-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_r5.py
392 lines (324 loc) · 13.5 KB
/
train_r5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch
import torch.nn as nn
import numpy as np
import pickle
import cv2
import torch.optim as optim
import scipy.misc
import deeplab_resnet_sketchParse_r5
import torch.backends.cudnn as cudnn
import sys, os
import torch.nn as nn
import matplotlib.pyplot as plt
import copy
from torch.autograd import Variable
from docopt import docopt
docstr = """Train ResNet-DeepLab with 5 branches on sketches of 11 categories (5 super categories)
Usage:
train_r5.py [options]
Options:
-h, --help Print this message
--segnetLoss Weigh each class differently
--snapPrefix=<str> Snapshot [default: NoFile]
--GTpath=<str> Ground truth path prefix [default: data/gt/]
--IMpath=<str> Sketch images path prefix [default: data/im/]
--LISTpath=<str> Input image number list file [default: data/lists/]
--lr=<float> Learning Rate [default: 0.0005]
--lambda1=<float> Inter loss weight factor for pose task [default: 0]
-b, --batchSize=<int> num sample per batch [default: 1]
-i, --iterSize=<int> Num iters to accumulate gradients over [default: 1]
--gpu0=<int> GPU number [default: 0]
--maxIter=<int> Maximum number of iterations [default: 20000]
"""
args = docopt(docstr, version='v0.1')
print args
cudnn.enabled = False
gpu0 = int(args['--gpu0'])
snapPrefix = 'r5_' \
+ str(float(args['--maxIter'])/1000) + 'k_'\
+ 'bs' + args['--batchSize'] + '_' \
+ 'lr' + ('{:.2e}'.format( float(args['--lr']) )) + '_' \
if not args['--segnetLoss']:
snapPrefix = snapPrefix + 'VCELoss_'
if args['--snapPrefix'] != 'NoFile':
snapPrefix = args['--snapPrefix']
print snapPrefix
cudnn.enabled = False
# Pose mirroring map
mirrorMap = {}
mirrorMap[2] = 6
mirrorMap[3] = 4
mirrorMap[1] = 1
mirrorMap[4] = 3
mirrorMap[5] = 5
mirrorMap[6] = 2
mirrorMap[7] = 8
mirrorMap[8] = 7
# Load pose labels
HCpose = {}
with open('data/lists/Pose_all_label.txt', 'r') as f:
for line in f:
line = line.strip()
imId, pose= line.split(' ')
if imId[0] == '2':
year, imId, crop = imId.split('_')
imId = os.path.splitext(year+'_'+imId+'-'+crop)[0]
else:
imId = os.path.splitext(imId)[0]
HCpose[imId] = int(pose)
def get_data_from_chunk(chunk):
gt_path = args['--GTpath']
img_path = args['--IMpath']
images = np.zeros((321,321,3,len(chunk)))
gt = np.zeros((321,321,1,len(chunk)))
poses = np.zeros((1,len(chunk)))
for i,piece in enumerate(chunk):
images[:,:,:,i] = cv2.imread(img_path+piece+'.png')
gt[:,:,0,i] = cv2.imread(gt_path+piece+'.png')[:,:,0]
imId, aug = piece.split('(')
pose = int(HCpose[imId])
# Account for flip augmentations
if 'm' in aug: # ugly hack because poses are 0-7 in vivek's list
pose = mirrorMap[pose+1]
pose -=1
poses[:,i] = pose
labels = [resize_label_batch(gt,i) for i in [41,41,21,41]]
# image shape H,W,3,batch -> batch,3,H,W
images = images.transpose((3,2,0,1))
images = torch.from_numpy(images).float()
return images, labels, poses
def find_med_frequency(img_list,max_):
"""
This function returns parameters used to calculate the segnet loss weights
"""
gt_path = args['--GTpath']
dict_store = {}
for i in range(max_):
dict_store[i] = []
for i,piece in enumerate(img_list):
gt = cv2.imread(gt_path+piece+'.png')[:,:,0]
for i in range(max_):
dict_store[i].append(np.count_nonzero(gt == i))
global_stats_sum = np.zeros((max_,))
global_stats_presence = np.zeros((max_,))
for i in range(max_):
global_stats_sum[i] = np.sum(dict_store[i])
global_stats_presence[i] = np.count_nonzero(dict_store[i])
return global_stats_sum,global_stats_presence
def read_txt_file(path_to_file):
with open(path_to_file) as f:
img_list = []
for line in f:
img_list.append(line[:-1])
return img_list
def read_file(path_to_file,i):
with open(path_to_file) as f:
img_list = []
for line in f:
img_list.append((line[:-1],i))
return img_list
def chunker(seq, size):
return (seq[pos:pos+size] for pos in xrange(0,len(seq), size))
def resize_label_batch(label, size):
label_resized = np.zeros((size,size,1,label.shape[3]))
interp = nn.UpsamplingBilinear2d(size=(size,size))
label_resized[:,:,:,:] = interp(Variable(torch.from_numpy(label.transpose(3,2,0,1)))).data.numpy().transpose(2,3,0,1)
return label_resized
def loss_calc_seg(out, label,gpu0,seg_weights):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = label[:,:,0,:].transpose(2,0,1)
