-
Notifications
You must be signed in to change notification settings - Fork 78
/
utils.py
72 lines (59 loc) · 1.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import matplotlib
matplotlib.use('Agg')
import torch
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
def create_folders(args):
try:
os.makedirs(args.outf)
except OSError:
pass
try:
os.makedirs(args.outf + '/' + args.exp_name)
except OSError:
pass
try:
os.makedirs(args.outf + '/' + args.exp_name + '/images_recon')
except OSError:
pass
try:
os.makedirs(args.outf + '/' + args.exp_name + '/images_gen')
except OSError:
pass
def makedir(path):
try:
os.makedirs(path)
except OSError:
pass
def normalize_res(res, keys=[]):
for key in keys:
if key != 'counter':
res[key] = res[key] / res['counter']
del res['counter']
return res
def plot_coords(coords_mu, path, coords_logvar=None):
if coords_mu is None:
return 0
if coords_logvar is not None:
coords_std = torch.sqrt(torch.exp(coords_logvar))
else:
coords_std = torch.zeros(coords_mu.size())
coords_size = (coords_std ** 2) * 1
plt.scatter(coords_mu[:, 0], coords_mu[:, 1], alpha=0.6, s=100)
#plt.errorbar(coords_mu[:, 0], coords_mu[:, 1], xerr=coords_size[:, 0], yerr=coords_size[:, 1], linestyle="None", alpha=0.5)
plt.savefig(path)
plt.clf()
def filter_nodes(dataset, n_nodes):
new_graphs = []
for i in range(len(dataset.graphs)):
if len(dataset.graphs[i].nodes) == n_nodes:
new_graphs.append(dataset.graphs[i])
dataset.graphs = new_graphs
dataset.n_nodes = n_nodes
return dataset
def adjust_learning_rate(optimizer, epoch, lr_0, factor=0.5, epochs_decay=100):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = lr_0 * (factor ** (epoch // epochs_decay))
for param_group in optimizer.param_groups:
param_group['lr'] = lr