/2vEfA//++Pq/Bv5Xfl+QrMqxv4VoVK4Eq8S6cTrcsfXEZ5t4rInKPVsXdy6MbxHLLOcjby8z+rkTk5D5RL3/QyzfQQhM7++Q6TP5cGERQ/QNs2WqBC6q9Ekok6IZv9DnO+pFkda4XBSN99ydEltTdMSC3CNSZkTUkcKfnonlmWCN2hbPUs+QwsZdEpY3X2EqbFRI4tJV1lDbiKWSNZCeKjVPLHKgaaRoIIiQxZC6cWiNU3c4h+WZd7nxs+Mzp6y8OQTuJ4c8HfLMHL5j0skHCTGy3BgvL7p5oSz+MwN6BvowvVKCgUhFmy8Pcaq1q2Cb0nchgX0qzPK9y9lxC1gEV6QGmt0jIbFen1n7ypzuMDtjtRCmE6V0+tOf8eX7P+C8NH798Zmvfv5vsl0/0qWQw0ZYL3xKFRXPjtIpcDpM3J0y0yxEdaO3siyEVekVtFaaXWmteJulZVzKLdIkEYMMEQxndUlykzXp7q4X9YhR6XbB1NB0AkvEcKKHRrOVyhm9Gr017+3JgW6VWgLWExImtu1KbxvajTidSGbYWgjS6GVDygbbxgocj0fy4Y6YDgSd3MdGoEqh2uJZvQxWWlcgcH/3jibC2jotB65lRdfENN1xuk+cz08s20JKLkTSZSUf3A99XQvneoEIX/3iKwDMKnMOnM/PPG3ZsaJzptV9c1TqWqnVN7EeN/pZWdcr67IxzdH9gYKSOBH1niBHwqQ8LvDn3174s199xy+/vbJVHdqcDbHOuewsI1d08kXIPlu7Hbti0+24QXleMsMuf0GW+OrPSrcf/51x/HWDpAH/k3gI/6/M7I+Bn5nZLwHM7Jci8vXvf5bBelAXxbW2UdcNSZ2oSiLQqrJ1KKa0NNHx4UsJwb1zq4PeeqlYKYiW2wlNU2azBklotVIRWqiuBt4n6JDVpfvr5HzQdl2piEv1TEytlwAAIABJREFURx/wdHEsm3UBDbTuxurdXPVczSEmFYEKWowyJnOGN57DEMOIQy+xlUITgy6u09qAIGgzYsR35N6J0pnjBlKJD8qXs/L+FDgluM/CHEDVmGIlaboJue493f1yvciBeRv09fLwXqS4YCte9o7riGMTR5my2zbsWn5dXg1yfOp6A6GNkkit01ul6kaQhEpjqxspZVpZqNuVN6cDnz59y1Lh/qu3bNtCjgohYZfNITK9QxDmeebucGA+ZKYpoiNA1jqGSp1bye8QmYGB7E5vU7EBNdSXgRlh73j4RrfTHW1vi0RCTAiTi2MExxR2idShTtQHdvJGj1R1bnAfQVhf3enSb/TYOlKenGdSmkbmp/T9nKIguyixc/8D4fZYmmfKdaVLR4PDqeacuL87Ocyp+LmT6HhIib4ZlOoYxN1DPMZ4K0e3bWNbyzgvjrwoA+xfa6HUnZrocLbrdnU1qCFuwsAAx6QObI8M9SbhfD5zvaxDs7V7K8rs1q3d193vogv+LqHcf5njd/0P+OsHyX/PzP58BML/WUT+xV/2D0XknwD/BCDffcUkG1knLsuClZX6eKbLRD7ecyAAd6y2USKU94ke3lGJ1DlxbYZUJaoglwJ2JhxhngI1BPLbN+iHT7CstGVj1WfQgEgmlI6QmOf3hDix3T0geQaJLGEmhBlNd15u12EdmjpqCu0EUuhxc1Fcq46HTIESjpjNpDoh2+qDpKgkCcSQR0tBuV5XllaoCDo5blAMknXuQ+DeKkk6b2LgrXyDJjimzpeHwJvcyNK5m4SsDqzOKRF0ut2Mu3rKrvXI2Fmj+JSUXbgBBka8M/riiL5Yn7ZecGC0jB3bh2Rm5sORH/Z5fvB1Dp3aC+vTZ6aj3wrzfIfale+++UjMiQ+fv+Xd179g7oFSnonyhsNBaMV4XJ9oVrm/PzFNE+/e3JNzGFT86gpMZaP1Cg0u60KtK607jrUO10O6DmGKF+D/zrDZp82i47awRqseVLtVV/VRJWgi5gMSDe2BIgWTjdIMqRXRjRCEHJTaA2VzSl23fjMK6N0NPKxvlLJSto0QAml+T5weiOkEYQKUaVIHgBfnnas2pA1gvbgoy1aat0Nw4eUvv3jPTOVyufD582emKRPj2BDUbqKzrQbm6YHD4UDvncfHR3r3Ic+2gjChI3iaNbbiyjyX88LhcEInb8l8fvzOByzR77uYhDhlNAbirHSt9GKozUP0V33TCQErDbfrdeB/7b+9jvZr9Pdx/LWCpJn9+fj8GxH558C/C/xaRH4+ssifA7/5C/72j4E/Brj78h+ZbCuydHg+09eF9cMTTzVw9wZMlHx4D1Oj9pl2mNniGzQdnSo2bfRypbaOloauj7BVwv2BHCfC/Rve/tEf8nz5v1C9Eh4aaoqsLuWvbeLAPZaOcDzR80QMR0qFIpEQjrQGEjMhdWJPtHZ29ZxQ0dbctN0atRemuweaJppErjVyWBsahwa2BVKPDv6qysN0z3q9svWCmnAgkIBJKve98kWGTOeknffpTAqBh0Pg7WTMrARpHFMkDn5jipWtyq3ysF4HBt57jw6s7exm2XuJY3iW5bYGQ4pq/O4uvACN2gq7sMONtmc6gMqdslMpXxJJQGjbFVBXF9LikI2t8/y88DDPXLczb94c+ObXf4pJ5F/9R/8W6/IRLFC3SkrCm9NbWgjknEkp0Vuhlor1DTWjVAeGb+uVel1cs1AbIU5DnCSgMRHDRIzJGTm3TA23JDVXGQfo2knmlhRWd/Xy5AOTOKOT9yaTNmzaKNdym3RrdwZIVGVDMQkou+FZpzaH70hvrOuVsq7MKRCnB3J+IM0HbExdzdn86NIQLYh1cpzJOYLkIUKrpGliDkIK3lq5fv4G64XjYQxCWmOaXKx6WxwylNJ86zWX0lFNiOw01DsOB18qtVa3fsiR3pX379/z9PTE8/MTZsbhkP1ewtseMQbyrN43pADOiEoc+ebDE99994nLtbFcAdwd0leKi0ePGPF7s7y/ieMWgMuPP/5XDpIicgLUzJ7G1/8R8F8C/wPwnwH/bHz+7/9ST9g6tlWsvHy0daNuhaaBoCdEEwTDNLlK7/HktDLtlObYwwyOSI0RNpfmtxBJhwNoQ8JGmB26EYfJmBBQqc6iiU7cJ6XhgBhBAsWMrAYy3OC6ww3cujL4qBXPSuJ8YpJIIaCSoC+I2U0gQ8UopZOaMMUJ00awRhIhi6uEH+g8BOFNVhz63rhTISncp8ApKbMkp+BZdxEIoEsbnOSXhdbai/rJHvRC9IXhOZ3fCG6DMAJkd1uAF6hEY+fE7s+9e0VLH8yjvWTSl+ni/hp8AOQqSzG4kO6yPpNTYF2fiAofv/vI27dfUUx5/vyB+3c/ozV1Y6wcHKCvQ2mo7/xcRw+JeMujlc621tEG8cGYx+k0sDzBGTmqCM0xsq+PEG7MKkEJwc9Lv+EphY6OgBucMRWS29vKfj76zcwLfDbEbc0AMtoAA1blJXfBYnToW5iQ4KIUXWy0kvzvVJzMEIZClbeAlBQmV6vXwDQl1uV5XHNvQ8QY/fnGNdpl6lQSQnBQejX3vhmycXEMUMq23CBHu8NkKSsixjSlWwtHzdeBCoQkuH2Ym+9FccRCubou5fn5SiOimhnY/PEeHdb1w+PHRHF/1GHzr3D8vrL9r5NJ/gz45+MfROC/MbP/UUT+N+C/E5H/HPhT4D/5S7xMukXOTxeuz1e252dS7Tx+/MTzWpn/4Gs6OszCVrYW0bs3SDxhdLoYJTSgUrZnyuWJ+vnM1L/i/mfv+X/W/5fzuXA8ZaQ902IkBiXHCJv6Kk4bhIpFQzVg1Zv6tQu9qYu1WnU8Yd/QXpHebn2oEPQFbI2Okjc6Vm9bvbcqCW3m8IjW0daJBO5zBIOolcN25aiBnx0T75PyJsIhRe7nzANvCCEwRSNZ4ZCy07uGriFDvzGK26FCJwbFQcZ7SelnXEeW2HvH+s6FdSyjh6GG1Z2BwrjT+4CKeBCO0bm4pdvA5HnIdcHa/v3A2QohQJ4mlssTnSHyYIbiN//d6UCgOJSjXQht8+FYAIsBkUiOnu09Pn6+ve6kwlo3tm3x6W/bQeBOYetmiHoWl6KrdTtGdceBjptN3YOmDsZNA9KA3jUyvW1OZ9UJSROaJiJuctanM2Ub/cVWmRCsOSNIROkaXJl772vjNMltW0BsBLFA1wQx+aYcIr0XGK/dtTej9wBTppnQNXiPNyQO80RQaOWMWicFt2POA8y922DUVnk43QGw1sCyLKSUOBycp//p0ydExNkxMQ6hjMxuXgYOgwsRDnHHGLpQsaqSVBC6s9UkQJ7oElhLQZvx+fNnUkouE2jDPKyNVpDZzXLiNfZ2Rwb8kDb6+46/TCBtP4YTenX8lYOkmf3fwL/9Iz//DvgP/2WeSzRi4syYT999x6dPz0x03n79NXKaKNop/cp8SKQgtLOwFnF1kuHeVoOgocPSCM8L27qxPl1YY2bO7/j28g31+cJbNq4cSJqIx5l+SA5jCIYEIzejb5WmkW67bawLXUhbMduQckbbM1oW6J1oBWnuQphyZooBQqSY0msnqxKqQjEkdOaoGI1ohYO6m+AXc2KOcB8Dp6x8dYK3s3DInaiNKW3EGokKUQU1QU1pVn1qi/N7TQJZ3IfFTLBeb71EEcddirg6ijXxSXV16fsUhlBFN7DuQ6uxJlvzwYRThvqAmtuYHv74YnW2jmcgSQS6D7dUXRlIhiF6NS+/WxHm6UgIg8Z5PZNP2RW5zThfNq4fPrO/qMM0EaNSirEVH/YBhDACTvcBR47zrayO8ZXfN3iGqF4NaAgQJ1fpNrBaCSPNNlN37xQPpKLZXSglELQ7G8XOg9tdIWa3gm3VOcXift5OJOjujCkdUdcsMBIxJCQrpMFuCopapGsh6EROR5/fDOGLqhMpHZB4IM33UFeCusrV0/rsPdm2IQI5u4mXZ/TeMnA1eR9aTlOm1sp33zmaT4MyjeHOtm63nnNMvoEcjzO9V1p/GVjN02HAfRoxJpoLEDi5Ijj6oq+dPCWmORF6ooXgsn7i65jebsHvh59fxZh/mfDye4/fF0h/GowbCVi4I+bO/dufQYfHb35JOh2Y3t3zUaFcz5zSgaidaWtI68QM6XBEs9InxYKhGeLzM1I/sT5vpLvIHB54mN/ycSkcZOVyEfocaDHQZ8VC9GRSGoemaGucwYGrA5elYkQ2aFds/Uwrj6452Su9XtnqxYNpPxA1OnyMiIorMGsL3k4IftGjVKIWlIJq4H1e+Nn7B748CLM0Dnbm/TEhVEy6DxREPLOzTusbWxvltQTnAo+kMVWnMboatXhmPMroUldf7JroN6c5B+7XWm9SZVEVkfxqgXpfcthhjV19/MPxsH94Jo50B8cHdbUkM6eYdSM0Q6Qzp0xXZxGFIGibHWNJ9+xHhbZsLv5BolWcBtndGKsMc6wpRbeJtd0yQBzTONRCOo5bdIB+HO+gk+WV0K0MxSHwdoooqolgFwT3hrbmij6ijg00dSUoeiJO0xDWcPFnp08OJaueKLXcMiFnWw3XyiBu7BVhTjOWlbibzEUHq0s3CBHTCbXqJ1o2Ug4wH5F4QNOMREXaSl1djNl6JagD7oP6wC2O83AZ+FPPUCOXy3n0IR2/CU7weHp6IqjrIYQonM+ODW6t4EZsjCoKypjQK1C7+0uZKF0cBpVCYpPO6XRgfqpcljYGWAHnWxsizZMWvh8c/6Ym2X+V46cRJBG6RrpU7u7uiVYpl0dXCI8B1L1RohpNjNg7PQha3XpU1C0ASIYyuarKOQ32REQscDrc8WigbWRDzU24LEQXOhj0qakGLClnGc5zOFtEqI5pw2htRUqhb6sHn7ahQ725142yrmhzWEqIiT4awppdNzNIIwRljpFZvJx+OBn3c+SYOtmM2TqBjaA2elrqepIIIo0uzTnKZq5oLg4RsZH1iI6AtrfBbotsKL3fhi6wc7Bb/37Z0bsNGJDjI936tA2Q9ABiI7ch0MvffV+/z6XgRgnb+41BsrVKHEo0MSqhe7YjwcvL1lzYInTzvnHKaHVWTK+V0poDuntyVhJCZwRw3fnm0QkKI4MOwZXsEYb0mYPfVbzf7Jmi02JFhdiil44SsdZvMJkYo5fw2E227IU95ec3jBaItiGYsbfV9jIf92yPEkE8mNW976qjPB6cSGH3H/fzHURuWbCMcxtDwLq4PGBzDyFVdfICinVQdd+aXfrM1Cft85yZ5/zKQKtS60bOkeN8wsxYt+tLdqf79d2vukO/NEDU8HLdeVHkUXUb5mlyGumyGa1v7FYK0PmL1OB/7Ou/q+MnESRFXa+uixLefMn8xTvy/cyHcuHddOTdNHHWC6wXlAsHudIfYUZJy1eEeULVy/FV7/hw9zXGxNvtmYf1G/5QrzzGlT87vedfXAJfrps33YvAfHR9w3yEdKRLx7TSnz4iNUPNaD2xcaKkjOoz/bFyrJ/ResWsE61RcZVr60qvjyStBAmk9kyqjXoN3MdfcJwenGctC1+mC18dPnOfO1+fYE6fmSa/OboVCAk0I+YWojmHMTwxJMw32E5o7jAJTkMrLXlmNgSDd+SZWaN35whLn0Y+1YcQKmARTa7l1/GG+56B7oHvcDgivTubpbocWgxus8HIclSh1s2TSfzmRw4vJZu6cG+0SOwR2QRaQI93aOgEbUj4ODqcR1rNxPAlRz1QzP2a4zSxw5qu64XeO3GK4/1CiCdScAER7ZUcvbyPoRHwdkLsBandMxdzVopJJKUDaGDrxlGE1lfYIuE0bAHUiLPSIqCRskYXEJ5dA7SskOVECDPWK237FTEXwrARFsuoHZ2Pnz2DtwhtPnCY3yJMiLglrsROq4WWNlzOMyAo5y7kNDElb7nkULF6gbYSZCOEhuoXt80mzc6Vvy4LxoJpBRFaMo7HNwQmyto5f36mrFdqM+Z8IKZO64Ft21hWl0gTEQ5TduhSWW+Dm0OaRwbsfeAeAjKseKMJkwbsTUCvkdObEzI1qjY+fLpi3egCVSH23cjrtqsMxMSPi+f+nujyWz/5Ybn+t42T/Bs5RAWZA2QIx5kQ4Y2953KdsDih05FTCKzrmd73Hk5hWZ9he+YgGakLbYH7w4Hw5o7VVmI7O+g2Z+I0Md/d883zZ5a10FMm41JZvRtUow3v5hgyxy/vOH+3IaGR5syyFTQ5FCS/f6B+95HWB6xFAiFMvteLYsN8rHWfRJo4DGeKhS9OnTcHY86JP7i/54s5MEfjIM+OsRQXBUjxMEozz9b6EK99jT/s+1TxFYxFx47t53X//R3+s+/YeuvZwUvmt/cPYbQEhl7m6yC5UxFfc55f1It8Qbb2fS6YB3an5e3wnf3ne4anqt4js+5ZYO8g3lboCGLOtMlzojWFzcbjnWOcqdUFGQguDtxaG8K9ypTdg8dZhG7S5Vn0eG80aEqvGylOQ2lcyARicVRCM9f+FEnoUGffz0FKCU2ZaToQRmshWgQRdJzrVl0spUfIqPO7ZfcMj6PkD7RSqcmxsh1vA1jfedqJVldX9tFMqcakmSlNBAksi7CVSm9CyAcwh/7c3z3QGba4ohCi011j5P5u4nJeeL5coLtNbAS6JaI0arv4/dL70J58QTmoqkOxuoPib9mpvAi4gBDUs29VpS8DD5oSYeksy8IOkP/7On4fBvMnESQ93VB6aK6eEiDOJ89YVOmaybmzqvhjORICw9djIZh7R0sx8ml2QdGU6EC1DpqJ6cDh+ICo6xpq7W7ZeuPu+qAjaESi0WNhsRXtgTQVqJ1q1cv+OcFhItiBXSlmV31uvWOMiaMMwKwYc544zsLbY+eLozBneH8KTKqE0LzkelVo3ALPXtLy/R3PH9sD1cvvB/X/6bPZMZH2v/BTPUoz4cWC4YcfPzxeSqcXcYDXzJ3fCpLdBTCc0fMSZHcW0P4/9pvrFnCCZ3jO0LEbbtFfum8eRC/HdGQrzl/fy7mxlgjQGRAYH4LkOY3f7fQQoFWkFyQMl+sxWXXJOsb03qXprBsqEbTdGDB+/nX05F4sCVQdDhbJyLimMWZKdxm18IOp7evP+zW+MZRsD5IQzFVxurl/99YhBUXw/mnrULvRm4uYpJjobSAaNNJqpZjQCaR88NesyuV8JcbE3d1Mr8Z2Wcc6cpGZHXmzX7s+XC63sqD6CmM6Wij7UpOx1np7YR/5Yx4Yn5+eeX6ujvTgd+s5/m0f/yAySROoR+9HnHtxnnDMkB/YrNP7hMydw/0dkgVNGxLvWFpkKY9o7ZzmQlbjxIWHU2RpM7/5deHz9UxKD5QuPLz7mvjLX1Fr5bICm3FgIkhEwuzlZohkIiJPSCz0WqCfOc0zT2UFKciUuP/5L9B+9uyqN2rxCV/sgmwbtlaq+c02HZTjZMz9G+7rI1/HiTkKb2MkJiAooTljRkYvqreRZe3sD3eSGQvOMw/aS5C8ncsxNfZuqsNyem+jp+XPD7joxqtsELgt5tef9+d8ffyw1HkdNPbs0MwHDnXQ7kQDvQu1brdAcDweb9RH1T2ojUGF4tjS8f6aNUJqdFU0DCOGrr6Rdvf8dvqbv5ateVYzTdkFT0ZvVVQIHboqU3ItyGAuf2eDtWTWHE8phoTJz2+coDYEt0w1fbHpkGae3Q68rLERp4m+AerwHLttdnITbejdQPWGVfWtqzu43xRrQx6sD/X+zWjVZdV0OvLw9mfkfKTWztPTGR+jR4fGqdG6Wzo8Xa5UcztaC5F5nl3YuXfuBg23bg2TSkyBpNlbM+Wlengtt+bndcKsUeuLT9DrKmfXDWi4/cMOKTqfz1zPT7TWmabMl1/e8cvffPagOjRI/66PH8Ngvj5+GkFSDTkBCOvqmnqSJmrMoJHFArFeOdzdEQ8BC2fSfMe0zVw/bFi9chcTOXVm3TjlyHya+Ebhw8cnQgo0ivf3QoR0YGtGLHCUiEh2CAcO7zAxQu3MWijrQvu0cjzcU/tG7YVL+cz9mzv03YO//mZIa64RcV04tMSDKseYuMuZ96eV+6Qct2/4w/srv7iv5ODlbJEBQo8+wNjlutxSQG9BJESn1N0W5MjWPGC92Kp2oPXyvcDXfzCQEZEb+By+D4HYbwLPNF4yzdemWPv3P7Ry3aP18Xh0KmTrrNvgUNPoBn3wfEXUweg25MnMb34fSJsP2ABix7RT2kLSTLw7QIUgDa2F3gMxzdRaSa91E3MiJp/KKobEvazfM+hGlAmx7tTFDpVAD8O41Cqxqw8Ux+uuw2exVYg2KH7GCCIBDZnQK4Q0RHE9gNfaWNbKrCcQpVmAKqAv59ljYaSXjRoj0ozSfZOLMVKLUDaBnhAgzW+oDS6fnlkuV1oz5uQe3ddt47qcCZppbWU6zOTsMKqY/XEJSgiZcj2P6y9jY/XNqpSVuq5sW/1eBbCvjZhczOL1uqhlTLfTsCIJwUVR8DWwrivr9cq7d284nWYenwof/uQb59KbB0hlx9v+3R3/IMrtTmezjUOK5C60pmNHidTeqRJIIRPjidjAWoN2QNeJQ1FKqZTNOKYDh3hGZSNE5d27d3z45S/5zW++YZ4T4SC8f3jL51aIKqQ805tzTQUhpuzVdzfuB397rRX5+In5fMYNLSvSFoRO/oOfeb8Jty5IGjjcz+jTB75S4y41HnLhqzfKKQtfTvd8MW0cuPo0dfg3G4CNjEgzQd0nx8xufsmtlVdZpdMIRdzrmN13eMBL4itHQw+6egt2t2NnfbzaRfcbYA+Eeyn8Y5nCnlmAT//dHMv/Zu1jsmrc+lTsFrQM+AjQu94mxapyY/6IDHFcFUqtA9wu5PkA4d57XL1TbACQG6TkufJuJtf2c1oLYcowpqZtvEcN0bOX3h1433f/bHUl8C5IDvSWIQhhOtG3Ti1KTIlSHLrilraw1U7pLg5sRLQHl17rjVIhTQe05bEhyG2Cn3KmDqV3H803tuvF0Qo6eZXVGq24hmPKE1GUboHHj2eePj350EkDS38RwFANNPE+Z9nshlyIGEhyGbJm5HDA6Lc2ihurbTfRjSkfCL29WgPDinVsxPPs63RdV+z1uqkVA2IYpm9jrbx/+8DzufHh2888PW5Dws/JCWrQfguNwW3Nva569p/9vmNfy69//4dtpn8QOEnrndbX4XLn3tRrxaemuDCOg30TMcxYa/QyId2DSa8XL+uIrraN0qRxurvjcLrn08dfYVa5n2emoKR58jAT9JYV5V31ZmQa2pUUAlUFWxfqWpxqJYbWCxyi20uEQFL/OqlwL4FsM1+wcYrwJhtfnYRDUu5SZM6NYImAuUCra417H+d7PSp1bxmp46K6XP3++J657c3x1wumW3X9w+EY9/1AOPpUPyhrXg8i9u9jiDdIyP78e7B8vWiDerDen3GnCzrWUEcz/7eVv38LJsSAG42fOaQn0G4ZYCOk7JzsEN2iVJ1+KObq12EovY8E5uW8hJcsXHdHy+6UVuvd1bW7l91+PkfP1MAsYDulwDwQos2Dt+z2ufBiQPVi+3BrXVgYeFUvq4NGNI7vnTfpZfi20d2Xgh6GDUQ3zPw1u4o9rGvh+fNnylIIiFNzS3FywchQ90l/aw0t/pp2fsz++lLK/l4bTuUc11uDW/WKCOGVm2AZ5ls/DCwh+HXytTUqj94dLSIvGWhIyvX8iet1oRQPzooPHLv00dp/WYt/08Dxv8rxkwiSvTfW8/Ngp7i9pYXENAtVI2hHBwlewwwzNJuwdECOD6yPwufLApr4xR+4/We1znw88kd/9Ed8+ObP+Pj4gaAn3hwzF3HcV5qSZ3TWQLyvpTF4vygc0eOBaZ5Z6pX1+YxOASKIdKQkwlKZLDCd3I42CbzRxhcPyh8G4z4aX87KnK5ICGjobk2RDq6IZjgovnd6chFd6z4IMutsW0HVbv22HA63rLKMzG23HG0jgnpQdBC52YZ1cTGHMLLLV4Kj8LLY9wD2vcWvcguSu0f1j5Um+5Qz7EOa5n7LOhh/eya5H3vW8poOtjNRsOZDNHUvahiS/xFiwJlFEkevzxAiZWs3iLgH5kAKwywqJfI0uNVBCfuUVaDX4G0LcUWeJo2gaXhiC71FalO3uu2CEYfLogw7406n0qUzfNs8i1RQc4tj0Y6ETJCM1IjYHqgdu7mWMrCdMszfipf3mtCkhGmituJCweqIidbh/PyJ69OZ2BqlNZ6vC8uyuAivvLxPVxZy+A8q9E+fyfPkHOwQ6CtAo7UV6xu9XZiTG5ppcGkz6/Vlg9HRPrFKa4XWXtaFr9uxKYvLEgoKkdtreXr8yOPjI0JkSgFrK7vS/cBg3Fw4f2yw9fdx/CSCpJmxPD+TYqKUC0szLESmLwJhnt2xT+5obaOY4/qKRGw6sSwJ4hsuzbCL8vj8xM/f3aOWuFwc1/cHP/uab3698uGXf84XX967kAWCpmHEFV1/zyjevDfjHBL5/kS6rnB/xLZnLstnWjTm92+YjpGjI9o4xYQ1I1B4l5VfpMDPqRyl8kVcCFqQmFg1s6XEggOGpw65F9dWxEVhvX9ongWyDz38Jt2hPXvJs5cKu/r3fi733pu7hvhNvWd0vblMlvD9LO51ANwD2B549+zxBQby/TLFbR3kBlFyeJENyAzDxOz7Qdx/z0cWe89UVbA6AqcaSdy32rnVHaNQm+s6phwopq48IwnFS84Q1EHVYcPU4TnTNMHo96acnSnTO02zQ410+MX0TqndgxU4PtEKQnXRBgmuzN13vKr3Wr114QF8H6yZyZj+DjkwTVCdFokIZWus4mWsK9I7uN7KQjXxIYpkJDqMCVNKY1jsVp6fnnj+8IHl8ZG+FZbzmdLdCrgYroUaHH98Op2Yj4dbnzDPE4fDYUBx3qGhEWMbYsZhBK2GNc+qX2fEu7ZkN1fYL8XXyrZt2BA62Y8fC27H45GvvjQen5XzuZFzZe6GleIGe9RbK+njvWAjAAAgAElEQVR1kPz7zCh/EkHSxVAaIU2+q/ZK6cZsDcV9nMMApprtpWlAZTT7Q4Tu/ctSChIiMQPBgbTH45F5nvn03ca2LthhegkOPqB8dRG8PGjilDpicFvTGAldMWnMh8zhOJE0kENkCok62vqHFJljIDUhWUetob0gXZzhYxnbVWbkB5PBWwnqX2tQWts50MZuVKTKDf7zY8e2LTeWiaqrGu1ZJOy9p5fff51Fvi6DX/u9vO5T/rBcvnmE7JqSI9tQ4wY1ul3qV3/7+nl/+JjJ/lrGe90fH/CSEAJNXzxplD0oBYJG6jhXO0QrjeFDjE4nbL1T1hdR3t69nfHizeN/u5YVqETdSOqKUUIYWaQrJf1Q/brLy+jhBcr10stFPENv+CDF+su1bK0N8Y8XVtR+sXbIVGv++Xq98vz5M71WIi44XWrhcVlYN9feLGngMbFbkNz7jSEEjscDMTkRIWgD7bShHqQ22iU/cg1fMku9VRu39fsjy/L1APB1tZJSIpRG8F1mbJg/jTJ7P34SQbItG8/fPrN8DfPDHSnew7mwXY0J43Q4UeZnwlNAtxmpM5qPXFHq/Yp8bjysd+QmfPr4c76+e+T+YJxO8B2/4Mo75P5r9PT/8XT9Pwnx3yAlJckZ4Q6RB0J9Q14mQt3QYPy8T2g8cD5cWf6VP6TO75kX96ie3ymnX8xMb+845MQXp8rbcubExldpc4/r6YDpgc+qRPkAgPUCa2EagxVUKVEoCKndgQzrg1ZpbR0856HQUwXLbpPQy6upMm4ilmK+LULZRmO6+esNITgbRhoOVneMoN16jXufcqfP9QG/8SCHCTlON4C7c8lXXCewg7k8Wdv506qE4JlbkEhtw2lvwHlsODOuq5ve71N9Ee/xGcYGVAzVBAixKrJ1wtX52jk6+LtWd7GE5uWtFDYTjjI8oSVgaaJPR5oJrWdSj5S1sGRxL3drUJubzbXOdt2GFFtH9Dd+XuVAy/dYPBByxlRo2qiGQ22aUfs9cCLGSteVHlZ6q3AVsAypUq0AikR1dfruepxWBSnCRgfJIBNd7mjt5EEzBKw6s2jbFi5/8hu+/fVHFj2wNPjN45lrjSylM89fICJcLp7xhquQLx0NnYeHzNGEsCykoFiD+1OkLmeIFeOJKhsNo6rzru+SJxWhjyEcAbVIlEgtESmFSRJFrthu6zrWZ2sNDb4uY0wU+0zp59G+MFQLMXRYFtSMSY3r6HvS+83jvf+IxUIant/wAkP74YZb5KWlI/L688Cg2j8UCND5wvJ//O+Ur+746h//axzevuF0/55wiuiU6A+BqCf6trG1xrYa1x5czLS7fevWDenw+Fn59rAi7xNzzMgkkCPH+y94+8U/5rtffWD77ok+B6IckCmCJSxM9J4djSjGlIZk18M9rIEeA5yFXldifCI346FcmES525Q3oTBr4Zgasxgh7LutEcP88l7thWXyesq2VZcp2/t3AWh1c2GLMV3cdQVfYxj/f+reJUa2Ncvv+q3vsfeOyMyTJ8+599bT1VVudbvdajWmjYSFhAAxAiF5BBIjQEiewBzPmHqKhITkAQJPeMxggJggAwOMeNgCGXe7TVW7XvdW3cc5mSczYj++x2Kwvr0jMs+5da+rupvbW0qdE5ERGTv2Y31r/dd//f9PuYwiwtBUpjdqRs7GCICWiRSG0AQg2iZb5mL4mP053YK5c3HDlaoulKrkahamfT8Qw+pJvWZPFnhrWYnkZ3jV2eetuOT6eN2c91TJdGfTObVWypIgZDInHUPZhBrW2WmAnc1QNxpTaQITaKHSoamwmw3Hm8cDaV443N9zd3vP8XAAte+q/R4jbR6IQ2J3dU3sBlwXCb1rhnXGW+27K6oukBdKLYi2+fFokzqZ4ylLbQuTsQ9OzY6UCiHqJr3n/Upat4xyHEceHh744auZV5Pnbl4I3Y7v/dbvEYcBVSNr//TDH9MVZUoTvusZLnc4B9M8kpeF6BwXQ29Wzn1nnkQ5Q55Z8j1WUYHEjpH9loWH0LUGnZCLkikQhOB6al1QdaYYhTYFOhOAztkw9uM4mdma74hRiEGIoRJjJZXFjNskbtfE+c/T7WlJvv77uAH5xfHnizDPr0SQdHkm//7f480PYfn0j9hdX/Py29/j5nu/Try+JjzvcOElbt9RKBzmRFJPxoKJiQxksirCDcuycBwr/gL6qx7/Bup0AfHbuHhLePMHUBLFK/HS44nUMCPDAli5sPPFLBX2kfv+knJxyc2zG3zJ7PRj3tu/4WvuZ/gKz6tw0yV6l+lZcCym1o3BA3biZdMMXMuNR+VrBdbSRlcpMgPKxXuiE/KqIBTC9t7a+JLn5Wt59NjRN8KwPWeNjfPu61b+Gt/oVC3VinnA+Ob+d7oQRdSUZbAbl83CQR4tAisIX9OyBcU1oG/0oPNrYQ14ISKtubHuK5hgsTnwZaiW7RbFhCRCPAuWF0axkmR+3jUDjugdLIVxPMLhjttXr/jJhz/j/vDAp5/doWKfB6aCczt5Yuy5uLrm+nniZXaEMHLx7IqrcImEQPCC6zw1L0j1JBQnA+LFqEUO1Dm8ywgr7WotOU9TLOZzIzgJW5MEKj6Ym2MphdvbN3z22Wf85I0n6TM++O53uH7xgrvDkbu7hdevP+P21Sc4EV5PD/joGZwnHxecE4Y+UAs48RSJBkXESHQdXiBXgZKpZSblpZXT9m/oeuvIi6cIhK6jek8plbkuBPGo5kfnkobTmuRaRiSQSiFlJVdrYC3LgWk2lz0fI7WcX2e/KEiuQiE8WvA3Opy8OwB+0XDE0+0rESRFKyxvwMP0yYdMb14REHyM9IcX7K6v8PEl4iM5CjU03AaHV8U3Kq6KEuOAk4Faltbpy/jOU2qk6I6iz3BZ0VJYHozbWKUj7BOuZlybevCqFIxw67yHfodqMC5k7ejFs9MJX5SY1SwcNFsWIMb7MiUXT5WVe2g6jidMxob4a7XgBa1MwIHmrSkDkPWUQZ4HtpV8Dmw4UVkbOcJJhVto5XV7rtLGJo3LJ7Q5YjnhReKljb2dLqJSTJGJugZTa+Y4Wee8ZbOhPacnvWvV9xs2e8JELXvyhGgdadfoNOu+eoctJiKs6kNGjfHbeyV4nOtxTVVcJVGLVQZKYB4Td6/fUB/e8NGHn/Czn79mSZm5RiRGxtnK+Pv7I4c5MAxKdTtwR1x3z263w3U9/UUlitlArM0VxVuHnIyrgeravHRTM396Q54T80vN2/HeKgQKqKdqIaXE4eHI/ZsHRt3jux3vffO74IQf/sEPGKcjh/s3lGz8w4veIy4y5YJPhX6wANQYpaAB78W8z13EU6mpNZqqICWb1mgd0JVMXm3cNww7Us5UyY02xXb+Vwxc1aAa1K6xnDNTyZRic+zLkjk8zMy5nRtn005vZ4OfH8TOf/f0fV8W1/wzESRVMtW/xqmj3h5AhU8++Tl33/8+8eqa/u6O/e94vvXnfxP1Stc5psNEF3fsu8jCAz4uRB/ovRk1aUmkJZvMWidohuJ2HOZLLg6FXGby4YGQE362TqIbOsKuwztHKBNOeqomrnYdbw4P7GLHhQjPtPJiUL7TmzTUrisMnRKoOCaseHJQHYW60W+2cvVRp3d12JPtYrP5ZdMZLKU0YB9cwyJryyidhAbAB5xvEmKlWknUgPCSldwCrol3NO6kFrt5RRDfvF2aXP+JE2lBvbZOrmvlt6BGAm4NC9cNJt7QMqQYTdRVVUlLtll5TkF8O+8tyJ9nnuv/wQKy+NBG9hp8wZqDGfl4dURwsWk8iiOEjmHYYSyATMkLUYxzOz0cuHs98aMf/pRlLHz/x7eEi/eg61HXcz8tfHT7MT/60Y/4i7/5G/yl7/0G+/2e29tX/NEf/YCxCC9ePMd3O7rjzDAIz3fPSSXhQo9Xy87mOZHSbA0l31EL+GAePKtyO1gGdC4QUcpJ3s1GJCuCZZrjceb+/kBKhdpf8jv/1F/i1cPIj37yIa8PC7evbkEL+y5yGA84F5h0MfX0KpCMAeAap9NJ5GJnFCnTPoWgA05MtbwuiwlQp5kiQtDecGrvWKYj1Rk3UlUpWhlq3K7pXIvZP6jDtQbcstj8eMrwcJw5HCsPx4mUBQlWxZgew5NGWH1cKZ2CYD7hn23stJQTXankYpYvnDDKX2b7SgTJKkruEs6D10RQRz9Xys8S84c/5e9//HN+bYKv7Tp2uwsuuh4WIejEPs8kuYdogH6QCV9nyBkvAR8gDDbi1V0M+H7ASwSdoRSW29fUw5EoPVcXe7oMLGoSljJBKeyTsHORlz5z3QVexiPXw8x1oMlvVbzPOAqIafa55mLnnJUXWpVcarPgPJ2snJs9q7MmjLdwACjTYiUlgPmnW3goxS6GWmuboaWVuZGu86RamnDs589i5zk/KvvPu4/bednoN2pjyWqTFqFpSq4lzrIsZ99r5V36tq+fP874VJL/nIvpnMP5gGvlr2s6jyVPSOgIIZLFcGgjTwdTqveevt+RlgkvFS8ZqZmcbL7+k09HxjmC36MXFwwve8pww1SEV2PldZqQZ8/5jb/828S+4+/+gx8wjxP3D6+5vhrww4y7PzLsR/p+R8lC5yb6vkd843i2akG6Dpo/eSoZl5pghJqtqx3j85HRSvDxxEwIDqWSSmKakhlv3U883E+8/61rPnv1Mf/X//P7pKKkVBoUE4kxskwzSzFAKnT+kQ5mp5Xog4mhUKAmJAZ85+mG90hTJO4u4fKSMh1IkynWT9PCNB9ZfaOymAiJ7XljpLf7GQwicM44pW/ePNhYYlXu3kzc3mXSArnaojrlpnzvfJse+epsX4kgCYAY+TjWQiwgx4mLXonieHjzEf/4b//3fHDVcfPdX+fygz8HChdux1ASx/qaUe+pquwuruiC4DVDGRj6yNW1oswMlxnXTZQslCL0IjAvkDLL7WfozQ3aV0gw547eZWKd2U0PXIWOa33NM9/zfFfY78amXSLmJyxK1tYVVvMzcRJwtSOE9Cg4nK+GW0NDnU0bOAMPpF1wqVaomaWCa8+dl6k2460nHUXv8c07uapSGtVj5Z6BfV4M/aPApdjoWsllC2q1czgJNhONlV+uEeBrzegyWbbIsN4fWwa5Joy1toZEUx4+aVye4Y9n2eN5l7LkvAnXimv4bV1QEZtgETObsom+dsO2EcFYFpRMSg+MxzseHkacGwjxmqvhBWPZc3wz44ZLJjrul8JnD4lxDvyFv/BbTOORv/M//W3+hb/ye3z/+/+Iz+5+zov332POcPtwZL8/su8vEQK1WKkYvA0bUD3SddSU2/e37xTDrp0vU7S34+UeZ0gGYLZjl22hwpHSzDiOTNPCPCeWj39IEc+3PrhmXgqfvb4nOWM4pLQwLSOxt2zUiU0vGUUtEvLCvovsYmQXoe88YegZdh0SKu5oTpQyXzG6W7w8oDlT04wWRaWwjDO5njrDzgXTuhTBRUeIgSUVaxalwu3tPTlXRgUIXFzsSJ3Jqh2XjGqmqDZ5uy+7vasrXTlxkL6cWMafiXJbgFDBOePWOcA7RVxFpVCcUD77mJ//4A/R6Ll5+QHPd1e4lIg608tC0oVMJfhA53tTUMkFYiY4MZ+YTghRtyzHNdzOiZUW0/092ld87whxT6AgtRDmezqUwQ90ZWf7qktzyLMsUBsG46OVXF46HFbGFNI7MTngVH6ra13aNYjafln3d52b1kfBZKP8nAW/Wiup1O3zVu3G80wSgGoz46qWrBpTzhSNNqyzOKJXir5jCqIqWm3u9pzysX7WJqFVVpfGszHGJ0Hx87r1Vc02Q84wL/vvyc4WaMrmbZIGUwbKi02QTNM90/HAw8ORroPh2fsQd1RZcDKhWkg5WQlb4bd+6y/y0U8/5Ad/+I/47p/7Lj/+8GNu3xwJXc/dw4HgBnZ9bJ3oRM4n6MQ4kEbvcbQqgQKiSBBc9jhXkeJZ1YZOAXJtQLw90fRoMVu/s8/s+p434wFFeP5sz/1xpCyJaSl4Zw0hVQuU0QvBS1NyV2LwDLHDedmwXLVOh4l61AriKRKIfdcaY546p210UYtlznbObPLoHE6xRlRhnKwplVIxL3Ex2lRKlXFO1DY+a03Hs8bhn9L2KwdJEflPgX8N+FhVf6c99wL4r4DvAv8Y+DdU9bXYp/1HwL8KHIF/W1X/7hd+hiohKdlVmxNVu2GXdGDxjuI8L0j8w//t7/Cjjz/it/YXfP0bv8ll2NHrTOwhROsqhjjSdx15UXJKHGql9B3KwsVl4OrKk/ueUv12cXqtpPHI608+ZscV3b5HXUd8BjtZuPIz73nleQcXndJHx7DDFMPF6C3VRczWz5pKtbpNEkslP6LoPD051pBoZGe/Bg8hpeYkp/5ED+LEPzMVoFMZBVaKhzZzuwaktSHzqOnzCGy3YFlKJec1SCpzmildR/SxiU8UNM84MmENwKKkfFLXWfdnDeyrnmA4o/I8/fe83D7ZLJhOouBw3hOaD9FazucmfOGaZ8tqW5CKGv3k9lOWNLKMt2ap6gdCCPTDBTXsUT+yGyLBKTmNkIUh9vy9/+P/5MMf/hiHMn72CXSB27tX9J1ymSLDzqZXigoPRxNdPh4n4r4D7/EiECOVwDydFrFhGKj3czs+Nq8pq1vi2fXg3akBpc6BCqlUcklb1YAKy8MruuB4+cxkALvdDe6TVxwOB0peuA5XeLfQ95GXNzd842vvsx86pvvX5JrpfGDfd9Q8Gu1NlVyV6bhQmmaKqMfFPYfjZ8ad9Z7YeWrxlGQ83qYHiAuOvC5ezs7BbrcjpYz3haurK47HiYckzPPIODpKtipiPC4bg0Hrn36Q/KLty2SS/xnwHwN/6+y5vw78D6r6N0Tkr7fH/wHwrwC/0X7+WeA/af/+wq2KkBGogYJBEhrsxvFauVwqIX/KfvGUP3zDT7tA+d2PuXr/A67ff58yj/g5oc2mdewh947bgycdLtjh6VPPMB/4euf4weUNy3TgYoJBzSlwDsLxcG9l267H7w48HCvFFXbxSN4l9tdX7HeJoe/o3QXVfYa00shVZ3JfxSY+vICSTb+meTetmdBqwPVIiDZOqAqlroIQQpFM9S2AOM9ABGke2lKgNAI3kbV76iSQltOsdQjGyyzlcSZafTFvbc3WiZXKECtRCpRKzgvXwYEuaNK3gltRyNoMm3zEC4izCSktxwYXFDoKXYQ5ryNrrROMQVg5naaOJNwTugEngaIFVcMelTVTi9R+MZqO8xQGqkZqUtz9RKgTPk3oMrI8vGIpC1NOJB/Y39wQr264eP6c128SjkxeIrs44JdPuRDHePyYYX7DkD42ub7iGC7/aYbd+xT5IZf9wsvnMAyCy8IyKpNUliWjtadWMbkvJ+RS6JzgQkBSJU8zBxLqCkob+1u9zY1qgOCQeEuNV4jfU1wkUUh1Zsy3HKeRNPXkRUiXCzmC8wvBOdBXvHwuPL+6YJmtcXdx0zEMA714ohbK8Z6Hj3/Gr339Pd6/9AR/pLv4JkU6Bip1XvDja0KdQRNlnlnGiTBXCoLUCM6cLJ0UdJ7Jy4TUQlElJoMUQxFcENJhNBx+LBwOE3dvHpjqC5YFarYFeRwnw72dqRf5oGh6u0w2lX0rpbcFv5zCl4lmq/nct8e+6WKuTI+T8d2pIEc4jcJ+zvaFQVJV/2cR+e6Tp/8q8C+2///nwP+IBcm/CvwttT35X0XkuYh8Q1U/+qLPecfnPno81wniBcsy8vGPfki8eR8tleuLC7RMzPOIlsrkeiQViDbp8eZhZsbjaqGjQ/prujgwh448WdoPNhaZJuNqaV6ISYldRbzib4x42/nwyOTI4bej7Wwp3B6f9v9tU6yVIrMGSKPh1K1kfEq63t5rA3kgp3J6zTrs71jmcT5e+PTvvEsWSkSgGr9Qq7OSR3wD4Gnd5fY9W7NlSz+xEtEaOwJSqblaR3NtQelJzML2ozVogoNs9CSbBzaBD3WGzbmm3CNPSvKNIyoVacOBKSWWdKAuE3l+YJ5GK/GkELqeq6tL9vu9Zd2+GqQjiqPxTqvSdQEXHP2uQzuHx9HtK/MyUdJI7AdC17ibRVjSiF8Kh3ngee4RGXAunhSWxD+6HsRZFmjZ/OPjvy4UZm3nUHENR7TOsXXGEmjCaUEKaMqmhBQc0QVqb3jmfr8H4PJ5b7joktj1ew53I94Hnj9/Dt44ic6DkyZYkWbSPGIzYJWcEvMyojlTEOqqHyCOrmvz73kxNkYTvdDqMAX4U9d+KctpxBW3fX9tLI7//1PHP5mJm6+tgU9VPxKRD9rz3wJ+fPa6n7TnfmGQFB7PDW/4ztk2dQsuLMRaWW5/zk//9/+Fw/sfMDx8RrwaSJg3cL5/yVVODPtnHOeB27vC+GbBidC7RFkucK7DSTTqwVJtQqN3uJKQacGVyMDEze6Sm8uBr9/s+eBmoI8mGrCefJN3dEapOHOF05o30YZzbtymyhJPEwVrQ2ftPq7l8Tpbe+4BE/LKnTM17PV5Ix+vK+iqhvPusn7791ETyZpGSsGHDucVoiJqpeB5SXzysz41okq2m0eaZJiTgHglEKiN0uG8kblFzIJ0u1F8W1ukEFzXjpfpezp3shZddTdLMzwrdTZNSKcElJwfGA+fkdNEXUa0eMQHrq+vuX7/A56//wFhuEQVoocueiaXQWf2g2dMmWdXPb5/n5cvX5JT4f5+5Mcf/0O8L3z9mxd879e/Tb9/hiPwcDjycPiMKQu7MfGN+jXz73aWJUmIZvhVC1oL1SUCK72lzSc3BSrRxhVWRX2Hug4ktmvLjOY6TXSSuOqUHnCzw1ezJI6dx1OIncNHT+xtbNIthegixQt/8H//fXKa+Zf++X+O/SA4ycRdRx8ztS4c7t+QliPz8TUiJr9Wsmkd1JRNKs4ZjzS4YI/VYJ+cZurSVMXFBuFrCdgSZsGx3w0QIvMbWwhKzU0VtV2jii0MWn/p5vY7scUv0QcS9ytmkv+E27vWhHfupoj8NeCvgXXGVqzs87bSFXI54IpnnypMM+Prj/nB3c/o3r/GXfXkmnh58x10+SbL5TVx9w3k6Lj7aETVUdNIFwvl7pY8zab+XJxN7MwZF4SrAJfB881n8P5zz7O950UPkczQ7/FeSLUF89y4WRheB5gIRy4nmstKwhUBMcxqpb7kNionzStkHRlct3qWXYoI0nBHtAXfYpJU5idtNKBV+HZtiPR9/1ZmqWpGV7aF7aSpWgm+LVarF+5Z1jilU6d+nZ7xvmNJuTmrCsF3uMah1KSkZVVKt5JpFWxNiwXV0+LgyAlUk6keRSEGmlBGaQK2Rrz3IeBqAjKiSi4HSp2oMkNUunhJv+958d4N3cWO0DUv6TQieKKvXOwD4+QoEnFzxRO4utnz5rAwjjPFFb737JquD3z9g5c8u3gOuSfPwuHhgTd3B/Q6EDuoeaHk1FSlAqI9Im0ooVYWNxleCXYtagFdp44UVYNSUt9k7ay7geSFOh+R5UCnIxd9ppOKTB5NBQ4jOifksjeRl+BIE6RaiCOM48jt7S3/zO/9Zb7za99mme5J+WAi1FEIemR8eOB4vDW5NJ3pApRcWMapqVC15p8PSBiMkoEjtu9TckfqBhP0BbM6dsLDw0RRmEplHJXDYeRhvuI4TsyLbnBL6GLL5b5cN/rztl86SH5BJvvLBsmfr2W0iHwD+Lg9/xPgz5297tvAh+/6A6r6N4G/CRBCr0+nMp4SStUpUR0B6HVptpOO9MlPePXmp8zRTsxy8SG3P9zT7y959uLP4+N3qB8dmMZMiDC5jBvfQBqpy0xjx5Jrpa+Z8fY1mZmLZeRKv8HFi+f0N19vDZVKrUL0EbSRZdtWkuGDwQnKKh5qJ2CVErPpmhPFZg2AwBbczjO29Tg4Z97JhsGYu56vjqrRFKHXOToFxKxnjbRcOBzMh6frujMzp/pIIN9t2WrHslhGvqSFuGbBwtaYQSLLstjki1hQLxUcnuoKqKBismNV28QGAdXUPiNs3XwL5OuYpjM6TW2Z7TrTrNIy66VpUjbeZjEhEqnejknJFBTxkdD37IYX9ENH2O/xfW/7mSdLXWtlFx3u0hMfKjJN7DoIVTnM99xcXfH8auDmxSXi3kNEuNzt0dxxd7vwyc9fURYlHyGHiibB1YVAIYrDx2BEa3XUZmmwv3pGmRbGMRvxudImo2zG2RpnapBHsedDzZQ809dKJHG9D9RLkOJ4NgTUO7OQR1nqTM4zZFiKkblfDC/4xouv8/J3fwdQ7j79GS4oz657QqfUmlimNyzTA1ImPJlaE2ku1JwppRJjT65mlqYuNopZZ4mC75CoTek9UtK4MSoWLfhY0Sp0CMdx5mHMEEzAGArqmotlm/ISfbuR94gedYodtji/Iyd7ip2fc3HPG5fnm7g/mXL7vwX+LeBvtH//m7Pn/30R+S+xhs3dL4NHvmtz2syfWmlifr4VV8EXIThrJsyf/ZxyjEzDjnyf6PuJ9Ar7ZXAkZqLeQzqa2k7TZpxLQkpi55V9jLh64GrfcbFrFIqmVGNyU1bynh/s9USUUjf/GKcW3M9P9LtO+Lo9wh+fvFY3aoRJ6J+feEvgTz8r0fw0OeNO+y7r1MtjkjfYTapNVNZ3gpR69rvK6oO8uhiWav833+4Ttcq0GZv82Mox2vbTcEdaZ9q+j7TVvGXM+EaGf8IhFMFv/7dSVeuJoG54JhaUxUYEcwVXCkoyxe+6QA04USoZHxQfFCnOHqOUeQRxBBehtJl7PNNxYryfeLa74B98//fp+pH3nj+nlx6phbrMFApds171mBQfIjZrvm0N6mgY5bZwOUNYBcVpMrX1Wqia0JIRB7tdj5MOtxOyVlKbOppqpVj3jItgwhvv764Nby3LZsD28uoZXXSoNpHdZcLSd6PrUDO5VQuqHqpsp88oTt6sJdrptCajR12lH/ZAE65ODlwT3RWHCz3BzaQAACAASURBVJVh2HNMSkEpul7rbrtXTIWhbJXPmkBsUoJ/Upv+ivYNIvJfYE2a90TkJ8B/iAXH/1pE/l3gR8C/3l7+32H0n/8XowD9O19qH3k7c3yaOndlwNeG/DkD640wDa4IQe3LdArl4UA+vOb+9Rtuy0eUfGmOdRFyOaJSkLrQ1QcS2RSVm1/zs8uOl1c9v/1r7/Ptb3+b3W5H7AL9sDfspWZcm4UTN7Rus6LZfJ5LMZqGaLEyWBUXunaR2c+6utVa2ty2UM8aMU95g1vjQ3o7XlooLfNQMSCdZjlqGdppBV5vwLcxylUYw8D0KmqcRtdscGPE4bYAlEvastqU1wvWmhTiY1MhN95kSjOoUqvafVcb0RpB1TLBlTSt2jx+EELwpxntYLPbtr8t43awIlZSTgZnaamUBM7vcd7jux6/u4LgSaos0wwkC0iS8HLJEByjq1w9GygpMU0zZc5cEnhzf2fiJl2P4wqkcPvpT/n5Rz8jHx2f/vw1v/fbv8vXvnbJbqi8d7HD5yPMgqpHugt0mYgtQ0kelnlBqMTgSKngHTj1BnG4k80COqOl4KuHDGU6soz31GUmhJ7LZ1e4MBDKHXMqFHWIC4ThGUsbIRVvSuQBO//7fcfFxQ3RCznPFD0wjW/IaUYXowzVulA1N3MvWO1yU6kkb4Ijfb9DYm8LoxcL53HAa8Flh1PTyMyYKlfXX7Gkyng/czgWDpOSRMmNpmVVh+K0pdK0iS05XfdfxGH849l+RZ6kqv6bn/Orf/kdr1Xg3/tS+3W2rY2bJ3/r0ePd0pu4qVSyCEtQqj8ReUOyL7pIh2skdMpIlAGplVKs7PWhEGrGUwgsVG8rYRh6nl/tuXmuPNsFimZe3d6xS5n33nuPeckM/YATxZGgBSqtYoEOh3OKd9ECpFoBKSLoGffvaZf2fHtEwn4ynWNUnzal4SxrssytBZyzjFKfaO+dB9ptdd6aZNW4nQKKb1QKszLtqsn4i4PYmTtKSmnr3prlrU3XqKqljmIUn3VSpGAz6UHNilUsDbf9yWuGG1pAPye9t5HJalmjddShkhFt+oLZaFeiQud6XBggBGK3p9vtbepHEjnP1LyYuEipdDEg1SMR+n3H/hBwtRCzWTb4XlmyidqWJKQyMU+f8K0bx3u//h7P/spvshwW9kPGh8r42Yf07z+3OExgup8tK3Q2yunygjR8N4RAzsv2feUMjy8lIemAzp5aPXUszOM94/SGUhLqOu6nI+jCxe5T/NBx2V/hQiSGAAw4F+j6PX2/o3obPfUS7PuXjOgC6YCvE+IyrrEtak4UClQhSEARcnEGTwTLIJ2PtuArFFqzTsS6296I5qrV8Myk3L15YMlwOFZSjsBgPjylWhdcYJWM2yKBrtfO55fbf+yb/uIw+JWYuIG3g+TTzDKoo4jdcOqE6gq14VFubb4A1Q/gFccCzecZI1WQdbHROoqdWDLaPHTA2P9v3sxIEq66yPXNS7pu2JomGz4nzhRSxJS+TTZPTjgkYnCA2Dgdn1M+P8Vhz59/KiZq6j42L+229zTLBTVZffvXWXl2tgqvmavtZntvPX2eNVTcGpesM2qaMGf7ZL8rKuT11DSpNFeVxvjDqQHyVSs0q1Yz1Fr3p2XeVTBl9tbNljZX01Rk7DW1ZZxnQVItSLq6KTJaoBRvHX4XUYk2eaNm1nVqNCl5WaCMiAQSM6KCD0LfBfbSM42VsqgRcaSiYaCq48X1C549c+y6jvHwGV0Y2A8dSmU+HCBfMI0H3OLpqo34UUxIpGo2GzFdrw1ssXUNX0VMcKTYCKoWRUulpEJJs8E2pbLUZhMhgMv4ricOgRA80Ue86/E+EuOOEDpmcsM8S1swhDRm09Ysqfl7n7Dw4AK+9yxz3UQ4gjdb3fPMzolQ1KbDjPAOiiNXM0U7TgsPDwfuDzMlw7R4UrYZ7qJCsVXyScPEIKBVCOX8Wv2TzyZ/xXL7T2uzg7EGBwsGyjrSVpi7GZoGjFOPK7G9toIUaMZPPbdnA/IKfrQfTl/WM5LVM2lPJeAKXOXEzQU83wXeu7nga+91fOvrNwzDwG43YKKn5r+RFIp6QimWBYs1VMDsUkUiLsTGbYFKj2oTIXANnFeakrbpDZbS5PUxNZRaFCcdzQSUVGTDN4O4RvnRNaa0zzd6zHlG6rSCZmq1LvAGivuZ4DxVPcucyNXhdbDSDbNDXVqA8QhevM1SE+hdT55NIUZEOEaIPuLIlOqI3Z40CSnPpDlbI6I7cUNDCLjoTBhDbWbcOUeuZ2pJmFpNrZnm82uZOJfUWpmKedjgFdcJcym4YCK9+8vITpZtdNAvAslBrSzjgYkDMQQubr5BKgUZbpDeMtpwuCPs78glk/KBuNwbnOA7lmr7f3G1Z+g7Xn38ITUnvvG193HTp2jtKd5T9ZrEgHYe0UoqI9VniAPLNFNDZ0dYhFoSebHpIVVHyJGaZrPmLUeO8wOITaLF5VP6Rp8K0hFcxMUdxIHc7ZH+AkIE71lKQt0lwUGqiTk9UFIi5TtqnVAW+44PYzPx6kilMM2JWq0jD6DRM+zes8UZb0mGCCVXkA6tl625Jgz73AR3D7x5SPhg2gPHcWQcxXzIS6SXC6pvAxWcrDLAhHzXZMNhARhdebSr3G+Dpp7EEK2Phx5UFW0+SqcXraX9Sc8Tt/zC2PSVCJInTLKeSkBokwmGc63zu/aLJ8RoOX1precA+bu3nCvVCV1wuM6EHi73jugnut6z6418vNJnTHE70/VhW9m89wwxtL9nncBHStvlLDs8wyBFlBBX/+I2u+ssgNRaG67XOJWtibKV3NWOg7kN5AZu0/bn9LpzdZ/Vl3vFSaHxMzFqTiUTw57gmkI7HlWhlErXxW0aQTDZtdIaCARBU9kEHGrT0ERPHs/ee8Juh0OMaLw1gawrvlmWNhjCbsz1uNlNE+NqTmYTGkV6RBxDt4PYKCiYuZX3e9Q5SqpM1br08zKS5sVm+Wul5mzHqhZuf/YhQ79nv7u2JpI6rq+v2e06szguz3BLm2PHU8TRdSZgfPfZx1xe9Tg6jodbBndkypPN8/eRSIfoSYjEN4Hbro+G5zX6l4mLnGhf54IfIZjhmaqDkhHiGcugue20hko/9LjYnZm5wbzMHEsijQ+UPOEodj5LRargFK6urkgpMc1zu55MuzKEgO/MMKzWBQVyXUiNq2ult3mQo45SYZ7mBscUrq+vibvKtFREZu7uZg4PEynnjUHhvafve1JKp+Pk/Xb9fNH2RX2ML7u9ywH0fPtKBEm28vLtIGm/fneQfJRJNrzOPVIo/pyPo+kk5ozXI+KUQ164uKj07z2nHzy73W5Tzl4v2Kcl6zTft8c2WeG8cDnYyqp6Esadcts3563EUBBO2pJaTSQip4p6U6cW8W2CYS2ZI11njRvEythSErViN70zn27nbDTSPtu0C02Wq7SucRMSqELX9fjQgUaqOHJarSU8IQpKJiutbG7KP06ZppFlmum6DuccwzAQfUA0QVXyYk0rw6tsl9fZ8vVGEDkpGK0Xe3WtBHPa9hNWzUpxRhXpam9TbNHEeNfueVoKxSe86wm9JyvkqqZziYJUxFUKC3kpzEul717g8khNER87+uGSuQj9bkBlsA51MyTDmWUqpXJ8uKfrhTzOuFpRmcEdKFlQOpBnVE0UI9ACNpNfm2yYZrVMuFS8w0QiqkEVpja/LoB2jZyCCKdM253j22rJQZmpxZ/EN8ZkGGCeTBnLrWZnoEWpGQ7LkXmeScn8uoPv2O93BoF4D+rRYmpPuSxU1jE/TzdcIbEgOLQ6Uj6YQVotTNPCwyEzp8oyV4SO4IWrK8O1p8k4mOM4PoLa/knK67eoPL9kkPwz4XGzghPnuMdTesq7thVPO/3wRY0qe5/YiN86P0tVfF/Z7yLPri94djk8shawG9tRmzT9NhUkLfh5E8CVpo6tKhjjQ7HiwBSN1r9zuihOajbi1gz48yhCdRtnRE44m/dbvf12qVHfcTDUWZBxoZl1ecsQa6Hvd43TKOTmt6wtY13HztasOnSe/d6OU3ahqcsY68A515SsrbuvnKge5zjTueSbfedydgJP38t+v/amLPDWCjj7nl3XkbNDXdgmkJaWrea1RHOgKsSuUZwQqppeo5YZFdegEocLnRGiidviKC5Qa2YaD1Q1zm2dEkomBkUoxjd1xbDMnChi2RpVYRUuUUAqwRm+7p2pFlWxOX8905dcFzRLBE4VhshaQRgNSqpVDFVtISkpW2BdSmudYT5Jqu2cFkrOlOaaqKqm5i6m9ON9RJt+Z244KVrQnKhtpNQFa8t5Ka1TbVCS1kIpiXmeGcfEnJRpFKp2JgbdRmrXpsy6GKwVmKp+qXt4vS7+OLYvohd9NYIkpxvBOFHtAK7kkDbHumKSa4Ni+3Ln5bZ+caouYqIJXoTobHb1eh/41tee880PbnhxbRa0McYzC1Xa3z8FqECbSCmmfCJUK7uLZWWrXQPRwPl1JLE7U+mxoFMJ8dRcOD8mqg3LCxYc1mDhvTnomcZipmbjxpnh1zndx5NTah1iw0DBE2LPMptMmIj5lozHe5xvquKA6Pzo4q01W2B8dmklaLJ972IH1XiTG7jvrJkUXIcXt5Xbq50pnBpK67HQznZ9Vf1HMMvVNcMqhSGcmlAh9vgQSLUSY0eunpzg/u6O/UWElYPnKnmZQG2hySmxlILLQtfv8JKpdeR4SPh+R3CCSATXhFdEiMFTlsTD4Y5+EKZ5YTcIDkeej2iZ8L4D54yTWUwHwHr8xjdUNYOw4IT99RVeHNPxgakuSAbRJjUW2my3BGL0JnqipoK0LrIhRvssVbQukDya2/hgmsnzTFQhOg+uMo9HllIMI10m0jxaltk1M7PaprYSuGBqREqg1gSlQQNlaRm5Y5knK/3VuLI5Fw7zzPE4cXc3cjzCwwjTorx5kwlhT4w71JVtuGK/33Nzc8P9/b3h02tFoV9u8uaLGDFfdvszUW6frwf2xeXJimI6kzZZYorHqu/GJIVTJgWfc+DE4Z0jirLvhc4LLy4CL5/vuNw5YlD2+/02U72u5nLmBX1eSlrQXGwfNIAaXULWwB2LBTZntI95Hls39nSSSxZEAjGe037S2fyytpvXqBe1Gg7qXFtMat2Og0pnWQbrbLjhgF4M48u5biC3qpBSpmjebB9EFOcjAUcIJ0L3MAxNUag5I4oa+6hYWboS7WkiGdDK7CZYucIWT8vstdGUgdDMvzZ9yMa3rCr40FGz0VqC92jJLCVRxJFLolQPrmPoIupsWmQYBtIyk1JBa2KclDQb9ml2vTNVbDFR58Ap0zIb5SUMhAjiHTUbdWfXe5xmhs6qAqkmILGyC0LsiOsUkRaDLrwQ22RJDB5qoZSZWirOWcldyIhm2CCmYlQhB8MwsOgRdc2rSAuqAdSUoHKtkM8qiFJxmMhIydqOl5XzKRkmKOoIvmNKE6WaxUjwHd2wpx8uETxFFV1Ai3WekYBqYSmFGO1aqeh2XzjniKFnv49M04QTs66PUViWxOEwspSFrjN1onXRXKGYVbPAnd1X74wXn5NBPn3esPfPe92pYvkzkUm+axctk1xPfN1IxrSVfT0xn7f9IjKqnolRBFGiU55dDuz60CwuaTdpe327oZ0/BbDts9eRQE7TASsR1wLrqqajmxVrXRXMXdg4grk50zmJrQPuWSdrbF9tnnYrvzjt26m7fSpPy6oeXk6Zr5U5K1a6NoVcwyzfngxy2gzMNizM/m5KhdT2Ze06tkb+dgxWEvtaqp9Tm9bs/HwSyHuPxFNw9P58nt8WBu/9psKEGN0k10pRSFVAepzm5ky4cviwRdFHCg7BZqxLKUStOF/wqog3DLTUxLLMKI7YVVxrvlRv8AxqUmdd9KaI3hZSNKJqkMtGZxLZSmN72GAhqTYjTxO1UHu84q/nylFgmHMIgVpODpmbIRsL4iKuay6SqPFpq/mj22PXGleGd4oIVayDrdCqmz0udMTQ453NUtelUMXM8FSrVQR1Ni8qFdaBgOpo5bntq3fGjXgMgylI2TBWVZti2zX743MxF2G1101vcSUfT5r96WxfiSAJ5/girDfsI86gP2Vd66xvXbuhZyuDfAlAQ10ADFMcOscuQO8yu07oO8d+8E2F5+k4ob1/e6zd4zRYrWt93nBAMlWNvqRVjcNYVw5l17rZQgjd6TsXUF2zrRYopSK5ZShiYr9tGUE37wRAigkHtDKeUnCywhSWiYtALiu00TL0FR+SVXGnkGcD8+2gm5DGsiykkhHv2O2GlikKNRdqXkczS7vAM1lLm98+qXCvDYdVUXwNjNn32//PbRzWZpyINJqRWTvMaTIZsRABw7zEVYJXy3JVyapo9ex2N1CVLjznYjexLBlhRkkUTZSUwQllOuLjYJnlVFmOS7siIQ49/RDogiCuJ2VHqg66SF0cXbcjxj193DOlSgjgREwwudHqazW80ubXK9N0pOaMkvACS03klBoDwDJLq6CsSWkVRAE1w7vYeXDGExZvVKlaV0Ot2bIzbMqnFGWerOLxLiLiuOgivusJvmswSyQVu4aKevquR0JjEdQFpzbeiLdxxaU6Sio8HCe0OpYlM0/CMkNamq9TNc1ScRnPsC2g8zwzzzMxRobBnres8mzUVE9YLHxxk+VPYvvKBslaH4PVpZRTkOK0uvwyQdJsO42b13tP38HN8yu++cFL9gMbDQdO3UR78Ni1zbv+7K+uHfmCyDoG2Jo1DtZy3YKQZRzGr2yZhHRnF4XRQlZZNsUaTEPzpRHXStCVy6ZrFmJjf6UWvIs4VyygtJFC4ZRJemdUllQaJQNl6Pc4r1sZ5dRvI5iKpYrORXrf4YLHhdiaYGW7qFfw9nSMPE1h8IQltqbYmj2AXfyLGu/TY06RiDQzskZIz8WwRaBQEFeNK+cqeAjRCP3ilKWV9JqFnA0ScK4juh1DtyO4ymH5hIfDgbwc8F7Y7Y2YLbpQsyMvla4mVAz/7KQzniLK0sb3RITxODHoFbvuGt8Z1lvyauu7mn8pFYMpypKspd3I07maEEjKRqFJy7xljK7ZPCzzjGsaAoaVa2vgNay3VLu2VCmLieFWv3rswLxks5pQTyqZrnPbqGfOmVqcLbwC3u+Q4Bn8gJOIo5XGLAYTUFFvjII5JZZFOY6ZeVyYxoVpEuYZjsdEqoVlWRpjITNPy6Pzbvzh1O7vNjTRehMxxg3eedrMXSuMP43tqxEkVa37dp6tIaAroOoRSouhFcinBo2a2KzIzh7KkVPZeSqV180+o8OR2bvM9U558SzynW88x0ePDBfQezoHFsAyrHibnE6sqhIb7cgCxNrxdmcBvGVMjXuoVfE+Nul1EClsPtd+2rrRItIEZ41jVjWR64RioLmj+SXL2iGUVvoVclpwMdPFAYApK6KR4PctkzThCG3dzFgz6iZ8NYXseW7E++g4kLay1Yv5tnhnQrVOHWGxLCuXBa+FPtoFPNeJiz2AI5eFvCQy142vWcjODkDKC50ErJwOuM7jvP2EEOh84HA4WABJRi/aalfnEXVGDaoeJFDnRK4LpTww7GzYIFfwGQ7jhA8d/uKSIsJcE/nuI0Ku9J1ltFICFGFcTA2nouhgcES/d3RDwktiPDzgRViWQkqKl0vcVQ99JevRssCUCHGHa2W42XgYc6CK2xpsuWibonFU9cSyswCZK3kZKWJNjm7YozVQa5tQig9W3sqCCydKVdGKBiVEoT7sqCjL5p8tZM34oYNo5XiKHtTwVe86YtiD7gg+4N0Orc5EeWu2wbRY0DJTtZB1ZlkS87JwnA68fu1JSVkWWySolaACdBh9eUfpj4D5Cdm9JIjzDXrwTXmoa6iEWeCKN+WoVM2Dab1HUiqPJtIsiK5Qmr0mN53O7WfbTtDGu0gg59tXI0i+Y3sbb9R3/1/10XPK0/e9e/NiWou7XWS/7zaM7Hy++jxrPJ+53uaqefwaOCvFzx5zBhtsWeaT/X7rPKkjZbsYlRNdYgO33QlXXTvGG61mxfL0tM9Wop2oNKsFbGneKUZkb00bt2pRDtv3lnbRrqu6NYVs32sBRBqVKD3Gads+uDMMWdzpOK0e3d5HqvebpJuIMM/z4+Mpp7JLZb3uWwWiBaTxUNENz1pypZbT+Vh9cOZ55R5qawpaCZ9SorSmYNf1SMPRTAXKuKkhBGo75qUUvPMbVSjXss3Ir9DDVom4U+e/ipyuo3ddM0+e996DC5Taps4kbguxVhs06IYd0iCR4/FIH023QHPa7grnQ7va7CeGfvt7ZoUcTjPZ0CyTA7WC09hM7SCnQ1vUDZt00hHC6VocjxNaLTnISRtrwyG7RoXypxn9lFYGhR2PabJq4byBtx6Pc0Ugs1M+v7eEt8px/wUR8EtsX9kg+Rab/h19qpXSYpMNLZDI49c9wrY2LMwTvQALeZkYx0Qpl4aPRXMtXF3+HjUyttXq7abQ+Yk8fx9YcFmz2nXS4GmQ9M6Mwx7hsNio3AonOG03Yq6buOuyLNadbjdjjPa353neRDBEXKPQmMFX1zlWjUajY1jpZtxJaeB7MNoRLRtvvMPo/PY4reV+FYLzLDmRFlNlF1q5W0zsw3fWJDL6SthwKQs+1sCilZIiYjSdeX7UABIw1XSwYFR163670CG+UcOojGOjrbQAsN/vNyXtlAznvdz3lEY3q0U5zjPisOzWC33niRtW5ql1oax4YTIFKh+sg25qTxGvARULtroUqgdxga7rTEjYefBQk+MEwayGcp5CapNNSiogzoN3+NDjw0DJjwOpc3a9dl23leh9Fxj6C6ZjIS8LOQm+3yE4+q63ppuPuOChYZF+ayJ2iAsWeCkNK7eRV61QqifXgvcXNriqC8719F3PcFnp9he8/FpP8D21OmrzBDdGhTBxsEmoaWm4q113RmWTdh377V7ZFvC2oMYYt+dWp0oR2bDt9Vo5QVe/HC3ofPvqBEnR0wIHK8Xt9Ou3skfHagzUHOrtRnKPV45Td/hsRRYb7veustsNPLvs6TvTGKTUs676iUZ0nh2sz1VXH33Gtq/yZPXyDsUIu4JvcmR++6Ii0jqN2h6b8o5UTy5YaVMWXA1bcE5FcW0FFh/xzn43p0LAUXJbuaW20l7xwagzMVpJ23Wmim0453qMzlZmd8rUtGGnBcsqi4kHta/XNx1Ew0uDRLQme48veFFSoxadKh+l7/u236csb+VQunbhp5S27rj1PRMrDavWTG1YqZJBPTZlZDc3gAsdu+GylbOW/cZW4rrjgZoyObdmU7ZZ8hg7fIh4r0aw18KSTWg4DAOhKrUHZCKnylIcz26uic5bFjfeAQHnIz4EurgjhmhKO6WSs1GvRCJO1pl8R/A92SXUeUMrxUYYEaFIwIkn7mxUVjAfmzXrH8eRvr8gOkdKiXEcGXNm0QpxsIzRBealosHjux3iHP3+khBOi9O5pa0TU4zv1BbIeXaUGSiO8Thx+6bwcG8BcF4KR22Z+P24ZY5a2xjwWl5jjZ/VuMsm08qjILmWzOdQ2fl9vH7n3S4+6vanNG+v24Jk+NVD3FckSFqz4jxKureC5Lq57S0WMNhucsB8Rs62t/FIoZaZLCYqsBsil5d7nl1dEBsn0IsjxnBGJG+d0lbSrieplPTob2/f5kmWmXPaLhLv/JMyy54v0mwJmpWqC8GaL1WotcOVQJ381gFcS4thGJimybhvInSdYZG+W8vsyvEwEUKH95j5VgP8Y4x0fdwy4/MyvpTCsqqoVzVvZKwrTgWnYWuslRpsWgWP0pHzZEpAtZinufOErqmqi4mX2HExgynLCBwaArvdzuhPtZKm2crYBlF4cTjfBBG84HywDM4FcCa0uwX3KhuNRJgIXQ/it0bBsmTeu9hTjkckFbx3DM5TsCAZYmTY79oxgWHY45yJrlQxyKP6SNd3PLt6jjhlHEeWqoRhj0NsEWjwTUoV5yJLmlhSIqwNwbZIqRScC8ZTzCbqIS4iXZv88pEaAsPFhTU0xBaQkjJFlWfXF0zTxDQuHI8TORcWAXURRcgaUXVc3rxPN1zR9Rc455jT6ZzbYlwIwR6nmjhMB2imag/HIw/3E+OcGI+Zz17d8+r2SE7FutrOgqPBK2HLCLXRhQzCadXJOSYpflv4zhula8a43ofrfbMG9HVc8zwwPsqwRX5pv5zz7SsRJLcM72z7/OxsJY6v71kbJW777dP3qZp/ddeZPQGaEKdc7nf0fWyE10Zi9oIPNoJ2/rlruX6+f08xpLf31TYXPNJWyaVx9JwL7WJvJ7M0WSvxrSNqFJF1DtzGCQ1vFLd6W8O8JOtnNIHaXOx99r3ZAvvpIrMSzzhqw1bSrCXLOvlgitLtfZh+o66yZ82kbPXDCR52uwu0LpQSWDZcLhDCCZtTNcku50+ct1Iy24hkExRZt/N5+b7v0ZblG6bbhDJqNYJ8StZtb58lGI4oPpKWAvn/I+9dfiXLsjSv336dc+xxX+Hh4RlZWZlV1ZXVVBdS0Qj1gFH/AUiIETCAAYhmAGLCCCYg9ZTHBAmpkRBiAIghQrRoesSkEU0hJIquKtUrqzMrIzMi3OP6vWZ2HvuxGKy9j9m97hkZ9ejqqK4TcoXf69fsmh3be+211vet70vkSsDH6Gz+HCeM8zipUzwenBhC3+lBZH0FWFqfurAkFX8QW+iGPV03MGyvWPKES4VgHCWPdY1oz80ar5SqXFbCdRMbyVk0YJqAd4Uos0q6FSEXS5kLxlmkJLY+IFalxgyy+vbooVJHE9ExzWmaSE6zSus67l58QNdvMHYgE1hSphQdVmgUo5bdLctS17esWpM6qaQ93mVRvchpKZQsiLE6wUXCWc3SY86rzo4Of2Qolibq4uoIqQ4wvLtf4RzoGrfych3renV1IkwuEprLPcu6Ji4z0uc4wk/DMb4WQbIBCJfXO4Fn3TsGrR+bG/m/VwAAIABJREFU3iBAFZ99z+Pa9y77ktaqY17fe26ud7y42+CNwbeslEJ5T5BuLoflovx7fj2ZSKm0mFLFJTSraMZe1R2xTtQEr8G/9Yac7yrSbJQMXGeqTeM8Uvt73mBMPhvXw5Nmt7OBbt9dELh16idJZlmmumC0UR+XRIpnAruEGpRFEFNl2azR7AeHrQHQuqCS/EkVzGNuJ7qjFCHGpX5+hTpQtX4mXdjWMc064XFx38+BVEsqHSiqWYOYqltpmedIFoOvIJF2YXSzZ4l411dZtjZdZLA2YoG+3zNsOoqBFDMudOqVXe/Jptd1GbNy/QRHEcv1By/ZDHsF2LJmrOIHDBk/OHJMON9hrFX9zWJQA3ZPKRmytom6sKEO+lOKBshcwJqOQuH1/T1Yw+Zqj79y9MrYBuPwxtLvej245oUlFdIca586E7O+v93+GsEyTYklH3B+wHcq4NLVCSgFutoagZQyMS+M48g0HjQrTwbnN3SbniktbLaio6Ap6YQNoe4NtZY9b9r2mZbzOpVY92KkJTqIrfSgc1uprYNLr5q2tmOMK9jakpzLyk9EOOVngxcX8WBdY38egmQ7Cb70J56obbc3WAGbyxtqn77hZjnQUGHvPc4I28HTd5a0nJgmsE57PJLVIOD5Zl1fxyWaZs2T77UNffk4Ve/WoGasLhzvvQYZp14uAIqRWKxxNHOsYdiSc6w8x4wKyhoKnixOOY8YsjQ1yVr+pqRTcvV1Pj4+krLSdVpGTehYlukMmoAGyVTWwFlyrsCK9i9L0cmQqUwqXFH7i2mZsKYedCUxx/m8CSjMcWa33dZ2gsFWRfnGl9PXmZ/0WHTx1iypypxZY8m5tgOkKDBQ6rw8Vj2k6/088+700Cr1sPHe04eerhuIxVIQZjSz6fY9OJVDoyKvdv50Jce7YOm3G7quI3RbjO+VdF0yYbPFLAvRROI4Y7AqJ0atEqyjpEip/dCGQyYpK7pecgsAKhd2eJz47PO3FIRXw5Y736ulhLcY0bn2tETG8cjjF/eMxxMlZby1bLcDu/4W33V0w0bFbkWpXcY5fGfAQh6P5KSiF22QIMVEiZEcI7IkphSJMfH2fuThYWGZM0XUEG4piUIiMeNKp2h6HQKvGNu6TkC9vtt7vdxTrSepQxyXHu0X6+FZ4Ox6f/HvwhKnd4Abcf2T/QnnDPX57/hJ19ckSALPUOnn5XYRBWcuHlB7W5YmwqnffTdItn9rN27YdGy2HV3v60bVcoN6cy2AfffmXd7oJ+m6PP3AL/sqxpgqAdbaCc3s6int4wnBqTa2rXWIVVdIYzTIXmbFz5vZ6+8u52e8nFpop7D3HtO51T6h9Y1WQnh9RVkMQaoQcP29sUQNpLV0bM+pElkNfKqz4XXKplnGtrG15nN8SSQHS1yWZ1M4jnlWoQgFK8wKyJhqO2Fs0VKOCnhVD71GZcK2ETrWYCwmAQtT0cBvQ0dndfzOOY/xvSKuUjCzysxdbrDQDWBqhmgszqubIElfU8wFYiYHPbZyElWRqu0KpH3uDmuNomBoeb4sS83MZh6PR+3xBU/fD4QqTYc1OOfJpXA8HjmejsR2oIWOoevoQ0fYfqRrxTpSziSBOcVaAST1H8oLSHP31Ooszsp6mOfIssTqpplXpHqeZ6Z5YooLoJXSEie1fVhL2feLRqyTNKUFqDO3sa3Ry559+/9loFv3QCXStz+XLbvLvfkchP2jXl+bIPlOH+85ciNaYp8Dpam9tLYp6g19HlwvgmTrTU7TCVNmXssD37x+CdJXzURVhkm24IJ/8pouqUDr12V5cvNFZC3Jn7z0CjxoeeHXUv3y+fPqRKiTRUUSJaqABbXn08qXBtqUUlZh4PZ9a6vDXiv1i3p3x3TuzXrvVJTMaiCZ50iMGe8CyhqoGbD32OBrNpSJtV/ZnmcY1Noil0hKiyL0pah0Wcy1nA5qZVBMnUG2a8arvVgFTZxzaj5WD4KUEqVKfhlh1d5sGyiLUkCyFILvtaFRR+1KEfquV2CoFPp+i3G+ZpJBwZF+w4mtBm/j6/il9mFd0EBcpqh9TQvTYklSmJdETA+YsCF0pvILPblmqsUob/HweMRLtfCNqVKA4nlDW20RpZiJs07a3N+/4fhwz2maeHgcef36AbfZ8PKjV3z06mP2N3uyKLXruByYTiN5Xui6wH64YRt6VWbvB4auZ1x2FBRQup8fiSXjvaPvtbURc8KQVGAjqxiGcixnpmni8HjidDpxYGSJmcPjzDKrEZzrBmxeiHlR+pgTZKkHCdXaQRSQXTNJc+4pmwuxlqbKTwUuU3oqQgysvNfLvZjL8k7suNyf1lriRe51mVRcPs9Pu76KW+J/DfwLwKci8k/X7/3HwL8FfFZ/7D8Ukf+l/tt/APyb6FzJvyci/+tPfRWsQOn565/wUtsGe3pynG/q84NCT/AmemuZ55He7zCy0N8mrq47hq3HhA22uyKHhPEGV4ZVz08XtiJ/1trqFCcUM6z0E2n2Cc7XDOoioyxn3URMVY95lol2pj8LrpIQG+lq0AAoxRCrfqJgsd7hTafueMZDdfmJqWDtjBjRUb1NNdkqFzad3lHygogGuHZvxnGuI3QW78F4gxHNxrzJGKO2o52NlHzCTkcNAmzpKnUpUSii1CrtP+q0hu921Q5WoPY9ixiKdRgzUIxlY7aUC3Aml4VSUVGxtQdaRyyXOZIpYCzd/pZu6NnvrtUlsAt8/9Mfa6e6ZiZzzdDm0xF5+wUiwjQqYNSFjbYdnPIptWyH/dWGEna4znCz2bMsJ5aoArW+TGox4QQXDG7Yk/KBPCdOKXIcR8pppHeW267HHGDq8qo7mmvrYjzec7r/VPt+8cAHy4csD0fCnBm6npd/6dtsb29xV3usv0ZiRFLBPn6BXzJ3V7d0YWAYNjgXVL0nC2/HxJvxszqDDbbrdHoFi9iOlIquZ6/g3pIS87xwf//IMmuPOxbL4zHxZuz03s2lshYKzAlnthgGcsrkOUJ4Co6se5VW11jc5XiLALmcbRhMhpJRa5KLMrzu9Xe5yJdjwU+zR90zgqXhBxe2ECu03oLEl7f6vkom+d8A/wXw3z77/n8uIv/Jsxf5V4B/BfgV4JvA3zXG/JJ8BZHHn4YQX17PKTZ/1Ks9/vb2lqurq1W2yVrV7DNW1D9kzWbrPHPVdkSa4G2TZ/M1gOjUNbACNM4bbHl6my8/7PaB5pTXBdG+P1cy9QpgPEEBA1gtyVV8tfUSy0/UxxORtcmeahY6T5F5VnXpvt9WArolhB4JlbIjGuhKUdP6ItqSaMi78/WEtmBKFa4ITeHnQslHhJLPvMeSCya49fBYOZJtqqbei5ZBhhAoJbHZbPjOd36Wh8cj9/f3dL1lWSZ++HCvoFkWwrBZN1mjinjv2YTAPM/KZOgdYtCxO0nrFFLot/jOETYDH9wM2p6kMM0HpulU349FXfY0c00pEUIPG2G/35PHmXI4McfEQ1KnohgL3mqgmcYRSZk8n6AIu27LIsJn9zM/uj+QneHld77Ft7/9c7i+Y7tT9kA6KRnbu56Xr14CWqJ//uZeM+uqFIQY/HYLVlsU1mvW73xf5dMKXefIktS0zhtMVnvgWBbmqKrhU1x4eJgquJNq28NVapRfKyPnLSWfy1+gqktdBsn37+s/Tgn8Z3l9FUvZ/90Y83Nf8fn+ReB/EJEZ+H1jzO8Afw34e1/2oOelJ/zkm/m+PuAf9bIWQudWUd15ntl0w7nfUTfAZcACRXSV7/3l/ciVywnP+qg8ecwTEOjZe7fWPkGsAewFGKOz2roxtV/pKpnbPsmmL19nKVLJzDrC1yY7uqAue953ikqiAWWREVPVxS9VWYwxqjdZA1y2pnqbgPWqi2lsA6oMzbb2OfIowtn50Ri6PtTPR7PemAzTrFzJ7XaL956bmw94fHzk137t79Nvttze3nI6HSkC3lu6zuNCpXoBCVFB4EpJsQhGIpITZO1lZiNgwgrY3T+8ZbPfcfPBHW0ZNjmv7Xaro40xk5K2RqxVCTcRUe5kN7DdbpnmSCrCvCzEIvjeI65AEmQpSE6YInS+B8mcHk/86E0hWcfm+orbFx/SdQO+13/PS8RZ5dp2fksuwuk06nSVmDpAAK6Sw8Nur4HRVg9zUTV0nKv2cqgiUczkAsZ6Nrsd4xQp06KiGCWvdLNzyXuW5VPGQtM0+MlSZpcJwZ+360/Sk/x3jTH/OvB/Af++iHwB/Azwf1z8zA/q9/7I1/Ob/CfNHi+vEBwhCON45HQKeLZ41+FcIKFucVM8C26oIZlaJajmIxhXkfTacDFV6QWjOoFZlExdkNUQ6nnfUi6Cj3pJ175kReRXncX6vrPo3Oz5jyLFKqrRJLU0GF72UI05AwItW/NeSedX+x1K5jWcjhOsgJLDBsEUBbRaX5AL4RE17hLEKMVHy+lAySixvGiATalgTFKbghyx9X16rxMp6tYHp9PpiULMsizc3t6u/cjj8UjKR0opfPTqwxq8k7IMCgouWbBWCDWztpVTaEMdWYuZoQb1OJ1Urs4r2GSc5fXr19x9/BEpZ37wyY94ebNh1YQ02g5xTl0mTaV0ORfIRUjV3Cv0G3Y3athmTxNTPrDMI1doD9VmoctA8SRJPL55y+PpkS++eERuvsk3X77k5sM79i+u6fpOAcUYycuME8Eby7TA6fRIjJEQFNAJg967vttoL9Vrv9qGTu+CGI5jVI5pXXupGGK2pKK+R6nA9uoa4zWwFgOnZaJpm+acEAHvuvo9gzHn9dr26ft4zz+pB/iPP3i+m8hcXn/cIPlfAn8TzaL/JvCfAv8G72slPgVu18sY8zeAv6F/vxA/+AqZYrvZX0Vb7nlT11pbgQbt5TWV5Cb+qVxASxY0ONSApNzFQD00db65LpxU+3tgajD1OtnSbkB++l4uX/c6vRPTk4byJeDUvufspSeMWxvfIppZrqc4liZS0AjiKbVZV0vXBWLUcrtRo0Cz62lcKu/MMkdFNq01GG9JSyYMPePhiAFcUOk2N2gQm+dITAnvVZOwTb0Yoz4uVG+VlsVshg4bAjGpbuV2qxlYzpn7+3tCcDw+vqXrOvq+JwTH4fD2XM55FZ0opfrpNKdMY+irgO88z8RlIlWhV6hq6d5ie4/vesYlg/GEzjMuJ/7gD36fj3/mm+z6vSLZwDQfGEe1dzXGqGmbKFE8hL72Teu0hwvgM/32Cut6bY24jjIupGnECfTGgIFlTJzmzBQN+7tXbH7+l7j78AVDVeqJy8xm23M6joyHESMFby0TlhC2bHfd2pJpzIC1XeE6FepNwjJHYhFO44QhIEYrFWc6MMpvzdlgXc98euR4mng8nDDW8/HHH3M6nUjph5xOyq3FFJz3lRGSKKpoh60bRsq57SP1MzHGrPzjy2rqncD5E7b+T0uSLmPGmiDIGex5HmO+6vXHCpIi8uOLF/NfAf9z/fIHwM9e/Oi3gB/+hOf4W8DfAnCtqfVndOmsqJBzte1siLRYlCvylHag6GvrsZ1pNUWZJahY/ln41jS+u1HidajlymW/Bp6ia67r3kHvWsO6/UzhKTVCpKn7tB6nquB4dz5omn1nO91bj85a3fzaB9XgCZnQtfn2UjMFAOUqtucrpYJmVglXMZ4FdZ1za6nbXpeIkOooXt/3a5BsdCvNetSS4nQ6VJBgxBi1jPBe+bApLesUTl4btHadjqH6HqWU8C37rrzV1lpZxYjRKZ7TNJJLIHRwOjxSsvDtb32Tx+OR29trpcBYVcspfUKk1Pdn9BAwOvqZlqiTMdaQixC6HhkKWEeJEDIMJnDMmTLPLFnVwwtgfU8YDN12x7C/ot8M+P48xjlPkZJ1Dt1bJb31rl/9kpTpdAYDS6UsLeOs0mlimBY9DJdYKJJxLuistOgEkvMdRSJxmbDesb++wjjLmzdvOI0HBOHly5e8ffuWw+HEOKpHjrNK4u66jhJT9aKqnMa21GXdGn9m159mdvrHCpLGmI9F5JP65b8E/Hr9+/8E/HfGmP8MBW6+C/yff+JX+ad8mQrONDsG7f8VlPlRA443K4HdBkc3hHqCKmqXKfjWtHaXJNdmh9pOSt7rI3yZNQIrjelJ4/ui9NTrXKafnRCbnt7Z/jYtc51vBUzBeo81VZOP2lcyomN6JdeyXrmiphRg5jQecRZKVbJQWbDKYbMG6zty5VYadIxzWZoa0XnMU9DZ285vWMaR0+nE9VbLweB7llKUGpMTKU3rwbDf79f3s04POYckFdoQleBRRNeo3FophZILMRacNSxRqVDOd+u4ZSnaUxaB4WrPDz/9nC8eRv7yL/0KP379GeI8//xf+2cREf723/nbfPef+qtY6/GdeounvNB7T4qFnHW6R7AEB8VaDXqVvWADeDNQrgLROLIciEdHKoVQ1DjumDJsd2zDHdevXtF/dKNkf2CeFyjCPC8459nvP1zXLL4huxrwY44qrVcUZFN2gPadl1w4PB5ZkvYej4eZubZeSlZL4GGotCcpnKpCj/WeDz/6iNOjKojfz/fs9/vq1Z05HA6M40TOicNxorNng7uvUuX9aV/Pq1Ddr1/hge/BDS6vr0IB+u+Bvw58aIz5AfAfAX/dGPPPoGfE94B/u76o/88Y8z8C/wA1wv53vgqy/Wd9+WDpOu33HU8HbCns+msGUR6mWjDoCJ+pHtA5R3T22K4od1mpDgZs6+VVsGdV6xa6+nvbh3gplNG+30rpS/J30yuE9oFfzqprya3cRlC0lbUf2eZvWznTfI6Bytlbaj8NnNdxwbdv39JkwZx3EFufU91hcI4QOvWyLoWYNQDqpIbBECqanasx10JTeCmiYhyb22skLmuPcYwZH3YY73Ae+n44azOmqBlKSauIR1z0HupIZ4c1Hu+HqgEpOGcYNoFpfKuZahUD6S9AurHqLUZxdLtrXm3v+IPv/0P+5X/1X+Pv/N3/jf/n7/89bm5uePXBntevv1BUfBMInU7jiOi8ek7QHDF9WZjr+GSSgvEBcR3WCK4YbJexO4NbZpY483h4UEtXMtvdDr+7wl7d4oKhFJ3vl6SyekO/UyUpZ6n6IhCr82OKtS/bbGbVAdJ7T8xWD7bTRBb1dX/7eGCOhfGkge9wXJhnPZx8sAxDx/X1HlAxlBhnnFH74P3+Wzw8PPD4+IhIpus6ttsdIqLl+FHXXMkFh1kNveQik8z/CNPJlmS0IK175k/+C80//qapltv73S3wbob1ZddX7Um299j6f9ddZAiJn30l/Mpf+gY32z0/8+rb3Ny+gM4hdZ4qrDxFLfWsM+vX1loktmmVVmqfTZ+KnBVMrvp+/f3GmDXwXZofUZ6aZF1+4O295nJhe1ApRstS3QN9d26el5lxHFd5t8t7urYQukr6TkmNr2qZOgz6PMfjkY6w8tua0s6yRJY5IbWPrIT2O6AQ06jjhUb9TIwR1b0MDqaEpETJkc7qfZzGhSkVtrs7XBfoenUGLEVL2v1+z8PDw1omiwiS9fX1fY/1FQ33nc5JmyYikkCWlUjf7vc8z7x9+1ZHE/ueh9PMx9/4Jnd3L/md3/49Uir80i/9In/4w+9zODyw3fUc5SOGTcfd3Q3GllV0V2XA6hRNht4kFskqceY8UTSAGjHkJXI6jJgyE49H0sM948MX5CWSClx/45t0u2vYbDA8ap8va02zGbYaDAVSZS8YY7BN4s5IlbmTOvJJ7VFnUlSqzvFw4tPPXzONC4+HiTdv33I6TsScuH87My9jFRpRPdKu1xbGze01fR+47vYqpDuOKkRiLcfDyP39Q30NlmVZGEzHPM81iJ55zJe9wGjkyffeF3+yPG1PKT3v3Wzv+f6/nN1e2RjOvvO7nseWWL/+/OHh10Tkn3v+e742Ezft+rKb977rEsH9aY9rN+9oO4zfMM2ZOFpKyHRuAXsgmg0Fh58sy6wyWRocVVAgp4j3DrVe6qlYNpQFkUIpEUHFE7wVOgupThQ4W8ft3Hm+tIiqds8VNS9GR/6oniV96LECKUamvvYFS8IWwYtlSTPeelUzcmjvMM0EUwjeqA+Mc+ScqshpBhFC2lDihCHRVQBqGwbSrCORV/aOU7zHOXWNNAiSE3Ec2fQbpmnB+44wDEzzp3rfc8SJTtBshwHvA1BYlpmuLBQKS47MS1JlGAPBe7wdCaZA2lAWBcmCMRzuT0g2GHHYOtLX+6SiIDIRpxPWd0AGm8E6xAiZjGTDPCd2ux7B8Pnnn2tWtrkCVCDj57/9HXa7Hb/5m79OKvCrv/pX+d3f+4fMEcJwx2mKvProJcZCPi7gC9cf3KnuZXbk4knFIDgWo1m4FSBlupLxotqbcRlxZWZMal+bwg677bA9+FwYuKJfLC5HHiuzwVjlLs7zTCwZFxx93+Gc3jcrG0RiVVRqAanqN+aiYGH2OJPpOgjuC7KHOB8xMROPkWWOMC2w6CGENerFvnR4m2CZuN0H7l+AiCN5PcC8cfQfvsAbuL+/B8l0u555SphtYBOueHh4IMrTiinnhCl3YIRE1r43ohNJeJ1HF8cc6l6u/2GUEP/O5c8unADZ2FVP4UxZi7W/9tSmQVroE4+V05fGmK9dkPyzuFJKTBJJgyGEnr7bgDUcDidyL7h+wNPTvKtNRWJyzhhb1aWR2hSvHEdrcYAfPEZ6bJ1FN1awfnf+IPMl6KCcShGDDx5Hc0vUIOmdU2oQgrGWcTyuWaOr/7bb7c5iCSkRlwW5EB8NIaylN5xPUdWfbC0FRbBVXKBTV8R5URKwKDoa48iyqDd3jHHVtGyiIU3KyjiHr+BNjFEpOEY3u+o7JpKoSnXoO0LfV93FgKu+PA0gmqapCugquKbI/cwUT4Dl9u5DjHNk41EHSYdYR+gNaV7o+55PP/2Uvu/56KOP1nbD1dUVOWc+//xzDocD3/3ud5lj5td//dcRPKnorP2rV6/oB8/hcOBwvOfuw1sOD28Ra3BuQ+gCQTwiFqyW4RQho8BOTBnJkShCtpYwbDGuICSMyxrbK9CxIJiUkOCRRv/yFjxcD4MKXdnKOQVctVsQzj3IZYmrtqOIwbJBTeR0nZeia+Szzz5jnhTxbhqcYpTSZQyM8wRFOB2OPHxxT/mxtkpevnypIGdcePvwlpvdjpvNNzidTrx58wYbi/JdreUbL+4YR9WhPB6PCsJ1HcgjxTSDMwU/rRdsXpSVUQxWzi2mL0WkLzJNACt2BUyNFExdZ/oEOtlzzj2T7j0i8lOq1r+QQdIUQzEZMYGEIxbDm/sD26s9btBeiqkiuGfFbi1jLJdyTPWWW8GIAasqPs4VmrOi5LwK4rY/TTS0lccAUbjIiLWEEVGPbu17CsOwPZfbRrMWFTwQHZUUNOh1Z4n7mBPqWW2fZNse7R2WktfWQCkQF7UcNXjVCLxAxzfbfT2dUYGF1oOLOpbp19GxTB8UdY1pZpkmbM1im3qSdU5tRH2ovzsyx9PaEmjl9aXl7LIsHKcHhmHg7sUdWYSUtfR3wSHGk5MwTjPL+EAphbu7uzWAN87lD37wA0IIfOtb3+LHP/4xv/Ebv4Fxgf3+mlxU+uzm5o6u6/j93/tNhmHgxUd3SFm4f3jEBU/wG3y3Uz6osXT+QlwBnXsvJLK1FOMg6LSRrpFC0CRb329KCEqG3w/VdK56beOUxG1sbUlfrGFjqvRbPsuj5Urz8r5jqUBOyirbFsSw2V7TDw+8efMZYMh0ZJzOnlsd8O2cR6wgRS0k3HRiWSY+HY/s93s2mw37zYblUelYg/f8/MeviA/HVRVdlsTtpqeUwGBEe+LzSAjKHbbGktEqqkkHUrS/3du0vk95FggvL6luBmfq26XQjeo+CY25ov8738JzuJzZfGm8+AsZJPWGGwyO8TTzlkwXhOH6imCaliBQM8kmVGuaQG5Snhiulld1cJ9iKEYJY7ZaBeRSyOVs0vXcIrP1yzLn2dR2QobqFEcRssmYXInAqWhgrJJq1J7N2rTO5QnVpQXl9t4V3fY6Tlel2ACsDQo6GEPwrnICVQHGWZ3iaKNpzXJBuZgBaztc7Y1JlpV4n5PyF83FYldfl7P6tL42S3kCSpknAXIV9Bh05FFHKw0+9Ligr2eJhSVGxnGmr4/NWQGGly9frtljCIEPP/yQh4cHjsejqqGHfj0orq+v2W63vH79mv3VphpOZU7jAecM83giukxXgRXvOkoZVlqUMUqtKVY5wBDqKKYCYda7db3knDG1Ly3BIM5RjGp+5rpKS1UutaKylCKCzZmUIktcSGmpmTogF8reVfw4Z9GQYSzDZsP++gr55DOl8NRerjUqG2cMxJI1UShKh/NWdUGPR1UeV+OuFty0L3s6TWxDjzGOZVGgLQT9XLtuqMwIgIhYSxGLmNqqSNqWoFhc0bK5rVWNje/P9MqzAOqqKDWAmFL/PBWceaqk+NUQ+L+QQbLkjLEQM3z6+i1f3Cdu736RlA1dA0ukBca20FlluqZpUkWb0FTEDZLUlMqIIRQ9JYsUUkSlpjAgVqdR9EkpledYSqHYC5ClNZ+dEr6xhlSScttqYO26nv1mU2kcEepUUCmJJErONjWIOt9XqoypwJCioi34t/c1zwt9d4U1DhHHnBZcGPCdPu40z3Rdx2a75XgYyTU4q1K6JceJvCzstz2lLOS0UOJCcJY4N+OnUnmPCqSkUpFqF+pI45n207LuFiCdc4R+wBhHv9mw7zZMS+HxMDLFEedVwPfFy1ek8Q2n04mPP/4YgN/6rd9aS8a+7/n+97/P7e1tPUjqXHnRbL1lmzlnXrz8AO8tzgreqqHa9XbLcTzxeP+wggq9uabfbHWCqAvMItiuxziHGCXyOxfUotdZjNcAEi4YEcaWVYBXTKEYA6XgfEDbPfE8qpoT83xkifPKIFCBCz18Y4wksaSSiSkRM2pE5ntevHzFz85K2L+/n1HLZO0BGhF2W9VWNalAyiyLgiI9lpB3AAAgAElEQVTDEFSt6JB58/Cam5sbbm5uanCCCR0s2PbXyPHIF2/f1s+zw2x6ukEYxy8oYlhMh+BIbBj2VxjjsDgchpRVHg+RFRp/n96s2KcygHF18tQss5hCsalSfNQGGVCCuVGegCVDie889+X1tQiSl83ddn0V5Pq5ncLzv18i25f/Zivi9XCaueoCt1cdbw8ztx8qiltSZsmRvu9r2QshDGvWMwyD/pxTBDOXUp0OC6Y4rFFhCy8O011q7J1J4qso6HoSakY2TRO50mUwlqWNGIYOX5q6un7wKZ2RcBXnzVhXcDhKUcVn7zqGYUtKrTQW7aFhsc7WgKjPE7oB6xwiKtrgbK+ltKiYx2bYVasApUY1Pc6CJ6cF4wKdqxy5kiAnSk6UOK/3v6H5LWAPm916DxRdH9Z/08w1rp+l954sKjOWMhzeHlmWxMNhZthesb3a4lwgppmb62tevXrF9773PUopvHz5EtDRx2VZGIaBZdG+ZYyJeZ65vf0A6zo+/fRTjHF89NFHdBu7ouudDySsTu/MEZlPOmmUZrIs5GWnSuSA6XvCZkvoB2wX6J3Hotl/Kkpfcq62RSqxR6QgtpwnZnKsohWpuneqArqCb5kYF3Jpthi2+vlYFa7ImYWCWGEpwmlSnuvm6hZxJ775bcfNiw+I/+B7Op/dd8SUME6dF43AXCasc+ThGoBFBKk2Id45HqfCcXlLCIG+75XbWqeskt/g9nrvTrU3aYzBujuWZEhmD67n6u47vHj5LYbtVR3PFeSir/B8X19mjm2A4/L77UBtlZTtJ81iF6Ekg5Gs/UoTgcQyP+KnTzgej/D45r1x5msRJP9RXu+jDlhUzXocZ6a9ZymWbrNHcJRU8J3HWNFA513l4vn10YCiiOUcpHwIGLQkdWj5IFT/D/d0Uuasmn1+bQVfyxHlb+K86is2ipA1uFSzLAc5LlUlyGBIFLmQa7OoXajYOhVjyEXH91SzT09WTVpzPbA1+MRUNNvxnrxEMOqo6EOH71ydo05s6vhgKYVpKXS+I7iCZEtZTthckJKhJCSnGphZ70Mr8Rrok3Mm9Gf/6iamcElb0n7mgBTDPFHJ0Yb9zTX9sFUxXwfbbc9ymvjss8/46KOPVk5m2zyNGtXk/7uuY399C1hev7nHOcft7QdsNhu+ePhMDybR8UNTDK44LIZgIJtMyQnjZqaTfiYJS7fdcVXucCXDEpjiQl4i2801IQzYoNmrp1pjiJrBOd9U9CPj6cQ86jx7nEcF2oyW3olLqpz+ves6DLYqPS1QOYxFDEUsRYTHw6i9de8IveeXf/E7/M7v/S6n8UF7hXhOhwNOta0ITkc34dyqWT8LX0fLZGEeZ6xJ6/Sa+gxlnBWG3rIYiHHBW4/f7DilDuzA7d1HfPjq57i+fbH+DuzmyVpZv//sMuHdINpeX1ubYkelaUWLqZqqTiKlnKDMnE5viK/h9evX8OM/eG8M+Sc+SH7ZpYvHUFAj+jZRYmpWeHmduVpWVYIAa+vYntVNs5aJCgvrz5p3A7UxT6lLxpxH3EIIVXlabR+sd2vpuemGihAvF5no+fmUyH3OMFvZrtmYSqqF4HHO13JbH7+q+9BAI0Pz0jGmekNXkKmd1G08s8jZ1CzH05Pe48ohNc3Q7GlG7Wt/VkspHVlsZZWv3iuXP++cU/c/EeKcEadGY8NuhxjwnV3f23w60fcKPN3f369G9nr/6yho/f3b7ZbNZsOnn36OMYaba9WlHMexlrYGLDh0Tt5aQ7AevMdmQbwleMO8JNRntxAMlBiJHMlFmGcN+l4ctgdJkJ3XccxV+bwQTe0jpsQyjUzziSF05LTgjQI6oIXik7Vc1IvdGtWTdM6xiKLcujZ8XbN66LmoJfbGGz6/ucYeD8SSdcy0KGMjWEfvHMbFc5ZWaTuxxHVdtqAUx4k8W/b7Pd7BnOZ6nwUXEsFkiEl9xv1A8cKmMwxBGDptP2gv1q+f02X19fwy7vxZtnvQ1l3jGyfrIFvEWyTr3rSyULJFSgdlolxdcTgcfmKc+Cc+SL6vbM8lYil0wRD1c+OTH79mmTc4e8c0jQyh1Kym4Cqv0bl+DUjOBbI9p/uWC/S4mNZKqYt2Xn/uDF6YVUi09ShVNbpHDCyV12icVZqEsWt2paINEclLzXTVxgDQgGS0D9qEeJt6t/YltS/aKDUpFUxpiGCdUS6QYqpZbB13dGqDIFLoNwPzPJJFM+J+2FAkkYtgSkZKwTRptFzq3Pe7maQKLLi1J7kCT5VM3sjgl0yAadQesQ2eYVC/lyyZsOnIsjCPR5YUebH/QNHw47Gq0U9PsveWzTdi+eOjKupc37ygGzbriGXvB4rVA0+KoWSDEcEZj+s2lOLwtawdpwlrMoPrsSVxun+tQh+iGXhcEr4AS6JwAmOwPpDJNVAW5jJV0YhCnEaldHm3etqUWs7mahH8PJP0LjAM2mfOW20LqTCuXQVHut6yxJGUFrq3J/7KL3+XKUWO44nTNDKOo3rl1IrIxTdrkLy0Wb4k+ZdSmCXTFKx075z1Adrj8nJErIewJ9stm1vhup9x+Q0FwRtPlGWtNGwFS8uFUMUaOO3Try+DZKn7IUmHGKvrOCnhyhYHNlGKIXQDb20gxZ/c3vtaBEnBktggJSn5GaPyW6IoshEw9l1bhPddl8Ty9vXzS13dhDnCcdkiD57pdz/jV//yNzgOX9A72L78OZzTHpx1OrM9x0mnEvxQnbcaMqgYpJTWaBaQrOggWhZc9knaBu1spxmrgOuusc6Sisp55RTpvMMvALXP0iwMYlR+ne0pWTBuwEizbi0EF2lexqmoWk8qhblOVVhnseVKqT9O1Y0chpQip8NR75Dr6AeP84pOp3yqSjyBGJcqbjAQQiAtJ2JctLREy7tUPJIMsfRksRi0xBXjNOOiYLueru+xXsU9yuMnDNtrxnkB19Nt91XK3zKOIyZnTmFgGAb2uw1LzjiBq6trxnHkeJxwznGzv2OJB3IRBNV+bCIcvlqMisBYIh988AH3jyMxZm4/fImhY54yzml74bOHB0LnCd5wmL5g6CwWQ0QwZQfuisIHSDpigsH5BcpMym+Y5gmKIfiBMltKErz0xFk5p1irYE4FzrIUQnyj0zYieGvwCHmuUm8prIRoI4UYLWG40tlxHwjdhuAdg3cMXeBot3WKJryT9eVcD8l+T7dENmniKu6Yj0ckTqRlpqQZKYnsXp3Xb9LAGJyDailsVo2Dc0tDiiFjNN1zA9loP7k3h7oHCiJHSv5/6eLvUCa0LC6FPirhvxIoVAWvJjvVRUnV68M1GFO/1sQFWpLSZiJV/g/xmEoHSimBScq6iBO7x9/kl+8K//dPiClfiyDZwpgiu5YnXg6iY4Bf9XofUPP8siifEBSpzgnKMhPLK8ZpodsPTwCElJOi2ZejfyLk0j6uandqipZEnDmUpgiSzp7AKmFm1w3bMqUlNwFXRT6tQ931iirBgPLlzie6gNhaRrJmYV2nlg5NiccFLWH7vsfUvmpKCSqqbLwCT+TCNE2Afn/oB1ynIAioV/SypJplKlXG1ZI7dB0heObxSFoiwftalhkQlTMz1e5VFZPUeMxVis54egTgOgSM0yxkTpl4GuvC1wwlp8jm+k7vVwVfQlCw63Q6KZXHOXWHnI8rSNRaJe1zK0WBsZubF4zjdM5YceQcCWEALIfDQX3YjXI/fWU5LMvCPGWMRJztAc20QwgqXitQREGhnM78PR/Uw0iBogWxmsnYkpUOI4JvIK5V/ce2TpsUm62HfpGsE0/BISZgXYcLvYqZeIfpO5xUL/kqNgLUFgKoX5JgbGApMzEJFEuxliQoZciqeLJLE6YUrCm4YMnWISUjqEAKjX1g4iqJJyLanjCCsRGM1F1czdqM2nxYa0izgisawAXyGegDDZaXWgS5Dcum1xd73FTdhZr1t4zSJcAgxdFYkrqvFyXaS6Z36ZJA+c71tQiSrQ+2Bn+RGhz/5NoY7yWhcla/XpaFkoXBq49zSjp/uzanK6lcCdn6AbfnvUTamm4dXvlb7c0UpBrc13d6QW+Bp0Zlq1RaUfJ4jMopa4dEA49a/7HkRiFqLQC1o23kdWcDPgQw1cu4Bv2chCEEFe5ISnaXVNWAgsNXZWusR8qyGoZpcCzra278RpGs3jSikypiNPsTq4pBpjjNtK3OMiO6YbxQnfnyKpd2aTJvnarqSJV3M/X7lweOiH5m3geaX3OMCdemVmxQR8B6tWmhzbDDOl9VvQXvHZdViLIFEq7vKsBV+6ntc1cpb0Qy3qjVr/UOckFw2OTxzqg1RALr1ANdTKkjcm2NqCRd4czGME7LQn2Pvq5B5QCuvUUStr4uTPVa7zTTD13QGfgc1sOhPXcIm7WaAZiL+pCrarIndFsFubKCk1Zg08rZpCO4kjLOZAqJUpSwLqVgcsYWs673XEBM1krQF6xxRM7tAb3XtVo0mliogG98snczgnPnMr9llf0F6VGk+a3b9Z6IGCKjBs8LtwE1CBtRCpxS6r/s+noESaOLQcmhOi7UqLQ1pH3lp3oeFN9XbhvOqOlSPZ1Dd8VnX7xlt7kmE3g8jWwZVMW80x5YlsppE0WMVcMwVyWcqjVpqHPdbSkI7QxVZPqc3UR1rdeAFrq1x2OKLpwQApLPdqatTNfHq8LQOI4Yc0aFlUrk6YKOyU1zxHmIMSFGLSs2m440p9VZUvUYHV0XoFC1BoVlPp/oLUi0v7dZ4Zwzc5yZ55HOWnzwSKzixagfinF66CktnypBp+rgc1zYbnWKw5SF47TUGWxP6DviIqSSSUXY9wPTpEHO94EcC6nSX7aV0rMsCxaHMVrypZIqR7GKD8fCzfUVIQRef/HAeJoZhu2qN2mMZV5GUlQgBA8iiZKWtYerzo/K6bMWcl4oZdEDgow1AbHQbzpKykSrmp/WV1zaC4P165RNFvC17ytZRwhFhCUlQt+BGDIaKFeBiyIkyVAE33m67RXD7lqDZN/jhoEX1Uv+spfY1tEqGOICxQem45EcE1NOuM0Nxc3keVKxkOOImttZvDMIhZiFIlnHIkkUk5AUKAUEV5XQlUOc04JNi/aD3dVKjF8PvJKRErH175ixrrPKgxTBGd1JuWRs7T3aqAR1fY62NnXdtYDqg4KGJddsUrRcdyhP2DohyZeHwa9HkGzjRJX0+TQwVlrLV7yeB8n3mWIZshJNDTijviOnJfP9P/yMVy9vmbIjZYE68SJGA1rLKp01GtiDp5Q6b+rAGVtL46Inqkh9zIWrm3XMS7PCdKuadIwJkDrBYddyO1UHxcvTH3QGPC6KzDbl7tbE1+yqrKemks8HbFWviTGz3WxIeSHFVMtS4Xg84Co6WpIwLontdgMixDgTQld7TlkBKTlLuYXQA4WSBee9Gt9ZlZxz2a2fYBI0oyyGZUlshw03V9c12GrPtB+2HObC4+GE9+p+2LkbDIVNUC1KK5Y4KZfVW8/j/SNd19E5PQB0z+Rasuo9KFnntne7Kz755BMmUVL+MGgwmcazfUVp4BqqB5orX1OKloTOGJxRWbN5msgGvHfaAzYWkYoMe0cuC945pjQjRUctQ/XzKbpodT05yNZjvdfXjSH4jiQFW3Urm+J8QauFYbtjd33Hq+/8AqHbr+pM3ns2ZniSScJTaxBjDFMlohtRsvo0HhkPB+Z55nh40Pnre1ViGqcD8/jIskyMp7dYEyjOaalaCiV6ijEkQIzDdg4piZJmkKiCH3Va7ayclck5UqpqU6k8xkvOI6UyS1opXy1nFbHW21dMRbQx9XOvwTPFNUjqRJJVoz/f2j8JW3ZfGlO+JkFSM0mckHKup8n53wz2SVl6SUZ+3/WcOvCcbpPTgqnEXozBYDieJjbXni/eHui6jg+ur1fKy3waubm5XnuJWsp2VYhAxVbJatJOznjrwAm2GlBp70UXZhOEuFwEOi2hohnqoaMiuCXF+v0z2NOuvu/YbtQCdZoWxnGsuodbDofT+f06TxEtM8lnpfPT6aSalzkS00SzYtQso2BExVihZZGOZYm1pPeqGeh8RY6PGGfUaxvlW4rRPiSoWK1pgao0IzHHfj/QdR1L7QumlNhc3RJT4nSa2FzdgHi888zxxK7vcJu+opiZzUYPn4cHFYN98+ZN7SULtqLl7QAaTyNd17HbXXE8HnVsbr9lGLZPJnr0c9HDzVq13nXWcoqRPnQsKeLrHHm/3TGOo5K3nVMf7Jzpt1umUyR7Q6xSdvOy4DvlhEplSGh1aDUAiq794LvKlxW8U36l9x0+6OFlqkd5npVtYJzDVfpa7wOh7ygZuhDwSQ+I/X6/zuA3HuN5oskjWSe1RISbmxsdccyRaZqI08wyquf68fjIND8S55HD4xum+ZHT4Z4YZ2KaMXHAluqS6EP1knJc7wY6m/n93/ttcmUbWGsoRUcrVWXK1f0hiARUU8DUoQnN+hwGyUpzMsawSFagU5TxUGwDbQylQjxKTNdxz0ZSL6WwZJXyc94RypeDwl+bIImoiKxaVipiZXQ1aXPkPdf7SumWSbb/v49MrgZeRedHi7pmC3CYM18cZvY3BTGGx8NJ9fRurjHN3MY4rFMDqyYgasSRTcEU5bHlkiHWYFD9sc9Un7wGxWHTrYEYydiqs2iqqdQlP6z1IxtaaYxOvrx9+5aWdSuJeMYYNdnSQOnoO09cVAhXpIE7zw6iei/bc1MMMSuJ3VpfWyLUYNzR9wPOVjXrjRCnEVDlGuc9JQuYBEW5m0W0BDdO0WGDYwgd3nmd9DAg3cDhcGCJBVyHdYFmWXp9fYspWX1m6uvU7KAw9J4f/+gPefHiBdNUGQihq6K0mkEqyNNzOBw4Hkeur28Zc1WJqVWMMbqBpqlZRxhynknJ4KvgxOnxyGlZuLu9YZlOWDIpLbjuGt91BGMoOJzv9bmtB6eZoFYmolQsF6oqjVFZNFAtgFj7vVjtxYmW2FinP2NVUMP2O/abK179zHfYXd/RX92y2e7wrtPKout04qtSY/abYT2kL6stF8KKUjde67BV0d12eCxlSxNCcUZFUXKaiGlkno6UoiIbfezVO8d4ivcYm9ltBq574Yd/8Nv8zg8/4WbjubRBaYLBDZzUvaBKU4fDgek0IosKRqt7k7blTBFS16ssHqLxwzoKatkbqz+7GAtiEHFPnECbIDSx0D3Fid65vh5BUi7J2gFjNONQsnNrxL4HpX7fNM2z710uiBUYMXrOlDp+B1pGyTYgrudxTHz/+9/nF37h57HWMo4zpejo1TpxI6xSYoIGI7HqzleMKG/RGKzza7NdMzLYbje1v6VUGM1Mz6+9ZVVuJYmfB/5bUF2Wpepd2tWlz1Xl8OY5olailrFqP/aVmJ7TBVWp3bOa7SrCmMixUOj1tds6d150PrhxLlNU0CiWRBg2GPE4Y8l5gUbUl3rGeeW9OeOVviQ66UIDyESY4kwRS+h7rva3YFVxPNTNndNCTHP14DEsUTf88Xhkf7XhB3/4PYZh4Pb2lmnSn7PGk4n0/YacM9OkZeo0LtCFWpadWxOXavFFEnEZybkw9Hvt4RbD0G3Yb7a8mQ662bNqiWJ1E6dU6PodaTnhQodhoXiLsz3ZOfWqCZoFp1KwUpFra3ElKm0A7W3nUrM+5xFTqr6nJbmBEnaYbkMYdvSdIvs5LbjOsZwOmGGHs45pGdlsNuScKlPj7JsUDBTXQFPNwjRY1haYVV91bypnVkr1V98g5QpV7FcrCpNUqig6T7IWTGbbOeLxM67u9rz86A4z68jneX9qFte0BQAFFoGrD245HY68/fwN4/FInBcdeMgKfEmuTqSivcmY4tqys6gOqkisqLe2QADK3A4ih3WGfKE69L7r6xEkgTadojqJiugqbN/MqN7ziPcESXgXeX4HiTZJ0S7jtXciWvZkMfzox69ZloVf/ObPY5zH+ID12n+MJetIWEmYWMiVzKoN/ObEmAje1/5khSqa/0rRxXc4amPaOVdBE0vOqg4tItrURpjmWfloVK3IeDmIrwosimQ3QrZb/3hXlbrFsNlsNCOzplovNNDmfGM1+ObVw9kZX42mAs4rZSKXeGGtkMhZN1TfD0jJpKWQbcbXjNEZhzMdEoRs1OVPvcsF6mNTjKSmd2ktu90O6weK9eqZjWFaFkxW/5qSFxDLKc3rWOEwDPzokx/w4sWLVc3cd9dVX3NeZ6TbyKdUmTHMu14sKSV80M/u8fERMSMGh7cwnjTYdF3H4+Mj3unM/HY3MJnW/9UNH0LPMp3oglN2AQ6sx4m2arwPCuY4BWXaa7LhPNlVWWWrg6elkuq9Y3/7iuu7lxTrOc0Lw15HCHMp9MHzeHpkf32Fc5YinuPpgbdv1Xlyv9+rsrtG+Irw1svYyqjQMVaLYNKIrUh+WvSee+vq0ICWwWCwHsSDd57FGOI8Ebwl9GB7w3J8g+9UYKUFYWO0T16kohHFkOSoL0XA9cLmpsP3wv3nI2lROh6m4GMb3qi0tnyBZdTkSlw1uhMdDNH3VerfC7YUcvflFMOvUZA8X+8ro7/q9Vw4opWsl3+slZWSaqwqPYsopSOlSPA9m81G0dd5pus2a8Nbn6NUGkvjsNW+R3v9qH6j/qxdOV4NYWwZS+uBpZRqs7qpmhhlZDhXe0hP1U5W75v6frounBd9w9TrzxdRVZeU1HvlfRNICpo9FdtoAVyDrgEcNtvaB6737kLS6uzn7TElY037mSqcSKWwYFU2jPPh1T4z3zXzMF304rQwTynRVcCiZUHtMQDH43G9V4fDgevra6bFVtfFmaFa3rbHppTY7XbMPG3NrH3uuvyWZcF37X2YFQAzRj2DhqHRagJzOdOymrVGqZWAJmmN+mLWLIY6SVUKYGTtVV5O0ZwfVmft62vrh4GbmxtOi6rbA6oZKp6h80w142x7qdkq3NzcPKNwqQK+rECpVA6lPp81aP/Z6men2TIqpZfN+rPGGHJRmlZR0Ts2m15fyynjnbDdBOZ80l6hmLomcn1TspLAXaf82bSoaHPXBdXclEIqCZyW1aFkTNV3VQ3YizWVSwXEsrJRBKWeYPDWVMHsrOwR/+cC3S44Zqx0WKtliHeObKZKWE14trRgoSVuJVQ/Q7/Pqt/1mZ8FBWMMYjZ1vtpgUgIjeCfMy8TmZoN0jj/85AcY+006b7Cph7lgfAcIYi0+DFhvkcqxMqKd1E2/paTMNM0KVCQdLWzlcD8M7yDuCibV07VNLxjBVZkwyTrpoJkbGALBn8vwrtrRNhVvbGDJBWs6nO04PRacl0q9mLE2Y+rpq8Fj0MPCddhBN5D3nhIMyQpLyeSYcH7AsCjdxyvqn0vE54HghJgiOSWCs5SsaGUuegA4e4OxIDaTy0mlrJiVPL7T9oO5gmmeMHnGux02W+bTSCdqvDXNB2y/Q4pQklLEcs5kKdy8uKF48KFjKgtL6hTM2G7AwLiMSJXpH/YDYTAYM3A6nei88gmnacLXg3AaJ7yx9OYO5y3LrD3ZOT3y9njS7Np15AL3pwO+v6ZkpQ31fc/xcODq6kUl/Wu1EexbxqrW7hHV7hTBZFkRbtNp7NGDxJNdwOAotgMT2F2pm+Lt3cdY03O3V1ZDOk2Eqxu67Q4hkNFJJxGL7zYcx09JxbDZXdNv9rhQ+8n5aZtH18O5X2jt/8/dm8TIlqX3fb8z3SGGzHz5xprY1VXsQeympKZleyHAFiFatgwBlBf2zrAMwdrYMAx4YVkrL7UywIVhgIABi4AhS25RsGUKMgQKBCRqQKOpbpKtbpJNFru7pldVL+eIuPeeyYvvnBuRWe9Vl+BN0bdQyPfyRWZE3DjnO9/wHzSuEYWeKQSUlcMuW0NQ0x5KlBNGr1A2kVRAZ4sOHTfnmdY8YbIj18GxSKK05XOQTNRoMjJ8SQVfa0PGSANb1l42ZNfR9CeM23NUdBAjG9sB5fmVQJRy1JJFWs1u61lZGWL6MUhMV0YYaLHqCRjURj0XBVOvT+OW+BrwS8CTEpF+Mef8C0qpU+BvAa8jjon/Sc75XMnx9AvAfwhsgb+Uc34R42e+cq4q3BVIKulwzQYFrHwgjTQDQO9ChG5noc/NSufyQs1fc1kgu92O99/7gHgV6RYnKNUSQmbZNayWLU3XSK9NR4wqWimq0BKzAJn9OBKi9L6sMcQkSt6NE8zb3g62BO18ABRPsuBySox+FH5KppQnYrNQWTqSRTblHu2D2zB5UsoCJdIGaxuUFmUZGWwgOoUl+5ozuQOwujGGbYhMSSwUTCn1xtEX/Ul5vqbpUMYRxgkfEw5NMqJ+lHXGKGE6GG3ngRnaonPEmYabm630+bqOm2HDZjNiTcN6Aefn5zJwMZar6/MC2B/3Ga/RaOVYLHu5x7qnqvuYdoHOe6fIpB2VkWScIyot7CBjiypSWYdliCNsFgdZ+rip8JIl85Lp7CzEnK1EmyRiIH4c6VonWRgyUZYsyeBa4VfHkk1lFMrIoMYYQ1KTZHZWk5UESAmpmrZfcHp6StO1HBUtzCo+4tx+OOi9L37c+0x/uVzOrYnDvmtl9NR9Vv/tlkJVSvMa2e3Ec/uDD95nnHZ4P83DxNXyPq7V3HtwQt+vCi6yJBFKlOiH84Bz9d6JoK9UWBFd9/aBYXe1fhaOv0DsEjJE6vy1xAiVZmWnpATzm6JCtYlRrWVfasEdK2cZvRdYlZbM2CqFf06FVa9Pk0kG4L/NOf+GUmoNfFMp9Q+BvwT8as75ryul/irwV4H/DvjziN/2F4B/G/ify9dPuIp/jKJMGaXnIM57hVFyp7/Ic2Lfp70kqME+SJZXkWAcRdj0uFkyTJHN6LFG0TQObQ3GCfylfjB7pksZeoSi0FOnpnr/nLXkPpxU7yFFRVBXeXLMe2XxCrpVzPS2lOQDr3COw16lLOYDAQnT0HaO6+srcXzUeu5JHh4gd1EBkqGB96VFULKLWv6nwBXm75UAACAASURBVKwnOUwCqRCOsNxXuYqggBGYlQxzCiQLhY+hbOiOFAU8bU0zs4aqjLRPHu89XdcQ815owRmxTtWqEZgRtvyv5t5p3fj1ax18ycas2p6qwGEEUJ6VQGvkM0V6l4WJpY3GaKEvhiRqPLZpyFG4+loLfdK1VjQ1U8DgQMPkpRSXwUyh35ZJdlYFPpCFZaQqZlgLMFshKkltL7CpelDWIchiIYB4W1hEh4HQGMNyuRQptbnMroFx7yZYH1+v26pPmmka+NGPfsTl5TkffvghqFQOC/l/tRxoOkdSkUePGmxzm2nWNA07FFab0nE92JOUfZ3z7ZRHKVRxAcilNZYQpIRJwtCJuUzHjVSWOWXRC9CAXZNywoeBkA0mKgHed+2sNJUudjMl93nXjw2SOef3gPfKn6+VUt8FXgF+Hvgz5WF/A/g1JEj+PPBLWe78P1dKnSilXiq/5wVPUvuGZcokPXzp0xxsqjuYlfn23n69t3/18/ub4gMil57/LtPBhEJzNcIP3jvn8sbz8qNjXNPRjSND9EL1MwayZBRSnkBKmejldDeGEjRzAXFLxmiMxZVSp/bjQLJoKbsVIST8GCQwl5PepgYf07zos1KMPuwn4aVcmKadqBUhPayUIjc311SzqIwmJU3TWBIUxoK8thTT7cDJXqKsbRpilAxlGAbhZ0dxcVS2oW0WpOxl6JQmMlZsT42YmOUyHc+CDZY+UUysj49Ivvi4qB7jJIDEkl3GGAiTp18taYzlo4vzkhH1ApDXlmmK9IsjtGoFrK07QoGGpJQRc5hMyjD5PWspTUOReBNB2mGaWC6XMkG2RX5MHVL6hL4YQpj7zhCFDpkGlJE2kR9HaFqmaYOfIs6Ih8sUk7RbbFtwpIKVTHUVK0tSGa1MgV415EIpNa7j5MED1sdHGG3p+75wzptilLYPgHKg7DPGlBKLxWIeRtVDXaBo+lZ/tx72h4EUIldXV3znO9/hrbd+H+89bedo2watHaKMnvjoow9QNvPRxXuEEHn91aUEey2V0nq9ZnexxDWCzYzJk0OQzDnJ86iY8BVupxVZGbIRIHg2imhtYbQF8IIoEbRKJKDQriFmQ3DgbMuYH3B0dMQr9445Pj2maS0PHj1guV7gnOHq6oo/+PZv8f7778O3fv+54elfqyeplHod+BrwL4DHNfDlnN9TSj0qD3sF+NHBj71dvvfiIFn2pWCm5M8hxoMMwKExM+A1lcb/viS43ZO8e1r++EvS+HEQzm8Imc2Qeee9M66vR9rG0Vgj2n5dx70H90QRp2vm5yRJC0CI/rqAZRMpxjkciyvgnp9cBzA5Z4wTX51xlDJ9dXRCCgIA1kh/Mhf+aoi1hFGMk0x5q49NKGZK1SM841HaynQVKM6hJVjWEqMMFO6UWNporO3L/cyyIbXCmoifxpKZGYzp2PmNsHWQjA4lBmSusQzDlpwSWjGX2vWQ8lMEDLZpaaq4ccpMfhTB1xBxzkLOXF9f0/eL0mYQG4ftZsc4JZpmTYih9KlhRDKDphEv6MVCQOPVtdFai1OS+Y+D5/L6itMHj5gmL06GWbNYLcsAShwE+6XYVjjXYp0qAzmN1i3K7YU0mk6jjJY1bAVGE6InZLC5yn/pot2yH35EQKsO2zihUroO3TSgDYvlmpPTU7IxonTetnjv94LFBRdqtJsV3qd8cCCk2g4SltI4jvPg8BD5UddE7aEDXF9f8r3vfY+PPvqAlANt5+h7Ae3XFpg2QBB22HYbeeedt3n50essOtGW9ENitVzzIYacpCLT2bG5vqJ1VmY3SZNVRhfXzFAqKFsppaYn6I6UxBpjNAuudmLl2x8tiEahXEe/WPHo9DH3Th/QLX+C6+trdtMOrwJTAjdllv0RbtHRup4vfRWyfTGg/FMHSaXUCvg7wH+Tc776hAn08/7hY5FKKfVXgL8CiAgnFCzknq4kL69gt7hbEjz/+Q8D5CEY+/DSpjxV1jMrhFREGbJgry6vpaH/wUfPOHv6Dl984xU+/9rLPHz4gPN4xepojT7aM1soi9CV/pbCYLTBNgbXFOZKUoxFE7IGSVMtWKMnhYC1LcZoYtKgHK6UjbtxL4FfSy3pSRlkLVe1cUPOpQVgIOfCoCksBRFMsPiwO6AUujmDOLyP1S9cKS0Qnzgxlo2gDybbu8mDbtCmTBaZ0FmCQwwJsilqPiKRk5OI1xrXoHUWMYWsaNpjrC4ujshaSCqhnSZOkbbr9+9NWW62W4KPnJzcJyM2ASlJn9YoqUr8bqJ3hu3V+TyBb9uWNHmGaaTre65vLlmvluw2G9rlkhylL7wZRpqSaYWYhZRUwNwZTVZWBl44ATFn0eYMxVUT66RU15LBO70Aa8kYYlkPrmmoKAGyBmNYrlZkoF0ssa4l5iRGZVrTlp5qDZDOtSIdt1pJkFZ2zhKfJ3lwuCdqP/zHXefn52KCZgVOJmIg1Zfn4HfhS5vMc3V9wcXFBXmdsYuGqlgF1a/GMsXIzmd0W6xRtPDW0fKelZGKwcdMSFuak44Tdw9dfKJuBsPj9ZcwRqFby/1HDzm+94DFYkVIhnffe8qzp++z3W7ZDhu2uxumENBW8eXdlgePHwlNtW25f//+C9//pwqSSnAcfwf433LOv1y+/bSW0Uqpl4APyvffBl47+PFXgXfv/s6c8y8CvwhgbXunQZFKbyJCllIpfzzOfqrr+VjKjzdpc2X3oOee3jRNpEKJIhf/Gx+Z8kjoljOY21g1q5lnbQtco+De7vh1VPhF/fP8v4aQoNGirp1CQJHxORevGMR4q/auyu+ovazKAc5KsVcSrxPsUALpXukmZzNvEGUdSuvio1JeK8Xq9KBXKbOJ2qpIM+BfO1sOnuIpLTLeiDBDnD2d9ayoJAeTyknYSUjbIlL6cTOeUYZLaf66h9hQMmGZvhomL1P3CvGyTj77aRwJHsZhNw+6FIlht8EpCH6kc/tBmAwQIZJIPqJzmq0AUqL0ALXoeBYBD9AllZKe68yKKawnijyeQYzAxPGwQIO0GGCBlJPWtDStZO9tuwCrUcVhERCvcudQoUKS9pPZ+h720J+P75nD5GaGJ/2Yy4dxPpytNcWF0pf9WX+fqNWj5fWKg+OO0C+p2gW1NRBjJCnJSzKWpB2h9FeVbSG1ZC3wte2NL/TNHtc5jF2hC7U1DJnFeoVrLYtlx/H9U07vP0YpzQcfXbHZecCjdMRY2Scy2BOhE60s1jT4cce427zw/X+a6bYC/hfguznn//Hgn/4v4D8D/nr5+n8efP+/Ukr978jA5vIT+5HyLPONri5m9bOUhYs0ZtmfWp82k3xexhtS2kOACnBdlelIVhIsrQU/jHSt4Y1XX+fBySnD1ci7lwNH6zWdO+ZG3WCMEZEJZ+ZsrWZ4WgvlrAq+ysaG3U6gKIeCqEllmsaKu16S12iUwo9yOhvX0Ot936n2MqtIxmx8pA3OtCiVhUqWwkFvF5SSjV3tWg8HG4f8+JwzzkpvUxgx8jhrOmL00lgs97hbrUghME47EWEwFqPLgGXyYiYl1BEaY6Q8pYi4ZimnG9syqb6U6dAoGMYNU9wxeg9JEQM0pkcVcL704hzeDwzjQEjjvuUwylE4bTZcX1+Xz8ixbDTTtCUON6xPTokpc3JywvX1hvX6GF8OGp3lNUerGby0QKYYUCUAivpQU0gIGm07clGEytoSskY3ZT2U+2vN3itGKS1LWIvosRy2Fms7VkenM2h85yess9imQVtDvxQh3XgTbok4i4WrIxSAvbCoPq5tUEvsuv5S/HjCcPeqU/GU4sHhK+sp52qPLHoCSXlIFpLm7OyMxnacrgXi1fc9q+WSq6srgTURaVcnjLlB9UfS214dcby4B8DTZ2c8e/89TNcKPAuLU1a0ETIku+W9s6fcv3+PL37lC0xTwGrD5uqG6fqapbWENrPd7ZjGLSoHjEoERJDFacf2esvP/szP8He//vUXvv9Pk0n+aeA/BX5LKfWt8r2/hgTHv62U+svAD4H/uPzb30fgP99HIED/+ad4jo9fqkyIK9B0BjB/cil9N0DWEuvwSuowSFYpUHENrNE5pcTjV55wenTE6dGCGBLZyLRzc7nlIz7iWK/njersntKWs5qzD5VtAc/mmTVTvaSbppmfSxvNou9F0DWMqCTy9BW6IRP9sKckHtgbHGbL9feGOApsJUcx9ro1yRYMVA2Se7ykufV7rGlK3xSMKpYPKRGjtEjaXsDfAfBxz0kXkSSZNErgtiyXC+lhMclgp7yc4+PjIs2mGL1kaDEGprDh5uqcFOR+nT+7om0WLE4EszcMA6lkeT5OZRPu2wa7q5tZK7J1hr51RXrOE/3IowenxGw4OVnz9INn9IsVXd8Sd9KXVsU1cy96a8lJoUs7JUXQVlMV4LXtSARy8igj9sLW6DlbqxJnKWcq1VMhB1zTdsVGoidmw2q1wjiBsuhxQFtD03Ul02zmNVBhL8DMtAo+vXBv3N03n9Ayu3WJp1Isz+nR2uGamr3u92TKe5Fo6wzvv/8+zrQ8urdGlyDZWiNMKURpq18tWSyOOX7whMXqiJMHjzGj5uLigg+vBh6/8nmutxua7gSSQMoaI4w25z/gT37tp3h4/5R33vkRi27J1bP32e08Jgb+8Pe+x5guefbRGSnByb37NE3Hw9N7fOWP/RR9L+2bv/d3f5nTo/UL3/+nmW7/E14MuPmzz3l8Bv7LH3/rD6+qq2hKeZ1Q5FL9JiCQkvizCCKj9t72mc9sIGUOSsaceV653XpRqfEa0HUIAk1QtDh61/LFN15h0XY0xuLGDCkQC8RgNJqrzSX6TLFarYjdBG3ZPAqUVoADxZyZqDKNBuEwZ6XJRiA0GsjTFcN2Kj1RgThp62Syp2RyTqyisyJVXz1OYkwzE0QpxcQww2Zy1rS6IRU9R608Sge6RuTBpkloftbcNl9yVpPiFkUQ4dicybFMu11ROEcRUyaFK3TOrJfVbEsmwFppmoUErjhcl9LTklRLUhplDYNtRa9FK3p/NvfawmaDGmX6OcSRHsPCGnbhQ3lMjPTdEqUyOhvEa6aFJLAlGyfpF9qebDvU8h6xtCKMi0SrBX+5DXTrU1CKm61QMpP35DxhjMYPhhwUKWayFchLTMIO8lF6lV3XkYLYjVgNWVm00UzBo7UpU/qIdqfieqgVWss9DVHTmgXatPSLU5p1w5QSrZYD7OjoZG4rGG3QPpb+t+bRo5fmz6sOADdbUbGavAyuUmkxjF6CaqMV2U9YpUjTiCpWEYcGbhXREKeRrsCGKmi8srBi8hyKUsjPKjQNKuWiYHXDh2e/xyvTUgLS+gl2uWSHwrUrttFzdPIqP/nlr9I1LTlEbs6v+PDsR4SQ6LqJNmeWjYWsC+TOUBWEHrQ/gU4t3//dt4khoOLI0ia2H77Lb37znxKGLUdn1zjj2KzvEdNI7pb87J//93j9wRH/6pv/knba8o1/9A8+MTp9Rhg3+xL6xdPoGShBhdMoNSd+AjE7mNLV67m/b4ZYSK8MhOESg2d1vOJotRYP4VhAqgphkRQwcWI/ma4ZY30PKRW7WFVPa27RwGp5a62dgeA1kzt8TH3crfeUNeSM8Df2SM+cMk2xm9jtdlKCTrGIzRZr2SwDGK32mM4X3p+De3fYRz0EJ9/97OrmqY+vOMVZabxq/xiN/CeK02TRMhQl9lGmmCEQgmQt3k+imNR18nnFQPKB5D2qXWCUYvJeBhbFsC1OY3kdmbZp0O0SNeMKBY7UOEMqthoVuxmj9B19YT/pLADmF+FyDzGlSiMwJ/kHQopUDGPN+OYMjv3hXlsdxhja1rFcrWbMnvQlWy4vL0U30x4MZWB2gKzrZ0Z+HPS76+MrVKxia/ef4b698rz9U3/u7u+9ew/kq/rYz47jyGazmWmz1nVY2yFWGRMPHjyg7zvG3cDm+prL8zOGcZrXjahZpZnbbq2gFUIIxN5zvbtgSiNdY+iN4vzpU9767vfYPTunNZpBa/RiyWa74ytfe5Of/NKX+dpPfZVv/7N/wsnxmr/xP/2vtHzy9RkJkrf5qvL14xvxeRv7kJ/6vDLjeUFgUppCHoac0TmhYuClB/d49dEjuqZl2FxL5oUq8l4C+FUaQk4QPZeXlyilePDwZBaurRAkVN0IoqVYecO1PIe9aEVKiba5/VHte4T7IBSiB6UwzqHSno3Ut22RG1MsVis2m42oy1hLWzQh0Vqa6sagjZkfH/NtULmt3OicSQiWMisZFFFky+oQrX4/5STQk1Tvt/TbhDyqCDGwaEV+KyN6oTlnjIZeZ8ZxxziO7MZBssgQiMUb+mR1b3593nvG3UDOma5tMQpRvdEaP41MpbweBw8x0C9W4l/eOClXlWAzScKC8SnP7YGcxYuo6l3WifN+0JVnVlZMklHWoOG9R5e+YmIfSKy1JVuMNMaQwojVUo0YbQp8Slwym9bOgG9Xptd17VZny3q41t+92+3mYLJer+fgVeFgxhjGceTZs2elp5g+Zq17GBwP/6/voeoX1LZVRVhUKOPtg1Tf+l49JG9ubrDW8uzZM86vPC+9+iZPz654/OiEEAK/+zvf5erqAp2h7fYMsJzl+YKvWp+KGDPX1zJkyStPoxu6JbiYMdHz6//gH6L8yIN+QRp2nN2/T8by83/x5/niF77COHje+o3f5IO33uKf/eNfQ+tE9p/cdviMBEm59pv1edCEPf3w9gd6YOWaM3fndc8rtzOy0DSRVdfitOLR8ZpX7z+kM6ByJNpGpr0p46MYYNUJY8gJPyVsaxmDZzsOrFnQOBlYyGuRQBNjpDtwqxPmwt7UqAbNcdpRRS+01kUZaMLZin/M5EKBNEajSsN+ZlFoyWonn0E5lqtuZvZ470FpMoqYRHElpdojM4XPUfUyXZmcJ5RONG0zL/YQBTg9H2AlSBorJegMaaoTzJRQ2tF2LSFnIZjkQM4jWiVaC9mPxOEGpomoE6mAz7uuvwV1ElaR4l53TPXpTikTpoFhN0nmVwY6425kebQG68jK0nYLVMlsx3EspfH+kDFWMmCbip5ikcSbSj80RgHBhxjJeSKmhHMCTavrzueMy5R7LN5J2+12HuxtpgFDi3WaRKJRDpyjcz3L5ZK+X9B07UwVPVwfq9VqDnDee7HJNf2MdaxZ2qFNbs3+vfc8e/aMR48e3Qr4+3308QrsUCRmz07at64OJ+eHjzukONbH55x5+vQpb7/9NpeXlyybeyhjWB+JzcTZsw9p+46jlYDjN5trqjyiMUbk/grZQ2sjCYCPnJyc0HWZsw/PiDGzblZcXJzx0htfwpBhu+HlRw9wxwu+9tU/gZ0y22cXdK7hV3756/zgre9xfvmMN3/yNS7f235iXPrMBElpcH86mE/9QOvJ+SLJtPp7P/bzWqNJ6KxojKUxmtOjI7rWkKcRqw0+7S00nREFZ1Ok6iOq9JUKILpkg1rr+QOeK+SDBXhYuh6+rsOhSV2UwBwwgSJNr0uZLVltLtPRmBK26VAxcnl5iXMO4xqMFRBuVkYUi0o/kyxZnlaKyp6sL6f+Xb4WTxVEuDymiDZ6n0kWbKYxtoiiCn5QaVu6I6WHaW2Bz2QMDpUNOnusyky74cAoTWBWh4fHPAzSEqw6Kxu/HjRAUQfvsCW4pBQEX4jCKYNtOuKdTR9N1Rm8y9iqEBoDRfi4rs3DDOtj5WXWHFDySTEyjjucseS2IQQRQ06Ik2QKdTimsVbPpXT9WgN4zSrr4TOO0pKwfT+jI+6W0Id9+kM2zY+77pbcd//+okHPi37/4eS9ytq1izUXl5e0bV9UxfOsh+r9KLqaVUM2F4xqSIDQlsdhP7BampZd45mmwOAVbnVCc7ojR8/jz32Ovm14cNzy9OyMN++/wrQd+OAPf8DZ0/dojeH1V1/hrT/4fU77Fw9t4DMUJGsZJzc8zwEQVfsf+z5Ixd7aOTju/62CnOt1GJTmvlCasEZzslzx6v1TFo1j2VhMTgQyPgUU0LcduZGhjXEG2zZop9ltb1iu1sKMSJFhHPEhEIrtRMp5nmjastHrB3uL5x0rpELTNIv5cbXEVlqTMWX63aDbbn5POSWUziQtajxjTKSkaRZH8rPOEXImqkxUep5+gshmqVJ6KmWwxpJLpjv4SBVMsHbP1FBGz74sfpoEulSyMx8le7V1Wo8p3OdSjkaIymCyIqmEUdLkD37L5BMpG9DSk6vX4X2qm00nMaS1yuGjIviJmA3Hp/flsQmy99x/9JBkGhrXsjg6YfQeXdR0QEq4xgmIf7cbpbQvzyXq7sMsAlt50FopxkE2cyi8b+Pa+eeG7Q1t2+CsJYw7sh+Iw4ZIwuUJpWHyG+G7dxZtOqwTm4710ZJFvxa0w0GmV9W5q9/5YdCq2eLhmqqZ/CGUayxmbn3fs9uJjuldmNzdQHirMlMiEGKt5ebmZh7iiPPJHpZ3eB3C1Nq2nYc+WmuuhoBuesYYIEeRXMuSpYcsPfYUBaqG2g8pc2YeLsaY+fDDZ6TrFRsfCCkTnUJ3DerRSxwfr5hUZBMmmpx487VX+ZW/+XWuf/AuT+6fEocbTB4Zb7bcPz7C/JGxb+B2uT3/+QWn16e9DsuEEAT8fbywLPsFrzx8yEnXYxLo7AE9e1OnacQXDJkmMU2RIXiGOPLg5Sds/cD5s49YLpfce3BMUgXbaEWNu7hOk3PClSBVe0W3xXPLAVGGSZXHnrI487XGoUoWgZJ+klZ5ZjrUW6RVlgNFFXWTUjJnMtpYmrYt5cxG3qeO0hOzVoy7ymYAsFrK+zKOkqy4BGMA18v7mKIIIle17Jo55vIexYC+mLEpR1IKpcVBDyPUOxpFuzjCGaFl1s+qwpwkixKRDq01RPme8tCvehZl01prub6+Zr1a472nX56KlUG/YvC1jyasD509XXG/nO//QQ8t7HZYG7GNKwwlNfcqQzGhSimRDzjzRM/l+aW4SutEmibGmzOICTNtsEoxJEu/XNCrDl/eqw9lyEQWu9ms53XadeL/XvuA9bmappnhYzXI1azxUNhjHEWu7/T0dB4U3oaCfXzYcvhvda0eltw1mIYQ0bpoWM6vbY+5PeypHl67HNBZOEdKpXkAGWMiJ412DeoWXre0ftCM44i1DSlJD3v74TXNek1MiW3esLx3xOOXH3B1dcbRekHft7zzz3+DX/8/vs7CWVYrzfnFuxgl8n3kiI6BrD45DH5mgmQtaeRD5zlB8lMybp7zsFoiGWM4Pj7mjZfXrBZLXAI1jXIqx0xQkVxkrBorGZRBmtS7acfDR4/ojxa89c6PeP/ZBzw6Op6VnpumKSVRpZjts1eNpsI06rSw9o7qtd0Oc0lVr5olyCYom6i+zYP3WbF41NO39OtSEvZI0zRsd8PM823bVnQeS3kcq/FUyYxCCJC4RUuUjHffYpBmvpz41jXzHIxcyyx10PfUJTOTl5gLx9utGsgeWxTeGW/IJQMZfWK7E8GJWoJKVuRIWtGuTubPlgJKb9fHAk8xE67p5HkSJKVxTYvOialkxjL1L9l19RYqw7Y5KHhmoZJqsyRtD3GjRKf5M8thYHdxRkyBRdOgs0dPO3KOqNETcibbJcErotc0ix7rFK2VDNoWnG3b97z99ttSTi6XXFxcsFwu5xbMbrcjpcR2u2W5XM73oAbKOpippfq9e/dwzomX9h2ygPTwX3wppWa0Qa1y5lZX/jges2b9wJzV1uepa2+TPKtlR2MbVIzEccCnjM5OZAWzw6phfp0plXtfvMe7ThhOIQTUaRBgfwg86Fd0TrPYnfNk5fj+d77Jd3/72zxURxyPAxqFN+DViA8elxU2K5qs8AesuOddn6kgWSFAtybd/7qZ5J0geVhq933P/fv3aZwQ4KS7xx4KkhTJ1CwuFPBxYpo8R0dH80TxnXfewRsBx/Z9PwtXyGYuSip6X87EEOfSCPY2t3VDyoCj2TMlylVP5boQq3jD/n7Nf+MQESA2EaX/iCaExDQFUsqlt7eHtNTNBczZyezmmG/3s+rrldeybx/U13i4QQ7vff1M1dz8LErlRW8ypkCKiVaZPbwjZrpuQdv2B88nXtXCjKr9Qk2OgWkKNE1DjKGoDokhW1KhkoNmEHaYJkIjGbr0vvYHqYiCHL7XAvHKVcE+F5tfyCVrl6xyZJwGog/YFLAkchJHPnIkBo8yS3LwxORFVNnsaaL19c2q88AwDHOpWr9XMzSv/bxG6s8eDkvq/a8HzF2ywI+76md2OMQ5/P5hsL29DvezgnrVQ8d7j+4Wc1tDJU+KcWZzKWOJSR+sbQGK1feplJlhbcYYUqtIPtC0jmXXsHv2IafHC3YffMD3v/EvWBsYNp7TkxUfXJ2hl5bje0ecn31EjgKdy1H0Kz+pb/uZCZJVrksqAIW8NCk/pHitCuDME2yd5e/6oCd5ZRRxmnDW0miF8hPrtme9WPDqk5dYrZYkJ742qIlsJmKuklgiSpGTos0tfe94/+xdnnzhBLWEb/zWNzh7dk3c9dw/epXjB0tcI969EgwUrbWYnAlBbFJ1EefIURGTMCbQjWAtI1Cn2a4jKlWk+PeSaCCDphgjJu2DUf13WbS3swlbJvPCrdaQLNMw0TQ9RjkUirEINIj3tUBPcqiyXyI+nJsrkpIFqa1hmDwC4gftFkW0AnyRbEtztmXmyXQtwWKlZhoxlALAijRYyIGYPNNuW5r8I21nuX//PtMkAxbrevAZN12wGTYYrZh8FLtYH6TnaHrOnz3jtdde4+ajjzDOMuxGlut75CmQY+Ly7ILWKkYz0Sx7lNFsdxcsFh0xbIgh0LgVzjqCV2zyTrJz7YhJMSKMzGHY0JBwRpODJg4BNW1RMTDkACqWvp1hi0I3FmfOMLZHa0PKklkFDNsxYNLIqlujhjMsW0y2JD/SdyvJNF3PdjsweIrZm0jPVbWpcRyKdNsen2uM6HIaY2b5NNlriOnwagAAIABJREFUB5PsLOZg1f9FqMGgbWF2hUtiGoXdlCQLq5TWmljUJCTWHqm1EGPBm2ZCkKFj0/b0qiX7XIY2jpz3JAZiwqZAiNV2OJe97xmnyGKxIvkJa6V1tWXBcR/prcYMV7C94Nd+9f8mTiO91cQxoJawjdesljIbmM4uWOsGHz1RZ5JR7KY/ItPtH3cJx1qujNAKEwUEfkvuJLFcLFApo1JkdXTEq4+esOo7eteIm18o6sclKquUSDoWJSAxbtKLkash8dobr+L6I77xrW/x9g83eO95cNJx/2Em+ETjtCj7FKvWu5PFkASYnIu/RjQZjHhz2EZhFWSliKLIuocAqb3QBmRheoj+PNqVgUlKM287VnyfdYLjVBp0ZpoC47ih6Tsa182N/CkFdruRk/URKCXBpO/nTEam0h3kwvRQDq2rt46d59sAMYQ5E4OispPSrf8VaYarNI1ln2Xu2RpNuySkLJCQdc84bYmTR2G4ubhkmgJmup4HSRdXN4SQpJR28OF776KN4eriI64vPqLtFrh+hR83KOuYdluCn+htQ/AjynuRccu5TMv3qyjniNYOm7NgSRGbYasgGYXJIhcXSIypTuDLqY3AmPawr0r/nNBWvFxUacEs+0Wxj7AkH7jajTTdupTNiikILnCx1GJMFiLaOoZhEMJDyRYP/dyhHprMfwZuZZn1MsbMPVDJOCsnfC/ycjdzrBlv/Zm5AjoY2Ih/e7V22Ps61ec/rJgOy3gJjjWTrEw82VtT0f/0PrLZjtimZ3G0QPkd3/6Nb/Du7/0rVo1msVgQxomm7RmKtazchz09WGszF6nVv/1F1x+ZIMlBkETmG4iU+23geWsFjEoMdK7h9PiEo6MVnWvIPshwI6p5MqeSDDtUzhinqWJAm/Ej3vziT9O0R/zGt/+At39wRQ4drW1YrjrW68DRvVOZPFqRq7K2QSGlppSr4uMBIv+fk0hmtW1HVWCXheRJphfXOSPBVOTJygBGSzZ6yM6Yp853yh4RLajiAzXLGFkt9+2CnIVpJIF4v3gSck7IdNGgCrVSMj8lr1n88+Q5035wcAg1qX3NelB474vkW91YlMwjz20Kay06OBasRFVJiThGjgFNZtreME2ePAkw2eZG8I5JCTg9BXabS46P7jHsNuToIUeMyvgw4QAfJlSOGC1Y2FxENqwz80Y+bB9oAzoUUHyOaDRGJXkfJPEuT2ImlZJM7TWCbiia0WKjW3CoqSgGSRs1kfw++0dHUvRsdpO0PbRw3mMqqgVZMY37gd/hva3rqE7AoQbG222Quz3E+r369bC8vsuyqmvs7iR8f6irstb3gbS2CJ43MX8eDG6GX+X6e/Ytqn0rQQRwtAaTPQ2Bs4tnvPvDt1h2HbaIjEQyy65j3O5fk5TvuQwI92youQR6wfVHJkiq4pkrehe6DDEEUkKRc4eMiQmroV+u+Pxrr3K06GmUIRcDdckCpNy2SqiJCmgaS8yB0Q8oa3jzT7zJxcUl3/+t7/HDH46EXcP6aMnxScNPvKp5/MSidEPXr3n4+BU+/8ZPQo48ff9HsgB0RqcsGWqUDZOy9KfG7a68F4uxTQECe6GtI8yYZAQCpG2DSgqlDc2hopwSK89UAMzM7Bdhvov9ahm+GIHr+BiJSbKDaOTEHaZEl6FpOrzPon6eZCCTYoGdJKEz+ikWMYq9RQRIr3Sa5HDQWnzKb25u5o02TZNYqwLOTXRdU0DWHVDFlTPKLlj0hhxHLs/eZ9ptyX4gxcDls49ojGW7vaHvl0xqBzngrAMmkg/0jaaxsTheKjoHyW9BWVIOpGlHYxI57LBN8XePnn61Zhx3LLqebRpEOzNFsUPVAR0jU/DErEiTWF/oHOh0oanmgM8esT8WlEEugTEnUdcmG5xboHAkD+N2RLHl+vyCpl3h2iVtFxmiQasWP2W6xtA4MfpKQQSce9cIM2XZy1BIaUKIDMOW5bInRl+GhBlj9rTXGmTu9gv3QHERg764uODq6oq2c6XdMX0Mb1mDZ6WiHk7Y6+/cw9n2Vho5Z2LJQO8qUME+EFpTy3Q5wI0ysxr6ZrMp7qA9p1rxj3/1V3j7Rz/gycma6eoKXw78pun48PyKtu1uH+C1gkk1kIMy/z8JkmQrWWBmxk5mrVBkaagrAMVSW155+QnHx8d0xomhffI4bVj0csMM4olhtdAOBaPpmfzI0b0THjx6yO/8wVO+9S9/EzFkNzx86YhXXznl3ukRx0eWzsFLn/sir7/+E3zxC28Sxw27zSVVa1FrUFahoyZMCVKaMzatIKTMMNyAlp5f05+itcd7J2Bs7ejXJ5LNIYZjSYc5e5AFJQBrZRooIhSyUA1TUTVPaLrVET7DMIrE/RgTVrVcnO1YHy1RpsPHJKIEqphTocjTbX1CP5XBVhIZtnoFP81lvDx24vr6pizWBu89u81WhmeLdt40V1dXOOfoF+IgadoVFxfPyMmTMWy3W1atIU+BRmdO1gusFQD1brdj2e2V3qdp5KVH95imgNOK7eDRObEbblgcnbDb3RD8iFGJYbOls2tUmoh+h9VrxghOO4iDlNEhEI1nsZI1NsaJ4DNhlIzN5EhKEyoG4jii28IKmlVxpOeLCmRErzMEcGhyEX02iMhEGLaYnBjTxJS7WxTDCsKexhGDmifdIU5c30wsFgsR/AgjSufSW5ShldaOw0zykPddrwrxqRPo8/NzPvjgAx4+us9rr7323LK5VjKH0KDKyILnkyb2Zfp+8FKzysPnEJpomIN7KqIqi8WKzeYaaw19LyiMb/76P+Lqw3d46d6Km/NnOKVoXMNumORAd44Yc+Hkp7I2IQS/bykZI62uT7g+M0Hy8JRCfRzFH3Px/lUKsaCMECJaZ5QVK8/FYsEbD1/l6OiIlAP4gCk/Jxa0e4hHSpGmE4FblOb6+oKf/pk/ydNnZ3z7t3+H3/1BZhp7nIs8fgJf/NKatslYM5Hymq9+9c/ylX/zq4LfU0kERjGzfaxWiaQSMU9o42TRFoiMjyO77chunDg6OkHlxM3VM2LMuHYByrA+ecgwTJgoAyxlFFrtDjCfgjPLWXyf/awnqYtIGcSkypBAcbMRzNw0RmLS6Cyq2kp1DKOc+tYowWqqRPIBYxwpiQOkbJIoTfhctSrL5jpofFcmTGWBVKyjjJgVwSeur69LhqHpOvmcm6YhhYRrl6jsmYaR0/uPCLtrlEsc339AmgKLo2NAVLtzltey2+3o+obL82czVtBay27aATIx3263pRURiURijtxcndM00t8TnOhU1qDcwclvsZO8j8Y6GYZZoNxnrc088IghkKJoYaoSjHJhLWUlUmvatGRTrH1VJviB66szFouOHDusb2kXp/jrM+kVak3TdIzDJKD3GBmnLVYbmqUrTpeBaRqwtlQjFdqjBCfpnOPq6orlcjnfg8PgVe0cKkTn/fff5wtf+AIn944EsrPZ3EI11L5iDXL1wBaExh78X3HBdapdA6sr1gz191Re92FZHeJEDJkQMtYsUGiGnScEOFkvmaaBm80VF2fyeU/jSN80pcLJ0hPPBornVG0J3Crp1R5Er26Hmo9dn5kg+eMu8dNASpmcIWWZfuWAy5oHx8ccHx9zfHQkj/UJdCbFLMMOxBhLKUVUMi1PSrPZbTFGcf/xSyyOTvj9b36Lt999H8UrKGVoW83pvY6uV2gVSTHwuTfe4Mtf+VMsVg5rLX7aCiTkoN+iC50v6SJzNsNygngAJ4/V+xN5miLb3cgiK4xtmaYJZwJZBRIWTcCYTD5QZJmtQ4GxfL/rOoJPhAQYTUgSUFOUsjjkRFIKHxUqGULIs3K4Aoh1JCMDmhilnJTFxRwgD0uw4A82UKpwpNL/yiLym9lnwSFIIBbO8URte9luWXpSGWvEBlch7pLTuCNFRTNPaBPJqzLFT8S8BztLMBFWTLdaMwWPMkWkw2hMdihElFahyTGRYkZjiD6hUbSuYTds8F76V8oYUWAvk1cm8cqpG7NmVCmJF7mIMoj6tXNFvZw03z9iIBuDH7eMwwZxBQ2CsIgj0YoVsEGqpzBVbx13q08oiknhVj9R7s+BIMdBtncbOnabp13pnrWM1lrfAoUf9i8Pf9ccbPhkiuJduNNhQD98XCwQK61cUaG3jOMOhcZox/nNR1xeXbI+PsHvtsTiurkoB21MkRCrapgczkrVGFLFp+vcViB/n3R9ZoPkLaxkmQrXZrnOCaeFpuZM4tVHj3jpyQMpJyYp+3KOWKWxzmLUvo+iVWbIAe00z67OeXh6j5dffpnTh4/427/897i42aHNAu/f443XH/HKyw959KgjxC3r44e8/Nob/Ds/+x+xXD9i8DeQYDcEJh+LjaUVJbaITPuyYaieeDmL83xhYU9hYtzVZnpm2F0BiHk6irVqsEp6gCkkctrMp7iIYgSatudms+PmZiOOdEcnjNOWKcigaLfbzbSuecMkBTFKH1AVXcAcSa0hJ8mmrIJU4CWZvaGUsHiiHDKzR/q+DDs8sWGPCY0BQDCnlatbJ54VPpXClkVnywIW0d+oOzww5UR3fIwu/aPoRzkMckC5hhwmoQmWYBmzWJIt1sdsxgllOzlgrYXowVkaFSAbYggMg8ca2G63pCRmV01j2E0R4xRtY4WHTSkVY2QMIqyhdEQFL1C0LOUcWRrRyiTxjDaZhCPFkTAFQmMlMAbN7uYZfnLlfrzHrim4225NvzxCmZbNZsv9R6+QVEAbW5TBFdvtdjY6OxRPFkSBnZWmKhzoUKSiAs5rtjdNUr7X8rf+zOH0GfhYRlavu4MdWXtmbrlM08Si7+cgO/cgK8utTM0rSaFtFkRvub4aMMbiGsvTp88IMXD/9DH9YkmMmauzZ+QIk59IoYptWLSyJL0P5qrswcMpe85g0h8RMPnd626QzCqTSGgyzmk6ZWhtw5c+/xrHi44UPH63w/W1ea2FFwrMJ3j0xJwJRPww8OjJQ15//XWG3cTf/FtfZxtg6xU6ab72M0sePzihtY7dtebzn/u3+DN/7t/n4UuPGfTEYD8ijmLTqYzFNi1kz64GiEK5UirjjClCqdI3tFqTSu+lTifHsMGZTIgDUwzgem621zRZzOlDUqS8KzAazTCJZ8uHz873bolZ8dHZBTkrtsNUFnimcXo+netGSmOkbRog0Fg5aXfbAT/tQCVhEKUR19TppeDdlK7FfJozwCr4WwOk1ocbKWMtBC2HV0oVqpKYxppdCuvpqD9m0mCtQhsLxpBCIFvN4t6xNPvjDUDBRTpsjOQ4EsYRoyp1MLA47tDGkbSl1UKBFK/sBDmx84GcdhjTMI0wDR7dOpyxTCmQgqfpHTo5shJjNm0spnVYpWn7LHAyP7LNGesU47QhZ5FhS7laEQVC3JKyxTYLYkpEH/Bhh9IRPyq224Se5D4bP8iwTltMu2RY3yfrhmR6YhzZDoF+uSCFCGQ2m5sC/zFzC6RpmiJ6LG2BSjetBIDDjK4Gw/r91Wo194xrCX4Y/A4D8V10hT4oYWFPhqjZbm3B3BXwOCRXgOBAY8hcX22JvpmD5jRGLi9vsC5y715L3zY8fPlzxARPLy6wKdCUHr/WpqAvinh3iQPy572imHx9sUAOfIaD5MevPWZKqYw1hkcP7nN8dMRwdcmis3TLBRdTIM6A1z25npyJRcdQWcBoHj56xNXlDd/5znfYTZ4hwHp9n+N791ivn9J3GpLi9OQhf+rf+NM8OH2VGCLdSc/AtQSbgz5MSLeb4jP7+QDyIIMi+ZBmUYacxbejEYGJKQTUMGC6gA5BoCrJkIm3ekFAgfRIH6ZmFs61czZQ7QUqB7aCvodhgtJnJOky5Q8zW0brQE4UOI5kv4fCBkp0z9izaPbXXXjHIZREzRQwPZdgd2ElahbkyGjrsFrR9TKwyKFAXBSCZ9UZrVtyihilMaXBZJsV2hqud2PpCwoUa14LIRDDhHOaGPfQGGutDFpUYdoUoYv6nFqJEpOuFNJUYE3qADyvJAveZzD61i2q/d2cI96PuOBkI1ogjPJvyhSw/0DAYzsrbpXTKNYO+bA03cNtaiD03qOVn4c1hwOcw3tdy+aUpLd7fX0tQVVJ6+ZupniIh62Z4IuumiFWDnnXdZBvr4+7ATLnjA+eaQzstomuaVktRYvUB+l939zccH7uoG3p+gXr9TE3qzXT9dW+1ZXlQBZng9omqMH+8HPIONu88D3Uj+UzcEUSN2TVoHLBEGqNUlLWTXHEdR153KFJPDlZ8/qThxgUw/WGpDquBrFECI2lbw2WhI47lhp2uxFnG8akub7Z8ebn1ixPXuG7P3yXb3//D8lKsw2el1YtP/PmEfePOsLJl3Cu5fT+Q37uP/gLnN5/ichIzJppZ4n5Hq6JxDiR05YUz9H+BpNvZPBhxPxoioHR3uBzFEfE4AlGRGWjHlFCDmZKE9vtjfiixEgKnjgJ3zRER2DJwqwgG7yH3cYT4sRmc8PJvRXj9ooRcM6yvRpIUdOaVnxZoiFMAzGKjmJjFbkLxLQDtSRi8aEuZhFtTb5FTTeMU51qKtrOoaJs8LZrREItJkxqxb42+QJgTaUsLkFYJbTuhKYXxDVRk4gI9dG0S0zj8EbjsaSsSdmiMBjrMCSC94IO6Iu+YzQY1whqwIvjonMORWLcbrkZFdonVLIwDbgcS2AM5AjJg0uOOE0sV2sa7Ul5wLWd0A5RWLfA+gGUwumptHsgK40ygeggKkvwDfhA7juoiuRZVNWlbGzRShHSDda2pTLI4DPZKDY3u9IzjTTKYOwEBqzyDJeXaNvR5Ymrdy19/wAdPXSQnEK7TNQZ1WiUdljt0Nly9v4zTDfOga4O9Wr/cg5SNhHTwNXVFe+88w6oTC594JwF2qWtfM4hTaDzjDCAfcCVTLKsA31bvFeRaZsOssW5wDRtcU2PCMoYgofz8xtCiMSYGVaPSB3062NUXtK4FSlMMDwj+g8xqmFzuWNY7Fh1LevXXuN6HPngD98iDTtMSLQ5oVPCOxnWNcrQKvFSCiozkQlkJhKLH2OG9hkJkgAKnSknvqh+pBgwRtM7y3BzwStPHnF6csTjdU+edhhlSDmiUPTOoazFK0VTYLsqCzWq6xqGaeTs4oov/rGfYvDXfP+73+X3fvADElJyfP7lV/jjX/4iR32HRrFcrvi5n/tzPHzymNX6HlEZUtpP4FLFXaY9PGKW6b/DbFBZ40xLyIHJB1TWGKXpGukZhRhoTMOQLUY73EIzTJndzQ6bBsGCmpaQNkxjYhi2hODRJhH9hjBpYkglKxBTqsYtSdmTk8X7sUylpf/jrEF3uZRhmmkKAm6O0LYdXSf9rXGQUlmGMJEYKSK0ieBjMYPSxJwxaIxpUToT04iiKcFSRFOdtqikSCRUFo9znSKpZNekTAoBP44EJc6IKlnpUWogOWICpY5IWloXGkgpMvgdLhviEPA+MW4jyoyk0oNSRKZhICaB63g/kmKkXXRYJYo61rmZ/52Q4GCMobfCHVeqOGnmUmaXjKX23GLyxDQJtrVYAtsimJxzZhwDTb+Q9aIUsSAGjDcENDqLsVjKSXC1KeOVKKyrEMjZ4b0R/x7jWOgjXKeZBsksawB02rHdbnn69Cmvf+En0VoC2nYrWdhdvrg2+0B37949nj17JvejSKPtdruZdpqzlL1aG5xrbg2Fbu3kg99fS2ooRIekaJsVWWmM63j77Y8YpsjJ/cf0i0bWrhZCw6o9Jk7yuWoFF2eltWQFe/nB+++x6zteevyQn3j981gylx+8j99uRR5PWSakxaVQhJn9Je6kUvILe+uTrk9jKfsa8EvAE6Tm/cWc8y8opf4H4L8APiwP/Ws5579ffua/B/4ywk7/r3PO/8+PeRZh1CjQldCeEikOeB9oGscf//LrvPTgIdYopptLWmtlwl0A4VYnNAEbpGwkJ3wc0Fbx/rNnLFZrXn79ZX747lv89vd/n2F3w7IzHDXw+NXHvPnma9jW4ZueVz73Jj/77/4cJ/fE2lLEEqoohJI0fmas3AbrijDv3utFKYWz3TwF1trOjfXgU/F5EcvW1nUkH1AGkk9olcgxlSwtE/KGaZq4ur4o2Zmogk9+wziKlL9rLE1XAiYWRYefFI1r94OVGLFW0XWWYRjouwWL3skQQlVnxcRieX92xau9RqUUk78hTQqUlPikSJ4CShf8qbUCptd7+Sydp8JLZ7bx1UWFKOcMIaOcLjAthJ9vtTgWGtBaoVImR2lRkDKxUOgsijBNXJ6dz2Xddnc2l6Kds2yuxWqDGCBGWiu+OSLjZjBKMfhAVkKrRBmGcWS56om1VE0Zo1UZyCGuikDbNMQc8H4oeMEgATxGoXWa0k7IkeizcJuNCO9u4jWr1YKkDHGaMLqTwG5AJ4HDtbYF5YnpUlALuiH4Bj85UqjDGC1OkFlzs93SVDm7aaJtW3a73TyUuTVlLsiFir+sFhJVaWi73d7KDGU/5FmT9NbwLc4x41Ypf1iSJ6+xbUNImuE6cLnxPHnlDU7uP0HpBqUNJ1qx3e4YNp7NxQ276ytSnLg6P8NPO7bpklVasF4sUSlyfbXhpUenfPGnf5r3fnjMxeUZT995m6urq7IWNcY2qJhRMRUdVUmkDIoY/r9Pt8P/S92bxGqypvldv3eK6ZvOkCczb+adh5qrugsPtNXGmMEzktuALFjAgoVZwAKJHVvLOzBLJCOWIIQESAixwEggBnXjNtXY7WpT3W1XVd+6dYfMPMM3xfBOLJ6IOF/mrbrdIFu6DukohzPHF/HE8/yf/wD8+znn7ymlVsD/pZT6m+P7/uOc83/4UrlT6hvAvwZ8E3gC/E9Kqa/k/DNCgF86RsxqEtrr0efaaK4eXPDGo4dYDdEPWK1xRuP7AW3AjDdqShGT9dzdhRjkwnYWVzmO3YEf/t4P6WLElCXGRJ68dsWjh5eUhUFVjq9849u8+c4HrNbnxCRjiqsKhvaILQuxc8vT0/cEzI4SaPWzJFeaMTMmjBEGMHZOUVxI4hh9gMHHXgrplLGSo1CJcqTtd7KMSZ6yLDBWuIZKScEQ+yozFiqNtY6hyxgz4WWjrFHJBjmlMFu8ja/dS92BtW7Ga6aAsxACRdHMeeE5ZzCBEL3I9KQWIAJGBXqUNCaJwM1xFN0rsNaNz0e5DCfNumDP8ndxPhJMNCUJAstxVLrEQWCJ/sj29k5Cw1D0rScrodmQA2SFGjOjjTW40Z5MW/HTjCGL9HMshrZwlMrM50HNBeIeV1Zq9IgfH4zhxHxERtY83