+
+# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
+
+### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
+
+[](https://www.python.org/downloads/release/python-3100/)
+[](https://pytorch.org/get-started/locally/)
+[](https://pytorchlightning.ai/)
+[](https://hydra.cc/)
+[](https://black.readthedocs.io/en/stable/)
+[](https://pycqa.github.io/isort/)
+
+
+
+
+
+
+
+> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
+
+We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
+
+- Is probabilistic
+- Has compact memory footprint
+- Sounds highly natural
+- Is very fast to synthesise from
+
+Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
+
+[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
+
+You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
+
+## Teaser video
+
+[](https://youtu.be/xmvJkz3bqw0)
+
+## Installation
+
+1. Create an environment (suggested but optional)
+
+```
+conda create -n matcha-tts python=3.10 -y
+conda activate matcha-tts
+```
+
+2. Install Matcha TTS using pip or from source
+
+```bash
+pip install matcha-tts
+```
+
+from source
+
+```bash
+pip install git+https://github.com/shivammehta25/Matcha-TTS.git
+cd Matcha-TTS
+pip install -e .
+```
+
+3. Run CLI / gradio app / jupyter notebook
+
+```bash
+# This will download the required models
+matcha-tts --text "