-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
351 lines (307 loc) · 15.8 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
#os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "'max_split_size_mb':500"
#set PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
import numpy as np
np.set_printoptions(suppress=1)
import subprocess
from os.path import join
from tqdm import tqdm
import numpy as np
import torch
torch.set_printoptions(sci_mode=0)
from collections import OrderedDict
import librosa
from skimage.io import imread
import cv2
import scipy.io as sio
import argparse
import yaml
import albumentations as A
import albumentations.pytorch
from pathlib import Path
from options.test_audio2feature_options import TestOptions as FeatureOptions
from options.test_audio2headpose_options import TestOptions as HeadposeOptions
from options.test_feature2face_options import TestOptions as RenderOptions
from datasets import create_dataset
from models import create_model
from models.networks import APC_encoder
import util.util as util
from util.visualizer import Visualizer
from funcs import utils
from funcs import audio_funcs
import config as cfg
import warnings
warnings.filterwarnings("ignore")
def write_video_with_audio(audio_path, output_path, prefix='pred_'):
fps, fourcc = cfg.FPS, cv2.VideoWriter_fourcc(*'DIVX')
video_tmp_path = join(save_root, 'tmp.avi')
out = cv2.VideoWriter(video_tmp_path, fourcc, fps, (Renderopt.loadSize, Renderopt.loadSize))
for j in tqdm(range(nframe), position=0, desc='writing video'):
img = cv2.imread(join(save_root, prefix + str(j+1) + '.jpg'))
out.write(img)
out.release()
cmd = 'ffmpeg -i "' + video_tmp_path + '" -i "' + audio_path + '" -codec copy -shortest "' + output_path + '"'
subprocess.call(cmd, shell=True)
os.remove(video_tmp_path) # remove the template video
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--id', default='May', help="person name, e.g. Obama1, Obama2, May, Nadella, McStay")
parser.add_argument('--driving_audio', default='./data/input/00083.wav', help="path to driving audio")
parser.add_argument('--save_intermediates', default=0, help="whether to save intermediate results")
parser.add_argument('--device', type=str, default='cpu', help='use cuda for GPU or use cpu for CPU')
############################### I/O Settings ##############################
# load config files
if cfg.DEBUG:
#--save_intermediates 1
args_raw = '--id Vic --driving_audio ./data/Input/00083.wav --device cuda'
#args_raw = '--id Vic --driving_audio ./data/Vic/clip_1/clip_1.wav --device cuda'
args_raw = args_raw.split(' ')
args = []
for x in args_raw:
if len(x.strip()) > 0:
args.append(x)
opt = parser.parse_args(args)
else:
#python demo.py --id Vic --driving_audio ./data/Vic/clip_0/clip_0.wav --device cuda --save_intermediates 1
opt = parser.parse_args()
device = torch.device(opt.device)
config_path = join('./config_file/', opt.id + '.yaml')
print(f'config_path: {config_path}')
with open(config_path) as f:
#config = yaml.load(f)
config = yaml.full_load(f)
data_root = join('./data/', opt.id)
# create the results folder
audio_name = os.path.split(opt.driving_audio)[1][:-4]
save_root = join('./results/', opt.id, audio_name)
if not os.path.exists(save_root):
os.makedirs(save_root)
# common settings
if cfg.DATASET_NAME == 'official':
Featopt = FeatureOptions().parse()
#args_raw = '--phase test --load_epoch 500 --eval'
#args = utils.parse_args_str(args_raw)