nyR0zz2mKLcnEoRMzMNTIdMVFE6bc249FOIZt8LuT+D9RZyYOj2Y2rlWOx8lDA0rcekxDRvrqfX7ZTvOF+bJ/93OBxmFyZ5/e+9KeHl0fr0768er378Ke6sRx/RhKH3gdXyjOXqjGZxJg9M5Qj7LbELHO8O9MeeMAhzwEmuMdYuOducQW7Z77cCo2RF3VQsLy7AGboQSaNpi2872pQosmRU6QQ6i5GyGrX3X3T8QSJlPwY+Hv++U0r9feDpF3zKXwT+y5xzD/xQKfW7wB8FfvXnfw9FYUtSCqTYg8o4BbZUPHr0mG9/8+tUuWXoe7wWc4oQJEY1jYaqKQyQEg4n4YBAyuK8c/XaE55fP+Mf/viH8mRUNa4s+eD9J7z55BKjoKwr/tAf/+O8/61fwpUNWi3kRbXimmyLipwle9gVBmcMu11LjLJAMUa4dDGcuHkrGQuGoaPrOmL0GCNWZVNx7ftuxH4GyrKgLmTZpFPGdwe0W2Nx9ENku/tUTDRIOGs5OzsjJnHStlphXMFqucLVDVW5IoRMe+hQOKqqoa5rrq+vefz4MW23ZRgG6rrGaDtvyA+HA4eDyCbdwuGU/G4pZLqRlH15eYlW9x1xUWVub2+p6gXOGSZ3dXlQDQw+YZXI9KJXOKUwpsCHRLlY4LMeEwvL0WWmQGktXE4LKsv43bURqzqhICXPcf+Cw35LCh3d4YBVBlxJaSuC98QUWCxqfD/QLCTuIMfAYlmTQiSNQVnGlfhhwDpHGreeriopkeRFY+T19kNEjTpWLdRXER/OE4VgasYKpUmWYOI+bo2FHNFkMdfIIj+t6xWKMdmxNBRGIpVTTIQ+QECC6AqRufYaYrJoJVSaenOFtaUQx21NUYjhiavcvNzz3rNYLGYmxekxFcS2bbm7u5uXLNP76rpmN3SkGAl+DDcDyXJnkrpNfgOvqmvCrIia1C1a1ez3B/oQiFnz9Ok7XFw9Ieuavvf85KNPyLsbQkjs7vYCJ+SEzwOKjO+HkTifWDU17eEIWZOyQrmCcrXGLZZsHj7i9vYW33b89Ccfcbi7IwyBHDzWiNluYS2E+wXTzzv+P2GSSqm3ge8C/yfwy8C/q5T6N4G/jXSbN0gB/bWTT/sJX1xU0UoTvNBFCqtQRB49uOA73/4mq8VSZFfbLVkpjFIUZT2SnDWBhM0ZawtyjiSf2Xc9MSWq9RpXGX79N/4uXXckZeEAfvXdt3n8+CF1bciFo1ws+Of+xT/D177zhzm2kJQiapjUFHl6y6MyJEthmnleRUHGimXW+DtNW0DvA9F35DigR78ipccRNfao7MeeK4rlf/KQM4UrySkR+z1933N3iMTYYvS4UcyJFAN+GNAo6rLBWktTLXDNUrDL1mOto6lXVGVJ37e8/voTXlw/J6WBGHuMqajrgjJZlDJ4b7F2TO3TDsgokymdI6TAo9ceUTi5KZWRxfZn1y+kG7WGIWVcUZ6MdYbD9pa6sOy2t4TuyKI2aJ2om4rYg3IW60q6ZFg0sslsfYtP0AcPZJzVVM2aSgvGejgcyCZTrhyEhHURp0qsLaQD9sVMrh/ckaqUjnhoj8Iz9EnGaMBoNeJSI+NgwtOMHlUtCaM05bIeH3ZjpOuIOXpjSPWCrj/ilXT98hC5N5yIMaHjgNIFxoi2XwG7u1uKusIYRVnUxNCBHrtIo2VyHBHxAAAgAElEQVSDj0ZlRQqRoDpyNER1wGtL4eVrFo3Qi7quQxlYlouZqXAazPZqQZiKWM6ZBw8ejHlBxcyUGIaBJKra+Q3EoGNqAqRAvqwLP/W/PKUbpRzxSXN+foEyjhg8v/1b3+fYBYbec+x67CD3Vo6jDjxHIf7rIA/QmIm9Io2w0kR1a4+e9Znwpe/u7nj05AwdEq89fYvQD3zy8Ye0hyO7F8/YfvaMvu8plWSqf9HxBy6SSqkl8F8D/17OeauU+k+AvzrWj78K/EfAv8U9ufH0+NxPoZT6K8BfAdDKUpY1fX/Hg6tzzjcNX/vK2+ic6Y93FMZhnAEllvvdIAJ+2cMZGUmzuKUcgydbhy1LtkPgRz/8Ift9i7Eaqyxf+eAd3nzjKaYsibbgj/+pP8vb73/AcrXh0Evxqpwh6e7lkWK0jgoh0LbCOxOT2iTOI8nKwiG+rPzw3hP8nih5qwTvR9VJou/3s7OLGnHPlMUWv3QFhEyXO1Lw6CzyQFMpztbCGQy9J/ow2o8J2F4XFe2QiUFyc1IQmokxivVmyf5wQ1GC0paiamjqEmshJUV7bAlRQrXqpsAZRVWKNvj2dktZFRgb0SZSN8XMx+tSxWKxEBaBc9SLBpBteX8YePzkKbe3t9gqszm/onQK7wcOxz1NWUN2+KAYukBWBW3b0g8HrAFrMjF6nIH1ZsmmMCjVUDWGsq4ge2I4kH3AUgkOmhS9F1dwZy0+BoYISmeGJFrePka6QTJbqmYBSvBd2VxPblDSJcYYCDFRVY08/MZrT430KJ1FdigmzYGu76jrYr4RjLaQFCn24j6UBd9MKkgGeRaVT4gjvhjGopIsOirQGi1MLencjCKwI2VN0VyiTWToA8YVTMFpwCz5Oz8/f4ludXr0fU/f9zx79mzGGqdiN/ErvY94P3bJZiT+J8GJBccWL9Z4MrZODUTO9/r9siwJZsX51YLbmzu2Nzc8++QZShk0Y2JlhuhFJqqVEO598OSYMDbjtMMPHS2B9cailJZFXEhsNmf8/d/6wSxDraqKdbNAWUXVVDx6/S0UCX98youf/pTtzTXXH3+MGv4RkMmVUg4pkP95zvm/GU/Cpyfv/0+B/37850+AN04+/XXgp69+zZzz3wD+BoC1dY4xU1rD668/4dHVBc5pCB6M4DIY6VJiVoSciCMumJEL24de5GVkyuWSpDQf/eRjdsejuOSEzPn5itdff4PsO/Zty9f+yB/jrfe/RrO5IGRFqRWFDugUCWqSNAGM7sUpEeKoSLEWZYzI0EJ8yeL+VXkYiIQypUyOadyKy5Ijj0R34SRqLEJCNlrGNpMUJmWckw6vaZqxu8mzkqIoqtkdXWuLpcAa2ZRrPGUp8ax1XXK3fUHT1Az+KG4qlXRDMWR86EYlzUBKJboqyEZctSNeFi26GIsDdL6j7/vZ0Xy2sDqxcrPW0jQNxy5gXMlmUUHshCxtHdVyRRzljHUleGpoezEmzkFuECQEShmHD4jm21Uyoudh1KsHjCpGKWUgqRaU6NZDFD9IEvgkgOgU5jXbo2ktKZhIgUxJfCSLWSt/L/9TanSTGceLWT0yQhCvEq2lWEzb3SyWfVYwUusmJ51MDhFbGSnUaLQpwUqgm8KikuCySsnCJYUAMY22bFMG+DBGPHjq4mLGxycC+P01yTwCT93lFBR2yqm8l5KG+f9OlzU/D38ExkA12f5/+OGH4oF5+Q77xYLd3ZbgI1VdENoeRRDXqmEQPFkpkvKCSecosR9ZHk5ptJo7xUa99/w/v/UDfu1Xf1UWmLakrmsWZcXZxYaHTx+x3CywxmKXS84uLrBasb+9IfjwBdXvD7bdVsB/Bvz9nPNfP/n/10a8EuAvAX9v/Pt/B/wXSqm/jixuPgD+1u/3fVaLJV//2tc43xiC7xlUxvcdKmc8BpsHupAIUdEFQ1YFMQo2khL0vSd6j65Lnn/yKdfbLbvOgy5YNDWrZcOf+GN/iOw7npxf8v43vsNXfulPMtQX9Fiss0Tfk32HIpJcnH0T1WgyOYHadb2ApPBZimJ/PDIc9qT2QPT+JCJVjqoqZsVLzh0mSteiteBK3nv6Yy+cQDddhFBYTRgyXieMNRhdoZTmeGypqorz80tSSrKRdPeql6wKnK3pRwMNCSDL3Ny+4Ox8hRDBLU1T45xiu90zDAOr9WI2cq3rGlTg5uYzQLNcCZZElyhLhysqDsdbdrs9l4+v2O/3nF2cz56Gt3dC7D27vKDzA5uLB5AiOg/sdx0+JFZnF6JmyRntLIWu2O3uOPYDF5sNrhDupTZQGFBWUeqVLKv0gEoRpQacdqQcUNERU2LwXojfWktGeso0pRir9n1PGIvlYrkWBVNVydgWE8a6uSDEGHGj1dYkqyuLgjgKAPK43JniP5xzaFWCivTtjpwmSpgQmJ01HNtB6FOYEXudiqnc8P3Qok2JNU6mg2opiyEMbdfhg2SAZxvJ+PtinPWY9X1Aa81yuaYu1kIzGp3Jgc8tYpyz8+v94sULVqvVTEaftuOTNPF0Wz1Znb1K95necs40jUQ13N7e8pu/+ZsURcFnv/UT3nz6lNceP6YqSp6/+IzKOLIfUBkqrRmUUMQgUrgCVRiBrQZPZIqYTfT+Pn9nvz/yd773G/yD3/4HQlofTaibekkkcPHwkm9/91tsNiseXKzZPLhgvVmSU+B3v/eDL6xNf5BO8peBfwP4TaXU/z3+338A/OtKqV9E2q0fAf/2eOK/r5T6r4DfQjbj/87vt9kubOIXvr5ivZbYA6US+6O4B8t2L5JyQySidMK6gB/uKKzCtx3HIUqWsU386Bq63Q2EDhsPvPvGazx9/TUuHjzguL/h9bfe4g//2b/Mo0ePAFhriLEnDzJaZFvggdzvcE5C6vs+MPSJsmxoKqHH9H2HDgf0cCQdP4XuGSq02LwbKTsSKuGqEh89hEAOgeV6RTHIpncYBspGNpBdP7q2aIk6TVkTk4wTKid8e0RXHd0xo21BUWzYbiNFUVLWK6wu8ENktzuwunCk1JJywpUlWnt2ux1FOaXtVRibKUsnY5oxktdTLYAxNiJrDodMVVzOLjHLRTl2H048IouCh4+uiCHSFKVwVZXibrul0FDXFYSB0HXSoWvNsT2Ss2exFhcfRaKxFnE0akl+z9X5SjbVqsGW1dzt3NzcUG/2Qh5yjkyFD4p+f8SmhPZbVEgUOaHKhDjkBBaLUrbJIY+vKWyqGuwYHIYl60wYdiIv7KUDCv7AUUUZI21myB0pW0xh6dqWMIZhJRcwoSE6uQ5DaomFI4dy3Gw3gCLqW7BKtPBOkXWkjwMaiVX1MZPyAqccUWnwmUWRUCpjVMQo8axUWRH0JVW1YbW8wJoGdEmhFcvzhqg9mcD+rptdyydaz2mBVEoyYrRSdIfjvJRrO3EAv9ltGVLE2QKtIkYngQ6yIo6WZ9rIllQ65XEvkFu0FbVXdxzY7wOac1RquKh72ttrdiqyTYEHF2uO/R5dWdCKLkfUINPUMASJU8mQciIZZJJzkUCkP9QsFxdotSfHgW9+4wOq0nLz4prrF3ccjx3Z9MQ48OPf+R20Drz3wbusFgVlIV6ty0eXnJ81XF9f//8vkjnn/52fjTP+D1/wOX8N+Gu/39eejqIoWC+XgiuO2+LkhXSLMWg1OelIUh1ZAGRjNPtDizMFfe9p25a2NRB7ou9ZLxvOH1xS1rVYrRUF3/mFX+DRo0fUdc3xeJyfRK+GJE1PS++jjCH5ZCzKItdru35Ugty360oZtMrkSQ9qNCFqyIqcwJWFXGQxCmBsIBmZoURJIvtV54S+I3hPhpnwKsmDRgu5Wms7WtsPdO29GYHYUrnZe3EC8ecQpXHUlEyZeHIzlWOBEFhAxnhF1/mZBmSMYrfbj3Gnw9g9Ch1JnNCl0x2GsdiEAWsFpzwej7OEEgSYn8b13W7Lei3aYcHISryPGFORUqDrjqjNUmhCSqOywAvaGtSYoaONGBQbXZOip7COwli8D1idyU7yxrXWRD1J1e6lfdNIGZMfu6c880cnLE5FxEw3j2lLWYtcM8nHGV1gnchSdR6/hwpMUkQ9cVzNaDacxfeTnMe8pMmURUQLxrg52mP+GY2hqOqZ+5qVYJdKy/vkjvWvmDmcCBymsVjN9+xsnDK9/16i+nK42Kuj9sl9PxqiZLnecxpJ6bdUVUXhaoEvsliwHQ93lE6aDltp+b21xpXSOVZVRU5mvAcU+71Y7MWYCMHjY4kbo4azggcPrwC4ubjA2h9z/eIWi6KLEe00m7Mzzs/PWS5XdO1eFrGlKH/sF0gTvxSKG6MU3fEwYz6yvRX8IaMkGzoLLUJoJRE/JNo2Eik5HntevLiWjbPV1JVlc3nO195/h7OzDdkYVFnxL//KX+K1p2+gxtF5soT6WUddL7i72+GHiHOlsPeHATH8HV1wQidSPCYaQYFSAaMgJ0hKk6JGuQxdJ/nP1mG1IXuPHkcCA2QDbdvRtT05Q1NvhLvXa4YxiuDZixuapuG8XjKEyGqzYdFs0MYyHCV4bH22wdp7JcgwdAyD8Oas1TIqO4O1C25ubtjvJ633vZVWSol+aLm6uqJtW47HIzFGNpsNWmueP39O0zTc3d3NPMuJjHw8HmcIYbfbsdlsePDgASDkZGsti8WCvu/RWs+E7q7rCLFnf+hH7CmgTZ7Hvw8//JCz8w1qdPnWqsQ4h6WU2AR/BG/QSTDlbgBrq/Fh0xO7A0rJAiSEgCkKysJwbPe03Vj8c0JFD3HkCvqBPksX65yjH81aU76ncE0LCucyyTuy1hS2RBMI+YgikHNHzh3kFqW8FAIT0UaTcyKnCDnIBlt5UA6lpciEnCBFHE4wViXxGSkbirImKcbP96D0yE2dIh/y3EFOOOnpMRG+Yxyzuctifj201jMRHX//sT+rQN5LEAcmGaoaHZ8K17DdysMvBpFolk4YD5999hnPPv2It995i8tidEFS4+ZfgXOGrg08ffoGzjl+53d+wNANGCMPyWMfaVYNSVt8HqhXS96/PMN7z3sfvAtouv2e2+0dq4szLh89pCgsbd+TgqYoHTeHO9pjz0vxMK8cX4oimXMihX4MqJcfVhtRayil8H0vkrXBExP0PtP2PTEr9scj292OECPKFVTmwLtvPeXi4oJmvSK5gq9/57t889vf5vLRY3RZk/z9xTIMsoh5tVjudge0kmWHc6Vw/JJHzFgDh/0WqxIJcVuxypK0R1mHpMlK3na2mdw7nMsY02HHuIaiSDhXvkTeLqtmHgnr5Qq/9yQlWOYQIuvNgxGvrFltLmjqNRk9bp4bXFmJgmZZ4pxQZcTJJVAU8rtYqxmGjuNxACyLxYpqpA9VVUVKWeg1ObPd3o4PLbi8PCfnzIsXz1ksahmlR8KyGbl9kxu5kNQrnjx5PD6IFLv9nsEPbM5WQBaz4rFbl212x2pdzxk8681GxAE2Mwwti2XJ5mzBQtUoI7SdmAdZYAWN05asMn3yDIcDzXieu+OBw34v8j6l6FuJaS2LNX17JI4mwSnL8q0pz/CdmIY4rRgGj9YGYyx58ELYNwBqNiB2TqMYsKYhUzF4RBKKGO+iIzH3OJT4dY6OUOSIUxaVpthajbIB73ti9BQKbC7xIRHx+JhRpsZoTciWmA0+JJQRxgExkZIaxRSCcE0UpqlzfHXDbcYu8fr6mkPXzlhj1wm3tygK8eM8GdOnt1OS+MTmmILQDBqtCrwXa77FoqYsFyQ1UBWON1+/om/v+I3v/TrOKprlknqhqKtSlGd1oj16zi82QhiPkWO7x/ueupGc8gR0PuDT6HVAxmcRA5w/lKVVWDdcvXaFLh0xK/reA5rg4ccff8zf/rW/xdm4YPp5x5eiSEKmLEQhEoLwC8MQmYvkMMDoQjP4zLHz9BG22y2HriUqjzKKojC8/fghX/nK+/iYKJolf+Zf+hVef+s9iqqm7QcSDnOiV51Ozqkp6DAM+CGwXm8wxhGDbGl1hr5v8b6nqkvy/hp0ImmIQyT7ROFKcZ2e+F3A4CODj2jjaBYr6aLUuPHOAW00MQVc0aCMl7EuaxiDoEKEFBV+SFRVQdWs2Kwv2e6O5DxgXc2+7ajrmma1pChGGs3YrU32WRP/7dmzZyiqOUt8egO4vX1OSonz83OeP7sh58zd3R1nZ2d89NFHHA4Hqqqa/1RKkuzEh1HO4Wq1mounQBYeYzRnZ5sZH7vv5g13dzKOPXjwgNvbW8HDbm64uLjg9vaW4/HIZrPh+fPnrB69hVaamBNtF4kp4WwzjoQiB1RlYBgOxCFy2G+F4J4lB2dIHVVd4uMdfczjkmKYfTa7rsMP0l0tl0sY0kvxBTFGCvfybVNVFSZ4ctJY5bCFxSdDNGPSoO4AT+wz3iucKYhJEWPAFI6c0+zq44eBSmvQJWRN10eMFa6ksRUhQ4zQtYHzkUdqlaEqkKVOznS+w1iJPJg6v/v4gpeXLAC/93u/R9d17A973nnnHZRSsxfktLg5vVdOt8ovdZSIDZ28T6SSd7d3LBYLjNG89tojNmcVq2XD9voZVw8ucUbx2bNP2JyvefLGm2SViWGgqZfUjeOnP/2Q47HlW9/6FurjRNfvqZsN1hmGmHjx4gWLRcknn37Ka08e8PS1x+z3ewprOezFAOP58+fcHffstiLr/elPPuZHv/MPaY9HVtWS5ar6nBLp9PiSFElGcrQn+mkLrMbUP9GE9rEnJUUkE2Kmaz2Djxij8CHS1JbVpuHRo6uRgKp494Ovs9pcorQjJAWjs0zOL6/8pxF/WqaIlnUJ3PswxhjxQS4Y5xyZgEecs4XWI2l6Sun7DiLLYJ5RhJhQ2jCFdol5rRrfQLsCM+KIRjucLVFKiMte1vjYoqGsFzhXcmx7uq5jsZRCp8doCrIeHzTMSwpxWBfspW07yrImR/HsU2SMuVdIKKXG2E4/buAND64u6PqjbJC1FHZg1lRLclhitV7MnbGxCucktnN/OCA50S8bIkwmCnVdU5Ylh8NhJC+nWRK320mE7OFwGG35AwJQCD5IHsdPDFlbMpaEQakEKmCcMAU8iUhAuYxxEoeRw0lnlE5MH7QFtNCpDPjkyUkWVgJLTFksVvKowxhLPHEgSSMFSnLUE4aULCkXoCEbO2LWmZBEPzyihuNYm8kq4QqwxmGMIyTN0CdSHjvBWojmjHgdWqENdF3PfrulWS4pv9gBDOClXO7JXu+U6wsvb8RP75lXD0HJJnmmaNdDkNdytVqzXi9xTiaTsiqoKln0OC1Kr93ujo1xmMqgDbJ4yZk333xzxmOLQhgB3nsRXBgnGn7fY7Xh+vqWwliUdXz66Yd8dDzy2fNnPL+55vmLG7pjy2G3Y9h5NFAtZQr6ouNLUSQVGVIgBqFTyAmGoZ9chTW72BODwvvI7fbI4dCiNfTDngePl3zjm+9x+eAcM8Dy4oqvfu1b/NFf/ucx1VJS12LGuYIcJN9m4nrB/Y0yEWmdc1hbMPRSNMqyJoSBvm9JKVI3jq4fiOEobi1Dy9D11EWJVkbiXLQi4xn6gcOhZb/fc3l5ybR4USqhVByXBgJ0h6RQWpIN0QalLW3nOR4HqnLJenXOer2mHEnN5xcPJb7BFdQrMMZRliV927FoNiP1556yMQwDORkePXxKDHbEnMSlJ8bIzc0Nq5VQTq6vr8lZnGGUUnzyySezTC1GMZadFjDb7Zbdbsf5+fmMcTWNdHe73U46wbOlcPtymDGnnCKD76ibajT8MCwXZyPPreb6xS2Fa1gsFmy3Wy4vzki5Q2Pphszddi+4Zm3JzuFMjS4tBYasOkKwLIoGH3o0CTMab1g9RvnqTNZmhkistWAKXCVmysZVNE74fiGEcRk1zJ35FMI1DAOkSFADWSWUKTFlIvmCnA2agsiSmA/oMfHShx5GF/XCCNHdKIUa4y4UFqNrjKlJ2dIPipANRbXEGoMqC4wtMc5inBCq9/sj2+0WsvBIT7vI0zH71b9fXl7y/PlzQIqmOCLd036me+T0z1f5kROOLO/TpCjXozGO5dLx8OEVdVPirET6blZLri7PCX7g8mLD9YvP8KFnCJ4QBlI6Qxt5bTdnS/aHO/rhQLMoKAo3TnR7YugZho6nT17DKovD8uGPP+L/+F9/lbvbHfiOkNJ4juRB4JSiaUosiiJmXDFysX/O8aUokjkLJ1JMUZVQHAbZ/ioMKXm809zu7zgee/pORp6cAk+fPuAX/6n30aql3X3C17/6z/Lnf+VfoahXHL0iHcQJ22qLzRB8QNv7rmHaFk7cuIknmJMat66avu85HHYsVxXWGkI6yKY1B+KY9zKNlsZYYhBSdcyKPnh2hxYfEs1yLT6FhdB+dEgwcr5s4chtL6YIOXE8drTtQIpQ1Q3r8ysuzh/NG+mqqSnqRsLj84BShrbtaYeeVbmiLIT7p0ai9vWLOwBWqxVDL+40ZVGhFOx2+/mmmAB7baBwFTknnj9/QVWVOLccC4SjaRpSivR9T86JGAPPnz+jLEvOzs4wRs5b17U8fHhFiMM8mk9d++3tLavViufPn4uOvFxzfn6Oc9JVBj8ubpTh8uIh1pQofUfne27vOrYHWXKt8goaR+kaUWXYkpAzrhj9LH1LUZ4ToxennOhJsaNejcuMfpLvOUBjS9max5QotKIoxPzBZiW5M9YKfijkC3JWkBDZq0ook8gmkYMlJUuINWFYouxS8Enfg+rQOhFzR1JRGBwqkpPBuYrCNYSkaLcd+2PAVGsW6zMWi0vpqqqMLSthPRhNVdZ89NFHHI8d77/3FYbBU5/EvZ52hvByoQTmDnLaaE9yv+n+nP589e+nwolEj1YWa+X8HY8CXTSb5XhvaBQeZyzWKFarBWXpqJsSVVgg8/FHP+H1118nRlGlVVXJp59+PD6oBrQuWSxqmkXB7fNnvPn6a8KvrAuGY8v/8r/9z/z2D/4hOSpS1NRGo5UmhYTKGZMVzigarSms4WrT4ArPF3gHfzmKJEAKAzkpUhIrrBSQPBilSCGw80f2XT/ik2OgvTE8efIIlT3OKdbrFV//5rdoFiu6kDC2wQ8Jm/U4vgesmjK7mTGmaZwoy3J+8cWF534En5QZE1ViHjdSBhKFKcYn9z0ALE/xMHaOhqpqRhWC3IzGBLQWkH3aHs7jjmo5HOQireua9Xp90sWVrFYb+iBKCFdU0tWkSF3XuFyilMaO8RVCDJ5s7aWDVGPe9TDK0qbNthS9PFI2BHuctp3OuRnnNKM5xH6/nzvWqbuqqmoskN286Z4i6abOZlKwTBktQjlJY2Kh5nBoaZrlSMFJo8elFJ8QPd7LzxED0nkpg3iPR8mhsUvZQPcdWiu0SoAnpA6j7WgcO8IkWrwStbbj2D0S0UOSyJBxuTE9RKbx1Kf7a0cri0rD6EYfRr202LCpXJEU48InEVJAKydBdinAmFGmxrxuP0RS7IhG4WMkZUvtKupqhbYFKINzstycrsMQ7vOxrbUcj+3nli3T31+678ZiOP1ek3ILmB/+P2vhMxXHlwK9zNRh3p+v+wejKKWMsvI9cqAqC5bNAoCmrGQRe7JE0bqgcBV972f9ubUWV0iAnQasGa+vKM5Zv/3bv0t77CiLpcBkyHivraVx48+hM42S54tV4pX66nk5Pb4URTImy+1xiS0GYt4TCJii5HhUqFxydxd53l5TWYVWHSp3fPXtt7i8vOT84iGHQfFL/8yf48033+byyRu0QfhqVgWWpahcADGt0FrA/XGDN+UaF0UxY3FKKYq6Yb/fzhjk2WaDD1JMrCqx9oxWN3jdk4qepBPRZrz2KGNpuxYfQJcbXPWMGDN9TGRdo9wSVCDaxGAH+jRQDAdCv+fF7Q1KFxyOB6r6ks35GxTVksvzJ+zjkYRhdXVOUoZHD5/gfaQsS25vttTOsFltZnrKJDs73txw9uBqpoI0VU0aWqxVHI4tTVOJwga4ubmZb5Yf/94Pubq6oiyr0VuwpSxLnCsIIbLd7sbxUzDc9Xo9czM//ljG881mwzB4ykowOGsdbXvgk08+YbFYcDjsqGsZ2wsn/MLd/oblSn6m+ebGo7TC6wUfP/vJXICttWRlKepL+pTItmK7jyyrFTqLo7ruAyoOaJ1J2hB1gXErcmhRKpHyEas1wQeMzhRakZNHxR4fT4KzUkalTOwHUVWFMBOIk1WzE3nhBGszZU3OJcHWsqDpW6wtuD0aTH1O73usa2h1j9IJH1qK4tFskNssG5brM2qtefDoMUopqgW07Z51cUltHAaDypocJAnTVQ5dKpKRZdMwDPMDeHrAnx5ZFaATIYshhykWJBzHIaF0STf4eelzGsU6FcdT/NJpiTtBQd8ODJ2nLArKwtLUjqYxOFOTk8Lj0MWa8qwiu5aycAw9XNRPCF1LUTWszs4ZokOXmqB2bC4fs14vRtelxN1ux/nxFpUix9Dzd3/9d9ndDJzVZziV0LVHxwNN01BaJ8VSKQlmsxanDcpaCOELUckvRZEUo6VMCvKi5WTZt56UHW2753q3oyw17XHL+arhq998l8ePrijKkqQN/8Kf/tP84h/9ZcEyX/nap9GX8wuc04wzTbjaBAyXo3zt7u5OAOayHKNP9dxtThGWGUdOkZQLIQgrTUqenMWR2+SAiom72yM+Zp4+tdTNEqWtWCxiMbqgcOAPkZAtt3dHEgNVfcnVa0947em7GFvRdkKMbtuWw+HA5eXlqMeu2W73c8bybrejbkqJV1CKm5sbUBILi0JwOaWobMOLFy+o61pIu2Mxurq6Gqk+L3jw4AFVVY3A+0pgkVHett1u6XsJ97q+vqYoChYLsZd79uwZ1trxXEXhr1KOHZni2bMX4+Z1XLCgZy06MCuApiII98uDH//4x5RlxdnZctYGg0Vc4zU3Nztyhr6LWA2ltriiZOhkIYdWkMfcIC8OQ8YYCufI2dAe9xgkR2m+PpX6XFd2itcppbooiVgAACAASURBVFBe4YwscvzQ4T0oU6CMpqqgxlBsNhyPHZuzBTkpVqtayN9qQFslRhWtmIVszi8EB20EI66qCntCwp+mHq01etTKP3r0iDQ6Af28zuhncSW11jx8+HAmk9/nI917TZ6O7Kdvp4a6zklX37YdSonIoaoqlssldV3f6+THKaQoCt577wNS2hJ7RQyW7nB/HV1fv8AnR1ktsFbz8OEDrBoErgBSyOxutzin8Try/e//JqtaPrYoFetNQ6EWwj4YH2daqVlGqrLADPZnLKFOjy9FkdQaFmXBkBw+lJAiXbfj2c0zUT7oCG3g6++9w+PXHnK+WWIKgzKOP/vnf4U33v0mXRSD1tK9+rU//wRsR7rKZBYx3YCTykBGTo1zxWwuKzjd/fhdFAUqnkM6MgwJW0y53JqUesloVpo0DBxbWchkSgavcFYyTlISzC8nkaE9v3vB5uptVquNxIdmy/V+i9ZHtHGUZT0X6sePHzMMYtl2PB5xhWGxqLGmwBhZ1Gy3W47HI0+ePGEYBvFOHBU3u3GrPNFxpgI4vfV9T1m5eds/uQxVVcXNzQ3r9Vr8LMdxbSq2x+ORxWIx3xQhBNbr9fwQevHiBU+fvDnjkhO9ZnJMmr7XFGB1ukXt+57zswcsl0uGYWCzviBGUUQFL93zbnukaRoOfcRZMJVFqwplBxQBayCN7uTiYnQfbzstZRSTmbHC+/tiEUKYJ4tpUz89YFWU2NmYI+0gOmRrWnTOGOXQKlCWSYpDKSN1UdaCAeoCo0eivxUX8WEYOHYD9WKFscUMgUy52KKtvy/e2+2WbhDYYrfbzZPBq8eruOT08z969Gi+V47H4+wANAfp8fLYPt1bp18L4gyhNPWasiypqmp+0M6QhTLEKHzg15++yfMXP8I0hhQcF2+/jS3kAZRbz257w0cffSyfH3sePThjuZBkyPfefg+lWpqm5O/8xt9Bkbg4X6EyLJeaIezmJVwM8b7YjD+vHs+d+SehSOacCGFAqQJyATnTd1uUEmPSEFpef3DBa4+uWC0WHLuOi+Ul733lq7z59nsMCVCasmnA71/62qddwHShAzM38BRrmd4vHWX1EodSHKfvO9OyLIl9RVYBshPaEuKNmRHnb9RI8bC1GBD4jDVgrJA+jC7IKpBQ7I57Oq85u7xgsTqjqleowmGdFL6Ioq5FS26MwTrD3d3dbF9lbTmrJXLOo0SznfGzaTE1F8TQUzdrWTCNRGtUEqpPSmzOVrKssHZ+MEzncsKZJpxo6hgm+GKKJZ26FK0lPbDrOox2lEUtFCNtMIWbb6Dbu+t5JAwhzIULpLts25a6WgiPMWSqskQRKAvpYFIMlEUtCyclHpTaTssVS0ZwP50DKUWsLeff/ZRLOJkj/KzjVP98eo2llFAhSx5PTBgFpJGITg9EtFKUlUYPCTM+zI7HgaIqxNTClWy3O4Cx0yopK5FzKiuu4yiDGYnyk53bVHz6vp9t8+6dmb7ovrvnCquTRuK0kzwljp9+3qspiacd9lR4p6gSfVKY5D5KY1cp228ZfR1BifHLbntLRoLNBO8W3Hzo9mxWBavlGmsUm/UFw3CLNfD8s08pjMVoKKyjqSx6OL70c59OA6fT5RcTgL5kRbLz8Pymo+s9nkAgkYi8+5U3+M6Td3GFJeXM0zfe5C/+q38ZVy/JRYMzDUkVdIOneuXaPh0X+r6XDmSkuUwFcbpJu06kfVUl1mMS9hXnsa/rj+ScWa1kKaCxKNMQg6IsJIIvxRZSK0FDKuD9nhc3QhMJ+Uc8fu0Jm3ORivVecThk2tYz5AVvvvstLq4eyBhntDjnaCnIy+WSPAZxTQVLliGJs7MzANm8B5EffvSRGDRdXl4SoxcSeiU3zvPnzzlbLuZxccKXyrLks88+m4nUUy4KMEMT19fXbDabGTebCiRIN+OcuNfMo6CWLff1iy3ee548eV2c1K3cyBOmFWN46XNCCJyfn3M4HOaivN1uKQr5eRaLxWyAq5Slbb2Ye6xWaF2AnpYNiSFFtFuiGdBZkVQg48Hf3/DTzTyph6Ybeyr2p7jcq6RsrTX90NL1QqkKXpZfDuFqWpuxpqBte5rFhn0YKKoVfdezWq8lyMvJdHFzt+P9998HYHN2IT9DWbJarbCuZPC7GSJS+t7MdoqDLYpi9iUoN4ufc7+9TAXSWhOnLbXRL225X6UPnXJcX8Ukp4+fukczOhlN04t0g0CGsqxJPhCjBNC50lE4x932ObbKGJ1pFg2rtVie7XY7/KAZuj3kmuVyyaIoUUFzff0pv/ejn/JgfUldOZZ1Q9u+oG4Khn78+UKcHwbT7zHJS7+4j/yyFEmlOAwDz6+3IulCk1Vks15ydrnknfceU8QC5QreeON1/tRf+AvYZok2JSFryU1Ro66Ue2rP9ESbLM6Amb93etHDvcHoarV6CYt56f3qXuaVc8baBYulQ2eIww5yYAiRrMUZRZvMdv+CGGW7bYoFh9Zjq06wmz7gU8lys+Gt9x5T1KKCUUoKtrb3T762PaCypuvyONJ0tG3P5eUlOTHiphZrI8+efTrSK0SeCLJZnG6mBw8uUCOm1vfdzA+VoijE7q5rhZNZinSyrsWV++Ligv1+TwiBxWLBer0mpcR2u2Wz2cyY7mkXMm2Hp4I5dfHGmDms6bTD77pu9jZcLpc452bVz/T1c87zSDl1yQ8ePKAsS4EfxqIXVSJTErNESmjCGJAmuMx0A4O8tnEM1pqKgzF2hgEmov00WUxQhAgNwrjY82QtvLvCGrTJKLrRRScy9FvKcsGxOxJiJiXFaiGmuMvVhqdPxRB5v9+zWieqxQJXVCJZzXC73fHWW2+RUqIcbdwmPX0ar8/b21suLi7m83Q6Ip92US8VvrGbzgjdaZo+pg33tPw5FV5M98cEY63Xa374/Mecn4vD+dlZPS9Ep3vGOUsMmqH3FEVF30WqqqFtD1hT0XaJ1y4uELFAZBjP6dnZGsUCqwZU9rSHLWvX8L3v/RrH/S3f/sZb3H3Wo0Ki2++wWsmCLcskZMb7eAp0A8hpelj8IzDd/cd95Jy5Oxzp/cAQ5QIsa8vjh49ZX6zEHTrD60+e8vVvfpv1xQOOPhFOnwE5CoVifOFPW/yp61mv1/P3m7qB+05GCNCnF5C1Zt4QSqdVvPRU1daicsK4EqcjYeghi15VGU3vI/vdQFEtcM5xdfVIUvAmW39tWS5rmnrJ5cMrnJv4h+PF6TR1XY9FKDF0fjaRAM1ms5IFB3oei6flxwSYn45Qc+xAWRJH2s90kYcQOBwObDab0d0nzNjghFdON+Spw9DUob96/oAZq5TONwv5f3QIElediBhfCERSFAXX19ezmcZUwCZ/w9VqNVpn3SdRTtSk3W43j/kyvo2mxkoRslCgFBatHFmN7kE6z/Ql0n0uET+HMjMVnFOZ4oRNorP4GyZFXVeUpbkPS5uuuXwfyWuMRRtDyEZ4haYEA5cPHgL3JhzL5VJSJrUhh4AtKrGKyxNxW2S7h8OBy4dXNE3D7d3d5yg70/Eqkfz0dzy9Vl7iP55ADNM5/3lfq65rvvvd7/Ib3/vN+fU7hWlmXFI7tMr0vaduSoZuL914F7m7hYzGFgu0W1KVjhgDZSnO+92xp2s70qrnpz/5EY8ePSB0Y6pmgIlvnYK4bP2segPMmOQXKBKBL0mR7IbA3gfafMRVUFnDB195k8cPH8mYp0u+84f/CH/6z/15ApnrXUfRNISEgOzJC/iaIZ3gLCGEeQR52fHn/mKfRjbRl5pZpiU6cj8/UZfLZnQAkkMpwRFjjJTOUtUb+q6lHDJZVTy/vmN/HNis3+TBSiI7n775GFdofBS7ta6P+EE6Z2ths1lwPB7HLiqxqJeEkeTtlCXagCtKzi82FE7GGaEwWbq2H3W2Ha6QrGqloarKWUGjjeLsfEPbHimNRulM4SzGSh7K+cWG3W7H4DuWy+VcRLXWHA4HYhSLq8ePH+OcmzuNqUBNSxylFFVVzWPz3d0dFxfnGGNEfra/ZbeXYt0P7Utqlql7nbbp0/eeXsMwUrREISFmGikldru7UQapRkaCISPa5n6QDsso8W00OpCVIXOYu9g4/i7iQJVI6Z4bOHWO04Qx8QqnB48xhiF7khaZqc8ZmzQhKlQSWz2lFKVzlGVBHwxFLZNQMo7F5pyirvjpJx9DHzi7vOTxeB58SLN5bTcEzs7OPoeJppS4vLy8j8hl6g4/f69ND4JXFzj3VKt7gcUEM53CDNP5mJqM6f9yFulo27Z8//vfn/maE0ae0vhQyYmUjASjpUjfDVw+aFC5JSUonGK5EOvDm7sbMD2uaNjtdjy8OqfvPYumIpaGv/k//rd89atvkmPgursjDD0qVUL70harFP2cOvX5czD97uh/hEFg/7iOnBXXxyOLGt794DXO1g3rRUMYDlTFgj/xT/8Jvv5Hfpn9IDrmsllxGLeM5IzKwqbXGYIWDGna5jrn5k3rNC5kpDv03s82WKcB6hM+OSUhThSZnNP8dYZhQJmawjnqwlEAhXOsmw27XYsyZyzbnma5pnGBqiooK0PInuvbGwpXUjYlwYuuen2mCGGQ1B6V6bojRw1NtaCwjqooMYOZ6SCTE7VgQ4JPFqVjsXhI5r6jnBIQp7F1ilNwSrqVm5ubeVs6bSOnhUk7RgFMW//NZsNyuZz9Kycz3s1mM3e8p11rVVW8ePGCi4sLWVhoTcqOnO1Y3BP7w+3YLQ3c3t7x5MkTmqaZO5Dr62uGYeDhw4eyzHDVvEGd4JQPP/yQhw8fojXs9zuMUQSDhHtpTVKy8MgqAgVaVRLRoGTC8KObvBRh8SydikQcJ5tTbG56EEwPDmstprIsqqVElWrNEMXwRCkZ7rXV2Az7/RFjG7QRv87lZo0PLSpk+v7AO2+8N1+Xg4+s1wuy0vSDsC6urq6IKWPVfbe7WCx499136fww065SSmT1+U5yOj7XaU7/VmrG7icY47RznO6R068z/TkMLa+//jp3d3sK18zXm3zM1KXLNekHiZ4oioqqrCmdOOj3XaZvdzhnWC1qIgUhJarSoXKkdIbt9obPPv0YZxO77XPZEyyWvMid0AmzQsWxIdK/f5E0/yQUSZUir68a3vngAYsLQ1aZfej5yld/iW9/65d4+63vElw7PrkgR1jYEoWi6zuCtShXSPLdePF676mqah6nJoVHXdezCW1RlPcYl9JjV2BHGlA7Uxfk8yPOFRgtOJoxlqbK4m+qAt0YnxmSZxvuWFwUNLmiqjSFXXNvcJtx5XJcRjjOL5r5otvtxJ+xWjS0Q48tC4qFRMwO/cCiWc0A+FTw67rm2bNnlKWlLGXc1QaGsaB67zkcB8k7jp5+EC6omIdkqkr8HcuyHPHCelRsKFIaaNsebQzvvPsEELfxtm1Zb0SN0w8HzsaEOmDu0Cf8saod5xdr/CAXa1XKJdfU4jRzfnY1WpdVfOMbT+atqoxXJTknnBslbQqGMSTqbnsjGGVVYawi5UDfttRNiTbQ5oJCVeSQSXtPsaowKmB1xOeBIe1xtiaGAayEMasUqCrL7Ys9vg9cnF1ym3YEMrZacNgL3csUC/rhyNG3XF1dYgsokqbre7SB0pYknbDFWCB0FqniIBZvBo/VHm3hsL2lrC84XHucumB/dyeFWGvqsTuPw0DVLPjBDz4Up6emwetIN049OQhtatOsxCqvKlg0lchPf/Ydh9RDJXETSAdprabzA217JARP3x/l3CaBd6YkSggYLe5FMdyP5slf8NGLO+qmwtX1yLYJZMb88JQZDjVN4ygKRd8fuLhcMMQjy+USrQtCtHg9ZjUdPYfnW2yKLF1J3rcQNX/vb/06pbM0daYo3GjH5iiqNUNncM7gTU8wHcqP3FI9y5pGnrIiKUVWCpX/CTC4MMawXi9HDEyRVeLR1WN+4Tu/yJMnr8uWKrWf+7zTbegpXjSNQFM3Mqlo3IlwfzJ9OD0m7GvKCz592kz45dRFnG49p4+ZjGanDvb0e5wC3W3bzuaz05ZwkvtNI8xyuZw72KnoTAV9Omc559nItizLGZdUI4APzEuHiXzc9710kuiZTzd1j6eGGBP2+OjRo3mbOruwnIyhq9VqHslO8alpETN9bWtfxq+mrzFxL08ln9Of03lcLBbz9zdGztdk03Y4HDg7O5vx06qqhP/I6IpzGE66mQmPEocfjSEZjYqCG8acMcrMHep07qVw35vWTrDMYjHmXMdhpH+Jk/x0zPQzNXUvGjAvnb/7UVbd8x/H68S9gglP15L3Xojn4yQxdbP/L3VvFmNZkt73/SLiLHfLfanKWruq92H3TJMSKVKybIEiZcmwQQuwQEOwYQMyCPjd64tkCPaDAQOCAQuCCQgw5QfLAgHBliDDoCXRIk1yDGlGnGnOTPd0z1R3LV2VlXve7SwR4YcvIu65mVnVJdMGZgK4yJv3nnPuObF88S3/7/9FjGt3Xn5Zuwre0/VHvqjJXOghRLseUFjbhHlk0njIS/zKOmS6xA3VGEPeKzGBUs57qX8q8x1QoYZ55RiPz7i2ucqjR5+iNfT6Jc5WSWs2HVeY91K0Tyl3ySV51XPFufqi9iMhJItezlvvvsG8nZCZgv5oyJ/9M/8mN++8yWza0trzK/0rcXJE4WatpQ1mePRhxUkQF32k3IqLN07UaCZGYdXvLcC4URhPp9OEAxT4ikTE40SNgYooVGL2w/npJAkYY4ykSZUlg8EguQUEFpMlwtvom4tR3ijMunjH2WzGfD5nY2MjCUjnHNqQMl0irCn2U1yI7UyeMwZIoiDu1mHe2dmh3+8LhOfoiMFgQFVVrK2tJUC5MJL79LxxkR0fTzFGsbm5JYGNPFvKk499urGxkSLos9ks+SbzPGd/f5/t7W2yLOMHP/gBGxsbEvAI5+3v73N8fMy9e/fSuTFjpD9aoW0dp6fH3Lx2He0tygfaOTRZ3sNVFSrwAHilcApsI7jMoihobItyNa6uqOoGrGcYiropW3N7bw/nWuZVzbAo8b0CH4T5vG4wvYIsM0KX5xxKC2OTyTLhG3WKoh83ecfKYJg2O601hEyaXq+HQ7G+vp7MYKVtyLPOqOuWqlokAci8aqUk65e0hD7AL62BGOSDhUltQ9+JiWoYj8dEQmKAR/uPgmurT5ZHHKRklRltMDrHDHoonYfAZMHW9i6NBe+lgqhwyxZCTac9o2EPq6Zc393hW//065yf7bO1MUQpy7xqpay09RR9RVFktDJ8YY049IUA3MUNwXuPNj8OmmSmOJudUvZW+cVf/PPce/0Nil5fSieUOTqb4Wx56by44KKgAegHjGMUJlFbaRqpgVOW5RJ0pLtTN01DURSiddlFSc0UwUQgQlGQqLBTjscTDg8PE1RGFrNJ9xZhR/1+v5O8r1N94CjElVIpOyXiAmPEWymV8pW72SHr6+spiBKFYWvrNNGLokgkuJEIdzabMZtO2dnZSRpTJM+Iwn59fT1E2uWZ1tbWklaqtWYwGLC1tcXp6SmDwSj1VXTgRy05CkDvFdbqJNzrpmZ9Q0g7mqYh13kAGStKnUvWxrBHUYr7Y2dX0jAJvy9BpLEEQqo53juGod530wjutppW5IUQfTR1JeydOsP7HIfChUqMxvTB1PjWMavn5L1SwM11w2jYw1tLXTcooCw05+cT9q7vkBeK2axhc2Md6pYmRL0rW+NsqFdkPHlwkThfCKeolnoumiz5OK1V9PrZksWhM+GdrOuasi/Bm8ePH0sK6Eiws5PJhPF4nBAH0WJq25YifxGgXKW/F6P3bdsuVVZ01pElwgsvMQAFFinUVxQFx8fH/N9f/6fcv3+fwXCFshfSSjHC/elz8DmKglY7vEKCWyZjZW2dpq1RusFbmBiHn0TEgKan4Xg657d+6/8iV5bbt7c4O32erA/hpxReWW0cKJ8KQWudCTyQy5lGXfSC0X9IIamU6gH/BCjD8b/uvf8rSql7wN8GNoFvAP+u975WSpXA3wL+CHAI/LL3/sHLfsPjGayv8Ev/xl/k3v2vUlcNde0ZrPTw1MzaEzIuC0kgRRsXvizRoKK5GSO7EcfVC+VDo8kWs2xms9kSyYVr7ZJ5M5/PWVtbS78btdDxZMr5+ZjVlfUE9O73pIaLdY6z0zEbAd8XITrd4NB0OsUYw9raWgJva605OjpKQae2bVOkMNaDiRpk1KBTga+gLcdzo6Y8GokgOzs7o23bpKFFUyOahnHD6WbNxI1C/Eaazz//nJs3bzKZTNjb20vabjR9mqZKucDyTD3xG3kTNHKh4d/e3ktmqwhjwTgWRY+TkyNu3pRraw07O1sJ+tS2LdY17F5b5JYLjlUW12DY4+x8wmQ6YW11RG3nWFcLq1he4mxL0yh65RCjLLad0XrxO5tcgmRxjOt6Rq8vG814PGE2m9DrFQyGPZpmxmDYJ8sQQRD6sOj3eLa/T2OFCi/P+hS9AbNaIt/aa7K8kICByYP2H6BAWqd+1F6Eeny+0WjE8fExk8mE1167Q56VnBwLjVielaytboDXaJV9qbl85TrsmNpd7TELmqKzoHDoEBxtmobPHjzk5ETKfPT6OaOVfmBYysky4WXNzEDe65JKn0vhNifZNUWvT1+v0+/JWh6WLSv9Hq1tqGdTPv7oB/zWb/4G9+/dZmtjxNHhMwbDktlsTJ6P6PXEtaONp25mVJWX+9PCW9rVJKNw7LpeXqWfXsKilloF/Lz3/mvAB8CfVUr9LPBfA3/Ne/8mcAz8pXD8XwKOvfdvAH8tHPfSZq3lK++/z73X3wzs3ZlkF9Q1VdssRdO6LWplMcsgapBRG2rblvF4nDCDUQMEkuY2n88Zj8cJXxdN2fhqmiaVD4jnRaLVGCAaDAYMBoOkhUbBW1UV6+vrSRgJmDZfCOIgwJqm4ezsLGWudPOlU6ZCODea8NGdEJ859lEUWDEtcW1tjdXV1SQM27ZN2nD0/cX3WZYl2rKo9SZzL/x9/Pgx6+vrSwS80YcXN6CYBwykZ7qIudvc3FxE6kOL+fTdDSESZ0RYUdM0bG9vJw085tGvra2l82LgTTYXqU2ktSYrAmTKlMHkc1SNpXVCspEXPfK8FFZ5FljTiK+N6X5RkMUUQACvFVlZYIoCbQyj1TXaxjGvpfhbXbc01onQK3pkeSllcYP25pwThpqOpRH/eu85OztLrEjR5xvnBIgPej6fp/IXolXqK1+JUibIh7hhR591nFvxu9m0om1c8GsvfPyHB8edOVokV0F0Ny2i4kIk3IYytFFTbZqWfiE42txohv0+vTIn04pBWTAZn/F7v/vb/MRX3mI0GtLUc0ZDQT4Mhytpjvb6BW1bY4yU69V6mcqtO7/i2oyxh6hYdd0LF9urlJT1QEyIzsPLAz8P/MXw+a8B/wXwN4BfCu8Bfh3475RSyr9EZG9u7fBn/uwvcT6uwU1YWdkIFf40eA1+mQkmvo9tKWsiaF5RUHYzPLoBhjjxYHnyx44ti4KTkxNA2Lm7pn3kVWwamwIL8Z5WVgaMx+MO3jIO4ML8joMUA0BRGES4Ttu2SVjEQFHUyqRejGE0GiVBIUQN7dIrQnTKskwO/sgNWZYlvl4I1tiXsTj9YDBIGq4x4ntaX1/ns88+S5HwuIiUEo0gywwnJyd4PEW5KFwf+zpqyE+ePGFzcz35V8V8X1gE1lr29/e5eXMvpELGDBcwRnHjxnWePXvGYNBLvuH4DCLoJSVSac/Kap+yF/GcDa33eFNggcl8xqrOkPoyISdaG6xXFEau4VoLWpjbdSFBnTyYqiZX6EwYxTNV4hqL1hkOASdvjzY5n8wEnpX3sM5hrbgdaB1WSRkKpaWP82xR9ycyINkLGt18Pk/umH5/COjAAFWH0ruWLCtQSgggXkVLSoZ3GKuYnXZ+fs58Pqfs9ygHBdZ62jZu6i0PP38s3KV5yfn5hMGgpd8fUBSS+VXkPbKsQKssKSSEmlXKgwkhFaMKttc2GRRSzGtve43q9Jjf/+e/z2//1m/y/lfeoFco2qbCOQ2uIEIftSmlfK1qg+ZoadtQktpZlFZoeznXvPvee49RL89zfyWfpJK8nX8GvAH8deBT4MQvisU8Am6G9zeBh+EGWqXUKbAFHLzo+r3+kMOzhrXRGt4rJvNjskwjxGcG5XosPA2X7m1p13IdAHQkgY0LKOakxt2laZrEhBOvBSRzV9L68qVoYRRW0VcXTdJo8k6n0xTAiedGQRjT7bq+oy5hbcxT7mpfUbDPZjPG59MEtI4mePwb/VJ1XVOUedJ8oyA6PT1lGvyQ8/mcfrbYFGKfRD9P7Je4u45GI54/f85gMEj9FftUBLjG2pa2bcICD7VviKQGMnYxqh/vP2pBcYfv9/t8/vnniUUobhLdPOK6Fg3g7t27idAhbhZxDM7PzylzQQ9oLUzhRof0NFWIFmGlzIZ1Hu/AaKmCKGTOGuU9jWpwSgeOyZLMgSkjuW2N0xIk08Zj8r4IBKXELNUFPT0IeEWNdpLf770XSFAwWVvrqKsZrlAMRg7vdRrX1lqms9PkM2/dJCkD5+fjUD6iTcGTpmmlRIkX7c27L8tKloSDOLejq0YUgCb91mxWJe3w0aPHAbq1xcrKmgSIdMbGxhZN7ZlOWq7tbNHvD/BeoRDolsfinYPGolqFJBBnKKspsozpySHVbMrf+Qf/O5988gm3b9/m/Z94k16pmUzPKbIc7wtoNS4qSq6R2j7aMBwZVlY1h8/nKBVIO5RPGVtRUMc5m5AHgG1fblC/kpD0kj/2gVJqHfi7wLtXHRb7/SXfpaaU+hXgVwB2r12j31+hthL6L/oZrq2JtXA9WXAYX06D6twjwJKm2M0M6ArS5PMJZlPM245mZzy3m3d6kaG5K+Cij9M5l+jIohnSNA2ZWQijKLy7wjMK4WjCRnM8RR4753ZNyihkouYYAzr9QZnqr3QnRnQJJIIMGzT+MwAAIABJREFUFs76CP6O14v1mmOfzudzdnd3k+Bc8ucoyW2P8JurWt3Mmc4m9PqF+A5ds4DmKAJZg0A+1tZWREPLNa2VQlmiwUiOeGTPjsKjC9lJ+MwIBeq4IoS9XFPN5ugsF82vaXHeY73CeI/OhXnQx/mgDUpZYR73ikxptHM0LVhbgQrM12T4wGbvjZKqHNrgVQD7a+GbtN4Rmei1zrB1g3NhjJynCSmpcdNq2mlyzTTNgrU7zrs4D4uiSG6YOGbuxRbklWsn9md0w0QgfVkK3Org4JCDgwMys9gkY2BwfX2d9bXN4BqKbhWzNM+cl2BWnFfeO5SDD7/1bT7/9JuMz0/54vFTXr//mrhuXE3dzBn0yhA0EqZ3raQQnKVJa9sYvTCzkf5VVqHMAtLWlRvdzCTnX76Z/AtFt733J0qp3wR+FlhXSmVBm7wFPAmHPQJuA4+UUhmwBhxdca1fBX4V4O13f8KPxzX9oSDFm0qwfxrE1PY5sCAZiA/XFYipqWVs40VhCgt/5HA4TKZvNB+jyRc1O1jQqkWIRczSEbPGJezefD5H6yzAILIwyaD1bdLyVldXk2kf703S6s6X0sqiHzD6PyMrDpAWR9Swzs/PGY/HlGXJ+fl5qGKo030eHR2xvr7OysoKp6enktNtfVpo0cSK5nlXWx4MBhwdHaW0zShQl/N5JSB0586dJKS6/a6U4vx8TNM0bG5uJvO/u3l57zk+Pub69esJHzoej5d8k+LLcty5c5vxeMxoNAiQLej1Cuqa4Geesrt7B6UUk+k5ZRaqHOLRzlDNa0ajVXreUQO1n4MSh3+WgQ8+syzLsErJotQahYZgHs/miqoWQL7KFNYq0d7QeG9EYBopQ9xI/ix5ZnBtlXyBzkfOgFUG/VEYb/GjW2tZyTIODg7EBzuvODs7Z2trK214+/v7ya0yGAxCkGtRQth+Cf7vijWZxiZ3UmwrNwXj8SQFN2/euB0simHQLkURKMuSTz75lNdee40sK8Q9EqBFUgc8EGTQ4FsldX28x1vH55/+kKdffJGKg81nE4rcgLf0ez1mswnG5IJrJQdk48lzqaUtCooQruT5MfiYSskV6tnCPZcsRHsRTbncXiW6vQM0QUD2gV9AgjH/GPi3kAj3vwf8L+GU/zX8/7vh+3/0Mn+kDA4U+QpYSRk0JlQR1BYpytpQNoGIwIcTAJxw9MmCDIQVTopiAYHpJfg1U4xKY4yko0UhEzXCuDMCIaPgAtmoMvT6EkRoWkddn6RJGbUzwRJOaJqFBlsFJ/FwNCIvClprU32SqAX2h73gMA8akhXNcFZN0yS0ropjAoB1IUBla7a2pTri+sYI26okZE9OTlhb3aAsejS1pVcO8E5RVXPKsuTs7IzhcJgEU4Q7xaDK/v4+MTc4RuZjQCcKuv39fbY2d6nmC4LWLDPLm43XrK1uSBU9nS9tdoOAxayrlmu7q4FDUlEWC6yqVoamtty8eRPvvaQyBg0/CuZ+v8/Tp0+5c+dOsgD6PaGE08ZjnENlikzVlFmDY0W0CN+gfI3TU7wTDQfr6JVDGkqyXON8S11XFGWB8y1Z3gsC0aNQlLqHtVUIHAjbTVU1eCBXirpuUc4yKvtYXQoHKgbXghmtYforWDTrK0NaZxkEl8brb77FdDplY6tgbWsTrTWbm5ucHU85OjzB6BxnITMFmSnolQOchfmsFtbzL2nzeRPmvGzoMTA4r6vkPsq1cHRubw3I85Ki6DHojyiKkvm8ZtBTfO87H3Pjzms4VdJi0d6RmUjFJ+tPK4VqhBkJNUVoYBUrm9c5Pn0K2mFMRZ6PkmU0nzm0GuCsBdXgTR1IK5xo6yqW+BC5MVzJqKc1bWPIsyGtt2Lb6gXMzolwALxwcur6pX30KprkHvBrwS+pgb/jvf/7SqnvAH9bKfVfAt8E/mY4/m8C/6NS6hNEg/y3v+wHnIXxOeSFpigy8SVkGmOUlB/FYdUZaVtQCzNQ6P87WQPOheMUKBtSkZZ9DsoNLt2DMUYyI2IFZFVFpVTMLw/DXn/JHM/NKP3uYLDQzBbCFZwTsCtomsbSNJOkBXfN81ExwLYeZ9uwC2bMprNALiu+QKMXFFXOOcZjIWhdX9/sgMAljS9G5YEEsIaFgz767qJG3Y0GxmeK/qnt7e1k/sXCX7EfInogmn3x/qLGba2wkUcChnjvMcNH6i2fc3h4mMz5uFl1SRaiz7VLldZ1sZRlydOnT2maJkXzF2ajTYL08PCQN954Q3LTZw2ZKvH0wQnZrkW0MI2idorMSGEw5TSZNijt8a0m0zkJq608yhq0zoPgXBTHkluUPp9Ma1qfU/SkqqYnQxmLKfJgMoovUmfL2UdVVYHW7B88R2sh/Lh5/S43b95MG3H0Z3ddQEmZeEnTxuN8A6jEZ9C2YtpOxjOyoqAsxYpYGa2xvS3M8IPBgPPzMc+fP2d//ymrawO2dza4eXMPo0AbRxuSLZQXRUV7LWmQybx1EIJ61lqp9WQMznWDfuL88F7hnfR1HPcl10+ohZ7nOao05FlOkZeokAXUdbt1lR/nHKM/bO629/5bwE9e8fkPgJ+54vM58Be+7LpLTUHjPG1lqdvIWgx5YVKGhdECbVGBAitWs/EqCEgdJoRVAeHgI9IBCYd1dlV3haM2+D/T8F0xwbpwgiW2FRYRsy50IrYux2IXrBs/01qnRd39LAqa9L1epP51/YjRt9pl7Ynpkevr6+n7eG3vPSYstp2dnSXfZRdicnJykiBMQNIkY7BoNptxenrK7u5umnAXW7x2hEbFFu+n1+vx5MmThG3t+ndjv8bf7Gr83TafzxMhcKzR0/Uhx2tEuNfe3p6YXJnH+wLtCvHftZaWWoSh0mLNuAWxhXMO3UHNxVRF72zYwIRlyONoW2ESktKzQqJgfdBidIYik/0cSdvzToHRyU0S/zrCRjSQSpvXrl1jc3NTrJngivHeJ3Yg3dlIrw4PLDehF7SgDda1kj2FoWlqtC5YW92kzAVet7u7m9xFeZ6FGkNi0xqjGY16CG/plEIVaRmiPBov/3iCT3YheqL15pwThSamcfrliLRYOYhvs+N6iy0C6jMUbSNj0RWOF4Vk6oMv2Ut+JDJutFbkpWhardMo76hqS9YUKCUO4DqPDNKaLDeiZSofvo+CE/Bh5/cKhe0I1NDhymG47Kvxzi75MCNKoNu5EVclHQ9FvmC+iSZoXFRaL58HsrFnWSFYvDDIo1FMiRRTOgqJLoA8BnV8MC+VUil7KL7v3mfEb3YzfOJ9x5zok9MTVldXkwDtpmjGa/T7wgDdzQeOgZ9IexYza+I9do+L5v7u7u7CRdABvnczO/b29pKGHe8pZgjF4NrOzk6a5BGfGYM2dV0nAdItPRDHJ2qYm5ubSRMerPRo24KmyrBthat7zMbHeKfJtcHjMH4OSITee433YFvwPsO2DdY6rPVkPRMCB+DaVrxCLuzSYbE7U9L6HK9KqkYEqckK8qxEmYzMSOkSowNJrVNUdZ3KqnqvWF/fDDnTjtPT09TXcYy7ffMqECBtAr8jhrpqaGpL20JZjLh+bYuNzW12t68lLa1pYvlh4Q9d31jl2myLx48fc7D/BXV1zt7eDk09o8iFrk578dUqr/DBBSaxYFkUvV5PnrmpwOigPcYcbB0UoKBNeo8LSnKWd4SkIgW4VCdj+yLG+mJAV2tNfcXm3m0/EkJSMG3gvQkROY2zKjy0aE2VDZT1ygdtUoRjlhvKMqfsRT9X4Cb3wQwHIlLJealxnWsRSN2Il7XRNI/BFJWuJ1X9JIrZFaRdAGoXpB5b1MwuDlT3GnEiSy3uxd8r+6kz5/MV0U5Tcr5kjNG6GJGU7yWDZbGIJpMJZ2dnbK+vJWEUNUVrpWzD2dkZ8/mcvb295PeLLeYGP38uqWGbm5spXTI+UzfqLs9k0nUSvCVwSO7v76dMqIsBnSgAIut5xI9GjTYGfMqy5NmzZ+zs7Czl7FtrU6qpRGcPuHnzZjLPZ9ZipzXb165zdnxCsbbBvBbtscbjfUvujcwoJTnYdeNpGnE9zGfnzOctzkngyBhF085osUCG14ItzEyP47NDGmOwGprxnMZ6tDasrm1gMnFDlP0+uTLkZZHmxcHREUVRUs+mnJ2eC54SsQJWV1eZTqep1EYMRMr8XU6K6GpdXVdF2zRkWc5kMmM6nVOWfe7eeYP+cES/twJKYxuHd1DXYpZHUlsQpv+9vT1hRrcNg16J0QqtkJriMvNSfMD7Fu9NKussKa4j6SdtaNs6uTFEdon23ro45hkLspFlZSfWQ2qaBrwOgSO39PzxN7vokWn24ppG8KMiJJWnyC14hc8CAMNr2lxgDNbmtHUnkOIczlu0NlilaMIpSkHh8yDrpCC9d4K1lM7OQTs8AiK3nR0kAavjPZHL4vDIbqZU8KUsaKbwV5jtr2DiXHneK5x2VdNX+FOKYvliXT9p1DKihtVlNgKJlEcgeTwGFgsrnltVFSsrK0lgdSdinKyRBAMWWk40BZVSqWxEFOIXC7MBicQjVrZcANB1ur+Y6ROzj+L9xt+J2vZF3xSqTZyYgo/MyUxJXso9tFQ01QytA9luqPCnvKK2nsm8pq5EK5k1np4xeFNA4CttrUfpnPG85nxWY3PDwBSYPCMvInuP/O+9bCaaZTalSAi9f3iwxBsQC6+trKwwGo1CCeRXSaBbbhKsUeR5yeqqQZk+w8FqqtDonEUpHeIAi5xv6UNDkfdwfcfGxpYoLVmGvmIyKy8Ky1WopIXCIH5HraIry4b7a5GESGG4WszF5ess+x3DHFDLc+EiGsY5hy5/DPgk8Q5vJ2iVJQJMrTNyk5yKKD9cWtgxPQrAW0UdNLnKNR1VmqBFBL9mFrGSbfgNfWlhx9YvFsEd78WXogh/lUKh0PrLzZmr2lW7lnqFCX6V7+SqheEv4L6iyRyPX11dhVBKNboIoglyfHycoEqx2mIXn2mt5eTkJPEapjKsHSFZFAWPHz/Ge8/KykoKTl00kw8PD8nzPAm3CLOK7guAhw8fkmVZIg2OeeldX/Dp6ekSnAsWmNcYPHr+/Dnb29spuKSUopeByjMmY8nLf/rkGTvbe2gNTT0HZTk7FX9oU1U0GM7OZjSNxVpP3RRo06c/HOK0plUZLYZp3QA9nh8d0uv1GZ/PKYfbZMNiUcbYCaHwcLRGvyeF5Yq8h3JSoCrOzbZxQjTcOHZ3pYywUorZZMKzZ8+4ceNGWvhd6j8RIoIn9H4Rw4nWEcQiWD3axuPRFHnB1uYK1ipc3NB0nOdxTkkQsm1k4zWZYdBf487t13F2jlLCQp5pDbHEBAE/CjhaqS2jRb9U3qc8b1eL5UjHQot+Ya1BOQnkpsQOtbyBSwCxwTctjRUWdClbudziXI9urS+DSv2ICEmFbg1aq0VCerso9amUwupnCTZTqBxFjvcavAk7kHRGa+dBpfc4B/OqIgnasENpVSRfVvTxab2SfHaihc6udAwv+y2v8G2+gh/oKrVRvUIa/VUWwVXBkouCs5u1EjXE/EKgKbZuhDpePxJ8RMf46ekpt27d4uDgYInYeNEvorG99tprnJycXPqNrjYZhWgMzkQuzxi4KooisSpFYduF/DjnePLkCW+99VbKf49CP2qcs5kUNYvsT3GMihJm0xlrwxHewcnhCXvv7tE2MzKjKEpDHqoyVnMhIP7i+5+yu3tNwOUxcONBK0fVzqm9Y9JmNE3FaeUYtxWDwRp7d16jbidoLZyXs8mclbVNyv4QnRch7ijmqO4kH8SN6N69exyfniSqvnouqIOYwpiwkXZRq/xiJDe2rjbl2lIEslZ452kCsYsCstzT2raT7RbmldcBCyksQUbnjAZbNO0JbVvj2xqXgUbMao+JK1CEpBJBK8qGoDfKsmTeSHC2CRtBXmQolaGUDXNGpP3FZ1psEsKEbo3HarH8lF62cqK5Hc9TSlHYHwOfJCiwEuGLmVQqwHHSAPVOg1DUOJWjvABWtSpF6EXhlkuaFt4QUUvOKvFtNi4s+hEEkG9cTN63IXMhmGTFsnNXKUWWLXx78pr8v3vaqzTJl/hEOr10qV2lScayE7FFGv34HDHwAgsiACBFkGPGjzzzIkc7Hn/37t0UUY4R1u5E/PTTT/nqV7/KwcFBMre7fJURsB8DS91niP/H2jg7Ozvpd7sCIGoCJycn3Lp1i+l0yu7ubsrIiVHfiPu7efNmSreLwtO3DRrxcR8dHHDrxk2aqiZSgLVthfWa3mCFogTHOW+89RUBxFeiTSYXgqt5/vwpdTNjPJnT75e88eY7gGY4WMN72NwQgbsyGFLXLdc2NyjLRXDNKE1dV5RFHuoV1Ylgo7YtaJXSSs/Pz1lZWeHk5CTxCUStGaIAERG1gCJdgM14T2Gk3IN1i9LJVVUxr8U90Rt0UQkhAOrFBFZkeGfwTsasV/bxZclsckpTzSiKnGB/IWhSLemJ+BC4MXjEp1zkPWqdoXyGNgESFSLuce6o4PJSyr9QGekG8/AGZZbL/8a5FN02Sin6V6FdOu1HQkh6PE0eTOC454RCTMm/US1qCEtHBGiGqnCq7nyu6EpaWZgKlSl0TzrsfPZMdurG0bYhxhMq6TknA3/SLqKweZZhTI5BBG+WiVugdbH7wi6nHFmuBZ/JYmK5Ktybdihl8aoB1YbjwmC11+UaEdqEJc/DpPIyqXK7uui0FLV34Rgp+u69T7mtsckk18ER7iU4ZOVcna4FyoDyLc7W5JnGuphiqBfmGjltA5mR8cgzqJEMkSoIv2u3rnN4doQxhrOZYDELrVNRq8nJGefn51y/fh1PG7IyHG3jE9HwcDiU+uAB2hIXcGRXms1myTcXBXnEfcbsocPDQ/r9fgr8AEtaRFULyqCxcDodc/v2hphfUUMxOaZpGJaisc4njrXtEVCT9RZmn2AZW46OvmBnZ4cvnkx5+603OptsYJSqKzI8bVMxn03Y3togL1Qac4cjH2gcNWiHo0VphXWB8LcYUI3naKVoaPCZRxWK3Z1dxuMxczvHlCFldZAzrUMQ0zla39IYcGVGYRWrlaZsNesTzw/XWx6vzskt3Dgt6c0N1g84U1NMfY5Ww6UNU4SLA2q09lhfgYbt2YyJUhwVJYeFpc+Mvvdstxm9eoBpDatKsT9ynPYcmdVszIYcVQ125w0Ozivu4/CxkoAzUmu71iit8drjjJUqqcqDn4Xx1HilaKzH6BKHQzjJM7CL1MU49nGzjs3kPxaa5CIocOkbf3XO9ot2kosmcff/OGl7/VzArUMjARplwCvaNmqbYqqLltAwm9d4rzA6D/cgWquYmQG2YuTenBX/jQ4kskpJQEBO9HjfoHUPWRgtAoQnRTi7whUlBgrY5LDuPCldAemxwRrxXCojrDxg6VZ79GTEgFa045WOubYS5Vfp94SRWg6K7xf30iskWycSX0QtL5rqbdumQvBVVaW0xS5RsFKKXk8E5MbGBg8ePOD27dtL4x19mtvb25ydnXF6esqDBw94//33L82D09NTrl27xuHhIdeuXVv6rhuEGg6HPHnyBO99wP2ZpWOyLOP4+BitNc+ePePevXvp++7f0WjEz/3czzGdThNje+p+tQx/ipryxsbGJYou5SVY2esVHB4esrOzGywkEQbx+OfPD5jPK27cuEFZ9ogoDGsltdF7aCwYD7n1aKXJLTRa4dDUWoPRHBcGqzJyK4iAo54KrOwW07ZSu9osm/CwjAyJ7XubOcpr8pni9klL2dQobWl6ioNVmJSKN583aOcoWoXG0eqcPLOMNAx9i/MVJ4M2aJLgMqizFpNngMNqiw9urlEtPtel/rsgQ6L/OmqP8ZiuPGmvtNEW7UdESHYm3eIDuh9cFJbdzxYRLb/08N2Bjd8rpUAHzcpqFBI5805hTEmvLws21cb28TcFxwmCfxO8ljipo+oeBYQI0UXmSlkuanooldO0UXB3NgaVBWiTaBYicNuFlqc8JotCzpMEHFr6qoM700GrlSbCtCsgQRzy0hYTzXsb3BsKvLsQTLIveA9tGzehLE1IrU3IHRdtzYRiS3Vd0+tJ9UrJ8GhpmmBFKHET7O/vM5vN2Nra6uBOxQ2S5zlPnz4lz3OOj4/54IMPrvTLlmXJeDzm0aNH3L1795L/Su675ejoiAcPHvDee+8taYbdV4QQRSB1DA51F2Qk1Xj+/Dk3b95MgcDu72VZRlEUyVTuajexKZeF9DxDXTeURT9wYEZYk1zvtbtvBTO1oG00RvdpGxVcUD1hJDINxmoKrSm8wqLxFlqtmWeKRsPjkWK1ynhjvyR3YgzXWYszikblzIsBNtCNtZ04QXftxb5YmfYwStO3iIVgG5TzUDtG2lK6mrPCYnD0G4fThnlmyFDsGMWp8dS6Ypa3nTWkscYLhYNt8QgJjpLSqKAiagLZ7LWXua1lLVi7nJQQ3U3dwN+PjZCMratRSvRNXfld/P9VrnfxvXIWvGC9fFjwRhfgalygTlHJsWxQWgDqRi0c1wDO6jRAUfOUqoBODOfw09MlbdYsqf0qwJWcdhK9U1FT9bgARlZKgXLoGKlbEniCBfMBQOuVRduukJQyE+JTiMLSLGBIKgLtY2ZJeEQkkvgqTV9ge4Hljck5l4KMi0CZTuVPI0TJti7Ro8VUtbgwowYW58BoNGJra4uiKBLRcLfFAFN3QV+1wUa6tciicxEi4r1PxCGj0eiSAO1ujufn50twqjjGF99Pp1M2NzeX/MHp9xR4rWicQ2WGxlm8VrRecquDR4+1tY0UwIpYUB+CP9EE1VrygzKrxJ+PDnuuwgrckXEJ6xWszzVZ62mMZUJgJspA5xnR0lv47xeaeBchsjkVH6DVjnkvY0qOwpO5ltHMUVQtX/Q1pfWYEO222mGUojAizGcoSgv4kCDiwThF3sp68s6Th/UopSEIwRwRqGn2qgjXW8iM7rrrpuGiXoxNhh8hIZkWV3gwLkzsF030i62rWXY/67amiYEGYUxWSgWF1STtqW7irimLU45bUG7Jwu1E/cIkXF3rJaHpwq5vtcV70VzapmJeWbmuyjpA9SyZ7nHyORd3a/lNvxyPARY1kbuLO1csCUmjFBC00qDROR2EppwtT2FIGql33brNy8cta6ng2iy5A3zYvWXnjn2ssEHblpKk4AIBbZ6VGC1BmbIwiXk8pl1GYHiXfchayx/8wR+kwMVVbpqIvbx7926qknmpn0KJi/fee4/j4+OlapRdYe+955NPPuGtt95KtZTSAuu8f/r0KUqpVFKjqwFH90Lbtjx79oy9vb0lNvpuMyaTGj/9EfN5HSBSAoyP2SRFry/UaHlgh6dj/nqoqxZKIRR2rQOBIYvPEuFDUEDZTsHlHBeKtqd4NpozG1QoZ1mZ5QyaAT53yXXSDfzEzSuut+ejHO1bDDVWw3k2oPEOZ2f0/Zg+FQ27FLQo10q8QSmcVeisD9mQRo9YP52mWul4Cb4qpfCNQlkojLi3TouF9WkJmEitxHcZcJ1ltuAZiOZ29G1HFERjXq4M/EgISec9BwcHlGXJ2spqWBihtCQqlWftRjijvyi2OFDdiXtRu1nkA8tEUgQHdNqNLM4HIUv4nFYieEDMw01Qoqzq/LaYra2T4kfaGHSIrDnjJSrvPN4ptC6DGR/S3dItROo3h3VtMuvjM1gdyHgTmWp0Pi67GrRrk/YZU8B0IGfIsjL4e6ZpAWsTYFa2RSlhhBGrP5jVnSCR9L0Nr9j3CygMqJDPG7wA4TN9YXxkHHRnTHQa0y5gPI51NxoPpCJlFzW62Ffj8TiB0COv5KWmHI8fP+bWrVup2FoXnhTnz3g8TjWBYDnTqitMm6Zhb28vAdsv3lN8tlhKZBn8HBiYHEymQk1mcqnYOD2pgkDKifGGiCsF0kbSvR/pz7ApZMKL6ZVAjFazjPnhESXwZq05qRVf5H3aXFMVM8b+iHJQMHcDsuMCE+KFUSDGPmjbNvlxR6MRz0cVq8rTf/yETTNilK9z6j2P6zGT/oyimPDm+U3G9Yy5m1Mow4bXeFVwOFjBr6zjTk9pjGygtQenc0kYaRp6RZ/M5zijaas5LlL2ack3b62kIWdZxmw6p9cbUFeLqgDdja07xib/MYhuT6dTHj9+zNraGoNQylW5UBWvaRM2rJvd0WW2iQ9/UYO8qimlkiIkGlrUYBcCUzRL8YuIi84F6EH8P2SeNBei6oS0QrXIyvEe8OLnzJRBmRgsCRpp0ADE5+SSAPReUrAkhzdkzbgo7CP8hJTj651MLO89Ju8wEUX/aUiztG14LiVge2MWQSetC2LqpdYaraIW7oLpLbx9SrXSbyGaruJivLBQl/r9UgXk2Hz6G6EdL7ICusKyK2AvBndABMdwOLy0MLrHzOYTRqNR4tPsEoHE6+Z5zoMHD7h//34q1NYVjFGTb5qGW7duJUREF64UhXl0AWxvb6dIfMw3jprarGkX1o13+FAXBiVCzgX3k+kStlzox/jXWI/2igZFazxOWZyvsUcHbIxP4fyc3slTVr/yAWfPxhSPzvipp8eMh6fUb13j92/ucWRW6fvlPol+2vis0Vf8J37jOzg7YbjhGb52jwfTCu0M99nCfPNT1k4f8kVZ0Xt3m6rvsPtn3NzPmKyt82yrj1nt0f+soulZvAKXZcyUpfbg+xqXQU9n1LbGKihaaK1De6Hm81bY5XWmRAlVLm1+3i8IheOmEufG3P7hqdL+f2/eOTY3NxP5gHMO5UQbaKo6VQyMtZWVUikbJOL/umzjcHlxLS2k6Odb0AQRKZlSACiguxYXgYsTMfkBfdcHp4J/pOMPsVZkazCDY0aM0plEkTE4pBJg9CfJQmkRpUwDpiMkox9UBKVtI+uMkC3ovE0CU9BJCqkT5GWxIZULvVNhDxCt05joJ/Vo7VFkqZ8EitWiKFgEjVzYaOyS8LkqkKK4LDhf5C656Fq5yg/a3pN8AAAgAElEQVR9lfule/7FKPVFt4T3HlR/iX0pZul0M7siHjTmgU+n0ysFeST76JKFdL/v+sAiuYdo7wvWI1nEJmn2UUM3ATeo0vyAy+lXl4WkDpaJVZ5GgVUO7WpW+xnPv/ER48dPuF+f025v8vRJRfmdZ/jvHaEGx5T+bdTOBnmvBKZL/RzvO9UHRzZx/Y3vMm9PeT464/WdNdRohazNGJy3TP75p6yMn/J4bUJxz/DF6T6z7z1m6+kQ/9pdsp1dstwzrGpqplJaoyzI8oKTek5WFmRWoULUvdAK67sWTGdz1zqxI3bnS9eX2n2WIv8xSEvMsowbN24A8jB1XXPwbB+AjbX15IPa3NykKApOT0/Jsizlr8YgQBSWL1o4nV+Ujr2UbhWFpsP5LvN2AML6C6aYE5iH0sEfAlgf0+7CAtdAI344n7RNCcx4K/Abj8N74QN0Npg0ymCtXvJZmnwe+ih43YO26X3UGEVgV0xSUMm7TLKTElYy5Mizmhan86KlOu/D4pP7bF3UtlVYuJLDq5QSRqvwPHnmXzgJ0xhcoUn6QEIS+1+pZY2va4pevGb3/6uEchRyXWd9PLarbUaBFjffuEnHV1VV3Llzh/l8njSQq8z8J0+ecPv27SUBG828aJp679OcjT7KbvAjz3NMJ4ggvu9IIL0gjZZ20X1whZB0Upai0Z4q81jl6PmW5mif7OApf+zGLve/dcxvjh/z7Be+xt4fv0v23RM+/t2/R/665vG6Y+sMbLEsIGFBm9ftg4fX5vz0T33At77/OzytnjHbvsXh+QzX1zTXcv7IH32X9/7Rhzw9X+GTswfc8C0/c/8rfOuzH5L9ZI8im3IrM6xZg8oMR5Oa59UZb+9u0zrPyfERu5vrzCcT6rrms9WdlIVXtw2gUUaLJqmFPaipF9ZnbFFGpPmvfgw0yaIsMWWBby2NtYynE2Z1xd7eHv1SiF6vXbvG1pZQMo3HY+7evUuk4jo+Pub9999nf38/+aCiwOzipKKfyIa85WFPMiCapmFlZYX5fJ5MNGsXk1U0y8sMPwohtY0+RSBEqC9iysIghEXfustmug7RvgV0KARFvOSJOwva9S6dF4NQ6XNgoFcXa4muQFksIKvOJVraCowJEG00Rew9Xq0lBdpZBRi6m028bqVMMNNlU/C+TbyfcbNozVnaPHzQQp3zLPhBwbTBtxZesd+J96/AYZcWJoBX8dio4XsyLfnDi+M6QadA1Jz5DK/Eye9DkM3oQDIRPs96Cryn1yEajsKhqwXeff1+AKLD+UwKk/l6OSqs6x5a52ijJT87Ly9BgC57xyILU+z3QOBxYdOxqTqiSn/3R4obZ5b1yvJZUWBcgZmscLBXcuvP/wKb5xXnv/MJf6T6V3n8xQrjzX3+z/P/ma/uvIWv/yW+636KOvtdUNuL+wu3URSFVD0MpC948L/8HicPK1YfeLZuaT4f/x4943n63h5f++U/yaNf+x0+LW5QtPf4c/ue9tmnsPX75CvXmdo97rU1f9p9xN+/NyZ/NuE/eH6dv9eOOf7pdV777JTehx9x7Sd/in84bni0UZAZizdCwuHalqZ2ZKaPxtArerLJDGXNO+/xhCAg0Ib+stZTqssk3N32IyEkY36tQfH973+fzBjeffsdHjx4wPOnz3jjjTfY3dnhm9/8JlmW8e6773J4eMjZ2RlZlvH222/z8ccf45xjNptx7dq1RAgb81sjtKRbPjaSJcTqfTFl7qLmeTEAlNoV5mL3nKgBXRUMuGhOXmV6dr+PgZjudaOWcvG6V93LpT7PI3EFLKLz0V3gA/tSu6QZee/R0R3ReWV6BeeduAOcw6YshxB80R7tCvmrI5egR5sSvMOHAJHDhvUmmjneX+4XJ2wyKh4HdJle0vFhI/Q+HRA6Nb6uHruLlshio1uY611NMr6vQ+Q3vrr+8+i7Mzpb0mquGvNXZfJ5WZ3o2AaNQnmNwrJSOxwaUxiGtaf6/kO+8eF3qH52jbWv9aFXUDQWzuY0WytMVgyNa+iHMrmv0oa/fczDT/bpbbxBdeur+Mf7mJMxX23f5unvfZPJZxMGP/82R7dHfO8H51g3RhvDPhV1bsn7hqrU5N96Tts6vtgcULercN4ysgWv37rPtFFYoxnHjbHThWVZgjdkuQQ+8R5tFllC3sv2rJS4jzyAMXj7Y0CVFrW8k8Mjtre32d7a4uzsjIcPHzLs9VlfX0+ZGDFL4aOPPmI4HPLBBx9QVRXj8ZitrS12d3eZzWY8e/ZM/A0hsnkxOhojkEqpFKGLPil4sb/sVVvXZ3bRJ9rF+73ot+K9LglFfflaFwNWrxK8AnBNjRSrV8EUjk4chfKSZZsVXYEYFbyFby0KCIPD+YVA9bikXkdL2MdItfbiLlAeggkvgSSPMsvs8FE4L/dr9/9uwCb2Y/BJKiOCNN3/VYGOq/t9yQe69NuLuREzOCLiYlbVS8iKPGiJSqlFvXenLwnJi2N/lZB8kTvhRfccW9lqfHBh9FpHqxxkmrKyNI8PcKfnnP3L7zDZAqaW1VlL/ewc95MjZoMMXItdQiq/vPmPn6MrWPuZD/hBlnP99lusHJ2Rn2pmh1N+4p13eLi3yomxzFzFaFSy9dZ9Zt85BeUoDDjl+Jmdt3nSTHhoPIetZYseZl4zHK5QOY0zitqAzNkF477WGhsSNQQWpdDmgj+SZYpE/IKE90XtR0JIKiUaZL8ouXHjBsfHx3z03e/xwQcfsLW+wSeffEJuxG8Z8Wh3795ld3eXo6Mjnjx5wjvvvEOe5zx58oS6rlMtjiiUyrLk0aNHPHr0iK985Susra3x+eefp3odTYcxWymF62QXdKEoS+0VNcmL7ZW0xiuOs65ZOkapCIZfBKBALU8CXiDctQ9UVRIgEn+l61wHmma80IayBQi8q0EBKF+loBEE+ehN+sw5h21jIEXKyYrveR60Wbl2VixHUeEyS5FhQbgRjxFAcEfoKFAugkpfJAwl2uuRVP94lLoANI6lAro12yNBR8QNOucwZS8Jwy7kJDbnhC3ny4SkupRT+qL25ZrksNbMjQINK7VnkreMS82d05qjHz7lzd3rFLdu8ow5988sXx0P+OHzHDY2qIc5RVNxmmnWX/GOdutDXvuTP8fX38j4ZNVjD6fcWivIx4ecnP2A8mf/KJs7Iw4zx6wx2DbjeDKDasZW41gno2g8vecZn5SG39meo0yPO5MCVxd8TkNW5Mxn0JgMH2pH4T2KRXkHY8RaMSYL75cVH980i75Pc/nF+vKPhJCM1QBv7N3gs88+o20a3nvvPbTW/OAHP2A6nXL75i3Oz885PT3l+vXrDAYDTk9POTg44Pbt21hr2d/fZzqd8vbbb6dJHh3lJycn7O/v88477+Cc4+OPP15i3/7iiy/w3ifBurm+mBov0vSuEpJXCdNuxP3i912N86prLZ8XF4YIRe9jYKXjtlOkrKGLv790bRfj9+0LftuQmUUGg7PiC4u8nV3Bm5lxgg5F1iWBN5kAklchn9jTtpa6lvdlGYMk8v94ukyPp5RC1Rc0yXq89D2wBOmIfVqaZUGUsjG65ra6LGi6wrBbBqKua6qqWkR1VcagX6aNo+rSbQUTX18av84hnU1x6flesvF226tZNZpJoamN5EpbrXlup7yflfSyPjOd8/pvPGXrp16DZ+cMLSi9xpnPsU3LLg2fDftQvdItcXbybZ4+0qxsfpXXTlY5//gpf/DFAX/hT/xRBqefcvgMZgf32L51F1dvUc1rnj46pmgVG7Vl1WkqpXk8mfHdwvEHo5yv1AWuKai3t/iN8x/y3u4ezff26dU5Y2VQWhIzBD4mQdQiLyjLXMiYEV+yiulvzmOUThhLay3kf/iSsj3gnwBlOP7Xvfd/RSn1PwD/CnAaDv33vff/XMno/bfAvwZMw+ffeNlvaK3Z3t5mPp8zmUwwWrO+vs53v/tdDvef89Zbb7G6usrXv/512rbl2rVrHBwc8MUXX1AUBVtbW3z88cdMJpOlKHn0MY7HY46Pj1lfX6coCg6ODplVc27cvIFX8PzwIETH5H3TNMynU+7evZt8S5HbMBa0Es1AOjdGKyMkKdanjmp8NIkjFVlXML5ssl8yt9UC1hLG5gXaiLp0ncvjemExquVjvLe45rJwvaq8hA2BKMmOAKVzceTjsAmQLiQdeQF5sfATta2UQ3DO0TNFmrhNUye4TPeZsvA8sW8jWUTEG4pmmjHt1P7uXqdrelnmS5pxzOqJWTVSxjdozFpR9nuX4D3AUlAvXTtE1rvCPJa16LauRi6azbJZf9G9ksb6FWSkU5Le7IE2U7QaBisrjI+OOWoaPn98wNZ+SzXa4Z2f+IAvHj7hUw23Qt59Masx7uKmztJ4dJta3+Dhk2c8evJ73P/aH2fN9zE7N5meTxiYPt/79vcZ6zFbxTrv7t3jux8dsF9PMBvXOHENdTWjLjUHw5zxRsE5AkObOTjQlt+356zlltHKBn48wY+KYLUIyUscy7qWAnrz+ZzGiVst1wYb1qTy4m7y3pMbw6z9w0e3K+DnvfdjpVQO/LZS6n8L3/3H3vtfv3D8nwPeDK8/BvyN8PeFLU7s07Nj7t27R55lid7q7q3blGXJN77xDV5//XX6oUbzp59+ymAw4J13JMAzm81YX1/n5s2biSA2Ml1//PHHrKyscOfOHZyTAkq9Xo/hcMiHH37IcDhkMBgwHo85OTmh1+slJuzop/Te89lnn9E0DW+++SbWWg5PjllZWUmpZZG0Ib6PQZt4ja6AhMum9Ze/72pxHYr6S+3iBL5iQnvDUnphukxX3Sm52PxV5MChZlBMeZT44XKeO7qbX71I78xzKAqNUhmt7aW+jsKjq9VZa8FGVdCFIMlyH8hnDa6JcKllnGTXl2p9na7dvUbX7VIUi3rksXWrXXaf6KLg6AZ9vsxaWGycl4N6V26kXyIkvfdUmZxvjeK8gEZr1NTRrG5y7Rf/NLtFy3XW+afriv9jdM7gnQHrr/07HLk+RW0x8zPWJor25anNqTW//CvQeH76bMRqNeLwzXUezo/5dFhw7c/t0OiKW1nFQXGNbH2Nm2/d5YH+Ls4aPhop8ikcmjl+3fNgoNDWMG0dn1QT6uqUh9eH/OPxPrfHitFgxBgk+UIJK5WMK0hIr8E5T2+wCk6A5M7akDwm2qRW4N0CU/ui9iolZT0wDv/m4fUym+CXgL8Vzvs9pdS6UmrPe//Fi05wzvHRRx8x6g8wxrD/7Bnjs3Pef/99bN3w4MED7t69K8GdkxPG4zFvvvkmo9GIH/7whzjnePvtt+n3+4nKvyxL9vf3+eyzz9jY2GBvb4+joyNmsxnXb95gMBjw2cOHqMzQGw44PD6maRpu3rnN2toaq2U/1XoBePLkCU3TcOPGDZqm4dvf/jZ3b99CKcX+/j5VVbGxscH6+jqTySRF0KMmGgMQF5m/O/185WcvWlwvO+9VNEkTqdKWapc46OZruyv8Xlf5btItuM7vLR+n6boKAK8lAhlruniF011SXREOeR6hRwHOEy4TfYLx2bq5xU3TkOmopcn3MdsCOpFOI9qWKfK0UXvvE3WbHCu+jC4pgs4uL5usQ9zaRR3EZ46L92JbChL5WHIhHrtsMcihHShTdwiusk6UZ7XxVEZR5YrMGvbmA868pb15k4yGbyhNf5DjspZ9ZTnO+uxOHLlpGewUjOaa02LxOy+TzV+/dg+v4LUjz85E8en1gi/KLVbminVVMhtmXJt/xHm2xmC+Rjvq85k6Ih/PeXB6jj88pRoMWbFjdAY7jeZkCEdM2Msz1n2PE52xPRrgyh7ej6VfvcIjZW2zDLQ2YZ01QkDtPHlmGA1HGKVp5xW+tbjWUleV8Mm9pL2ST1LJyP0z4A3gr3vvv66U+g+B/0op9ZeBfwj8Z977CrgJPOyc/ih89kIhOZ/PuXv3LmujFT788EPmsxl/7Kd/hgcPHnB+Ij7ISC21vr7O1tYWSilOT085PT3la1/7GpPJhNlslij9Hz9+zOHhIXfu3GE4HDKbzTg6Okrkq48ePaKqqmTmz+dS5yTWZKZuE0P3o0ePmM1m3L17l6Io+Pjjj7l//z5rK5LSFtPW8jzn8ePHqfxpWZapOuHKykqqVd1l++5qlRcF3iUBmBaGaJJyzhUC98JivPg/gDAMBcf30oLzC0Hp55cH66r55ITrLwrZVMY3Xddj2yhEIhA+ug90IknWvkqxVBWwdzEzJb5aGyKZgTVGMo+c+DlpxCdVamw1x7o20WJ10xkzY9Da4E12SUh14T1AKNMQg3cugcQvNq0X2TNdEHu8Liz8xhfb8qZ22Q1zWdt8FWErCIXR3DMtPIdlRtkYdsc5j1dKDkaaQdsw6w949/GEtcZz3Ms5LAtUM6MpLE9Gjr2nauHPpSMkr7iHt89axmVLzpjMtMzOasrVkq3jktvzFY4LwzwraFUfozeY1GNWt/ZYac557aykyDLOzDWqTAiVs9rxcCPDWs3NA8ftfXi4nnFcZIxtQ4FKmXE+JIMsCEU6SAgdMcUNFoVRCmcdeE8vL7DZ/wdC0suvfaCUWgf+rlLqPeA/B54CBfCrwH8K/FWu3mwu3YVS6leAXwHY2tlGKcWHH36Ic4779+8zmUx48uQJmdJsbGyQZ6KBRbKLSIQ6GAySDzAGXSaTCfv7krHT74tGeHJywmg04tatW3z7e99hMplw7949Dg8PefLkCWVZcuvWrQQZ8sEMOzs7S8fGINBkMqEsS6bTaaLa2tnZoa5rTk9PE+W+tZZnz56lYldAImXt9O2SoPwXaa/q5H/xcUFQ+ouCMn79ateX0RW6NSK8Z/lLFjBpEZCgaVsXhGLYLDqkGbGJrAkLwYMOxMcxGyZGl7t1fLosL10Nses31lrTdEzbGLC5WGQsUeZdCBZd1ZddH/HVx716UOZlYyuohi8/X3vIvUqKkvJQWMBrauQ732pGM9ieK1QLx/OKcpDTaMdUN7hXjrbD5ukYeg0DKoauZrcwTJVlfTZhqyqpxpZq1VDPG1QrNXUyn9MnYyPrszrKKYoVnnpH7kBbT5MpPApvHSMl3JNOG+wVc1P6TDboOA5ZTDW1jnndoDz081ALCNE6v8TaRr3qQksnKPVXgIn3/r/pfPangP/Ie/+vK6X+e+A3vff/U/juI+BPvczcfuPtt/x/8lf/MmfHJ7zxxhsUec58OsN7z+pwxHQ65exEmKa11ozHY54+fcrGxga3b9/m5OSElZUVQCb248ePqeua3d1dSV/67DNGoxFvvfUWjx49woVc8QcPHjCZTP6f9s4tRJIsve+/ExEZea28VFZlXbumurq6e7t6pntldnZbaw+YRYbVIoQfBGthsDACY5BBBoPRYjD4US+WMBhjg439YCzvYLMe7xqE8MpgPOzIGvfu3Ge7p7u67resvGdGRkbE8cOJOJWVlXXpmZ2pntr8Q1CZJ09GnS/yxBff/aPb7apwo2JR269s2+bZs2dUKhVisRgvvfQS5XJZ925Op9OsrT7BdV2mp6exLItyuUyv1+POnTtUq1X29/eJxWIsLCzgui4bGxvk83mmpqZwHIfNzU1mZma0xBox/cgZEaXKRRvACJ+Ukdc1srn2x12ea8vSP/wFgpaNk27NYec0/HMkYEAY54esyOCk8WvwXI531Omy1WrRbrd118WoKO6wdQ5btwzMY4ytP+b06PqdvE6DdlMpVUXPfnV+mIkjcmydex0u4LjR8adnMOXoyvV/b9DZZxi2fkjA8erp0fUIvPN/O1DPvv5zD9sHltEBLAjiaK1C9HDcMvVGmb98+3/TPFSKqPDUYQrVptYLehATeIFPL+hh+zKsQ6BquCohKo5pxnA6PQ4Pq5i26pDZC8PNol7gQeiojVmmdmK+8X8+eFtK+bUTaz6PcCHEJNCTUlaFEEng14A/jOyMoTf7bwLvhV95A/gHQog/QTlsamcxSED3JFlZWWFzc5NOu01pYpJsNkutVmNnZ4fSxCRCCO15XF5exrZt2u02yWQSKaW+YdLpNFNTU3oTX79+nUwmw+rqKq7rMjs7S7PZZHJyklwuR6FQ0F37bNvGdV2ePn1Ks9kklUoxPT3NwcEBrVaLYrGo35dKJT1/e3ubRCLB4uIinuextbVFOp1maWmJtbU1qtUq+XxetyY4ODjg9u3bpNNp2u02b7/9Nq+++qrqC1OvU6lUmJiYYGxsTEtETtgtMJFI0Ol0jjmnhqVhRmri8B/27DaaCsNsp8PmGQNzhjzlh/GMQfPCEBvoYDB51A8alKc9FotTLKpmYVFjMbiYXZaBmMXoOkc3+nkCxLH/McAYhqnkckjDqWEmlkHb4lBPsjhfC7mIANQvNUdJF8MSFC6EY5fjNMYd2cIFUQ1W04wRs1MkUy6F8SnatT1luiAgZln4bg8R2YnDPR1D1a6MkqmCQDlGu90ega+KBtuxBIEQYSZOaAIJlDbhuSJ04vlhv6fTcRF1ewb4D0IbkPi+lPKHQogfhwxUAD8F/n44/3+gwn8eo0KA/u55/0CV9E9oJoeUJJNJGo0GjWqN8fFx0uk0lUqFRqNBKpVibGxMp4BlMhn29/c5ODjQdkbXddnf36dUKumufpubm1y/fl1vwmvXrnF4eEipVKLRaOiNHRndx8fHyWQyAOzs7DA3N0c+n6dWq9FqtZgYz2NZFs1mE8uydNvSqGNfJpPRGy6VSjE5OanzzaWUFItFqtUq1WqV2dlZxsfHKZfLOt6zVCrpmxYgHbY37XRUu9t4PH6sMnUkBfTfoKffKBdJNruYlhEM2kAveE8FJxjEsBUMnKxvUhRSE3UJ7I8ouIgk2W9ri+b0M8gjZ8ng904G+19Icj15qqHnHmSUw9TvQTvlUEZ2ASYZObyitsG2betojfPU/tPWf84MxRxDBklYOMYQMeJ2mvFCid3NFKbn4wVuX1KHPGKS4qj2aFRVy/OCMCZX5eWrgi9H0QURraLvegmh+ovHh4Rm9eMi3u13gF8ZMv6tU+ZL4PfOO28/ogo+7WaLe/fuYRoGjVqdw8NDknacXC5HvapK8SeTSe18ibrl7e3tsbm5ied5rKysYJomOzs7upxaVPJqeXmZa9euhQ2WJul0OuRyOV1VyLIsdnZ2cByHqakpEokEvV6PWq2mw48cx2F9fZ18Pk+v19O9oG/evIkQQpfwv3PnDkGgekKnUimy2axuAzAzM0Mmk6HRaPDo0SMA7t69y+HhIe12m1wux9LS0jHV0fd9Dqo1NjY2MAyDGzduUKlUtLOgvxWC23OOFfkYvnFPhrGc/DEv5oUXxAfmDDnVkLFB4W7YKgclskAclR2L7I2RtBlJzv3ppWch8E8ym/64xdMwTMIyjZOZHScw5OkxVMLt/0qfmjywiqFrel5ED/lGo0Gz2aRQKGj7uY4JfQ5J8nR7rIKUtpooIkYJfmAQSAPDSDE1dR2v10H6PntbGxxsbZBOxfHcLsJQ6aY+EkwwZIAwRFigRdV/UAVaDDqdLtVKg3Re1WaI9oUpLK2BKZulgeWf/Xu/EBk3Qgg+/vhjpiYmlTHe81hdXeXGjRsUsip90HW6LC0taZUgctRUKhXW19fJZrPaM/3+++8zMTHBSy+9xObmpu7Ot7CwwNbWFpubm+Tzeebn54/1UKnX66yurpJMJpmbm6PValGr1djd3WVlZYVnz56xubnJtWvXKJVKbG2saftlJLk6jsP09DTNZpO1tTU8z2NhYYFMJsPW1haJREJLnE+ePCGdTjMxMaHyfzsd7QhyXVcHxEYhKZVKhcPDQ1577TU6nQ6rq6uYpsnS0hJvvvkmvu+r6zBbolQq0W6r+pv9HvDopkvEY3iep/vJROEz/a0GLOt4bc6oMO0gBveYP1R9GWLLNAae4EOcBIPbV/qEueYSGUjVAkP42DELQyhHSxTkP2jb678GkZH/RDA3g0xwuBp7gnkNkfgGz2sYRzG3gzbCaN4wiXSYRBeFl0WSYCqV0vukXlcVl/wgIJ1O6w6Vvu+TTqd1PcsIkeSYTCZphWXIIgRBcNTW+RwMStZDHxZRmb8BGCKmQpbGigRzt/DcLl3Hp1apguhhWCa9nocIAgIEMgAjBt3uUUJAuVwBGcM0YnSdgEwmjxc+QKMmbJah9rEfBpML01A9r87AC8EkPc9jeXlZVwFqNZt85dZthBB8+OGHdDodXl65CxwVpjBNk06ng+u6OjTHsixWV1eZmZlhfn5eO2amp6dJJBK4rsvm5ia3bt06Vn/SNE3a7bbOCc/lcvi+z9raGolEgldeeQXXdRkbG+Pll18ml8uxurpKvXrI1NQUk5OTWuUtFAqYpsl7772H53ncvn0by7JYX19ne3tbvz84OKBarXL//n3dZS/qs5JIJHS2UOSp3dvbw3EcFhYWkFIFtrdaLRYWFlhbW2NiYoJUKkWlUtEd/aIbrr9SUHREqYGJRArHcfX6VXtS8P0OYIaB1kp9jcUSQyUff1DiNIapfkPscSduvvOdSYOZLQCJhHmi0tKRpzP8T1F4ZjiubHreCUnyJC4qRZ2dQXWadHme2nza92Kx2LFMryhTyXVdstks5XKZRrNJPB7nBz/4AS+//DL5vDIPxeNxHYYWPeQBLUy0220tbQkhLlziYnDWsLWraK+oNcDgXhKARTY3QxB4dDsuh3vbVPafYQhJzFJhYUfagkMsFqPZbPLs2TOyY+MIbFKpLHEbqpUGdkZVALPMsA0M6qESmWoC34P42WzwYnWZPm+EYnq73ca2bfL5POl0mmq1qoK/p6e1yhlJOt1ul1qtpgO+pZTasVIqlfB9n/39fXK5nO4p0mw2SafT+sd3XVdLEs1mU6vfpmlycHCAYRik02kMw6BarZJOp8lkMtTrdQzDYH5+nunpaYIg0IHqUQpjt9vVana1WtUxmpGankgkmJubw/d92u02z549w7ZtJicnySuadl4AAA+USURBVGQyOpwlKv/WarVIJpNMTExoj/zU1BSFQoFarUYQBBwcHFAoFMjlxojFTGIxVUH8qCeN8gIKIfE9idcLEJgclqvh07fHwf4hB/uHIA1kILBMG8u0Q4nNIvA5caj2EUeHtjn1H5w8oqKyR4c4cZzYKkPmRLFxcFJqHLrdhqjL/WOf5jh3i58z57TPTxuP9kckHAB6XwdBoGKMGw263S6VSkX3D4/2e3Tdotf9PXf6iwRftHTbaWs//ZADRzSuVG+JRTKdCVVl63iVLj8AX4WAua6L4zg6fMu2EyAF7ZZDr+drgQNUnKTrutpME6UQ+1Lin7FnXghJMmbFaDQaWMJQ3e0si831DZ3hks/n9ZPNClMWIxvkwsICQgh2dnZoNpssLS1xcHBAuVzGtm0WFhYol8s0m01832dlZUW3II3ysKMQiOnpaUBl19TrdW7duoVlWXz00Ufa0WLbNtVqlWw2y8R4Htd1efTokVaho4139+5dXci3XC4jhGB5eZn9/X329vawbVtXst7Z2SGRSDA/P39MugWoVCq6I2CpVALgyZMnxONxZmZm+OCDD0in03zyyScsLy+Tz+f1Bh9kBsdDXSzS6QQ/+clPeP3115mamiKXy3Hjxg1SqRS5XI7JSRVhYJoWrtul1+sOL5ZhnFQRT2JY+Mvg907OOOn9jWg5snMqmo5snEJEEme/JCn06yOHzLCc9vOl20GVOQoBOgvnSZKnvT/te9lsloODAzY2NgClMkeV+13XZWdnh1fu3aNcLjM3N0c8HteZa8cdVEcScFTtP3Lk9Hq90DlyJmlHa7/AHNlfUT2SJPVDNDyLkUIEAel0gUJxiv29Z7jtGq7vY8cSqGr8gna7q+34mUwWIZSnvNPpcnhYYXZmgbEx5XjVXS59VWDboC90yu5LKRqCF4JJRiEzd7+inB27u7uaAcatmGrAlEhqW0mv19MZLYZh8PDhQ27evMnS0hKNRoPHjx8zOTmp7IZbW6ytrVEoFFheXqZWq2lV1jAMdnd3aTQaFItFxsfHefTokc7PdhyHWq2G67p8/etfZ39/n93dXaSUTE5OUi6XqVQqOI7D/fv3aTQavP/+++RyORYXF3Ech7W1NVKplJYO9/b2iMfj2uv+8OFDbNvm1q1bxxiklBLHcWi327RaLXK5HEIIXa0oHo/z5ptvMjMzw/r6Og8ePKBUKoXtLHwtEURSKxyP3zNkjMphjf/+xo9Yur4MQDKRJpXMkEqmSKfGMI04MjDp+RLfU06zYQiMC4QTDXN5DzKEYfa/wfd9NRsH7YL9BSVO8wYfO5e8iJf4+VTNQc90/8PqNGFlcL0nv3fyiw8fPuRHP/oR3/3udwmCgEajwe7uro4EuX//Pnv7+2xvb3Pv3j0Mw+C11147CqQPbZL99VaFUP3Moz3fbreVLc+6YPL2BZxlykM9kLYqoideWPg5UF5nK55gZm4Wt7PI/u469cMDhBBhhEeXTqelI0UmJ6cIfGWP7bRdOh2laSZyce3YGxsbwxQqj9vpqvoOMvDxzC8BkwyCgPx4jtx4jo2NDdJjKTLZNGbMoCc97KRNpVVhamqK7e1ter0ehUKBRCrB06dPscdsspNZak6Nj55+jJkySY+ncenyeO0RE4VxSjNFTEvqOKt4Isb29jZuzyGdSRJPxPCDHrm88oTFbMHefpnDigoR6nkddnY3KJfL3LlzB9OSdNwu9VaTheuLSENSbVRx/S6FiTweXZpOnVa3zngxTWE8xfb2Om6vwWQpSzJlsLn1BM9vMZEbwzSPWrW6blTvzsc0BYVCjunpafbLe2SyaR4/ecQ3v/lNnq2vcnC4Tyabpjg5TttphU3TVGCtMCxitk0whEElMine++gDlr9yi7t372pJOpvNHqVNYtILjdpGzML1T5YyAxDy+DYaypDOCKXRc4Z5zsXx4GfTGmxXG+ZoC0Uz8sjLHXEuAfSGVHoRpqU/72dyxx0u5olxIYwwES6chwyTjCJbpyrye1RwQX3HQFUJtyxBz2kpW7FlIuJJel6AlUzgOV296KgYR5TvL4NAN4P76Ocf8Bu/+R0mSkVlL89m+dnP3mVmdh6JQXFimlq9yb17X8V1XcrlQ4QwyeVyBIHqIuh5Hn7QwTBUdJ9hGNixOIGvHtCJhI0fdPD7NIVBZ1T/X9M4HuUwGOIFYAh1TaNcfNWm+Xj/HstoYZomTg+MzAxGsYXlZ2k1PwSvBTjUe226XR+PNMmxMTreGM12h1qrjR/4VGkRt5rMxifxfRfXc6GlytzFbZtEKqkdlwnbGLr3IrwQTFIYgqmpKd599108z6NYKFAqlbQqbJoW+Xyet956C4Dbt2/jeR6ffPIJ3a7yejebTVqtVljs4hapVIp6rcadO3fIJFNKjXCj9p3q4lQqqorP2NiYdrYsLi5qNblWq5FKpVhYWODJkyd0Oh3m5uYYHx+n0WiQzWbJZrNkMhkePXpErVbT6YtPnz6l0+loibdSqVCr1chmsxQKBa2GT09PMz09fcxRY5om3a5SJWKxGBMTE/R6PZLJJPv7+3zjG9/gnXfe0fbJ5eVlrR4pKfS4BDLM2VIul1lcXGRlZQU47rmOzA9R/+x+hvi8cXPPg/POPcjATpMWT7NlfpGI7Hz9sIwYvW5HB/1blkUv7LXiui6BYRyrJjRoN+z/HVZWVshms2xvb1MoFHj2bI1r167p5IRkMk2hUODhw4cATE9PU6/XCYKA+fn5I4mbHkIX4FDIZrMkknGq1UPcXpuZubReT79NM8J5YT/PD5WTbxgWqZTNzPQ82XSGQjaJLbqsPvqQRqOF0/GIxeJ4PcnOzh6HlTqdroMQkq7XwzBUrQTbtkkmk8QtVdXLEIKe09XOzf5+4sPwQjDJmBXj4OAA13W5efMmCdtW2S+hmN9oNHi2vopt28zMzKjsE8dhfHwcIVR72Sjj5caNG7TbbTY2NpB9G6Lb7UKg+gWvr29SqVRIJBLa47e+vq5VYBWK02FxcVH3XX769CmvvPIK2WyWra0t9vf3eeml6zp0SEqpVR0pJaVSCSGE2rQNtTlnZmawbZt6vU6tViOZTDI7O3usxFqkZm9ubmIYKm896tdjWRZTU1N4nsfi4iK+7zM1NUUmk8FxlKdP9egxT2ziQSQSqsFalAMd2aL67VOGOMkkL9Jb5aK4CMMdZIrDJJhjVdLPcPicOPenXvn56F9HJBF6gadv0k6zRa/X4/HTJ2yXKzRbHb724AGl8eIx88GgGh6ZYmZnZ1lbW6NYnMCyLEqlEplMVtvuO50Os7OzuvaA4zjU63UePHiA4zg60QEi77U6hFC2+p7nhg/owjFnx+fLHBUsK6b2mRR4PUkmnSdpx0lYAuG12UtuIQOLrhPgOC7dXgun4+P5Et8XmJZBLGYwXpikWBzHsizl5Ok4SClJhs6ciC9EXv1T1/MLp/BTICpSMDs7S6vVolmvE4vF8E1P2yCKxSL5fB4hVGmyiAGl02larRbXrl0jm83SaDVpNlXbgfnQMaKzUqyY3jSZTIbp6Wlt8ysUCrppfLvd1pW2Iwnt1VdfJfKIx2KxsOpPXDO1YrGoQzE8zyNmKwZfrVbx3a72lLfbbe04ijJwXNfFEHEditRut/E8j/n5eQBlZwmlUiklhULhWBm3brer7UxRcPV5ntcoti6C4zikUqljzp3+6kGfxw1x0ikzJJ1xiOR4GuOMcHGb5OcvFUdSouu67O3sc3iwx5NPfs7HH7yrMrXiNk4AEoPF5WVK48Vj642kt8GxbDbL4uIi3//+65imyVdur2AYuxSLRa29+L7P5OQkN27c4MmTJziOw/b2NpZl6d9eCKFNFBGTtCyluaVSCRrNCsJUElgUizlI57Dr/ZmuXSDwPYlhKWEpFjMxjSS57CRep8rc7CKNusPGky3qtQ5eADIw8AKJYZpYZoxkJsHs7DyuUw21UVNrjIYQ4KuwtmQySbvbOnM9z13g4vOAEKIBfHzZ6/gCMAEcXPYivgCM6Lxa+GWh8yUp5eTg4AshSQIfyyHVN64ahBB/OaLz6mBE5y8HXoxg8hFGGGGEFxQjJjnCCCOMcAZeFCb5by57AV8QRnReLYzo/CXAC+G4GWGEEUZ4UfGiSJIjjDDCCC8kLp1JCiG+LYT4WAjxWAjxB5e9ns8CIcS/E0LsCSHe6xsbF0L8mRDiUfi3EI4LIcS/COl+RwjxVy5v5c8HIcQ1IcSfCyE+FEK8L4T4/XD8StEqhEgIIf5CCPGzkM5/Fo5fF0K8FdL5n4UQdjgeD98/Dj9fvMz1Pw+EEKYQ4qEQ4ofh+ytH46fFpTJJoVpC/Evg14EV4LeFECuXuabPiH8PfHtg7A+A/ymlvEnYejcc/3XgZnj8PeBffUFr/EXAA/6RlPIO8AD4vfB3u2q0doFvSSnvA18Fvi2EeAD8IfBHIZ0V4HfD+b8LVKSUy8AfhfO+LPh94MO+91eRxk+H/qyFL/oAfhX407733wO+d5lr+gXQtAi81/f+Y2AmfD2DigkF+NfAbw+b92U7gP8G/I2rTCuQAv4fqrndAWCF43oPA38K/Gr42grnicte+wVom0c91L4F/BCVo3ilaPwsx2Wr23PAet/7jXDsKmFKht0iw7+lcPxK0B6qW78CvMUVpDVUQ38K7AF/BnwCVKWUUX24flo0neHnNaD4xa74U+GPgX/MUf2yIlePxk+Ny2aSw5KBf1nc7V962oUQGeC/AP9QSlk/a+qQsS8FrVJKX0r5VZS09XXgzrBp4d8vHZ1CiN8A9qSUb/cPD5n6paXxs+KymeQGcK3v/TywdUlr+bywK4SYAQj/7oXjX2rahRAxFIP8j1LK/xoOX0laAaSUVeB/oWyweSFElNLbT4umM/w8Bxx+sSt9bvxV4DeFEKvAn6BU7j/matH4mXDZTPL/AjdDT5oN/C3gjUte0y8abwC/E77+HZT9Lhr/O6Hn9wFQi1TVFx1ClYz5t8CHUsp/3vfRlaJVCDEphMiHr5PAr6GcG38O/FY4bZDOiP7fAn4sQ+Pdiwop5feklPNSykXU/fdjKeXf5grR+Jlx2UZR4DvAz1G2nn9y2ev5jLT8J2Ab1dR6A+UJLKKM4o/Cv+PhXIHy7H8CvAt87bLX/xx0/jWUivUO8NPw+M5VoxW4BzwM6XwP+Kfh+BLwF8Bj4HUgHo4nwvePw8+XLpuG56T3rwM/vMo0fppjlHEzwggjjHAGLlvdHmGEEUZ4oTFikiOMMMIIZ2DEJEcYYYQRzsCISY4wwggjnIERkxxhhBFGOAMjJjnCCCOMcAZGTHKEEUYY4QyMmOQII4wwwhn4/wFwajy2qRtoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sample = random.choice(filenames)\n", - "image = load_img(DATA_PATH+\"/cats_n_dogs/\"+sample)\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/demos/gpu/horovod/image-classification/02-train-with-horovod-cats-n-dogs.ipynb b/demos/gpu/horovod/image-classification/02-train-with-horovod-cats-n-dogs.ipynb deleted file mode 100644 index 7cb681f7..00000000 --- a/demos/gpu/horovod/image-classification/02-train-with-horovod-cats-n-dogs.ipynb +++ /dev/null @@ -1,212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install git+https://github.com/v3io/v3io-gputils" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "!rm -f {os.path.join(os.getcwd(), 'model', 'cats_dogs.hd5')}\n", - "!mkdir {os.path.join(os.getcwd(), 'checkpoints')}" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "HOROVOD_JOB_NAME = \"horovod-cats-n-dogs\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'apiVersion': 'kubeflow.org/v1alpha1',\n", - " 'kind': 'MPIJob',\n", - " 'metadata': {'creationTimestamp': '2019-09-18T11:59:45Z',\n", - " 'generation': 1,\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'namespace': 'default-tenant',\n", - " 'resourceVersion': '2002259',\n", - " 'selfLink': '/apis/kubeflow.org/v1alpha1/namespaces/default-tenant/mpijobs/horovod-cats-n-dogs',\n", - " 'uid': 'ce99b2ad-da0b-11e9-a796-02e0e01c020a'},\n", - " 'spec': {'replicas': 1,\n", - " 'template': {'spec': {'containers': [{'command': ['mpirun',\n", - " 'python',\n", - " '/User/demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py',\n", - " '/User/demos/gpu/horovod/image-classification/cats_and_dogs_filtered',\n", - " '/User/demos/gpu/horovod/image-classification'],\n", - " 'image': 'iguaziodocker/horovod:0.1.1',\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'resources': {'limits': {'nvidia.com/gpu': 1}},\n", - " 'securityContext': {'capabilities': {'add': ['IPC_LOCK']}},\n", - " 'volumeMounts': [{'mountPath': '/User',\n", - " 'name': 'v3io'}],\n", - " 'workingDir': '/User'}],\n", - " 'volumes': [{'flexVolume': {'driver': 'v3io/fuse',\n", - " 'options': {'accessKey': 'bd182781-6b24-4899-b2b7-a84608931aeb',\n", - " 'container': 'users',\n", - " 'subPath': '/iguazio'}},\n", - " 'name': 'v3io'}]}}}}\n" - ] - } - ], - "source": [ - "from v3io_gputils.mpijob import MpiJob\n", - "\n", - "job = MpiJob(HOROVOD_JOB_NAME, 'iguaziodocker/horovod:0.1.1', [os.path.join(os.getcwd(), 'horovod_train_cats_n_dogs.py'),\n", - " os.path.join(os.getcwd(), 'cats_and_dogs_filtered'),\n", - " os.getcwd()])\n", - "\n", - "job.replicas(1).gpus(1)\n", - "job.submit()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "horovod-cats-n-dogs-launcher-ghqw6 0/1 PodInitializing 0 4s\n", - "horovod-cats-n-dogs-worker-0 1/1 Running 0 8s\n" - ] - } - ], - "source": [ - "\n", - "!kubectl get pods | grep $HOROVOD_JOB_NAME" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "apiVersion: kubeflow.org/v1alpha1\n", - "kind: MPIJob\n", - "metadata:\n", - " creationTimestamp: 2019-09-18T11:59:45Z\n", - " generation: 4\n", - " name: horovod-cats-n-dogs\n", - " namespace: default-tenant\n", - " resourceVersion: \"2002304\"\n", - " selfLink: /apis/kubeflow.org/v1alpha1/namespaces/default-tenant/mpijobs/horovod-cats-n-dogs\n", - " uid: ce99b2ad-da0b-11e9-a796-02e0e01c020a\n", - "spec:\n", - " backoffLimit: 6\n", - " replicas: 1\n", - " template:\n", - " metadata:\n", - " creationTimestamp: null\n", - " spec:\n", - " containers:\n", - " - command:\n", - " - mpirun\n", - " - python\n", - " - /User/demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py\n", - " - /User/demos/gpu/horovod/image-classification/cats_and_dogs_filtered\n", - " - /User/demos/gpu/horovod/image-classification\n", - " image: iguaziodocker/horovod:0.1.1\n", - " name: horovod-cats-n-dogs\n", - " resources:\n", - " limits:\n", - " nvidia.com/gpu: \"1\"\n", - " securityContext:\n", - " capabilities:\n", - " add:\n", - " - IPC_LOCK\n", - " volumeMounts:\n", - " - mountPath: /User\n", - " name: v3io\n", - " workingDir: /User\n", - " volumes:\n", - " - flexVolume:\n", - " driver: v3io/fuse\n", - " options:\n", - " accessKey: bd182781-6b24-4899-b2b7-a84608931aeb\n", - " container: users\n", - " subPath: /iguazio\n", - " name: v3io\n", - "status:\n", - " launcherStatus: Active\n", - " startTime: 2019-09-18T11:59:49Z\n", - " workerReplicas: 1\n" - ] - } - ], - "source": [ - "!kubectl get mpijob $HOROVOD_JOB_NAME -o yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'apiVersion': 'v1',\n", - " 'details': {'group': 'kubeflow.org',\n", - " 'kind': 'mpijobs',\n", - " 'name': 'horovod-cats-n-dogs',\n", - " 'uid': '1b58dd58-9c97-11e9-98d3-d8c4972b0204'},\n", - " 'kind': 'Status',\n", - " 'metadata': {},\n", - " 'status': 'Success'}\n" - ] - } - ], - "source": [ - "job.delete()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/demos/gpu/horovod/image-classification/03-infer.ipynb b/demos/gpu/horovod/image-classification/03-infer.ipynb deleted file mode 100644 index 115b2af6..00000000 --- a/demos/gpu/horovod/image-classification/03-infer.ipynb +++ /dev/null @@ -1,548 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Create and Test a Model-Serving Nuclio Function\n", - "\n", - "This notebook demonstrates how to write an inference server, test it, and turn it into an auto-scaling Nuclio serverless function.\n", - "\n", - "- [Initialize Nuclio Emulation, Environment Variables, and Configuration](#image-class-infer-init-func)\n", - "- [Create and Load the Model and Set Up the Function Handler](#image-class-infer-create-n-load-model-n-set-up-func-handler)\n", - "- [Trigger the Function](#image-class-infer-func-trigger)\n", - "- [Prepare to Deploy the Function](#image-class-infer-func-deploy-prepare)\n", - "- [Deploy the Function](#image-class-infer-func-deploy)\n", - "- [Test the Function](#image-class-infer-func-test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Initialize Nuclio Emulation, Environment Variables, and Configuration\n", - "\n", - "> **Note:** Use `# nuclio: ignore` for sections that don't need to be copied to the function." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: ignore\n", - "import nuclio\n", - "import random\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting 'IMAGE_WIDTH' environment variable\n", - "%nuclio: setting 'IMAGE_HEIGHT' environment variable\n", - "%nuclio: setting 'version' environment variable\n" - ] - } - ], - "source": [ - "%%nuclio env\n", - "IMAGE_WIDTH = 128\n", - "IMAGE_HEIGHT = 128\n", - "version = 1.0" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting 'MODEL_PATH' environment variable\n", - "%nuclio: setting 'PREDICTION_MAP_PATH' environment variable\n" - ] - } - ], - "source": [ - "%nuclio env -c MODEL_PATH=/model/\n", - "%nuclio env -l MODEL_PATH=/User/demos/gpu/horovod/image-classification/cats_dogs.hd5\n", - "%nuclio env -l PREDICTION_MAP_PATH=./model/prediction_classes_map.json" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "%%nuclio cmd -c\n", - "pip install keras==2.2.4\n", - "pip install tensorflow==1.13.1 \n", - "pip install 'numpy<1.15.0'\n", - "pip install requests\n", - "pip install pillow" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: setting spec.build.baseImage to 'python:3.6-jessie'\n" - ] - } - ], - "source": [ - "%%nuclio config \n", - "spec.build.baseImage = \"python:3.6-jessie\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mounting volume path /model as ~/demos/gpu/horovod/image-classification/cats_dogs/model\n" - ] - } - ], - "source": [ - "%nuclio mount /model ~/demos/gpu/horovod/image-classification/cats_dogs/model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Create and Load the Model and Set Up the Function Handler" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "model_file = environ['MODEL_PATH']\n", - "prediction_map_file = environ['PREDICTION_MAP_PATH']\n", - "\n", - "# Set image parameters\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "# load model\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Trigger the Function" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Logging before flag parsing goes to stderr.\n", - "W0702 07:05:39.756876 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:529: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", - "\n", - "W0702 07:05:39.784578 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4420: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.\n", - "\n", - "W0702 07:05:39.814317 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:250: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n", - "\n", - "W0702 07:05:39.814856 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:178: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.\n", - "\n", - "W0702 07:05:39.815345 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:185: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.\n", - "\n", - "W0702 07:05:39.920376 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:2029: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.\n", - "\n", - "W0702 07:05:39.987011 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4255: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n", - "\n", - "W0702 07:05:39.994644 140252009395584 deprecation.py:506] From /User/.pythonlibs/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3721: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n", - "W0702 07:05:40.865994 140252009395584 deprecation_wrapper.py:119] From /User/.pythonlibs/lib/python3.6/site-packages/keras/optimizers.py:793: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n", - "\n", - "W0702 07:05:40.875694 140252009395584 deprecation.py:323] From /User/.pythonlibs/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py:180: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.where in 2.0, which has the same broadcast rule as np.where\n" - ] - } - ], - "source": [ - "# nuclio: ignore\n", - "init_context(context)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Python> 2019-07-02 07:06:07,287 [info] Downloaded file: {'url': 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/dog.391.jpg'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:06:07.287323 140252009395584 logger.py:100] Downloaded file\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\"class\": \"dog\", \"dog-probability\": 1.0}\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD7CAYAAABqkiE2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eaxk2Xkf9jt3qVt71dv79d49PcOZ4XAojkiG2mVRlgxJiSJAsmQbhhwrIZxYAoPIiGQHAQIrQRwgiUMgQJKJ7UABiFASI4m0FmuhSTCkREokJZLDGTZnpqdnen177cvdTv443/edc2+97iZnONQzuj5gpl7funW2e8/59t+ntNZY0pKW9PCS91c9gCUtaUl/tbQ8BJa0pIeclofAkpb0kNPyEFjSkh5yWh4CS1rSQ07LQ2BJS3rI6U07BJRSf0MpdVUp9ZJS6pffrH6WtKQlvTFSb0acgFLKB/A1AH8dwE0Afw7gb2mtn/+md7akJS3pDVHwJrX7bgAvaa2vAYBS6kMAfhzAsYdAs9nQq6srX3fjSikAgOd58DxF14xQk2UZ0jSV7wEgzzXd86CWjzsQlfP/hYEAAALfhy79tni2Fr9TypM58JjyXIMP5DRNAABx4gMA9vb34Smv0FaW5dLGceOVfx17yNtrWueFn7lN8t8K5p5ca1lvd0153PaauScMA1SrtYXxydx1Jl2nSUzzMs8O9Oxm8wR5aQpKeYgqpt1ms236znLwErXbTXOfl0ub8/lc+gcAD0rGzeOpVmvY3d0x/c5mhT4Lyyjr4q516fkv3n5PKj8jz/elDV7TLM+ddsstqoX+j6d8X2u9Ub76Zh0CZwDccP59E8C/596glHofgPcBwMpKF7/4i/+w8FLbTVL8BIAwDAEAlUoFtVqNrkUAgOFwiL29PQBAvV4HAMSxecH4ULgXeUgXrt1vHD49rE6ng5weEn+fZJncl9Hf/F2lUkGlUilcm8/ncnjt7u4CAG7sdAAAzz77LKqRmQv3Mx5PZD5G8DKk8+ILUqH7gRxQ2v4NQOsMSTqluZi2gtBu6iCga8FIxlitVgHYTRIEgawvbzR+PltbW3jyyScL49GqipDGHSQDc7/KcbDzGgDgqNcz46H5PvfyDUwT/q35XRQ0cfHsEwCA7/muv0HrMUZUM/P6gfd+l5l7zcytP9jHq6++SiMwbVSyCpIkKYz3ySefxAc+8AEAwNWrVwvjzpznyc8sCOz24efCa+dK2PyeuNfcv6tZUuir2myZPpWP0dSsc388o2sKGXweCH36WDgpj6N88Opxl9+sQ+C4w6/IG7V+FsCzAHD+/FmtlDr2EDju3/zye57nXCdulafIaFE1cZo8N5vL98MHDFrx2BY2Lj9wpRY5iOmjeAg86EA77kDiNrjvwzsvAwCaYYLAGzuzBIKqRhh6Ml7+vdbFdfMVS0NqgesDCu1Kg/62B4RGJn8DQDUy3DaqJPbgoRex1WrJ5nfHAZgD6bVXbxbGc+7iFQwGZvPXPXr5Q4Vq3fSxUTGb34/MYbNyOEad16M3oZHG+I7vfCcAYDw5Mm01mvinv/JfAQDu7FwHAPz+H/w6ACNZHR4MAQCV0LT/yJlNvPTSS6Yv2qSXL11Cu2U2YJrwO+SubfG5TycTmdfxUlnxu3sdAlFk3stqvVa4P0kSWUtedw0rMebyzBS8B8ob9t0p05t1CNwEcM7591kAt+/3g3sdAvzJDwqwC+L7vr1OG11niYiZ9arhtr76ekQlAMRFPd9HQBxPvspz+QyIc/DBEIUhtMMpzLjdfxSv+QrwUOQYeZogI5E4mZtT/5XnPwUA6FRG0j9IHA+bIbKMRMWU5ufbdeI1GvI+qzjrq+yLPZ0OC/ODyh3OZeY0n9n5suRVqZj16XZXZVMPh8PChCuVKqKoVlirnTu7mI6NZDHpGYmnUa9ipWUOozgza3Dw2h0AwPrGJkJSKd5Kon+tonB4cAsAcOHcWwAAv/Ir/xS/87sfAQDs7ZvvXvzqiwCAXq+Hr77wiulzbN6TP/69D+F3Pmruv3HDCK2/+eHfkAMtCgNag3sfArWoAiZZv2P+XZYSyn+ntF7DsZFcMk0HvuchSc1vfVo/nQOaGQ63oXLoN2Djf7O8A38O4FGl1CWlVAXAzwD46JvU15KWtKQ3QG+KJKC1TpVSPw/gDwD4AP6V1vor9/vNcWK0S3meCzdhHQ6A6NajnhELQz8QETjwDEdTFWMv8H1/UWTVWv6OqqxjK8eoaL6LY1YPNEKfOAFJGlHoQ2emL9YzM0el4D75NPc9IJ6zLm5+N5uORbce9M1cJpNDAIDnxahUzG+ZU2VZjDAw84JOaGw+WE3Nc3Ot2TJGsn6/L33N46nMjVUlHuvFixcwnU6LfaUk8USRrD3bL9j+AhgbgLtmYRjKOnL7rvq7sm7uDwIPcW6+7w2pb5JyMBxDj4xkpDwzjnFvhOnESArf9jajFnz5S3+BV6591bQXmuczHhkJpX/UAwkYmI7MnFZWu9jdM0bA/YM9GW+SmhsbjUZxDfJ00ZBYa2A0GsnaAEB/aLj4SqclkhG/o55n3z/XxpCQMZTbzUkyyLJMpDZN93gKYjRl0kpDl9SB47x+32p1AFrr3wPwe29W+0ta0pK+OfSmHQLfKN1LEnCvl62slUpFOM18OpFr114yuuCrr1wDgAXjituG1tbQ4nvWuMd9lY06WuuCYZLvYS7OfW2fPi3cYWXFuD89bThC7ikkfD/1MxkOcHhoOP8X/vzPAABhwxixQp2DVcwwIClIe2KbyOYkfWQZJikbQ3Nqd9/8LgxFh2zWmrJWFy9eBADs7+/L2lTbjcKce4OJzIM5H2uSm5ubIhWwvYC5XLValXGwN6HZsC7DHnkCBuORSB+XH3lL4f6jowORAG/fNLr+6fUV+MT5PvaHfwQA+OQn/i1m874Z56qZ381b1wEA9VobZ0+fAgD8q//zvwcA/Ovf/i3cvmE8EivdLgDjYVjtGLsDj8cn202z3ZJ5sbQXTydyP0sMF8+conEfYXtzo/DdeDyWudcc79AkJnsWfSfvmnNRs+dKL7q6lQa8wKyra7vith4UC7QMG17Skh5yOhGSgOsZuJ9t4H6SAFuy9/d3EYZ+4Xei8xNnPq5/wJ7697vHJeYMaZKiSnYHHs/+/r70y64o5phJkggXdH3sPD7mtju9jOZdld+yfjkeTZEM2UVl7RccMxCGxnq/vdmW73j9zp45L2M9ODgAALTr6wCARsPqss2m4ajVWl/GurG+CcBa+0cj67kIW2Zs1cjx5JBO22wYqSWexqi3zJhS0vsrUQ1nzpu+XnvtulkjWpdK6En7Z0+fNm1VWhgrDuYxcx8MBvB885ujntHxa3Wy2UQKP/ojP0TrYLj4r33oQ+h2TBxGRmsb+D5i4trsKuTno5QSXdyjZ1Cv1WSt1tbWZJ0BYGN9XdaIXYnNRkNsKixNJEki19jlJ9w8tVp8wM9Y3UOzp/c/IO+Razfgd3c4zRZ+Zto+CaQBX9Ng2etRuiXLMvilPRoqD9mcAoFobYZHfbTr5oXijRPUA2lDujzWXaMWrrHf3Y3FSHP+jmIH/Aiz1DHmABgnM3mB4jk/cPNdvz9Empg26Bb0ezHSlDe12UQB6IWZJTKOCYnJs+lMxEx+AYMgsCInjSMi11sURbLh104bMfXu3buotMxhwRv+8PAQ9ZZRQ85ePgsAODrsyNz4pWfRf/v0eemT14zVGt/30aLNNJmwulbF4KhXuL8WVpBOzLwubBvPMs+t3++Lka7bNmL7fDrDKh1GrDaooC3jyOfFt2euQ/zr3/ljAMBvf+QPzJrGMcKGmVeTD99h3wZ0Vc21gNyTs/EIG+vmoMxpbePRCCGtm0eGTZ9/73vY3TFe8YDcjdWogow2a5bNaY0UMtqvEtORWXVT3sPcqqWsGrpGbo+YUNnwuFQHlrSkJT2QToYkoO4dLMTkBgu5AURiAKHbtSr+fdwnUAxftHKAjXSTE5jHQTfl0Mi0jegCgMlwhH7PuKOY+49nU0yn5rRnbsVjnU6njpRQdA+59/PjabVaIlqyuhGGYSFsla+dPXu20F69YUTvIAiwuWmMVgcHRzTWVK7x2N7yli0JDWZuwt91Oh1sbGwU2q9Wq+iSYY3Xgw2haZrKPFdXVwEAvf0D+S1LMNVqVSQF13gGAJcuXUK73Zb7AGA0GIpEcurUKVlT7oOlGv5dlmW4ds0YiY+OzNyn8xnyjHM1zPxq9aYkCbQ4/4Cfe7uNQPI3yNg5HCOqGqkpqlVpbY20NZvPEVJAFXmqobVGSO9xWrHBSBLazUZAWp9MZSIBegG/H/adh0S4esj8YsQqS5PutVl/juNoKQksaUkPOZ0ISUDh/ok65X+7YcPMfex55pX+dj+P4//O3x4bJDTylHUxc8KmGbtcFGZzwyGnFN47Gc9F309z01e1soY6BR9xoA/bKA6PDjCbGc7HHLDXO5QTnjketLEJtJpt4W5sPBwOh0WjFX3Wa5wLYIiNTvv7+5JQxfc3m03hXKzjr62tLQTFPPHEE9Inc32+5+joCB0ysPGzcPMsuH3+rru2Kr9lXd/zPKSU1xBR/Pwaudc4AAmwUkIQBNjaPlWYp1LKBuz0jSGzPxzI7+YUks0ce33zwsLYQs9Ko7NZMelsa2PdujvpmZ29eFlsF/x6zuk98Hwni5X6bjRr1l3dt3YRDc6QKuaCZFngPAvHvZ0vbtvcKxrDj7MD7CxcMXQiDgHgwZs/z/OFpJs8z+UheL6ZSqe7Ill4rbZ5OSUOwFEp3BddROzIqgOclehRlNpR31jsZ9MY/Vt3AQBTEuVbnTV014zFOCA/fui1JAtvMjEvL4vXKytrOKAotZ5EB04kek8MPmIgCtAjdePMmTMAgEuXHpFNwQfJxsbGQpz62qrZTKPhBBPKRDt3zhrftja3qQ+bGNQm6z2360a+cTYeb/xWq+WkDofSLv97nYxpfM94PJbn4Prd10nN4IOBD8y7d+9KGzlnN0YVzGhjMXU6HUSsxtAGa5IPv9ZsICHDHbfrK2B1bbMwjqODQ/EOrK2Y+bGR89XXbuPxxx83362bA2h3dx++oihG8uhUKb9hY20FdTrQhgPTxnQ8RByb9vnd8JSyadQ55Y7E9lCwcSruvlgU4BOKAj1uHy0Ng0ta0pLuSydGEngQHacOuHH/PrlIVtY3sLbJMelmeuWoNf5tmaoRuX7SVIx6MUVzjYjrjsdT7B6Yk12RC69e91AjkIvAJ195pSIGoTRjF6Wif/sLUWRBUIHvmzZ8n42RZk7r65sirrOou7d3gPPnjb//zp071L5GvW44KXPlft9w8Varg1bLcLetrW26PxPxnlWLer0u68YGs+1ts56j0QgXLlwAYDn24eGhGPiYo/LzCYJA1p4zDRuUywA4cfk6hxdQ5ORsWhhPd3VFRPmgQrEGs/lCJieUkmfUoTnxWsVJgia5Klkl8hxVhd+L7ooSSWE8NuvmUX5Gq17HYDCi78wYvUoVgWeey8qakVZYyklmVgXhFHbf92VtOA5Cay0GaRb5RaKa2VRiFzPi6wMQgbRfznAs01ISWNKSHnL6d0YScDMAOWrOdUEp0Wktl5+XDGeZcyK6QRXMkXrEreazGLv7hkv0e4YjPPc85aYfjVCtGb2v2TAcB14NfkBgGASU4fkThMpwkbBCrjYKGur19ySDbW/XxOx7nie59+trhvOurhruEgSBcGw2Grr57ewKazQach9z3lrNjOvChQsSiShx/M2mSA57e/vURhPjsbEFrK9vFO7P81w4qZUWUuGersGRiSMj+bs0z8SA1yadOUkSmVfZuDgYDNCg+3lOnucJl3dzPFha4neCqV6vS5+8Zp3OKqpkRB0NhtL3dFYMfKoJvFeCg8N+YX5rpzfF6NsllyJH8uzenQsuxCFJHKP+geRvMPCN0taol6Vst6DAoyBCIDYxh/vrRd7NvxVgnNwGEuUltKky/TtzCLjRU8epAwr2mjWOFNN72cgHuEhA8twwJkPYYDDEyy8bVJ8BGQRZrJ7PY6ytG9GSN1+z2cT6mtkwLMp53pEkoezskiGRVIzbt287KbhmrJ3OigPrZQ65WtUm8nDEGBvyDg8P4ZFRqkIhwmEQSXox33/mnAm1nUwmcgjwIRrHsSP+jmVt+VCUNGfaGN1ud2HzpWmK27dvF9aZLfq+74txkQ2JnWZd1ogPl/l8Lv57vsaqxaVLl6QNpiRLkXKEHkXjpVmGmLAZQwL7YJXFPZQkjmM4xdbWKZqXiWtI5nN5Zq160UA56B1hn54jj3H/4AAVmsuobw6ojMKSkc4KhmgeD0cUHh5M7Hg4mYgOA79Ca5tkyHNOYS+2VSbtWVxCAMg1x894yB6gPizVgSUt6SGnEyEJaACZuj8un1exEXIBxXVPJhPknDDhJB1oXXS1wbduM4+MbgmLuEiRUTJKf2RO8b2DEW7eMcY/dqsFxG03WmuoUyoui9prK6sIybAViPsrQJ7xiU5JLn1z+h8c9NEiVxLDdJ06dVrE2c1N47q6c9dwnre97W0i/bCr8NIjj8hatVtFFQAANjbNGsWUcHHx4mXhTL3eIS2ZxoiAN6qUX/HyteeFc84oxn86MRLE3bvXhTOGjmFO1C8BPDGSQxRFMqZXXpnLfCVikNSdVquFTVJjmBNzVOPosCfrkU9N31ur6wtgHm5eA78noubFR6ImKXlNMont5/FPp1Ph8jxujn4M63WcunAJgJWaRtOZXY+KkXRA0mamfQtuQziOmQokWckPKQoy0Hjt7n5hHDm5A7UTG5BSzoExIx6DT0mpxqwOuEjI98M/BJaSwJKW9NDTiZAEgAcDjbpAH0xJkjhBPw/uI88tPqsFBglE/7xxw3CG3d1dMQjyOTmdGs4zHIwx6BtuEYbGuHdwcIRHLj8KwOqf83lfOMa1a9cB2Lj1zc1NsSFYo15LuOvly5fN55VLNK4bwpEYU79Ws0CojaaRIEbjAU5vm9wBtjk0Vus0/jFmxGV3SbdNZnMMR0bH1xQR2Ww2kJFufZckkTlBobluVbf2Qxl4he0GjUZD5sf3jEYTsUlwIM5sNkONjHTcJ7vjarWaxP2z7WMWT6U91vGn02nBWAkUjZcWBBXynWvX4Gtlwyc/s8lkIjYPsU05yL8H+7uF362tdITDtrrGhbp395ZweY8kwMlkgkbXvAuSmk7jSR3jb5ay7QtixMqdACI/KD4DyZjV+oEexaUksKQlPeR0IiQBlgIeVHegfK0IA/3gfjzPkyo1AnyZZcKRdu4a7nlwcCg6qZz6iq3+ATyvIu0BJrhHSd4BB8eMxKrNwTRsNVdKoVYtYsyfPXva4T4HNGDz3cpKRzj7I2QLSOJMAndefNF4MhqNOlJG1KRxMPf3PODWLQOtzUOdTEeoVhh4g9xw/SPcukmgrWJxLuYSuOuSZZlcZ+wAlmgGg4GM23p0lKxLGlJwVhyj1/sSAAjc2RNPvBUAcP36dVkXfma7+zvCsZmbj0Yj6fc0gY/YPIDZQiCT50iWzHmNO81megL22UVRJBmUbI+4dfs2ogqPrVhMJkkSsS/UaG29sCregYDC0lPto6GN/SEhwNhKsyLjYemD3Xx5niOOLZwcYDwjw6S0lQVe3oHIu0fM0Ik4BAAuKeYtxL67ySjsS3YjAQWVpTDB8olg/81lrmzE3hDXr18HAOzsGAPNaDSS6C1euClFsgGeiK5hy6c2Rrh167VCj3du7Ugfly6ZzVqhB//UU09hNC7i/b/08lWZF7/gA0KubbVa6HTMBrtxw8Tu12oNXH+V0GQoDj2OZ05+hVm//R0jXo/GA3nZ2S8ehgHqBDrC4ux42BcknIzyINzklAWDrZPPsbNj1CPeXEEQLKA5NRx0HV7bLMvk+fGhMRpNZO68LuMR4RBevozXXjPrbd2/nvRb/q7dbi+gJPueJ2oJt+9iKLJL01V1rOHTrHurWZd5sQrEtLq9ja2tSuG7ztqGHC4S81BtIByQekY4mbOxWYxWo446GZwZ4RrwoGvFCNQk0ZhWO4X58VhNHIdZh6JCZGmpDixpSQ85nRhJwODjLcr0LqeRqLN0sWbgcXBh9pqNnuJTnEXSfr8vJzXH/VfCKnzPnKR5xuIYj8fCtwnScTxFr1/ss9XqYHWVY8bZnUY1EkYj3LptkHPZ6BYEgUSRHR4S8i+pIC6a8WTCEok1rAk4R1QvSAWAxfiLZ7bWIXtV8ywTqK8BuQ3n05lkMzYYeTehdOrULewJWVPJ3yhVP3IjOnldhsOxSHTdjjF21ut1dOhv5pD8nG7duiXtcRHS8XQkfbHhMQxD4fy8HoygnOe5GPi43dWVlYW+Wq3WgvGZyQ1WY7Vna2NF+hS3KqkAcRzbgDR6/o1WBy2aZ6O9Kvff7pNRkXJHElrjW0cDqRXQoFoKoe+hRSjUFYow7XSqUBTMJkJvlasj2SpJzx9aF3JhbsdeXdKSlvTQ0ImQBBgM8TgXlKuTuUaX8n1aL+YFlCUBo3sWDT+jkcW8Z+kgz3M57TmLMI4PpX1rSDKfzzzzTnzxi18E4FTrRY6tU8aQtEbuQEZE3tnZkVBbLcCTifQZUKHROKGMumQmMGQM8HH79h2xHbD7sNvt4sZrt2SuAHDzpjEGhmEoa7S3Z+EluG5jQoCtURTKnIc9IyFNaWnjOBbObsOjvQXJTPRut1YkUaVSlefC620Kb5rvxR5CLsJmsymwYRwzP0+s7cPFVGDbDgddsRG13+8XYNkA896wTYCpWrWoziytiBEzTRfeHaVtxiXXNRiQLePmzZtOZSszp97BgYy31jCSQ73ZwmPvfm9hbHdumSKu069dRUISXX9KIKqzFIOc3bmm7/VWFw2Qq7f07n89QKOv+xBQSp0D8H8DOAUDuvas1voDSqlVAL8G4CKA6wD+ptb66L5tAfB1LojB1D4AgKQgJPMZIiqfnXCt6jSBpthqjs4DIB4ALtjAG80PNPKkqA70egPMplwsg9JMnRdba/PAOQ5day2blV+2r371eQEJYTp/tovOilneJDMHSEKppQcHB5jH5iXnoqJRpYEhleBS9FiabdNPEmuBEJ/NGJQiENCKXo8SVMZHGE9tGXEAqJCXIJtPRO3JYyvSl4umAFZ9GZLqEVJMglJa1jJN7UvmbnqzfqA2fUSRedn5Ba+HNmIwpYPNfJIBmNKzz52/CMDE9fOmu06AJrPpyKICV6ynhsugM6gMp1i7laT52R0e9CR2gL+Loki+Z8Ngo96icdk8iJw8MLfv7so4+H6m9fV1eT8Ekj3wMJuZ9lgVmY76mM7NBudnITkY212ZH79f8/lcVMhKhzAXswmaq2dpvUxkJDOB0WgkaiNgU+ldeiPqQArgF7XWTwB4D4B/qJR6EsAvA/iY1vpRAB+jfy9pSUs6ofS6JQGt9R0Ad+jvoVLqBQBnAPw4gO+n234VwCcA/NIbGiWKeIL8WYgr8FyRh92MxYKgWueYEL49R6bt7uyJ6DmdmvvcgqdlUdfzPItvTyd8lmUL7stTp07JfXfvFrPsxuORFDjlKDjoRNBvGw1z+jPn4XgAwBrCWq0WPLLw8ek/j6fCjXk8U8k56FnDoFNstax2uQVdeC6Jtki27pz5Whn2zV07lj4kTqCpZH07XYsOHEvEIkdcGmnlpZdekt/KPKvWCMj3jUYjUcXKWINufgM/dwXAD7iMHI0NGTTMvGp1W8QWMJiBUbVYOEQjkb/ZPSpp61lWcF/yJ8+d5xkEAZKsLesFWIPmzs5d4eKuq5wlNc5KzfMU49y8wwejoloAAGGtqPaU6ZtiGFRKXQTwDgCfBbBFBwQfFJv3+M37lFKfU0p9bjgaH3fLkpa0pG8BvWHDoFKqCeD/BfCfa60HD8pYYtJaPwvgWQC4eOHcA/GSPM8rRPktjsNxEZaCpVkimEysXnxIEYHD4RhpwtzNfLo5CfzpSiGs6wmnTBLh2qzXDfsjgQnjuO61tRUax1SgvtgtmcSpwHk1m4b7RFV7grNxzAVNvXLFGL5u3jSGpP2D/QLoCGBj3/f3920WZikCz6yfDf4p38eQ92EYLuitrsHWLUnObblFW/ket/QaYPRpzt9nzsuf6+vr0saAdHg34EjqN8SxzLUsDSmlpC+e0+HBnozXjXS8edMEGt2+fbPQRqPRELsQk5HGigZHHs9sZjMMWa/PskzWnMeTJAmUb6Mp3bVqNJrS/mjMdS0Sx5hspTHuK6OAI24jiiLUHEi34+gNHQJKqRDmAPig1vo36fKOUmpba31HKbUNYPfBDRX9sIB9kPygarWaE0JZjCoEbCql53mSAMNqAd8/Gk2wv2/Eq6MjsnxP5/B5IyZD6Vuw4JJiiKZ7jR+k+8CZskzb2olkc/M9I2I+9tjj2KXoRIYqj6ImqlVz/5nTBg241bURadwWW887nc5CEo37orIYyffM53O5TyDNHeKDrV6vFzYxABwO+jJvnrskuaSpPAcWcdngFoahqC88/ngWS/98IGutBRcyITVpJTKHXrvdls3tFp3h9tjAlue5bDYuSMIYgkopAYnhwzrwtXh3OC7DFddt6DPXjJwhSTgd2vTT6azIOrDKxv++fv26qCVu/cHjvF6McFQ+MJPEqpn83EcjG46eU8r8bDaTOoaM1cjPZBbPcfuuMZDei163OqDMSP8lgBe01v+z89VHAfws/f2zAD7yevtY0pKW9ObTG5EEvgvA3wXwZaXUX9K1fwLgnwH4daXUzwF4DcBPPbAl7cJ9HR+bXqlUFqCnigkttmQWR94x1BMb6F588UUxArLonWdKYtKPQ2W1rkIrdbjwZkyu6Gk6DxCGhmNsbXG8gFEHdnZ2BEwEJMGsrq6j0zbfM7afCmwkG2Pvc9ES11AqnF1VZK7ltWo0GvL3VJKKbLw9/87ti9udpVbyYc7ritxlNcCt0Osm5wDASscWN7lw8bK0y7EOCsWaBFprW92X8ApbzZq0y78LgkD6vXHDxEawJDCZ2PRl5s6Hh3eRZkVsxFxnmEyNtJQOi899OqvggCQGbmt9bSp/s1tSjJ6djnBs7rPb7Vo0Yke9PDwquipZejq15UlCGBuXK5XIFjyhpKJ6LQRycFcAACAASURBVMBkSrkI7B9nwOo3M05Aa/0p29UCvff1trukJS3pW0snImIQuHeVFD6lXTdPWWowxPq/Fl2JuQVzPjd3gDnlZDIXg8xx5ZzLfblAnEzH6XrIFDxls+kMsZ0hk1j509vG7XXlyuMSmOIx+ixMP7VaTTh1GNo2y4awg8PDBWnGNZy5xiIeaxmZd2dnR/ri+16lCLYsyxay1Gq1mnAuMeA50gJzStd+wdfYXbeyYgOCqpHRfbk+Qa/XE8Rit0YCp/WKIXY4lHGzbYIlGq01XnnlFQBFac+NEOU1Ldeo4HeiWq3K/HisSZyLtMQ2FTf6tAy24rpTpY0kcaJTGR3bSgscHNamsuxhGBYqNxnSaDYimQPfx33yOL745S/hOFrmDixpSQ85nRhJAChCVTG5YBC2+KPl3HKyUwCF1pnU8GMnwXxm2jg87GFKwUJZal1t7MqrE9CHW4uAYbfEA6m1LVdNWO+B5yP0i263dqcjnKvdMlw/proDa6ubEuLKHCQMQ1ARJdQouCOTmP0ZqhGXsqb49ckQOuesQApdbbWt1T7mgBYKMvEqNi9/aOwiQRDg3LaxavM6pkkiIbC1iLP9LJz61atfBWBz9seHPXhc0JN8ie1Ok8aaICKbR4XsI2FrVcYhdQJyhZVaER7ccviBBEWxm6XRaOPgwEgHYktQUwwGRhKwHJI8EvEczaaZk80FiMWtzLUDer3eQt1KycUfzguuPsBgUfB9LDXxv1stCxfXIJCQqNqwGZaM/gWNdp2kSPIAcN0Br92GJinhiELDvbQCr01uYM3wacnCvgEW7Vv3ohNzCNyrEKlbvLLsGjxObNewtQhcn22ZbASWJzUL+n2LJlQ2TLp9lkV/3/flgfOLffHiRdlMPAd+wd1SX/w796VhsbYS2ReKNze3MR6PC2IsU9mF56bylpGCK5WKiLMsktZrNRlvhUBFelOrMjz+xNNmfldMcc7nn39OxPpmm/zosfldtdpCQOm/M3q8VV+Jq43Tnuv1OloEbtKh9GV2M+Z53YlmtAVP+XlwdJ1SSubArkeOrTg8PJQ1ctWTMh6fm/5rwWrsZuL73PewjAtY7ofHC5hDpnwA1ut1TAjkhWtFcLxKrdqwwCchqxETSVtPUgYOSY5Nr/96aakOLGlJDzmdDEmAgoXcU7cciZWmacFwBxQxBlmE0sgLXJvvA4rBLjbwSCNNCbTCKVVVjqrj09zt0xUdXTcQ388GLea2DF1Vr9dx5cqVwv1BEAjHY0Mbl6pO01Tad42SZc6ntZb2WJrodrnMeGCLjnZt5aTVNXM/Bxl12x0Z74BSiR9f50jHCe7uEm6eZ57Lo+fPY4VqKAxJYvB8DjaqodUxgTsRZSKeWm/YDEficpVKRTjdhLIg2TUWVa0hrD8wklrgW7ek5bgaBwdGKuB3ZkrRcysrXQyHA3oG5rmvr69LQNVxGIPHGYSZXGzCct4Ev1f9fn8hctGNMHQlNpYKuKIUO90m45lIsVweDdALuR1hGIiL/PXQUhJY0pIecjoRkoCCRRt2oamAYvjwcRxe9DMGV/VsG+VT3TU8Wn3eEyRh1lWPC7BwC1+WpZQgCOQan9wKlQU9nkM/K5XKAvotYCUR5uIc9+G6rvj+Wq0mHJXbV0ot1AW8dfuG/I77r9cNZ6pWKxLAZCv6hOKG5Iy6tz+yJWP8+CeMu/DuoQmO2Wq00eFqOlQJ6StXXzJtwYeaGWni/FnTRtiIRFfn9ZlMJiLBMNAor+PBwcECRx0O+2Lg489WqyXPjNtnN1yWJTJP5pjXrt1cgENLkqQQ02/WI5K+y+7USqUi/XOfrouRbUK8toeHhyK5sOTlgq7w+Pn5N+rWFsT5J4AWAzLXjMiyVDIiXw+diENA48HIQm7yhfzOzR2QwqT2AfKLVPb5uu261V5ZLEvTVB4c/4YfVhiGC4AWzWZTHqoYhsK6FfNKB1uj0RCDlltpme/jyDflLVp4y+g27jjyPLdGPbpWq0UyNz4sWs2GzGWfUIa57739HXnxRyNjsPr1D/8/0uejjxtko+954j0AgGqthZTW8NHHjMejs2I2xCvXruN3fv/fmHZvXAUAXHz7M7CWazZsehK/b9O/zefe3o6oPZzUs7KyJuXkWJ0ZDoeyljdvmWcnG1NbbEQWq9005+PSqMtivta68H7wPbzROWaDGUO32104IMbjsVzj5xcEASpciNTjNOOWzMlNYDJ9J5jHNjcDMIwszYqJQ+U8hPvRUh1Y0pIecjoRkgD0vWOc+USL43ghZ8D9jZUc3KIgxbTULMsW7tc6Fz+7e4qWsxhdNyP7pl3RjkVtbqMa1QrAEe44arXasaoNczzuy/NtGrObQ8FUTut1x8sch8uWGaMoqTuwaLXxlAxPxJl8z/6mvmki7hIqxZ5lGQIql35nbJ5FJwBWV00cwXMvv0b3vULjS7F9/hIAoDm0tQ543D6l0DYadYl/YOmD59RqNbG/b6G1eM14vLYMusKQ4h9YnGa1x/NMH6aNhtxTNv5lWbagSvJ6u2nUbtQff88cm6WoZrO54DZ0jbp8n+d5YkC2eRMMRxbZ8u0xG6Et3+Z2Z7MEQXCv0uUPzNJfSgJLWtLDTidDElA2jr1cGuq4gB9XJxMJgDLCPO2BGCg80lV1QhlhcQZF7sCAoq08VYGvCBqsZt2BYZNcVsRRq4HV9TgmnXVEpZQtYU16WpZURI9bXydDGLm9VldXxCXG3Gow6CEhIxq3xZmOw9HQZqcRR5uNhvCckto8Do+AV+sUWBMQ5/C9aCHizYBtUmASfad7Y4znd2hspq+Y1jGOY2htxmiz4W4UMB/MuM16R1FkjZbEqb785S8X3KiA4ZqMFMzPmdufz+fC2ZmOnByJGbkBtdbS1/YpIx3sUB799vY2KiFlIk5MWwf7PQF5ZW6poBHHZi05N4EltVq1iZUug72aMa6thQXXsUtxnDpSBLuelYMtYJ7BcHiEFYpmlMC0nEFFLHgKu4uhcqQ5SSsxSQwVBV9xRGkZafveeTlMJ+MQoFRi11fulhoDGJb6wRGDfC9gDxDX08A4fja+IEWS0YvnpJayD5kfAsNXe563UHMvy7KC9wAAtre37OIT4q99sRbh0T0vgO8XvRlu2Supw0cpq6PRaCHEFbCRdmzYZCPT3bt3LQ4eLEDJysrawnqLFZwgvscEe+0a05jCMJTxspGMQT3iOC6k1gLA9unTEmHIovzBwYFsLBaNeQP5vi/j4WfSbDRkvDxPNxmK14APpYODA3kn3CIkLJK7EZfl5Bw+8PM8FwOfGN08q3qUkYsrlcpCCbYgsKoQv0Obm5sItPX4AMB0YtUebpdVQ6h8ITowDEPkaTGknsmNcL0XLdWBJS3pIacTIQlorZEkCXzfl5PYhWTiz+NAP8rc0I0JL4tBSZKgHGJtjIAUT+7b+1xUX8BypjRNF07WarW6AKOV60TEU+YgzHGGoz5yGtvR0UTaYKAR9pXzGR3HsZz+zBniOHYKdXA03MhJObZx9oBBNY4qNkbezD1wCrl6cl8ZXiyk8mmddhcdSml1wVak8OpFYwRkru/me7AEdnTUk/TY3V1bq+HKlUcBWEmA1TDTNhtxzb1ZkmKdCrqwBOHGkYy4kCtFMiZxKmndnMTlPkO3ECyrYqxiua68MizbdDrFfBZLH4BjuNVKrvF6rq6sLcQaRJUq8rgIV8cS482bN+UdSjMyKirX/Udp5aGHFGVk7a9fHVhKAkta0kNOJ0ISABYNK2XXnMuBy9lf5m/L4ss6JOuxYRhCC24+twukOelgylxrtVq4dOlSoY9yGrNL6+vrOH/+PIBi/gFz5ZevmUAZ5jha64Jkwd/xb2fEXbjvZrNZ4HiAkRbY8MgSgQvnZUtwc8SbEgPV3t4BzSlBm8qrzyjuf3VlQ3R1ljAiYiTtdnsh9r1Wq8maMPd+5ZVXZW1Yz+Xx7x3syzx5jYMgQLdr1mZ11ejgPLeXX35Z5sxwYbdu3ESfCnBevHgRgHnmVnow9zE+/5kzZ5wUZbMuL7zwgrwnrk2A2+P14z673S5efPFFANaWEUU1MB9tNm0+BmAkGrYnWCN3inrdfG/fdw/nzhlgWX5PWRpaW7NQbAGFxM7jqTzvGQU+uW7xMte/X10IpqUksKQlPeR0IiQBrQ0GgHtileP+XYvocXoPM2jXGlqODR+Px4BexN7PqI/zF8/J78ogEezWcq/xiby5uWldbDSmvf07NlNRU70/9gpoW+uQx+rClnueGduZM2cAGA4hhU6dCkduHjx/x/YHth2wNGQCjsxvWWfXuZK5bG+flnVm4NUWua6ORhactUq1EAKKZb9zZ0cs9CwtuVDbcWxh3AEDp85rxfDio+FkIdyZJZMzp89ZDwMBsYZ+RSQMzpXodruIYyO51AighN1wgCd1HsZjW1uSOa8LZc/9l/Mb5nMLKsK/i6JUbCphyO+Tef4rK2s4d84AtjDwaaVScfIgbN5JuUoTezA2NjZkTas1e/9sNijcP5tNUAmO9wC48GL3ohNxCADWsFMW9d0osbKoc1yugWsgKkd/NRoNzKYsLjMGfw3nqYhHmo/ld/ySsVjKRiGttbjAXBcTu+7YkDSeWF+2jTAzYw3DCtqUbMMvbJYtgpW4mPpsoHSx+gRDnw6GyWQi18S/XeM8gdRREazRcETVn8LAvIgXL14UIyfHELD42+/3ZcPz+rh+fL7PLc5SjsqbzmYLbrU0TbG5aQpVsSjMBrp6vS7j5vZXV1ak4AqL37PZTER53tS8LkdHR9Ie9722tmYLtNIYB4OBzI/X0cUOLFdCHg6nwhxY9OdN3u/3ZTNz37VaTYy+LkZi/8C8O3zIsGo5HA5lHFDkbnRchJ63iI61VAeWtKQlfcN0YiSBMqcvBwG5lW6O+w3j0LmZdMwlmLPdvbMn4huf3M1mVzjG1sYZastNuzWfLvcvR7C53FDKkaVTW5+eILYY1TiKooWMyGazabkliQwsrUSRjfZzXVeu0RQw0hPfx+NgbhtFESiYEFHE8e6WM7HEc3R0JK4nVhvmFMs+GlpJY23N8I9TW6exsb4l68bjAIAwCAucGgCqtYZTL6Eu37Hozqi6p04Z9aTf72Nnx4zx7FlTfnt/71BUA1YbfN+XICQex1NPPQXABFjx/ft7hzJf5vIs0cVxXEBRBopwZOWy31GlJetWo5wK/neWagm2mozN3M+cPieBQPxOTMYzkTJ5XVz3OKuEX736FQBAd6UtUtNwaKQmqBw6K7oemb4edWApCSxpSQ85nQhJQOsceTxDrjOB+grpJM4pZBVZJpVOpEioE0SjIgZ8zCWA42DfcMEeVXipRm2snDIGn7XVbXN/kqNCKA0rHcOZiqCf5revXX+JhpEhJ5bKRSIrFVsTIU1ovLqGiKHRkmKE0nyWQVcYsdZWDGIOxtJHlnEeRY40Ne0eHho9M881Go1WoY00nYnrTCoPEXCnWylI7AYecPqC4bgxTPvN9iq8Kt2XmvlNCa253ooQRCStxGQbaK5ifYWrIxXdmAYjn55PQFKRF0IS4Rg7IA+E8zLOwqvXGW+/jbVVw4GnE9Pn5qkNm3lHAV5hFMAj41iNoMz6xCk3ttZx9UWDkswSoHdTo91pFNaj2aphMKRaDrQzVqtkREWK4Yj6JJyH0eQAg5GRUra2uTy8+a67UhepM3Xg0VZWTXts79FaI+OCrzRuAstGtdXAkCpOnb1kjIzz+RQDyn/wKow2HEt5dc9f5OvZMUF2Ln0zqhL7AD4H4JbW+seUUpcAfAjAKoAvAPi7WuvjZRWHtPIwdzYLA1XcpaiymoOCKxFTfoCAABnijPMF5uj1jcg8JCt3Sqvc6a6hwRbvHhvdNB65bET9M2fMCzIc9nHrlrHoluP/tdaIYxuFBxhQDBYjeWyT8cxJhy3mGgCLngsXr64sVruqEIuO4/FYVAMWZ6Mokj54Qybajpv7ZDGf23b7ctOS7djM3ObzuYj3TIeHh6JysOjMBrwkSRzUYDOOtZWGbABel/X19ULhVHccw+FQRGwez87OzoLXZjQaFQxq7hp0Oh1sb28XxugWOnWrXfM4eB1dTwf3yTkYvh/KAcKG4W1SY06fPo3plCz7gog0LMQRmDZ8zONilCfHcxRU4NyC23D0oPKsMdC/BxjK10PfDHXg/QBecP79PwD451rrRwEcAfi5b0IfS1rSkt4keqOlyc8C+FEA/x2A/4IqFf8AgL9Nt/wqgP8GwP92v3biJMWN2zvwPE9Oaj7hJ3MqJRaPFoqDVioVGyOf2KzAm7eM8Ycj79gd89ijj4sBan3dGFd837duISrqWK1V8Lan3wrAntgcLQYswoWNx2MHkISBQ0IZJ3Mc67ariVjqIgwzt2TX1YQKpbTbbcdYmEobzFFd1+KCtJQXcffMuph2oyiSPplbtdttG6XGmYWkFrQadRwdHhTGcfbsWXkGPE/mWqHvoVlno6hNRxZpyTFeljPjeE6tVkvWg6WEupNFyHEQLgYgr61Vk9KFrNStrW30euxvN9/t7e3JmnMEIL9Dly9fkVJmrhrG7+urr5ooyesULVmr1SRDk9d+b+9FUfU4EnFtbU2eGUs8bKx1i6zeum0AW5Jkjo1NI8mxRLCysoJxv0dz+dZLAv8LgP8SFjRuDUBPa81P9CaAM8f9UCn1PqXU55RSn5tOF4uDLGlJS/rW0OuWBJRSPwZgV2v9eaXU9/PlY249NoVJa/0sgGcB4Oy5M3r7wiUMh0M5za/fNu6eg0Nzwg2Hw4UMs9lsZiOwtOFkcRzj0UdNRtpbnnwMgNW/x/2eGKBW2hYWKvRMnyFlE8ZxLEYgzv1fW7Nosv2+4SAMA+V7Fj14TrHp/VF/oeIPU5IkC+7ObrdbyDtwfzedTgv4BzwO1qldAFNX5wUA7Vv7Qjkazs1vZw7i5sDzdxFFw/kKaJDxijnqq69cE27Ma7tzx0Tx1et1sQ8wHfUn8jdLH240HhPbLW7fvr0AJTaZTqVPXoM8z8WOwO8HB+lorReChVZX1kR/z7NbZr7tREp7c1WqJnH9ixcv4ivPPQ8AqJDO3t5uiy2AiSWYL3zhC7hIpdfdbFJeU3k+WqNJxVf5PWVJZjgcFmpVAECa2i3rvh9u/kOZHiQdvBF14LsA/AdKqR8BUAXQhpEMukqpgKSBswBuv4E+lrSkJb3J9LoPAa31PwbwjwGAJIF/pLX+O0qp3wDwkzAegp8F8JEHtTUcjvCJT/5/2N3dldPcBRilPmzeN6HlNFpt4Qg56W6+1nj3t30bAODtb38bAOuOeeGrzyNPyHNAoZp5o4EarUKuuJ6ATxliiyg/aZoiIS8GB9/M0hnm8yKaURAEC3ooSwuVSkXGxKd5tVpdqLDE8e4uSg1zOc/zCgE+AIePFm0Co5mZb6fTES7lShPlAJj5fC5z5eCbitg5augdHRTubzabgC7CYzHn7vdmGA2Loblnzj8qXJ+fXRRFhfh9t41GoyFzdyHnZH5O3kIZW4LXxbWyiwdGaSkPPxhwG9YzskZ4BSxpnDlzTmwHeW7z/1likSpQpBhnWSaQaU8//bTMqRyO7Ba/tYhIDfluESxXLdSqjKLwgQFB96M3I07glwB8SCn13wL4CwD/8kE/mMcxrr3yKq5cuSKLyi8Bv4huvfcBxbTP53N5QR45b0wPlSjAhTMmsixlF1HTLPh7v++7kZErkX29u7u7+NKX/tL0wZVitZaXgEXWkKrqGjcc1Rto2Bh7jrLjh3Xr7i1b9otEOX4Rp9OpbH5XLOT7eWO6UGt8nxvJ6GIt8icb/SS9mNxIBlDF3M9rnOe5bCLX6MqHF0em8SFwdHS0kOjT6/UKxkp3DZRShcIogDmQyxu+1+tJe+UN4ao4ly8b8Xp1bU02ArvrZrOZ/PbOHYMtyEa1lZUVWXvJx8gSSeHljdnv9+V58xpxxN4Xv/hF+U5QpEMlKqrgTZIaYYBmigVVWq2ORQ+eJbLG9YZZb37X3TgLqV3hszpYwXRG7uIauxR96OSBXvh70jflENBafwLAJ+jvawDe/c1od0lLWtKbTyciYtCDh5pfw0svXUd71YhoGxcNNz/iUlzdNlZahhtS8Bl2X70Jj1I3xzSVJAvxh5/4NADgLY8ZztFqGq54enMd9aq5r1GjjK2NU3jsR/59AMD1A3YpxVIRh1NV9/YNx2m329jaNIEnUYOMWVmK2YyCbsgweGrrnIijfXLfiBiu0wXIMcDNlyCxl9x7rZUuJnER1TafWWmCuX1/OLDl0Ck/oKlscArfz5xSKSUqBf/O8zzhssyxbxJqr+d50ARSGlMasF+pIawWRXNB2a2GqDaKMG1Znkr7U3LHVSo1dLurhTZ4PEmSCAd+5Rq53+qR5HJwzYhatYpTZDgsg63OplMcUCSiRa3ORR1xq0uV8zG47/39fbzrXe8CAHzlKyaO//DwEEnCqMdmrXg9+/2hAJiwRKV1hk7HrINIH4MDeLmZe7vGhkwKlJoOMZM4O5L6fKBGZeIU6aN5nBfqEXyjtMwdWNKSHnI6EZJAFFVw+fJFZAo4Ghmd7StfNHp6jdwnFy9ewLWvmYCd0ZExwgSpxgbpfZcIECSKIkyojZu3DQdjI1avPxROypyp2Wzi0StGYjh/wdgBfN+XstY/8IN/HQBw966RCD772c/ihatfM/dRXv75c4+gSXUEJAf/9GnhZrdumdx3AUNBJjp7EDA8VdMx/pCRMbeVcVgPFdCN2UwCTphcoFa2qfD9rVZrAa8gSRJxnbkBObayTTF+w4UvY3JDlcvVndy6ENyWRi7319ca0i7bWXjNuOaC53lOfUfDlXd274j+z9w+SRKZA4+Ry7+7eRnc1s7OnYWsvSiKFoBlOdx4Npvh5ZdfNuOmZ3fr1i35m4nXoN1u22pUJE3s7OzI31uO1GKN3xwabgFqJKuxTkVidS65CD5JZUHgwfdf/1Y+EYfAdDrFc899Cc2VDtr0Ejz1+FsAAEf0YL/wmc/gNImAjXWz8Xv7B1K48mDPbPhOpwNFhUI6FLHFC/niqzflodYCwr5DhL2RaWNn/xoAY5jj4iDD6yZS6wIdMj/10z+D/+l//Ofm/h3jYWh3hqhVzSZd3zCi38bGhk3FnRdRgaKqteY2GjadlcfZ61EUnLPhyyXH5vO5vLy8EQAsGO74oAhDWyjDRQBisdTFPCzH5TN8Y57ncr9b20GSlRq2xBdgXmJeA0nImozEmDYc7Mq6cOpwubbEdDq10YOU91GrXxTLOx9iAPD8888X+rLlzvyFA61Wq9kK0k6+AB8CPBdWLe7evSvf8YHiok2xyM+/G41GC3UNqtXqguGzUqkgncc0Xiqcm9OzyGJ4nLqiGBErREQHCQOJ+L6/cDh/I7RUB5a0pIecToQkoDyFShSgUY0kBvprV01O0vomueoA3L5mYreZa22srokf+urA+s8vUBHMCWVxsajkBRWEkTmpucDjcHSEt7/dGHwunTPxBb3+IT7/+T83bVD66l988TkA5oQ/ddqkdb7z3d8DANjfO0I8Nxys2TZGnsuXL+P0acPdXnjBSDDMlZN0Ln9LLfpGw4l+M6f6gAAoTp06JZyRjVlbW1viemKR1MXFd2MB+N/lAplaa5EieBy9Xk++Z046J6NnvV5f+K7RaAg35v7ZaOf7/gISsVLKQrWRgdf3fZmXLezqy+/4eXP+hudbN52rEvH6sSrEc6tWqwtFQafT6UIJ+0rFYhcyMT6g7/u2GhBJAu9617skZ0BKtjnSR7mallLKGkjduIyRWZuwwqXXzHgGg56oi2GFUrGrISLwGAk+TyeiTi3rDixpSUv6hulESAK1Wg1PPfUUPv/5zwvnOn/aBGkwoGSlUsGlcyZfnE/YGzduCBdKZuZ3QRBgSKALQWQ4DvPHdruN/R0TkMF5Ap7n4fc+8lsAgO/8rncCMByFo/UY2ur69Vel/Srp/+fPXQQAxDONq7eN0WhjnewWjYZwNw5akcoyt14TLrSxYe0WrCuz0ahJGZRJkhTKoAOGc5cDq0xeQ7+wRsz9j46OilF+NBfu0w1eKnM81n3TNF0IRvJ9X4BAOOadA3JqtZpIQ1J3YP8QTHt7+9IGV18qIy67tg8OmErSuawf358kiXB+vp+5+KVLlxyEYIu9UK5jEQSBtMf2BZ4TYO0PLodnqYfb53m2Wq0CYAzfXw4Iy7IMqmZzVgBgHjPEWYRGkwOwrLGV3YF+wIZeTzJ0Xk/k4Ik4BOq1Gp5++m14+um3IaWSTM8/Z8Tv27T5smyGOS+qGMli7O7uUCsc6eXhdNNslOmU/N0UOtuqVZGQEaY/MC/6SqeLOlV8/a3f/igAI4J2ukZsa5F3gnKFMBmOEVaM//+3P2ruv3jhMXznd32vGQWJutvb27JhZ9S/AHaoXKLV2BK8t7cnouKf/qmJcwhrpm83CYdVgPl8vlCyrdFoyObkvl56ySAieZ4nG4A3S5Zl8oLyht/a2pIDh6PxysjPgBX5m82mxFIwucAjHJPA/cRxLP2XQ5zdPtzirHzIMI6f59uDj+d748YNWW8mxiQ8PDxcKCby6KOPSBwHj9f1fvA1VmPa7bYc5ryBx+OxzIUPfD5Au92uMDQX4ZjXw40/aNWK8PasksSxlg1fbzC4iS9qgy04kgme4YNE/+NoqQ4saUkPOZ0ISUApjTDIESdT5DCc4Mw5wxV/7CeM8W00GONg34iZ4wG5oGYNpKnhUmvbFwEAgR/Cz8ypefmC8f8zeMTt20dYWzMi3SphwikvxyNPm5Tj7z/7mIzpgx/8IABgNiSOQ1y5EVZxep2iGSlewcs0Lp0z6gtziaAa2Sg/ajPmOgRhVURLjhdXQQ3VhuHo22epDDrFizcajYXEms3NTYu1SFzfLWHO3104a1xXBtHX3NdpmjG6iUwWKGWGGWEnRkGxbkIYhsJ5WSLpdDp4/PHHARi/mZ7PIgAAIABJREFUuTvGNE1lfizqZtoadisVKnzq+0gp+s3GCVCBz2qITtgutBv6lQUAFs/zFmociAF5Y0PGZo2HcylTxqpHu92Ufg8phZ3H88QTb8UXvvAFAMCNG6atrbWuzOtoz7g7mYu3alXMSDJnSSCARo2LlLDbGBo5wW9knApNCMqdTkvwL8OApAXPBzRX2uFkqKAANeZ+lv8+jpaSwJKW9JDTCZEEfFSrTSjlQ9GQGg0G5KCyV16Ieo3cKxS3vn1qKnBhd3aNfnd0uIfXrhsj3bve9e0AgO/4TpPPtNpdk6ivj33sjwAAm5vr+OyffwkA8NKL5oS/fPkyuh3j6mPwShc/n3VgvvbYY1ek+k2rRS6umi2lzYCTbhALc2AOMnnuuedsCWvKK8i1TW1lDsVZbYeHhwV3F2D0TNY1WffNSRo5OjoSjs7cbTKOBT7LNbQxWMqcUIbDqun79OnT+L7v+z4A1vj3yiuvCJdl/dgt7+XaEUz7mdgm3HTaMrgJ6+vValWMczy3m6/dsvkJTrSiC4gCWPuCW+LNBW7h5+emKpfBWHldptOpGKkvXDAu4v39fRlnGbjj6OjI5nY46egsSfFaRVEkQK42Dd1mhfJv2c0YhiEqUbEvN1Do9RgGl5LAkpb0kNOJkAQABZ1VUI0qqEYUu00uvMnUcBVfBRh7hvukHum9UAABgbQ6xv2W5htIKBDoj/74NwEAn/qUOfH/wX/6fvzgD/01AMC3veMZAMCnP/1pHByY03w4MJ+f+bMv2Jz3G+b0Z6niybc9he+m05w5yNbWBiiNAEMKLurvD8SazCGuL7xgAqCeeeYZOeE///nPAzCcld1pHNp89WvGTdXtdoVrclsu0IjLUcv4AOcosKlWbYmlu0e2jDiOhVsNh+Z3q6urOP+IkX54/E0GfZ1M8OUvf1nGCxh9ly3eLJEIyKkTHMNjVX6wENZr6hNYeHXASkh5ni/AkIdhKP2zR6DZbMr6CZwc6+JOoVY3V5/H4WIdlOtH8j1pmsp9DDjaqlUWYOVZQnGxHVji2N3dtRWKuIpRFCFJi+HLbsAR3+8GHJVtHzxf4PV5B07IIWCJS3UpxUYbflB2oooLMQYZMoqum4svtoKIHsSVR8xmalDxz9/48AdRjcwD+Vt/+z8GAPzkT/8MjnpmA5w9ZV56WzseACV1sD/9/PmzEtHHRq/RdIgNKmpCOR0IRqGIxWwE/MEf/EEAZrOwuM7i/dbWVqEAKWDjCqbTqbw07C68efOmg0RjDoHxeGzLfZVKW7344osL6ETnzp3DD//wDwMoGuRYvP/d3/1dswSOyO3WJQCM2MvGUG6DN59SSjYfv8zTebzw8o7HY3E58m95I+zs7Eh8gODtVRuOAc9GUPJG5HWR4rDjcaHUGGA2q1uiDSiiQXGMgRuNyaqhIBxNhjJ3dmO6BV74ubgp1rxJ3cSjMnqQ1haRisfLaqbneVBesYSd+c2iQbDc/r1oqQ4saUkPOZ0ISUApgOx/YkyzBh/DuT0o4cCJxym3c6SUdlsnd1OqM2QpoRFTQc/xhEA9dISDnjmx/9EvvR8A8Nd+4Idw7WXD+b797e8AYDh2JTJLw6L5F0kMrrfqEr2VgcpzNZpIck61Mx/VaoQoMiItSwzM/YfD4YLRaDqditjI4vX6hi3PzVICGyW11mKgYnddtVpdqE/w6mvGEPqzf+/v4NIlk1PhBukw1x8MDUf98Ic/LOL3AQGr7B8ROMdsJkY6NohduXJFxsRrxRJBq9USicQVf5nbc1udTkdEbJZ03AhJlhxYahr2RyJZuGI4r0PZRaiUKrhWgaIq5BaC5fGWJYdutyvtuwZWvsbPgp+Tm0rsVmEql03XWosrmNeIA8hWV1clYpDLkCulRBJmyvP8vojCy9LkS1rSku5LJ0ISADSgYmitoFEEppC6AlETWc71ASguPpuJDjSn0NzAC6ACusZuJ2ojmU0E4z0amGsvvfxV/OUXrwIAJpSJ+MlPfgrvf/8vALDuOtbrh8Mhul2jo9qw0KEUDOVr26fOCyY9n/qs2x4cHAjXZ667sbEh18o18k6fPi1cjfXMo6Mj4Z4ucOh3fMd3FPrsNAxna7VaMgfOxlNK4bOf/VMA1tj1/PPPOUAjVFEI1iZQht1ywUTZBsL6rud5C/US6k0rHbjuQ5YKygjNnU6nYEAEjI5tsw0VPYPxQi1H7tMFqXVtAtyXi5JcrmLEnLtSqRRqOAJALQpEYmCbEbeZJMnCuPnfbrtaa3h5URKo16sL6+eCt7KdygVxeSOSwIk4BJTyEFbqmM/nyCm/VIXmodXrRtxLkgSasNXEch90EAhijRG55/M5ZnOCfyYxS3lsXAkxHBLU+Ny84Ddf2UWNio3e3DWHwZUrV/CH//a3AQCf/NTvAwB+8j/8CQDAaqOGF/7CoB6FpJbUqzX0yEDVPyID4lt35CGxkenJJ01knZ6PkflUBHNmxjqeaoQgAxvZjDRtvusvviIqxd0dI3q/4x1vx1vfYpBz3vHM2wEYhCZGJWLjX5obsfmjv/uH4p3g9NdarSYvNm/Mp9/xHrn2Z3/2ZwCAoWP04nbZc+DCaJfLrs1mMzzxxBNwiQ15gFtQI0XIKcp0mLP47qICMcb75csXZT1mMwuK4hb5BNw8BGug5I02m8bI8yKeYKPRQI+eHx8C+3tmvO1WVyL0xKA56WN1zawVqwVSeHVtTUomcxXrRrO6gLTseT4yev/Yw+9RuEO1HcAjVGxNjA9KwW5bWpcMyBWpo96iEfD+NYmX6sCSlvTQ04mQBAAtePf38nP6vr8gvgGOATE2HKFR1xiNCf12QlFzjN4bZwC7XzIuIT6H75PxhSCcXn3lNWysGQNSRLh2f/gHfwwAWO128Z+97x8AsKd/Mp3hmW9/N/1tONjNox3UqGSXIr/hc1/+qplLoJAkhkuxCO37SsRFibwb2ohANmi5WIPf+73fbcZNh/9wOMSdOybzj6Pb/uCP/gSAcWGxQY458Orq6kJ5riiKxLjF3JDX2y2HzmN1pQN+di7sFnNnvlatVsVQJoVj8lw4Ixv8XKMac96Z4wbmcTC3D4JgIb+C5zmbzURysAa/dKH02Ww+gSZjb5XSe7srNn05Tkz/fk7jOcYly/8eDoditHQjO8vlwuI4hkdZgRz/X1aJ3HGbtWFXIqUXKyUS9OuhpSSwpCU95HRCJAFl8gaUQrl+qWsgjCK/cK1atVV4ulSaDACOeoZDZ5nJ9huODLd94fmrGA4ndM+Ueq5Ak2EmmRluuLGxgbXuJrVhOMPtu6bNOM7xS//kvwYAtBpUSNLz8JYrpggqc+DW5ppEsB0cmN9evWpsDuPxUPTu2dzCorFksbFRLFv+oz/6o1J9h7n+aDRAvz8stPuZz/wJPv1pg0UgwSi++XSDV9gNl6ap9Mnk+75wIJYExNi5vS1SCksLs9lM2mUuyHpvtVqVObDEMxgMpA2WCMIwFGmDg27431mWibRnIcWOCgZBvp/n7CIy8zyZk8rYwkheNZ7fwe6e9LFDSNXc1qg/QLNWL4y7Xq8X/gasAXk+ny+AlqRpupBL4XkeMqpdUKtHhXWv1+uoVKyh8X50v4KkD6I3dAgopboA/gWAp2CW9O8DuArg1wBcBHAdwN/UWh/dowm3NSjlgfMfyhFQxgJaNHoEgY+AkIWnXCHY99FZMZF2164Z9OAXXzSGuVu3e5hMCODDqe7qkXjVrJsX4Pq16/h826SN8ub7T/7+z5l7mk38+od+DQDw/NcM9PhKp4M9Em0FU+/VV+F5f1kYb43AIxrNFWyeMj719XVjsHryySflRZ3Pp3S/Lf911DOqzdeoz49//OOygacTt04ivdmUnlo30iza7ba8qC4aMBNvtMPDQ/FilKsBA3Zz8mbp9XoLyVB8KIRhaAuNUFu9Xk/mKUa62Uz657Z487lIutxGENgUaBc7kMfNqoobxlwukaaT1IYGE3BHPJtiSNDKUgqO1MfRoI+Iw6jrBPqRjm35MQdmnftxEYUBo+rwPFmFmk6n8FAECXGjCXn9pByZ5zk1Ec09aZJL7MpfRSrxBwD8G6314wDeDuAFAL8M4GNa60cBfIz+vaQlLemE0uuWBJRSbQDfC+DvAYDWOgYQK6V+HMD3022/ClOj8Jce0JYTN318DPSDTraQIvx8B6AioQIWc0o9znIF5VGCh88lvzSSjDmHOZ0feeQyhkPDaa5dMxF3V18yHPidzzyDn3//z5s26OTu9XoSNcen/t7uoXCHS5dMNBm71VrtptRLYK41HA7FL88++zg2YvPHP/5xEW05gWg2tT7nKLJGqXUyaLJLLGpWaZ550ddM13gtedz1en2hEjO3NRqNFiDBKpXKAua+i3TM47Zc3OLs8Xe1Wk04I3+6Yj736UJ+cR9u3L07JpdcbESZZ9XWYUhJHN86tWGRiglYhXH8/EBhMi1iGGZZJuvnSjVMbtIPrye37+IaBhVb/ARwqhPXVxfQid1U4WKRl78aw+BlAHsA/i+l1F8opf6FUqoBYEtrfQcA6HPzuB8rpd6nlPqcUupzPOklLWlJ33p6IzaBAMAzAH5Ba/1ZpdQH8A2I/lrrZwE8CwCXLl3UHIghyQMlbh/4/oIE4HKyUA7/HNWamRafoswtgqCCMKTTNjecJk9SaCr2aPW/Q6xQlaODQ+Ny+9//j/8VgMGa53afevptAMwJzsUqWVe99MgjYgxjDnL1ZXIR+gpf+pIBMrl92xgSb968iRnZAgSoIre4+Fyznt2YtVpg7Q9j4nJhHUFgOH+PMiPbJPHEcbxQQlxrvVBRSGstHF3KrFN+QZqmMnf3Gbhlzdw1SJKkEPTj/sYdhyn7VuSQ5TRpoJjeW477d3H+y4Aj8/m8UPcAAIKoApRqESDL0CBXX87SBHHgiu+j6aRsA0Du9MnkZuy5EhdguD6vEX8qpRCqSqFdd/yuxGDJQRkG4IUeoGxpefez/Pdx9EYkgZsAbmqtP0v//jDMobCjlNo2g1TbAHbfQB9LWtKS3mR63ZKA1vquUuqGUuotWuurAN4L4Hn672cB/DP6/MiD2lJKLQQKlU80N466XPgSAGYUyNFotDCk0M8XXzZw233iTFoBfkA6JNUa9MMItZqxBM/6hiNMpiMcfI1cgsQ93/Oe9wAwcOBnzxu48Nt3DYe8ffs2/uQzxjX3yU9+EgDwUz/x0+LuevllE6vPwTFPPvm4BK+MJ1bPZC7CwU0Bcb5Go2EhygJ2daUIfLagGw5Sq9UkX0Hi83PDAbMsE47kAl+wJZr1+p2dHVs8tLTO1WpV5uAGC5WBNThAKEkSaYu5rVJKJBJ2k45GNiuwrNe7+r3FSLD59Nyu1rpgY3DJ9/2Foqlu4BPbGrIsW6jN6H66dgoAyD0793INyDiOpX0LPW9zXVxrf2fFvH8rq2Y9CuHUYdGOcxxXNyXjv3FYMaY3GifwCwA+qJSqALgG4D+CkS5+XSn1cwBeA/BTD27GJkDczyBYNo64UWJVKs00G83xta8Y1+DOLbMh4gkBj0zmSH3z92rbIu6CjCrdttlgg/4I0ZgLdJrv7u4YN+Op7TXklKcwnlKiTz7GV0i8J80Cf/Lpz8pLk2Vcxsu8bDdu3AAXkW21zLgPj/bFJwxFPmFKo/b9AHWKYHNThSVJqGtesiiK4AdFBGKtOe1ao1plkAvzolerVcc1N6I1tZuON+vwyGz8ZrOJOqHfKnLJJnkCn9y0e3eKUXmh8lBrGbdduEqp3tlcnrUUMokaMpcmzdM9sORwpIM+coyLa127wep1TtQpGhkHg0Fh0wHAxPOQai735qAU0fkSEc4/v2tZniFTZGAmoy4y65rj8XIMhFJKDgRW18x1in9I6YANFFbXzRxWV9t2HCimCD8IGISBSF4PvaFDQGv9lwDeecxX730j7S5pSUv61tEJiRhcpPsZM44zftg0Ul3AlgNcDD694OIyOQtFkSuKqsgzNlCaa12qSFSv11GpMj78iNoC9vaMAdH3mJNlUnmII8E6HY4ln2I8KQa7GNGvKLJyWvVgMFhwibmx5K6RieclkGNUcandbouhkqsfeZ63AIvl+76AnzAIieLa5E5f3P90OhWXVplbmZJt1cI8EVtRnucbBNbIWS7iydKfO6fpdCrr4UYpllOwWaxut9sL+QfHGRcrlYoECXFbPA7fMUxz+57nIQy5ZLhZd1ftKee6FFGBzafJI7Fl3nm8hTVDCfLuGHrQ9/ejZe7Akpb0kNOJkASUKsItuZ/3IxeX3fPYzTIXDnbtmsmb5xO2VqvJ6S/6N2w8viL3W7fTQCVgV4459R97zFQnOn9hG6/eMCjAARkX744PRS/n7MThqI9anesI2Np1gCk5vbm1Qe0bztFurQqn5uxDnVqjqAuVBRThyJj7uAFBLk49YAJQ+Bob98bjsXBLrll46dIl4XRsf3AxB5jr81jDMJR4eakyRL93g2lcDl++5qINM7n2H76/DFoCWInEBQ4tG/VczAN3HRnIlTk16/PuteNw/OUZTGLEfrEepKACKLUQvlyrRTIvDsBaXV3Fqe1iXQXb1uJ63IteT70BphNxCGhd9De75Io5ZXHT/Y4f4HQ6l/j6MjTzbDZzsO4sFDanjSYkquY5oMloxKLZY48ZQBA/SLG2bl76w0NOf61hNChCZhuQDNMvJxC5xi4+EHhOYRih0yki+tRD87IHQbDwEjSbzQWU2iAICpZlAJjO5jTGhtznouuwEcpN9eVNJ4cnibyrq6sLVYnn83khBsAlz/PkgJLiIr5eKDSSpumCOOsi6vB9bs6Be9Dw2vIGd9F9eG7HvQvlEmwAHGNusZybOw4mLk0HYAH3T+scDD3NmIFZljjJUGb9Gs1IrlnvkF2LMlrSvaiMQMTPX2u9xBhc0pKWdH86EZKAUoSieh/Rq/x3+d8scu3vH4rYyGTj4psLLpc0TdHrGVExDAxX1LktHcYuMxZ502xs/6byUXfv7DmiMEsHHetP5ogxOvHb7TaytBifPxmPLAfQRXgsV43hE14pteCjzrJMjHpi7KoXo/8K43FcbS5GPv/N4vVsNJR/H5ayJUej0UIGnWsQKz+zeWzx/qQgiVILEoabSszk4hq6pdd4TlKw1IntB4xEUB5Ht9uV+13VoxxV6baxoCKo0IlYZD8+SYRZLLBiDBaS6xQpGZzbHZbAOgUDqTt3VyV+kLhfNqy69y8lgSUtaUn3pRMhCQBvXBJgnTZJMsnWOzw0EsGc9OJWq5hdVm6HucCgP0RUMfperdoo3NtoNHDYJ/BHPqlVjpAgoipg+KqZY+ApSgSz2UwkAeY05l6WUsh46VmE3HIk3Ww2K0gAPB6Xu9If8m/u33UHliHH3ExBaZfy7d0Co8yBGRbOHZur05YNvK7Ry/3ObQ9wSpM7wUISuJNlC/UM4jhegOXi8aRpWpAieP3KklqWZQuBTK47sGxrcMefpvwMWBJIyS4AKG2fT52wCBhROMsSeF5R+jnunf96DX9lSfdBNQmApSSwpCU99HQiJAGlPIRhVACcZOwnVz9yOQFg9HX+my29+/v7C9DTnmd1vnKwUBiG8CnzbjaiGPxKDapi+jp/yVS90XRPnANRzQTbtFocrnuEqbpL4zY6dppGSDRLDLb6DgDMpvMFva/ZbDo592Q1p6UIqjUbqMKZaZ6P8aRYANT3fficYUafNYo9H40GwhkZuShJ5sIhmVnE8czhshTEomzQVTox4xgS9kKz27Gutdzqz7zebsYiAHh5fmzJ7nLtRDczsezeiwIl7tOEcwfyHCrgwB0K8KEYYD9QmE+K6eqpVy3UATC/qyB1OL8ZB7muASQ52T4IfDZR8cI7mVHmZ47cup7Jc3Dx8qOCJLW6adCaoigCvCK3P84mcL+8GuMaLkq5XGuj7LU4jk7EIaC1Fp9yuejIcQYiJleF2NkxEXu1Wk2w/VgdcNNTrchoxM00TaG8IqDJysoK7pJbj33kNqUzFP+8r+wGpupmBfdaOfZB8BC73QLwBmBcU+5DNb+zvnXeHLwe/X5fxuGKjPeKUkvTdMHt5YJtuBh2vEnLEYxJkixU7R0Oh2JAZJWMDzs36Usq7SJbiH50Ix3///a+PUiT66rvd7u/9zevnZ2Z3ZmdfUq7klYvP5AsCckQbLARxsYgquxQYBIClRSpJOSPYBd/OKkKVZBQhKJIAa5AMCmwMcbBjsAxfgU7jiUsJFvSSivtrvY1+5qd2ZlvZr53d9/8ce+59/Tt+82sdtnRwPSp2ppv++uv+/bt7nvO+Z1zfoeHtgDlJrhhz34/NtdJwC3Pkeh0CNTNZtFx8hrXfUjYAuWS3PCyaKOEimHGhOcvMi2s1EpsdnbWZI3ybMXQIR8hkVKmCujcueL7DeIg5HkWgyR3B3LJZZvLlrAESINxkhA3T9sHlvCw14MPKt7/s2fP46lvPgPAah8OClnKJxsitI0g1Yod9S0nPYXc7jfJMe1M8kqpVMqGAwuFzH6kyTgARVqu1+tlykwpWzFJErONyEVHR0cNqMfz810NxvPVXTIPKaXRbnzcNL/kVnGtRefiRKB0DT6KrQxQKa25zunIuFvE9+fzYkC9XoQi0tV7SZJAaNZoSZV6rLzWaE9dvlkQhVSeP10LXQOfNxKXtozagfFrT1ud6pwUUq5Wq8yCYRmdgR/049YvDw37gL5BwCG3rgdJbgnkkss2ly1hCUgpjQ/tpgbz9FA3GQWwmuDUKUUI2mza9tLG79YL6thYyLQa85O05iCap163ZQgyiECUJ7j0+to3Zas+aVc6Z2O5zXx769/S/+layFrhVYGknSlUyBODyO8ulUqp0BbNC82N8cEZ2YWr4VXIKh2e6vV6xvpx05KXl5cxOzur59mmPXMaL369YRhmePYJrANsqncQBOYzXZ8vNEcAYbFUMcel/RXdehpUJOGAMEmv1zPXznELt7KQ10O4xy+Vi5n5pqpCwOJJ99xzDwAiXbEWF507dnAWX1iQWyHXQyHGj7WRJbAlFgESHxDCSznpxvsekAMHDgAAWq0OrlxWD/HZs3Op4/Ne91FkO8Ymuk6g1+mZc3acWLAFpbqmVRUfK281BQBJYhF9F6zj7gM9nO1221yXNddtTNu98e122/Ir6gc3CALzoFrgMTL70HF5wY+7UAkhMhlsxFZUr9czLce63W4GGKQ54EL7TE/tzJT1JkliXAMS2qfVaqU6AwMqMhIkamzNjj1XnNjFkM9BGIZmQeVKxQXTeE2Ci9DXarXMPej2OpkXl5cx0yLAgVISzj/osgb5mLO4+BYJF8TlwPNGxUe5O5BLLttctoQlEAQBhoeHU8CgW1UWBEHKZAbUqueGlAALOBnzTZtg3NzjQN5aU5mifa1UyqWq4SKkY5DWqterkHrtLOsY/K5du3DpvKo2pFWXt/Ny4+K8qw435d2xdbRlwsEgHjIl4gvOkcfLYdUxlOYeHR3NVN4VCgXzW65B3L4DVHJbqVSMK0GlsI1Gw5jVbn4GB2Kpi1HI4tac65AsDNdE524MmdwyKKJWTd/jIAjQ72kauYha0Q+bcbhav1wuZzRuuVxOaWiaD/q/mykYx3Gq1RkAjIyo+ZydncXs7Iw5Lp2Humjx569QzDYgpX3ca+e/JRGsbNnN3qTw+3qSWwK55LLNZUtYAgICAkUEQhpOBsryIyBF4QXpcKFEhJomhFxt6Hz7YglL15Q2LIdKW9R149C1pTWjHQqkkZIIZd3zoKv950q1hOaq9qUD5Ud/8X99HQDwxBNPoLGqMIeWIf0sYI0AJF1NViwFhqS0sXJNj0ONp92RmXAT1/YioNx3CzqFYTrc2Gq1TAiKQE4pY9PvkLSVtWCGUwQjgCJAjaKV1Dh4nv3qqgL/duseDJ1OB6N6LqFz5UtBCKk/F/TNGx+12IAJPervulGS7R4EgTXdUSmSa6nv1HUQsGp7HPoSn1wiFR7uI6vG8DcULAZR0VhJt9dm5yWtL8x82+xKjRdEXbTbulegrgkY0eQy+w/OGmvJVxNgwNNCCYGg+54Oi1NnJACGWXqQuFYyCbfGBsmWWAQkspliEulFYHh42IB5NJndXtvEzY+/9DIA9aAeO3YMgGXQoZswOrUbjYYyWaMeZcp1TYORSC8yc3Mhrs6rbMPJKdU4dNeUShX+g4//Lh55VNGPHz6iGIxKjQize/YDAK7Mq262om+zuFyqat6Fl4Q/IBacynLw0UM6PDycyXjjFN8k9OCS6wDYB6ZcLhszkhYoDhaScAZdFw3nRUu0H39BfU1CSMgF4G6JW7jD8y14HoILHPMIAKdDd8doXLM4MPsZ4pN+L1V0pI5hn8uufmYMuJz0zXHvvvtuAKpzM6DcJTfrlQsfmzvfnCTGBRwHyk0wC+XuQC65bHPZEpaAgIdj0GR7qVVSFQhZYA0AiiXbd2BuTvUFWFhYxOI1ZR0QSEOr//LyktGIKzrZf2ioZlbxnZO6sUciMTqie8RXFeB39aoyoRcXl7Cyon7bWNYx+2IRhUBTX2n8hmdqkUVA18jDTVyjuSEimajvKpWKl2aKg5BAOvToi3NbDUM5AR1Gu2VdCjsmW0JM5+FgHh2XZ7Pxv/y3huW3WslkgfIWYu618TAwt0J856LfkMvHqcJcwC9O+iY0nEi6lj4oUZCuHdCUZcUwkydQLBZNGHDfvn0AbG6Amss05Rff5svn9xGDuOMeKLklkEsuudyobAlLANqf46tj4qyYKkNOLdOUvPKlL/+VwQQSrYKba20D1qzp1t6EDSRMG05OKrDrjjsP46d+6ifVcRcUlvDqqyfx8nFFVkp9BH7kRz8IAOh1I0DQtKmxDY+NYXKnCoF1WhrgGrVakIA4upa1tbVMs1ReRWiy5rRW8lXvcd+fjtVut00FJc3LHXcqluSTJ0+mMAlAhfdIf8TU+oxpvCFdKl0S1koz802dnyoVo3ECBIrcAAAgAElEQVRd/z8Igowvy+sEKHmp2+2mahGAdPiQPhPmUK1WjS9O546iKNWXgB+j2+2mfqvOUzQYE5VM12qWZLWtQ6s2qUuYcCsBtjPT04bAhjAVbrW4GAUXbtENqvLjyXPrdSASQhir5nqyCTNjWffbDUQI8QtCiGNCiBeFEJ8QQlSEEAeFEE8LIU4IIf5ECLE+rJlLLrm8oXLDloAQYg+AfwXgqJSyLYT4FIAPAHgcwH+RUn5SCPE7AH4GwG9vdDxKnyQtUgiz1X7UVpzy19///vebFf7MaaW5z58/b33vslqdFxcVDrB8bclozZ0TStueO3cWJ06qyMKdRxTCP1KfwJ133A8A+M63XwAAfOVLXwAA3HvPfZiYUtq211MapHFtEYmuJ2ivKc20uLTKqhMVQk9aq9frGUTarV+nuVBicQCXurtWq5kQFB1/dHTUzN/DDz8MAIgTIhItG+T69OnT+rj7zGeeIESkmYTBkKysrBgrhWtdmlNL+27bkRvuBUoD7lmtz1txEykMaVaSTqdjrB63ghGwiVJJkmT6HnAE3g3JlkoFJEmaDi1OImZ5pjGqIAD27lUEM7N71f2/8667MlqWRzVc622QXA912HpYAq9FuRFL4GbdgQKAqhCiD6AG4BKA7wPwj/X3Hwfw73Edi4ALDllGFDWRKpxlc80B9QDQQ3Dk8AEAylX434UvAQBe+PbzqWMMD9dRr6uHl4NSxE784gv2YaOH9sD+2wAAK7rh6IkTJ7B/vwoN0sN5+fJVnD17FgBSBTNmQXOyuBqNRoZjnoN/JDyrkI5FGXX1ej3Tz77T6eBtb3ubvlb1Yp6fO6Pm58gRUzNApmuz2TQvDi1Q3C2hF7PVVWYwz7KjxWtyctK8/G724fLysg3n0qJXKmbckn6/b/o70F+an0ajkWEWXllZyTRekVJmFxwWgqRz0bZOp4OEuP9AmYMFxhpMZCJ2saauwbQQ8ixWusc0nn6/n8kAHSQbvaT8GNxF4L+7mUXght0BKeUFAL8G1Xn4EoAGgL8FsCypcwcwB2CP7/dCiJ8TQjwjhHjGpQjPJZdcNk9uxh3YAeB9AA4CWAbwpwB+0LOrdxmSUn4MwMcA4MiRO6QUAgGzBjKkIkHB8LdTLQAPmzTX1Kpbr83iR39UAX0//uPpTKzjx1/Ey8cV+FfULcTqQ1WgoqbhT//88wBUw84HHngAAFDTWnPXXqX9L126gK/9v28CsF1kms0mri1foHnR4w7R7erQmgYXh+pKk3Q6PZRLNT0Ode7h4Tr6uo9Bs6lz8AN17tW1FWMBLC6q78rlKnbv3g0AuHBBJSgdPnwYr712DgAwvkOFOG87chcAYM+ePSYMWNAceYuLC3jLW9V1/t9vfA0A8PB3P2IAsAsX1DUtLMyb+T506JAam+mcVMSuXfcCsBRvVIo8tLNqNO90ZQoA0F6LjdVBYbW5uTlzXKpTIHDy/Pnztv8B9SaolwHdJrxas4Aiae1O1zIVA7pUXReGlMrU5jxKtWgHlMlPVkdATWp12/UHHnoYu2am09derhhyRqHd12rdZiu6FZqcbo2DpzJO7+eGj/l8SKn+qWMQaBkgDNLAIT83VVcOkpsBBt8J4LSU8qpUOZafAfAIgDEhDHw+C+DiTZwjl1xyucVyM5jAOQAPCSFqANoA3gHgGQBfBfAEgE8C+BCAz250IMqb9yVEcAJKdxUtFm0HmKhnE1DcJB0Kn9xzzz24487D+rfquGfPnsVyQ4UQb7tN+f9JkhitQ761TWsWLLGJkT4U00QmpVLJAJmmsZD+W61avv+6qJmxRjomSJopDGx3HTou+b2NRsNU7dXraowLCwvG36/OVFPzx1NtaR8hBM6ePQPANlydmZkxIVVKfDl/fticm4A7muOxsTFzvFKJGmpaOjXS4nRv98+OG21LGEWSJAYLmJpSFgNhFfPz8+bayd/mlYW0LYoiYy25rdJ9VZtBEJi5pPvZ6dv+Dvv3K5B4hwZfd+/ejTE9XpOuHfUGgno+GjBO+sktgSTx++zr8QVw4e+OL4lqI0zihhcBKeXTQohPA3gWQATgOSjz/i8AfFII8R/1tt+7nuNRnoA7Sdw9cC+GU5RzdN3upo9l4vMtVpSjHoaJiV2YnFQx/iOH7jPnohcRQh3/4O2H9Xlsq6q2pt2+cuUK2jpScPmyoh7v9vsqpwBAHFOsl4qcqujq76j8tdXqmAIpapDKATGTD6+Ptbi4ZF5Iuva1tTUzbnqRe9rF2L27Y4CtiYkJc527dysT9+j4UQDqZaLvSQ7qLs9BEKRqF+gvAYP0O3qhebkzLViILfsRbWu1WubFfe6551LfDQ0Nme8oGnJt6aox9SlKsbKykokicHITN4eh0+0yghmd8VgIzZzefvvtAIBJvShVq9VsA9ggG/1ez/QHspl/UsoML+R67gBXcrzs3n1feAbuRtmGNxUdkFJ+FMBHnc2vAXjwZo6bSy65bJ5sjYxBLbxqygUGpbQ88TyP3uzXz5KLWDIHbVbLyIBjZEaOjgwZ01xCaYtarZxpUU188XEcI06UximVlfm5a3oa+3U4TejKv1MnTkJjShgeHtMj0lz9Ky3Dl29CikKCQpm2Eak65+qqzTnoabBxcnLShPDIwqhUKibcKXRb7LmLqqZieXnZEHsY87fTMZp0aIjcnn6qXJnvXygUUkQddO6pqd1mnIB1TzqdjnERymXNlnx5EQsLC/q3NqPu5ZdVrsaePXv0PVBze/Xq1QzHoJTSWB9kHdRqtUypNH9e6DPPYCTLgZ6nnWOTmQxAX6zftDkrhClt7IrLQO3bT1U/+l9Dn0k/yBJwf/N63IG8diCXXLa5bA1LQK9u3W43Q8nFOfVdn4mv6mk6JX8edRDYLC6ZaD96tYdKRWkuCUrgASrVdOJLt0fnEigUdf55QefA14dwz71Kc03PqLDX4sIVLFxVfnmrtaavSWnY4eG6IRyxpJg9E/IpOuQVURTZ/HNGckEam3xfThI6N6dIVsta0y8tvWLarS8vKwui0VjC/W+6V4+DQm3CAFV9bV3RuYeGSgh04Ic0sawJs40iUVK360pioK/njf4uLCxk6v157QDVJvBEItfX5/UEvG8CbaM5pe+klMbioe+WFhYz1sHRo0cN/lEb0rUAjHS13UuzKfOaABcv4NRghDlwTIVECIEkSofwfJqbA4OudeLbn1vEfz/YhjUgyMEXulCaaH6hPtbWPrshLrBCL1c6884i5LZ82YIp9CBDg3UUhxWBRBTpqENC5wlNdGBslMzTislPkImNXNC1kZlMD2C/37edbZvEWGT57cw1S3sMvrjRuAkQpPHfpl2AK1euoNlU5vT58+f1GGu4clm9dPQil8oFlErqpaMMTQ7M0TVbWvSC2UZuzJpOnVaAHxVxLelj2vvEs+vcF8tEdth1Gj7BUKbKimmu6EV3SUh4tIdzDdIzRkzVMzMzmdRkwZ61DGtwkm1QwsU11we9jG5K83oZfrxEnST1DDu/vZ6U5NwdyCWXbS5bwhIQzLxzgROX7onvw1c9zlJrv0+fRxV1qM8WcLThlYhZEMVKMfVbKjtNkgSBRvwSyh0IQoiCOkZ1iPog7DNaau68yqSDJq8YHqp6CCrKKBbTrlC3pzQ370lQ0CBgtVpkFF+6kKnRMGE60uyvHD8BABgarhkXgbT4ysqK4SSkOdu1e9Kci4A43u+B3AD6y8O0BBoSOLm2tmZAQGricvXKfKZ2oFgsmjHZ/g5WY/PeEwAQxd2MdpVSmrCiW7glhDDXYiwYIfDEE08AsLUAteEh23OhpM1vPQYhBCKZbfZCkiGEYQ8fWShCiExxkxACSZx+5n3PNw8juqHHmy0gyi2BXHLZ5rI1LAFkfRcX9HBJR4D0qhjzlY+OJex+gE6q0PUHoQ9Miax2TiLHlyIwho2pyBheY6ci7fbDd6GxovzQK/NL+lrUvp3+GvPjNYVXbLPPmiu63ZZmGBYIIJD2i6OokVn1e70eLl9Oh73KVZ08tNTIsM72owALi+oaCOQMQpudaAhGS+q7hcY8xsbG9Vyp6z1/4TxKGlQsakbcZ555FoAqqybGYrIIWt0V41vzbEzXAqSxlsvlTDJNEASZhqG8twD9JcuAZ9SRZfndb38Ms4cOpI5bqVQsDuN51uiJod4BfMy0jZ65VNhO/zKJE4Q6hMzrX3ifBpoPe9y0hg/DIPMeqNb16eaqr0dySyCXXLa5bA1LQAjTYNPVCNw/GmQt0DFov0FI6aC0ZPpsEGEPP/x6fpqPKmpiYsIkvryk6dDNCi8SkyKcMLJQ265chSejnkXP6be+Bpn0XafTyfjPsfZjO52OSYAhHzhJkkwzUUUqkm3eCSgMgTQ7WQKXL88jANVvqHFQCHJ58ZolGC3afgg0XvLT+fncHHnVcyFMfZdI23yUh1FdGjeuRd3mraOjo14/nuf0vx5Zb39fog//G3hS5N3f8qQ5HjkBiLtgMP3YRrIlFoEkSdBqtVJFF27Ml4eRSFLuAGOwdSeauxbuNn5OvkCsB/S4N1xKmVlAisVhUxZLQg9/IbT5CgQWlsvFjInLx+Orm3DDXjzeTi8MlfXW63WzCOzdu1efs2zKeWnchw8fNoVDdPy17prZ34gGs44fP46zZ84AAM7qugky/REnWG4spY5fKNleB/TSEnBG4wTSrcx4KBGAaTgDWOKTOI7N+NzWYFEUmXoGuieHDx82YDIHIdeLva8n6+3P+0O4z1qSJIbncb1FgCscl5k7DEMTzr0Ryd2BXHLZ5rIlLAHuDpC45jdfRX350W6SEf+er5icVoz2cTOw0mHGbHjFBaq40LZWq2Xy0Inbj0g6on5iQpUUHiqVZIYCa7iuNFW73TbaijcVdU1cABmtGbF23WQlPPbYYwAUcEaaka6pWq2aOTJZdlXLCVirKaCx31HnmZmZMS7NmddO6TkggFUiCNOZkb1+3xyfgEHAhngpvMjDiK47wFu18249ZGHQuHliEvFSEnlJrVYz4+ANQ3lC10bCQ3O0P69qdQE/n6sqhDCxbJ8b49uW6dHBLFEfv+JGklsCueSyzWVLWALQPi8niyAxfjSrMPStrLzJJQeLaBvtT8KTNXwYwqBUTg7M0KrLe/qRJq5UKiacRjRgxleWsSUaCbKax62WBJBJplpZWcngIXEcZ6wlOtb4+DiOHlWcAZQf3+12M0CcD38A85Op5oH87rEdIwiE0rLTMypFmXo79todSKh5CXVHn3Jguy9RCFJRg6XBLt5M1MVxiqXAfCaQM4qijDYk0pBDhw7hPe95DwDLdYAwSIFt9NfUiuj7yDEq10rgIdf18vd9WBPX1IV1egq4x/eB22EYotttm898bEmSbNjHcEssAgK2LHhQ7rMvA4rnlftuCJl5rqnmfnbBGgADQToprdnOc8ldQLPT6ZiFgcpd6YE9e+YCiErdFN1ImydASDoxf/MuvJx63L25vMjKuDiaK49HK2iMlUol8yJw8NTw2gX2oTPXrKMOUdxDr0Idf2kB1/MopMmNoO/a7a45J6dbJ/IRenF9YC53I8hl4pERd7GnRe+BBx7I1BWA5Q7wa3eBOBLfsznohQTS7dk4oYmrtJIkQaGc7iTte9Z9io8vjq6LwJUcnX+Q5O5ALrlsc9kSlgBgzdBBOdCcJ44kDMNMqA0AJHG20Uqp8+jDAgv9Bfb4ArTK0uqZJZCgjLAgDLKmnxSmaq9cUhpntVVFk0grQrXSj4zu0OOYg9Rt00KdFVgQBQSCylH1ePTfREr0dDZjqOPBYQEItZaPdbZYoVBAos11U+sAZX1cW1pFrBucJlIfIwjN/hCUeZkYoEro84eCtRPXFY6UJVgolCBG1XEP364auz7/nZf0vMSmsavRTEETlRL1YaCS3yaGRxTg2NP1EqTlRqoj5r7QvPcjiaKe50BnKQZhYvL8Z/ao5iDveOe7AKSbhMLcW4FCIavtB0kcx2YcdM+4q+JmYwZBYJik0y3k1TnKZba/sXT0b7nb4ea1IDHZhqbCUYQIgg1al68juSWQSy7bXLaEJUB+iw+44+CXC451u13rOzLt7UsS4sca9Jn7gT4Qks7thmG4L26pwarGHyZgkLTzqZOvotvu6OOm54GOpwcEACiGlpyTtEuv27ZkItKGAaPE+rf6g/eaaR+zH8Nj3fTzYtlyH5gOPpHN2KP5oPHQWEWlYnoYED4yOjpqvicCEf4bHq4D0gSfdIx2u220O2cbJsbkd77znQAsmzEHm+lzq9POJKTxcDFPUiNxMSb+zLohRR6O9vnzXHyJYABZH9Kci/b1ZR0OCltfT4hwSywCJBzo8wEuhhXWEINYpDlgnXNdINCNtbqffTfLXUg42QXn3ANUbJvi3CamHRZNme6IblIyPq5M82/9zVNoaeKNfl9zByY9VDRnIaUNJyzKYZtPkDlZtuXI0rLfCOMJ6fnTL/DU1JQBKPlD5i4C6iFLz9GKzuwrFovmOgPYhTOO0qg88TMmUYSCjgrQS7u41MgAZv1+fyCYyxmU7QtazrQ+e9vb3oYf+7EfS+3HF3X+Mqs5rqUWBzVnImPW85fPPS53B9yXkOdx+J47N4rDP3OWIt9L7ComKbOMxXxR2mghyN2BXHLZ5rJlLAHiTndDM2TuJUniZRs2v48HZ/b5ikJ85j2JTyPwVdc9/8TERCbUJoohEk0/RXReV6+q+PnQ0BCWSyokFsfanO1HqXAXACTUCotdGi8gcok1wjAECjROfU16jDt27DB5+fRXSmtuStjxu5YUZfa1221jCfDipqbWytSU1fA9hqHxRmiMQ0NDqfAYoLStmx/AtairxQuB1dA/+7M/C0CxFLsWH58rV8umXCEtXKPSb3ncnTcuoe98ITm+Dx2X7+N+7wrX3K614nMpwjBMFaLxcxWL2ZoUV3JLIJdctrlsCUuAgEFfJxWeaOF+l/Z7suW/rviyz3wagZ/DTQIKwzAFJA06nwLM1HZKEiLtzDny6RJEIlKrNwD0DddpkvGZO+2m0eg9Db4FQQCyaYzPqTXD0NCQ0eJ2Htl1pzROWnP1GFkHAYNCh8uq1SriyJYaA