From 8de75bab7452394e3dfc7ca371c1ff08dd449826 Mon Sep 17 00:00:00 2001 From: tony Date: Tue, 30 Jan 2024 22:38:48 +0800 Subject: [PATCH] move bn256,blake2b to upstream, sync with ethereum/go-etherum v1.13.11 --- blake2b/blake2b.go | 319 ---------- blake2b/blake2bAVX2_amd64.go | 37 -- blake2b/blake2bAVX2_amd64.s | 717 ---------------------- blake2b/blake2b_amd64.go | 24 - blake2b/blake2b_amd64.s | 253 -------- blake2b/blake2b_f_fuzz.go | 57 -- blake2b/blake2b_f_test.go | 59 -- blake2b/blake2b_generic.go | 180 ------ blake2b/blake2b_ref.go | 11 - blake2b/blake2b_test.go | 871 --------------------------- blake2b/blake2x.go | 177 ------ blake2b/register.go | 32 - go.mod | 4 +- go.sum | 6 +- thor/hash.go | 2 +- vm/bn256/LICENSE | 28 - vm/bn256/README.md | 1 - vm/bn256/bn256_fast.go | 23 - vm/bn256/bn256_slow.go | 23 - vm/bn256/cloudflare/LICENSE | 27 - vm/bn256/cloudflare/bn256.go | 481 --------------- vm/bn256/cloudflare/bn256_test.go | 116 ---- vm/bn256/cloudflare/constants.go | 59 -- vm/bn256/cloudflare/curve.go | 238 -------- vm/bn256/cloudflare/example_test.go | 51 -- vm/bn256/cloudflare/gfp.go | 81 --- vm/bn256/cloudflare/gfp12.go | 160 ----- vm/bn256/cloudflare/gfp2.go | 156 ----- vm/bn256/cloudflare/gfp6.go | 213 ------- vm/bn256/cloudflare/gfp_amd64.s | 129 ---- vm/bn256/cloudflare/gfp_arm64.s | 113 ---- vm/bn256/cloudflare/gfp_decl.go | 25 - vm/bn256/cloudflare/gfp_generic.go | 173 ------ vm/bn256/cloudflare/gfp_test.go | 60 -- vm/bn256/cloudflare/lattice.go | 115 ---- vm/bn256/cloudflare/lattice_test.go | 29 - vm/bn256/cloudflare/main_test.go | 71 --- vm/bn256/cloudflare/mul_amd64.h | 181 ------ vm/bn256/cloudflare/mul_arm64.h | 133 ---- vm/bn256/cloudflare/mul_bmi2_amd64.h | 112 ---- vm/bn256/cloudflare/optate.go | 271 --------- vm/bn256/cloudflare/twist.go | 204 ------- vm/bn256/google/bn256.go | 459 -------------- vm/bn256/google/bn256_test.go | 311 ---------- vm/bn256/google/constants.go | 44 -- vm/bn256/google/curve.go | 286 --------- vm/bn256/google/example_test.go | 43 -- vm/bn256/google/gfp12.go | 200 ------ vm/bn256/google/gfp2.go | 227 ------- vm/bn256/google/gfp6.go | 296 --------- vm/bn256/google/main_test.go | 71 --- vm/bn256/google/optate.go | 397 ------------ vm/bn256/google/twist.go | 263 -------- vm/contracts.go | 4 +- 54 files changed, 7 insertions(+), 8616 deletions(-) delete mode 100644 blake2b/blake2b.go delete mode 100644 blake2b/blake2bAVX2_amd64.go delete mode 100644 blake2b/blake2bAVX2_amd64.s delete mode 100644 blake2b/blake2b_amd64.go delete mode 100644 blake2b/blake2b_amd64.s delete mode 100644 blake2b/blake2b_f_fuzz.go delete mode 100644 blake2b/blake2b_f_test.go delete mode 100644 blake2b/blake2b_generic.go delete mode 100644 blake2b/blake2b_ref.go delete mode 100644 blake2b/blake2b_test.go delete mode 100644 blake2b/blake2x.go delete mode 100644 blake2b/register.go delete mode 100644 vm/bn256/LICENSE delete mode 100644 vm/bn256/README.md delete mode 100644 vm/bn256/bn256_fast.go delete mode 100644 vm/bn256/bn256_slow.go delete mode 100644 vm/bn256/cloudflare/LICENSE delete mode 100644 vm/bn256/cloudflare/bn256.go delete mode 100644 vm/bn256/cloudflare/bn256_test.go delete mode 100644 vm/bn256/cloudflare/constants.go delete mode 100644 vm/bn256/cloudflare/curve.go delete mode 100644 vm/bn256/cloudflare/example_test.go delete mode 100644 vm/bn256/cloudflare/gfp.go delete mode 100644 vm/bn256/cloudflare/gfp12.go delete mode 100644 vm/bn256/cloudflare/gfp2.go delete mode 100644 vm/bn256/cloudflare/gfp6.go delete mode 100644 vm/bn256/cloudflare/gfp_amd64.s delete mode 100644 vm/bn256/cloudflare/gfp_arm64.s delete mode 100644 vm/bn256/cloudflare/gfp_decl.go delete mode 100644 vm/bn256/cloudflare/gfp_generic.go delete mode 100644 vm/bn256/cloudflare/gfp_test.go delete mode 100644 vm/bn256/cloudflare/lattice.go delete mode 100644 vm/bn256/cloudflare/lattice_test.go delete mode 100644 vm/bn256/cloudflare/main_test.go delete mode 100644 vm/bn256/cloudflare/mul_amd64.h delete mode 100644 vm/bn256/cloudflare/mul_arm64.h delete mode 100644 vm/bn256/cloudflare/mul_bmi2_amd64.h delete mode 100644 vm/bn256/cloudflare/optate.go delete mode 100644 vm/bn256/cloudflare/twist.go delete mode 100644 vm/bn256/google/bn256.go delete mode 100644 vm/bn256/google/bn256_test.go delete mode 100644 vm/bn256/google/constants.go delete mode 100644 vm/bn256/google/curve.go delete mode 100644 vm/bn256/google/example_test.go delete mode 100644 vm/bn256/google/gfp12.go delete mode 100644 vm/bn256/google/gfp2.go delete mode 100644 vm/bn256/google/gfp6.go delete mode 100644 vm/bn256/google/main_test.go delete mode 100644 vm/bn256/google/optate.go delete mode 100644 vm/bn256/google/twist.go diff --git a/blake2b/blake2b.go b/blake2b/blake2b.go deleted file mode 100644 index 5da50cab6..000000000 --- a/blake2b/blake2b.go +++ /dev/null @@ -1,319 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 -// and the extendable output function (XOF) BLAKE2Xb. -// -// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf -// and for BLAKE2Xb see https://blake2.net/blake2x.pdf -// -// If you aren't sure which function you need, use BLAKE2b (Sum512 or New512). -// If you need a secret-key MAC (message authentication code), use the New512 -// function with a non-nil key. -// -// BLAKE2X is a construction to compute hash values larger than 64 bytes. It -// can produce hash values between 0 and 4 GiB. -package blake2b - -import ( - "encoding/binary" - "errors" - "hash" -) - -const ( - // The blocksize of BLAKE2b in bytes. - BlockSize = 128 - // The hash size of BLAKE2b-512 in bytes. - Size = 64 - // The hash size of BLAKE2b-384 in bytes. - Size384 = 48 - // The hash size of BLAKE2b-256 in bytes. - Size256 = 32 -) - -var ( - useAVX2 bool - useAVX bool - useSSE4 bool -) - -var ( - errKeySize = errors.New("blake2b: invalid key size") - errHashSize = errors.New("blake2b: invalid hash size") -) - -var iv = [8]uint64{ - 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, - 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, -} - -// Sum512 returns the BLAKE2b-512 checksum of the data. -func Sum512(data []byte) [Size]byte { - var sum [Size]byte - checkSum(&sum, Size, data) - return sum -} - -// Sum384 returns the BLAKE2b-384 checksum of the data. -func Sum384(data []byte) [Size384]byte { - var sum [Size]byte - var sum384 [Size384]byte - checkSum(&sum, Size384, data) - copy(sum384[:], sum[:Size384]) - return sum384 -} - -// Sum256 returns the BLAKE2b-256 checksum of the data. -func Sum256(data []byte) [Size256]byte { - var sum [Size]byte - var sum256 [Size256]byte - checkSum(&sum, Size256, data) - copy(sum256[:], sum[:Size256]) - return sum256 -} - -// New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil -// key turns the hash into a MAC. The key must be between zero and 64 bytes long. -func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) } - -// New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil -// key turns the hash into a MAC. The key must be between zero and 64 bytes long. -func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) } - -// New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil -// key turns the hash into a MAC. The key must be between zero and 64 bytes long. -func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) } - -// New returns a new hash.Hash computing the BLAKE2b checksum with a custom length. -// A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long. -// The hash size can be a value between 1 and 64 but it is highly recommended to use -// values equal or greater than: -// - 32 if BLAKE2b is used as a hash function (The key is zero bytes long). -// - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long). -// When the key is nil, the returned hash.Hash implements BinaryMarshaler -// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash. -func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) } - -// F is a compression function for BLAKE2b. It takes as an argument the state -// vector `h`, message block vector `m`, offset counter `t`, final block indicator -// flag `f`, and number of rounds `rounds`. The state vector provided as the first -// parameter is modified by the function. -func F(h *[8]uint64, m [16]uint64, c [2]uint64, final bool, rounds uint32) { - var flag uint64 - if final { - flag = 0xFFFFFFFFFFFFFFFF - } - f(h, &m, c[0], c[1], flag, uint64(rounds)) -} - -func newDigest(hashSize int, key []byte) (*digest, error) { - if hashSize < 1 || hashSize > Size { - return nil, errHashSize - } - if len(key) > Size { - return nil, errKeySize - } - d := &digest{ - size: hashSize, - keyLen: len(key), - } - copy(d.key[:], key) - d.Reset() - return d, nil -} - -func checkSum(sum *[Size]byte, hashSize int, data []byte) { - h := iv - h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24) - var c [2]uint64 - - if length := len(data); length > BlockSize { - n := length &^ (BlockSize - 1) - if length == n { - n -= BlockSize - } - hashBlocks(&h, &c, 0, data[:n]) - data = data[n:] - } - - var block [BlockSize]byte - offset := copy(block[:], data) - remaining := uint64(BlockSize - offset) - if c[0] < remaining { - c[1]-- - } - c[0] -= remaining - - hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:]) - - for i, v := range h[:(hashSize+7)/8] { - binary.LittleEndian.PutUint64(sum[8*i:], v) - } -} - -func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) { - var m [16]uint64 - c0, c1 := c[0], c[1] - - for i := 0; i < len(blocks); { - c0 += BlockSize - if c0 < BlockSize { - c1++ - } - for j := range m { - m[j] = binary.LittleEndian.Uint64(blocks[i:]) - i += 8 - } - f(h, &m, c0, c1, flag, 12) - } - c[0], c[1] = c0, c1 -} - -type digest struct { - h [8]uint64 - c [2]uint64 - size int - block [BlockSize]byte - offset int - - key [BlockSize]byte - keyLen int -} - -const ( - magic = "b2b" - marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1 -) - -func (d *digest) MarshalBinary() ([]byte, error) { - if d.keyLen != 0 { - return nil, errors.New("crypto/blake2b: cannot marshal MACs") - } - b := make([]byte, 0, marshaledSize) - b = append(b, magic...) - for i := 0; i < 8; i++ { - b = appendUint64(b, d.h[i]) - } - b = appendUint64(b, d.c[0]) - b = appendUint64(b, d.c[1]) - // Maximum value for size is 64 - b = append(b, byte(d.size)) - b = append(b, d.block[:]...) - b = append(b, byte(d.offset)) - return b, nil -} - -func (d *digest) UnmarshalBinary(b []byte) error { - if len(b) < len(magic) || string(b[:len(magic)]) != magic { - return errors.New("crypto/blake2b: invalid hash state identifier") - } - if len(b) != marshaledSize { - return errors.New("crypto/blake2b: invalid hash state size") - } - b = b[len(magic):] - for i := 0; i < 8; i++ { - b, d.h[i] = consumeUint64(b) - } - b, d.c[0] = consumeUint64(b) - b, d.c[1] = consumeUint64(b) - d.size = int(b[0]) - b = b[1:] - copy(d.block[:], b[:BlockSize]) - b = b[BlockSize:] - d.offset = int(b[0]) - return nil -} - -func (d *digest) BlockSize() int { return BlockSize } - -func (d *digest) Size() int { return d.size } - -func (d *digest) Reset() { - d.h = iv - d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24) - d.offset, d.c[0], d.c[1] = 0, 0, 0 - if d.keyLen > 0 { - d.block = d.key - d.offset = BlockSize - } -} - -func (d *digest) Write(p []byte) (n int, err error) { - n = len(p) - - if d.offset > 0 { - remaining := BlockSize - d.offset - if n <= remaining { - d.offset += copy(d.block[d.offset:], p) - return - } - copy(d.block[d.offset:], p[:remaining]) - hashBlocks(&d.h, &d.c, 0, d.block[:]) - d.offset = 0 - p = p[remaining:] - } - - if length := len(p); length > BlockSize { - nn := length &^ (BlockSize - 1) - if length == nn { - nn -= BlockSize - } - hashBlocks(&d.h, &d.c, 0, p[:nn]) - p = p[nn:] - } - - if len(p) > 0 { - d.offset += copy(d.block[:], p) - } - - return -} - -func (d *digest) Sum(sum []byte) []byte { - var hash [Size]byte - d.finalize(&hash) - return append(sum, hash[:d.size]...) -} - -func (d *digest) finalize(hash *[Size]byte) { - var block [BlockSize]byte - copy(block[:], d.block[:d.offset]) - remaining := uint64(BlockSize - d.offset) - - c := d.c - if c[0] < remaining { - c[1]-- - } - c[0] -= remaining - - h := d.h - hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:]) - - for i, v := range h { - binary.LittleEndian.PutUint64(hash[8*i:], v) - } -} - -func appendUint64(b []byte, x uint64) []byte { - var a [8]byte - binary.BigEndian.PutUint64(a[:], x) - return append(b, a[:]...) -} - -func appendUint32(b []byte, x uint32) []byte { - var a [4]byte - binary.BigEndian.PutUint32(a[:], x) - return append(b, a[:]...) -} - -func consumeUint64(b []byte) ([]byte, uint64) { - x := binary.BigEndian.Uint64(b) - return b[8:], x -} - -func consumeUint32(b []byte) ([]byte, uint32) { - x := binary.BigEndian.Uint32(b) - return b[4:], x -} diff --git a/blake2b/blake2bAVX2_amd64.go b/blake2b/blake2bAVX2_amd64.go deleted file mode 100644 index 0d52b1869..000000000 --- a/blake2b/blake2bAVX2_amd64.go +++ /dev/null @@ -1,37 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.7,amd64,!gccgo,!appengine - -package blake2b - -import "golang.org/x/sys/cpu" - -func init() { - useAVX2 = cpu.X86.HasAVX2 - useAVX = cpu.X86.HasAVX - useSSE4 = cpu.X86.HasSSE41 -} - -//go:noescape -func fAVX2(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) - -//go:noescape -func fAVX(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) - -//go:noescape -func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) - -func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) { - switch { - case useAVX2: - fAVX2(h, m, c0, c1, flag, rounds) - case useAVX: - fAVX(h, m, c0, c1, flag, rounds) - case useSSE4: - fSSE4(h, m, c0, c1, flag, rounds) - default: - fGeneric(h, m, c0, c1, flag, rounds) - } -} diff --git a/blake2b/blake2bAVX2_amd64.s b/blake2b/blake2bAVX2_amd64.s deleted file mode 100644 index 4998af37d..000000000 --- a/blake2b/blake2bAVX2_amd64.s +++ /dev/null @@ -1,717 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.7,amd64,!gccgo,!appengine - -#include "textflag.h" - -DATA ·AVX2_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908 -DATA ·AVX2_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b -DATA ·AVX2_iv0<>+0x10(SB)/8, $0x3c6ef372fe94f82b -DATA ·AVX2_iv0<>+0x18(SB)/8, $0xa54ff53a5f1d36f1 -GLOBL ·AVX2_iv0<>(SB), (NOPTR+RODATA), $32 - -DATA ·AVX2_iv1<>+0x00(SB)/8, $0x510e527fade682d1 -DATA ·AVX2_iv1<>+0x08(SB)/8, $0x9b05688c2b3e6c1f -DATA ·AVX2_iv1<>+0x10(SB)/8, $0x1f83d9abfb41bd6b -DATA ·AVX2_iv1<>+0x18(SB)/8, $0x5be0cd19137e2179 -GLOBL ·AVX2_iv1<>(SB), (NOPTR+RODATA), $32 - -DATA ·AVX2_c40<>+0x00(SB)/8, $0x0201000706050403 -DATA ·AVX2_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b -DATA ·AVX2_c40<>+0x10(SB)/8, $0x0201000706050403 -DATA ·AVX2_c40<>+0x18(SB)/8, $0x0a09080f0e0d0c0b -GLOBL ·AVX2_c40<>(SB), (NOPTR+RODATA), $32 - -DATA ·AVX2_c48<>+0x00(SB)/8, $0x0100070605040302 -DATA ·AVX2_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a -DATA ·AVX2_c48<>+0x10(SB)/8, $0x0100070605040302 -DATA ·AVX2_c48<>+0x18(SB)/8, $0x09080f0e0d0c0b0a -GLOBL ·AVX2_c48<>(SB), (NOPTR+RODATA), $32 - -DATA ·AVX_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908 -DATA ·AVX_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b -GLOBL ·AVX_iv0<>(SB), (NOPTR+RODATA), $16 - -DATA ·AVX_iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b -DATA ·AVX_iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1 -GLOBL ·AVX_iv1<>(SB), (NOPTR+RODATA), $16 - -DATA ·AVX_iv2<>+0x00(SB)/8, $0x510e527fade682d1 -DATA ·AVX_iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f -GLOBL ·AVX_iv2<>(SB), (NOPTR+RODATA), $16 - -DATA ·AVX_iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b -DATA ·AVX_iv3<>+0x08(SB)/8, $0x5be0cd19137e2179 -GLOBL ·AVX_iv3<>(SB), (NOPTR+RODATA), $16 - -DATA ·AVX_c40<>+0x00(SB)/8, $0x0201000706050403 -DATA ·AVX_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b -GLOBL ·AVX_c40<>(SB), (NOPTR+RODATA), $16 - -DATA ·AVX_c48<>+0x00(SB)/8, $0x0100070605040302 -DATA ·AVX_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a -GLOBL ·AVX_c48<>(SB), (NOPTR+RODATA), $16 - -#define VPERMQ_0x39_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x39 -#define VPERMQ_0x93_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x93 -#define VPERMQ_0x4E_Y2_Y2 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xd2; BYTE $0x4e -#define VPERMQ_0x93_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x93 -#define VPERMQ_0x39_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x39 - -#define ROUND_AVX2(m0, m1, m2, m3, t, c40, c48) \ - VPADDQ m0, Y0, Y0; \ - VPADDQ Y1, Y0, Y0; \ - VPXOR Y0, Y3, Y3; \ - VPSHUFD $-79, Y3, Y3; \ - VPADDQ Y3, Y2, Y2; \ - VPXOR Y2, Y1, Y1; \ - VPSHUFB c40, Y1, Y1; \ - VPADDQ m1, Y0, Y0; \ - VPADDQ Y1, Y0, Y0; \ - VPXOR Y0, Y3, Y3; \ - VPSHUFB c48, Y3, Y3; \ - VPADDQ Y3, Y2, Y2; \ - VPXOR Y2, Y1, Y1; \ - VPADDQ Y1, Y1, t; \ - VPSRLQ $63, Y1, Y1; \ - VPXOR t, Y1, Y1; \ - VPERMQ_0x39_Y1_Y1; \ - VPERMQ_0x4E_Y2_Y2; \ - VPERMQ_0x93_Y3_Y3; \ - VPADDQ m2, Y0, Y0; \ - VPADDQ Y1, Y0, Y0; \ - VPXOR Y0, Y3, Y3; \ - VPSHUFD $-79, Y3, Y3; \ - VPADDQ Y3, Y2, Y2; \ - VPXOR Y2, Y1, Y1; \ - VPSHUFB c40, Y1, Y1; \ - VPADDQ m3, Y0, Y0; \ - VPADDQ Y1, Y0, Y0; \ - VPXOR Y0, Y3, Y3; \ - VPSHUFB c48, Y3, Y3; \ - VPADDQ Y3, Y2, Y2; \ - VPXOR Y2, Y1, Y1; \ - VPADDQ Y1, Y1, t; \ - VPSRLQ $63, Y1, Y1; \ - VPXOR t, Y1, Y1; \ - VPERMQ_0x39_Y3_Y3; \ - VPERMQ_0x4E_Y2_Y2; \ - VPERMQ_0x93_Y1_Y1 - -#define VMOVQ_SI_X11_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x1E -#define VMOVQ_SI_X12_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x26 -#define VMOVQ_SI_X13_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x2E -#define VMOVQ_SI_X14_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x36 -#define VMOVQ_SI_X15_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x3E - -#define VMOVQ_SI_X11(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x5E; BYTE $n -#define VMOVQ_SI_X12(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x66; BYTE $n -#define VMOVQ_SI_X13(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x6E; BYTE $n -#define VMOVQ_SI_X14(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x76; BYTE $n -#define VMOVQ_SI_X15(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x7E; BYTE $n - -#define VPINSRQ_1_SI_X11_0 BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x1E; BYTE $0x01 -#define VPINSRQ_1_SI_X12_0 BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x26; BYTE $0x01 -#define VPINSRQ_1_SI_X13_0 BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x2E; BYTE $0x01 -#define VPINSRQ_1_SI_X14_0 BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x36; BYTE $0x01 -#define VPINSRQ_1_SI_X15_0 BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x3E; BYTE $0x01 - -#define VPINSRQ_1_SI_X11(n) BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x5E; BYTE $n; BYTE $0x01 -#define VPINSRQ_1_SI_X12(n) BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x66; BYTE $n; BYTE $0x01 -#define VPINSRQ_1_SI_X13(n) BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x6E; BYTE $n; BYTE $0x01 -#define VPINSRQ_1_SI_X14(n) BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x76; BYTE $n; BYTE $0x01 -#define VPINSRQ_1_SI_X15(n) BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x7E; BYTE $n; BYTE $0x01 - -#define VMOVQ_R8_X15 BYTE $0xC4; BYTE $0x41; BYTE $0xF9; BYTE $0x6E; BYTE $0xF8 -#define VPINSRQ_1_R9_X15 BYTE $0xC4; BYTE $0x43; BYTE $0x81; BYTE $0x22; BYTE $0xF9; BYTE $0x01 - -// load msg: Y12 = (i0, i1, i2, i3) -// i0, i1, i2, i3 must not be 0 -#define LOAD_MSG_AVX2_Y12(i0, i1, i2, i3) \ - VMOVQ_SI_X12(i0*8); \ - VMOVQ_SI_X11(i2*8); \ - VPINSRQ_1_SI_X12(i1*8); \ - VPINSRQ_1_SI_X11(i3*8); \ - VINSERTI128 $1, X11, Y12, Y12 - -// load msg: Y13 = (i0, i1, i2, i3) -// i0, i1, i2, i3 must not be 0 -#define LOAD_MSG_AVX2_Y13(i0, i1, i2, i3) \ - VMOVQ_SI_X13(i0*8); \ - VMOVQ_SI_X11(i2*8); \ - VPINSRQ_1_SI_X13(i1*8); \ - VPINSRQ_1_SI_X11(i3*8); \ - VINSERTI128 $1, X11, Y13, Y13 - -// load msg: Y14 = (i0, i1, i2, i3) -// i0, i1, i2, i3 must not be 0 -#define LOAD_MSG_AVX2_Y14(i0, i1, i2, i3) \ - VMOVQ_SI_X14(i0*8); \ - VMOVQ_SI_X11(i2*8); \ - VPINSRQ_1_SI_X14(i1*8); \ - VPINSRQ_1_SI_X11(i3*8); \ - VINSERTI128 $1, X11, Y14, Y14 - -// load msg: Y15 = (i0, i1, i2, i3) -// i0, i1, i2, i3 must not be 0 -#define LOAD_MSG_AVX2_Y15(i0, i1, i2, i3) \ - VMOVQ_SI_X15(i0*8); \ - VMOVQ_SI_X11(i2*8); \ - VPINSRQ_1_SI_X15(i1*8); \ - VPINSRQ_1_SI_X11(i3*8); \ - VINSERTI128 $1, X11, Y15, Y15 - -#define LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15() \ - VMOVQ_SI_X12_0; \ - VMOVQ_SI_X11(4*8); \ - VPINSRQ_1_SI_X12(2*8); \ - VPINSRQ_1_SI_X11(6*8); \ - VINSERTI128 $1, X11, Y12, Y12; \ - LOAD_MSG_AVX2_Y13(1, 3, 5, 7); \ - LOAD_MSG_AVX2_Y14(8, 10, 12, 14); \ - LOAD_MSG_AVX2_Y15(9, 11, 13, 15) - -#define LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3() \ - LOAD_MSG_AVX2_Y12(14, 4, 9, 13); \ - LOAD_MSG_AVX2_Y13(10, 8, 15, 6); \ - VMOVQ_SI_X11(11*8); \ - VPSHUFD $0x4E, 0*8(SI), X14; \ - VPINSRQ_1_SI_X11(5*8); \ - VINSERTI128 $1, X11, Y14, Y14; \ - LOAD_MSG_AVX2_Y15(12, 2, 7, 3) - -#define LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4() \ - VMOVQ_SI_X11(5*8); \ - VMOVDQU 11*8(SI), X12; \ - VPINSRQ_1_SI_X11(15*8); \ - VINSERTI128 $1, X11, Y12, Y12; \ - VMOVQ_SI_X13(8*8); \ - VMOVQ_SI_X11(2*8); \ - VPINSRQ_1_SI_X13_0; \ - VPINSRQ_1_SI_X11(13*8); \ - VINSERTI128 $1, X11, Y13, Y13; \ - LOAD_MSG_AVX2_Y14(10, 3, 7, 9); \ - LOAD_MSG_AVX2_Y15(14, 6, 1, 4) - -#define LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8() \ - LOAD_MSG_AVX2_Y12(7, 3, 13, 11); \ - LOAD_MSG_AVX2_Y13(9, 1, 12, 14); \ - LOAD_MSG_AVX2_Y14(2, 5, 4, 15); \ - VMOVQ_SI_X15(6*8); \ - VMOVQ_SI_X11_0; \ - VPINSRQ_1_SI_X15(10*8); \ - VPINSRQ_1_SI_X11(8*8); \ - VINSERTI128 $1, X11, Y15, Y15 - -#define LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13() \ - LOAD_MSG_AVX2_Y12(9, 5, 2, 10); \ - VMOVQ_SI_X13_0; \ - VMOVQ_SI_X11(4*8); \ - VPINSRQ_1_SI_X13(7*8); \ - VPINSRQ_1_SI_X11(15*8); \ - VINSERTI128 $1, X11, Y13, Y13; \ - LOAD_MSG_AVX2_Y14(14, 11, 6, 3); \ - LOAD_MSG_AVX2_Y15(1, 12, 8, 13) - -#define LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9() \ - VMOVQ_SI_X12(2*8); \ - VMOVQ_SI_X11_0; \ - VPINSRQ_1_SI_X12(6*8); \ - VPINSRQ_1_SI_X11(8*8); \ - VINSERTI128 $1, X11, Y12, Y12; \ - LOAD_MSG_AVX2_Y13(12, 10, 11, 3); \ - LOAD_MSG_AVX2_Y14(4, 7, 15, 1); \ - LOAD_MSG_AVX2_Y15(13, 5, 14, 9) - -#define LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11() \ - LOAD_MSG_AVX2_Y12(12, 1, 14, 4); \ - LOAD_MSG_AVX2_Y13(5, 15, 13, 10); \ - VMOVQ_SI_X14_0; \ - VPSHUFD $0x4E, 8*8(SI), X11; \ - VPINSRQ_1_SI_X14(6*8); \ - VINSERTI128 $1, X11, Y14, Y14; \ - LOAD_MSG_AVX2_Y15(7, 3, 2, 11) - -#define LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10() \ - LOAD_MSG_AVX2_Y12(13, 7, 12, 3); \ - LOAD_MSG_AVX2_Y13(11, 14, 1, 9); \ - LOAD_MSG_AVX2_Y14(5, 15, 8, 2); \ - VMOVQ_SI_X15_0; \ - VMOVQ_SI_X11(6*8); \ - VPINSRQ_1_SI_X15(4*8); \ - VPINSRQ_1_SI_X11(10*8); \ - VINSERTI128 $1, X11, Y15, Y15 - -#define LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5() \ - VMOVQ_SI_X12(6*8); \ - VMOVQ_SI_X11(11*8); \ - VPINSRQ_1_SI_X12(14*8); \ - VPINSRQ_1_SI_X11_0; \ - VINSERTI128 $1, X11, Y12, Y12; \ - LOAD_MSG_AVX2_Y13(15, 9, 3, 8); \ - VMOVQ_SI_X11(1*8); \ - VMOVDQU 12*8(SI), X14; \ - VPINSRQ_1_SI_X11(10*8); \ - VINSERTI128 $1, X11, Y14, Y14; \ - VMOVQ_SI_X15(2*8); \ - VMOVDQU 4*8(SI), X11; \ - VPINSRQ_1_SI_X15(7*8); \ - VINSERTI128 $1, X11, Y15, Y15 - -#define LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0() \ - LOAD_MSG_AVX2_Y12(10, 8, 7, 1); \ - VMOVQ_SI_X13(2*8); \ - VPSHUFD $0x4E, 5*8(SI), X11; \ - VPINSRQ_1_SI_X13(4*8); \ - VINSERTI128 $1, X11, Y13, Y13; \ - LOAD_MSG_AVX2_Y14(15, 9, 3, 13); \ - VMOVQ_SI_X15(11*8); \ - VMOVQ_SI_X11(12*8); \ - VPINSRQ_1_SI_X15(14*8); \ - VPINSRQ_1_SI_X11_0; \ - VINSERTI128 $1, X11, Y15, Y15 - -// func fAVX2(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) -TEXT ·fAVX2(SB), 4, $64-48 // frame size = 32 + 32 byte alignment - MOVQ h+0(FP), AX - MOVQ m+8(FP), SI - MOVQ c0+16(FP), R8 - MOVQ c1+24(FP), R9 - MOVQ flag+32(FP), CX - MOVQ rounds+40(FP), BX - - MOVQ SP, DX - MOVQ SP, R10 - ADDQ $31, R10 - ANDQ $~31, R10 - MOVQ R10, SP - - MOVQ CX, 16(SP) - XORQ CX, CX - MOVQ CX, 24(SP) - - VMOVDQU ·AVX2_c40<>(SB), Y4 - VMOVDQU ·AVX2_c48<>(SB), Y5 - - VMOVDQU 0(AX), Y8 - VMOVDQU 32(AX), Y9 - VMOVDQU ·AVX2_iv0<>(SB), Y6 - VMOVDQU ·AVX2_iv1<>(SB), Y7 - - MOVQ R8, 0(SP) - MOVQ R9, 8(SP) - - VMOVDQA Y8, Y0 - VMOVDQA Y9, Y1 - VMOVDQA Y6, Y2 - VPXOR 0(SP), Y7, Y3 - -loop: - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0() - ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5) - - JMP loop - -done: - VPXOR Y0, Y8, Y8 - VPXOR Y1, Y9, Y9 - VPXOR Y2, Y8, Y8 - VPXOR Y3, Y9, Y9 - - VMOVDQU Y8, 0(AX) - VMOVDQU Y9, 32(AX) - VZEROUPPER - - MOVQ DX, SP - RET - -#define VPUNPCKLQDQ_X2_X2_X15 BYTE $0xC5; BYTE $0x69; BYTE $0x6C; BYTE $0xFA -#define VPUNPCKLQDQ_X3_X3_X15 BYTE $0xC5; BYTE $0x61; BYTE $0x6C; BYTE $0xFB -#define VPUNPCKLQDQ_X7_X7_X15 BYTE $0xC5; BYTE $0x41; BYTE $0x6C; BYTE $0xFF -#define VPUNPCKLQDQ_X13_X13_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x11; BYTE $0x6C; BYTE $0xFD -#define VPUNPCKLQDQ_X14_X14_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x09; BYTE $0x6C; BYTE $0xFE - -#define VPUNPCKHQDQ_X15_X2_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x69; BYTE $0x6D; BYTE $0xD7 -#define VPUNPCKHQDQ_X15_X3_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xDF -#define VPUNPCKHQDQ_X15_X6_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x49; BYTE $0x6D; BYTE $0xF7 -#define VPUNPCKHQDQ_X15_X7_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xFF -#define VPUNPCKHQDQ_X15_X3_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xD7 -#define VPUNPCKHQDQ_X15_X7_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xF7 -#define VPUNPCKHQDQ_X15_X13_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xDF -#define VPUNPCKHQDQ_X15_X13_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xFF - -#define SHUFFLE_AVX() \ - VMOVDQA X6, X13; \ - VMOVDQA X2, X14; \ - VMOVDQA X4, X6; \ - VPUNPCKLQDQ_X13_X13_X15; \ - VMOVDQA X5, X4; \ - VMOVDQA X6, X5; \ - VPUNPCKHQDQ_X15_X7_X6; \ - VPUNPCKLQDQ_X7_X7_X15; \ - VPUNPCKHQDQ_X15_X13_X7; \ - VPUNPCKLQDQ_X3_X3_X15; \ - VPUNPCKHQDQ_X15_X2_X2; \ - VPUNPCKLQDQ_X14_X14_X15; \ - VPUNPCKHQDQ_X15_X3_X3; \ - -#define SHUFFLE_AVX_INV() \ - VMOVDQA X2, X13; \ - VMOVDQA X4, X14; \ - VPUNPCKLQDQ_X2_X2_X15; \ - VMOVDQA X5, X4; \ - VPUNPCKHQDQ_X15_X3_X2; \ - VMOVDQA X14, X5; \ - VPUNPCKLQDQ_X3_X3_X15; \ - VMOVDQA X6, X14; \ - VPUNPCKHQDQ_X15_X13_X3; \ - VPUNPCKLQDQ_X7_X7_X15; \ - VPUNPCKHQDQ_X15_X6_X6; \ - VPUNPCKLQDQ_X14_X14_X15; \ - VPUNPCKHQDQ_X15_X7_X7; \ - -#define HALF_ROUND_AVX(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \ - VPADDQ m0, v0, v0; \ - VPADDQ v2, v0, v0; \ - VPADDQ m1, v1, v1; \ - VPADDQ v3, v1, v1; \ - VPXOR v0, v6, v6; \ - VPXOR v1, v7, v7; \ - VPSHUFD $-79, v6, v6; \ - VPSHUFD $-79, v7, v7; \ - VPADDQ v6, v4, v4; \ - VPADDQ v7, v5, v5; \ - VPXOR v4, v2, v2; \ - VPXOR v5, v3, v3; \ - VPSHUFB c40, v2, v2; \ - VPSHUFB c40, v3, v3; \ - VPADDQ m2, v0, v0; \ - VPADDQ v2, v0, v0; \ - VPADDQ m3, v1, v1; \ - VPADDQ v3, v1, v1; \ - VPXOR v0, v6, v6; \ - VPXOR v1, v7, v7; \ - VPSHUFB c48, v6, v6; \ - VPSHUFB c48, v7, v7; \ - VPADDQ v6, v4, v4; \ - VPADDQ v7, v5, v5; \ - VPXOR v4, v2, v2; \ - VPXOR v5, v3, v3; \ - VPADDQ v2, v2, t0; \ - VPSRLQ $63, v2, v2; \ - VPXOR t0, v2, v2; \ - VPADDQ v3, v3, t0; \ - VPSRLQ $63, v3, v3; \ - VPXOR t0, v3, v3 - -// load msg: X12 = (i0, i1), X13 = (i2, i3), X14 = (i4, i5), X15 = (i6, i7) -// i0, i1, i2, i3, i4, i5, i6, i7 must not be 0 -#define LOAD_MSG_AVX(i0, i1, i2, i3, i4, i5, i6, i7) \ - VMOVQ_SI_X12(i0*8); \ - VMOVQ_SI_X13(i2*8); \ - VMOVQ_SI_X14(i4*8); \ - VMOVQ_SI_X15(i6*8); \ - VPINSRQ_1_SI_X12(i1*8); \ - VPINSRQ_1_SI_X13(i3*8); \ - VPINSRQ_1_SI_X14(i5*8); \ - VPINSRQ_1_SI_X15(i7*8) - -// load msg: X12 = (0, 2), X13 = (4, 6), X14 = (1, 3), X15 = (5, 7) -#define LOAD_MSG_AVX_0_2_4_6_1_3_5_7() \ - VMOVQ_SI_X12_0; \ - VMOVQ_SI_X13(4*8); \ - VMOVQ_SI_X14(1*8); \ - VMOVQ_SI_X15(5*8); \ - VPINSRQ_1_SI_X12(2*8); \ - VPINSRQ_1_SI_X13(6*8); \ - VPINSRQ_1_SI_X14(3*8); \ - VPINSRQ_1_SI_X15(7*8) - -// load msg: X12 = (1, 0), X13 = (11, 5), X14 = (12, 2), X15 = (7, 3) -#define LOAD_MSG_AVX_1_0_11_5_12_2_7_3() \ - VPSHUFD $0x4E, 0*8(SI), X12; \ - VMOVQ_SI_X13(11*8); \ - VMOVQ_SI_X14(12*8); \ - VMOVQ_SI_X15(7*8); \ - VPINSRQ_1_SI_X13(5*8); \ - VPINSRQ_1_SI_X14(2*8); \ - VPINSRQ_1_SI_X15(3*8) - -// load msg: X12 = (11, 12), X13 = (5, 15), X14 = (8, 0), X15 = (2, 13) -#define LOAD_MSG_AVX_11_12_5_15_8_0_2_13() \ - VMOVDQU 11*8(SI), X12; \ - VMOVQ_SI_X13(5*8); \ - VMOVQ_SI_X14(8*8); \ - VMOVQ_SI_X15(2*8); \ - VPINSRQ_1_SI_X13(15*8); \ - VPINSRQ_1_SI_X14_0; \ - VPINSRQ_1_SI_X15(13*8) - -// load msg: X12 = (2, 5), X13 = (4, 15), X14 = (6, 10), X15 = (0, 8) -#define LOAD_MSG_AVX_2_5_4_15_6_10_0_8() \ - VMOVQ_SI_X12(2*8); \ - VMOVQ_SI_X13(4*8); \ - VMOVQ_SI_X14(6*8); \ - VMOVQ_SI_X15_0; \ - VPINSRQ_1_SI_X12(5*8); \ - VPINSRQ_1_SI_X13(15*8); \ - VPINSRQ_1_SI_X14(10*8); \ - VPINSRQ_1_SI_X15(8*8) - -// load msg: X12 = (9, 5), X13 = (2, 10), X14 = (0, 7), X15 = (4, 15) -#define LOAD_MSG_AVX_9_5_2_10_0_7_4_15() \ - VMOVQ_SI_X12(9*8); \ - VMOVQ_SI_X13(2*8); \ - VMOVQ_SI_X14_0; \ - VMOVQ_SI_X15(4*8); \ - VPINSRQ_1_SI_X12(5*8); \ - VPINSRQ_1_SI_X13(10*8); \ - VPINSRQ_1_SI_X14(7*8); \ - VPINSRQ_1_SI_X15(15*8) - -// load msg: X12 = (2, 6), X13 = (0, 8), X14 = (12, 10), X15 = (11, 3) -#define LOAD_MSG_AVX_2_6_0_8_12_10_11_3() \ - VMOVQ_SI_X12(2*8); \ - VMOVQ_SI_X13_0; \ - VMOVQ_SI_X14(12*8); \ - VMOVQ_SI_X15(11*8); \ - VPINSRQ_1_SI_X12(6*8); \ - VPINSRQ_1_SI_X13(8*8); \ - VPINSRQ_1_SI_X14(10*8); \ - VPINSRQ_1_SI_X15(3*8) - -// load msg: X12 = (0, 6), X13 = (9, 8), X14 = (7, 3), X15 = (2, 11) -#define LOAD_MSG_AVX_0_6_9_8_7_3_2_11() \ - MOVQ 0*8(SI), X12; \ - VPSHUFD $0x4E, 8*8(SI), X13; \ - MOVQ 7*8(SI), X14; \ - MOVQ 2*8(SI), X15; \ - VPINSRQ_1_SI_X12(6*8); \ - VPINSRQ_1_SI_X14(3*8); \ - VPINSRQ_1_SI_X15(11*8) - -// load msg: X12 = (6, 14), X13 = (11, 0), X14 = (15, 9), X15 = (3, 8) -#define LOAD_MSG_AVX_6_14_11_0_15_9_3_8() \ - MOVQ 6*8(SI), X12; \ - MOVQ 11*8(SI), X13; \ - MOVQ 15*8(SI), X14; \ - MOVQ 3*8(SI), X15; \ - VPINSRQ_1_SI_X12(14*8); \ - VPINSRQ_1_SI_X13_0; \ - VPINSRQ_1_SI_X14(9*8); \ - VPINSRQ_1_SI_X15(8*8) - -// load msg: X12 = (5, 15), X13 = (8, 2), X14 = (0, 4), X15 = (6, 10) -#define LOAD_MSG_AVX_5_15_8_2_0_4_6_10() \ - MOVQ 5*8(SI), X12; \ - MOVQ 8*8(SI), X13; \ - MOVQ 0*8(SI), X14; \ - MOVQ 6*8(SI), X15; \ - VPINSRQ_1_SI_X12(15*8); \ - VPINSRQ_1_SI_X13(2*8); \ - VPINSRQ_1_SI_X14(4*8); \ - VPINSRQ_1_SI_X15(10*8) - -// load msg: X12 = (12, 13), X13 = (1, 10), X14 = (2, 7), X15 = (4, 5) -#define LOAD_MSG_AVX_12_13_1_10_2_7_4_5() \ - VMOVDQU 12*8(SI), X12; \ - MOVQ 1*8(SI), X13; \ - MOVQ 2*8(SI), X14; \ - VPINSRQ_1_SI_X13(10*8); \ - VPINSRQ_1_SI_X14(7*8); \ - VMOVDQU 4*8(SI), X15 - -// load msg: X12 = (15, 9), X13 = (3, 13), X14 = (11, 14), X15 = (12, 0) -#define LOAD_MSG_AVX_15_9_3_13_11_14_12_0() \ - MOVQ 15*8(SI), X12; \ - MOVQ 3*8(SI), X13; \ - MOVQ 11*8(SI), X14; \ - MOVQ 12*8(SI), X15; \ - VPINSRQ_1_SI_X12(9*8); \ - VPINSRQ_1_SI_X13(13*8); \ - VPINSRQ_1_SI_X14(14*8); \ - VPINSRQ_1_SI_X15_0 - -// func fAVX(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) -TEXT ·fAVX(SB), 4, $24-48 // frame size = 8 + 16 byte alignment - MOVQ h+0(FP), AX - MOVQ m+8(FP), SI - MOVQ c0+16(FP), R8 - MOVQ c1+24(FP), R9 - MOVQ flag+32(FP), CX - MOVQ rounds+40(FP), BX - - MOVQ SP, BP - MOVQ SP, R10 - ADDQ $15, R10 - ANDQ $~15, R10 - MOVQ R10, SP - - VMOVDQU ·AVX_c40<>(SB), X0 - VMOVDQU ·AVX_c48<>(SB), X1 - VMOVDQA X0, X8 - VMOVDQA X1, X9 - - VMOVDQU ·AVX_iv3<>(SB), X0 - VMOVDQA X0, 0(SP) - XORQ CX, 0(SP) // 0(SP) = ·AVX_iv3 ^ (CX || 0) - - VMOVDQU 0(AX), X10 - VMOVDQU 16(AX), X11 - VMOVDQU 32(AX), X2 - VMOVDQU 48(AX), X3 - - VMOVQ_R8_X15 - VPINSRQ_1_R9_X15 - - VMOVDQA X10, X0 - VMOVDQA X11, X1 - VMOVDQU ·AVX_iv0<>(SB), X4 - VMOVDQU ·AVX_iv1<>(SB), X5 - VMOVDQU ·AVX_iv2<>(SB), X6 - - VPXOR X15, X6, X6 - VMOVDQA 0(SP), X7 - -loop: - SUBQ $1, BX; JCS done - LOAD_MSG_AVX_0_2_4_6_1_3_5_7() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX(8, 10, 12, 14, 9, 11, 13, 15) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX(14, 4, 9, 13, 10, 8, 15, 6) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_1_0_11_5_12_2_7_3() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX_11_12_5_15_8_0_2_13() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX(10, 3, 7, 9, 14, 6, 1, 4) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX(7, 3, 13, 11, 9, 1, 12, 14) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_2_5_4_15_6_10_0_8() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX_9_5_2_10_0_7_4_15() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX(14, 11, 6, 3, 1, 12, 8, 13) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX_2_6_0_8_12_10_11_3() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX(4, 7, 15, 1, 13, 5, 14, 9) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX(12, 1, 14, 4, 5, 15, 13, 10) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_0_6_9_8_7_3_2_11() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX(13, 7, 12, 3, 11, 14, 1, 9) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_5_15_8_2_0_4_6_10() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX_6_14_11_0_15_9_3_8() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_12_13_1_10_2_7_4_5() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - SUBQ $1, BX; JCS done - LOAD_MSG_AVX(10, 8, 7, 1, 2, 4, 6, 5) - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX() - LOAD_MSG_AVX_15_9_3_13_11_14_12_0() - HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9) - SHUFFLE_AVX_INV() - - JMP loop - -done: - VMOVDQU 32(AX), X14 - VMOVDQU 48(AX), X15 - VPXOR X0, X10, X10 - VPXOR X1, X11, X11 - VPXOR X2, X14, X14 - VPXOR X3, X15, X15 - VPXOR X4, X10, X10 - VPXOR X5, X11, X11 - VPXOR X6, X14, X2 - VPXOR X7, X15, X3 - VMOVDQU X2, 32(AX) - VMOVDQU X3, 48(AX) - - VMOVDQU X10, 0(AX) - VMOVDQU X11, 16(AX) - VZEROUPPER - - MOVQ BP, SP - RET diff --git a/blake2b/blake2b_amd64.go b/blake2b/blake2b_amd64.go deleted file mode 100644 index 4dbe90da8..000000000 --- a/blake2b/blake2b_amd64.go +++ /dev/null @@ -1,24 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build !go1.7,amd64,!gccgo,!appengine - -package blake2b - -import "golang.org/x/sys/cpu" - -func init() { - useSSE4 = cpu.X86.HasSSE41 -} - -//go:noescape -func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) - -func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) { - if useSSE4 { - fSSE4(h, m, c0, c1, flag, rounds) - } else { - fGeneric(h, m, c0, c1, flag, rounds) - } -} diff --git a/blake2b/blake2b_amd64.s b/blake2b/blake2b_amd64.s deleted file mode 100644 index ce4b56d10..000000000 --- a/blake2b/blake2b_amd64.s +++ /dev/null @@ -1,253 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build amd64,!gccgo,!appengine - -#include "textflag.h" - -DATA ·iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908 -DATA ·iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b -GLOBL ·iv0<>(SB), (NOPTR+RODATA), $16 - -DATA ·iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b -DATA ·iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1 -GLOBL ·iv1<>(SB), (NOPTR+RODATA), $16 - -DATA ·iv2<>+0x00(SB)/8, $0x510e527fade682d1 -DATA ·iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f -GLOBL ·iv2<>(SB), (NOPTR+RODATA), $16 - -DATA ·iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b -DATA ·iv3<>+0x08(SB)/8, $0x5be0cd19137e2179 -GLOBL ·iv3<>(SB), (NOPTR+RODATA), $16 - -DATA ·c40<>+0x00(SB)/8, $0x0201000706050403 -DATA ·c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b -GLOBL ·c40<>(SB), (NOPTR+RODATA), $16 - -DATA ·c48<>+0x00(SB)/8, $0x0100070605040302 -DATA ·c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a -GLOBL ·c48<>(SB), (NOPTR+RODATA), $16 - -#define SHUFFLE(v2, v3, v4, v5, v6, v7, t1, t2) \ - MOVO v4, t1; \ - MOVO v5, v4; \ - MOVO t1, v5; \ - MOVO v6, t1; \ - PUNPCKLQDQ v6, t2; \ - PUNPCKHQDQ v7, v6; \ - PUNPCKHQDQ t2, v6; \ - PUNPCKLQDQ v7, t2; \ - MOVO t1, v7; \ - MOVO v2, t1; \ - PUNPCKHQDQ t2, v7; \ - PUNPCKLQDQ v3, t2; \ - PUNPCKHQDQ t2, v2; \ - PUNPCKLQDQ t1, t2; \ - PUNPCKHQDQ t2, v3 - -#define SHUFFLE_INV(v2, v3, v4, v5, v6, v7, t1, t2) \ - MOVO v4, t1; \ - MOVO v5, v4; \ - MOVO t1, v5; \ - MOVO v2, t1; \ - PUNPCKLQDQ v2, t2; \ - PUNPCKHQDQ v3, v2; \ - PUNPCKHQDQ t2, v2; \ - PUNPCKLQDQ v3, t2; \ - MOVO t1, v3; \ - MOVO v6, t1; \ - PUNPCKHQDQ t2, v3; \ - PUNPCKLQDQ v7, t2; \ - PUNPCKHQDQ t2, v6; \ - PUNPCKLQDQ t1, t2; \ - PUNPCKHQDQ t2, v7 - -#define HALF_ROUND(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \ - PADDQ m0, v0; \ - PADDQ m1, v1; \ - PADDQ v2, v0; \ - PADDQ v3, v1; \ - PXOR v0, v6; \ - PXOR v1, v7; \ - PSHUFD $0xB1, v6, v6; \ - PSHUFD $0xB1, v7, v7; \ - PADDQ v6, v4; \ - PADDQ v7, v5; \ - PXOR v4, v2; \ - PXOR v5, v3; \ - PSHUFB c40, v2; \ - PSHUFB c40, v3; \ - PADDQ m2, v0; \ - PADDQ m3, v1; \ - PADDQ v2, v0; \ - PADDQ v3, v1; \ - PXOR v0, v6; \ - PXOR v1, v7; \ - PSHUFB c48, v6; \ - PSHUFB