label = torch.from_numpy(label).long()
label = Variable(label).cuda(gpu0)
m = nn.LogSoftmax()
if args['--segnetLoss']:
criterion = nn.NLLLoss2d(torch.from_numpy(seg_weights).float().cuda(gpu0))
else:
criterion = nn.NLLLoss2d()
out = m(out)
return criterion(out,label)
def loss_calc_pose(out, label, gpu0):
"""
This function returns loss for the pose auxilary task
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = torch.from_numpy(label).long()
label = Variable(label).cuda(gpu0)
criterion = nn.CrossEntropyLoss()
return criterion(out,label)
def lr_poly(base_lr, iter,maxIter,power):
return base_lr*((1-float(iter)/maxIter)**(power))
def get_im_label(files):
img_list = []
for i,file_ in enumerate(files):
img_list.extend(read_file(args['--LISTpath']+'train_'+file_+'.txt',i))
return img_list
def get_1x_lr_params_NObn_double(model_double):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm,
requires_grad is False, therefore this function does not return
any batchnorm parameter
"""
b = []
b.append(model_double.Scale1.conv1)
b.append(model_double.Scale1.bn1)
b.append(model_double.Scale1.layer1)
b.append(model_double.Scale1.layer2)
b.append(model_double.Scale1.layer3)
b.append(model_double.Scale1.layer4)
b.append(model_double.Scale1.layer4_5_r0)
b.append(model_double.Scale1.layer4_5_r1)
b.append(model_double.Scale1.layer4_5_r2)
b.append(model_double.Scale1.layer4_5_r3)
b.append(model_double.Scale1.layer4_5_r4)
b.append(model_double.Scale2.conv1)
b.append(model_double.Scale2.bn1)
b.append(model_double.Scale2.layer1)
b.append(model_double.Scale2.layer2)
b.append(model_double.Scale2.layer3)
b.append(model_double.Scale2.layer4)
b.append(model_double.Scale2.layer4_5_r0)
b.append(model_double.Scale2.layer4_5_r1)
b.append(model_double.Scale2.layer4_5_r2)
b.append(model_double.Scale2.layer4_5_r3)
b.append(model_double.Scale2.layer4_5_r4)
b.append(model_double.Scale3.conv1)
b.append(model_double.Scale3.bn1)
b.append(model_double.Scale3.layer1)
b.append(model_double.Scale3.layer2)
b.append(model_double.Scale3.layer3)
b.append(model_double.Scale3.layer4)
b.append(model_double.Scale3.layer4_5_r0)
b.append(model_double.Scale3.layer4_5_r1)
b.append(model_double.Scale3.layer4_5_r2)
b.append(model_double.Scale3.layer4_5_r3)
b.append(model_double.Scale3.layer4_5_r4)
for i in range(len(b)):
for j in b[i].modules():
jj = 0
for k in j.parameters():
jj+=1
if k.requires_grad:
yield k
def get_10x_lr_params_double(model_double):
"""
This generator returns all the parameters for the last layer of the net,
which does the classification of pixel into classes
"""
b = []
b.append(model_double.Scale1.layer5_r0.parameters())
b.append(model_double.Scale2.layer5_r0.parameters())
b.append(model_double.Scale3.layer5_r0.parameters())
b.append(model_double.Scale1.layer5_r1.parameters())
b.append(model_double.Scale2.layer5_r1.parameters())
b.append(model_double.Scale3.layer5_r1.parameters())
b.append(model_double.Scale1.layer5_r2.parameters())
b.append(model_double.Scale2.layer5_r2.parameters())
b.append(model_double.Scale3.layer5_r2.parameters())
b.append(model_double.Scale1.layer5_r3.parameters())
b.append(model_double.Scale2.layer5_r3.parameters())
b.append(model_double.Scale3.layer5_r3.parameters())
b.append(model_double.Scale1.layer5_r4.parameters())
b.append(model_double.Scale2.layer5_r4.parameters())
b.append(model_double.Scale3.layer5_r4.parameters())
for j in range(len(b)):
for i in b[j]:
yield i
def get_50x_lr_params_double(model_double):
b = []
b.append(model_double.pose_r0.parameters())
b.append(model_double.pose_r1.parameters())
b.append(model_double.pose_r2.parameters())
b.append(model_double.pose_r3.parameters())
b.append(model_double.pose_r4.parameters())
for j in range(len(b)):
for i in b[j]:
yield i
if not os.path.exists('data/snapshots'):
os.makedirs('data/snapshots')
#############
model_double = getattr(deeplab_resnet_sketchParse_r5,'Res_Deeplab')()
saved_state_dict = torch.load('MS_DeepLab_resnet_pretained_VOC.pth')
old_dict = model_double.state_dict()
############ net surgery for the model with 5 branches
for i in old_dict.keys():
if i in saved_state_dict: # for the common branches
old_dict[i] = saved_state_dict[i]
#print i
else: # for specialist branches for each supercategory
i_split = i.split('.')