Headopt = HeadposeOptions().parse()
Renderopt = RenderOptions().parse()
elif cfg.DATASET_NAME == 'Vic':
args_raw = '--phase test --load_epoch 200 --eval'
args = utils.parse_args_str(args_raw)
Featopt = FeatureOptions().parse()
args_raw = '--phase test --test_dataset_names Vic'
args = utils.parse_args_str(args_raw)
Renderopt = RenderOptions().parse(args=args)
############################ Hyper Parameters #############################
h, w, sr, FPS = cfg.target_image_size[1], cfg.target_image_size[0], cfg.sr, cfg.FPS
mouth_indices = cfg.mouth_indices
eye_brow_indices = cfg.eye_brow_indices
############################ Pre-defined Data #############################
if Featopt.use_delta_pts:
if cfg.DATASET_NAME == 'Vic':
clip_name = config['dataset_params']['clip_name']
mean_pts3d = np.load(join(data_root, clip_name, 'mean_pts3d.npy'))
else:
mean_pts3d = np.load(join(data_root, 'mean_pts3d.npy'))
normalized_pts3d_fix_contour = np.load(config['dataset_params']['pts3d_path'])
pts3d = normalized_pts3d_fix_contour - mean_pts3d
candidate_eye_brow = pts3d[10:, eye_brow_indices]
std_mean_pts3d = normalized_pts3d_fix_contour.mean(axis=0)
if Featopt.use_delta_pts:
fit_data = np.load(config['dataset_params']['fit_data_path'])
trans = fit_data['trans'][:, :, 0].astype(np.float32)
mean_translation = trans.mean(axis=0)
# candidates images
img_candidates = []
transform = A.augmentations.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0)
for j in range(4):
output = imread(join(data_root, 'candidates', f'normalized_full_{j}.jpg'))
#output = A.pytorch.transforms.ToTensor(normalize={'mean': (0.5, 0.5, 0.5),
# 'std': (0.5, 0.5, 0.5)})(image=output)['image']
output = transform.apply(image=output)
output = torch.from_numpy(output)
output = output.permute(2, 0, 1)
img_candidates.append(output)
img_candidates = torch.cat(img_candidates).unsqueeze(0).to(device)
ref_trans = trans[1]
# shoulders
if cfg.DATASET_NAME == 'official':
shoulders = np.load(join(data_root, 'normalized_shoulder_points.npy'))
shoulder3D = np.load(join(data_root, 'shoulder_points3D.npy'))[1]
# camera matrix, we always use training set intrinsic parameters
if cfg.DATASET_NAME == 'official':
camera = utils.camera()
camera_intrinsic = np.load(join(data_root, 'camera_intrinsic.npy')).astype(np.float32)
scale = sio.loadmat(join(data_root, 'id_scale.mat'))['scale'][0, 0]
APC_feat_database = np.load(join(data_root, 'APC_feature_base.npy'))
# load reconstruction data
# Audio2Mel_torch = audio_funcs.Audio2Mel(n_fft=cfg.n_fft, hop_length=int(16000/120), win_length=int(16000/60), sampling_rate=16000,
# n_mel_channels=80, mel_fmin=90, mel_fmax=7600.0).to(device)
########################### Experiment Settings ###########################
# user config
use_LLE = config['model_params']['APC']['use_LLE']
Knear = config['model_params']['APC']['Knear']
LLE_percent = config['model_params']['APC']['LLE_percent']
headpose_sigma = config['model_params']['Headpose']['sigma']
Feat_smooth_sigma = config['model_params']['Audio2Mouth']['smooth']
Head_smooth_sigma = config['model_params']['Headpose']['smooth']
Feat_center_smooth_sigma, Head_center_smooth_sigma = 0, 0
AMP_method = config['model_params']['Audio2Mouth']['AMP'][0]
Feat_AMPs = config['model_params']['Audio2Mouth']['AMP'][1:]
rot_AMP, trans_AMP = config['model_params']['Headpose']['AMP']
shoulder_AMP = config['model_params']['Headpose']['shoulder_AMP']