c48, v7; \ - PADDQ v6, v4; \ - PADDQ v7, v5; \ - PXOR v4, v2; \ - PXOR v5, v3; \ - MOVOU v2, t0; \ - PADDQ v2, t0; \ - PSRLQ $63, v2; \ - PXOR t0, v2; \ - MOVOU v3, t0; \ - PADDQ v3, t0; \ - PSRLQ $63, v3; \ - PXOR t0, v3 - -#define LOAD_MSG(m0, m1, m2, m3, i0, i1, i2, i3, i4, i5, i6, i7) \ - MOVQ i0*8(SI), m0; \ - PINSRQ $1, i1*8(SI), m0; \ - MOVQ i2*8(SI), m1; \ - PINSRQ $1, i3*8(SI), m1; \ - MOVQ i4*8(SI), m2; \ - PINSRQ $1, i5*8(SI), m2; \ - MOVQ i6*8(SI), m3; \ - PINSRQ $1, i7*8(SI), m3 - -// func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) -TEXT ·fSSE4(SB), 4, $24-48 // frame size = 8 + 16 byte alignment - MOVQ h+0(FP), AX - MOVQ m+8(FP), SI - MOVQ c0+16(FP), R8 - MOVQ c1+24(FP), R9 - MOVQ flag+32(FP), CX - MOVQ rounds+40(FP), BX - - MOVQ SP, BP - MOVQ SP, R10 - ADDQ $15, R10 - ANDQ $~15, R10 - MOVQ R10, SP - - MOVOU ·iv3<>(SB), X0 - MOVO X0, 0(SP) - XORQ CX, 0(SP) // 0(SP) = ·iv3 ^ (CX || 0) - - MOVOU ·c40<>(SB), X13 - MOVOU ·c48<>(SB), X14 - - MOVOU 0(AX), X12 - MOVOU 16(AX), X15 - - MOVQ R8, X8 - PINSRQ $1, R9, X8 - - MOVO X12, X0 - MOVO X15, X1 - MOVOU 32(AX), X2 - MOVOU 48(AX), X3 - MOVOU ·iv0<>(SB), X4 - MOVOU ·iv1<>(SB), X5 - MOVOU ·iv2<>(SB), X6 - - PXOR X8, X6 - MOVO 0(SP), X7 - -loop: - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 0, 2, 4, 6, 1, 3, 5, 7) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 8, 10, 12, 14, 9, 11, 13, 15) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 14, 4, 9, 13, 10, 8, 15, 6) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 1, 0, 11, 5, 12, 2, 7, 3) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 11, 12, 5, 15, 8, 0, 2, 13) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 10, 3, 7, 9, 14, 6, 1, 4) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 7, 3, 13, 11, 9, 1, 12, 14) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 2, 5, 4, 15, 6, 10, 0, 8) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 9, 5, 2, 10, 0, 7, 4, 15) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 14, 11, 6, 3, 1, 12, 8, 13) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 2, 6, 0, 8, 12, 10, 11, 3) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 4, 7, 15, 1, 13, 5, 14, 9) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 12, 1, 14, 4, 5, 15, 13, 10) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 0, 6, 9, 8, 7, 3, 2, 11) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 13, 7, 12, 3, 11, 14, 1, 9) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 5, 15, 8, 2, 0, 4, 6, 10) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 6, 14, 11, 0, 15, 9, 3, 8) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 12, 13, 1, 10, 2, 7, 4, 5) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - SUBQ $1, BX; JCS done - LOAD_MSG(X8, X9, X10, X11, 10, 8, 7, 1, 2, 4, 6, 5) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9) - LOAD_MSG(X8, X9, X10, X11, 15, 9, 3, 13, 11, 14, 12, 0) - HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14) - SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9) - - JMP loop - -done: - MOVOU 32(AX), X10 - MOVOU 48(AX), X11 - PXOR X0, X12 - PXOR X1, X15 - PXOR X2, X10 - PXOR X3, X11 - PXOR X4, X12 - PXOR X5, X15 - PXOR X6, X10 - PXOR X7, X11 - MOVOU X10, 32(AX) - MOVOU X11, 48(AX) - - MOVOU X12, 0(AX) - MOVOU X15, 16(AX) - - MOVQ BP, SP - RET diff --git a/blake2b/blake2b_f_fuzz.go b/blake2b/blake2b_f_fuzz.go deleted file mode 100644 index ab7334280..000000000 --- a/blake2b/blake2b_f_fuzz.go +++ /dev/null @@ -1,57 +0,0 @@ -// +build gofuzz - -package blake2b - -import ( - "encoding/binary" -) - -func Fuzz(data []byte) int { - // Make sure the data confirms to the input model - if len(data) != 211 { - return 0 - } - // Parse everything and call all the implementations - var ( - rounds = binary.BigEndian.Uint16(data[0:2]) - - h [8]uint64 - m [16]uint64 - t [2]uint64 - f uint64 - ) - for i := 0; i < 8; i++ { - offset := 2 + i*8 - h[i] = binary.LittleEndian.Uint64(data[offset : offset+8]) - } - for i := 0; i < 16; i++ { - offset := 66 + i*8 - m[i] = binary.LittleEndian.Uint64(data[offset : offset+8]) - } - t[0] = binary.LittleEndian.Uint64(data[194:202]) - t[1] = binary.LittleEndian.Uint64(data[202:210]) - - if data[210]%2 == 1 { // Avoid spinning the fuzzer to hit 0/1 - f = 0xFFFFFFFFFFFFFFFF - } - // Run the blake2b compression on all instruction sets and cross reference - want := h - fGeneric(&want, &m, t[0], t[1], f, uint64(rounds)) - - have := h - fSSE4(&have, &m, t[0], t[1], f, uint64(rounds)) - if have != want { - panic("SSE4 mismatches generic algo") - } - have = h - fAVX(&have, &m, t[0], t[1], f, uint64(rounds)) - if have != want { - panic("AVX mismatches generic algo") - } - have = h - fAVX2(&have, &m, t[0], t[1], f, uint64(rounds)) - if have != want { - panic("AVX2 mismatches generic algo") - } - return 1 -} diff --git a/blake2b/blake2b_f_test.go b/blake2b/blake2b_f_test.go deleted file mode 100644 index 4e07d131c..000000000 --- a/blake2b/blake2b_f_test.go +++ /dev/null @@ -1,59 +0,0 @@ -package blake2b - -import ( - "fmt" - "reflect" - "testing" -) - -func TestF(t *testing.T) { - for i, test := range testVectorsF { - t.Run(fmt.Sprintf("test vector %v", i), func(t *testing.T) { - //toEthereumTestCase(test) - - h := test.hIn - F(&h, test.m, test.c, test.f, test.rounds) - - if !reflect.DeepEqual(test.hOut, h) { - t.Errorf("Unexpected result\nExpected: [%#x]\nActual: [%#x]\n", test.hOut, h) - } - }) - } -} - -type testVector struct { - hIn [8]uint64 - m [16]uint64 - c [2]uint64 - f bool - rounds uint32 - hOut [8]uint64 -} - -// https://tools.ietf.org/html/rfc7693#appendix-A -var testVectorsF = []testVector{ - { - hIn: [8]uint64{ - 0x6a09e667f2bdc948, 0xbb67ae8584caa73b, - 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, - 0x510e527fade682d1, 0x9b05688c2b3e6c1f, - 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, - }, - m: [16]uint64{ - 0x0000000000636261, 0x0000000000000000, 0x0000000000000000, - 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, - 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, - 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, - 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, - 0x0000000000000000, - }, - c: [2]uint64{3, 0}, - f: true, - rounds: 12, - hOut: [8]uint64{ - 0x0D4D1C983FA580BA, 0xE9F6129FB697276A, 0xB7C45A68142F214C, - 0xD1A2FFDB6FBB124B, 0x2D79AB2A39C5877D, 0x95CC3345DED552C2, - 0x5A92F1DBA88AD318, 0x239900D4ED8623B9, - }, - }, -} diff --git a/blake2b/blake2b_generic.go b/blake2b/blake2b_generic.go deleted file mode 100644 index 35c40cc92..000000000 --- a/blake2b/blake2b_generic.go +++ /dev/null @@ -1,180 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package blake2b - -import ( - "encoding/binary" - "math/bits" -) - -// the precomputed values for BLAKE2b -// there are 10 16-byte arrays - one for each round -// the entries are calculated from the sigma constants. -var precomputed = [10][16]byte{ - {0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15}, - {14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3}, - {11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4}, - {7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8}, - {9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13}, - {2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9}, - {12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11}, - {13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10}, - {6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5}, - {10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0}, -} - -func hashBlocksGeneric(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) { - var m [16]uint64 - c0, c1 := c[0], c[1] - - for i := 0; i < len(blocks); { - c0 += BlockSize - if c0 < BlockSize { - c1++ - } - for j := range m { - m[j] = binary.LittleEndian.Uint64(blocks[i:]) - i += 8 - } - fGeneric(h, &m, c0, c1, flag, 12) - } - c[0], c[1] = c0, c1 -} - -func fGeneric(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) { - v0, v1, v2, v3, v4, v5, v6, v7 := h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7] - v8, v9, v10, v11, v12, v13, v14, v15 := iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7] - v12 ^= c0 - v13 ^= c1 - v14 ^= flag - - for i := 0; i < int(rounds); i++ { - s := &(precomputed[i%10]) - - v0 += m[s[0]] - v0 += v4 - v12 ^= v0 - v12 = bits.RotateLeft64(v12, -32) - v8 += v12 - v4 ^= v8 - v4 = bits.RotateLeft64(v4, -24) - v1 += m[s[1]] - v1 += v5 - v13 ^= v1 - v13 = bits.RotateLeft64(v13, -32) - v9 += v13 - v5 ^= v9 - v5 = bits.RotateLeft64(v5, -24) - v2 += m[s[2]] - v2 += v6 - v14 ^= v2 - v14 = bits.RotateLeft64(v14, -32) - v10 += v14 - v6 ^= v10 - v6 = bits.RotateLeft64(v6, -24) - v3 += m[s[3]] - v3 += v7 - v15 ^= v3 - v15 = bits.RotateLeft64(v15, -32) - v11 += v15 - v7 ^= v11 - v7 = bits.RotateLeft64(v7, -24) - - v0 += m[s[4]] - v0 += v4 - v12 ^= v0 - v12 = bits.RotateLeft64(v12, -16) - v8 += v12 - v4 ^= v8 - v4 = bits.RotateLeft64(v4, -63) - v1 += m[s[5]] - v1 += v5 - v13 ^= v1 - v13 = bits.RotateLeft64(v13, -16) - v9 += v13 - v5 ^= v9 - v5 = bits.RotateLeft64(v5, -63) - v2 += m[s[6]] - v2 += v6 - v14 ^= v2 - v14 = bits.RotateLeft64(v14, -16) - v10 += v14 - v6 ^= v10 - v6 = bits.RotateLeft64(v6, -63) - v3 += m[s[7]] - v3 += v7 - v15 ^= v3 - v15 = bits.RotateLeft64(v15, -16) - v11 += v15 - v7 ^= v11 - v7 = bits.RotateLeft64(v7, -63) - - v0 += m[s[8]] - v0 += v5 - v15 ^= v0 - v15 = bits.RotateLeft64(v15, -32) - v10 += v15 - v5 ^= v10 - v5 = bits.RotateLeft64(v5, -24) - v1 += m[s[9]] - v1 += v6 - v12 ^= v1 - v12 = bits.RotateLeft64(v12, -32) - v11 += v12 - v6 ^= v11 - v6 = bits.RotateLeft64(v6, -24) - v2 += m[s[10]] - v2 += v7 - v13 ^= v2 - v13 = bits.RotateLeft64(v13, -32) - v8 += v13 - v7 ^= v8 - v7 = bits.RotateLeft64(v7, -24) - v3 += m[s[11]] - v3 += v4 - v14 ^= v3 - v14 = bits.RotateLeft64(v14, -32) - v9 += v14 - v4 ^= v9 - v4 = bits.RotateLeft64(v4, -24) - - v0 += m[s[12]] - v0 += v5 - v15 ^= v0 - v15 = bits.RotateLeft64(v15, -16) - v10 += v15 - v5 ^= v10 - v5 = bits.RotateLeft64(v5, -63) - v1 += m[s[13]] - v1 += v6 - v12 ^= v1 - v12 = bits.RotateLeft64(v12, -16) - v11 += v12 - v6 ^= v11 - v6 = bits.RotateLeft64(v6, -63) - v2 += m[s[14]] - v2 += v7 - v13 ^= v2 - v13 = bits.RotateLeft64(v13, -16) - v8 += v13 - v7 ^= v8 - v7 = bits.RotateLeft64(v7, -63) - v3 += m[s[15]] - v3 += v4 - v14 ^= v3 - v14 = bits.RotateLeft64(v14, -16) - v9 += v14 - v4 ^= v9 - v4 = bits.RotateLeft64(v4, -63) - } - h[0] ^= v0 ^ v8 - h[1] ^= v1 ^ v9 - h[2] ^= v2 ^ v10 - h[3] ^= v3 ^ v11 - h[4] ^= v4 ^ v12 - h[5] ^= v5 ^ v13 - h[6] ^= v6 ^ v14 - h[7] ^= v7 ^ v15 -} diff --git a/blake2b/blake2b_ref.go b/blake2b/blake2b_ref.go deleted file mode 100644 index 9d0ade473..000000000 --- a/blake2b/blake2b_ref.go +++ /dev/null @@ -1,11 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build !amd64 appengine gccgo - -package blake2b - -func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) { - fGeneric(h, m, c0, c1, flag, rounds) -} diff --git a/blake2b/blake2b_test.go b/blake2b/blake2b_test.go deleted file mode 100644 index 9e7297da1..000000000 --- a/blake2b/blake2b_test.go +++ /dev/null @@ -1,871 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package blake2b - -import ( - "bytes" - "encoding" - "encoding/hex" - "fmt" - "hash" - "io" - "testing" -) - -func fromHex(s string) []byte { - b, err := hex.DecodeString(s) - if err != nil { - panic(err) - } - return b -} - -func TestHashes(t *testing.T) { - defer func(sse4, avx, avx2 bool) { - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - }(useSSE4, useAVX, useAVX2) - - if useAVX2 { - t.Log("AVX2 version") - testHashes(t) - useAVX2 = false - } - if useAVX { - t.Log("AVX version") - testHashes(t) - useAVX = false - } - if useSSE4 { - t.Log("SSE4 version") - testHashes(t) - useSSE4 = false - } - t.Log("generic version") - testHashes(t) -} - -func TestHashes2X(t *testing.T) { - defer func(sse4, avx, avx2 bool) { - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - }(useSSE4, useAVX, useAVX2) - - if useAVX2 { - t.Log("AVX2 version") - testHashes2X(t) - useAVX2 = false - } - if useAVX { - t.Log("AVX version") - testHashes2X(t) - useAVX = false - } - if useSSE4 { - t.Log("SSE4 version") - testHashes2X(t) - useSSE4 = false - } - t.Log("generic version") - testHashes2X(t) -} - -func TestMarshal(t *testing.T) { - input := make([]byte, 255) - for i := range input { - input[i] = byte(i) - } - for _, size := range []int{Size, Size256, Size384, 12, 25, 63} { - for i := 0; i < 256; i++ { - h, err := New(size, nil) - if err != nil { - t.Fatalf("size=%d, len(input)=%d: error from New(%v, nil): %v", size, i, size, err) - } - h2, err := New(size, nil) - if err != nil { - t.Fatalf("size=%d, len(input)=%d: error from New(%v, nil): %v", size, i, size, err) - } - - h.Write(input[:i/2]) - halfstate, err := h.(encoding.BinaryMarshaler).MarshalBinary() - if err != nil { - t.Fatalf("size=%d, len(input)=%d: could not marshal: %v", size, i, err) - } - err = h2.(encoding.BinaryUnmarshaler).UnmarshalBinary(halfstate) - if err != nil { - t.Fatalf("size=%d, len(input)=%d: could not unmarshal: %v", size, i, err) - } - - h.Write(input[i/2 : i]) - sum := h.Sum(nil) - h2.Write(input[i/2 : i]) - sum2 := h2.Sum(nil) - - if !bytes.Equal(sum, sum2) { - t.Fatalf("size=%d, len(input)=%d: results do not match; sum = %v, sum2 = %v", size, i, sum, sum2) - } - - h3, err := New(size, nil) - if err != nil { - t.Fatalf("size=%d, len(input)=%d: error from New(%v, nil): %v", size, i, size, err) - } - h3.Write(input[:i]) - sum3 := h3.Sum(nil) - if !bytes.Equal(sum, sum3) { - t.Fatalf("size=%d, len(input)=%d: sum = %v, want %v", size, i, sum, sum3) - } - } - } -} - -func testHashes(t *testing.T) { - key, _ := hex.DecodeString("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f") - - input := make([]byte, 255) - for i := range input { - input[i] = byte(i) - } - - for i, expectedHex := range hashes { - h, err := New512(key) - if err != nil { - t.Fatalf("#%d: error from New512: %v", i, err) - } - - h.Write(input[:i]) - sum := h.Sum(nil) - - if gotHex := fmt.Sprintf("%x", sum); gotHex != expectedHex { - t.Fatalf("#%d (single write): got %s, wanted %s", i, gotHex, expectedHex) - } - - h.Reset() - for j := 0; j < i; j++ { - h.Write(input[j : j+1]) - } - - sum = h.Sum(sum[:0]) - if gotHex := fmt.Sprintf("%x", sum); gotHex != expectedHex { - t.Fatalf("#%d (byte-by-byte): got %s, wanted %s", i, gotHex, expectedHex) - } - } -} - -func testHashes2X(t *testing.T) { - key, _ := hex.DecodeString("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f") - - input := make([]byte, 256) - for i := range input { - input[i] = byte(i) - } - - for i, expectedHex := range hashes2X { - length := uint32(len(expectedHex) / 2) - sum := make([]byte, int(length)) - - h, err := NewXOF(length, key) - if err != nil { - t.Fatalf("#%d: error from NewXOF: %v", i, err) - } - - if _, err := h.Write(input); err != nil { - t.Fatalf("#%d (single write): error from Write: %v", i, err) - } - if _, err := h.Read(sum); err != nil { - t.Fatalf("#%d (single write): error from Read: %v", i, err) - } - if n, err := h.Read(sum); n != 0 || err != io.EOF { - t.Fatalf("#%d (single write): Read did not return (0, io.EOF) after exhaustion, got (%v, %v)", i, n, err) - } - if gotHex := fmt.Sprintf("%x", sum); gotHex != expectedHex { - t.Fatalf("#%d (single write): got %s, wanted %s", i, gotHex, expectedHex) - } - - h.Reset() - for j := 0; j < len(input); j++ { - h.Write(input[j : j+1]) - } - for j := 0; j < len(sum); j++ { - h = h.Clone() - if _, err := h.Read(sum[j : j+1]); err != nil { - t.Fatalf("#%d (byte-by-byte) - Read %d: error from Read: %v", i, j, err) - } - } - if gotHex := fmt.Sprintf("%x", sum); gotHex != expectedHex { - t.Fatalf("#%d (byte-by-byte): got %s, wanted %s", i, gotHex, expectedHex) - } - } - - h, err := NewXOF(OutputLengthUnknown, key) - if err != nil { - t.Fatalf("#unknown length: error from NewXOF: %v", err) - } - if _, err := h.Write(input); err != nil { - t.Fatalf("#unknown length: error from Write: %v", err) - } - - var result [64]byte - if n, err := h.Read(result[:]); err != nil { - t.Fatalf("#unknown length: error from Read: %v", err) - } else if n != len(result) { - t.Fatalf("#unknown length: Read returned %d bytes, want %d", n, len(result)) - } - - const expected = "3dbba8516da76bf7330055c66ea36cf1005e92714262b24d9710f51d9e126406e1bcd6497059f9331f1091c3634b695428d475ed432f987040575520a1c29f5e" - if fmt.Sprintf("%x", result) != expected { - t.Fatalf("#unknown length: bad result %x, wanted %s", result, expected) - } -} - -func generateSequence(out []byte, seed uint32) { - a := 0xDEAD4BAD * seed // prime - b := uint32(1) - - for i := range out { // fill the buf - a, b = b, a+b - out[i] = byte(b >> 24) - } -} - -func computeMAC(msg []byte, hashSize int, key []byte) (sum []byte) { - var h hash.Hash - switch hashSize { - case Size: - h, _ = New512(key) - case Size384: - h, _ = New384(key) - case Size256: - h, _ = New256(key) - case 20: - h, _ = newDigest(20, key) - default: - panic("unexpected hashSize") - } - - h.Write(msg) - return h.Sum(sum) -} - -func computeHash(msg []byte, hashSize int) (sum []byte) { - switch hashSize { - case Size: - hash := Sum512(msg) - return hash[:] - case Size384: - hash := Sum384(msg) - return hash[:] - case Size256: - hash := Sum256(msg) - return hash[:] - case 20: - var hash [64]byte - checkSum(&hash, 20, msg) - return hash[:20] - default: - panic("unexpected hashSize") - } -} - -// Test function from RFC 7693. -func TestSelfTest(t *testing.T) { - hashLens := [4]int{20, 32, 48, 64} - msgLens := [6]int{0, 3, 128, 129, 255, 1024} - - msg := make([]byte, 1024) - key := make([]byte, 64) - - h, _ := New256(nil) - for _, hashSize := range hashLens { - for _, msgLength := range msgLens { - generateSequence(msg[:msgLength], uint32(msgLength)) // unkeyed hash - - md := computeHash(msg[:msgLength], hashSize) - h.Write(md) - - generateSequence(key[:], uint32(hashSize)) // keyed hash - md = computeMAC(msg[:msgLength], hashSize, key[:hashSize]) - h.Write(md) - } - } - - sum := h.Sum(nil) - expected := [32]byte{ - 0xc2, 0x3a, 0x78, 0x00, 0xd9, 0x81, 0x23, 0xbd, - 0x10, 0xf5, 0x06, 0xc6, 0x1e, 0x29, 0xda, 0x56, - 0x03, 0xd7, 0x63, 0xb8, 0xbb, 0xad, 0x2e, 0x73, - 0x7f, 0x5e, 0x76, 0x5a, 0x7b, 0xcc, 0xd4, 0x75, - } - if !bytes.Equal(sum, expected[:]) { - t.Fatalf("got %x, wanted %x", sum, expected) - } -} - -// Benchmarks - -func benchmarkSum(b *testing.B, size int, sse4, avx, avx2 bool) { - // Enable the correct set of instructions - defer func(sse4, avx, avx2 bool) { - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - }(useSSE4, useAVX, useAVX2) - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - - data := make([]byte, size) - b.SetBytes(int64(size)) - b.ResetTimer() - for i := 0; i < b.N; i++ { - Sum512(data) - } -} - -func benchmarkWrite(b *testing.B, size int, sse4, avx, avx2 bool) { - // Enable the correct set of instructions - defer func(sse4, avx, avx2 bool) { - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - }(useSSE4, useAVX, useAVX2) - useSSE4, useAVX, useAVX2 = sse4, avx, avx2 - - data := make([]byte, size) - h, _ := New512(nil) - b.SetBytes(int64(size)) - b.ResetTimer() - for i := 0; i < b.N; i++ { - h.Write(data) - } -} - -func BenchmarkWrite128Generic(b *testing.B) { benchmarkWrite(b, 128, false, false, false) } -func BenchmarkWrite1KGeneric(b *testing.B) { benchmarkWrite(b, 1024, false, false, false) } -func BenchmarkWrite128SSE4(b *testing.B) { benchmarkWrite(b, 128, true, false, false) } -func BenchmarkWrite1KSSE4(b *testing.B) { benchmarkWrite(b, 1024, true, false, false) } -func BenchmarkWrite128AVX(b *testing.B) { benchmarkWrite(b, 128, false, true, false) } -func BenchmarkWrite1KAVX(b *testing.B) { benchmarkWrite(b, 1024, false, true, false) } -func BenchmarkWrite128AVX2(b *testing.B) { benchmarkWrite(b, 128, false, false, true) } -func BenchmarkWrite1KAVX2(b *testing.B) { benchmarkWrite(b, 1024, false, false, true) } - -func BenchmarkSum128Generic(b *testing.B) { benchmarkSum(b, 128, false, false, false) } -func BenchmarkSum1KGeneric(b *testing.B) { benchmarkSum(b, 1024, false, false, false) } -func BenchmarkSum128SSE4(b *testing.B) { benchmarkSum(b, 128, true, false, false) } -func BenchmarkSum1KSSE4(b *testing.B) { benchmarkSum(b, 1024, true, false, false) } -func BenchmarkSum128AVX(b *testing.B) { benchmarkSum(b, 128, false, true, false) } -func BenchmarkSum1KAVX(b *testing.B) { benchmarkSum(b, 1024, false, true, false) } -func BenchmarkSum128AVX2(b *testing.B) { benchmarkSum(b, 128, false, false, true) } -func BenchmarkSum1KAVX2(b *testing.B) { benchmarkSum(b, 1024, false, false, true) } - -// These values were taken from https://blake2.net/blake2b-test.txt. -var hashes = []string{ - "10ebb67700b1868efb4417987acf4690ae9d972fb7a590c2f02871799aaa4786b5e996e8f0f4eb981fc214b005f42d2ff4233499391653df7aefcbc13fc51568", - "961f6dd1e4dd30f63901690c512e78e4b45e4742ed197c3c5e45c549fd25f2e4187b0bc9fe30492b16b0d0bc4ef9b0f34c7003fac09a5ef1532e69430234cebd", - "da2cfbe2d8409a0f38026113884f84b50156371ae304c4430173d08a99d9fb1b983164a3770706d537f49e0c916d9f32b95cc37a95b99d857436f0232c88a965", - "33d0825dddf7ada99b0e7e307104ad07ca9cfd9692214f1561356315e784f3e5a17e364ae9dbb14cb2036df932b77f4b292761365fb328de7afdc6d8998f5fc1", - "beaa5a3d08f3807143cf621d95cd690514d0b49efff9c91d24b59241ec0eefa5f60196d407048bba8d2146828ebcb0488d8842fd56bb4f6df8e19c4b4daab8ac", - "098084b51fd13deae5f4320de94a688ee07baea2800486689a8636117b46c1f4c1f6af7f74ae7c857600456a58a3af251dc4723a64cc7c0a5ab6d9cac91c20bb", - "6044540d560853eb1c57df0077dd381094781cdb9073e5b1b3d3f6c7829e12066bbaca96d989a690de72ca3133a83652ba284a6d62942b271ffa2620c9e75b1f", - "7a8cfe9b90f75f7ecb3acc053aaed6193112b6f6a4aeeb3f65d3de541942deb9e2228152a3c4bbbe72fc3b12629528cfbb09fe630f0474339f54abf453e2ed52", - "380beaf6ea7cc9365e270ef0e6f3a64fb902acae51dd5512f84259ad2c91f4bc4108db73192a5bbfb0cbcf71e46c3e21aee1c5e860dc96e8eb0b7b8426e6abe9", - "60fe3c4535e1b59d9a61ea8500bfac41a69dffb1ceadd9aca323e9a625b64da5763bad7226da02b9c8c4f1a5de140ac5a6c1124e4f718ce0b28ea47393aa6637", - "4fe181f54ad63a2983feaaf77d1e7235c2beb17fa328b6d9505bda327df19fc37f02c4b6f0368ce23147313a8e5738b5fa2a95b29de1c7f8264eb77b69f585cd", - "f228773ce3f3a42b5f144d63237a72d99693adb8837d0e112a8a0f8ffff2c362857ac49c11ec740d1500749dac9b1f4548108bf3155794dcc9e4082849e2b85b", - "962452a8455cc56c8511317e3b1f3b2c37df75f588e94325fdd77070359cf63a9ae6e930936fdf8e1e08ffca440cfb72c28f06d89a2151d1c46cd5b268ef8563", - "43d44bfa18768c59896bf7ed1765cb2d14af8c260266039099b25a603e4ddc5039d6ef3a91847d1088d401c0c7e847781a8a590d33a3c6cb4df0fab1c2f22355", - "dcffa9d58c2a4ca2cdbb0c7aa4c4c1d45165190089f4e983bb1c2cab4aaeff1fa2b5ee516fecd780540240bf37e56c8bcca7fab980e1e61c9400d8a9a5b14ac6", - "6fbf31b45ab0c0b8dad1c0f5f4061379912dde5aa922099a030b725c73346c524291adef89d2f6fd8dfcda6d07dad811a9314536c2915ed45da34947e83de34e", - "a0c65bddde8adef57282b04b11e7bc8aab105b99231b750c021f4a735cb1bcfab87553bba3abb0c3e64a0b6955285185a0bd35fb8cfde557329bebb1f629ee93", - "f99d815550558e81eca2f96718aed10d86f3f1cfb675cce06b0eff02f617c5a42c5aa760270f2679da2677c5aeb94f1142277f21c7f79f3c4f0cce4ed8ee62b1", - "95391da8fc7b917a2044b3d6f5374e1ca072b41454d572c7356c05fd4bc1e0f40b8bb8b4a9f6bce9be2c4623c399b0dca0dab05cb7281b71a21b0ebcd9e55670", - "04b9cd3d20d221c09ac86913d3dc63041989a9a1e694f1e639a3ba7e451840f750c2fc191d56ad61f2e7936bc0ac8e094b60caeed878c18799045402d61ceaf9", - "ec0e0ef707e4ed6c0c66f9e089e4954b058030d2dd86398fe84059631f9ee591d9d77375355149178c0cf8f8e7c49ed2a5e4f95488a2247067c208510fadc44c", - "9a37cce273b79c09913677510eaf7688e89b3314d3532fd2764c39de022a2945b5710d13517af8ddc0316624e73bec1ce67df15228302036f330ab0cb4d218dd", - "4cf9bb8fb3d4de8b38b2f262d3c40f46dfe747e8fc0a414c193d9fcf753106ce47a18f172f12e8a2f1c26726545358e5ee28c9e2213a8787aafbc516d2343152", - "64e0c63af9c808fd893137129867fd91939d53f2af04be4fa268006100069b2d69daa5c5d8ed7fddcb2a70eeecdf2b105dd46a1e3b7311728f639ab489326bc9", - "5e9c93158d659b2def06b0c3c7565045542662d6eee8a96a89b78ade09fe8b3dcc096d4fe48815d88d8f82620156602af541955e1f6ca30dce14e254c326b88f", - "7775dff889458dd11aef417276853e21335eb88e4dec9cfb4e9edb49820088551a2ca60339f12066101169f0dfe84b098fddb148d9da6b3d613df263889ad64b", - "f0d2805afbb91f743951351a6d024f9353a23c7ce1fc2b051b3a8b968c233f46f50f806ecb1568ffaa0b60661e334b21dde04f8fa155ac740eeb42e20b60d764", - "86a2af316e7d7754201b942e275364ac12ea8962ab5bd8d7fb276dc5fbffc8f9a28cae4e4867df6780d9b72524160927c855da5b6078e0b554aa91e31cb9ca1d", - "10bdf0caa0802705e706369baf8a3f79d72c0a03a80675a7bbb00be3a45e516424d1ee88efb56f6d5777545ae6e27765c3a8f5e493fc308915638933a1dfee55", - "b01781092b1748459e2e4ec178696627bf4ebafebba774ecf018b79a68aeb84917bf0b84bb79d17b743151144cd66b7b33a4b9e52c76c4e112050ff5385b7f0b", - "c6dbc61dec6eaeac81e3d5f755203c8e220551534a0b2fd105a91889945a638550204f44093dd998c076205dffad703a0e5cd3c7f438a7e634cd59fededb539e", - "eba51acffb4cea31db4b8d87e9bf7dd48fe97b0253ae67aa580f9ac4a9d941f2bea518ee286818cc9f633f2a3b9fb68e594b48cdd6d515bf1d52ba6c85a203a7", - "86221f3ada52037b72224f105d7999231c5e5534d03da9d9c0a12acb68460cd375daf8e24386286f9668f72326dbf99ba094392437d398e95bb8161d717f8991", - "5595e05c13a7ec4dc8f41fb70cb50a71bce17c024ff6de7af618d0cc4e9c32d9570d6d3ea45b86525491030c0d8f2b1836d5778c1ce735c17707df364d054347", - "ce0f4f6aca89590a37fe034dd74dd5fa65eb1cbd0a41508aaddc09351a3cea6d18cb2189c54b700c009f4cbf0521c7ea01be61c5ae09cb54f27bc1b44d658c82", - "7ee80b06a215a3bca970c77cda8761822bc103d44fa4b33f4d07dcb997e36d55298bceae12241b3fa07fa63be5576068da387b8d5859aeab701369848b176d42", - "940a84b6a84d109aab208c024c6ce9647676ba0aaa11f86dbb7018f9fd2220a6d901a9027f9abcf935372727cbf09ebd61a2a2eeb87653e8ecad1bab85dc8327", - "2020b78264a82d9f4151141adba8d44bf20c5ec062eee9b595a11f9e84901bf148f298e0c9f8777dcdbc7cc4670aac356cc2ad8ccb1629f16f6a76bcefbee760", - "d1b897b0e075ba68ab572adf9d9c436663e43eb3d8e62d92fc49c9be214e6f27873fe215a65170e6bea902408a25b49506f47babd07cecf7113ec10c5dd31252", - "b14d0c62abfa469a357177e594c10c194243ed2025ab8aa5ad2fa41ad318e0ff48cd5e60bec07b13634a711d2326e488a985f31e31153399e73088efc86a5c55", - "4169c5cc808d2697dc2a82430dc23e3cd356dc70a94566810502b8d655b39abf9e7f902fe717e0389219859e1945df1af6ada42e4ccda55a197b7100a30c30a1", - "258a4edb113d66c839c8b1c91f15f35ade609f11cd7f8681a4045b9fef7b0b24c82cda06a5f2067b368825e3914e53d6948ede92efd6e8387fa2e537239b5bee", - "79d2d8696d30f30fb34657761171a11e6c3f1e64cbe7bebee159cb95bfaf812b4f411e2f26d9c421dc2c284a3342d823ec293849e42d1e46b0a4ac1e3c86abaa", - "8b9436010dc5dee992ae38aea97f2cd63b946d94fedd2ec9671dcde3bd4ce9564d555c66c15bb2b900df72edb6b891ebcadfeff63c9ea4036a998be7973981e7", - "c8f68e696ed28242bf997f5b3b34959508e42d613810f1e2a435c96ed2ff560c7022f361a9234b9837feee90bf47922ee0fd5f8ddf823718d86d1e16c6090071", - "b02d3eee4860d5868b2c39ce39bfe81011290564dd678c85e8783f29302dfc1399ba95b6b53cd9ebbf400cca1db0ab67e19a325f2d115812d25d00978ad1bca4", - "7693ea73af3ac4dad21ca0d8da85b3118a7d1c6024cfaf557699868217bc0c2f44a199bc6c0edd519798ba05bd5b1b4484346a47c2cadf6bf30b785cc88b2baf", - "a0e5c1c0031c02e48b7f09a5e896ee9aef2f17fc9e18e997d7f6cac7ae316422c2b1e77984e5f3a73cb45deed5d3f84600105e6ee38f2d090c7d0442ea34c46d", - "41daa6adcfdb69f1440c37b596440165c15ada596813e2e22f060fcd551f24dee8e04ba6890387886ceec4a7a0d7fc6b44506392ec3822c0d8c1acfc7d5aebe8", - "14d4d40d5984d84c5cf7523b7798b254e275a3a8cc0a1bd06ebc0bee726856acc3cbf516ff667cda2058ad5c3412254460a82c92187041363cc77a4dc215e487", - "d0e7a1e2b9a447fee83e2277e9ff8010c2f375ae12fa7aaa8ca5a6317868a26a367a0b69fbc1cf32a55d34eb370663016f3d2110230eba754028a56f54acf57c", - "e771aa8db5a3e043e8178f39a0857ba04a3f18e4aa05743cf8d222b0b095825350ba422f63382a23d92e4149074e816a36c1cd28284d146267940b31f8818ea2", - "feb4fd6f9e87a56bef398b3284d2bda5b5b0e166583a66b61e538457ff0584872c21a32962b9928ffab58de4af2edd4e15d8b35570523207ff4e2a5aa7754caa", - "462f17bf005fb1c1b9e671779f665209ec2873e3e411f98dabf240a1d5ec3f95ce6796b6fc23fe171903b502023467dec7273ff74879b92967a2a43a5a183d33", - "d3338193b64553dbd38d144bea71c5915bb110e2d88180dbc5db364fd6171df317fc7268831b5aef75e4342b2fad8797ba39eddcef80e6ec08159350b1ad696d", - "e1590d585a3d39f7cb599abd479070966409a6846d4377acf4471d065d5db94129cc9be92573b05ed226be1e9b7cb0cabe87918589f80dadd4ef5ef25a93d28e", - "f8f3726ac5a26cc80132493a6fedcb0e60760c09cfc84cad178175986819665e76842d7b9fedf76dddebf5d3f56faaad4477587af21606d396ae570d8e719af2", - "30186055c07949948183c850e9a756cc09937e247d9d928e869e20bafc3cd9721719d34e04a0899b92c736084550186886efba2e790d8be6ebf040b209c439a4", - "f3c4276cb863637712c241c444c5cc1e3554e0fddb174d035819dd83eb700b4ce88df3ab3841ba02085e1a99b4e17310c5341075c0458ba376c95a6818fbb3e2", - "0aa007c4dd9d5832393040a1583c930bca7dc5e77ea53add7e2b3f7c8e231368043520d4a3ef53c969b6bbfd025946f632bd7f765d53c21003b8f983f75e2a6a", - "08e9464720533b23a04ec24f7ae8c103145f765387d738777d3d343477fd1c58db052142cab754ea674378e18766c53542f71970171cc4f81694246b717d7564", - "d37ff7ad297993e7ec21e0f1b4b5ae719cdc83c5db687527f27516cbffa822888a6810ee5c1ca7bfe3321119be1ab7bfa0a502671c8329494df7ad6f522d440f", - "dd9042f6e464dcf86b1262f6accfafbd8cfd902ed3ed89abf78ffa482dbdeeb6969842394c9a1168ae3d481a017842f660002d42447c6b22f7b72f21aae021c9", - "bd965bf31e87d70327536f2a341cebc4768eca275fa05ef98f7f1b71a0351298de006fba73fe6733ed01d75801b4a928e54231b38e38c562b2e33ea1284992fa", - "65676d800617972fbd87e4b9514e1c67402b7a331096d3bfac22f1abb95374abc942f16e9ab0ead33b87c91968a6e509e119ff07787b3ef483e1dcdccf6e3022", - "939fa189699c5d2c81ddd1ffc1fa207c970b6a3685bb29ce1d3e99d42f2f7442da53e95a72907314f4588399a3ff5b0a92beb3f6be2694f9f86ecf2952d5b41c", - "c516541701863f91005f314108ceece3c643e04fc8c42fd2ff556220e616aaa6a48aeb97a84bad74782e8dff96a1a2fa949339d722edcaa32b57067041df88cc", - "987fd6e0d6857c553eaebb3d34970a2c2f6e89a3548f492521722b80a1c21a153892346d2cba6444212d56da9a26e324dccbc0dcde85d4d2ee4399eec5a64e8f", - "ae56deb1c2328d9c4017706bce6e99d41349053ba9d336d677c4c27d9fd50ae6aee17e853154e1f4fe7672346da2eaa31eea53fcf24a22804f11d03da6abfc2b", - "49d6a608c9bde4491870498572ac31aac3fa40938b38a7818f72383eb040ad39532bc06571e13d767e6945ab77c0bdc3b0284253343f9f6c1244ebf2ff0df866", - "da582ad8c5370b4469af862aa6467a2293b2b28bd80ae0e91f425ad3d47249fdf98825cc86f14028c3308c9804c78bfeeeee461444ce243687e1a50522456a1d", - "d5266aa3331194aef852eed86d7b5b2633a0af1c735906f2e13279f14931a9fc3b0eac5ce9245273bd1aa92905abe16278ef7efd47694789a7283b77da3c70f8", - "2962734c28252186a9a1111c732ad4de4506d4b4480916303eb7991d659ccda07a9911914bc75c418ab7a4541757ad054796e26797feaf36e9f6ad43f14b35a4", - "e8b79ec5d06e111bdfafd71e9f5760f00ac8ac5d8bf768f9ff6f08b8f026096b1cc3a4c973333019f1e3553e77da3f98cb9f542e0a90e5f8a940cc58e59844b3", - "dfb320c44f9d41d1efdcc015f08dd5539e526e39c87d509ae6812a969e5431bf4fa7d91ffd03b981e0d544cf72d7b1c0374f8801482e6dea2ef903877eba675e", - "d88675118fdb55a5fb365ac2af1d217bf526ce1ee9c94b2f0090b2c58a06ca58187d7fe57c7bed9d26fca067b4110eefcd9a0a345de872abe20de368001b0745", - "b893f2fc41f7b0dd6e2f6aa2e0370c0cff7df09e3acfcc0e920b6e6fad0ef747c40668417d342b80d2351e8c175f20897a062e9765e6c67b539b6ba8b9170545", - "6c67ec5697accd235c59b486d7b70baeedcbd4aa64ebd4eef3c7eac189561a726250aec4d48cadcafbbe2ce3c16ce2d691a8cce06e8879556d4483ed7165c063", - "f1aa2b044f8f0c638a3f362e677b5d891d6fd2ab0765f6ee1e4987de057ead357883d9b405b9d609eea1b869d97fb16d9b51017c553f3b93c0a1e0f1296fedcd", - "cbaa259572d4aebfc1917acddc582b9f8dfaa928a198ca7acd0f2aa76a134a90252e6298a65b08186a350d5b7626699f8cb721a3ea5921b753ae3a2dce24ba3a", - "fa1549c9796cd4d303dcf452c1fbd5744fd9b9b47003d920b92de34839d07ef2a29ded68f6fc9e6c45e071a2e48bd50c5084e96b657dd0404045a1ddefe282ed", - "5cf2ac897ab444dcb5c8d87c495dbdb34e1838b6b629427caa51702ad0f9688525f13bec503a3c3a2c80a65e0b5715e8afab00ffa56ec455a49a1ad30aa24fcd", - "9aaf80207bace17bb7ab145757d5696bde32406ef22b44292ef65d4519c3bb2ad41a59b62cc3e94b6fa96d32a7faadae28af7d35097219aa3fd8cda31e40c275", - "af88b163402c86745cb650c2988fb95211b94b03ef290eed9662034241fd51cf398f8073e369354c43eae1052f9b63b08191caa138aa54fea889cc7024236897", - "48fa7d64e1ceee27b9864db5ada4b53d00c9bc7626555813d3cd6730ab3cc06ff342d727905e33171bde6e8476e77fb1720861e94b73a2c538d254746285f430", - "0e6fd97a85e904f87bfe85bbeb34f69e1f18105cf4ed4f87aec36c6e8b5f68bd2a6f3dc8a9ecb2b61db4eedb6b2ea10bf9cb0251fb0f8b344abf7f366b6de5ab", - "06622da5787176287fdc8fed440bad187d830099c94e6d04c8e9c954cda70c8bb9e1fc4a6d0baa831b9b78ef6648681a4867a11da93ee36e5e6a37d87fc63f6f", - "1da6772b58fabf9c61f68d412c82f182c0236d7d575ef0b58dd22458d643cd1dfc93b03871c316d8430d312995d4197f0874c99172ba004a01ee295abac24e46", - "3cd2d9320b7b1d5fb9aab951a76023fa667be14a9124e394513918a3f44096ae4904ba0ffc150b63bc7ab1eeb9a6e257e5c8f000a70394a5afd842715de15f29", - "04cdc14f7434e0b4be70cb41db4c779a88eaef6accebcb41f2d42fffe7f32a8e281b5c103a27021d0d08362250753cdf70292195a53a48728ceb5844c2d98bab", - "9071b7a8a075d0095b8fb3ae5113785735ab98e2b52faf91d5b89e44aac5b5d4ebbf91223b0ff4c71905da55342e64655d6ef8c89a4768c3f93a6dc0366b5bc8", - "ebb30240dd96c7bc8d0abe49aa4edcbb4afdc51ff9aaf720d3f9e7fbb0f9c6d6571350501769fc4ebd0b2141247ff400d4fd4be414edf37757bb90a32ac5c65a", - "8532c58bf3c8015d9d1cbe00eef1f5082f8f3632fbe9f1ed4f9dfb1fa79e8283066d77c44c4af943d76b300364aecbd0648c8a8939bd204123f4b56260422dec", - "fe9846d64f7c7708696f840e2d76cb4408b6595c2f81ec6a28a7f2f20cb88cfe6ac0b9e9b8244f08bd7095c350c1d0842f64fb01bb7f532dfcd47371b0aeeb79", - "28f17ea6fb6c42092dc264257e29746321fb5bdaea9873c2a7fa9d8f53818e899e161bc77dfe8090afd82bf2266c5c1bc930a8d1547624439e662ef695f26f24", - "ec6b7d7f030d4850acae3cb615c21dd25206d63e84d1db8d957370737ba0e98467ea0ce274c66199901eaec18a08525715f53bfdb0aacb613d342ebdceeddc3b", - "b403d3691c03b0d3418df327d5860d34bbfcc4519bfbce36bf33b208385fadb9186bc78a76c489d89fd57e7dc75412d23bcd1dae8470ce9274754bb8585b13c5", - "31fc79738b8772b3f55cd8178813b3b52d0db5a419d30ba9495c4b9da0219fac6df8e7c23a811551a62b827f256ecdb8124ac8a6792ccfecc3b3012722e94463", - "bb2039ec287091bcc9642fc90049e73732e02e577e2862b32216ae9bedcd730c4c284ef3968c368b7d37584f97bd4b4dc6ef6127acfe2e6ae2509124e66c8af4", - "f53d68d13f45edfcb9bd415e2831e938350d5380d3432278fc1c0c381fcb7c65c82dafe051d8c8b0d44e0974a0e59ec7bf7ed0459f86e96f329fc79752510fd3", - "8d568c7984f0ecdf7640fbc483b5d8c9f86634f6f43291841b309a350ab9c1137d24066b09da9944bac54d5bb6580d836047aac74ab724b887ebf93d4b32eca9", - "c0b65ce5a96ff774c456cac3b5f2c4cd359b4ff53ef93a3da0778be4900d1e8da1601e769e8f1b02d2a2f8c5b9fa10b44f1c186985468feeb008730283a6657d", - "4900bba6f5fb103ece8ec96ada13a5c3c85488e05551da6b6b33d988e611ec0fe2e3c2aa48ea6ae8986a3a231b223c5d27cec2eadde91ce07981ee652862d1e4", - "c7f5c37c7285f927f76443414d4357ff789647d7a005a5a787e03c346b57f49f21b64fa9cf4b7e45573e23049017567121a9c3d4b2b73ec5e9413577525db45a", - "ec7096330736fdb2d64b5653e7475da746c23a4613a82687a28062d3236364284ac01720ffb406cfe265c0df626a188c9e5963ace5d3d5bb363e32c38c2190a6", - "82e744c75f4649ec52b80771a77d475a3bc091989556960e276a5f9ead92a03f718742cdcfeaee5cb85c44af198adc43a4a428f5f0c2ddb0be36059f06d7df73", - "2834b7a7170f1f5b68559ab78c1050ec21c919740b784a9072f6e5d69f828d70c919c5039fb148e39e2c8a52118378b064ca8d5001cd10a5478387b966715ed6", - "16b4ada883f72f853bb7ef253efcab0c3e2161687ad61543a0d2824f91c1f81347d86be709b16996e17f2dd486927b0288ad38d13063c4a9672c39397d3789b6", - "78d048f3a69d8b54ae0ed63a573ae350d89f7c6cf1f3688930de899afa037697629b314e5cd303aa62feea72a25bf42b304b6c6bcb27fae21c16d925e1fbdac3", - "0f746a48749287ada77a82961f05a4da4abdb7d77b1220f836d09ec814359c0ec0239b8c7b9ff9e02f569d1b301ef67c4612d1de4f730f81c12c40cc063c5caa", - "f0fc859d3bd195fbdc2d591e4cdac15179ec0f1dc821c11df1f0c1d26e6260aaa65b79fafacafd7d3ad61e600f250905f5878c87452897647a35b995bcadc3a3", - "2620f687e8625f6a412460b42e2cef67634208ce10a0cbd4dff7044a41b7880077e9f8dc3b8d1216d3376a21e015b58fb279b521d83f9388c7382c8505590b9b", - "227e3aed8d2cb10b918fcb04f9de3e6d0a57e08476d93759cd7b2ed54a1cbf0239c528fb04bbf288253e601d3bc38b21794afef90b17094a182cac557745e75f", - "1a929901b09c25f27d6b35be7b2f1c4745131fdebca7f3e2451926720434e0db6e74fd693ad29b777dc3355c592a361c4873b01133a57c2e3b7075cbdb86f4fc", - "5fd7968bc2fe34f220b5e3dc5af9571742d73b7d60819f2888b629072b96a9d8ab2d91b82d0a9aaba61bbd39958132fcc4257023d1eca591b3054e2dc81c8200", - "dfcce8cf32870cc6a503eadafc87fd6f78918b9b4d0737db6810be996b5497e7e5cc80e312f61e71ff3e9624436073156403f735f56b0b01845c18f6caf772e6", - "02f7ef3a9ce0fff960f67032b296efca3061f4934d690749f2d01c35c81c14f39a67fa350bc8a0359bf1724bffc3bca6d7c7bba4791fd522a3ad353c02ec5aa8", - "64be5c6aba65d594844ae78bb022e5bebe127fd6b6ffa5a13703855ab63b624dcd1a363f99203f632ec386f3ea767fc992e8ed9686586aa27555a8599d5b808f", - "f78585505c4eaa54a8b5be70a61e735e0ff97af944ddb3001e35d86c4e2199d976104b6ae31750a36a726ed285064f5981b503889fef822fcdc2898dddb7889a", - "e4b5566033869572edfd87479a5bb73c80e8759b91232879d96b1dda36c012076ee5a2ed7ae2de63ef8406a06aea82c188031b560beafb583fb3de9e57952a7e", - "e1b3e7ed867f6c9484a2a97f7715f25e25294e992e41f6a7c161ffc2adc6daaeb7113102d5e6090287fe6ad94ce5d6b739c6ca240b05c76fb73f25dd024bf935", - "85fd085fdc12a080983df07bd7012b0d402a0f4043fcb2775adf0bad174f9b08d1676e476985785c0a5dcc41dbff6d95ef4d66a3fbdc4a74b82ba52da0512b74", - "aed8fa764b0fbff821e05233d2f7b0900ec44d826f95e93c343c1bc3ba5a24374b1d616e7e7aba453a0ada5e4fab5382409e0d42ce9c2bc