-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c.py
138 lines (113 loc) · 4.24 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Author : Vedant Shah
# E-mail : [email protected]
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.double
class agent:
def __init__(
self, env, actor_layer_sizes=[64, 32], critic_layer_sizes=[64, 32]
):
self.env = env
self.actor, self.critic = self.make_models(
actor_layer_sizes, critic_layer_sizes
)
self.episode_rewards = []
def make_models(self, actor_layer_sizes, critic_layer_sizes):
critic = (
(
nn.Sequential(
nn.Linear(
self.env.observation_space.shape[0],
critic_layer_sizes[0],
),
nn.ReLU(),
nn.Linear(critic_layer_sizes[0], critic_layer_sizes[1]),
nn.ReLU(),
nn.Linear(critic_layer_sizes[1], 1),
)
)
.to(device)
.to(dtype)
)
actor = (
(
nn.Sequential(
nn.Linear(
self.env.observation_space.shape[0],
actor_layer_sizes[0],
),
nn.Tanh(),
nn.Linear(actor_layer_sizes[0], actor_layer_sizes[1]),
nn.Tanh(),
nn.Linear(actor_layer_sizes[1], self.env.action_space.n),
nn.Softmax(dim=0),
)
)
.to(device)
.to(dtype)
)
return actor, critic
def train(
self, actor_lr, critic_lr, episodes, max_steps_per_episode, GAMMA=0.99
):
actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr)
critic_optimizer = optim.Adam(self.critic.parameters(), lr=critic_lr)
for e in range(episodes):
state = self.env.reset()
episode_reward = 0
for _ in range(max_steps_per_episode):
self.env.render()
probs = self.actor(torch.from_numpy(state))
action_distribution = Categorical(probs)
action = action_distribution.sample()
next_state, reward, done, _ = self.env.step(action.item())
episode_reward += reward
advantage = (
reward
+ (1 - done)
* GAMMA
* self.critic(torch.from_numpy(next_state))
- self.critic(torch.from_numpy(state))
)
critic_loss = advantage.pow(2).mean()
critic_loss.backward()
critic_optimizer.step()
critic_optimizer.zero_grad()
actor_loss = (
-action_distribution.log_prob(action) * advantage.detach()
)
actor_loss.backward()
actor_optimizer.step()
actor_optimizer.zero_grad()
state = next_state
if done:
print(
"Completed episode {}/{} of training".format(
e, episodes
)
)
self.episode_rewards.append(episode_reward)
break
self.env.close()
def test(self, EPISODES, MAX_TIME_STEPS):
for e in range(EPISODES):
print("Episode: {}/{}".format(e+1, EPISODES))
state = self.env.reset()
for t in range(MAX_TIME_STEPS):
print("\tTime step: {}/{}".format(t+1, MAX_TIME_STEPS))
self.env.render()
probs = self.actor(torch.from_numpy(state))
action_distribution = Categorical(probs)
action = action_distribution.sample()
next_state, _, done, _ = self.env.step(action)
state = next_state
if done:
print("Episode {}/{} done".format(e, EPISODES))
self.env.close()
def plot(self):
plt.plot(self.episode_rewards)
plt.show()