save_feature_maps = config['model_params']['Image2Image']['save_input']
Featopt.load_epoch = config['model_params']['Audio2Mouth']['ckp_path']
if cfg.DATASET_NAME == 'official':
Headopt.load_epoch = config['model_params']['Headpose']['ckp_path']
Renderopt.dataroot = config['dataset_params']['root']
Renderopt.load_epoch = config['model_params']['Image2Image']['ckp_path']
Renderopt.size = config['model_params']['Image2Image']['size']
## GPU or CPU
if opt.device == 'cpu':
Featopt.gpu_ids = []
if cfg.DATASET_NAME == 'official':
Headopt.gpu_ids = []
Renderopt.gpu_ids = []
############################# Load Models #################################
print('---------- Loading Model: APC-------------')
APC_model = APC_encoder(config['model_params']['APC']['mel_dim'],
config['model_params']['APC']['hidden_size'],
config['model_params']['APC']['num_layers'],
config['model_params']['APC']['residual'])
APC_model.load_state_dict(torch.load(config['model_params']['APC']['ckp_path']), strict=False)
if opt.device == 'cuda':
APC_model.cuda()
APC_model.eval()
print('---------- Loading Model: {} -------------'.format(Featopt.task))
Audio2Feature = create_model(Featopt)
Audio2Feature.setup(Featopt)
Audio2Feature.eval()
if cfg.DATASET_NAME == 'official':
print('---------- Loading Model: {} -------------'.format(Headopt.task))
Audio2Headpose = create_model(Headopt)
Audio2Headpose.setup(Headopt)
Audio2Headpose.eval()
if Headopt.feature_decoder == 'WaveNet':
if opt.device == 'cuda':
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.module.WaveNet.receptive_field
else:
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.WaveNet.receptive_field
print('---------- Loading Model: {} -------------'.format(Renderopt.task))
facedataset = create_dataset(Renderopt)
Feature2Face = create_model(Renderopt)
Feature2Face.setup(Renderopt)
Feature2Face.eval()
visualizer = Visualizer(Renderopt)
############################## Inference ##################################
print('Processing audio: {} ...'.format(audio_name))
# read audio
audio, _ = librosa.load(opt.driving_audio, sr=sr)
total_frames = np.int32(audio.shape[0] / sr * FPS)
# 1. compute APC features
print('1. Computing APC features...')
mel80 = utils.compute_mel_one_sequence(audio, device=opt.device)
mel_nframe = mel80.shape[0]
with torch.no_grad():
length = torch.Tensor([mel_nframe])
mel80_torch = torch.from_numpy(mel80.astype(np.float32)).to(device).unsqueeze(0)
hidden_reps = APC_model.forward(mel80_torch, length)[0] # [mel_nframe, cfg.audio_feature_size]
hidden_reps = hidden_reps.cpu().numpy()
audio_feats = hidden_reps
# 2. manifold projection
if use_LLE:
print('2. Manifold projection...')
ind = utils.KNN_with_torch(audio_feats, APC_feat_database, K=Knear)
_, feat_fuse = utils.compute_LLE_projection_all_frame(audio_feats, APC_feat_database, ind, audio_feats.shape[0])
audio_feats = audio_feats * (1-LLE_percent) + feat_fuse * LLE_percent
# 3. Audio2Mouth
print('3. Audio2Mouth inference...')
pred_Feat = Audio2Feature.generate_sequences(audio_feats, sr, FPS, fill_zero=True, opt=Featopt)
# 4. Audio2Headpose
print('4. Headpose inference...')
# set history headposes as zero
if cfg.DATASET_NAME == 'official':
pre_headpose = np.zeros(Headopt.A2H_wavenet_input_channels, np.float32)
pred_Head = Audio2Headpose.generate_sequences(audio_feats, pre_headpose, fill_zero=True, sigma_scale=0.3, opt=Headopt)
# 5. Post-Processing
print('5. Post-processing...')