7fb39a99c340c20f0", - "7ba3b2e297233522eeb343bd3ebcfd835a04007735e87f0ca300cbee6d416565162171581e4020ff4cf176450f1291ea2285cb9ebffe4c56660627685145051c", - "de748bcf89ec88084721e16b85f30adb1a6134d664b5843569babc5bbd1a15ca9b61803c901a4fef32965a1749c9f3a4e243e173939dc5a8dc495c671ab52145", - "aaf4d2bdf200a919706d9842dce16c98140d34bc433df320aba9bd429e549aa7a3397652a4d768277786cf993cde2338673ed2e6b66c961fefb82cd20c93338f", - "c408218968b788bf864f0997e6bc4c3dba68b276e2125a4843296052ff93bf5767b8cdce7131f0876430c1165fec6c4f47adaa4fd8bcfacef463b5d3d0fa61a0", - "76d2d819c92bce55fa8e092ab1bf9b9eab237a25267986cacf2b8ee14d214d730dc9a5aa2d7b596e86a1fd8fa0804c77402d2fcd45083688b218b1cdfa0dcbcb", - "72065ee4dd91c2d8509fa1fc28a37c7fc9fa7d5b3f8ad3d0d7a25626b57b1b44788d4caf806290425f9890a3a2a35a905ab4b37acfd0da6e4517b2525c9651e4", - "64475dfe7600d7171bea0b394e27c9b00d8e74dd1e416a79473682ad3dfdbb706631558055cfc8a40e07bd015a4540dcdea15883cbbf31412df1de1cd4152b91", - "12cd1674a4488a5d7c2b3160d2e2c4b58371bedad793418d6f19c6ee385d70b3e06739369d4df910edb0b0a54cbff43d54544cd37ab3a06cfa0a3ddac8b66c89", - "60756966479dedc6dd4bcff8ea7d1d4ce4d4af2e7b097e32e3763518441147cc12b3c0ee6d2ecabf1198cec92e86a3616fba4f4e872f5825330adbb4c1dee444", - "a7803bcb71bc1d0f4383dde1e0612e04f872b715ad30815c2249cf34abb8b024915cb2fc9f4e7cc4c8cfd45be2d5a91eab0941c7d270e2da4ca4a9f7ac68663a", - "b84ef6a7229a34a750d9a98ee2529871816b87fbe3bc45b45fa5ae82d5141540211165c3c5d7a7476ba5a4aa06d66476f0d9dc49a3f1ee72c3acabd498967414", - "fae4b6d8efc3f8c8e64d001dabec3a21f544e82714745251b2b4b393f2f43e0da3d403c64db95a2cb6e23ebb7b9e94cdd5ddac54f07c4a61bd3cb10aa6f93b49", - "34f7286605a122369540141ded79b8957255da2d4155abbf5a8dbb89c8eb7ede8eeef1daa46dc29d751d045dc3b1d658bb64b80ff8589eddb3824b13da235a6b", - "3b3b48434be27b9eababba43bf6b35f14b30f6a88dc2e750c358470d6b3aa3c18e47db4017fa55106d8252f016371a00f5f8b070b74ba5f23cffc5511c9f09f0", - "ba289ebd6562c48c3e10a8ad6ce02e73433d1e93d7c9279d4d60a7e879ee11f441a000f48ed9f7c4ed87a45136d7dccdca482109c78a51062b3ba4044ada2469", - "022939e2386c5a37049856c850a2bb10a13dfea4212b4c732a8840a9ffa5faf54875c5448816b2785a007da8a8d2bc7d71a54e4e6571f10b600cbdb25d13ede3", - "e6fec19d89ce8717b1a087024670fe026f6c7cbda11caef959bb2d351bf856f8055d1c0ebdaaa9d1b17886fc2c562b5e99642fc064710c0d3488a02b5ed7f6fd", - "94c96f02a8f576aca32ba61c2b206f907285d9299b83ac175c209a8d43d53bfe683dd1d83e7549cb906c28f59ab7c46f8751366a28c39dd5fe2693c9019666c8", - "31a0cd215ebd2cb61de5b9edc91e6195e31c59a5648d5c9f737e125b2605708f2e325ab3381c8dce1a3e958886f1ecdc60318f882cfe20a24191352e617b0f21", - "91ab504a522dce78779f4c6c6ba2e6b6db5565c76d3e7e7c920caf7f757ef9db7c8fcf10e57f03379ea9bf75eb59895d96e149800b6aae01db778bb90afbc989", - "d85cabc6bd5b1a01a5afd8c6734740da9fd1c1acc6db29bfc8a2e5b668b028b6b3154bfb8703fa3180251d589ad38040ceb707c4bad1b5343cb426b61eaa49c1", - "d62efbec2ca9c1f8bd66ce8b3f6a898cb3f7566ba6568c618ad1feb2b65b76c3ce1dd20f7395372faf28427f61c9278049cf0140df434f5633048c86b81e0399", - "7c8fdc6175439e2c3db15bafa7fb06143a6a23bc90f449e79deef73c3d492a671715c193b6fea9f036050b946069856b897e08c00768f5ee5ddcf70b7cd6d0e0", - "58602ee7468e6bc9df21bd51b23c005f72d6cb013f0a1b48cbec5eca299299f97f09f54a9a01483eaeb315a6478bad37ba47ca1347c7c8fc9e6695592c91d723", - "27f5b79ed256b050993d793496edf4807c1d85a7b0a67c9c4fa99860750b0ae66989670a8ffd7856d7ce411599e58c4d77b232a62bef64d15275be46a68235ff", - "3957a976b9f1887bf004a8dca942c92d2b37ea52600f25e0c9bc5707d0279c00c6e85a839b0d2d8eb59c51d94788ebe62474a791cadf52cccf20f5070b6573fc", - "eaa2376d55380bf772ecca9cb0aa4668c95c707162fa86d518c8ce0ca9bf7362b9f2a0adc3ff59922df921b94567e81e452f6c1a07fc817cebe99604b3505d38", - "c1e2c78b6b2734e2480ec550434cb5d613111adcc21d475545c3b1b7e6ff12444476e5c055132e2229dc0f807044bb919b1a5662dd38a9ee65e243a3911aed1a", - "8ab48713389dd0fcf9f965d3ce66b1e559a1f8c58741d67683cd971354f452e62d0207a65e436c5d5d8f8ee71c6abfe50e669004c302b31a7ea8311d4a916051", - "24ce0addaa4c65038bd1b1c0f1452a0b128777aabc94a29df2fd6c7e2f85f8ab9ac7eff516b0e0a825c84a24cfe492eaad0a6308e46dd42fe8333ab971bb30ca", - "5154f929ee03045b6b0c0004fa778edee1d139893267cc84825ad7b36c63de32798e4a166d24686561354f63b00709a1364b3c241de3febf0754045897467cd4", - "e74e907920fd87bd5ad636dd11085e50ee70459c443e1ce5809af2bc2eba39f9e6d7128e0e3712c316da06f4705d78a4838e28121d4344a2c79c5e0db307a677", - "bf91a22334bac20f3fd80663b3cd06c4e8802f30e6b59f90d3035cc9798a217ed5a31abbda7fa6842827bdf2a7a1c21f6fcfccbb54c6c52926f32da816269be1", - "d9d5c74be5121b0bd742f26bffb8c89f89171f3f934913492b0903c271bbe2b3395ef259669bef43b57f7fcc3027db01823f6baee66e4f9fead4d6726c741fce", - "50c8b8cf34cd879f80e2faab3230b0c0e1cc3e9dcadeb1b9d97ab923415dd9a1fe38addd5c11756c67990b256e95ad6d8f9fedce10bf1c90679cde0ecf1be347", - "0a386e7cd5dd9b77a035e09fe6fee2c8ce61b5383c87ea43205059c5e4cd4f4408319bb0a82360f6a58e6c9ce3f487c446063bf813bc6ba535e17fc1826cfc91", - "1f1459cb6b61cbac5f0efe8fc487538f42548987fcd56221cfa7beb22504769e792c45adfb1d6b3d60d7b749c8a75b0bdf14e8ea721b95dca538ca6e25711209", - "e58b3836b7d8fedbb50ca5725c6571e74c0785e97821dab8b6298c10e4c079d4a6cdf22f0fedb55032925c16748115f01a105e77e00cee3d07924dc0d8f90659", - "b929cc6505f020158672deda56d0db081a2ee34c00c1100029bdf8ea98034fa4bf3e8655ec697fe36f40553c5bb46801644a627d3342f4fc92b61f03290fb381", - "72d353994b49d3e03153929a1e4d4f188ee58ab9e72ee8e512f29bc773913819ce057ddd7002c0433ee0a16114e3d156dd2c4a7e80ee53378b8670f23e33ef56", - "c70ef9bfd775d408176737a0736d68517ce1aaad7e81a93c8c1ed967ea214f56c8a377b1763e676615b60f3988241eae6eab9685a5124929d28188f29eab06f7", - "c230f0802679cb33822ef8b3b21bf7a9a28942092901d7dac3760300831026cf354c9232df3e084d9903130c601f63c1f4a4a4b8106e468cd443bbe5a734f45f", - "6f43094cafb5ebf1f7a4937ec50f56a4c9da303cbb55ac1f27f1f1976cd96beda9464f0e7b9c54620b8a9fba983164b8be3578425a024f5fe199c36356b88972", - "3745273f4c38225db2337381871a0c6aafd3af9b018c88aa02025850a5dc3a42a1a3e03e56cbf1b0876d63a441f1d2856a39b8801eb5af325201c415d65e97fe", - "c50c44cca3ec3edaae779a7e179450ebdda2f97067c690aa6c5a4ac7c30139bb27c0df4db3220e63cb110d64f37ffe078db72653e2daacf93ae3f0a2d1a7eb2e", - "8aef263e385cbc61e19b28914243262af5afe8726af3ce39a79c27028cf3ecd3f8d2dfd9cfc9ad91b58f6f20778fd5f02894a3d91c7d57d1e4b866a7f364b6be", - "28696141de6e2d9bcb3235578a66166c1448d3e905a1b482d423be4bc5369bc8c74dae0acc9cc123e1d8ddce9f97917e8c019c552da32d39d2219b9abf0fa8c8", - "2fb9eb2085830181903a9dafe3db428ee15be7662224efd643371fb25646aee716e531eca69b2bdc8233f1a8081fa43da1500302975a77f42fa592136710e9dc", - "66f9a7143f7a3314a669bf2e24bbb35014261d639f495b6c9c1f104fe8e320aca60d4550d69d52edbd5a3cdeb4014ae65b1d87aa770b69ae5c15f4330b0b0ad8", - "f4c4dd1d594c3565e3e25ca43dad82f62abea4835ed4cd811bcd975e46279828d44d4c62c3679f1b7f7b9dd4571d7b49557347b8c5460cbdc1bef690fb2a08c0", - "8f1dc9649c3a84551f8f6e91cac68242a43b1f8f328ee92280257387fa7559aa6db12e4aeadc2d26099178749c6864b357f3f83b2fb3efa8d2a8db056bed6bcc", - "3139c1a7f97afd1675d460ebbc07f2728aa150df849624511ee04b743ba0a833092f18c12dc91b4dd243f333402f59fe28abdbbbae301e7b659c7a26d5c0f979", - "06f94a2996158a819fe34c40de3cf0379fd9fb85b3e363ba3926a0e7d960e3f4c2e0c70c7ce0ccb2a64fc29869f6e7ab12bd4d3f14fce943279027e785fb5c29", - "c29c399ef3eee8961e87565c1ce263925fc3d0ce267d13e48dd9e732ee67b0f69fad56401b0f10fcaac119201046cca28c5b14abdea3212ae65562f7f138db3d", - "4cec4c9df52eef05c3f6faaa9791bc7445937183224ecc37a1e58d0132d35617531d7e795f52af7b1eb9d147de1292d345fe341823f8e6bc1e5badca5c656108", - "898bfbae93b3e18d00697eab7d9704fa36ec339d076131cefdf30edbe8d9cc81c3a80b129659b163a323bab9793d4feed92d54dae966c77529764a09be88db45", - "ee9bd0469d3aaf4f14035be48a2c3b84d9b4b1fff1d945e1f1c1d38980a951be197b25fe22c731f20aeacc930ba9c4a1f4762227617ad350fdabb4e80273a0f4", - "3d4d3113300581cd96acbf091c3d0f3c310138cd6979e6026cde623e2dd1b24d4a8638bed1073344783ad0649cc6305ccec04beb49f31c633088a99b65130267", - "95c0591ad91f921ac7be6d9ce37e0663ed8011c1cfd6d0162a5572e94368bac02024485e6a39854aa46fe38e97d6c6b1947cd272d86b06bb5b2f78b9b68d559d", - "227b79ded368153bf46c0a3ca978bfdbef31f3024a5665842468490b0ff748ae04e7832ed4c9f49de9b1706709d623e5c8c15e3caecae8d5e433430ff72f20eb", - "5d34f3952f0105eef88ae8b64c6ce95ebfade0e02c69b08762a8712d2e4911ad3f941fc4034dc9b2e479fdbcd279b902faf5d838bb2e0c6495d372b5b7029813", - "7f939bf8353abce49e77f14f3750af20b7b03902e1a1e7fb6aaf76d0259cd401a83190f15640e74f3e6c5a90e839c7821f6474757f75c7bf9002084ddc7a62dc", - "062b61a2f9a33a71d7d0a06119644c70b0716a504de7e5e1be49bd7b86e7ed6817714f9f0fc313d06129597e9a2235ec8521de36f7290a90ccfc1ffa6d0aee29", - "f29e01eeae64311eb7f1c6422f946bf7bea36379523e7b2bbaba7d1d34a22d5ea5f1c5a09d5ce1fe682cced9a4798d1a05b46cd72dff5c1b355440b2a2d476bc", - "ec38cd3bbab3ef35d7cb6d5c914298351d8a9dc97fcee051a8a02f58e3ed6184d0b7810a5615411ab1b95209c3c810114fdeb22452084e77f3f847c6dbaafe16", - "c2aef5e0ca43e82641565b8cb943aa8ba53550caef793b6532fafad94b816082f0113a3ea2f63608ab40437ecc0f0229cb8fa224dcf1c478a67d9b64162b92d1", - "15f534efff7105cd1c254d074e27d5898b89313b7d366dc2d7d87113fa7d53aae13f6dba487ad8103d5e854c91fdb6e1e74b2ef6d1431769c30767dde067a35c", - "89acbca0b169897a0a2714c2df8c95b5b79cb69390142b7d6018bb3e3076b099b79a964152a9d912b1b86412b7e372e9cecad7f25d4cbab8a317be36492a67d7", - "e3c0739190ed849c9c962fd9dbb55e207e624fcac1eb417691515499eea8d8267b7e8f1287a63633af5011fde8c4ddf55bfdf722edf88831414f2cfaed59cb9a", - "8d6cf87c08380d2d1506eee46fd4222d21d8c04e585fbfd08269c98f702833a156326a0724656400ee09351d57b440175e2a5de93cc5f80db6daf83576cf75fa", - "da24bede383666d563eeed37f6319baf20d5c75d1635a6ba5ef4cfa1ac95487e96f8c08af600aab87c986ebad49fc70a58b4890b9c876e091016daf49e1d322e", - "f9d1d1b1e87ea7ae753a029750cc1cf3d0157d41805e245c5617bb934e732f0ae3180b78e05bfe76c7c3051e3e3ac78b9b50c05142657e1e03215d6ec7bfd0fc", - "11b7bc1668032048aa43343de476395e814bbbc223678db951a1b03a021efac948cfbe215f97fe9a72a2f6bc039e3956bfa417c1a9f10d6d7ba5d3d32ff323e5", - "b8d9000e4fc2b066edb91afee8e7eb0f24e3a201db8b6793c0608581e628ed0bcc4e5aa6787992a4bcc44e288093e63ee83abd0bc3ec6d0934a674a4da13838a", - "ce325e294f9b6719d6b61278276ae06a2564c03bb0b783fafe785bdf89c7d5acd83e78756d301b445699024eaeb77b54d477336ec2a4f332f2b3f88765ddb0c3", - "29acc30e9603ae2fccf90bf97e6cc463ebe28c1b2f9b4b765e70537c25c702a29dcbfbf14c99c54345ba2b51f17b77b5f15db92bbad8fa95c471f5d070a137cc", - "3379cbaae562a87b4c0425550ffdd6bfe1203f0d666cc7ea095be407a5dfe61ee91441cd5154b3e53b4f5fb31ad4c7a9ad5c7af4ae679aa51a54003a54ca6b2d", - "3095a349d245708c7cf550118703d7302c27b60af5d4e67fc978f8a4e60953c7a04f92fcf41aee64321ccb707a895851552b1e37b00bc5e6b72fa5bcef9e3fff", - "07262d738b09321f4dbccec4bb26f48cb0f0ed246ce0b31b9a6e7bc683049f1f3e5545f28ce932dd985c5ab0f43bd6de0770560af329065ed2e49d34624c2cbb", - "b6405eca8ee3316c87061cc6ec18dba53e6c250c63ba1f3bae9e55dd3498036af08cd272aa24d713c6020d77ab2f3919af1a32f307420618ab97e73953994fb4", - "7ee682f63148ee45f6e5315da81e5c6e557c2c34641fc509c7a5701088c38a74756168e2cd8d351e88fd1a451f360a01f5b2580f9b5a2e8cfc138f3dd59a3ffc", - "1d263c179d6b268f6fa016f3a4f29e943891125ed8593c81256059f5a7b44af2dcb2030d175c00e62ecaf7ee96682aa07ab20a611024a28532b1c25b86657902", - "106d132cbdb4cd2597812846e2bc1bf732fec5f0a5f65dbb39ec4e6dc64ab2ce6d24630d0f15a805c3540025d84afa98e36703c3dbee713e72dde8465bc1be7e", - "0e79968226650667a8d862ea8da4891af56a4e3a8b6d1750e394f0dea76d640d85077bcec2cc86886e506751b4f6a5838f7f0b5fef765d9dc90dcdcbaf079f08", - "521156a82ab0c4e566e5844d5e31ad9aaf144bbd5a464fdca34dbd5717e8ff711d3ffebbfa085d67fe996a34f6d3e4e60b1396bf4b1610c263bdbb834d560816", - "1aba88befc55bc25efbce02db8b9933e46f57661baeabeb21cc2574d2a518a3cba5dc5a38e49713440b25f9c744e75f6b85c9d8f4681f676160f6105357b8406", - "5a9949fcb2c473cda968ac1b5d08566dc2d816d960f57e63b898fa701cf8ebd3f59b124d95bfbbedc5f1cf0e17d5eaed0c02c50b69d8a402cabcca4433b51fd4", - "b0cead09807c672af2eb2b0f06dde46cf5370e15a4096b1a7d7cbb36ec31c205fbefca00b7a4162fa89fb4fb3eb78d79770c23f44e7206664ce3cd931c291e5d", - "bb6664931ec97044e45b2ae420ae1c551a8874bc937d08e969399c3964ebdba8346cdd5d09caafe4c28ba7ec788191ceca65ddd6f95f18583e040d0f30d0364d", - "65bc770a5faa3792369803683e844b0be7ee96f29f6d6a35568006bd5590f9a4ef639b7a8061c7b0424b66b60ac34af3119905f33a9d8c3ae18382ca9b689900", - "ea9b4dca333336aaf839a45c6eaa48b8cb4c7ddabffea4f643d6357ea6628a480a5b45f2b052c1b07d1fedca918b6f1139d80f74c24510dcbaa4be70eacc1b06", - "e6342fb4a780ad975d0e24bce149989b91d360557e87994f6b457b895575cc02d0c15bad3ce7577f4c63927ff13f3e381ff7e72bdbe745324844a9d27e3f1c01", - "3e209c9b33e8e461178ab46b1c64b49a07fb745f1c8bc95fbfb94c6b87c69516651b264ef980937fad41238b91ddc011a5dd777c7efd4494b4b6ecd3a9c22ac0", - "fd6a3d5b1875d80486d6e69694a56dbb04a99a4d051f15db2689776ba1c4882e6d462a603b7015dc9f4b7450f05394303b8652cfb404a266962c41bae6e18a94", - "951e27517e6bad9e4195fc8671dee3e7e9be69cee1422cb9fecfce0dba875f7b310b93ee3a3d558f941f635f668ff832d2c1d033c5e2f0997e4c66f147344e02", - "8eba2f874f1ae84041903c7c4253c82292530fc8509550bfdc34c95c7e2889d5650b0ad8cb988e5c4894cb87fbfbb19612ea93ccc4c5cad17158b9763464b492", - "16f712eaa1b7c6354719a8e7dbdfaf55e4063a4d277d947550019b38dfb564830911057d50506136e2394c3b28945cc964967d54e3000c2181626cfb9b73efd2", - "c39639e7d5c7fb8cdd0fd3e6a52096039437122f21c78f1679cea9d78a734c56ecbeb28654b4f18e342c331f6f7229ec4b4bc281b2d80a6eb50043f31796c88c", - "72d081af99f8a173dcc9a0ac4eb3557405639a29084b54a40172912a2f8a395129d5536f0918e902f9e8fa6000995f4168ddc5f893011be6a0dbc9b8a1a3f5bb", - "c11aa81e5efd24d5fc27ee586cfd8847fbb0e27601ccece5ecca0198e3c7765393bb74457c7e7a27eb9170350e1fb53857177506be3e762cc0f14d8c3afe9077", - "c28f2150b452e6c0c424bcde6f8d72007f9310fed7f2f87de0dbb64f4479d6c1441ba66f44b2accee61609177ed340128b407ecec7c64bbe50d63d22d8627727", - "f63d88122877ec30b8c8b00d22e89000a966426112bd44166e2f525b769ccbe9b286d437a0129130dde1a86c43e04bedb594e671d98283afe64ce331de9828fd", - "348b0532880b88a6614a8d7408c3f913357fbb60e995c60205be9139e74998aede7f4581e42f6b52698f7fa1219708c14498067fd1e09502de83a77dd281150c", - "5133dc8bef725359dff59792d85eaf75b7e1dcd1978b01c35b1b85fcebc63388ad99a17b6346a217dc1a9622ebd122ecf6913c4d31a6b52a695b86af00d741a0", - "2753c4c0e98ecad806e88780ec27fccd0f5c1ab547f9e4bf1659d192c23aa2cc971b58b6802580baef8adc3b776ef7086b2545c2987f348ee3719cdef258c403", - "b1663573ce4b9d8caefc865012f3e39714b9898a5da6ce17c25a6a47931a9ddb9bbe98adaa553beed436e89578455416c2a52a525cf2862b8d1d49a2531b7391", - "64f58bd6bfc856f5e873b2a2956ea0eda0d6db0da39c8c7fc67c9f9feefcff3072cdf9e6ea37f69a44f0c61aa0da3693c2db5b54960c0281a088151db42b11e8", - "0764c7be28125d9065c4b98a69d60aede703547c66a12e17e1c618994132f5ef82482c1e3fe3146cc65376cc109f0138ed9a80e49f1f3c7d610d2f2432f20605", - "f748784398a2ff03ebeb07e155e66116a839741a336e32da71ec696001f0ad1b25cd48c69cfca7265eca1dd71904a0ce748ac4124f3571076dfa7116a9cf00e9", - "3f0dbc0186bceb6b785ba78d2a2a013c910be157bdaffae81bb6663b1a73722f7f1228795f3ecada87cf6ef0078474af73f31eca0cc200ed975b6893f761cb6d", - "d4762cd4599876ca75b2b8fe249944dbd27ace741fdab93616cbc6e425460feb51d4e7adcc38180e7fc47c89024a7f56191adb878dfde4ead62223f5a2610efe", - "cd36b3d5b4c91b90fcbba79513cfee1907d8645a162afd0cd4cf4192d4a5f4c892183a8eacdb2b6b6a9d9aa8c11ac1b261b380dbee24ca468f1bfd043c58eefe", - "98593452281661a53c48a9d8cd790826c1a1ce567738053d0bee4a91a3d5bd92eefdbabebe3204f2031ca5f781bda99ef5d8ae56e5b04a9e1ecd21b0eb05d3e1", - "771f57dd2775ccdab55921d3e8e30ccf484d61fe1c1b9c2ae819d0fb2a12fab9be70c4a7a138da84e8280435daade5bbe66af0836a154f817fb17f3397e725a3", - "c60897c6f828e21f16fbb5f15b323f87b6c8955eabf1d38061f707f608abdd993fac3070633e286cf8339ce295dd352df4b4b40b2f29da1dd50b3a05d079e6bb", - "8210cd2c2d3b135c2cf07fa0d1433cd771f325d075c6469d9c7f1ba0943cd4ab09808cabf4acb9ce5bb88b498929b4b847f681ad2c490d042db2aec94214b06b", - "1d4edfffd8fd80f7e4107840fa3aa31e32598491e4af7013c197a65b7f36dd3ac4b478456111cd4309d9243510782fa31b7c4c95fa951520d020eb7e5c36e4ef", - "af8e6e91fab46ce4873e1a50a8ef448cc29121f7f74deef34a71ef89cc00d9274bc6c2454bbb3230d8b2ec94c62b1dec85f3593bfa30ea6f7a44d7c09465a253", - "29fd384ed4906f2d13aa9fe7af905990938bed807f1832454a372ab412eea1f5625a1fcc9ac8343b7c67c5aba6e0b1cc4644654913692c6b39eb9187ceacd3ec", - "a268c7885d9874a51c44dffed8ea53e94f78456e0b2ed99ff5a3924760813826d960a15edbedbb5de5226ba4b074e71b05c55b9756bb79e55c02754c2c7b6c8a", - "0cf8545488d56a86817cd7ecb10f7116b7ea530a45b6ea497b6c72c997e09e3d0da8698f46bb006fc977c2cd3d1177463ac9057fdd1662c85d0c126443c10473", - "b39614268fdd8781515e2cfebf89b4d5402bab10c226e6344e6b9ae000fb0d6c79cb2f3ec80e80eaeb1980d2f8698916bd2e9f747236655116649cd3ca23a837", - "74bef092fc6f1e5dba3663a3fb003b2a5ba257496536d99f62b9d73f8f9eb3ce9ff3eec709eb883655ec9eb896b9128f2afc89cf7d1ab58a72f4a3bf034d2b4a", - "3a988d38d75611f3ef38b8774980b33e573b6c57bee0469ba5eed9b44f29945e7347967fba2c162e1c3be7f310f2f75ee2381e7bfd6b3f0baea8d95dfb1dafb1", - "58aedfce6f67ddc85a28c992f1c0bd0969f041e66f1ee88020a125cbfcfebcd61709c9c4eba192c15e69f020d462486019fa8dea0cd7a42921a19d2fe546d43d", - "9347bd291473e6b4e368437b8e561e065f649a6d8ada479ad09b1999a8f26b91cf6120fd3bfe014e83f23acfa4c0ad7b3712b2c3c0733270663112ccd9285cd9", - "b32163e7c5dbb5f51fdc11d2eac875efbbcb7e7699090a7e7ff8a8d50795af5d74d9ff98543ef8cdf89ac13d0485278756e0ef00c817745661e1d59fe38e7537", - "1085d78307b1c4b008c57a2e7e5b234658a0a82e4ff1e4aaac72b312fda0fe27d233bc5b10e9cc17fdc7697b540c7d95eb215a19a1a0e20e1abfa126efd568c7", - "4e5c734c7dde011d83eac2b7347b373594f92d7091b9ca34cb9c6f39bdf5a8d2f134379e16d822f6522170ccf2ddd55c84b9e6c64fc927ac4cf8dfb2a17701f2", - "695d83bd990a1117b3d0ce06cc888027d12a054c2677fd82f0d4fbfc93575523e7991a5e35a3752e9b70ce62992e268a877744cdd435f5f130869c9a2074b338", - "a6213743568e3b3158b9184301f3690847554c68457cb40fc9a4b8cfd8d4a118c301a07737aeda0f929c68913c5f51c80394f53bff1c3e83b2e40ca97eba9e15", - "d444bfa2362a96df213d070e33fa841f51334e4e76866b8139e8af3bb3398be2dfaddcbc56b9146de9f68118dc5829e74b0c28d7711907b121f9161cb92b69a9", - "142709d62e28fcccd0af97fad0f8465b971e82201dc51070faa0372aa43e92484be1c1e73ba10906d5d1853db6a4106e0a7bf9800d373d6dee2d46d62ef2a461", -} - -var hashes2X = []string{ - "64", - "f457", - "e8c045", - "a74c6d0d", - "eb02ae482a", - "be65b981275e", - "8540ccd083a455", - "074a02fa58d7c7c0", - "da6da05e10db3022b6", - "542a5aae2f28f2c3b68c", - "ca3af2afc4afe891da78b1", - "e0f66b8dcebf4edc85f12c85", - "744224d383733b3fa2c53bfcf5", - "b09b653e85b72ef5cdf8fcfa95f3", - "dd51877f31f1cf7b9f68bbb09064a3", - "f5ebf68e7ebed6ad445ffc0c47e82650", - "ebdcfe03bcb7e21a9091202c5938c0a1bb", - "860fa5a72ff92efafc48a89df1632a4e2809", - "0d6d49daa26ae2818041108df3ce0a4db48c8d", - "e5d7e1bc5715f5ae991e4043e39533af5d53e47f", - "5232028a43b9d4dfa7f37439b49495926481ab8a29", - "c118803c922f9ae2397fb676a2ab7603dd9c29c21fe4", - "2af924f48b9bd7076bfd68794bba6402e2a7ae048de3ea", - "61255ac38231087c79ea1a0fa14538c26be1c851b6f318c0", - "f9712b8e42f0532162822f142cb946c40369f2f0e77b6b186e", - "76da0b89558df66f9b1e66a61d1e795b178ce77a359087793ff2", - "9036fd1eb32061bdecebc4a32aa524b343b8098a16768ee774d93c", - "f4ce5a05934e125d159678bea521f585574bcf9572629f155f63efcc", - "5e1c0d9fae56393445d3024d6b82692d1339f7b5936f68b062c691d3bf", - "538e35f3e11111d7c4bab69f83b30ade4f67addf1f45cdd2ac74bf299509", - "17572c4dcbb17faf8785f3bba9f6903895394352eae79b01ebd758377694cc", - "29f6bb55de7f8868e053176c878c9fe6c2055c4c5413b51ab0386c277fdbac75", - "bad026c8b2bd3d294907f2280a7145253ec2117d76e3800357be6d431b16366e41", - "386b7cb6e0fd4b27783125cbe80065af8eb9981fafc3ed18d8120863d972fa7427d9", - "06e8e6e26e756fff0b83b226dce974c21f970e44fb5b3e5bbada6e4b12f81cca666f48", - "2f9bd300244f5bc093ba6dcdb4a89fa29da22b1de9d2c9762af919b5fedf6998fbda305b", - "cf6bdcc46d788074511f9e8f0a4b86704365b2d3f98340b8db53920c385b959a38c8869ae7", - "1171e603e5cdeb4cda8fd7890222dd8390ede87b6f3284cac0f0d832d8250c9200715af7913d", - "bda7b2ad5d02bd35ffb009bdd72b7d7bc9c28b3a32f32b0ba31d6cbd3ee87c60b7b98c03404621", - "2001455324e748503aa08eff2fb2e52ae0170e81a6e9368ada054a36ca340fb779393fb045ac72b3", - "45f0761aefafbf87a68f9f1f801148d9bba52616ad5ee8e8ac9207e9846a782f487d5cca8b20355a18", - "3a7e05708be62f087f17b41ac9f20e4ef8115c5ab6d08e84d46af8c273fb46d3ce1aabebae5eea14e018", - "ea318da9d042ca337ccdfb2bee3e96ecb8f907876c8d143e8e44569178353c2e593e4a82c265931ba1dd79", - "e0f7c08f5bd712f87094b04528fadb283d83c9ceb82a3e39ec31c19a42a1a1c3bee5613b5640abe069b0d690", - "d35e63fb1f3f52ab8f7c6cd7c8247e9799042e53922fbaea808ab979fa0c096588cfea3009181d2f93002dfc11", - "b8b0ab69e3ae55a8699eb481dd665b6a2424c89bc6b7cca02d15fdf1b9854139cab49d34de498b50b2c7e8b910cf", - "fb65e3222a2950eae1701d4cdd4736266f65bf2c0d2e77968996eadb60ef74fb786f6234973a2524bdfe32d100aa0e", - "f28b4bb3a2e2c4d5c01a23ff134558559a2d3d704b75402983ee4e0f71d273ae056842c4153b18ee5c47e2bfa54313d4", - "7bb78794e58a53c3e4b1aeb161e756af051583d14e0a5a3205e094b7c9a8cf62d098fa9ea1db12f330a51ab9852c17f983", - "a879a8ebae4d0987789bcc58ec3448e35ba1fa1ee58c668d8295aba4eaeaf2762b053a677e25404f635a53037996974d418a", - "695865b353ec701ecc1cb38f3154489eed0d39829fc192bb68db286d20fa0a64235cde5639137819f7e99f86bd89afcef84a0f", - "a6ec25f369f71176952fb9b33305dc768589a6070463ee4c35996e1ced4964a865a5c3dc8f0d809eab71366450de702318e4834d", - "604749f7bfadb069a036409ffac5ba291fa05be8cba2f141554132f56d9bcb88d1ce12f2004cd3ade1aa66a26e6ef64e327514096d", - "daf9fa7dc2464a899533594e7916fc9bc585bd29dd60c930f3bfa78bc47f6c8439448043a45119fc9228c15bce5fd24f46baf9de736b", - "943ea5647a8666763084da6a6f15dcf0e8dc24f27fd0d9194805d25180fe3a6d98f4b2b5e0d6a04e9b41869817030f16ae975dd41fc35c", - "af4f73cbfc093760dfeb52d57ef45207bbd1a515f5523404e5d95a73c237d97ae65bd195b472de6d514c2c448b12fafc282166da132258e9", - "605f4ed72ed7f5046a342fe4cf6808100d4632e610d59f7ebb016e367d0ff0a95cf45b02c727ba71f147e95212f52046804d376c918cadd260", - "3750d8ab0a6b13f78e51d321dfd1aa801680e958de45b7b977d05732ee39f856b27cb2bcce8fbf3db6666d35e21244c2881fdcc27fbfea6b1672", - "8f1b929e80ab752b58abe9731b7b34eb61369536995abef1c0980d93903c1880da3637d367456895f0cb4769d6de3a979e38ed6f5f6ac4d48e9b32", - "d8469b7aa538b36cdc711a591d60dafecca22bd421973a70e2deef72f69d8014a6f0064eabfbebf5383cbb90f452c6e113d2110e4b1092c54a38b857", - "7d1f1ad2029f4880e1898af8289c23bc933a40863cc4ab697fead79c58b6b8e25b68cf5324579b0fe879fe7a12e6d03907f0140dfe7b29d33d6109ecf1", - "87a77aca6d551642288a0dff66078225ae39d288801607429d6725ca949eed7a6f199dd8a65523b4ee7cfa4187400e96597bfffc3e38ade0ae0ab88536a9", - "e101f43179d8e8546e5ce6a96d7556b7e6b9d4a7d00e7aade5579d085d527ce34a9329551ebcaf6ba946949bbe38e30a62ae344c1950b4bde55306b3bac432", - "4324561d76c370ef35ac36a4adf8f3773a50d86504bd284f71f7ce9e2bc4c1f1d34a7fb2d67561d101955d448b67577eb30dfee96a95c7f921ef53e20be8bc44", - "78f0ed6e220b3da3cc9381563b2f72c8dc830cb0f39a48c6ae479a6a78dcfa94002631dec467e9e9b47cc8f0887eb680e340aec3ec009d4a33d241533c76c8ca8c", - "9f6589c31a472e0a736f4eb22b6c70a9d332cc15304ccb66a6b97cd051b6ed82f8990e1d9bee2e4bb1c3c45e550ae0e7b96e93ae23f2fb8f63b309131e72b36cba6a", - "c138077ee4ed3d7ffa85ba851dfdf6e9843fc1dc00889d117237bfaad9aa757192f73556b959f98e6d24886ce48869f2a01a48c371785f12b6484eb2078f08c22066e1", - "f83e7c9e0954a500576ea1fc90a3db2cbd7994eaef647dab5b34e88ab9dc0b47addbc807b21c8e6dd3d0bd357f008471d4f3e0abb18450e1d4919e03a34545b9643f870e", - "3277a11f2628544fc66f50428f1ad56bcba6ee36ba2ca6ecdf7e255effc0c30235c039d13e01f04cf1efe95b5c2033ab72adda30994b62f2851d17c9920eadca9a251752dc", - "c2a834281a06fe7b730d3a03f90761daf02714c066e33fc07e1f59ac801ec2f4433486b5a2da8faa51a0cf3c34e29b2960cd0013378938dbd47c3a3d12d70db01d7d06c3e91e", - "47680182924a51cabe142a6175c9253e8ba7ea579ece8d9bcb78b1e9ca00db844fa08abcf41702bd758ee2c608d9612fed50e85854469cb4ef3038acf1e35b6ba4390561d8ae82", - "cec45830cd71869e83b109a99a3cd7d935f83a95de7c582f3adbd34e4938fa2f3f922f52f14f169c38cc6618d3f306a8a4d607b345b8a9c48017136fbf825aecf7b620e85f837fae", - "46fb53c70ab105079d5d78dc60eaa30d938f26e4d0b9df122e21ec85deda94744c1daf8038b8a6652d1ff3e7e15376f5abd30e564784a999f665078340d66b0e939e0c2ef03f9c08bb", - "7b0dcb52791a170cc52f2e8b95d8956f325c3751d3ef3b2b83b41d82d4496b46228a750d02b71a96012e56b0720949ca77dc68be9b1ef1ad6d6a5ceb86bf565cb972279039e209dddcdc", - "7153fd43e6b05f5e1a4401e0fef954a737ed142ec2f60bc4daeef9ce73ea1b40a0fcaf1a1e03a3513f930dd5335723632f59f7297fe3a98b68e125eadf478eb045ed9fc4ee566d13f537f5", - "c7f569c79c801dab50e9d9ca6542f25774b3841e49c83efe0b89109f569509ce7887bc0d2b57b50320eb81fab9017f16c4c870e59edb6c26620d93748500231d70a36f48a7c60747ca2d5986", - "0a81e0c547648595adca65623ce783411aac7f7d30c3ad269efafab288e7186f6895261972f5137877669c550f34f5128850ebb50e1884814ea1055ee29a866afd04b2087abed02d9592573428", - "6a7b6769e1f1c95314b0c7fe77013567891bd23416374f23e4f43e27bc4c55cfada13b53b1581948e07fb96a50676baa2756db0988077b0f27d36ac088e0ff0fe72eda1e8eb4b8facff3218d9af0", - "a399474595cb1ccab6107f18e80f03b1707745c7bf769fc9f260094dc9f8bc6fe09271cb0b131ebb2acd073de4a6521c8368e664278be86be216d1622393f23435fae4fbc6a2e7c961282a777c2d75", - "4f0fc590b2755a515ae6b46e9628092369d9c8e589e3239320639aa8f7aa44f8111c7c4b3fdbe6e55e036fbf5ebc9c0aa87a4e66851c11e86f6cbf0bd9eb1c98a378c7a7d3af900f55ee108b59bc9e5c", - "ed96a046f08dd675107331d267379c6fce3c352a9f8d7b243008a74cb4e9410836afaabe871dab6038ca94ce5f6d41fa922ce08aba58169f94cfc86d9f688f396abd24c11a6a9b0830572105a477c33e92", - "379955f539abf0eb2972ee99ed9546c4bbee363403991833005dc27904c271ef22a799bc32cb39f08d2e4ba6717d55153feb692d7c5efae70890bf29d96df02333c7b05ccc314e4835b018fec9141a82c745", - "e16cc8d41b96547ede0d0cf4d908c5fa393399daa4a9696e76a4c1f6a2a9fef70f17fb53551a8145ed88f18db8fe780a079d94732437023f7c1d1849ef69ad536a76204239e8ba5d97e507c36c7d042f87fe0e", - "a81de50750ece3f84536728f227208bf01ec5b7721579d007de72c88ee20663318332efe5bc7c09ad1fa8342be51f0609046ccf760a7957a7d8dc88941adb93666a4521ebe76618e5ddc2dd3261493d400b50073", - "b72c5fb7c7f60d243928fa41a2d711157b96aef290185c64b4de3dcfa3d644da67a8f37c2ac55caad79ec695a473e8b481f658c497edb8a191526592b11a412282d2a4010c90ef4647bd6ce745ebc9244a71d4876b", - "9550703877079c90e200e830f277b605624954c549e729c359ee01ee2b07741ecc4255cb37f96682dafcdbaade1063e2c5ccbd1918fb669926a67744101fb6de3ac016be4c74165a1e5a696b704ba2ebf4a953d44b95", - "a17eb44d4de502dc04a80d5a5e9507d17f27c96467f24c79b06bc98a4c410741d4ac2db98ec02c2a976d788531f1a4451b6c6204cef6dae1b6ebbcd0bde23e6fffb02754043c8fd3c783d90a670b16879ce68b5554fe1c", - "41d3ea1eaba5be4a206732dbb5b70b79b66a6e5908795ad4fb7cf9e67efb13f06fef8f90acb080ce082aadec6a1b543af759ab63fa6f1d3941186482b0c2b312f1151ea8386253a13ed3708093279b8eb04185636488b226", - "5e7cdd8373dc42a243c96013cd29df9283b5f28bb50453a903c85e2ce57f35861bf93f03029072b70dac0804e7d51fd0c578c8d9fa619f1e9ce3d8044f65d55634dba611280c1d5cfb59c836a595c803124f696b07ddfac718", - "26a14c4aa168907cb5de0d12a82e1373a128fb21f2ed11feba108b1bebce934ad63ed89f4ed7ea5e0bc8846e4fc10142f82de0bebd39d68f7874f615c3a9c896bab34190e85df05aaa316e14820b5e478d838fa89dfc94a7fc1e", - "0211dfc3c35881adc170e4ba6daab1b702dff88933db9a6829a76b8f4a7c2a6d658117132a974f0a0b3a38ceea1efc2488da21905345909e1d859921dc2b5054f09bce8eeb91fa2fc6d048ce00b9cd655e6aafbdaa3a2f19270a16", - "ddf015b01b68c4f5f72c3145d54049867d99ee6bef24282abf0eecdb506e295bacf8f23ffa65a4cd891f76a046b9dd82cae43a8d01e18a8dff3b50aeb92672be69d7c087ec1fa2d3b2a39196ea5b49b7baede37a586fea71aded587f", - "6ee721f71ca4dd5c9ce7873c5c04c6ce76a2c824b984251c15535afc96adc9a4d48ca314bfeb6b8ee65092f14cf2a7ca9614e1dcf24c2a7f0f0c11207d3d8aed4af92873b56e8b9ba2fbd659c3f4ca90fa24f113f74a37181bf0fdf758", - "689bd150e65ac123612524f720f54def78c095eaab8a87b8bcc72b443408e3227f5c8e2bd5af9bcac684d497bc3e41b7a022c28fb5458b95e8dfa2e8caccde0492936ff1902476bb7b4ef2125b19aca2cd3384d922d9f36dddbcd96ae0d6", - "3a3c0ef066fa4390ec76ad6be1dc9c31ddf45fef43fbfa1f49b439caa2eb9f3042253a9853e96a9cf86b4f873785a5d2c5d3b05f6501bc876e09031188e05f48937bf3c9b667d14800db62437590b84ce96aa70bb5141ee2ea41b55a6fd944", - "741ce384e5e0edaebb136701ce38b3d33215415197758ae81235307a4115777d4dab23891db530c6d28f63a957428391421f742789a0e04c99c828373d9903b64dd57f26b3a38b67df829ae243feef731ead0abfca049924667fdec49d40f665", - "a513f450d66cd5a48a115aee862c65b26e836f35a5eb6894a80519e2cd96cc4cad8ed7eb922b4fc9bbc55c973089d627b1da9c3a95f6c019ef1d47143cc545b15e4244424be28199c51a5efc7234dcd94e72d229897c392af85f523c2633427825", - "71f1554d2d49bb7bd9e62e71fa049fb54a2c097032f61ebda669b3e1d4593962e47fc62a0ab5d85706aebd6a2f9a192c88aa1ee2f6a46710cf4af6d3c25b7e68ad5c3db23ac009c8f13625ff85dc8e50a9a1b2682d3329330b973ec8cbb7bb73b2bd", - "167cc1067bc08a8d2c1a0c10041ebe1fc327b37043f6bd8f1c63569e9d36ded58519e66b162f34b6d8f1107ef1e3de199d97b36b44141a1fc4f49b883f40507ff11f909a017869dc8a2357fc7336ae68703d25f75710b0ff5f9765321c0fa53a51675c", - "cb859b35dc70e264efaad2a809fea1e71cd4a3f924be3b5a13f8687a1166b538c40b2ad51d5c3e47b0de482497382673140f547068ff0b3b0fb7501209e1bf36082509ae85f60bb98fd02ac50d883a1a8daa704952d83c1f6da60c9624bc7c99912930bf", - "afb1f0c6b7125b04fa2578dd40f60cb411b35ebc7026c702e25b3f0ae3d4695d44cfdf37cb755691dd9c365edadf21ee44245620e6a24d4c2497135b37cd7ac67e3bd0aaee9f63f107746f9b88859ea902bc7d6895406aa2161f480cad56327d0a5bba2836", - "13e9c0522587460d90c7cb354604de8f1bf850e75b4b176bda92862d35ec810861f7d5e7ff6ba9302f2c2c8642ff8b7776a2f53665790f570fcef3cac069a90d50db42227331c4affb33d6c040d75b9aeafc9086eb83ced38bb02c759e95ba08c92b17031288", - "0549812d62d3ed497307673a4806a21060987a4dbbf43d352b9b170a29240954cf04bc3e1e250476e6800b79e843a8bd8253b7d743de01ab336e978d4bea384eaff700ce020691647411b10a60acacb6f8837fb08ad666b8dcc9eaa87ccb42aef6914a3f3bc30a", - "3a263efbe1f2d463f20526e1d0fd735035fd3f808925f058b32c4d8788aeeab9b8ce233b3c34894731cd73361f465bd350395aebcabd2fb63010298ca025d849c1fa3cd573309b74d7f824bbfe383f09db24bcc565f636b877333206a6ad70815c3bef5574c5fc1c", - "3c6a7d8a84ef7e3eaa812fc1eb8e85105467230d2c9e4562edbfd808f4d1ac15d16b786cc6a02959c2bc17149c2ce74c6f85ee5ef22a8a96b9be1f197cffd214c1ab02a06a9227f37cd432579f8c28ff2b5ac91cca8ffe6240932739d56788c354e92c591e1dd76499", - "b571859294b02af17541a0b5e899a5f67d6f5e36d38255bc417486e69240db56b09cf2607fbf4f95d085a779358a8a8b41f36503438c1860c8f361ce0f2783a08b21bd7232b50ca6d35428335272a5c05b436b2631d8d5c84d60e8040083768ce56a250727fb0579dd5c", - "98ee1b7269d2a0dd490ca38d447279870ea55326571a1b430adbb2cf65c492131136f504145df3ab113a13abfb72c33663266b8bc9c458db4bf5d7ef03e1d3b8a99d5de0c024be8fabc8dc4f5dac82a0342d8ed65c329e7018d6997e69e29a01350516c86beaf153da65ac", - "41c5c95f088df320d35269e5bf86d10248f17aec6776f0fe653f1c356aae409788c938befeb67c86d1c8870e8099ca0ce61a80fbb5a6654c44529368f70fc9b9c2f912f5092047d0ffc339577d24142300e34948e086f62e23ecaca410d24f8a36b5c8c5a80e0926bc8aa16a", - "9f93c41f533b2a82a4df893c78faaaa793c1506974ba2a604cd33101713ca4adfd30819ffd8403402b8d40aff78106f3357f3e2c24312c0d3603a17184d7b999fc9908d14d50192aebabd90d05073da7af4be37dd3d81c90acc80e8333df546f17ab6874f1ec204392d1c0571e", - "3da5207245ac270a915fc91cdb314e5a2577c4f8e269c4e701f0d7493ba716de79935918b917a2bd5db98050dbd1eb3894b65fac5abf13e075abebc011e651c03cafb6127147771a5c8418223e1548137a89206635c26ca9c235ccc108dc25cf846e4732444bd0c2782b197b262b", - "96011af3965bb941dc8f749932ea484eccb9ba94e34b39f24c1e80410f96ce1d4f6e0aa5be606def4f54301e930493d4b55d484d93ab9dd4dc2c9cfb79345363af31ad42f4bd1aa6c77b8afc9f0d551bef7570b13b927afe3e7ac4de7603a0876d5edb1ad9be05e9ee8b53941e8f59", - "51dbbf2a7ca224e524e3454fe82ddc901fafd2120fa8603bc343f129484e9600f688586e040566de0351d1693829045232d04ff31aa6b80125c763faab2a9b233313d931903dcfaba490538b06e4688a35886dc24cdd32a13875e6acf45454a8eb8a315ab95e608ad8b6a49aef0e299a", - "5a6a422529e22104681e8b18d64bc0463a45df19ae2633751c7aae412c250f8fb2cd5e1270d3d0cf009c8aa69688ccd4e2b6536f5747a5bc479b20c135bf4e89d33a26118705a614c6be7ecfe766932471ad4ba01c4f045b1abb5070f90ec78439a27a1788db9327d1c32f939e5fb1d5ba", - "5d26c983642093cb12ff0afabd87b7c56e211d01844ad6da3f623b9f20a0c968034299f2a65e6673530c5980a532beb831c7d0697d12760445986681076dfb6fae5f3a4d8f17a0db5008ce8619f566d2cfe4cf2a6d6f9c3664e3a48564a351c0b3c945c5ee24587521e4112c57e318be1b6a", - "52641dbc6e36be4d905d8d60311e303e8e859cc47901ce30d6f67f152343e3c4030e3a33463793c19effd81fb7c4d631a9479a7505a983a052b1e948ce093b30efa595fab3a00f4cef9a2f664ceeb07ec61719212d58966bca9f00a7d7a8cb4024cf6476bab7fbccee5fd4e7c3f5e2b2975aa2", - "a34ce135b37bf3db1c4aaa4878b4499bd2ee17b85578fcaf605d41e1826b45fdaa1b083d8235dc642787f11469a5493e36806504fe2a2063905e821475e2d5ee217057950370492f5024995e77b82aa51b4f5bd8ea24dc71e0a8a640b0592c0d80c24a726169cf0a10b40944747113d03b52708c", - "46b3cdf4946e15a5334fc3244d6680f5fc132afa67bf43bfade23d0c9e0ec64e7dab76faaeca1870c05f96b7d019411d8b0873d9fed04fa5057c039d5949a4d592827f619471359d6171691cfa8a5d7cb07ef2804f6ccad4821c56d4988bea7765f660f09ef87405f0a80bcf8559efa111f2a0b419", - "8b9fc21691477f11252fca050b121c5334eb4280aa11659e267297de1fec2b2294c7ccee9b59a149b9930b08bd320d3943130930a7d931b71d2f10234f4480c67f1de883d9894ada5ed5071660e221d78ae402f1f05af47761e13fec979f2671e3c63fb0ae7aa1327cf9b8313adab90794a52686bbc4", - "cd6598924ce847de7ff45b20ac940aa6292a8a99b56a74eddc24f2cfb45797188614a21d4e8867e23ff75afd7cd324248d58fcf1ddc73fbd115dfa8c09e62022fab540a59f87c989c12a86ded05130939f00cd2f3b512963dfe0289f0e54acad881c1027d2a0292138fdee902d67d9669c0ca1034a9456", - "594e1cd7337248704e691854af0fdb021067ddf7832b049ba7b684438c32b029eded2df2c89a6ff5f2f2c311522ae2dc6db5a815afc60637b15ec24ef9541f1550409db2a006da3affffe548a1eaee7bd114e9b805d0756c8e90c4dc33cb05226bc2b393b18d953f8730d4c7ae693159cdba758ad28964e2", - "1f0d292453f04406ada8be4c161b82e3cdd69099a8637659e0ee40b8f6da46005cfc6085db9804852decfbe9f7b4dda019a7112612895a144ed430a960c8b2f5458d3d56b7f427cee6358915aee7146278aed2a0296cdd929e4d21ef95a3adf8b7a6beba673cdccdbdcfb2474711732d972ad054b2dc64f38d", - "b65a72d4e1f9f9f75911cc46ad0806b9b18c87d105332a3fe183f45f063a746c892dc6c4b9181b1485b3e3a2cc3b453eba2d4c39d6905a774ed3fb755468beb190925ecd8e57ecb0d985125741650c6b6a1b2a3a50e93e3892c21d47ed5884eed83aa94e1602288f2f49fe286624de9d01fcb54433a0dc4ad70b", - "705ce0ffa469250782aff725248fc88fe98eb76659e8407edc1c4842c9867d61fe64fb86f74e980598b92bc213d06f337bd5654fc28643c7ba769a4c31563427543c00808b627a19c90d86c322f33566ce020121cc322229c3337943d46f68ef939d613dcef0077269f88151d6398b6b009abb763410b154ad76a3", - "7fa881ce87498440ab6af13854f0d851a7e0404de33896999a9b3292a5d2f5b3ad033530c558168fe5d2fdb9b89a2354c46cf32a0e612afc6c6485d789511bfef26800c74bf1a4cfbe30bda310d5f6029c3dccdedb6149e4971274e276dccfabd63bc4b9955e8303feb57f8a688db55ecb4b33d1f9fe1b3a8ba7ac32", - "23a98f71c01c0408ae16843dc03be7db0aeaf055f951709d4e0dfdf64fffbffaf900ee592ee10929648e56f6c1e9f5be5793f7df66453eb56502c7c56c0f0c88da77abc8fa371e434104627ef7c663c49f40998dbad63fa6c7aa4fac17ae138d8bbe081f9bd168cd33c1fbc92fa35ed687679f48a64b87db1fe5bae675", - "7b8970b6a33237e5a7bcb39272703edb92285c55842b30b9a48834b1b507cc02a6764739f2f7ee6ae02a7b715a1c455e59e8c77a1ae98abb10161853f1234d20da99016588cd8602d6b7ec7e177d4011edfa61e6b3766a3c6f8d6e9eac893c568903eb6e6aba9c4725774f6b4343b7acaa6c031593a36eef6c72806ff309", - "f7f4d328ba108b7b1de4443e889a985ed52f485f3ca4e0c246aa5526590cbed344e9f4fe53e4eea0e761c82324649206ca8c2b45152157d4115e68c818644b03b65bb47ad79f94d37cb03c1d953b74c2b8adfa0e1c418bda9c518ddcd7050e0f149044740a2b16479413b63fc13c36144f80c73687513dca761ba8642a8ae0", - "2d7dc80c19a1d12d5fe3963569547a5d1d3e821e6f06c5d5e2c09401f946c9f7e13cd019f2f9a878b62dd850453b6294b99ccaa068e542993524b0f63832d48e865be31e8ec1ee103c718340c904b32efb69170b67f038d50a3252794b1b4076c0620621ab3d91215d55ffea99f23d54e161a90d8d4902fda5931d9f6a27146a", - "77dff4c7ad30c954338c4b23639dae4b275086cbe654d401a2343528065e4c9f1f2eca22aa025d49ca823e76fdbb35df78b1e5075ff2c82b680bca385c6d57f7ea7d1030bb392527b25dd73e9eeff97bea397cf3b9dda0c817a9c870ed12c006cc054968c64000e0da874e9b7d7d621b0679866912243ea096c7b38a1344e98f74", - "83bed0d556798f2b419f7056e6d3ffada06e939b95a688d0ec8c6ac5ea45ab73a4cf01043e0a170766e21395f27ab4b78c435f5f0dfe6e93ab80df38610e41158429ddf20296f53a06a017723359fe22dc08b5da33f0800a4fe50118e8d7eab2f83a85cd764bf8a166903bd0e9dcfeeceba44ff4ca4439846458d31ea2bb564645d1", - "ea12cf5a113543e39504123036f15a5bafa9c555562469f99cd29996a4dfaaab2a34b00557ccf15f37fc0cc1b3be427e725f2cd952e50af7970dda9200cd5ce252b1f29c40067fea3027ed686190803b59d834179d1b8f5b55abe55ad174b2a1188f7753ec0ae2fc01316e7d498b68ee3598a0e9baaaa664a60f7fb4f90edbed494ad7", - "55266358332d8d9e68bd13432088beadf95833aab67a0eb3b10650414255f299e2670c3e1a5b2976159a46c72a7ce57d59b7be14c15798e09ed50fa312a431b0264d7a1396aa6168bde897e208ece53d2cfc83786113b1e6eac5e9bb98984abb6c8d64eebb991903254abc650c999bb9958a5d7937434b869bc940e21b9dc1cc8982f2ba", - "4d6104ded730aefe02873f4c741232c8234a6d66d85393aff57fbf56ba6347666988dfc4d58f3cc895a0da598822edeee4533d24ec0ee292fd5e1ad04898ffbc1ff4bef14dec220babcb0f28fffe32a6e2c28aaaac16442bf4feb02917d18bb3a415d84fa9358d5a9852688d846c92271911f934181c30f82434d915f93f155a1ffbf0b125", - "eb5f579a4c476af554aac11e5719d378549497e613b35a929d6f36bb8831d7a466aa76de9be24ebb55543f1c13924f64cfd648a5b3fa90387315c16174dbf1e9a183c196d9bb8f84af65f1f8212429aadc11ef2426d07d4716062b85c8d5d2dff8e21b9e62b7fa7dbd57d72633054b464fb28583a56ca13ccc5ddc74dae942492f31731e7046", - "ebddec3dcaf18063e45a76ebeac39af85a1adc2818881ccce48c106288f5988365cca2b4b1d7f037322da46840f42bebdcbc7193838d426e101087d8cea03aaff743d573eb4f4e9a71a2c884390769a6503874125d194bee8d46a3a0d5e4fcf28ff8465887d8e9df771d70157e75df3642b331d2778ceb32ceba868640171ab7a5d22eede1ee44", - "26d87ec70b57691e3bb359633d3ddba17f029d62cdfe977f5fd42274d79b444a32494d1c01e9f72d03cce78c806df96e93ea78da3a054209924ed765edc4d570f66168dc25