forked from GuijiAI/ReHiFace-S
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathHifiFaceAPI_parallel_trt_roi_realtime_sr_api.py
executable file
·234 lines (196 loc) · 9.21 KB
/
HifiFaceAPI_parallel_trt_roi_realtime_sr_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import cv2
import time
import numpy as np
import numexpr as ne
from multiprocessing.dummy import Process, Queue
from options.hifi_test_options import HifiTestOptions
from HifiFaceAPI_parallel_base import Consumer0Base, Consumer2Base, Consumer3Base,Consumer1BaseONNX
from color_transfer import color_transfer
def np_norm(x):
return (x - np.average(x)) / np.std(x)
def reverse2wholeimage_hifi_trt_roi(swaped_img, mat_rev, img_mask, frame, roi_img, roi_box):
target_image = cv2.warpAffine(swaped_img, mat_rev, roi_img.shape[:2][::-1], borderMode=cv2.BORDER_REPLICATE)[
...,
::-1]
local_dict = {
'img_mask': img_mask,
'target_image': target_image,
'roi_img': roi_img,
}
img = ne.evaluate('img_mask * (target_image * 255)+(1 - img_mask) * roi_img', local_dict=local_dict,
global_dict=None)
img = img.astype(np.uint8)
frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]] = img
return frame
def get_max_face(np_rois):
roi_areas = []
for index in range(np_rois.shape[0]):
roi_areas.append((np_rois[index, 2] - np_rois[index, 0]) * (np_rois[index, 3] - np_rois[index, 1]))
return np.argmax(np.array(roi_areas))
class Consumer0(Consumer0Base):
def __init__(self, opt, frame_queue_in, queue_list: list, block=True, fps_counter=False, align_method='68'):
super().__init__(opt, frame_queue_in, None, queue_list, block, fps_counter)
self.align_method = align_method
def run(self):
counter = 0
start_time = time.time()
kpss_old = None
rois_old = faces_old = Ms_old = masks_old = None
while True:
frame = self.frame_queue_in.get()
if frame is None:
break
try:
_, bboxes, kpss = self.scrfd_detector.get_bboxes(frame, max_num=0)
if self.align_method == '5class':
rois, faces, Ms, masks = self.mtcnn_detector.align_multi_for_scrfd(
frame, bboxes, kpss, limit=1, min_face_size=30,
crop_size=(self.crop_size, self.crop_size), apply_roi=True, detector=None
)
else:
rois, faces, Ms, masks = self.face_alignment.forward(
frame, bboxes, kpss, limit=5, min_face_size=30,
crop_size=(self.crop_size, self.crop_size), apply_roi=True
)
except (TypeError, IndexError, ValueError) as e:
self.queue_list[0].put([None, frame])
continue
if len(faces)==0:
self.queue_list[0].put([None, frame])
continue
elif len(faces)==1:
face = np.array(faces[0])
mat = Ms[0]
roi_box = rois[0]
else:
max_index = get_max_face(np.array(rois))
face = np.array(faces[max_index])
mat = Ms[max_index]
roi_box = rois[max_index]
roi_img = frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]]
#The default normalization to the range of -1 to 1, where the model input is in RGB format
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
self.queue_list[0].put([face, mat, [], frame, roi_img, roi_box])
if self.fps_counter:
counter += 1
if (time.time() - start_time) > 10:
print("Consumer0 FPS: {}".format(counter / (time.time() - start_time)))
counter = 0
start_time = time.time()
self.queue_list[0].put(None)
print('co stop')
class Consumer1(Consumer1BaseONNX):
def __init__(self, opt, feature_list, queue_list: list, block=True, fps_counter=False):
super().__init__(opt, feature_list, queue_list, block, fps_counter)
def run(self):
counter = 0
start_time = time.time()
while True:
something_in = self.queue_list[0].get()
if something_in is None:
break
elif len(something_in) == 2:
self.queue_list[1].put([None, something_in[1]])
continue
if len(self.feature_list) > 1:
self.feature_list.pop(0)
image_latent = self.feature_list[0][0]
mask_out, swap_face_out = self.predict(something_in[0], image_latent[0].reshape(1, -1))
