forked from zero-to-mastery/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
articulationPoints.js
113 lines (100 loc) · 4.03 KB
/
articulationPoints.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import depthFirstSearch from '../depth-first-search/depthFirstSearch';
/**
* Helper class for visited vertex metadata.
*/
class VisitMetadata {
constructor({ discoveryTime, lowDiscoveryTime }) {
this.discoveryTime = discoveryTime;
this.lowDiscoveryTime = lowDiscoveryTime;
// We need this in order to check graph root node, whether it has two
// disconnected children or not.
this.independentChildrenCount = 0;
}
}
/**
* Tarjan's algorithm for finding articulation points in graph.
*
* @param {Graph} graph
* @return {Object}
*/
export default function articulationPoints(graph) {
// Set of vertices we've already visited during DFS.
const visitedSet = {};
// Set of articulation points.
const articulationPointsSet = {};
// Time needed to discover to the current vertex.
let discoveryTime = 0;
// Peek the start vertex for DFS traversal.
const startVertex = graph.getAllVertices()[0];
const dfsCallbacks = {
/**
* @param {GraphVertex} currentVertex
* @param {GraphVertex} previousVertex
*/
enterVertex: ({ currentVertex, previousVertex }) => {
// Tick discovery time.
discoveryTime += 1;
// Put current vertex to visited set.
visitedSet[currentVertex.getKey()] = new VisitMetadata({
discoveryTime,
lowDiscoveryTime: discoveryTime,
});
if (previousVertex) {
// Update children counter for previous vertex.
visitedSet[previousVertex.getKey()].independentChildrenCount += 1;
}
},
/**
* @param {GraphVertex} currentVertex
* @param {GraphVertex} previousVertex
*/
leaveVertex: ({ currentVertex, previousVertex }) => {
if (previousVertex === null) {
// Don't do anything for the root vertex if it is already current (not previous one)
return;
}
// Update the low time with the smallest time of adjacent vertices.
// Get minimum low discovery time from all neighbors.
/** @param {GraphVertex} neighbor */
visitedSet[currentVertex.getKey()].lowDiscoveryTime = currentVertex.getNeighbors()
.filter(earlyNeighbor => earlyNeighbor.getKey() !== previousVertex.getKey())
/**
* @param {number} lowestDiscoveryTime
* @param {GraphVertex} neighbor
*/
.reduce(
(lowestDiscoveryTime, neighbor) => {
const neighborLowTime = visitedSet[neighbor.getKey()].lowDiscoveryTime;
return neighborLowTime < lowestDiscoveryTime ? neighborLowTime : lowestDiscoveryTime;
},
visitedSet[currentVertex.getKey()].lowDiscoveryTime,
);
// Detect whether previous vertex is articulation point or not.
// To do so we need to check two [OR] conditions:
// 1. Is it a root vertex with at least two independent children.
// 2. If its visited time is <= low time of adjacent vertex.
if (previousVertex === startVertex) {
// Check that root vertex has at least two independent children.
if (visitedSet[previousVertex.getKey()].independentChildrenCount >= 2) {
articulationPointsSet[previousVertex.getKey()] = previousVertex;
}
} else {
// Get current vertex low discovery time.
const currentLowDiscoveryTime = visitedSet[currentVertex.getKey()].lowDiscoveryTime;
// Compare current vertex low discovery time with parent discovery time. Check if there
// are any short path (back edge) exists. If we can't get to current vertex other then
// via parent then the parent vertex is articulation point for current one.
const parentDiscoveryTime = visitedSet[previousVertex.getKey()].discoveryTime;
if (parentDiscoveryTime <= currentLowDiscoveryTime) {
articulationPointsSet[previousVertex.getKey()] = previousVertex;
}
}
},
allowTraversal: ({ nextVertex }) => {
return !visitedSet[nextVertex.getKey()];
},
};
// Do Depth First Search traversal over submitted graph.
depthFirstSearch(graph, startVertex, dfsCallbacks);
return articulationPointsSet;
}