ee3114e4017e387440349c8f0a94804761c3055f88e4fda2a49b860b1486a9609095f6250f268b6a4d1aecc03a505632ebf0b9dc22d0755a736faf7ad7000858b5864b", - "3880f5cc2d08fa70ef44b1f263fcf534d062a298c1bd5ee2eee8c3265806c4ce50b004f3a1fc1fa5b024aaac7f528c023c8181f67c6e1c357425dc4d573bd46b93a542afa3a19bdb140a2ce666e1a01f5c4d2dcd681fa9f5839b797813c394738d5ee4971386c12c7c117d17c7bec324b760aa30cda9ab2aa850284ba6fa97946f710f02449d1883c6", - "3317d2f452105dd3f4a96f9257af8285a80be58066b50f6f54bd633749b49f6ab9d57d45652d2ae852a2f6940cd5ec3159dd7f333358b12f502325df38843508faf7e246352d201280babd90b14fbf7722641c3601d0e458474439973c611bb5502fd0eb3078f87124ca7e1a016fcb6cfeff65f6a565985aca7122cfa8c5a11da0cb47797c5132333179", - "f2c5c955d0224e784a46b9125f8fef8a5e1271e145eb08bbbd07ca8e1cfc848cef14fa3b36221ac62006403dbb7f7d77958ccc54a8566c837858b809f3e310ace8ca682515bc655d2a397cab238a663b464d511f02dc5d033dad4cb5e0e519e94a54b62a3896e460ec70e5716b5921bf8396aa86a60123e6287e34570bb01bdc602e113670bf498af2ff10", - "180e275205691a83630cf4b0c7b80e6df8fad6ef1c23ba8013d2f09aef7abade1827f23af230de90676240b4b3b0673f8afdea0327330055041741f65560d90348de696d34ca80dfe8afae582fe4879d4594b80e9408fb53e800e01ca58552b905c365e7f1416e51c080f517d6bbd30e64ae1535d59decdc76c6624d737868f49f2f719da39ba1344d59eab9", - "c517a84e4631a7f65ace170d1e5c2fdb259841535d88da323e68c0883e6af7b041cfe05908815a5a9d1b14fa712c2c16fadcf1ca54d3aa954d411240df331b2aebdfb65aced84d0b8aace56ec0aa7c13ec7d75ca883b6bcf6db74c9e98463c484a8262684f29910373430651f90ecffe18b072170e61ee58de20e2a6ff67b3ab00fccbb80af943f20b56b98107", - "d1a56a5ee990e02b84b5862fde62f69ec07567be2d7ccb769a461c4989d11fdda6c945d942fb8b2da795ed97e43a5b7dbdde7f8fd2ff7154544336d5c50fb7380341e660d4898c7fbc39b2b782f28defac6873523c7c1de8e52c65e4395c686ba483c35a220b0416d46357a063fa4c33fa9c52d5c207a1304ae141c791e62ba6a7374ed922b8dd94079b72b69302", - "4720b88d6bfb1ab43958e26827730d852d9ec30173ebd0fe0d273edcece2e788558984cd9306fe5978086a5cb6d37975755d2a3daeb16f99a8a11544b8247a8b7ed5587afc5bea1daf85dcea5703c5905cf56ae7cc76408ccabb8fcc25cacc5ff456db3f62fa559c45b9c71505eb5073df1f10fc4c9060843f0cd68bbb4e8edfb48d0fd81d9c21e53b28a2aae4f7ba", - "f4639b511db9e092823d47d2947efacbaae0e5b912dec3b284d2350b9262f3a51796a0cd9f8bc5a65879d6578ec24a060e293100c2e12ad82d5b2a0e9d22965858030e7cdf2ab3562bfa8ac084c6e8237aa22f54b94c4e92d69f22169ced6c85a293f5e16bfc326153bf629cdd6393675c6627cd949cd367eef02e0f54779f4d5210197698e4754a5fe490a3a7521c1c", - "3d9e7a860a718565e3670c29079ce80e381969fea91017cfd5952e0d8a4a79bb08e2cd1e26161f30ee03a24891d1bfa8c212861b51618d07429fb48000ff87ef09c6fca526567777e9c076d58a642d5c521b1caa5fb0fb3a4b8982dc14a444732b72b239b8f01fc8ba8ee86b3013b5d3e98a92b2aeaecd4879fca5d5e9e0bd880dbfffa6f96f94f3998812aac6a714f331", - "4d9bf551d7fd531e7482e2ec875c0651b0bcc6caa738f7497befd11e67ae0e036c9d7ae4301cc3c7906f0d0e1ed4738753f414f9b3cd9b8a71176e325c4c74ce020680ecbfb146889597f5b40487e93f974cd866817fb9fb24c7c7c16177e6e120bfe349e83aa82ba40e59e917565788658a2b254f25cf99bc65070b3794cea2259eb10e42bb54852cba3110baa773dcd70c", - "b91f65ab5bc059bfa5b43b6ebae243b1c46826f3da061338b5af02b2da76bb5ebad2b426de3c3134a633499c7c36a120369727cb48a0c6cbab0acecdda137057159aa117a5d687c4286868f561a272e0c18966b2fec3e55d75abea818ce2d339e26adc005c2658493fe06271ad0cc33fcb25065e6a2a286af45a518aee5e2532f81ec9256f93ff2d0d41c9b9a2efdb1a2af899", - "736f6e387acb9acbee026a6080f8a9eb8dbb5d7c54ac7053ce75dd184b2cb7b942e22a3497419ddb3a04cf9e4eb9340a1a6f9474c06ee1dcfc8513979fee1fc4768087617fd424f4d65f54782c787a1d2de6efc81534343e855f20b3f3589027a5436201eee747d45b9b8375e4294d72ab6a52e04dfbb2914db92ee58f134b026527ed52d4f794459e02a43a17b0d51ea69bd7f3", - "9242d3eb31d26d923b99d66954cfade94f25a18912e6356810b63b971ae74bb53bc58b3c01424208ea1e0b1499936daea27e63d904f9ed65fdf69de40780a3027b2e89d94bdf214f585472613ce328f628f4f0d56217dfb53db5f7a07f54c8d71db16e27de7cdb8d23988837b49b65c12f1771d979e8b192c9f4a16b8d9fba917bcf74ce5a82aac2075608ba6c2d485fa59864b9de", - "5da68704f4b592d41f08aca08f62d85e2e2466e5f3be010315d11d113db674c4b98764a509a2f5aacc7ae72c9deff2bcc42810b47f64d429b35745b9efff0b18c58653461e968aaa3c2c7fc455bc5771a8f10cd184be831040df767201ab8d32cb9a58c89afbebecb524502c9b940c1b838f8361bbcde90d272715017f67609ea39b20fac985332d82daaa023999e3f8bfa5f3758bb8", - "71ea2af9c8ac2e5ae44a176662882e01027ca3cdb41ec2c6785606a07d7231cd4a2bded7155c2feef3d44d8fd42afa73265cef826f6e03aa761c5c51d5b1f129ddc27503ff50d9c2d748322df4b13dd5cdc7d46381528ab22b79b0049011e4d2e57fe2735e0d58d8d56e92c75dbeac8c76c4239d7f3f24fb56697593b3e4afa6671d5bbc96c079a1c154fe20212ade67b05d49ceaa7a84", - "1d133170582fa4bff59a21953ebbc01bc202d43cd79c083d1f5c02fa15a43a0f519e36acb710bdabac880f04bc003800641c2487930de9c03c0e0deb347fa815efca0a38c6c5de694db698743bc955581f6a945deec4ae988ef7cdf40498b77796ddea3fae0ea844891ab751c7ee20917c5a4af53cd4ebd82170078f41ada2795e6eea17593fa90cbf5290a1095e299fc7f507f360f187cd", - "5ec4ac45d48fc15c72471d795066bdf8e99a483d5fdd599511b9cdc408de7c0616491b73924d0266da34a495331a935c4b8884f57d7ad8cce4cbe586875aa52482215ed39d7626cce55d50349c7767981c8bd6890f132a196184247343566fc972b86fe3c5369d6a6519e9f07942f0522b77ad01c751dcf7defe31e471a0ec00963765dd8518144a3b8c3c978ad108056516a25dbe3092e73c", - "0d5e74b78290c689f2b3cfea45fc9b6a84c822639cd438a7f05c07c374adced42cdc12d2a9233a4ffe80307efc1ac13cb04300e165f8d90dd01c0ea955e7657332c6e86ad6b43e78ba4c13c675aed83192d8427866fb6484e6a3071b2369a46fba9005f31232da7ffec7952f831aaaddf63e225263531c2cf387f8cc14fa856c8795137142c3a52ffa69b8e30ebc88ce3bbc227597bcc8dddd89", - "a0fe36f983259921dc2fa7d89002b3066241d63bfc2448caf7e10522a35562be0bfedc3dce49cfce2e614a04d4c64cfc0ab898873a7fc26928dc1927c009d12f6f9b7a278205d3d0057604f4ac746f8b9287c3bc6b929832bf253b6586192ac43fdd29ba585dbd9059aab9c6ff6000a7867c67fec1457b733f6b620881166b8fed92bc8d84f0426002e7be7fcd6ee0abf3755e2babfe5636ca0b37", - "1d29b6d8eca793bb801becf90b7d7de215b17618ec32340da4bac707cdbb58b951d5036ec02e105d83b5960e2a72002d19b7fa8e1128cc7c5049ed1f76b82a59eac6ed09e56eb73d9ade38a6739f0e07155afa6ec0d9f5cf13c4b30f5f9a465b162a9c3ba04b5a0b3363c2a63f13f2a3b57c590ec6aa7f64f4dcf7f1582d0ca157eb3b3e53b20e306b1f24e9bda87397d413f01b453ceffeca1fb1e7", - "6a2860c110cd0fc5a19bcaafcd30762ee10242d34739638e716bd89fd537ea4dc630e6f85d1bd88a25ad3892ca554c232c9830bd56980c9f08d378d28f7fa6fa7df4fcbf6ad98b1adfff3ec1f63310e50f920c99a5200b8e64c2c2ca249399a149942261f737d5d72da949e914c024d57c4b639cb89990fed2b38a37e5bcd24d17ca12dfcd36ce04691fd03c32f6ed5de2a2191ed7c826375ba81f78d0", - "7132aa291ddc9210c60dbe7eb3c19f9053f2dd74742cf57fdc5df98312adbf4710a73245de4a0c3b24e21ab8b466a77ae29d15500d5142555ef3088cbccbe685ed9119a10755148f0b9f0dbcf02b2b9bcadc8517c88346ea4e78285e9cbab122f824cc18faf53b742a87c008bb6aa47eed8e1c8709b8c2b9adb4cc4f07fb423e5830a8e503ab4f7945a2a02ab0a019b65d4fd71dc364d07bdc6e637990e3", - "3e664da330f2c6007bff0d5101d88288aaacd3c07913c09e871cce16e55a39fde1ce4db6b8379977c46cce08983ca686778afe0a77a41baf447854b9aa286c398c2b83c95a127b053101b6799c1638e5efd67273b2618df6ec0b96d8d040e8c1ee01a99b9b5c8fe63fea2f749e6c90d31f6fae4e1469ac09884c4fe1a8539acb313f42c941224a0e79c059e18affc2bcb6724975c436f7bf949ebdd8aef51c", - "7a6ea63a271eb49470f5ce77519ed61ae9b2f1be07a96855726bc3df1d0723af3a703fdfc2e739c9d31d25814daf661a23558b50982e66ee37ad880f5c8f11c8130fac8a5d0250583700d5a324894fae6d61993f6bf9327214f8674649f355b23fd634940b2c467973a839e659169c773119919f5b81ee171edb2e5f6940d7551f9e5a70625d9ea88711ad0ed8ab2da720ad358bef954456cb2d5636425717c2", - "c5106bbda114168c449172e49590c7eeb827fa4e1a2a7a87a3c1f721a9047d0c0a50fbf244731be1b7eb1a2ef30f5ae846a9f38f0df44f32af61b68dbdcd0226e741dfb6ef81a2503691af5e4b3171f48c59ba4ef91eba344b5b697f261df7bbbb734ca6e6daebaa4a179feb17002823281b8534d55a6531c59305f6e3fd3fa63b747bcf0deb654c392a02fe687a269effb1238f38bcaea6b208b221c45fe7fbe7", - "597716a5ebeebc4bf524c15518816f0b5dcda39cc833c3d66b6368ce39f3fd02ceba8d12072bfe6137c68d3acd50c849873150928b320b4fbc31c1456679ea1d0acaeeabf666d1f1bad3e6b9312c5cbdecf9b799d3e30b0316bed5f41245107b693366accc8b2bcef2a6be54209ffabc0bb6f93377abdcd57d1b25a89e046f16d8fd00f99d1c0cd247aafa72234386ae484510c084ee609f08aad32a005a0a5710cb", - "0771ffe789f4135704b6970b617bae41666bc9a6939d47bd04282e140d5a861c44cf05e0aa57190f5b02e298f1431265a365d29e3127d6fccd86ec0df600e26bcdda2d8f487d2e4b38fbb20f1667591f9b5730930788f2691b9ee1564829d1ada15fffc53e785e0c5e5dd11705a5a71e390ca66f4a592785be188fefe89b4bd085b2024b22a210cb7f4a71c2ad215f082ec63746c7367c22aedb5601f513d9f1ffc1f3", - "be6556c94313739c115895a7bad2b620c0708e24f0390daa55521c31d2c6782acf41156271238885c367a57c72b4fe999c160e804ad58d8e565edbce14a2dd90e443eb80626b3eab9d7ab75d6f8a062d7ca89b7af8eb292c98eaf87ad1dfd0db103d1bb6188bd7e7a63502153cf3ce23d43b60c5782602bac8ad92fb2324f5a79453898c5de18415639ecc5c7974d3077f76fc1df5b956723bb19a624d7ea3ec13ba3d86", - "4bc33729f14cd2f1dc2ff459abee8f6860dda1062845e4adab78b53c835d106bdfa35dd9e77219eaef403d4e80488ca6bd1c93dd76ef9d543fbb7c8904dccc5f71509a6214f73d0f4e467c3e038ea639b29e7fc442ee29f57117740576188ada15a739827c647a46b0271817ab235c023c30c90f2115e5c90cd8501e7b286962fc66ffc3fe7e8978746168314908a41998bd83a1eeffda9d714b864f4d490fdeb9c7a6edfa", - "ab12faea205b3d3a803cf6cb32b9698c32301a1e7f7c6c23a20174c95e98b7c3cfe93fffb3c970face8f5751312a261741141b948d777b8a2ea286fe69fc8ac84d34116a4674bb09a1a0b6af90a748e511749de4697908f4acb22be08e96ebc58ab1690acf73914286c198a2b57f1dd70ea8a52325d3045b8bdfe9a09792521526b7564a2a5fcd01e291f1f8894017ce7d3e8a5dba15332fb410fcfc8d62195a48a9e7c86fc4", - "7d421e59a567af70594757a49809a9c22e07fe14061090b9a041875bb77933deae36c823a9b47044fa0599187c75426b6b5ed94982ab1af7882d9e952eca399ee80a8903c4bc8ebe7a0fb035b6b26a2a013536e57fa9c94b16f8c2753c9dd79fb568f638966b06da81ce87cd77ac0793b7a36c45b8687c995bf4414d28289dbee977e77bf05d931b4feaa359a397ca41be529910077c8d498e0e8fb06e8e660cc6ebf07b77a02f", - "0c18ab727725d62fd3a2714b7185c09faca130438eff1675b38beca7f93a6962d7b98cb300ea33067a2035cdd694348784aa2eda2f16c731eca119a050d3b3ce7d5c0fd6c234354a1da98c0642451922f670984d035f8c6f35031d6188bbeb31a95e99e21b26f6eb5e2af3c7f8eea426357b3b5f83e0029f4c4732bca366c9aa625748297f039327c276cd8d9c9bf692a47af098aa50ca97b99961bef8bc2a7a802e0b8cfdb84319", - "92d5909d18a8b2b9971cd1627b461e98a74ba377186a6a9df5bd133635250b300abccb2254cacb775df6d99f7c7d0952653c28e6909b9f9a45adce691f7adc1afffcd9b06e49f775364cc2c62825b9c1a86089080e26b57e732aac98d80d009bfe50df01b95205aa07ed8ec5c873da3b92d00d53af825aa64b3c634c5ece40bff152c331222d3453fd92e0ca17cef19ecb96a6eed4961b627aca48b12fecd091754f770d52ba861546", - "802f22e4a388e874927fef24c797408254e03910bab5bf372320207f8067f2b1ea543917d4a27df89f5bf936ba12e04302bde23119533d0976beca9e20cc16b4dbf17a2ddc44b66aba76c61ad59d5e90de02a88327ead0a8b75463a1a68e307a6e2e53ecc1986274b9ee80bc9f3140671d5285bc5fb57b281042a8978a1175900c6073fd7bd740122956602c1aa773dd2896674d0a6beab24454b107f7c847acb31a0d332b4dfc5e3f2f", - "3844fe65db11c92fb90bf15e2e0cd216b5b5be91604baf3b84a0ca480e41ecfaca3709b32f8c6e8761406a635b88eec91e075c48799a16ca08f295d9766d74475c47f3f2a274eae8a6ee1d191a7f37ee413a4bf42cad52acd5564a651715ae42ac2cddd52f819c692ecdef52ecb763270322cdca7bd5aef71428fa73e844568b96b43c89bf1ed42a0abf209ffad0eeec286c6f141e8af073ba4adfbbdeda253752ae36c9957dfc905b4c49", - "329377f7bf3c8d74991a7d61b0cf39baff5d485d79751b0d5ad017d23bec570fb19810105bab79ab5acb102ab972165224d4ec888ec7de5148077fa9c1bb6820e0d91ae4e2591a21fec2f820606ce4bafc1e377f8dc3a5bd1a9e2772a57abccd0b757164d768872c91d02789545ab5b203f688d71dd08522a3fd2f5bcd7df507aebf1ca27ddff0a82afb7aa9c180008f49d1325adf97d047e77238fc75f56356de4e87d8c961575c9f6362c9", - "f7f269929b0d71ea8eef7120e55ccba691c582dd534692abef35c0fe9dec7dae973cd9702e5ad420d278fe0e653fdcb22fdcb63148109ec7e94f2d0750b28157dd1764376ae10fdb0a4aef3b304bd82793e0595f941226a2d72abbc929f53134dc495b0d65ced409914f94c2523f3dfbbdeeac84ae247ab5d1b9ea33dce1a808885a55be1f3683b46f4be73d9b62eec2585f690056858dfc427aabf591cd276724885bcd4c00b93bb51fb7484d", - "ac022309aa2c4d7fb628255b8b7fb4c3e3ae64b1cb65e0de711a6def1653d95d8088871cb8905fe8ae76423604988a8f77589f3f776dc1e4b30dbe9dd262b2187db02518a132d219bd1a06ebac13132b5164b6c420b37dd2ccee7d69b3b7fa12e54f0a53b853d490a68379ea1fa2d79762830ffb71bf86aab506b51f85c4b6a41b69325c7d0c7aa85b93b7144489d213e8f33dbb879fce22849865337b620b155cb2d2d36a68832889e30194d36d", - "d009c2b78a8f02e5e5dbb586ef71fc324b375092e15913ca1a5bfd22d516baadb96867bee3562e77c4a4852344a1a76c30728be5e22400b4cc41711f66754c246a520498d8c24f0205b9c873748dbeb67fe1ad099ad04cf89f4b517f0aa481136d9f6de2d727df01c6aa4099da59d4382b51e25fd47c33d9842c32b62331e50794bfe8b61b3ba9de1b8b704779c6d65edff3af00f121ab4a7ea384edabe47c6d0098a48991f387ca4444135ec59d46", - "c00bab36cce69899817d1425016d222d7303197ed3e3fdcac744705e7f178a1ac745968900f69299163e19b3161f3e0a4cc55aa2e4e71e0ee6ac427d1f4d14e063f68d303ddfbb18118335cfa7a6a90d99c38319ee76f7a884846a9e0b68030bf28e78bfbd56359b9368842814da42b04cb0e307d5d846dc22f049147bae31b9a956d17676a8cc348dafa3cabc2007a30e730e3894dddf9999fb8819086311f0703e141613ed6dcd7af8510e2dc435b0", - "c9789152a9fc29698d49ed95f09bd11b75f18a8c5615a73dbe54ae5e550027fd0ae6a8b60667040c1b12de3d1ee3f6bf061c78c951a3210effc912e19f482dd4de152063c588c44903bc11761706fd935afa040df085b08144d83d0dde32b46ab52f4fae98ac116c7ff11d7f553450c2e37b9c5f0b1dd9e0b8640a24cba6f2a5246c41f197f46e3dc8a29131c79bef3351c6e277a0a34442274d546ccd058891277473d668420f121750d19cd684267405", - "06a15a0731ce52557e368bcbaa11ef3399299e36fb9f2eda6e5726907c1d29c5c6fc581405ba48c7e2e522206a8f128d7c1c939d1132a00bd7d6366aa82724e968964eb2e373563f607dfa649590dcf5589114df69da5547fef8d1604cc4c6de1ed5783c8746918a4dd31168d6bc8784cd0c769206bd803d6ca8557b66748770402b075ef44b38157d4c0da7c6281725a2065d087b1f7b23455fa673bdeeba45b983311c44eabe9ef4b7bde3420ae9881863", - "d08aacef2d7a41aec09473bd8a44f628e15addb7b9e5b77a1e09c8ab4942f379a0bfcb324d580b774666f18ae78dd36710824ff12393f059068fe4b559c53662c2b0e6c69e23785c8f32554e837ec1714bee902e60737b639dd933af4f68cb9d7de77e1f3b28e5b122891afce62b79acd5b1ab4ba411662cc77d806449e69c5a45a143b742d98ac84a0826d68433b9b700ace6cd472ba2d58a90847f42ce9c43f38ffc017db4bf40450b2eee1f4594dc740c0f", - "6a6058b0a498b7ea76a93c646eb9b8629f0cba4a0c726420c5f67ba9b0412cade356abdf0a4fb94384bad32ce0d5dd9e23dcaae1d6f28ff8683616b30f1392890c67b3a2c04b360893b801f127e527e4da82e239f4c878da13f4a4f1c76db07190e77ec123995168102fb274434a2d1e12913b9b5cbab4aacaad2bd89d88b3ca2b8e60dacf7c22c9379097ff60880f552e320ca3b571994f52534470feee2b39e0dadb5cd88257a3e459a4cc6f12f17b8d54e1bb", - "adeced01fc5671531cbb45679f5ddd42b3a95151677b6125aaf6f5e8f82fbabaa5ecf7c3552c2458587224f0042870f178f5fca5465250e75d71352e652eeed23cdb7f915f5ebb44099b6db116ca1be45530ac8ed32b7f161d60ed4397ad3d7d649ae6bf75ca5bec891d8e595605be9764f3a03965e1fe0eaffbf212e3df4f0fa35e08ff9d0091e6d4ac4748edfe43b611085a6ffec163014655fdd839fd9e81b63b1fa8cae4ec335ec343289758e389a79ceedfae", - "d014592f3a83ba40af366f137c674724916c3cdd3f6cf9d4c5c7c8d6d51ebf26e315e2c12b3546be56fb52382904046ecbd2f5b883aa4ff473de6f0c26ab862c3fa34bf3d880cc1911ce39a4088c6617c179dc5faf68a2c488bbde12d67b50f73abcfab0e3b062e68c95363e11f5f1de8ec36ed01ea21442518089045df67d346135283ad5b3fff80cf57f20876849f6db9fa139728358415a90610f69ec720fc92d8234e3e122551e9df2c644c4a2c4e3734d07de8e", - "c0d0c37838873ba8757d6e41b409605043bc1635edcd731219587676d94217e9f0ab44b71de25000661ce7303b7015f45e6eaa7b7ebef92b8f4a34c902c908d2172185505fa33aca5a41be83079316cdfdd430fc2c45f505f85d867e6d516f7e1bf19c001d9f43018968aab65ec031b3801399231c83ec9e622dab5629922a6b424cab938c135ff7310501c2c02971bfd2f577e25904d1a618baf0859f77f4e8b1d0cde9544e95ec52ff710c0672fdb3d891feeea2b017", - "7022e7f00902219ba97baa0e940e8ac7727f58955aa068c29680fac4a16bcd812c03eeb5adbcfe867a7f7c6b5d89f4641adb9173b76a1a8438866f9b4f640ce2aedf5f1080c890bcf515b4be4e3e512352f1e5323c62ec46cb73f3d71be8235fee55a154763f7c3f9aeb61ffd28f4cd93d3310f608e2133586bf1ab3f102de96f64c68a4668de8acb2a76a7ce0cddddc8fa3df5e9d230823da16ed9ebb402d36e38e6e018795e5a71517ecab5f9ca472b9ced8ff69d2d195", - "acaf4baf3681ab865ab9abfae41697141ead9d5e98523c2e0e1eeb6373dd15405242a3393611e19b693cabaa4e45ac866cc66663a6e898dc73095a4132d43fb78ff7166724f06562fc6c546c78f2d5087467fcfb780478ec871ac38d9516c2f62bdb66c00218747e959b24f1f1795fafe39ee4109a1f84e3f82e96436a3f8e2c74ef1a665b0daaa459c7a80757b52c905e2fb4e30c4a3f882e87bce35d70e2925a1671205c28c89886a49e045e31434abaab4a7aed077ff22c", - "84cb6ec8a2da4f6c3b15edf77f9af9e44e13d67acc17b24bd4c7a33980f37050c0301ba3aa15ad92efe842cd3ebd3636cf945bb1f199fe0682037b9dacf86f162dadabfa625239c37f8b8db9901df0e618ff56fa62a57499f7ba83baebc085eaf3dda850835520344a67e09419368d81012168e5de5ea45158397af9a5c6a1657b26f319b66f816cd2c28996547d697e8df2bb163ccb9dda4d6691dffd102a13667ab9cde60ffbfb872187d9c425a7f67c1d9fffff9276ed0aeb", - "6a52c9bbbba454c14540b2be58230d78ecbeb391646a0c6fcce2f789086a78364b81ae85d5396d7cfa8b46bda41e3083ec5cf7b4c47dc601c8a697df52f557defca248506dbebab25657f5a561d09625b7f4b2f0119a12beeac087efc9d350a735c35d2431c1da7dda99befb17f41a3dc4da0f00bb95366be128538ce27763d81f832fe3c1d4efc07b5b08ad8dc9e65fb5e48546664e18cb2d3bb3fe1f56fa7aae718c5e3bbdeaf70e15023f6a25b72a2d177fcfd04211d40664fe", - "c3c4d3b31f1f5f9538923df3478c84fffaef411520a542da9a220ee4132eabb9d718b5076fb2f985485e8ba058330aed27ddfd3afa3db34aa60301088caec3d0053828c0c2bc87e2e61db5ea5a29f62fdad9c8b5fc5063ec4ee865e5b2e35fac0c7a835d5f57a1b1079833c25fc38fcb14311c54f8a3bd251bca19342d69e5785f9c2e43cf189d421c76c8e8db925d70fa0fae5ee3a28c4047c23a2b8a167ce53f35ced33bec822b88b06f41558c47d4fed1bfa3e21eb060df4d8ba1", - "8d55e92136992ba23856c1aea109766fc44772477efc932b3194af2265e433ed77d63b44d2a1cff2e8680eff120a430fe012f0f09c6201d546e13ad46fc4ce910eab27bb1569879abed2d9c37fae9f1267c2216ec5debcb20d4de58461a621e6ce8946899de81c0add44d35e27b7982a97f2a5e6314901caebe41dbba35f48bc9244ca6dca2bdde7306435892f287036df088633a070c2e385815ab3e2bfc1a47c05a5b9fe0e80dd6e38e4713a70c8f82bd32475eea8400c7bc67f59cf", - "5016284e20362610fa05ca9d789cad25f6d43263787e7e085476764ce4a8908ce99b262b375e9d106170b1bec1f473d5e777e0c1896533040e39c8c1465e07907ef5860e14e4d8310013e35f12090e0bfc687474b1f15f3dd2033a0edac5246102da4deec7e188c3517d84d9c2a0a4497a4c5f82a30f1ba009e45ee6eb3ab4368c720ea6feee428ffd2c4cc52debb8d634a64176572c72368f94a66689f23f8a01218f532117af5a8060d140e7ca435a92882fcb5630ebe14a4805f1dc83", - "05456ec59b8d41bbd736727976b96b38c43827f9e16169be673ff37870c2ecd5f0d1ea1a136be4cc7b047a02a4421d484fd2a12ece418e42ee391a13a0b1df5a0162b29ab70d3fe3e04ba6ab26b37d62b7cf05a5e2f033611bf970b8e1f30e198e483e740fa9618c1e8677e07b61296b94a9787a68fba622d7653b5568f4a8628025939b0f74389ea8fced6098c065bf2a869fd8e07d705eadb53006be2abb716a3114ceb0236d7e916f037cb954cf977720855d12be76d900ca124a2a66bb", - "eb6f60b83fcee77060ff346aaf6ec34d82a8af469947d3b5074cde8eb26566eb1fa039bcc707738df1e95869bd827c246e88436f0614d9834ead5392ef376105c4a9f370071cdeaaff6ca0f18b74c3a48d19a717253c49bd9009ccbfdd5728a08b7d112a2ed8dbafbbb46d7a75dc9a05e09bfde1a0a92d74a51887f9d123d7896e9f9d0057b660ed7d55454c069d3c5260411db4cdc67e7b74f680d7ac4b9dcc2f8baf72e15e6b3cafebcdf449a6436ed2c398b675f79c644747c57553bf7ea2", - "187a88e88514f6c4157c1ba40b442baae1ae563a6c989277443b12a219aa484cb9fa8adbb9a29d429f50155321b15664926317477079c7060dfdaa84c1d74bba78892c34e6f21ad35208d2ae622012401696bff5cd57b6485944b3db7b9071fa5f57fbfb1085d91bb9cff5808d662cdc6c8157249478262c44b7fbc397ed42a4977b202e817717bfccc9f0467294062313f7705251ed09573f16d23429361fada259dfb300369c4198f07341b38e84d02cdb74af5de6aab1fc2026208ea7c418c0", - "be31bc96606d0fab007e5caeded2f1c9f747c759777e9b6eef962bed49e45a1d4fc993e279d024915e600865ecb087b960584be18c41114d3c43f92169b9e0e1f85a0ebcd4e196376ccdc920e66103cd3b1c58407d0aafd0e003c4e341a1daddb9f4faba974362a32f35db83384b05ae8e3322d728893861afd8b1c940de5a17f691e763ce4969b6d94f67fb4a0235d100225bd8602f291388f0ca4a568748ad0d6040f1262eac2aede6cd27419bb78a394c1ffad72c262be8c3f9d9619d633e51d0", - "4d83d85ca838b4518588f2a90228a4dd18f14dd5b4c012d26298a97d848abbd825d221d02cceb6e8c701b4ad00e1dee4889b5c533e4bb60f1f41a4a61ee5478be2c1b1016c30345afd7a5253668260515e70751f22c8b4022d7fe4877d7bbce90b46531507dd3e89549e7fd58ea28f4cb23d33662bd003c1345ba94cc4b06867f778957901a8c441bee0f3b12e16463a51f7e50690356971dd73a686a49fda1eae46c9d54fba262811d698025d0ee053f1c58591c3bb3cbde69de0b31549ef5b69cf10", - "cdeb07d36dc5f9a1cd717a9e9cca37a2ce93caa298eee63571f7d6c5fde2a11c666cf53cf2dcb41ca2ea2319e7230ca68e38c647905928713a13982bf47fe33d7095ebd50b2df976208920a43eb2e29b942f32467403c45cea18bf44e0f6aeb155b48a8e5c471fec972a9d62f7ae093d2758f0aaec7ca50cb4725bfa219f1a3a46ad6bde7361f445f86b94d66b8ece080e56c510250693a5d0ea0ae87b4421860b853bcf0381eae4f1bf7c5c0472a93ad18407bc88475ab8560d344a921d3e86a02da397", - "a598fad52852c5d51ae3b10528fc1f722e21d44fbd42ae5acdf20e85a28532e646a223d27fd907bfd38eb8bb75175636892f8242877aab89e8c0824d368f3339ce7a82aa4e5af6db1f3b588a4d667a00f67bee37cfd2724dde06d2909fb9e58d892f4cfd2c4ca85acdf8256f5458b030a6bda151154ff2e6d7a8da90b54a2884c8a99fab5a4ac211ff23dc0975f4f592fd1b6b9dc7783bdcd2d4ca4e68d2902f2013e122cb62e2bff6b0a98ec55ba25837e21f1cfe67739b568d43e6413dab2bd1dc471e5a", - "17b68c74c9fe4926e8102070916a4e381b9fe25f5973c9bd4b04ce25749fc18931f37a65a356d3f5e5a1ef125d546f4f0ea797c15fb2efea6fbfcc5739c564693d47adeb12dcb3d98a2830719b13247792cb2491dca159a28138c6cff925aca42f4fdb02e73fbd508ec49b25c60703a7595a3e8f44b155b371d525e48e7e5dc84ac7b17c52bf5e526a67e7187234a2f19f57c548c70fc0b27183df73ffa53fa58b658034c896fa791ae9a7fd2620f5e46ce84c842a6e60e9324ae4db224ffc87d9617cb85ca2", - "b9e4267ea39e1de1fed0579f93bb351007c9f8fcdd811053fae33f09e2753d7428f04e1a9efcd45ea701a5d87a35b3afb2e6b65365dee6ead0bbb611b7797b212ac688653f542e604a39df277f12514ddfee3b4e27b98395c2cd97a203f1f1153c50327965770802ec2c9783edc428271762b275471e7ac65ac36523df28b0d7e6e6ccc7674268a132a63411fc82c0738dbb68af003b769a0bf9e6587b36476cb465350fee13f88ea355d47ffac7b0f964f4139db11b7642cb8d75fe1bc74d859b6d9e884f75ac", - "8ca704fe7208fe5f9c23110c0b3b4eee0ef632cae82bda68d8db2436ad409aa05cf159223586e1e6d8bdae9f316ea786809fbe7fe81ec61c61552d3a83cd6beaf652d1263862664df6aae321d0323440430f400f291c3efbe5d5c690b0cc6b0bf871b3933befb40bc870e2ee1ebb68025a2dcc11b68daadef6be29b5f21e440374301bde1e80dcfade4c9d681480e65ec494a6af48df232c3d51447b9d06be714949249c44c43cf73ed13ef0d533e770284e51369d94ae241a5fb2f163893071b2b4c118aeaf9eae", - "4fd8dd01012bb4df82bf42e0683f998e6f52dd9c5617bae33f867d6c0b69798cead8179346d70acc941abbbdd26e3229d5651361d2252c72ff22db2938d06ff6fc29a42fdf800ae967d06479bc7bbb8e71f40b1190a4b7189ffc9a7096cdb76d40aec424e1388e1eb7ef4ac3b34f3f089da8fda7d1927f5d775c0b2801d22dd1265c973158f640cec93edfed06dc80b20ef8c496b98289d54d46ccd205951cbb0f4e7daeb866b60bacb483411e4382b6f04d472843186bd0e31fbaa93e5c901ec028efafeb45fc551a", - "e9ee1b22b04b321a5fdd8301627011f583887d77560fb0f35552e207561f81e38ac58a0d0aeaf832d1ee72d913720d01f75574e9a321864fe95f4d0d8f0b8db97649a53e71e940aede5c40b4b9105daa42a6fb2811b61209247534cbaf830b07abe338d75d2f5f4eb1c3cf151e9edabe2c8d5f6fff08fac1495ef48160b100d30dcb0676700bcceb28723a29980ab0766a93abb8cb3d1963007db8458ed99b689d2a7c28c788743c80e8c1239b20982c81dadd0eed6740c65fbc4ef15c7b5569cb9fc997c6550a34b3b2", - "ec01e3a60964360f7f23ab0b22e021815765ad706f242265ebc19a2bb9e4eac94393952dcf61aae47682671a10f9165f0b20adf83a6706bfbdcf04c6faba6114653a35584267267873291c6fe7ff5f7695243143421509502c8875aafa9e9afe5be5ef2c851c7f35d69be5d3896000ccdbbfab5c238bb34d607cfe2d55d748880545b4aa7ca61137992925189025c62654b1f20d49c3ccd75aa73ce99cd7258dabedd6480a9f5185531fc0118beb68cc0a9cd182f6973287cf9252e12be5b619f15c25b65c71b7a316ebfd", - "db51a2f84704b78414093aa93708ec5e78573595c6e3a16c9e15744fa0f98ec78a1b3ed1e16f9717c01f6cab1bff0d56367ffc516c2e33261074935e0735ccf0d018744b4d28450f9a4db0dcf7ff504d3183aa967f76a507357948da9018fc38f150db53e2df6cea14466f03792f8bc11bdb5266dd6d508cde9e12ff04305c0295de29de19d491ad86e766774bb517e7e65befb1c5e2c267f013e235d8483e177214f89978b4cdc81aa7eff8b39f2825ad3a1b6ac1424e30edd49b067d770f16e74dd7a9c3af2ad74289a676", - "00e40f30ae3746edad0f5dd03d0e640933cf3d1694804c1e1ed6399ac36611d405196ee48f129344a8512feda16a354517871322bd5d9c6a1b592933eab531923efb393ffb23d9109cbe1075cebfa5fb917b40df028a621460ff6783c798792cb1d9635b5a6f84ec13918fa302924649b5c7fcb1f7007f0d2f06e9cfd7c27491e565a96c68a0c3644f92cd8f38857258c33801c5d537a83dfe583cba59d7eec7e394199c0a2660a62fabe3ed2099d57f315a6cd8de1a4ade29d977f15d65759cff433e5ac0c182aef3761163e1", - "3c5ea24d0d9b618294a263f062b2414a722be4eb10dfc346a6ec3b821d7396eba61cd6ef33618b04cd087a811f299d4606820227f16000d7c839062b96d3e3f59cd1a082448d13fc8f56b3fa7fb5f66d0350aa3b72dd7c165d590282f7da2e12cfe9e60e1796122bb8c2d40fdc2997af634b9c6b127a893dfb3467909378300db3da911be1d7b616bb8e0572433e65527e15d936500a2c60e9f9909dcf22ab5e4b6700f0238c205b4a813626fac3d945bab2637fb08203044a73d20c9a3fcf7c3fc4eb7807c3276dd5f73ce89597", - "9271aeeebfac46f4de85df78f1bfd36136aa8905e15835c9e1941176f71e3aa5b1b131843d40479735e23e182a2bd71f66f6149dccb7ed8c16469079dc8590bbf165374951785f4531f7e7361de62f936cfb23a2b5bdf186632e7042a0dd451fdc9b7208f923f3a5f250ae590ec348c63a16c3aacaf7379f53b5dd4152dcd40d23e683e2156e64c592ffc07e2cd6bbeebef4dd590b2f6b2bcbf08fcd111c079f5c4033adb6c17574f8756ecd87be27eff1d7c8e8d0324438d59ae171d5a17128fbcb5533d921bd044a2038a5046b33", - "4e3e533d5bcb15793d1b9d0468aaee801f32fdb486b11027183553a09ddbee8213924296f2815dc61577297459e834bf1c7a53f87d43782209e589b8295219ba7073a8fff18ad647fdb474fa39e1faa69911bf83438d5f64fe52f38ce6a991f25812c8f548de7bf2fdea7e9b4782beb4011d3567184c817521a2ba0ebad75b892f7f8e35d68b099827a1b08a84ec5e8125651d6f260295684d0ab1011a9209d2bdeb75128bf5364774d7df91e0746b7b08bda9185035f4f226e7d0a1946fcaa9c607a66b185d8546aac2800e85b74e67", - "b5d89fa2d94531093365d1259cc6fe8827fea48e6374c8b9a8c4d2209c280fa5c44958a1847222a692a59e6aa2696e6cdc8a543dd89b0ce03bc293b4e78d6ef48e1839694ccd5c65661143095c705b07e3ced84a0f5959114dd89deb956ab3fac8130eb4a878278205b801ae41a29e34146192308c4e759b374757b0c3b00319bce92a1b95a4d2ee179fd6714ff96155d26f693a5bc973f84ac8b3b91e3926276297532d98b46992a3f104c08100bf1671c43134bac280c617da711e90a0100137525375ebb12802a428885ae7fce6514a", - "40e3d8048fc10650cb8a7fc2e7113e26dec34f9ca2d5129cd10a8e8e44d113d61ee48c7d003e19fd307fc6debd70feb30243f298c510ccc4418355ce143066f067ad7c6de7288c3080e7ad46a23c8d34deb55a43e652fe90444ad3c57d3ec1e1c489d63ef915a24bc74a7925a0a7b1e1523f21ca8fee78df24e3d0a68d0013423db97c280799a0618229c0f2c167289a891e5c8d6661ab21285951c31710e3b5fe55f6347fe16d9b40507948a59252efeb616df83e5c098b07d0a7247cd371daff0e50491c582503fd89f79ba94d6af9ed76", - "1fa444de01dd3901e2b4684e3d7a799ffa02d85afd35fb30fe4c9d672837bee6dd8a3b8608b4bb5e589220ad5a854f46b46e41c6d57ad124a46beab4169ff69fee7e3838a6165e19dad8eb5d7bf53d4edd3cd2769daf219510a02fdd2afe0c0e1da3cd30fcd1aa88b68965586f07a25a1720fbd90a096ea30fc8e945e3637d7857c8a9c0ab4154ffb2000e57b5f9adfa4e4eaf8065bc3c2b2e75f495963325588785a6ce417dcddffd299873b15dcccca128d63cd4eeeadb64cda28099a9ad7c80d34844901f26b88b00b9aafeb2f90286d29d", - "fde0a0d9d813983bd1f55cf778a003a2023b34a555322ab280584537bc6bdd844d22a7d6066c18da83ec09f3d8d5a1aab4be0d5ce19b436052f6e259a4b49017a1f47f1fe2bf115d5bc8599fb216351c60dd6b1bedb2e6f4dcadf424b833501b6f099cbfad9e2290680fb69c25032b42a6274f7cb9b5c5950401354838a45f7cb77b95bf54718e2f3d3d9fb91eb2311903980277396398d9736d8e92fd838594ac8a537c6c529db5a8a4f89290e6ba6f20ac0e5ed6fef40901d0e0e8e3e502990811f9acaae555dd54eb1bcd96b513e2fe751bec", - "9f8e0caec87858599f5ab29bff86da78a841a918a023a111098687ecdf2747612d3f3809d9ca400b878bd4f92c43a1004f1c17c7f19a3cd1ce449bd2b23aff551623c37dd8c0be56bf3fd857b500c2b9f9ccea62481944090a3cf3b6ee81d9af8eeb60f65ef150f9fa4d3ed6ce4762d3d4f174ee8ccd460c25cafac0ea5ec8a6a4b2f9e8c0520cb7061155e532cb65f188b01e4b9086db951f504b060c296b326b3fc1c590498ecce594f828f4a10ea416675720ae505295d38a791bd0e93f428448a8f4c1fc0af53604a9e8255384d29ae5c334e2", - "33d1e683a4c97ee6bbaa5f9df1a88cb53b7f3c157b6045d70a56fda0ccbd3a1fa1f049cd564da072b53f415bf5fb843771c1d2551fd075d33377362b2f7c0645f9723123d11975991db8a2b518f02e2c7c30342a044754290bae2c77496d755e5981f12e6b0a0174280b958bf11ed628a9062775993ced04bf752ea8d165e3ac2177d7cd1b9371c44efa98f0b3e68602a839d384eec007979f46429dafb138cbc231ad928a9f65f7d66fac77416395e8f1debaaf76ec2e4e03e8674102cd26f614739f3ec9f949033df1fb97e87c2326d65aef94ed5f", - "180048f09d0b480887af7fd548a85abf605440c1ddde6afe4c30c30670233f7bf928f43b4681f59279ebbda5e8f8f2a1abefdee129e18ac60f9224e90b38b0aabd01308e0a27f41b6fb2ee07ee176ec9048c5fe33c3f7c791469c81f30e28170585b9f3e7e3c8c2e9d74370cb4518f13bf2dee048cbd98ffa32d85e43bcc64a626b40efb51ce712925fdd6fee006dc68b88004a81549d2121986dd1966084cd654a7c6686b3bae32afbd9625e09344e85cf9611ea08dfce835a2e5b3726e69ae8a76a97db60fcc539944ba4b1e8449e4d9802ae99fae86", - "13c0bc2f5eb887cd90eae426143764cf82b3545998c386007cca871890912217aa143ac4ed4ddb5a7495b704aa4de18419b8664b15bc26cfc6596a4d2ae408f98b47a566476d5802d594ba84c2f538def9d016661f6404bb2337a3932a24f6e30073a6c9c274b940c62c727242e24466084a3ea336365d71ea8fa6499c0ea8d59eea505f1126b99c795023c4963aa0d99323d0391e8701110edf551b2d3799e1063ca443f1add162156e445502ca1a052fe70c289838593b58839fc63de128a03e2bbf389e22ae0cf957fd03315ee407b096cc1cfd92dee6", - "6f1eb607d679efef065df08987a1174aab41bdac8aece7726dfa65805d6fff5b3d17a672d96b770dc32165f144f0f7324822a5c87563b7cd9e37a742ae83ef245d09006d91576f435a03476f509ea2936636232f66aa7f6cdf1ac187bbd1fcb8e20f8791866e60ed96c73374c12ac16795e999b891c64507d2dbd97e5fc29fac750ad27f2937cbcd29fdafccf27ab22453834d475f6186eaf975a36fad5c8bd61c21da554e1ded46c4c39765dcf5c8f5ccfb49b6a4dc562c919d0c7d8940ec536ab2448ec3c9a9c8b0e8fd4870cad9de2577c7b0c38563f355", - "dcdd993c94d3acbc555f464871a32c5da6f13b3d5bbc3e34429705e8ad2e76393fdd96a69a94acb652f5dc3c120d41187e9aa919669f727c4868013b0cb6acc165c1b7706c52248e15c3bf81eb6c147619467945c7c48fa14a73e7c3d5bec91706c567145342a026c9d97eff97ec672c5debb9df1a998083b0b0081d65c517b3e5634c95e347e781aa30ca1c8af815e2e494d844e847fdcb41622894a518dc36571123a40bfdbe8c4f4cff44d83c61dd9dcd24c464c53b395edb31efee9f3aa080e87cdc3d22d613ae84a53c9249c32c96f9a3bc4629bb126a70", - "49971f9823e63c3a72574d977953329e813b22a8387cd13f56d8ea77a5d1a8a20012632d1d8732bbcb9f756b9675aab5db927beacab7ca263e5718b8dfa7b2eed9a91bf5ed163b16139d45f7b8cc7e3f7bdda6202106f67dfb23b7c315ee3e17a09d466b1e6b13e7c7428184a979f5358667b4fa8bd40bcc8ea46058db44587a85377ac46bf155136c09ac58cb6c27f28e17028c91e7e8f74d5b500e56293b316974f02b9d9ea205d9b6ac4cfb74eb8eb0c944577fd2f41316368307beab3e327bf7dbaa0a4428836ec4e895dea635234abeaf113ceeadac33c7a3", - "c57a9cc958cee983599b04fe694f15fb470fcbc53e4bfcc00a27351b12d5d2434444253ad4184e87b81b738922ffd7ff1dc1e54f39c5518b49fb8fe50d63e3935f99e4bd125e8dc0ba8a17fd62de709339a43fabe15cf86d96a54010112170c340cfac4132182eed7301402bc7c8276089dec38488af145cb6222525894658f03501204b7a66aba0be1b557b28a2f652d66f7313ed825ecc4d8596c1be7420d4425b86a1a90a5b7f30d0f24e0d1aae0eb619ca457a71699e44be612a4011c597ee80b94d5507e429d7fc6af22579cd6ad642723b05ef169fade526fb", - "0568a672cd1ecbaa947045b712e2ac27995392fbef8f9488f79803cbee561c212287f080eca95adb5ba42739d78e3ba667f06045d87850d3a0499358649caa257ad29f1a9c511e7054db20554d15cbb55ff854afa45cae475c729cea72ede953522031865bc02b95589ed4d9841c552a8cc94904a93ed09ed77222f6c178195056be59bc4e96a815adf534e6b466fb47e262ff79c803c157a21b6e2269c2e0abeb494113cd868d8466e82d4b2f6a28b73645853d96bc9242515d803e33294848d3fe42fdff68da53c03491636beede47ff1399dd3d54a5e914d55d7adf", - "3f19f61a4cd085796731ac9f85a75a8bce77031932c31762d87d8b8d07b8bd19ff78d6b7d1bd1e87f3a4f41aad03b6c4d17a6cbc86be55f7c8b88ada047bb04f8d49f1c34bcf81cc0f3389ad01a758fc7eeb0072aa9ad1481992bfdde82e438e75590a4423832dfbe3756e2229ea873bc3606e6d72174cb2163bf40b5d49c81009dab85ecc03e311351bbf96e32c030a2b276a7698cb25bc2c967acb3213161a1fdde7d912cd6a804490f8056c47da1333f6e35c41e749c2c23919cb9af5eec5652e6e072b034fb1682e9aaa194a9c0bd456ea0b008d14dbce37967a7a8e", - "705f98f632d99d3651793825c38dc4deda56c59eac539da6a0159c83131cf8ab6f2ee0c3b74111fde351f7aa1a8c500a0cecab17c212d2c58ca09eae608c8eefc922b9902ef8d6832f799ba48c3c28aa702b3242107edeba01daafe424406a3822965056cfe8783455a671e93b1e2eae2321364f1871471c82124df33bc09e1b52882bd7e1c4c7d0b2f3dd4a28c2a002a43246768af0700f9659de99d62167be93177aabf19d678e79e9c726ac510d94e74873eda99620a3961930cd91937c88a06d8153d64fd60da7ca38cf26d1d4f04a0df273f52127c53fdc593f0f8df9", - "ea6f8e977c954657b45f25480ff42c36c7a10c77caa26eb1c907062e24fbca5aebc65cacca0de10abea8c78322f08672e13d8ac16996eca1aa17402eaea4c1cc6c800b22dc18cb8d620192d74bac02c07b5cfa61e513c7f28b7e29b9700e0e442720bf4c669d4995da19d19f841d9eb68cc74153592591e3bf059ef616b95305aa453b32fe99a91afb35bd482cf2b7aa42702837a53be3c38883d2963020e347556f841254ec6b85854485fe8c520b05f2ea67a9bf3981555c20991e2bacd4db5b418228b6002d8d41c025cb472bf5443aaa885974a408ea7f2e3f932c600deb", - "408190134ed06556811b1af808ab2d986aff152a28de2c41a2207c0ccc18125ac20f48384de89ea7c80cda1da14e60cc1599943646b4c0082bbcda2d9fa55a13e9df2934edf15eb4fd41f25fa3dd706ab6de522ed351b106321e494e7a27d5f7caf44ec6fadf1122d227eefc0f57aefc140d2c63d07dcbfd65790b1099745ed042cfd1548242076b98e616b76ff0d53db5179df8dd62c06a36a8b9e95a671e2a9b9dd3fb187a31ae5828d218ec5851913e0b52e2532bd4bf9e7b349f32de2b6d5d3cdf9f372d49617b6220c93c05962327e99a0480488443349f0fd54c1860f7c8", - "5f9e5c6f38573a85010a9d84d33f29c057003b2645e3ea6f72cbc7af95d197ce6a06b13fea81722853e6991791b8b15091cd066f5ed913592ed3d3af5370d39ba22beeb2a582a414b16824b77e194a094c2afdcc09aa73ce36f4943cca5ae32c5017dc398801dd92a47382d9327c9f6cffd38ca4167cd836f7855fc5ff048d8efba378cdde224905a0425e6b1de061fc951c5e624a5153b008ad41160a710b3ff2081748d5e02deb9f841f4fc6cf4a15153dd4fe874fd447482696283e79ee0e6bc8c1c0409baa5ab02c5209c319e3169b2476149c0c6e541c6197ca46e004eef533", - "218c6b3508aec69574f2b5039b30b942b72a8349d05f48ff945bbbe5c8957d5a6199492a6bf54bab821c9377e2edfa4c908384664d2c80112d5e805d66e0a551b941021be17dd20bd825bea9a3b6afb1b8c605805b3bda58750f03ea5c953a698494b425d8980c69f34d1c3f6b5866e8717031152a127215c256e08873c21b0f5cc85875d0f7c94601659150c04cd5fe5d381ba29983a2d94fcd3a65a94c53c7279cd000dddd4253d8cff8d7f6ace10247fe3bc30d63ba4bb54f557b3d22a3924369430d71ab37b701e9500bda70b5a643704858beed4726a889b6c9c91584194c68f1", - "dac26aa7273fc25d6e044c79fc2bfa46e59892a42bbca59a86826c91e76ab03e4bd9f7c0b5f08d1931d88b36ea77d94f7ba67cd4f1d3086e529427201119096ae066ae6f170940830ed7900de7bb9d66e09788287403a4ecc93c6da975d2fb08e918840a236c15f5d3a8f7375c2eeebbf6f01a6e7f29ca2b8d42df158414c320777433663c59fdcd1f39ca68e3473db721be7ce8c6dba5fddc024f94fedb286b0477581d451313ca8c737484daf60d67f9b2d56d4bcc271f7e9ae958c7f258efbc74d25753e0516f28282461941bf2dcc7dd8c7df6173b89760cefcac07190243ff863fb", - "c46e6512e6797cc7a54254a1b26b2de29aa83d6c4b1ea5a2786fbcec388270625b12635eae39e1fba013f8a65219421bca8b52a8ddfd431cda60299bdf160734d5a7450ec79620058522702174ae451b9bfa7c4a455fbbee3e1d048c7d4bac5131018228f137c8e130440c7059b4f15eaa34ce872a851a16ce86f982df78a00be4d564da2003a450ddee9ab43ea876b8b4b65c84f0b39265fd5456417afb5bc54997c986e66fc222f2123ba5e719c4d6b9a177b188277df384f1125821cf19d5248cef0be183ccdc84ac194506f740ed2188b2689ea4c9236a9e9e3a2fff85b6af4e9b49a3", - "1ccd4d278d67b65cf2564ecd4de1b55fe07adc80e1f735fe2f08ea53fd3977323689122c29c798957abaff6aba09bdcbf661d77f4dc8913ab1fe2bef38846166e3834785e7105d746484eff8c656af5d8c7854abc1c62b7fadb65521dc6f793d978bda9838eb3800417d32e8a24d8c8cb1d18a5de6ca79d9e1b0ff9aa25e6218fe944cf18666fecc1e31334b390260dbe0997539e1b02f6366b2aea4f4a21efe04f4b97568fcb39e59919d5ebac6543d5d0f48fc66b923c34aac377dc95c20329b837b6ed5e8d9a3d2089cd0d8f025658006ff41cbdaccca618822ca590ab155253f8bc1c7f5", - "9875209588395ee3c9fdd793fd48717cc84c8c3ea622b2ccc4a1be4448e6034b7810569855255031f10be5ffd714b05f9ce01972d712d40abf03d4d0ce175813a7a668f761324996093fc2aa5912f7fc2abdadd8775d2b4d9ad492216293381460ed8f6db3d641d1525f4242c348bbfe504c704f215dc461de51b5c75c1aae967936963848f16c673eca5e78dfd47eb19001d52d1bcf96c98956dad5ddf594a5da757e7ca35f2f69803b784e66ac5a58b75c228b8266ec592505e5d1ca87d81225738855f15bc0914677e81593fd409e77d159f8a908f67788de9eb06c5561547aada96c47c535", - "40c90e375e366f3756d89091eb3eed9fe0fbfc5638700af4617d358812bac53124a2205dd6756456787d49cd6a35e302479a0992288f47532e4ea7ab62fc5ad5adc690a5d9a446f7e035ad4641bd8dae83946aee3338ec984ccb5cc633e1409f2531eeffe05532a8b0062ba99454c9aeabf8ecb94db195af7032bfebc22912f49d39330add47ff8fa5720612d697f0b602738930e060a1bb214efc5e292224cf34e29deaea6b1b1ff847e94ecc997325ac38df61db45d82bf0e74a664d2fe085c20b04c39e90d6a170b68d2f1d373f00c731c524456ada73d659aaac9df3191a7a3865083343fc13", - "e8800d82e072210ca6d7fa2472028974780b76aad4bcb9ad362422dd05ae3232668251d164daa375a43b26a38cce28dbeb3dee1a4a579f70d0fe7febb29b5ece8aa836e050fb3d188c63aa9c3c0da6c717d86458a6096b5effceb964efdec7035960c09ccd10dea3c5f1c7f9f478d5887ebbe2e15c5ff85dbacbc444bb951c4eec7abecb89ed80187e409e2972ffe1a5f01562af109f2cf09471cf72cf83a3bb8f4e2ef38ed0e326b698296394e5b2718a5000c01425708e8ad0461e62462d8819c2377f13ab1be2c7c9f33dc06fe23cad27b87569f2ce2e56e4b2c60c7b1b3d370841d89ebdc1f192", - "796d6d1447d5b7e8c55cd8b2f8b7010db39f27565f907e3fc0e464ea2d4bb52b37f10e7c6dcfc59231b9cdee12c32aeb4adbc42b86e86eb6defb5b69e6ca75e1f4d0dae3e124e5a1b8b6697f7e10b0403f1f0a5ff848eef3752837a9ba17780f16a9a709188a8d5b89a2fa74adb2e651163b1c2b3d261e225c9158dcd9eb7ac3d6704cee290cdff6bcb3cb90cee030aa0d19d4693655c3c30ac6fc06d2ae37787c47126d57ed9a6bef5f8a6c56859aefc08755739a95aac57a4dd916a92ba9f3afbf969df8085949615033365c751a9a3e1a18cee98a69d22e64009bebf8307169b6c61de0617ecfafdf", - "4f9057183566153cf337b07c3f5556006de54c56b2a1e5326c07aaeabd1886ec6f1641358925db232b2f0dbf75229c796