-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathtest.py
66 lines (53 loc) · 2.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
from utils import io_utils
from data import generator
from torch.autograd import Variable
def test_one_shot(args, model, test_samples=5000, partition='test'):
io = io_utils.IOStream('checkpoints/' + args.exp_name + '/run.log')
io.cprint('\n**** TESTING WITH %s ***' % (partition,))
loader = generator.Generator(args.dataset_root, args, partition=partition, dataset=args.dataset)
[enc_nn, metric_nn, softmax_module] = model
enc_nn.eval()
metric_nn.eval()
correct = 0
total = 0
iterations = int(test_samples/args.batch_size_test)
for i in range(iterations):
data = loader.get_task_batch(batch_size=args.batch_size_test, n_way=args.test_N_way,
num_shots=args.test_N_shots, unlabeled_extra=args.unlabeled_extra)
[x, labels_x_cpu, _, _, xi_s, labels_yi_cpu, oracles_yi, hidden_labels] = data
if args.cuda:
xi_s = [batch_xi.cuda() for batch_xi in xi_s]
labels_yi = [label_yi.cuda() for label_yi in labels_yi_cpu]
oracles_yi = [oracle_yi.cuda() for oracle_yi in oracles_yi]
hidden_labels = hidden_labels.cuda()
x = x.cuda()
else:
labels_yi = labels_yi_cpu
xi_s = [Variable(batch_xi) for batch_xi in xi_s]
labels_yi = [Variable(label_yi) for label_yi in labels_yi]
oracles_yi = [Variable(oracle_yi) for oracle_yi in oracles_yi]
hidden_labels = Variable(hidden_labels)
x = Variable(x)
# Compute embedding from x and xi_s
z = enc_nn(x)[-1]
zi_s = [enc_nn(batch_xi)[-1] for batch_xi in xi_s]
# Compute metric from embeddings
output, out_logits = metric_nn(inputs=[z, zi_s, labels_yi, oracles_yi, hidden_labels])
output = out_logits
y_pred = softmax_module.forward(output)
y_pred = y_pred.data.cpu().numpy()
y_pred = np.argmax(y_pred, axis=1)
labels_x_cpu = labels_x_cpu.numpy()
labels_x_cpu = np.argmax(labels_x_cpu, axis=1)
for row_i in range(y_pred.shape[0]):
if y_pred[row_i] == labels_x_cpu[row_i]:
correct += 1
total += 1
if (i+1) % 100 == 0:
io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(correct, total, 100.0*correct/total))
io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(correct, total, 100.0*correct/total))
io.cprint('*** TEST FINISHED ***\n'.format(correct, total, 100.0 * correct / total))
enc_nn.train()
metric_nn.train()
return 100.0 * correct / total