Skip to content

Latest commit

 

History

History
58 lines (54 loc) · 1.49 KB

TODO.md

File metadata and controls

58 lines (54 loc) · 1.49 KB

TODOs

  • Objectives objective 1. Pull method for expression generation objective 2. Use more graph & algebra et all... objective 3. Build interactive visualization in IPython objective N. Build in stats & logging while dev'n previous 2 Normalize metric values Add random or brownian data to the analysis, should find nothing
  • Ipython notebook examples
    • D3, or similar
    • plot geneology on pareto fronts
    • interactive visualizations
  • networkx & relations for ...
  • algebra
    • growing / initing policies
    • simplification / expansions
    • filtering policies
    • +C ???
    • OTHER ISSUE:
      • dealing with C vs C_&&
      • model.orig vs model.expr &&
      • init'n vs manip'n
  • logging
  • statistics
    • memotree
    • within model
    • for expansions
    • what's improving and not
    • subexpressions- scikit learn
    • pandas DFs
    • get/set parameters
    • pipelining
    • gridsearch
  • run on the GPU with theano
  • distributing to the cloud, pyspark
  • diffeqs
    • problems with default parameters
    • need to toggle on system type ???
  • other system types
    • invarients
    • hidden
    • pdes
  • abstract expressions / memoization
    • when / where coefficients
    • domain alphabet
    • sub-expression frequencies in population New stuff
    • Eqn Relationships, subtree too
    • Different metrics for selection & search
    • Work around / outside of PGE algorithm (data handling, feature selection, PCA)
    • Python package with scikit-learn integration
    • More benchmarks, exploring limits
    • Memoization