a7395b2f934c1f99090bec1123f3c841b1cb3c5b1ec42ed5408f2940f0c48a9470b852c46d6557853d459cecd2c32bbcd8ee21fa11e385eef0857cba4d8545a61b52a484cdd779db4739fbc7aa9860dcabe0488b98fa0b60c3f7d6153db279000a52ffb573dab37d2ab1896a90e5deb7ac6bbe56239085c325d83a917dc6e8a448425b718c2356b9f3066163555ec444f372e184e02c8c4c69b1c1c2ae2b51e45b98f73d933d18750968945ca85d6bbb22014b4c4015262e3c40d", - "79dcca7d8b81a61359e4aece21f3df7b99518ce70bd2f57a18bab5e7114af2add0a0cea7f319d69f231f060e0a539d9a23fb3e95451ce8c6340cfb09edf931df84203a39226dd9eb278f11b691ef612585b973daab373e65d11325898badf6732100371fd759960fa8fec373268421d28bffdb9b12a430b92fe4b07566ca0c89e616e49f8fc75ccd9cdc66db820d7c02e109aa5ed86b89770262918a518f90a2292f6b68d68ae03992e4259a17a23c84ec2a417f082b5abf3a26e44d2278ecb8ba9456965303a75f25394d1aaf5544590e74b14d8a4cc4050be2b0ebcfe4d2db6b12a02c68a3bcdda70301f3", - "848755dc31e25e9a42f9ec12d847d19f292c14c162c9aba49e972cb123b58b8e57bb263a923929833373858594ff52dbc298dbbc078599194e4c07b0e5fc1e10808bbacdb6e93c72b333685cf961f28eb0d5a395c63266b01f130d25db384b356e5da6d01042fc2359581b89c63b3bb2d1ce897fbc9e83fe85d9666cb60e6a8c657f70caad5387b8a045bf91095606802c8424ea8ac52ef29386dc46183378a5fcb2cb927428b8c070f1c42aafd3bc70ca25437807696a46873cfeb7b80ba2ebc3c4272443d445e46343a1465253a9eebd532a0d1d2c18264b91ff45159f245404ae9335f2af55c802772426b4", - "ecaa6e999ef355a0768730edb835db411829a3764f79d764bb5682af6d00f51b313e017b83fffe2e332cd4a3de0a81d6a52084d5748346a1f81eb9b183ff6d93d05edc00e938d001c90872dfe234e8dd085f639af168af4a07e18f1c56ca6c7c1addffc4a70eb4660666dda0321636c3f83479ad3b64e23d749620413a2ecdcc52ad4e6e63f2b817ce99c15b5d2da3792721d7158297cce65e0c04fe810d7e2434b969e4c7892b3840623e153576356e9a696fd9e7a801c25de621a7849da3f99158d3d09bf039f43c510c8ffb00fa3e9a3c12d2c8062dd25b8dabe53d8581e30427e81c3dfc2d455352487e1255", - "23a3fe80e3636313fdf922a1359514d9f31775e1adf24285e8001c04dbce866df055edf25b506e18953492a173ba5aa0c1ec758123406a97025ba9b6b7a97eb14734424d1a7841ec0eaeba0051d6e9734263bea1af9895a3b8c83d8c854da2ae7832bdd7c285b73f8113c3821cced38b3656b4e6369a9f8327cd368f04128f1d78b6b4260f55995277feffa15e34532cd0306c1f47354667c17018ee012a791af2dbbc7afc92c388008c601740cccbbe66f1eb06ea657e9d478066c2bd2093ab62cd94abadc002722f50968e8acf361658fc64f50685a5b1b004888b3b4f64a4ddb67bec7e4ac64c9ee8deeda896b9", - "758f3567cd992228386a1c01930f7c52a9dcce28fdc1aaa54b0fed97d9a54f1df805f31bac12d559e90a2063cd7df8311a148f6904f78c5440f75e49877c0c0855d59c7f7ee52837e6ef3e54a568a7b38a0d5b896e298c8e46a56d24d8cabda8aeff85a622a3e7c87483ba921f34156defd185f608e2241224286e38121a162c2ba7604f68484717196f6628861a948180e8f06c6cc1ec66d032cf8d16da039cd74277cde31e535bc1692a44046e16881c954af3cd91dc49b443a3680e4bc42a954a46ebd1368b1398edd7580f935514b15c7fbfa9b40048a35122283af731f5e460aa85b66e65f49a9d158699bd2870", - "fe511e86971cea2b6af91b2afa898d9b067fa71780790bb409189f5debe719f405e16acf7c4306a6e6ac5cd535290efe088943b9e6c5d25bfc508023c1b105d20d57252fee8cdbddb4d34a6ec2f72e8d55be55afcafd2e922ab8c31888bec4e816d04f0b2cd23df6e04720969c5152b3563c6da37e4608554cc7b8715bc10aba6a2e3b6fbcd35408df0dd73a9076bfad32b741fcdb0edfb563b3f753508b9b26f0a91673255f9bcda2b9a120f6bfa0632b6551ca517d846a747b66ebda1b2170891ece94c19ce8bf682cc94afdf0053fba4e4f0530935c07cdd6f879c999a8c4328ef6d3e0a37974a230ada83910604337", - "a6024f5b959698c0de45f4f29e1803f99dc8112989c536e5a1337e281bc856ff721e986de183d7b0ea9eb61166830ae5d6d6bc857dc833ff189b52889b8e2bd3f35b4937624d9b36dc5f19db44f0772508029784c7dac9568d28609058bc437e2f79f95b12307d8a8fb042d7fd6ee910a9e8df609ede3283f958ba918a9925a0b1d0f9f9f232062315f28a52cbd60e71c09d83e0f6600f508f0ae8ad7642c080ffc618fcd2314e26f67f1529342569f6df37017f7e3b2dac32ad88d56d175ab22205ee7e3ee94720d76933a21132e110fefbb0689a3adbaa4c685f43652136d09b3a359b5c671e38f11915cb5612db2ae294", - "af6de0e227bd78494acb559ddf34d8a7d55a03912384831be21c38376f39cda8a864aff7a48aed758f6bdf777779a669068a75ce82a06f6b3325c855ed83daf5513a078a61f7dc6c1622a633367e5f3a33e765c8ec5d8d54f48494006fdbf8922063e5340013e312871b7f8f8e5ea439c0d4cb78e2f19dd11f010729b692c65dd0d347f0ce53de9d849224666ea2f6487f1c6f953e8f9dbfd3d6de291c3e9d045e633cfd83c89d2f2327d0b2f31f72ac1604a3db1febc5f22cad08153278047210cc2894582c251a014c652e3951593e70e52a5d7451be8924b64f85c8247dab6268d24710b39fc1c07b4ac829fbda34ed79b5", - "d7314e8b1ff82100b8f5870da62b61c31ab37ace9e6a7b6f7d294571523783c1fdedcbc00dd487dd6f848c34aab493507d07071b5eb59d1a2346068c7f356755fbde3d2cab67514f8c3a12d6ff9f96a977a9ac9263491bd33122a904da5386b943d35a6ba383932df07f259b6b45f69e9b27b4ca124fb3ae143d709853eed86690bc2754d5f8865c355a44b5279d8eb31cdc00f7407fb5f5b34edc57fc7ace943565da2222dc80632ccf42f2f125ceb19714ea964c2e50603c9f8960c3f27c2ed0e18a559931c4352bd7422109a28c5e145003f55c9b7c664fdc985168868950396eaf6fefc7b73d815c1aca721d7c67da632925", - "2928b55c0e4d0f5cb4b60af59e9a702e3d616a8cf427c8bb03981fb8c29026d8f7d89161f36c11654f9a5e8ccb703595a58d671ecdc22c6a784abe363158682be4643002a7da5c9d268a30ea9a8d4cc24f562ab59f55c2b43af7dbcecc7e5ebe7494e82d74145a1e7d442125eb0431c5ea0939b27afa47f8ca97849f341f707660c7fbe49b7a0712fbcb6f7562ae2961425f27c7779c7534ecdeb8047ff3cb89a25159f3e1cefe42f9ef16426241f2c4d62c11d7ac43c4500dfcd184436bb4ef33260366f875230f26d81613c334dbda4736ba9d1d2966502914ec01bbe72d885606ec11da7a2cb01b29d35eebedbb0ecc73ed6c35", - "fd993f50e8a68c7b2c7f87511ce65b93c0aa94dcbdf2c9cca93816f0f3b2ab34c62c586fc507b4900a34cf9d0517e0fe10a89d154c5419c1f5e38de00e8834fe3dc1032abdeb10729a81655a69a12856a78ca6e12110580de879b086fd6608726541cfa9616326bdd36064bc0d1e5f9c93b41278bff6a13b2494b81e238c0c45aea1b07d855e8f3fe1478e373bd9d3957cf8a5e5b9003386793d994c7c575cff2322e2428cbbaa4f47560316ae3354a7478842ff7cc5dcbacb6e871e72b36f06d63a9aaeb9044cfb7974afdc238a5816f537dcf33ee40b4e1a5eb3cff2402b46d548264e133008d284f11b7e4e450bc3c5ff9f79b9c4", - "8df21892f5fc303b0de4adef1970186db6fe71bb3ea3094922e13afcfabf1d0be009f36d6f6310c5f9fda51f1a946507a055b645c296370440e5e83d8e906a2fb51f2b42de8856a81a4f28a73a8825c68ea08e5e366730bce8047011cb7d6d9be8c6f4211308fad21856284d5bc47d199988e0abf5badf8693ceeed0a2d98e8ae94b7775a42925edb1f697ffbd8e806af23145054a85e071819cca4cd48875290ca65e5ee72a9a54ff9f19c10ef4adaf8d04c9a9afcc73853fc128bbebc61f78702787c966ca6e1b1a0e4dab646acdfcd3c6bf3e5cfbec5ebe3e06c8abaa1de56e48421d87c46b5c78030afcafd91f27e7d7c85eb4872b", - "48ec6ec520f8e593d7b3f653eb15553de246723b81a6d0c3221aaa42a37420fba98a23796338dff5f845dce6d5a449be5ecc1887356619270461087e08d05fb60433a83d7bd00c002b09ea210b428965124b9b27d9105a71c826c1a2491cfd60e4cfa86c2da0c7100a8dc1c3f2f94b280d54e01e043acf0e966200d9fa8a41daf3b9382820786c75cadbb8841a1b2be5b6cbeb64878e4a231ae063a99b4e2308960ef0c8e2a16bb3545cc43bdf171493fb89a84f47e7973dc60cf75aeeca71e0a7ebe17d161d4fb9fe009941cc438f16a5bae6c99fcad08cac486eb2a48060b023d8730bf1d82fe60a2f036e6f52a5bff95f43bbe088933f", - "f4d84ed3e564c102600a795eaa9b1eaf4ad12f1a4deca1d042a0a2750ddf6201db03073d8bf553cb9dde48a1b0083827a609f7242b86584cc180964ae794b12ce55661e00e36a6ba4dbc389e6a5a85f1b45df9af7ead1b0a54db56e68639b9d438a91504e82c35d40c7bc7e048a53ac0b04accd0dadf4ac9884b0ca0e3cb5ba4336e3581be4c4760a553823ffa283a1120d4e145af56a59f2533903650f0b9e9ad9fe2e8a3c3c3dd03a1fcb709032c8835324839c735b0c051d0cbd8b5d867617c11023432e4bd275d3d0eb98a0b6cf58071a5b712922f2bc751ac7c2588c447444cde2f37a8ea5ec126425bf517e0d17c9e2999f52fee14b3", - "2ccea21bac9c2b70d3923309cbf2d7cb7abd1fcc8b8b002688870a80029c62397350c3c898194e5deea360bb963d26d485cb7963f8167586976ec0556950b2e86135f4a2800991ce8473bfd44a3c5e937a48b5e355ba5141bccf2131a83988d9d2a9e8e7635a956105b3512c05ef708139ced51d7a4e204c12d8a49a21e8dc6de2629a2fd092326885d9f218745fe09f6d91fb6afce250a30a63689534b6be1f26899ffa3767d835cf586aa47776700f94241bc999b1e3deefe188f37ff734f5f16ee6a00914323dc7b8a143c9137cdcc5cd08ae9566f04bb2941532674c97dff6ffa5ce3405ef8e5d27ec403114253dd6394c0167d72a0044c5", - "2b681c6398aee63bf862770341648bbcd31d7de7903c5903fe3d9469311320bb24d914f2af0cdca199c97214c7c679dc32a2800ba484a03c010ea6be3bb9f2c87e30a98b606050b8a3f297f12b8f92caaeceb3e844652115934874e0a1ab093a73d759b53f6a6c3096940dd22c2bb96ce6820a7b9c6d71a208de9892aa6a7209b0fff56a0cafea52b952cdd6f5752cff3309d448800b4e4c878aa595595b56b12b83fcd6ca89520c7da664e449d7b4438fc455888aad5de0fad9a06eed14afd3513b5ebbffe01775549b701181bd26370764f56eba52fdb24286ad1ac0f5418a7c429f7dfc7f3168437fa8eed7a2ed7c723a485e4c3ed14dea2e07", - "aadfd505a89f4aade2c3018258a7e039401b1fc6a7f3d87910dddbb880d372ec8a13c70d92245de5b8e5f9a285c33b99dc82fa2b22decee72b93a72211656ad7a52696c8e570f78be28c0e427a371dafde856e8d5ed24f83b0660b51e7fac05d93a8666dfde6def59af863f80f3e5f6801182c87422203df390dcb736b8f830052a8832eeeb0b4e27e732aaf793d166b5a3ec7745aeef3766937c2b75a276bddd145f6010c29d035e343e267cb2d828436876ec3a7ebe3b6347d4172f7a99d6821ce152e039e53deb33340b324c7f068ffb94b3cde35a8eaa12d15c3806a7ad0acec3e8c7078c1d32a28fd3eec9f32cb86e4c22166ff69e83785e851", - "1605b8cce529a9d6262fd4390d9e4ae5e14e0adc0ec89b028ef68dd0f373ea259aaa96f2967091dd0874c0105385e9e6da9ca68297c31afa44ef834535fb302ce5b4e49edacbbdf359fe1228a8172495b3e57014c27edd58b685110980056c50c398a64f4923f2d720b4df16d75cb36b4233660694182099c35028a972519c24764fc94e18e582b24deb3491535fc06b83837c7958522800e822201d694af0bd0aa3834e17d4b1ba36f470905ae5f8bbeeb6c4c8604d8af02baa347b07086d6989867ddd5e8e8ed7740c3469bfa2810519c55c6add1332c4c54ee9097961d6741cb12a09713a0d07645f784f42f5ad94b48b836b34263130b0483f15e3", - "ff9c6125b2f60bfd6c2427b279df070e430075096647599bdc68c531152c58e13858b82385d78c856092d6c74106e87ccf51ac7e673936332d9b223444eaa0e762ee258d8a733d3a515ec68ed73285e5ca183ae3278b4820b0ab2797feb1e7d8cc864df585dfb5ebe02a993325a9ad5e2d7d49d3132cf66013898351d044e0fe908ccdfeeebf651983601e3673a1f92d36510c0cc19b2e75856db8e4a41f92a51efa66d6cc22e414944c2c34a5a89ccde0be76f51410824e330d8e7c613194338c93732e8aea651fca18bcf1ac1824340c5553aff1e58d4ab8d7c8842b4712021e517cd6c140f6743c69c7bee05b10a8f24050a8caa4f96d1664909c5a06", - "6e85c2f8e1fdc3aaeb969da1258cb504bbf0070cd03d23b3fb5ee08feea5ee2e0ee1c71a5d0f4f701b351f4e4b4d74cb1e2ae6184814f77b62d2f08134b7236ebf6b67d8a6c9f01b4248b30667c555f5d8646dbfe291151b23c9c9857e33a4d5c847be29a5ee7b402e03bac02d1a4319acc0dd8f25e9c7a266f5e5c896cc11b5b238df96a0963ae806cb277abc515c298a3e61a3036b177acf87a56ca4478c4c6d0d468913de602ec891318bbaf52c97a77c35c5b7d164816cf24e4c4b0b5f45853882f716d61eb947a45ce2efa78f1c70a918512af1ad536cbe6148083385b34e207f5f690d7a954021e4b5f4258a385fd8a87809a481f34202af4caccb82", - "1e9b2c454e9de3a2d723d850331037dbf54133dbe27488ff757dd255833a27d8eb8a128ad12d0978b6884e25737086a704fb289aaaccf930d5b582ab4df1f55f0c429b6875edec3fe45464fa74164be056a55e243c4222c586bec5b18f39036aa903d98180f24f83d09a454dfa1e03a60e6a3ba4613e99c35f874d790174ee48a557f4f021ade4d1b278d7997ef094569b37b3db0505951e9ee8400adaea275c6db51b325ee730c69df97745b556ae41cd98741e28aa3a49544541eeb3da1b1e8fa4e8e9100d66dd0c7f5e2c271b1ecc077de79c462b9fe4c273543ecd82a5bea63c5acc01eca5fb780c7d7c8c9fe208ae8bd50cad1769693d92c6c8649d20d8", -} diff --git a/blake2b/blake2x.go b/blake2b/blake2x.go deleted file mode 100644 index 52c414db0..000000000 --- a/blake2b/blake2x.go +++ /dev/null @@ -1,177 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package blake2b - -import ( - "encoding/binary" - "errors" - "io" -) - -// XOF defines the interface to hash functions that -// support arbitrary-length output. -type XOF interface { - // Write absorbs more data into the hash's state. It panics if called - // after Read. - io.Writer - - // Read reads more output from the hash. It returns io.EOF if the limit - // has been reached. - io.Reader - - // Clone returns a copy of the XOF in its current state. - Clone() XOF - - // Reset resets the XOF to its initial state. - Reset() -} - -// OutputLengthUnknown can be used as the size argument to NewXOF to indicate -// the length of the output is not known in advance. -const OutputLengthUnknown = 0 - -// magicUnknownOutputLength is a magic value for the output size that indicates -// an unknown number of output bytes. -const magicUnknownOutputLength = (1 << 32) - 1 - -// maxOutputLength is the absolute maximum number of bytes to produce when the -// number of output bytes is unknown. -const maxOutputLength = (1 << 32) * 64 - -// NewXOF creates a new variable-output-length hash. The hash either produce a -// known number of bytes (1 <= size < 2**32-1), or an unknown number of bytes -// (size == OutputLengthUnknown). In the latter case, an absolute limit of -// 256GiB applies. -// -// A non-nil key turns the hash into a MAC. The key must between -// zero and 32 bytes long. -func NewXOF(size uint32, key []byte) (XOF, error) { - if len(key) > Size { - return nil, errKeySize - } - if size == magicUnknownOutputLength { - // 2^32-1 indicates an unknown number of bytes and thus isn't a - // valid length. - return nil, errors.New("blake2b: XOF length too large") - } - if size == OutputLengthUnknown { - size = magicUnknownOutputLength - } - x := &xof{ - d: digest{ - size: Size, - keyLen: len(key), - }, - length: size, - } - copy(x.d.key[:], key) - x.Reset() - return x, nil -} - -type xof struct { - d digest - length uint32 - remaining uint64 - cfg, root, block [Size]byte - offset int - nodeOffset uint32 - readMode bool -} - -func (x *xof) Write(p []byte) (n int, err error) { - if x.readMode { - panic("blake2b: write to XOF after read") - } - return x.d.Write(p) -} - -func (x *xof) Clone() XOF { - clone := *x - return &clone -} - -func (x *xof) Reset() { - x.cfg[0] = byte(Size) - binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length - binary.LittleEndian.PutUint32(x.cfg[12:], x.length) // XOF length - x.cfg[17] = byte(Size) // inner hash size - - x.d.Reset() - x.d.h[1] ^= uint64(x.length) << 32 - - x.remaining = uint64(x.length) - if x.remaining == magicUnknownOutputLength { - x.remaining = maxOutputLength - } - x.offset, x.nodeOffset = 0, 0 - x.readMode = false -} - -func (x *xof) Read(p []byte) (n int, err error) { - if !x.readMode { - x.d.finalize(&x.root) - x.readMode = true - } - - if x.remaining == 0 { - return 0, io.EOF - } - - n = len(p) - if uint64(n) > x.remaining { - n = int(x.remaining) - p = p[:n] - } - - if x.offset > 0 { - blockRemaining := Size - x.offset - if n < blockRemaining { - x.offset += copy(p, x.block[x.offset:]) - x.remaining -= uint64(n) - return - } - copy(p, x.block[x.offset:]) - p = p[blockRemaining:] - x.offset = 0 - x.remaining -= uint64(blockRemaining) - } - - for len(p) >= Size { - binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset) - x.nodeOffset++ - - x.d.initConfig(&x.cfg) - x.d.Write(x.root[:]) - x.d.finalize(&x.block) - - copy(p, x.block[:]) - p = p[Size:] - x.remaining -= uint64(Size) - } - - if todo := len(p); todo > 0 { - if x.remaining < uint64(Size) { - x.cfg[0] = byte(x.remaining) - } - binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset) - x.nodeOffset++ - - x.d.initConfig(&x.cfg) - x.d.Write(x.root[:]) - x.d.finalize(&x.block) - - x.offset = copy(p, x.block[:todo]) - x.remaining -= uint64(todo) - } - return -} - -func (d *digest) initConfig(cfg *[Size]byte) { - d.offset, d.c[0], d.c[1] = 0, 0, 0 - for i := range d.h { - d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(cfg[i*8:]) - } -} diff --git a/blake2b/register.go b/blake2b/register.go deleted file mode 100644 index efd689af4..000000000 --- a/blake2b/register.go +++ /dev/null @@ -1,32 +0,0 @@ -// Copyright 2017 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build go1.9 - -package blake2b - -import ( - "crypto" - "hash" -) - -func init() { - newHash256 := func() hash.Hash { - h, _ := New256(nil) - return h - } - newHash384 := func() hash.Hash { - h, _ := New384(nil) - return h - } - - newHash512 := func() hash.Hash { - h, _ := New512(nil) - return h - } - - crypto.RegisterHash(crypto.BLAKE2b_256, newHash256) - crypto.RegisterHash(crypto.BLAKE2b_384, newHash384) - crypto.RegisterHash(crypto.BLAKE2b_512, newHash512) -} diff --git a/go.mod b/go.mod index c051824e8..e4d655aa4 100644 --- a/go.mod +++ b/go.mod @@ -26,7 +26,6 @@ require ( github.com/syndtr/goleveldb v1.0.1-0.20220614013038-64ee5596c38a github.com/vechain/go-ecvrf v0.0.0-20220525125849-96fa0442e765 golang.org/x/crypto v0.17.0 - golang.org/x/sys v0.15.0 gopkg.in/cheggaaa/pb.v1 v1.0.28 gopkg.in/urfave/cli.v1 v1.20.0 gopkg.in/yaml.v2 v2.4.0 @@ -52,6 +51,7 @@ require ( github.com/mattn/go-runewidth v0.0.4 // indirect github.com/rjeczalik/notify v0.9.3 // indirect golang.org/x/net v0.17.0 // indirect + golang.org/x/sys v0.15.0 // indirect golang.org/x/text v0.14.0 // indirect gopkg.in/karalabe/cookiejar.v2 v2.0.0-20150724131613-8dcd6a7f4951 // indirect gopkg.in/yaml.v3 v3.0.1 // indirect @@ -59,4 +59,4 @@ require ( replace github.com/syndtr/goleveldb => github.com/vechain/goleveldb v1.0.1-0.20220809091043-51eb019c8655 -replace github.com/ethereum/go-ethereum => github.com/vechain/go-ethereum v1.8.15-0.20231201045034-e7f453ab60bc +replace github.com/ethereum/go-ethereum => github.com/vechain/go-ethereum v1.8.15-0.20240130124343-9d419d1a61e5 diff --git a/go.sum b/go.sum index f5f7abdb3..d6a7ede42 100644 --- a/go.sum +++ b/go.sum @@ -99,8 +99,6 @@ github.com/mattn/go-isatty v0.0.3 h1:ns/ykhmWi7G9O+8a448SecJU3nSMBXJfqQkl0upE1jI github.com/mattn/go-isatty v0.0.3/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4= github.com/mattn/go-runewidth v0.0.4 h1:2BvfKmzob6Bmd4YsL0zygOqfdFnK7GR4QL06Do4/p7Y= github.com/mattn/go-runewidth v0.0.4/go.mod h1:LwmH8dsx7+W8Uxz3IHJYH5QSwggIsqBzpuz5H//U1FU= -github.com/mattn/go-sqlite3 v1.14.9 h1:10HX2Td0ocZpYEjhilsuo6WWtUqttj2Kb0KtD86/KYA= -github.com/mattn/go-sqlite3 v1.14.9/go.mod h1:NyWgC/yNuGj7Q9rpYnZvas74GogHl5/Z4A/KQRfk6bU= github.com/mattn/go-sqlite3 v1.14.19 h1:fhGleo2h1p8tVChob4I9HpmVFIAkKGpiukdrgQbWfGI= github.com/mattn/go-sqlite3 v1.14.19/go.mod h1:2eHXhiwb8IkHr+BDWZGa96P6+rkvnG63S2DGjv9HUNg= github.com/mattn/go-tty v0.0.0-20180219170247-931426f7535a h1:8TGB3DFRNl06DB1Q6zBX+I7FDoCUZY2fmMS9WGUIIpw= @@ -138,8 +136,8 @@ github.com/stretchr/testify v1.7.2 h1:4jaiDzPyXQvSd7D0EjG45355tLlV3VOECpq10pLC+8 github.com/stretchr/testify v1.7.2/go.mod h1:R6va5+xMeoiuVRoj+gSkQ7d3FALtqAAGI1FQKckRals= github.com/vechain/go-ecvrf v0.0.0-20220525125849-96fa0442e765 h1:jvr+TSivjObZmOKVdqlgeLtRhaDG27gE39PMuE2IJ24= github.com/vechain/go-ecvrf v0.0.0-20220525125849-96fa0442e765/go.mod h1:cwnTMgAVzMb30xMKnGI1LdU1NjMiPllYb7i3ibj/fzE= -github.com/vechain/go-ethereum v1.8.15-0.20231201045034-e7f453ab60bc h1:ozDvptqz3H2NYARFDoUobU5sE0mVLIQJqq5KK5+521E= -github.com/vechain/go-ethereum v1.8.15-0.20231201045034-e7f453ab60bc/go.mod h1:EhX+lSkpNdEIxu1zOXtiFZu5nv1i8MX1mQA/qhUE+gw= +github.com/vechain/go-ethereum v1.8.15-0.20240130124343-9d419d1a61e5 h1:xvCKkXK/VDrHMh1E4oQ+1ctISCMwgHGW4rJ9nE+CsxA= +github.com/vechain/go-ethereum v1.8.15-0.20240130124343-9d419d1a61e5/go.mod h1:EhX+lSkpNdEIxu1zOXtiFZu5nv1i8MX1mQA/qhUE+gw= github.com/vechain/goleveldb v1.0.1-0.20220809091043-51eb019c8655 h1:CbHcWpCi7wOYfpoErRABh3Slyq9vO0Ay/EHN5GuJSXQ= github.com/vechain/goleveldb v1.0.1-0.20220809091043-51eb019c8655/go.mod h1:RRCYJbIwD5jmqPI9XoAFR0OcDxqUctll6zUj/+B4S48= github.com/yuin/goldmark v1.2.1/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74= diff --git a/thor/hash.go b/thor/hash.go index 061ba6f11..cc9e8d9b5 100644 --- a/thor/hash.go +++ b/thor/hash.go @@ -10,7 +10,7 @@ import ( "io" "sync" - "github.com/vechain/thor/v2/blake2b" + "github.com/ethereum/go-ethereum/crypto/blake2b" "golang.org/x/crypto/sha3" ) diff --git a/vm/bn256/LICENSE b/vm/bn256/LICENSE deleted file mode 100644 index 634e0cb2c..000000000 --- a/vm/bn256/LICENSE +++ /dev/null @@ -1,28 +0,0 @@ -Copyright (c) 2012 The Go Authors. All rights reserved. -Copyright (c) 2018 Péter Szilágyi. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are -met: - - * Redistributions of source code must retain the above copyright -notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following disclaimer -in the documentation and/or other materials provided with the -distribution. - * Neither the name of Google Inc. nor the names of its -contributors may be used to endorse or promote products derived from -this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vm/bn256/README.md b/vm/bn256/README.md deleted file mode 100644 index 7081477ed..000000000 --- a/vm/bn256/README.md +++ /dev/null @@ -1 +0,0 @@ -based on github.com/ethereum/crypto/bn256 v1.8.14 tag \ No newline at end of file diff --git a/vm/bn256/bn256_fast.go b/vm/bn256/bn256_fast.go deleted file mode 100644 index 97da89550..000000000 --- a/vm/bn256/bn256_fast.go +++ /dev/null @@ -1,23 +0,0 @@ -// Copyright 2018 Péter Szilágyi. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be found -// in the LICENSE file. - -// +build amd64 arm64 - -// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve. -package bn256 - -import bn256 "github.com/vechain/thor/v2/vm/bn256/cloudflare" - -// G1 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G1 = bn256.G1 - -// G2 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G2 = bn256.G2 - -// PairingCheck calculates the Optimal Ate pairing for a set of points. -func PairingCheck(a []*G1, b []*G2) bool { - return bn256.PairingCheck(a, b) -} diff --git a/vm/bn256/bn256_slow.go b/vm/bn256/bn256_slow.go deleted file mode 100644 index 6d1e0589e..000000000 --- a/vm/bn256/bn256_slow.go +++ /dev/null @@ -1,23 +0,0 @@ -// Copyright 2018 Péter Szilágyi. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be found -// in the LICENSE file. - -// +build !amd64,!arm64 - -// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve. -package bn256 - -import bn256 "github.com/vechain/thor/v2/vm/bn256/google" - -// G1 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G1 = bn256.G1 - -// G2 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G2 = bn256.G2 - -// PairingCheck calculates the Optimal Ate pairing for a set of points. -func PairingCheck(a []*G1, b []*G2) bool { - return bn256.PairingCheck(a, b) -} diff --git a/vm/bn256/cloudflare/LICENSE b/vm/bn256/cloudflare/LICENSE deleted file mode 100644 index 6a66aea5e..000000000 --- a/vm/bn256/cloudflare/LICENSE +++ /dev/null @@ -1,27 +0,0 @@ -Copyright (c) 2009 The Go Authors. All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are -met: - - * Redistributions of source code must retain the above copyright -notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following disclaimer -in the documentation and/or other materials provided with the -distribution. - * Neither the name of Google Inc. nor the names of its -contributors may be used to endorse or promote products derived from -this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vm/bn256/cloudflare/bn256.go b/vm/bn256/cloudflare/bn256.go deleted file mode 100644 index c6ea2d07e..000000000 --- a/vm/bn256/cloudflare/bn256.go +++ /dev/null @@ -1,481 +0,0 @@ -// Package bn256 implements a particular bilinear group at the 128-bit security -// level. -// -// Bilinear groups are the basis of many of the new cryptographic protocols that -// have been proposed over the past decade. They consist of a triplet of groups -// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ -// is a generator of the respective group). That function is called a pairing -// function. -// -// This package specifically implements the Optimal Ate pairing over a 256-bit -// Barreto-Naehrig curve as described in -// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible -// with the implementation described in that paper. -package bn256 - -import ( - "crypto/rand" - "errors" - "io" - "math/big" -) - -func randomK(r io.Reader) (k *big.Int, err error) { - for { - k, err = rand.Int(r, Order) - if k.Sign() > 0 || err != nil { - return - } - } -} - -// G1 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G1 struct { - p *curvePoint -} - -// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. -func RandomG1(r io.Reader) (*big.Int, *G1, error) { - k, err := randomK(r) - if err != nil { - return nil, nil, err - } - - return k, new(G1).ScalarBaseMult(k), nil -} - -func (g *G1) String() string { - return "bn256.G1" + g.p.String() -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and then -// returns e. -func (e *G1) ScalarBaseMult(k *big.Int) *G1 { - if e.p == nil { - e.p = &curvePoint{} - } - e.p.Mul(curveGen, k) - return e -} - -// ScalarMult sets e to a*k and then returns e. -func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { - if e.p == nil { - e.p = &curvePoint{} - } - e.p.Mul(a.p, k) - return e -} - -// Add sets e to a+b and then returns e. -func (e *G1) Add(a, b *G1) *G1 { - if e.p == nil { - e.p = &curvePoint{} - } - e.p.Add(a.p, b.p) - return e -} - -// Neg sets e to -a and then returns e. -func (e *G1) Neg(a *G1) *G1 { - if e.p == nil { - e.p = &curvePoint{} - } - e.p.Neg(a.p) - return e -} - -// Set sets e to a and then returns e. -func (e *G1) Set(a *G1) *G1 { - if e.p == nil { - e.p = &curvePoint{} - } - e.p.Set(a.p) - return e -} - -// Marshal converts e to a byte slice. -func (e *G1) Marshal() []byte { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - e.p.MakeAffine() - ret := make([]byte, numBytes*2) - if e.p.IsInfinity() { - return ret - } - temp := &gfP{} - - montDecode(temp, &e.p.x) - temp.Marshal(ret) - montDecode(temp, &e.p.y) - temp.Marshal(ret[numBytes:]) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G1) Unmarshal(m []byte) ([]byte, error) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - if len(m) < 2*numBytes { - return nil, errors.New("bn256: not enough data") - } - // Unmarshal the points and check their caps - if e.p == nil { - e.p = &curvePoint{} - } else { - e.p.x, e.p.y = gfP{0}, gfP{0} - } - var err error - if err = e.p.x.Unmarshal(m); err != nil { - return nil, err - } - if err = e.p.y.Unmarshal(m[numBytes:]); err != nil { - return nil, err - } - // Encode into Montgomery form and ensure it's on the curve - montEncode(&e.p.x, &e.p.x) - montEncode(&e.p.y, &e.p.y) - - zero := gfP{0} - if e.p.x == zero && e.p.y == zero { - // This is the point at infinity. - e.p.y = *newGFp(1) - e.p.z = gfP{0} - e.p.t = gfP{0} - } else { - e.p.z = *newGFp(1) - e.p.t = *newGFp(1) - - if !e.p.IsOnCurve() { - return nil, errors.New("bn256: malformed point") - } - } - return m[2*numBytes:], nil -} - -// G2 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G2 struct { - p *twistPoint -} - -// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r. -func RandomG2(r io.Reader) (*big.Int, *G2, error) { - k, err := randomK(r) - if err != nil { - return nil, nil, err - } - - return k, new(G2).ScalarBaseMult(k), nil -} - -func (e *G2) String() string { - return "bn256.G2" + e.p.String() -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and then -// returns out. -func (e *G2) ScalarBaseMult(k *big.Int) *G2 { - if e.p == nil { - e.p = &twistPoint{} - } - e.p.Mul(twistGen, k) - return e -} - -// ScalarMult sets e to a*k and then returns e. -func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { - if e.p == nil { - e.p = &twistPoint{} - } - e.p.Mul(a.p, k) - return e -} - -// Add sets e to a+b and then returns e. -func (e *G2) Add(a, b *G2) *G2 { - if e.p == nil { - e.p = &twistPoint{} - } - e.p.Add(a.p, b.p) - return e -} - -// Neg sets e to -a and then returns e. -func (e *G2) Neg(a *G2) *G2 { - if e.p == nil { - e.p = &twistPoint{} - } - e.p.Neg(a.p) - return e -} - -// Set sets e to a and then returns e. -func (e *G2) Set(a *G2) *G2 { - if e.p == nil { - e.p = &twistPoint{} - } - e.p.Set(a.p) - return e -} - -// Marshal converts e into a byte slice. -func (e *G2) Marshal() []byte { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if e.p == nil { - e.p = &twistPoint{} - } - - e.p.MakeAffine() - ret := make([]byte, numBytes*4) - if e.p.IsInfinity() { - return ret - } - temp := &gfP{} - - montDecode(temp, &e.p.x.x) - temp.Marshal(ret) - montDecode(temp, &e.p.x.y) - temp.Marshal(ret[numBytes:]) - montDecode(temp, &e.p.y.x) - temp.Marshal(ret[2*numBytes:]) - montDecode(temp, &e.p.y.y) - temp.Marshal(ret[3*numBytes:]) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G2) Unmarshal(m []byte) ([]byte, error) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - if len(m) < 4*numBytes { - return nil, errors.New("bn256: not enough data") - } - // Unmarshal the points and check their caps - if e.p == nil { - e.p = &twistPoint{} - } - var err error - if err = e.p.x.x.Unmarshal(m); err != nil { - return nil, err - } - if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil { - return nil, err - } - // Encode into Montgomery form and ensure it's on the curve - montEncode(&e.p.x.x, &e.p.x.x) - montEncode(&e.p.x.y, &e.p.x.y) - montEncode(&e.p.y.x, &e.p.y.x) - montEncode(&e.p.y.y, &e.p.y.y) - - if e.p.x.IsZero() && e.p.y.IsZero() { - // This is the point at infinity. - e.p.y.SetOne() - e.p.z.SetZero() - e.p.t.SetZero() - } else { - e.p.z.SetOne() - e.p.t.SetOne() - - if !e.p.IsOnCurve() { - return nil, errors.New("bn256: malformed point") - } - } - return m[4*numBytes:], nil -} - -// GT is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type GT struct { - p *gfP12 -} - -// Pair calculates an Optimal Ate pairing. -func Pair(g1 *G1, g2 *G2) *GT { - return >{optimalAte(g2.p, g1.p)} -} - -// PairingCheck calculates the Optimal Ate pairing for a set of points. -func PairingCheck(a []*G1, b []*G2) bool { - acc := new(gfP12) - acc.SetOne() - - for i := 0; i < len(a); i++ { - if a[i].p.IsInfinity() || b[i].p.IsInfinity() { - continue - } - acc.Mul(acc, miller(b[i].p, a[i].p)) - } - return finalExponentiation(acc).IsOne() -} - -// Miller applies Miller's algorithm, which is a bilinear function from the -// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1, -// g2). -func Miller(g1 *G1, g2 *G2) *GT { - return >{miller(g2.p, g1.p)} -} - -func (g *GT) String() string { - return "bn256.GT" + g.p.String() -} - -// ScalarMult sets e to a*k and then returns e. -func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { - if e.p == nil { - e.p = &gfP12{} - } - e.p.Exp(a.p, k) - return e -} - -// Add sets e to a+b and then returns e. -func (e *GT) Add(a, b *GT) *GT { - if e.p == nil { - e.p = &gfP12{} - } - e.p.Mul(a.p, b.p) - return e -} - -// Neg sets e to -a and then returns e. -func (e *GT) Neg(a *GT) *GT { - if e.p == nil { - e.p = &gfP12{} - } - e.p.Conjugate(a.p) - return e -} - -// Set sets e to a and then returns e. -func (e *GT) Set(a *GT) *GT { - if e.p == nil { - e.p = &gfP12{} - } - e.p.Set(a.p) - return e -} - -// Finalize is a linear function from F_p^12 to GT. -func (e *GT) Finalize() *GT { - ret := finalExponentiation(e.p) - e.p.Set(ret) - return e -} - -// Marshal converts e into a byte slice. -func (e *GT) Marshal() []byte { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - ret := make([]byte, numBytes*12) - temp := &gfP{} - - montDecode(temp, &e.p.x.x.x) - temp.Marshal(ret) - montDecode(temp, &e.p.x.x.y) - temp.Marshal(ret[numBytes:]) - montDecode(temp, &e.p.x.y.x) - temp.Marshal(ret[2*numBytes:]) - montDecode(temp, &e.p.x.y.y) - temp.Marshal(ret[3*numBytes:]) - montDecode(temp, &e.p.x.z.x) - temp.Marshal(ret[4*numBytes:]) - montDecode(temp, &e.p.x.z.y) - temp.Marshal(ret[5*numBytes:]) - montDecode(temp, &e.p.y.x.x) - temp.Marshal(ret[6*numBytes:]) - montDecode(temp, &e.p.y.x.y) - temp.Marshal(ret[7*numBytes:]) - montDecode(temp, &e.p.y.y.x) - temp.Marshal(ret[8*numBytes:]) - montDecode(temp, &e.p.y.y.y) - temp.Marshal(ret[9*numBytes:]) - montDecode(temp, &e.p.y.z.x) - temp.Marshal(ret[10*numBytes:]) - montDecode(temp, &e.p.y.z.y) - temp.Marshal(ret[11*numBytes:]) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *GT) Unmarshal(m []byte) ([]byte, error) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if len(m) < 12*numBytes { - return nil, errors.New("bn256: not enough data") - } - - if e.p == nil { - e.p = &gfP12{} - } - - var err error - if err = e.p.x.x.x.Unmarshal(m); err != nil { - return nil, err - } - if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil { - return nil, err - } - if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil { - return nil, err - } - if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil { - return nil, err - } - if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil { - return nil, err - } - if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil { - return nil, err - } - if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil { - return nil, err - } - montEncode(&e.p.x.x.x, &e.p.x.x.x) - montEncode(&e.p.x.x.y, &e.p.x.x.y) - montEncode(&e.p.x.y.x, &e.p.x.y.x) - montEncode(&e.p.x.y.y, &e.p.x.y.y) - montEncode(&e.p.x.z.x, &e.p.x.z.x) - montEncode(&e.p.x.z.y, &e.p.x.z.y) - montEncode(&e.p.y.x.x, &e.p.y.x.x) - montEncode(&e.p.y.x.y, &e.p.y.x.y) - montEncode(&e.p.y.y.x, &e.p.y.y.x) - montEncode(&e.p.y.y.y, &e.p.y.y.y) - montEncode(&e.p.y.z.x, &e.p.y.z.x) - montEncode(&e.p.y.z.y, &e.p.y.z.y) - - return m[12*numBytes:], nil -} diff --git a/vm/bn256/cloudflare/bn256_test.go b/vm/bn256/cloudflare/bn256_test.go deleted file mode 100644 index 0c8016d86..000000000 --- a/vm/bn256/cloudflare/bn256_test.go +++ /dev/null @@ -1,116 +0,0 @@ -package bn256 - -import ( - "bytes" - "crypto/rand" - "testing" -) - -func TestG1Marshal(t *testing.T) { - _, Ga, err := RandomG1(rand.Reader) - if err != nil { - t.Fatal(err) - } - ma := Ga.Marshal() - - Gb := new(G1) - _, err = Gb.Unmarshal(ma) - if err != nil { - t.Fatal(err) - } - mb := Gb.Marshal() - - if !bytes.Equal(ma, mb) { - t.Fatal("bytes are different") - } -} - -func TestG2Marshal(t *testing.T) { - _, Ga, err := RandomG2(rand.Reader) - if err != nil { - t.Fatal(err) - } - ma := Ga.Marshal() - - Gb := new(G2) - _, err = Gb.Unmarshal(ma) - if err != nil { - t.Fatal(err) - } - mb := Gb.Marshal() - - if !bytes.Equal(ma, mb) { - t.Fatal("bytes are different") - } -} - -func TestBilinearity(t *testing.T) { - for i := 0; i < 2; i++ { - a, p1, _ := RandomG1(rand.Reader) - b, p2, _ := RandomG2(rand.Reader) - e1 := Pair(p1, p2) - - e2 := Pair(&G1{curveGen}, &G2{twistGen}) - e2.ScalarMult(e2, a) - e2.ScalarMult(e2, b) - - if *e1.p != *e2.p { - t.Fatalf("bad pairing result: %s", e1) - } - } -} - -func TestTripartiteDiffieHellman(t *testing.T) { - a, _ := rand.Int(rand.Reader, Order) - b, _ := rand.Int(rand.Reader, Order) - c, _ := rand.Int(rand.Reader, Order) - - pa, pb, pc := new(G1), new(G1), new(G1) - qa, qb, qc := new(G2), new(G2), new(G2) - - pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal()) - qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal()) - pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal()) - qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal()) - pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal()) - qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal()) - - k1 := Pair(pb, qc) - k1.ScalarMult(k1, a) - k1Bytes := k1.Marshal() - - k2 := Pair(pc, qa) - k2.ScalarMult(k2, b) - k2Bytes := k2.Marshal() - - k3 := Pair(pa, qb) - k3.ScalarMult(k3, c) - k3Bytes := k3.Marshal() - - if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) { - t.Errorf("keys didn't agree") - } -} - -func BenchmarkG1(b *testing.B) { - x, _ := rand.Int(rand.Reader, Order) - b.ResetTimer() - - for i := 0; i < b.N; i++ { - new(G1).ScalarBaseMult(x) - } -} - -func BenchmarkG2(b *testing.B) { - x, _ := rand.Int(rand.Reader, Order) - b.ResetTimer() - - for i := 0; i < b.N; i++ { - new(G2).ScalarBaseMult(x) - } -} -func BenchmarkPairing(b *testing.B) { - for i := 0; i < b.N; i++ { - Pair(&G1{curveGen}, &G2{twistGen}) - } -} diff --git a/vm/bn256/cloudflare/constants.go b/vm/bn256/cloudflare/constants.go deleted file mode 100644 index 5122aae64..000000000 --- a/vm/bn256/cloudflare/constants.go +++ /dev/null @@ -1,59 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -func bigFromBase10(s string) *big.Int { - n, _ := new(big.Int).SetString(s, 10) - return n -} - -// u is the BN parameter that determines the prime: 1868033³. -var u = bigFromBase10("4965661367192848881") - -// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1. -var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617") - -// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1. -var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583") - -// p2 is p, represented as little-endian 64-bit words. -var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029} - -// np is the negative inverse of p, mod 2^256. -var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b} - -// rN1 is R^-1 where R = 2^256 mod p. -var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639} - -// r2 is R^2 where R = 2^256 mod p. -var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f} - -// r3 is R^3 where R = 2^256 mod p. -var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544} - -// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9. -var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}} - -// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9. -var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}} - -// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9. -var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}} - -// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9. -var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0} - -// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p). -var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943} - -// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p). -var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6} - -// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9. -var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}} diff --git a/vm/bn256/cloudflare/curve.go b/vm/bn256/cloudflare/curve.go deleted file mode 100644 index 18e9b38f3..000000000 --- a/vm/bn256/cloudflare/curve.go +++ /dev/null @@ -1,238 +0,0 @@ -package bn256 - -import ( - "math/big" -) - -// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian -// form and t=z² when valid. G₁ is the set of points of this curve on GF(p). -type curvePoint struct { - x, y, z, t gfP -} - -var curveB = newGFp(3) - -// curveGen is the generator of G₁. -var curveGen = &curvePoint{ - x: *newGFp(1), - y: *newGFp(2), - z: *newGFp(1), - t: *newGFp(1), -} - -func (c *curvePoint) String() string { - c.MakeAffine() - x, y := &gfP{}, &gfP{} - montDecode(x, &c.x) - montDecode(y, &c.y) - return "(" + x.String() + ", " + y.String() + ")" -} - -func (c *curvePoint) Set(a *curvePoint) { - c.x.Set(&a.x) - c.y.Set(&a.y) - c.z.Set(&a.z) - c.t.Set(&a.t) -} - -// IsOnCurve returns true iff c is on the curve. -func (c *curvePoint) IsOnCurve() bool { - c.MakeAffine() - if c.IsInfinity() { - return true - } - - y2, x3 := &gfP{}, &gfP{} - gfpMul(y2, &c.y, &c.y) - gfpMul(x3, &c.x, &c.x) - gfpMul(x3, x3, &c.x) - gfpAdd(x3, x3, curveB) - - return *y2 == *x3 -} - -func (c *curvePoint) SetInfinity() { - c.x = gfP{0} - c.y = *newGFp(1) - c.z = gfP{0} - c.t = gfP{0} -} - -func (c *curvePoint) IsInfinity() bool { - return c.z == gfP{0} -} - -func (c *curvePoint) Add(a, b *curvePoint) { - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - - // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] - // by [u1:s1:z1·z2] and [u2:s2:z1·z2] - // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ - z12, z22 := &gfP{}, &gfP{} - gfpMul(z12, &a.z, &a.z) - gfpMul(z22, &b.z, &b.z) - - u1, u2 := &gfP{}, &gfP{} - gfpMul(u1, &a.x, z22) - gfpMul(u2, &b.x, z12) - - t, s1 := &gfP{}, &gfP{} - gfpMul(t, &b.z, z22) - gfpMul(s1, &a.y, t) - - s2 := &gfP{} - gfpMul(t, &a.z, z12) - gfpMul(s2, &b.y, t) - - // Compute x = (2h)²(s²-u1-u2) - // where s = (s2-s1)/(u2-u1) is the slope of the line through - // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. - // This is also: - // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) - // = r² - j - 2v - // with the notations below. - h := &gfP{} - gfpSub(h, u2, u1) - xEqual := *h == gfP{0} - - gfpAdd(t, h, h) - // i = 4h² - i := &gfP{} - gfpMul(i, t, t) - // j = 4h³ - j := &gfP{} - gfpMul(j, h, i) - - gfpSub(t, s2, s1) - yEqual := *t == gfP{0} - if xEqual && yEqual { - c.Double(a) - return - } - r := &gfP{} - gfpAdd(r, t, t) - - v := &gfP{} - gfpMul(v, u1, i) - - // t4 = 4(s2-s1)² - t4, t6 := &gfP{}, &gfP{} - gfpMul(t4, r, r) - gfpAdd(t, v, v) - gfpSub(t6, t4, j) - - gfpSub(&c.x, t6, t) - - // Set y = -(2h)³(s1 + s*(x/4h²-u1)) - // This is also - // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j - gfpSub(t, v, &c.x) // t7 - gfpMul(t4, s1, j) // t8 - gfpAdd(t6, t4, t4) // t9 - gfpMul(t4, r, t) // t10 - gfpSub(&c.y, t4, t6) - - // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 - gfpAdd(t, &a.z, &b.z) // t11 - gfpMul(t4, t, t) // t12 - gfpSub(t, t4, z12) // t13 - gfpSub(t4, t, z22) // t14 - gfpMul(&c.z, t4, h) -} - -func (c *curvePoint) Double(a *curvePoint) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A, B, C := &gfP{}, &gfP{}, &gfP{} - gfpMul(A, &a.x, &a.x) - gfpMul(B, &a.y, &a.y) - gfpMul(C, B, B) - - t, t2 := &gfP{}, &gfP{} - gfpAdd(t, &a.x, B) - gfpMul(t2, t, t) - gfpSub(t, t2, A) - gfpSub(t2, t, C) - - d, e, f := &gfP{}, &gfP{}, &gfP{} - gfpAdd(d, t2, t2) - gfpAdd(t, A, A) - gfpAdd(e, t, A) - gfpMul(f, e, e) - - gfpAdd(t, d, d) - gfpSub(&c.x, f, t) - - gfpAdd(t, C, C) - gfpAdd(t2, t, t) - gfpAdd(t, t2, t2) - gfpSub(&c.y, d, &c.x) - gfpMul(t2, e, &c.y) - gfpSub(&c.y, t2, t) - - gfpMul(t, &a.y, &a.z) - gfpAdd(&c.z, t, t) -} - -func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) { - precomp := [1 << 2]*curvePoint{nil, {}, {}, {}} - precomp[1].Set(a) - precomp[2].Set(a) - gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3) - precomp[3].Add(precomp[1], precomp[2]) - - multiScalar := curveLattice.Multi(scalar) - - sum := &curvePoint{} - sum.SetInfinity() - t := &curvePoint{} - - for i := len(multiScalar) - 1; i >= 0; i-- { - t.Double(sum) - if multiScalar[i] == 0 { - sum.Set(t) - } else { - sum.Add(t, precomp[multiScalar[i]]) - } - } - c.Set(sum) -} - -func (c *curvePoint) MakeAffine() { - if c.z == *newGFp(1) { - return - } else if c.z == *newGFp(0) { - c.x = gfP{0} - c.y = *newGFp(1) - c.t = gfP{0} - return - } - - zInv := &gfP{} - zInv.Invert(&c.z) - - t, zInv2 := &gfP{}, &gfP{} - gfpMul(t, &c.y, zInv) - gfpMul(zInv2, zInv, zInv) - - gfpMul(&c.x, &c.x, zInv2) - gfpMul(&c.y, t, zInv2) - - c.z = *newGFp(1) - c.t = *newGFp(1) -} - -func (c *curvePoint) Neg(a *curvePoint) { - c.x.Set(&a.x) - gfpNeg(&c.y, &a.y) - c.z.Set(&a.z) - c.t = gfP{0} -} diff --git a/vm/bn256/cloudflare/example_test.go b/vm/bn256/cloudflare/example_test.go deleted file mode 100644 index 6c285995c..000000000 --- a/vm/bn256/cloudflare/example_test.go +++ /dev/null @@ -1,51 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "crypto/rand" - "testing" - - "github.com/stretchr/testify/require" -) - -func TestExamplePair(t *testing.T) { - // This implements the tripartite Diffie-Hellman algorithm from "A One - // Round Protocol for Tripartite Diffie-Hellman", A. Joux. - // http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf - - // Each of three parties, a, b and c, generate a private value. - a, _ := rand.Int(rand.Reader, Order) - b, _ := rand.Int(rand.Reader, Order) - c, _ := rand.Int(rand.Reader, Order) - - // Then each party calculates g₁ and g₂ times their private value. - pa := new(G1).ScalarBaseMult(a) - qa := new(G2).ScalarBaseMult(a) - - pb := new(G1).ScalarBaseMult(b) - qb := new(G2).ScalarBaseMult(b) - - pc := new(G1).ScalarBaseMult(c) - qc := new(G2).ScalarBaseMult(c) - - // Now each party exchanges its public values with the other two and - // all parties can calculate the shared key. - k1 := Pair(pb, qc) - k1.ScalarMult(k1, a) - - k2 := Pair(pc, qa) - k2.ScalarMult(k2, b) - - k3 := Pair(pa, qb) - k3.ScalarMult(k3, c) - - // k1, k2 and k3 will all be equal. - - require.Equal(t, k1, k2) - require.Equal(t, k1, k3) - - require.Equal(t, len(np), 4) //Avoid gometalinter varcheck err on np -} diff --git a/vm/bn256/cloudflare/gfp.go b/vm/bn256/cloudflare/gfp.go deleted file mode 100644 index e8e84e7b3..000000000 --- a/vm/bn256/cloudflare/gfp.go +++ /dev/null @@ -1,81 +0,0 @@ -package bn256 - -import ( - "errors" - "fmt" -) - -type gfP [4]uint64 - -func newGFp(x int64) (out *gfP) { - if x >= 0 { - out = &gfP{uint64(x)} - } else { - out = &gfP{uint64(-x)} - gfpNeg(out, out) - } - - montEncode(out, out) - return out -} - -func (e *gfP) String() string { - return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0]) -} - -func (e *gfP) Set(f *gfP) { - e[0] = f[0] - e[1] = f[1] - e[2] = f[2] - e[3] = f[3] -} - -func (e *gfP) Invert(f *gfP) { - bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029} - - sum, power := &gfP{}, &gfP{} - sum.Set(rN1) - power.Set(f) - - for word := 0; word < 4; word++ { - for bit := uint(0); bit < 64; bit++ { - if (bits[word]>>bit)&1 == 1 { - gfpMul(sum, sum, power) - } - gfpMul(power, power, power) - } - } - - gfpMul(sum, sum, r3) - e.Set(sum) -} - -func (e *gfP) Marshal(out []byte) { - for w := uint(0); w < 4; w++ { - for b := uint(0); b < 8; b++ { - out[8*w+b] = byte(e[3-w] >> (56 - 8*b)) - } - } -} - -func (e *gfP) Unmarshal(in []byte) error { - // Unmarshal the bytes into little endian form - for w := uint(0); w < 4; w++ { - for b := uint(0); b < 8; b++ { - e[3-w] += uint64(in[8*w+b]) << (56 - 8*b) - } - } - // Ensure the point respects the curve modulus - for i := 3; i >= 0; i-- { - if e[i] < p2[i] { - return nil - } - if e[i] > p2[i] { - return errors.New("bn256: coordinate exceeds modulus") - } - } - return errors.New("bn256: coordinate equals modulus") -} - -func montEncode(c, a *gfP) { gfpMul(c, a, r2) } -func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) } diff --git a/vm/bn256/cloudflare/gfp12.go b/vm/bn256/cloudflare/gfp12.go deleted file mode 100644 index 93fb368a7..000000000 --- a/vm/bn256/cloudflare/gfp12.go +++ /dev/null @@ -1,160 +0,0 @@ -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP12 implements the field of size p¹² as a quadratic extension of gfP6 -// where ω²=τ. -type gfP12 struct { - x, y gfP6 // value is xω + y -} - -func (e *gfP12) String() string { - return "(" + e.x.String() + "," + e.y.String() + ")" -} - -func (e *gfP12) Set(a *gfP12) *gfP12 { - e.x.Set(&a.x) - e.y.Set(&a.y) - return e -} - -func (e *gfP12) SetZero() *gfP12 { - e.x.SetZero() - e.y.SetZero() - return e -} - -func (e *gfP12) SetOne() *gfP12 { - e.x.SetZero() - e.y.SetOne() - return e -} - -func (e *gfP12) IsZero() bool { - return e.x.IsZero() && e.y.IsZero() -} - -func (e *gfP12) IsOne() bool { - return e.x.IsZero() && e.y.IsOne() -} - -func (e *gfP12) Conjugate(a *gfP12) *gfP12 { - e.x.Neg(&a.x) - e.y.Set(&a.y) - return e -} - -func (e *gfP12) Neg(a *gfP12) *gfP12 { - e.x.Neg(&a.x) - e.y.Neg(&a.y) - return e -} - -// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p -func (e *gfP12) Frobenius(a *gfP12) *gfP12 { - e.x.Frobenius(&a.x) - e.y.Frobenius(&a.y) - e.x.MulScalar(&e.x, xiToPMinus1Over6) - return e -} - -// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² -func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 { - e.x.FrobeniusP2(&a.x) - e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6) - e.y.FrobeniusP2(&a.y) - return e -} - -func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 { - e.x.FrobeniusP4(&a.x) - e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3) - e.y.FrobeniusP4(&a.y) - return e -} - -func (e *gfP12) Add(a, b *gfP12) *gfP12 { - e.x.Add(&a.x, &b.x) - e.y.Add(&a.y, &b.y) - return e -} - -func (e *gfP12) Sub(a, b *gfP12) *gfP12 { - e.x.Sub(&a.x, &b.x) - e.y.Sub(&a.y, &b.y) - return e -} - -func (e *gfP12) Mul(a, b *gfP12) *gfP12 { - tx := (&gfP6{}).Mul(&a.x, &b.y) - t := (&gfP6{}).Mul(&b.x, &a.y) - tx.Add(tx, t) - - ty := (&gfP6{}).Mul(&a.y, &b.y) - t.Mul(&a.x, &b.x).MulTau(t) - - e.x.Set(tx) - e.y.Add(ty, t) - return e -} - -func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 { - e.x.Mul(&e.x, b) - e.y.Mul(&e.y, b) - return e -} - -func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 { - sum := (&gfP12{}).SetOne() - t := &gfP12{} - - for i := power.BitLen() - 1; i >= 0; i-- { - t.Square(sum) - if power.Bit(i) != 0 { - sum.Mul(t, a) - } else { - sum.Set(t) - } - } - - c.Set(sum) - return c -} - -func (e *gfP12) Square(a *gfP12) *gfP12 { - // Complex squaring algorithm - v0 := (&gfP6{}).Mul(&a.x, &a.y) - - t := (&gfP6{}).MulTau(&a.x) - t.Add(&a.y, t) - ty := (&gfP6{}).Add(&a.x, &a.y) - ty.Mul(ty, t).Sub(ty, v0) - t.MulTau(v0) - ty.Sub(ty, t) - - e.x.Add(v0, v0) - e.y.Set(ty) - return e -} - -func (e *gfP12) Invert(a *gfP12) *gfP12 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t1, t2 := &gfP6{}, &gfP6{} - - t1.Square(&a.x) - t2.Square(&a.y) - t1.MulTau(t1).Sub(t2, t1) - t2.Invert(t1) - - e.x.Neg(&a.x) - e.y.Set(&a.y) - e.MulScalar(e, t2) - return e -} diff --git a/vm/bn256/cloudflare/gfp2.go b/vm/bn256/cloudflare/gfp2.go deleted file mode 100644 index 90a89e8b4..000000000 --- a/vm/bn256/cloudflare/gfp2.go +++ /dev/null @@ -1,156 +0,0 @@ -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -// gfP2 implements a field of size p² as a quadratic extension of the base field -// where i²=-1. -type gfP2 struct { - x, y gfP // value is xi+y. -} - -func gfP2Decode(in *gfP2) *gfP2 { - out := &gfP2{} - montDecode(&out.x, &in.x) - montDecode(&out.y, &in.y) - return out -} - -func (e *gfP2) String() string { - return "(" + e.x.String() + ", " + e.y.String() + ")" -} - -func (e *gfP2) Set(a *gfP2) *gfP2 { - e.x.Set(&a.x) - e.y.Set(&a.y) - return e -} - -func (e *gfP2) SetZero() *gfP2 { - e.x = gfP{0} - e.y = gfP{0} - return e -} - -func (e *gfP2) SetOne() *gfP2 { - e.x = gfP{0} - e.y = *newGFp(1) - return e -} - -func (e *gfP2) IsZero() bool { - zero := gfP{0} - return e.x == zero && e.y == zero -} - -func (e *gfP2) IsOne() bool { - zero, one := gfP{0}, *newGFp(1) - return e.x == zero && e.y == one -} - -func (e *gfP2) Conjugate(a *gfP2) *gfP2 { - e.y.Set(&a.y) - gfpNeg(&e.x, &a.x) - return e -} - -func (e *gfP2) Neg(a *gfP2) *gfP2 { - gfpNeg(&e.x, &a.x) - gfpNeg(&e.y, &a.y) - return e -} - -func (e *gfP2) Add(a, b *gfP2) *gfP2 { - gfpAdd(&e.x, &a.x, &b.x) - gfpAdd(&e.y, &a.y, &b.y) - return e -} - -func (e *gfP2) Sub(a, b *gfP2) *gfP2 { - gfpSub(&e.x, &a.x, &b.x) - gfpSub(&e.y, &a.y, &b.y) - return e -} - -// See "Multiplication and Squaring in Pairing-Friendly Fields", -// http://eprint.iacr.org/2006/471.pdf -func (e *gfP2) Mul(a, b *gfP2) *gfP2 { - tx, t := &gfP{}, &gfP{} - gfpMul(tx, &a.x, &b.y) - gfpMul(t, &b.x, &a.y) - gfpAdd(tx, tx, t) - - ty := &gfP{} - gfpMul(ty, &a.y, &b.y) - gfpMul(t, &a.x, &b.x) - gfpSub(ty, ty, t) - - e.x.Set(tx) - e.y.Set(ty) - return e -} - -func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 { - gfpMul(&e.x, &a.x, b) - gfpMul(&e.y, &a.y, b) - return e -} - -// MulXi sets e=ξa where ξ=i+9 and then returns e. -func (e *gfP2) MulXi(a *gfP2) *gfP2 { - // (xi+y)(i+9) = (9x+y)i+(9y-x) - tx := &gfP{} - gfpAdd(tx, &a.x, &a.x) - gfpAdd(tx, tx, tx) - gfpAdd(tx, tx, tx) - gfpAdd(tx, tx, &a.x) - - gfpAdd(tx, tx, &a.y) - - ty := &gfP{} - gfpAdd(ty, &a.y, &a.y) - gfpAdd(ty, ty, ty) - gfpAdd(ty, ty, ty) - gfpAdd(ty, ty, &a.y) - - gfpSub(ty, ty, &a.x) - - e.x.Set(tx) - e.y.Set(ty) - return e -} - -func (e *gfP2) Square(a *gfP2) *gfP2 { - // Complex squaring algorithm: - // (xi+y)² = (x+y)(y-x) + 2*i*x*y - tx, ty := &gfP{}, &gfP{} - gfpSub(tx, &a.y, &a.x) - gfpAdd(ty, &a.x, &a.y) - gfpMul(ty, tx, ty) - - gfpMul(tx, &a.x, &a.y) - gfpAdd(tx, tx, tx) - - e.x.Set(tx) - e.y.Set(ty) - return e -} - -func (e *gfP2) Invert(a *gfP2) *gfP2 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t1, t2 := &gfP{}, &gfP{} - gfpMul(t1, &a.x, &a.x) - gfpMul(t2, &a.y, &a.y) - gfpAdd(t1, t1, t2) - - inv := &gfP{} - inv.Invert(t1) - - gfpNeg(t1, &a.x) - - gfpMul(&e.x, t1, inv) - gfpMul(&e.y, &a.y, inv) - return e -} diff --git a/vm/bn256/cloudflare/gfp6.go b/vm/bn256/cloudflare/gfp6.go deleted file mode 100644 index 83d61b781..000000000 --- a/vm/bn256/cloudflare/gfp6.go +++ /dev/null @@ -1,213 +0,0 @@ -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ -// and ξ=i+3. -type gfP6 struct { - x, y, z gfP2 // value is xτ² + yτ + z -} - -func (e *gfP6) String() string { - return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")" -} - -func (e *gfP6) Set(a *gfP6) *gfP6 { - e.x.Set(&a.x) - e.y.Set(&a.y) - e.z.Set(&a.z) - return e -} - -func (e *gfP6) SetZero() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetZero() - return e -} - -func (e *gfP6) SetOne() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetOne() - return e -} - -func (e *gfP6) IsZero() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() -} - -func (e *gfP6) IsOne() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() -} - -func (e *gfP6) Neg(a *gfP6) *gfP6 { - e.x.Neg(&a.x) - e.y.Neg(&a.y) - e.z.Neg(&a.z) - return e -} - -func (e *gfP6) Frobenius(a *gfP6) *gfP6 { - e.x.Conjugate(&a.x) - e.y.Conjugate(&a.y) - e.z.Conjugate(&a.z) - - e.x.Mul(&e.x, xiTo2PMinus2Over3) - e.y.Mul(&e.y, xiToPMinus1Over3) - return e -} - -// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z -func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { - // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) - e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3) - // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) - e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3) - e.z.Set(&a.z) - return e -} - -func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 { - e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3) - e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3) - e.z.Set(&a.z) - return e -} - -func (e *gfP6) Add(a, b *gfP6) *gfP6 { - e.x.Add(&a.x, &b.x) - e.y.Add(&a.y, &b.y) - e.z.Add(&a.z, &b.z) - return e -} - -func (e *gfP6) Sub(a, b *gfP6) *gfP6 { - e.x.Sub(&a.x, &b.x) - e.y.Sub(&a.y, &b.y) - e.z.Sub(&a.z, &b.z) - return e -} - -func (e *gfP6) Mul(a, b *gfP6) *gfP6 { - // "Multiplication and Squaring on Pairing-Friendly Fields" - // Section 4, Karatsuba method. - // http://eprint.iacr.org/2006/471.pdf - v0 := (&gfP2{}).Mul(&a.z, &b.z) - v1 := (&gfP2{}).Mul(&a.y, &b.y) - v2 := (&gfP2{}).Mul(&a.x, &b.x) - - t0 := (&gfP2{}).Add(&a.x, &a.y) - t1 := (&gfP2{}).Add(&b.x, &b.y) - tz := (&gfP2{}).Mul(t0, t1) - tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0) - - t0.Add(&a.y, &a.z) - t1.Add(&b.y, &b.z) - ty := (&gfP2{}).Mul(t0, t1) - t0.MulXi(v2) - ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0) - - t0.Add(&a.x, &a.z) - t1.Add(&b.x, &b.z) - tx := (&gfP2{}).Mul(t0, t1) - tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2) - - e.x.Set(tx) - e.y.Set(ty) - e.z.Set(tz) - return e -} - -func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 { - e.x.Mul(&a.x, b) - e.y.Mul(&a.y, b) - e.z.Mul(&a.z, b) - return e -} - -func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 { - e.x.MulScalar(&a.x, b) - e.y.MulScalar(&a.y, b) - e.z.MulScalar(&a.z, b) - return e -} - -// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ -func (e *gfP6) MulTau(a *gfP6) *gfP6 { - tz := (&gfP2{}).MulXi(&a.x) - ty := (&gfP2{}).Set(&a.y) - - e.y.Set(&a.z) - e.x.Set(ty) - e.z.Set(tz) - return e -} - -func (e *gfP6) Square(a *gfP6) *gfP6 { - v0 := (&gfP2{}).Square(&a.z) - v1 := (&gfP2{}).Square(&a.y) - v2 := (&gfP2{}).Square(&a.x) - - c0 := (&gfP2{}).Add(&a.x, &a.y) - c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0) - - c1 := (&gfP2{}).Add(&a.y, &a.z) - c1.Square(c1).Sub(c1, v0).Sub(c1, v1) - xiV2 := (&gfP2{}).MulXi(v2) - c1.Add(c1, xiV2) - - c2 := (&gfP2{}).Add(&a.x, &a.z) - c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2) - - e.x.Set(c2) - e.y.Set(c1) - e.z.Set(c0) - return e -} - -func (e *gfP6) Invert(a *gfP6) *gfP6 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - - // Here we can give a short explanation of how it works: let j be a cubic root of - // unity in GF(p²) so that 1+j+j²=0. - // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = (xτ² + yτ + z)(Cτ²+Bτ+A) - // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). - // - // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) - // - // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) - t1 := (&gfP2{}).Mul(&a.x, &a.y) - t1.MulXi(t1) - - A := (&gfP2{}).Square(&a.z) - A.Sub(A, t1) - - B := (&gfP2{}).Square(&a.x) - B.MulXi(B) - t1.Mul(&a.y, &a.z) - B.Sub(B, t1) - - C := (&gfP2{}).Square(&a.y) - t1.Mul(&a.x, &a.z) - C.Sub(C, t1) - - F := (&gfP2{}).Mul(C, &a.y) - F.MulXi(F) - t1.Mul(A, &a.z) - F.Add(F, t1) - t1.Mul(B, &a.x).MulXi(t1) - F.Add(F, t1) - - F.Invert(F) - - e.x.Mul(C, F) - e.y.Mul(B, F) - e.z.Mul(A, F) - return e -} diff --git a/vm/bn256/cloudflare/gfp_amd64.s b/vm/bn256/cloudflare/gfp_amd64.s deleted file mode 100644 index bdb4ffb78..000000000 --- a/vm/bn256/cloudflare/gfp_amd64.s +++ /dev/null @@ -1,129 +0,0 @@ -// +build amd64,!generic - -#define storeBlock(a0,a1,a2,a3, r) \ - MOVQ a0, 0+r \ - MOVQ a1, 8+r \ - MOVQ a2, 16+r \ - MOVQ a3, 24+r - -#define loadBlock(r, a0,a1,a2,a3) \ - MOVQ 0+r, a0 \ - MOVQ 8+r, a1 \ - MOVQ 16+r, a2 \ - MOVQ 24+r, a3 - -#define gfpCarry(a0,a1,a2,a3,a4, b0,b1,b2,b3,b4) \ - \ // b = a-p - MOVQ a0, b0 \ - MOVQ a1, b1 \ - MOVQ a2, b2 \ - MOVQ a3, b3 \ - MOVQ a4, b4 \ - \ - SUBQ ·p2+0(SB), b0 \ - SBBQ ·p2+8(SB), b1 \ - SBBQ ·p2+16(SB), b2 \ - SBBQ ·p2+24(SB), b3 \ - SBBQ $0, b4 \ - \ - \ // if b is negative then return a - \ // else return b - CMOVQCC b0, a0 \ - CMOVQCC b1, a1 \ - CMOVQCC b2, a2 \ - CMOVQCC b3, a3 - -#include "mul_amd64.h" -#include "mul_bmi2_amd64.h" - -TEXT ·gfpNeg(SB),0,$0-16 - MOVQ ·p2+0(SB), R8 - MOVQ ·p2+8(SB), R9 - MOVQ ·p2+16(SB), R10 - MOVQ ·p2+24(SB), R11 - - MOVQ a+8(FP), DI - SUBQ 0(DI), R8 - SBBQ 8(DI), R9 - SBBQ 16(DI), R10 - SBBQ 24(DI), R11 - - MOVQ $0, AX - gfpCarry(R8,R9,R10,R11,AX, R12,R13,R14,R15,BX) - - MOVQ c+0(FP), DI - storeBlock(R8,R9,R10,R11, 0(DI)) - RET - -TEXT ·gfpAdd(SB),0,$0-24 - MOVQ a+8(FP), DI - MOVQ b+16(FP), SI - - loadBlock(0(DI), R8,R9,R10,R11) - MOVQ $0, R12 - - ADDQ 0(SI), R8 - ADCQ 8(SI), R9 - ADCQ 16(SI), R10 - ADCQ 24(SI), R11 - ADCQ $0, R12 - - gfpCarry(R8,R9,R10,R11,R12, R13,R14,R15,AX,BX) - - MOVQ c+0(FP), DI - storeBlock(R8,R9,R10,R11, 0(DI)) - RET - -TEXT ·gfpSub(SB),0,$0-24 - MOVQ a+8(FP), DI - MOVQ b+16(FP), SI - - loadBlock(0(DI), R8,R9,R10,R11) - - MOVQ ·p2+0(SB), R12 - MOVQ ·p2+8(SB), R13 - MOVQ ·p2+16(SB), R14 - MOVQ ·p2+24(SB), R15 - MOVQ $0, AX - - SUBQ 0(SI), R8 - SBBQ 8(SI), R9 - SBBQ 16(SI), R10 - SBBQ 24(SI), R11 - - CMOVQCC AX, R12 - CMOVQCC AX, R13 - CMOVQCC AX, R14 - CMOVQCC AX, R15 - - ADDQ R12, R8 - ADCQ R13, R9 - ADCQ R14, R10 - ADCQ R15, R11 - - MOVQ c+0(FP), DI - storeBlock(R8,R9,R10,R11, 0(DI)) - RET - -TEXT ·gfpMul(SB),0,$160-24 - MOVQ a+8(FP), DI - MOVQ b+16(FP), SI - - // Jump to a slightly different implementation if MULX isn't supported. - CMPB ·hasBMI2(SB), $0 - JE nobmi2Mul - - mulBMI2(0(DI),8(DI),16(DI),24(DI), 0(SI)) - storeBlock( R8, R9,R10,R11, 0(SP)) - storeBlock(R12,R13,R14,R15, 32(SP)) - gfpReduceBMI2() - JMP end - -nobmi2Mul: - mul(0(DI),8(DI),16(DI),24(DI), 0(SI), 0(SP)) - gfpReduce(0(SP)) - -end: - MOVQ c+0(FP), DI - storeBlock(R12,R13,R14,R15, 0(DI)) - RET diff --git a/vm/bn256/cloudflare/gfp_arm64.s b/vm/bn256/cloudflare/gfp_arm64.s deleted file mode 100644 index c65e80168..000000000 --- a/vm/bn256/cloudflare/gfp_arm64.s +++ /dev/null @@ -1,113 +0,0 @@ -// +build arm64,!generic - -#define storeBlock(a0,a1,a2,a3, r) \ - MOVD a0, 0+r \ - MOVD a1, 8+r \ - MOVD a2, 16+r \ - MOVD a3, 24+r - -#define loadBlock(r, a0,a1,a2,a3) \ - MOVD 0+r, a0 \ - MOVD 8+r, a1 \ - MOVD 16+r, a2 \ - MOVD 24+r, a3 - -#define loadModulus(p0,p1,p2,p3) \ - MOVD ·p2+0(SB), p0 \ - MOVD ·p2+8(SB), p1 \ - MOVD ·p2+16(SB), p2 \ - MOVD ·p2+24(SB), p3 - -#include "mul_arm64.h" - -TEXT ·gfpNeg(SB),0,$0-16 - MOVD a+8(FP), R0 - loadBlock(0(R0), R1,R2,R3,R4) - loadModulus(R5,R6,R7,R8) - - SUBS R1, R5, R1 - SBCS R2, R6, R2 - SBCS R3, R7, R3 - SBCS R4, R8, R4 - - SUBS R5, R1, R5 - SBCS R6, R2, R6 - SBCS R7, R3, R7 - SBCS R8, R4, R8 - - CSEL CS, R5, R1, R1 - CSEL CS, R6, R2, R2 - CSEL CS, R7, R3, R3 - CSEL CS, R8, R4, R4 - - MOVD c+0(FP), R0 - storeBlock(R1,R2,R3,R4, 0(R0)) - RET - -TEXT ·gfpAdd(SB),0,$0-24 - MOVD a+8(FP), R0 - loadBlock(0(R0), R1,R2,R3,R4) - MOVD b+16(FP), R0 - loadBlock(0(R0), R5,R6,R7,R8) - loadModulus(R9,R10,R11,R12) - MOVD ZR, R0 - - ADDS R5, R1 - ADCS R6, R2 - ADCS R7, R3 - ADCS R8, R4 - ADCS ZR, R0 - - SUBS R9, R1, R5 - SBCS R10, R2, R6 - SBCS R11, R3, R7 - SBCS R12, R4, R8 - SBCS ZR, R0, R0 - - CSEL CS, R5, R1, R1 - CSEL CS, R6, R2, R2 - CSEL CS, R7, R3, R3 - CSEL CS, R8, R4, R4 - - MOVD c+0(FP), R0 - storeBlock(R1,R2,R3,R4, 0(R0)) - RET - -TEXT ·gfpSub(SB),0,$0-24 - MOVD a+8(FP), R0 - loadBlock(0(R0), R1,R2,R3,R4) - MOVD b+16(FP), R0 - loadBlock(0(R0), R5,R6,R7,R8) - loadModulus(R9,R10,R11,R12) - - SUBS R5, R1 - SBCS R6, R2 - SBCS R7, R3 - SBCS R8, R4 - - CSEL CS, ZR, R9, R9 - CSEL CS, ZR, R10, R10 - CSEL CS, ZR, R11, R11 - CSEL CS, ZR, R12, R12 - - ADDS R9, R1 - ADCS R10, R2 - ADCS R11, R3 - ADCS R12, R4 - - MOVD c+0(FP), R0 - storeBlock(R1,R2,R3,R4, 0(R0)) - RET - -TEXT ·gfpMul(SB),0,$0-24 - MOVD a+8(FP), R0 - loadBlock(0(R0), R1,R2,R3,R4) - MOVD b+16(FP), R0 - loadBlock(0(R0), R5,R6,R7,R8) - - mul(R9,R10,R11,R12,R13,R14,R15,R16) - gfpReduce() - - MOVD c+0(FP), R0 - storeBlock(R1,R2,R3,R4, 0(R0)) - RET diff --git a/vm/bn256/cloudflare/gfp_decl.go b/vm/bn256/cloudflare/gfp_decl.go deleted file mode 100644 index fdea5c11a..000000000 --- a/vm/bn256/cloudflare/gfp_decl.go +++ /dev/null @@ -1,25 +0,0 @@ -// +build amd64,!generic arm64,!generic - -package bn256 - -// This file contains forward declarations for the architecture-specific -// assembly implementations of these functions, provided that they exist. - -import ( - "golang.org/x/sys/cpu" -) - -//nolint:varcheck -var hasBMI2 = cpu.X86.HasBMI2 - -// go:noescape -func gfpNeg(c, a *gfP) - -//go:noescape -func gfpAdd(c, a, b *gfP) - -//go:noescape -func gfpSub(c, a, b *gfP) - -//go:noescape -func gfpMul(c, a, b *gfP) diff --git a/vm/bn256/cloudflare/gfp_generic.go b/vm/bn256/cloudflare/gfp_generic.go deleted file mode 100644 index 8e6be9596..000000000 --- a/vm/bn256/cloudflare/gfp_generic.go +++ /dev/null @@ -1,173 +0,0 @@ -// +build !amd64,!arm64 generic - -package bn256 - -func gfpCarry(a *gfP, head uint64) { - b := &gfP{} - - var carry uint64 - for i, pi := range p2 { - ai := a[i] - bi := ai - pi - carry - b[i] = bi - carry = (pi&^ai | (pi|^ai)&bi) >> 63 - } - carry = carry &^ head - - // If b is negative, then return a. - // Else return b. - carry = -carry - ncarry := ^carry - for i := 0; i < 4; i++ { - a[i] = (a[i] & carry) | (b[i] & ncarry) - } -} - -func gfpNeg(c, a *gfP) { - var carry uint64 - for i, pi := range p2 { - ai := a[i] - ci := pi - ai - carry - c[i] = ci - carry = (ai&^pi | (ai|^pi)&ci) >> 63 - } - gfpCarry(c, 0) -} - -func gfpAdd(c, a, b *gfP) { - var carry uint64 - for i, ai := range a { - bi := b[i] - ci := ai + bi + carry - c[i] = ci - carry = (ai&bi | (ai|bi)&^ci) >> 63 - } - gfpCarry(c, carry) -} - -func gfpSub(c, a, b *gfP) { - t := &gfP{} - - var carry uint64 - for i, pi := range p2 { - bi := b[i] - ti := pi - bi - carry - t[i] = ti - carry = (bi&^pi | (bi|^pi)&ti) >> 63 - } - - carry = 0 - for i, ai := range a { - ti := t[i] - ci := ai + ti + carry - c[i] = ci - carry = (ai&ti | (ai|ti)&^ci) >> 63 - } - gfpCarry(c, carry) -} - -func mul(a, b [4]uint64) [8]uint64 { - const ( - mask16 uint64 = 0x0000ffff - mask32 uint64 = 0xffffffff - ) - - var buff [32]uint64 - for i, ai := range a { - a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48 - - for j, bj := range b { - b0, b2 := bj&mask32, bj>>32 - - off := 4 * (i + j) - buff[off+0] += a0 * b0 - buff[off+1] += a1 * b0 - buff[off+2] += a2*b0 + a0*b2 - buff[off+3] += a3*b0 + a1*b2 - buff[off+4] += a2 * b2 - buff[off+5] += a3 * b2 - } - } - - for i := uint(1); i < 4; i++ { - shift := 16 * i - - var head, carry uint64 - for j := uint(0); j < 8; j++ { - block := 4 * j - - xi := buff[block] - yi := (buff[block+i] << shift) + head - zi := xi + yi + carry - buff[block] = zi - carry = (xi&yi | (xi|yi)&^zi) >> 63 - - head = buff[block+i] >> (64 - shift) - } - } - - return [8]uint64{buff[0], buff[4], buff[8], buff[12], buff[16], buff[20], buff[24], buff[28]} -} - -func halfMul(a, b [4]uint64) [4]uint64 { - const ( - mask16 uint64 = 0x0000ffff - mask32 uint64 = 0xffffffff - ) - - var buff [18]uint64 - for i, ai := range a { - a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48 - - for j, bj := range b { - if i+j > 3 { - break - } - b0, b2 := bj&mask32, bj>>32 - - off := 4 * (i + j) - buff[off+0] += a0 * b0 - buff[off+1] += a1 * b0 - buff[off+2] += a2*b0 + a0*b2 - buff[off+3] += a3*b0 + a1*b2 - buff[off+4] += a2 * b2 - buff[off+5] += a3 * b2 - } - } - - for i := uint(1); i < 4; i++ { - shift := 16 * i - - var head, carry uint64 - for j := uint(0); j < 4; j++ { - block := 4 * j - - xi := buff[block] - yi := (buff[block+i] << shift) + head - zi := xi + yi + carry - buff[block] = zi - carry = (xi&yi | (xi|yi)&^zi) >> 63 - - head = buff[block+i] >> (64 - shift) - } - } - - return [4]uint64{buff[0], buff[4], buff[8], buff[12]} -} - -func gfpMul(c, a, b *gfP) { - T := mul(*a, *b) - m := halfMul([4]uint64{T[0], T[1], T[2], T[3]}, np) - t := mul([4]uint64{m[0], m[1], m[2], m[3]}, p2) - - var carry uint64 - for i, Ti := range T { - ti := t[i] - zi := Ti + ti + carry - T[i] = zi - carry = (Ti&ti | (Ti|ti)&^zi) >> 63 - } - - *c = gfP{T[4], T[5], T[6], T[7]} - gfpCarry(c, carry) -} diff --git a/vm/bn256/cloudflare/gfp_test.go b/vm/bn256/cloudflare/gfp_test.go deleted file mode 100644 index 16ab2a841..000000000 --- a/vm/bn256/cloudflare/gfp_test.go +++ /dev/null @@ -1,60 +0,0 @@ -package bn256 - -import ( - "testing" -) - -// Tests that negation works the same way on both assembly-optimized and pure Go -// implementation. -func TestGFpNeg(t *testing.T) { - n := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed} - w := &gfP{0xfedcba9876543211, 0x0123456789abcdef, 0x2152411021524110, 0x0114251201142512} - h := &gfP{} - - gfpNeg(h, n) - if *h != *w { - t.Errorf("negation mismatch: have %#x, want %#x", *h, *w) - } -} - -// Tests that addition works the same way on both assembly-optimized and pure Go -// implementation. -func TestGFpAdd(t *testing.T) { - a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed} - b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef} - w := &gfP{0xc3df73e9278302b8, 0x687e956e978e3572, 0x254954275c18417f, 0xad354b6afc67f9b4} - h := &gfP{} - - gfpAdd(h, a, b) - if *h != *w { - t.Errorf("addition mismatch: have %#x, want %#x", *h, *w) - } -} - -// Tests that subtraction works the same way on both assembly-optimized and pure Go -// implementation. -func TestGFpSub(t *testing.T) { - a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed} - b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef} - w := &gfP{0x02468acf13579bdf, 0xfdb97530eca86420, 0xdfc1e401dfc1e402, 0x203e1bfe203e1bfd} - h := &gfP{} - - gfpSub(h, a, b) - if *h != *w { - t.Errorf("subtraction mismatch: have %#x, want %#x", *h, *w) - } -} - -// Tests that multiplication works the same way on both assembly-optimized and pure Go -// implementation. -func TestGFpMul(t *testing.T) { - a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed} - b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef} - w := &gfP{0xcbcbd377f7ad22d3, 0x3b89ba5d849379bf, 0x87b61627bd38b6d2, 0xc44052a2a0e654b2} - h := &gfP{} - - gfpMul(h, a, b) - if *h != *w { - t.Errorf("multiplication mismatch: have %#x, want %#x", *h, *w) - } -} diff --git a/vm/bn256/cloudflare/lattice.go b/vm/bn256/cloudflare/lattice.go deleted file mode 100644 index f9ace4d9f..000000000 --- a/vm/bn256/cloudflare/lattice.go +++ /dev/null @@ -1,115 +0,0 @@ -package bn256 - -import ( - "math/big" -) - -var half = new(big.Int).Rsh(Order, 1) - -var curveLattice = &lattice{ - vectors: [][]*big.Int{ - {bigFromBase10("147946756881789319000765030803803410728"), bigFromBase10("147946756881789319010696353538189108491")}, - {bigFromBase10("147946756881789319020627676272574806254"), bigFromBase10("-147946756881789318990833708069417712965")}, - }, - inverse: []*big.Int{ - bigFromBase10("147946756881789318990833708069417712965"), - bigFromBase10("147946756881789319010696353538189108491"), - }, - det: bigFromBase10("43776485743678550444492811490514550177096728800832068687396408373151616991234"), -} - -var targetLattice = &lattice{ - vectors: [][]*big.Int{ - {bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697763"), bigFromBase10("9931322734385697764")}, - {bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848882"), bigFromBase10("-9931322734385697762")}, - {bigFromBase10("-9931322734385697762"), bigFromBase10("-4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("-4965661367192848882")}, - {bigFromBase10("9931322734385697763"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881")}, - }, - inverse: []*big.Int{ - bigFromBase10("734653495049373973658254490726798021314063399421879442165"), - bigFromBase10("147946756881789319000765030803803410728"), - bigFromBase10("-147946756881789319005730692170996259609"), - bigFromBase10("1469306990098747947464455738335385361643788813749140841702"), - }, - det: new(big.Int).Set(Order), -} - -type lattice struct { - vectors [][]*big.Int - inverse []*big.Int - det *big.Int -} - -// decompose takes a scalar mod Order as input and finds a short, positive decomposition of it wrt to the lattice basis. -func (l *lattice) decompose(k *big.Int) []*big.Int { - n := len(l.inverse) - - // Calculate closest vector in lattice to with Babai's rounding. - c := make([]*big.Int, n) - for i := 0; i < n; i++ { - c[i] = new(big.Int).Mul(k, l.inverse[i]) - round(c[i], l.det) - } - - // Transform vectors according to c and subtract . - out := make([]*big.Int, n) - temp := new(big.Int) - - for i := 0; i < n; i++ { - out[i] = new(big.Int) - - for j := 0; j < n; j++ { - temp.Mul(c[j], l.vectors[j][i]) - out[i].Add(out[i], temp) - } - - out[i].Neg(out[i]) - out[i].Add(out[i], l.vectors[0][i]).Add(out[i], l.vectors[0][i]) - } - out[0].Add(out[0], k) - - return out -} - -func (l *lattice) Precompute(add func(i, j uint)) { - n := uint(len(l.vectors)) - total := uint(1) << n - - for i := uint(0); i < n; i++ { - for j := uint(0); j < total; j++ { - if (j>>i)&1 == 1 { - add(i, j) - } - } - } -} - -func (l *lattice) Multi(scalar *big.Int) []uint8 { - decomp := l.decompose(scalar) - - maxLen := 0 - for _, x := range decomp { - if x.BitLen() > maxLen { - maxLen = x.BitLen() - } - } - - out := make([]uint8, maxLen) - for j, x := range decomp { - for i := 0; i < maxLen; i++ { - out[i] += uint8(x.Bit(i)) << uint(j) - } - } - - return out -} - -// round sets num to num/denom rounded to the nearest integer. -func round(num, denom *big.Int) { - r := new(big.Int) - num.DivMod(num, denom, r) - - if r.Cmp(half) == 1 { - num.Add(num, big.NewInt(1)) - } -} diff --git a/vm/bn256/cloudflare/lattice_test.go b/vm/bn256/cloudflare/lattice_test.go deleted file mode 100644 index 4d52ad9b2..000000000 --- a/vm/bn256/cloudflare/lattice_test.go +++ /dev/null @@ -1,29 +0,0 @@ -package bn256 - -import ( - "crypto/rand" - - "testing" -) - -func TestLatticeReduceCurve(t *testing.T) { - k, _ := rand.Int(rand.Reader, Order) - ks := curveLattice.decompose(k) - - if ks[0].BitLen() > 130 || ks[1].BitLen() > 130 { - t.Fatal("reduction too large") - } else if ks[0].Sign() < 0 || ks[1].Sign() < 0 { - t.Fatal("reduction must be positive") - } -} - -func TestLatticeReduceTarget(t *testing.T) { - k, _ := rand.Int(rand.Reader, Order) - ks := targetLattice.decompose(k) - - if ks[0].BitLen() > 66 || ks[1].BitLen() > 66 || ks[2].BitLen() > 66 || ks[3].BitLen() > 66 { - t.Fatal("reduction too large") - } else if ks[0].Sign() < 0 || ks[1].Sign() < 0 || ks[2].Sign() < 0 || ks[3].Sign() < 0 { - t.Fatal("reduction must be positive") - } -} diff --git a/vm/bn256/cloudflare/main_test.go b/vm/bn256/cloudflare/main_test.go deleted file mode 100644 index 0230f1b19..000000000 --- a/vm/bn256/cloudflare/main_test.go +++ /dev/null @@ -1,71 +0,0 @@ -package bn256 - -import ( - "testing" - - "crypto/rand" -) - -func TestRandomG2Marshal(t *testing.T) { - for i := 0; i < 10; i++ { - n, g2, err := RandomG2(rand.Reader) - if err != nil { - t.Error(err) - continue - } - t.Logf("%d: %x\n", n, g2.Marshal()) - } -} - -func TestPairings(t *testing.T) { - a1 := new(G1).ScalarBaseMult(bigFromBase10("1")) - a2 := new(G1).ScalarBaseMult(bigFromBase10("2")) - a37 := new(G1).ScalarBaseMult(bigFromBase10("37")) - an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - b0 := new(G2).ScalarBaseMult(bigFromBase10("0")) - b1 := new(G2).ScalarBaseMult(bigFromBase10("1")) - b2 := new(G2).ScalarBaseMult(bigFromBase10("2")) - b27 := new(G2).ScalarBaseMult(bigFromBase10("27")) - b999 := new(G2).ScalarBaseMult(bigFromBase10("999")) - bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - p1 := Pair(a1, b1) - pn1 := Pair(a1, bn1) - np1 := Pair(an1, b1) - if pn1.String() != np1.String() { - t.Error("Pairing mismatch: e(a, -b) != e(-a, b)") - } - if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false negative!") - } - p0 := new(GT).Add(p1, pn1) - p0_2 := Pair(a1, b0) - if p0.String() != p0_2.String() { - t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1") - } - p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")) - if p0.String() != p0_3.String() { - t.Error("Pairing mismatch: e(a, b) has wrong order") - } - p2 := Pair(a2, b1) - p2_2 := Pair(a1, b2) - p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2")) - if p2.String() != p2_2.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)") - } - if p2.String() != p2_3.