1abF8MwQ1/W7Vuri1t2PEOQj5+Db6YNOfq47z7VLYpqAQBrQbnMvz7futvtZolD+didBBuOE/lKj93MS1/bvEE41PWAdxuJDyy8XtnQEhBC/L4QYl4I8SLbNi6E+KIQ4oT+u0NvF0KI3xRCnBRCPC+EeMvrvJZccsllk+V6LIE/APBbAP6QbfswgC9LKX9FCPFh/f9fhGpNflj/exuA39Z/NxRK/Bm0evJV17vaeUKE7l/Xt3SPQZ/jOPb6f/R/X9TB5RPoS1vBRscglHvXrl24OKcqClstpb3K5TLiyEkp1UkplXKZoeW2nbbbIahYLAJJGhMo6nHV6/VUSrO6JnvtxI6lxpquSSCNybVyr6PCgXNzczhzWlUPzs+rFuam7oLdT1+tBu8pwUlN+NzyCIZJd67W8O53vzs1Vzyl2RV+TpJiuZSpAExFS4DUd/z8/FoGhQh9JKSDMAGfhbHeb10JggCJHMyhsRE3woaLgJTya0KIA87m9wH4Xv354wD+D9Qi8D4AfyjVyJ8SQowJIaallJc2OAe6nX4KIKLMNP5ikvkbsD4CdIE8d9o3mUB6Qvji4k6S7wZycRcBbjoattw4QaD55Oo1BaxR3Lr35jZefP55fS4dBuz2TLgwXlOL1U7dKFWIBNQYVa8LaLdtQ81eTNl+EQolqjtQO66tqPDexPhO1CrV1HfFQsjmwRYhmcxJfemRaawaA7rDM2WtIemg3VrWY9Psx4wZudfRmY4GcItgOfrUIbrdPsgobTZtE1YAWF1dNnn/FGac2jWNHeMqEzEs2PAkkfZmzG8hjLtjQ8oB2q100U0QhJYP0MlEVdeeDhH2ep0MkO3rFeFTIHyM/S6xRmfrYOjpozmT0jIz8UXddDbWfwJBXIYBhnUYdZDcKDC4i15s/XdKb98D4Dzbb05vy4gQ4ueEEM8IIZ6h4pFccsll8+XvGhj0oRFe1ENK+TGoVua4++57ZRiGqQwpMu04oQTnvweoj0C6tNUX3uOAm2sWcl5Dn2vgS+pwQ5W9Xi+TSFIQBcP71uprmi4WSuPjBRRY2On0zPEAm1E3MzNj9iPSjVKpZNwBAvyAbAksafhms2nm1oTwEGesJmU6p62lXp9x5GuN0+urMS4sLODSpUupeaHeCKEoAMiWXdN+ppUZC82RBcArMOna3/ve9wIAHnrke4x14APyXJeSZwLy7FB6xriZ7x6Pu3zuXHH3wwV1+fnXyxIMgiCT6LNe2XAcx2aO6HemqS2yNQxE3bee3KglcEUIMa0HNw1gXm+fA7CX7TcL4OINniOXXHLZBLlRS+BzAD4E4Ff038+y7f9SCPFJKECwsREeACh3jVZa12fnCTRuwocPZOLCyUcBv59G1Yt8P54wwwEq+r+bSMLzuTmQkyTpWoBC0RJhWO2jwcBuZM5hiDcDm5ZM+xOuQBaBe52uVqnVlLZaWFgwpKNErFEscUwAZtxkvNE1mVBkr4fGstLejRV1/nPnzuG1115Tx9NaMNaViTLJUmEFkJn071KpZMKLZNXwZqFEDfboo4+qeS9aa8KEMXu9VFNafnwgm9bbarWMNUa/K5VKmSalPi1urYmCN7mJ/+Xf+b7nlsB6FqnvOwK6y+VyhkDHB8QOkg0XASHEJ6BAwAkhxByAj0K9/J8SQvwMgHMAflzv/pcAHgdwEkALwD/Z6PiAegCTJEl13zXMsvqhKJVKGaSULxqcgtp9IX0mPb/JNIE+rjlfXUHF6RrsMxWLlbJF6EP1Ukdx2tznUqlUUC6r/egF70XKzJuYmDDn4hx8NCZaNNrtdoZCnObl5MmThk/w7rtVyW+rvWbmlxYj9RKkr4XPI+ciBFRuAG8KCsCAa+rlCszYACCBYKDfqjkG1QC4jMGzs7Nm0aJtEyM7M66Nr+6ER4NcevhSqeRlj/Jlj/K/vu/4Ofn/fS+u6zaGYWi6ErsA9aCsRh8jkrtY+J7NQXI90YEPDvjqHZ59JYCf3+iYueSSy9aRLZExCKjVrFgsZsw8np23Xh71eo1A1svn5p95jvV6JZm+1dmXkUaWQKmQPv/OnTuxf/9+AMCxY4qAo1wpm/CY64IsLi56r8EFx+I4NpaAdY/U/q1WC6+88goAGCqvStWCi6bqUAgTIrQtuQJzTWVNBEIt0E+cOGHulWke27fZf2GYpmKLe/1MM9YwDDMNSWkObrvtNpNxSWzNhVLdWDC8Z8Egk5hbCSQ+Vmoe7nPvMc8dsZZGnDoO/44LVVUODdmGp7zxaiFIP7scBKTjcSDZ51L4rI7rlbx2IJdctrlsCUsgCFS2F/fHaFV2200BafINt2KM7+vz591j8P05YHU9viDHKNz9VKhSrfrNNeXHX7ykWoM/9dRTRlMfPnwYAHD65GmjLV2tyJmFOW+Bq8GKxaKZLwteqkSl6elpsx9p1KldE6ZCsFxWWrzb7Wbag6+utc3//+oLfwkAOPWaankeRz1jrZV01WNfU4RBSnMtnA/Bzdzkuf30DBARy3333We6JM3MKNqwKLHcEjwkyvsS8Hnh2pNko74CrrXiHg9QIVZe28LHz581SnLilmYqpBk7lhcLN9I5CTPhmECKsXidepacTyCXXHJZV7aEJQCoFazX62XCb4QMt9vtjN/f7/fNqkhhLC7u6h9FUcZKSJLErPpuiGnQON1Vn28zOESQoB+lIxwHNd//zvERfOHznwcAXF24rPfvIU40dXdRaTJKKY5je53ttsUvaD5s78AW0+xqPlYbKuFoYV6C2qH3+8pH7bSq5hydHqXL9tHuKe39/AvfBgA89/S39O/6JsxIvvj45CSmplTC6PHjx9XY9PT1+7a5aUun6HZbbVNdyXUx0UHsnFDHOnznXWouKjVc001QR7o6BRmJuVdkCQghTPKRj2Lbve/9fj/zPPHEMXomOIrvYg4iyPIfkHALgqwhnqzGrV7CBNzITqfTMRbjes8k50vwWSYb8QlsiUUgjmM0Gg2MjIyYF8ZttunLCOONRgh84bFy10Ty0U35Sj75MfgY6dzuDfdxzSk242zIB1CMxLt2qbqAM2dVjL250rA3HJTlR3z+diz8YfDlK1DYjVwL+ttqtVCv27ZfQLqhBs3Vc899Gy+9osDKZksd68CBAwCUif6Vr3zFHI+u9/Tp0wAs4EjHUuCoGi+9COViEQUNlK7pY0gpUa6q+04mP7kDd955pzGFjenPmKW5ie62K+Nz5ob+SqVSxu3hIVD3ZeJiQDjYELVbvMTBYlqYfQVyAAzfpHsvyuVyisqM9vFRlNGzw5uwkvhyaLjk7kAuuWxz2RKWgBDBQGDQBQjV/tmMKm7Ku/UE3HJwV3iecMQJLV3wihNOugCOECKzLQgChMYd0au//l+9Xsfjj/8QAODtb387AODPP/NpnDx5EoANv9EYOakoaX9Ot0Y1BoVCwWgdU2lW0WG7KDFkrEPaImg0VnHlpCoDntKWyaOPvh2PPPao/l5p9tVrygU4ffq0sbhoTk+dOpWpBeD5/26mnro/6Wq5YrGIsXHVvPWHf/iHAQD33nsvAKBar2fMWT7fdIwoimzGopMpCmRdQ04Yawlekky4k5cZu+HrJIm9ViTt4zPhfUlo5Mr6AD9fmNuXRejWopAkSeJNTuOSWwK55LLNZYtYAqo1eafTyRBIkC/JtTjXLm6ShI98hCdcuKm2/Hik5cIwzKSU+kgreQpoJlkpCEDQl4xJkxE2UUC7TeCP+nvt2rJJCXajV7zTEteoLvU5xwRoHF09fzPTs4avgLCBqakpHLlDAXAJKMGnj1AnBBEoO1xR/i6nBqf7Mjw8nEkDpu+klBmylV6vZ5qalvU9qNVq5n4QeEqYyVJjJVOhF/ds4g7v/edqdksGUxkAABczSURBVI7TuKG7UqlktvkwAZL1ksQKYTaVncQXluTVjJxAt1JK91rgVYE+sNolZY2iyFgTbrp4EAQbYgJbYhGQMkGn00mhpy5xAuBvLOoKj9n7Ou7Sb+mB5aAKPYiDYtmAn3WWA09mAQpCU5QjnArrKIoR96nwRV3nzPQeU0SzsqK79bIOwHQtBJJFUWSuhb909OIalFuTejQaq5icVMj77KyKu3e7XVBjVGp9FYYhYp3pSKxH8xfOAbDmvjsvtN09N52Dz1W5VDaLUVnPuxDCZAUSCMnPRb+lbdVSNWOu+/ImCKjkyoVHkVwQkJvfbrm4L2OQiD74fj4XwO0ZwfcPgsAoGNctHZT96ssYJKDWVaLcfRgkuTuQSy7bXLaEJRAEIer1eipX2hdPdc18vlK65anub2l/zmILKE1ieP4ZqOe2w+KgjS870M0mS4Qw9GKBbgBKob8kYuGjIRXjn56eNqE2qsKLY5u15rYmr1QqrH+ArZpz3YHhYcpWi7G6otyd5WVFB1atWNCNyJrDUEKa61PHoJbmly9fNtYKaUqyQgCrZVs89OfMI+IEUmbDWCSmexFp+IJty24qHvuJF3B0W4dRxyUpZQY441mK6fJvv5XJnx27f5R5Jkk4MMjBS193LHIHXOHvA3d73XH43C7uCucZg7nkksu6siUsAdLG/X7frGDr+UW86s/nw3GiCWDjKkKf/0caiYT7WC5Rhg+gTBAgCF1NA3P8YrGsz00kJ0WMjCi/2M1g5ASspAGnpqbMOCiLb3h42JCOkIZeXW7q8xRN6PH4y68CAO655x5Uikq7StPmSJrqRzrnX3/9rwEA3/zmNzExMZG+ziQxvjpZCWRllUqlTEefuNc3OAinHKOsR7eis1quZDP1QpEhBCkUCpk6EzpnoVAweA8Pl7nPE/+tGw70cRPw3/l6EboVgENDQ94KRzdZyPeckkXlS1bjNHuudeUDuV3ZEosAiY+1lxNa+MpB3YeGm23ujVFlsmmiEb5o0M3iv/UxEblADx+3LYFOkGhDK9LAYKLLahGGiKUuzmmqF+jVUydx8aIqMCrqjLoYlkm321UvdbVa1+MIzcs0Pa3M9ZWVFc3cC5OaqwmGkSQxiiU1nr/+2lcBAKVSGffef58euTZng77pJNztqWjF3zz9rB5XFYUwzQHY67ZRLqkx1aojqXmJIsuWVCzosueuRK2qwM1mh4qLJNZWqXtxem6bzTYD5NQ5K8WS92UaZJpzUI9n5bnPGG/86i48btdsAKlO2D6iDxIOYrovq5QShZJ1TQEg8hQhGZdSSsRJepFOkgSlQjZyRt/dKo7BXHLJ5R+IbAlLQAirkV0gxMcU7OZY8228YMLli+NFN7x8mM7JQ4Q+fnj+f9rPPQYvUEGoTUoC7nSD0l6vg3Ixra0mJydx5aIq8SWArVxTWXTLy8tmPJxIhCwQMvPHxsYM6Gfy9/vWWqlok/KFF15Q4+5L3HHXnQCAmj5ns71izPurC4o/9tVXlfswPj5uQEK63m63m7GWeFGPD8SisVHhUafTM5mO5BZYOjJr2ZkSa5FtJ8eLuDYqE6ZjudYB5xjkeQ2ACim77eejKNvo1GfS+wg/+LPrunr8GaLvuKvFW+K5x70RyS2BXHLZ5rIlLAFfco67wvpCHTwEyDWC9SebqWPwLDFOX0bbOBmFC/6RFuK871zLueNNZamZMarvarUa4r6uqivbhp2k0U22H+uzQFqftNHy8rIZG2nUbrdrqu9ovBebKmEmiiIUNUAwNKSOsX///kxtxs6dO1Eoq3ON7aiYbXRtly9fNscDFIDrct3zMGzGR+3bMBlde70+bBiLz5w5o8eocINY2vAoEaUm/cE0cDRfGwm/x/w+0jzQ3NO811kNA69FWS9ESOL+ju+vyGfSFivPhnT7Mfj6ZIRhaNrP3YjklkAuuWxz2RKWAK2GvkpBzq1Osl51FkeJDfEl613gppt2u12z2nN/0M3V59qfV/LR/q4/KqWEcNI7E2G7ApHfPTqifOHV1VWjvYeoqgxVMwc0D5yggsbLLR6qP3DnoNXqIYnVfj/w7u8DANxxxx1W++hxLy6uoqeTlPqRGiOFBefn5zMWT7lcNlrTrWUQQmSQaV8EKI4tTvD0008DUMlTAHDfm96SSuyi3/kwGhJXs/J+E5xAxK0tkdJ2QuK1Je53JEkSZ87vswz4eHy1BoNozjlfhi9pznfNLrFKoVDYEDPYEouAlNLcWHfAblsqLnxffoPcSfUVkvB4sC8ry/2t7/8+ggj3mgALDMqAyqOtCfjcc88BAJ599llzrQQCycCyJtGLRsDf8PCwmRNunroszZQ1Vy53sdJQLyQv+TWmsB53pVqF6KttJ0+pbvSUh9BsNo07wkNi7kvHcyzcDE1Vr6BzQerUaKRk5uirX1Xhy0OHDgEAbj9yp5kXWuDGR8cyITmetekuSjw7kJvmmZAfCy9fD9gWxVlA2PdMuM8cF1+5MD+W6776FE4URegn6lngeRN0DF837tR1b3ilueSSyz9o2SKWgCWFcLWyL6nHF5rjmVq0evpWRZ+p6IaFfFrARz3Gz+1aH0mSAIFrPtqVmwCwb3zjG2aMJd13PNadh5oddcylpSXjBpAW54lNXNu6WqJct2HEQKj5IEtjdXXVVNpRRV+r08GleQX+nTp1yoyXxmjaqzMrxC1tpXnv9/uYn59PfVcuFG2lW9U21ixQmFFbDAsLCwCU9ifrg4DBfqfr1Zqk8dz7yT9zTe8Swfh6Eawn67mlHCzmZCc8XE3ndPP+Sbj7wJ9hN+EtDEPT3pyE19L4OBe5bGgJCCF+XwgxL4R4kW37z0KI40KI54UQ/1MIMca++4gQ4qQQ4hUhxLs2On4uueTyxsr1WAJ/AOC3APwh2/ZFAB+RUkZCiF8F8BEAvyiEOArgAwDuBjAD4EtCiCOSktEHiQBEIUTMuphHOjWy07K9CV1SkWKlnMkTl4GA1CVxke6kE1JKrAB6cTq3WgQC/cQBZsD9N0rh1dZHnK184yu2sUgigWpNh99aypft9pSv/Jd/8Vm8pqnEDFmoEGjrVN8rVxRdWFCwICZp/rU10uIyFdZTcxSaZJsw1MkuiRrD2M5doJbjRGPWbDZx/31vBgCMDlOdfYJaXWno+TNKi4cFNa7dOyfQ00zEjRWFTSwvrZix7dw5qY9rrRYKeyb62jqRZSCeWVVWzY6RMdx+UPVfMIQaevpPv/oahnSaMaUeR/2+2Y/z8bvAHYnPIuDgoi9X3xfW87UrJ/F1LHLrDvg5uXb2VbvS79wQLg8pkkRRhGo9jdXw6k7eut4n19OL8GtCiAPOtr9i/30KwBP68/sAfFJK2QVwWghxEsCDAL650XkAf1NJknK5nAFteHYgPYi8CYWbreZ7GLjwba7rwYEo3qUXUGY1vYicRMPHdQeoG+Rmtc3NzWHp2rI+rq6DKNjMMLo+MpN5fgOPadM2IvgQ+qWNI2le0uUlVW587twZXL6sOscTy+9tB/chitR1XV24AgAYHx8z5yQ+Q3Ip2u22GRvlEFBEoNeLbOYfXW8IJLrZxvnz59V5ilcQ6gWqXtOMyIGas7948klcuqQaW7/v/T8CACiXi+Ye+5qE+FB/9zvOROSjHHdZfn2LBo86+Ex5F2iuVCoZQJODue4YOVDO93cXqHK5nOF+5FGim3YHrkP+KYDP6897AJxn383pbRkRQvycEOIZIcQz5Jfmkksumy83BQwKIX4JQATgj2iTZzdvKpOU8mMAPgYAR4/eI2kVdk0t3sDRtQ54uISDK+7qTL8b1KrMxwXHxgkgDRoROEf71ev1TBlr1E/grrGU6zA7O4tLuhUYHX94eBjNNaVBGw2lqYdG1P4LCwsZ5mReoUeLaBAEqToCALjt0CwAoNvpYe6cOu7+fbeZ+WhqjsP9B5Ql8MhjDyFK1LU0v6S0CYFOCkQlCiw1351OB7Hev6ddN95YlfYnFy1B31CZDQ8prR+KAEuLyvUoE0+g5jUslQJcmDsDAHjluIKl9u47YK6Pa0g3FMe1rptnz3NBfLUG7v48O5DOWSqVMiY/P5ZbU8EtBxpbr9fLWBE+C4ZbJu5xuVXjZldyAHSQ3PAiIIT4EID3AHiHtKOdA7CX7TYL4OKNniOXXHK59XJDi4AQ4t0AfhHA90gpeUrY5wD8sRDi16GAwcMA/uZ1HDcT4toos8rdn+/jZpr5fH4e8uMrvbsa+37LyVBda6JcLho6MbIAQu3jP/bYY7ii/dxjx44BUP4iATh33aVqARaXlCZeWFjIEmswTcYrI90swiuX1Bo8O7vPNkjVnYUCUcDEhEomOnDgAACgWq+g21PXPDauwoGvvaqAxFqthiAgYE1pvr1790AbNcaCSRLL7UDAnWGP7qwai6ykKymDRGCoruZoeEiBkh3NKxAgxlpTzcPEhMJdFhcXzXVyMhJ3Pnz9BEh8/BQ8Wci1Jn39JuLYhobdtmU+0lweSjZNXFknJPeZ84GHPquFWxi+Vn0bVVVuuAgIIT4B4HsBTAgh5gB8FCoaUAbwRX2hT0kp/7mU8pgQ4lMAXoJyE35+w8gAAAm5ocnCC4N8C4SbE0C/AbIgD/+OZ/b5wCU3vsw/+xqSGHdGCBSKGtnVhCARi6NzKnUAKDH2G4uRqPPs3LnTPOy8wIVeMHIV4jhOFUsBgNQvdGe1g+ERKkJR19TqtfETP/nTAIDbjyh0vlQpABpk/6H3qsXo1Muq9PjZZ5/FweJ+AMCuljI3L128goMHDwAALlxQC87+/WqfcrlsxkELYb+7Zq69sahcl3KhgpZetCJdWFUqEgtyjBHtNjz55J8BAI7e/YChJidORV4G7C4GQBbgHZS95xbxkHBXlZ6JdrvtdUcBBY7SvaLFfVBG4iAw3OcO8O0+NiHuqtB1DIqakFxPdOCDns2/t87+vwzglzc6bi655LI1ZEtkDEJac249UpH1Qj48ROiCL77Vl2f9uZx+/Bw+U8rVKs1mMwNojo1OGH59U6dQ1CXCnS4efPBBtU1rr5ePHUuFfABAaDqyarVqVnsKzfFrWE/TjJeVFh0bnjC8hp2uGtfs9DT2ziqQsKS5BntRH4HJjVDHf/Ob7wcATE/vwte//nUAMM1TpqamcOJVlVk4PKwsk71795n5XNIujSkAk00EQlkko1UVOIr7EcQOBfQtrazqY+nuysUQ+/cpcPMH3qVyzyLUjUtBx+10OgawpfvIi75cy45blvxeu/tx4M+1BCqVSuY5pfmvVqvm/NyqcEHqQXUn/C8XX1iSN+ZxQ6Y+4NuVvHYgl1y2uWwJS4AwAR+IQdqu0+lkkjtSq2hB+z1BgJjovJyMwYCt/kTWKIRAWNQc+n0LaJmwjicsabbp2oD66FiWGippmyw56FbaYUwr9xB2zaoqubHzCiDcva+B5WXlIzdWVNVei8pCwxIKodY0db1udxMIzRBc0lqgWCmhS9ZJW4cbNWlp1Ab2TSoNHXbU7x55x0MYm1Tam0hRy6hC6s+ksTu6keno1Bj+0fcrLODkcQVovvSdb2FqTGlt0dUlzdBVayLE+KQCHons5PjxPto9Zc30dfZlqVxAEqlxj+9WZctBQOecwtAOhU0sN9X+ozuKgCnPVqeq1Guo6W0UJqXsUK4pOYDmamVlVegQrFN5FxRC02DW3OM4MVmYFByPErIWYL7r9on1WNj9WfWmm5hmHzmRsUwQBEjst3psBXS71hLmx+LXOUhySyCXXLa5bA1LIJHodrupyis35AFs0NNN0zbzhCBOHMp/z3/HQ218TXR9Pe7z+XzJTBhS2DGa/cz+wNCQSut9/PH3AABeO3kIr50+AQBYWlKWwKrOz28srWDhikqmSXTobHR01PiaFU1DXhseAuHEU7oisd1UGqJYKpmU4ze96bsAqKiD6cwTUq+ACtycr1ZLWST9bg8TuorwrW99KwDg4L5pXL2i0oUvXVaxwmMvvaSOWSjgtttvBwCUNbVZpVLB8pLS1JfOn1PHb65idFwTjGrKdKJWp/kFgH37lCXT6vjvI80zpXDz++RqwyiKUlz+gEoC8+X20xhcTICnbrv3n4+HW7BuwhG/hvUwL3csfD+OE7j7+MKjrmyJRQCwAMagOC3fxm+GC+BwoM9tJMGPxyfN12CUxLcYuAUc7m/UeWDcAHqpZEKLQYSiZiJeXVWm8YMPPoiJSfXwfvnLXwBgi2N27pjASF19vnpJvXBXLs2bcxJT8O7paZSoVRclamp7eXpmxoBtlYo61vz8PA4evJ1mAYBeKEU61kxjFSX7QPU06LnvwG3Yu/+Aur5YLcBHjt4NALh48SLOnVcLA5GhSAgD4BF70NpqDT3dgOP+++/X41Hnntg9g6ldCkCk3AcRWgDXxyfoywB1t4VhaGouOJDoNlD1CQeB3dJgH4vweuAyV3zrLQK+TtypEGLBX8PA35FBkrsDueSyzUVsBBpsyiCEuAqgCWDhjR4LgAnk4+CSjyMtf5/HsV9KOelu3BKLAAAIIZ6RUn5XPo58HPk4NnccuTuQSy7bXPJFIJdctrlspUXgY2/0ALTk40hLPo60/IMbx5bBBHLJJZc3RraSJZBLLrm8AZIvArnkss1lSywCQoh36z4FJ4UQH96kc+4VQnxVCPGyEOKYEOJf6+3jQogvCiFO6L87Nmk8oRDiOSHEk/r/B4UQT+tx/IkQorTRMf4OxjAmhPi0UD0lXhZCPPxGzIcQ4hf0PXlRCPEJIURls+ZD+PtseOdAKPlN/dw+L4R4yy0ex63p90F51W/UPygem1MADgEoAfgOgKObcN5pAG/Rn4cBvArgKID/BODDevuHAfzqJs3DvwXwxwCe1P//FIAP6M+/A+BfbMIYPg7gn+nPJQBjmz0fUOzUpwFU2Tz89GbNB4C3A3gLgBfZNu8cAHgcimlbAHgIwNO3eBw/AKCgP/8qG8dR/d6UARzU71N43ee61Q/WdVzswwC+wP7/EajGJps9js8C+H4ArwCY1tumAbyyCeeeBfBlAN8H4En9UC2wG56ao1s0hhH98gln+6bOByxt/ThUbcuTAN61mfMB4IDz8nnnAMDvAvigb79bMQ7nu/cD+CP9OfXOAPgCgIev9zxbwR247l4Ft0qEaq7yZgBPA9glpbwEAPrv1CYM4TcA/DvAlIrvBLAspaSiwM2Yk0MArgL479ot+W9CiDo2eT6klBcA/BqAcwAuAWgA+Fts/nxwGTQHb+Sze0P9PnyyFRaB6+5VcEtOLsQQgD8D8G+klCsb7X8Lzv8eAPNSyr/lmz273uo5KUCZn78tpXwzVC3HpuAzXLS//T4os3YGQB3AD3p23Qqx7Tfk2RU30e/DJ1thEXjDehUIIYpQC8AfSSk/ozdfEUJM6++nAczf4mF8N4D3CiHOAPgklEvwGwDGhBBUl7oZczIHYE5K+bT+/6ehFoXNno93AjgtpbwqpewD+AyAR7D588Fl0Bxs+rMrbL+Pn5Da9r/ZcWyFReBbAA5r9LcE1dD0c7f6pEIVWf8egJellL/OvvocgA/pzx+CwgpumUgpPyKlnJVSHoC69q9IKX8CwFdhezxuxjguAzgvhLhDb3oHFHX8ps4HlBvwkBCipu8RjWNT58ORQXPwOQA/paMEDwFokNtwK0TYfh/vldl+Hx8QQpSFEAfxOvt93DKA53UCII9DofOnAPzSJp3zUSiT6XkA39b/Hofyx78M4IT+O76J8/C9sNGBQ/pGngTwpwDKm3D+NwF4Rs/JnwPY8UbMB4D/AOA4gBcB/A8o1HtT5gPAJ6CwiD6Uhv2ZQXMAZYb/V/3cvgDgu27xOE5C+f70vP4O2/+X9DheAfCDr+dcedpwLrlsc9kK7kAuueTyBkq+COSSyzaXfBHIJZdtLvkikEsu21zyRSCXXLa55ItALrlsc8kXgVxy2eby/wErKTdYB4FPSgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# nuclio: ignore\n", - "# Select a sample for the test.\n", - "# Set both the local path for the test and the URL for downloading the sample from AWS S3.\n", - "DATA_LOCATION = \"./cats_and_dogs_filtered/\"\n", - "sample = random.choice(os.listdir(DATA_LOCATION+\"/cats_n_dogs\"))\n", - "image_local = DATA_LOCATION + \"cats_n_dogs/\"+sample # Temporary location for downloading the file \n", - "image_url = 'https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/' + sample \n", - "\n", - "# Show the image\n", - "img = load_img(image_local, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - "plt.imshow(img)\n", - "\n", - "event = nuclio.Event(body=bytes(image_url, 'utf-8'))\n", - "output = handler(context, event)\n", - "print(output)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%nuclio: notebook infer exported\n", - "Config:\n", - "apiVersion: nuclio.io/v1\n", - "kind: Function\n", - "metadata:\n", - " annotations:\n", - " nuclio.io/generated_by: function generated at 02-07-2019 by iguazio from /User/demos/image-classification/infer.ipynb\n", - " labels: {}\n", - " name: infer\n", - "spec:\n", - " build:\n", - " baseImage: python:3.6-jessie\n", - " commands:\n", - " - pip install keras==2.2.4\n", - " - pip install tensorflow==1.13.1\n", - " - pip install 'numpy<1.15.0'\n", - " - pip install requests\n", - " - pip install pillow\n", - " functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlciBvbiAyMDE5LTA3LTAyIDA3OjA2CgppbXBvcnQgbnVtcHkgYXMgbnAgCmZyb20gdGVuc29yZmxvdyBpbXBvcnQga2VyYXMKZnJvbSBrZXJhcy5tb2RlbHMgaW1wb3J0IGxvYWRfbW9kZWwKZnJvbSBrZXJhcy5wcmVwcm9jZXNzaW5nIGltcG9ydCBpbWFnZQpmcm9tIGtlcmFzLnByZXByb2Nlc3NpbmcuaW1hZ2UgaW1wb3J0IGxvYWRfaW1nCmltcG9ydCBqc29uCmltcG9ydCByZXF1ZXN0cwoKaW1wb3J0IG9zCmZyb20gb3MgaW1wb3J0IGVudmlyb24sIHBhdGgKZnJvbSB0ZW1wZmlsZSBpbXBvcnQgbWt0ZW1wCgptb2RlbF9maWxlID0gZW52aXJvblsnTU9ERUxfUEFUSCddCnByZWRpY3Rpb25fbWFwX2ZpbGUgPSBlbnZpcm9uWydQUkVESUNUSU9OX01BUF9QQVRIJ10KCklNQUdFX1dJRFRIID0gaW50KGVudmlyb25bJ0lNQUdFX1dJRFRIJ10pCklNQUdFX0hFSUdIVCA9IGludChlbnZpcm9uWydJTUFHRV9IRUlHSFQnXSkKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6IAogICAgY29udGV4dC5tb2RlbCA9IGxvYWRfbW9kZWwobW9kZWxfZmlsZSkKICAgIHdpdGggb3BlbihwcmVkaWN0aW9uX21hcF9maWxlLCAncicpIGFzIGY6CiAgICAgICAgY29udGV4dC5wcmVkaWN0aW9uX21hcCA9IGpzb24ubG9hZChmKQoKZGVmIGRvd25sb2FkX2ZpbGUoY29udGV4dCwgdXJsLCB0YXJnZXRfcGF0aCk6CiAgICB3aXRoIHJlcXVlc3RzLmdldCh1cmwsIHN0cmVhbT1UcnVlKSBhcyByZXNwb25zZToKICAgICAgICByZXNwb25zZS5yYWlzZV9mb3Jfc3RhdHVzKCkKICAgICAgICB3aXRoIG9wZW4odGFyZ2V0X3BhdGgsICd3YicpIGFzIGY6CiAgICAgICAgICAgIGZvciBjaHVuayBpbiByZXNwb25zZS5pdGVyX2NvbnRlbnQoY2h1bmtfc2l6ZT04MTkyKToKICAgICAgICAgICAgICAgIGlmIGNodW5rOgogICAgICAgICAgICAgICAgICAgIGYud3JpdGUoY2h1bmspCgogICAgY29udGV4dC5sb2dnZXIuaW5mb193aXRoKCdEb3dubG9hZGVkIGZpbGUnLHVybD11cmwpCgpkZWYgaGFuZGxlcihjb250ZXh0LCBldmVudCk6CiAgICB0bXBfZmlsZSA9IG1rdGVtcCgpCiAgICBpbWFnZV91cmwgPSBldmVudC5ib2R5LmRlY29kZSgndXRmLTgnKS5zdHJpcCgpCiAgICBkb3dubG9hZF9maWxlKGNvbnRleHQsIGltYWdlX3VybCwgdG1wX2ZpbGUpCiAgICAKICAgIGltZyA9IGxvYWRfaW1nKHRtcF9maWxlLCB0YXJnZXRfc2l6ZT0oSU1BR0VfV0lEVEgsIElNQUdFX0hFSUdIVCkpCiAgICB4ID0gaW1hZ2UuaW1nX3RvX2FycmF5KGltZykKICAgIHggPSBucC5leHBhbmRfZGltcyh4LCBheGlzPTApCgogICAgaW1hZ2VzID0gbnAudnN0YWNrKFt4XSkKICAgIHByZWRpY3RlZF9wcm9iYWJpbGl0eSA9IGNvbnRleHQubW9kZWwucHJlZGljdF9wcm9iYShpbWFnZXMsIGJhdGNoX3NpemU9MTApCiAgICBwcmVkaWN0ZWRfY2xhc3MgPSBsaXN0KHppcChwcmVkaWN0ZWRfcHJvYmFiaWxpdHksIG1hcChsYW1iZGEgeDogJzEnIGlmIHggPj0gMC41IGVsc2UgJzAnLCBwcmVkaWN0ZWRfcHJvYmFiaWxpdHkpKSkKICAgIGFjdHVhbF9jbGFzcyA9IFsoY29udGV4dC5wcmVkaWN0aW9uX21hcFt4WzFdXSx4WzBdWzBdKSBmb3IgeCBpbiBwcmVkaWN0ZWRfY2xhc3NdICAgCiAgICBvcy5yZW1vdmUodG1wX2ZpbGUpCiAgICByZXN1bHQgPSB7J2NsYXNzJzphY3R1YWxfY2xhc3NbMF1bMF0sICdkb2ctcHJvYmFiaWxpdHknOmZsb2F0KGFjdHVhbF9jbGFzc1swXVsxXSl9CiAgICByZXR1cm4ganNvbi5kdW1wcyhyZXN1bHQpCgo=\n", - " noBaseImagesPull: true\n", - " env:\n", - " - name: IMAGE_WIDTH\n", - " value: '128'\n", - " - name: IMAGE_HEIGHT\n", - " value: '128'\n", - " - name: version\n", - " value: '1.0'\n", - " - name: MODEL_PATH\n", - " value: /model/\n", - " handler: infer:handler\n", - " runtime: python:3.6\n", - " volumes:\n", - " - volume:\n", - " flexVolume:\n", - " driver: v3io/fuse\n", - " options:\n", - " accessKey: 1e52ff93-a541-4880-abf1-d9b948af77de\n", - " container: users\n", - " subPath: /iguazio/demos/gpu/horovod/image-classification/cats_dogs/model\n", - " name: fs\n", - " volumeMount:\n", - " mountPath: /model\n", - " name: fs\n", - "\n", - "Code:\n", - "# Generated by nuclio.export.NuclioExporter on 2019-07-02 07:06\n", - "\n", - "import numpy as np \n", - "from tensorflow import keras\n", - "from keras.models import load_model\n", - "from keras.preprocessing import image\n", - "from keras.preprocessing.image import load_img\n", - "import json\n", - "import requests\n", - "\n", - "import os\n", - "from os import environ, path\n", - "from tempfile import mktemp\n", - "\n", - "model_file = environ['MODEL_PATH']\n", - "prediction_map_file = environ['PREDICTION_MAP_PATH']\n", - "\n", - "IMAGE_WIDTH = int(environ['IMAGE_WIDTH'])\n", - "IMAGE_HEIGHT = int(environ['IMAGE_HEIGHT'])\n", - "\n", - "def init_context(context): \n", - " context.model = load_model(model_file)\n", - " with open(prediction_map_file, 'r') as f:\n", - " context.prediction_map = json.load(f)\n", - "\n", - "def download_file(context, url, target_path):\n", - " with requests.get(url, stream=True) as response:\n", - " response.raise_for_status()\n", - " with open(target_path, 'wb') as f:\n", - " for chunk in response.iter_content(chunk_size=8192):\n", - " if chunk:\n", - " f.write(chunk)\n", - "\n", - " context.logger.info_with('Downloaded file',url=url)\n", - "\n", - "def handler(context, event):\n", - " tmp_file = mktemp()\n", - " image_url = event.body.decode('utf-8').strip()\n", - " download_file(context, image_url, tmp_file)\n", - " \n", - " img = load_img(tmp_file, target_size=(IMAGE_WIDTH, IMAGE_HEIGHT))\n", - " x = image.img_to_array(img)\n", - " x = np.expand_dims(x, axis=0)\n", - "\n", - " images = np.vstack([x])\n", - " predicted_probability = context.model.predict_proba(images, batch_size=10)\n", - " predicted_class = list(zip(predicted_probability, map(lambda x: '1' if x >= 0.5 else '0', predicted_probability)))\n", - " actual_class = [(context.prediction_map[x[1]],x[0][0]) for x in predicted_class] \n", - " os.remove(tmp_file)\n", - " result = {'class':actual_class[0][0], 'dog-probability':float(actual_class[0][1])}\n", - " return json.dumps(result)\n", - "\n", - "\n" - ] - } - ], - "source": [ - "%nuclio show" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Prepare to Deploy the Function\n", - "\n", - "Before you deploy the function, open a Jupyter terminal and run the following command:\n", - "\n", - "`pip install --upgrade nuclio-jupyter`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Deploy the Function\n", - "\n", - "Run the following command to deploy the function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[nuclio.deploy] 2019-07-02 07:07:08,424 project name not found created new (ai)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:07:08.424754 140252009395584 deploy.py:317] project name not found created new (ai)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[nuclio.deploy] 2019-07-02 07:07:09,507 (info) Building processor image\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0702 07:07:09.507237 140252009395584 deploy.py:274] (info) Building processor image\n" - ] - } - ], - "source": [ - "%nuclio deploy -n cats-dogs -p ai -c" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Test the Function" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run a test with the new function. Replace \"function URL:port\" with the actual URL and port number.\n", - "# To get the function's URL, in the platform dashboard, navigate to the function page - Functions > ai > cats-dogs - and select the 'Status' tab.\n", - "!curl -X POST -d \"https://s3.amazonaws.com/iguazio-sample-data/images/catanddog/cat.123.jpg\" " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py b/demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py deleted file mode 100644 index e2b3ea2c..00000000 --- a/demos/gpu/horovod/image-classification/horovod_train_cats_n_dogs.py +++ /dev/null @@ -1,178 +0,0 @@ -from __future__ import print_function -import os -import sys -import json -import keras -from keras.datasets import mnist -from keras.models import Sequential -from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization -from keras.preprocessing.image import ImageDataGenerator -from keras import backend as K -import tensorflow as tf -import horovod.keras as hvd -import pandas as pd -from sklearn.model_selection import train_test_split - -# Get the images path -DATA_PATH = sys.argv[1] -HOROVOD_DIR = sys.argv[2] - -epochs = 6 -batch_size = 64 - -# Define image parameters -IMAGE_WIDTH=128 -IMAGE_HEIGHT=128 -IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT) -IMAGE_CHANNELS=3 # RGB color - -# Create a file-names list (JPG image-files only) -filenames = [file for file in os.listdir(DATA_PATH + "/cats_n_dogs/") if file.endswith('jpg')] -categories = [] - -# Create a categories and prediction classes map -categories_map = { - 'dog': 1, - 'cat': 0, -} - -# Create a pandas DataFrame for the full sample -for filename in filenames: - category = filename.split('.')[0] - categories.append([categories_map[category]]) - -df = pd.DataFrame({ - 'filename': filenames, - 'category': categories -}) -df['category'] = df['category'].astype('str'); - -# Prepare, test, and train the data -train_df, validate_df = train_test_split(df, test_size=0.20, random_state=42) -train_df = train_df.reset_index(drop=True) -validate_df = validate_df.reset_index(drop=True) -train_df['category'] = train_df['category'].astype('str'); -total_train = train_df.shape[0] -total_validate = validate_df.shape[0] - -total_train = train_df.shape[0] -total_validate = validate_df.shape[0] - -# Horovod: initialize Horovod. -hvd.init() - -# Horovod: pin GPU to be used to process local rank (one GPU per process). -config = tf.ConfigProto() -config.gpu_options.allow_growth = True -config.gpu_options.visible_device_list = str(hvd.local_rank()) -K.set_session(tf.Session(config=config)) - - -model = Sequential() - -model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS))) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Conv2D(64, (3, 3), activation='relu')) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Conv2D(128, (3, 3), activation='relu')) -model.add(BatchNormalization()) -model.add(MaxPooling2D(pool_size=(2, 2))) -model.add(Dropout(0.25)) - -model.add(Flatten()) -model.add(Dense(512, activation='relu')) -model.add(BatchNormalization()) -model.add(Dropout(0.5)) -model.add(Dense(1, activation='sigmoid')) - - -# Horovod: adjust learning rate based on number of GPUs. -opt = keras.optimizers.Adadelta(lr=1.0 * hvd.size()) - -# Horovod: add Horovod Distributed Optimizer. -opt = hvd.DistributedOptimizer(opt) - -model.compile(loss='binary_crossentropy', - optimizer=opt, - metrics=['accuracy']) - -model.summary() - -callbacks = [ - # Horovod: broadcast initial variable states from rank 0 to all other processes. - # This is necessary to ensure consistent initialization of all workers when - # training is started with random weights or restored from a checkpoint. - hvd.callbacks.BroadcastGlobalVariablesCallback(0), - - # Horovod: average metrics among workers at the end of every epoch. - # Note: This callback must be in the list before the ReduceLROnPlateau, - # TensorBoard or other metrics-based callbacks. - hvd.callbacks.MetricAverageCallback(), - - # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final - # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during - # the first five epochs. See https://arxiv.org/abs/1706.02677 for details. - hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=5, verbose=1), - - # Reduce the learning rate if training plateaues. - keras.callbacks.ReduceLROnPlateau(patience=10, verbose=1), -] - -# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them. -if hvd.rank() == 0: - callbacks.append(keras.callbacks.ModelCheckpoint(HOROVOD_DIR + '/checkpoints/checkpoint-{epoch}.h5')) - -# Set up ImageDataGenerators to do data augmentation for the training images. -train_datagen = ImageDataGenerator( - rotation_range=15, - rescale=1./255, - shear_range=0.1, - zoom_range=0.2, - horizontal_flip=True, - width_shift_range=0.1, - height_shift_range=0.1 -) -train_generator = train_datagen.flow_from_dataframe( - train_df, - DATA_PATH + "/cats_n_dogs/", - x_col = 'filename', - y_col = 'category', - target_size = IMAGE_SIZE, - class_mode = 'binary', - batch_size = batch_size -) - -validation_datagen = ImageDataGenerator(rescale=1./255) -validation_generator = validation_datagen.flow_from_dataframe( - validate_df, - DATA_PATH + "/cats_n_dogs/", - x_col = 'filename', - y_col = 'category', - target_size = IMAGE_SIZE, - class_mode = 'binary', - batch_size = batch_size -) - -# Train the model -history = model.fit_generator( - train_generator, - steps_per_epoch=total_train // batch_size, - callbacks=callbacks, - epochs=epochs, - verbose=1, - validation_data=validation_generator, - validation_steps=total_validate // batch_size -) - -#save the model only on worker 0 to prevent failures ("cannot lock file") -if hvd.rank() == 0: - model.save(HOROVOD_DIR + '/cats_dogs.hd5') - -print(pd.DataFrame(history.history)) -