Skip to content

Latest commit

 

History

History
executable file
·
68 lines (48 loc) · 2.83 KB

README.md

File metadata and controls

executable file
·
68 lines (48 loc) · 2.83 KB

Python PyTorch scikit-learn

SirNet

[Project] [Paper] [arXiv]

This is the official code of our "Sampling Agnostic Feature Representation for Long-Term Person Re-identification", IEEE Transactions on Image Processing (TIP), 2022.

Overview

Prerequisites

  • Python 3.8.8
  • CUDA 11.0
  • Pytorch 1.7.1
  • Sklearn 0.24.1
  • processingtools 0.2.5

Please check requirements.txt for other packages.

Training

python -m train_utils.train --data_root=<> --configs=<> --batch_size=2 --save_path=<> --epoch=<> --workers=4 --snapshot --rerank

snapshot

(notice) Argument 'snapshot' will save the current folder. Thus, the save path must not include the current path.

epoch

In each dataset, we used the below epoch values.

  • Celeb-reID: 15
  • Celeb-reID-light: 60
  • LTCC: 100
  • VC-Clothes: 80

configs

Config files are provided in configs folder.

Dataset

Download each dataset before running code.

If you use Celeb-reID dataset or Celeb-reID-light dataset, just set '--data_root' as dataset root, however, if you want to use other dataset, you need to change dataset form as Celeb-reID dataset form.

You can use provided files in change_form.

Evaluating

python -m evaluate.evaluate --data_root=<> --configs=<> --batch_size=2 --save_path=<> --workers=4 --model=<> --rerank

Dataset

If you use Celeb-reID dataset, Celeb-reID-light dataset or VC-Clothes dataset, just run the evaluate.py file in evaluate, however if you want to use LTCC datasets, you need to modify Clothes_Change_Person_ReID to get proper results.

Results (You can download pre-trained models here.)

License

Our code and the models/AdaINGenerator.py is under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International). You can check here for models/AdaINGenerator.py.