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2") - } - if p2.String() == p1.String() { - t.Error("Pairing is degenerate!") - } - if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false positive!") - } - p999 := Pair(a37, b27) - p999_2 := Pair(a1, b999) - if p999.String() != p999_2.String() { - t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)") - } -} diff --git a/vm/bn256/cloudflare/mul_amd64.h b/vm/bn256/cloudflare/mul_amd64.h deleted file mode 100644 index bab5da831..000000000 --- a/vm/bn256/cloudflare/mul_amd64.h +++ /dev/null @@ -1,181 +0,0 @@ -#define mul(a0,a1,a2,a3, rb, stack) \ - MOVQ a0, AX \ - MULQ 0+rb \ - MOVQ AX, R8 \ - MOVQ DX, R9 \ - MOVQ a0, AX \ - MULQ 8+rb \ - ADDQ AX, R9 \ - ADCQ $0, DX \ - MOVQ DX, R10 \ - MOVQ a0, AX \ - MULQ 16+rb \ - ADDQ AX, R10 \ - ADCQ $0, DX \ - MOVQ DX, R11 \ - MOVQ a0, AX \ - MULQ 24+rb \ - ADDQ AX, R11 \ - ADCQ $0, DX \ - MOVQ DX, R12 \ - \ - storeBlock(R8,R9,R10,R11, 0+stack) \ - MOVQ R12, 32+stack \ - \ - MOVQ a1, AX \ - MULQ 0+rb \ - MOVQ AX, R8 \ - MOVQ DX, R9 \ - MOVQ a1, AX \ - MULQ 8+rb \ - ADDQ AX, R9 \ - ADCQ $0, DX \ - MOVQ DX, R10 \ - MOVQ a1, AX \ - MULQ 16+rb \ - ADDQ AX, R10 \ - ADCQ $0, DX \ - MOVQ DX, R11 \ - MOVQ a1, AX \ - MULQ 24+rb \ - ADDQ AX, R11 \ - ADCQ $0, DX \ - MOVQ DX, R12 \ - \ - ADDQ 8+stack, R8 \ - ADCQ 16+stack, R9 \ - ADCQ 24+stack, R10 \ - ADCQ 32+stack, R11 \ - ADCQ $0, R12 \ - storeBlock(R8,R9,R10,R11, 8+stack) \ - MOVQ R12, 40+stack \ - \ - MOVQ a2, AX \ - MULQ 0+rb \ - MOVQ AX, R8 \ - MOVQ DX, R9 \ - MOVQ a2, AX \ - MULQ 8+rb \ - ADDQ AX, R9 \ - ADCQ $0, DX \ - MOVQ DX, R10 \ - MOVQ a2, AX \ - MULQ 16+rb \ - ADDQ AX, R10 \ - ADCQ $0, DX \ - MOVQ DX, R11 \ - MOVQ a2, AX \ - MULQ 24+rb \ - ADDQ AX, R11 \ - ADCQ $0, DX \ - MOVQ DX, R12 \ - \ - ADDQ 16+stack, R8 \ - ADCQ 24+stack, R9 \ - ADCQ 32+stack, R10 \ - ADCQ 40+stack, R11 \ - ADCQ $0, R12 \ - storeBlock(R8,R9,R10,R11, 16+stack) \ - MOVQ R12, 48+stack \ - \ - MOVQ a3, AX \ - MULQ 0+rb \ - MOVQ AX, R8 \ - MOVQ DX, R9 \ - MOVQ a3, AX \ - MULQ 8+rb \ - ADDQ AX, R9 \ - ADCQ $0, DX \ - MOVQ DX, R10 \ - MOVQ a3, AX \ - MULQ 16+rb \ - ADDQ AX, R10 \ - ADCQ $0, DX \ - MOVQ DX, R11 \ - MOVQ a3, AX \ - MULQ 24+rb \ - ADDQ AX, R11 \ - ADCQ $0, DX \ - MOVQ DX, R12 \ - \ - ADDQ 24+stack, R8 \ - ADCQ 32+stack, R9 \ - ADCQ 40+stack, R10 \ - ADCQ 48+stack, R11 \ - ADCQ $0, R12 \ - storeBlock(R8,R9,R10,R11, 24+stack) \ - MOVQ R12, 56+stack - -#define gfpReduce(stack) \ - \ // m = (T * N') mod R, store m in R8:R9:R10:R11 - MOVQ ·np+0(SB), AX \ - MULQ 0+stack \ - MOVQ AX, R8 \ - MOVQ DX, R9 \ - MOVQ ·np+0(SB), AX \ - MULQ 8+stack \ - ADDQ AX, R9 \ - ADCQ $0, DX \ - MOVQ DX, R10 \ - MOVQ ·np+0(SB), AX \ - MULQ 16+stack \ - ADDQ AX, R10 \ - ADCQ $0, DX \ - MOVQ DX, R11 \ - MOVQ ·np+0(SB), AX \ - MULQ 24+stack \ - ADDQ AX, R11 \ - \ - MOVQ ·np+8(SB), AX \ - MULQ 0+stack \ - MOVQ AX, R12 \ - MOVQ DX, R13 \ - MOVQ ·np+8(SB), AX \ - MULQ 8+stack \ - ADDQ AX, R13 \ - ADCQ $0, DX \ - MOVQ DX, R14 \ - MOVQ ·np+8(SB), AX \ - MULQ 16+stack \ - ADDQ AX, R14 \ - \ - ADDQ R12, R9 \ - ADCQ R13, R10 \ - ADCQ R14, R11 \ - \ - MOVQ ·np+16(SB), AX \ - MULQ 0+stack \ - MOVQ AX, R12 \ - MOVQ DX, R13 \ - MOVQ ·np+16(SB), AX \ - MULQ 8+stack \ - ADDQ AX, R13 \ - \ - ADDQ R12, R10 \ - ADCQ R13, R11 \ - \ - MOVQ ·np+24(SB), AX \ - MULQ 0+stack \ - ADDQ AX, R11 \ - \ - storeBlock(R8,R9,R10,R11, 64+stack) \ - \ - \ // m * N - mul(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64+stack, 96+stack) \ - \ - \ // Add the 512-bit intermediate to m*N - loadBlock(96+stack, R8,R9,R10,R11) \ - loadBlock(128+stack, R12,R13,R14,R15) \ - \ - MOVQ $0, AX \ - ADDQ 0+stack, R8 \ - ADCQ 8+stack, R9 \ - ADCQ 16+stack, R10 \ - ADCQ 24+stack, R11 \ - ADCQ 32+stack, R12 \ - ADCQ 40+stack, R13 \ - ADCQ 48+stack, R14 \ - ADCQ 56+stack, R15 \ - ADCQ $0, AX \ - \ - gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX) diff --git a/vm/bn256/cloudflare/mul_arm64.h b/vm/bn256/cloudflare/mul_arm64.h deleted file mode 100644 index d405eb8f7..000000000 --- a/vm/bn256/cloudflare/mul_arm64.h +++ /dev/null @@ -1,133 +0,0 @@ -#define mul(c0,c1,c2,c3,c4,c5,c6,c7) \ - MUL R1, R5, c0 \ - UMULH R1, R5, c1 \ - MUL R1, R6, R0 \ - ADDS R0, c1 \ - UMULH R1, R6, c2 \ - MUL R1, R7, R0 \ - ADCS R0, c2 \ - UMULH R1, R7, c3 \ - MUL R1, R8, R0 \ - ADCS R0, c3 \ - UMULH R1, R8, c4 \ - ADCS ZR, c4 \ - \ - MUL R2, R5, R1 \ - UMULH R2, R5, R26 \ - MUL R2, R6, R0 \ - ADDS R0, R26 \ - UMULH R2, R6, R27 \ - MUL R2, R7, R0 \ - ADCS R0, R27 \ - UMULH R2, R7, R29 \ - MUL R2, R8, R0 \ - ADCS R0, R29 \ - UMULH R2, R8, c5 \ - ADCS ZR, c5 \ - ADDS R1, c1 \ - ADCS R26, c2 \ - ADCS R27, c3 \ - ADCS R29, c4 \ - ADCS ZR, c5 \ - \ - MUL R3, R5, R1 \ - UMULH R3, R5, R26 \ - MUL R3, R6, R0 \ - ADDS R0, R26 \ - UMULH R3, R6, R27 \ - MUL R3, R7, R0 \ - ADCS R0, R27 \ - UMULH R3, R7, R29 \ - MUL R3, R8, R0 \ - ADCS R0, R29 \ - UMULH R3, R8, c6 \ - ADCS ZR, c6 \ - ADDS R1, c2 \ - ADCS R26, c3 \ - ADCS R27, c4 \ - ADCS R29, c5 \ - ADCS ZR, c6 \ - \ - MUL R4, R5, R1 \ - UMULH R4, R5, R26 \ - MUL R4, R6, R0 \ - ADDS R0, R26 \ - UMULH R4, R6, R27 \ - MUL R4, R7, R0 \ - ADCS R0, R27 \ - UMULH R4, R7, R29 \ - MUL R4, R8, R0 \ - ADCS R0, R29 \ - UMULH R4, R8, c7 \ - ADCS ZR, c7 \ - ADDS R1, c3 \ - ADCS R26, c4 \ - ADCS R27, c5 \ - ADCS R29, c6 \ - ADCS ZR, c7 - -#define gfpReduce() \ - \ // m = (T * N') mod R, store m in R1:R2:R3:R4 - MOVD ·np+0(SB), R17 \ - MOVD ·np+8(SB), R25 \ - MOVD ·np+16(SB), R19 \ - MOVD ·np+24(SB), R20 \ - \ - MUL R9, R17, R1 \ - UMULH R9, R17, R2 \ - MUL R9, R25, R0 \ - ADDS R0, R2 \ - UMULH R9, R25, R3 \ - MUL R9, R19, R0 \ - ADCS R0, R3 \ - UMULH R9, R19, R4 \ - MUL R9, R20, R0 \ - ADCS R0, R4 \ - \ - MUL R10, R17, R21 \ - UMULH R10, R17, R22 \ - MUL R10, R25, R0 \ - ADDS R0, R22 \ - UMULH R10, R25, R23 \ - MUL R10, R19, R0 \ - ADCS R0, R23 \ - ADDS R21, R2 \ - ADCS R22, R3 \ - ADCS R23, R4 \ - \ - MUL R11, R17, R21 \ - UMULH R11, R17, R22 \ - MUL R11, R25, R0 \ - ADDS R0, R22 \ - ADDS R21, R3 \ - ADCS R22, R4 \ - \ - MUL R12, R17, R21 \ - ADDS R21, R4 \ - \ - \ // m * N - loadModulus(R5,R6,R7,R8) \ - mul(R17,R25,R19,R20,R21,R22,R23,R24) \ - \ - \ // Add the 512-bit intermediate to m*N - MOVD ZR, R0 \ - ADDS R9, R17 \ - ADCS R10, R25 \ - ADCS R11, R19 \ - ADCS R12, R20 \ - ADCS R13, R21 \ - ADCS R14, R22 \ - ADCS R15, R23 \ - ADCS R16, R24 \ - ADCS ZR, R0 \ - \ - \ // Our output is R21:R22:R23:R24. Reduce mod p if necessary. - SUBS R5, R21, R10 \ - SBCS R6, R22, R11 \ - SBCS R7, R23, R12 \ - SBCS R8, R24, R13 \ - \ - CSEL CS, R10, R21, R1 \ - CSEL CS, R11, R22, R2 \ - CSEL CS, R12, R23, R3 \ - CSEL CS, R13, R24, R4 diff --git a/vm/bn256/cloudflare/mul_bmi2_amd64.h b/vm/bn256/cloudflare/mul_bmi2_amd64.h deleted file mode 100644 index 71ad0499a..000000000 --- a/vm/bn256/cloudflare/mul_bmi2_amd64.h +++ /dev/null @@ -1,112 +0,0 @@ -#define mulBMI2(a0,a1,a2,a3, rb) \ - MOVQ a0, DX \ - MOVQ $0, R13 \ - MULXQ 0+rb, R8, R9 \ - MULXQ 8+rb, AX, R10 \ - ADDQ AX, R9 \ - MULXQ 16+rb, AX, R11 \ - ADCQ AX, R10 \ - MULXQ 24+rb, AX, R12 \ - ADCQ AX, R11 \ - ADCQ $0, R12 \ - ADCQ $0, R13 \ - \ - MOVQ a1, DX \ - MOVQ $0, R14 \ - MULXQ 0+rb, AX, BX \ - ADDQ AX, R9 \ - ADCQ BX, R10 \ - MULXQ 16+rb, AX, BX \ - ADCQ AX, R11 \ - ADCQ BX, R12 \ - ADCQ $0, R13 \ - MULXQ 8+rb, AX, BX \ - ADDQ AX, R10 \ - ADCQ BX, R11 \ - MULXQ 24+rb, AX, BX \ - ADCQ AX, R12 \ - ADCQ BX, R13 \ - ADCQ $0, R14 \ - \ - MOVQ a2, DX \ - MOVQ $0, R15 \ - MULXQ 0+rb, AX, BX \ - ADDQ AX, R10 \ - ADCQ BX, R11 \ - MULXQ 16+rb, AX, BX \ - ADCQ AX, R12 \ - ADCQ BX, R13 \ - ADCQ $0, R14 \ - MULXQ 8+rb, AX, BX \ - ADDQ AX, R11 \ - ADCQ BX, R12 \ - MULXQ 24+rb, AX, BX \ - ADCQ AX, R13 \ - ADCQ BX, R14 \ - ADCQ $0, R15 \ - \ - MOVQ a3, DX \ - MULXQ 0+rb, AX, BX \ - ADDQ AX, R11 \ - ADCQ BX, R12 \ - MULXQ 16+rb, AX, BX \ - ADCQ AX, R13 \ - ADCQ BX, R14 \ - ADCQ $0, R15 \ - MULXQ 8+rb, AX, BX \ - ADDQ AX, R12 \ - ADCQ BX, R13 \ - MULXQ 24+rb, AX, BX \ - ADCQ AX, R14 \ - ADCQ BX, R15 - -#define gfpReduceBMI2() \ - \ // m = (T * N') mod R, store m in R8:R9:R10:R11 - MOVQ ·np+0(SB), DX \ - MULXQ 0(SP), R8, R9 \ - MULXQ 8(SP), AX, R10 \ - ADDQ AX, R9 \ - MULXQ 16(SP), AX, R11 \ - ADCQ AX, R10 \ - MULXQ 24(SP), AX, BX \ - ADCQ AX, R11 \ - \ - MOVQ ·np+8(SB), DX \ - MULXQ 0(SP), AX, BX \ - ADDQ AX, R9 \ - ADCQ BX, R10 \ - MULXQ 16(SP), AX, BX \ - ADCQ AX, R11 \ - MULXQ 8(SP), AX, BX \ - ADDQ AX, R10 \ - ADCQ BX, R11 \ - \ - MOVQ ·np+16(SB), DX \ - MULXQ 0(SP), AX, BX \ - ADDQ AX, R10 \ - ADCQ BX, R11 \ - MULXQ 8(SP), AX, BX \ - ADDQ AX, R11 \ - \ - MOVQ ·np+24(SB), DX \ - MULXQ 0(SP), AX, BX \ - ADDQ AX, R11 \ - \ - storeBlock(R8,R9,R10,R11, 64(SP)) \ - \ - \ // m * N - mulBMI2(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64(SP)) \ - \ - \ // Add the 512-bit intermediate to m*N - MOVQ $0, AX \ - ADDQ 0(SP), R8 \ - ADCQ 8(SP), R9 \ - ADCQ 16(SP), R10 \ - ADCQ 24(SP), R11 \ - ADCQ 32(SP), R12 \ - ADCQ 40(SP), R13 \ - ADCQ 48(SP), R14 \ - ADCQ 56(SP), R15 \ - ADCQ $0, AX \ - \ - gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX) diff --git a/vm/bn256/cloudflare/optate.go b/vm/bn256/cloudflare/optate.go deleted file mode 100644 index b71e50e3a..000000000 --- a/vm/bn256/cloudflare/optate.go +++ /dev/null @@ -1,271 +0,0 @@ -package bn256 - -func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) { - // See the mixed addition algorithm from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - B := (&gfP2{}).Mul(&p.x, &r.t) - - D := (&gfP2{}).Add(&p.y, &r.z) - D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t) - - H := (&gfP2{}).Sub(B, &r.x) - I := (&gfP2{}).Square(H) - - E := (&gfP2{}).Add(I, I) - E.Add(E, E) - - J := (&gfP2{}).Mul(H, E) - - L1 := (&gfP2{}).Sub(D, &r.y) - L1.Sub(L1, &r.y) - - V := (&gfP2{}).Mul(&r.x, E) - - rOut = &twistPoint{} - rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V) - - rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I) - - t := (&gfP2{}).Sub(V, &rOut.x) - t.Mul(t, L1) - t2 := (&gfP2{}).Mul(&r.y, J) - t2.Add(t2, t2) - rOut.y.Sub(t, t2) - - rOut.t.Square(&rOut.z) - - t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t) - - t2.Mul(L1, &p.x) - t2.Add(t2, t2) - a = (&gfP2{}).Sub(t2, t) - - c = (&gfP2{}).MulScalar(&rOut.z, &q.y) - c.Add(c, c) - - b = (&gfP2{}).Neg(L1) - b.MulScalar(b, &q.x).Add(b, b) - - return -} - -func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) { - // See the doubling algorithm for a=0 from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - A := (&gfP2{}).Square(&r.x) - B := (&gfP2{}).Square(&r.y) - C := (&gfP2{}).Square(B) - - D := (&gfP2{}).Add(&r.x, B) - D.Square(D).Sub(D, A).Sub(D, C).Add(D, D) - - E := (&gfP2{}).Add(A, A) - E.Add(E, A) - - G := (&gfP2{}).Square(E) - - rOut = &twistPoint{} - rOut.x.Sub(G, D).Sub(&rOut.x, D) - - rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t) - - rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E) - t := (&gfP2{}).Add(C, C) - t.Add(t, t).Add(t, t) - rOut.y.Sub(&rOut.y, t) - - rOut.t.Square(&rOut.z) - - t.Mul(E, &r.t).Add(t, t) - b = (&gfP2{}).Neg(t) - b.MulScalar(b, &q.x) - - a = (&gfP2{}).Add(&r.x, E) - a.Square(a).Sub(a, A).Sub(a, G) - t.Add(B, B).Add(t, t) - a.Sub(a, t) - - c = (&gfP2{}).Mul(&rOut.z, &r.t) - c.Add(c, c).MulScalar(c, &q.y) - - return -} - -func mulLine(ret *gfP12, a, b, c *gfP2) { - a2 := &gfP6{} - a2.y.Set(a) - a2.z.Set(b) - a2.Mul(a2, &ret.x) - t3 := (&gfP6{}).MulScalar(&ret.y, c) - - t := (&gfP2{}).Add(b, c) - t2 := &gfP6{} - t2.y.Set(a) - t2.z.Set(t) - ret.x.Add(&ret.x, &ret.y) - - ret.y.Set(t3) - - ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y) - a2.MulTau(a2) - ret.y.Add(&ret.y, a2) -} - -// sixuPlus2NAF is 6u+2 in non-adjacent form. -var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, - 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, - 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, - 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} - -// miller implements the Miller loop for calculating the Optimal Ate pairing. -// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf -func miller(q *twistPoint, p *curvePoint) *gfP12 { - ret := (&gfP12{}).SetOne() - - aAffine := &twistPoint{} - aAffine.Set(q) - aAffine.MakeAffine() - - bAffine := &curvePoint{} - bAffine.Set(p) - bAffine.MakeAffine() - - minusA := &twistPoint{} - minusA.Neg(aAffine) - - r := &twistPoint{} - r.Set(aAffine) - - r2 := (&gfP2{}).Square(&aAffine.y) - - for i := len(sixuPlus2NAF) - 1; i > 0; i-- { - a, b, c, newR := lineFunctionDouble(r, bAffine) - if i != len(sixuPlus2NAF)-1 { - ret.Square(ret) - } - - mulLine(ret, a, b, c) - r = newR - - switch sixuPlus2NAF[i-1] { - case 1: - a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2) - case -1: - a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2) - default: - continue - } - - mulLine(ret, a, b, c) - r = newR - } - - // In order to calculate Q1 we have to convert q from the sextic twist - // to the full GF(p^12) group, apply the Frobenius there, and convert - // back. - // - // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just - // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) - // where x̄ is the conjugate of x. If we are going to apply the inverse - // isomorphism we need a value with a single coefficient of ω² so we - // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of - // p, 2p-2 is a multiple of six. Therefore we can rewrite as - // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the - // ω². - // - // A similar argument can be made for the y value. - - q1 := &twistPoint{} - q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3) - q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2) - q1.z.SetOne() - q1.t.SetOne() - - // For Q2 we are applying the p² Frobenius. The two conjugations cancel - // out and we are left only with the factors from the isomorphism. In - // the case of x, we end up with a pure number which is why - // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We - // ignore this to end up with -Q2. - - minusQ2 := &twistPoint{} - minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3) - minusQ2.y.Set(&aAffine.y) - minusQ2.z.SetOne() - minusQ2.t.SetOne() - - r2.Square(&q1.y) - a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2) - mulLine(ret, a, b, c) - r = newR - - r2.Square(&minusQ2.y) - a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2) - mulLine(ret, a, b, c) - r = newR - - return ret -} - -// finalExponentiation computes the (p¹²-1)/Order-th power of an element of -// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from -// http://cryptojedi.org/papers/dclxvi-20100714.pdf) -func finalExponentiation(in *gfP12) *gfP12 { - t1 := &gfP12{} - - // This is the p^6-Frobenius - t1.x.Neg(&in.x) - t1.y.Set(&in.y) - - inv := &gfP12{} - inv.Invert(in) - t1.Mul(t1, inv) - - t2 := (&gfP12{}).FrobeniusP2(t1) - t1.Mul(t1, t2) - - fp := (&gfP12{}).Frobenius(t1) - fp2 := (&gfP12{}).FrobeniusP2(t1) - fp3 := (&gfP12{}).Frobenius(fp2) - - fu := (&gfP12{}).Exp(t1, u) - fu2 := (&gfP12{}).Exp(fu, u) - fu3 := (&gfP12{}).Exp(fu2, u) - - y3 := (&gfP12{}).Frobenius(fu) - fu2p := (&gfP12{}).Frobenius(fu2) - fu3p := (&gfP12{}).Frobenius(fu3) - y2 := (&gfP12{}).FrobeniusP2(fu2) - - y0 := &gfP12{} - y0.Mul(fp, fp2).Mul(y0, fp3) - - y1 := (&gfP12{}).Conjugate(t1) - y5 := (&gfP12{}).Conjugate(fu2) - y3.Conjugate(y3) - y4 := (&gfP12{}).Mul(fu, fu2p) - y4.Conjugate(y4) - - y6 := (&gfP12{}).Mul(fu3, fu3p) - y6.Conjugate(y6) - - t0 := (&gfP12{}).Square(y6) - t0.Mul(t0, y4).Mul(t0, y5) - t1.Mul(y3, y5).Mul(t1, t0) - t0.Mul(t0, y2) - t1.Square(t1).Mul(t1, t0).Square(t1) - t0.Mul(t1, y1) - t1.Mul(t1, y0) - t0.Square(t0).Mul(t0, t1) - - return t0 -} - -func optimalAte(a *twistPoint, b *curvePoint) *gfP12 { - e := miller(a, b) - ret := finalExponentiation(e) - - if a.IsInfinity() || b.IsInfinity() { - ret.SetOne() - } - return ret -} diff --git a/vm/bn256/cloudflare/twist.go b/vm/bn256/cloudflare/twist.go deleted file mode 100644 index 0c2f80d4e..000000000 --- a/vm/bn256/cloudflare/twist.go +++ /dev/null @@ -1,204 +0,0 @@ -package bn256 - -import ( - "math/big" -) - -// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are -// kept in Jacobian form and t=z² when valid. The group G₂ is the set of -// n-torsion points of this curve over GF(p²) (where n = Order) -type twistPoint struct { - x, y, z, t gfP2 -} - -var twistB = &gfP2{ - gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d}, - gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d}, -} - -// twistGen is the generator of group G₂. -var twistGen = &twistPoint{ - gfP2{ - gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b}, - gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b}, - }, - gfP2{ - gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482}, - gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206}, - }, - gfP2{*newGFp(0), *newGFp(1)}, - gfP2{*newGFp(0), *newGFp(1)}, -} - -func (c *twistPoint) String() string { - c.MakeAffine() - x, y := gfP2Decode(&c.x), gfP2Decode(&c.y) - return "(" + x.String() + ", " + y.String() + ")" -} - -func (c *twistPoint) Set(a *twistPoint) { - c.x.Set(&a.x) - c.y.Set(&a.y) - c.z.Set(&a.z) - c.t.Set(&a.t) -} - -// IsOnCurve returns true iff c is on the curve. -func (c *twistPoint) IsOnCurve() bool { - c.MakeAffine() - if c.IsInfinity() { - return true - } - - y2, x3 := &gfP2{}, &gfP2{} - y2.Square(&c.y) - x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB) - - if *y2 != *x3 { - return false - } - cneg := &twistPoint{} - cneg.Mul(c, Order) - return cneg.z.IsZero() -} - -func (c *twistPoint) SetInfinity() { - c.x.SetZero() - c.y.SetOne() - c.z.SetZero() - c.t.SetZero() -} - -func (c *twistPoint) IsInfinity() bool { - return c.z.IsZero() -} - -func (c *twistPoint) Add(a, b *twistPoint) { - // For additional comments, see the same function in curve.go. - - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - z12 := (&gfP2{}).Square(&a.z) - z22 := (&gfP2{}).Square(&b.z) - u1 := (&gfP2{}).Mul(&a.x, z22) - u2 := (&gfP2{}).Mul(&b.x, z12) - - t := (&gfP2{}).Mul(&b.z, z22) - s1 := (&gfP2{}).Mul(&a.y, t) - - t.Mul(&a.z, z12) - s2 := (&gfP2{}).Mul(&b.y, t) - - h := (&gfP2{}).Sub(u2, u1) - xEqual := h.IsZero() - - t.Add(h, h) - i := (&gfP2{}).Square(t) - j := (&gfP2{}).Mul(h, i) - - t.Sub(s2, s1) - yEqual := t.IsZero() - if xEqual && yEqual { - c.Double(a) - return - } - r := (&gfP2{}).Add(t, t) - - v := (&gfP2{}).Mul(u1, i) - - t4 := (&gfP2{}).Square(r) - t.Add(v, v) - t6 := (&gfP2{}).Sub(t4, j) - c.x.Sub(t6, t) - - t.Sub(v, &c.x) // t7 - t4.Mul(s1, j) // t8 - t6.Add(t4, t4) // t9 - t4.Mul(r, t) // t10 - c.y.Sub(t4, t6) - - t.Add(&a.z, &b.z) // t11 - t4.Square(t) // t12 - t.Sub(t4, z12) // t13 - t4.Sub(t, z22) // t14 - c.z.Mul(t4, h) -} - -func (c *twistPoint) Double(a *twistPoint) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A := (&gfP2{}).Square(&a.x) - B := (&gfP2{}).Square(&a.y) - C := (&gfP2{}).Square(B) - - t := (&gfP2{}).Add(&a.x, B) - t2 := (&gfP2{}).Square(t) - t.Sub(t2, A) - t2.Sub(t, C) - d := (&gfP2{}).Add(t2, t2) - t.Add(A, A) - e := (&gfP2{}).Add(t, A) - f := (&gfP2{}).Square(e) - - t.Add(d, d) - c.x.Sub(f, t) - - t.Add(C, C) - t2.Add(t, t) - t.Add(t2, t2) - c.y.Sub(d, &c.x) - t2.Mul(e, &c.y) - c.y.Sub(t2, t) - - t.Mul(&a.y, &a.z) - c.z.Add(t, t) -} - -func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) { - sum, t := &twistPoint{}, &twistPoint{} - - for i := scalar.BitLen(); i >= 0; i-- { - t.Double(sum) - if scalar.Bit(i) != 0 { - sum.Add(t, a) - } else { - sum.Set(t) - } - } - - c.Set(sum) -} - -func (c *twistPoint) MakeAffine() { - if c.z.IsOne() { - return - } else if c.z.IsZero() { - c.x.SetZero() - c.y.SetOne() - c.t.SetZero() - return - } - - zInv := (&gfP2{}).Invert(&c.z) - t := (&gfP2{}).Mul(&c.y, zInv) - zInv2 := (&gfP2{}).Square(zInv) - c.y.Mul(t, zInv2) - t.Mul(&c.x, zInv2) - c.x.Set(t) - c.z.SetOne() - c.t.SetOne() -} - -func (c *twistPoint) Neg(a *twistPoint) { - c.x.Set(&a.x) - c.y.Neg(&a.y) - c.z.Set(&a.z) - c.t.SetZero() -} diff --git a/vm/bn256/google/bn256.go b/vm/bn256/google/bn256.go deleted file mode 100644 index e0402e51f..000000000 --- a/vm/bn256/google/bn256.go +++ /dev/null @@ -1,459 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package bn256 implements a particular bilinear group. -// -// Bilinear groups are the basis of many of the new cryptographic protocols -// that have been proposed over the past decade. They consist of a triplet of -// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ -// (where gₓ is a generator of the respective group). That function is called -// a pairing function. -// -// This package specifically implements the Optimal Ate pairing over a 256-bit -// Barreto-Naehrig curve as described in -// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible -// with the implementation described in that paper. -// -// (This package previously claimed to operate at a 128-bit security level. -// However, recent improvements in attacks mean that is no longer true. See -// https://moderncrypto.org/mail-archive/curves/2016/000740.html.) -package bn256 - -import ( - "crypto/rand" - "errors" - "io" - "math/big" -) - -// BUG(agl): this implementation is not constant time. -// TODO(agl): keep GF(p²) elements in Mongomery form. - -// G1 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G1 struct { - p *curvePoint -} - -// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. -func RandomG1(r io.Reader) (*big.Int, *G1, error) { - var k *big.Int - var err error - - for { - k, err = rand.Int(r, Order) - if err != nil { - return nil, nil, err - } - if k.Sign() > 0 { - break - } - } - - return k, new(G1).ScalarBaseMult(k), nil -} - -func (e *G1) String() string { - return "bn256.G1" + e.p.String() -} - -// CurvePoints returns p's curve points in big integer -func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) { - return e.p.x, e.p.y, e.p.z, e.p.t -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and -// then returns e. -func (e *G1) ScalarBaseMult(k *big.Int) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Mul(curveGen, k, new(bnPool)) - return e -} - -// ScalarMult sets e to a*k and then returns e. -func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Mul(a.p, k, new(bnPool)) - return e -} - -// Add sets e to a+b and then returns e. -// BUG(agl): this function is not complete: a==b fails. -func (e *G1) Add(a, b *G1) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Add(a.p, b.p, new(bnPool)) - return e -} - -// Neg sets e to -a and then returns e. -func (e *G1) Neg(a *G1) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Negative(a.p) - return e -} - -// Marshal converts n to a byte slice. -func (e *G1) Marshal() []byte { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if e.p.IsInfinity() { - return make([]byte, numBytes*2) - } - - e.p.MakeAffine(nil) - - xBytes := new(big.Int).Mod(e.p.x, P).Bytes() - yBytes := new(big.Int).Mod(e.p.y, P).Bytes() - - ret := make([]byte, numBytes*2) - copy(ret[1*numBytes-len(xBytes):], xBytes) - copy(ret[2*numBytes-len(yBytes):], yBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G1) Unmarshal(m []byte) ([]byte, error) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - if len(m) != 2*numBytes { - return nil, errors.New("bn256: not enough data") - } - // Unmarshal the points and check their caps - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) - if e.p.x.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - e.p.y.SetBytes(m[1*numBytes : 2*numBytes]) - if e.p.y.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - // Ensure the point is on the curve - if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { - // This is the point at infinity. - e.p.y.SetInt64(1) - e.p.z.SetInt64(0) - e.p.t.SetInt64(0) - } else { - e.p.z.SetInt64(1) - e.p.t.SetInt64(1) - - if !e.p.IsOnCurve() { - return nil, errors.New("bn256: malformed point") - } - } - return m[2*numBytes:], nil -} - -// G2 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G2 struct { - p *twistPoint -} - -// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r. -func RandomG2(r io.Reader) (*big.Int, *G2, error) { - var k *big.Int - var err error - - for { - k, err = rand.Int(r, Order) - if err != nil { - return nil, nil, err - } - if k.Sign() > 0 { - break - } - } - - return k, new(G2).ScalarBaseMult(k), nil -} - -func (e *G2) String() string { - return "bn256.G2" + e.p.String() -} - -// CurvePoints returns the curve points of p which includes the real -// and imaginary parts of the curve point. -func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) { - return e.p.x, e.p.y, e.p.z, e.p.t -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and -// then returns out. -func (e *G2) ScalarBaseMult(k *big.Int) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.Mul(twistGen, k, new(bnPool)) - return e -} - -// ScalarMult sets e to a*k and then returns e. -func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.Mul(a.p, k, new(bnPool)) - return e -} - -// Add sets e to a+b and then returns e. -// BUG(agl): this function is not complete: a==b fails. -func (e *G2) Add(a, b *G2) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.Add(a.p, b.p, new(bnPool)) - return e -} - -// Marshal converts n into a byte slice. -func (n *G2) Marshal() []byte { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if n.p.IsInfinity() { - return make([]byte, numBytes*4) - } - - n.p.MakeAffine(nil) - - xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes() - xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes() - yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes() - yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes() - - ret := make([]byte, numBytes*4) - copy(ret[1*numBytes-len(xxBytes):], xxBytes) - copy(ret[2*numBytes-len(xyBytes):], xyBytes) - copy(ret[3*numBytes-len(yxBytes):], yxBytes) - copy(ret[4*numBytes-len(yyBytes):], yyBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G2) Unmarshal(m []byte) ([]byte, error) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - if len(m) != 4*numBytes { - return nil, errors.New("bn256: not enough data") - } - // Unmarshal the points and check their caps - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) - if e.p.x.x.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) - if e.p.x.y.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) - if e.p.y.x.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes]) - if e.p.y.y.Cmp(P) >= 0 { - return nil, errors.New("bn256: coordinate exceeds modulus") - } - // Ensure the point is on the curve - if e.p.x.x.Sign() == 0 && - e.p.x.y.Sign() == 0 && - e.p.y.x.Sign() == 0 && - e.p.y.y.Sign() == 0 { - // This is the point at infinity. - e.p.y.SetOne() - e.p.z.SetZero() - e.p.t.SetZero() - } else { - e.p.z.SetOne() - e.p.t.SetOne() - - if !e.p.IsOnCurve() { - return nil, errors.New("bn256: malformed point") - } - } - return m[4*numBytes:], nil -} - -// GT is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type GT struct { - p *gfP12 -} - -func (g *GT) String() string { - return "bn256.GT" + g.p.String() -} - -// ScalarMult sets e to a*k and then returns e. -func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Exp(a.p, k, new(bnPool)) - return e -} - -// Add sets e to a+b and then returns e. -func (e *GT) Add(a, b *GT) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Mul(a.p, b.p, new(bnPool)) - return e -} - -// Neg sets e to -a and then returns e. -func (e *GT) Neg(a *GT) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Invert(a.p, new(bnPool)) - return e -} - -// Marshal converts n into a byte slice. -func (n *GT) Marshal() []byte { - n.p.Minimal() - - xxxBytes := n.p.x.x.x.Bytes() - xxyBytes := n.p.x.x.y.Bytes() - xyxBytes := n.p.x.y.x.Bytes() - xyyBytes := n.p.x.y.y.Bytes() - xzxBytes := n.p.x.z.x.Bytes() - xzyBytes := n.p.x.z.y.Bytes() - yxxBytes := n.p.y.x.x.Bytes() - yxyBytes := n.p.y.x.y.Bytes() - yyxBytes := n.p.y.y.x.Bytes() - yyyBytes := n.p.y.y.y.Bytes() - yzxBytes := n.p.y.z.x.Bytes() - yzyBytes := n.p.y.z.y.Bytes() - - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - ret := make([]byte, numBytes*12) - copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) - copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) - copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) - copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) - copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) - copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) - copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) - copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) - copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) - copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) - copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) - copy(ret[12*numBytes-len(yzyBytes):], yzyBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *GT) Unmarshal(m []byte) (*GT, bool) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if len(m) != 12*numBytes { - return nil, false - } - - if e.p == nil { - e.p = newGFp12(nil) - } - - e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) - e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) - e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) - e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) - e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) - e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) - e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) - e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) - e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) - e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) - e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) - e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes]) - - return e, true -} - -// Pair calculates an Optimal Ate pairing. -func Pair(g1 *G1, g2 *G2) *GT { - return >{optimalAte(g2.p, g1.p, new(bnPool))} -} - -// PairingCheck calculates the Optimal Ate pairing for a set of points. -func PairingCheck(a []*G1, b []*G2) bool { - pool := new(bnPool) - - acc := newGFp12(pool) - acc.SetOne() - - for i := 0; i < len(a); i++ { - if a[i].p.IsInfinity() || b[i].p.IsInfinity() { - continue - } - acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool) - } - ret := finalExponentiation(acc, pool) - acc.Put(pool) - - return ret.IsOne() -} - -// bnPool implements a tiny cache of *big.Int objects that's used to reduce the -// number of allocations made during processing. -type bnPool struct { - bns []*big.Int - count int -} - -func (pool *bnPool) Get() *big.Int { - if pool == nil { - return new(big.Int) - } - - pool.count++ - l := len(pool.bns) - if l == 0 { - return new(big.Int) - } - - bn := pool.bns[l-1] - pool.bns = pool.bns[:l-1] - return bn -} - -func (pool *bnPool) Put(bn *big.Int) { - if pool == nil { - return - } - pool.bns = append(pool.bns, bn) - pool.count-- -} - -func (pool *bnPool) Count() int { - return pool.count -} diff --git a/vm/bn256/google/bn256_test.go b/vm/bn256/google/bn256_test.go deleted file mode 100644 index a4497ada9..000000000 --- a/vm/bn256/google/bn256_test.go +++ /dev/null @@ -1,311 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "bytes" - "crypto/rand" - "math/big" - "testing" -) - -func TestGFp2Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp2(pool) - a.x.SetString("23423492374", 10) - a.y.SetString("12934872398472394827398470", 10) - - inv := newGFp2(pool) - inv.Invert(a, pool) - - b := newGFp2(pool).Mul(inv, a, pool) - if b.x.Int64() != 0 || b.y.Int64() != 1 { - t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func isZero(n *big.Int) bool { - return new(big.Int).Mod(n, P).Int64() == 0 -} - -func isOne(n *big.Int) bool { - return new(big.Int).Mod(n, P).Int64() == 1 -} - -func TestGFp6Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp6(pool) - a.x.x.SetString("239487238491", 10) - a.x.y.SetString("2356249827341", 10) - a.y.x.SetString("082659782", 10) - a.y.y.SetString("182703523765", 10) - a.z.x.SetString("978236549263", 10) - a.z.y.SetString("64893242", 10) - - inv := newGFp6(pool) - inv.Invert(a, pool) - - b := newGFp6(pool).Mul(inv, a, pool) - if !isZero(b.x.x) || - !isZero(b.x.y) || - !isZero(b.y.x) || - !isZero(b.y.y) || - !isZero(b.z.x) || - !isOne(b.z.y) { - t.Fatalf("bad result for a^-1*a: %s", b) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestGFp12Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp12(pool) - a.x.x.x.SetString("239846234862342323958623", 10) - a.x.x.y.SetString("2359862352529835623", 10) - a.x.y.x.SetString("928836523", 10) - a.x.y.y.SetString("9856234", 10) - a.x.z.x.SetString("235635286", 10) - a.x.z.y.SetString("5628392833", 10) - a.y.x.x.SetString("252936598265329856238956532167968", 10) - a.y.x.y.SetString("23596239865236954178968", 10) - a.y.y.x.SetString("95421692834", 10) - a.y.y.y.SetString("236548", 10) - a.y.z.x.SetString("924523", 10) - a.y.z.y.SetString("12954623", 10) - - inv := newGFp12(pool) - inv.Invert(a, pool) - - b := newGFp12(pool).Mul(inv, a, pool) - if !isZero(b.x.x.x) || - !isZero(b.x.x.y) || - !isZero(b.x.y.x) || - !isZero(b.x.y.y) || - !isZero(b.x.z.x) || - !isZero(b.x.z.y) || - !isZero(b.y.x.x) || - !isZero(b.y.x.y) || - !isZero(b.y.y.x) || - !isZero(b.y.y.y) || - !isZero(b.y.z.x) || - !isOne(b.y.z.y) { - t.Fatalf("bad result for a^-1*a: %s", b) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestCurveImpl(t *testing.T) { - pool := new(bnPool) - - g := &curvePoint{ - pool.Get().SetInt64(1), - pool.Get().SetInt64(-2), - pool.Get().SetInt64(1), - pool.Get().SetInt64(0), - } - - x := pool.Get().SetInt64(32498273234) - X := newCurvePoint(pool).Mul(g, x, pool) - - y := pool.Get().SetInt64(98732423523) - Y := newCurvePoint(pool).Mul(g, y, pool) - - s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool) - s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool) - - if s1.x.Cmp(s2.x) != 0 || - s2.x.Cmp(s1.x) != 0 { - t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y) - } - - pool.Put(x) - X.Put(pool) - pool.Put(y) - Y.Put(pool) - s1.Put(pool) - s2.Put(pool) - g.