Skip to content

Latest commit

 

History

History
50 lines (37 loc) · 1.79 KB

README.md

File metadata and controls

50 lines (37 loc) · 1.79 KB

MMD-ReID

Pytorch implementation for MMD-ReID: A Simple but Effective solution for Visible-Thermal Person ReID. Accepted at BMVC 2021 (Oral)

Paper link: https://arxiv.org/abs/2111.05059

Github Code: https://github.com/vcl-iisc/MMD-ReID

Presentation Slides: https://drive.google.com/file/d/1S0sfA7PMyzqGPnG5izGBeZ7uClsJ1uA3/view?usp=sharing

Project webpage: https://vcl-iisc.github.io/mmd-reid-web/

Recorded Talk: https://recorder-v3.slideslive.com/?share=55344&s=d3b53e98-4362-410a-825d-77706f8b71c4

Dependencies:

  • Python 3.7
  • GPU memory ~ 10G
  • NumPy 1.19
  • PyTorch 1.8

How to use this code:

Our code extends the pytorch implementation of Parameter Sharing Exploration and Hetero center triplet loss for VT Re-ID in Github. Please refer to the offical repo for details of data preparation.

Training:

python train_mine.py --dataset sysu --gpu 1 --pcb off --share_net 3 --batch-size 4 --num_pos 4 --dist_disc 'margin_mmd' --margin_mmd 1.40 --run_name 'margin_mmd1.40'

Testing:

python test.py --dataset sysu --gpu 0 --pcb off --share_net 3 --batch-size 4 --num_pos 4 --run_name 'margin_mmd1.40'

Results:

Rank@1 Rank@10 Rank@20 mAP
SYSU-MM01 (All search Single shot) 66.75% 94.16% 97.38% 62.25%
RegDB (Visible to Thermal) 95.06% 98.67% 99.31% 88.95%

Citation

If you use this code, please cite our work as:

  @inproceedings{jambigi2021mmd,
    title={MMD-ReID: A Simple but Effective solution for Visible-Thermal Person ReID},
    author={Jambigi, Chaitra and Rawal, Ruchit and Chakraborty, Anirban},
    booktitle={British Machine Vision Conference},
    year={2021}
}