forked from ZoranPandovski/al-go-rithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraham Scan display Hull Points.cpp
102 lines (92 loc) · 2.1 KB
/
Graham Scan display Hull Points.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <iostream>
#include <stack>
#include <stdlib.h>
using namespace std;
struct Point
{
int x, y;
};
Point p0;
Point nextToTop(stack<Point> &S)
{
Point p = S.top();
S.pop();
Point res = S.top();
S.push(p);
return res;
}
void swap(Point &p1, Point &p2)
{
Point temp = p1;
p1 = p2;
p2 = temp;
}
int distSq(Point p1, Point p2)
{
return (p1.x - p2.x) * (p1.x - p2.x) +
(p1.y - p2.y) * (p1.y - p2.y);
}
int orientation(Point p, Point q, Point r)
{
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0)
return 0;
return (val > 0) ? 1 : 2;
}
int compare(const void *vp1, const void *vp2)
{
Point *p1 = (Point *)vp1;
Point *p2 = (Point *)vp2;
int o = orientation(p0, *p1, *p2);
if (o == 0)
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
return (o == 2) ? -1 : 1;
}
void convexHull(Point points[], int n)
{
int ymin = points[0].y, min = 0;
for (int i = 1; i < n; i++)
{
int y = points[i].y;
if ((y < ymin) || (ymin == y &&
points[i].x < points[min].x))
ymin = points[i].y, min = i;
}
swap(points[0], points[min]);
p0 = points[0];
qsort(&points[1], n - 1, sizeof(Point), compare);
int m = 1;
for (int i = 1; i < n; i++)
{
while (i < n - 1 && orientation(p0, points[i], points[i + 1]) == 0)
i++;
points[m] = points[i];
m++;
}
if (m < 3)
return;
stack<Point> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
for (int i = 3; i < m; i++)
{
while (S.size() > 1 && orientation(nextToTop(S), S.top(), points[i]) != 2)
S.pop();
S.push(points[i]);
}
while (!S.empty())
{
Point p = S.top();
cout << "(" << p.x << ", " << p.y << ")" << endl;
S.pop();
}
}
int main()
{
Point points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};
int n = sizeof(points) / sizeof(points[0]);
convexHull(points, n);
return 0;
}