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestOrderG1(t *testing.T) { - g := new(G1).ScalarBaseMult(Order) - if !g.p.IsInfinity() { - t.Error("G1 has incorrect order") - } - - one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) - g.Add(g, one) - g.p.MakeAffine(nil) - if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 { - t.Errorf("1+0 != 1 in G1") - } -} - -func TestOrderG2(t *testing.T) { - g := new(G2).ScalarBaseMult(Order) - if !g.p.IsInfinity() { - t.Error("G2 has incorrect order") - } - - one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) - g.Add(g, one) - g.p.MakeAffine(nil) - if g.p.x.x.Cmp(one.p.x.x) != 0 || - g.p.x.y.Cmp(one.p.x.y) != 0 || - g.p.y.x.Cmp(one.p.y.x) != 0 || - g.p.y.y.Cmp(one.p.y.y) != 0 { - t.Errorf("1+0 != 1 in G2") - } -} - -func TestOrderGT(t *testing.T) { - gt := Pair(&G1{curveGen}, &G2{twistGen}) - g := new(GT).ScalarMult(gt, Order) - if !g.p.IsOne() { - t.Error("GT has incorrect order") - } -} - -func TestBilinearity(t *testing.T) { - for i := 0; i < 2; i++ { - a, p1, _ := RandomG1(rand.Reader) - b, p2, _ := RandomG2(rand.Reader) - e1 := Pair(p1, p2) - - e2 := Pair(&G1{curveGen}, &G2{twistGen}) - e2.ScalarMult(e2, a) - e2.ScalarMult(e2, b) - - minusE2 := new(GT).Neg(e2) - e1.Add(e1, minusE2) - - if !e1.p.IsOne() { - t.Fatalf("bad pairing result: %s", e1) - } - } -} - -func TestG1Marshal(t *testing.T) { - g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) - form := g.Marshal() - _, err := new(G1).Unmarshal(form) - if err != nil { - t.Fatalf("failed to unmarshal") - } - - g.ScalarBaseMult(Order) - form = g.Marshal() - - g2 := new(G1) - if _, err = g2.Unmarshal(form); err != nil { - t.Fatalf("failed to unmarshal ∞") - } - if !g2.p.IsInfinity() { - t.Fatalf("∞ unmarshaled incorrectly") - } -} - -func TestG2Marshal(t *testing.T) { - g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) - form := g.Marshal() - _, err := new(G2).Unmarshal(form) - if err != nil { - t.Fatalf("failed to unmarshal") - } - - g.ScalarBaseMult(Order) - form = g.Marshal() - g2 := new(G2) - if _, err = g2.Unmarshal(form); err != nil { - t.Fatalf("failed to unmarshal ∞") - } - if !g2.p.IsInfinity() { - t.Fatalf("∞ unmarshaled incorrectly") - } -} - -func TestG1Identity(t *testing.T) { - g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0)) - if !g.p.IsInfinity() { - t.Error("failure") - } -} - -func TestG2Identity(t *testing.T) { - g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0)) - if !g.p.IsInfinity() { - t.Error("failure") - } -} - -func TestTripartiteDiffieHellman(t *testing.T) { - a, _ := rand.Int(rand.Reader, Order) - b, _ := rand.Int(rand.Reader, Order) - c, _ := rand.Int(rand.Reader, Order) - - pa := new(G1) - pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal()) - qa := new(G2) - qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal()) - pb := new(G1) - pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal()) - qb := new(G2) - qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal()) - pc := new(G1) - pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal()) - qc := new(G2) - qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal()) - - k1 := Pair(pb, qc) - k1.ScalarMult(k1, a) - k1Bytes := k1.Marshal() - - k2 := Pair(pc, qa) - k2.ScalarMult(k2, b) - k2Bytes := k2.Marshal() - - k3 := Pair(pa, qb) - k3.ScalarMult(k3, c) - k3Bytes := k3.Marshal() - - if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) { - t.Errorf("keys didn't agree") - } -} - -func BenchmarkPairing(b *testing.B) { - for i := 0; i < b.N; i++ { - Pair(&G1{curveGen}, &G2{twistGen}) - } -} diff --git a/vm/bn256/google/constants.go b/vm/bn256/google/constants.go deleted file mode 100644 index ab649d7f3..000000000 --- a/vm/bn256/google/constants.go +++ /dev/null @@ -1,44 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -func bigFromBase10(s string) *big.Int { - n, _ := new(big.Int).SetString(s, 10) - return n -} - -// u is the BN parameter that determines the prime: 1868033³. -var u = bigFromBase10("4965661367192848881") - -// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1. -var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583") - -// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1. -var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617") - -// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9. -var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")} - -// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9. -var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")} - -// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9. -var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")} - -// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9. -var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616") - -// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p). -var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966") - -// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p). -var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617") - -// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9. -var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")} diff --git a/vm/bn256/google/curve.go b/vm/bn256/google/curve.go deleted file mode 100644 index 819cb81da..000000000 --- a/vm/bn256/google/curve.go +++ /dev/null @@ -1,286 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -// curvePoint implements the elliptic curve y²=x³+3. Points are kept in -// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on -// GF(p). -type curvePoint struct { - x, y, z, t *big.Int -} - -var curveB = new(big.Int).SetInt64(3) - -// curveGen is the generator of G₁. -var curveGen = &curvePoint{ - new(big.Int).SetInt64(1), - new(big.Int).SetInt64(2), - new(big.Int).SetInt64(1), - new(big.Int).SetInt64(1), -} - -func newCurvePoint(pool *bnPool) *curvePoint { - return &curvePoint{ - pool.Get(), - pool.Get(), - pool.Get(), - pool.Get(), - } -} - -func (c *curvePoint) String() string { - c.MakeAffine(new(bnPool)) - return "(" + c.x.String() + ", " + c.y.String() + ")" -} - -func (c *curvePoint) Put(pool *bnPool) { - pool.Put(c.x) - pool.Put(c.y) - pool.Put(c.z) - pool.Put(c.t) -} - -func (c *curvePoint) Set(a *curvePoint) { - c.x.Set(a.x) - c.y.Set(a.y) - c.z.Set(a.z) - c.t.Set(a.t) -} - -// IsOnCurve returns true iff c is on the curve where c must be in affine form. -func (c *curvePoint) IsOnCurve() bool { - yy := new(big.Int).Mul(c.y, c.y) - xxx := new(big.Int).Mul(c.x, c.x) - xxx.Mul(xxx, c.x) - yy.Sub(yy, xxx) - yy.Sub(yy, curveB) - if yy.Sign() < 0 || yy.Cmp(P) >= 0 { - yy.Mod(yy, P) - } - return yy.Sign() == 0 -} - -func (c *curvePoint) SetInfinity() { - c.z.SetInt64(0) -} - -func (c *curvePoint) IsInfinity() bool { - return c.z.Sign() == 0 -} - -func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - - // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] - // by [u1:s1:z1·z2] and [u2:s2:z1·z2] - // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ - z1z1 := pool.Get().Mul(a.z, a.z) - z1z1.Mod(z1z1, P) - z2z2 := pool.Get().Mul(b.z, b.z) - z2z2.Mod(z2z2, P) - u1 := pool.Get().Mul(a.x, z2z2) - u1.Mod(u1, P) - u2 := pool.Get().Mul(b.x, z1z1) - u2.Mod(u2, P) - - t := pool.Get().Mul(b.z, z2z2) - t.Mod(t, P) - s1 := pool.Get().Mul(a.y, t) - s1.Mod(s1, P) - - t.Mul(a.z, z1z1) - t.Mod(t, P) - s2 := pool.Get().Mul(b.y, t) - s2.Mod(s2, P) - - // Compute x = (2h)²(s²-u1-u2) - // where s = (s2-s1)/(u2-u1) is the slope of the line through - // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. - // This is also: - // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) - // = r² - j - 2v - // with the notations below. - h := pool.Get().Sub(u2, u1) - xEqual := h.Sign() == 0 - - t.Add(h, h) - // i = 4h² - i := pool.Get().Mul(t, t) - i.Mod(i, P) - // j = 4h³ - j := pool.Get().Mul(h, i) - j.Mod(j, P) - - t.Sub(s2, s1) - yEqual := t.Sign() == 0 - if xEqual && yEqual { - c.Double(a, pool) - return - } - r := pool.Get().Add(t, t) - - v := pool.Get().Mul(u1, i) - v.Mod(v, P) - - // t4 = 4(s2-s1)² - t4 := pool.Get().Mul(r, r) - t4.Mod(t4, P) - t.Add(v, v) - t6 := pool.Get().Sub(t4, j) - c.x.Sub(t6, t) - - // Set y = -(2h)³(s1 + s*(x/4h²-u1)) - // This is also - // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j - t.Sub(v, c.x) // t7 - t4.Mul(s1, j) // t8 - t4.Mod(t4, P) - t6.Add(t4, t4) // t9 - t4.Mul(r, t) // t10 - t4.Mod(t4, P) - c.y.Sub(t4, t6) - - // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 - t.Add(a.z, b.z) // t11 - t4.Mul(t, t) // t12 - t4.Mod(t4, P) - t.Sub(t4, z1z1) // t13 - t4.Sub(t, z2z2) // t14 - c.z.Mul(t4, h) - c.z.Mod(c.z, P) - - pool.Put(z1z1) - pool.Put(z2z2) - pool.Put(u1) - pool.Put(u2) - pool.Put(t) - pool.Put(s1) - pool.Put(s2) - pool.Put(h) - pool.Put(i) - pool.Put(j) - pool.Put(r) - pool.Put(v) - pool.Put(t4) - pool.Put(t6) -} - -func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A := pool.Get().Mul(a.x, a.x) - A.Mod(A, P) - B := pool.Get().Mul(a.y, a.y) - B.Mod(B, P) - C_ := pool.Get().Mul(B, B) - C_.Mod(C_, P) - - t := pool.Get().Add(a.x, B) - t2 := pool.Get().Mul(t, t) - t2.Mod(t2, P) - t.Sub(t2, A) - t2.Sub(t, C_) - d := pool.Get().Add(t2, t2) - t.Add(A, A) - e := pool.Get().Add(t, A) - f := pool.Get().Mul(e, e) - f.Mod(f, P) - - t.Add(d, d) - c.x.Sub(f, t) - - t.Add(C_, C_) - t2.Add(t, t) - t.Add(t2, t2) - c.y.Sub(d, c.x) - t2.Mul(e, c.y) - t2.Mod(t2, P) - c.y.Sub(t2, t) - - t.Mul(a.y, a.z) - t.Mod(t, P) - c.z.Add(t, t) - - pool.Put(A) - pool.Put(B) - pool.Put(C_) - pool.Put(t) - pool.Put(t2) - pool.Put(d) - pool.Put(e) - pool.Put(f) -} - -func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { - sum := newCurvePoint(pool) - sum.SetInfinity() - t := newCurvePoint(pool) - - for i := scalar.BitLen(); i >= 0; i-- { - t.Double(sum, pool) - if scalar.Bit(i) != 0 { - sum.Add(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - sum.Put(pool) - t.Put(pool) - return c -} - -// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets -// c to 0 : 1 : 0. -func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { - if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { - return c - } - if c.IsInfinity() { - c.x.SetInt64(0) - c.y.SetInt64(1) - c.z.SetInt64(0) - c.t.SetInt64(0) - return c - } - zInv := pool.Get().ModInverse(c.z, P) - t := pool.Get().Mul(c.y, zInv) - t.Mod(t, P) - zInv2 := pool.Get().Mul(zInv, zInv) - zInv2.Mod(zInv2, P) - c.y.Mul(t, zInv2) - c.y.Mod(c.y, P) - t.Mul(c.x, zInv2) - t.Mod(t, P) - c.x.Set(t) - c.z.SetInt64(1) - c.t.SetInt64(1) - - pool.Put(zInv) - pool.Put(t) - pool.Put(zInv2) - - return c -} - -func (c *curvePoint) Negative(a *curvePoint) { - c.x.Set(a.x) - c.y.Neg(a.y) - c.z.Set(a.z) - c.t.SetInt64(0) -} diff --git a/vm/bn256/google/example_test.go b/vm/bn256/google/example_test.go deleted file mode 100644 index b2d19807a..000000000 --- a/vm/bn256/google/example_test.go +++ /dev/null @@ -1,43 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "crypto/rand" -) - -func ExamplePair() { - // This implements the tripartite Diffie-Hellman algorithm from "A One - // Round Protocol for Tripartite Diffie-Hellman", A. Joux. - // http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf - - // Each of three parties, a, b and c, generate a private value. - a, _ := rand.Int(rand.Reader, Order) - b, _ := rand.Int(rand.Reader, Order) - c, _ := rand.Int(rand.Reader, Order) - - // Then each party calculates g₁ and g₂ times their private value. - pa := new(G1).ScalarBaseMult(a) - qa := new(G2).ScalarBaseMult(a) - - pb := new(G1).ScalarBaseMult(b) - qb := new(G2).ScalarBaseMult(b) - - pc := new(G1).ScalarBaseMult(c) - qc := new(G2).ScalarBaseMult(c) - - // Now each party exchanges its public values with the other two and - // all parties can calculate the shared key. - k1 := Pair(pb, qc) - k1.ScalarMult(k1, a) - - k2 := Pair(pc, qa) - k2.ScalarMult(k2, b) - - k3 := Pair(pa, qb) - k3.ScalarMult(k3, c) - - // k1, k2 and k3 will all be equal. -} diff --git a/vm/bn256/google/gfp12.go b/vm/bn256/google/gfp12.go deleted file mode 100644 index f084eddf2..000000000 --- a/vm/bn256/google/gfp12.go +++ /dev/null @@ -1,200 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP12 implements the field of size p¹² as a quadratic extension of gfP6 -// where ω²=τ. -type gfP12 struct { - x, y *gfP6 // value is xω + y -} - -func newGFp12(pool *bnPool) *gfP12 { - return &gfP12{newGFp6(pool), newGFp6(pool)} -} - -func (e *gfP12) String() string { - return "(" + e.x.String() + "," + e.y.String() + ")" -} - -func (e *gfP12) Put(pool *bnPool) { - e.x.Put(pool) - e.y.Put(pool) -} - -func (e *gfP12) Set(a *gfP12) *gfP12 { - e.x.Set(a.x) - e.y.Set(a.y) - return e -} - -func (e *gfP12) SetZero() *gfP12 { - e.x.SetZero() - e.y.SetZero() - return e -} - -func (e *gfP12) SetOne() *gfP12 { - e.x.SetZero() - e.y.SetOne() - return e -} - -func (e *gfP12) Minimal() { - e.x.Minimal() - e.y.Minimal() -} - -func (e *gfP12) IsZero() bool { - e.Minimal() - return e.x.IsZero() && e.y.IsZero() -} - -func (e *gfP12) IsOne() bool { - e.Minimal() - return e.x.IsZero() && e.y.IsOne() -} - -func (e *gfP12) Conjugate(a *gfP12) *gfP12 { - e.x.Negative(a.x) - e.y.Set(a.y) - return a -} - -func (e *gfP12) Negative(a *gfP12) *gfP12 { - e.x.Negative(a.x) - e.y.Negative(a.y) - return e -} - -// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p -func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 { - e.x.Frobenius(a.x, pool) - e.y.Frobenius(a.y, pool) - e.x.MulScalar(e.x, xiToPMinus1Over6, pool) - return e -} - -// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² -func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 { - e.x.FrobeniusP2(a.x) - e.x.MulGFP(e.x, xiToPSquaredMinus1Over6) - e.y.FrobeniusP2(a.y) - return e -} - -func (e *gfP12) Add(a, b *gfP12) *gfP12 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - return e -} - -func (e *gfP12) Sub(a, b *gfP12) *gfP12 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - return e -} - -func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 { - tx := newGFp6(pool) - tx.Mul(a.x, b.y, pool) - t := newGFp6(pool) - t.Mul(b.x, a.y, pool) - tx.Add(tx, t) - - ty := newGFp6(pool) - ty.Mul(a.y, b.y, pool) - t.Mul(a.x, b.x, pool) - t.MulTau(t, pool) - e.y.Add(ty, t) - e.x.Set(tx) - - tx.Put(pool) - ty.Put(pool) - t.Put(pool) - return e -} - -func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 { - e.x.Mul(e.x, b, pool) - e.y.Mul(e.y, b, pool) - return e -} - -func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 { - sum := newGFp12(pool) - sum.SetOne() - t := newGFp12(pool) - - for i := power.BitLen() - 1; i >= 0; i-- { - t.Square(sum, pool) - if power.Bit(i) != 0 { - sum.Mul(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - - sum.Put(pool) - t.Put(pool) - - return c -} - -func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 { - // Complex squaring algorithm - v0 := newGFp6(pool) - v0.Mul(a.x, a.y, pool) - - t := newGFp6(pool) - t.MulTau(a.x, pool) - t.Add(a.y, t) - ty := newGFp6(pool) - ty.Add(a.x, a.y) - ty.Mul(ty, t, pool) - ty.Sub(ty, v0) - t.MulTau(v0, pool) - ty.Sub(ty, t) - - e.y.Set(ty) - e.x.Double(v0) - - v0.Put(pool) - t.Put(pool) - ty.Put(pool) - - return e -} - -func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t1 := newGFp6(pool) - t2 := newGFp6(pool) - - t1.Square(a.x, pool) - t2.Square(a.y, pool) - t1.MulTau(t1, pool) - t1.Sub(t2, t1) - t2.Invert(t1, pool) - - e.x.Negative(a.x) - e.y.Set(a.y) - e.MulScalar(e, t2, pool) - - t1.Put(pool) - t2.Put(pool) - - return e -} diff --git a/vm/bn256/google/gfp2.go b/vm/bn256/google/gfp2.go deleted file mode 100644 index 3981f6cb4..000000000 --- a/vm/bn256/google/gfp2.go +++ /dev/null @@ -1,227 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP2 implements a field of size p² as a quadratic extension of the base -// field where i²=-1. -type gfP2 struct { - x, y *big.Int // value is xi+y. -} - -func newGFp2(pool *bnPool) *gfP2 { - return &gfP2{pool.Get(), pool.Get()} -} - -func (e *gfP2) String() string { - x := new(big.Int).Mod(e.x, P) - y := new(big.Int).Mod(e.y, P) - return "(" + x.String() + "," + y.String() + ")" -} - -func (e *gfP2) Put(pool *bnPool) { - pool.Put(e.x) - pool.Put(e.y) -} - -func (e *gfP2) Set(a *gfP2) *gfP2 { - e.x.Set(a.x) - e.y.Set(a.y) - return e -} - -func (e *gfP2) SetZero() *gfP2 { - e.x.SetInt64(0) - e.y.SetInt64(0) - return e -} - -func (e *gfP2) SetOne() *gfP2 { - e.x.SetInt64(0) - e.y.SetInt64(1) - return e -} - -func (e *gfP2) Minimal() { - if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 { - e.x.Mod(e.x, P) - } - if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 { - e.y.Mod(e.y, P) - } -} - -func (e *gfP2) IsZero() bool { - return e.x.Sign() == 0 && e.y.Sign() == 0 -} - -func (e *gfP2) IsOne() bool { - if e.x.Sign() != 0 { - return false - } - words := e.y.Bits() - return len(words) == 1 && words[0] == 1 -} - -func (e *gfP2) Conjugate(a *gfP2) *gfP2 { - e.y.Set(a.y) - e.x.Neg(a.x) - return e -} - -func (e *gfP2) Negative(a *gfP2) *gfP2 { - e.x.Neg(a.x) - e.y.Neg(a.y) - return e -} - -func (e *gfP2) Add(a, b *gfP2) *gfP2 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - return e -} - -func (e *gfP2) Sub(a, b *gfP2) *gfP2 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - return e -} - -func (e *gfP2) Double(a *gfP2) *gfP2 { - e.x.Lsh(a.x, 1) - e.y.Lsh(a.y, 1) - return e -} - -func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 { - sum := newGFp2(pool) - sum.SetOne() - t := newGFp2(pool) - - for i := power.BitLen() - 1; i >= 0; i-- { - t.Square(sum, pool) - if power.Bit(i) != 0 { - sum.Mul(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - - sum.Put(pool) - t.Put(pool) - - return c -} - -// See "Multiplication and Squaring in Pairing-Friendly Fields", -// http://eprint.iacr.org/2006/471.pdf -func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 { - tx := pool.Get().Mul(a.x, b.y) - t := pool.Get().Mul(b.x, a.y) - tx.Add(tx, t) - tx.Mod(tx, P) - - ty := pool.Get().Mul(a.y, b.y) - t.Mul(a.x, b.x) - ty.Sub(ty, t) - e.y.Mod(ty, P) - e.x.Set(tx) - - pool.Put(tx) - pool.Put(ty) - pool.Put(t) - - return e -} - -func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 { - e.x.Mul(a.x, b) - e.y.Mul(a.y, b) - return e -} - -// MulXi sets e=ξa where ξ=i+9 and then returns e. -func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 { - // (xi+y)(i+3) = (9x+y)i+(9y-x) - tx := pool.Get().Lsh(a.x, 3) - tx.Add(tx, a.x) - tx.Add(tx, a.y) - - ty := pool.Get().Lsh(a.y, 3) - ty.Add(ty, a.y) - ty.Sub(ty, a.x) - - e.x.Set(tx) - e.y.Set(ty) - - pool.Put(tx) - pool.Put(ty) - - return e -} - -func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 { - // Complex squaring algorithm: - // (xi+b)² = (x+y)(y-x) + 2*i*x*y - t1 := pool.Get().Sub(a.y, a.x) - t2 := pool.Get().Add(a.x, a.y) - ty := pool.Get().Mul(t1, t2) - ty.Mod(ty, P) - - t1.Mul(a.x, a.y) - t1.Lsh(t1, 1) - - e.x.Mod(t1, P) - e.y.Set(ty) - - pool.Put(t1) - pool.Put(t2) - pool.Put(ty) - - return e -} - -func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t := pool.Get() - t.Mul(a.y, a.y) - t2 := pool.Get() - t2.Mul(a.x, a.x) - t.Add(t, t2) - - inv := pool.Get() - inv.ModInverse(t, P) - - e.x.Neg(a.x) - e.x.Mul(e.x, inv) - e.x.Mod(e.x, P) - - e.y.Mul(a.y, inv) - e.y.Mod(e.y, P) - - pool.Put(t) - pool.Put(t2) - pool.Put(inv) - - return e -} - -func (e *gfP2) Real() *big.Int { - return e.x -} - -func (e *gfP2) Imag() *big.Int { - return e.y -} diff --git a/vm/bn256/google/gfp6.go b/vm/bn256/google/gfp6.go deleted file mode 100644 index 218856617..000000000 --- a/vm/bn256/google/gfp6.go +++ /dev/null @@ -1,296 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ -// and ξ=i+9. -type gfP6 struct { - x, y, z *gfP2 // value is xτ² + yτ + z -} - -func newGFp6(pool *bnPool) *gfP6 { - return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)} -} - -func (e *gfP6) String() string { - return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")" -} - -func (e *gfP6) Put(pool *bnPool) { - e.x.Put(pool) - e.y.Put(pool) - e.z.Put(pool) -} - -func (e *gfP6) Set(a *gfP6) *gfP6 { - e.x.Set(a.x) - e.y.Set(a.y) - e.z.Set(a.z) - return e -} - -func (e *gfP6) SetZero() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetZero() - return e -} - -func (e *gfP6) SetOne() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetOne() - return e -} - -func (e *gfP6) Minimal() { - e.x.Minimal() - e.y.Minimal() - e.z.Minimal() -} - -func (e *gfP6) IsZero() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() -} - -func (e *gfP6) IsOne() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() -} - -func (e *gfP6) Negative(a *gfP6) *gfP6 { - e.x.Negative(a.x) - e.y.Negative(a.y) - e.z.Negative(a.z) - return e -} - -func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 { - e.x.Conjugate(a.x) - e.y.Conjugate(a.y) - e.z.Conjugate(a.z) - - e.x.Mul(e.x, xiTo2PMinus2Over3, pool) - e.y.Mul(e.y, xiToPMinus1Over3, pool) - return e -} - -// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z -func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { - // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) - e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3) - // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) - e.y.MulScalar(a.y, xiToPSquaredMinus1Over3) - e.z.Set(a.z) - return e -} - -func (e *gfP6) Add(a, b *gfP6) *gfP6 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - e.z.Add(a.z, b.z) - return e -} - -func (e *gfP6) Sub(a, b *gfP6) *gfP6 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - e.z.Sub(a.z, b.z) - return e -} - -func (e *gfP6) Double(a *gfP6) *gfP6 { - e.x.Double(a.x) - e.y.Double(a.y) - e.z.Double(a.z) - return e -} - -func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 { - // "Multiplication and Squaring on Pairing-Friendly Fields" - // Section 4, Karatsuba method. - // http://eprint.iacr.org/2006/471.pdf - - v0 := newGFp2(pool) - v0.Mul(a.z, b.z, pool) - v1 := newGFp2(pool) - v1.Mul(a.y, b.y, pool) - v2 := newGFp2(pool) - v2.Mul(a.x, b.x, pool) - - t0 := newGFp2(pool) - t0.Add(a.x, a.y) - t1 := newGFp2(pool) - t1.Add(b.x, b.y) - tz := newGFp2(pool) - tz.Mul(t0, t1, pool) - - tz.Sub(tz, v1) - tz.Sub(tz, v2) - tz.MulXi(tz, pool) - tz.Add(tz, v0) - - t0.Add(a.y, a.z) - t1.Add(b.y, b.z) - ty := newGFp2(pool) - ty.Mul(t0, t1, pool) - ty.Sub(ty, v0) - ty.Sub(ty, v1) - t0.MulXi(v2, pool) - ty.Add(ty, t0) - - t0.Add(a.x, a.z) - t1.Add(b.x, b.z) - tx := newGFp2(pool) - tx.Mul(t0, t1, pool) - tx.Sub(tx, v0) - tx.Add(tx, v1) - tx.Sub(tx, v2) - - e.x.Set(tx) - e.y.Set(ty) - e.z.Set(tz) - - t0.Put(pool) - t1.Put(pool) - tx.Put(pool) - ty.Put(pool) - tz.Put(pool) - v0.Put(pool) - v1.Put(pool) - v2.Put(pool) - return e -} - -func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 { - e.x.Mul(a.x, b, pool) - e.y.Mul(a.y, b, pool) - e.z.Mul(a.z, b, pool) - return e -} - -func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 { - e.x.MulScalar(a.x, b) - e.y.MulScalar(a.y, b) - e.z.MulScalar(a.z, b) - return e -} - -// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ -func (e *gfP6) MulTau(a *gfP6, pool *bnPool) { - tz := newGFp2(pool) - tz.MulXi(a.x, pool) - ty := newGFp2(pool) - ty.Set(a.y) - e.y.Set(a.z) - e.x.Set(ty) - e.z.Set(tz) - tz.Put(pool) - ty.Put(pool) -} - -func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 { - v0 := newGFp2(pool).Square(a.z, pool) - v1 := newGFp2(pool).Square(a.y, pool) - v2 := newGFp2(pool).Square(a.x, pool) - - c0 := newGFp2(pool).Add(a.x, a.y) - c0.Square(c0, pool) - c0.Sub(c0, v1) - c0.Sub(c0, v2) - c0.MulXi(c0, pool) - c0.Add(c0, v0) - - c1 := newGFp2(pool).Add(a.y, a.z) - c1.Square(c1, pool) - c1.Sub(c1, v0) - c1.Sub(c1, v1) - xiV2 := newGFp2(pool).MulXi(v2, pool) - c1.Add(c1, xiV2) - - c2 := newGFp2(pool).Add(a.x, a.z) - c2.Square(c2, pool) - c2.Sub(c2, v0) - c2.Add(c2, v1) - c2.Sub(c2, v2) - - e.x.Set(c2) - e.y.Set(c1) - e.z.Set(c0) - - v0.Put(pool) - v1.Put(pool) - v2.Put(pool) - c0.Put(pool) - c1.Put(pool) - c2.Put(pool) - xiV2.Put(pool) - - return e -} - -func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - - // Here we can give a short explanation of how it works: let j be a cubic root of - // unity in GF(p²) so that 1+j+j²=0. - // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = (xτ² + yτ + z)(Cτ²+Bτ+A) - // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). - // - // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) - // - // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) - t1 := newGFp2(pool) - - A := newGFp2(pool) - A.Square(a.z, pool) - t1.Mul(a.x, a.y, pool) - t1.MulXi(t1, pool) - A.Sub(A, t1) - - B := newGFp2(pool) - B.Square(a.x, pool) - B.MulXi(B, pool) - t1.Mul(a.y, a.z, pool) - B.Sub(B, t1) - - C_ := newGFp2(pool) - C_.Square(a.y, pool) - t1.Mul(a.x, a.z, pool) - C_.Sub(C_, t1) - - F := newGFp2(pool) - F.Mul(C_, a.y, pool) - F.MulXi(F, pool) - t1.Mul(A, a.z, pool) - F.Add(F, t1) - t1.Mul(B, a.x, pool) - t1.MulXi(t1, pool) - F.Add(F, t1) - - F.Invert(F, pool) - - e.x.Mul(C_, F, pool) - e.y.Mul(B, F, pool) - e.z.Mul(A, F, pool) - - t1.Put(pool) - A.Put(pool) - B.Put(pool) - C_.Put(pool) - F.Put(pool) - - return e -} diff --git a/vm/bn256/google/main_test.go b/vm/bn256/google/main_test.go deleted file mode 100644 index 0230f1b19..000000000 --- a/vm/bn256/google/main_test.go +++ /dev/null @@ -1,71 +0,0 @@ -package bn256 - -import ( - "testing" - - "crypto/rand" -) - -func TestRandomG2Marshal(t *testing.T) { - for i := 0; i < 10; i++ { - n, g2, err := RandomG2(rand.Reader) - if err != nil { - t.Error(err) - continue - } - t.Logf("%d: %x\n", n, g2.Marshal()) - } -} - -func TestPairings(t *testing.T) { - a1 := new(G1).ScalarBaseMult(bigFromBase10("1")) - a2 := new(G1).ScalarBaseMult(bigFromBase10("2")) - a37 := new(G1).ScalarBaseMult(bigFromBase10("37")) - an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - b0 := new(G2).ScalarBaseMult(bigFromBase10("0")) - b1 := new(G2).ScalarBaseMult(bigFromBase10("1")) - b2 := new(G2).ScalarBaseMult(bigFromBase10("2")) - b27 := new(G2).ScalarBaseMult(bigFromBase10("27")) - b999 := new(G2).ScalarBaseMult(bigFromBase10("999")) - bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - p1 := Pair(a1, b1) - pn1 := Pair(a1, bn1) - np1 := Pair(an1, b1) - if pn1.String() != np1.String() { - t.Error("Pairing mismatch: e(a, -b) != e(-a, b)") - } - if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false negative!") - } - p0 := new(GT).Add(p1, pn1) - p0_2 := Pair(a1, b0) - if p0.String() != p0_2.String() { - t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1") - } - p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")) - if p0.String() != p0_3.String() { - t.Error("Pairing mismatch: e(a, b) has wrong order") - } - p2 := Pair(a2, b1) - p2_2 := Pair(a1, b2) - p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2")) - if p2.String() != p2_2.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)") - } - if p2.String() != p2_3.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2") - } - if p2.String() == p1.String() { - t.Error("Pairing is degenerate!") - } - if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false positive!") - } - p999 := Pair(a37, b27) - p999_2 := Pair(a1, b999) - if p999.String() != p999_2.String() { - t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)") - } -} diff --git a/vm/bn256/google/optate.go b/vm/bn256/google/optate.go deleted file mode 100644 index 9d6957062..000000000 --- a/vm/bn256/google/optate.go +++ /dev/null @@ -1,397 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { - // See the mixed addition algorithm from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - - B := newGFp2(pool).Mul(p.x, r.t, pool) - - D := newGFp2(pool).Add(p.y, r.z) - D.Square(D, pool) - D.Sub(D, r2) - D.Sub(D, r.t) - D.Mul(D, r.t, pool) - - H := newGFp2(pool).Sub(B, r.x) - I := newGFp2(pool).Square(H, pool) - - E := newGFp2(pool).Add(I, I) - E.Add(E, E) - - J := newGFp2(pool).Mul(H, E, pool) - - L1 := newGFp2(pool).Sub(D, r.y) - L1.Sub(L1, r.y) - - V := newGFp2(pool).Mul(r.x, E, pool) - - rOut = newTwistPoint(pool) - rOut.x.Square(L1, pool) - rOut.x.Sub(rOut.x, J) - rOut.x.Sub(rOut.x, V) - rOut.x.Sub(rOut.x, V) - - rOut.z.Add(r.z, H) - rOut.z.Square(rOut.z, pool) - rOut.z.Sub(rOut.z, r.t) - rOut.z.Sub(rOut.z, I) - - t := newGFp2(pool).Sub(V, rOut.x) - t.Mul(t, L1, pool) - t2 := newGFp2(pool).Mul(r.y, J, pool) - t2.Add(t2, t2) - rOut.y.Sub(t, t2) - - rOut.t.Square(rOut.z, pool) - - t.Add(p.y, rOut.z) - t.Square(t, pool) - t.Sub(t, r2) - t.Sub(t, rOut.t) - - t2.Mul(L1, p.x, pool) - t2.Add(t2, t2) - a = newGFp2(pool) - a.Sub(t2, t) - - c = newGFp2(pool) - c.MulScalar(rOut.z, q.y) - c.Add(c, c) - - b = newGFp2(pool) - b.SetZero() - b.Sub(b, L1) - b.MulScalar(b, q.x) - b.Add(b, b) - - B.Put(pool) - D.Put(pool) - H.Put(pool) - I.Put(pool) - E.Put(pool) - J.Put(pool) - L1.Put(pool) - V.Put(pool) - t.Put(pool) - t2.Put(pool) - - return -} - -func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { - // See the doubling algorithm for a=0 from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - - A := newGFp2(pool).Square(r.x, pool) - B := newGFp2(pool).Square(r.y, pool) - C_ := newGFp2(pool).Square(B, pool) - - D := newGFp2(pool).Add(r.x, B) - D.Square(D, pool) - D.Sub(D, A) - D.Sub(D, C_) - D.Add(D, D) - - E := newGFp2(pool).Add(A, A) - E.Add(E, A) - - G := newGFp2(pool).Square(E, pool) - - rOut = newTwistPoint(pool) - rOut.x.Sub(G, D) - rOut.x.Sub(rOut.x, D) - - rOut.z.Add(r.y, r.z) - rOut.z.Square(rOut.z, pool) - rOut.z.Sub(rOut.z, B) - rOut.z.Sub(rOut.z, r.t) - - rOut.y.Sub(D, rOut.x) - rOut.y.Mul(rOut.y, E, pool) - t := newGFp2(pool).Add(C_, C_) - t.Add(t, t) - t.Add(t, t) - rOut.y.Sub(rOut.y, t) - - rOut.t.Square(rOut.z, pool) - - t.Mul(E, r.t, pool) - t.Add(t, t) - b = newGFp2(pool) - b.SetZero() - b.Sub(b, t) - b.MulScalar(b, q.x) - - a = newGFp2(pool) - a.Add(r.x, E) - a.Square(a, pool) - a.Sub(a, A) - a.Sub(a, G) - t.Add(B, B) - t.Add(t, t) - a.Sub(a, t) - - c = newGFp2(pool) - c.Mul(rOut.z, r.t, pool) - c.Add(c, c) - c.MulScalar(c, q.y) - - A.Put(pool) - B.Put(pool) - C_.Put(pool) - D.Put(pool) - E.Put(pool) - G.Put(pool) - t.Put(pool) - - return -} - -func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) { - a2 := newGFp6(pool) - a2.x.SetZero() - a2.y.Set(a) - a2.z.Set(b) - a2.Mul(a2, ret.x, pool) - t3 := newGFp6(pool).MulScalar(ret.y, c, pool) - - t := newGFp2(pool) - t.Add(b, c) - t2 := newGFp6(pool) - t2.x.SetZero() - t2.y.Set(a) - t2.z.Set(t) - ret.x.Add(ret.x, ret.y) - - ret.y.Set(t3) - - ret.x.Mul(ret.x, t2, pool) - ret.x.Sub(ret.x, a2) - ret.x.Sub(ret.x, ret.y) - a2.MulTau(a2, pool) - ret.y.Add(ret.y, a2) - - a2.Put(pool) - t3.Put(pool) - t2.Put(pool) - t.Put(pool) -} - -// sixuPlus2NAF is 6u+2 in non-adjacent form. -var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, - 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, - 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, - 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} - -// miller implements the Miller loop for calculating the Optimal Ate pairing. -// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf -func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 { - ret := newGFp12(pool) - ret.SetOne() - - aAffine := newTwistPoint(pool) - aAffine.Set(q) - aAffine.MakeAffine(pool) - - bAffine := newCurvePoint(pool) - bAffine.Set(p) - bAffine.MakeAffine(pool) - - minusA := newTwistPoint(pool) - minusA.Negative(aAffine, pool) - - r := newTwistPoint(pool) - r.Set(aAffine) - - r2 := newGFp2(pool) - r2.Square(aAffine.y, pool) - - for i := len(sixuPlus2NAF) - 1; i > 0; i-- { - a, b, c, newR := lineFunctionDouble(r, bAffine, pool) - if i != len(sixuPlus2NAF)-1 { - ret.Square(ret, pool) - } - - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - switch sixuPlus2NAF[i-1] { - case 1: - a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool) - case -1: - a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool) - default: - continue - } - - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - } - - // In order to calculate Q1 we have to convert q from the sextic twist - // to the full GF(p^12) group, apply the Frobenius there, and convert - // back. - // - // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just - // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) - // where x̄ is the conjugate of x. If we are going to apply the inverse - // isomorphism we need a value with a single coefficient of ω² so we - // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of - // p, 2p-2 is a multiple of six. Therefore we can rewrite as - // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the - // ω². - // - // A similar argument can be made for the y value. - - q1 := newTwistPoint(pool) - q1.x.Conjugate(aAffine.x) - q1.x.Mul(q1.x, xiToPMinus1Over3, pool) - q1.y.Conjugate(aAffine.y) - q1.y.Mul(q1.y, xiToPMinus1Over2, pool) - q1.z.SetOne() - q1.t.SetOne() - - // For Q2 we are applying the p² Frobenius. The two conjugations cancel - // out and we are left only with the factors from the isomorphism. In - // the case of x, we end up with a pure number which is why - // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We - // ignore this to end up with -Q2. - - minusQ2 := newTwistPoint(pool) - minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3) - minusQ2.y.Set(aAffine.y) - minusQ2.z.SetOne() - minusQ2.t.SetOne() - - r2.Square(q1.y, pool) - a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool) - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - r2.Square(minusQ2.y, pool) - a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool) - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - aAffine.Put(pool) - bAffine.Put(pool) - minusA.Put(pool) - r.Put(pool) - r2.Put(pool) - - return ret -} - -// finalExponentiation computes the (p¹²-1)/Order-th power of an element of -// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from -// http://cryptojedi.org/papers/dclxvi-20100714.pdf) -func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 { - t1 := newGFp12(pool) - - // This is the p^6-Frobenius - t1.x.Negative(in.x) - t1.y.Set(in.y) - - inv := newGFp12(pool) - inv.Invert(in, pool) - t1.Mul(t1, inv, pool) - - t2 := newGFp12(pool).FrobeniusP2(t1, pool) - t1.Mul(t1, t2, pool) - - fp := newGFp12(pool).Frobenius(t1, pool) - fp2 := newGFp12(pool).FrobeniusP2(t1, pool) - fp3 := newGFp12(pool).Frobenius(fp2, pool) - - fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool) - fu.Exp(t1, u, pool) - fu2.Exp(fu, u, pool) - fu3.Exp(fu2, u, pool) - - y3 := newGFp12(pool).Frobenius(fu, pool) - fu2p := newGFp12(pool).Frobenius(fu2, pool) - fu3p := newGFp12(pool).Frobenius(fu3, pool) - y2 := newGFp12(pool).FrobeniusP2(fu2, pool) - - y0 := newGFp12(pool) - y0.Mul(fp, fp2, pool) - y0.Mul(y0, fp3, pool) - - y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool) - y1.Conjugate(t1) - y5.Conjugate(fu2) - y3.Conjugate(y3) - y4.Mul(fu, fu2p, pool) - y4.Conjugate(y4) - - y6 := newGFp12(pool) - y6.Mul(fu3, fu3p, pool) - y6.Conjugate(y6) - - t0 := newGFp12(pool) - t0.Square(y6, pool) - t0.Mul(t0, y4, pool) - t0.Mul(t0, y5, pool) - t1.Mul(y3, y5, pool) - t1.Mul(t1, t0, pool) - t0.Mul(t0, y2, pool) - t1.Square(t1, pool) - t1.Mul(t1, t0, pool) - t1.Square(t1, pool) - t0.Mul(t1, y1, pool) - t1.Mul(t1, y0, pool) - t0.Square(t0, pool) - t0.Mul(t0, t1, pool) - - inv.Put(pool) - t1.Put(pool) - t2.Put(pool) - fp.Put(pool) - fp2.Put(pool) - fp3.Put(pool) - fu.Put(pool) - fu2.Put(pool) - fu3.Put(pool) - fu2p.Put(pool) - fu3p.Put(pool) - y0.Put(pool) - y1.Put(pool) - y2.Put(pool) - y3.Put(pool) - y4.Put(pool) - y5.Put(pool) - y6.Put(pool) - - return t0 -} - -func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 { - e := miller(a, b, pool) - ret := finalExponentiation(e, pool) - e.Put(pool) - - if a.IsInfinity() || b.IsInfinity() { - ret.SetOne() - } - return ret -} diff --git a/vm/bn256/google/twist.go b/vm/bn256/google/twist.go deleted file mode 100644 index 43364ff5b..000000000 --- a/vm/bn256/google/twist.go +++ /dev/null @@ -1,263 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are -// kept in Jacobian form and t=z² when valid. The group G₂ is the set of -// n-torsion points of this curve over GF(p²) (where n = Order) -type twistPoint struct { - x, y, z, t *gfP2 -} - -var twistB = &gfP2{ - bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"), - bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"), -} - -// twistGen is the generator of group G₂. -var twistGen = &twistPoint{ - &gfP2{ - bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"), - bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"), - }, - &gfP2{ - bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"), - bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"), - }, - &gfP2{ - bigFromBase10("0"), - bigFromBase10("1"), - }, - &gfP2{ - bigFromBase10("0"), - bigFromBase10("1"), - }, -} - -func newTwistPoint(pool *bnPool) *twistPoint { - return &twistPoint{ - newGFp2(pool), - newGFp2(pool), - newGFp2(pool), - newGFp2(pool), - } -} - -func (c *twistPoint) String() string { - return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")" -} - -func (c *twistPoint) Put(pool *bnPool) { - c.x.Put(pool) - c.y.Put(pool) - c.z.Put(pool) - c.t.Put(pool) -} - -func (c *twistPoint) Set(a *twistPoint) { - c.x.Set(a.x) - c.y.Set(a.y) - c.z.Set(a.z) - c.t.Set(a.t) -} - -// IsOnCurve returns true iff c is on the curve where c must be in affine form. -func (c *twistPoint) IsOnCurve() bool { - pool := new(bnPool) - yy := newGFp2(pool).Square(c.y, pool) - xxx := newGFp2(pool).Square(c.x, pool) - xxx.Mul(xxx, c.x, pool) - yy.Sub(yy, xxx) - yy.Sub(yy, twistB) - yy.Minimal() - - if yy.x.Sign() != 0 || yy.y.Sign() != 0 { - return false - } - cneg := newTwistPoint(pool) - cneg.Mul(c, Order, pool) - return cneg.z.IsZero() -} - -func (c *twistPoint) SetInfinity() { - c.z.SetZero() -} - -func (c *twistPoint) IsInfinity() bool { - return c.z.IsZero() -} - -func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) { - // For additional comments, see the same function in curve.go. - - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - z1z1 := newGFp2(pool).Square(a.z, pool) - z2z2 := newGFp2(pool).Square(b.z, pool) - u1 := newGFp2(pool).Mul(a.x, z2z2, pool) - u2 := newGFp2(pool).Mul(b.x, z1z1, pool) - - t := newGFp2(pool).Mul(b.z, z2z2, pool) - s1 := newGFp2(pool).Mul(a.y, t, pool) - - t.Mul(a.z, z1z1, pool) - s2 := newGFp2(pool).Mul(b.y, t, pool) - - h := newGFp2(pool).Sub(u2, u1) - xEqual := h.IsZero() - - t.Add(h, h) - i := newGFp2(pool).Square(t, pool) - j := newGFp2(pool).Mul(h, i, pool) - - t.Sub(s2, s1) - yEqual := t.IsZero() - if xEqual && yEqual { - c.Double(a, pool) - return - } - r := newGFp2(pool).Add(t, t) - - v := newGFp2(pool).Mul(u1, i, pool) - - t4 := newGFp2(pool).Square(r, pool) - t.Add(v, v) - t6 := newGFp2(pool).Sub(t4, j) - c.x.Sub(t6, t) - - t.Sub(v, c.x) // t7 - t4.Mul(s1, j, pool) // t8 - t6.Add(t4, t4) // t9 - t4.Mul(r, t, pool) // t10 - c.y.Sub(t4, t6) - - t.Add(a.z, b.z) // t11 - t4.Square(t, pool) // t12 - t.Sub(t4, z1z1) // t13 - t4.Sub(t, z2z2) // t14 - c.z.Mul(t4, h, pool) - - z1z1.Put(pool) - z2z2.Put(pool) - u1.Put(pool) - u2.Put(pool) - t.Put(pool) - s1.Put(pool) - s2.Put(pool) - h.Put(pool) - i.Put(pool) - j.Put(pool) - r.Put(pool) - v.Put(pool) - t4.Put(pool) - t6.Put(pool) -} - -func (c *twistPoint) Double(a *twistPoint, pool *bnPool) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A := newGFp2(pool).Square(a.x, pool) - B := newGFp2(pool).Square(a.y, pool) - C_ := newGFp2(pool).Square(B, pool) - - t := newGFp2(pool).Add(a.x, B) - t2 := newGFp2(pool).Square(t, pool) - t.Sub(t2, A) - t2.Sub(t, C_) - d := newGFp2(pool).Add(t2, t2) - t.Add(A, A) - e := newGFp2(pool).Add(t, A) - f := newGFp2(pool).Square(e, pool) - - t.Add(d, d) - c.x.Sub(f, t) - - t.Add(C_, C_) - t2.Add(t, t) - t.Add(t2, t2) - c.y.Sub(d, c.x) - t2.Mul(e, c.y, pool) - c.y.Sub(t2, t) - - t.Mul(a.y, a.z, pool) - c.z.Add(t, t) - - A.Put(pool) - B.Put(pool) - C_.Put(pool) - t.Put(pool) - t2.Put(pool) - d.Put(pool) - e.Put(pool) - f.Put(pool) -} - -func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint { - sum := newTwistPoint(pool) - sum.SetInfinity() - t := newTwistPoint(pool) - - for i := scalar.BitLen(); i >= 0; i-- { - t.Double(sum, pool) - if scalar.Bit(i) != 0 { - sum.Add(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - sum.Put(pool) - t.Put(pool) - return c -} - -// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets -// c to 0 : 1 : 0. -func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint { - if c.z.IsOne() { - return c - } - if c.IsInfinity() { - c.x.SetZero() - c.y.SetOne() - c.z.SetZero() - c.t.SetZero() - return c - } - zInv := newGFp2(pool).Invert(c.z, pool) - t := newGFp2(pool).Mul(c.y, zInv, pool) - zInv2 := newGFp2(pool).Square(zInv, pool) - c.y.Mul(t, zInv2, pool) - t.Mul(c.x, zInv2, pool) - c.x.Set(t) - c.z.SetOne() - c.t.SetOne() - - zInv.Put(pool) - t.Put(pool) - zInv2.Put(pool) - - return c -} - -func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) { - c.x.Set(a.x) - c.y.SetZero() - c.y.Sub(c.y, a.y) - c.z.Set(a.z) - c.t.SetZero() -} diff --git a/vm/contracts.go b/vm/contracts.go index d5267ee53..4345d2758 100644 --- a/vm/contracts.go +++ b/vm/contracts.go @@ -25,12 +25,12 @@ import ( "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/crypto" + "github.com/ethereum/go-ethereum/crypto/blake2b" + "github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/ripemd160" - "github.com/vechain/thor/v2/blake2b" "github.com/vechain/thor/v2/thor" - "github.com/vechain/thor/v2/vm/bn256" ) // PrecompiledContract is the basic interface for native Go contracts. The implementation