if cfg.DATASET_NAME == 'official':
nframe = min(pred_Feat.shape[0], pred_Head.shape[0])
elif cfg.DATASET_NAME == 'Vic':
nframe = pred_Feat.shape[0]
pred_pts3d = np.zeros([nframe, cfg.face_landmark_num, 3])
pred_pts3d[:, mouth_indices] = pred_Feat.reshape(-1, cfg.mouth_feature_num, 3)[:nframe]
# mouth
pred_pts3d = utils.landmark_smooth_3d(pred_pts3d, Feat_smooth_sigma, area='only_mouth')
pred_pts3d = utils.mouth_pts_AMP(pred_pts3d, True, AMP_method, Feat_AMPs)
if Featopt.use_delta_pts:
pred_pts3d = pred_pts3d + mean_pts3d
pred_pts3d = utils.solve_intersect_mouth(pred_pts3d) # solve intersect lips if exist
# headpose
if cfg.DATASET_NAME == 'official':
pred_Head[:, 0:3] *= rot_AMP
pred_Head[:, 3:6] *= trans_AMP
pred_headpose = utils.headpose_smooth(pred_Head[:, :6], Head_smooth_sigma).astype(np.float32)
if Headopt.use_delta_trans:
pred_headpose[:, 3:] += mean_translation
pred_headpose[:, 0] += 180
# compute projected landmarks
pred_landmarks = np.zeros([nframe, cfg.face_landmark_num, 2], dtype=np.float32)
final_pts3d = np.zeros([nframe, cfg.face_landmark_num, 3], dtype=np.float32)
final_pts3d[:] = std_mean_pts3d.copy()
final_pts3d[:, cfg.mouth_range] = pred_pts3d[:nframe, cfg.mouth_range]
for k in tqdm(range(nframe)):
ind = k % candidate_eye_brow.shape[0]
final_pts3d[k, eye_brow_indices] = candidate_eye_brow[ind] + mean_pts3d[eye_brow_indices]
if cfg.DATASET_NAME == 'official':
pred_landmarks[k], _, _ = utils.project_landmarks(camera_intrinsic, camera.relative_rotation, camera.relative_translation, scale,
pred_headpose[k], final_pts3d[k])
elif cfg.DATASET_NAME == 'Vic':
pred_landmarks[k], _, _ = utils.project_landmarks_orthogonal(final_pts3d[k])
else:
assert 0
# Upper Body Motion
if cfg.DATASET_NAME == 'official':
pred_shoulders = np.zeros([nframe, 18, 2], dtype=np.float32)
pred_shoulders3D = np.zeros([nframe, 18, 3], dtype=np.float32)
for k in range(nframe):
diff_trans = pred_headpose[k][3:] - ref_trans
pred_shoulders3D[k] = shoulder3D + diff_trans * shoulder_AMP
# project
project = camera_intrinsic.dot(pred_shoulders3D[k].T)
project[:2, :] /= project[2, :] # divide z
pred_shoulders[k] = project[:2, :].T
# 6. Image2Image translation & Save resuls
print('6. Image2Image translation & Saving results...')
for ind in tqdm(range(0, nframe), desc='Image2Image translation inference'):
# feature_map: [input_nc, h, w]
if cfg.DATASET_NAME == 'official':
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind], pred_shoulders[ind], facedataset.dataset.image_pad)
elif cfg.DATASET_NAME == 'Vic':
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind], None, facedataset.dataset.image_pad)
visual_list = []
input_feature_maps = current_pred_feature_map.unsqueeze(0).to(device)
if save_feature_maps:
visual_list += [('input', np.uint8(current_pred_feature_map[0].cpu().numpy() * 255))]
if cfg.demo_use_feature2face_model:
pred_fake = Feature2Face.inference(input_feature_maps, img_candidates)
visual_list += [('pred', util.tensor2im(pred_fake[0]))]
visuals = OrderedDict(visual_list)
visualizer.save_images(save_root, visuals, str(ind+1))
# make videos
# generate corresponding audio, reused for all results
tmp_audio_path = join(save_root, 'tmp.wav')
tmp_audio_clip = audio[: np.int32(nframe * sr / FPS)]
#librosa.output.write_wav(tmp_audio_path, tmp_audio_clip, sr)
import soundfile as sf
sf.write(tmp_audio_path, tmp_audio_clip, sr)
feature_maps_path = join(save_root, audio_name + '_feature_maps.avi')
write_video_with_audio(tmp_audio_path, feature_maps_path, 'input_')
if cfg.demo_use_feature2face_model:
final_path = join(save_root, audio_name + '.avi')
write_video_with_audio(tmp_audio_path, final_path, 'pred_')
if os.path.exists(tmp_audio_path):
os.remove(tmp_audio_path)
if not opt.save_intermediates:
_img_paths = list(map(lambda x: str(x), list(Path(save_root).glob('*.jpg'))))
for i in tqdm(range(len(_img_paths)), desc='deleting intermediate images'):
os.remove(_img_paths[i])
print('Finish!')