forked from dwave-training/truck-packing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtruck_packing_demo.py
125 lines (97 loc) · 4.59 KB
/
truck_packing_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright 2022 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy
# of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
from dimod import ConstrainedQuadraticModel, Binaries, quicksum
from dwave.system import LeapHybridCQMSampler
import random
import numpy as np
# Problem set up
num_packages = 300
# Priority of each package, 3 = high priority, 1 = low priority
priority = random.choices((1, 2, 3), k=num_packages)
# Number of days since each package was ordered (More days need to be
# prioritized higher)
days_since_order = random.choices((0, 1, 2, 3), k=num_packages)
# Weight of each package
weight = random.choices(range(1, 101), k=num_packages)
# Maximum weight and number of packages the truck can handle
max_weight = 3000
max_packages = 100
# Weights for the objective functions
obj_weight_priority = 1.0
obj_weight_days = 1.0
# Build the CQM
cqm = ConstrainedQuadraticModel()
# Create the binary variables
bin_variables = list(Binaries(range(num_packages)))
# ----------------- Objective functions -----------------
# 1. Maximize priority shipping packages
objective1 = -obj_weight_priority * quicksum(priority[i] * bin_variables[i]
for i in range(num_packages))
# 2. Minimize customers wait time
objective2 = -obj_weight_days * quicksum(days_since_order[i] * bin_variables[i]
for i in range(num_packages))
# Add the objectives to the CQM
cqm.set_objective(objective1 + objective2)
# ----------------- Constraints -----------------
# Add the maximum capacity constraint
cqm.add_constraint(quicksum(weight[i] * bin_variables[i] for i in
range(num_packages)) <= max_weight, label='max_weight')
# Add the maximum package (or truck size) constraint
cqm.add_constraint(quicksum(bin_variables[i] for i in range(num_packages))
== max_packages, label='max_packages')
# ----------------- Submit to the CQM sampler -----------------
cqm_sampler = LeapHybridCQMSampler()
sampleset = cqm_sampler.sample_cqm(cqm, label='Truck Packing Demo')
# ----------------- Process the results -----------------
feasible_sampleset = sampleset.filter(lambda d: d.is_feasible)
if not len(feasible_sampleset):
print("\nNo feasible solution found.\n")
else:
first_feasible_sol = feasible_sampleset.first.sample
# Characterize the problem
problem_array = np.zeros((3, 4)).astype(int)
for i in range(num_packages):
problem_array[-1 * (priority[i]-3)][-1 * (days_since_order[i] - 3)] += 1
print("\n****************** PROBLEM ******************\n")
print('Days since order was placed')
print('{:>5s}{:>5s}{:>5s}{:>5s}{:>5s}'.format('Priority |',
'3', '2', '1', '0'))
print('-' * 40)
for i in range(3):
print('{:>5s}{:>10s}{:>5s}{:>5s}{:>5s}'.format(str(-1*(i- 3)),
str(problem_array[i][0]), str(problem_array[i][1]),
str(problem_array[i][2]), str(problem_array[i][3])))
# Calculate number of packages with each priority and number of days since
# order in the solution
chosen = [i for i in first_feasible_sol if first_feasible_sol[i] == 1]
total_weight = quicksum(weight[i] for i in chosen)
solution_priorities = [priority[i] for i in chosen]
solution_days_since_order = [days_since_order[i] for i in chosen]
# Characterize the solution
# Packages with higher priority (upper row) and the most days since the
# order (left most column) should be prioritized in the selection
results_array = np.zeros((3, 4)).astype(int)
for i in chosen:
results_array[-1 * (priority[i]-3)][-1 * (days_since_order[i] - 3)] += 1
print("\n****************** SOLUTION ******************\n")
print('Days since order was placed')
print('{:>5s}{:>5s}{:>5s}{:>5s}{:>5s}'.format('Priority |',
'3', '2', '1', '0'))
print('-' * 40)
for i in range(3):
print('{:>5s}{:>10s}{:>5s}{:>5s}{:>5s}'.format(str(-1*(i - 3)),
str(results_array[i][0]), str(results_array[i][1]),
str(results_array[i][2]), str(results_array[i][3])))
print(("\nTotal number of selected items: {}".format(len(chosen))))
print("Total weight of selected items: {}".format(total_weight))