mask = cv2.warpAffine(mask_out[0][0].astype(np.float32), something_in[1],
something_in[4].shape[:2][::-1])
mask[mask > 0.2] = 1
mask = mask[:, :, np.newaxis].astype(np.uint8)
swap_face = swap_face_out[0].transpose((1, 2, 0)).astype(np.float32)
self.queue_list[1].put(
[swap_face, something_in[1], mask, something_in[3], something_in[4], something_in[5], something_in[0]])
if self.fps_counter:
counter += 1
if (time.time() - start_time) > 10:
print("Consumer1 FPS: {}".format(counter / (time.time() - start_time)))
counter = 0
start_time = time.time()
self.queue_list[1].put(None)
print('c1 stop')
class Consumer2(Consumer2Base):
def __init__(self, queue_list: list, frame_queue_out, block=True, fps_counter=False):
super().__init__(queue_list, frame_queue_out, block, fps_counter)
def forward_func(self, something_in):
if len(something_in) == 2:
frame = something_in[1]
frame_out = frame.astype(np.uint8)
else:
swap_face = ((something_in[0] + 1) / 2)
frame_out = reverse2wholeimage_hifi_trt_roi(
swap_face, something_in[1], something_in[2],
something_in[3], something_in[4], something_in[5]
)
self.frame_queue_out.put(frame_out)
# cv2.imshow('output', frame_out)
# cv2.waitKey(1)
class Consumer3(Consumer3Base):
def __init__(self, queue_list, block=True, fps_counter=False, use_gfpgan=True, sr_weight=1.0,
use_color_trans=False, color_trans_mode=''):
super().__init__(queue_list, block, fps_counter)
self.use_gfpgan = use_gfpgan
self.sr_weight = sr_weight
self.use_color_trans = use_color_trans
self.color_trans_mode = color_trans_mode
def forward_func(self, something_in):
if len(something_in) == 2:
self.queue_list[1].put([None, something_in[1]])
else:
swap_face = something_in[0]
target_face = (something_in[6] / 255).astype(np.float32)
if self.use_gfpgan:
sr_face = self.gfp.forward(swap_face)
if self.sr_weight != 1.0:
sr_face = cv2.addWeighted(sr_face, alpha=self.sr_weight, src2=swap_face, beta=1.0 - self.sr_weight, gamma=0, dtype=cv2.CV_32F)
if self.use_color_trans:
transed_face = color_transfer(self.color_trans_mode, (sr_face + 1) / 2, target_face)
result_face = (transed_face * 2) - 1
else:
result_face = sr_face
else:
if self.use_color_trans:
transed_face = color_transfer(self.color_trans_mode, (swap_face + 1) / 2, target_face)
result_face = (transed_face * 2) - 1
else:
result_face = swap_face
self.queue_list[1].put([result_face, something_in[1], something_in[2], something_in[3],
something_in[4], something_in[5]])
class HifiFaceRealTime:
def __init__(self, feature_dict_list_, frame_queue_in, frame_queue_out, gpu=True, model_name='er8_bs1', align_method='68',
use_gfpgan=True, sr_weight=1.0, use_color_trans=False, color_trans_mode='rct'):
self.opt = HifiTestOptions().parse()
if model_name != '':
self.opt.model_name = model_name
self.opt.input_size = 256
self.feature_dict_list = feature_dict_list_
self.frame_queue_in = frame_queue_in
self.frame_queue_out = frame_queue_out
self.gpu = gpu
self.align_method = align_method
self.use_gfpgan = use_gfpgan
self.sr_weight = sr_weight
self.use_color_trans = use_color_trans
self.color_trans_mode = color_trans_mode
def forward(self):
self.q0 = Queue(2)
self.q1 = Queue(2)
self.q2 = Queue(2)
self.c0 = Consumer0(self.opt, self.frame_queue_in, [self.q0], fps_counter=False, align_method=self.align_method)
self.c1 = Consumer1(self.opt, self.feature_dict_list, [self.q0, self.q1], fps_counter=False)
self.c3 = Consumer3([self.q1, self.q2], fps_counter=False,
use_gfpgan=self.use_gfpgan, sr_weight=self.sr_weight,
use_color_trans=self.use_color_trans, color_trans_mode=self.color_trans_mode)
self.c2 = Consumer2([self.q2], self.frame_queue_out, fps_counter=False)
self.c0.start()
self.c1.start()
self.c3.start()
self.c2.start()
self.c0.join()
self.c1.join()
self.c3.join()
self.c2.join()
return