if i_split[1][:-1] == 'layer4_5_r':
i_split_copy = i_split
i_split_copy[1] = i_split_copy[1][:-5]
i_split_copy[2] = str(int(i_split_copy[2])+2)
old_dict[i] = saved_state_dict['.'.join(i_split_copy)]
if (i_split[1][:] == 'layer5_r0' or i_split[1][:] == 'layer5_r1' or i_split[1][:] == 'layer5_r3') and i_split[:-1]=='weight':
i_split_copy = i_split
i_split_copy[1] = i_split_copy[1][:-3]
#old_dict[i] = saved_dict_temp['.'.join(i_split_copy)] #TODO
#print i, '.'.join(i_split_copy)
if i_split[1][:] == 'layer5_r2' and i_split[:-1]=='weight': #7
i_split_copy = i_split
i_split_copy[1] = i_split_copy[1][:-3]
#old_dict[i] = torch.from_numpy(np.load('7.npy')) #TODO
if i_split[1][:] == 'layer5_r4' and i_split[:-1]=='weight': #9
i_split_copy = i_split
i_split_copy[1] = i_split_copy[1][:-3]
#old_dict[i] = torch.from_numpy(np.load('9.npy')) #TODO
model_double.load_state_dict(copy.deepcopy(old_dict))
#############
base_lr = float(args['--lr'])
lambda1 = float(args['--lambda1'])
batch_size = int(args['--batchSize'])
iterSize = int(args['--iterSize'])
maxIter = int(args['--maxIter'])
model_double.float()
model_double.eval()
###############
# TODO Change this for custom data
train_txt_list = ['cow_horse','cat_dog_sheep','bus_car','bicycle_motorbike','aeroplane_bird'] #to read .txt files to make train list
no_parts = [5,5,7,5,9]
img_list = get_im_label(train_txt_list)
seg_weights = {}
for temp1 in range(len(train_txt_list)):
global_stats_sum,global_stats_presence = find_med_frequency(read_txt_file(args['--LISTpath']+'train_'+ train_txt_list[temp1]+ '.txt'),no_parts[temp1])
freq_c = global_stats_sum/global_stats_presence
seg_weights[temp1] = np.median(freq_c)/freq_c
data_list = []
for i in range(100):
np.random.shuffle(img_list)
data_list.extend(img_list)
# Send model to GPU
model_double.cuda(gpu0)
# Init optimizer
optimizer_double = optim.SGD([{'params': get_1x_lr_params_NObn_double(model_double), 'lr': base_lr }, {'params': get_10x_lr_params_double(model_double), 'lr': 10*base_lr}, {'params': get_50x_lr_params_double(model_double), 'lr': 50*base_lr} ], lr = base_lr, momentum = 0.9)
optimizer_double.zero_grad()
data_gen = chunker(data_list, batch_size)
for iter in range(maxIter+1):
chunk = data_gen.next()
images, label, pose = get_data_from_chunk([chunk[0][0]])
selector = chunk[0][1]
images_1 = Variable(images).cuda(gpu0)
out_double = model_double([images_1,selector])
loss_double = loss_calc_seg(out_double[0], label[0],gpu0,seg_weights[selector])
for i in range(len(out_double)-2): # do not iterate over pose output (last element in output list)
loss_double = loss_double + loss_calc_seg(out_double[i+1],label[i+1],gpu0,seg_weights[selector])
logseg = loss_double.data.cpu().numpy()
print iter, 'loss (Seg) = ', logseg
loss_double = loss_double + lambda1*loss_calc_pose(out_double[-1], pose[0], gpu0)
print iter, 'loss (Pose) = ', loss_double.data.cpu().numpy() - logseg
(loss_double/iterSize).backward()
lr_ = lr_poly(base_lr,iter,maxIter,0.9)
print '(poly lr policy) learning rate',lr_
optimizer_double = optim.SGD([{'params': get_1x_lr_params_NObn_double(model_double), 'lr': lr_ }, {'params': get_10x_lr_params_double(model_double), 'lr': 10*lr_},{'params': get_50x_lr_params_double(model_double), 'lr': 50*lr_} ], lr = lr_, momentum = 0.9)
if iter%iterSize==0:
optimizer_double.step()
optimizer_double.zero_grad()
if iter%1000==0 and iter!=0:
snapPath = os.path.join('data/snapshots', snapPrefix + str(iter) + '.pth')
torch.save(model_double.state_dict(),snapPath)